TPTP Problem File: ITP268^1.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : ITP268^1 : TPTP v9.0.0. Released v8.1.0.
% Domain   : Interactive Theorem Proving
% Problem  : Sledgehammer problem VEBT_DeleteCorrectness 02043_129851
% Version  : [Des22] axioms.
% English  :

% Refs     : [BH+15] Blanchette et al. (2015), Mining the Archive of Formal
%          : [Des22] Desharnais (2022), Email to Geoff Sutcliffe
% Source   : [Des22]
% Names    : 0073_VEBT_DeleteCorrectness_02043_129851 [Des22]

% Status   : Theorem
% Rating   : 1.00 v9.0.0, 0.90 v8.2.0, 0.92 v8.1.0
% Syntax   : Number of formulae    : 11277 (5669 unt;1038 typ;   0 def)
%            Number of atoms       : 28335 (12198 equ;   0 cnn)
%            Maximal formula atoms :   71 (   2 avg)
%            Number of connectives : 123566 (2841   ~; 535   |;1835   &;107640   @)
%                                         (   0 <=>;10715  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   40 (   6 avg)
%            Number of types       :  101 ( 100 usr)
%            Number of type conns  : 4296 (4296   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :  941 ( 938 usr;  64 con; 0-8 aty)
%            Number of variables   : 26549 (2587   ^;23217   !; 745   ?;26549   :)
% SPC      : TH0_THM_EQU_NAR

% Comments : This file was generated by Isabelle (most likely Sledgehammer)
%            from the van Emde Boas Trees session in the Archive of Formal
%            proofs - 
%            www.isa-afp.org/browser_info/current/AFP/Van_Emde_Boas_Trees
%            2022-02-18 11:22:14.903
%------------------------------------------------------------------------------
% Could-be-implicit typings (100)
thf(ty_n_t__Product____Type__Oprod_I_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_M_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_J_Mt__Product____Type__Oprod_It__Option__Ooption_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_Mt__Option__Ooption_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_J_J,type,
    produc5542196010084753463at_nat: $tType ).

thf(ty_n_t__Product____Type__Oprod_I_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_M_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_M_Eo_J_J_Mt__Product____Type__Oprod_It__Option__Ooption_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_Mt__Option__Ooption_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_J_J,type,
    produc5491161045314408544at_nat: $tType ).

thf(ty_n_t__Product____Type__Oprod_I_062_It__Num__Onum_M_062_It__Num__Onum_Mt__Num__Onum_J_J_Mt__Product____Type__Oprod_It__Option__Ooption_It__Num__Onum_J_Mt__Option__Ooption_It__Num__Onum_J_J_J,type,
    produc1193250871479095198on_num: $tType ).

thf(ty_n_t__Product____Type__Oprod_I_062_It__Nat__Onat_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_Mt__Product____Type__Oprod_It__Option__Ooption_It__Nat__Onat_J_Mt__Option__Ooption_It__Nat__Onat_J_J_J,type,
    produc8306885398267862888on_nat: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__Option__Ooption_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_Mt__Option__Ooption_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_J,type,
    produc6121120109295599847at_nat: $tType ).

thf(ty_n_t__Product____Type__Oprod_I_062_It__Nat__Onat_M_062_It__Num__Onum_Mt__Num__Onum_J_J_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Num__Onum_J_J_J,type,
    produc3368934014287244435at_num: $tType ).

thf(ty_n_t__Product____Type__Oprod_I_062_It__Nat__Onat_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_J,type,
    produc4471711990508489141at_nat: $tType ).

thf(ty_n_t__Product____Type__Oprod_I_062_It__Num__Onum_M_062_It__Num__Onum_M_Eo_J_J_Mt__Product____Type__Oprod_It__Option__Ooption_It__Num__Onum_J_Mt__Option__Ooption_It__Num__Onum_J_J_J,type,
    produc7036089656553540234on_num: $tType ).

thf(ty_n_t__Product____Type__Oprod_I_062_It__Nat__Onat_M_062_It__Nat__Onat_M_Eo_J_J_Mt__Product____Type__Oprod_It__Option__Ooption_It__Nat__Onat_J_Mt__Option__Ooption_It__Nat__Onat_J_J_J,type,
    produc2233624965454879586on_nat: $tType ).

thf(ty_n_t__Set__Oset_It__Filter__Ofilter_It__Product____Type__Oprod_It__Complex__Ocomplex_Mt__Complex__Ocomplex_J_J_J,type,
    set_fi4554929511873752355omplex: $tType ).

thf(ty_n_t__List__Olist_It__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_Mt__VEBT____Definitions__OVEBT_J_J,type,
    list_P7413028617227757229T_VEBT: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__Option__Ooption_It__Num__Onum_J_Mt__Option__Ooption_It__Num__Onum_J_J,type,
    produc3447558737645232053on_num: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__Option__Ooption_It__Nat__Onat_J_Mt__Option__Ooption_It__Nat__Onat_J_J,type,
    produc4953844613479565601on_nat: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__Nat__Onat_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Num__Onum_J_J,type,
    produc2963631642982155120at_num: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__Nat__Onat_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    produc7248412053542808358at_nat: $tType ).

thf(ty_n_t__Set__Oset_It__Filter__Ofilter_It__Product____Type__Oprod_It__Real__Oreal_Mt__Real__Oreal_J_J_J,type,
    set_fi7789364187291644575l_real: $tType ).

thf(ty_n_t__Filter__Ofilter_It__Product____Type__Oprod_It__Complex__Ocomplex_Mt__Complex__Ocomplex_J_J,type,
    filter6041513312241820739omplex: $tType ).

thf(ty_n_t__List__Olist_It__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_Mt__Nat__Onat_J_J,type,
    list_P7037539587688870467BT_nat: $tType ).

thf(ty_n_t__List__Olist_It__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_Mt__Int__Oint_J_J,type,
    list_P4547456442757143711BT_int: $tType ).

thf(ty_n_t__List__Olist_It__Product____Type__Oprod_It__Nat__Onat_Mt__VEBT____Definitions__OVEBT_J_J,type,
    list_P5647936690300460905T_VEBT: $tType ).

thf(ty_n_t__List__Olist_It__Product____Type__Oprod_It__Int__Oint_Mt__VEBT____Definitions__OVEBT_J_J,type,
    list_P7524865323317820941T_VEBT: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_Mt__VEBT____Definitions__OVEBT_J,type,
    produc8243902056947475879T_VEBT: $tType ).

thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_It__Complex__Ocomplex_Mt__Complex__Ocomplex_J_J,type,
    set_Pr5085853215250843933omplex: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J,type,
    produc8923325533196201883nteger: $tType ).

thf(ty_n_t__List__Olist_It__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_M_Eo_J_J,type,
    list_P3126845725202233233VEBT_o: $tType ).

thf(ty_n_t__List__Olist_It__Product____Type__Oprod_I_Eo_Mt__VEBT____Definitions__OVEBT_J_J,type,
    list_P7495141550334521929T_VEBT: $tType ).

thf(ty_n_t__Filter__Ofilter_It__Product____Type__Oprod_It__Real__Oreal_Mt__Real__Oreal_J_J,type,
    filter2146258269922977983l_real: $tType ).

thf(ty_n_t__List__Olist_It__Product____Type__Oprod_It__Code____Numeral__Ointeger_M_Eo_J_J,type,
    list_P8526636022914148096eger_o: $tType ).

thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_It__Code____Numeral__Ointeger_M_Eo_J_J,type,
    set_Pr448751882837621926eger_o: $tType ).

thf(ty_n_t__Option__Ooption_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    option4927543243414619207at_nat: $tType ).

thf(ty_n_t__Filter__Ofilter_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    filter1242075044329608583at_nat: $tType ).

thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_It__Real__Oreal_Mt__Real__Oreal_J_J,type,
    set_Pr6218003697084177305l_real: $tType ).

thf(ty_n_t__List__Olist_It__Product____Type__Oprod_It__Num__Onum_Mt__Num__Onum_J_J,type,
    list_P3744719386663036955um_num: $tType ).

thf(ty_n_t__List__Olist_It__Product____Type__Oprod_It__Nat__Onat_Mt__Num__Onum_J_J,type,
    list_P1726324292696863441at_num: $tType ).

thf(ty_n_t__List__Olist_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    list_P6011104703257516679at_nat: $tType ).

thf(ty_n_t__List__Olist_It__Product____Type__Oprod_It__Nat__Onat_Mt__Int__Oint_J_J,type,
    list_P3521021558325789923at_int: $tType ).

thf(ty_n_t__List__Olist_It__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_J,type,
    list_P5707943133018811711nt_int: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_Mt__Nat__Onat_J,type,
    produc9072475918466114483BT_nat: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__Nat__Onat_Mt__VEBT____Definitions__OVEBT_J,type,
    produc8025551001238799321T_VEBT: $tType ).

thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_It__Num__Onum_Mt__Num__Onum_J_J,type,
    set_Pr8218934625190621173um_num: $tType ).

thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_It__Nat__Onat_Mt__Num__Onum_J_J,type,
    set_Pr6200539531224447659at_num: $tType ).

thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    set_Pr1261947904930325089at_nat: $tType ).

thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_J,type,
    set_Pr958786334691620121nt_int: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__Complex__Ocomplex_Mt__Complex__Ocomplex_J,type,
    produc4411394909380815293omplex: $tType ).

thf(ty_n_t__List__Olist_It__Product____Type__Oprod_It__Nat__Onat_M_Eo_J_J,type,
    list_P7333126701944960589_nat_o: $tType ).

thf(ty_n_t__List__Olist_It__Product____Type__Oprod_It__Int__Oint_M_Eo_J_J,type,
    list_P5087981734274514673_int_o: $tType ).

thf(ty_n_t__List__Olist_It__Product____Type__Oprod_I_Eo_Mt__Int__Oint_J_J,type,
    list_P3795440434834930179_o_int: $tType ).

thf(ty_n_t__Set__Oset_It__List__Olist_It__VEBT____Definitions__OVEBT_J_J,type,
    set_list_VEBT_VEBT: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_M_Eo_J,type,
    produc334124729049499915VEBT_o: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__Code____Numeral__Ointeger_M_Eo_J,type,
    produc6271795597528267376eger_o: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__Real__Oreal_Mt__Real__Oreal_J,type,
    produc2422161461964618553l_real: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__Num__Onum_Mt__Num__Onum_J,type,
    product_prod_num_num: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__Nat__Onat_Mt__Num__Onum_J,type,
    product_prod_nat_num: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    product_prod_nat_nat: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__Nat__Onat_Mt__Int__Oint_J,type,
    product_prod_nat_int: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J,type,
    product_prod_int_int: $tType ).

thf(ty_n_t__List__Olist_It__Product____Type__Oprod_I_Eo_M_Eo_J_J,type,
    list_P4002435161011370285od_o_o: $tType ).

thf(ty_n_t__Set__Oset_It__List__Olist_It__Complex__Ocomplex_J_J,type,
    set_list_complex: $tType ).

thf(ty_n_t__Set__Oset_It__Set__Oset_It__Complex__Ocomplex_J_J,type,
    set_set_complex: $tType ).

thf(ty_n_t__List__Olist_It__VEBT____Definitions__OVEBT_J,type,
    list_VEBT_VEBT: $tType ).

thf(ty_n_t__Set__Oset_It__List__Olist_It__Nat__Onat_J_J,type,
    set_list_nat: $tType ).

thf(ty_n_t__Set__Oset_It__List__Olist_It__Int__Oint_J_J,type,
    set_list_int: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__Nat__Onat_M_Eo_J,type,
    product_prod_nat_o: $tType ).

thf(ty_n_t__List__Olist_It__Set__Oset_It__Nat__Onat_J_J,type,
    list_set_nat: $tType ).

thf(ty_n_t__List__Olist_It__Code____Numeral__Ointeger_J,type,
    list_Code_integer: $tType ).

thf(ty_n_t__Set__Oset_It__VEBT____Definitions__OVEBT_J,type,
    set_VEBT_VEBT: $tType ).

thf(ty_n_t__Set__Oset_It__Set__Oset_It__Nat__Onat_J_J,type,
    set_set_nat: $tType ).

thf(ty_n_t__Set__Oset_It__Set__Oset_It__Int__Oint_J_J,type,
    set_set_int: $tType ).

thf(ty_n_t__Set__Oset_It__Code____Numeral__Ointeger_J,type,
    set_Code_integer: $tType ).

thf(ty_n_t__Set__Oset_It__Product____Type__Ounit_J,type,
    set_Product_unit: $tType ).

thf(ty_n_t__List__Olist_It__Complex__Ocomplex_J,type,
    list_complex: $tType ).

thf(ty_n_t__Set__Oset_It__List__Olist_I_Eo_J_J,type,
    set_list_o: $tType ).

thf(ty_n_t__Set__Oset_It__Complex__Ocomplex_J,type,
    set_complex: $tType ).

thf(ty_n_t__Filter__Ofilter_It__Real__Oreal_J,type,
    filter_real: $tType ).

thf(ty_n_t__Set__Oset_It__Set__Oset_I_Eo_J_J,type,
    set_set_o: $tType ).

thf(ty_n_t__Option__Ooption_It__Num__Onum_J,type,
    option_num: $tType ).

thf(ty_n_t__Option__Ooption_It__Nat__Onat_J,type,
    option_nat: $tType ).

thf(ty_n_t__Filter__Ofilter_It__Nat__Onat_J,type,
    filter_nat: $tType ).

thf(ty_n_t__Set__Oset_It__String__Ochar_J,type,
    set_char: $tType ).

thf(ty_n_t__List__Olist_It__Real__Oreal_J,type,
    list_real: $tType ).

thf(ty_n_t__Set__Oset_It__Real__Oreal_J,type,
    set_real: $tType ).

thf(ty_n_t__List__Olist_It__Num__Onum_J,type,
    list_num: $tType ).

thf(ty_n_t__List__Olist_It__Nat__Onat_J,type,
    list_nat: $tType ).

thf(ty_n_t__List__Olist_It__Int__Oint_J,type,
    list_int: $tType ).

thf(ty_n_t__VEBT____Definitions__OVEBT,type,
    vEBT_VEBT: $tType ).

thf(ty_n_t__Set__Oset_It__Rat__Orat_J,type,
    set_rat: $tType ).

thf(ty_n_t__Set__Oset_It__Num__Onum_J,type,
    set_num: $tType ).

thf(ty_n_t__Set__Oset_It__Nat__Onat_J,type,
    set_nat: $tType ).

thf(ty_n_t__Set__Oset_It__Int__Oint_J,type,
    set_int: $tType ).

thf(ty_n_t__Code____Numeral__Ointeger,type,
    code_integer: $tType ).

thf(ty_n_t__Extended____Nat__Oenat,type,
    extended_enat: $tType ).

thf(ty_n_t__List__Olist_I_Eo_J,type,
    list_o: $tType ).

thf(ty_n_t__Complex__Ocomplex,type,
    complex: $tType ).

thf(ty_n_t__Set__Oset_I_Eo_J,type,
    set_o: $tType ).

thf(ty_n_t__String__Ochar,type,
    char: $tType ).

thf(ty_n_t__Real__Oreal,type,
    real: $tType ).

thf(ty_n_t__Rat__Orat,type,
    rat: $tType ).

thf(ty_n_t__Num__Onum,type,
    num: $tType ).

thf(ty_n_t__Nat__Onat,type,
    nat: $tType ).

thf(ty_n_t__Int__Oint,type,
    int: $tType ).

% Explicit typings (938)
thf(sy_c_Archimedean__Field_Oceiling_001t__Real__Oreal,type,
    archim7802044766580827645g_real: real > int ).

thf(sy_c_Archimedean__Field_Ofloor__ceiling__class_Ofloor_001t__Rat__Orat,type,
    archim3151403230148437115or_rat: rat > int ).

thf(sy_c_Archimedean__Field_Ofloor__ceiling__class_Ofloor_001t__Real__Oreal,type,
    archim6058952711729229775r_real: real > int ).

thf(sy_c_Binomial_Obinomial,type,
    binomial: nat > nat > nat ).

thf(sy_c_Binomial_Ogbinomial_001t__Complex__Ocomplex,type,
    gbinomial_complex: complex > nat > complex ).

thf(sy_c_Binomial_Ogbinomial_001t__Int__Oint,type,
    gbinomial_int: int > nat > int ).

thf(sy_c_Binomial_Ogbinomial_001t__Nat__Onat,type,
    gbinomial_nat: nat > nat > nat ).

thf(sy_c_Binomial_Ogbinomial_001t__Rat__Orat,type,
    gbinomial_rat: rat > nat > rat ).

thf(sy_c_Binomial_Ogbinomial_001t__Real__Oreal,type,
    gbinomial_real: real > nat > real ).

thf(sy_c_Bit__Operations_Oand__int__rel,type,
    bit_and_int_rel: product_prod_int_int > product_prod_int_int > $o ).

thf(sy_c_Bit__Operations_Oand__not__num,type,
    bit_and_not_num: num > num > option_num ).

thf(sy_c_Bit__Operations_Oconcat__bit,type,
    bit_concat_bit: nat > int > int > int ).

thf(sy_c_Bit__Operations_Oor__not__num__neg,type,
    bit_or_not_num_neg: num > num > num ).

thf(sy_c_Bit__Operations_Oor__not__num__neg__rel,type,
    bit_or3848514188828904588eg_rel: product_prod_num_num > product_prod_num_num > $o ).

thf(sy_c_Bit__Operations_Oring__bit__operations__class_Onot_001t__Int__Oint,type,
    bit_ri7919022796975470100ot_int: int > int ).

thf(sy_c_Bit__Operations_Oring__bit__operations__class_Osigned__take__bit_001t__Code____Numeral__Ointeger,type,
    bit_ri6519982836138164636nteger: nat > code_integer > code_integer ).

thf(sy_c_Bit__Operations_Oring__bit__operations__class_Osigned__take__bit_001t__Int__Oint,type,
    bit_ri631733984087533419it_int: nat > int > int ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oand_001t__Int__Oint,type,
    bit_se725231765392027082nd_int: int > int > int ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oand_001t__Nat__Onat,type,
    bit_se727722235901077358nd_nat: nat > nat > nat ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Odrop__bit_001t__Int__Oint,type,
    bit_se8568078237143864401it_int: nat > int > int ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Odrop__bit_001t__Nat__Onat,type,
    bit_se8570568707652914677it_nat: nat > nat > nat ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oflip__bit_001t__Code____Numeral__Ointeger,type,
    bit_se1345352211410354436nteger: nat > code_integer > code_integer ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oflip__bit_001t__Int__Oint,type,
    bit_se2159334234014336723it_int: nat > int > int ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oflip__bit_001t__Nat__Onat,type,
    bit_se2161824704523386999it_nat: nat > nat > nat ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Omask_001t__Int__Oint,type,
    bit_se2000444600071755411sk_int: nat > int ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Omask_001t__Nat__Onat,type,
    bit_se2002935070580805687sk_nat: nat > nat ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oor_001t__Int__Oint,type,
    bit_se1409905431419307370or_int: int > int > int ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oor_001t__Nat__Onat,type,
    bit_se1412395901928357646or_nat: nat > nat > nat ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Opush__bit_001t__Int__Oint,type,
    bit_se545348938243370406it_int: nat > int > int ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Opush__bit_001t__Nat__Onat,type,
    bit_se547839408752420682it_nat: nat > nat > nat ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oset__bit_001t__Code____Numeral__Ointeger,type,
    bit_se2793503036327961859nteger: nat > code_integer > code_integer ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oset__bit_001t__Int__Oint,type,
    bit_se7879613467334960850it_int: nat > int > int ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oset__bit_001t__Nat__Onat,type,
    bit_se7882103937844011126it_nat: nat > nat > nat ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Otake__bit_001t__Int__Oint,type,
    bit_se2923211474154528505it_int: nat > int > int ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Otake__bit_001t__Nat__Onat,type,
    bit_se2925701944663578781it_nat: nat > nat > nat ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Ounset__bit_001t__Code____Numeral__Ointeger,type,
    bit_se8260200283734997820nteger: nat > code_integer > code_integer ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Ounset__bit_001t__Int__Oint,type,
    bit_se4203085406695923979it_int: nat > int > int ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Ounset__bit_001t__Nat__Onat,type,
    bit_se4205575877204974255it_nat: nat > nat > nat ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oxor_001t__Int__Oint,type,
    bit_se6526347334894502574or_int: int > int > int ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oxor_001t__Nat__Onat,type,
    bit_se6528837805403552850or_nat: nat > nat > nat ).

thf(sy_c_Bit__Operations_Osemiring__bits__class_Obit_001t__Int__Oint,type,
    bit_se1146084159140164899it_int: int > nat > $o ).

thf(sy_c_Bit__Operations_Osemiring__bits__class_Obit_001t__Nat__Onat,type,
    bit_se1148574629649215175it_nat: nat > nat > $o ).

thf(sy_c_Bit__Operations_Otake__bit__num,type,
    bit_take_bit_num: nat > num > option_num ).

thf(sy_c_Code__Numeral_Obit__cut__integer,type,
    code_bit_cut_integer: code_integer > produc6271795597528267376eger_o ).

thf(sy_c_Code__Numeral_Odivmod__abs,type,
    code_divmod_abs: code_integer > code_integer > produc8923325533196201883nteger ).

thf(sy_c_Code__Numeral_Odivmod__integer,type,
    code_divmod_integer: code_integer > code_integer > produc8923325533196201883nteger ).

thf(sy_c_Code__Numeral_Ointeger_Oint__of__integer,type,
    code_int_of_integer: code_integer > int ).

thf(sy_c_Code__Numeral_Ointeger_Ointeger__of__int,type,
    code_integer_of_int: int > code_integer ).

thf(sy_c_Code__Numeral_Ointeger__of__num,type,
    code_integer_of_num: num > code_integer ).

thf(sy_c_Code__Numeral_Onat__of__integer,type,
    code_nat_of_integer: code_integer > nat ).

thf(sy_c_Code__Numeral_Onegative,type,
    code_negative: num > code_integer ).

thf(sy_c_Code__Numeral_Onum__of__integer,type,
    code_num_of_integer: code_integer > num ).

thf(sy_c_Code__Numeral_Opositive,type,
    code_positive: num > code_integer ).

thf(sy_c_Code__Target__Int_Onegative,type,
    code_Target_negative: num > int ).

thf(sy_c_Code__Target__Int_Opositive,type,
    code_Target_positive: num > int ).

thf(sy_c_Complete__Lattices_OInf__class_OInf_001t__Filter__Ofilter_It__Product____Type__Oprod_It__Complex__Ocomplex_Mt__Complex__Ocomplex_J_J,type,
    comple8358262395181532106omplex: set_fi4554929511873752355omplex > filter6041513312241820739omplex ).

thf(sy_c_Complete__Lattices_OInf__class_OInf_001t__Filter__Ofilter_It__Product____Type__Oprod_It__Real__Oreal_Mt__Real__Oreal_J_J,type,
    comple2936214249959783750l_real: set_fi7789364187291644575l_real > filter2146258269922977983l_real ).

thf(sy_c_Complete__Lattices_OInf__class_OInf_001t__Set__Oset_It__Nat__Onat_J,type,
    comple7806235888213564991et_nat: set_set_nat > set_nat ).

thf(sy_c_Complete__Lattices_OSup__class_OSup_001t__Int__Oint,type,
    complete_Sup_Sup_int: set_int > int ).

thf(sy_c_Complete__Lattices_OSup__class_OSup_001t__Real__Oreal,type,
    comple1385675409528146559p_real: set_real > real ).

thf(sy_c_Complete__Lattices_OSup__class_OSup_001t__Set__Oset_It__Nat__Onat_J,type,
    comple7399068483239264473et_nat: set_set_nat > set_nat ).

thf(sy_c_Complex_OArg,type,
    arg: complex > real ).

thf(sy_c_Complex_Ocis,type,
    cis: real > complex ).

thf(sy_c_Complex_Ocnj,type,
    cnj: complex > complex ).

thf(sy_c_Complex_Ocomplex_OComplex,type,
    complex2: real > real > complex ).

thf(sy_c_Complex_Ocomplex_OIm,type,
    im: complex > real ).

thf(sy_c_Complex_Ocomplex_ORe,type,
    re: complex > real ).

thf(sy_c_Complex_Ocsqrt,type,
    csqrt: complex > complex ).

thf(sy_c_Complex_Oimaginary__unit,type,
    imaginary_unit: complex ).

thf(sy_c_Deriv_Odifferentiable_001t__Real__Oreal_001t__Real__Oreal,type,
    differ6690327859849518006l_real: ( real > real ) > filter_real > $o ).

thf(sy_c_Deriv_Ohas__derivative_001t__Real__Oreal_001t__Real__Oreal,type,
    has_de1759254742604945161l_real: ( real > real ) > ( real > real ) > filter_real > $o ).

thf(sy_c_Deriv_Ohas__field__derivative_001t__Real__Oreal,type,
    has_fi5821293074295781190e_real: ( real > real ) > real > filter_real > $o ).

thf(sy_c_Divides_Oadjust__div,type,
    adjust_div: product_prod_int_int > int ).

thf(sy_c_Divides_Oadjust__mod,type,
    adjust_mod: int > int > int ).

thf(sy_c_Divides_Odivmod__nat,type,
    divmod_nat: nat > nat > product_prod_nat_nat ).

thf(sy_c_Divides_Oeucl__rel__int,type,
    eucl_rel_int: int > int > product_prod_int_int > $o ).

thf(sy_c_Divides_Ounique__euclidean__semiring__numeral__class_Odivides__aux_001t__Code____Numeral__Ointeger,type,
    unique5706413561485394159nteger: produc8923325533196201883nteger > $o ).

thf(sy_c_Divides_Ounique__euclidean__semiring__numeral__class_Odivides__aux_001t__Int__Oint,type,
    unique6319869463603278526ux_int: product_prod_int_int > $o ).

thf(sy_c_Divides_Ounique__euclidean__semiring__numeral__class_Odivides__aux_001t__Nat__Onat,type,
    unique6322359934112328802ux_nat: product_prod_nat_nat > $o ).

thf(sy_c_Divides_Ounique__euclidean__semiring__numeral__class_Odivmod_001t__Code____Numeral__Ointeger,type,
    unique3479559517661332726nteger: num > num > produc8923325533196201883nteger ).

thf(sy_c_Divides_Ounique__euclidean__semiring__numeral__class_Odivmod_001t__Int__Oint,type,
    unique5052692396658037445od_int: num > num > product_prod_int_int ).

thf(sy_c_Divides_Ounique__euclidean__semiring__numeral__class_Odivmod_001t__Nat__Onat,type,
    unique5055182867167087721od_nat: num > num > product_prod_nat_nat ).

thf(sy_c_Divides_Ounique__euclidean__semiring__numeral__class_Odivmod__step_001t__Code____Numeral__Ointeger,type,
    unique4921790084139445826nteger: num > produc8923325533196201883nteger > produc8923325533196201883nteger ).

thf(sy_c_Divides_Ounique__euclidean__semiring__numeral__class_Odivmod__step_001t__Int__Oint,type,
    unique5024387138958732305ep_int: num > product_prod_int_int > product_prod_int_int ).

thf(sy_c_Divides_Ounique__euclidean__semiring__numeral__class_Odivmod__step_001t__Nat__Onat,type,
    unique5026877609467782581ep_nat: num > product_prod_nat_nat > product_prod_nat_nat ).

thf(sy_c_Factorial_Ocomm__semiring__1__class_Opochhammer_001t__Code____Numeral__Ointeger,type,
    comm_s8582702949713902594nteger: code_integer > nat > code_integer ).

thf(sy_c_Factorial_Ocomm__semiring__1__class_Opochhammer_001t__Complex__Ocomplex,type,
    comm_s2602460028002588243omplex: complex > nat > complex ).

thf(sy_c_Factorial_Ocomm__semiring__1__class_Opochhammer_001t__Int__Oint,type,
    comm_s4660882817536571857er_int: int > nat > int ).

thf(sy_c_Factorial_Ocomm__semiring__1__class_Opochhammer_001t__Nat__Onat,type,
    comm_s4663373288045622133er_nat: nat > nat > nat ).

thf(sy_c_Factorial_Ocomm__semiring__1__class_Opochhammer_001t__Rat__Orat,type,
    comm_s4028243227959126397er_rat: rat > nat > rat ).

thf(sy_c_Factorial_Ocomm__semiring__1__class_Opochhammer_001t__Real__Oreal,type,
    comm_s7457072308508201937r_real: real > nat > real ).

thf(sy_c_Factorial_Osemiring__char__0__class_Ofact_001t__Code____Numeral__Ointeger,type,
    semiri3624122377584611663nteger: nat > code_integer ).

thf(sy_c_Factorial_Osemiring__char__0__class_Ofact_001t__Complex__Ocomplex,type,
    semiri5044797733671781792omplex: nat > complex ).

thf(sy_c_Factorial_Osemiring__char__0__class_Ofact_001t__Int__Oint,type,
    semiri1406184849735516958ct_int: nat > int ).

thf(sy_c_Factorial_Osemiring__char__0__class_Ofact_001t__Nat__Onat,type,
    semiri1408675320244567234ct_nat: nat > nat ).

thf(sy_c_Factorial_Osemiring__char__0__class_Ofact_001t__Rat__Orat,type,
    semiri773545260158071498ct_rat: nat > rat ).

thf(sy_c_Factorial_Osemiring__char__0__class_Ofact_001t__Real__Oreal,type,
    semiri2265585572941072030t_real: nat > real ).

thf(sy_c_Fields_Oinverse__class_Oinverse_001t__Complex__Ocomplex,type,
    invers8013647133539491842omplex: complex > complex ).

thf(sy_c_Fields_Oinverse__class_Oinverse_001t__Rat__Orat,type,
    inverse_inverse_rat: rat > rat ).

thf(sy_c_Fields_Oinverse__class_Oinverse_001t__Real__Oreal,type,
    inverse_inverse_real: real > real ).

thf(sy_c_Filter_Oat__bot_001t__Real__Oreal,type,
    at_bot_real: filter_real ).

thf(sy_c_Filter_Oat__top_001t__Nat__Onat,type,
    at_top_nat: filter_nat ).

thf(sy_c_Filter_Oat__top_001t__Real__Oreal,type,
    at_top_real: filter_real ).

thf(sy_c_Filter_Oeventually_001t__Nat__Onat,type,
    eventually_nat: ( nat > $o ) > filter_nat > $o ).

thf(sy_c_Filter_Oeventually_001t__Product____Type__Oprod_It__Complex__Ocomplex_Mt__Complex__Ocomplex_J,type,
    eventu5826381225784669381omplex: ( produc4411394909380815293omplex > $o ) > filter6041513312241820739omplex > $o ).

thf(sy_c_Filter_Oeventually_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    eventu1038000079068216329at_nat: ( product_prod_nat_nat > $o ) > filter1242075044329608583at_nat > $o ).

thf(sy_c_Filter_Oeventually_001t__Product____Type__Oprod_It__Real__Oreal_Mt__Real__Oreal_J,type,
    eventu3244425730907250241l_real: ( produc2422161461964618553l_real > $o ) > filter2146258269922977983l_real > $o ).

thf(sy_c_Filter_Oeventually_001t__Real__Oreal,type,
    eventually_real: ( real > $o ) > filter_real > $o ).

thf(sy_c_Filter_Ofilterlim_001t__Nat__Onat_001t__Nat__Onat,type,
    filterlim_nat_nat: ( nat > nat ) > filter_nat > filter_nat > $o ).

thf(sy_c_Filter_Ofilterlim_001t__Nat__Onat_001t__Real__Oreal,type,
    filterlim_nat_real: ( nat > real ) > filter_real > filter_nat > $o ).

thf(sy_c_Filter_Ofilterlim_001t__Real__Oreal_001t__Real__Oreal,type,
    filterlim_real_real: ( real > real ) > filter_real > filter_real > $o ).

thf(sy_c_Filter_Oprincipal_001t__Product____Type__Oprod_It__Complex__Ocomplex_Mt__Complex__Ocomplex_J,type,
    princi3496590319149328850omplex: set_Pr5085853215250843933omplex > filter6041513312241820739omplex ).

thf(sy_c_Filter_Oprincipal_001t__Product____Type__Oprod_It__Real__Oreal_Mt__Real__Oreal_J,type,
    princi6114159922880469582l_real: set_Pr6218003697084177305l_real > filter2146258269922977983l_real ).

thf(sy_c_Filter_Oprod__filter_001t__Nat__Onat_001t__Nat__Onat,type,
    prod_filter_nat_nat: filter_nat > filter_nat > filter1242075044329608583at_nat ).

thf(sy_c_Finite__Set_Ocard_001_Eo,type,
    finite_card_o: set_o > nat ).

thf(sy_c_Finite__Set_Ocard_001t__Complex__Ocomplex,type,
    finite_card_complex: set_complex > nat ).

thf(sy_c_Finite__Set_Ocard_001t__Int__Oint,type,
    finite_card_int: set_int > nat ).

thf(sy_c_Finite__Set_Ocard_001t__Nat__Onat,type,
    finite_card_nat: set_nat > nat ).

thf(sy_c_Finite__Set_Ocard_001t__Product____Type__Ounit,type,
    finite410649719033368117t_unit: set_Product_unit > nat ).

thf(sy_c_Finite__Set_Ocard_001t__Set__Oset_It__Nat__Onat_J,type,
    finite_card_set_nat: set_set_nat > nat ).

thf(sy_c_Finite__Set_Ocard_001t__String__Ochar,type,
    finite_card_char: set_char > nat ).

thf(sy_c_Finite__Set_Ofinite_001_Eo,type,
    finite_finite_o: set_o > $o ).

thf(sy_c_Finite__Set_Ofinite_001t__Complex__Ocomplex,type,
    finite3207457112153483333omplex: set_complex > $o ).

thf(sy_c_Finite__Set_Ofinite_001t__Int__Oint,type,
    finite_finite_int: set_int > $o ).

thf(sy_c_Finite__Set_Ofinite_001t__List__Olist_I_Eo_J,type,
    finite_finite_list_o: set_list_o > $o ).

thf(sy_c_Finite__Set_Ofinite_001t__List__Olist_It__Complex__Ocomplex_J,type,
    finite8712137658972009173omplex: set_list_complex > $o ).

thf(sy_c_Finite__Set_Ofinite_001t__List__Olist_It__Int__Oint_J,type,
    finite3922522038869484883st_int: set_list_int > $o ).

thf(sy_c_Finite__Set_Ofinite_001t__List__Olist_It__Nat__Onat_J,type,
    finite8100373058378681591st_nat: set_list_nat > $o ).

thf(sy_c_Finite__Set_Ofinite_001t__List__Olist_It__VEBT____Definitions__OVEBT_J,type,
    finite3004134309566078307T_VEBT: set_list_VEBT_VEBT > $o ).

thf(sy_c_Finite__Set_Ofinite_001t__Nat__Onat,type,
    finite_finite_nat: set_nat > $o ).

thf(sy_c_Finite__Set_Ofinite_001t__Num__Onum,type,
    finite_finite_num: set_num > $o ).

thf(sy_c_Finite__Set_Ofinite_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J,type,
    finite2998713641127702882nt_int: set_Pr958786334691620121nt_int > $o ).

thf(sy_c_Finite__Set_Ofinite_001t__Rat__Orat,type,
    finite_finite_rat: set_rat > $o ).

thf(sy_c_Finite__Set_Ofinite_001t__Real__Oreal,type,
    finite_finite_real: set_real > $o ).

thf(sy_c_Finite__Set_Ofinite_001t__Set__Oset_It__Complex__Ocomplex_J,type,
    finite6551019134538273531omplex: set_set_complex > $o ).

thf(sy_c_Finite__Set_Ofinite_001t__Set__Oset_It__Int__Oint_J,type,
    finite6197958912794628473et_int: set_set_int > $o ).

thf(sy_c_Finite__Set_Ofinite_001t__Set__Oset_It__Nat__Onat_J,type,
    finite1152437895449049373et_nat: set_set_nat > $o ).

thf(sy_c_Finite__Set_Ofinite_001t__VEBT____Definitions__OVEBT,type,
    finite5795047828879050333T_VEBT: set_VEBT_VEBT > $o ).

thf(sy_c_Fun_Obij__betw_001t__Complex__Ocomplex_001t__Complex__Ocomplex,type,
    bij_be1856998921033663316omplex: ( complex > complex ) > set_complex > set_complex > $o ).

thf(sy_c_Fun_Obij__betw_001t__Nat__Onat_001t__Complex__Ocomplex,type,
    bij_betw_nat_complex: ( nat > complex ) > set_nat > set_complex > $o ).

thf(sy_c_Fun_Obij__betw_001t__Nat__Onat_001t__Nat__Onat,type,
    bij_betw_nat_nat: ( nat > nat ) > set_nat > set_nat > $o ).

thf(sy_c_Fun_Ocomp_001_062_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J_001_062_It__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J_Mt__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J_J_001t__Code____Numeral__Ointeger,type,
    comp_C8797469213163452608nteger: ( ( code_integer > code_integer ) > produc8923325533196201883nteger > produc8923325533196201883nteger ) > ( code_integer > code_integer > code_integer ) > code_integer > produc8923325533196201883nteger > produc8923325533196201883nteger ).

thf(sy_c_Fun_Ocomp_001t__Code____Numeral__Ointeger_001_062_It__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J_Mt__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J_J_001t__Code____Numeral__Ointeger,type,
    comp_C1593894019821074884nteger: ( code_integer > produc8923325533196201883nteger > produc8923325533196201883nteger ) > ( code_integer > code_integer ) > code_integer > produc8923325533196201883nteger > produc8923325533196201883nteger ).

thf(sy_c_Fun_Ocomp_001t__Code____Numeral__Ointeger_001t__Code____Numeral__Ointeger_001t__Num__Onum,type,
    comp_C3531382070062128313er_num: ( code_integer > code_integer ) > ( num > code_integer ) > num > code_integer ).

thf(sy_c_Fun_Ocomp_001t__Int__Oint_001t__Int__Oint_001t__Num__Onum,type,
    comp_int_int_num: ( int > int ) > ( num > int ) > num > int ).

thf(sy_c_Fun_Ocomp_001t__Int__Oint_001t__Nat__Onat_001t__Int__Oint,type,
    comp_int_nat_int: ( int > nat ) > ( int > int ) > int > nat ).

thf(sy_c_Fun_Ocomp_001t__Nat__Onat_001t__Nat__Onat_001t__Nat__Onat,type,
    comp_nat_nat_nat: ( nat > nat ) > ( nat > nat ) > nat > nat ).

thf(sy_c_Fun_Omap__fun_001t__Int__Oint_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_001_062_It__Int__Oint_Mt__Int__Oint_J,type,
    map_fu4960017516451851995nt_int: ( int > product_prod_nat_nat ) > ( ( product_prod_nat_nat > product_prod_nat_nat ) > int > int ) > ( product_prod_nat_nat > product_prod_nat_nat > product_prod_nat_nat ) > int > int > int ).

thf(sy_c_Fun_Omap__fun_001t__Int__Oint_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001t__Int__Oint,type,
    map_fu3667384564859982768at_int: ( int > product_prod_nat_nat ) > ( product_prod_nat_nat > int ) > ( product_prod_nat_nat > product_prod_nat_nat ) > int > int ).

thf(sy_c_Fun_Ostrict__mono__on_001t__Nat__Onat_001t__Nat__Onat,type,
    strict1292158309912662752at_nat: ( nat > nat ) > set_nat > $o ).

thf(sy_c_Fun_Othe__inv__into_001t__Real__Oreal_001t__Real__Oreal,type,
    the_in5290026491893676941l_real: set_real > ( real > real ) > real > real ).

thf(sy_c_GCD_OGcd__class_OGcd_001t__Int__Oint,type,
    gcd_Gcd_int: set_int > int ).

thf(sy_c_GCD_OGcd__class_OGcd_001t__Nat__Onat,type,
    gcd_Gcd_nat: set_nat > nat ).

thf(sy_c_GCD_Obezw,type,
    bezw: nat > nat > product_prod_int_int ).

thf(sy_c_GCD_Obezw__rel,type,
    bezw_rel: product_prod_nat_nat > product_prod_nat_nat > $o ).

thf(sy_c_GCD_Ogcd__class_Ogcd_001t__Int__Oint,type,
    gcd_gcd_int: int > int > int ).

thf(sy_c_GCD_Ogcd__class_Ogcd_001t__Nat__Onat,type,
    gcd_gcd_nat: nat > nat > nat ).

thf(sy_c_GCD_Ogcd__nat__rel,type,
    gcd_nat_rel: product_prod_nat_nat > product_prod_nat_nat > $o ).

thf(sy_c_Groups_Oabs__class_Oabs_001t__Code____Numeral__Ointeger,type,
    abs_abs_Code_integer: code_integer > code_integer ).

thf(sy_c_Groups_Oabs__class_Oabs_001t__Complex__Ocomplex,type,
    abs_abs_complex: complex > complex ).

thf(sy_c_Groups_Oabs__class_Oabs_001t__Int__Oint,type,
    abs_abs_int: int > int ).

thf(sy_c_Groups_Oabs__class_Oabs_001t__Rat__Orat,type,
    abs_abs_rat: rat > rat ).

thf(sy_c_Groups_Oabs__class_Oabs_001t__Real__Oreal,type,
    abs_abs_real: real > real ).

thf(sy_c_Groups_Ominus__class_Ominus_001_062_It__Complex__Ocomplex_M_Eo_J,type,
    minus_8727706125548526216plex_o: ( complex > $o ) > ( complex > $o ) > complex > $o ).

thf(sy_c_Groups_Ominus__class_Ominus_001_062_It__Int__Oint_M_Eo_J,type,
    minus_minus_int_o: ( int > $o ) > ( int > $o ) > int > $o ).

thf(sy_c_Groups_Ominus__class_Ominus_001_062_It__Nat__Onat_M_Eo_J,type,
    minus_minus_nat_o: ( nat > $o ) > ( nat > $o ) > nat > $o ).

thf(sy_c_Groups_Ominus__class_Ominus_001_062_It__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_M_Eo_J,type,
    minus_711738161318947805_int_o: ( product_prod_int_int > $o ) > ( product_prod_int_int > $o ) > product_prod_int_int > $o ).

thf(sy_c_Groups_Ominus__class_Ominus_001_062_It__Real__Oreal_M_Eo_J,type,
    minus_minus_real_o: ( real > $o ) > ( real > $o ) > real > $o ).

thf(sy_c_Groups_Ominus__class_Ominus_001_062_It__Set__Oset_It__Nat__Onat_J_M_Eo_J,type,
    minus_6910147592129066416_nat_o: ( set_nat > $o ) > ( set_nat > $o ) > set_nat > $o ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Code____Numeral__Ointeger,type,
    minus_8373710615458151222nteger: code_integer > code_integer > code_integer ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Complex__Ocomplex,type,
    minus_minus_complex: complex > complex > complex ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Extended____Nat__Oenat,type,
    minus_3235023915231533773d_enat: extended_enat > extended_enat > extended_enat ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Int__Oint,type,
    minus_minus_int: int > int > int ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Nat__Onat,type,
    minus_minus_nat: nat > nat > nat ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Rat__Orat,type,
    minus_minus_rat: rat > rat > rat ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Real__Oreal,type,
    minus_minus_real: real > real > real ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__Complex__Ocomplex_J,type,
    minus_811609699411566653omplex: set_complex > set_complex > set_complex ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__Int__Oint_J,type,
    minus_minus_set_int: set_int > set_int > set_int ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__Nat__Onat_J,type,
    minus_minus_set_nat: set_nat > set_nat > set_nat ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_J,type,
    minus_1052850069191792384nt_int: set_Pr958786334691620121nt_int > set_Pr958786334691620121nt_int > set_Pr958786334691620121nt_int ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__Real__Oreal_J,type,
    minus_minus_set_real: set_real > set_real > set_real ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__Set__Oset_It__Nat__Onat_J_J,type,
    minus_2163939370556025621et_nat: set_set_nat > set_set_nat > set_set_nat ).

thf(sy_c_Groups_Oone__class_Oone_001t__Code____Numeral__Ointeger,type,
    one_one_Code_integer: code_integer ).

thf(sy_c_Groups_Oone__class_Oone_001t__Complex__Ocomplex,type,
    one_one_complex: complex ).

thf(sy_c_Groups_Oone__class_Oone_001t__Extended____Nat__Oenat,type,
    one_on7984719198319812577d_enat: extended_enat ).

thf(sy_c_Groups_Oone__class_Oone_001t__Int__Oint,type,
    one_one_int: int ).

thf(sy_c_Groups_Oone__class_Oone_001t__Nat__Onat,type,
    one_one_nat: nat ).

thf(sy_c_Groups_Oone__class_Oone_001t__Rat__Orat,type,
    one_one_rat: rat ).

thf(sy_c_Groups_Oone__class_Oone_001t__Real__Oreal,type,
    one_one_real: real ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Code____Numeral__Ointeger,type,
    plus_p5714425477246183910nteger: code_integer > code_integer > code_integer ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Complex__Ocomplex,type,
    plus_plus_complex: complex > complex > complex ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Extended____Nat__Oenat,type,
    plus_p3455044024723400733d_enat: extended_enat > extended_enat > extended_enat ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Int__Oint,type,
    plus_plus_int: int > int > int ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Nat__Onat,type,
    plus_plus_nat: nat > nat > nat ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Num__Onum,type,
    plus_plus_num: num > num > num ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Rat__Orat,type,
    plus_plus_rat: rat > rat > rat ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Real__Oreal,type,
    plus_plus_real: real > real > real ).

thf(sy_c_Groups_Osgn__class_Osgn_001t__Code____Numeral__Ointeger,type,
    sgn_sgn_Code_integer: code_integer > code_integer ).

thf(sy_c_Groups_Osgn__class_Osgn_001t__Complex__Ocomplex,type,
    sgn_sgn_complex: complex > complex ).

thf(sy_c_Groups_Osgn__class_Osgn_001t__Int__Oint,type,
    sgn_sgn_int: int > int ).

thf(sy_c_Groups_Osgn__class_Osgn_001t__Rat__Orat,type,
    sgn_sgn_rat: rat > rat ).

thf(sy_c_Groups_Osgn__class_Osgn_001t__Real__Oreal,type,
    sgn_sgn_real: real > real ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Code____Numeral__Ointeger,type,
    times_3573771949741848930nteger: code_integer > code_integer > code_integer ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Complex__Ocomplex,type,
    times_times_complex: complex > complex > complex ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Extended____Nat__Oenat,type,
    times_7803423173614009249d_enat: extended_enat > extended_enat > extended_enat ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Int__Oint,type,
    times_times_int: int > int > int ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Nat__Onat,type,
    times_times_nat: nat > nat > nat ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Num__Onum,type,
    times_times_num: num > num > num ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Rat__Orat,type,
    times_times_rat: rat > rat > rat ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Real__Oreal,type,
    times_times_real: real > real > real ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001_062_It__Complex__Ocomplex_M_Eo_J,type,
    uminus1680532995456772888plex_o: ( complex > $o ) > complex > $o ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001_062_It__Int__Oint_M_Eo_J,type,
    uminus_uminus_int_o: ( int > $o ) > int > $o ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001_062_It__Nat__Onat_M_Eo_J,type,
    uminus_uminus_nat_o: ( nat > $o ) > nat > $o ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001_062_It__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_M_Eo_J,type,
    uminus7117520113953359693_int_o: ( product_prod_int_int > $o ) > product_prod_int_int > $o ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001_062_It__Real__Oreal_M_Eo_J,type,
    uminus_uminus_real_o: ( real > $o ) > real > $o ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001_062_It__Set__Oset_It__Nat__Onat_J_M_Eo_J,type,
    uminus6401447641752708672_nat_o: ( set_nat > $o ) > set_nat > $o ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Code____Numeral__Ointeger,type,
    uminus1351360451143612070nteger: code_integer > code_integer ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Complex__Ocomplex,type,
    uminus1482373934393186551omplex: complex > complex ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Int__Oint,type,
    uminus_uminus_int: int > int ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Rat__Orat,type,
    uminus_uminus_rat: rat > rat ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Real__Oreal,type,
    uminus_uminus_real: real > real ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Set__Oset_It__Complex__Ocomplex_J,type,
    uminus8566677241136511917omplex: set_complex > set_complex ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Set__Oset_It__Int__Oint_J,type,
    uminus1532241313380277803et_int: set_int > set_int ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Set__Oset_It__Nat__Onat_J,type,
    uminus5710092332889474511et_nat: set_nat > set_nat ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Set__Oset_It__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_J,type,
    uminus6221592323253981072nt_int: set_Pr958786334691620121nt_int > set_Pr958786334691620121nt_int ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Set__Oset_It__Real__Oreal_J,type,
    uminus612125837232591019t_real: set_real > set_real ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Set__Oset_It__Set__Oset_It__Nat__Onat_J_J,type,
    uminus613421341184616069et_nat: set_set_nat > set_set_nat ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Code____Numeral__Ointeger,type,
    zero_z3403309356797280102nteger: code_integer ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Complex__Ocomplex,type,
    zero_zero_complex: complex ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Extended____Nat__Oenat,type,
    zero_z5237406670263579293d_enat: extended_enat ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Int__Oint,type,
    zero_zero_int: int ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Nat__Onat,type,
    zero_zero_nat: nat ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Rat__Orat,type,
    zero_zero_rat: rat ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Real__Oreal,type,
    zero_zero_real: real ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001_Eo_001t__Nat__Onat,type,
    groups8507830703676809646_o_nat: ( $o > nat ) > set_o > nat ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Complex__Ocomplex_001t__Code____Numeral__Ointeger,type,
    groups6621422865394947399nteger: ( complex > code_integer ) > set_complex > code_integer ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Complex__Ocomplex_001t__Complex__Ocomplex,type,
    groups7754918857620584856omplex: ( complex > complex ) > set_complex > complex ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Complex__Ocomplex_001t__Int__Oint,type,
    groups5690904116761175830ex_int: ( complex > int ) > set_complex > int ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Complex__Ocomplex_001t__Nat__Onat,type,
    groups5693394587270226106ex_nat: ( complex > nat ) > set_complex > nat ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Complex__Ocomplex_001t__Rat__Orat,type,
    groups5058264527183730370ex_rat: ( complex > rat ) > set_complex > rat ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Complex__Ocomplex_001t__Real__Oreal,type,
    groups5808333547571424918x_real: ( complex > real ) > set_complex > real ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Int__Oint_001t__Code____Numeral__Ointeger,type,
    groups7873554091576472773nteger: ( int > code_integer ) > set_int > code_integer ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Int__Oint_001t__Complex__Ocomplex,type,
    groups3049146728041665814omplex: ( int > complex ) > set_int > complex ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Int__Oint_001t__Int__Oint,type,
    groups4538972089207619220nt_int: ( int > int ) > set_int > int ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Int__Oint_001t__Nat__Onat,type,
    groups4541462559716669496nt_nat: ( int > nat ) > set_int > nat ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Int__Oint_001t__Rat__Orat,type,
    groups3906332499630173760nt_rat: ( int > rat ) > set_int > rat ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Int__Oint_001t__Real__Oreal,type,
    groups8778361861064173332t_real: ( int > real ) > set_int > real ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Nat__Onat_001t__Code____Numeral__Ointeger,type,
    groups7501900531339628137nteger: ( nat > code_integer ) > set_nat > code_integer ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Nat__Onat_001t__Complex__Ocomplex,type,
    groups2073611262835488442omplex: ( nat > complex ) > set_nat > complex ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Nat__Onat_001t__Int__Oint,type,
    groups3539618377306564664at_int: ( nat > int ) > set_nat > int ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Nat__Onat_001t__Nat__Onat,type,
    groups3542108847815614940at_nat: ( nat > nat ) > set_nat > nat ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Nat__Onat_001t__Rat__Orat,type,
    groups2906978787729119204at_rat: ( nat > rat ) > set_nat > rat ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Nat__Onat_001t__Real__Oreal,type,
    groups6591440286371151544t_real: ( nat > real ) > set_nat > real ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001t__Nat__Onat,type,
    groups977919841031483927at_nat: ( product_prod_nat_nat > nat ) > set_Pr1261947904930325089at_nat > nat ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001t__Real__Oreal,type,
    groups4567486121110086003t_real: ( product_prod_nat_nat > real ) > set_Pr1261947904930325089at_nat > real ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Real__Oreal_001t__Code____Numeral__Ointeger,type,
    groups7713935264441627589nteger: ( real > code_integer ) > set_real > code_integer ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Real__Oreal_001t__Complex__Ocomplex,type,
    groups5754745047067104278omplex: ( real > complex ) > set_real > complex ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Real__Oreal_001t__Int__Oint,type,
    groups1932886352136224148al_int: ( real > int ) > set_real > int ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Real__Oreal_001t__Nat__Onat,type,
    groups1935376822645274424al_nat: ( real > nat ) > set_real > nat ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Real__Oreal_001t__Rat__Orat,type,
    groups1300246762558778688al_rat: ( real > rat ) > set_real > rat ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Real__Oreal_001t__Real__Oreal,type,
    groups8097168146408367636l_real: ( real > real ) > set_real > real ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Set__Oset_It__Nat__Onat_J_001t__Complex__Ocomplex,type,
    groups8255218700646806128omplex: ( set_nat > complex ) > set_set_nat > complex ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Set__Oset_It__Nat__Onat_J_001t__Nat__Onat,type,
    groups8294997508430121362at_nat: ( set_nat > nat ) > set_set_nat > nat ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Set__Oset_It__Nat__Onat_J_001t__Real__Oreal,type,
    groups5107569545109728110t_real: ( set_nat > real ) > set_set_nat > real ).

thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Int__Oint_001t__Int__Oint,type,
    groups1705073143266064639nt_int: ( int > int ) > set_int > int ).

thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Nat__Onat_001t__Complex__Ocomplex,type,
    groups6464643781859351333omplex: ( nat > complex ) > set_nat > complex ).

thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Nat__Onat_001t__Int__Oint,type,
    groups705719431365010083at_int: ( nat > int ) > set_nat > int ).

thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Nat__Onat_001t__Nat__Onat,type,
    groups708209901874060359at_nat: ( nat > nat ) > set_nat > nat ).

thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Nat__Onat_001t__Rat__Orat,type,
    groups73079841787564623at_rat: ( nat > rat ) > set_nat > rat ).

thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Nat__Onat_001t__Real__Oreal,type,
    groups129246275422532515t_real: ( nat > real ) > set_nat > real ).

thf(sy_c_Groups__List_Ocomm__semiring__0__class_Ohorner__sum_001_Eo_001t__Int__Oint,type,
    groups9116527308978886569_o_int: ( $o > int ) > int > list_o > int ).

thf(sy_c_HOL_OThe_001t__Int__Oint,type,
    the_int: ( int > $o ) > int ).

thf(sy_c_HOL_OThe_001t__Real__Oreal,type,
    the_real: ( real > $o ) > real ).

thf(sy_c_If_001t__Code____Numeral__Ointeger,type,
    if_Code_integer: $o > code_integer > code_integer > code_integer ).

thf(sy_c_If_001t__Complex__Ocomplex,type,
    if_complex: $o > complex > complex > complex ).

thf(sy_c_If_001t__Extended____Nat__Oenat,type,
    if_Extended_enat: $o > extended_enat > extended_enat > extended_enat ).

thf(sy_c_If_001t__Int__Oint,type,
    if_int: $o > int > int > int ).

thf(sy_c_If_001t__List__Olist_It__Int__Oint_J,type,
    if_list_int: $o > list_int > list_int > list_int ).

thf(sy_c_If_001t__Nat__Onat,type,
    if_nat: $o > nat > nat > nat ).

thf(sy_c_If_001t__Num__Onum,type,
    if_num: $o > num > num > num ).

thf(sy_c_If_001t__Option__Ooption_It__Nat__Onat_J,type,
    if_option_nat: $o > option_nat > option_nat > option_nat ).

thf(sy_c_If_001t__Option__Ooption_It__Num__Onum_J,type,
    if_option_num: $o > option_num > option_num > option_num ).

thf(sy_c_If_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_M_Eo_J,type,
    if_Pro5737122678794959658eger_o: $o > produc6271795597528267376eger_o > produc6271795597528267376eger_o > produc6271795597528267376eger_o ).

thf(sy_c_If_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J,type,
    if_Pro6119634080678213985nteger: $o > produc8923325533196201883nteger > produc8923325533196201883nteger > produc8923325533196201883nteger ).

thf(sy_c_If_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J,type,
    if_Pro3027730157355071871nt_int: $o > product_prod_int_int > product_prod_int_int > product_prod_int_int ).

thf(sy_c_If_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    if_Pro6206227464963214023at_nat: $o > product_prod_nat_nat > product_prod_nat_nat > product_prod_nat_nat ).

thf(sy_c_If_001t__Rat__Orat,type,
    if_rat: $o > rat > rat > rat ).

thf(sy_c_If_001t__Real__Oreal,type,
    if_real: $o > real > real > real ).

thf(sy_c_If_001t__Set__Oset_It__Int__Oint_J,type,
    if_set_int: $o > set_int > set_int > set_int ).

thf(sy_c_If_001t__VEBT____Definitions__OVEBT,type,
    if_VEBT_VEBT: $o > vEBT_VEBT > vEBT_VEBT > vEBT_VEBT ).

thf(sy_c_Int_OAbs__Integ,type,
    abs_Integ: product_prod_nat_nat > int ).

thf(sy_c_Int_ORep__Integ,type,
    rep_Integ: int > product_prod_nat_nat ).

thf(sy_c_Int_Oint__ge__less__than,type,
    int_ge_less_than: int > set_Pr958786334691620121nt_int ).

thf(sy_c_Int_Oint__ge__less__than2,type,
    int_ge_less_than2: int > set_Pr958786334691620121nt_int ).

thf(sy_c_Int_Onat,type,
    nat2: int > nat ).

thf(sy_c_Int_Oring__1__class_OInts_001t__Real__Oreal,type,
    ring_1_Ints_real: set_real ).

thf(sy_c_Int_Oring__1__class_Oof__int_001t__Rat__Orat,type,
    ring_1_of_int_rat: int > rat ).

thf(sy_c_Int_Oring__1__class_Oof__int_001t__Real__Oreal,type,
    ring_1_of_int_real: int > real ).

thf(sy_c_Lattices_Osemilattice__neutr__order_001t__Nat__Onat,type,
    semila1623282765462674594er_nat: ( nat > nat > nat ) > nat > ( nat > nat > $o ) > ( nat > nat > $o ) > $o ).

thf(sy_c_Lattices_Osup__class_Osup_001t__Extended____Nat__Oenat,type,
    sup_su3973961784419623482d_enat: extended_enat > extended_enat > extended_enat ).

thf(sy_c_Lattices_Osup__class_Osup_001t__Int__Oint,type,
    sup_sup_int: int > int > int ).

thf(sy_c_Lattices_Osup__class_Osup_001t__Nat__Onat,type,
    sup_sup_nat: nat > nat > nat ).

thf(sy_c_Lattices_Osup__class_Osup_001t__Set__Oset_It__Nat__Onat_J,type,
    sup_sup_set_nat: set_nat > set_nat > set_nat ).

thf(sy_c_Lattices_Osup__class_Osup_001t__Set__Oset_It__Set__Oset_I_Eo_J_J,type,
    sup_sup_set_set_o: set_set_o > set_set_o > set_set_o ).

thf(sy_c_Lattices_Osup__class_Osup_001t__Set__Oset_It__Set__Oset_It__Int__Oint_J_J,type,
    sup_sup_set_set_int: set_set_int > set_set_int > set_set_int ).

thf(sy_c_Lattices_Osup__class_Osup_001t__Set__Oset_It__Set__Oset_It__Nat__Onat_J_J,type,
    sup_sup_set_set_nat: set_set_nat > set_set_nat > set_set_nat ).

thf(sy_c_Lattices__Big_Olinorder__class_OMax_001t__Int__Oint,type,
    lattic8263393255366662781ax_int: set_int > int ).

thf(sy_c_Lattices__Big_Olinorder__class_OMax_001t__Nat__Onat,type,
    lattic8265883725875713057ax_nat: set_nat > nat ).

thf(sy_c_Limits_OBfun_001t__Nat__Onat_001t__Real__Oreal,type,
    bfun_nat_real: ( nat > real ) > filter_nat > $o ).

thf(sy_c_Limits_Oat__infinity_001t__Real__Oreal,type,
    at_infinity_real: filter_real ).

thf(sy_c_List_Oappend_001t__Int__Oint,type,
    append_int: list_int > list_int > list_int ).

thf(sy_c_List_Oappend_001t__Nat__Onat,type,
    append_nat: list_nat > list_nat > list_nat ).

thf(sy_c_List_Odistinct_001t__Int__Oint,type,
    distinct_int: list_int > $o ).

thf(sy_c_List_Olinorder__class_Osorted__list__of__set_001t__Nat__Onat,type,
    linord2614967742042102400et_nat: set_nat > list_nat ).

thf(sy_c_List_Olist_OCons_001t__Int__Oint,type,
    cons_int: int > list_int > list_int ).

thf(sy_c_List_Olist_OCons_001t__Nat__Onat,type,
    cons_nat: nat > list_nat > list_nat ).

thf(sy_c_List_Olist_ONil_001t__Int__Oint,type,
    nil_int: list_int ).

thf(sy_c_List_Olist_ONil_001t__Nat__Onat,type,
    nil_nat: list_nat ).

thf(sy_c_List_Olist_Oset_001_Eo,type,
    set_o2: list_o > set_o ).

thf(sy_c_List_Olist_Oset_001t__Complex__Ocomplex,type,
    set_complex2: list_complex > set_complex ).

thf(sy_c_List_Olist_Oset_001t__Int__Oint,type,
    set_int2: list_int > set_int ).

thf(sy_c_List_Olist_Oset_001t__Nat__Onat,type,
    set_nat2: list_nat > set_nat ).

thf(sy_c_List_Olist_Oset_001t__Real__Oreal,type,
    set_real2: list_real > set_real ).

thf(sy_c_List_Olist_Oset_001t__Set__Oset_It__Nat__Onat_J,type,
    set_set_nat2: list_set_nat > set_set_nat ).

thf(sy_c_List_Olist_Oset_001t__VEBT____Definitions__OVEBT,type,
    set_VEBT_VEBT2: list_VEBT_VEBT > set_VEBT_VEBT ).

thf(sy_c_List_Olist_Osize__list_001t__VEBT____Definitions__OVEBT,type,
    size_list_VEBT_VEBT: ( vEBT_VEBT > nat ) > list_VEBT_VEBT > nat ).

thf(sy_c_List_Olist__update_001_Eo,type,
    list_update_o: list_o > nat > $o > list_o ).

thf(sy_c_List_Olist__update_001t__Complex__Ocomplex,type,
    list_update_complex: list_complex > nat > complex > list_complex ).

thf(sy_c_List_Olist__update_001t__Int__Oint,type,
    list_update_int: list_int > nat > int > list_int ).

thf(sy_c_List_Olist__update_001t__Nat__Onat,type,
    list_update_nat: list_nat > nat > nat > list_nat ).

thf(sy_c_List_Olist__update_001t__Real__Oreal,type,
    list_update_real: list_real > nat > real > list_real ).

thf(sy_c_List_Olist__update_001t__Set__Oset_It__Nat__Onat_J,type,
    list_update_set_nat: list_set_nat > nat > set_nat > list_set_nat ).

thf(sy_c_List_Olist__update_001t__VEBT____Definitions__OVEBT,type,
    list_u1324408373059187874T_VEBT: list_VEBT_VEBT > nat > vEBT_VEBT > list_VEBT_VEBT ).

thf(sy_c_List_Onth_001_Eo,type,
    nth_o: list_o > nat > $o ).

thf(sy_c_List_Onth_001t__Code____Numeral__Ointeger,type,
    nth_Code_integer: list_Code_integer > nat > code_integer ).

thf(sy_c_List_Onth_001t__Complex__Ocomplex,type,
    nth_complex: list_complex > nat > complex ).

thf(sy_c_List_Onth_001t__Int__Oint,type,
    nth_int: list_int > nat > int ).

thf(sy_c_List_Onth_001t__Nat__Onat,type,
    nth_nat: list_nat > nat > nat ).

thf(sy_c_List_Onth_001t__Num__Onum,type,
    nth_num: list_num > nat > num ).

thf(sy_c_List_Onth_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_M_Eo_J,type,
    nth_Pr8522763379788166057eger_o: list_P8526636022914148096eger_o > nat > produc6271795597528267376eger_o ).

thf(sy_c_List_Onth_001t__Product____Type__Oprod_It__Nat__Onat_M_Eo_J,type,
    nth_Pr112076138515278198_nat_o: list_P7333126701944960589_nat_o > nat > product_prod_nat_o ).

thf(sy_c_List_Onth_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Int__Oint_J,type,
    nth_Pr3440142176431000676at_int: list_P3521021558325789923at_int > nat > product_prod_nat_int ).

thf(sy_c_List_Onth_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    nth_Pr7617993195940197384at_nat: list_P6011104703257516679at_nat > nat > product_prod_nat_nat ).

thf(sy_c_List_Onth_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Num__Onum_J,type,
    nth_Pr8326237132889035090at_num: list_P1726324292696863441at_num > nat > product_prod_nat_num ).

thf(sy_c_List_Onth_001t__Product____Type__Oprod_It__Nat__Onat_Mt__VEBT____Definitions__OVEBT_J,type,
    nth_Pr744662078594809490T_VEBT: list_P5647936690300460905T_VEBT > nat > produc8025551001238799321T_VEBT ).

thf(sy_c_List_Onth_001t__Product____Type__Oprod_It__Num__Onum_Mt__Num__Onum_J,type,
    nth_Pr6456567536196504476um_num: list_P3744719386663036955um_num > nat > product_prod_num_num ).

thf(sy_c_List_Onth_001t__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_M_Eo_J,type,
    nth_Pr4606735188037164562VEBT_o: list_P3126845725202233233VEBT_o > nat > produc334124729049499915VEBT_o ).

thf(sy_c_List_Onth_001t__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_Mt__Nat__Onat_J,type,
    nth_Pr1791586995822124652BT_nat: list_P7037539587688870467BT_nat > nat > produc9072475918466114483BT_nat ).

thf(sy_c_List_Onth_001t__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_Mt__VEBT____Definitions__OVEBT_J,type,
    nth_Pr4953567300277697838T_VEBT: list_P7413028617227757229T_VEBT > nat > produc8243902056947475879T_VEBT ).

thf(sy_c_List_Onth_001t__Real__Oreal,type,
    nth_real: list_real > nat > real ).

thf(sy_c_List_Onth_001t__Set__Oset_It__Nat__Onat_J,type,
    nth_set_nat: list_set_nat > nat > set_nat ).

thf(sy_c_List_Onth_001t__VEBT____Definitions__OVEBT,type,
    nth_VEBT_VEBT: list_VEBT_VEBT > nat > vEBT_VEBT ).

thf(sy_c_List_Oproduct_001_Eo_001_Eo,type,
    product_o_o: list_o > list_o > list_P4002435161011370285od_o_o ).

thf(sy_c_List_Oproduct_001_Eo_001t__Int__Oint,type,
    product_o_int: list_o > list_int > list_P3795440434834930179_o_int ).

thf(sy_c_List_Oproduct_001_Eo_001t__VEBT____Definitions__OVEBT,type,
    product_o_VEBT_VEBT: list_o > list_VEBT_VEBT > list_P7495141550334521929T_VEBT ).

thf(sy_c_List_Oproduct_001t__Code____Numeral__Ointeger_001_Eo,type,
    produc3607205314601156340eger_o: list_Code_integer > list_o > list_P8526636022914148096eger_o ).

thf(sy_c_List_Oproduct_001t__Int__Oint_001_Eo,type,
    product_int_o: list_int > list_o > list_P5087981734274514673_int_o ).

thf(sy_c_List_Oproduct_001t__Int__Oint_001t__Int__Oint,type,
    product_int_int: list_int > list_int > list_P5707943133018811711nt_int ).

thf(sy_c_List_Oproduct_001t__Int__Oint_001t__VEBT____Definitions__OVEBT,type,
    produc662631939642741121T_VEBT: list_int > list_VEBT_VEBT > list_P7524865323317820941T_VEBT ).

thf(sy_c_List_Oproduct_001t__Nat__Onat_001_Eo,type,
    product_nat_o: list_nat > list_o > list_P7333126701944960589_nat_o ).

thf(sy_c_List_Oproduct_001t__Nat__Onat_001t__Int__Oint,type,
    product_nat_int: list_nat > list_int > list_P3521021558325789923at_int ).

thf(sy_c_List_Oproduct_001t__Nat__Onat_001t__Nat__Onat,type,
    product_nat_nat: list_nat > list_nat > list_P6011104703257516679at_nat ).

thf(sy_c_List_Oproduct_001t__Nat__Onat_001t__Num__Onum,type,
    product_nat_num: list_nat > list_num > list_P1726324292696863441at_num ).

thf(sy_c_List_Oproduct_001t__Nat__Onat_001t__VEBT____Definitions__OVEBT,type,
    produc7156399406898700509T_VEBT: list_nat > list_VEBT_VEBT > list_P5647936690300460905T_VEBT ).

thf(sy_c_List_Oproduct_001t__Num__Onum_001t__Num__Onum,type,
    product_num_num: list_num > list_num > list_P3744719386663036955um_num ).

thf(sy_c_List_Oproduct_001t__VEBT____Definitions__OVEBT_001_Eo,type,
    product_VEBT_VEBT_o: list_VEBT_VEBT > list_o > list_P3126845725202233233VEBT_o ).

thf(sy_c_List_Oproduct_001t__VEBT____Definitions__OVEBT_001t__Int__Oint,type,
    produc7292646706713671643BT_int: list_VEBT_VEBT > list_int > list_P4547456442757143711BT_int ).

thf(sy_c_List_Oproduct_001t__VEBT____Definitions__OVEBT_001t__Nat__Onat,type,
    produc7295137177222721919BT_nat: list_VEBT_VEBT > list_nat > list_P7037539587688870467BT_nat ).

thf(sy_c_List_Oproduct_001t__VEBT____Definitions__OVEBT_001t__VEBT____Definitions__OVEBT,type,
    produc4743750530478302277T_VEBT: list_VEBT_VEBT > list_VEBT_VEBT > list_P7413028617227757229T_VEBT ).

thf(sy_c_List_Oreplicate_001_Eo,type,
    replicate_o: nat > $o > list_o ).

thf(sy_c_List_Oreplicate_001t__Complex__Ocomplex,type,
    replicate_complex: nat > complex > list_complex ).

thf(sy_c_List_Oreplicate_001t__Int__Oint,type,
    replicate_int: nat > int > list_int ).

thf(sy_c_List_Oreplicate_001t__Nat__Onat,type,
    replicate_nat: nat > nat > list_nat ).

thf(sy_c_List_Oreplicate_001t__Real__Oreal,type,
    replicate_real: nat > real > list_real ).

thf(sy_c_List_Oreplicate_001t__Set__Oset_It__Nat__Onat_J,type,
    replicate_set_nat: nat > set_nat > list_set_nat ).

thf(sy_c_List_Oreplicate_001t__VEBT____Definitions__OVEBT,type,
    replicate_VEBT_VEBT: nat > vEBT_VEBT > list_VEBT_VEBT ).

thf(sy_c_List_Oupto,type,
    upto: int > int > list_int ).

thf(sy_c_List_Oupto__aux,type,
    upto_aux: int > int > list_int > list_int ).

thf(sy_c_List_Oupto__rel,type,
    upto_rel: product_prod_int_int > product_prod_int_int > $o ).

thf(sy_c_Nat_OSuc,type,
    suc: nat > nat ).

thf(sy_c_Nat_Ocompow_001_062_It__Nat__Onat_Mt__Nat__Onat_J,type,
    compow_nat_nat: nat > ( nat > nat ) > nat > nat ).

thf(sy_c_Nat_Onat_Ocase__nat_001_Eo,type,
    case_nat_o: $o > ( nat > $o ) > nat > $o ).

thf(sy_c_Nat_Onat_Ocase__nat_001t__Nat__Onat,type,
    case_nat_nat: nat > ( nat > nat ) > nat > nat ).

thf(sy_c_Nat_Onat_Ocase__nat_001t__Option__Ooption_It__Num__Onum_J,type,
    case_nat_option_num: option_num > ( nat > option_num ) > nat > option_num ).

thf(sy_c_Nat_Onat_Opred,type,
    pred: nat > nat ).

thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Code____Numeral__Ointeger,type,
    semiri4939895301339042750nteger: nat > code_integer ).

thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Complex__Ocomplex,type,
    semiri8010041392384452111omplex: nat > complex ).

thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Extended____Nat__Oenat,type,
    semiri4216267220026989637d_enat: nat > extended_enat ).

thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Int__Oint,type,
    semiri1314217659103216013at_int: nat > int ).

thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Nat__Onat,type,
    semiri1316708129612266289at_nat: nat > nat ).

thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Rat__Orat,type,
    semiri681578069525770553at_rat: nat > rat ).

thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Real__Oreal,type,
    semiri5074537144036343181t_real: nat > real ).

thf(sy_c_Nat_Osemiring__1__class_Oof__nat__aux_001t__Code____Numeral__Ointeger,type,
    semiri4055485073559036834nteger: ( code_integer > code_integer ) > nat > code_integer > code_integer ).

thf(sy_c_Nat_Osemiring__1__class_Oof__nat__aux_001t__Complex__Ocomplex,type,
    semiri2816024913162550771omplex: ( complex > complex ) > nat > complex > complex ).

thf(sy_c_Nat_Osemiring__1__class_Oof__nat__aux_001t__Int__Oint,type,
    semiri8420488043553186161ux_int: ( int > int ) > nat > int > int ).

thf(sy_c_Nat_Osemiring__1__class_Oof__nat__aux_001t__Nat__Onat,type,
    semiri8422978514062236437ux_nat: ( nat > nat ) > nat > nat > nat ).

thf(sy_c_Nat_Osemiring__1__class_Oof__nat__aux_001t__Rat__Orat,type,
    semiri7787848453975740701ux_rat: ( rat > rat ) > nat > rat > rat ).

thf(sy_c_Nat_Osemiring__1__class_Oof__nat__aux_001t__Real__Oreal,type,
    semiri7260567687927622513x_real: ( real > real ) > nat > real > real ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_I_Eo_J,type,
    size_size_list_o: list_o > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Code____Numeral__Ointeger_J,type,
    size_s3445333598471063425nteger: list_Code_integer > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Complex__Ocomplex_J,type,
    size_s3451745648224563538omplex: list_complex > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Int__Oint_J,type,
    size_size_list_int: list_int > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Nat__Onat_J,type,
    size_size_list_nat: list_nat > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Num__Onum_J,type,
    size_size_list_num: list_num > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Product____Type__Oprod_I_Eo_M_Eo_J_J,type,
    size_s1515746228057227161od_o_o: list_P4002435161011370285od_o_o > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Product____Type__Oprod_I_Eo_Mt__Int__Oint_J_J,type,
    size_s2953683556165314199_o_int: list_P3795440434834930179_o_int > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Product____Type__Oprod_I_Eo_Mt__VEBT____Definitions__OVEBT_J_J,type,
    size_s4313452262239582901T_VEBT: list_P7495141550334521929T_VEBT > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Product____Type__Oprod_It__Int__Oint_M_Eo_J_J,type,
    size_s4246224855604898693_int_o: list_P5087981734274514673_int_o > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_J,type,
    size_s5157815400016825771nt_int: list_P5707943133018811711nt_int > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Product____Type__Oprod_It__Int__Oint_Mt__VEBT____Definitions__OVEBT_J_J,type,
    size_s6639371672096860321T_VEBT: list_P7524865323317820941T_VEBT > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_M_Eo_J_J,type,
    size_s9168528473962070013VEBT_o: list_P3126845725202233233VEBT_o > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_Mt__Int__Oint_J_J,type,
    size_s3661962791536183091BT_int: list_P4547456442757143711BT_int > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_Mt__VEBT____Definitions__OVEBT_J_J,type,
    size_s7466405169056248089T_VEBT: list_P7413028617227757229T_VEBT > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Real__Oreal_J,type,
    size_size_list_real: list_real > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Set__Oset_It__Nat__Onat_J_J,type,
    size_s3254054031482475050et_nat: list_set_nat > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__VEBT____Definitions__OVEBT_J,type,
    size_s6755466524823107622T_VEBT: list_VEBT_VEBT > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__Num__Onum,type,
    size_size_num: num > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__Option__Ooption_It__Nat__Onat_J,type,
    size_size_option_nat: option_nat > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__Option__Ooption_It__Num__Onum_J,type,
    size_size_option_num: option_num > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__Option__Ooption_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    size_s170228958280169651at_nat: option4927543243414619207at_nat > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__String__Ochar,type,
    size_size_char: char > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__VEBT____Definitions__OVEBT,type,
    size_size_VEBT_VEBT: vEBT_VEBT > nat ).

thf(sy_c_Nat__Bijection_Olist__encode,type,
    nat_list_encode: list_nat > nat ).

thf(sy_c_Nat__Bijection_Olist__encode__rel,type,
    nat_list_encode_rel: list_nat > list_nat > $o ).

thf(sy_c_Nat__Bijection_Oprod__decode__aux,type,
    nat_prod_decode_aux: nat > nat > product_prod_nat_nat ).

thf(sy_c_Nat__Bijection_Oprod__decode__aux__rel,type,
    nat_pr5047031295181774490ux_rel: product_prod_nat_nat > product_prod_nat_nat > $o ).

thf(sy_c_Nat__Bijection_Oprod__encode,type,
    nat_prod_encode: product_prod_nat_nat > nat ).

thf(sy_c_Nat__Bijection_Oset__decode,type,
    nat_set_decode: nat > set_nat ).

thf(sy_c_Nat__Bijection_Oset__encode,type,
    nat_set_encode: set_nat > nat ).

thf(sy_c_Nat__Bijection_Otriangle,type,
    nat_triangle: nat > nat ).

thf(sy_c_NthRoot_Oroot,type,
    root: nat > real > real ).

thf(sy_c_NthRoot_Osqrt,type,
    sqrt: real > real ).

thf(sy_c_Num_OBitM,type,
    bitM: num > num ).

thf(sy_c_Num_Oinc,type,
    inc: num > num ).

thf(sy_c_Num_Oneg__numeral__class_Odbl_001t__Code____Numeral__Ointeger,type,
    neg_nu8804712462038260780nteger: code_integer > code_integer ).

thf(sy_c_Num_Oneg__numeral__class_Odbl_001t__Complex__Ocomplex,type,
    neg_nu7009210354673126013omplex: complex > complex ).

thf(sy_c_Num_Oneg__numeral__class_Odbl_001t__Int__Oint,type,
    neg_numeral_dbl_int: int > int ).

thf(sy_c_Num_Oneg__numeral__class_Odbl_001t__Rat__Orat,type,
    neg_numeral_dbl_rat: rat > rat ).

thf(sy_c_Num_Oneg__numeral__class_Odbl_001t__Real__Oreal,type,
    neg_numeral_dbl_real: real > real ).

thf(sy_c_Num_Oneg__numeral__class_Odbl__dec_001t__Code____Numeral__Ointeger,type,
    neg_nu7757733837767384882nteger: code_integer > code_integer ).

thf(sy_c_Num_Oneg__numeral__class_Odbl__dec_001t__Complex__Ocomplex,type,
    neg_nu6511756317524482435omplex: complex > complex ).

thf(sy_c_Num_Oneg__numeral__class_Odbl__dec_001t__Int__Oint,type,
    neg_nu3811975205180677377ec_int: int > int ).

thf(sy_c_Num_Oneg__numeral__class_Odbl__dec_001t__Rat__Orat,type,
    neg_nu3179335615603231917ec_rat: rat > rat ).

thf(sy_c_Num_Oneg__numeral__class_Odbl__dec_001t__Real__Oreal,type,
    neg_nu6075765906172075777c_real: real > real ).

thf(sy_c_Num_Oneg__numeral__class_Odbl__inc_001t__Code____Numeral__Ointeger,type,
    neg_nu5831290666863070958nteger: code_integer > code_integer ).

thf(sy_c_Num_Oneg__numeral__class_Odbl__inc_001t__Complex__Ocomplex,type,
    neg_nu8557863876264182079omplex: complex > complex ).

thf(sy_c_Num_Oneg__numeral__class_Odbl__inc_001t__Int__Oint,type,
    neg_nu5851722552734809277nc_int: int > int ).

thf(sy_c_Num_Oneg__numeral__class_Odbl__inc_001t__Rat__Orat,type,
    neg_nu5219082963157363817nc_rat: rat > rat ).

thf(sy_c_Num_Oneg__numeral__class_Odbl__inc_001t__Real__Oreal,type,
    neg_nu8295874005876285629c_real: real > real ).

thf(sy_c_Num_Oneg__numeral__class_Osub_001t__Int__Oint,type,
    neg_numeral_sub_int: num > num > int ).

thf(sy_c_Num_Onum_OBit0,type,
    bit0: num > num ).

thf(sy_c_Num_Onum_OBit1,type,
    bit1: num > num ).

thf(sy_c_Num_Onum_OOne,type,
    one: num ).

thf(sy_c_Num_Onum_Ocase__num_001t__Option__Ooption_It__Num__Onum_J,type,
    case_num_option_num: option_num > ( num > option_num ) > ( num > option_num ) > num > option_num ).

thf(sy_c_Num_Onum_Osize__num,type,
    size_num: num > nat ).

thf(sy_c_Num_Onum__of__nat,type,
    num_of_nat: nat > num ).

thf(sy_c_Num_Onumeral__class_Onumeral_001t__Code____Numeral__Ointeger,type,
    numera6620942414471956472nteger: num > code_integer ).

thf(sy_c_Num_Onumeral__class_Onumeral_001t__Complex__Ocomplex,type,
    numera6690914467698888265omplex: num > complex ).

thf(sy_c_Num_Onumeral__class_Onumeral_001t__Extended____Nat__Oenat,type,
    numera1916890842035813515d_enat: num > extended_enat ).

thf(sy_c_Num_Onumeral__class_Onumeral_001t__Int__Oint,type,
    numeral_numeral_int: num > int ).

thf(sy_c_Num_Onumeral__class_Onumeral_001t__Nat__Onat,type,
    numeral_numeral_nat: num > nat ).

thf(sy_c_Num_Onumeral__class_Onumeral_001t__Rat__Orat,type,
    numeral_numeral_rat: num > rat ).

thf(sy_c_Num_Onumeral__class_Onumeral_001t__Real__Oreal,type,
    numeral_numeral_real: num > real ).

thf(sy_c_Num_Opow,type,
    pow: num > num > num ).

thf(sy_c_Num_Opred__numeral,type,
    pred_numeral: num > nat ).

thf(sy_c_Num_Osqr,type,
    sqr: num > num ).

thf(sy_c_Option_Ooption_ONone_001t__Nat__Onat,type,
    none_nat: option_nat ).

thf(sy_c_Option_Ooption_ONone_001t__Num__Onum,type,
    none_num: option_num ).

thf(sy_c_Option_Ooption_ONone_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    none_P5556105721700978146at_nat: option4927543243414619207at_nat ).

thf(sy_c_Option_Ooption_OSome_001t__Nat__Onat,type,
    some_nat: nat > option_nat ).

thf(sy_c_Option_Ooption_OSome_001t__Num__Onum,type,
    some_num: num > option_num ).

thf(sy_c_Option_Ooption_OSome_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    some_P7363390416028606310at_nat: product_prod_nat_nat > option4927543243414619207at_nat ).

thf(sy_c_Option_Ooption_Ocase__option_001_Eo_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    case_o184042715313410164at_nat: $o > ( product_prod_nat_nat > $o ) > option4927543243414619207at_nat > $o ).

thf(sy_c_Option_Ooption_Ocase__option_001t__Int__Oint_001t__Num__Onum,type,
    case_option_int_num: int > ( num > int ) > option_num > int ).

thf(sy_c_Option_Ooption_Ocase__option_001t__Num__Onum_001t__Num__Onum,type,
    case_option_num_num: num > ( num > num ) > option_num > num ).

thf(sy_c_Option_Ooption_Ocase__option_001t__Option__Ooption_It__Num__Onum_J_001t__Num__Onum,type,
    case_o6005452278849405969um_num: option_num > ( num > option_num ) > option_num > option_num ).

thf(sy_c_Option_Ooption_Osize__option_001t__Nat__Onat,type,
    size_option_nat: ( nat > nat ) > option_nat > nat ).

thf(sy_c_Option_Ooption_Osize__option_001t__Num__Onum,type,
    size_option_num: ( num > nat ) > option_num > nat ).

thf(sy_c_Option_Ooption_Osize__option_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    size_o8335143837870341156at_nat: ( product_prod_nat_nat > nat ) > option4927543243414619207at_nat > nat ).

thf(sy_c_Option_Ooption_Othe_001t__Nat__Onat,type,
    the_nat: option_nat > nat ).

thf(sy_c_Option_Ooption_Othe_001t__Num__Onum,type,
    the_num: option_num > num ).

thf(sy_c_Option_Ooption_Othe_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    the_Pr8591224930841456533at_nat: option4927543243414619207at_nat > product_prod_nat_nat ).

thf(sy_c_Orderings_Obot__class_Obot_001_062_It__Code____Numeral__Ointeger_M_062_I_Eo_M_Eo_J_J,type,
    bot_bo4731626569425807221er_o_o: code_integer > $o > $o ).

thf(sy_c_Orderings_Obot__class_Obot_001_062_It__Int__Oint_M_062_It__Int__Oint_M_Eo_J_J,type,
    bot_bot_int_int_o: int > int > $o ).

thf(sy_c_Orderings_Obot__class_Obot_001_062_It__Nat__Onat_M_062_It__Nat__Onat_M_Eo_J_J,type,
    bot_bot_nat_nat_o: nat > nat > $o ).

thf(sy_c_Orderings_Obot__class_Obot_001_062_It__Nat__Onat_M_062_It__Num__Onum_M_Eo_J_J,type,
    bot_bot_nat_num_o: nat > num > $o ).

thf(sy_c_Orderings_Obot__class_Obot_001_062_It__Num__Onum_M_062_It__Num__Onum_M_Eo_J_J,type,
    bot_bot_num_num_o: num > num > $o ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Extended____Nat__Oenat,type,
    bot_bo4199563552545308370d_enat: extended_enat ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Nat__Onat,type,
    bot_bot_nat: nat ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Complex__Ocomplex_J,type,
    bot_bot_set_complex: set_complex ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Int__Oint_J,type,
    bot_bot_set_int: set_int ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Nat__Onat_J,type,
    bot_bot_set_nat: set_nat ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Num__Onum_J,type,
    bot_bot_set_num: set_num ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Product____Type__Oprod_It__Code____Numeral__Ointeger_M_Eo_J_J,type,
    bot_bo5379713665208646970eger_o: set_Pr448751882837621926eger_o ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_J,type,
    bot_bo1796632182523588997nt_int: set_Pr958786334691620121nt_int ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    bot_bo2099793752762293965at_nat: set_Pr1261947904930325089at_nat ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Product____Type__Oprod_It__Nat__Onat_Mt__Num__Onum_J_J,type,
    bot_bo7038385379056416535at_num: set_Pr6200539531224447659at_num ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Product____Type__Oprod_It__Num__Onum_Mt__Num__Onum_J_J,type,
    bot_bo9056780473022590049um_num: set_Pr8218934625190621173um_num ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Rat__Orat_J,type,
    bot_bot_set_rat: set_rat ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Real__Oreal_J,type,
    bot_bot_set_real: set_real ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Set__Oset_It__Int__Oint_J_J,type,
    bot_bot_set_set_int: set_set_int ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Set__Oset_It__Nat__Onat_J_J,type,
    bot_bot_set_set_nat: set_set_nat ).

thf(sy_c_Orderings_Oord__class_Oless_001_Eo,type,
    ord_less_o: $o > $o > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Code____Numeral__Ointeger,type,
    ord_le6747313008572928689nteger: code_integer > code_integer > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Extended____Nat__Oenat,type,
    ord_le72135733267957522d_enat: extended_enat > extended_enat > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Int__Oint,type,
    ord_less_int: int > int > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Nat__Onat,type,
    ord_less_nat: nat > nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Num__Onum,type,
    ord_less_num: num > num > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Rat__Orat,type,
    ord_less_rat: rat > rat > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Real__Oreal,type,
    ord_less_real: real > real > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_I_Eo_J,type,
    ord_less_set_o: set_o > set_o > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Code____Numeral__Ointeger_J,type,
    ord_le1307284697595431911nteger: set_Code_integer > set_Code_integer > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Complex__Ocomplex_J,type,
    ord_less_set_complex: set_complex > set_complex > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Int__Oint_J,type,
    ord_less_set_int: set_int > set_int > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Nat__Onat_J,type,
    ord_less_set_nat: set_nat > set_nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Num__Onum_J,type,
    ord_less_set_num: set_num > set_num > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Rat__Orat_J,type,
    ord_less_set_rat: set_rat > set_rat > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Real__Oreal_J,type,
    ord_less_set_real: set_real > set_real > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Set__Oset_It__Int__Oint_J_J,type,
    ord_less_set_set_int: set_set_int > set_set_int > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Set__Oset_It__Nat__Onat_J_J,type,
    ord_less_set_set_nat: set_set_nat > set_set_nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_It__Code____Numeral__Ointeger_M_062_I_Eo_M_Eo_J_J,type,
    ord_le2162486998276636481er_o_o: ( code_integer > $o > $o ) > ( code_integer > $o > $o ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_It__Complex__Ocomplex_M_Eo_J,type,
    ord_le4573692005234683329plex_o: ( complex > $o ) > ( complex > $o ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_It__Int__Oint_M_062_It__Int__Oint_M_Eo_J_J,type,
    ord_le6741204236512500942_int_o: ( int > int > $o ) > ( int > int > $o ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_It__Int__Oint_M_Eo_J,type,
    ord_less_eq_int_o: ( int > $o ) > ( int > $o ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_It__List__Olist_It__Nat__Onat_J_M_062_It__List__Olist_It__Nat__Onat_J_M_Eo_J_J,type,
    ord_le6558929396352911974_nat_o: ( list_nat > list_nat > $o ) > ( list_nat > list_nat > $o ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_It__List__Olist_It__Nat__Onat_J_M_Eo_J,type,
    ord_le1520216061033275535_nat_o: ( list_nat > $o ) > ( list_nat > $o ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_It__Nat__Onat_M_062_It__Nat__Onat_M_Eo_J_J,type,
    ord_le2646555220125990790_nat_o: ( nat > nat > $o ) > ( nat > nat > $o ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_It__Nat__Onat_M_062_It__Num__Onum_M_Eo_J_J,type,
    ord_le3404735783095501756_num_o: ( nat > num > $o ) > ( nat > num > $o ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_It__Nat__Onat_M_Eo_J,type,
    ord_less_eq_nat_o: ( nat > $o ) > ( nat > $o ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_It__Num__Onum_M_062_It__Num__Onum_M_Eo_J_J,type,
    ord_le6124364862034508274_num_o: ( num > num > $o ) > ( num > num > $o ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_It__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_M_062_It__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_M_Eo_J_J,type,
    ord_le1598226405681992910_int_o: ( product_prod_int_int > product_prod_int_int > $o ) > ( product_prod_int_int > product_prod_int_int > $o ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_It__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_M_Eo_J,type,
    ord_le8369615600986905444_int_o: ( product_prod_int_int > $o ) > ( product_prod_int_int > $o ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_M_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_M_Eo_J_J,type,
    ord_le5604493270027003598_nat_o: ( product_prod_nat_nat > product_prod_nat_nat > $o ) > ( product_prod_nat_nat > product_prod_nat_nat > $o ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_M_Eo_J,type,
    ord_le704812498762024988_nat_o: ( product_prod_nat_nat > $o ) > ( product_prod_nat_nat > $o ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_It__Product____Type__Oprod_It__Num__Onum_Mt__Num__Onum_J_M_062_It__Product____Type__Oprod_It__Num__Onum_Mt__Num__Onum_J_M_Eo_J_J,type,
    ord_le2556027599737686990_num_o: ( product_prod_num_num > product_prod_num_num > $o ) > ( product_prod_num_num > product_prod_num_num > $o ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_It__Product____Type__Oprod_It__Num__Onum_Mt__Num__Onum_J_M_Eo_J,type,
    ord_le2239182809043710856_num_o: ( product_prod_num_num > $o ) > ( product_prod_num_num > $o ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_It__Real__Oreal_M_Eo_J,type,
    ord_less_eq_real_o: ( real > $o ) > ( real > $o ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_It__Set__Oset_It__Nat__Onat_J_M_Eo_J,type,
    ord_le3964352015994296041_nat_o: ( set_nat > $o ) > ( set_nat > $o ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001_Eo,type,
    ord_less_eq_o: $o > $o > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Code____Numeral__Ointeger,type,
    ord_le3102999989581377725nteger: code_integer > code_integer > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Extended____Nat__Oenat,type,
    ord_le2932123472753598470d_enat: extended_enat > extended_enat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Filter__Ofilter_It__Nat__Onat_J,type,
    ord_le2510731241096832064er_nat: filter_nat > filter_nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Filter__Ofilter_It__Real__Oreal_J,type,
    ord_le4104064031414453916r_real: filter_real > filter_real > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Int__Oint,type,
    ord_less_eq_int: int > int > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Nat__Onat,type,
    ord_less_eq_nat: nat > nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Num__Onum,type,
    ord_less_eq_num: num > num > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Rat__Orat,type,
    ord_less_eq_rat: rat > rat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Real__Oreal,type,
    ord_less_eq_real: real > real > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_I_Eo_J,type,
    ord_less_eq_set_o: set_o > set_o > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Code____Numeral__Ointeger_J,type,
    ord_le7084787975880047091nteger: set_Code_integer > set_Code_integer > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Complex__Ocomplex_J,type,
    ord_le211207098394363844omplex: set_complex > set_complex > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Int__Oint_J,type,
    ord_less_eq_set_int: set_int > set_int > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Nat__Onat_J,type,
    ord_less_eq_set_nat: set_nat > set_nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Num__Onum_J,type,
    ord_less_eq_set_num: set_num > set_num > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Product____Type__Oprod_It__Code____Numeral__Ointeger_M_Eo_J_J,type,
    ord_le8980329558974975238eger_o: set_Pr448751882837621926eger_o > set_Pr448751882837621926eger_o > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_J,type,
    ord_le2843351958646193337nt_int: set_Pr958786334691620121nt_int > set_Pr958786334691620121nt_int > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    ord_le3146513528884898305at_nat: set_Pr1261947904930325089at_nat > set_Pr1261947904930325089at_nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Product____Type__Oprod_It__Nat__Onat_Mt__Num__Onum_J_J,type,
    ord_le8085105155179020875at_num: set_Pr6200539531224447659at_num > set_Pr6200539531224447659at_num > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Product____Type__Oprod_It__Num__Onum_Mt__Num__Onum_J_J,type,
    ord_le880128212290418581um_num: set_Pr8218934625190621173um_num > set_Pr8218934625190621173um_num > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Rat__Orat_J,type,
    ord_less_eq_set_rat: set_rat > set_rat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Real__Oreal_J,type,
    ord_less_eq_set_real: set_real > set_real > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Set__Oset_It__Int__Oint_J_J,type,
    ord_le4403425263959731960et_int: set_set_int > set_set_int > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Set__Oset_It__Nat__Onat_J_J,type,
    ord_le6893508408891458716et_nat: set_set_nat > set_set_nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__VEBT____Definitions__OVEBT_J,type,
    ord_le4337996190870823476T_VEBT: set_VEBT_VEBT > set_VEBT_VEBT > $o ).

thf(sy_c_Orderings_Oord__class_Omax_001t__Code____Numeral__Ointeger,type,
    ord_max_Code_integer: code_integer > code_integer > code_integer ).

thf(sy_c_Orderings_Oord__class_Omax_001t__Extended____Nat__Oenat,type,
    ord_ma741700101516333627d_enat: extended_enat > extended_enat > extended_enat ).

thf(sy_c_Orderings_Oord__class_Omax_001t__Int__Oint,type,
    ord_max_int: int > int > int ).

thf(sy_c_Orderings_Oord__class_Omax_001t__Nat__Onat,type,
    ord_max_nat: nat > nat > nat ).

thf(sy_c_Orderings_Oord__class_Omax_001t__Num__Onum,type,
    ord_max_num: num > num > num ).

thf(sy_c_Orderings_Oord__class_Omax_001t__Rat__Orat,type,
    ord_max_rat: rat > rat > rat ).

thf(sy_c_Orderings_Oord__class_Omax_001t__Real__Oreal,type,
    ord_max_real: real > real > real ).

thf(sy_c_Orderings_Oord__class_Omax_001t__Set__Oset_It__Int__Oint_J,type,
    ord_max_set_int: set_int > set_int > set_int ).

thf(sy_c_Orderings_Oord__class_Omax_001t__Set__Oset_It__Nat__Onat_J,type,
    ord_max_set_nat: set_nat > set_nat > set_nat ).

thf(sy_c_Orderings_Oord__class_Omax_001t__Set__Oset_It__Real__Oreal_J,type,
    ord_max_set_real: set_real > set_real > set_real ).

thf(sy_c_Orderings_Oorder__class_OGreatest_001t__Nat__Onat,type,
    order_Greatest_nat: ( nat > $o ) > nat ).

thf(sy_c_Orderings_Oorder__class_Oantimono_001t__Nat__Onat_001t__Real__Oreal,type,
    order_9091379641038594480t_real: ( nat > real ) > $o ).

thf(sy_c_Orderings_Oorder__class_Omono_001t__Nat__Onat_001t__Nat__Onat,type,
    order_mono_nat_nat: ( nat > nat ) > $o ).

thf(sy_c_Orderings_Oorder__class_Omono_001t__Nat__Onat_001t__Real__Oreal,type,
    order_mono_nat_real: ( nat > real ) > $o ).

thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_I_Eo_J,type,
    top_top_set_o: set_o ).

thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_It__Int__Oint_J,type,
    top_top_set_int: set_int ).

thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_It__Nat__Onat_J,type,
    top_top_set_nat: set_nat ).

thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_It__Product____Type__Ounit_J,type,
    top_to1996260823553986621t_unit: set_Product_unit ).

thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_It__Real__Oreal_J,type,
    top_top_set_real: set_real ).

thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_It__String__Ochar_J,type,
    top_top_set_char: set_char ).

thf(sy_c_Power_Opower__class_Opower_001t__Code____Numeral__Ointeger,type,
    power_8256067586552552935nteger: code_integer > nat > code_integer ).

thf(sy_c_Power_Opower__class_Opower_001t__Complex__Ocomplex,type,
    power_power_complex: complex > nat > complex ).

thf(sy_c_Power_Opower__class_Opower_001t__Int__Oint,type,
    power_power_int: int > nat > int ).

thf(sy_c_Power_Opower__class_Opower_001t__Nat__Onat,type,
    power_power_nat: nat > nat > nat ).

thf(sy_c_Power_Opower__class_Opower_001t__Rat__Orat,type,
    power_power_rat: rat > nat > rat ).

thf(sy_c_Power_Opower__class_Opower_001t__Real__Oreal,type,
    power_power_real: real > nat > real ).

thf(sy_c_Product__Type_OPair_001_062_It__Nat__Onat_M_062_It__Nat__Onat_M_Eo_J_J_001t__Product____Type__Oprod_It__Option__Ooption_It__Nat__Onat_J_Mt__Option__Ooption_It__Nat__Onat_J_J,type,
    produc4035269172776083154on_nat: ( nat > nat > $o ) > produc4953844613479565601on_nat > produc2233624965454879586on_nat ).

thf(sy_c_Product__Type_OPair_001_062_It__Nat__Onat_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    produc3209952032786966637at_nat: ( nat > nat > nat ) > produc7248412053542808358at_nat > produc4471711990508489141at_nat ).

thf(sy_c_Product__Type_OPair_001_062_It__Nat__Onat_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_001t__Product____Type__Oprod_It__Option__Ooption_It__Nat__Onat_J_Mt__Option__Ooption_It__Nat__Onat_J_J,type,
    produc8929957630744042906on_nat: ( nat > nat > nat ) > produc4953844613479565601on_nat > produc8306885398267862888on_nat ).

thf(sy_c_Product__Type_OPair_001_062_It__Nat__Onat_M_062_It__Num__Onum_Mt__Num__Onum_J_J_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Num__Onum_J_J,type,
    produc851828971589881931at_num: ( nat > num > num ) > produc2963631642982155120at_num > produc3368934014287244435at_num ).

thf(sy_c_Product__Type_OPair_001_062_It__Num__Onum_M_062_It__Num__Onum_M_Eo_J_J_001t__Product____Type__Oprod_It__Option__Ooption_It__Num__Onum_J_Mt__Option__Ooption_It__Num__Onum_J_J,type,
    produc3576312749637752826on_num: ( num > num > $o ) > produc3447558737645232053on_num > produc7036089656553540234on_num ).

thf(sy_c_Product__Type_OPair_001_062_It__Num__Onum_M_062_It__Num__Onum_Mt__Num__Onum_J_J_001t__Product____Type__Oprod_It__Option__Ooption_It__Num__Onum_J_Mt__Option__Ooption_It__Num__Onum_J_J,type,
    produc5778274026573060048on_num: ( num > num > num ) > produc3447558737645232053on_num > produc1193250871479095198on_num ).

thf(sy_c_Product__Type_OPair_001_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_M_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_M_Eo_J_J_001t__Product____Type__Oprod_It__Option__Ooption_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_Mt__Option__Ooption_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_J,type,
    produc3994169339658061776at_nat: ( product_prod_nat_nat > product_prod_nat_nat > $o ) > produc6121120109295599847at_nat > produc5491161045314408544at_nat ).

thf(sy_c_Product__Type_OPair_001_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_M_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_J_001t__Product____Type__Oprod_It__Option__Ooption_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_Mt__Option__Ooption_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_J,type,
    produc2899441246263362727at_nat: ( product_prod_nat_nat > product_prod_nat_nat > product_prod_nat_nat ) > produc6121120109295599847at_nat > produc5542196010084753463at_nat ).

thf(sy_c_Product__Type_OPair_001t__Code____Numeral__Ointeger_001_Eo,type,
    produc6677183202524767010eger_o: code_integer > $o > produc6271795597528267376eger_o ).

thf(sy_c_Product__Type_OPair_001t__Code____Numeral__Ointeger_001t__Code____Numeral__Ointeger,type,
    produc1086072967326762835nteger: code_integer > code_integer > produc8923325533196201883nteger ).

thf(sy_c_Product__Type_OPair_001t__Int__Oint_001t__Int__Oint,type,
    product_Pair_int_int: int > int > product_prod_int_int ).

thf(sy_c_Product__Type_OPair_001t__Nat__Onat_001_Eo,type,
    product_Pair_nat_o: nat > $o > product_prod_nat_o ).

thf(sy_c_Product__Type_OPair_001t__Nat__Onat_001t__Int__Oint,type,
    product_Pair_nat_int: nat > int > product_prod_nat_int ).

thf(sy_c_Product__Type_OPair_001t__Nat__Onat_001t__Nat__Onat,type,
    product_Pair_nat_nat: nat > nat > product_prod_nat_nat ).

thf(sy_c_Product__Type_OPair_001t__Nat__Onat_001t__Num__Onum,type,
    product_Pair_nat_num: nat > num > product_prod_nat_num ).

thf(sy_c_Product__Type_OPair_001t__Nat__Onat_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    produc487386426758144856at_nat: nat > product_prod_nat_nat > produc7248412053542808358at_nat ).

thf(sy_c_Product__Type_OPair_001t__Nat__Onat_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Num__Onum_J,type,
    produc1195630363706982562at_num: nat > product_prod_nat_num > produc2963631642982155120at_num ).

thf(sy_c_Product__Type_OPair_001t__Nat__Onat_001t__VEBT____Definitions__OVEBT,type,
    produc599794634098209291T_VEBT: nat > vEBT_VEBT > produc8025551001238799321T_VEBT ).

thf(sy_c_Product__Type_OPair_001t__Num__Onum_001t__Num__Onum,type,
    product_Pair_num_num: num > num > product_prod_num_num ).

thf(sy_c_Product__Type_OPair_001t__Option__Ooption_It__Nat__Onat_J_001t__Option__Ooption_It__Nat__Onat_J,type,
    produc5098337634421038937on_nat: option_nat > option_nat > produc4953844613479565601on_nat ).

thf(sy_c_Product__Type_OPair_001t__Option__Ooption_It__Num__Onum_J_001t__Option__Ooption_It__Num__Onum_J,type,
    produc8585076106096196333on_num: option_num > option_num > produc3447558737645232053on_num ).

thf(sy_c_Product__Type_OPair_001t__Option__Ooption_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_001t__Option__Ooption_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    produc488173922507101015at_nat: option4927543243414619207at_nat > option4927543243414619207at_nat > produc6121120109295599847at_nat ).

thf(sy_c_Product__Type_OPair_001t__VEBT____Definitions__OVEBT_001_Eo,type,
    produc8721562602347293563VEBT_o: vEBT_VEBT > $o > produc334124729049499915VEBT_o ).

thf(sy_c_Product__Type_OPair_001t__VEBT____Definitions__OVEBT_001t__Nat__Onat,type,
    produc738532404422230701BT_nat: vEBT_VEBT > nat > produc9072475918466114483BT_nat ).

thf(sy_c_Product__Type_OPair_001t__VEBT____Definitions__OVEBT_001t__VEBT____Definitions__OVEBT,type,
    produc537772716801021591T_VEBT: vEBT_VEBT > vEBT_VEBT > produc8243902056947475879T_VEBT ).

thf(sy_c_Product__Type_Oapsnd_001t__Code____Numeral__Ointeger_001t__Code____Numeral__Ointeger_001t__Code____Numeral__Ointeger,type,
    produc6499014454317279255nteger: ( code_integer > code_integer ) > produc8923325533196201883nteger > produc8923325533196201883nteger ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Code____Numeral__Ointeger_001_Eo_001_Eo,type,
    produc7828578312038201481er_o_o: ( code_integer > $o > $o ) > produc6271795597528267376eger_o > $o ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Code____Numeral__Ointeger_001_Eo_001t__Set__Oset_It__Complex__Ocomplex_J,type,
    produc1043322548047392435omplex: ( code_integer > $o > set_complex ) > produc6271795597528267376eger_o > set_complex ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Code____Numeral__Ointeger_001_Eo_001t__Set__Oset_It__Int__Oint_J,type,
    produc1253318751659547953et_int: ( code_integer > $o > set_int ) > produc6271795597528267376eger_o > set_int ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Code____Numeral__Ointeger_001_Eo_001t__Set__Oset_It__Nat__Onat_J,type,
    produc5431169771168744661et_nat: ( code_integer > $o > set_nat ) > produc6271795597528267376eger_o > set_nat ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Code____Numeral__Ointeger_001_Eo_001t__Set__Oset_It__Real__Oreal_J,type,
    produc242741666403216561t_real: ( code_integer > $o > set_real ) > produc6271795597528267376eger_o > set_real ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Code____Numeral__Ointeger_001_Eo_001t__String__Ochar,type,
    produc4188289175737317920o_char: ( code_integer > $o > char ) > produc6271795597528267376eger_o > char ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Code____Numeral__Ointeger_001t__Code____Numeral__Ointeger_001t__Int__Oint,type,
    produc1553301316500091796er_int: ( code_integer > code_integer > int ) > produc8923325533196201883nteger > int ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Code____Numeral__Ointeger_001t__Code____Numeral__Ointeger_001t__Nat__Onat,type,
    produc1555791787009142072er_nat: ( code_integer > code_integer > nat ) > produc8923325533196201883nteger > nat ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Code____Numeral__Ointeger_001t__Code____Numeral__Ointeger_001t__Num__Onum,type,
    produc7336495610019696514er_num: ( code_integer > code_integer > num ) > produc8923325533196201883nteger > num ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Code____Numeral__Ointeger_001t__Code____Numeral__Ointeger_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_M_Eo_J,type,
    produc9125791028180074456eger_o: ( code_integer > code_integer > produc6271795597528267376eger_o ) > produc8923325533196201883nteger > produc6271795597528267376eger_o ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Code____Numeral__Ointeger_001t__Code____Numeral__Ointeger_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J,type,
    produc6916734918728496179nteger: ( code_integer > code_integer > produc8923325533196201883nteger ) > produc8923325533196201883nteger > produc8923325533196201883nteger ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Complex__Ocomplex_001t__Complex__Ocomplex_001_Eo,type,
    produc6771430404735790350plex_o: ( complex > complex > $o ) > produc4411394909380815293omplex > $o ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Int__Oint_001t__Int__Oint_001_Eo,type,
    produc4947309494688390418_int_o: ( int > int > $o ) > product_prod_int_int > $o ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Int__Oint_001t__Int__Oint_001t__Int__Oint,type,
    produc8211389475949308722nt_int: ( int > int > int ) > product_prod_int_int > int ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Int__Oint_001t__Int__Oint_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J,type,
    produc4245557441103728435nt_int: ( int > int > product_prod_int_int ) > product_prod_int_int > product_prod_int_int ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Nat__Onat_001t__Nat__Onat_001_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_M_Eo_J,type,
    produc8739625826339149834_nat_o: ( nat > nat > product_prod_nat_nat > $o ) > product_prod_nat_nat > product_prod_nat_nat > $o ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Nat__Onat_001t__Nat__Onat_001_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    produc27273713700761075at_nat: ( nat > nat > product_prod_nat_nat > product_prod_nat_nat ) > product_prod_nat_nat > product_prod_nat_nat > product_prod_nat_nat ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Nat__Onat_001t__Nat__Onat_001_Eo,type,
    produc6081775807080527818_nat_o: ( nat > nat > $o ) > product_prod_nat_nat > $o ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Nat__Onat_001t__Nat__Onat_001t__Code____Numeral__Ointeger,type,
    produc1830744345554046123nteger: ( nat > nat > code_integer ) > product_prod_nat_nat > code_integer ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Nat__Onat_001t__Nat__Onat_001t__Complex__Ocomplex,type,
    produc1917071388513777916omplex: ( nat > nat > complex ) > product_prod_nat_nat > complex ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Nat__Onat_001t__Nat__Onat_001t__Int__Oint,type,
    produc6840382203811409530at_int: ( nat > nat > int ) > product_prod_nat_nat > int ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Nat__Onat_001t__Nat__Onat_001t__Nat__Onat,type,
    produc6842872674320459806at_nat: ( nat > nat > nat ) > product_prod_nat_nat > nat ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Nat__Onat_001t__Nat__Onat_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    produc2626176000494625587at_nat: ( nat > nat > product_prod_nat_nat ) > product_prod_nat_nat > product_prod_nat_nat ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Nat__Onat_001t__Nat__Onat_001t__Rat__Orat,type,
    produc6207742614233964070at_rat: ( nat > nat > rat ) > product_prod_nat_nat > rat ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Nat__Onat_001t__Nat__Onat_001t__Real__Oreal,type,
    produc1703576794950452218t_real: ( nat > nat > real ) > product_prod_nat_nat > real ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Nat__Onat_001t__Num__Onum_001_Eo,type,
    produc4927758841916487424_num_o: ( nat > num > $o ) > product_prod_nat_num > $o ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Nat__Onat_001t__Num__Onum_001t__Option__Ooption_It__Num__Onum_J,type,
    produc478579273971653890on_num: ( nat > num > option_num ) > product_prod_nat_num > option_num ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Nat__Onat_001t__Num__Onum_001t__Set__Oset_It__Complex__Ocomplex_J,type,
    produc6231982587499038204omplex: ( nat > num > set_complex ) > product_prod_nat_num > set_complex ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Nat__Onat_001t__Num__Onum_001t__Set__Oset_It__Real__Oreal_J,type,
    produc1435849484188172666t_real: ( nat > num > set_real ) > product_prod_nat_num > set_real ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Num__Onum_001t__Num__Onum_001_Eo,type,
    produc5703948589228662326_num_o: ( num > num > $o ) > product_prod_num_num > $o ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Num__Onum_001t__Num__Onum_001t__Set__Oset_It__Complex__Ocomplex_J,type,
    produc2866383454006189126omplex: ( num > num > set_complex ) > product_prod_num_num > set_complex ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Num__Onum_001t__Num__Onum_001t__Set__Oset_It__Int__Oint_J,type,
    produc6406642877701697732et_int: ( num > num > set_int ) > product_prod_num_num > set_int ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Num__Onum_001t__Num__Onum_001t__Set__Oset_It__Nat__Onat_J,type,
    produc1361121860356118632et_nat: ( num > num > set_nat ) > product_prod_num_num > set_nat ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Num__Onum_001t__Num__Onum_001t__Set__Oset_It__Real__Oreal_J,type,
    produc8296048397933160132t_real: ( num > num > set_real ) > product_prod_num_num > set_real ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Real__Oreal_001t__Real__Oreal_001_Eo,type,
    produc5414030515140494994real_o: ( real > real > $o ) > produc2422161461964618553l_real > $o ).

thf(sy_c_Product__Type_Oprod_Ofst_001t__Int__Oint_001t__Int__Oint,type,
    product_fst_int_int: product_prod_int_int > int ).

thf(sy_c_Product__Type_Oprod_Ofst_001t__Nat__Onat_001t__Nat__Onat,type,
    product_fst_nat_nat: product_prod_nat_nat > nat ).

thf(sy_c_Product__Type_Oprod_Osnd_001t__Int__Oint_001t__Int__Oint,type,
    product_snd_int_int: product_prod_int_int > int ).

thf(sy_c_Product__Type_Oprod_Osnd_001t__Nat__Onat_001t__Nat__Onat,type,
    product_snd_nat_nat: product_prod_nat_nat > nat ).

thf(sy_c_Rat_OFract,type,
    fract: int > int > rat ).

thf(sy_c_Rat_OFrct,type,
    frct: product_prod_int_int > rat ).

thf(sy_c_Rat_Onormalize,type,
    normalize: product_prod_int_int > product_prod_int_int ).

thf(sy_c_Rat_Oquotient__of,type,
    quotient_of: rat > product_prod_int_int ).

thf(sy_c_Real__Vector__Spaces_OReals_001t__Complex__Ocomplex,type,
    real_V2521375963428798218omplex: set_complex ).

thf(sy_c_Real__Vector__Spaces_Obounded__linear_001t__Real__Oreal_001t__Real__Oreal,type,
    real_V5970128139526366754l_real: ( real > real ) > $o ).

thf(sy_c_Real__Vector__Spaces_Odist__class_Odist_001t__Complex__Ocomplex,type,
    real_V3694042436643373181omplex: complex > complex > real ).

thf(sy_c_Real__Vector__Spaces_Odist__class_Odist_001t__Real__Oreal,type,
    real_V975177566351809787t_real: real > real > real ).

thf(sy_c_Real__Vector__Spaces_Onorm__class_Onorm_001t__Complex__Ocomplex,type,
    real_V1022390504157884413omplex: complex > real ).

thf(sy_c_Real__Vector__Spaces_Onorm__class_Onorm_001t__Real__Oreal,type,
    real_V7735802525324610683m_real: real > real ).

thf(sy_c_Real__Vector__Spaces_Oof__real_001t__Complex__Ocomplex,type,
    real_V4546457046886955230omplex: real > complex ).

thf(sy_c_Real__Vector__Spaces_OscaleR__class_OscaleR_001t__Complex__Ocomplex,type,
    real_V2046097035970521341omplex: real > complex > complex ).

thf(sy_c_Real__Vector__Spaces_OscaleR__class_OscaleR_001t__Real__Oreal,type,
    real_V1485227260804924795R_real: real > real > real ).

thf(sy_c_Rings_Odivide__class_Odivide_001t__Code____Numeral__Ointeger,type,
    divide6298287555418463151nteger: code_integer > code_integer > code_integer ).

thf(sy_c_Rings_Odivide__class_Odivide_001t__Complex__Ocomplex,type,
    divide1717551699836669952omplex: complex > complex > complex ).

thf(sy_c_Rings_Odivide__class_Odivide_001t__Int__Oint,type,
    divide_divide_int: int > int > int ).

thf(sy_c_Rings_Odivide__class_Odivide_001t__Nat__Onat,type,
    divide_divide_nat: nat > nat > nat ).

thf(sy_c_Rings_Odivide__class_Odivide_001t__Rat__Orat,type,
    divide_divide_rat: rat > rat > rat ).

thf(sy_c_Rings_Odivide__class_Odivide_001t__Real__Oreal,type,
    divide_divide_real: real > real > real ).

thf(sy_c_Rings_Odvd__class_Odvd_001t__Code____Numeral__Ointeger,type,
    dvd_dvd_Code_integer: code_integer > code_integer > $o ).

thf(sy_c_Rings_Odvd__class_Odvd_001t__Complex__Ocomplex,type,
    dvd_dvd_complex: complex > complex > $o ).

thf(sy_c_Rings_Odvd__class_Odvd_001t__Int__Oint,type,
    dvd_dvd_int: int > int > $o ).

thf(sy_c_Rings_Odvd__class_Odvd_001t__Nat__Onat,type,
    dvd_dvd_nat: nat > nat > $o ).

thf(sy_c_Rings_Odvd__class_Odvd_001t__Rat__Orat,type,
    dvd_dvd_rat: rat > rat > $o ).

thf(sy_c_Rings_Odvd__class_Odvd_001t__Real__Oreal,type,
    dvd_dvd_real: real > real > $o ).

thf(sy_c_Rings_Omodulo__class_Omodulo_001t__Code____Numeral__Ointeger,type,
    modulo364778990260209775nteger: code_integer > code_integer > code_integer ).

thf(sy_c_Rings_Omodulo__class_Omodulo_001t__Int__Oint,type,
    modulo_modulo_int: int > int > int ).

thf(sy_c_Rings_Omodulo__class_Omodulo_001t__Nat__Onat,type,
    modulo_modulo_nat: nat > nat > nat ).

thf(sy_c_Rings_Ozero__neq__one__class_Oof__bool_001t__Code____Numeral__Ointeger,type,
    zero_n356916108424825756nteger: $o > code_integer ).

thf(sy_c_Rings_Ozero__neq__one__class_Oof__bool_001t__Complex__Ocomplex,type,
    zero_n1201886186963655149omplex: $o > complex ).

thf(sy_c_Rings_Ozero__neq__one__class_Oof__bool_001t__Int__Oint,type,
    zero_n2684676970156552555ol_int: $o > int ).

thf(sy_c_Rings_Ozero__neq__one__class_Oof__bool_001t__Nat__Onat,type,
    zero_n2687167440665602831ol_nat: $o > nat ).

thf(sy_c_Rings_Ozero__neq__one__class_Oof__bool_001t__Rat__Orat,type,
    zero_n2052037380579107095ol_rat: $o > rat ).

thf(sy_c_Rings_Ozero__neq__one__class_Oof__bool_001t__Real__Oreal,type,
    zero_n3304061248610475627l_real: $o > real ).

thf(sy_c_Series_Osuminf_001t__Complex__Ocomplex,type,
    suminf_complex: ( nat > complex ) > complex ).

thf(sy_c_Series_Osuminf_001t__Int__Oint,type,
    suminf_int: ( nat > int ) > int ).

thf(sy_c_Series_Osuminf_001t__Nat__Onat,type,
    suminf_nat: ( nat > nat ) > nat ).

thf(sy_c_Series_Osuminf_001t__Real__Oreal,type,
    suminf_real: ( nat > real ) > real ).

thf(sy_c_Series_Osummable_001t__Complex__Ocomplex,type,
    summable_complex: ( nat > complex ) > $o ).

thf(sy_c_Series_Osummable_001t__Int__Oint,type,
    summable_int: ( nat > int ) > $o ).

thf(sy_c_Series_Osummable_001t__Nat__Onat,type,
    summable_nat: ( nat > nat ) > $o ).

thf(sy_c_Series_Osummable_001t__Real__Oreal,type,
    summable_real: ( nat > real ) > $o ).

thf(sy_c_Series_Osums_001t__Complex__Ocomplex,type,
    sums_complex: ( nat > complex ) > complex > $o ).

thf(sy_c_Series_Osums_001t__Int__Oint,type,
    sums_int: ( nat > int ) > int > $o ).

thf(sy_c_Series_Osums_001t__Nat__Onat,type,
    sums_nat: ( nat > nat ) > nat > $o ).

thf(sy_c_Series_Osums_001t__Real__Oreal,type,
    sums_real: ( nat > real ) > real > $o ).

thf(sy_c_Set_OCollect_001_Eo,type,
    collect_o: ( $o > $o ) > set_o ).

thf(sy_c_Set_OCollect_001t__Code____Numeral__Ointeger,type,
    collect_Code_integer: ( code_integer > $o ) > set_Code_integer ).

thf(sy_c_Set_OCollect_001t__Complex__Ocomplex,type,
    collect_complex: ( complex > $o ) > set_complex ).

thf(sy_c_Set_OCollect_001t__Int__Oint,type,
    collect_int: ( int > $o ) > set_int ).

thf(sy_c_Set_OCollect_001t__List__Olist_I_Eo_J,type,
    collect_list_o: ( list_o > $o ) > set_list_o ).

thf(sy_c_Set_OCollect_001t__List__Olist_It__Complex__Ocomplex_J,type,
    collect_list_complex: ( list_complex > $o ) > set_list_complex ).

thf(sy_c_Set_OCollect_001t__List__Olist_It__Int__Oint_J,type,
    collect_list_int: ( list_int > $o ) > set_list_int ).

thf(sy_c_Set_OCollect_001t__List__Olist_It__Nat__Onat_J,type,
    collect_list_nat: ( list_nat > $o ) > set_list_nat ).

thf(sy_c_Set_OCollect_001t__List__Olist_It__VEBT____Definitions__OVEBT_J,type,
    collec5608196760682091941T_VEBT: ( list_VEBT_VEBT > $o ) > set_list_VEBT_VEBT ).

thf(sy_c_Set_OCollect_001t__Nat__Onat,type,
    collect_nat: ( nat > $o ) > set_nat ).

thf(sy_c_Set_OCollect_001t__Num__Onum,type,
    collect_num: ( num > $o ) > set_num ).

thf(sy_c_Set_OCollect_001t__Product____Type__Oprod_It__Complex__Ocomplex_Mt__Complex__Ocomplex_J,type,
    collec8663557070575231912omplex: ( produc4411394909380815293omplex > $o ) > set_Pr5085853215250843933omplex ).

thf(sy_c_Set_OCollect_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J,type,
    collec213857154873943460nt_int: ( product_prod_int_int > $o ) > set_Pr958786334691620121nt_int ).

thf(sy_c_Set_OCollect_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    collec3392354462482085612at_nat: ( product_prod_nat_nat > $o ) > set_Pr1261947904930325089at_nat ).

thf(sy_c_Set_OCollect_001t__Product____Type__Oprod_It__Real__Oreal_Mt__Real__Oreal_J,type,
    collec3799799289383736868l_real: ( produc2422161461964618553l_real > $o ) > set_Pr6218003697084177305l_real ).

thf(sy_c_Set_OCollect_001t__Rat__Orat,type,
    collect_rat: ( rat > $o ) > set_rat ).

thf(sy_c_Set_OCollect_001t__Real__Oreal,type,
    collect_real: ( real > $o ) > set_real ).

thf(sy_c_Set_OCollect_001t__Set__Oset_It__Complex__Ocomplex_J,type,
    collect_set_complex: ( set_complex > $o ) > set_set_complex ).

thf(sy_c_Set_OCollect_001t__Set__Oset_It__Int__Oint_J,type,
    collect_set_int: ( set_int > $o ) > set_set_int ).

thf(sy_c_Set_OCollect_001t__Set__Oset_It__Nat__Onat_J,type,
    collect_set_nat: ( set_nat > $o ) > set_set_nat ).

thf(sy_c_Set_OPow_001t__Nat__Onat,type,
    pow_nat: set_nat > set_set_nat ).

thf(sy_c_Set_Oimage_001_Eo_001t__Set__Oset_I_Eo_J,type,
    image_o_set_o: ( $o > set_o ) > set_o > set_set_o ).

thf(sy_c_Set_Oimage_001t__Int__Oint_001t__Int__Oint,type,
    image_int_int: ( int > int ) > set_int > set_int ).

thf(sy_c_Set_Oimage_001t__Int__Oint_001t__Nat__Onat,type,
    image_int_nat: ( int > nat ) > set_int > set_nat ).

thf(sy_c_Set_Oimage_001t__Int__Oint_001t__Set__Oset_It__Int__Oint_J,type,
    image_int_set_int: ( int > set_int ) > set_int > set_set_int ).

thf(sy_c_Set_Oimage_001t__Nat__Onat_001t__Int__Oint,type,
    image_nat_int: ( nat > int ) > set_nat > set_int ).

thf(sy_c_Set_Oimage_001t__Nat__Onat_001t__Nat__Onat,type,
    image_nat_nat: ( nat > nat ) > set_nat > set_nat ).

thf(sy_c_Set_Oimage_001t__Nat__Onat_001t__Real__Oreal,type,
    image_nat_real: ( nat > real ) > set_nat > set_real ).

thf(sy_c_Set_Oimage_001t__Nat__Onat_001t__Set__Oset_It__Nat__Onat_J,type,
    image_nat_set_nat: ( nat > set_nat ) > set_nat > set_set_nat ).

thf(sy_c_Set_Oimage_001t__Nat__Onat_001t__String__Ochar,type,
    image_nat_char: ( nat > char ) > set_nat > set_char ).

thf(sy_c_Set_Oimage_001t__Real__Oreal_001t__Filter__Ofilter_It__Product____Type__Oprod_It__Complex__Ocomplex_Mt__Complex__Ocomplex_J_J,type,
    image_5971271580939081552omplex: ( real > filter6041513312241820739omplex ) > set_real > set_fi4554929511873752355omplex ).

thf(sy_c_Set_Oimage_001t__Real__Oreal_001t__Filter__Ofilter_It__Product____Type__Oprod_It__Real__Oreal_Mt__Real__Oreal_J_J,type,
    image_2178119161166701260l_real: ( real > filter2146258269922977983l_real ) > set_real > set_fi7789364187291644575l_real ).

thf(sy_c_Set_Oimage_001t__Real__Oreal_001t__Real__Oreal,type,
    image_real_real: ( real > real ) > set_real > set_real ).

thf(sy_c_Set_Oimage_001t__String__Ochar_001t__Nat__Onat,type,
    image_char_nat: ( char > nat ) > set_char > set_nat ).

thf(sy_c_Set_Oinsert_001t__Int__Oint,type,
    insert_int: int > set_int > set_int ).

thf(sy_c_Set_Oinsert_001t__Nat__Onat,type,
    insert_nat: nat > set_nat > set_nat ).

thf(sy_c_Set_Oinsert_001t__Real__Oreal,type,
    insert_real: real > set_real > set_real ).

thf(sy_c_Set__Interval_Ofold__atLeastAtMost__nat_001t__Code____Numeral__Ointeger,type,
    set_fo1084959871951514735nteger: ( nat > code_integer > code_integer ) > nat > nat > code_integer > code_integer ).

thf(sy_c_Set__Interval_Ofold__atLeastAtMost__nat_001t__Complex__Ocomplex,type,
    set_fo1517530859248394432omplex: ( nat > complex > complex ) > nat > nat > complex > complex ).

thf(sy_c_Set__Interval_Ofold__atLeastAtMost__nat_001t__Int__Oint,type,
    set_fo2581907887559384638at_int: ( nat > int > int ) > nat > nat > int > int ).

thf(sy_c_Set__Interval_Ofold__atLeastAtMost__nat_001t__Nat__Onat,type,
    set_fo2584398358068434914at_nat: ( nat > nat > nat ) > nat > nat > nat > nat ).

thf(sy_c_Set__Interval_Ofold__atLeastAtMost__nat_001t__Num__Onum,type,
    set_fo8365102181078989356at_num: ( nat > num > num ) > nat > nat > num > num ).

thf(sy_c_Set__Interval_Ofold__atLeastAtMost__nat_001t__Rat__Orat,type,
    set_fo1949268297981939178at_rat: ( nat > rat > rat ) > nat > nat > rat > rat ).

thf(sy_c_Set__Interval_Ofold__atLeastAtMost__nat_001t__Real__Oreal,type,
    set_fo3111899725591712190t_real: ( nat > real > real ) > nat > nat > real > real ).

thf(sy_c_Set__Interval_Ofold__atLeastAtMost__nat__rel_001t__Nat__Onat,type,
    set_fo3699595496184130361el_nat: produc4471711990508489141at_nat > produc4471711990508489141at_nat > $o ).

thf(sy_c_Set__Interval_Ofold__atLeastAtMost__nat__rel_001t__Num__Onum,type,
    set_fo256927282339908995el_num: produc3368934014287244435at_num > produc3368934014287244435at_num > $o ).

thf(sy_c_Set__Interval_Oord__class_OatLeastAtMost_001t__Int__Oint,type,
    set_or1266510415728281911st_int: int > int > set_int ).

thf(sy_c_Set__Interval_Oord__class_OatLeastAtMost_001t__Nat__Onat,type,
    set_or1269000886237332187st_nat: nat > nat > set_nat ).

thf(sy_c_Set__Interval_Oord__class_OatLeastAtMost_001t__Num__Onum,type,
    set_or7049704709247886629st_num: num > num > set_num ).

thf(sy_c_Set__Interval_Oord__class_OatLeastAtMost_001t__Rat__Orat,type,
    set_or633870826150836451st_rat: rat > rat > set_rat ).

thf(sy_c_Set__Interval_Oord__class_OatLeastAtMost_001t__Real__Oreal,type,
    set_or1222579329274155063t_real: real > real > set_real ).

thf(sy_c_Set__Interval_Oord__class_OatLeastAtMost_001t__Set__Oset_It__Int__Oint_J,type,
    set_or370866239135849197et_int: set_int > set_int > set_set_int ).

thf(sy_c_Set__Interval_Oord__class_OatLeastAtMost_001t__Set__Oset_It__Nat__Onat_J,type,
    set_or4548717258645045905et_nat: set_nat > set_nat > set_set_nat ).

thf(sy_c_Set__Interval_Oord__class_OatLeastLessThan_001t__Int__Oint,type,
    set_or4662586982721622107an_int: int > int > set_int ).

thf(sy_c_Set__Interval_Oord__class_OatLeastLessThan_001t__Nat__Onat,type,
    set_or4665077453230672383an_nat: nat > nat > set_nat ).

thf(sy_c_Set__Interval_Oord__class_OatLeast_001t__Nat__Onat,type,
    set_ord_atLeast_nat: nat > set_nat ).

thf(sy_c_Set__Interval_Oord__class_OatLeast_001t__Real__Oreal,type,
    set_ord_atLeast_real: real > set_real ).

thf(sy_c_Set__Interval_Oord__class_OatMost_001_Eo,type,
    set_ord_atMost_o: $o > set_o ).

thf(sy_c_Set__Interval_Oord__class_OatMost_001t__Int__Oint,type,
    set_ord_atMost_int: int > set_int ).

thf(sy_c_Set__Interval_Oord__class_OatMost_001t__Nat__Onat,type,
    set_ord_atMost_nat: nat > set_nat ).

thf(sy_c_Set__Interval_Oord__class_OatMost_001t__Num__Onum,type,
    set_ord_atMost_num: num > set_num ).

thf(sy_c_Set__Interval_Oord__class_OatMost_001t__Rat__Orat,type,
    set_ord_atMost_rat: rat > set_rat ).

thf(sy_c_Set__Interval_Oord__class_OatMost_001t__Real__Oreal,type,
    set_ord_atMost_real: real > set_real ).

thf(sy_c_Set__Interval_Oord__class_OatMost_001t__Set__Oset_It__Int__Oint_J,type,
    set_or58775011639299419et_int: set_int > set_set_int ).

thf(sy_c_Set__Interval_Oord__class_OatMost_001t__Set__Oset_It__Nat__Onat_J,type,
    set_or4236626031148496127et_nat: set_nat > set_set_nat ).

thf(sy_c_Set__Interval_Oord__class_OgreaterThanAtMost_001t__Int__Oint,type,
    set_or6656581121297822940st_int: int > int > set_int ).

thf(sy_c_Set__Interval_Oord__class_OgreaterThanAtMost_001t__Nat__Onat,type,
    set_or6659071591806873216st_nat: nat > nat > set_nat ).

thf(sy_c_Set__Interval_Oord__class_OgreaterThanLessThan_001t__Int__Oint,type,
    set_or5832277885323065728an_int: int > int > set_int ).

thf(sy_c_Set__Interval_Oord__class_OgreaterThanLessThan_001t__Nat__Onat,type,
    set_or5834768355832116004an_nat: nat > nat > set_nat ).

thf(sy_c_Set__Interval_Oord__class_OgreaterThanLessThan_001t__Real__Oreal,type,
    set_or1633881224788618240n_real: real > real > set_real ).

thf(sy_c_Set__Interval_Oord__class_OgreaterThan_001_Eo,type,
    set_or6416164934427428222Than_o: $o > set_o ).

thf(sy_c_Set__Interval_Oord__class_OgreaterThan_001t__Int__Oint,type,
    set_or1207661135979820486an_int: int > set_int ).

thf(sy_c_Set__Interval_Oord__class_OgreaterThan_001t__Nat__Onat,type,
    set_or1210151606488870762an_nat: nat > set_nat ).

thf(sy_c_Set__Interval_Oord__class_OgreaterThan_001t__Real__Oreal,type,
    set_or5849166863359141190n_real: real > set_real ).

thf(sy_c_Set__Interval_Oord__class_OlessThan_001_Eo,type,
    set_ord_lessThan_o: $o > set_o ).

thf(sy_c_Set__Interval_Oord__class_OlessThan_001t__Int__Oint,type,
    set_ord_lessThan_int: int > set_int ).

thf(sy_c_Set__Interval_Oord__class_OlessThan_001t__Nat__Onat,type,
    set_ord_lessThan_nat: nat > set_nat ).

thf(sy_c_Set__Interval_Oord__class_OlessThan_001t__Num__Onum,type,
    set_ord_lessThan_num: num > set_num ).

thf(sy_c_Set__Interval_Oord__class_OlessThan_001t__Rat__Orat,type,
    set_ord_lessThan_rat: rat > set_rat ).

thf(sy_c_Set__Interval_Oord__class_OlessThan_001t__Real__Oreal,type,
    set_or5984915006950818249n_real: real > set_real ).

thf(sy_c_Set__Interval_Oord__class_OlessThan_001t__Set__Oset_It__Nat__Onat_J,type,
    set_or890127255671739683et_nat: set_nat > set_set_nat ).

thf(sy_c_String_Oascii__of,type,
    ascii_of: char > char ).

thf(sy_c_String_Ochar_OChar,type,
    char2: $o > $o > $o > $o > $o > $o > $o > $o > char ).

thf(sy_c_String_Ochar__of__integer,type,
    char_of_integer: code_integer > char ).

thf(sy_c_String_Ocomm__semiring__1__class_Oof__char_001t__Nat__Onat,type,
    comm_s629917340098488124ar_nat: char > nat ).

thf(sy_c_String_Ointeger__of__char,type,
    integer_of_char: char > code_integer ).

thf(sy_c_String_Ounique__euclidean__semiring__with__bit__operations__class_Ochar__of_001t__Nat__Onat,type,
    unique3096191561947761185of_nat: nat > char ).

thf(sy_c_Topological__Spaces_Ocontinuous_001t__Real__Oreal_001t__Real__Oreal,type,
    topolo4422821103128117721l_real: filter_real > ( real > real ) > $o ).

thf(sy_c_Topological__Spaces_Ocontinuous__on_001t__Real__Oreal_001t__Real__Oreal,type,
    topolo5044208981011980120l_real: set_real > ( real > real ) > $o ).

thf(sy_c_Topological__Spaces_Ogenerate__topology_001_Eo,type,
    topolo4667128019001906403logy_o: set_set_o > set_o > $o ).

thf(sy_c_Topological__Spaces_Ogenerate__topology_001t__Int__Oint,type,
    topolo1611008123915946401gy_int: set_set_int > set_int > $o ).

thf(sy_c_Topological__Spaces_Ogenerate__topology_001t__Nat__Onat,type,
    topolo1613498594424996677gy_nat: set_set_nat > set_nat > $o ).

thf(sy_c_Topological__Spaces_Omonoseq_001t__Code____Numeral__Ointeger,type,
    topolo2919662092509805066nteger: ( nat > code_integer ) > $o ).

thf(sy_c_Topological__Spaces_Omonoseq_001t__Int__Oint,type,
    topolo4899668324122417113eq_int: ( nat > int ) > $o ).

thf(sy_c_Topological__Spaces_Omonoseq_001t__Nat__Onat,type,
    topolo4902158794631467389eq_nat: ( nat > nat ) > $o ).

thf(sy_c_Topological__Spaces_Omonoseq_001t__Num__Onum,type,
    topolo1459490580787246023eq_num: ( nat > num ) > $o ).

thf(sy_c_Topological__Spaces_Omonoseq_001t__Rat__Orat,type,
    topolo4267028734544971653eq_rat: ( nat > rat ) > $o ).

thf(sy_c_Topological__Spaces_Omonoseq_001t__Real__Oreal,type,
    topolo6980174941875973593q_real: ( nat > real ) > $o ).

thf(sy_c_Topological__Spaces_Omonoseq_001t__Set__Oset_It__Int__Oint_J,type,
    topolo3100542954746470799et_int: ( nat > set_int ) > $o ).

thf(sy_c_Topological__Spaces_Oopen__class_Oopen_001_Eo,type,
    topolo9180104560040979295open_o: set_o > $o ).

thf(sy_c_Topological__Spaces_Oopen__class_Oopen_001t__Complex__Ocomplex,type,
    topolo4110288021797289639omplex: set_complex > $o ).

thf(sy_c_Topological__Spaces_Oopen__class_Oopen_001t__Int__Oint,type,
    topolo4325760605701065253en_int: set_int > $o ).

thf(sy_c_Topological__Spaces_Oopen__class_Oopen_001t__Nat__Onat,type,
    topolo4328251076210115529en_nat: set_nat > $o ).

thf(sy_c_Topological__Spaces_Oopen__class_Oopen_001t__Real__Oreal,type,
    topolo4860482606490270245n_real: set_real > $o ).

thf(sy_c_Topological__Spaces_Otopological__space__class_Oat__within_001t__Real__Oreal,type,
    topolo2177554685111907308n_real: real > set_real > filter_real ).

thf(sy_c_Topological__Spaces_Otopological__space__class_Onhds_001t__Real__Oreal,type,
    topolo2815343760600316023s_real: real > filter_real ).

thf(sy_c_Topological__Spaces_Ouniform__space__class_OCauchy_001t__Complex__Ocomplex,type,
    topolo6517432010174082258omplex: ( nat > complex ) > $o ).

thf(sy_c_Topological__Spaces_Ouniform__space__class_OCauchy_001t__Real__Oreal,type,
    topolo4055970368930404560y_real: ( nat > real ) > $o ).

thf(sy_c_Topological__Spaces_Ouniformity__class_Ouniformity_001t__Complex__Ocomplex,type,
    topolo896644834953643431omplex: filter6041513312241820739omplex ).

thf(sy_c_Topological__Spaces_Ouniformity__class_Ouniformity_001t__Real__Oreal,type,
    topolo1511823702728130853y_real: filter2146258269922977983l_real ).

thf(sy_c_Transcendental_Oarccos,type,
    arccos: real > real ).

thf(sy_c_Transcendental_Oarcosh_001t__Real__Oreal,type,
    arcosh_real: real > real ).

thf(sy_c_Transcendental_Oarcsin,type,
    arcsin: real > real ).

thf(sy_c_Transcendental_Oarctan,type,
    arctan: real > real ).

thf(sy_c_Transcendental_Oarsinh_001t__Real__Oreal,type,
    arsinh_real: real > real ).

thf(sy_c_Transcendental_Oartanh_001t__Real__Oreal,type,
    artanh_real: real > real ).

thf(sy_c_Transcendental_Ocos_001t__Complex__Ocomplex,type,
    cos_complex: complex > complex ).

thf(sy_c_Transcendental_Ocos_001t__Real__Oreal,type,
    cos_real: real > real ).

thf(sy_c_Transcendental_Ocos__coeff,type,
    cos_coeff: nat > real ).

thf(sy_c_Transcendental_Ocosh_001t__Real__Oreal,type,
    cosh_real: real > real ).

thf(sy_c_Transcendental_Ocot_001t__Real__Oreal,type,
    cot_real: real > real ).

thf(sy_c_Transcendental_Odiffs_001t__Code____Numeral__Ointeger,type,
    diffs_Code_integer: ( nat > code_integer ) > nat > code_integer ).

thf(sy_c_Transcendental_Odiffs_001t__Complex__Ocomplex,type,
    diffs_complex: ( nat > complex ) > nat > complex ).

thf(sy_c_Transcendental_Odiffs_001t__Int__Oint,type,
    diffs_int: ( nat > int ) > nat > int ).

thf(sy_c_Transcendental_Odiffs_001t__Rat__Orat,type,
    diffs_rat: ( nat > rat ) > nat > rat ).

thf(sy_c_Transcendental_Odiffs_001t__Real__Oreal,type,
    diffs_real: ( nat > real ) > nat > real ).

thf(sy_c_Transcendental_Oexp_001t__Complex__Ocomplex,type,
    exp_complex: complex > complex ).

thf(sy_c_Transcendental_Oexp_001t__Real__Oreal,type,
    exp_real: real > real ).

thf(sy_c_Transcendental_Oln__class_Oln_001t__Real__Oreal,type,
    ln_ln_real: real > real ).

thf(sy_c_Transcendental_Olog,type,
    log: real > real > real ).

thf(sy_c_Transcendental_Opi,type,
    pi: real ).

thf(sy_c_Transcendental_Opowr_001t__Real__Oreal,type,
    powr_real: real > real > real ).

thf(sy_c_Transcendental_Osin_001t__Complex__Ocomplex,type,
    sin_complex: complex > complex ).

thf(sy_c_Transcendental_Osin_001t__Real__Oreal,type,
    sin_real: real > real ).

thf(sy_c_Transcendental_Osin__coeff,type,
    sin_coeff: nat > real ).

thf(sy_c_Transcendental_Osinh_001t__Real__Oreal,type,
    sinh_real: real > real ).

thf(sy_c_Transcendental_Otan_001t__Complex__Ocomplex,type,
    tan_complex: complex > complex ).

thf(sy_c_Transcendental_Otan_001t__Real__Oreal,type,
    tan_real: real > real ).

thf(sy_c_Transcendental_Otanh_001t__Complex__Ocomplex,type,
    tanh_complex: complex > complex ).

thf(sy_c_Transcendental_Otanh_001t__Real__Oreal,type,
    tanh_real: real > real ).

thf(sy_c_Transitive__Closure_Otrancl_001t__Nat__Onat,type,
    transi6264000038957366511cl_nat: set_Pr1261947904930325089at_nat > set_Pr1261947904930325089at_nat ).

thf(sy_c_VEBT__Definitions_OVEBT_OLeaf,type,
    vEBT_Leaf: $o > $o > vEBT_VEBT ).

thf(sy_c_VEBT__Definitions_OVEBT_ONode,type,
    vEBT_Node: option4927543243414619207at_nat > nat > list_VEBT_VEBT > vEBT_VEBT > vEBT_VEBT ).

thf(sy_c_VEBT__Definitions_OVEBT_Osize__VEBT,type,
    vEBT_size_VEBT: vEBT_VEBT > nat ).

thf(sy_c_VEBT__Definitions_OVEBT__internal_Oboth__member__options,type,
    vEBT_V8194947554948674370ptions: vEBT_VEBT > nat > $o ).

thf(sy_c_VEBT__Definitions_OVEBT__internal_Ohigh,type,
    vEBT_VEBT_high: nat > nat > nat ).

thf(sy_c_VEBT__Definitions_OVEBT__internal_Oin__children,type,
    vEBT_V5917875025757280293ildren: nat > list_VEBT_VEBT > nat > $o ).

thf(sy_c_VEBT__Definitions_OVEBT__internal_Olow,type,
    vEBT_VEBT_low: nat > nat > nat ).

thf(sy_c_VEBT__Definitions_OVEBT__internal_Omembermima,type,
    vEBT_VEBT_membermima: vEBT_VEBT > nat > $o ).

thf(sy_c_VEBT__Definitions_OVEBT__internal_Omembermima__rel,type,
    vEBT_V4351362008482014158ma_rel: produc9072475918466114483BT_nat > produc9072475918466114483BT_nat > $o ).

thf(sy_c_VEBT__Definitions_OVEBT__internal_Onaive__member,type,
    vEBT_V5719532721284313246member: vEBT_VEBT > nat > $o ).

thf(sy_c_VEBT__Definitions_OVEBT__internal_Onaive__member__rel,type,
    vEBT_V5765760719290551771er_rel: produc9072475918466114483BT_nat > produc9072475918466114483BT_nat > $o ).

thf(sy_c_VEBT__Definitions_OVEBT__internal_Ovalid_H,type,
    vEBT_VEBT_valid: vEBT_VEBT > nat > $o ).

thf(sy_c_VEBT__Definitions_OVEBT__internal_Ovalid_H__rel,type,
    vEBT_VEBT_valid_rel: produc9072475918466114483BT_nat > produc9072475918466114483BT_nat > $o ).

thf(sy_c_VEBT__Definitions_Oinvar__vebt,type,
    vEBT_invar_vebt: vEBT_VEBT > nat > $o ).

thf(sy_c_VEBT__Definitions_Oset__vebt,type,
    vEBT_set_vebt: vEBT_VEBT > set_nat ).

thf(sy_c_VEBT__Definitions_Ovebt__buildup,type,
    vEBT_vebt_buildup: nat > vEBT_VEBT ).

thf(sy_c_VEBT__Definitions_Ovebt__buildup__rel,type,
    vEBT_v4011308405150292612up_rel: nat > nat > $o ).

thf(sy_c_VEBT__Delete_Ovebt__delete,type,
    vEBT_vebt_delete: vEBT_VEBT > nat > vEBT_VEBT ).

thf(sy_c_VEBT__Delete_Ovebt__delete__rel,type,
    vEBT_vebt_delete_rel: produc9072475918466114483BT_nat > produc9072475918466114483BT_nat > $o ).

thf(sy_c_VEBT__Insert_Ovebt__insert,type,
    vEBT_vebt_insert: vEBT_VEBT > nat > vEBT_VEBT ).

thf(sy_c_VEBT__Insert_Ovebt__insert__rel,type,
    vEBT_vebt_insert_rel: produc9072475918466114483BT_nat > produc9072475918466114483BT_nat > $o ).

thf(sy_c_VEBT__Member_OVEBT__internal_Obit__concat,type,
    vEBT_VEBT_bit_concat: nat > nat > nat > nat ).

thf(sy_c_VEBT__Member_OVEBT__internal_OminNull,type,
    vEBT_VEBT_minNull: vEBT_VEBT > $o ).

thf(sy_c_VEBT__Member_OVEBT__internal_OminNull__rel,type,
    vEBT_V6963167321098673237ll_rel: vEBT_VEBT > vEBT_VEBT > $o ).

thf(sy_c_VEBT__Member_OVEBT__internal_Oset__vebt_H,type,
    vEBT_VEBT_set_vebt: vEBT_VEBT > set_nat ).

thf(sy_c_VEBT__Member_Ovebt__member,type,
    vEBT_vebt_member: vEBT_VEBT > nat > $o ).

thf(sy_c_VEBT__Member_Ovebt__member__rel,type,
    vEBT_vebt_member_rel: produc9072475918466114483BT_nat > produc9072475918466114483BT_nat > $o ).

thf(sy_c_VEBT__MinMax_OVEBT__internal_Oadd,type,
    vEBT_VEBT_add: option_nat > option_nat > option_nat ).

thf(sy_c_VEBT__MinMax_OVEBT__internal_Ogreater,type,
    vEBT_VEBT_greater: option_nat > option_nat > $o ).

thf(sy_c_VEBT__MinMax_OVEBT__internal_Oless,type,
    vEBT_VEBT_less: option_nat > option_nat > $o ).

thf(sy_c_VEBT__MinMax_OVEBT__internal_Olesseq,type,
    vEBT_VEBT_lesseq: option_nat > option_nat > $o ).

thf(sy_c_VEBT__MinMax_OVEBT__internal_Omax__in__set,type,
    vEBT_VEBT_max_in_set: set_nat > nat > $o ).

thf(sy_c_VEBT__MinMax_OVEBT__internal_Omin__in__set,type,
    vEBT_VEBT_min_in_set: set_nat > nat > $o ).

thf(sy_c_VEBT__MinMax_OVEBT__internal_Omul,type,
    vEBT_VEBT_mul: option_nat > option_nat > option_nat ).

thf(sy_c_VEBT__MinMax_OVEBT__internal_Ooption__shift_001t__Nat__Onat,type,
    vEBT_V4262088993061758097ft_nat: ( nat > nat > nat ) > option_nat > option_nat > option_nat ).

thf(sy_c_VEBT__MinMax_OVEBT__internal_Ooption__shift_001t__Num__Onum,type,
    vEBT_V819420779217536731ft_num: ( num > num > num ) > option_num > option_num > option_num ).

thf(sy_c_VEBT__MinMax_OVEBT__internal_Ooption__shift_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    vEBT_V1502963449132264192at_nat: ( product_prod_nat_nat > product_prod_nat_nat > product_prod_nat_nat ) > option4927543243414619207at_nat > option4927543243414619207at_nat > option4927543243414619207at_nat ).

thf(sy_c_VEBT__MinMax_OVEBT__internal_Ooption__shift__rel_001t__Nat__Onat,type,
    vEBT_V3895251965096974666el_nat: produc8306885398267862888on_nat > produc8306885398267862888on_nat > $o ).

thf(sy_c_VEBT__MinMax_OVEBT__internal_Ooption__shift__rel_001t__Num__Onum,type,
    vEBT_V452583751252753300el_num: produc1193250871479095198on_num > produc1193250871479095198on_num > $o ).

thf(sy_c_VEBT__MinMax_OVEBT__internal_Ooption__shift__rel_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    vEBT_V7235779383477046023at_nat: produc5542196010084753463at_nat > produc5542196010084753463at_nat > $o ).

thf(sy_c_VEBT__MinMax_OVEBT__internal_Opower,type,
    vEBT_VEBT_power: option_nat > option_nat > option_nat ).

thf(sy_c_VEBT__MinMax_Ovebt__maxt,type,
    vEBT_vebt_maxt: vEBT_VEBT > option_nat ).

thf(sy_c_VEBT__MinMax_Ovebt__maxt__rel,type,
    vEBT_vebt_maxt_rel: vEBT_VEBT > vEBT_VEBT > $o ).

thf(sy_c_VEBT__MinMax_Ovebt__mint,type,
    vEBT_vebt_mint: vEBT_VEBT > option_nat ).

thf(sy_c_VEBT__MinMax_Ovebt__mint__rel,type,
    vEBT_vebt_mint_rel: vEBT_VEBT > vEBT_VEBT > $o ).

thf(sy_c_VEBT__Pred_Ois__pred__in__set,type,
    vEBT_is_pred_in_set: set_nat > nat > nat > $o ).

thf(sy_c_VEBT__Pred_Ovebt__pred,type,
    vEBT_vebt_pred: vEBT_VEBT > nat > option_nat ).

thf(sy_c_VEBT__Pred_Ovebt__pred__rel,type,
    vEBT_vebt_pred_rel: produc9072475918466114483BT_nat > produc9072475918466114483BT_nat > $o ).

thf(sy_c_VEBT__Succ_Ois__succ__in__set,type,
    vEBT_is_succ_in_set: set_nat > nat > nat > $o ).

thf(sy_c_VEBT__Succ_Ovebt__succ,type,
    vEBT_vebt_succ: vEBT_VEBT > nat > option_nat ).

thf(sy_c_VEBT__Succ_Ovebt__succ__rel,type,
    vEBT_vebt_succ_rel: produc9072475918466114483BT_nat > produc9072475918466114483BT_nat > $o ).

thf(sy_c_Wellfounded_Oaccp_001t__List__Olist_It__Nat__Onat_J,type,
    accp_list_nat: ( list_nat > list_nat > $o ) > list_nat > $o ).

thf(sy_c_Wellfounded_Oaccp_001t__Nat__Onat,type,
    accp_nat: ( nat > nat > $o ) > nat > $o ).

thf(sy_c_Wellfounded_Oaccp_001t__Product____Type__Oprod_I_062_It__Nat__Onat_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_J,type,
    accp_P6019419558468335806at_nat: ( produc4471711990508489141at_nat > produc4471711990508489141at_nat > $o ) > produc4471711990508489141at_nat > $o ).

thf(sy_c_Wellfounded_Oaccp_001t__Product____Type__Oprod_I_062_It__Nat__Onat_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_Mt__Product____Type__Oprod_It__Option__Ooption_It__Nat__Onat_J_Mt__Option__Ooption_It__Nat__Onat_J_J_J,type,
    accp_P5496254298877145759on_nat: ( produc8306885398267862888on_nat > produc8306885398267862888on_nat > $o ) > produc8306885398267862888on_nat > $o ).

thf(sy_c_Wellfounded_Oaccp_001t__Product____Type__Oprod_I_062_It__Nat__Onat_M_062_It__Num__Onum_Mt__Num__Onum_J_J_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Num__Onum_J_J_J,type,
    accp_P4916641582247091100at_num: ( produc3368934014287244435at_num > produc3368934014287244435at_num > $o ) > produc3368934014287244435at_num > $o ).

thf(sy_c_Wellfounded_Oaccp_001t__Product____Type__Oprod_I_062_It__Num__Onum_M_062_It__Num__Onum_Mt__Num__Onum_J_J_Mt__Product____Type__Oprod_It__Option__Ooption_It__Num__Onum_J_Mt__Option__Ooption_It__Num__Onum_J_J_J,type,
    accp_P7605991808943153877on_num: ( produc1193250871479095198on_num > produc1193250871479095198on_num > $o ) > produc1193250871479095198on_num > $o ).

thf(sy_c_Wellfounded_Oaccp_001t__Product____Type__Oprod_I_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_M_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_J_Mt__Product____Type__Oprod_It__Option__Ooption_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_Mt__Option__Ooption_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_J_J,type,
    accp_P3267385326087170368at_nat: ( produc5542196010084753463at_nat > produc5542196010084753463at_nat > $o ) > produc5542196010084753463at_nat > $o ).

thf(sy_c_Wellfounded_Oaccp_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J,type,
    accp_P1096762738010456898nt_int: ( product_prod_int_int > product_prod_int_int > $o ) > product_prod_int_int > $o ).

thf(sy_c_Wellfounded_Oaccp_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    accp_P4275260045618599050at_nat: ( product_prod_nat_nat > product_prod_nat_nat > $o ) > product_prod_nat_nat > $o ).

thf(sy_c_Wellfounded_Oaccp_001t__Product____Type__Oprod_It__Num__Onum_Mt__Num__Onum_J,type,
    accp_P3113834385874906142um_num: ( product_prod_num_num > product_prod_num_num > $o ) > product_prod_num_num > $o ).

thf(sy_c_Wellfounded_Oaccp_001t__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_Mt__Nat__Onat_J,type,
    accp_P2887432264394892906BT_nat: ( produc9072475918466114483BT_nat > produc9072475918466114483BT_nat > $o ) > produc9072475918466114483BT_nat > $o ).

thf(sy_c_Wellfounded_Oaccp_001t__VEBT____Definitions__OVEBT,type,
    accp_VEBT_VEBT: ( vEBT_VEBT > vEBT_VEBT > $o ) > vEBT_VEBT > $o ).

thf(sy_c_Wellfounded_Omeasure_001t__Int__Oint,type,
    measure_int: ( int > nat ) > set_Pr958786334691620121nt_int ).

thf(sy_c_Wellfounded_Omeasure_001t__Nat__Onat,type,
    measure_nat: ( nat > nat ) > set_Pr1261947904930325089at_nat ).

thf(sy_c_Wellfounded_Omeasure_001t__Num__Onum,type,
    measure_num: ( num > nat ) > set_Pr8218934625190621173um_num ).

thf(sy_c_Wellfounded_Opred__nat,type,
    pred_nat: set_Pr1261947904930325089at_nat ).

thf(sy_c_fChoice_001t__Real__Oreal,type,
    fChoice_real: ( real > $o ) > real ).

thf(sy_c_member_001_Eo,type,
    member_o: $o > set_o > $o ).

thf(sy_c_member_001t__Complex__Ocomplex,type,
    member_complex: complex > set_complex > $o ).

thf(sy_c_member_001t__Int__Oint,type,
    member_int: int > set_int > $o ).

thf(sy_c_member_001t__List__Olist_I_Eo_J,type,
    member_list_o: list_o > set_list_o > $o ).

thf(sy_c_member_001t__List__Olist_It__Int__Oint_J,type,
    member_list_int: list_int > set_list_int > $o ).

thf(sy_c_member_001t__List__Olist_It__VEBT____Definitions__OVEBT_J,type,
    member2936631157270082147T_VEBT: list_VEBT_VEBT > set_list_VEBT_VEBT > $o ).

thf(sy_c_member_001t__Nat__Onat,type,
    member_nat: nat > set_nat > $o ).

thf(sy_c_member_001t__Num__Onum,type,
    member_num: num > set_num > $o ).

thf(sy_c_member_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_M_Eo_J,type,
    member1379723562493234055eger_o: produc6271795597528267376eger_o > set_Pr448751882837621926eger_o > $o ).

thf(sy_c_member_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J,type,
    member5262025264175285858nt_int: product_prod_int_int > set_Pr958786334691620121nt_int > $o ).

thf(sy_c_member_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    member8440522571783428010at_nat: product_prod_nat_nat > set_Pr1261947904930325089at_nat > $o ).

thf(sy_c_member_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Num__Onum_J,type,
    member9148766508732265716at_num: product_prod_nat_num > set_Pr6200539531224447659at_num > $o ).

thf(sy_c_member_001t__Product____Type__Oprod_It__Num__Onum_Mt__Num__Onum_J,type,
    member7279096912039735102um_num: product_prod_num_num > set_Pr8218934625190621173um_num > $o ).

thf(sy_c_member_001t__Rat__Orat,type,
    member_rat: rat > set_rat > $o ).

thf(sy_c_member_001t__Real__Oreal,type,
    member_real: real > set_real > $o ).

thf(sy_c_member_001t__Set__Oset_It__Int__Oint_J,type,
    member_set_int: set_int > set_set_int > $o ).

thf(sy_c_member_001t__Set__Oset_It__Nat__Onat_J,type,
    member_set_nat: set_nat > set_set_nat > $o ).

thf(sy_c_member_001t__VEBT____Definitions__OVEBT,type,
    member_VEBT_VEBT: vEBT_VEBT > set_VEBT_VEBT > $o ).

thf(sy_v_deg____,type,
    deg: nat ).

thf(sy_v_lx____,type,
    lx: nat ).

thf(sy_v_m____,type,
    m: nat ).

thf(sy_v_ma____,type,
    ma: nat ).

thf(sy_v_mi____,type,
    mi: nat ).

thf(sy_v_na____,type,
    na: nat ).

thf(sy_v_summary____,type,
    summary: vEBT_VEBT ).

thf(sy_v_summin____,type,
    summin: nat ).

thf(sy_v_treeList____,type,
    treeList: list_VEBT_VEBT ).

thf(sy_v_xa____,type,
    xa: nat ).

% Relevant facts (10202)
thf(fact_0__C1_C,axiom,
    vEBT_invar_vebt @ summary @ m ).

% "1"
thf(fact_1_even__odd__cases,axiom,
    ! [X: nat] :
      ( ! [N: nat] :
          ( X
         != ( plus_plus_nat @ N @ N ) )
     => ~ ! [N: nat] :
            ( X
           != ( plus_plus_nat @ N @ ( suc @ N ) ) ) ) ).

% even_odd_cases
thf(fact_2_deg__deg__n,axiom,
    ! [Info: option4927543243414619207at_nat,Deg: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT,N2: nat] :
      ( ( vEBT_invar_vebt @ ( vEBT_Node @ Info @ Deg @ TreeList @ Summary ) @ N2 )
     => ( Deg = N2 ) ) ).

% deg_deg_n
thf(fact_3__C3_C,axiom,
    ( deg
    = ( plus_plus_nat @ na @ m ) ) ).

% "3"
thf(fact_4__C5_OIH_C_I1_J,axiom,
    ! [X2: vEBT_VEBT] :
      ( ( member_VEBT_VEBT @ X2 @ ( set_VEBT_VEBT2 @ treeList ) )
     => ( ( vEBT_invar_vebt @ X2 @ na )
        & ! [Xa: nat] : ( vEBT_invar_vebt @ ( vEBT_vebt_delete @ X2 @ Xa ) @ na ) ) ) ).

% "5.IH"(1)
thf(fact_5_deg__SUcn__Node,axiom,
    ! [Tree: vEBT_VEBT,N2: nat] :
      ( ( vEBT_invar_vebt @ Tree @ ( suc @ ( suc @ N2 ) ) )
     => ? [Info2: option4927543243414619207at_nat,TreeList2: list_VEBT_VEBT,S: vEBT_VEBT] :
          ( Tree
          = ( vEBT_Node @ Info2 @ ( suc @ ( suc @ N2 ) ) @ TreeList2 @ S ) ) ) ).

% deg_SUcn_Node
thf(fact_6_bit__split__inv,axiom,
    ! [X: nat,D: nat] :
      ( ( vEBT_VEBT_bit_concat @ ( vEBT_VEBT_high @ X @ D ) @ ( vEBT_VEBT_low @ X @ D ) @ D )
      = X ) ).

% bit_split_inv
thf(fact_7_dele__bmo__cont__corr,axiom,
    ! [T: vEBT_VEBT,N2: nat,X: nat,Y: nat] :
      ( ( vEBT_invar_vebt @ T @ N2 )
     => ( ( vEBT_V8194947554948674370ptions @ ( vEBT_vebt_delete @ T @ X ) @ Y )
        = ( ( X != Y )
          & ( vEBT_V8194947554948674370ptions @ T @ Y ) ) ) ) ).

% dele_bmo_cont_corr
thf(fact_8__C5_Ohyps_C_I8_J,axiom,
    ord_less_nat @ ma @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ deg ) ).

% "5.hyps"(8)
thf(fact_9__C2_C,axiom,
    ( ( size_s6755466524823107622T_VEBT @ treeList )
    = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ m ) ) ).

% "2"
thf(fact_10_pow__sum,axiom,
    ! [A: nat,B: nat] :
      ( ( divide_divide_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ A @ B ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) )
      = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) ).

% pow_sum
thf(fact_11_high__def,axiom,
    ( vEBT_VEBT_high
    = ( ^ [X3: nat,N3: nat] : ( divide_divide_nat @ X3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) ) ) ) ).

% high_def
thf(fact_12__092_060open_062invar__vebt_A_ItreeList_A_B_Asummin_J_An_092_060close_062,axiom,
    vEBT_invar_vebt @ ( nth_VEBT_VEBT @ treeList @ summin ) @ na ).

% \<open>invar_vebt (treeList ! summin) n\<close>
thf(fact_13__C9_C,axiom,
    ( ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = na ) ).

% "9"
thf(fact_14__C5_OIH_C_I2_J,axiom,
    ! [X: nat] : ( vEBT_invar_vebt @ ( vEBT_vebt_delete @ summary @ X ) @ m ) ).

% "5.IH"(2)
thf(fact_15__C0_C,axiom,
    ! [X2: vEBT_VEBT] :
      ( ( member_VEBT_VEBT @ X2 @ ( set_VEBT_VEBT2 @ treeList ) )
     => ( vEBT_invar_vebt @ X2 @ na ) ) ).

% "0"
thf(fact_16__C12_C,axiom,
    ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ deg ).

% "12"
thf(fact_17__092_060open_062_092_060exists_062z_O_Aboth__member__options_A_ItreeList_A_B_Asummin_J_Az_092_060close_062,axiom,
    ? [X_1: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ treeList @ summin ) @ X_1 ) ).

% \<open>\<exists>z. both_member_options (treeList ! summin) z\<close>
thf(fact_18_high__bound__aux,axiom,
    ! [Ma: nat,N2: nat,M: nat] :
      ( ( ord_less_nat @ Ma @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ N2 @ M ) ) )
     => ( ord_less_nat @ ( vEBT_VEBT_high @ Ma @ N2 ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) ) ).

% high_bound_aux
thf(fact_19_bit__concat__def,axiom,
    ( vEBT_VEBT_bit_concat
    = ( ^ [H: nat,L: nat,D2: nat] : ( plus_plus_nat @ ( times_times_nat @ H @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ D2 ) ) @ L ) ) ) ).

% bit_concat_def
thf(fact_20__092_060open_062both__member__options_Asummary_A_Ihigh_Ama_An_J_092_060close_062,axiom,
    vEBT_V8194947554948674370ptions @ summary @ ( vEBT_VEBT_high @ ma @ na ) ).

% \<open>both_member_options summary (high ma n)\<close>
thf(fact_21_summaxma,axiom,
    ! [Mi: nat,Ma: nat,Deg: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT] :
      ( ( vEBT_invar_vebt @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ Deg )
     => ( ( Mi != Ma )
       => ( ( the_nat @ ( vEBT_vebt_maxt @ Summary ) )
          = ( vEBT_VEBT_high @ Ma @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% summaxma
thf(fact_22_high__inv,axiom,
    ! [X: nat,N2: nat,Y: nat] :
      ( ( ord_less_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
     => ( ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ Y @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) @ X ) @ N2 )
        = Y ) ) ).

% high_inv
thf(fact_23_low__inv,axiom,
    ! [X: nat,N2: nat,Y: nat] :
      ( ( ord_less_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
     => ( ( vEBT_VEBT_low @ ( plus_plus_nat @ ( times_times_nat @ Y @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) @ X ) @ N2 )
        = X ) ) ).

% low_inv
thf(fact_24__C8_C,axiom,
    ( ( suc @ na )
    = m ) ).

% "8"
thf(fact_25__C4_C,axiom,
    ! [I: nat] :
      ( ( ord_less_nat @ I @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ m ) )
     => ( ( ? [X4: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ treeList @ I ) @ X4 ) )
        = ( vEBT_V8194947554948674370ptions @ summary @ I ) ) ) ).

% "4"
thf(fact_26__092_060open_062both__member__options_A_ItreeList_A_B_Ahigh_Ama_An_J_A_Ilow_Ama_An_J_092_060close_062,axiom,
    vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ treeList @ ( vEBT_VEBT_high @ ma @ na ) ) @ ( vEBT_VEBT_low @ ma @ na ) ).

% \<open>both_member_options (treeList ! high ma n) (low ma n)\<close>
thf(fact_27_nnvalid,axiom,
    vEBT_invar_vebt @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ treeList @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) @ ( vEBT_VEBT_low @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) @ na ).

% nnvalid
thf(fact_28_hprolist,axiom,
    ( ( nth_VEBT_VEBT @ ( list_u1324408373059187874T_VEBT @ treeList @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ treeList @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) @ ( vEBT_VEBT_low @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) ) @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) )
    = ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ treeList @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) @ ( vEBT_VEBT_low @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) ) ).

% hprolist
thf(fact_29__092_060open_062summin_A_K_A2_A_094_An_A_L_Alx_A_060_A2_A_094_Adeg_092_060close_062,axiom,
    ord_less_nat @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ deg ) ).

% \<open>summin * 2 ^ n + lx < 2 ^ deg\<close>
thf(fact_30_newsummvalid,axiom,
    vEBT_invar_vebt @ ( vEBT_vebt_delete @ summary @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) @ m ).

% newsummvalid
thf(fact_31__092_060open_062length_AtreeList_A_061_Alength_A_ItreeList_A_091high_A_Isummin_A_K_A2_A_094_An_A_L_Alx_J_An_A_058_061_Avebt__delete_A_ItreeList_A_B_Ahigh_A_Isummin_A_K_A2_A_094_An_A_L_Alx_J_An_J_A_Ilow_A_Isummin_A_K_A2_A_094_An_A_L_Alx_J_An_J_093_J_092_060close_062,axiom,
    ( ( size_s6755466524823107622T_VEBT @ treeList )
    = ( size_s6755466524823107622T_VEBT @ ( list_u1324408373059187874T_VEBT @ treeList @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ treeList @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) @ ( vEBT_VEBT_low @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) ) ) ) ).

% \<open>length treeList = length (treeList [high (summin * 2 ^ n + lx) n := vebt_delete (treeList ! high (summin * 2 ^ n + lx) n) (low (summin * 2 ^ n + lx) n)])\<close>
thf(fact_32_allvalidinlist,axiom,
    ! [X2: vEBT_VEBT] :
      ( ( member_VEBT_VEBT @ X2 @ ( set_VEBT_VEBT2 @ ( list_u1324408373059187874T_VEBT @ treeList @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ treeList @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) @ ( vEBT_VEBT_low @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) ) ) )
     => ( vEBT_invar_vebt @ X2 @ na ) ) ).

% allvalidinlist
thf(fact_33_mi__eq__ma__no__ch,axiom,
    ! [Mi: nat,Ma: nat,Deg: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT] :
      ( ( vEBT_invar_vebt @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ Deg )
     => ( ( Mi = Ma )
       => ( ! [X2: vEBT_VEBT] :
              ( ( member_VEBT_VEBT @ X2 @ ( set_VEBT_VEBT2 @ TreeList ) )
             => ~ ? [X_12: nat] : ( vEBT_V8194947554948674370ptions @ X2 @ X_12 ) )
          & ~ ? [X_12: nat] : ( vEBT_V8194947554948674370ptions @ Summary @ X_12 ) ) ) ) ).

% mi_eq_ma_no_ch
thf(fact_34_ninNullc,axiom,
    vEBT_VEBT_minNull @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ treeList @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) @ ( vEBT_VEBT_low @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) ).

% ninNullc
thf(fact_35_delt__out__of__range,axiom,
    ! [X: nat,Mi: nat,Ma: nat,Deg: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT] :
      ( ( ( ord_less_nat @ X @ Mi )
        | ( ord_less_nat @ Ma @ X ) )
     => ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
       => ( ( vEBT_vebt_delete @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X )
          = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) ) ) ) ).

% delt_out_of_range
thf(fact_36__092_060open_062summin_A_060_A2_A_094_Am_092_060close_062,axiom,
    ord_less_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ m ) ).

% \<open>summin < 2 ^ m\<close>
thf(fact_37_mi__ma__2__deg,axiom,
    ! [Mi: nat,Ma: nat,Deg: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT,N2: nat] :
      ( ( vEBT_invar_vebt @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ N2 )
     => ( ( ord_less_eq_nat @ Mi @ Ma )
        & ( ord_less_nat @ Ma @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg ) ) ) ) ).

% mi_ma_2_deg
thf(fact_38__C118_C,axiom,
    ( ord_less_eq_nat @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx )
    @ ( if_nat
      @ ( ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx )
        = ma )
      @ ( if_nat
        @ ( ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ summary @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) )
          = none_nat )
        @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx )
        @ ( plus_plus_nat @ ( times_times_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ summary @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ ( list_u1324408373059187874T_VEBT @ treeList @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ treeList @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) @ ( vEBT_VEBT_low @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ summary @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) ) ) ) ) ) ) )
      @ ma ) ) ).

% "118"
thf(fact_39__C117_C,axiom,
    ( ord_less_nat
    @ ( if_nat
      @ ( ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx )
        = ma )
      @ ( if_nat
        @ ( ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ summary @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) )
          = none_nat )
        @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx )
        @ ( plus_plus_nat @ ( times_times_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ summary @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ ( list_u1324408373059187874T_VEBT @ treeList @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ treeList @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) @ ( vEBT_VEBT_low @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ summary @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) ) ) ) ) ) ) )
      @ ma )
    @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ deg ) ) ).

% "117"
thf(fact_40_both__member__options__ding,axiom,
    ! [Info: option4927543243414619207at_nat,Deg: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT,N2: nat,X: nat] :
      ( ( vEBT_invar_vebt @ ( vEBT_Node @ Info @ Deg @ TreeList @ Summary ) @ N2 )
     => ( ( ord_less_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg ) )
       => ( ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
         => ( vEBT_V8194947554948674370ptions @ ( vEBT_Node @ Info @ Deg @ TreeList @ Summary ) @ X ) ) ) ) ).

% both_member_options_ding
thf(fact_41__092_060open_062high_A_Isummin_A_K_A2_A_094_An_A_L_Alx_J_An_A_060_Alength_AtreeList_092_060close_062,axiom,
    ord_less_nat @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) @ ( size_s6755466524823107622T_VEBT @ treeList ) ).

% \<open>high (summin * 2 ^ n + lx) n < length treeList\<close>
thf(fact_42_hlbound,axiom,
    ( ( ord_less_nat @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ m ) )
    & ( ord_less_nat @ ( vEBT_VEBT_low @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) ) ).

% hlbound
thf(fact_43_nothprolist,axiom,
    ! [I2: nat] :
      ( ( ( I2
         != ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) )
        & ( ord_less_nat @ I2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ m ) ) )
     => ( ( nth_VEBT_VEBT @ ( list_u1324408373059187874T_VEBT @ treeList @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ treeList @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) @ ( vEBT_VEBT_low @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) ) @ I2 )
        = ( nth_VEBT_VEBT @ treeList @ I2 ) ) ) ).

% nothprolist
thf(fact_44_newlistlength,axiom,
    ( ( size_s6755466524823107622T_VEBT @ ( list_u1324408373059187874T_VEBT @ treeList @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ treeList @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) @ ( vEBT_VEBT_low @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) ) )
    = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ m ) ) ).

% newlistlength
thf(fact_45_mem__Collect__eq,axiom,
    ! [A: real,P: real > $o] :
      ( ( member_real @ A @ ( collect_real @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_46_mem__Collect__eq,axiom,
    ! [A: product_prod_int_int,P: product_prod_int_int > $o] :
      ( ( member5262025264175285858nt_int @ A @ ( collec213857154873943460nt_int @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_47_mem__Collect__eq,axiom,
    ! [A: complex,P: complex > $o] :
      ( ( member_complex @ A @ ( collect_complex @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_48_mem__Collect__eq,axiom,
    ! [A: set_nat,P: set_nat > $o] :
      ( ( member_set_nat @ A @ ( collect_set_nat @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_49_mem__Collect__eq,axiom,
    ! [A: nat,P: nat > $o] :
      ( ( member_nat @ A @ ( collect_nat @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_50_mem__Collect__eq,axiom,
    ! [A: int,P: int > $o] :
      ( ( member_int @ A @ ( collect_int @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_51_Collect__mem__eq,axiom,
    ! [A2: set_real] :
      ( ( collect_real
        @ ^ [X3: real] : ( member_real @ X3 @ A2 ) )
      = A2 ) ).

% Collect_mem_eq
thf(fact_52_Collect__mem__eq,axiom,
    ! [A2: set_Pr958786334691620121nt_int] :
      ( ( collec213857154873943460nt_int
        @ ^ [X3: product_prod_int_int] : ( member5262025264175285858nt_int @ X3 @ A2 ) )
      = A2 ) ).

% Collect_mem_eq
thf(fact_53_Collect__mem__eq,axiom,
    ! [A2: set_complex] :
      ( ( collect_complex
        @ ^ [X3: complex] : ( member_complex @ X3 @ A2 ) )
      = A2 ) ).

% Collect_mem_eq
thf(fact_54_Collect__mem__eq,axiom,
    ! [A2: set_set_nat] :
      ( ( collect_set_nat
        @ ^ [X3: set_nat] : ( member_set_nat @ X3 @ A2 ) )
      = A2 ) ).

% Collect_mem_eq
thf(fact_55_Collect__mem__eq,axiom,
    ! [A2: set_nat] :
      ( ( collect_nat
        @ ^ [X3: nat] : ( member_nat @ X3 @ A2 ) )
      = A2 ) ).

% Collect_mem_eq
thf(fact_56_Collect__mem__eq,axiom,
    ! [A2: set_int] :
      ( ( collect_int
        @ ^ [X3: int] : ( member_int @ X3 @ A2 ) )
      = A2 ) ).

% Collect_mem_eq
thf(fact_57_Collect__cong,axiom,
    ! [P: product_prod_int_int > $o,Q: product_prod_int_int > $o] :
      ( ! [X5: product_prod_int_int] :
          ( ( P @ X5 )
          = ( Q @ X5 ) )
     => ( ( collec213857154873943460nt_int @ P )
        = ( collec213857154873943460nt_int @ Q ) ) ) ).

% Collect_cong
thf(fact_58_Collect__cong,axiom,
    ! [P: complex > $o,Q: complex > $o] :
      ( ! [X5: complex] :
          ( ( P @ X5 )
          = ( Q @ X5 ) )
     => ( ( collect_complex @ P )
        = ( collect_complex @ Q ) ) ) ).

% Collect_cong
thf(fact_59_Collect__cong,axiom,
    ! [P: set_nat > $o,Q: set_nat > $o] :
      ( ! [X5: set_nat] :
          ( ( P @ X5 )
          = ( Q @ X5 ) )
     => ( ( collect_set_nat @ P )
        = ( collect_set_nat @ Q ) ) ) ).

% Collect_cong
thf(fact_60_Collect__cong,axiom,
    ! [P: nat > $o,Q: nat > $o] :
      ( ! [X5: nat] :
          ( ( P @ X5 )
          = ( Q @ X5 ) )
     => ( ( collect_nat @ P )
        = ( collect_nat @ Q ) ) ) ).

% Collect_cong
thf(fact_61_Collect__cong,axiom,
    ! [P: int > $o,Q: int > $o] :
      ( ! [X5: int] :
          ( ( P @ X5 )
          = ( Q @ X5 ) )
     => ( ( collect_int @ P )
        = ( collect_int @ Q ) ) ) ).

% Collect_cong
thf(fact_62__C114_C,axiom,
    ( ( ord_less_nat
      @ ( if_nat
        @ ( ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx )
          = ma )
        @ ( if_nat
          @ ( ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ summary @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) )
            = none_nat )
          @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx )
          @ ( plus_plus_nat @ ( times_times_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ summary @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ ( list_u1324408373059187874T_VEBT @ treeList @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ treeList @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) @ ( vEBT_VEBT_low @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ summary @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) ) ) ) ) ) ) )
        @ ma )
      @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ deg ) )
    & ( ord_less_eq_nat @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx )
      @ ( if_nat
        @ ( ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx )
          = ma )
        @ ( if_nat
          @ ( ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ summary @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) )
            = none_nat )
          @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx )
          @ ( plus_plus_nat @ ( times_times_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ summary @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ ( list_u1324408373059187874T_VEBT @ treeList @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ treeList @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) @ ( vEBT_VEBT_low @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ summary @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) ) ) ) ) ) ) )
        @ ma ) ) ) ).

% "114"
thf(fact_63__C112_C,axiom,
    ( ( ( ( ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx )
          = ma )
       => ( ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx )
          = ( if_nat
            @ ( ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ summary @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) )
              = none_nat )
            @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx )
            @ ( plus_plus_nat @ ( times_times_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ summary @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ ( list_u1324408373059187874T_VEBT @ treeList @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ treeList @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) @ ( vEBT_VEBT_low @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ summary @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) ) ) ) ) ) ) ) ) )
      & ( ( ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx )
         != ma )
       => ( ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx )
          = ma ) ) )
   => ! [X2: vEBT_VEBT] :
        ( ( member_VEBT_VEBT @ X2 @ ( set_VEBT_VEBT2 @ ( list_u1324408373059187874T_VEBT @ treeList @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ treeList @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) @ ( vEBT_VEBT_low @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) ) ) )
       => ~ ? [X_12: nat] : ( vEBT_V8194947554948674370ptions @ X2 @ X_12 ) ) ) ).

% "112"
thf(fact_64__092_060open_062_092_060lbrakk_062_092_060forall_062t_092_060in_062set_A_ItreeList_A_091high_A_Isummin_A_K_A2_A_094_An_A_L_Alx_J_An_A_058_061_Avebt__delete_A_ItreeList_A_B_Ahigh_A_Isummin_A_K_A2_A_094_An_A_L_Alx_J_An_J_A_Ilow_A_Isummin_A_K_A2_A_094_An_A_L_Alx_J_An_J_093_J_O_Ainvar__vebt_At_An_059_Ainvar__vebt_A_Ivebt__delete_Asummary_A_Ihigh_A_Isummin_A_K_A2_A_094_An_A_L_Alx_J_An_J_J_Am_059_Alength_A_ItreeList_A_091high_A_Isummin_A_K_A2_A_094_An_A_L_Alx_J_An_A_058_061_Avebt__delete_A_ItreeList_A_B_Ahigh_A_Isummin_A_K_A2_A_094_An_A_L_Alx_J_An_J_A_Ilow_A_Isummin_A_K_A2_A_094_An_A_L_Alx_J_An_J_093_J_A_061_A2_A_094_Am_059_Am_A_061_ASuc_An_059_Adeg_A_061_An_A_L_Am_059_A_092_060forall_062i_0602_A_094_Am_O_A_I_092_060exists_062x_O_Aboth__member__options_A_ItreeList_A_091high_A_Isummin_A_K_A2_A_094_An_A_L_Alx_J_An_A_058_061_Avebt__delete_A_ItreeList_A_B_Ahigh_A_Isummin_A_K_A2_A_094_An_A_L_Alx_J_An_J_A_Ilow_A_Isummin_A_K_A2_A_094_An_A_L_Alx_J_An_J_093_A_B_Ai_J_Ax_J_A_061_Aboth__member__options_A_Ivebt__delete_Asummary_A_Ihigh_A_Isummin_A_K_A2_A_094_An_A_L_Alx_J_An_J_J_Ai_059_Asummin_A_K_A2_A_094_An_A_L_Alx_A_061_A_Iif_Asummin_A_K_A2_A_094_An_A_L_Alx_A_061_Ama_Athen_Alet_Amaxs_A_061_Avebt__maxt_A_Ivebt__delete_Asummary_A_Ihigh_A_Isummin_A_K_A2_A_094_An_A_L_Alx_J_An_J_J_Ain_Aif_Amaxs_A_061_ANone_Athen_Asummin_A_K_A2_A_094_An_A_L_Alx_Aelse_A2_A_094_A_Ideg_Adiv_A2_J_A_K_Athe_Amaxs_A_L_Athe_A_Ivebt__maxt_A_ItreeList_A_091high_A_Isummin_A_K_A2_A_094_An_A_L_Alx_J_An_A_058_061_Avebt__delete_A_ItreeList_A_B_Ahigh_A_Isummin_A_K_A2_A_094_An_A_L_Alx_J_An_J_A_Ilow_A_Isummin_A_K_A2_A_094_An_A_L_Alx_J_An_J_093_A_B_Athe_Amaxs_J_J_Aelse_Ama_J_A_092_060longrightarrow_062_A_I_092_060forall_062t_092_060in_062set_A_ItreeList_A_091high_A_Isummin_A_K_A2_A_094_An_A_L_Alx_J_An_A_058_061_Avebt__delete_A_ItreeList_A_B_Ahigh_A_Isummin_A_K_A2_A_094_An_A_L_Alx_J_An_J_A_Ilow_A_Isummin_A_K_A2_A_094_An_A_L_Alx_J_An_J_093_J_O_A_092_060nexists_062x_O_Aboth__member__options_At_Ax_J_059_Asummin_A_K_A2_A_094_An_A_L_Alx_A_092_060le_062_A_Iif_Asummin_A_K_A2_A_094_An_A_L_Alx_A_061_Ama_Athen_Alet_Amaxs_A_061_Avebt__maxt_A_Ivebt__delete_Asummary_A_Ihigh_A_Isummin_A_K_A2_A_094_An_A_L_Alx_J_An_J_J_Ain_Aif_Amaxs_A_061_ANone_Athen_Asummin_A_K_A2_A_094_An_A_L_Alx_Aelse_A2_A_094_A_Ideg_Adiv_A2_J_A_K_Athe_Amaxs_A_L_Athe_A_Ivebt__maxt_A_ItreeList_A_091high_A_Isummin_A_K_A2_A_094_An_A_L_Alx_J_An_A_058_061_Avebt__delete_A_ItreeList_A_B_Ahigh_A_Isummin_A_K_A2_A_094_An_A_L_Alx_J_An_J_A_Ilow_A_Isummin_A_K_A2_A_094_An_A_L_Alx_J_An_J_093_A_B_Athe_Amaxs_J_J_Aelse_Ama_J_059_A_Iif_Asummin_A_K_A2_A_094_An_A_L_Alx_A_061_Ama_Athen_Alet_Amaxs_A_061_Avebt__maxt_A_Ivebt__delete_Asummary_A_Ihigh_A_Isummin_A_K_A2_A_094_An_A_L_Alx_J_An_J_J_Ain_Aif_Amaxs_A_061_ANone_Athen_Asummin_A_K_A2_A_094_An_A_L_Alx_Aelse_A2_A_094_A_Ideg_Adiv_A2_J_A_K_Athe_Amaxs_A_L_Athe_A_Ivebt__maxt_A_ItreeList_A_091high_A_Isummin_A_K_A2_A_094_An_A_L_Alx_J_An_A_058_061_Avebt__delete_A_ItreeList_A_B_Ahigh_A_Isummin_A_K_A2_A_094_An_A_L_Alx_J_An_J_A_Ilow_A_Isummin_A_K_A2_A_094_An_A_L_Alx_J_An_J_093_A_B_Athe_Amaxs_J_J_Aelse_Ama_J_A_060_A2_A_094_Adeg_059_Asummin_A_K_A2_A_094_An_A_L_Alx_A_092_060noteq_062_A_Iif_Asummin_A_K_A2_A_094_An_A_L_Alx_A_061_Ama_Athen_Alet_Amaxs_A_061_Avebt__maxt_A_Ivebt__delete_Asummary_A_Ihigh_A_Isummin_A_K_A2_A_094_An_A_L_Alx_J_An_J_J_Ain_Aif_Amaxs_A_061_ANone_Athen_Asummin_A_K_A2_A_094_An_A_L_Alx_Aelse_A2_A_094_A_Ideg_Adiv_A2_J_A_K_Athe_Amaxs_A_L_Athe_A_Ivebt__maxt_A_ItreeList_A_091high_A_Isummin_A_K_A2_A_094_An_A_L_Alx_J_An_A_058_061_Avebt__delete_A_ItreeList_A_B_Ahigh_A_Isummin_A_K_A2_A_094_An_A_L_Alx_J_An_J_A_Ilow_A_Isummin_A_K_A2_A_094_An_A_L_Alx_J_An_J_093_A_B_Athe_Amaxs_J_J_Aelse_Ama_J_A_092_060longrightarrow_062_A_I_092_060forall_062i_0602_A_094_Am_O_A_Ihigh_A_Iif_Asummin_A_K_A2_A_094_An_A_L_Alx_A_061_Ama_Athen_Alet_Amaxs_A_061_Avebt__maxt_A_Ivebt__delete_Asummary_A_Ihigh_A_Isummin_A_K_A2_A_094_An_A_L_Alx_J_An_J_J_Ain_Aif_Amaxs_A_061_ANone_Athen_Asummin_A_K_A2_A_094_An_A_L_Alx_Aelse_A2_A_094_A_Ideg_Adiv_A2_J_A_K_Athe_Amaxs_A_L_Athe_A_Ivebt__maxt_A_ItreeList_A_091high_A_Isummin_A_K_A2_A_094_An_A_L_Alx_J_An_A_058_061_Avebt__delete_A_ItreeList_A_B_Ahigh_A_Isummin_A_K_A2_A_094_An_A_L_Alx_J_An_J_A_Ilow_A_Isummin_A_K_A2_A_094_An_A_L_Alx_J_An_J_093_A_B_Athe_Amaxs_J_J_Aelse_Ama_J_An_A_061_Ai_A_092_060longrightarrow_062_Aboth__member__options_A_ItreeList_A_091high_A_Isummin_A_K_A2_A_094_An_A_L_Alx_J_An_A_058_061_Avebt__delete_A_ItreeList_A_B_Ahigh_A_Isummin_A_K_A2_A_094_An_A_L_Alx_J_An_J_A_Ilow_A_Isummin_A_K_A2_A_094_An_A_L_Alx_J_An_J_093_A_B_Ai_J_A_Ilow_A_Iif_Asummin_A_K_A2_A_094_An_A_L_Alx_A_061_Ama_Athen_Alet_Amaxs_A_061_Avebt__maxt_A_Ivebt__delete_Asummary_A_Ihigh_A_Isummin_A_K_A2_A_094_An_A_L_Alx_J_An_J_J_Ain_Aif_Amaxs_A_061_ANone_Athen_Asummin_A_K_A2_A_094_An_A_L_Alx_Aelse_A2_A_094_A_Ideg_Adiv_A2_J_A_K_Athe_Amaxs_A_L_Athe_A_Ivebt__maxt_A_ItreeList_A_091high_A_Isummin_A_K_A2_A_094_An_A_L_Alx_J_An_A_058_061_Avebt__delete_A_ItreeList_A_B_Ahigh_A_Isummin_A_K_A2_A_094_An_A_L_Alx_J_An_J_A_Ilow_A_Isummin_A_K_A2_A_094_An_A_L_Alx_J_An_J_093_A_B_Athe_Amaxs_J_J_Aelse_Ama_J_An_J_J_A_092_060and_062_A_I_092_060forall_062x_O_Ahigh_Ax_An_A_061_Ai_A_092_060and_062_Aboth__member__options_A_ItreeList_A_091high_A_Isummin_A_K_A2_A_094_An_A_L_Alx_J_An_A_058_061_Avebt__delete_A_ItreeList_A_B_Ahigh_A_Isummin_A_K_A2_A_094_An_A_L_Alx_J_An_J_A_Ilow_A_Isummin_A_K_A2_A_094_An_A_L_Alx_J_An_J_093_A_B_Ai_J_A_Ilow_Ax_An_J_A_092_060longrightarrow_062_Asummin_A_K_A2_A_094_An_A_L_Alx_A_060_Ax_A_092_060and_062_Ax_A_092_060le_062_A_Iif_Asummin_A_K_A2_A_094_An_A_L_Alx_A_061_Ama_Athen_Alet_Amaxs_A_061_Avebt__maxt_A_Ivebt__delete_Asummary_A_Ihigh_A_Isummin_A_K_A2_A_094_An_A_L_Alx_J_An_J_J_Ain_Aif_Amaxs_A_061_ANone_Athen_Asummin_A_K_A2_A_094_An_A_L_Alx_Aelse_A2_A_094_A_Ideg_Adiv_A2_J_A_K_Athe_Amaxs_A_L_Athe_A_Ivebt__maxt_A_ItreeList_A_091high_A_Isummin_A_K_A2_A_094_An_A_L_Alx_J_An_A_058_061_Avebt__delete_A_ItreeList_A_B_Ahigh_A_Isummin_A_K_A2_A_094_An_A_L_Alx_J_An_J_A_Ilow_A_Isummin_A_K_A2_A_094_An_A_L_Alx_J_An_J_093_A_B_Athe_Amaxs_J_J_Aelse_Ama_J_J_J_092_060rbrakk_062_A_092_060Longrightarrow_062_Ainvar__vebt_A_INode_A_ISome_A_Isummin_A_K_A2_A_094_An_A_L_Alx_M_Aif_Asummin_A_K_A2_A_094_An_A_L_Alx_A_061_Ama_Athen_Alet_Amaxs_A_061_Avebt__maxt_A_Ivebt__delete_Asummary_A_Ihigh_A_Isummin_A_K_A2_A_094_An_A_L_Alx_J_An_J_J_Ain_Aif_Amaxs_A_061_ANone_Athen_Asummin_A_K_A2_A_094_An_A_L_Alx_Aelse_A2_A_094_A_Ideg_Adiv_A2_J_A_K_Athe_Amaxs_A_L_Athe_A_Ivebt__maxt_A_ItreeList_A_091high_A_Isummin_A_K_A2_A_094_An_A_L_Alx_J_An_A_058_061_Avebt__delete_A_ItreeList_A_B_Ahigh_A_Isummin_A_K_A2_A_094_An_A_L_Alx_J_An_J_A_Ilow_A_Isummin_A_K_A2_A_094_An_A_L_Alx_J_An_J_093_A_B_Athe_Amaxs_J_J_Aelse_Ama_J_J_Adeg_A_ItreeList_A_091high_A_Isummin_A_K_A2_A_094_An_A_L_Alx_J_An_A_058_061_Avebt__delete_A_ItreeList_A_B_Ahigh_A_Isummin_A_K_A2_A_094_An_A_L_Alx_J_An_J_A_Ilow_A_Isummin_A_K_A2_A_094_An_A_L_Alx_J_An_J_093_J_A_Ivebt__delete_Asummary_A_Ihigh_A_Isummin_A_K_A2_A_094_An_A_L_Alx_J_An_J_J_J_Adeg_092_060close_062,axiom,
    ( ! [X5: vEBT_VEBT] :
        ( ( member_VEBT_VEBT @ X5 @ ( set_VEBT_VEBT2 @ ( list_u1324408373059187874T_VEBT @ treeList @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ treeList @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) @ ( vEBT_VEBT_low @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) ) ) )
       => ( vEBT_invar_vebt @ X5 @ na ) )
   => ( ( vEBT_invar_vebt @ ( vEBT_vebt_delete @ summary @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) @ m )
     => ( ( ( size_s6755466524823107622T_VEBT @ ( list_u1324408373059187874T_VEBT @ treeList @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ treeList @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) @ ( vEBT_VEBT_low @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) ) )
          = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ m ) )
       => ( ( m
            = ( suc @ na ) )
         => ( ( deg
              = ( plus_plus_nat @ na @ m ) )
           => ( ! [I3: nat] :
                  ( ( ord_less_nat @ I3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ m ) )
                 => ( ( ? [X4: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ ( list_u1324408373059187874T_VEBT @ treeList @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ treeList @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) @ ( vEBT_VEBT_low @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) ) @ I3 ) @ X4 ) )
                    = ( vEBT_V8194947554948674370ptions @ ( vEBT_vebt_delete @ summary @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) @ I3 ) ) )
             => ( ( ( ( ( ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx )
                        = ma )
                     => ( ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx )
                        = ( if_nat
                          @ ( ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ summary @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) )
                            = none_nat )
                          @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx )
                          @ ( plus_plus_nat @ ( times_times_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ summary @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ ( list_u1324408373059187874T_VEBT @ treeList @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ treeList @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) @ ( vEBT_VEBT_low @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ summary @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) ) ) ) ) ) ) ) ) )
                    & ( ( ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx )
                       != ma )
                     => ( ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx )
                        = ma ) ) )
                 => ! [X5: vEBT_VEBT] :
                      ( ( member_VEBT_VEBT @ X5 @ ( set_VEBT_VEBT2 @ ( list_u1324408373059187874T_VEBT @ treeList @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ treeList @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) @ ( vEBT_VEBT_low @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) ) ) )
                     => ~ ? [X_1: nat] : ( vEBT_V8194947554948674370ptions @ X5 @ X_1 ) ) )
               => ( ( ord_less_eq_nat @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx )
                    @ ( if_nat
                      @ ( ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx )
                        = ma )
                      @ ( if_nat
                        @ ( ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ summary @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) )
                          = none_nat )
                        @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx )
                        @ ( plus_plus_nat @ ( times_times_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ summary @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ ( list_u1324408373059187874T_VEBT @ treeList @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ treeList @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) @ ( vEBT_VEBT_low @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ summary @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) ) ) ) ) ) ) )
                      @ ma ) )
                 => ( ( ord_less_nat
                      @ ( if_nat
                        @ ( ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx )
                          = ma )
                        @ ( if_nat
                          @ ( ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ summary @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) )
                            = none_nat )
                          @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx )
                          @ ( plus_plus_nat @ ( times_times_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ summary @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ ( list_u1324408373059187874T_VEBT @ treeList @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ treeList @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) @ ( vEBT_VEBT_low @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ summary @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) ) ) ) ) ) ) )
                        @ ma )
                      @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ deg ) )
                   => ( ( ~ ( ( ( ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx )
                                = ma )
                             => ( ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx )
                                = ( if_nat
                                  @ ( ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ summary @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) )
                                    = none_nat )
                                  @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx )
                                  @ ( plus_plus_nat @ ( times_times_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ summary @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ ( list_u1324408373059187874T_VEBT @ treeList @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ treeList @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) @ ( vEBT_VEBT_low @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ summary @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) ) ) ) ) ) ) ) ) )
                            & ( ( ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx )
                               != ma )
                             => ( ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx )
                                = ma ) ) )
                       => ! [I3: nat] :
                            ( ( ord_less_nat @ I3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ m ) )
                           => ( ( ( ( vEBT_VEBT_high
                                    @ ( if_nat
                                      @ ( ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx )
                                        = ma )
                                      @ ( if_nat
                                        @ ( ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ summary @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) )
                                          = none_nat )
                                        @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx )
                                        @ ( plus_plus_nat @ ( times_times_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ summary @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ ( list_u1324408373059187874T_VEBT @ treeList @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ treeList @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) @ ( vEBT_VEBT_low @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ summary @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) ) ) ) ) ) ) )
                                      @ ma )
                                    @ na )
                                  = I3 )
                               => ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ ( list_u1324408373059187874T_VEBT @ treeList @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ treeList @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) @ ( vEBT_VEBT_low @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) ) @ I3 )
                                  @ ( vEBT_VEBT_low
                                    @ ( if_nat
                                      @ ( ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx )
                                        = ma )
                                      @ ( if_nat
                                        @ ( ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ summary @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) )
                                          = none_nat )
                                        @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx )
                                        @ ( plus_plus_nat @ ( times_times_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ summary @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ ( list_u1324408373059187874T_VEBT @ treeList @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ treeList @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) @ ( vEBT_VEBT_low @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ summary @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) ) ) ) ) ) ) )
                                      @ ma )
                                    @ na ) ) )
                              & ! [X5: nat] :
                                  ( ( ( ( vEBT_VEBT_high @ X5 @ na )
                                      = I3 )
                                    & ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ ( list_u1324408373059187874T_VEBT @ treeList @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ treeList @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) @ ( vEBT_VEBT_low @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) ) @ I3 ) @ ( vEBT_VEBT_low @ X5 @ na ) ) )
                                 => ( ( ord_less_nat @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ X5 )
                                    & ( ord_less_eq_nat @ X5
                                      @ ( if_nat
                                        @ ( ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx )
                                          = ma )
                                        @ ( if_nat
                                          @ ( ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ summary @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) )
                                            = none_nat )
                                          @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx )
                                          @ ( plus_plus_nat @ ( times_times_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ summary @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ ( list_u1324408373059187874T_VEBT @ treeList @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ treeList @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) @ ( vEBT_VEBT_low @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ summary @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) ) ) ) ) ) ) )
                                        @ ma ) ) ) ) ) ) )
                     => ( vEBT_invar_vebt
                        @ ( vEBT_Node
                          @ ( some_P7363390416028606310at_nat
                            @ ( product_Pair_nat_nat @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx )
                              @ ( if_nat
                                @ ( ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx )
                                  = ma )
                                @ ( if_nat
                                  @ ( ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ summary @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) )
                                    = none_nat )
                                  @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx )
                                  @ ( plus_plus_nat @ ( times_times_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ summary @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ ( list_u1324408373059187874T_VEBT @ treeList @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ treeList @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) @ ( vEBT_VEBT_low @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ summary @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) ) ) ) ) ) ) )
                                @ ma ) ) )
                          @ deg
                          @ ( list_u1324408373059187874T_VEBT @ treeList @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ treeList @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) @ ( vEBT_VEBT_low @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) )
                          @ ( vEBT_vebt_delete @ summary @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) )
                        @ deg ) ) ) ) ) ) ) ) ) ) ) ).

% \<open>\<lbrakk>\<forall>t\<in>set (treeList [high (summin * 2 ^ n + lx) n := vebt_delete (treeList ! high (summin * 2 ^ n + lx) n) (low (summin * 2 ^ n + lx) n)]). invar_vebt t n; invar_vebt (vebt_delete summary (high (summin * 2 ^ n + lx) n)) m; length (treeList [high (summin * 2 ^ n + lx) n := vebt_delete (treeList ! high (summin * 2 ^ n + lx) n) (low (summin * 2 ^ n + lx) n)]) = 2 ^ m; m = Suc n; deg = n + m; \<forall>i<2 ^ m. (\<exists>x. both_member_options (treeList [high (summin * 2 ^ n + lx) n := vebt_delete (treeList ! high (summin * 2 ^ n + lx) n) (low (summin * 2 ^ n + lx) n)] ! i) x) = both_member_options (vebt_delete summary (high (summin * 2 ^ n + lx) n)) i; summin * 2 ^ n + lx = (if summin * 2 ^ n + lx = ma then let maxs = vebt_maxt (vebt_delete summary (high (summin * 2 ^ n + lx) n)) in if maxs = None then summin * 2 ^ n + lx else 2 ^ (deg div 2) * the maxs + the (vebt_maxt (treeList [high (summin * 2 ^ n + lx) n := vebt_delete (treeList ! high (summin * 2 ^ n + lx) n) (low (summin * 2 ^ n + lx) n)] ! the maxs)) else ma) \<longrightarrow> (\<forall>t\<in>set (treeList [high (summin * 2 ^ n + lx) n := vebt_delete (treeList ! high (summin * 2 ^ n + lx) n) (low (summin * 2 ^ n + lx) n)]). \<nexists>x. both_member_options t x); summin * 2 ^ n + lx \<le> (if summin * 2 ^ n + lx = ma then let maxs = vebt_maxt (vebt_delete summary (high (summin * 2 ^ n + lx) n)) in if maxs = None then summin * 2 ^ n + lx else 2 ^ (deg div 2) * the maxs + the (vebt_maxt (treeList [high (summin * 2 ^ n + lx) n := vebt_delete (treeList ! high (summin * 2 ^ n + lx) n) (low (summin * 2 ^ n + lx) n)] ! the maxs)) else ma); (if summin * 2 ^ n + lx = ma then let maxs = vebt_maxt (vebt_delete summary (high (summin * 2 ^ n + lx) n)) in if maxs = None then summin * 2 ^ n + lx else 2 ^ (deg div 2) * the maxs + the (vebt_maxt (treeList [high (summin * 2 ^ n + lx) n := vebt_delete (treeList ! high (summin * 2 ^ n + lx) n) (low (summin * 2 ^ n + lx) n)] ! the maxs)) else ma) < 2 ^ deg; summin * 2 ^ n + lx \<noteq> (if summin * 2 ^ n + lx = ma then let maxs = vebt_maxt (vebt_delete summary (high (summin * 2 ^ n + lx) n)) in if maxs = None then summin * 2 ^ n + lx else 2 ^ (deg div 2) * the maxs + the (vebt_maxt (treeList [high (summin * 2 ^ n + lx) n := vebt_delete (treeList ! high (summin * 2 ^ n + lx) n) (low (summin * 2 ^ n + lx) n)] ! the maxs)) else ma) \<longrightarrow> (\<forall>i<2 ^ m. (high (if summin * 2 ^ n + lx = ma then let maxs = vebt_maxt (vebt_delete summary (high (summin * 2 ^ n + lx) n)) in if maxs = None then summin * 2 ^ n + lx else 2 ^ (deg div 2) * the maxs + the (vebt_maxt (treeList [high (summin * 2 ^ n + lx) n := vebt_delete (treeList ! high (summin * 2 ^ n + lx) n) (low (summin * 2 ^ n + lx) n)] ! the maxs)) else ma) n = i \<longrightarrow> both_member_options (treeList [high (summin * 2 ^ n + lx) n := vebt_delete (treeList ! high (summin * 2 ^ n + lx) n) (low (summin * 2 ^ n + lx) n)] ! i) (low (if summin * 2 ^ n + lx = ma then let maxs = vebt_maxt (vebt_delete summary (high (summin * 2 ^ n + lx) n)) in if maxs = None then summin * 2 ^ n + lx else 2 ^ (deg div 2) * the maxs + the (vebt_maxt (treeList [high (summin * 2 ^ n + lx) n := vebt_delete (treeList ! high (summin * 2 ^ n + lx) n) (low (summin * 2 ^ n + lx) n)] ! the maxs)) else ma) n)) \<and> (\<forall>x. high x n = i \<and> both_member_options (treeList [high (summin * 2 ^ n + lx) n := vebt_delete (treeList ! high (summin * 2 ^ n + lx) n) (low (summin * 2 ^ n + lx) n)] ! i) (low x n) \<longrightarrow> summin * 2 ^ n + lx < x \<and> x \<le> (if summin * 2 ^ n + lx = ma then let maxs = vebt_maxt (vebt_delete summary (high (summin * 2 ^ n + lx) n)) in if maxs = None then summin * 2 ^ n + lx else 2 ^ (deg div 2) * the maxs + the (vebt_maxt (treeList [high (summin * 2 ^ n + lx) n := vebt_delete (treeList ! high (summin * 2 ^ n + lx) n) (low (summin * 2 ^ n + lx) n)] ! the maxs)) else ma)))\<rbrakk> \<Longrightarrow> invar_vebt (Node (Some (summin * 2 ^ n + lx, if summin * 2 ^ n + lx = ma then let maxs = vebt_maxt (vebt_delete summary (high (summin * 2 ^ n + lx) n)) in if maxs = None then summin * 2 ^ n + lx else 2 ^ (deg div 2) * the maxs + the (vebt_maxt (treeList [high (summin * 2 ^ n + lx) n := vebt_delete (treeList ! high (summin * 2 ^ n + lx) n) (low (summin * 2 ^ n + lx) n)] ! the maxs)) else ma)) deg (treeList [high (summin * 2 ^ n + lx) n := vebt_delete (treeList ! high (summin * 2 ^ n + lx) n) (low (summin * 2 ^ n + lx) n)]) (vebt_delete summary (high (summin * 2 ^ n + lx) n))) deg\<close>
thf(fact_65__C111_C,axiom,
    ! [I: nat] :
      ( ( ord_less_nat @ I @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ m ) )
     => ( ( ? [X4: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ ( list_u1324408373059187874T_VEBT @ treeList @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ treeList @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) @ ( vEBT_VEBT_low @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) ) @ I ) @ X4 ) )
        = ( vEBT_V8194947554948674370ptions @ ( vEBT_vebt_delete @ summary @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) @ I ) ) ) ).

% "111"
thf(fact_66__C115_C,axiom,
    ( ~ ( ( ( ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx )
            = ma )
         => ( ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx )
            = ( if_nat
              @ ( ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ summary @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) )
                = none_nat )
              @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx )
              @ ( plus_plus_nat @ ( times_times_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ summary @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ ( list_u1324408373059187874T_VEBT @ treeList @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ treeList @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) @ ( vEBT_VEBT_low @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ summary @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) ) ) ) ) ) ) ) ) )
        & ( ( ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx )
           != ma )
         => ( ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx )
            = ma ) ) )
   => ! [I: nat] :
        ( ( ord_less_nat @ I @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ m ) )
       => ( ( ( ( vEBT_VEBT_high
                @ ( if_nat
                  @ ( ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx )
                    = ma )
                  @ ( if_nat
                    @ ( ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ summary @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) )
                      = none_nat )
                    @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx )
                    @ ( plus_plus_nat @ ( times_times_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ summary @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ ( list_u1324408373059187874T_VEBT @ treeList @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ treeList @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) @ ( vEBT_VEBT_low @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ summary @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) ) ) ) ) ) ) )
                  @ ma )
                @ na )
              = I )
           => ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ ( list_u1324408373059187874T_VEBT @ treeList @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ treeList @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) @ ( vEBT_VEBT_low @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) ) @ I )
              @ ( vEBT_VEBT_low
                @ ( if_nat
                  @ ( ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx )
                    = ma )
                  @ ( if_nat
                    @ ( ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ summary @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) )
                      = none_nat )
                    @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx )
                    @ ( plus_plus_nat @ ( times_times_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ summary @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ ( list_u1324408373059187874T_VEBT @ treeList @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ treeList @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) @ ( vEBT_VEBT_low @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ summary @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) ) ) ) ) ) ) )
                  @ ma )
                @ na ) ) )
          & ! [Y2: nat] :
              ( ( ( ( vEBT_VEBT_high @ Y2 @ na )
                  = I )
                & ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ ( list_u1324408373059187874T_VEBT @ treeList @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ treeList @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) @ ( vEBT_VEBT_low @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) ) @ I ) @ ( vEBT_VEBT_low @ Y2 @ na ) ) )
             => ( ( ord_less_nat @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ Y2 )
                & ( ord_less_eq_nat @ Y2
                  @ ( if_nat
                    @ ( ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx )
                      = ma )
                    @ ( if_nat
                      @ ( ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ summary @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) )
                        = none_nat )
                      @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx )
                      @ ( plus_plus_nat @ ( times_times_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ summary @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ ( list_u1324408373059187874T_VEBT @ treeList @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ treeList @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) @ ( vEBT_VEBT_low @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ summary @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) ) ) ) ) ) ) )
                    @ ma ) ) ) ) ) ) ) ).

% "115"
thf(fact_67_add__self__div__2,axiom,
    ! [M: nat] :
      ( ( divide_divide_nat @ ( plus_plus_nat @ M @ M ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = M ) ).

% add_self_div_2
thf(fact_68__C5_Ohyps_C_I7_J,axiom,
    ord_less_eq_nat @ mi @ ma ).

% "5.hyps"(7)
thf(fact_69_xnin,axiom,
    vEBT_V8194947554948674370ptions @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ mi @ ma ) ) @ deg @ treeList @ summary ) @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) ).

% xnin
thf(fact_70__C10_C,axiom,
    vEBT_invar_vebt @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ mi @ ma ) ) @ deg @ treeList @ summary ) @ deg ).

% "10"
thf(fact_71_option_Ocollapse,axiom,
    ! [Option: option4927543243414619207at_nat] :
      ( ( Option != none_P5556105721700978146at_nat )
     => ( ( some_P7363390416028606310at_nat @ ( the_Pr8591224930841456533at_nat @ Option ) )
        = Option ) ) ).

% option.collapse
thf(fact_72_option_Ocollapse,axiom,
    ! [Option: option_nat] :
      ( ( Option != none_nat )
     => ( ( some_nat @ ( the_nat @ Option ) )
        = Option ) ) ).

% option.collapse
thf(fact_73_option_Ocollapse,axiom,
    ! [Option: option_num] :
      ( ( Option != none_num )
     => ( ( some_num @ ( the_num @ Option ) )
        = Option ) ) ).

% option.collapse
thf(fact_74_dsimp,axiom,
    ( ( vEBT_vebt_delete @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ mi @ ma ) ) @ deg @ treeList @ summary ) @ xa )
    = ( vEBT_Node
      @ ( some_P7363390416028606310at_nat
        @ ( product_Pair_nat_nat @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx )
          @ ( if_nat
            @ ( ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx )
              = ma )
            @ ( if_nat
              @ ( ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ summary @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) )
                = none_nat )
              @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx )
              @ ( plus_plus_nat @ ( times_times_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ summary @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ ( list_u1324408373059187874T_VEBT @ treeList @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ treeList @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) @ ( vEBT_VEBT_low @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ summary @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) ) ) ) ) ) ) )
            @ ma ) ) )
      @ deg
      @ ( list_u1324408373059187874T_VEBT @ treeList @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ treeList @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) @ ( vEBT_VEBT_low @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) )
      @ ( vEBT_vebt_delete @ summary @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) ) ) ).

% dsimp
thf(fact_75_distrib__left__numeral,axiom,
    ! [V: num,B: complex,C: complex] :
      ( ( times_times_complex @ ( numera6690914467698888265omplex @ V ) @ ( plus_plus_complex @ B @ C ) )
      = ( plus_plus_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ V ) @ B ) @ ( times_times_complex @ ( numera6690914467698888265omplex @ V ) @ C ) ) ) ).

% distrib_left_numeral
thf(fact_76_distrib__left__numeral,axiom,
    ! [V: num,B: real,C: real] :
      ( ( times_times_real @ ( numeral_numeral_real @ V ) @ ( plus_plus_real @ B @ C ) )
      = ( plus_plus_real @ ( times_times_real @ ( numeral_numeral_real @ V ) @ B ) @ ( times_times_real @ ( numeral_numeral_real @ V ) @ C ) ) ) ).

% distrib_left_numeral
thf(fact_77_distrib__left__numeral,axiom,
    ! [V: num,B: rat,C: rat] :
      ( ( times_times_rat @ ( numeral_numeral_rat @ V ) @ ( plus_plus_rat @ B @ C ) )
      = ( plus_plus_rat @ ( times_times_rat @ ( numeral_numeral_rat @ V ) @ B ) @ ( times_times_rat @ ( numeral_numeral_rat @ V ) @ C ) ) ) ).

% distrib_left_numeral
thf(fact_78_distrib__left__numeral,axiom,
    ! [V: num,B: nat,C: nat] :
      ( ( times_times_nat @ ( numeral_numeral_nat @ V ) @ ( plus_plus_nat @ B @ C ) )
      = ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ V ) @ B ) @ ( times_times_nat @ ( numeral_numeral_nat @ V ) @ C ) ) ) ).

% distrib_left_numeral
thf(fact_79_distrib__left__numeral,axiom,
    ! [V: num,B: int,C: int] :
      ( ( times_times_int @ ( numeral_numeral_int @ V ) @ ( plus_plus_int @ B @ C ) )
      = ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ V ) @ B ) @ ( times_times_int @ ( numeral_numeral_int @ V ) @ C ) ) ) ).

% distrib_left_numeral
thf(fact_80_distrib__right__numeral,axiom,
    ! [A: complex,B: complex,V: num] :
      ( ( times_times_complex @ ( plus_plus_complex @ A @ B ) @ ( numera6690914467698888265omplex @ V ) )
      = ( plus_plus_complex @ ( times_times_complex @ A @ ( numera6690914467698888265omplex @ V ) ) @ ( times_times_complex @ B @ ( numera6690914467698888265omplex @ V ) ) ) ) ).

% distrib_right_numeral
thf(fact_81_distrib__right__numeral,axiom,
    ! [A: real,B: real,V: num] :
      ( ( times_times_real @ ( plus_plus_real @ A @ B ) @ ( numeral_numeral_real @ V ) )
      = ( plus_plus_real @ ( times_times_real @ A @ ( numeral_numeral_real @ V ) ) @ ( times_times_real @ B @ ( numeral_numeral_real @ V ) ) ) ) ).

% distrib_right_numeral
thf(fact_82_distrib__right__numeral,axiom,
    ! [A: rat,B: rat,V: num] :
      ( ( times_times_rat @ ( plus_plus_rat @ A @ B ) @ ( numeral_numeral_rat @ V ) )
      = ( plus_plus_rat @ ( times_times_rat @ A @ ( numeral_numeral_rat @ V ) ) @ ( times_times_rat @ B @ ( numeral_numeral_rat @ V ) ) ) ) ).

% distrib_right_numeral
thf(fact_83_distrib__right__numeral,axiom,
    ! [A: nat,B: nat,V: num] :
      ( ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ ( numeral_numeral_nat @ V ) )
      = ( plus_plus_nat @ ( times_times_nat @ A @ ( numeral_numeral_nat @ V ) ) @ ( times_times_nat @ B @ ( numeral_numeral_nat @ V ) ) ) ) ).

% distrib_right_numeral
thf(fact_84_distrib__right__numeral,axiom,
    ! [A: int,B: int,V: num] :
      ( ( times_times_int @ ( plus_plus_int @ A @ B ) @ ( numeral_numeral_int @ V ) )
      = ( plus_plus_int @ ( times_times_int @ A @ ( numeral_numeral_int @ V ) ) @ ( times_times_int @ B @ ( numeral_numeral_int @ V ) ) ) ) ).

% distrib_right_numeral
thf(fact_85_power2__sum,axiom,
    ! [X: complex,Y: complex] :
      ( ( power_power_complex @ ( plus_plus_complex @ X @ Y ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( plus_plus_complex @ ( plus_plus_complex @ ( power_power_complex @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_complex @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ X ) @ Y ) ) ) ).

% power2_sum
thf(fact_86_power2__sum,axiom,
    ! [X: real,Y: real] :
      ( ( power_power_real @ ( plus_plus_real @ X @ Y ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( plus_plus_real @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X ) @ Y ) ) ) ).

% power2_sum
thf(fact_87_power2__sum,axiom,
    ! [X: rat,Y: rat] :
      ( ( power_power_rat @ ( plus_plus_rat @ X @ Y ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( plus_plus_rat @ ( plus_plus_rat @ ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_rat @ ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ X ) @ Y ) ) ) ).

% power2_sum
thf(fact_88_power2__sum,axiom,
    ! [X: nat,Y: nat] :
      ( ( power_power_nat @ ( plus_plus_nat @ X @ Y ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( plus_plus_nat @ ( plus_plus_nat @ ( power_power_nat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_nat @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ X ) @ Y ) ) ) ).

% power2_sum
thf(fact_89_power2__sum,axiom,
    ! [X: int,Y: int] :
      ( ( power_power_int @ ( plus_plus_int @ X @ Y ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( plus_plus_int @ ( plus_plus_int @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ X ) @ Y ) ) ) ).

% power2_sum
thf(fact_90_False,axiom,
    xa = mi ).

% False
thf(fact_91_power__shift,axiom,
    ! [X: nat,Y: nat,Z: nat] :
      ( ( ( power_power_nat @ X @ Y )
        = Z )
      = ( ( vEBT_VEBT_power @ ( some_nat @ X ) @ ( some_nat @ Y ) )
        = ( some_nat @ Z ) ) ) ).

% power_shift
thf(fact_92_maxbmo,axiom,
    ! [T: vEBT_VEBT,X: nat] :
      ( ( ( vEBT_vebt_maxt @ T )
        = ( some_nat @ X ) )
     => ( vEBT_V8194947554948674370ptions @ T @ X ) ) ).

% maxbmo
thf(fact_93_not__min__Null__member,axiom,
    ! [T: vEBT_VEBT] :
      ( ~ ( vEBT_VEBT_minNull @ T )
     => ? [X_1: nat] : ( vEBT_V8194947554948674370ptions @ T @ X_1 ) ) ).

% not_min_Null_member
thf(fact_94_min__in__set__def,axiom,
    ( vEBT_VEBT_min_in_set
    = ( ^ [Xs: set_nat,X3: nat] :
          ( ( member_nat @ X3 @ Xs )
          & ! [Y3: nat] :
              ( ( member_nat @ Y3 @ Xs )
             => ( ord_less_eq_nat @ X3 @ Y3 ) ) ) ) ) ).

% min_in_set_def
thf(fact_95_max__in__set__def,axiom,
    ( vEBT_VEBT_max_in_set
    = ( ^ [Xs: set_nat,X3: nat] :
          ( ( member_nat @ X3 @ Xs )
          & ! [Y3: nat] :
              ( ( member_nat @ Y3 @ Xs )
             => ( ord_less_eq_nat @ Y3 @ X3 ) ) ) ) ) ).

% max_in_set_def
thf(fact_96__C5_C,axiom,
    ( ( mi = ma )
   => ! [X2: vEBT_VEBT] :
        ( ( member_VEBT_VEBT @ X2 @ ( set_VEBT_VEBT2 @ treeList ) )
       => ~ ? [X_12: nat] : ( vEBT_V8194947554948674370ptions @ X2 @ X_12 ) ) ) ).

% "5"
thf(fact_97_inthall,axiom,
    ! [Xs2: list_complex,P: complex > $o,N2: nat] :
      ( ! [X5: complex] :
          ( ( member_complex @ X5 @ ( set_complex2 @ Xs2 ) )
         => ( P @ X5 ) )
     => ( ( ord_less_nat @ N2 @ ( size_s3451745648224563538omplex @ Xs2 ) )
       => ( P @ ( nth_complex @ Xs2 @ N2 ) ) ) ) ).

% inthall
thf(fact_98_inthall,axiom,
    ! [Xs2: list_real,P: real > $o,N2: nat] :
      ( ! [X5: real] :
          ( ( member_real @ X5 @ ( set_real2 @ Xs2 ) )
         => ( P @ X5 ) )
     => ( ( ord_less_nat @ N2 @ ( size_size_list_real @ Xs2 ) )
       => ( P @ ( nth_real @ Xs2 @ N2 ) ) ) ) ).

% inthall
thf(fact_99_inthall,axiom,
    ! [Xs2: list_set_nat,P: set_nat > $o,N2: nat] :
      ( ! [X5: set_nat] :
          ( ( member_set_nat @ X5 @ ( set_set_nat2 @ Xs2 ) )
         => ( P @ X5 ) )
     => ( ( ord_less_nat @ N2 @ ( size_s3254054031482475050et_nat @ Xs2 ) )
       => ( P @ ( nth_set_nat @ Xs2 @ N2 ) ) ) ) ).

% inthall
thf(fact_100_inthall,axiom,
    ! [Xs2: list_nat,P: nat > $o,N2: nat] :
      ( ! [X5: nat] :
          ( ( member_nat @ X5 @ ( set_nat2 @ Xs2 ) )
         => ( P @ X5 ) )
     => ( ( ord_less_nat @ N2 @ ( size_size_list_nat @ Xs2 ) )
       => ( P @ ( nth_nat @ Xs2 @ N2 ) ) ) ) ).

% inthall
thf(fact_101_inthall,axiom,
    ! [Xs2: list_VEBT_VEBT,P: vEBT_VEBT > $o,N2: nat] :
      ( ! [X5: vEBT_VEBT] :
          ( ( member_VEBT_VEBT @ X5 @ ( set_VEBT_VEBT2 @ Xs2 ) )
         => ( P @ X5 ) )
     => ( ( ord_less_nat @ N2 @ ( size_s6755466524823107622T_VEBT @ Xs2 ) )
       => ( P @ ( nth_VEBT_VEBT @ Xs2 @ N2 ) ) ) ) ).

% inthall
thf(fact_102_inthall,axiom,
    ! [Xs2: list_o,P: $o > $o,N2: nat] :
      ( ! [X5: $o] :
          ( ( member_o @ X5 @ ( set_o2 @ Xs2 ) )
         => ( P @ X5 ) )
     => ( ( ord_less_nat @ N2 @ ( size_size_list_o @ Xs2 ) )
       => ( P @ ( nth_o @ Xs2 @ N2 ) ) ) ) ).

% inthall
thf(fact_103_inthall,axiom,
    ! [Xs2: list_int,P: int > $o,N2: nat] :
      ( ! [X5: int] :
          ( ( member_int @ X5 @ ( set_int2 @ Xs2 ) )
         => ( P @ X5 ) )
     => ( ( ord_less_nat @ N2 @ ( size_size_list_int @ Xs2 ) )
       => ( P @ ( nth_int @ Xs2 @ N2 ) ) ) ) ).

% inthall
thf(fact_104_xmi,axiom,
    xa = mi ).

% xmi
thf(fact_105_numeral__eq__iff,axiom,
    ! [M: num,N2: num] :
      ( ( ( numera6690914467698888265omplex @ M )
        = ( numera6690914467698888265omplex @ N2 ) )
      = ( M = N2 ) ) ).

% numeral_eq_iff
thf(fact_106_numeral__eq__iff,axiom,
    ! [M: num,N2: num] :
      ( ( ( numeral_numeral_real @ M )
        = ( numeral_numeral_real @ N2 ) )
      = ( M = N2 ) ) ).

% numeral_eq_iff
thf(fact_107_numeral__eq__iff,axiom,
    ! [M: num,N2: num] :
      ( ( ( numeral_numeral_rat @ M )
        = ( numeral_numeral_rat @ N2 ) )
      = ( M = N2 ) ) ).

% numeral_eq_iff
thf(fact_108_numeral__eq__iff,axiom,
    ! [M: num,N2: num] :
      ( ( ( numeral_numeral_nat @ M )
        = ( numeral_numeral_nat @ N2 ) )
      = ( M = N2 ) ) ).

% numeral_eq_iff
thf(fact_109_numeral__eq__iff,axiom,
    ! [M: num,N2: num] :
      ( ( ( numeral_numeral_int @ M )
        = ( numeral_numeral_int @ N2 ) )
      = ( M = N2 ) ) ).

% numeral_eq_iff
thf(fact_110_option_Oinject,axiom,
    ! [X22: product_prod_nat_nat,Y22: product_prod_nat_nat] :
      ( ( ( some_P7363390416028606310at_nat @ X22 )
        = ( some_P7363390416028606310at_nat @ Y22 ) )
      = ( X22 = Y22 ) ) ).

% option.inject
thf(fact_111_option_Oinject,axiom,
    ! [X22: nat,Y22: nat] :
      ( ( ( some_nat @ X22 )
        = ( some_nat @ Y22 ) )
      = ( X22 = Y22 ) ) ).

% option.inject
thf(fact_112_option_Oinject,axiom,
    ! [X22: num,Y22: num] :
      ( ( ( some_num @ X22 )
        = ( some_num @ Y22 ) )
      = ( X22 = Y22 ) ) ).

% option.inject
thf(fact_113__092_060open_062x_A_092_060noteq_062_Ami_A_092_060or_062_Ax_A_092_060noteq_062_Ama_092_060close_062,axiom,
    ( ( xa != mi )
    | ( xa != ma ) ) ).

% \<open>x \<noteq> mi \<or> x \<noteq> ma\<close>
thf(fact_114_inrg,axiom,
    ( ( ord_less_eq_nat @ mi @ xa )
    & ( ord_less_eq_nat @ xa @ ma ) ) ).

% inrg
thf(fact_115_numeral__le__iff,axiom,
    ! [M: num,N2: num] :
      ( ( ord_less_eq_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N2 ) )
      = ( ord_less_eq_num @ M @ N2 ) ) ).

% numeral_le_iff
thf(fact_116_numeral__le__iff,axiom,
    ! [M: num,N2: num] :
      ( ( ord_less_eq_rat @ ( numeral_numeral_rat @ M ) @ ( numeral_numeral_rat @ N2 ) )
      = ( ord_less_eq_num @ M @ N2 ) ) ).

% numeral_le_iff
thf(fact_117_numeral__le__iff,axiom,
    ! [M: num,N2: num] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N2 ) )
      = ( ord_less_eq_num @ M @ N2 ) ) ).

% numeral_le_iff
thf(fact_118_numeral__le__iff,axiom,
    ! [M: num,N2: num] :
      ( ( ord_less_eq_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N2 ) )
      = ( ord_less_eq_num @ M @ N2 ) ) ).

% numeral_le_iff
thf(fact_119_numeral__less__iff,axiom,
    ! [M: num,N2: num] :
      ( ( ord_less_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N2 ) )
      = ( ord_less_num @ M @ N2 ) ) ).

% numeral_less_iff
thf(fact_120_numeral__less__iff,axiom,
    ! [M: num,N2: num] :
      ( ( ord_less_rat @ ( numeral_numeral_rat @ M ) @ ( numeral_numeral_rat @ N2 ) )
      = ( ord_less_num @ M @ N2 ) ) ).

% numeral_less_iff
thf(fact_121_numeral__less__iff,axiom,
    ! [M: num,N2: num] :
      ( ( ord_less_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N2 ) )
      = ( ord_less_num @ M @ N2 ) ) ).

% numeral_less_iff
thf(fact_122_numeral__less__iff,axiom,
    ! [M: num,N2: num] :
      ( ( ord_less_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N2 ) )
      = ( ord_less_num @ M @ N2 ) ) ).

% numeral_less_iff
thf(fact_123_mult__numeral__left__semiring__numeral,axiom,
    ! [V: num,W: num,Z: complex] :
      ( ( times_times_complex @ ( numera6690914467698888265omplex @ V ) @ ( times_times_complex @ ( numera6690914467698888265omplex @ W ) @ Z ) )
      = ( times_times_complex @ ( numera6690914467698888265omplex @ ( times_times_num @ V @ W ) ) @ Z ) ) ).

% mult_numeral_left_semiring_numeral
thf(fact_124_mult__numeral__left__semiring__numeral,axiom,
    ! [V: num,W: num,Z: real] :
      ( ( times_times_real @ ( numeral_numeral_real @ V ) @ ( times_times_real @ ( numeral_numeral_real @ W ) @ Z ) )
      = ( times_times_real @ ( numeral_numeral_real @ ( times_times_num @ V @ W ) ) @ Z ) ) ).

% mult_numeral_left_semiring_numeral
thf(fact_125_mult__numeral__left__semiring__numeral,axiom,
    ! [V: num,W: num,Z: rat] :
      ( ( times_times_rat @ ( numeral_numeral_rat @ V ) @ ( times_times_rat @ ( numeral_numeral_rat @ W ) @ Z ) )
      = ( times_times_rat @ ( numeral_numeral_rat @ ( times_times_num @ V @ W ) ) @ Z ) ) ).

% mult_numeral_left_semiring_numeral
thf(fact_126_mult__numeral__left__semiring__numeral,axiom,
    ! [V: num,W: num,Z: nat] :
      ( ( times_times_nat @ ( numeral_numeral_nat @ V ) @ ( times_times_nat @ ( numeral_numeral_nat @ W ) @ Z ) )
      = ( times_times_nat @ ( numeral_numeral_nat @ ( times_times_num @ V @ W ) ) @ Z ) ) ).

% mult_numeral_left_semiring_numeral
thf(fact_127_mult__numeral__left__semiring__numeral,axiom,
    ! [V: num,W: num,Z: int] :
      ( ( times_times_int @ ( numeral_numeral_int @ V ) @ ( times_times_int @ ( numeral_numeral_int @ W ) @ Z ) )
      = ( times_times_int @ ( numeral_numeral_int @ ( times_times_num @ V @ W ) ) @ Z ) ) ).

% mult_numeral_left_semiring_numeral
thf(fact_128_numeral__times__numeral,axiom,
    ! [M: num,N2: num] :
      ( ( times_times_complex @ ( numera6690914467698888265omplex @ M ) @ ( numera6690914467698888265omplex @ N2 ) )
      = ( numera6690914467698888265omplex @ ( times_times_num @ M @ N2 ) ) ) ).

% numeral_times_numeral
thf(fact_129_numeral__times__numeral,axiom,
    ! [M: num,N2: num] :
      ( ( times_times_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N2 ) )
      = ( numeral_numeral_real @ ( times_times_num @ M @ N2 ) ) ) ).

% numeral_times_numeral
thf(fact_130_numeral__times__numeral,axiom,
    ! [M: num,N2: num] :
      ( ( times_times_rat @ ( numeral_numeral_rat @ M ) @ ( numeral_numeral_rat @ N2 ) )
      = ( numeral_numeral_rat @ ( times_times_num @ M @ N2 ) ) ) ).

% numeral_times_numeral
thf(fact_131_numeral__times__numeral,axiom,
    ! [M: num,N2: num] :
      ( ( times_times_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N2 ) )
      = ( numeral_numeral_nat @ ( times_times_num @ M @ N2 ) ) ) ).

% numeral_times_numeral
thf(fact_132_numeral__times__numeral,axiom,
    ! [M: num,N2: num] :
      ( ( times_times_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N2 ) )
      = ( numeral_numeral_int @ ( times_times_num @ M @ N2 ) ) ) ).

% numeral_times_numeral
thf(fact_133_add__numeral__left,axiom,
    ! [V: num,W: num,Z: complex] :
      ( ( plus_plus_complex @ ( numera6690914467698888265omplex @ V ) @ ( plus_plus_complex @ ( numera6690914467698888265omplex @ W ) @ Z ) )
      = ( plus_plus_complex @ ( numera6690914467698888265omplex @ ( plus_plus_num @ V @ W ) ) @ Z ) ) ).

% add_numeral_left
thf(fact_134_add__numeral__left,axiom,
    ! [V: num,W: num,Z: real] :
      ( ( plus_plus_real @ ( numeral_numeral_real @ V ) @ ( plus_plus_real @ ( numeral_numeral_real @ W ) @ Z ) )
      = ( plus_plus_real @ ( numeral_numeral_real @ ( plus_plus_num @ V @ W ) ) @ Z ) ) ).

% add_numeral_left
thf(fact_135_add__numeral__left,axiom,
    ! [V: num,W: num,Z: rat] :
      ( ( plus_plus_rat @ ( numeral_numeral_rat @ V ) @ ( plus_plus_rat @ ( numeral_numeral_rat @ W ) @ Z ) )
      = ( plus_plus_rat @ ( numeral_numeral_rat @ ( plus_plus_num @ V @ W ) ) @ Z ) ) ).

% add_numeral_left
thf(fact_136_add__numeral__left,axiom,
    ! [V: num,W: num,Z: nat] :
      ( ( plus_plus_nat @ ( numeral_numeral_nat @ V ) @ ( plus_plus_nat @ ( numeral_numeral_nat @ W ) @ Z ) )
      = ( plus_plus_nat @ ( numeral_numeral_nat @ ( plus_plus_num @ V @ W ) ) @ Z ) ) ).

% add_numeral_left
thf(fact_137_add__numeral__left,axiom,
    ! [V: num,W: num,Z: int] :
      ( ( plus_plus_int @ ( numeral_numeral_int @ V ) @ ( plus_plus_int @ ( numeral_numeral_int @ W ) @ Z ) )
      = ( plus_plus_int @ ( numeral_numeral_int @ ( plus_plus_num @ V @ W ) ) @ Z ) ) ).

% add_numeral_left
thf(fact_138_numeral__plus__numeral,axiom,
    ! [M: num,N2: num] :
      ( ( plus_plus_complex @ ( numera6690914467698888265omplex @ M ) @ ( numera6690914467698888265omplex @ N2 ) )
      = ( numera6690914467698888265omplex @ ( plus_plus_num @ M @ N2 ) ) ) ).

% numeral_plus_numeral
thf(fact_139_numeral__plus__numeral,axiom,
    ! [M: num,N2: num] :
      ( ( plus_plus_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N2 ) )
      = ( numeral_numeral_real @ ( plus_plus_num @ M @ N2 ) ) ) ).

% numeral_plus_numeral
thf(fact_140_numeral__plus__numeral,axiom,
    ! [M: num,N2: num] :
      ( ( plus_plus_rat @ ( numeral_numeral_rat @ M ) @ ( numeral_numeral_rat @ N2 ) )
      = ( numeral_numeral_rat @ ( plus_plus_num @ M @ N2 ) ) ) ).

% numeral_plus_numeral
thf(fact_141_numeral__plus__numeral,axiom,
    ! [M: num,N2: num] :
      ( ( plus_plus_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N2 ) )
      = ( numeral_numeral_nat @ ( plus_plus_num @ M @ N2 ) ) ) ).

% numeral_plus_numeral
thf(fact_142_numeral__plus__numeral,axiom,
    ! [M: num,N2: num] :
      ( ( plus_plus_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N2 ) )
      = ( numeral_numeral_int @ ( plus_plus_num @ M @ N2 ) ) ) ).

% numeral_plus_numeral
thf(fact_143_num__double,axiom,
    ! [N2: num] :
      ( ( times_times_num @ ( bit0 @ one ) @ N2 )
      = ( bit0 @ N2 ) ) ).

% num_double
thf(fact_144_del__single__cont,axiom,
    ! [X: nat,Mi: nat,Ma: nat,Deg: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT] :
      ( ( ( X = Mi )
        & ( X = Ma ) )
     => ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
       => ( ( vEBT_vebt_delete @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X )
          = ( vEBT_Node @ none_P5556105721700978146at_nat @ Deg @ TreeList @ Summary ) ) ) ) ).

% del_single_cont
thf(fact_145_power__mult__numeral,axiom,
    ! [A: nat,M: num,N2: num] :
      ( ( power_power_nat @ ( power_power_nat @ A @ ( numeral_numeral_nat @ M ) ) @ ( numeral_numeral_nat @ N2 ) )
      = ( power_power_nat @ A @ ( numeral_numeral_nat @ ( times_times_num @ M @ N2 ) ) ) ) ).

% power_mult_numeral
thf(fact_146_power__mult__numeral,axiom,
    ! [A: real,M: num,N2: num] :
      ( ( power_power_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ M ) ) @ ( numeral_numeral_nat @ N2 ) )
      = ( power_power_real @ A @ ( numeral_numeral_nat @ ( times_times_num @ M @ N2 ) ) ) ) ).

% power_mult_numeral
thf(fact_147_power__mult__numeral,axiom,
    ! [A: int,M: num,N2: num] :
      ( ( power_power_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ M ) ) @ ( numeral_numeral_nat @ N2 ) )
      = ( power_power_int @ A @ ( numeral_numeral_nat @ ( times_times_num @ M @ N2 ) ) ) ) ).

% power_mult_numeral
thf(fact_148_power__mult__numeral,axiom,
    ! [A: complex,M: num,N2: num] :
      ( ( power_power_complex @ ( power_power_complex @ A @ ( numeral_numeral_nat @ M ) ) @ ( numeral_numeral_nat @ N2 ) )
      = ( power_power_complex @ A @ ( numeral_numeral_nat @ ( times_times_num @ M @ N2 ) ) ) ) ).

% power_mult_numeral
thf(fact_149_not__Some__eq,axiom,
    ! [X: option4927543243414619207at_nat] :
      ( ( ! [Y3: product_prod_nat_nat] :
            ( X
           != ( some_P7363390416028606310at_nat @ Y3 ) ) )
      = ( X = none_P5556105721700978146at_nat ) ) ).

% not_Some_eq
thf(fact_150_not__Some__eq,axiom,
    ! [X: option_nat] :
      ( ( ! [Y3: nat] :
            ( X
           != ( some_nat @ Y3 ) ) )
      = ( X = none_nat ) ) ).

% not_Some_eq
thf(fact_151_not__Some__eq,axiom,
    ! [X: option_num] :
      ( ( ! [Y3: num] :
            ( X
           != ( some_num @ Y3 ) ) )
      = ( X = none_num ) ) ).

% not_Some_eq
thf(fact_152_not__None__eq,axiom,
    ! [X: option4927543243414619207at_nat] :
      ( ( X != none_P5556105721700978146at_nat )
      = ( ? [Y3: product_prod_nat_nat] :
            ( X
            = ( some_P7363390416028606310at_nat @ Y3 ) ) ) ) ).

% not_None_eq
thf(fact_153_not__None__eq,axiom,
    ! [X: option_nat] :
      ( ( X != none_nat )
      = ( ? [Y3: nat] :
            ( X
            = ( some_nat @ Y3 ) ) ) ) ).

% not_None_eq
thf(fact_154_not__None__eq,axiom,
    ! [X: option_num] :
      ( ( X != none_num )
      = ( ? [Y3: num] :
            ( X
            = ( some_num @ Y3 ) ) ) ) ).

% not_None_eq
thf(fact_155__C7_C,axiom,
    ( ( mi != ma )
   => ! [I: nat] :
        ( ( ord_less_nat @ I @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ m ) )
       => ( ( ( ( vEBT_VEBT_high @ ma @ na )
              = I )
           => ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ treeList @ I ) @ ( vEBT_VEBT_low @ ma @ na ) ) )
          & ! [Y2: nat] :
              ( ( ( ( vEBT_VEBT_high @ Y2 @ na )
                  = I )
                & ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ treeList @ I ) @ ( vEBT_VEBT_low @ Y2 @ na ) ) )
             => ( ( ord_less_nat @ mi @ Y2 )
                & ( ord_less_eq_nat @ Y2 @ ma ) ) ) ) ) ) ).

% "7"
thf(fact_156_lesseq__shift,axiom,
    ( ord_less_eq_nat
    = ( ^ [X3: nat,Y3: nat] : ( vEBT_VEBT_lesseq @ ( some_nat @ X3 ) @ ( some_nat @ Y3 ) ) ) ) ).

% lesseq_shift
thf(fact_157__C6_C,axiom,
    ( ( ord_less_eq_nat @ mi @ ma )
    & ( ord_less_nat @ ma @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ deg ) ) ) ).

% "6"
thf(fact_158_power__add__numeral2,axiom,
    ! [A: complex,M: num,N2: num,B: complex] :
      ( ( times_times_complex @ ( power_power_complex @ A @ ( numeral_numeral_nat @ M ) ) @ ( times_times_complex @ ( power_power_complex @ A @ ( numeral_numeral_nat @ N2 ) ) @ B ) )
      = ( times_times_complex @ ( power_power_complex @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N2 ) ) ) @ B ) ) ).

% power_add_numeral2
thf(fact_159_power__add__numeral2,axiom,
    ! [A: real,M: num,N2: num,B: real] :
      ( ( times_times_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ M ) ) @ ( times_times_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ N2 ) ) @ B ) )
      = ( times_times_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N2 ) ) ) @ B ) ) ).

% power_add_numeral2
thf(fact_160_power__add__numeral2,axiom,
    ! [A: rat,M: num,N2: num,B: rat] :
      ( ( times_times_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ M ) ) @ ( times_times_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ N2 ) ) @ B ) )
      = ( times_times_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N2 ) ) ) @ B ) ) ).

% power_add_numeral2
thf(fact_161_power__add__numeral2,axiom,
    ! [A: nat,M: num,N2: num,B: nat] :
      ( ( times_times_nat @ ( power_power_nat @ A @ ( numeral_numeral_nat @ M ) ) @ ( times_times_nat @ ( power_power_nat @ A @ ( numeral_numeral_nat @ N2 ) ) @ B ) )
      = ( times_times_nat @ ( power_power_nat @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N2 ) ) ) @ B ) ) ).

% power_add_numeral2
thf(fact_162_power__add__numeral2,axiom,
    ! [A: int,M: num,N2: num,B: int] :
      ( ( times_times_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ M ) ) @ ( times_times_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ N2 ) ) @ B ) )
      = ( times_times_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N2 ) ) ) @ B ) ) ).

% power_add_numeral2
thf(fact_163_power__add__numeral,axiom,
    ! [A: complex,M: num,N2: num] :
      ( ( times_times_complex @ ( power_power_complex @ A @ ( numeral_numeral_nat @ M ) ) @ ( power_power_complex @ A @ ( numeral_numeral_nat @ N2 ) ) )
      = ( power_power_complex @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N2 ) ) ) ) ).

% power_add_numeral
thf(fact_164_power__add__numeral,axiom,
    ! [A: real,M: num,N2: num] :
      ( ( times_times_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ M ) ) @ ( power_power_real @ A @ ( numeral_numeral_nat @ N2 ) ) )
      = ( power_power_real @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N2 ) ) ) ) ).

% power_add_numeral
thf(fact_165_power__add__numeral,axiom,
    ! [A: rat,M: num,N2: num] :
      ( ( times_times_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ M ) ) @ ( power_power_rat @ A @ ( numeral_numeral_nat @ N2 ) ) )
      = ( power_power_rat @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N2 ) ) ) ) ).

% power_add_numeral
thf(fact_166_power__add__numeral,axiom,
    ! [A: nat,M: num,N2: num] :
      ( ( times_times_nat @ ( power_power_nat @ A @ ( numeral_numeral_nat @ M ) ) @ ( power_power_nat @ A @ ( numeral_numeral_nat @ N2 ) ) )
      = ( power_power_nat @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N2 ) ) ) ) ).

% power_add_numeral
thf(fact_167_power__add__numeral,axiom,
    ! [A: int,M: num,N2: num] :
      ( ( times_times_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ M ) ) @ ( power_power_int @ A @ ( numeral_numeral_nat @ N2 ) ) )
      = ( power_power_int @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N2 ) ) ) ) ).

% power_add_numeral
thf(fact_168_Suc__numeral,axiom,
    ! [N2: num] :
      ( ( suc @ ( numeral_numeral_nat @ N2 ) )
      = ( numeral_numeral_nat @ ( plus_plus_num @ N2 @ one ) ) ) ).

% Suc_numeral
thf(fact_169__092_060open_062mi_A_092_060noteq_062_Ama_A_092_060and_062_Ax_A_060_A2_A_094_Adeg_092_060close_062,axiom,
    ( ( mi != ma )
    & ( ord_less_nat @ xa @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ deg ) ) ) ).

% \<open>mi \<noteq> ma \<and> x < 2 ^ deg\<close>
thf(fact_170_le__divide__eq__numeral1_I1_J,axiom,
    ! [A: real,B: real,W: num] :
      ( ( ord_less_eq_real @ A @ ( divide_divide_real @ B @ ( numeral_numeral_real @ W ) ) )
      = ( ord_less_eq_real @ ( times_times_real @ A @ ( numeral_numeral_real @ W ) ) @ B ) ) ).

% le_divide_eq_numeral1(1)
thf(fact_171_le__divide__eq__numeral1_I1_J,axiom,
    ! [A: rat,B: rat,W: num] :
      ( ( ord_less_eq_rat @ A @ ( divide_divide_rat @ B @ ( numeral_numeral_rat @ W ) ) )
      = ( ord_less_eq_rat @ ( times_times_rat @ A @ ( numeral_numeral_rat @ W ) ) @ B ) ) ).

% le_divide_eq_numeral1(1)
thf(fact_172_divide__le__eq__numeral1_I1_J,axiom,
    ! [B: real,W: num,A: real] :
      ( ( ord_less_eq_real @ ( divide_divide_real @ B @ ( numeral_numeral_real @ W ) ) @ A )
      = ( ord_less_eq_real @ B @ ( times_times_real @ A @ ( numeral_numeral_real @ W ) ) ) ) ).

% divide_le_eq_numeral1(1)
thf(fact_173_divide__le__eq__numeral1_I1_J,axiom,
    ! [B: rat,W: num,A: rat] :
      ( ( ord_less_eq_rat @ ( divide_divide_rat @ B @ ( numeral_numeral_rat @ W ) ) @ A )
      = ( ord_less_eq_rat @ B @ ( times_times_rat @ A @ ( numeral_numeral_rat @ W ) ) ) ) ).

% divide_le_eq_numeral1(1)
thf(fact_174_less__divide__eq__numeral1_I1_J,axiom,
    ! [A: real,B: real,W: num] :
      ( ( ord_less_real @ A @ ( divide_divide_real @ B @ ( numeral_numeral_real @ W ) ) )
      = ( ord_less_real @ ( times_times_real @ A @ ( numeral_numeral_real @ W ) ) @ B ) ) ).

% less_divide_eq_numeral1(1)
thf(fact_175_less__divide__eq__numeral1_I1_J,axiom,
    ! [A: rat,B: rat,W: num] :
      ( ( ord_less_rat @ A @ ( divide_divide_rat @ B @ ( numeral_numeral_rat @ W ) ) )
      = ( ord_less_rat @ ( times_times_rat @ A @ ( numeral_numeral_rat @ W ) ) @ B ) ) ).

% less_divide_eq_numeral1(1)
thf(fact_176_divide__less__eq__numeral1_I1_J,axiom,
    ! [B: real,W: num,A: real] :
      ( ( ord_less_real @ ( divide_divide_real @ B @ ( numeral_numeral_real @ W ) ) @ A )
      = ( ord_less_real @ B @ ( times_times_real @ A @ ( numeral_numeral_real @ W ) ) ) ) ).

% divide_less_eq_numeral1(1)
thf(fact_177_divide__less__eq__numeral1_I1_J,axiom,
    ! [B: rat,W: num,A: rat] :
      ( ( ord_less_rat @ ( divide_divide_rat @ B @ ( numeral_numeral_rat @ W ) ) @ A )
      = ( ord_less_rat @ B @ ( times_times_rat @ A @ ( numeral_numeral_rat @ W ) ) ) ) ).

% divide_less_eq_numeral1(1)
thf(fact_178__092_060open_062Some_Asummin_A_061_Avebt__mint_Asummary_092_060close_062,axiom,
    ( ( some_nat @ summin )
    = ( vEBT_vebt_mint @ summary ) ) ).

% \<open>Some summin = vebt_mint summary\<close>
thf(fact_179_add__2__eq__Suc_H,axiom,
    ! [N2: nat] :
      ( ( plus_plus_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( suc @ ( suc @ N2 ) ) ) ).

% add_2_eq_Suc'
thf(fact_180_add__2__eq__Suc,axiom,
    ! [N2: nat] :
      ( ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
      = ( suc @ ( suc @ N2 ) ) ) ).

% add_2_eq_Suc
thf(fact_181_yhelper,axiom,
    ! [Y: nat] :
      ( ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ treeList @ ( vEBT_VEBT_high @ Y @ na ) ) @ ( vEBT_VEBT_low @ Y @ na ) )
     => ( ( ord_less_nat @ ( vEBT_VEBT_high @ Y @ na ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ m ) )
       => ( ( ord_less_nat @ mi @ Y )
          & ( ord_less_eq_nat @ Y @ ma )
          & ( ord_less_nat @ ( vEBT_VEBT_low @ Y @ na ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) ) ) ) ).

% yhelper
thf(fact_182__C7b_C,axiom,
    ! [I: nat] :
      ( ( ord_less_nat @ I @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ m ) )
     => ( ( ( ( vEBT_VEBT_high @ ma @ na )
            = I )
         => ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ treeList @ I ) @ ( vEBT_VEBT_low @ ma @ na ) ) )
        & ! [Y2: nat] :
            ( ( ( ( vEBT_VEBT_high @ Y2 @ na )
                = I )
              & ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ treeList @ I ) @ ( vEBT_VEBT_low @ Y2 @ na ) ) )
           => ( ( ord_less_nat @ mi @ Y2 )
              & ( ord_less_eq_nat @ Y2 @ ma ) ) ) ) ) ).

% "7b"
thf(fact_183_div2__Suc__Suc,axiom,
    ! [M: nat] :
      ( ( divide_divide_nat @ ( suc @ ( suc @ M ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( suc @ ( divide_divide_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% div2_Suc_Suc
thf(fact_184_del__x__not__mi__newnode__not__nil,axiom,
    ! [Mi: nat,X: nat,Ma: nat,Deg: nat,H2: nat,L2: nat,Newnode: vEBT_VEBT,TreeList: list_VEBT_VEBT,Newlist: list_VEBT_VEBT,Summary: vEBT_VEBT] :
      ( ( ( ord_less_nat @ Mi @ X )
        & ( ord_less_eq_nat @ X @ Ma ) )
     => ( ( Mi != Ma )
       => ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
         => ( ( ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
              = H2 )
           => ( ( ( vEBT_VEBT_low @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
                = L2 )
             => ( ( Newnode
                  = ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList @ H2 ) @ L2 ) )
               => ( ~ ( vEBT_VEBT_minNull @ Newnode )
                 => ( ( Newlist
                      = ( list_u1324408373059187874T_VEBT @ TreeList @ H2 @ Newnode ) )
                   => ( ( ord_less_nat @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) )
                     => ( ( vEBT_vebt_delete @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X )
                        = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ ( if_nat @ ( X = Ma ) @ ( plus_plus_nat @ ( times_times_nat @ H2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ Newlist @ H2 ) ) ) ) @ Ma ) ) ) @ Deg @ Newlist @ Summary ) ) ) ) ) ) ) ) ) ) ) ).

% del_x_not_mi_newnode_not_nil
thf(fact_185_del__x__not__mia,axiom,
    ! [Mi: nat,X: nat,Ma: nat,Deg: nat,H2: nat,L2: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT] :
      ( ( ( ord_less_nat @ Mi @ X )
        & ( ord_less_eq_nat @ X @ Ma ) )
     => ( ( Mi != Ma )
       => ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
         => ( ( ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
              = H2 )
           => ( ( ( vEBT_VEBT_low @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
                = L2 )
             => ( ( ord_less_nat @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) )
               => ( ( vEBT_vebt_delete @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X )
                  = ( if_VEBT_VEBT @ ( vEBT_VEBT_minNull @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList @ H2 ) @ L2 ) )
                    @ ( vEBT_Node
                      @ ( some_P7363390416028606310at_nat
                        @ ( product_Pair_nat_nat @ Mi
                          @ ( if_nat @ ( X = Ma )
                            @ ( if_nat
                              @ ( ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ H2 ) )
                                = none_nat )
                              @ Mi
                              @ ( plus_plus_nat @ ( times_times_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ H2 ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ ( list_u1324408373059187874T_VEBT @ TreeList @ H2 @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList @ H2 ) @ L2 ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ H2 ) ) ) ) ) ) ) )
                            @ Ma ) ) )
                      @ Deg
                      @ ( list_u1324408373059187874T_VEBT @ TreeList @ H2 @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList @ H2 ) @ L2 ) )
                      @ ( vEBT_vebt_delete @ Summary @ H2 ) )
                    @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ ( if_nat @ ( X = Ma ) @ ( plus_plus_nat @ ( times_times_nat @ H2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ ( list_u1324408373059187874T_VEBT @ TreeList @ H2 @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList @ H2 ) @ L2 ) ) @ H2 ) ) ) ) @ Ma ) ) ) @ Deg @ ( list_u1324408373059187874T_VEBT @ TreeList @ H2 @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList @ H2 ) @ L2 ) ) @ Summary ) ) ) ) ) ) ) ) ) ).

% del_x_not_mia
thf(fact_186_del__x__not__mi__new__node__nil,axiom,
    ! [Mi: nat,X: nat,Ma: nat,Deg: nat,H2: nat,L2: nat,Newnode: vEBT_VEBT,TreeList: list_VEBT_VEBT,Sn: vEBT_VEBT,Summary: vEBT_VEBT,Newlist: list_VEBT_VEBT] :
      ( ( ( ord_less_nat @ Mi @ X )
        & ( ord_less_eq_nat @ X @ Ma ) )
     => ( ( Mi != Ma )
       => ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
         => ( ( ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
              = H2 )
           => ( ( ( vEBT_VEBT_low @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
                = L2 )
             => ( ( Newnode
                  = ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList @ H2 ) @ L2 ) )
               => ( ( vEBT_VEBT_minNull @ Newnode )
                 => ( ( Sn
                      = ( vEBT_vebt_delete @ Summary @ H2 ) )
                   => ( ( Newlist
                        = ( list_u1324408373059187874T_VEBT @ TreeList @ H2 @ Newnode ) )
                     => ( ( ord_less_nat @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) )
                       => ( ( vEBT_vebt_delete @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X )
                          = ( vEBT_Node
                            @ ( some_P7363390416028606310at_nat
                              @ ( product_Pair_nat_nat @ Mi
                                @ ( if_nat @ ( X = Ma )
                                  @ ( if_nat
                                    @ ( ( vEBT_vebt_maxt @ Sn )
                                      = none_nat )
                                    @ Mi
                                    @ ( plus_plus_nat @ ( times_times_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ Sn ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ Newlist @ ( the_nat @ ( vEBT_vebt_maxt @ Sn ) ) ) ) ) ) )
                                  @ Ma ) ) )
                            @ Deg
                            @ Newlist
                            @ Sn ) ) ) ) ) ) ) ) ) ) ) ) ).

% del_x_not_mi_new_node_nil
thf(fact_187_del__x__not__mi,axiom,
    ! [Mi: nat,X: nat,Ma: nat,Deg: nat,H2: nat,L2: nat,Newnode: vEBT_VEBT,TreeList: list_VEBT_VEBT,Newlist: list_VEBT_VEBT,Summary: vEBT_VEBT] :
      ( ( ( ord_less_nat @ Mi @ X )
        & ( ord_less_eq_nat @ X @ Ma ) )
     => ( ( Mi != Ma )
       => ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
         => ( ( ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
              = H2 )
           => ( ( ( vEBT_VEBT_low @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
                = L2 )
             => ( ( Newnode
                  = ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList @ H2 ) @ L2 ) )
               => ( ( Newlist
                    = ( list_u1324408373059187874T_VEBT @ TreeList @ H2 @ Newnode ) )
                 => ( ( ord_less_nat @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) )
                   => ( ( ( vEBT_VEBT_minNull @ Newnode )
                       => ( ( vEBT_vebt_delete @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X )
                          = ( vEBT_Node
                            @ ( some_P7363390416028606310at_nat
                              @ ( product_Pair_nat_nat @ Mi
                                @ ( if_nat @ ( X = Ma )
                                  @ ( if_nat
                                    @ ( ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ H2 ) )
                                      = none_nat )
                                    @ Mi
                                    @ ( plus_plus_nat @ ( times_times_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ H2 ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ Newlist @ ( the_nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ H2 ) ) ) ) ) ) ) )
                                  @ Ma ) ) )
                            @ Deg
                            @ Newlist
                            @ ( vEBT_vebt_delete @ Summary @ H2 ) ) ) )
                      & ( ~ ( vEBT_VEBT_minNull @ Newnode )
                       => ( ( vEBT_vebt_delete @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X )
                          = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ ( if_nat @ ( X = Ma ) @ ( plus_plus_nat @ ( times_times_nat @ H2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ Newlist @ H2 ) ) ) ) @ Ma ) ) ) @ Deg @ Newlist @ Summary ) ) ) ) ) ) ) ) ) ) ) ) ).

% del_x_not_mi
thf(fact_188__092_060open_062Some_Alx_A_061_Avebt__mint_A_ItreeList_A_B_Asummin_J_092_060close_062,axiom,
    ( ( some_nat @ lx )
    = ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ treeList @ summin ) ) ) ).

% \<open>Some lx = vebt_mint (treeList ! summin)\<close>
thf(fact_189_add__One__commute,axiom,
    ! [N2: num] :
      ( ( plus_plus_num @ one @ N2 )
      = ( plus_plus_num @ N2 @ one ) ) ).

% add_One_commute
thf(fact_190_Suc__div__le__mono,axiom,
    ! [M: nat,N2: nat] : ( ord_less_eq_nat @ ( divide_divide_nat @ M @ N2 ) @ ( divide_divide_nat @ ( suc @ M ) @ N2 ) ) ).

% Suc_div_le_mono
thf(fact_191_div__mult2__numeral__eq,axiom,
    ! [A: nat,K: num,L2: num] :
      ( ( divide_divide_nat @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ K ) ) @ ( numeral_numeral_nat @ L2 ) )
      = ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( times_times_num @ K @ L2 ) ) ) ) ).

% div_mult2_numeral_eq
thf(fact_192_div__mult2__numeral__eq,axiom,
    ! [A: int,K: num,L2: num] :
      ( ( divide_divide_int @ ( divide_divide_int @ A @ ( numeral_numeral_int @ K ) ) @ ( numeral_numeral_int @ L2 ) )
      = ( divide_divide_int @ A @ ( numeral_numeral_int @ ( times_times_num @ K @ L2 ) ) ) ) ).

% div_mult2_numeral_eq
thf(fact_193_Suc__nat__number__of__add,axiom,
    ! [V: num,N2: nat] :
      ( ( suc @ ( plus_plus_nat @ ( numeral_numeral_nat @ V ) @ N2 ) )
      = ( plus_plus_nat @ ( numeral_numeral_nat @ ( plus_plus_num @ V @ one ) ) @ N2 ) ) ).

% Suc_nat_number_of_add
thf(fact_194_div__le__dividend,axiom,
    ! [M: nat,N2: nat] : ( ord_less_eq_nat @ ( divide_divide_nat @ M @ N2 ) @ M ) ).

% div_le_dividend
thf(fact_195_div__le__mono,axiom,
    ! [M: nat,N2: nat,K: nat] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ord_less_eq_nat @ ( divide_divide_nat @ M @ K ) @ ( divide_divide_nat @ N2 @ K ) ) ) ).

% div_le_mono
thf(fact_196_div__nat__eqI,axiom,
    ! [N2: nat,Q2: nat,M: nat] :
      ( ( ord_less_eq_nat @ ( times_times_nat @ N2 @ Q2 ) @ M )
     => ( ( ord_less_nat @ M @ ( times_times_nat @ N2 @ ( suc @ Q2 ) ) )
       => ( ( divide_divide_nat @ M @ N2 )
          = Q2 ) ) ) ).

% div_nat_eqI
thf(fact_197_is__num__normalize_I1_J,axiom,
    ! [A: real,B: real,C: real] :
      ( ( plus_plus_real @ ( plus_plus_real @ A @ B ) @ C )
      = ( plus_plus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).

% is_num_normalize(1)
thf(fact_198_is__num__normalize_I1_J,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( plus_plus_rat @ ( plus_plus_rat @ A @ B ) @ C )
      = ( plus_plus_rat @ A @ ( plus_plus_rat @ B @ C ) ) ) ).

% is_num_normalize(1)
thf(fact_199_is__num__normalize_I1_J,axiom,
    ! [A: int,B: int,C: int] :
      ( ( plus_plus_int @ ( plus_plus_int @ A @ B ) @ C )
      = ( plus_plus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).

% is_num_normalize(1)
thf(fact_200_power__Suc2,axiom,
    ! [A: complex,N2: nat] :
      ( ( power_power_complex @ A @ ( suc @ N2 ) )
      = ( times_times_complex @ ( power_power_complex @ A @ N2 ) @ A ) ) ).

% power_Suc2
thf(fact_201_power__Suc2,axiom,
    ! [A: real,N2: nat] :
      ( ( power_power_real @ A @ ( suc @ N2 ) )
      = ( times_times_real @ ( power_power_real @ A @ N2 ) @ A ) ) ).

% power_Suc2
thf(fact_202_power__Suc2,axiom,
    ! [A: rat,N2: nat] :
      ( ( power_power_rat @ A @ ( suc @ N2 ) )
      = ( times_times_rat @ ( power_power_rat @ A @ N2 ) @ A ) ) ).

% power_Suc2
thf(fact_203_power__Suc2,axiom,
    ! [A: nat,N2: nat] :
      ( ( power_power_nat @ A @ ( suc @ N2 ) )
      = ( times_times_nat @ ( power_power_nat @ A @ N2 ) @ A ) ) ).

% power_Suc2
thf(fact_204_power__Suc2,axiom,
    ! [A: int,N2: nat] :
      ( ( power_power_int @ A @ ( suc @ N2 ) )
      = ( times_times_int @ ( power_power_int @ A @ N2 ) @ A ) ) ).

% power_Suc2
thf(fact_205_power__Suc,axiom,
    ! [A: complex,N2: nat] :
      ( ( power_power_complex @ A @ ( suc @ N2 ) )
      = ( times_times_complex @ A @ ( power_power_complex @ A @ N2 ) ) ) ).

% power_Suc
thf(fact_206_power__Suc,axiom,
    ! [A: real,N2: nat] :
      ( ( power_power_real @ A @ ( suc @ N2 ) )
      = ( times_times_real @ A @ ( power_power_real @ A @ N2 ) ) ) ).

% power_Suc
thf(fact_207_power__Suc,axiom,
    ! [A: rat,N2: nat] :
      ( ( power_power_rat @ A @ ( suc @ N2 ) )
      = ( times_times_rat @ A @ ( power_power_rat @ A @ N2 ) ) ) ).

% power_Suc
thf(fact_208_power__Suc,axiom,
    ! [A: nat,N2: nat] :
      ( ( power_power_nat @ A @ ( suc @ N2 ) )
      = ( times_times_nat @ A @ ( power_power_nat @ A @ N2 ) ) ) ).

% power_Suc
thf(fact_209_power__Suc,axiom,
    ! [A: int,N2: nat] :
      ( ( power_power_int @ A @ ( suc @ N2 ) )
      = ( times_times_int @ A @ ( power_power_int @ A @ N2 ) ) ) ).

% power_Suc
thf(fact_210_less__mult__imp__div__less,axiom,
    ! [M: nat,I2: nat,N2: nat] :
      ( ( ord_less_nat @ M @ ( times_times_nat @ I2 @ N2 ) )
     => ( ord_less_nat @ ( divide_divide_nat @ M @ N2 ) @ I2 ) ) ).

% less_mult_imp_div_less
thf(fact_211_times__div__less__eq__dividend,axiom,
    ! [N2: nat,M: nat] : ( ord_less_eq_nat @ ( times_times_nat @ N2 @ ( divide_divide_nat @ M @ N2 ) ) @ M ) ).

% times_div_less_eq_dividend
thf(fact_212_div__times__less__eq__dividend,axiom,
    ! [M: nat,N2: nat] : ( ord_less_eq_nat @ ( times_times_nat @ ( divide_divide_nat @ M @ N2 ) @ N2 ) @ M ) ).

% div_times_less_eq_dividend
thf(fact_213_power__commuting__commutes,axiom,
    ! [X: complex,Y: complex,N2: nat] :
      ( ( ( times_times_complex @ X @ Y )
        = ( times_times_complex @ Y @ X ) )
     => ( ( times_times_complex @ ( power_power_complex @ X @ N2 ) @ Y )
        = ( times_times_complex @ Y @ ( power_power_complex @ X @ N2 ) ) ) ) ).

% power_commuting_commutes
thf(fact_214_power__commuting__commutes,axiom,
    ! [X: real,Y: real,N2: nat] :
      ( ( ( times_times_real @ X @ Y )
        = ( times_times_real @ Y @ X ) )
     => ( ( times_times_real @ ( power_power_real @ X @ N2 ) @ Y )
        = ( times_times_real @ Y @ ( power_power_real @ X @ N2 ) ) ) ) ).

% power_commuting_commutes
thf(fact_215_power__commuting__commutes,axiom,
    ! [X: rat,Y: rat,N2: nat] :
      ( ( ( times_times_rat @ X @ Y )
        = ( times_times_rat @ Y @ X ) )
     => ( ( times_times_rat @ ( power_power_rat @ X @ N2 ) @ Y )
        = ( times_times_rat @ Y @ ( power_power_rat @ X @ N2 ) ) ) ) ).

% power_commuting_commutes
thf(fact_216_power__commuting__commutes,axiom,
    ! [X: nat,Y: nat,N2: nat] :
      ( ( ( times_times_nat @ X @ Y )
        = ( times_times_nat @ Y @ X ) )
     => ( ( times_times_nat @ ( power_power_nat @ X @ N2 ) @ Y )
        = ( times_times_nat @ Y @ ( power_power_nat @ X @ N2 ) ) ) ) ).

% power_commuting_commutes
thf(fact_217_power__commuting__commutes,axiom,
    ! [X: int,Y: int,N2: nat] :
      ( ( ( times_times_int @ X @ Y )
        = ( times_times_int @ Y @ X ) )
     => ( ( times_times_int @ ( power_power_int @ X @ N2 ) @ Y )
        = ( times_times_int @ Y @ ( power_power_int @ X @ N2 ) ) ) ) ).

% power_commuting_commutes
thf(fact_218_power__mult__distrib,axiom,
    ! [A: complex,B: complex,N2: nat] :
      ( ( power_power_complex @ ( times_times_complex @ A @ B ) @ N2 )
      = ( times_times_complex @ ( power_power_complex @ A @ N2 ) @ ( power_power_complex @ B @ N2 ) ) ) ).

% power_mult_distrib
thf(fact_219_power__mult__distrib,axiom,
    ! [A: real,B: real,N2: nat] :
      ( ( power_power_real @ ( times_times_real @ A @ B ) @ N2 )
      = ( times_times_real @ ( power_power_real @ A @ N2 ) @ ( power_power_real @ B @ N2 ) ) ) ).

% power_mult_distrib
thf(fact_220_power__mult__distrib,axiom,
    ! [A: rat,B: rat,N2: nat] :
      ( ( power_power_rat @ ( times_times_rat @ A @ B ) @ N2 )
      = ( times_times_rat @ ( power_power_rat @ A @ N2 ) @ ( power_power_rat @ B @ N2 ) ) ) ).

% power_mult_distrib
thf(fact_221_power__mult__distrib,axiom,
    ! [A: nat,B: nat,N2: nat] :
      ( ( power_power_nat @ ( times_times_nat @ A @ B ) @ N2 )
      = ( times_times_nat @ ( power_power_nat @ A @ N2 ) @ ( power_power_nat @ B @ N2 ) ) ) ).

% power_mult_distrib
thf(fact_222_power__mult__distrib,axiom,
    ! [A: int,B: int,N2: nat] :
      ( ( power_power_int @ ( times_times_int @ A @ B ) @ N2 )
      = ( times_times_int @ ( power_power_int @ A @ N2 ) @ ( power_power_int @ B @ N2 ) ) ) ).

% power_mult_distrib
thf(fact_223_power__commutes,axiom,
    ! [A: complex,N2: nat] :
      ( ( times_times_complex @ ( power_power_complex @ A @ N2 ) @ A )
      = ( times_times_complex @ A @ ( power_power_complex @ A @ N2 ) ) ) ).

% power_commutes
thf(fact_224_power__commutes,axiom,
    ! [A: real,N2: nat] :
      ( ( times_times_real @ ( power_power_real @ A @ N2 ) @ A )
      = ( times_times_real @ A @ ( power_power_real @ A @ N2 ) ) ) ).

% power_commutes
thf(fact_225_power__commutes,axiom,
    ! [A: rat,N2: nat] :
      ( ( times_times_rat @ ( power_power_rat @ A @ N2 ) @ A )
      = ( times_times_rat @ A @ ( power_power_rat @ A @ N2 ) ) ) ).

% power_commutes
thf(fact_226_power__commutes,axiom,
    ! [A: nat,N2: nat] :
      ( ( times_times_nat @ ( power_power_nat @ A @ N2 ) @ A )
      = ( times_times_nat @ A @ ( power_power_nat @ A @ N2 ) ) ) ).

% power_commutes
thf(fact_227_power__commutes,axiom,
    ! [A: int,N2: nat] :
      ( ( times_times_int @ ( power_power_int @ A @ N2 ) @ A )
      = ( times_times_int @ A @ ( power_power_int @ A @ N2 ) ) ) ).

% power_commutes
thf(fact_228_power__divide,axiom,
    ! [A: complex,B: complex,N2: nat] :
      ( ( power_power_complex @ ( divide1717551699836669952omplex @ A @ B ) @ N2 )
      = ( divide1717551699836669952omplex @ ( power_power_complex @ A @ N2 ) @ ( power_power_complex @ B @ N2 ) ) ) ).

% power_divide
thf(fact_229_power__divide,axiom,
    ! [A: real,B: real,N2: nat] :
      ( ( power_power_real @ ( divide_divide_real @ A @ B ) @ N2 )
      = ( divide_divide_real @ ( power_power_real @ A @ N2 ) @ ( power_power_real @ B @ N2 ) ) ) ).

% power_divide
thf(fact_230_power__divide,axiom,
    ! [A: rat,B: rat,N2: nat] :
      ( ( power_power_rat @ ( divide_divide_rat @ A @ B ) @ N2 )
      = ( divide_divide_rat @ ( power_power_rat @ A @ N2 ) @ ( power_power_rat @ B @ N2 ) ) ) ).

% power_divide
thf(fact_231_power__mult,axiom,
    ! [A: nat,M: nat,N2: nat] :
      ( ( power_power_nat @ A @ ( times_times_nat @ M @ N2 ) )
      = ( power_power_nat @ ( power_power_nat @ A @ M ) @ N2 ) ) ).

% power_mult
thf(fact_232_power__mult,axiom,
    ! [A: real,M: nat,N2: nat] :
      ( ( power_power_real @ A @ ( times_times_nat @ M @ N2 ) )
      = ( power_power_real @ ( power_power_real @ A @ M ) @ N2 ) ) ).

% power_mult
thf(fact_233_power__mult,axiom,
    ! [A: int,M: nat,N2: nat] :
      ( ( power_power_int @ A @ ( times_times_nat @ M @ N2 ) )
      = ( power_power_int @ ( power_power_int @ A @ M ) @ N2 ) ) ).

% power_mult
thf(fact_234_power__mult,axiom,
    ! [A: complex,M: nat,N2: nat] :
      ( ( power_power_complex @ A @ ( times_times_nat @ M @ N2 ) )
      = ( power_power_complex @ ( power_power_complex @ A @ M ) @ N2 ) ) ).

% power_mult
thf(fact_235_combine__options__cases,axiom,
    ! [X: option4927543243414619207at_nat,P: option4927543243414619207at_nat > option4927543243414619207at_nat > $o,Y: option4927543243414619207at_nat] :
      ( ( ( X = none_P5556105721700978146at_nat )
       => ( P @ X @ Y ) )
     => ( ( ( Y = none_P5556105721700978146at_nat )
         => ( P @ X @ Y ) )
       => ( ! [A3: product_prod_nat_nat,B2: product_prod_nat_nat] :
              ( ( X
                = ( some_P7363390416028606310at_nat @ A3 ) )
             => ( ( Y
                  = ( some_P7363390416028606310at_nat @ B2 ) )
               => ( P @ X @ Y ) ) )
         => ( P @ X @ Y ) ) ) ) ).

% combine_options_cases
thf(fact_236_combine__options__cases,axiom,
    ! [X: option4927543243414619207at_nat,P: option4927543243414619207at_nat > option_nat > $o,Y: option_nat] :
      ( ( ( X = none_P5556105721700978146at_nat )
       => ( P @ X @ Y ) )
     => ( ( ( Y = none_nat )
         => ( P @ X @ Y ) )
       => ( ! [A3: product_prod_nat_nat,B2: nat] :
              ( ( X
                = ( some_P7363390416028606310at_nat @ A3 ) )
             => ( ( Y
                  = ( some_nat @ B2 ) )
               => ( P @ X @ Y ) ) )
         => ( P @ X @ Y ) ) ) ) ).

% combine_options_cases
thf(fact_237_combine__options__cases,axiom,
    ! [X: option4927543243414619207at_nat,P: option4927543243414619207at_nat > option_num > $o,Y: option_num] :
      ( ( ( X = none_P5556105721700978146at_nat )
       => ( P @ X @ Y ) )
     => ( ( ( Y = none_num )
         => ( P @ X @ Y ) )
       => ( ! [A3: product_prod_nat_nat,B2: num] :
              ( ( X
                = ( some_P7363390416028606310at_nat @ A3 ) )
             => ( ( Y
                  = ( some_num @ B2 ) )
               => ( P @ X @ Y ) ) )
         => ( P @ X @ Y ) ) ) ) ).

% combine_options_cases
thf(fact_238_combine__options__cases,axiom,
    ! [X: option_nat,P: option_nat > option4927543243414619207at_nat > $o,Y: option4927543243414619207at_nat] :
      ( ( ( X = none_nat )
       => ( P @ X @ Y ) )
     => ( ( ( Y = none_P5556105721700978146at_nat )
         => ( P @ X @ Y ) )
       => ( ! [A3: nat,B2: product_prod_nat_nat] :
              ( ( X
                = ( some_nat @ A3 ) )
             => ( ( Y
                  = ( some_P7363390416028606310at_nat @ B2 ) )
               => ( P @ X @ Y ) ) )
         => ( P @ X @ Y ) ) ) ) ).

% combine_options_cases
thf(fact_239_combine__options__cases,axiom,
    ! [X: option_nat,P: option_nat > option_nat > $o,Y: option_nat] :
      ( ( ( X = none_nat )
       => ( P @ X @ Y ) )
     => ( ( ( Y = none_nat )
         => ( P @ X @ Y ) )
       => ( ! [A3: nat,B2: nat] :
              ( ( X
                = ( some_nat @ A3 ) )
             => ( ( Y
                  = ( some_nat @ B2 ) )
               => ( P @ X @ Y ) ) )
         => ( P @ X @ Y ) ) ) ) ).

% combine_options_cases
thf(fact_240_combine__options__cases,axiom,
    ! [X: option_nat,P: option_nat > option_num > $o,Y: option_num] :
      ( ( ( X = none_nat )
       => ( P @ X @ Y ) )
     => ( ( ( Y = none_num )
         => ( P @ X @ Y ) )
       => ( ! [A3: nat,B2: num] :
              ( ( X
                = ( some_nat @ A3 ) )
             => ( ( Y
                  = ( some_num @ B2 ) )
               => ( P @ X @ Y ) ) )
         => ( P @ X @ Y ) ) ) ) ).

% combine_options_cases
thf(fact_241_combine__options__cases,axiom,
    ! [X: option_num,P: option_num > option4927543243414619207at_nat > $o,Y: option4927543243414619207at_nat] :
      ( ( ( X = none_num )
       => ( P @ X @ Y ) )
     => ( ( ( Y = none_P5556105721700978146at_nat )
         => ( P @ X @ Y ) )
       => ( ! [A3: num,B2: product_prod_nat_nat] :
              ( ( X
                = ( some_num @ A3 ) )
             => ( ( Y
                  = ( some_P7363390416028606310at_nat @ B2 ) )
               => ( P @ X @ Y ) ) )
         => ( P @ X @ Y ) ) ) ) ).

% combine_options_cases
thf(fact_242_combine__options__cases,axiom,
    ! [X: option_num,P: option_num > option_nat > $o,Y: option_nat] :
      ( ( ( X = none_num )
       => ( P @ X @ Y ) )
     => ( ( ( Y = none_nat )
         => ( P @ X @ Y ) )
       => ( ! [A3: num,B2: nat] :
              ( ( X
                = ( some_num @ A3 ) )
             => ( ( Y
                  = ( some_nat @ B2 ) )
               => ( P @ X @ Y ) ) )
         => ( P @ X @ Y ) ) ) ) ).

% combine_options_cases
thf(fact_243_combine__options__cases,axiom,
    ! [X: option_num,P: option_num > option_num > $o,Y: option_num] :
      ( ( ( X = none_num )
       => ( P @ X @ Y ) )
     => ( ( ( Y = none_num )
         => ( P @ X @ Y ) )
       => ( ! [A3: num,B2: num] :
              ( ( X
                = ( some_num @ A3 ) )
             => ( ( Y
                  = ( some_num @ B2 ) )
               => ( P @ X @ Y ) ) )
         => ( P @ X @ Y ) ) ) ) ).

% combine_options_cases
thf(fact_244_split__option__all,axiom,
    ( ( ^ [P2: option4927543243414619207at_nat > $o] :
        ! [X6: option4927543243414619207at_nat] : ( P2 @ X6 ) )
    = ( ^ [P3: option4927543243414619207at_nat > $o] :
          ( ( P3 @ none_P5556105721700978146at_nat )
          & ! [X3: product_prod_nat_nat] : ( P3 @ ( some_P7363390416028606310at_nat @ X3 ) ) ) ) ) ).

% split_option_all
thf(fact_245_split__option__all,axiom,
    ( ( ^ [P2: option_nat > $o] :
        ! [X6: option_nat] : ( P2 @ X6 ) )
    = ( ^ [P3: option_nat > $o] :
          ( ( P3 @ none_nat )
          & ! [X3: nat] : ( P3 @ ( some_nat @ X3 ) ) ) ) ) ).

% split_option_all
thf(fact_246_split__option__all,axiom,
    ( ( ^ [P2: option_num > $o] :
        ! [X6: option_num] : ( P2 @ X6 ) )
    = ( ^ [P3: option_num > $o] :
          ( ( P3 @ none_num )
          & ! [X3: num] : ( P3 @ ( some_num @ X3 ) ) ) ) ) ).

% split_option_all
thf(fact_247_split__option__ex,axiom,
    ( ( ^ [P2: option4927543243414619207at_nat > $o] :
        ? [X6: option4927543243414619207at_nat] : ( P2 @ X6 ) )
    = ( ^ [P3: option4927543243414619207at_nat > $o] :
          ( ( P3 @ none_P5556105721700978146at_nat )
          | ? [X3: product_prod_nat_nat] : ( P3 @ ( some_P7363390416028606310at_nat @ X3 ) ) ) ) ) ).

% split_option_ex
thf(fact_248_split__option__ex,axiom,
    ( ( ^ [P2: option_nat > $o] :
        ? [X6: option_nat] : ( P2 @ X6 ) )
    = ( ^ [P3: option_nat > $o] :
          ( ( P3 @ none_nat )
          | ? [X3: nat] : ( P3 @ ( some_nat @ X3 ) ) ) ) ) ).

% split_option_ex
thf(fact_249_split__option__ex,axiom,
    ( ( ^ [P2: option_num > $o] :
        ? [X6: option_num] : ( P2 @ X6 ) )
    = ( ^ [P3: option_num > $o] :
          ( ( P3 @ none_num )
          | ? [X3: num] : ( P3 @ ( some_num @ X3 ) ) ) ) ) ).

% split_option_ex
thf(fact_250_option_Oexhaust,axiom,
    ! [Y: option4927543243414619207at_nat] :
      ( ( Y != none_P5556105721700978146at_nat )
     => ~ ! [X23: product_prod_nat_nat] :
            ( Y
           != ( some_P7363390416028606310at_nat @ X23 ) ) ) ).

% option.exhaust
thf(fact_251_option_Oexhaust,axiom,
    ! [Y: option_nat] :
      ( ( Y != none_nat )
     => ~ ! [X23: nat] :
            ( Y
           != ( some_nat @ X23 ) ) ) ).

% option.exhaust
thf(fact_252_option_Oexhaust,axiom,
    ! [Y: option_num] :
      ( ( Y != none_num )
     => ~ ! [X23: num] :
            ( Y
           != ( some_num @ X23 ) ) ) ).

% option.exhaust
thf(fact_253_option_OdiscI,axiom,
    ! [Option: option4927543243414619207at_nat,X22: product_prod_nat_nat] :
      ( ( Option
        = ( some_P7363390416028606310at_nat @ X22 ) )
     => ( Option != none_P5556105721700978146at_nat ) ) ).

% option.discI
thf(fact_254_option_OdiscI,axiom,
    ! [Option: option_nat,X22: nat] :
      ( ( Option
        = ( some_nat @ X22 ) )
     => ( Option != none_nat ) ) ).

% option.discI
thf(fact_255_option_OdiscI,axiom,
    ! [Option: option_num,X22: num] :
      ( ( Option
        = ( some_num @ X22 ) )
     => ( Option != none_num ) ) ).

% option.discI
thf(fact_256_option_Odistinct_I1_J,axiom,
    ! [X22: product_prod_nat_nat] :
      ( none_P5556105721700978146at_nat
     != ( some_P7363390416028606310at_nat @ X22 ) ) ).

% option.distinct(1)
thf(fact_257_option_Odistinct_I1_J,axiom,
    ! [X22: nat] :
      ( none_nat
     != ( some_nat @ X22 ) ) ).

% option.distinct(1)
thf(fact_258_option_Odistinct_I1_J,axiom,
    ! [X22: num] :
      ( none_num
     != ( some_num @ X22 ) ) ).

% option.distinct(1)
thf(fact_259_div__mult2__eq,axiom,
    ! [M: nat,N2: nat,Q2: nat] :
      ( ( divide_divide_nat @ M @ ( times_times_nat @ N2 @ Q2 ) )
      = ( divide_divide_nat @ ( divide_divide_nat @ M @ N2 ) @ Q2 ) ) ).

% div_mult2_eq
thf(fact_260_option_Osel,axiom,
    ! [X22: product_prod_nat_nat] :
      ( ( the_Pr8591224930841456533at_nat @ ( some_P7363390416028606310at_nat @ X22 ) )
      = X22 ) ).

% option.sel
thf(fact_261_option_Osel,axiom,
    ! [X22: nat] :
      ( ( the_nat @ ( some_nat @ X22 ) )
      = X22 ) ).

% option.sel
thf(fact_262_option_Osel,axiom,
    ! [X22: num] :
      ( ( the_num @ ( some_num @ X22 ) )
      = X22 ) ).

% option.sel
thf(fact_263_option_Oexpand,axiom,
    ! [Option: option_nat,Option2: option_nat] :
      ( ( ( Option = none_nat )
        = ( Option2 = none_nat ) )
     => ( ( ( Option != none_nat )
         => ( ( Option2 != none_nat )
           => ( ( the_nat @ Option )
              = ( the_nat @ Option2 ) ) ) )
       => ( Option = Option2 ) ) ) ).

% option.expand
thf(fact_264_option_Oexpand,axiom,
    ! [Option: option4927543243414619207at_nat,Option2: option4927543243414619207at_nat] :
      ( ( ( Option = none_P5556105721700978146at_nat )
        = ( Option2 = none_P5556105721700978146at_nat ) )
     => ( ( ( Option != none_P5556105721700978146at_nat )
         => ( ( Option2 != none_P5556105721700978146at_nat )
           => ( ( the_Pr8591224930841456533at_nat @ Option )
              = ( the_Pr8591224930841456533at_nat @ Option2 ) ) ) )
       => ( Option = Option2 ) ) ) ).

% option.expand
thf(fact_265_option_Oexpand,axiom,
    ! [Option: option_num,Option2: option_num] :
      ( ( ( Option = none_num )
        = ( Option2 = none_num ) )
     => ( ( ( Option != none_num )
         => ( ( Option2 != none_num )
           => ( ( the_num @ Option )
              = ( the_num @ Option2 ) ) ) )
       => ( Option = Option2 ) ) ) ).

% option.expand
thf(fact_266_less__exp,axiom,
    ! [N2: nat] : ( ord_less_nat @ N2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ).

% less_exp
thf(fact_267_power2__nat__le__imp__le,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ ( power_power_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ N2 )
     => ( ord_less_eq_nat @ M @ N2 ) ) ).

% power2_nat_le_imp_le
thf(fact_268_power2__nat__le__eq__le,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ ( power_power_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( ord_less_eq_nat @ M @ N2 ) ) ).

% power2_nat_le_eq_le
thf(fact_269_self__le__ge2__pow,axiom,
    ! [K: nat,M: nat] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K )
     => ( ord_less_eq_nat @ M @ ( power_power_nat @ K @ M ) ) ) ).

% self_le_ge2_pow
thf(fact_270_mult__numeral__1__right,axiom,
    ! [A: complex] :
      ( ( times_times_complex @ A @ ( numera6690914467698888265omplex @ one ) )
      = A ) ).

% mult_numeral_1_right
thf(fact_271_mult__numeral__1__right,axiom,
    ! [A: real] :
      ( ( times_times_real @ A @ ( numeral_numeral_real @ one ) )
      = A ) ).

% mult_numeral_1_right
thf(fact_272_mult__numeral__1__right,axiom,
    ! [A: rat] :
      ( ( times_times_rat @ A @ ( numeral_numeral_rat @ one ) )
      = A ) ).

% mult_numeral_1_right
thf(fact_273_mult__numeral__1__right,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ A @ ( numeral_numeral_nat @ one ) )
      = A ) ).

% mult_numeral_1_right
thf(fact_274_mult__numeral__1__right,axiom,
    ! [A: int] :
      ( ( times_times_int @ A @ ( numeral_numeral_int @ one ) )
      = A ) ).

% mult_numeral_1_right
thf(fact_275_mult__numeral__1,axiom,
    ! [A: complex] :
      ( ( times_times_complex @ ( numera6690914467698888265omplex @ one ) @ A )
      = A ) ).

% mult_numeral_1
thf(fact_276_mult__numeral__1,axiom,
    ! [A: real] :
      ( ( times_times_real @ ( numeral_numeral_real @ one ) @ A )
      = A ) ).

% mult_numeral_1
thf(fact_277_mult__numeral__1,axiom,
    ! [A: rat] :
      ( ( times_times_rat @ ( numeral_numeral_rat @ one ) @ A )
      = A ) ).

% mult_numeral_1
thf(fact_278_mult__numeral__1,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ ( numeral_numeral_nat @ one ) @ A )
      = A ) ).

% mult_numeral_1
thf(fact_279_mult__numeral__1,axiom,
    ! [A: int] :
      ( ( times_times_int @ ( numeral_numeral_int @ one ) @ A )
      = A ) ).

% mult_numeral_1
thf(fact_280_numeral__Bit0,axiom,
    ! [N2: num] :
      ( ( numera6690914467698888265omplex @ ( bit0 @ N2 ) )
      = ( plus_plus_complex @ ( numera6690914467698888265omplex @ N2 ) @ ( numera6690914467698888265omplex @ N2 ) ) ) ).

% numeral_Bit0
thf(fact_281_numeral__Bit0,axiom,
    ! [N2: num] :
      ( ( numeral_numeral_real @ ( bit0 @ N2 ) )
      = ( plus_plus_real @ ( numeral_numeral_real @ N2 ) @ ( numeral_numeral_real @ N2 ) ) ) ).

% numeral_Bit0
thf(fact_282_numeral__Bit0,axiom,
    ! [N2: num] :
      ( ( numeral_numeral_rat @ ( bit0 @ N2 ) )
      = ( plus_plus_rat @ ( numeral_numeral_rat @ N2 ) @ ( numeral_numeral_rat @ N2 ) ) ) ).

% numeral_Bit0
thf(fact_283_numeral__Bit0,axiom,
    ! [N2: num] :
      ( ( numeral_numeral_nat @ ( bit0 @ N2 ) )
      = ( plus_plus_nat @ ( numeral_numeral_nat @ N2 ) @ ( numeral_numeral_nat @ N2 ) ) ) ).

% numeral_Bit0
thf(fact_284_numeral__Bit0,axiom,
    ! [N2: num] :
      ( ( numeral_numeral_int @ ( bit0 @ N2 ) )
      = ( plus_plus_int @ ( numeral_numeral_int @ N2 ) @ ( numeral_numeral_int @ N2 ) ) ) ).

% numeral_Bit0
thf(fact_285_divide__numeral__1,axiom,
    ! [A: complex] :
      ( ( divide1717551699836669952omplex @ A @ ( numera6690914467698888265omplex @ one ) )
      = A ) ).

% divide_numeral_1
thf(fact_286_divide__numeral__1,axiom,
    ! [A: real] :
      ( ( divide_divide_real @ A @ ( numeral_numeral_real @ one ) )
      = A ) ).

% divide_numeral_1
thf(fact_287_divide__numeral__1,axiom,
    ! [A: rat] :
      ( ( divide_divide_rat @ A @ ( numeral_numeral_rat @ one ) )
      = A ) ).

% divide_numeral_1
thf(fact_288_power__add,axiom,
    ! [A: complex,M: nat,N2: nat] :
      ( ( power_power_complex @ A @ ( plus_plus_nat @ M @ N2 ) )
      = ( times_times_complex @ ( power_power_complex @ A @ M ) @ ( power_power_complex @ A @ N2 ) ) ) ).

% power_add
thf(fact_289_power__add,axiom,
    ! [A: real,M: nat,N2: nat] :
      ( ( power_power_real @ A @ ( plus_plus_nat @ M @ N2 ) )
      = ( times_times_real @ ( power_power_real @ A @ M ) @ ( power_power_real @ A @ N2 ) ) ) ).

% power_add
thf(fact_290_power__add,axiom,
    ! [A: rat,M: nat,N2: nat] :
      ( ( power_power_rat @ A @ ( plus_plus_nat @ M @ N2 ) )
      = ( times_times_rat @ ( power_power_rat @ A @ M ) @ ( power_power_rat @ A @ N2 ) ) ) ).

% power_add
thf(fact_291_power__add,axiom,
    ! [A: nat,M: nat,N2: nat] :
      ( ( power_power_nat @ A @ ( plus_plus_nat @ M @ N2 ) )
      = ( times_times_nat @ ( power_power_nat @ A @ M ) @ ( power_power_nat @ A @ N2 ) ) ) ).

% power_add
thf(fact_292_power__add,axiom,
    ! [A: int,M: nat,N2: nat] :
      ( ( power_power_int @ A @ ( plus_plus_nat @ M @ N2 ) )
      = ( times_times_int @ ( power_power_int @ A @ M ) @ ( power_power_int @ A @ N2 ) ) ) ).

% power_add
thf(fact_293_option_Oexhaust__sel,axiom,
    ! [Option: option4927543243414619207at_nat] :
      ( ( Option != none_P5556105721700978146at_nat )
     => ( Option
        = ( some_P7363390416028606310at_nat @ ( the_Pr8591224930841456533at_nat @ Option ) ) ) ) ).

% option.exhaust_sel
thf(fact_294_option_Oexhaust__sel,axiom,
    ! [Option: option_nat] :
      ( ( Option != none_nat )
     => ( Option
        = ( some_nat @ ( the_nat @ Option ) ) ) ) ).

% option.exhaust_sel
thf(fact_295_option_Oexhaust__sel,axiom,
    ! [Option: option_num] :
      ( ( Option != none_num )
     => ( Option
        = ( some_num @ ( the_num @ Option ) ) ) ) ).

% option.exhaust_sel
thf(fact_296_power__odd__eq,axiom,
    ! [A: complex,N2: nat] :
      ( ( power_power_complex @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) )
      = ( times_times_complex @ A @ ( power_power_complex @ ( power_power_complex @ A @ N2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% power_odd_eq
thf(fact_297_power__odd__eq,axiom,
    ! [A: real,N2: nat] :
      ( ( power_power_real @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) )
      = ( times_times_real @ A @ ( power_power_real @ ( power_power_real @ A @ N2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% power_odd_eq
thf(fact_298_power__odd__eq,axiom,
    ! [A: rat,N2: nat] :
      ( ( power_power_rat @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) )
      = ( times_times_rat @ A @ ( power_power_rat @ ( power_power_rat @ A @ N2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% power_odd_eq
thf(fact_299_power__odd__eq,axiom,
    ! [A: nat,N2: nat] :
      ( ( power_power_nat @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) )
      = ( times_times_nat @ A @ ( power_power_nat @ ( power_power_nat @ A @ N2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% power_odd_eq
thf(fact_300_power__odd__eq,axiom,
    ! [A: int,N2: nat] :
      ( ( power_power_int @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) )
      = ( times_times_int @ A @ ( power_power_int @ ( power_power_int @ A @ N2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% power_odd_eq
thf(fact_301_numeral__code_I2_J,axiom,
    ! [N2: num] :
      ( ( numera6690914467698888265omplex @ ( bit0 @ N2 ) )
      = ( plus_plus_complex @ ( numera6690914467698888265omplex @ N2 ) @ ( numera6690914467698888265omplex @ N2 ) ) ) ).

% numeral_code(2)
thf(fact_302_numeral__code_I2_J,axiom,
    ! [N2: num] :
      ( ( numeral_numeral_real @ ( bit0 @ N2 ) )
      = ( plus_plus_real @ ( numeral_numeral_real @ N2 ) @ ( numeral_numeral_real @ N2 ) ) ) ).

% numeral_code(2)
thf(fact_303_numeral__code_I2_J,axiom,
    ! [N2: num] :
      ( ( numeral_numeral_rat @ ( bit0 @ N2 ) )
      = ( plus_plus_rat @ ( numeral_numeral_rat @ N2 ) @ ( numeral_numeral_rat @ N2 ) ) ) ).

% numeral_code(2)
thf(fact_304_numeral__code_I2_J,axiom,
    ! [N2: num] :
      ( ( numeral_numeral_nat @ ( bit0 @ N2 ) )
      = ( plus_plus_nat @ ( numeral_numeral_nat @ N2 ) @ ( numeral_numeral_nat @ N2 ) ) ) ).

% numeral_code(2)
thf(fact_305_numeral__code_I2_J,axiom,
    ! [N2: num] :
      ( ( numeral_numeral_int @ ( bit0 @ N2 ) )
      = ( plus_plus_int @ ( numeral_numeral_int @ N2 ) @ ( numeral_numeral_int @ N2 ) ) ) ).

% numeral_code(2)
thf(fact_306_numeral__Bit0__div__2,axiom,
    ! [N2: num] :
      ( ( divide_divide_nat @ ( numeral_numeral_nat @ ( bit0 @ N2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( numeral_numeral_nat @ N2 ) ) ).

% numeral_Bit0_div_2
thf(fact_307_numeral__Bit0__div__2,axiom,
    ! [N2: num] :
      ( ( divide_divide_int @ ( numeral_numeral_int @ ( bit0 @ N2 ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
      = ( numeral_numeral_int @ N2 ) ) ).

% numeral_Bit0_div_2
thf(fact_308_power__numeral__even,axiom,
    ! [Z: complex,W: num] :
      ( ( power_power_complex @ Z @ ( numeral_numeral_nat @ ( bit0 @ W ) ) )
      = ( times_times_complex @ ( power_power_complex @ Z @ ( numeral_numeral_nat @ W ) ) @ ( power_power_complex @ Z @ ( numeral_numeral_nat @ W ) ) ) ) ).

% power_numeral_even
thf(fact_309_power__numeral__even,axiom,
    ! [Z: real,W: num] :
      ( ( power_power_real @ Z @ ( numeral_numeral_nat @ ( bit0 @ W ) ) )
      = ( times_times_real @ ( power_power_real @ Z @ ( numeral_numeral_nat @ W ) ) @ ( power_power_real @ Z @ ( numeral_numeral_nat @ W ) ) ) ) ).

% power_numeral_even
thf(fact_310_power__numeral__even,axiom,
    ! [Z: rat,W: num] :
      ( ( power_power_rat @ Z @ ( numeral_numeral_nat @ ( bit0 @ W ) ) )
      = ( times_times_rat @ ( power_power_rat @ Z @ ( numeral_numeral_nat @ W ) ) @ ( power_power_rat @ Z @ ( numeral_numeral_nat @ W ) ) ) ) ).

% power_numeral_even
thf(fact_311_power__numeral__even,axiom,
    ! [Z: nat,W: num] :
      ( ( power_power_nat @ Z @ ( numeral_numeral_nat @ ( bit0 @ W ) ) )
      = ( times_times_nat @ ( power_power_nat @ Z @ ( numeral_numeral_nat @ W ) ) @ ( power_power_nat @ Z @ ( numeral_numeral_nat @ W ) ) ) ) ).

% power_numeral_even
thf(fact_312_power__numeral__even,axiom,
    ! [Z: int,W: num] :
      ( ( power_power_int @ Z @ ( numeral_numeral_nat @ ( bit0 @ W ) ) )
      = ( times_times_int @ ( power_power_int @ Z @ ( numeral_numeral_nat @ W ) ) @ ( power_power_int @ Z @ ( numeral_numeral_nat @ W ) ) ) ) ).

% power_numeral_even
thf(fact_313_left__add__twice,axiom,
    ! [A: complex,B: complex] :
      ( ( plus_plus_complex @ A @ ( plus_plus_complex @ A @ B ) )
      = ( plus_plus_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ A ) @ B ) ) ).

% left_add_twice
thf(fact_314_left__add__twice,axiom,
    ! [A: real,B: real] :
      ( ( plus_plus_real @ A @ ( plus_plus_real @ A @ B ) )
      = ( plus_plus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ A ) @ B ) ) ).

% left_add_twice
thf(fact_315_left__add__twice,axiom,
    ! [A: rat,B: rat] :
      ( ( plus_plus_rat @ A @ ( plus_plus_rat @ A @ B ) )
      = ( plus_plus_rat @ ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ A ) @ B ) ) ).

% left_add_twice
thf(fact_316_left__add__twice,axiom,
    ! [A: nat,B: nat] :
      ( ( plus_plus_nat @ A @ ( plus_plus_nat @ A @ B ) )
      = ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) @ B ) ) ).

% left_add_twice
thf(fact_317_left__add__twice,axiom,
    ! [A: int,B: int] :
      ( ( plus_plus_int @ A @ ( plus_plus_int @ A @ B ) )
      = ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) @ B ) ) ).

% left_add_twice
thf(fact_318_mult__2__right,axiom,
    ! [Z: complex] :
      ( ( times_times_complex @ Z @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) )
      = ( plus_plus_complex @ Z @ Z ) ) ).

% mult_2_right
thf(fact_319_mult__2__right,axiom,
    ! [Z: real] :
      ( ( times_times_real @ Z @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
      = ( plus_plus_real @ Z @ Z ) ) ).

% mult_2_right
thf(fact_320_mult__2__right,axiom,
    ! [Z: rat] :
      ( ( times_times_rat @ Z @ ( numeral_numeral_rat @ ( bit0 @ one ) ) )
      = ( plus_plus_rat @ Z @ Z ) ) ).

% mult_2_right
thf(fact_321_mult__2__right,axiom,
    ! [Z: nat] :
      ( ( times_times_nat @ Z @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( plus_plus_nat @ Z @ Z ) ) ).

% mult_2_right
thf(fact_322_mult__2__right,axiom,
    ! [Z: int] :
      ( ( times_times_int @ Z @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
      = ( plus_plus_int @ Z @ Z ) ) ).

% mult_2_right
thf(fact_323_mult__2,axiom,
    ! [Z: complex] :
      ( ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ Z )
      = ( plus_plus_complex @ Z @ Z ) ) ).

% mult_2
thf(fact_324_mult__2,axiom,
    ! [Z: real] :
      ( ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ Z )
      = ( plus_plus_real @ Z @ Z ) ) ).

% mult_2
thf(fact_325_mult__2,axiom,
    ! [Z: rat] :
      ( ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ Z )
      = ( plus_plus_rat @ Z @ Z ) ) ).

% mult_2
thf(fact_326_mult__2,axiom,
    ! [Z: nat] :
      ( ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Z )
      = ( plus_plus_nat @ Z @ Z ) ) ).

% mult_2
thf(fact_327_mult__2,axiom,
    ! [Z: int] :
      ( ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Z )
      = ( plus_plus_int @ Z @ Z ) ) ).

% mult_2
thf(fact_328_power2__eq__square,axiom,
    ! [A: complex] :
      ( ( power_power_complex @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( times_times_complex @ A @ A ) ) ).

% power2_eq_square
thf(fact_329_power2__eq__square,axiom,
    ! [A: real] :
      ( ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( times_times_real @ A @ A ) ) ).

% power2_eq_square
thf(fact_330_power2__eq__square,axiom,
    ! [A: rat] :
      ( ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( times_times_rat @ A @ A ) ) ).

% power2_eq_square
thf(fact_331_power2__eq__square,axiom,
    ! [A: nat] :
      ( ( power_power_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( times_times_nat @ A @ A ) ) ).

% power2_eq_square
thf(fact_332_power2__eq__square,axiom,
    ! [A: int] :
      ( ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( times_times_int @ A @ A ) ) ).

% power2_eq_square
thf(fact_333_power4__eq__xxxx,axiom,
    ! [X: complex] :
      ( ( power_power_complex @ X @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
      = ( times_times_complex @ ( times_times_complex @ ( times_times_complex @ X @ X ) @ X ) @ X ) ) ).

% power4_eq_xxxx
thf(fact_334_power4__eq__xxxx,axiom,
    ! [X: real] :
      ( ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
      = ( times_times_real @ ( times_times_real @ ( times_times_real @ X @ X ) @ X ) @ X ) ) ).

% power4_eq_xxxx
thf(fact_335_power4__eq__xxxx,axiom,
    ! [X: rat] :
      ( ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
      = ( times_times_rat @ ( times_times_rat @ ( times_times_rat @ X @ X ) @ X ) @ X ) ) ).

% power4_eq_xxxx
thf(fact_336_power4__eq__xxxx,axiom,
    ! [X: nat] :
      ( ( power_power_nat @ X @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
      = ( times_times_nat @ ( times_times_nat @ ( times_times_nat @ X @ X ) @ X ) @ X ) ) ).

% power4_eq_xxxx
thf(fact_337_power4__eq__xxxx,axiom,
    ! [X: int] :
      ( ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
      = ( times_times_int @ ( times_times_int @ ( times_times_int @ X @ X ) @ X ) @ X ) ) ).

% power4_eq_xxxx
thf(fact_338_power__even__eq,axiom,
    ! [A: nat,N2: nat] :
      ( ( power_power_nat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
      = ( power_power_nat @ ( power_power_nat @ A @ N2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power_even_eq
thf(fact_339_power__even__eq,axiom,
    ! [A: real,N2: nat] :
      ( ( power_power_real @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
      = ( power_power_real @ ( power_power_real @ A @ N2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power_even_eq
thf(fact_340_power__even__eq,axiom,
    ! [A: int,N2: nat] :
      ( ( power_power_int @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
      = ( power_power_int @ ( power_power_int @ A @ N2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power_even_eq
thf(fact_341_power__even__eq,axiom,
    ! [A: complex,N2: nat] :
      ( ( power_power_complex @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
      = ( power_power_complex @ ( power_power_complex @ A @ N2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power_even_eq
thf(fact_342_in__children__def,axiom,
    ( vEBT_V5917875025757280293ildren
    = ( ^ [N3: nat,TreeList3: list_VEBT_VEBT,X3: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ X3 @ N3 ) ) @ ( vEBT_VEBT_low @ X3 @ N3 ) ) ) ) ).

% in_children_def
thf(fact_343_invar__vebt_Ointros_I5_J,axiom,
    ! [TreeList: list_VEBT_VEBT,N2: nat,Summary: vEBT_VEBT,M: nat,Deg: nat,Mi: nat,Ma: nat] :
      ( ! [X5: vEBT_VEBT] :
          ( ( member_VEBT_VEBT @ X5 @ ( set_VEBT_VEBT2 @ TreeList ) )
         => ( vEBT_invar_vebt @ X5 @ N2 ) )
     => ( ( vEBT_invar_vebt @ Summary @ M )
       => ( ( ( size_s6755466524823107622T_VEBT @ TreeList )
            = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
         => ( ( M
              = ( suc @ N2 ) )
           => ( ( Deg
                = ( plus_plus_nat @ N2 @ M ) )
             => ( ! [I3: nat] :
                    ( ( ord_less_nat @ I3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
                   => ( ( ? [X4: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList @ I3 ) @ X4 ) )
                      = ( vEBT_V8194947554948674370ptions @ Summary @ I3 ) ) )
               => ( ( ( Mi = Ma )
                   => ! [X5: vEBT_VEBT] :
                        ( ( member_VEBT_VEBT @ X5 @ ( set_VEBT_VEBT2 @ TreeList ) )
                       => ~ ? [X_1: nat] : ( vEBT_V8194947554948674370ptions @ X5 @ X_1 ) ) )
                 => ( ( ord_less_eq_nat @ Mi @ Ma )
                   => ( ( ord_less_nat @ Ma @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg ) )
                     => ( ( ( Mi != Ma )
                         => ! [I3: nat] :
                              ( ( ord_less_nat @ I3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
                             => ( ( ( ( vEBT_VEBT_high @ Ma @ N2 )
                                    = I3 )
                                 => ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList @ I3 ) @ ( vEBT_VEBT_low @ Ma @ N2 ) ) )
                                & ! [X5: nat] :
                                    ( ( ( ( vEBT_VEBT_high @ X5 @ N2 )
                                        = I3 )
                                      & ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList @ I3 ) @ ( vEBT_VEBT_low @ X5 @ N2 ) ) )
                                   => ( ( ord_less_nat @ Mi @ X5 )
                                      & ( ord_less_eq_nat @ X5 @ Ma ) ) ) ) ) )
                       => ( vEBT_invar_vebt @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ Deg ) ) ) ) ) ) ) ) ) ) ) ).

% invar_vebt.intros(5)
thf(fact_344_invar__vebt_Ointros_I4_J,axiom,
    ! [TreeList: list_VEBT_VEBT,N2: nat,Summary: vEBT_VEBT,M: nat,Deg: nat,Mi: nat,Ma: nat] :
      ( ! [X5: vEBT_VEBT] :
          ( ( member_VEBT_VEBT @ X5 @ ( set_VEBT_VEBT2 @ TreeList ) )
         => ( vEBT_invar_vebt @ X5 @ N2 ) )
     => ( ( vEBT_invar_vebt @ Summary @ M )
       => ( ( ( size_s6755466524823107622T_VEBT @ TreeList )
            = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
         => ( ( M = N2 )
           => ( ( Deg
                = ( plus_plus_nat @ N2 @ M ) )
             => ( ! [I3: nat] :
                    ( ( ord_less_nat @ I3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
                   => ( ( ? [X4: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList @ I3 ) @ X4 ) )
                      = ( vEBT_V8194947554948674370ptions @ Summary @ I3 ) ) )
               => ( ( ( Mi = Ma )
                   => ! [X5: vEBT_VEBT] :
                        ( ( member_VEBT_VEBT @ X5 @ ( set_VEBT_VEBT2 @ TreeList ) )
                       => ~ ? [X_1: nat] : ( vEBT_V8194947554948674370ptions @ X5 @ X_1 ) ) )
                 => ( ( ord_less_eq_nat @ Mi @ Ma )
                   => ( ( ord_less_nat @ Ma @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg ) )
                     => ( ( ( Mi != Ma )
                         => ! [I3: nat] :
                              ( ( ord_less_nat @ I3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
                             => ( ( ( ( vEBT_VEBT_high @ Ma @ N2 )
                                    = I3 )
                                 => ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList @ I3 ) @ ( vEBT_VEBT_low @ Ma @ N2 ) ) )
                                & ! [X5: nat] :
                                    ( ( ( ( vEBT_VEBT_high @ X5 @ N2 )
                                        = I3 )
                                      & ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList @ I3 ) @ ( vEBT_VEBT_low @ X5 @ N2 ) ) )
                                   => ( ( ord_less_nat @ Mi @ X5 )
                                      & ( ord_less_eq_nat @ X5 @ Ma ) ) ) ) ) )
                       => ( vEBT_invar_vebt @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ Deg ) ) ) ) ) ) ) ) ) ) ) ).

% invar_vebt.intros(4)
thf(fact_345_succ__list__to__short,axiom,
    ! [Deg: nat,Mi: nat,X: nat,TreeList: list_VEBT_VEBT,Ma: nat,Summary: vEBT_VEBT] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
     => ( ( ord_less_eq_nat @ Mi @ X )
       => ( ( ord_less_eq_nat @ ( size_s6755466524823107622T_VEBT @ TreeList ) @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
         => ( ( vEBT_vebt_succ @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X )
            = none_nat ) ) ) ) ).

% succ_list_to_short
thf(fact_346_pred__list__to__short,axiom,
    ! [Deg: nat,X: nat,Ma: nat,TreeList: list_VEBT_VEBT,Mi: nat,Summary: vEBT_VEBT] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
     => ( ( ord_less_eq_nat @ X @ Ma )
       => ( ( ord_less_eq_nat @ ( size_s6755466524823107622T_VEBT @ TreeList ) @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
         => ( ( vEBT_vebt_pred @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X )
            = none_nat ) ) ) ) ).

% pred_list_to_short
thf(fact_347_del__x__mia,axiom,
    ! [X: nat,Mi: nat,Ma: nat,Deg: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT] :
      ( ( ( X = Mi )
        & ( ord_less_nat @ X @ Ma ) )
     => ( ( Mi != Ma )
       => ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
         => ( ( vEBT_vebt_delete @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X )
            = ( if_VEBT_VEBT @ ( ord_less_nat @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) )
              @ ( if_VEBT_VEBT @ ( vEBT_VEBT_minNull @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                @ ( vEBT_Node
                  @ ( some_P7363390416028606310at_nat
                    @ ( product_Pair_nat_nat @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) )
                      @ ( if_nat
                        @ ( ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) )
                          = Ma )
                        @ ( if_nat
                          @ ( ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                            = none_nat )
                          @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) )
                          @ ( plus_plus_nat @ ( times_times_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ ( list_u1324408373059187874T_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) )
                        @ Ma ) ) )
                  @ Deg
                  @ ( list_u1324408373059187874T_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                  @ ( vEBT_vebt_delete @ Summary @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                @ ( vEBT_Node
                  @ ( some_P7363390416028606310at_nat
                    @ ( product_Pair_nat_nat @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) )
                      @ ( if_nat
                        @ ( ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) )
                          = Ma )
                        @ ( plus_plus_nat @ ( times_times_nat @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ ( list_u1324408373059187874T_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) )
                        @ Ma ) ) )
                  @ Deg
                  @ ( list_u1324408373059187874T_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                  @ Summary ) )
              @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) ) ) ) ) ) ).

% del_x_mia
thf(fact_348_del__x__mi__lets__in__minNull,axiom,
    ! [X: nat,Mi: nat,Ma: nat,Deg: nat,Xn: nat,H2: nat,Summary: vEBT_VEBT,TreeList: list_VEBT_VEBT,L2: nat,Newnode: vEBT_VEBT,Newlist: list_VEBT_VEBT,Sn: vEBT_VEBT] :
      ( ( ( X = Mi )
        & ( ord_less_nat @ X @ Ma ) )
     => ( ( Mi != Ma )
       => ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
         => ( ( ( vEBT_VEBT_high @ Xn @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
              = H2 )
           => ( ( Xn
                = ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) )
             => ( ( ( vEBT_VEBT_low @ Xn @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
                  = L2 )
               => ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xn @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) )
                 => ( ( Newnode
                      = ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList @ H2 ) @ L2 ) )
                   => ( ( Newlist
                        = ( list_u1324408373059187874T_VEBT @ TreeList @ H2 @ Newnode ) )
                     => ( ( vEBT_VEBT_minNull @ Newnode )
                       => ( ( Sn
                            = ( vEBT_vebt_delete @ Summary @ H2 ) )
                         => ( ( vEBT_vebt_delete @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X )
                            = ( vEBT_Node
                              @ ( some_P7363390416028606310at_nat
                                @ ( product_Pair_nat_nat @ Xn
                                  @ ( if_nat @ ( Xn = Ma )
                                    @ ( if_nat
                                      @ ( ( vEBT_vebt_maxt @ Sn )
                                        = none_nat )
                                      @ Xn
                                      @ ( plus_plus_nat @ ( times_times_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ Sn ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ Newlist @ ( the_nat @ ( vEBT_vebt_maxt @ Sn ) ) ) ) ) ) )
                                    @ Ma ) ) )
                              @ Deg
                              @ Newlist
                              @ Sn ) ) ) ) ) ) ) ) ) ) ) ) ) ).

% del_x_mi_lets_in_minNull
thf(fact_349_del__x__mi__lets__in,axiom,
    ! [X: nat,Mi: nat,Ma: nat,Deg: nat,Xn: nat,H2: nat,Summary: vEBT_VEBT,TreeList: list_VEBT_VEBT,L2: nat,Newnode: vEBT_VEBT,Newlist: list_VEBT_VEBT] :
      ( ( ( X = Mi )
        & ( ord_less_nat @ X @ Ma ) )
     => ( ( Mi != Ma )
       => ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
         => ( ( ( vEBT_VEBT_high @ Xn @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
              = H2 )
           => ( ( Xn
                = ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) )
             => ( ( ( vEBT_VEBT_low @ Xn @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
                  = L2 )
               => ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xn @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) )
                 => ( ( Newnode
                      = ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList @ H2 ) @ L2 ) )
                   => ( ( Newlist
                        = ( list_u1324408373059187874T_VEBT @ TreeList @ H2 @ Newnode ) )
                     => ( ( ( vEBT_VEBT_minNull @ Newnode )
                         => ( ( vEBT_vebt_delete @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X )
                            = ( vEBT_Node
                              @ ( some_P7363390416028606310at_nat
                                @ ( product_Pair_nat_nat @ Xn
                                  @ ( if_nat @ ( Xn = Ma )
                                    @ ( if_nat
                                      @ ( ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ H2 ) )
                                        = none_nat )
                                      @ Xn
                                      @ ( plus_plus_nat @ ( times_times_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ H2 ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ Newlist @ ( the_nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ H2 ) ) ) ) ) ) ) )
                                    @ Ma ) ) )
                              @ Deg
                              @ Newlist
                              @ ( vEBT_vebt_delete @ Summary @ H2 ) ) ) )
                        & ( ~ ( vEBT_VEBT_minNull @ Newnode )
                         => ( ( vEBT_vebt_delete @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X )
                            = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Xn @ ( if_nat @ ( Xn = Ma ) @ ( plus_plus_nat @ ( times_times_nat @ H2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ Newlist @ H2 ) ) ) ) @ Ma ) ) ) @ Deg @ Newlist @ Summary ) ) ) ) ) ) ) ) ) ) ) ) ) ).

% del_x_mi_lets_in
thf(fact_350_del__x__mi,axiom,
    ! [X: nat,Mi: nat,Ma: nat,Deg: nat,Xn: nat,H2: nat,Summary: vEBT_VEBT,TreeList: list_VEBT_VEBT,L2: nat] :
      ( ( ( X = Mi )
        & ( ord_less_nat @ X @ Ma ) )
     => ( ( Mi != Ma )
       => ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
         => ( ( ( vEBT_VEBT_high @ Xn @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
              = H2 )
           => ( ( Xn
                = ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) )
             => ( ( ( vEBT_VEBT_low @ Xn @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
                  = L2 )
               => ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xn @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) )
                 => ( ( vEBT_vebt_delete @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X )
                    = ( if_VEBT_VEBT @ ( vEBT_VEBT_minNull @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList @ H2 ) @ L2 ) )
                      @ ( vEBT_Node
                        @ ( some_P7363390416028606310at_nat
                          @ ( product_Pair_nat_nat @ Xn
                            @ ( if_nat @ ( Xn = Ma )
                              @ ( if_nat
                                @ ( ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ H2 ) )
                                  = none_nat )
                                @ Xn
                                @ ( plus_plus_nat @ ( times_times_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ H2 ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ ( list_u1324408373059187874T_VEBT @ TreeList @ H2 @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList @ H2 ) @ L2 ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ H2 ) ) ) ) ) ) ) )
                              @ Ma ) ) )
                        @ Deg
                        @ ( list_u1324408373059187874T_VEBT @ TreeList @ H2 @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList @ H2 ) @ L2 ) )
                        @ ( vEBT_vebt_delete @ Summary @ H2 ) )
                      @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Xn @ ( if_nat @ ( Xn = Ma ) @ ( plus_plus_nat @ ( times_times_nat @ H2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ ( list_u1324408373059187874T_VEBT @ TreeList @ H2 @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList @ H2 ) @ L2 ) ) @ H2 ) ) ) ) @ Ma ) ) ) @ Deg @ ( list_u1324408373059187874T_VEBT @ TreeList @ H2 @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList @ H2 ) @ L2 ) ) @ Summary ) ) ) ) ) ) ) ) ) ) ).

% del_x_mi
thf(fact_351_del__in__range,axiom,
    ! [Mi: nat,X: nat,Ma: nat,Deg: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT] :
      ( ( ( ord_less_eq_nat @ Mi @ X )
        & ( ord_less_eq_nat @ X @ Ma ) )
     => ( ( Mi != Ma )
       => ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
         => ( ( vEBT_vebt_delete @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X )
            = ( if_VEBT_VEBT @ ( ord_less_nat @ ( vEBT_VEBT_high @ ( if_nat @ ( X = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) )
              @ ( if_VEBT_VEBT @ ( vEBT_VEBT_minNull @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if_nat @ ( X = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( X = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                @ ( vEBT_Node
                  @ ( some_P7363390416028606310at_nat
                    @ ( product_Pair_nat_nat @ ( if_nat @ ( X = Mi ) @ ( if_nat @ ( X = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ Mi )
                      @ ( if_nat
                        @ ( ( ( X = Mi )
                           => ( ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) )
                              = Ma ) )
                          & ( ( X != Mi )
                           => ( X = Ma ) ) )
                        @ ( if_nat
                          @ ( ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ ( vEBT_VEBT_high @ ( if_nat @ ( X = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                            = none_nat )
                          @ ( if_nat @ ( X = Mi ) @ ( if_nat @ ( X = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ Mi )
                          @ ( plus_plus_nat @ ( times_times_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ ( vEBT_VEBT_high @ ( if_nat @ ( X = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ ( list_u1324408373059187874T_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if_nat @ ( X = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if_nat @ ( X = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( X = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ ( vEBT_VEBT_high @ ( if_nat @ ( X = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) )
                        @ Ma ) ) )
                  @ Deg
                  @ ( list_u1324408373059187874T_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if_nat @ ( X = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if_nat @ ( X = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( X = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                  @ ( vEBT_vebt_delete @ Summary @ ( vEBT_VEBT_high @ ( if_nat @ ( X = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                @ ( vEBT_Node
                  @ ( some_P7363390416028606310at_nat
                    @ ( product_Pair_nat_nat @ ( if_nat @ ( X = Mi ) @ ( if_nat @ ( X = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ Mi )
                      @ ( if_nat
                        @ ( ( ( X = Mi )
                           => ( ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) )
                              = Ma ) )
                          & ( ( X != Mi )
                           => ( X = Ma ) ) )
                        @ ( plus_plus_nat @ ( times_times_nat @ ( vEBT_VEBT_high @ ( if_nat @ ( X = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ ( list_u1324408373059187874T_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if_nat @ ( X = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if_nat @ ( X = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( X = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_VEBT_high @ ( if_nat @ ( X = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) )
                        @ Ma ) ) )
                  @ Deg
                  @ ( list_u1324408373059187874T_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if_nat @ ( X = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if_nat @ ( X = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( X = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                  @ Summary ) )
              @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) ) ) ) ) ) ).

% del_in_range
thf(fact_352__092_060open_062summin_A_K_A2_A_094_An_A_L_Alx_A_061_A_Iif_Ax_A_061_Ami_Athen_Athe_A_Ivebt__mint_Asummary_J_A_K_A2_A_094_A_Ideg_Adiv_A2_J_A_L_Athe_A_Ivebt__mint_A_ItreeList_A_B_Athe_A_Ivebt__mint_Asummary_J_J_J_Aelse_Ax_J_092_060close_062,axiom,
    ( ( ( xa = mi )
     => ( ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx )
        = ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ treeList @ ( the_nat @ ( vEBT_vebt_mint @ summary ) ) ) ) ) ) ) )
    & ( ( xa != mi )
     => ( ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx )
        = xa ) ) ) ).

% \<open>summin * 2 ^ n + lx = (if x = mi then the (vebt_mint summary) * 2 ^ (deg div 2) + the (vebt_mint (treeList ! the (vebt_mint summary))) else x)\<close>
thf(fact_353_del__x__mi__lets__in__not__minNull,axiom,
    ! [X: nat,Mi: nat,Ma: nat,Deg: nat,Xn: nat,H2: nat,Summary: vEBT_VEBT,TreeList: list_VEBT_VEBT,L2: nat,Newnode: vEBT_VEBT,Newlist: list_VEBT_VEBT] :
      ( ( ( X = Mi )
        & ( ord_less_nat @ X @ Ma ) )
     => ( ( Mi != Ma )
       => ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
         => ( ( ( vEBT_VEBT_high @ Xn @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
              = H2 )
           => ( ( Xn
                = ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) )
             => ( ( ( vEBT_VEBT_low @ Xn @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
                  = L2 )
               => ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xn @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) )
                 => ( ( Newnode
                      = ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList @ H2 ) @ L2 ) )
                   => ( ( Newlist
                        = ( list_u1324408373059187874T_VEBT @ TreeList @ H2 @ Newnode ) )
                     => ( ~ ( vEBT_VEBT_minNull @ Newnode )
                       => ( ( vEBT_vebt_delete @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X )
                          = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Xn @ ( if_nat @ ( Xn = Ma ) @ ( plus_plus_nat @ ( times_times_nat @ H2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ Newlist @ H2 ) ) ) ) @ Ma ) ) ) @ Deg @ Newlist @ Summary ) ) ) ) ) ) ) ) ) ) ) ) ).

% del_x_mi_lets_in_not_minNull
thf(fact_354_minNullmin,axiom,
    ! [T: vEBT_VEBT] :
      ( ( vEBT_VEBT_minNull @ T )
     => ( ( vEBT_vebt_mint @ T )
        = none_nat ) ) ).

% minNullmin
thf(fact_355_minminNull,axiom,
    ! [T: vEBT_VEBT] :
      ( ( ( vEBT_vebt_mint @ T )
        = none_nat )
     => ( vEBT_VEBT_minNull @ T ) ) ).

% minminNull
thf(fact_356__092_060open_062_092_060And_062thesis_O_A_I_092_060And_062summin_O_ASome_Asummin_A_061_Avebt__mint_Asummary_A_092_060Longrightarrow_062_Athesis_J_A_092_060Longrightarrow_062_Athesis_092_060close_062,axiom,
    ~ ! [Summin: nat] :
        ( ( some_nat @ Summin )
       != ( vEBT_vebt_mint @ summary ) ) ).

% \<open>\<And>thesis. (\<And>summin. Some summin = vebt_mint summary \<Longrightarrow> thesis) \<Longrightarrow> thesis\<close>
thf(fact_357_VEBT_Oinject_I1_J,axiom,
    ! [X11: option4927543243414619207at_nat,X12: nat,X13: list_VEBT_VEBT,X14: vEBT_VEBT,Y11: option4927543243414619207at_nat,Y12: nat,Y13: list_VEBT_VEBT,Y14: vEBT_VEBT] :
      ( ( ( vEBT_Node @ X11 @ X12 @ X13 @ X14 )
        = ( vEBT_Node @ Y11 @ Y12 @ Y13 @ Y14 ) )
      = ( ( X11 = Y11 )
        & ( X12 = Y12 )
        & ( X13 = Y13 )
        & ( X14 = Y14 ) ) ) ).

% VEBT.inject(1)
thf(fact_358__092_060open_062_092_060And_062thesis_O_A_I_092_060And_062lx_O_ASome_Alx_A_061_Avebt__mint_A_ItreeList_A_B_Asummin_J_A_092_060Longrightarrow_062_Athesis_J_A_092_060Longrightarrow_062_Athesis_092_060close_062,axiom,
    ~ ! [Lx: nat] :
        ( ( some_nat @ Lx )
       != ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ treeList @ summin ) ) ) ).

% \<open>\<And>thesis. (\<And>lx. Some lx = vebt_mint (treeList ! summin) \<Longrightarrow> thesis) \<Longrightarrow> thesis\<close>
thf(fact_359_geqmaxNone,axiom,
    ! [Mi: nat,Ma: nat,Deg: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT,N2: nat,X: nat] :
      ( ( vEBT_invar_vebt @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ N2 )
     => ( ( ord_less_eq_nat @ Ma @ X )
       => ( ( vEBT_vebt_succ @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X )
          = none_nat ) ) ) ).

% geqmaxNone
thf(fact_360_misiz,axiom,
    ! [T: vEBT_VEBT,N2: nat,M: nat] :
      ( ( vEBT_invar_vebt @ T @ N2 )
     => ( ( ( some_nat @ M )
          = ( vEBT_vebt_mint @ T ) )
       => ( ord_less_nat @ M @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) ) ).

% misiz
thf(fact_361_helpyd,axiom,
    ! [T: vEBT_VEBT,N2: nat,X: nat,Y: nat] :
      ( ( vEBT_invar_vebt @ T @ N2 )
     => ( ( ( vEBT_vebt_succ @ T @ X )
          = ( some_nat @ Y ) )
       => ( ord_less_nat @ Y @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) ) ).

% helpyd
thf(fact_362_helpypredd,axiom,
    ! [T: vEBT_VEBT,N2: nat,X: nat,Y: nat] :
      ( ( vEBT_invar_vebt @ T @ N2 )
     => ( ( ( vEBT_vebt_pred @ T @ X )
          = ( some_nat @ Y ) )
       => ( ord_less_nat @ Y @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) ) ).

% helpypredd
thf(fact_363_pred__max,axiom,
    ! [Deg: nat,Ma: nat,X: nat,Mi: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
     => ( ( ord_less_nat @ Ma @ X )
       => ( ( vEBT_vebt_pred @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X )
          = ( some_nat @ Ma ) ) ) ) ).

% pred_max
thf(fact_364_succ__min,axiom,
    ! [Deg: nat,X: nat,Mi: nat,Ma: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
     => ( ( ord_less_nat @ X @ Mi )
       => ( ( vEBT_vebt_succ @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X )
          = ( some_nat @ Mi ) ) ) ) ).

% succ_min
thf(fact_365_nested__mint,axiom,
    ! [Mi: nat,Ma: nat,Deg: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT,N2: nat,Va: nat] :
      ( ( vEBT_invar_vebt @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ N2 )
     => ( ( N2
          = ( suc @ ( suc @ Va ) ) )
       => ( ~ ( ord_less_nat @ Ma @ Mi )
         => ( ( Ma != Mi )
           => ( ord_less_nat @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Va @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( suc @ ( divide_divide_nat @ Va @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) ) ) ) ) ) ).

% nested_mint
thf(fact_366_local_Opower__def,axiom,
    ( vEBT_VEBT_power
    = ( vEBT_V4262088993061758097ft_nat @ power_power_nat ) ) ).

% local.power_def
thf(fact_367_le__num__One__iff,axiom,
    ! [X: num] :
      ( ( ord_less_eq_num @ X @ one )
      = ( X = one ) ) ).

% le_num_One_iff
thf(fact_368_invar__vebt_Ointros_I2_J,axiom,
    ! [TreeList: list_VEBT_VEBT,N2: nat,Summary: vEBT_VEBT,M: nat,Deg: nat] :
      ( ! [X5: vEBT_VEBT] :
          ( ( member_VEBT_VEBT @ X5 @ ( set_VEBT_VEBT2 @ TreeList ) )
         => ( vEBT_invar_vebt @ X5 @ N2 ) )
     => ( ( vEBT_invar_vebt @ Summary @ M )
       => ( ( ( size_s6755466524823107622T_VEBT @ TreeList )
            = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
         => ( ( M = N2 )
           => ( ( Deg
                = ( plus_plus_nat @ N2 @ M ) )
             => ( ~ ? [X_1: nat] : ( vEBT_V8194947554948674370ptions @ Summary @ X_1 )
               => ( ! [X5: vEBT_VEBT] :
                      ( ( member_VEBT_VEBT @ X5 @ ( set_VEBT_VEBT2 @ TreeList ) )
                     => ~ ? [X_1: nat] : ( vEBT_V8194947554948674370ptions @ X5 @ X_1 ) )
                 => ( vEBT_invar_vebt @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Deg @ TreeList @ Summary ) @ Deg ) ) ) ) ) ) ) ) ).

% invar_vebt.intros(2)
thf(fact_369_invar__vebt_Ointros_I3_J,axiom,
    ! [TreeList: list_VEBT_VEBT,N2: nat,Summary: vEBT_VEBT,M: nat,Deg: nat] :
      ( ! [X5: vEBT_VEBT] :
          ( ( member_VEBT_VEBT @ X5 @ ( set_VEBT_VEBT2 @ TreeList ) )
         => ( vEBT_invar_vebt @ X5 @ N2 ) )
     => ( ( vEBT_invar_vebt @ Summary @ M )
       => ( ( ( size_s6755466524823107622T_VEBT @ TreeList )
            = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
         => ( ( M
              = ( suc @ N2 ) )
           => ( ( Deg
                = ( plus_plus_nat @ N2 @ M ) )
             => ( ~ ? [X_1: nat] : ( vEBT_V8194947554948674370ptions @ Summary @ X_1 )
               => ( ! [X5: vEBT_VEBT] :
                      ( ( member_VEBT_VEBT @ X5 @ ( set_VEBT_VEBT2 @ TreeList ) )
                     => ~ ? [X_1: nat] : ( vEBT_V8194947554948674370ptions @ X5 @ X_1 ) )
                 => ( vEBT_invar_vebt @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Deg @ TreeList @ Summary ) @ Deg ) ) ) ) ) ) ) ) ).

% invar_vebt.intros(3)
thf(fact_370_mint__corr,axiom,
    ! [T: vEBT_VEBT,N2: nat,X: nat] :
      ( ( vEBT_invar_vebt @ T @ N2 )
     => ( ( ( vEBT_vebt_mint @ T )
          = ( some_nat @ X ) )
       => ( vEBT_VEBT_min_in_set @ ( vEBT_VEBT_set_vebt @ T ) @ X ) ) ) ).

% mint_corr
thf(fact_371_mint__sound,axiom,
    ! [T: vEBT_VEBT,N2: nat,X: nat] :
      ( ( vEBT_invar_vebt @ T @ N2 )
     => ( ( vEBT_VEBT_min_in_set @ ( vEBT_VEBT_set_vebt @ T ) @ X )
       => ( ( vEBT_vebt_mint @ T )
          = ( some_nat @ X ) ) ) ) ).

% mint_sound
thf(fact_372_maxt__corr,axiom,
    ! [T: vEBT_VEBT,N2: nat,X: nat] :
      ( ( vEBT_invar_vebt @ T @ N2 )
     => ( ( ( vEBT_vebt_maxt @ T )
          = ( some_nat @ X ) )
       => ( vEBT_VEBT_max_in_set @ ( vEBT_VEBT_set_vebt @ T ) @ X ) ) ) ).

% maxt_corr
thf(fact_373_maxt__sound,axiom,
    ! [T: vEBT_VEBT,N2: nat,X: nat] :
      ( ( vEBT_invar_vebt @ T @ N2 )
     => ( ( vEBT_VEBT_max_in_set @ ( vEBT_VEBT_set_vebt @ T ) @ X )
       => ( ( vEBT_vebt_maxt @ T )
          = ( some_nat @ X ) ) ) ) ).

% maxt_sound
thf(fact_374_vebt__delete_Osimps_I7_J,axiom,
    ! [X: nat,Mi: nat,Ma: nat,Va: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT] :
      ( ( ( ( ord_less_nat @ X @ Mi )
          | ( ord_less_nat @ Ma @ X ) )
       => ( ( vEBT_vebt_delete @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList @ Summary ) @ X )
          = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList @ Summary ) ) )
      & ( ~ ( ( ord_less_nat @ X @ Mi )
            | ( ord_less_nat @ Ma @ X ) )
       => ( ( ( ( X = Mi )
              & ( X = Ma ) )
           => ( ( vEBT_vebt_delete @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList @ Summary ) @ X )
              = ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ Va ) ) @ TreeList @ Summary ) ) )
          & ( ~ ( ( X = Mi )
                & ( X = Ma ) )
           => ( ( vEBT_vebt_delete @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList @ Summary ) @ X )
              = ( if_VEBT_VEBT @ ( ord_less_nat @ ( vEBT_VEBT_high @ ( if_nat @ ( X = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) )
                @ ( if_VEBT_VEBT @ ( vEBT_VEBT_minNull @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if_nat @ ( X = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( X = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                  @ ( vEBT_Node
                    @ ( some_P7363390416028606310at_nat
                      @ ( product_Pair_nat_nat @ ( if_nat @ ( X = Mi ) @ ( if_nat @ ( X = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ Mi )
                        @ ( if_nat
                          @ ( ( ( X = Mi )
                             => ( ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) )
                                = Ma ) )
                            & ( ( X != Mi )
                             => ( X = Ma ) ) )
                          @ ( if_nat
                            @ ( ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ ( vEBT_VEBT_high @ ( if_nat @ ( X = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                              = none_nat )
                            @ ( if_nat @ ( X = Mi ) @ ( if_nat @ ( X = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ Mi )
                            @ ( plus_plus_nat @ ( times_times_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ ( vEBT_VEBT_high @ ( if_nat @ ( X = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ ( list_u1324408373059187874T_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if_nat @ ( X = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if_nat @ ( X = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( X = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary @ ( vEBT_VEBT_high @ ( if_nat @ ( X = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) )
                          @ Ma ) ) )
                    @ ( suc @ ( suc @ Va ) )
                    @ ( list_u1324408373059187874T_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if_nat @ ( X = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if_nat @ ( X = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( X = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                    @ ( vEBT_vebt_delete @ Summary @ ( vEBT_VEBT_high @ ( if_nat @ ( X = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                  @ ( vEBT_Node
                    @ ( some_P7363390416028606310at_nat
                      @ ( product_Pair_nat_nat @ ( if_nat @ ( X = Mi ) @ ( if_nat @ ( X = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ Mi )
                        @ ( if_nat
                          @ ( ( ( X = Mi )
                             => ( ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) )
                                = Ma ) )
                            & ( ( X != Mi )
                             => ( X = Ma ) ) )
                          @ ( plus_plus_nat @ ( times_times_nat @ ( vEBT_VEBT_high @ ( if_nat @ ( X = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ ( list_u1324408373059187874T_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if_nat @ ( X = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if_nat @ ( X = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( X = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_VEBT_high @ ( if_nat @ ( X = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) )
                          @ Ma ) ) )
                    @ ( suc @ ( suc @ Va ) )
                    @ ( list_u1324408373059187874T_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if_nat @ ( X = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if_nat @ ( X = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( X = Mi ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ X ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                    @ Summary ) )
                @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList @ Summary ) ) ) ) ) ) ) ).

% vebt_delete.simps(7)
thf(fact_375_valid__insert__both__member__options__add,axiom,
    ! [T: vEBT_VEBT,N2: nat,X: nat] :
      ( ( vEBT_invar_vebt @ T @ N2 )
     => ( ( ord_less_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
       => ( vEBT_V8194947554948674370ptions @ ( vEBT_vebt_insert @ T @ X ) @ X ) ) ) ).

% valid_insert_both_member_options_add
thf(fact_376_valid__insert__both__member__options__pres,axiom,
    ! [T: vEBT_VEBT,N2: nat,X: nat,Y: nat] :
      ( ( vEBT_invar_vebt @ T @ N2 )
     => ( ( ord_less_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
       => ( ( ord_less_nat @ Y @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
         => ( ( vEBT_V8194947554948674370ptions @ T @ X )
           => ( vEBT_V8194947554948674370ptions @ ( vEBT_vebt_insert @ T @ Y ) @ X ) ) ) ) ) ).

% valid_insert_both_member_options_pres
thf(fact_377_insert__simp__mima,axiom,
    ! [X: nat,Mi: nat,Ma: nat,Deg: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT] :
      ( ( ( X = Mi )
        | ( X = Ma ) )
     => ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
       => ( ( vEBT_vebt_insert @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X )
          = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) ) ) ) ).

% insert_simp_mima
thf(fact_378_member__inv,axiom,
    ! [Mi: nat,Ma: nat,Deg: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT,X: nat] :
      ( ( vEBT_vebt_member @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X )
     => ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
        & ( ( X = Mi )
          | ( X = Ma )
          | ( ( ord_less_nat @ X @ Ma )
            & ( ord_less_nat @ Mi @ X )
            & ( ord_less_nat @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) )
            & ( vEBT_vebt_member @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ).

% member_inv
thf(fact_379_set__swap,axiom,
    ! [I2: nat,Xs2: list_nat,J: nat] :
      ( ( ord_less_nat @ I2 @ ( size_size_list_nat @ Xs2 ) )
     => ( ( ord_less_nat @ J @ ( size_size_list_nat @ Xs2 ) )
       => ( ( set_nat2 @ ( list_update_nat @ ( list_update_nat @ Xs2 @ I2 @ ( nth_nat @ Xs2 @ J ) ) @ J @ ( nth_nat @ Xs2 @ I2 ) ) )
          = ( set_nat2 @ Xs2 ) ) ) ) ).

% set_swap
thf(fact_380_set__swap,axiom,
    ! [I2: nat,Xs2: list_VEBT_VEBT,J: nat] :
      ( ( ord_less_nat @ I2 @ ( size_s6755466524823107622T_VEBT @ Xs2 ) )
     => ( ( ord_less_nat @ J @ ( size_s6755466524823107622T_VEBT @ Xs2 ) )
       => ( ( set_VEBT_VEBT2 @ ( list_u1324408373059187874T_VEBT @ ( list_u1324408373059187874T_VEBT @ Xs2 @ I2 @ ( nth_VEBT_VEBT @ Xs2 @ J ) ) @ J @ ( nth_VEBT_VEBT @ Xs2 @ I2 ) ) )
          = ( set_VEBT_VEBT2 @ Xs2 ) ) ) ) ).

% set_swap
thf(fact_381_set__swap,axiom,
    ! [I2: nat,Xs2: list_o,J: nat] :
      ( ( ord_less_nat @ I2 @ ( size_size_list_o @ Xs2 ) )
     => ( ( ord_less_nat @ J @ ( size_size_list_o @ Xs2 ) )
       => ( ( set_o2 @ ( list_update_o @ ( list_update_o @ Xs2 @ I2 @ ( nth_o @ Xs2 @ J ) ) @ J @ ( nth_o @ Xs2 @ I2 ) ) )
          = ( set_o2 @ Xs2 ) ) ) ) ).

% set_swap
thf(fact_382_set__swap,axiom,
    ! [I2: nat,Xs2: list_int,J: nat] :
      ( ( ord_less_nat @ I2 @ ( size_size_list_int @ Xs2 ) )
     => ( ( ord_less_nat @ J @ ( size_size_list_int @ Xs2 ) )
       => ( ( set_int2 @ ( list_update_int @ ( list_update_int @ Xs2 @ I2 @ ( nth_int @ Xs2 @ J ) ) @ J @ ( nth_int @ Xs2 @ I2 ) ) )
          = ( set_int2 @ Xs2 ) ) ) ) ).

% set_swap
thf(fact_383_both__member__options__from__chilf__to__complete__tree,axiom,
    ! [X: nat,Deg: nat,TreeList: list_VEBT_VEBT,Mi: nat,Ma: nat,Summary: vEBT_VEBT] :
      ( ( ord_less_nat @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) )
     => ( ( ord_less_eq_nat @ one_one_nat @ Deg )
       => ( ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
         => ( vEBT_V8194947554948674370ptions @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X ) ) ) ) ).

% both_member_options_from_chilf_to_complete_tree
thf(fact_384_min__Null__member,axiom,
    ! [T: vEBT_VEBT,X: nat] :
      ( ( vEBT_VEBT_minNull @ T )
     => ~ ( vEBT_vebt_member @ T @ X ) ) ).

% min_Null_member
thf(fact_385_set__vebt_H__def,axiom,
    ( vEBT_VEBT_set_vebt
    = ( ^ [T2: vEBT_VEBT] : ( collect_nat @ ( vEBT_vebt_member @ T2 ) ) ) ) ).

% set_vebt'_def
thf(fact_386_valid__member__both__member__options,axiom,
    ! [T: vEBT_VEBT,N2: nat,X: nat] :
      ( ( vEBT_invar_vebt @ T @ N2 )
     => ( ( vEBT_V8194947554948674370ptions @ T @ X )
       => ( vEBT_vebt_member @ T @ X ) ) ) ).

% valid_member_both_member_options
thf(fact_387_both__member__options__equiv__member,axiom,
    ! [T: vEBT_VEBT,N2: nat,X: nat] :
      ( ( vEBT_invar_vebt @ T @ N2 )
     => ( ( vEBT_V8194947554948674370ptions @ T @ X )
        = ( vEBT_vebt_member @ T @ X ) ) ) ).

% both_member_options_equiv_member
thf(fact_388__C11_C,axiom,
    ord_less_eq_nat @ one_one_nat @ na ).

% "11"
thf(fact_389_maxt__member,axiom,
    ! [T: vEBT_VEBT,N2: nat,Maxi: nat] :
      ( ( vEBT_invar_vebt @ T @ N2 )
     => ( ( ( vEBT_vebt_maxt @ T )
          = ( some_nat @ Maxi ) )
       => ( vEBT_vebt_member @ T @ Maxi ) ) ) ).

% maxt_member
thf(fact_390_mint__member,axiom,
    ! [T: vEBT_VEBT,N2: nat,Maxi: nat] :
      ( ( vEBT_invar_vebt @ T @ N2 )
     => ( ( ( vEBT_vebt_mint @ T )
          = ( some_nat @ Maxi ) )
       => ( vEBT_vebt_member @ T @ Maxi ) ) ) ).

% mint_member
thf(fact_391_list__update__overwrite,axiom,
    ! [Xs2: list_VEBT_VEBT,I2: nat,X: vEBT_VEBT,Y: vEBT_VEBT] :
      ( ( list_u1324408373059187874T_VEBT @ ( list_u1324408373059187874T_VEBT @ Xs2 @ I2 @ X ) @ I2 @ Y )
      = ( list_u1324408373059187874T_VEBT @ Xs2 @ I2 @ Y ) ) ).

% list_update_overwrite
thf(fact_392_maxt__corr__help,axiom,
    ! [T: vEBT_VEBT,N2: nat,Maxi: nat,X: nat] :
      ( ( vEBT_invar_vebt @ T @ N2 )
     => ( ( ( vEBT_vebt_maxt @ T )
          = ( some_nat @ Maxi ) )
       => ( ( vEBT_vebt_member @ T @ X )
         => ( ord_less_eq_nat @ X @ Maxi ) ) ) ) ).

% maxt_corr_help
thf(fact_393_mint__corr__help,axiom,
    ! [T: vEBT_VEBT,N2: nat,Mini: nat,X: nat] :
      ( ( vEBT_invar_vebt @ T @ N2 )
     => ( ( ( vEBT_vebt_mint @ T )
          = ( some_nat @ Mini ) )
       => ( ( vEBT_vebt_member @ T @ X )
         => ( ord_less_eq_nat @ Mini @ X ) ) ) ) ).

% mint_corr_help
thf(fact_394__092_060open_062vebt__member_A_ItreeList_A_B_Asummin_J_Alx_092_060close_062,axiom,
    vEBT_vebt_member @ ( nth_VEBT_VEBT @ treeList @ summin ) @ lx ).

% \<open>vebt_member (treeList ! summin) lx\<close>
thf(fact_395_member__bound,axiom,
    ! [Tree: vEBT_VEBT,X: nat,N2: nat] :
      ( ( vEBT_vebt_member @ Tree @ X )
     => ( ( vEBT_invar_vebt @ Tree @ N2 )
       => ( ord_less_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) ) ).

% member_bound
thf(fact_396__092_060open_062vebt__member_Asummary_A_Ihigh_Ama_An_J_092_060close_062,axiom,
    vEBT_vebt_member @ summary @ ( vEBT_VEBT_high @ ma @ na ) ).

% \<open>vebt_member summary (high ma n)\<close>
thf(fact_397_power__one,axiom,
    ! [N2: nat] :
      ( ( power_power_rat @ one_one_rat @ N2 )
      = one_one_rat ) ).

% power_one
thf(fact_398_power__one,axiom,
    ! [N2: nat] :
      ( ( power_power_nat @ one_one_nat @ N2 )
      = one_one_nat ) ).

% power_one
thf(fact_399_power__one,axiom,
    ! [N2: nat] :
      ( ( power_power_real @ one_one_real @ N2 )
      = one_one_real ) ).

% power_one
thf(fact_400_power__one,axiom,
    ! [N2: nat] :
      ( ( power_power_int @ one_one_int @ N2 )
      = one_one_int ) ).

% power_one
thf(fact_401_power__one,axiom,
    ! [N2: nat] :
      ( ( power_power_complex @ one_one_complex @ N2 )
      = one_one_complex ) ).

% power_one
thf(fact_402_power__one__right,axiom,
    ! [A: nat] :
      ( ( power_power_nat @ A @ one_one_nat )
      = A ) ).

% power_one_right
thf(fact_403_power__one__right,axiom,
    ! [A: real] :
      ( ( power_power_real @ A @ one_one_nat )
      = A ) ).

% power_one_right
thf(fact_404_power__one__right,axiom,
    ! [A: int] :
      ( ( power_power_int @ A @ one_one_nat )
      = A ) ).

% power_one_right
thf(fact_405_power__one__right,axiom,
    ! [A: complex] :
      ( ( power_power_complex @ A @ one_one_nat )
      = A ) ).

% power_one_right
thf(fact_406_post__member__pre__member,axiom,
    ! [T: vEBT_VEBT,N2: nat,X: nat,Y: nat] :
      ( ( vEBT_invar_vebt @ T @ N2 )
     => ( ( ord_less_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
       => ( ( ord_less_nat @ Y @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
         => ( ( vEBT_vebt_member @ ( vEBT_vebt_insert @ T @ X ) @ Y )
           => ( ( vEBT_vebt_member @ T @ Y )
              | ( X = Y ) ) ) ) ) ) ).

% post_member_pre_member
thf(fact_407_length__list__update,axiom,
    ! [Xs2: list_VEBT_VEBT,I2: nat,X: vEBT_VEBT] :
      ( ( size_s6755466524823107622T_VEBT @ ( list_u1324408373059187874T_VEBT @ Xs2 @ I2 @ X ) )
      = ( size_s6755466524823107622T_VEBT @ Xs2 ) ) ).

% length_list_update
thf(fact_408_length__list__update,axiom,
    ! [Xs2: list_o,I2: nat,X: $o] :
      ( ( size_size_list_o @ ( list_update_o @ Xs2 @ I2 @ X ) )
      = ( size_size_list_o @ Xs2 ) ) ).

% length_list_update
thf(fact_409_length__list__update,axiom,
    ! [Xs2: list_int,I2: nat,X: int] :
      ( ( size_size_list_int @ ( list_update_int @ Xs2 @ I2 @ X ) )
      = ( size_size_list_int @ Xs2 ) ) ).

% length_list_update
thf(fact_410_member__correct,axiom,
    ! [T: vEBT_VEBT,N2: nat,X: nat] :
      ( ( vEBT_invar_vebt @ T @ N2 )
     => ( ( vEBT_vebt_member @ T @ X )
        = ( member_nat @ X @ ( vEBT_set_vebt @ T ) ) ) ) ).

% member_correct
thf(fact_411_nth__list__update__neq,axiom,
    ! [I2: nat,J: nat,Xs2: list_nat,X: nat] :
      ( ( I2 != J )
     => ( ( nth_nat @ ( list_update_nat @ Xs2 @ I2 @ X ) @ J )
        = ( nth_nat @ Xs2 @ J ) ) ) ).

% nth_list_update_neq
thf(fact_412_nth__list__update__neq,axiom,
    ! [I2: nat,J: nat,Xs2: list_int,X: int] :
      ( ( I2 != J )
     => ( ( nth_int @ ( list_update_int @ Xs2 @ I2 @ X ) @ J )
        = ( nth_int @ Xs2 @ J ) ) ) ).

% nth_list_update_neq
thf(fact_413_nth__list__update__neq,axiom,
    ! [I2: nat,J: nat,Xs2: list_VEBT_VEBT,X: vEBT_VEBT] :
      ( ( I2 != J )
     => ( ( nth_VEBT_VEBT @ ( list_u1324408373059187874T_VEBT @ Xs2 @ I2 @ X ) @ J )
        = ( nth_VEBT_VEBT @ Xs2 @ J ) ) ) ).

% nth_list_update_neq
thf(fact_414_list__update__id,axiom,
    ! [Xs2: list_nat,I2: nat] :
      ( ( list_update_nat @ Xs2 @ I2 @ ( nth_nat @ Xs2 @ I2 ) )
      = Xs2 ) ).

% list_update_id
thf(fact_415_list__update__id,axiom,
    ! [Xs2: list_int,I2: nat] :
      ( ( list_update_int @ Xs2 @ I2 @ ( nth_int @ Xs2 @ I2 ) )
      = Xs2 ) ).

% list_update_id
thf(fact_416_list__update__id,axiom,
    ! [Xs2: list_VEBT_VEBT,I2: nat] :
      ( ( list_u1324408373059187874T_VEBT @ Xs2 @ I2 @ ( nth_VEBT_VEBT @ Xs2 @ I2 ) )
      = Xs2 ) ).

% list_update_id
thf(fact_417_set__vebt__set__vebt_H__valid,axiom,
    ! [T: vEBT_VEBT,N2: nat] :
      ( ( vEBT_invar_vebt @ T @ N2 )
     => ( ( vEBT_set_vebt @ T )
        = ( vEBT_VEBT_set_vebt @ T ) ) ) ).

% set_vebt_set_vebt'_valid
thf(fact_418_set__n__deg__not__0,axiom,
    ! [TreeList: list_VEBT_VEBT,N2: nat,M: nat] :
      ( ! [X5: vEBT_VEBT] :
          ( ( member_VEBT_VEBT @ X5 @ ( set_VEBT_VEBT2 @ TreeList ) )
         => ( vEBT_invar_vebt @ X5 @ N2 ) )
     => ( ( ( size_s6755466524823107622T_VEBT @ TreeList )
          = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
       => ( ord_less_eq_nat @ one_one_nat @ N2 ) ) ) ).

% set_n_deg_not_0
thf(fact_419_one__eq__numeral__iff,axiom,
    ! [N2: num] :
      ( ( one_one_complex
        = ( numera6690914467698888265omplex @ N2 ) )
      = ( one = N2 ) ) ).

% one_eq_numeral_iff
thf(fact_420_one__eq__numeral__iff,axiom,
    ! [N2: num] :
      ( ( one_one_real
        = ( numeral_numeral_real @ N2 ) )
      = ( one = N2 ) ) ).

% one_eq_numeral_iff
thf(fact_421_one__eq__numeral__iff,axiom,
    ! [N2: num] :
      ( ( one_one_rat
        = ( numeral_numeral_rat @ N2 ) )
      = ( one = N2 ) ) ).

% one_eq_numeral_iff
thf(fact_422_one__eq__numeral__iff,axiom,
    ! [N2: num] :
      ( ( one_one_nat
        = ( numeral_numeral_nat @ N2 ) )
      = ( one = N2 ) ) ).

% one_eq_numeral_iff
thf(fact_423_one__eq__numeral__iff,axiom,
    ! [N2: num] :
      ( ( one_one_int
        = ( numeral_numeral_int @ N2 ) )
      = ( one = N2 ) ) ).

% one_eq_numeral_iff
thf(fact_424_numeral__eq__one__iff,axiom,
    ! [N2: num] :
      ( ( ( numera6690914467698888265omplex @ N2 )
        = one_one_complex )
      = ( N2 = one ) ) ).

% numeral_eq_one_iff
thf(fact_425_numeral__eq__one__iff,axiom,
    ! [N2: num] :
      ( ( ( numeral_numeral_real @ N2 )
        = one_one_real )
      = ( N2 = one ) ) ).

% numeral_eq_one_iff
thf(fact_426_numeral__eq__one__iff,axiom,
    ! [N2: num] :
      ( ( ( numeral_numeral_rat @ N2 )
        = one_one_rat )
      = ( N2 = one ) ) ).

% numeral_eq_one_iff
thf(fact_427_numeral__eq__one__iff,axiom,
    ! [N2: num] :
      ( ( ( numeral_numeral_nat @ N2 )
        = one_one_nat )
      = ( N2 = one ) ) ).

% numeral_eq_one_iff
thf(fact_428_numeral__eq__one__iff,axiom,
    ! [N2: num] :
      ( ( ( numeral_numeral_int @ N2 )
        = one_one_int )
      = ( N2 = one ) ) ).

% numeral_eq_one_iff
thf(fact_429_power__inject__exp,axiom,
    ! [A: real,M: nat,N2: nat] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ( power_power_real @ A @ M )
          = ( power_power_real @ A @ N2 ) )
        = ( M = N2 ) ) ) ).

% power_inject_exp
thf(fact_430_power__inject__exp,axiom,
    ! [A: rat,M: nat,N2: nat] :
      ( ( ord_less_rat @ one_one_rat @ A )
     => ( ( ( power_power_rat @ A @ M )
          = ( power_power_rat @ A @ N2 ) )
        = ( M = N2 ) ) ) ).

% power_inject_exp
thf(fact_431_power__inject__exp,axiom,
    ! [A: nat,M: nat,N2: nat] :
      ( ( ord_less_nat @ one_one_nat @ A )
     => ( ( ( power_power_nat @ A @ M )
          = ( power_power_nat @ A @ N2 ) )
        = ( M = N2 ) ) ) ).

% power_inject_exp
thf(fact_432_power__inject__exp,axiom,
    ! [A: int,M: nat,N2: nat] :
      ( ( ord_less_int @ one_one_int @ A )
     => ( ( ( power_power_int @ A @ M )
          = ( power_power_int @ A @ N2 ) )
        = ( M = N2 ) ) ) ).

% power_inject_exp
thf(fact_433_list__update__beyond,axiom,
    ! [Xs2: list_VEBT_VEBT,I2: nat,X: vEBT_VEBT] :
      ( ( ord_less_eq_nat @ ( size_s6755466524823107622T_VEBT @ Xs2 ) @ I2 )
     => ( ( list_u1324408373059187874T_VEBT @ Xs2 @ I2 @ X )
        = Xs2 ) ) ).

% list_update_beyond
thf(fact_434_list__update__beyond,axiom,
    ! [Xs2: list_o,I2: nat,X: $o] :
      ( ( ord_less_eq_nat @ ( size_size_list_o @ Xs2 ) @ I2 )
     => ( ( list_update_o @ Xs2 @ I2 @ X )
        = Xs2 ) ) ).

% list_update_beyond
thf(fact_435_list__update__beyond,axiom,
    ! [Xs2: list_int,I2: nat,X: int] :
      ( ( ord_less_eq_nat @ ( size_size_list_int @ Xs2 ) @ I2 )
     => ( ( list_update_int @ Xs2 @ I2 @ X )
        = Xs2 ) ) ).

% list_update_beyond
thf(fact_436_both__member__options__from__complete__tree__to__child,axiom,
    ! [Deg: nat,Mi: nat,Ma: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT,X: nat] :
      ( ( ord_less_eq_nat @ one_one_nat @ Deg )
     => ( ( vEBT_V8194947554948674370ptions @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X )
       => ( ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
          | ( X = Mi )
          | ( X = Ma ) ) ) ) ).

% both_member_options_from_complete_tree_to_child
thf(fact_437_power__strict__increasing__iff,axiom,
    ! [B: real,X: nat,Y: nat] :
      ( ( ord_less_real @ one_one_real @ B )
     => ( ( ord_less_real @ ( power_power_real @ B @ X ) @ ( power_power_real @ B @ Y ) )
        = ( ord_less_nat @ X @ Y ) ) ) ).

% power_strict_increasing_iff
thf(fact_438_power__strict__increasing__iff,axiom,
    ! [B: rat,X: nat,Y: nat] :
      ( ( ord_less_rat @ one_one_rat @ B )
     => ( ( ord_less_rat @ ( power_power_rat @ B @ X ) @ ( power_power_rat @ B @ Y ) )
        = ( ord_less_nat @ X @ Y ) ) ) ).

% power_strict_increasing_iff
thf(fact_439_power__strict__increasing__iff,axiom,
    ! [B: nat,X: nat,Y: nat] :
      ( ( ord_less_nat @ one_one_nat @ B )
     => ( ( ord_less_nat @ ( power_power_nat @ B @ X ) @ ( power_power_nat @ B @ Y ) )
        = ( ord_less_nat @ X @ Y ) ) ) ).

% power_strict_increasing_iff
thf(fact_440_power__strict__increasing__iff,axiom,
    ! [B: int,X: nat,Y: nat] :
      ( ( ord_less_int @ one_one_int @ B )
     => ( ( ord_less_int @ ( power_power_int @ B @ X ) @ ( power_power_int @ B @ Y ) )
        = ( ord_less_nat @ X @ Y ) ) ) ).

% power_strict_increasing_iff
thf(fact_441_nth__list__update__eq,axiom,
    ! [I2: nat,Xs2: list_nat,X: nat] :
      ( ( ord_less_nat @ I2 @ ( size_size_list_nat @ Xs2 ) )
     => ( ( nth_nat @ ( list_update_nat @ Xs2 @ I2 @ X ) @ I2 )
        = X ) ) ).

% nth_list_update_eq
thf(fact_442_nth__list__update__eq,axiom,
    ! [I2: nat,Xs2: list_VEBT_VEBT,X: vEBT_VEBT] :
      ( ( ord_less_nat @ I2 @ ( size_s6755466524823107622T_VEBT @ Xs2 ) )
     => ( ( nth_VEBT_VEBT @ ( list_u1324408373059187874T_VEBT @ Xs2 @ I2 @ X ) @ I2 )
        = X ) ) ).

% nth_list_update_eq
thf(fact_443_nth__list__update__eq,axiom,
    ! [I2: nat,Xs2: list_o,X: $o] :
      ( ( ord_less_nat @ I2 @ ( size_size_list_o @ Xs2 ) )
     => ( ( nth_o @ ( list_update_o @ Xs2 @ I2 @ X ) @ I2 )
        = X ) ) ).

% nth_list_update_eq
thf(fact_444_nth__list__update__eq,axiom,
    ! [I2: nat,Xs2: list_int,X: int] :
      ( ( ord_less_nat @ I2 @ ( size_size_list_int @ Xs2 ) )
     => ( ( nth_int @ ( list_update_int @ Xs2 @ I2 @ X ) @ I2 )
        = X ) ) ).

% nth_list_update_eq
thf(fact_445_one__add__one,axiom,
    ( ( plus_plus_complex @ one_one_complex @ one_one_complex )
    = ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ).

% one_add_one
thf(fact_446_one__add__one,axiom,
    ( ( plus_plus_real @ one_one_real @ one_one_real )
    = ( numeral_numeral_real @ ( bit0 @ one ) ) ) ).

% one_add_one
thf(fact_447_one__add__one,axiom,
    ( ( plus_plus_rat @ one_one_rat @ one_one_rat )
    = ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ).

% one_add_one
thf(fact_448_one__add__one,axiom,
    ( ( plus_plus_nat @ one_one_nat @ one_one_nat )
    = ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ).

% one_add_one
thf(fact_449_one__add__one,axiom,
    ( ( plus_plus_int @ one_one_int @ one_one_int )
    = ( numeral_numeral_int @ ( bit0 @ one ) ) ) ).

% one_add_one
thf(fact_450_power__increasing__iff,axiom,
    ! [B: real,X: nat,Y: nat] :
      ( ( ord_less_real @ one_one_real @ B )
     => ( ( ord_less_eq_real @ ( power_power_real @ B @ X ) @ ( power_power_real @ B @ Y ) )
        = ( ord_less_eq_nat @ X @ Y ) ) ) ).

% power_increasing_iff
thf(fact_451_power__increasing__iff,axiom,
    ! [B: rat,X: nat,Y: nat] :
      ( ( ord_less_rat @ one_one_rat @ B )
     => ( ( ord_less_eq_rat @ ( power_power_rat @ B @ X ) @ ( power_power_rat @ B @ Y ) )
        = ( ord_less_eq_nat @ X @ Y ) ) ) ).

% power_increasing_iff
thf(fact_452_power__increasing__iff,axiom,
    ! [B: nat,X: nat,Y: nat] :
      ( ( ord_less_nat @ one_one_nat @ B )
     => ( ( ord_less_eq_nat @ ( power_power_nat @ B @ X ) @ ( power_power_nat @ B @ Y ) )
        = ( ord_less_eq_nat @ X @ Y ) ) ) ).

% power_increasing_iff
thf(fact_453_power__increasing__iff,axiom,
    ! [B: int,X: nat,Y: nat] :
      ( ( ord_less_int @ one_one_int @ B )
     => ( ( ord_less_eq_int @ ( power_power_int @ B @ X ) @ ( power_power_int @ B @ Y ) )
        = ( ord_less_eq_nat @ X @ Y ) ) ) ).

% power_increasing_iff
thf(fact_454_Suc__1,axiom,
    ( ( suc @ one_one_nat )
    = ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ).

% Suc_1
thf(fact_455_one__plus__numeral,axiom,
    ! [N2: num] :
      ( ( plus_plus_complex @ one_one_complex @ ( numera6690914467698888265omplex @ N2 ) )
      = ( numera6690914467698888265omplex @ ( plus_plus_num @ one @ N2 ) ) ) ).

% one_plus_numeral
thf(fact_456_one__plus__numeral,axiom,
    ! [N2: num] :
      ( ( plus_plus_real @ one_one_real @ ( numeral_numeral_real @ N2 ) )
      = ( numeral_numeral_real @ ( plus_plus_num @ one @ N2 ) ) ) ).

% one_plus_numeral
thf(fact_457_one__plus__numeral,axiom,
    ! [N2: num] :
      ( ( plus_plus_rat @ one_one_rat @ ( numeral_numeral_rat @ N2 ) )
      = ( numeral_numeral_rat @ ( plus_plus_num @ one @ N2 ) ) ) ).

% one_plus_numeral
thf(fact_458_one__plus__numeral,axiom,
    ! [N2: num] :
      ( ( plus_plus_nat @ one_one_nat @ ( numeral_numeral_nat @ N2 ) )
      = ( numeral_numeral_nat @ ( plus_plus_num @ one @ N2 ) ) ) ).

% one_plus_numeral
thf(fact_459_one__plus__numeral,axiom,
    ! [N2: num] :
      ( ( plus_plus_int @ one_one_int @ ( numeral_numeral_int @ N2 ) )
      = ( numeral_numeral_int @ ( plus_plus_num @ one @ N2 ) ) ) ).

% one_plus_numeral
thf(fact_460_numeral__plus__one,axiom,
    ! [N2: num] :
      ( ( plus_plus_complex @ ( numera6690914467698888265omplex @ N2 ) @ one_one_complex )
      = ( numera6690914467698888265omplex @ ( plus_plus_num @ N2 @ one ) ) ) ).

% numeral_plus_one
thf(fact_461_numeral__plus__one,axiom,
    ! [N2: num] :
      ( ( plus_plus_real @ ( numeral_numeral_real @ N2 ) @ one_one_real )
      = ( numeral_numeral_real @ ( plus_plus_num @ N2 @ one ) ) ) ).

% numeral_plus_one
thf(fact_462_numeral__plus__one,axiom,
    ! [N2: num] :
      ( ( plus_plus_rat @ ( numeral_numeral_rat @ N2 ) @ one_one_rat )
      = ( numeral_numeral_rat @ ( plus_plus_num @ N2 @ one ) ) ) ).

% numeral_plus_one
thf(fact_463_numeral__plus__one,axiom,
    ! [N2: num] :
      ( ( plus_plus_nat @ ( numeral_numeral_nat @ N2 ) @ one_one_nat )
      = ( numeral_numeral_nat @ ( plus_plus_num @ N2 @ one ) ) ) ).

% numeral_plus_one
thf(fact_464_numeral__plus__one,axiom,
    ! [N2: num] :
      ( ( plus_plus_int @ ( numeral_numeral_int @ N2 ) @ one_one_int )
      = ( numeral_numeral_int @ ( plus_plus_num @ N2 @ one ) ) ) ).

% numeral_plus_one
thf(fact_465_numeral__le__one__iff,axiom,
    ! [N2: num] :
      ( ( ord_less_eq_real @ ( numeral_numeral_real @ N2 ) @ one_one_real )
      = ( ord_less_eq_num @ N2 @ one ) ) ).

% numeral_le_one_iff
thf(fact_466_numeral__le__one__iff,axiom,
    ! [N2: num] :
      ( ( ord_less_eq_rat @ ( numeral_numeral_rat @ N2 ) @ one_one_rat )
      = ( ord_less_eq_num @ N2 @ one ) ) ).

% numeral_le_one_iff
thf(fact_467_numeral__le__one__iff,axiom,
    ! [N2: num] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ N2 ) @ one_one_nat )
      = ( ord_less_eq_num @ N2 @ one ) ) ).

% numeral_le_one_iff
thf(fact_468_numeral__le__one__iff,axiom,
    ! [N2: num] :
      ( ( ord_less_eq_int @ ( numeral_numeral_int @ N2 ) @ one_one_int )
      = ( ord_less_eq_num @ N2 @ one ) ) ).

% numeral_le_one_iff
thf(fact_469_one__less__numeral__iff,axiom,
    ! [N2: num] :
      ( ( ord_less_real @ one_one_real @ ( numeral_numeral_real @ N2 ) )
      = ( ord_less_num @ one @ N2 ) ) ).

% one_less_numeral_iff
thf(fact_470_one__less__numeral__iff,axiom,
    ! [N2: num] :
      ( ( ord_less_rat @ one_one_rat @ ( numeral_numeral_rat @ N2 ) )
      = ( ord_less_num @ one @ N2 ) ) ).

% one_less_numeral_iff
thf(fact_471_one__less__numeral__iff,axiom,
    ! [N2: num] :
      ( ( ord_less_nat @ one_one_nat @ ( numeral_numeral_nat @ N2 ) )
      = ( ord_less_num @ one @ N2 ) ) ).

% one_less_numeral_iff
thf(fact_472_one__less__numeral__iff,axiom,
    ! [N2: num] :
      ( ( ord_less_int @ one_one_int @ ( numeral_numeral_int @ N2 ) )
      = ( ord_less_num @ one @ N2 ) ) ).

% one_less_numeral_iff
thf(fact_473_pred__member,axiom,
    ! [T: vEBT_VEBT,X: nat,Y: nat] :
      ( ( vEBT_is_pred_in_set @ ( vEBT_VEBT_set_vebt @ T ) @ X @ Y )
      = ( ( vEBT_vebt_member @ T @ Y )
        & ( ord_less_nat @ Y @ X )
        & ! [Z2: nat] :
            ( ( ( vEBT_vebt_member @ T @ Z2 )
              & ( ord_less_nat @ Z2 @ X ) )
           => ( ord_less_eq_nat @ Z2 @ Y ) ) ) ) ).

% pred_member
thf(fact_474_succ__member,axiom,
    ! [T: vEBT_VEBT,X: nat,Y: nat] :
      ( ( vEBT_is_succ_in_set @ ( vEBT_VEBT_set_vebt @ T ) @ X @ Y )
      = ( ( vEBT_vebt_member @ T @ Y )
        & ( ord_less_nat @ X @ Y )
        & ! [Z2: nat] :
            ( ( ( vEBT_vebt_member @ T @ Z2 )
              & ( ord_less_nat @ X @ Z2 ) )
           => ( ord_less_eq_nat @ Y @ Z2 ) ) ) ) ).

% succ_member
thf(fact_475_succ__corr,axiom,
    ! [T: vEBT_VEBT,N2: nat,X: nat,Sx: nat] :
      ( ( vEBT_invar_vebt @ T @ N2 )
     => ( ( ( vEBT_vebt_succ @ T @ X )
          = ( some_nat @ Sx ) )
        = ( vEBT_is_succ_in_set @ ( vEBT_VEBT_set_vebt @ T ) @ X @ Sx ) ) ) ).

% succ_corr
thf(fact_476_pred__corr,axiom,
    ! [T: vEBT_VEBT,N2: nat,X: nat,Px: nat] :
      ( ( vEBT_invar_vebt @ T @ N2 )
     => ( ( ( vEBT_vebt_pred @ T @ X )
          = ( some_nat @ Px ) )
        = ( vEBT_is_pred_in_set @ ( vEBT_VEBT_set_vebt @ T ) @ X @ Px ) ) ) ).

% pred_corr
thf(fact_477_le__numeral__extra_I4_J,axiom,
    ord_less_eq_real @ one_one_real @ one_one_real ).

% le_numeral_extra(4)
thf(fact_478_le__numeral__extra_I4_J,axiom,
    ord_less_eq_rat @ one_one_rat @ one_one_rat ).

% le_numeral_extra(4)
thf(fact_479_le__numeral__extra_I4_J,axiom,
    ord_less_eq_nat @ one_one_nat @ one_one_nat ).

% le_numeral_extra(4)
thf(fact_480_le__numeral__extra_I4_J,axiom,
    ord_less_eq_int @ one_one_int @ one_one_int ).

% le_numeral_extra(4)
thf(fact_481_less__numeral__extra_I4_J,axiom,
    ~ ( ord_less_real @ one_one_real @ one_one_real ) ).

% less_numeral_extra(4)
thf(fact_482_less__numeral__extra_I4_J,axiom,
    ~ ( ord_less_rat @ one_one_rat @ one_one_rat ) ).

% less_numeral_extra(4)
thf(fact_483_less__numeral__extra_I4_J,axiom,
    ~ ( ord_less_nat @ one_one_nat @ one_one_nat ) ).

% less_numeral_extra(4)
thf(fact_484_less__numeral__extra_I4_J,axiom,
    ~ ( ord_less_int @ one_one_int @ one_one_int ) ).

% less_numeral_extra(4)
thf(fact_485_one__le__numeral,axiom,
    ! [N2: num] : ( ord_less_eq_real @ one_one_real @ ( numeral_numeral_real @ N2 ) ) ).

% one_le_numeral
thf(fact_486_one__le__numeral,axiom,
    ! [N2: num] : ( ord_less_eq_rat @ one_one_rat @ ( numeral_numeral_rat @ N2 ) ) ).

% one_le_numeral
thf(fact_487_one__le__numeral,axiom,
    ! [N2: num] : ( ord_less_eq_nat @ one_one_nat @ ( numeral_numeral_nat @ N2 ) ) ).

% one_le_numeral
thf(fact_488_one__le__numeral,axiom,
    ! [N2: num] : ( ord_less_eq_int @ one_one_int @ ( numeral_numeral_int @ N2 ) ) ).

% one_le_numeral
thf(fact_489_not__numeral__less__one,axiom,
    ! [N2: num] :
      ~ ( ord_less_real @ ( numeral_numeral_real @ N2 ) @ one_one_real ) ).

% not_numeral_less_one
thf(fact_490_not__numeral__less__one,axiom,
    ! [N2: num] :
      ~ ( ord_less_rat @ ( numeral_numeral_rat @ N2 ) @ one_one_rat ) ).

% not_numeral_less_one
thf(fact_491_not__numeral__less__one,axiom,
    ! [N2: num] :
      ~ ( ord_less_nat @ ( numeral_numeral_nat @ N2 ) @ one_one_nat ) ).

% not_numeral_less_one
thf(fact_492_not__numeral__less__one,axiom,
    ! [N2: num] :
      ~ ( ord_less_int @ ( numeral_numeral_int @ N2 ) @ one_one_int ) ).

% not_numeral_less_one
thf(fact_493_numeral__One,axiom,
    ( ( numera6690914467698888265omplex @ one )
    = one_one_complex ) ).

% numeral_One
thf(fact_494_numeral__One,axiom,
    ( ( numeral_numeral_real @ one )
    = one_one_real ) ).

% numeral_One
thf(fact_495_numeral__One,axiom,
    ( ( numeral_numeral_rat @ one )
    = one_one_rat ) ).

% numeral_One
thf(fact_496_numeral__One,axiom,
    ( ( numeral_numeral_nat @ one )
    = one_one_nat ) ).

% numeral_One
thf(fact_497_numeral__One,axiom,
    ( ( numeral_numeral_int @ one )
    = one_one_int ) ).

% numeral_One
thf(fact_498_one__plus__numeral__commute,axiom,
    ! [X: num] :
      ( ( plus_plus_complex @ one_one_complex @ ( numera6690914467698888265omplex @ X ) )
      = ( plus_plus_complex @ ( numera6690914467698888265omplex @ X ) @ one_one_complex ) ) ).

% one_plus_numeral_commute
thf(fact_499_one__plus__numeral__commute,axiom,
    ! [X: num] :
      ( ( plus_plus_real @ one_one_real @ ( numeral_numeral_real @ X ) )
      = ( plus_plus_real @ ( numeral_numeral_real @ X ) @ one_one_real ) ) ).

% one_plus_numeral_commute
thf(fact_500_one__plus__numeral__commute,axiom,
    ! [X: num] :
      ( ( plus_plus_rat @ one_one_rat @ ( numeral_numeral_rat @ X ) )
      = ( plus_plus_rat @ ( numeral_numeral_rat @ X ) @ one_one_rat ) ) ).

% one_plus_numeral_commute
thf(fact_501_one__plus__numeral__commute,axiom,
    ! [X: num] :
      ( ( plus_plus_nat @ one_one_nat @ ( numeral_numeral_nat @ X ) )
      = ( plus_plus_nat @ ( numeral_numeral_nat @ X ) @ one_one_nat ) ) ).

% one_plus_numeral_commute
thf(fact_502_one__plus__numeral__commute,axiom,
    ! [X: num] :
      ( ( plus_plus_int @ one_one_int @ ( numeral_numeral_int @ X ) )
      = ( plus_plus_int @ ( numeral_numeral_int @ X ) @ one_one_int ) ) ).

% one_plus_numeral_commute
thf(fact_503_one__le__power,axiom,
    ! [A: real,N2: nat] :
      ( ( ord_less_eq_real @ one_one_real @ A )
     => ( ord_less_eq_real @ one_one_real @ ( power_power_real @ A @ N2 ) ) ) ).

% one_le_power
thf(fact_504_one__le__power,axiom,
    ! [A: rat,N2: nat] :
      ( ( ord_less_eq_rat @ one_one_rat @ A )
     => ( ord_less_eq_rat @ one_one_rat @ ( power_power_rat @ A @ N2 ) ) ) ).

% one_le_power
thf(fact_505_one__le__power,axiom,
    ! [A: nat,N2: nat] :
      ( ( ord_less_eq_nat @ one_one_nat @ A )
     => ( ord_less_eq_nat @ one_one_nat @ ( power_power_nat @ A @ N2 ) ) ) ).

% one_le_power
thf(fact_506_one__le__power,axiom,
    ! [A: int,N2: nat] :
      ( ( ord_less_eq_int @ one_one_int @ A )
     => ( ord_less_eq_int @ one_one_int @ ( power_power_int @ A @ N2 ) ) ) ).

% one_le_power
thf(fact_507_left__right__inverse__power,axiom,
    ! [X: complex,Y: complex,N2: nat] :
      ( ( ( times_times_complex @ X @ Y )
        = one_one_complex )
     => ( ( times_times_complex @ ( power_power_complex @ X @ N2 ) @ ( power_power_complex @ Y @ N2 ) )
        = one_one_complex ) ) ).

% left_right_inverse_power
thf(fact_508_left__right__inverse__power,axiom,
    ! [X: real,Y: real,N2: nat] :
      ( ( ( times_times_real @ X @ Y )
        = one_one_real )
     => ( ( times_times_real @ ( power_power_real @ X @ N2 ) @ ( power_power_real @ Y @ N2 ) )
        = one_one_real ) ) ).

% left_right_inverse_power
thf(fact_509_left__right__inverse__power,axiom,
    ! [X: rat,Y: rat,N2: nat] :
      ( ( ( times_times_rat @ X @ Y )
        = one_one_rat )
     => ( ( times_times_rat @ ( power_power_rat @ X @ N2 ) @ ( power_power_rat @ Y @ N2 ) )
        = one_one_rat ) ) ).

% left_right_inverse_power
thf(fact_510_left__right__inverse__power,axiom,
    ! [X: nat,Y: nat,N2: nat] :
      ( ( ( times_times_nat @ X @ Y )
        = one_one_nat )
     => ( ( times_times_nat @ ( power_power_nat @ X @ N2 ) @ ( power_power_nat @ Y @ N2 ) )
        = one_one_nat ) ) ).

% left_right_inverse_power
thf(fact_511_left__right__inverse__power,axiom,
    ! [X: int,Y: int,N2: nat] :
      ( ( ( times_times_int @ X @ Y )
        = one_one_int )
     => ( ( times_times_int @ ( power_power_int @ X @ N2 ) @ ( power_power_int @ Y @ N2 ) )
        = one_one_int ) ) ).

% left_right_inverse_power
thf(fact_512_power__one__over,axiom,
    ! [A: complex,N2: nat] :
      ( ( power_power_complex @ ( divide1717551699836669952omplex @ one_one_complex @ A ) @ N2 )
      = ( divide1717551699836669952omplex @ one_one_complex @ ( power_power_complex @ A @ N2 ) ) ) ).

% power_one_over
thf(fact_513_power__one__over,axiom,
    ! [A: real,N2: nat] :
      ( ( power_power_real @ ( divide_divide_real @ one_one_real @ A ) @ N2 )
      = ( divide_divide_real @ one_one_real @ ( power_power_real @ A @ N2 ) ) ) ).

% power_one_over
thf(fact_514_power__one__over,axiom,
    ! [A: rat,N2: nat] :
      ( ( power_power_rat @ ( divide_divide_rat @ one_one_rat @ A ) @ N2 )
      = ( divide_divide_rat @ one_one_rat @ ( power_power_rat @ A @ N2 ) ) ) ).

% power_one_over
thf(fact_515_numerals_I1_J,axiom,
    ( ( numeral_numeral_nat @ one )
    = one_one_nat ) ).

% numerals(1)
thf(fact_516_power__less__power__Suc,axiom,
    ! [A: real,N2: nat] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ord_less_real @ ( power_power_real @ A @ N2 ) @ ( times_times_real @ A @ ( power_power_real @ A @ N2 ) ) ) ) ).

% power_less_power_Suc
thf(fact_517_power__less__power__Suc,axiom,
    ! [A: rat,N2: nat] :
      ( ( ord_less_rat @ one_one_rat @ A )
     => ( ord_less_rat @ ( power_power_rat @ A @ N2 ) @ ( times_times_rat @ A @ ( power_power_rat @ A @ N2 ) ) ) ) ).

% power_less_power_Suc
thf(fact_518_power__less__power__Suc,axiom,
    ! [A: nat,N2: nat] :
      ( ( ord_less_nat @ one_one_nat @ A )
     => ( ord_less_nat @ ( power_power_nat @ A @ N2 ) @ ( times_times_nat @ A @ ( power_power_nat @ A @ N2 ) ) ) ) ).

% power_less_power_Suc
thf(fact_519_power__less__power__Suc,axiom,
    ! [A: int,N2: nat] :
      ( ( ord_less_int @ one_one_int @ A )
     => ( ord_less_int @ ( power_power_int @ A @ N2 ) @ ( times_times_int @ A @ ( power_power_int @ A @ N2 ) ) ) ) ).

% power_less_power_Suc
thf(fact_520_power__gt1__lemma,axiom,
    ! [A: real,N2: nat] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ord_less_real @ one_one_real @ ( times_times_real @ A @ ( power_power_real @ A @ N2 ) ) ) ) ).

% power_gt1_lemma
thf(fact_521_power__gt1__lemma,axiom,
    ! [A: rat,N2: nat] :
      ( ( ord_less_rat @ one_one_rat @ A )
     => ( ord_less_rat @ one_one_rat @ ( times_times_rat @ A @ ( power_power_rat @ A @ N2 ) ) ) ) ).

% power_gt1_lemma
thf(fact_522_power__gt1__lemma,axiom,
    ! [A: nat,N2: nat] :
      ( ( ord_less_nat @ one_one_nat @ A )
     => ( ord_less_nat @ one_one_nat @ ( times_times_nat @ A @ ( power_power_nat @ A @ N2 ) ) ) ) ).

% power_gt1_lemma
thf(fact_523_power__gt1__lemma,axiom,
    ! [A: int,N2: nat] :
      ( ( ord_less_int @ one_one_int @ A )
     => ( ord_less_int @ one_one_int @ ( times_times_int @ A @ ( power_power_int @ A @ N2 ) ) ) ) ).

% power_gt1_lemma
thf(fact_524_power__gt1,axiom,
    ! [A: real,N2: nat] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ord_less_real @ one_one_real @ ( power_power_real @ A @ ( suc @ N2 ) ) ) ) ).

% power_gt1
thf(fact_525_power__gt1,axiom,
    ! [A: rat,N2: nat] :
      ( ( ord_less_rat @ one_one_rat @ A )
     => ( ord_less_rat @ one_one_rat @ ( power_power_rat @ A @ ( suc @ N2 ) ) ) ) ).

% power_gt1
thf(fact_526_power__gt1,axiom,
    ! [A: nat,N2: nat] :
      ( ( ord_less_nat @ one_one_nat @ A )
     => ( ord_less_nat @ one_one_nat @ ( power_power_nat @ A @ ( suc @ N2 ) ) ) ) ).

% power_gt1
thf(fact_527_power__gt1,axiom,
    ! [A: int,N2: nat] :
      ( ( ord_less_int @ one_one_int @ A )
     => ( ord_less_int @ one_one_int @ ( power_power_int @ A @ ( suc @ N2 ) ) ) ) ).

% power_gt1
thf(fact_528_power__strict__increasing,axiom,
    ! [N2: nat,N4: nat,A: real] :
      ( ( ord_less_nat @ N2 @ N4 )
     => ( ( ord_less_real @ one_one_real @ A )
       => ( ord_less_real @ ( power_power_real @ A @ N2 ) @ ( power_power_real @ A @ N4 ) ) ) ) ).

% power_strict_increasing
thf(fact_529_power__strict__increasing,axiom,
    ! [N2: nat,N4: nat,A: rat] :
      ( ( ord_less_nat @ N2 @ N4 )
     => ( ( ord_less_rat @ one_one_rat @ A )
       => ( ord_less_rat @ ( power_power_rat @ A @ N2 ) @ ( power_power_rat @ A @ N4 ) ) ) ) ).

% power_strict_increasing
thf(fact_530_power__strict__increasing,axiom,
    ! [N2: nat,N4: nat,A: nat] :
      ( ( ord_less_nat @ N2 @ N4 )
     => ( ( ord_less_nat @ one_one_nat @ A )
       => ( ord_less_nat @ ( power_power_nat @ A @ N2 ) @ ( power_power_nat @ A @ N4 ) ) ) ) ).

% power_strict_increasing
thf(fact_531_power__strict__increasing,axiom,
    ! [N2: nat,N4: nat,A: int] :
      ( ( ord_less_nat @ N2 @ N4 )
     => ( ( ord_less_int @ one_one_int @ A )
       => ( ord_less_int @ ( power_power_int @ A @ N2 ) @ ( power_power_int @ A @ N4 ) ) ) ) ).

% power_strict_increasing
thf(fact_532_power__less__imp__less__exp,axiom,
    ! [A: real,M: nat,N2: nat] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ord_less_real @ ( power_power_real @ A @ M ) @ ( power_power_real @ A @ N2 ) )
       => ( ord_less_nat @ M @ N2 ) ) ) ).

% power_less_imp_less_exp
thf(fact_533_power__less__imp__less__exp,axiom,
    ! [A: rat,M: nat,N2: nat] :
      ( ( ord_less_rat @ one_one_rat @ A )
     => ( ( ord_less_rat @ ( power_power_rat @ A @ M ) @ ( power_power_rat @ A @ N2 ) )
       => ( ord_less_nat @ M @ N2 ) ) ) ).

% power_less_imp_less_exp
thf(fact_534_power__less__imp__less__exp,axiom,
    ! [A: nat,M: nat,N2: nat] :
      ( ( ord_less_nat @ one_one_nat @ A )
     => ( ( ord_less_nat @ ( power_power_nat @ A @ M ) @ ( power_power_nat @ A @ N2 ) )
       => ( ord_less_nat @ M @ N2 ) ) ) ).

% power_less_imp_less_exp
thf(fact_535_power__less__imp__less__exp,axiom,
    ! [A: int,M: nat,N2: nat] :
      ( ( ord_less_int @ one_one_int @ A )
     => ( ( ord_less_int @ ( power_power_int @ A @ M ) @ ( power_power_int @ A @ N2 ) )
       => ( ord_less_nat @ M @ N2 ) ) ) ).

% power_less_imp_less_exp
thf(fact_536_power__increasing,axiom,
    ! [N2: nat,N4: nat,A: real] :
      ( ( ord_less_eq_nat @ N2 @ N4 )
     => ( ( ord_less_eq_real @ one_one_real @ A )
       => ( ord_less_eq_real @ ( power_power_real @ A @ N2 ) @ ( power_power_real @ A @ N4 ) ) ) ) ).

% power_increasing
thf(fact_537_power__increasing,axiom,
    ! [N2: nat,N4: nat,A: rat] :
      ( ( ord_less_eq_nat @ N2 @ N4 )
     => ( ( ord_less_eq_rat @ one_one_rat @ A )
       => ( ord_less_eq_rat @ ( power_power_rat @ A @ N2 ) @ ( power_power_rat @ A @ N4 ) ) ) ) ).

% power_increasing
thf(fact_538_power__increasing,axiom,
    ! [N2: nat,N4: nat,A: nat] :
      ( ( ord_less_eq_nat @ N2 @ N4 )
     => ( ( ord_less_eq_nat @ one_one_nat @ A )
       => ( ord_less_eq_nat @ ( power_power_nat @ A @ N2 ) @ ( power_power_nat @ A @ N4 ) ) ) ) ).

% power_increasing
thf(fact_539_power__increasing,axiom,
    ! [N2: nat,N4: nat,A: int] :
      ( ( ord_less_eq_nat @ N2 @ N4 )
     => ( ( ord_less_eq_int @ one_one_int @ A )
       => ( ord_less_eq_int @ ( power_power_int @ A @ N2 ) @ ( power_power_int @ A @ N4 ) ) ) ) ).

% power_increasing
thf(fact_540_subset__code_I1_J,axiom,
    ! [Xs2: list_complex,B3: set_complex] :
      ( ( ord_le211207098394363844omplex @ ( set_complex2 @ Xs2 ) @ B3 )
      = ( ! [X3: complex] :
            ( ( member_complex @ X3 @ ( set_complex2 @ Xs2 ) )
           => ( member_complex @ X3 @ B3 ) ) ) ) ).

% subset_code(1)
thf(fact_541_subset__code_I1_J,axiom,
    ! [Xs2: list_real,B3: set_real] :
      ( ( ord_less_eq_set_real @ ( set_real2 @ Xs2 ) @ B3 )
      = ( ! [X3: real] :
            ( ( member_real @ X3 @ ( set_real2 @ Xs2 ) )
           => ( member_real @ X3 @ B3 ) ) ) ) ).

% subset_code(1)
thf(fact_542_subset__code_I1_J,axiom,
    ! [Xs2: list_set_nat,B3: set_set_nat] :
      ( ( ord_le6893508408891458716et_nat @ ( set_set_nat2 @ Xs2 ) @ B3 )
      = ( ! [X3: set_nat] :
            ( ( member_set_nat @ X3 @ ( set_set_nat2 @ Xs2 ) )
           => ( member_set_nat @ X3 @ B3 ) ) ) ) ).

% subset_code(1)
thf(fact_543_subset__code_I1_J,axiom,
    ! [Xs2: list_nat,B3: set_nat] :
      ( ( ord_less_eq_set_nat @ ( set_nat2 @ Xs2 ) @ B3 )
      = ( ! [X3: nat] :
            ( ( member_nat @ X3 @ ( set_nat2 @ Xs2 ) )
           => ( member_nat @ X3 @ B3 ) ) ) ) ).

% subset_code(1)
thf(fact_544_subset__code_I1_J,axiom,
    ! [Xs2: list_VEBT_VEBT,B3: set_VEBT_VEBT] :
      ( ( ord_le4337996190870823476T_VEBT @ ( set_VEBT_VEBT2 @ Xs2 ) @ B3 )
      = ( ! [X3: vEBT_VEBT] :
            ( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ Xs2 ) )
           => ( member_VEBT_VEBT @ X3 @ B3 ) ) ) ) ).

% subset_code(1)
thf(fact_545_subset__code_I1_J,axiom,
    ! [Xs2: list_int,B3: set_int] :
      ( ( ord_less_eq_set_int @ ( set_int2 @ Xs2 ) @ B3 )
      = ( ! [X3: int] :
            ( ( member_int @ X3 @ ( set_int2 @ Xs2 ) )
           => ( member_int @ X3 @ B3 ) ) ) ) ).

% subset_code(1)
thf(fact_546_Ex__list__of__length,axiom,
    ! [N2: nat] :
    ? [Xs3: list_VEBT_VEBT] :
      ( ( size_s6755466524823107622T_VEBT @ Xs3 )
      = N2 ) ).

% Ex_list_of_length
thf(fact_547_Ex__list__of__length,axiom,
    ! [N2: nat] :
    ? [Xs3: list_o] :
      ( ( size_size_list_o @ Xs3 )
      = N2 ) ).

% Ex_list_of_length
thf(fact_548_Ex__list__of__length,axiom,
    ! [N2: nat] :
    ? [Xs3: list_int] :
      ( ( size_size_list_int @ Xs3 )
      = N2 ) ).

% Ex_list_of_length
thf(fact_549_neq__if__length__neq,axiom,
    ! [Xs2: list_VEBT_VEBT,Ys: list_VEBT_VEBT] :
      ( ( ( size_s6755466524823107622T_VEBT @ Xs2 )
       != ( size_s6755466524823107622T_VEBT @ Ys ) )
     => ( Xs2 != Ys ) ) ).

% neq_if_length_neq
thf(fact_550_neq__if__length__neq,axiom,
    ! [Xs2: list_o,Ys: list_o] :
      ( ( ( size_size_list_o @ Xs2 )
       != ( size_size_list_o @ Ys ) )
     => ( Xs2 != Ys ) ) ).

% neq_if_length_neq
thf(fact_551_neq__if__length__neq,axiom,
    ! [Xs2: list_int,Ys: list_int] :
      ( ( ( size_size_list_int @ Xs2 )
       != ( size_size_list_int @ Ys ) )
     => ( Xs2 != Ys ) ) ).

% neq_if_length_neq
thf(fact_552_list__update__swap,axiom,
    ! [I2: nat,I4: nat,Xs2: list_VEBT_VEBT,X: vEBT_VEBT,X7: vEBT_VEBT] :
      ( ( I2 != I4 )
     => ( ( list_u1324408373059187874T_VEBT @ ( list_u1324408373059187874T_VEBT @ Xs2 @ I2 @ X ) @ I4 @ X7 )
        = ( list_u1324408373059187874T_VEBT @ ( list_u1324408373059187874T_VEBT @ Xs2 @ I4 @ X7 ) @ I2 @ X ) ) ) ).

% list_update_swap
thf(fact_553_power__le__imp__le__exp,axiom,
    ! [A: real,M: nat,N2: nat] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ord_less_eq_real @ ( power_power_real @ A @ M ) @ ( power_power_real @ A @ N2 ) )
       => ( ord_less_eq_nat @ M @ N2 ) ) ) ).

% power_le_imp_le_exp
thf(fact_554_power__le__imp__le__exp,axiom,
    ! [A: rat,M: nat,N2: nat] :
      ( ( ord_less_rat @ one_one_rat @ A )
     => ( ( ord_less_eq_rat @ ( power_power_rat @ A @ M ) @ ( power_power_rat @ A @ N2 ) )
       => ( ord_less_eq_nat @ M @ N2 ) ) ) ).

% power_le_imp_le_exp
thf(fact_555_power__le__imp__le__exp,axiom,
    ! [A: nat,M: nat,N2: nat] :
      ( ( ord_less_nat @ one_one_nat @ A )
     => ( ( ord_less_eq_nat @ ( power_power_nat @ A @ M ) @ ( power_power_nat @ A @ N2 ) )
       => ( ord_less_eq_nat @ M @ N2 ) ) ) ).

% power_le_imp_le_exp
thf(fact_556_power__le__imp__le__exp,axiom,
    ! [A: int,M: nat,N2: nat] :
      ( ( ord_less_int @ one_one_int @ A )
     => ( ( ord_less_eq_int @ ( power_power_int @ A @ M ) @ ( power_power_int @ A @ N2 ) )
       => ( ord_less_eq_nat @ M @ N2 ) ) ) ).

% power_le_imp_le_exp
thf(fact_557_one__power2,axiom,
    ( ( power_power_rat @ one_one_rat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = one_one_rat ) ).

% one_power2
thf(fact_558_one__power2,axiom,
    ( ( power_power_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = one_one_nat ) ).

% one_power2
thf(fact_559_one__power2,axiom,
    ( ( power_power_real @ one_one_real @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = one_one_real ) ).

% one_power2
thf(fact_560_one__power2,axiom,
    ( ( power_power_int @ one_one_int @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = one_one_int ) ).

% one_power2
thf(fact_561_one__power2,axiom,
    ( ( power_power_complex @ one_one_complex @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = one_one_complex ) ).

% one_power2
thf(fact_562_nat__1__add__1,axiom,
    ( ( plus_plus_nat @ one_one_nat @ one_one_nat )
    = ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ).

% nat_1_add_1
thf(fact_563_length__induct,axiom,
    ! [P: list_VEBT_VEBT > $o,Xs2: list_VEBT_VEBT] :
      ( ! [Xs3: list_VEBT_VEBT] :
          ( ! [Ys2: list_VEBT_VEBT] :
              ( ( ord_less_nat @ ( size_s6755466524823107622T_VEBT @ Ys2 ) @ ( size_s6755466524823107622T_VEBT @ Xs3 ) )
             => ( P @ Ys2 ) )
         => ( P @ Xs3 ) )
     => ( P @ Xs2 ) ) ).

% length_induct
thf(fact_564_length__induct,axiom,
    ! [P: list_o > $o,Xs2: list_o] :
      ( ! [Xs3: list_o] :
          ( ! [Ys2: list_o] :
              ( ( ord_less_nat @ ( size_size_list_o @ Ys2 ) @ ( size_size_list_o @ Xs3 ) )
             => ( P @ Ys2 ) )
         => ( P @ Xs3 ) )
     => ( P @ Xs2 ) ) ).

% length_induct
thf(fact_565_length__induct,axiom,
    ! [P: list_int > $o,Xs2: list_int] :
      ( ! [Xs3: list_int] :
          ( ! [Ys2: list_int] :
              ( ( ord_less_nat @ ( size_size_list_int @ Ys2 ) @ ( size_size_list_int @ Xs3 ) )
             => ( P @ Ys2 ) )
         => ( P @ Xs3 ) )
     => ( P @ Xs2 ) ) ).

% length_induct
thf(fact_566_set__update__subsetI,axiom,
    ! [Xs2: list_complex,A2: set_complex,X: complex,I2: nat] :
      ( ( ord_le211207098394363844omplex @ ( set_complex2 @ Xs2 ) @ A2 )
     => ( ( member_complex @ X @ A2 )
       => ( ord_le211207098394363844omplex @ ( set_complex2 @ ( list_update_complex @ Xs2 @ I2 @ X ) ) @ A2 ) ) ) ).

% set_update_subsetI
thf(fact_567_set__update__subsetI,axiom,
    ! [Xs2: list_real,A2: set_real,X: real,I2: nat] :
      ( ( ord_less_eq_set_real @ ( set_real2 @ Xs2 ) @ A2 )
     => ( ( member_real @ X @ A2 )
       => ( ord_less_eq_set_real @ ( set_real2 @ ( list_update_real @ Xs2 @ I2 @ X ) ) @ A2 ) ) ) ).

% set_update_subsetI
thf(fact_568_set__update__subsetI,axiom,
    ! [Xs2: list_set_nat,A2: set_set_nat,X: set_nat,I2: nat] :
      ( ( ord_le6893508408891458716et_nat @ ( set_set_nat2 @ Xs2 ) @ A2 )
     => ( ( member_set_nat @ X @ A2 )
       => ( ord_le6893508408891458716et_nat @ ( set_set_nat2 @ ( list_update_set_nat @ Xs2 @ I2 @ X ) ) @ A2 ) ) ) ).

% set_update_subsetI
thf(fact_569_set__update__subsetI,axiom,
    ! [Xs2: list_nat,A2: set_nat,X: nat,I2: nat] :
      ( ( ord_less_eq_set_nat @ ( set_nat2 @ Xs2 ) @ A2 )
     => ( ( member_nat @ X @ A2 )
       => ( ord_less_eq_set_nat @ ( set_nat2 @ ( list_update_nat @ Xs2 @ I2 @ X ) ) @ A2 ) ) ) ).

% set_update_subsetI
thf(fact_570_set__update__subsetI,axiom,
    ! [Xs2: list_VEBT_VEBT,A2: set_VEBT_VEBT,X: vEBT_VEBT,I2: nat] :
      ( ( ord_le4337996190870823476T_VEBT @ ( set_VEBT_VEBT2 @ Xs2 ) @ A2 )
     => ( ( member_VEBT_VEBT @ X @ A2 )
       => ( ord_le4337996190870823476T_VEBT @ ( set_VEBT_VEBT2 @ ( list_u1324408373059187874T_VEBT @ Xs2 @ I2 @ X ) ) @ A2 ) ) ) ).

% set_update_subsetI
thf(fact_571_set__update__subsetI,axiom,
    ! [Xs2: list_int,A2: set_int,X: int,I2: nat] :
      ( ( ord_less_eq_set_int @ ( set_int2 @ Xs2 ) @ A2 )
     => ( ( member_int @ X @ A2 )
       => ( ord_less_eq_set_int @ ( set_int2 @ ( list_update_int @ Xs2 @ I2 @ X ) ) @ A2 ) ) ) ).

% set_update_subsetI
thf(fact_572_ex__power__ivl2,axiom,
    ! [B: nat,K: nat] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B )
     => ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K )
       => ? [N: nat] :
            ( ( ord_less_nat @ ( power_power_nat @ B @ N ) @ K )
            & ( ord_less_eq_nat @ K @ ( power_power_nat @ B @ ( plus_plus_nat @ N @ one_one_nat ) ) ) ) ) ) ).

% ex_power_ivl2
thf(fact_573_ex__power__ivl1,axiom,
    ! [B: nat,K: nat] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B )
     => ( ( ord_less_eq_nat @ one_one_nat @ K )
       => ? [N: nat] :
            ( ( ord_less_eq_nat @ ( power_power_nat @ B @ N ) @ K )
            & ( ord_less_nat @ K @ ( power_power_nat @ B @ ( plus_plus_nat @ N @ one_one_nat ) ) ) ) ) ) ).

% ex_power_ivl1
thf(fact_574_list__eq__iff__nth__eq,axiom,
    ( ( ^ [Y4: list_nat,Z3: list_nat] : ( Y4 = Z3 ) )
    = ( ^ [Xs: list_nat,Ys3: list_nat] :
          ( ( ( size_size_list_nat @ Xs )
            = ( size_size_list_nat @ Ys3 ) )
          & ! [I5: nat] :
              ( ( ord_less_nat @ I5 @ ( size_size_list_nat @ Xs ) )
             => ( ( nth_nat @ Xs @ I5 )
                = ( nth_nat @ Ys3 @ I5 ) ) ) ) ) ) ).

% list_eq_iff_nth_eq
thf(fact_575_list__eq__iff__nth__eq,axiom,
    ( ( ^ [Y4: list_VEBT_VEBT,Z3: list_VEBT_VEBT] : ( Y4 = Z3 ) )
    = ( ^ [Xs: list_VEBT_VEBT,Ys3: list_VEBT_VEBT] :
          ( ( ( size_s6755466524823107622T_VEBT @ Xs )
            = ( size_s6755466524823107622T_VEBT @ Ys3 ) )
          & ! [I5: nat] :
              ( ( ord_less_nat @ I5 @ ( size_s6755466524823107622T_VEBT @ Xs ) )
             => ( ( nth_VEBT_VEBT @ Xs @ I5 )
                = ( nth_VEBT_VEBT @ Ys3 @ I5 ) ) ) ) ) ) ).

% list_eq_iff_nth_eq
thf(fact_576_list__eq__iff__nth__eq,axiom,
    ( ( ^ [Y4: list_o,Z3: list_o] : ( Y4 = Z3 ) )
    = ( ^ [Xs: list_o,Ys3: list_o] :
          ( ( ( size_size_list_o @ Xs )
            = ( size_size_list_o @ Ys3 ) )
          & ! [I5: nat] :
              ( ( ord_less_nat @ I5 @ ( size_size_list_o @ Xs ) )
             => ( ( nth_o @ Xs @ I5 )
                = ( nth_o @ Ys3 @ I5 ) ) ) ) ) ) ).

% list_eq_iff_nth_eq
thf(fact_577_list__eq__iff__nth__eq,axiom,
    ( ( ^ [Y4: list_int,Z3: list_int] : ( Y4 = Z3 ) )
    = ( ^ [Xs: list_int,Ys3: list_int] :
          ( ( ( size_size_list_int @ Xs )
            = ( size_size_list_int @ Ys3 ) )
          & ! [I5: nat] :
              ( ( ord_less_nat @ I5 @ ( size_size_list_int @ Xs ) )
             => ( ( nth_int @ Xs @ I5 )
                = ( nth_int @ Ys3 @ I5 ) ) ) ) ) ) ).

% list_eq_iff_nth_eq
thf(fact_578_Skolem__list__nth,axiom,
    ! [K: nat,P: nat > nat > $o] :
      ( ( ! [I5: nat] :
            ( ( ord_less_nat @ I5 @ K )
           => ? [X4: nat] : ( P @ I5 @ X4 ) ) )
      = ( ? [Xs: list_nat] :
            ( ( ( size_size_list_nat @ Xs )
              = K )
            & ! [I5: nat] :
                ( ( ord_less_nat @ I5 @ K )
               => ( P @ I5 @ ( nth_nat @ Xs @ I5 ) ) ) ) ) ) ).

% Skolem_list_nth
thf(fact_579_Skolem__list__nth,axiom,
    ! [K: nat,P: nat > vEBT_VEBT > $o] :
      ( ( ! [I5: nat] :
            ( ( ord_less_nat @ I5 @ K )
           => ? [X4: vEBT_VEBT] : ( P @ I5 @ X4 ) ) )
      = ( ? [Xs: list_VEBT_VEBT] :
            ( ( ( size_s6755466524823107622T_VEBT @ Xs )
              = K )
            & ! [I5: nat] :
                ( ( ord_less_nat @ I5 @ K )
               => ( P @ I5 @ ( nth_VEBT_VEBT @ Xs @ I5 ) ) ) ) ) ) ).

% Skolem_list_nth
thf(fact_580_Skolem__list__nth,axiom,
    ! [K: nat,P: nat > $o > $o] :
      ( ( ! [I5: nat] :
            ( ( ord_less_nat @ I5 @ K )
           => ? [X4: $o] : ( P @ I5 @ X4 ) ) )
      = ( ? [Xs: list_o] :
            ( ( ( size_size_list_o @ Xs )
              = K )
            & ! [I5: nat] :
                ( ( ord_less_nat @ I5 @ K )
               => ( P @ I5 @ ( nth_o @ Xs @ I5 ) ) ) ) ) ) ).

% Skolem_list_nth
thf(fact_581_Skolem__list__nth,axiom,
    ! [K: nat,P: nat > int > $o] :
      ( ( ! [I5: nat] :
            ( ( ord_less_nat @ I5 @ K )
           => ? [X4: int] : ( P @ I5 @ X4 ) ) )
      = ( ? [Xs: list_int] :
            ( ( ( size_size_list_int @ Xs )
              = K )
            & ! [I5: nat] :
                ( ( ord_less_nat @ I5 @ K )
               => ( P @ I5 @ ( nth_int @ Xs @ I5 ) ) ) ) ) ) ).

% Skolem_list_nth
thf(fact_582_nth__equalityI,axiom,
    ! [Xs2: list_nat,Ys: list_nat] :
      ( ( ( size_size_list_nat @ Xs2 )
        = ( size_size_list_nat @ Ys ) )
     => ( ! [I3: nat] :
            ( ( ord_less_nat @ I3 @ ( size_size_list_nat @ Xs2 ) )
           => ( ( nth_nat @ Xs2 @ I3 )
              = ( nth_nat @ Ys @ I3 ) ) )
       => ( Xs2 = Ys ) ) ) ).

% nth_equalityI
thf(fact_583_nth__equalityI,axiom,
    ! [Xs2: list_VEBT_VEBT,Ys: list_VEBT_VEBT] :
      ( ( ( size_s6755466524823107622T_VEBT @ Xs2 )
        = ( size_s6755466524823107622T_VEBT @ Ys ) )
     => ( ! [I3: nat] :
            ( ( ord_less_nat @ I3 @ ( size_s6755466524823107622T_VEBT @ Xs2 ) )
           => ( ( nth_VEBT_VEBT @ Xs2 @ I3 )
              = ( nth_VEBT_VEBT @ Ys @ I3 ) ) )
       => ( Xs2 = Ys ) ) ) ).

% nth_equalityI
thf(fact_584_nth__equalityI,axiom,
    ! [Xs2: list_o,Ys: list_o] :
      ( ( ( size_size_list_o @ Xs2 )
        = ( size_size_list_o @ Ys ) )
     => ( ! [I3: nat] :
            ( ( ord_less_nat @ I3 @ ( size_size_list_o @ Xs2 ) )
           => ( ( nth_o @ Xs2 @ I3 )
              = ( nth_o @ Ys @ I3 ) ) )
       => ( Xs2 = Ys ) ) ) ).

% nth_equalityI
thf(fact_585_nth__equalityI,axiom,
    ! [Xs2: list_int,Ys: list_int] :
      ( ( ( size_size_list_int @ Xs2 )
        = ( size_size_list_int @ Ys ) )
     => ( ! [I3: nat] :
            ( ( ord_less_nat @ I3 @ ( size_size_list_int @ Xs2 ) )
           => ( ( nth_int @ Xs2 @ I3 )
              = ( nth_int @ Ys @ I3 ) ) )
       => ( Xs2 = Ys ) ) ) ).

% nth_equalityI
thf(fact_586_vebt__delete_Osimps_I4_J,axiom,
    ! [Deg: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT,Uu: nat] :
      ( ( vEBT_vebt_delete @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Deg @ TreeList @ Summary ) @ Uu )
      = ( vEBT_Node @ none_P5556105721700978146at_nat @ Deg @ TreeList @ Summary ) ) ).

% vebt_delete.simps(4)
thf(fact_587_all__set__conv__all__nth,axiom,
    ! [Xs2: list_nat,P: nat > $o] :
      ( ( ! [X3: nat] :
            ( ( member_nat @ X3 @ ( set_nat2 @ Xs2 ) )
           => ( P @ X3 ) ) )
      = ( ! [I5: nat] :
            ( ( ord_less_nat @ I5 @ ( size_size_list_nat @ Xs2 ) )
           => ( P @ ( nth_nat @ Xs2 @ I5 ) ) ) ) ) ).

% all_set_conv_all_nth
thf(fact_588_all__set__conv__all__nth,axiom,
    ! [Xs2: list_VEBT_VEBT,P: vEBT_VEBT > $o] :
      ( ( ! [X3: vEBT_VEBT] :
            ( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ Xs2 ) )
           => ( P @ X3 ) ) )
      = ( ! [I5: nat] :
            ( ( ord_less_nat @ I5 @ ( size_s6755466524823107622T_VEBT @ Xs2 ) )
           => ( P @ ( nth_VEBT_VEBT @ Xs2 @ I5 ) ) ) ) ) ).

% all_set_conv_all_nth
thf(fact_589_all__set__conv__all__nth,axiom,
    ! [Xs2: list_o,P: $o > $o] :
      ( ( ! [X3: $o] :
            ( ( member_o @ X3 @ ( set_o2 @ Xs2 ) )
           => ( P @ X3 ) ) )
      = ( ! [I5: nat] :
            ( ( ord_less_nat @ I5 @ ( size_size_list_o @ Xs2 ) )
           => ( P @ ( nth_o @ Xs2 @ I5 ) ) ) ) ) ).

% all_set_conv_all_nth
thf(fact_590_all__set__conv__all__nth,axiom,
    ! [Xs2: list_int,P: int > $o] :
      ( ( ! [X3: int] :
            ( ( member_int @ X3 @ ( set_int2 @ Xs2 ) )
           => ( P @ X3 ) ) )
      = ( ! [I5: nat] :
            ( ( ord_less_nat @ I5 @ ( size_size_list_int @ Xs2 ) )
           => ( P @ ( nth_int @ Xs2 @ I5 ) ) ) ) ) ).

% all_set_conv_all_nth
thf(fact_591_all__nth__imp__all__set,axiom,
    ! [Xs2: list_complex,P: complex > $o,X: complex] :
      ( ! [I3: nat] :
          ( ( ord_less_nat @ I3 @ ( size_s3451745648224563538omplex @ Xs2 ) )
         => ( P @ ( nth_complex @ Xs2 @ I3 ) ) )
     => ( ( member_complex @ X @ ( set_complex2 @ Xs2 ) )
       => ( P @ X ) ) ) ).

% all_nth_imp_all_set
thf(fact_592_all__nth__imp__all__set,axiom,
    ! [Xs2: list_real,P: real > $o,X: real] :
      ( ! [I3: nat] :
          ( ( ord_less_nat @ I3 @ ( size_size_list_real @ Xs2 ) )
         => ( P @ ( nth_real @ Xs2 @ I3 ) ) )
     => ( ( member_real @ X @ ( set_real2 @ Xs2 ) )
       => ( P @ X ) ) ) ).

% all_nth_imp_all_set
thf(fact_593_all__nth__imp__all__set,axiom,
    ! [Xs2: list_set_nat,P: set_nat > $o,X: set_nat] :
      ( ! [I3: nat] :
          ( ( ord_less_nat @ I3 @ ( size_s3254054031482475050et_nat @ Xs2 ) )
         => ( P @ ( nth_set_nat @ Xs2 @ I3 ) ) )
     => ( ( member_set_nat @ X @ ( set_set_nat2 @ Xs2 ) )
       => ( P @ X ) ) ) ).

% all_nth_imp_all_set
thf(fact_594_all__nth__imp__all__set,axiom,
    ! [Xs2: list_nat,P: nat > $o,X: nat] :
      ( ! [I3: nat] :
          ( ( ord_less_nat @ I3 @ ( size_size_list_nat @ Xs2 ) )
         => ( P @ ( nth_nat @ Xs2 @ I3 ) ) )
     => ( ( member_nat @ X @ ( set_nat2 @ Xs2 ) )
       => ( P @ X ) ) ) ).

% all_nth_imp_all_set
thf(fact_595_all__nth__imp__all__set,axiom,
    ! [Xs2: list_VEBT_VEBT,P: vEBT_VEBT > $o,X: vEBT_VEBT] :
      ( ! [I3: nat] :
          ( ( ord_less_nat @ I3 @ ( size_s6755466524823107622T_VEBT @ Xs2 ) )
         => ( P @ ( nth_VEBT_VEBT @ Xs2 @ I3 ) ) )
     => ( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ Xs2 ) )
       => ( P @ X ) ) ) ).

% all_nth_imp_all_set
thf(fact_596_all__nth__imp__all__set,axiom,
    ! [Xs2: list_o,P: $o > $o,X: $o] :
      ( ! [I3: nat] :
          ( ( ord_less_nat @ I3 @ ( size_size_list_o @ Xs2 ) )
         => ( P @ ( nth_o @ Xs2 @ I3 ) ) )
     => ( ( member_o @ X @ ( set_o2 @ Xs2 ) )
       => ( P @ X ) ) ) ).

% all_nth_imp_all_set
thf(fact_597_all__nth__imp__all__set,axiom,
    ! [Xs2: list_int,P: int > $o,X: int] :
      ( ! [I3: nat] :
          ( ( ord_less_nat @ I3 @ ( size_size_list_int @ Xs2 ) )
         => ( P @ ( nth_int @ Xs2 @ I3 ) ) )
     => ( ( member_int @ X @ ( set_int2 @ Xs2 ) )
       => ( P @ X ) ) ) ).

% all_nth_imp_all_set
thf(fact_598_in__set__conv__nth,axiom,
    ! [X: complex,Xs2: list_complex] :
      ( ( member_complex @ X @ ( set_complex2 @ Xs2 ) )
      = ( ? [I5: nat] :
            ( ( ord_less_nat @ I5 @ ( size_s3451745648224563538omplex @ Xs2 ) )
            & ( ( nth_complex @ Xs2 @ I5 )
              = X ) ) ) ) ).

% in_set_conv_nth
thf(fact_599_in__set__conv__nth,axiom,
    ! [X: real,Xs2: list_real] :
      ( ( member_real @ X @ ( set_real2 @ Xs2 ) )
      = ( ? [I5: nat] :
            ( ( ord_less_nat @ I5 @ ( size_size_list_real @ Xs2 ) )
            & ( ( nth_real @ Xs2 @ I5 )
              = X ) ) ) ) ).

% in_set_conv_nth
thf(fact_600_in__set__conv__nth,axiom,
    ! [X: set_nat,Xs2: list_set_nat] :
      ( ( member_set_nat @ X @ ( set_set_nat2 @ Xs2 ) )
      = ( ? [I5: nat] :
            ( ( ord_less_nat @ I5 @ ( size_s3254054031482475050et_nat @ Xs2 ) )
            & ( ( nth_set_nat @ Xs2 @ I5 )
              = X ) ) ) ) ).

% in_set_conv_nth
thf(fact_601_in__set__conv__nth,axiom,
    ! [X: nat,Xs2: list_nat] :
      ( ( member_nat @ X @ ( set_nat2 @ Xs2 ) )
      = ( ? [I5: nat] :
            ( ( ord_less_nat @ I5 @ ( size_size_list_nat @ Xs2 ) )
            & ( ( nth_nat @ Xs2 @ I5 )
              = X ) ) ) ) ).

% in_set_conv_nth
thf(fact_602_in__set__conv__nth,axiom,
    ! [X: vEBT_VEBT,Xs2: list_VEBT_VEBT] :
      ( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ Xs2 ) )
      = ( ? [I5: nat] :
            ( ( ord_less_nat @ I5 @ ( size_s6755466524823107622T_VEBT @ Xs2 ) )
            & ( ( nth_VEBT_VEBT @ Xs2 @ I5 )
              = X ) ) ) ) ).

% in_set_conv_nth
thf(fact_603_in__set__conv__nth,axiom,
    ! [X: $o,Xs2: list_o] :
      ( ( member_o @ X @ ( set_o2 @ Xs2 ) )
      = ( ? [I5: nat] :
            ( ( ord_less_nat @ I5 @ ( size_size_list_o @ Xs2 ) )
            & ( ( nth_o @ Xs2 @ I5 )
              = X ) ) ) ) ).

% in_set_conv_nth
thf(fact_604_in__set__conv__nth,axiom,
    ! [X: int,Xs2: list_int] :
      ( ( member_int @ X @ ( set_int2 @ Xs2 ) )
      = ( ? [I5: nat] :
            ( ( ord_less_nat @ I5 @ ( size_size_list_int @ Xs2 ) )
            & ( ( nth_int @ Xs2 @ I5 )
              = X ) ) ) ) ).

% in_set_conv_nth
thf(fact_605_list__ball__nth,axiom,
    ! [N2: nat,Xs2: list_nat,P: nat > $o] :
      ( ( ord_less_nat @ N2 @ ( size_size_list_nat @ Xs2 ) )
     => ( ! [X5: nat] :
            ( ( member_nat @ X5 @ ( set_nat2 @ Xs2 ) )
           => ( P @ X5 ) )
       => ( P @ ( nth_nat @ Xs2 @ N2 ) ) ) ) ).

% list_ball_nth
thf(fact_606_list__ball__nth,axiom,
    ! [N2: nat,Xs2: list_VEBT_VEBT,P: vEBT_VEBT > $o] :
      ( ( ord_less_nat @ N2 @ ( size_s6755466524823107622T_VEBT @ Xs2 ) )
     => ( ! [X5: vEBT_VEBT] :
            ( ( member_VEBT_VEBT @ X5 @ ( set_VEBT_VEBT2 @ Xs2 ) )
           => ( P @ X5 ) )
       => ( P @ ( nth_VEBT_VEBT @ Xs2 @ N2 ) ) ) ) ).

% list_ball_nth
thf(fact_607_list__ball__nth,axiom,
    ! [N2: nat,Xs2: list_o,P: $o > $o] :
      ( ( ord_less_nat @ N2 @ ( size_size_list_o @ Xs2 ) )
     => ( ! [X5: $o] :
            ( ( member_o @ X5 @ ( set_o2 @ Xs2 ) )
           => ( P @ X5 ) )
       => ( P @ ( nth_o @ Xs2 @ N2 ) ) ) ) ).

% list_ball_nth
thf(fact_608_list__ball__nth,axiom,
    ! [N2: nat,Xs2: list_int,P: int > $o] :
      ( ( ord_less_nat @ N2 @ ( size_size_list_int @ Xs2 ) )
     => ( ! [X5: int] :
            ( ( member_int @ X5 @ ( set_int2 @ Xs2 ) )
           => ( P @ X5 ) )
       => ( P @ ( nth_int @ Xs2 @ N2 ) ) ) ) ).

% list_ball_nth
thf(fact_609_nth__mem,axiom,
    ! [N2: nat,Xs2: list_complex] :
      ( ( ord_less_nat @ N2 @ ( size_s3451745648224563538omplex @ Xs2 ) )
     => ( member_complex @ ( nth_complex @ Xs2 @ N2 ) @ ( set_complex2 @ Xs2 ) ) ) ).

% nth_mem
thf(fact_610_nth__mem,axiom,
    ! [N2: nat,Xs2: list_real] :
      ( ( ord_less_nat @ N2 @ ( size_size_list_real @ Xs2 ) )
     => ( member_real @ ( nth_real @ Xs2 @ N2 ) @ ( set_real2 @ Xs2 ) ) ) ).

% nth_mem
thf(fact_611_nth__mem,axiom,
    ! [N2: nat,Xs2: list_set_nat] :
      ( ( ord_less_nat @ N2 @ ( size_s3254054031482475050et_nat @ Xs2 ) )
     => ( member_set_nat @ ( nth_set_nat @ Xs2 @ N2 ) @ ( set_set_nat2 @ Xs2 ) ) ) ).

% nth_mem
thf(fact_612_nth__mem,axiom,
    ! [N2: nat,Xs2: list_nat] :
      ( ( ord_less_nat @ N2 @ ( size_size_list_nat @ Xs2 ) )
     => ( member_nat @ ( nth_nat @ Xs2 @ N2 ) @ ( set_nat2 @ Xs2 ) ) ) ).

% nth_mem
thf(fact_613_nth__mem,axiom,
    ! [N2: nat,Xs2: list_VEBT_VEBT] :
      ( ( ord_less_nat @ N2 @ ( size_s6755466524823107622T_VEBT @ Xs2 ) )
     => ( member_VEBT_VEBT @ ( nth_VEBT_VEBT @ Xs2 @ N2 ) @ ( set_VEBT_VEBT2 @ Xs2 ) ) ) ).

% nth_mem
thf(fact_614_nth__mem,axiom,
    ! [N2: nat,Xs2: list_o] :
      ( ( ord_less_nat @ N2 @ ( size_size_list_o @ Xs2 ) )
     => ( member_o @ ( nth_o @ Xs2 @ N2 ) @ ( set_o2 @ Xs2 ) ) ) ).

% nth_mem
thf(fact_615_nth__mem,axiom,
    ! [N2: nat,Xs2: list_int] :
      ( ( ord_less_nat @ N2 @ ( size_size_list_int @ Xs2 ) )
     => ( member_int @ ( nth_int @ Xs2 @ N2 ) @ ( set_int2 @ Xs2 ) ) ) ).

% nth_mem
thf(fact_616_set__update__memI,axiom,
    ! [N2: nat,Xs2: list_complex,X: complex] :
      ( ( ord_less_nat @ N2 @ ( size_s3451745648224563538omplex @ Xs2 ) )
     => ( member_complex @ X @ ( set_complex2 @ ( list_update_complex @ Xs2 @ N2 @ X ) ) ) ) ).

% set_update_memI
thf(fact_617_set__update__memI,axiom,
    ! [N2: nat,Xs2: list_real,X: real] :
      ( ( ord_less_nat @ N2 @ ( size_size_list_real @ Xs2 ) )
     => ( member_real @ X @ ( set_real2 @ ( list_update_real @ Xs2 @ N2 @ X ) ) ) ) ).

% set_update_memI
thf(fact_618_set__update__memI,axiom,
    ! [N2: nat,Xs2: list_set_nat,X: set_nat] :
      ( ( ord_less_nat @ N2 @ ( size_s3254054031482475050et_nat @ Xs2 ) )
     => ( member_set_nat @ X @ ( set_set_nat2 @ ( list_update_set_nat @ Xs2 @ N2 @ X ) ) ) ) ).

% set_update_memI
thf(fact_619_set__update__memI,axiom,
    ! [N2: nat,Xs2: list_nat,X: nat] :
      ( ( ord_less_nat @ N2 @ ( size_size_list_nat @ Xs2 ) )
     => ( member_nat @ X @ ( set_nat2 @ ( list_update_nat @ Xs2 @ N2 @ X ) ) ) ) ).

% set_update_memI
thf(fact_620_set__update__memI,axiom,
    ! [N2: nat,Xs2: list_VEBT_VEBT,X: vEBT_VEBT] :
      ( ( ord_less_nat @ N2 @ ( size_s6755466524823107622T_VEBT @ Xs2 ) )
     => ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ ( list_u1324408373059187874T_VEBT @ Xs2 @ N2 @ X ) ) ) ) ).

% set_update_memI
thf(fact_621_set__update__memI,axiom,
    ! [N2: nat,Xs2: list_o,X: $o] :
      ( ( ord_less_nat @ N2 @ ( size_size_list_o @ Xs2 ) )
     => ( member_o @ X @ ( set_o2 @ ( list_update_o @ Xs2 @ N2 @ X ) ) ) ) ).

% set_update_memI
thf(fact_622_set__update__memI,axiom,
    ! [N2: nat,Xs2: list_int,X: int] :
      ( ( ord_less_nat @ N2 @ ( size_size_list_int @ Xs2 ) )
     => ( member_int @ X @ ( set_int2 @ ( list_update_int @ Xs2 @ N2 @ X ) ) ) ) ).

% set_update_memI
thf(fact_623_list__update__same__conv,axiom,
    ! [I2: nat,Xs2: list_nat,X: nat] :
      ( ( ord_less_nat @ I2 @ ( size_size_list_nat @ Xs2 ) )
     => ( ( ( list_update_nat @ Xs2 @ I2 @ X )
          = Xs2 )
        = ( ( nth_nat @ Xs2 @ I2 )
          = X ) ) ) ).

% list_update_same_conv
thf(fact_624_list__update__same__conv,axiom,
    ! [I2: nat,Xs2: list_VEBT_VEBT,X: vEBT_VEBT] :
      ( ( ord_less_nat @ I2 @ ( size_s6755466524823107622T_VEBT @ Xs2 ) )
     => ( ( ( list_u1324408373059187874T_VEBT @ Xs2 @ I2 @ X )
          = Xs2 )
        = ( ( nth_VEBT_VEBT @ Xs2 @ I2 )
          = X ) ) ) ).

% list_update_same_conv
thf(fact_625_list__update__same__conv,axiom,
    ! [I2: nat,Xs2: list_o,X: $o] :
      ( ( ord_less_nat @ I2 @ ( size_size_list_o @ Xs2 ) )
     => ( ( ( list_update_o @ Xs2 @ I2 @ X )
          = Xs2 )
        = ( ( nth_o @ Xs2 @ I2 )
          = X ) ) ) ).

% list_update_same_conv
thf(fact_626_list__update__same__conv,axiom,
    ! [I2: nat,Xs2: list_int,X: int] :
      ( ( ord_less_nat @ I2 @ ( size_size_list_int @ Xs2 ) )
     => ( ( ( list_update_int @ Xs2 @ I2 @ X )
          = Xs2 )
        = ( ( nth_int @ Xs2 @ I2 )
          = X ) ) ) ).

% list_update_same_conv
thf(fact_627_nth__list__update,axiom,
    ! [I2: nat,Xs2: list_nat,J: nat,X: nat] :
      ( ( ord_less_nat @ I2 @ ( size_size_list_nat @ Xs2 ) )
     => ( ( ( I2 = J )
         => ( ( nth_nat @ ( list_update_nat @ Xs2 @ I2 @ X ) @ J )
            = X ) )
        & ( ( I2 != J )
         => ( ( nth_nat @ ( list_update_nat @ Xs2 @ I2 @ X ) @ J )
            = ( nth_nat @ Xs2 @ J ) ) ) ) ) ).

% nth_list_update
thf(fact_628_nth__list__update,axiom,
    ! [I2: nat,Xs2: list_VEBT_VEBT,J: nat,X: vEBT_VEBT] :
      ( ( ord_less_nat @ I2 @ ( size_s6755466524823107622T_VEBT @ Xs2 ) )
     => ( ( ( I2 = J )
         => ( ( nth_VEBT_VEBT @ ( list_u1324408373059187874T_VEBT @ Xs2 @ I2 @ X ) @ J )
            = X ) )
        & ( ( I2 != J )
         => ( ( nth_VEBT_VEBT @ ( list_u1324408373059187874T_VEBT @ Xs2 @ I2 @ X ) @ J )
            = ( nth_VEBT_VEBT @ Xs2 @ J ) ) ) ) ) ).

% nth_list_update
thf(fact_629_nth__list__update,axiom,
    ! [I2: nat,Xs2: list_o,X: $o,J: nat] :
      ( ( ord_less_nat @ I2 @ ( size_size_list_o @ Xs2 ) )
     => ( ( nth_o @ ( list_update_o @ Xs2 @ I2 @ X ) @ J )
        = ( ( ( I2 = J )
           => X )
          & ( ( I2 != J )
           => ( nth_o @ Xs2 @ J ) ) ) ) ) ).

% nth_list_update
thf(fact_630_nth__list__update,axiom,
    ! [I2: nat,Xs2: list_int,J: nat,X: int] :
      ( ( ord_less_nat @ I2 @ ( size_size_list_int @ Xs2 ) )
     => ( ( ( I2 = J )
         => ( ( nth_int @ ( list_update_int @ Xs2 @ I2 @ X ) @ J )
            = X ) )
        & ( ( I2 != J )
         => ( ( nth_int @ ( list_update_int @ Xs2 @ I2 @ X ) @ J )
            = ( nth_int @ Xs2 @ J ) ) ) ) ) ).

% nth_list_update
thf(fact_631_vebt__member_Osimps_I5_J,axiom,
    ! [Mi: nat,Ma: nat,Va: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT,X: nat] :
      ( ( vEBT_vebt_member @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList @ Summary ) @ X )
      = ( ( X != Mi )
       => ( ( X != Ma )
         => ( ~ ( ord_less_nat @ X @ Mi )
            & ( ~ ( ord_less_nat @ X @ Mi )
             => ( ~ ( ord_less_nat @ Ma @ X )
                & ( ~ ( ord_less_nat @ Ma @ X )
                 => ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) )
                     => ( vEBT_vebt_member @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                    & ( ord_less_nat @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) ) ) ) ) ) ) ) ) ) ).

% vebt_member.simps(5)
thf(fact_632_greater__shift,axiom,
    ( ord_less_nat
    = ( ^ [Y3: nat,X3: nat] : ( vEBT_VEBT_greater @ ( some_nat @ X3 ) @ ( some_nat @ Y3 ) ) ) ) ).

% greater_shift
thf(fact_633_less__shift,axiom,
    ( ord_less_nat
    = ( ^ [X3: nat,Y3: nat] : ( vEBT_VEBT_less @ ( some_nat @ X3 ) @ ( some_nat @ Y3 ) ) ) ) ).

% less_shift
thf(fact_634_insert__simp__norm,axiom,
    ! [X: nat,Deg: nat,TreeList: list_VEBT_VEBT,Mi: nat,Ma: nat,Summary: vEBT_VEBT] :
      ( ( ord_less_nat @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) )
     => ( ( ord_less_nat @ Mi @ X )
       => ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
         => ( ( X != Ma )
           => ( ( vEBT_vebt_insert @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X )
              = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ ( ord_max_nat @ X @ Ma ) ) ) @ Deg @ ( list_u1324408373059187874T_VEBT @ TreeList @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_insert @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( if_VEBT_VEBT @ ( vEBT_VEBT_minNull @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_insert @ Summary @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ Summary ) ) ) ) ) ) ) ).

% insert_simp_norm
thf(fact_635_insert__simp__excp,axiom,
    ! [Mi: nat,Deg: nat,TreeList: list_VEBT_VEBT,X: nat,Ma: nat,Summary: vEBT_VEBT] :
      ( ( ord_less_nat @ ( vEBT_VEBT_high @ Mi @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) )
     => ( ( ord_less_nat @ X @ Mi )
       => ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
         => ( ( X != Ma )
           => ( ( vEBT_vebt_insert @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X )
              = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ X @ ( ord_max_nat @ Mi @ Ma ) ) ) @ Deg @ ( list_u1324408373059187874T_VEBT @ TreeList @ ( vEBT_VEBT_high @ Mi @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_insert @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ Mi @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Mi @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( if_VEBT_VEBT @ ( vEBT_VEBT_minNull @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ Mi @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_insert @ Summary @ ( vEBT_VEBT_high @ Mi @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ Summary ) ) ) ) ) ) ) ).

% insert_simp_excp
thf(fact_636_mintlistlength,axiom,
    ! [Mi: nat,Ma: nat,Deg: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT,N2: nat] :
      ( ( vEBT_invar_vebt @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ N2 )
     => ( ( Mi != Ma )
       => ( ( ord_less_nat @ Mi @ Ma )
          & ? [M2: nat] :
              ( ( ( some_nat @ M2 )
                = ( vEBT_vebt_mint @ Summary ) )
              & ( ord_less_nat @ M2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N2 @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ).

% mintlistlength
thf(fact_637_semiring__norm_I69_J,axiom,
    ! [M: num] :
      ~ ( ord_less_eq_num @ ( bit0 @ M ) @ one ) ).

% semiring_norm(69)
thf(fact_638_semiring__norm_I76_J,axiom,
    ! [N2: num] : ( ord_less_num @ one @ ( bit0 @ N2 ) ) ).

% semiring_norm(76)
thf(fact_639_sum__squares__bound,axiom,
    ! [X: real,Y: real] : ( ord_less_eq_real @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X ) @ Y ) @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% sum_squares_bound
thf(fact_640_sum__squares__bound,axiom,
    ! [X: rat,Y: rat] : ( ord_less_eq_rat @ ( times_times_rat @ ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ X ) @ Y ) @ ( plus_plus_rat @ ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% sum_squares_bound
thf(fact_641_semiring__norm_I2_J,axiom,
    ( ( plus_plus_num @ one @ one )
    = ( bit0 @ one ) ) ).

% semiring_norm(2)
thf(fact_642_mult__Suc__right,axiom,
    ! [M: nat,N2: nat] :
      ( ( times_times_nat @ M @ ( suc @ N2 ) )
      = ( plus_plus_nat @ M @ ( times_times_nat @ M @ N2 ) ) ) ).

% mult_Suc_right
thf(fact_643_semiring__norm_I87_J,axiom,
    ! [M: num,N2: num] :
      ( ( ( bit0 @ M )
        = ( bit0 @ N2 ) )
      = ( M = N2 ) ) ).

% semiring_norm(87)
thf(fact_644_old_Onat_Oinject,axiom,
    ! [Nat: nat,Nat2: nat] :
      ( ( ( suc @ Nat )
        = ( suc @ Nat2 ) )
      = ( Nat = Nat2 ) ) ).

% old.nat.inject
thf(fact_645_nat_Oinject,axiom,
    ! [X22: nat,Y22: nat] :
      ( ( ( suc @ X22 )
        = ( suc @ Y22 ) )
      = ( X22 = Y22 ) ) ).

% nat.inject
thf(fact_646_pred__correct,axiom,
    ! [T: vEBT_VEBT,N2: nat,X: nat,Sx: nat] :
      ( ( vEBT_invar_vebt @ T @ N2 )
     => ( ( ( vEBT_vebt_pred @ T @ X )
          = ( some_nat @ Sx ) )
        = ( vEBT_is_pred_in_set @ ( vEBT_set_vebt @ T ) @ X @ Sx ) ) ) ).

% pred_correct
thf(fact_647_succ__correct,axiom,
    ! [T: vEBT_VEBT,N2: nat,X: nat,Sx: nat] :
      ( ( vEBT_invar_vebt @ T @ N2 )
     => ( ( ( vEBT_vebt_succ @ T @ X )
          = ( some_nat @ Sx ) )
        = ( vEBT_is_succ_in_set @ ( vEBT_set_vebt @ T ) @ X @ Sx ) ) ) ).

% succ_correct
thf(fact_648_power__minus__is__div,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ A @ B ) )
        = ( divide_divide_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) ) ) ).

% power_minus_is_div
thf(fact_649_semiring__norm_I85_J,axiom,
    ! [M: num] :
      ( ( bit0 @ M )
     != one ) ).

% semiring_norm(85)
thf(fact_650_semiring__norm_I83_J,axiom,
    ! [N2: num] :
      ( one
     != ( bit0 @ N2 ) ) ).

% semiring_norm(83)
thf(fact_651_Suc__less__eq,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ ( suc @ M ) @ ( suc @ N2 ) )
      = ( ord_less_nat @ M @ N2 ) ) ).

% Suc_less_eq
thf(fact_652_Suc__mono,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ M @ N2 )
     => ( ord_less_nat @ ( suc @ M ) @ ( suc @ N2 ) ) ) ).

% Suc_mono
thf(fact_653_lessI,axiom,
    ! [N2: nat] : ( ord_less_nat @ N2 @ ( suc @ N2 ) ) ).

% lessI
thf(fact_654_add__Suc__right,axiom,
    ! [M: nat,N2: nat] :
      ( ( plus_plus_nat @ M @ ( suc @ N2 ) )
      = ( suc @ ( plus_plus_nat @ M @ N2 ) ) ) ).

% add_Suc_right
thf(fact_655_Suc__le__mono,axiom,
    ! [N2: nat,M: nat] :
      ( ( ord_less_eq_nat @ ( suc @ N2 ) @ ( suc @ M ) )
      = ( ord_less_eq_nat @ N2 @ M ) ) ).

% Suc_le_mono
thf(fact_656_nat__add__left__cancel__less,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N2 ) )
      = ( ord_less_nat @ M @ N2 ) ) ).

% nat_add_left_cancel_less
thf(fact_657_nat__add__left__cancel__le,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N2 ) )
      = ( ord_less_eq_nat @ M @ N2 ) ) ).

% nat_add_left_cancel_le
thf(fact_658_Suc__diff__diff,axiom,
    ! [M: nat,N2: nat,K: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ ( suc @ M ) @ N2 ) @ ( suc @ K ) )
      = ( minus_minus_nat @ ( minus_minus_nat @ M @ N2 ) @ K ) ) ).

% Suc_diff_diff
thf(fact_659_diff__Suc__Suc,axiom,
    ! [M: nat,N2: nat] :
      ( ( minus_minus_nat @ ( suc @ M ) @ ( suc @ N2 ) )
      = ( minus_minus_nat @ M @ N2 ) ) ).

% diff_Suc_Suc
thf(fact_660_diff__diff__left,axiom,
    ! [I2: nat,J: nat,K: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ I2 @ J ) @ K )
      = ( minus_minus_nat @ I2 @ ( plus_plus_nat @ J @ K ) ) ) ).

% diff_diff_left
thf(fact_661_diff__diff__cancel,axiom,
    ! [I2: nat,N2: nat] :
      ( ( ord_less_eq_nat @ I2 @ N2 )
     => ( ( minus_minus_nat @ N2 @ ( minus_minus_nat @ N2 @ I2 ) )
        = I2 ) ) ).

% diff_diff_cancel
thf(fact_662_nat__1__eq__mult__iff,axiom,
    ! [M: nat,N2: nat] :
      ( ( one_one_nat
        = ( times_times_nat @ M @ N2 ) )
      = ( ( M = one_one_nat )
        & ( N2 = one_one_nat ) ) ) ).

% nat_1_eq_mult_iff
thf(fact_663_nat__mult__eq__1__iff,axiom,
    ! [M: nat,N2: nat] :
      ( ( ( times_times_nat @ M @ N2 )
        = one_one_nat )
      = ( ( M = one_one_nat )
        & ( N2 = one_one_nat ) ) ) ).

% nat_mult_eq_1_iff
thf(fact_664_semiring__norm_I6_J,axiom,
    ! [M: num,N2: num] :
      ( ( plus_plus_num @ ( bit0 @ M ) @ ( bit0 @ N2 ) )
      = ( bit0 @ ( plus_plus_num @ M @ N2 ) ) ) ).

% semiring_norm(6)
thf(fact_665_max__Suc__Suc,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_max_nat @ ( suc @ M ) @ ( suc @ N2 ) )
      = ( suc @ ( ord_max_nat @ M @ N2 ) ) ) ).

% max_Suc_Suc
thf(fact_666_semiring__norm_I13_J,axiom,
    ! [M: num,N2: num] :
      ( ( times_times_num @ ( bit0 @ M ) @ ( bit0 @ N2 ) )
      = ( bit0 @ ( bit0 @ ( times_times_num @ M @ N2 ) ) ) ) ).

% semiring_norm(13)
thf(fact_667_semiring__norm_I12_J,axiom,
    ! [N2: num] :
      ( ( times_times_num @ one @ N2 )
      = N2 ) ).

% semiring_norm(12)
thf(fact_668_semiring__norm_I11_J,axiom,
    ! [M: num] :
      ( ( times_times_num @ M @ one )
      = M ) ).

% semiring_norm(11)
thf(fact_669_semiring__norm_I78_J,axiom,
    ! [M: num,N2: num] :
      ( ( ord_less_num @ ( bit0 @ M ) @ ( bit0 @ N2 ) )
      = ( ord_less_num @ M @ N2 ) ) ).

% semiring_norm(78)
thf(fact_670_semiring__norm_I71_J,axiom,
    ! [M: num,N2: num] :
      ( ( ord_less_eq_num @ ( bit0 @ M ) @ ( bit0 @ N2 ) )
      = ( ord_less_eq_num @ M @ N2 ) ) ).

% semiring_norm(71)
thf(fact_671_semiring__norm_I75_J,axiom,
    ! [M: num] :
      ~ ( ord_less_num @ M @ one ) ).

% semiring_norm(75)
thf(fact_672_semiring__norm_I68_J,axiom,
    ! [N2: num] : ( ord_less_eq_num @ one @ N2 ) ).

% semiring_norm(68)
thf(fact_673_left__diff__distrib__numeral,axiom,
    ! [A: complex,B: complex,V: num] :
      ( ( times_times_complex @ ( minus_minus_complex @ A @ B ) @ ( numera6690914467698888265omplex @ V ) )
      = ( minus_minus_complex @ ( times_times_complex @ A @ ( numera6690914467698888265omplex @ V ) ) @ ( times_times_complex @ B @ ( numera6690914467698888265omplex @ V ) ) ) ) ).

% left_diff_distrib_numeral
thf(fact_674_left__diff__distrib__numeral,axiom,
    ! [A: real,B: real,V: num] :
      ( ( times_times_real @ ( minus_minus_real @ A @ B ) @ ( numeral_numeral_real @ V ) )
      = ( minus_minus_real @ ( times_times_real @ A @ ( numeral_numeral_real @ V ) ) @ ( times_times_real @ B @ ( numeral_numeral_real @ V ) ) ) ) ).

% left_diff_distrib_numeral
thf(fact_675_left__diff__distrib__numeral,axiom,
    ! [A: rat,B: rat,V: num] :
      ( ( times_times_rat @ ( minus_minus_rat @ A @ B ) @ ( numeral_numeral_rat @ V ) )
      = ( minus_minus_rat @ ( times_times_rat @ A @ ( numeral_numeral_rat @ V ) ) @ ( times_times_rat @ B @ ( numeral_numeral_rat @ V ) ) ) ) ).

% left_diff_distrib_numeral
thf(fact_676_left__diff__distrib__numeral,axiom,
    ! [A: int,B: int,V: num] :
      ( ( times_times_int @ ( minus_minus_int @ A @ B ) @ ( numeral_numeral_int @ V ) )
      = ( minus_minus_int @ ( times_times_int @ A @ ( numeral_numeral_int @ V ) ) @ ( times_times_int @ B @ ( numeral_numeral_int @ V ) ) ) ) ).

% left_diff_distrib_numeral
thf(fact_677_right__diff__distrib__numeral,axiom,
    ! [V: num,B: complex,C: complex] :
      ( ( times_times_complex @ ( numera6690914467698888265omplex @ V ) @ ( minus_minus_complex @ B @ C ) )
      = ( minus_minus_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ V ) @ B ) @ ( times_times_complex @ ( numera6690914467698888265omplex @ V ) @ C ) ) ) ).

% right_diff_distrib_numeral
thf(fact_678_right__diff__distrib__numeral,axiom,
    ! [V: num,B: real,C: real] :
      ( ( times_times_real @ ( numeral_numeral_real @ V ) @ ( minus_minus_real @ B @ C ) )
      = ( minus_minus_real @ ( times_times_real @ ( numeral_numeral_real @ V ) @ B ) @ ( times_times_real @ ( numeral_numeral_real @ V ) @ C ) ) ) ).

% right_diff_distrib_numeral
thf(fact_679_right__diff__distrib__numeral,axiom,
    ! [V: num,B: rat,C: rat] :
      ( ( times_times_rat @ ( numeral_numeral_rat @ V ) @ ( minus_minus_rat @ B @ C ) )
      = ( minus_minus_rat @ ( times_times_rat @ ( numeral_numeral_rat @ V ) @ B ) @ ( times_times_rat @ ( numeral_numeral_rat @ V ) @ C ) ) ) ).

% right_diff_distrib_numeral
thf(fact_680_right__diff__distrib__numeral,axiom,
    ! [V: num,B: int,C: int] :
      ( ( times_times_int @ ( numeral_numeral_int @ V ) @ ( minus_minus_int @ B @ C ) )
      = ( minus_minus_int @ ( times_times_int @ ( numeral_numeral_int @ V ) @ B ) @ ( times_times_int @ ( numeral_numeral_int @ V ) @ C ) ) ) ).

% right_diff_distrib_numeral
thf(fact_681_max__number__of_I1_J,axiom,
    ! [U: num,V: num] :
      ( ( ( ord_le2932123472753598470d_enat @ ( numera1916890842035813515d_enat @ U ) @ ( numera1916890842035813515d_enat @ V ) )
       => ( ( ord_ma741700101516333627d_enat @ ( numera1916890842035813515d_enat @ U ) @ ( numera1916890842035813515d_enat @ V ) )
          = ( numera1916890842035813515d_enat @ V ) ) )
      & ( ~ ( ord_le2932123472753598470d_enat @ ( numera1916890842035813515d_enat @ U ) @ ( numera1916890842035813515d_enat @ V ) )
       => ( ( ord_ma741700101516333627d_enat @ ( numera1916890842035813515d_enat @ U ) @ ( numera1916890842035813515d_enat @ V ) )
          = ( numera1916890842035813515d_enat @ U ) ) ) ) ).

% max_number_of(1)
thf(fact_682_max__number__of_I1_J,axiom,
    ! [U: num,V: num] :
      ( ( ( ord_le3102999989581377725nteger @ ( numera6620942414471956472nteger @ U ) @ ( numera6620942414471956472nteger @ V ) )
       => ( ( ord_max_Code_integer @ ( numera6620942414471956472nteger @ U ) @ ( numera6620942414471956472nteger @ V ) )
          = ( numera6620942414471956472nteger @ V ) ) )
      & ( ~ ( ord_le3102999989581377725nteger @ ( numera6620942414471956472nteger @ U ) @ ( numera6620942414471956472nteger @ V ) )
       => ( ( ord_max_Code_integer @ ( numera6620942414471956472nteger @ U ) @ ( numera6620942414471956472nteger @ V ) )
          = ( numera6620942414471956472nteger @ U ) ) ) ) ).

% max_number_of(1)
thf(fact_683_max__number__of_I1_J,axiom,
    ! [U: num,V: num] :
      ( ( ( ord_less_eq_real @ ( numeral_numeral_real @ U ) @ ( numeral_numeral_real @ V ) )
       => ( ( ord_max_real @ ( numeral_numeral_real @ U ) @ ( numeral_numeral_real @ V ) )
          = ( numeral_numeral_real @ V ) ) )
      & ( ~ ( ord_less_eq_real @ ( numeral_numeral_real @ U ) @ ( numeral_numeral_real @ V ) )
       => ( ( ord_max_real @ ( numeral_numeral_real @ U ) @ ( numeral_numeral_real @ V ) )
          = ( numeral_numeral_real @ U ) ) ) ) ).

% max_number_of(1)
thf(fact_684_max__number__of_I1_J,axiom,
    ! [U: num,V: num] :
      ( ( ( ord_less_eq_rat @ ( numeral_numeral_rat @ U ) @ ( numeral_numeral_rat @ V ) )
       => ( ( ord_max_rat @ ( numeral_numeral_rat @ U ) @ ( numeral_numeral_rat @ V ) )
          = ( numeral_numeral_rat @ V ) ) )
      & ( ~ ( ord_less_eq_rat @ ( numeral_numeral_rat @ U ) @ ( numeral_numeral_rat @ V ) )
       => ( ( ord_max_rat @ ( numeral_numeral_rat @ U ) @ ( numeral_numeral_rat @ V ) )
          = ( numeral_numeral_rat @ U ) ) ) ) ).

% max_number_of(1)
thf(fact_685_max__number__of_I1_J,axiom,
    ! [U: num,V: num] :
      ( ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ U ) @ ( numeral_numeral_nat @ V ) )
       => ( ( ord_max_nat @ ( numeral_numeral_nat @ U ) @ ( numeral_numeral_nat @ V ) )
          = ( numeral_numeral_nat @ V ) ) )
      & ( ~ ( ord_less_eq_nat @ ( numeral_numeral_nat @ U ) @ ( numeral_numeral_nat @ V ) )
       => ( ( ord_max_nat @ ( numeral_numeral_nat @ U ) @ ( numeral_numeral_nat @ V ) )
          = ( numeral_numeral_nat @ U ) ) ) ) ).

% max_number_of(1)
thf(fact_686_max__number__of_I1_J,axiom,
    ! [U: num,V: num] :
      ( ( ( ord_less_eq_int @ ( numeral_numeral_int @ U ) @ ( numeral_numeral_int @ V ) )
       => ( ( ord_max_int @ ( numeral_numeral_int @ U ) @ ( numeral_numeral_int @ V ) )
          = ( numeral_numeral_int @ V ) ) )
      & ( ~ ( ord_less_eq_int @ ( numeral_numeral_int @ U ) @ ( numeral_numeral_int @ V ) )
       => ( ( ord_max_int @ ( numeral_numeral_int @ U ) @ ( numeral_numeral_int @ V ) )
          = ( numeral_numeral_int @ U ) ) ) ) ).

% max_number_of(1)
thf(fact_687_max__0__1_I5_J,axiom,
    ! [X: num] :
      ( ( ord_ma741700101516333627d_enat @ one_on7984719198319812577d_enat @ ( numera1916890842035813515d_enat @ X ) )
      = ( numera1916890842035813515d_enat @ X ) ) ).

% max_0_1(5)
thf(fact_688_max__0__1_I5_J,axiom,
    ! [X: num] :
      ( ( ord_max_Code_integer @ one_one_Code_integer @ ( numera6620942414471956472nteger @ X ) )
      = ( numera6620942414471956472nteger @ X ) ) ).

% max_0_1(5)
thf(fact_689_max__0__1_I5_J,axiom,
    ! [X: num] :
      ( ( ord_max_real @ one_one_real @ ( numeral_numeral_real @ X ) )
      = ( numeral_numeral_real @ X ) ) ).

% max_0_1(5)
thf(fact_690_max__0__1_I5_J,axiom,
    ! [X: num] :
      ( ( ord_max_rat @ one_one_rat @ ( numeral_numeral_rat @ X ) )
      = ( numeral_numeral_rat @ X ) ) ).

% max_0_1(5)
thf(fact_691_max__0__1_I5_J,axiom,
    ! [X: num] :
      ( ( ord_max_nat @ one_one_nat @ ( numeral_numeral_nat @ X ) )
      = ( numeral_numeral_nat @ X ) ) ).

% max_0_1(5)
thf(fact_692_max__0__1_I5_J,axiom,
    ! [X: num] :
      ( ( ord_max_int @ one_one_int @ ( numeral_numeral_int @ X ) )
      = ( numeral_numeral_int @ X ) ) ).

% max_0_1(5)
thf(fact_693_max__0__1_I6_J,axiom,
    ! [X: num] :
      ( ( ord_ma741700101516333627d_enat @ ( numera1916890842035813515d_enat @ X ) @ one_on7984719198319812577d_enat )
      = ( numera1916890842035813515d_enat @ X ) ) ).

% max_0_1(6)
thf(fact_694_max__0__1_I6_J,axiom,
    ! [X: num] :
      ( ( ord_max_Code_integer @ ( numera6620942414471956472nteger @ X ) @ one_one_Code_integer )
      = ( numera6620942414471956472nteger @ X ) ) ).

% max_0_1(6)
thf(fact_695_max__0__1_I6_J,axiom,
    ! [X: num] :
      ( ( ord_max_real @ ( numeral_numeral_real @ X ) @ one_one_real )
      = ( numeral_numeral_real @ X ) ) ).

% max_0_1(6)
thf(fact_696_max__0__1_I6_J,axiom,
    ! [X: num] :
      ( ( ord_max_rat @ ( numeral_numeral_rat @ X ) @ one_one_rat )
      = ( numeral_numeral_rat @ X ) ) ).

% max_0_1(6)
thf(fact_697_max__0__1_I6_J,axiom,
    ! [X: num] :
      ( ( ord_max_nat @ ( numeral_numeral_nat @ X ) @ one_one_nat )
      = ( numeral_numeral_nat @ X ) ) ).

% max_0_1(6)
thf(fact_698_max__0__1_I6_J,axiom,
    ! [X: num] :
      ( ( ord_max_int @ ( numeral_numeral_int @ X ) @ one_one_int )
      = ( numeral_numeral_int @ X ) ) ).

% max_0_1(6)
thf(fact_699_Nat_Oadd__diff__assoc,axiom,
    ! [K: nat,J: nat,I2: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( plus_plus_nat @ I2 @ ( minus_minus_nat @ J @ K ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ I2 @ J ) @ K ) ) ) ).

% Nat.add_diff_assoc
thf(fact_700_Nat_Oadd__diff__assoc2,axiom,
    ! [K: nat,J: nat,I2: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( plus_plus_nat @ ( minus_minus_nat @ J @ K ) @ I2 )
        = ( minus_minus_nat @ ( plus_plus_nat @ J @ I2 ) @ K ) ) ) ).

% Nat.add_diff_assoc2
thf(fact_701_Nat_Odiff__diff__right,axiom,
    ! [K: nat,J: nat,I2: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( minus_minus_nat @ I2 @ ( minus_minus_nat @ J @ K ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ I2 @ K ) @ J ) ) ) ).

% Nat.diff_diff_right
thf(fact_702_diff__Suc__1,axiom,
    ! [N2: nat] :
      ( ( minus_minus_nat @ ( suc @ N2 ) @ one_one_nat )
      = N2 ) ).

% diff_Suc_1
thf(fact_703_diff__Suc__diff__eq1,axiom,
    ! [K: nat,J: nat,I2: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( minus_minus_nat @ I2 @ ( suc @ ( minus_minus_nat @ J @ K ) ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ I2 @ K ) @ ( suc @ J ) ) ) ) ).

% diff_Suc_diff_eq1
thf(fact_704_diff__Suc__diff__eq2,axiom,
    ! [K: nat,J: nat,I2: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( minus_minus_nat @ ( suc @ ( minus_minus_nat @ J @ K ) ) @ I2 )
        = ( minus_minus_nat @ ( suc @ J ) @ ( plus_plus_nat @ K @ I2 ) ) ) ) ).

% diff_Suc_diff_eq2
thf(fact_705_diff__commute,axiom,
    ! [I2: nat,J: nat,K: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ I2 @ J ) @ K )
      = ( minus_minus_nat @ ( minus_minus_nat @ I2 @ K ) @ J ) ) ).

% diff_commute
thf(fact_706_nat__minus__add__max,axiom,
    ! [N2: nat,M: nat] :
      ( ( plus_plus_nat @ ( minus_minus_nat @ N2 @ M ) @ M )
      = ( ord_max_nat @ N2 @ M ) ) ).

% nat_minus_add_max
thf(fact_707_nat__add__max__left,axiom,
    ! [M: nat,N2: nat,Q2: nat] :
      ( ( plus_plus_nat @ ( ord_max_nat @ M @ N2 ) @ Q2 )
      = ( ord_max_nat @ ( plus_plus_nat @ M @ Q2 ) @ ( plus_plus_nat @ N2 @ Q2 ) ) ) ).

% nat_add_max_left
thf(fact_708_nat__add__max__right,axiom,
    ! [M: nat,N2: nat,Q2: nat] :
      ( ( plus_plus_nat @ M @ ( ord_max_nat @ N2 @ Q2 ) )
      = ( ord_max_nat @ ( plus_plus_nat @ M @ N2 ) @ ( plus_plus_nat @ M @ Q2 ) ) ) ).

% nat_add_max_right
thf(fact_709_nat__mult__max__left,axiom,
    ! [M: nat,N2: nat,Q2: nat] :
      ( ( times_times_nat @ ( ord_max_nat @ M @ N2 ) @ Q2 )
      = ( ord_max_nat @ ( times_times_nat @ M @ Q2 ) @ ( times_times_nat @ N2 @ Q2 ) ) ) ).

% nat_mult_max_left
thf(fact_710_nat__mult__max__right,axiom,
    ! [M: nat,N2: nat,Q2: nat] :
      ( ( times_times_nat @ M @ ( ord_max_nat @ N2 @ Q2 ) )
      = ( ord_max_nat @ ( times_times_nat @ M @ N2 ) @ ( times_times_nat @ M @ Q2 ) ) ) ).

% nat_mult_max_right
thf(fact_711_zero__induct__lemma,axiom,
    ! [P: nat > $o,K: nat,I2: nat] :
      ( ( P @ K )
     => ( ! [N: nat] :
            ( ( P @ ( suc @ N ) )
           => ( P @ N ) )
       => ( P @ ( minus_minus_nat @ K @ I2 ) ) ) ) ).

% zero_induct_lemma
thf(fact_712_less__imp__diff__less,axiom,
    ! [J: nat,K: nat,N2: nat] :
      ( ( ord_less_nat @ J @ K )
     => ( ord_less_nat @ ( minus_minus_nat @ J @ N2 ) @ K ) ) ).

% less_imp_diff_less
thf(fact_713_diff__less__mono2,axiom,
    ! [M: nat,N2: nat,L2: nat] :
      ( ( ord_less_nat @ M @ N2 )
     => ( ( ord_less_nat @ M @ L2 )
       => ( ord_less_nat @ ( minus_minus_nat @ L2 @ N2 ) @ ( minus_minus_nat @ L2 @ M ) ) ) ) ).

% diff_less_mono2
thf(fact_714_Nat_Odiff__cancel,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N2 ) )
      = ( minus_minus_nat @ M @ N2 ) ) ).

% Nat.diff_cancel
thf(fact_715_diff__cancel2,axiom,
    ! [M: nat,K: nat,N2: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ M @ K ) @ ( plus_plus_nat @ N2 @ K ) )
      = ( minus_minus_nat @ M @ N2 ) ) ).

% diff_cancel2
thf(fact_716_diff__add__inverse,axiom,
    ! [N2: nat,M: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ N2 @ M ) @ N2 )
      = M ) ).

% diff_add_inverse
thf(fact_717_diff__add__inverse2,axiom,
    ! [M: nat,N2: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ M @ N2 ) @ N2 )
      = M ) ).

% diff_add_inverse2
thf(fact_718_diff__le__mono2,axiom,
    ! [M: nat,N2: nat,L2: nat] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ord_less_eq_nat @ ( minus_minus_nat @ L2 @ N2 ) @ ( minus_minus_nat @ L2 @ M ) ) ) ).

% diff_le_mono2
thf(fact_719_le__diff__iff_H,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ C )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ( ord_less_eq_nat @ ( minus_minus_nat @ C @ A ) @ ( minus_minus_nat @ C @ B ) )
          = ( ord_less_eq_nat @ B @ A ) ) ) ) ).

% le_diff_iff'
thf(fact_720_diff__le__self,axiom,
    ! [M: nat,N2: nat] : ( ord_less_eq_nat @ ( minus_minus_nat @ M @ N2 ) @ M ) ).

% diff_le_self
thf(fact_721_diff__le__mono,axiom,
    ! [M: nat,N2: nat,L2: nat] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ord_less_eq_nat @ ( minus_minus_nat @ M @ L2 ) @ ( minus_minus_nat @ N2 @ L2 ) ) ) ).

% diff_le_mono
thf(fact_722_Nat_Odiff__diff__eq,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ K @ M )
     => ( ( ord_less_eq_nat @ K @ N2 )
       => ( ( minus_minus_nat @ ( minus_minus_nat @ M @ K ) @ ( minus_minus_nat @ N2 @ K ) )
          = ( minus_minus_nat @ M @ N2 ) ) ) ) ).

% Nat.diff_diff_eq
thf(fact_723_le__diff__iff,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ K @ M )
     => ( ( ord_less_eq_nat @ K @ N2 )
       => ( ( ord_less_eq_nat @ ( minus_minus_nat @ M @ K ) @ ( minus_minus_nat @ N2 @ K ) )
          = ( ord_less_eq_nat @ M @ N2 ) ) ) ) ).

% le_diff_iff
thf(fact_724_eq__diff__iff,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ K @ M )
     => ( ( ord_less_eq_nat @ K @ N2 )
       => ( ( ( minus_minus_nat @ M @ K )
            = ( minus_minus_nat @ N2 @ K ) )
          = ( M = N2 ) ) ) ) ).

% eq_diff_iff
thf(fact_725_diff__mult__distrib,axiom,
    ! [M: nat,N2: nat,K: nat] :
      ( ( times_times_nat @ ( minus_minus_nat @ M @ N2 ) @ K )
      = ( minus_minus_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N2 @ K ) ) ) ).

% diff_mult_distrib
thf(fact_726_diff__mult__distrib2,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( times_times_nat @ K @ ( minus_minus_nat @ M @ N2 ) )
      = ( minus_minus_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N2 ) ) ) ).

% diff_mult_distrib2
thf(fact_727_diff__less__Suc,axiom,
    ! [M: nat,N2: nat] : ( ord_less_nat @ ( minus_minus_nat @ M @ N2 ) @ ( suc @ M ) ) ).

% diff_less_Suc
thf(fact_728_Suc__diff__Suc,axiom,
    ! [N2: nat,M: nat] :
      ( ( ord_less_nat @ N2 @ M )
     => ( ( suc @ ( minus_minus_nat @ M @ ( suc @ N2 ) ) )
        = ( minus_minus_nat @ M @ N2 ) ) ) ).

% Suc_diff_Suc
thf(fact_729_Suc__diff__le,axiom,
    ! [N2: nat,M: nat] :
      ( ( ord_less_eq_nat @ N2 @ M )
     => ( ( minus_minus_nat @ ( suc @ M ) @ N2 )
        = ( suc @ ( minus_minus_nat @ M @ N2 ) ) ) ) ).

% Suc_diff_le
thf(fact_730_less__diff__conv,axiom,
    ! [I2: nat,J: nat,K: nat] :
      ( ( ord_less_nat @ I2 @ ( minus_minus_nat @ J @ K ) )
      = ( ord_less_nat @ ( plus_plus_nat @ I2 @ K ) @ J ) ) ).

% less_diff_conv
thf(fact_731_add__diff__inverse__nat,axiom,
    ! [M: nat,N2: nat] :
      ( ~ ( ord_less_nat @ M @ N2 )
     => ( ( plus_plus_nat @ N2 @ ( minus_minus_nat @ M @ N2 ) )
        = M ) ) ).

% add_diff_inverse_nat
thf(fact_732_diff__less__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ A )
       => ( ord_less_nat @ ( minus_minus_nat @ A @ C ) @ ( minus_minus_nat @ B @ C ) ) ) ) ).

% diff_less_mono
thf(fact_733_less__diff__iff,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ K @ M )
     => ( ( ord_less_eq_nat @ K @ N2 )
       => ( ( ord_less_nat @ ( minus_minus_nat @ M @ K ) @ ( minus_minus_nat @ N2 @ K ) )
          = ( ord_less_nat @ M @ N2 ) ) ) ) ).

% less_diff_iff
thf(fact_734_le__diff__conv,axiom,
    ! [J: nat,K: nat,I2: nat] :
      ( ( ord_less_eq_nat @ ( minus_minus_nat @ J @ K ) @ I2 )
      = ( ord_less_eq_nat @ J @ ( plus_plus_nat @ I2 @ K ) ) ) ).

% le_diff_conv
thf(fact_735_Nat_Ole__diff__conv2,axiom,
    ! [K: nat,J: nat,I2: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( ord_less_eq_nat @ I2 @ ( minus_minus_nat @ J @ K ) )
        = ( ord_less_eq_nat @ ( plus_plus_nat @ I2 @ K ) @ J ) ) ) ).

% Nat.le_diff_conv2
thf(fact_736_Nat_Odiff__add__assoc,axiom,
    ! [K: nat,J: nat,I2: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ I2 @ J ) @ K )
        = ( plus_plus_nat @ I2 @ ( minus_minus_nat @ J @ K ) ) ) ) ).

% Nat.diff_add_assoc
thf(fact_737_Nat_Odiff__add__assoc2,axiom,
    ! [K: nat,J: nat,I2: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ J @ I2 ) @ K )
        = ( plus_plus_nat @ ( minus_minus_nat @ J @ K ) @ I2 ) ) ) ).

% Nat.diff_add_assoc2
thf(fact_738_Nat_Ole__imp__diff__is__add,axiom,
    ! [I2: nat,J: nat,K: nat] :
      ( ( ord_less_eq_nat @ I2 @ J )
     => ( ( ( minus_minus_nat @ J @ I2 )
          = K )
        = ( J
          = ( plus_plus_nat @ K @ I2 ) ) ) ) ).

% Nat.le_imp_diff_is_add
thf(fact_739_diff__Suc__eq__diff__pred,axiom,
    ! [M: nat,N2: nat] :
      ( ( minus_minus_nat @ M @ ( suc @ N2 ) )
      = ( minus_minus_nat @ ( minus_minus_nat @ M @ one_one_nat ) @ N2 ) ) ).

% diff_Suc_eq_diff_pred
thf(fact_740_less__diff__conv2,axiom,
    ! [K: nat,J: nat,I2: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( ord_less_nat @ ( minus_minus_nat @ J @ K ) @ I2 )
        = ( ord_less_nat @ J @ ( plus_plus_nat @ I2 @ K ) ) ) ) ).

% less_diff_conv2
thf(fact_741_nat__eq__add__iff1,axiom,
    ! [J: nat,I2: nat,U: nat,M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ J @ I2 )
     => ( ( ( plus_plus_nat @ ( times_times_nat @ I2 @ U ) @ M )
          = ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N2 ) )
        = ( ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ I2 @ J ) @ U ) @ M )
          = N2 ) ) ) ).

% nat_eq_add_iff1
thf(fact_742_nat__eq__add__iff2,axiom,
    ! [I2: nat,J: nat,U: nat,M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ I2 @ J )
     => ( ( ( plus_plus_nat @ ( times_times_nat @ I2 @ U ) @ M )
          = ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N2 ) )
        = ( M
          = ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ J @ I2 ) @ U ) @ N2 ) ) ) ) ).

% nat_eq_add_iff2
thf(fact_743_nat__le__add__iff1,axiom,
    ! [J: nat,I2: nat,U: nat,M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ J @ I2 )
     => ( ( ord_less_eq_nat @ ( plus_plus_nat @ ( times_times_nat @ I2 @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N2 ) )
        = ( ord_less_eq_nat @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ I2 @ J ) @ U ) @ M ) @ N2 ) ) ) ).

% nat_le_add_iff1
thf(fact_744_nat__le__add__iff2,axiom,
    ! [I2: nat,J: nat,U: nat,M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ I2 @ J )
     => ( ( ord_less_eq_nat @ ( plus_plus_nat @ ( times_times_nat @ I2 @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N2 ) )
        = ( ord_less_eq_nat @ M @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ J @ I2 ) @ U ) @ N2 ) ) ) ) ).

% nat_le_add_iff2
thf(fact_745_nat__diff__add__eq1,axiom,
    ! [J: nat,I2: nat,U: nat,M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ J @ I2 )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ ( times_times_nat @ I2 @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N2 ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ I2 @ J ) @ U ) @ M ) @ N2 ) ) ) ).

% nat_diff_add_eq1
thf(fact_746_nat__diff__add__eq2,axiom,
    ! [I2: nat,J: nat,U: nat,M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ I2 @ J )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ ( times_times_nat @ I2 @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N2 ) )
        = ( minus_minus_nat @ M @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ J @ I2 ) @ U ) @ N2 ) ) ) ) ).

% nat_diff_add_eq2
thf(fact_747_nat__less__add__iff1,axiom,
    ! [J: nat,I2: nat,U: nat,M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ J @ I2 )
     => ( ( ord_less_nat @ ( plus_plus_nat @ ( times_times_nat @ I2 @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N2 ) )
        = ( ord_less_nat @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ I2 @ J ) @ U ) @ M ) @ N2 ) ) ) ).

% nat_less_add_iff1
thf(fact_748_nat__less__add__iff2,axiom,
    ! [I2: nat,J: nat,U: nat,M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ I2 @ J )
     => ( ( ord_less_nat @ ( plus_plus_nat @ ( times_times_nat @ I2 @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N2 ) )
        = ( ord_less_nat @ M @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ J @ I2 ) @ U ) @ N2 ) ) ) ) ).

% nat_less_add_iff2
thf(fact_749_n__not__Suc__n,axiom,
    ! [N2: nat] :
      ( N2
     != ( suc @ N2 ) ) ).

% n_not_Suc_n
thf(fact_750_Suc__inject,axiom,
    ! [X: nat,Y: nat] :
      ( ( ( suc @ X )
        = ( suc @ Y ) )
     => ( X = Y ) ) ).

% Suc_inject
thf(fact_751_linorder__neqE__nat,axiom,
    ! [X: nat,Y: nat] :
      ( ( X != Y )
     => ( ~ ( ord_less_nat @ X @ Y )
       => ( ord_less_nat @ Y @ X ) ) ) ).

% linorder_neqE_nat
thf(fact_752_infinite__descent,axiom,
    ! [P: nat > $o,N2: nat] :
      ( ! [N: nat] :
          ( ~ ( P @ N )
         => ? [M3: nat] :
              ( ( ord_less_nat @ M3 @ N )
              & ~ ( P @ M3 ) ) )
     => ( P @ N2 ) ) ).

% infinite_descent
thf(fact_753_nat__less__induct,axiom,
    ! [P: nat > $o,N2: nat] :
      ( ! [N: nat] :
          ( ! [M3: nat] :
              ( ( ord_less_nat @ M3 @ N )
             => ( P @ M3 ) )
         => ( P @ N ) )
     => ( P @ N2 ) ) ).

% nat_less_induct
thf(fact_754_less__irrefl__nat,axiom,
    ! [N2: nat] :
      ~ ( ord_less_nat @ N2 @ N2 ) ).

% less_irrefl_nat
thf(fact_755_less__not__refl3,axiom,
    ! [S2: nat,T: nat] :
      ( ( ord_less_nat @ S2 @ T )
     => ( S2 != T ) ) ).

% less_not_refl3
thf(fact_756_less__not__refl2,axiom,
    ! [N2: nat,M: nat] :
      ( ( ord_less_nat @ N2 @ M )
     => ( M != N2 ) ) ).

% less_not_refl2
thf(fact_757_less__not__refl,axiom,
    ! [N2: nat] :
      ~ ( ord_less_nat @ N2 @ N2 ) ).

% less_not_refl
thf(fact_758_nat__neq__iff,axiom,
    ! [M: nat,N2: nat] :
      ( ( M != N2 )
      = ( ( ord_less_nat @ M @ N2 )
        | ( ord_less_nat @ N2 @ M ) ) ) ).

% nat_neq_iff
thf(fact_759_Nat_Oex__has__greatest__nat,axiom,
    ! [P: nat > $o,K: nat,B: nat] :
      ( ( P @ K )
     => ( ! [Y5: nat] :
            ( ( P @ Y5 )
           => ( ord_less_eq_nat @ Y5 @ B ) )
       => ? [X5: nat] :
            ( ( P @ X5 )
            & ! [Y2: nat] :
                ( ( P @ Y2 )
               => ( ord_less_eq_nat @ Y2 @ X5 ) ) ) ) ) ).

% Nat.ex_has_greatest_nat
thf(fact_760_nat__le__linear,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ M @ N2 )
      | ( ord_less_eq_nat @ N2 @ M ) ) ).

% nat_le_linear
thf(fact_761_le__antisym,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ( ord_less_eq_nat @ N2 @ M )
       => ( M = N2 ) ) ) ).

% le_antisym
thf(fact_762_eq__imp__le,axiom,
    ! [M: nat,N2: nat] :
      ( ( M = N2 )
     => ( ord_less_eq_nat @ M @ N2 ) ) ).

% eq_imp_le
thf(fact_763_le__trans,axiom,
    ! [I2: nat,J: nat,K: nat] :
      ( ( ord_less_eq_nat @ I2 @ J )
     => ( ( ord_less_eq_nat @ J @ K )
       => ( ord_less_eq_nat @ I2 @ K ) ) ) ).

% le_trans
thf(fact_764_le__refl,axiom,
    ! [N2: nat] : ( ord_less_eq_nat @ N2 @ N2 ) ).

% le_refl
thf(fact_765_size__neq__size__imp__neq,axiom,
    ! [X: char,Y: char] :
      ( ( ( size_size_char @ X )
       != ( size_size_char @ Y ) )
     => ( X != Y ) ) ).

% size_neq_size_imp_neq
thf(fact_766_size__neq__size__imp__neq,axiom,
    ! [X: list_VEBT_VEBT,Y: list_VEBT_VEBT] :
      ( ( ( size_s6755466524823107622T_VEBT @ X )
       != ( size_s6755466524823107622T_VEBT @ Y ) )
     => ( X != Y ) ) ).

% size_neq_size_imp_neq
thf(fact_767_size__neq__size__imp__neq,axiom,
    ! [X: list_o,Y: list_o] :
      ( ( ( size_size_list_o @ X )
       != ( size_size_list_o @ Y ) )
     => ( X != Y ) ) ).

% size_neq_size_imp_neq
thf(fact_768_size__neq__size__imp__neq,axiom,
    ! [X: list_int,Y: list_int] :
      ( ( ( size_size_list_int @ X )
       != ( size_size_list_int @ Y ) )
     => ( X != Y ) ) ).

% size_neq_size_imp_neq
thf(fact_769_size__neq__size__imp__neq,axiom,
    ! [X: num,Y: num] :
      ( ( ( size_size_num @ X )
       != ( size_size_num @ Y ) )
     => ( X != Y ) ) ).

% size_neq_size_imp_neq
thf(fact_770_power2__commute,axiom,
    ! [X: complex,Y: complex] :
      ( ( power_power_complex @ ( minus_minus_complex @ X @ Y ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( power_power_complex @ ( minus_minus_complex @ Y @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power2_commute
thf(fact_771_power2__commute,axiom,
    ! [X: real,Y: real] :
      ( ( power_power_real @ ( minus_minus_real @ X @ Y ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( power_power_real @ ( minus_minus_real @ Y @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power2_commute
thf(fact_772_power2__commute,axiom,
    ! [X: rat,Y: rat] :
      ( ( power_power_rat @ ( minus_minus_rat @ X @ Y ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( power_power_rat @ ( minus_minus_rat @ Y @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power2_commute
thf(fact_773_power2__commute,axiom,
    ! [X: int,Y: int] :
      ( ( power_power_int @ ( minus_minus_int @ X @ Y ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( power_power_int @ ( minus_minus_int @ Y @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power2_commute
thf(fact_774_set__vebt__def,axiom,
    ( vEBT_set_vebt
    = ( ^ [T2: vEBT_VEBT] : ( collect_nat @ ( vEBT_V8194947554948674370ptions @ T2 ) ) ) ) ).

% set_vebt_def
thf(fact_775_diff__le__diff__pow,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K )
     => ( ord_less_eq_nat @ ( minus_minus_nat @ M @ N2 ) @ ( minus_minus_nat @ ( power_power_nat @ K @ M ) @ ( power_power_nat @ K @ N2 ) ) ) ) ).

% diff_le_diff_pow
thf(fact_776_power2__diff,axiom,
    ! [X: complex,Y: complex] :
      ( ( power_power_complex @ ( minus_minus_complex @ X @ Y ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( minus_minus_complex @ ( plus_plus_complex @ ( power_power_complex @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_complex @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ X ) @ Y ) ) ) ).

% power2_diff
thf(fact_777_power2__diff,axiom,
    ! [X: real,Y: real] :
      ( ( power_power_real @ ( minus_minus_real @ X @ Y ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( minus_minus_real @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X ) @ Y ) ) ) ).

% power2_diff
thf(fact_778_power2__diff,axiom,
    ! [X: rat,Y: rat] :
      ( ( power_power_rat @ ( minus_minus_rat @ X @ Y ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( minus_minus_rat @ ( plus_plus_rat @ ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_rat @ ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ X ) @ Y ) ) ) ).

% power2_diff
thf(fact_779_power2__diff,axiom,
    ! [X: int,Y: int] :
      ( ( power_power_int @ ( minus_minus_int @ X @ Y ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( minus_minus_int @ ( plus_plus_int @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ X ) @ Y ) ) ) ).

% power2_diff
thf(fact_780_not__less__less__Suc__eq,axiom,
    ! [N2: nat,M: nat] :
      ( ~ ( ord_less_nat @ N2 @ M )
     => ( ( ord_less_nat @ N2 @ ( suc @ M ) )
        = ( N2 = M ) ) ) ).

% not_less_less_Suc_eq
thf(fact_781_strict__inc__induct,axiom,
    ! [I2: nat,J: nat,P: nat > $o] :
      ( ( ord_less_nat @ I2 @ J )
     => ( ! [I3: nat] :
            ( ( J
              = ( suc @ I3 ) )
           => ( P @ I3 ) )
       => ( ! [I3: nat] :
              ( ( ord_less_nat @ I3 @ J )
             => ( ( P @ ( suc @ I3 ) )
               => ( P @ I3 ) ) )
         => ( P @ I2 ) ) ) ) ).

% strict_inc_induct
thf(fact_782_less__Suc__induct,axiom,
    ! [I2: nat,J: nat,P: nat > nat > $o] :
      ( ( ord_less_nat @ I2 @ J )
     => ( ! [I3: nat] : ( P @ I3 @ ( suc @ I3 ) )
       => ( ! [I3: nat,J2: nat,K2: nat] :
              ( ( ord_less_nat @ I3 @ J2 )
             => ( ( ord_less_nat @ J2 @ K2 )
               => ( ( P @ I3 @ J2 )
                 => ( ( P @ J2 @ K2 )
                   => ( P @ I3 @ K2 ) ) ) ) )
         => ( P @ I2 @ J ) ) ) ) ).

% less_Suc_induct
thf(fact_783_less__trans__Suc,axiom,
    ! [I2: nat,J: nat,K: nat] :
      ( ( ord_less_nat @ I2 @ J )
     => ( ( ord_less_nat @ J @ K )
       => ( ord_less_nat @ ( suc @ I2 ) @ K ) ) ) ).

% less_trans_Suc
thf(fact_784_Suc__less__SucD,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ ( suc @ M ) @ ( suc @ N2 ) )
     => ( ord_less_nat @ M @ N2 ) ) ).

% Suc_less_SucD
thf(fact_785_less__antisym,axiom,
    ! [N2: nat,M: nat] :
      ( ~ ( ord_less_nat @ N2 @ M )
     => ( ( ord_less_nat @ N2 @ ( suc @ M ) )
       => ( M = N2 ) ) ) ).

% less_antisym
thf(fact_786_Suc__less__eq2,axiom,
    ! [N2: nat,M: nat] :
      ( ( ord_less_nat @ ( suc @ N2 ) @ M )
      = ( ? [M4: nat] :
            ( ( M
              = ( suc @ M4 ) )
            & ( ord_less_nat @ N2 @ M4 ) ) ) ) ).

% Suc_less_eq2
thf(fact_787_All__less__Suc,axiom,
    ! [N2: nat,P: nat > $o] :
      ( ( ! [I5: nat] :
            ( ( ord_less_nat @ I5 @ ( suc @ N2 ) )
           => ( P @ I5 ) ) )
      = ( ( P @ N2 )
        & ! [I5: nat] :
            ( ( ord_less_nat @ I5 @ N2 )
           => ( P @ I5 ) ) ) ) ).

% All_less_Suc
thf(fact_788_not__less__eq,axiom,
    ! [M: nat,N2: nat] :
      ( ( ~ ( ord_less_nat @ M @ N2 ) )
      = ( ord_less_nat @ N2 @ ( suc @ M ) ) ) ).

% not_less_eq
thf(fact_789_less__Suc__eq,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ M @ ( suc @ N2 ) )
      = ( ( ord_less_nat @ M @ N2 )
        | ( M = N2 ) ) ) ).

% less_Suc_eq
thf(fact_790_Ex__less__Suc,axiom,
    ! [N2: nat,P: nat > $o] :
      ( ( ? [I5: nat] :
            ( ( ord_less_nat @ I5 @ ( suc @ N2 ) )
            & ( P @ I5 ) ) )
      = ( ( P @ N2 )
        | ? [I5: nat] :
            ( ( ord_less_nat @ I5 @ N2 )
            & ( P @ I5 ) ) ) ) ).

% Ex_less_Suc
thf(fact_791_less__SucI,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ M @ N2 )
     => ( ord_less_nat @ M @ ( suc @ N2 ) ) ) ).

% less_SucI
thf(fact_792_less__SucE,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ M @ ( suc @ N2 ) )
     => ( ~ ( ord_less_nat @ M @ N2 )
       => ( M = N2 ) ) ) ).

% less_SucE
thf(fact_793_Suc__lessI,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ M @ N2 )
     => ( ( ( suc @ M )
         != N2 )
       => ( ord_less_nat @ ( suc @ M ) @ N2 ) ) ) ).

% Suc_lessI
thf(fact_794_Suc__lessE,axiom,
    ! [I2: nat,K: nat] :
      ( ( ord_less_nat @ ( suc @ I2 ) @ K )
     => ~ ! [J2: nat] :
            ( ( ord_less_nat @ I2 @ J2 )
           => ( K
             != ( suc @ J2 ) ) ) ) ).

% Suc_lessE
thf(fact_795_Suc__lessD,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ ( suc @ M ) @ N2 )
     => ( ord_less_nat @ M @ N2 ) ) ).

% Suc_lessD
thf(fact_796_Nat_OlessE,axiom,
    ! [I2: nat,K: nat] :
      ( ( ord_less_nat @ I2 @ K )
     => ( ( K
         != ( suc @ I2 ) )
       => ~ ! [J2: nat] :
              ( ( ord_less_nat @ I2 @ J2 )
             => ( K
               != ( suc @ J2 ) ) ) ) ) ).

% Nat.lessE
thf(fact_797_nat__arith_Osuc1,axiom,
    ! [A2: nat,K: nat,A: nat] :
      ( ( A2
        = ( plus_plus_nat @ K @ A ) )
     => ( ( suc @ A2 )
        = ( plus_plus_nat @ K @ ( suc @ A ) ) ) ) ).

% nat_arith.suc1
thf(fact_798_add__Suc,axiom,
    ! [M: nat,N2: nat] :
      ( ( plus_plus_nat @ ( suc @ M ) @ N2 )
      = ( suc @ ( plus_plus_nat @ M @ N2 ) ) ) ).

% add_Suc
thf(fact_799_add__Suc__shift,axiom,
    ! [M: nat,N2: nat] :
      ( ( plus_plus_nat @ ( suc @ M ) @ N2 )
      = ( plus_plus_nat @ M @ ( suc @ N2 ) ) ) ).

% add_Suc_shift
thf(fact_800_transitive__stepwise__le,axiom,
    ! [M: nat,N2: nat,R: nat > nat > $o] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ! [X5: nat] : ( R @ X5 @ X5 )
       => ( ! [X5: nat,Y5: nat,Z4: nat] :
              ( ( R @ X5 @ Y5 )
             => ( ( R @ Y5 @ Z4 )
               => ( R @ X5 @ Z4 ) ) )
         => ( ! [N: nat] : ( R @ N @ ( suc @ N ) )
           => ( R @ M @ N2 ) ) ) ) ) ).

% transitive_stepwise_le
thf(fact_801_nat__induct__at__least,axiom,
    ! [M: nat,N2: nat,P: nat > $o] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ( P @ M )
       => ( ! [N: nat] :
              ( ( ord_less_eq_nat @ M @ N )
             => ( ( P @ N )
               => ( P @ ( suc @ N ) ) ) )
         => ( P @ N2 ) ) ) ) ).

% nat_induct_at_least
thf(fact_802_full__nat__induct,axiom,
    ! [P: nat > $o,N2: nat] :
      ( ! [N: nat] :
          ( ! [M3: nat] :
              ( ( ord_less_eq_nat @ ( suc @ M3 ) @ N )
             => ( P @ M3 ) )
         => ( P @ N ) )
     => ( P @ N2 ) ) ).

% full_nat_induct
thf(fact_803_not__less__eq__eq,axiom,
    ! [M: nat,N2: nat] :
      ( ( ~ ( ord_less_eq_nat @ M @ N2 ) )
      = ( ord_less_eq_nat @ ( suc @ N2 ) @ M ) ) ).

% not_less_eq_eq
thf(fact_804_Suc__n__not__le__n,axiom,
    ! [N2: nat] :
      ~ ( ord_less_eq_nat @ ( suc @ N2 ) @ N2 ) ).

% Suc_n_not_le_n
thf(fact_805_le__Suc__eq,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ M @ ( suc @ N2 ) )
      = ( ( ord_less_eq_nat @ M @ N2 )
        | ( M
          = ( suc @ N2 ) ) ) ) ).

% le_Suc_eq
thf(fact_806_Suc__le__D,axiom,
    ! [N2: nat,M5: nat] :
      ( ( ord_less_eq_nat @ ( suc @ N2 ) @ M5 )
     => ? [M2: nat] :
          ( M5
          = ( suc @ M2 ) ) ) ).

% Suc_le_D
thf(fact_807_le__SucI,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ord_less_eq_nat @ M @ ( suc @ N2 ) ) ) ).

% le_SucI
thf(fact_808_le__SucE,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ M @ ( suc @ N2 ) )
     => ( ~ ( ord_less_eq_nat @ M @ N2 )
       => ( M
          = ( suc @ N2 ) ) ) ) ).

% le_SucE
thf(fact_809_Suc__leD,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ ( suc @ M ) @ N2 )
     => ( ord_less_eq_nat @ M @ N2 ) ) ).

% Suc_leD
thf(fact_810_Suc__mult__cancel1,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( ( times_times_nat @ ( suc @ K ) @ M )
        = ( times_times_nat @ ( suc @ K ) @ N2 ) )
      = ( M = N2 ) ) ).

% Suc_mult_cancel1
thf(fact_811_add__lessD1,axiom,
    ! [I2: nat,J: nat,K: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ I2 @ J ) @ K )
     => ( ord_less_nat @ I2 @ K ) ) ).

% add_lessD1
thf(fact_812_add__less__mono,axiom,
    ! [I2: nat,J: nat,K: nat,L2: nat] :
      ( ( ord_less_nat @ I2 @ J )
     => ( ( ord_less_nat @ K @ L2 )
       => ( ord_less_nat @ ( plus_plus_nat @ I2 @ K ) @ ( plus_plus_nat @ J @ L2 ) ) ) ) ).

% add_less_mono
thf(fact_813_not__add__less1,axiom,
    ! [I2: nat,J: nat] :
      ~ ( ord_less_nat @ ( plus_plus_nat @ I2 @ J ) @ I2 ) ).

% not_add_less1
thf(fact_814_not__add__less2,axiom,
    ! [J: nat,I2: nat] :
      ~ ( ord_less_nat @ ( plus_plus_nat @ J @ I2 ) @ I2 ) ).

% not_add_less2
thf(fact_815_add__less__mono1,axiom,
    ! [I2: nat,J: nat,K: nat] :
      ( ( ord_less_nat @ I2 @ J )
     => ( ord_less_nat @ ( plus_plus_nat @ I2 @ K ) @ ( plus_plus_nat @ J @ K ) ) ) ).

% add_less_mono1
thf(fact_816_trans__less__add1,axiom,
    ! [I2: nat,J: nat,M: nat] :
      ( ( ord_less_nat @ I2 @ J )
     => ( ord_less_nat @ I2 @ ( plus_plus_nat @ J @ M ) ) ) ).

% trans_less_add1
thf(fact_817_trans__less__add2,axiom,
    ! [I2: nat,J: nat,M: nat] :
      ( ( ord_less_nat @ I2 @ J )
     => ( ord_less_nat @ I2 @ ( plus_plus_nat @ M @ J ) ) ) ).

% trans_less_add2
thf(fact_818_less__add__eq__less,axiom,
    ! [K: nat,L2: nat,M: nat,N2: nat] :
      ( ( ord_less_nat @ K @ L2 )
     => ( ( ( plus_plus_nat @ M @ L2 )
          = ( plus_plus_nat @ K @ N2 ) )
       => ( ord_less_nat @ M @ N2 ) ) ) ).

% less_add_eq_less
thf(fact_819_less__mono__imp__le__mono,axiom,
    ! [F: nat > nat,I2: nat,J: nat] :
      ( ! [I3: nat,J2: nat] :
          ( ( ord_less_nat @ I3 @ J2 )
         => ( ord_less_nat @ ( F @ I3 ) @ ( F @ J2 ) ) )
     => ( ( ord_less_eq_nat @ I2 @ J )
       => ( ord_less_eq_nat @ ( F @ I2 ) @ ( F @ J ) ) ) ) ).

% less_mono_imp_le_mono
thf(fact_820_le__neq__implies__less,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ( M != N2 )
       => ( ord_less_nat @ M @ N2 ) ) ) ).

% le_neq_implies_less
thf(fact_821_less__or__eq__imp__le,axiom,
    ! [M: nat,N2: nat] :
      ( ( ( ord_less_nat @ M @ N2 )
        | ( M = N2 ) )
     => ( ord_less_eq_nat @ M @ N2 ) ) ).

% less_or_eq_imp_le
thf(fact_822_le__eq__less__or__eq,axiom,
    ( ord_less_eq_nat
    = ( ^ [M6: nat,N3: nat] :
          ( ( ord_less_nat @ M6 @ N3 )
          | ( M6 = N3 ) ) ) ) ).

% le_eq_less_or_eq
thf(fact_823_less__imp__le__nat,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ M @ N2 )
     => ( ord_less_eq_nat @ M @ N2 ) ) ).

% less_imp_le_nat
thf(fact_824_nat__less__le,axiom,
    ( ord_less_nat
    = ( ^ [M6: nat,N3: nat] :
          ( ( ord_less_eq_nat @ M6 @ N3 )
          & ( M6 != N3 ) ) ) ) ).

% nat_less_le
thf(fact_825_add__leE,axiom,
    ! [M: nat,K: nat,N2: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N2 )
     => ~ ( ( ord_less_eq_nat @ M @ N2 )
         => ~ ( ord_less_eq_nat @ K @ N2 ) ) ) ).

% add_leE
thf(fact_826_le__add1,axiom,
    ! [N2: nat,M: nat] : ( ord_less_eq_nat @ N2 @ ( plus_plus_nat @ N2 @ M ) ) ).

% le_add1
thf(fact_827_le__add2,axiom,
    ! [N2: nat,M: nat] : ( ord_less_eq_nat @ N2 @ ( plus_plus_nat @ M @ N2 ) ) ).

% le_add2
thf(fact_828_add__leD1,axiom,
    ! [M: nat,K: nat,N2: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N2 )
     => ( ord_less_eq_nat @ M @ N2 ) ) ).

% add_leD1
thf(fact_829_add__leD2,axiom,
    ! [M: nat,K: nat,N2: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N2 )
     => ( ord_less_eq_nat @ K @ N2 ) ) ).

% add_leD2
thf(fact_830_le__Suc__ex,axiom,
    ! [K: nat,L2: nat] :
      ( ( ord_less_eq_nat @ K @ L2 )
     => ? [N: nat] :
          ( L2
          = ( plus_plus_nat @ K @ N ) ) ) ).

% le_Suc_ex
thf(fact_831_add__le__mono,axiom,
    ! [I2: nat,J: nat,K: nat,L2: nat] :
      ( ( ord_less_eq_nat @ I2 @ J )
     => ( ( ord_less_eq_nat @ K @ L2 )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ I2 @ K ) @ ( plus_plus_nat @ J @ L2 ) ) ) ) ).

% add_le_mono
thf(fact_832_add__le__mono1,axiom,
    ! [I2: nat,J: nat,K: nat] :
      ( ( ord_less_eq_nat @ I2 @ J )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I2 @ K ) @ ( plus_plus_nat @ J @ K ) ) ) ).

% add_le_mono1
thf(fact_833_trans__le__add1,axiom,
    ! [I2: nat,J: nat,M: nat] :
      ( ( ord_less_eq_nat @ I2 @ J )
     => ( ord_less_eq_nat @ I2 @ ( plus_plus_nat @ J @ M ) ) ) ).

% trans_le_add1
thf(fact_834_trans__le__add2,axiom,
    ! [I2: nat,J: nat,M: nat] :
      ( ( ord_less_eq_nat @ I2 @ J )
     => ( ord_less_eq_nat @ I2 @ ( plus_plus_nat @ M @ J ) ) ) ).

% trans_le_add2
thf(fact_835_nat__le__iff__add,axiom,
    ( ord_less_eq_nat
    = ( ^ [M6: nat,N3: nat] :
        ? [K3: nat] :
          ( N3
          = ( plus_plus_nat @ M6 @ K3 ) ) ) ) ).

% nat_le_iff_add
thf(fact_836_add__mult__distrib,axiom,
    ! [M: nat,N2: nat,K: nat] :
      ( ( times_times_nat @ ( plus_plus_nat @ M @ N2 ) @ K )
      = ( plus_plus_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N2 @ K ) ) ) ).

% add_mult_distrib
thf(fact_837_add__mult__distrib2,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( times_times_nat @ K @ ( plus_plus_nat @ M @ N2 ) )
      = ( plus_plus_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N2 ) ) ) ).

% add_mult_distrib2
thf(fact_838_left__add__mult__distrib,axiom,
    ! [I2: nat,U: nat,J: nat,K: nat] :
      ( ( plus_plus_nat @ ( times_times_nat @ I2 @ U ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ K ) )
      = ( plus_plus_nat @ ( times_times_nat @ ( plus_plus_nat @ I2 @ J ) @ U ) @ K ) ) ).

% left_add_mult_distrib
thf(fact_839_le__cube,axiom,
    ! [M: nat] : ( ord_less_eq_nat @ M @ ( times_times_nat @ M @ ( times_times_nat @ M @ M ) ) ) ).

% le_cube
thf(fact_840_le__square,axiom,
    ! [M: nat] : ( ord_less_eq_nat @ M @ ( times_times_nat @ M @ M ) ) ).

% le_square
thf(fact_841_mult__le__mono,axiom,
    ! [I2: nat,J: nat,K: nat,L2: nat] :
      ( ( ord_less_eq_nat @ I2 @ J )
     => ( ( ord_less_eq_nat @ K @ L2 )
       => ( ord_less_eq_nat @ ( times_times_nat @ I2 @ K ) @ ( times_times_nat @ J @ L2 ) ) ) ) ).

% mult_le_mono
thf(fact_842_mult__le__mono1,axiom,
    ! [I2: nat,J: nat,K: nat] :
      ( ( ord_less_eq_nat @ I2 @ J )
     => ( ord_less_eq_nat @ ( times_times_nat @ I2 @ K ) @ ( times_times_nat @ J @ K ) ) ) ).

% mult_le_mono1
thf(fact_843_mult__le__mono2,axiom,
    ! [I2: nat,J: nat,K: nat] :
      ( ( ord_less_eq_nat @ I2 @ J )
     => ( ord_less_eq_nat @ ( times_times_nat @ K @ I2 ) @ ( times_times_nat @ K @ J ) ) ) ).

% mult_le_mono2
thf(fact_844_nat__mult__1,axiom,
    ! [N2: nat] :
      ( ( times_times_nat @ one_one_nat @ N2 )
      = N2 ) ).

% nat_mult_1
thf(fact_845_nat__mult__1__right,axiom,
    ! [N2: nat] :
      ( ( times_times_nat @ N2 @ one_one_nat )
      = N2 ) ).

% nat_mult_1_right
thf(fact_846_L2__set__mult__ineq__lemma,axiom,
    ! [A: real,C: real,B: real,D: real] : ( ord_less_eq_real @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( times_times_real @ A @ C ) ) @ ( times_times_real @ B @ D ) ) @ ( plus_plus_real @ ( times_times_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ D @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_real @ ( power_power_real @ B @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ C @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% L2_set_mult_ineq_lemma
thf(fact_847_four__x__squared,axiom,
    ! [X: real] :
      ( ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( power_power_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% four_x_squared
thf(fact_848_lift__Suc__mono__less__iff,axiom,
    ! [F: nat > real,N2: nat,M: nat] :
      ( ! [N: nat] : ( ord_less_real @ ( F @ N ) @ ( F @ ( suc @ N ) ) )
     => ( ( ord_less_real @ ( F @ N2 ) @ ( F @ M ) )
        = ( ord_less_nat @ N2 @ M ) ) ) ).

% lift_Suc_mono_less_iff
thf(fact_849_lift__Suc__mono__less__iff,axiom,
    ! [F: nat > rat,N2: nat,M: nat] :
      ( ! [N: nat] : ( ord_less_rat @ ( F @ N ) @ ( F @ ( suc @ N ) ) )
     => ( ( ord_less_rat @ ( F @ N2 ) @ ( F @ M ) )
        = ( ord_less_nat @ N2 @ M ) ) ) ).

% lift_Suc_mono_less_iff
thf(fact_850_lift__Suc__mono__less__iff,axiom,
    ! [F: nat > num,N2: nat,M: nat] :
      ( ! [N: nat] : ( ord_less_num @ ( F @ N ) @ ( F @ ( suc @ N ) ) )
     => ( ( ord_less_num @ ( F @ N2 ) @ ( F @ M ) )
        = ( ord_less_nat @ N2 @ M ) ) ) ).

% lift_Suc_mono_less_iff
thf(fact_851_lift__Suc__mono__less__iff,axiom,
    ! [F: nat > nat,N2: nat,M: nat] :
      ( ! [N: nat] : ( ord_less_nat @ ( F @ N ) @ ( F @ ( suc @ N ) ) )
     => ( ( ord_less_nat @ ( F @ N2 ) @ ( F @ M ) )
        = ( ord_less_nat @ N2 @ M ) ) ) ).

% lift_Suc_mono_less_iff
thf(fact_852_lift__Suc__mono__less__iff,axiom,
    ! [F: nat > int,N2: nat,M: nat] :
      ( ! [N: nat] : ( ord_less_int @ ( F @ N ) @ ( F @ ( suc @ N ) ) )
     => ( ( ord_less_int @ ( F @ N2 ) @ ( F @ M ) )
        = ( ord_less_nat @ N2 @ M ) ) ) ).

% lift_Suc_mono_less_iff
thf(fact_853_lift__Suc__mono__less,axiom,
    ! [F: nat > real,N2: nat,N5: nat] :
      ( ! [N: nat] : ( ord_less_real @ ( F @ N ) @ ( F @ ( suc @ N ) ) )
     => ( ( ord_less_nat @ N2 @ N5 )
       => ( ord_less_real @ ( F @ N2 ) @ ( F @ N5 ) ) ) ) ).

% lift_Suc_mono_less
thf(fact_854_lift__Suc__mono__less,axiom,
    ! [F: nat > rat,N2: nat,N5: nat] :
      ( ! [N: nat] : ( ord_less_rat @ ( F @ N ) @ ( F @ ( suc @ N ) ) )
     => ( ( ord_less_nat @ N2 @ N5 )
       => ( ord_less_rat @ ( F @ N2 ) @ ( F @ N5 ) ) ) ) ).

% lift_Suc_mono_less
thf(fact_855_lift__Suc__mono__less,axiom,
    ! [F: nat > num,N2: nat,N5: nat] :
      ( ! [N: nat] : ( ord_less_num @ ( F @ N ) @ ( F @ ( suc @ N ) ) )
     => ( ( ord_less_nat @ N2 @ N5 )
       => ( ord_less_num @ ( F @ N2 ) @ ( F @ N5 ) ) ) ) ).

% lift_Suc_mono_less
thf(fact_856_lift__Suc__mono__less,axiom,
    ! [F: nat > nat,N2: nat,N5: nat] :
      ( ! [N: nat] : ( ord_less_nat @ ( F @ N ) @ ( F @ ( suc @ N ) ) )
     => ( ( ord_less_nat @ N2 @ N5 )
       => ( ord_less_nat @ ( F @ N2 ) @ ( F @ N5 ) ) ) ) ).

% lift_Suc_mono_less
thf(fact_857_lift__Suc__mono__less,axiom,
    ! [F: nat > int,N2: nat,N5: nat] :
      ( ! [N: nat] : ( ord_less_int @ ( F @ N ) @ ( F @ ( suc @ N ) ) )
     => ( ( ord_less_nat @ N2 @ N5 )
       => ( ord_less_int @ ( F @ N2 ) @ ( F @ N5 ) ) ) ) ).

% lift_Suc_mono_less
thf(fact_858_lift__Suc__antimono__le,axiom,
    ! [F: nat > set_int,N2: nat,N5: nat] :
      ( ! [N: nat] : ( ord_less_eq_set_int @ ( F @ ( suc @ N ) ) @ ( F @ N ) )
     => ( ( ord_less_eq_nat @ N2 @ N5 )
       => ( ord_less_eq_set_int @ ( F @ N5 ) @ ( F @ N2 ) ) ) ) ).

% lift_Suc_antimono_le
thf(fact_859_lift__Suc__antimono__le,axiom,
    ! [F: nat > rat,N2: nat,N5: nat] :
      ( ! [N: nat] : ( ord_less_eq_rat @ ( F @ ( suc @ N ) ) @ ( F @ N ) )
     => ( ( ord_less_eq_nat @ N2 @ N5 )
       => ( ord_less_eq_rat @ ( F @ N5 ) @ ( F @ N2 ) ) ) ) ).

% lift_Suc_antimono_le
thf(fact_860_lift__Suc__antimono__le,axiom,
    ! [F: nat > num,N2: nat,N5: nat] :
      ( ! [N: nat] : ( ord_less_eq_num @ ( F @ ( suc @ N ) ) @ ( F @ N ) )
     => ( ( ord_less_eq_nat @ N2 @ N5 )
       => ( ord_less_eq_num @ ( F @ N5 ) @ ( F @ N2 ) ) ) ) ).

% lift_Suc_antimono_le
thf(fact_861_lift__Suc__antimono__le,axiom,
    ! [F: nat > nat,N2: nat,N5: nat] :
      ( ! [N: nat] : ( ord_less_eq_nat @ ( F @ ( suc @ N ) ) @ ( F @ N ) )
     => ( ( ord_less_eq_nat @ N2 @ N5 )
       => ( ord_less_eq_nat @ ( F @ N5 ) @ ( F @ N2 ) ) ) ) ).

% lift_Suc_antimono_le
thf(fact_862_lift__Suc__antimono__le,axiom,
    ! [F: nat > int,N2: nat,N5: nat] :
      ( ! [N: nat] : ( ord_less_eq_int @ ( F @ ( suc @ N ) ) @ ( F @ N ) )
     => ( ( ord_less_eq_nat @ N2 @ N5 )
       => ( ord_less_eq_int @ ( F @ N5 ) @ ( F @ N2 ) ) ) ) ).

% lift_Suc_antimono_le
thf(fact_863_lift__Suc__mono__le,axiom,
    ! [F: nat > set_int,N2: nat,N5: nat] :
      ( ! [N: nat] : ( ord_less_eq_set_int @ ( F @ N ) @ ( F @ ( suc @ N ) ) )
     => ( ( ord_less_eq_nat @ N2 @ N5 )
       => ( ord_less_eq_set_int @ ( F @ N2 ) @ ( F @ N5 ) ) ) ) ).

% lift_Suc_mono_le
thf(fact_864_lift__Suc__mono__le,axiom,
    ! [F: nat > rat,N2: nat,N5: nat] :
      ( ! [N: nat] : ( ord_less_eq_rat @ ( F @ N ) @ ( F @ ( suc @ N ) ) )
     => ( ( ord_less_eq_nat @ N2 @ N5 )
       => ( ord_less_eq_rat @ ( F @ N2 ) @ ( F @ N5 ) ) ) ) ).

% lift_Suc_mono_le
thf(fact_865_lift__Suc__mono__le,axiom,
    ! [F: nat > num,N2: nat,N5: nat] :
      ( ! [N: nat] : ( ord_less_eq_num @ ( F @ N ) @ ( F @ ( suc @ N ) ) )
     => ( ( ord_less_eq_nat @ N2 @ N5 )
       => ( ord_less_eq_num @ ( F @ N2 ) @ ( F @ N5 ) ) ) ) ).

% lift_Suc_mono_le
thf(fact_866_lift__Suc__mono__le,axiom,
    ! [F: nat > nat,N2: nat,N5: nat] :
      ( ! [N: nat] : ( ord_less_eq_nat @ ( F @ N ) @ ( F @ ( suc @ N ) ) )
     => ( ( ord_less_eq_nat @ N2 @ N5 )
       => ( ord_less_eq_nat @ ( F @ N2 ) @ ( F @ N5 ) ) ) ) ).

% lift_Suc_mono_le
thf(fact_867_lift__Suc__mono__le,axiom,
    ! [F: nat > int,N2: nat,N5: nat] :
      ( ! [N: nat] : ( ord_less_eq_int @ ( F @ N ) @ ( F @ ( suc @ N ) ) )
     => ( ( ord_less_eq_nat @ N2 @ N5 )
       => ( ord_less_eq_int @ ( F @ N2 ) @ ( F @ N5 ) ) ) ) ).

% lift_Suc_mono_le
thf(fact_868_less__natE,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ M @ N2 )
     => ~ ! [Q3: nat] :
            ( N2
           != ( suc @ ( plus_plus_nat @ M @ Q3 ) ) ) ) ).

% less_natE
thf(fact_869_less__add__Suc1,axiom,
    ! [I2: nat,M: nat] : ( ord_less_nat @ I2 @ ( suc @ ( plus_plus_nat @ I2 @ M ) ) ) ).

% less_add_Suc1
thf(fact_870_less__add__Suc2,axiom,
    ! [I2: nat,M: nat] : ( ord_less_nat @ I2 @ ( suc @ ( plus_plus_nat @ M @ I2 ) ) ) ).

% less_add_Suc2
thf(fact_871_less__iff__Suc__add,axiom,
    ( ord_less_nat
    = ( ^ [M6: nat,N3: nat] :
        ? [K3: nat] :
          ( N3
          = ( suc @ ( plus_plus_nat @ M6 @ K3 ) ) ) ) ) ).

% less_iff_Suc_add
thf(fact_872_less__imp__Suc__add,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ M @ N2 )
     => ? [K2: nat] :
          ( N2
          = ( suc @ ( plus_plus_nat @ M @ K2 ) ) ) ) ).

% less_imp_Suc_add
thf(fact_873_le__imp__less__Suc,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ord_less_nat @ M @ ( suc @ N2 ) ) ) ).

% le_imp_less_Suc
thf(fact_874_less__eq__Suc__le,axiom,
    ( ord_less_nat
    = ( ^ [N3: nat] : ( ord_less_eq_nat @ ( suc @ N3 ) ) ) ) ).

% less_eq_Suc_le
thf(fact_875_less__Suc__eq__le,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ M @ ( suc @ N2 ) )
      = ( ord_less_eq_nat @ M @ N2 ) ) ).

% less_Suc_eq_le
thf(fact_876_le__less__Suc__eq,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ( ord_less_nat @ N2 @ ( suc @ M ) )
        = ( N2 = M ) ) ) ).

% le_less_Suc_eq
thf(fact_877_Suc__le__lessD,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ ( suc @ M ) @ N2 )
     => ( ord_less_nat @ M @ N2 ) ) ).

% Suc_le_lessD
thf(fact_878_inc__induct,axiom,
    ! [I2: nat,J: nat,P: nat > $o] :
      ( ( ord_less_eq_nat @ I2 @ J )
     => ( ( P @ J )
       => ( ! [N: nat] :
              ( ( ord_less_eq_nat @ I2 @ N )
             => ( ( ord_less_nat @ N @ J )
               => ( ( P @ ( suc @ N ) )
                 => ( P @ N ) ) ) )
         => ( P @ I2 ) ) ) ) ).

% inc_induct
thf(fact_879_dec__induct,axiom,
    ! [I2: nat,J: nat,P: nat > $o] :
      ( ( ord_less_eq_nat @ I2 @ J )
     => ( ( P @ I2 )
       => ( ! [N: nat] :
              ( ( ord_less_eq_nat @ I2 @ N )
             => ( ( ord_less_nat @ N @ J )
               => ( ( P @ N )
                 => ( P @ ( suc @ N ) ) ) ) )
         => ( P @ J ) ) ) ) ).

% dec_induct
thf(fact_880_Suc__le__eq,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ ( suc @ M ) @ N2 )
      = ( ord_less_nat @ M @ N2 ) ) ).

% Suc_le_eq
thf(fact_881_Suc__leI,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ M @ N2 )
     => ( ord_less_eq_nat @ ( suc @ M ) @ N2 ) ) ).

% Suc_leI
thf(fact_882_Suc__mult__less__cancel1,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( ord_less_nat @ ( times_times_nat @ ( suc @ K ) @ M ) @ ( times_times_nat @ ( suc @ K ) @ N2 ) )
      = ( ord_less_nat @ M @ N2 ) ) ).

% Suc_mult_less_cancel1
thf(fact_883_mult__Suc,axiom,
    ! [M: nat,N2: nat] :
      ( ( times_times_nat @ ( suc @ M ) @ N2 )
      = ( plus_plus_nat @ N2 @ ( times_times_nat @ M @ N2 ) ) ) ).

% mult_Suc
thf(fact_884_Suc__mult__le__cancel1,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ ( times_times_nat @ ( suc @ K ) @ M ) @ ( times_times_nat @ ( suc @ K ) @ N2 ) )
      = ( ord_less_eq_nat @ M @ N2 ) ) ).

% Suc_mult_le_cancel1
thf(fact_885_mono__nat__linear__lb,axiom,
    ! [F: nat > nat,M: nat,K: nat] :
      ( ! [M2: nat,N: nat] :
          ( ( ord_less_nat @ M2 @ N )
         => ( ord_less_nat @ ( F @ M2 ) @ ( F @ N ) ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ ( F @ M ) @ K ) @ ( F @ ( plus_plus_nat @ M @ K ) ) ) ) ).

% mono_nat_linear_lb
thf(fact_886_Suc__eq__plus1,axiom,
    ( suc
    = ( ^ [N3: nat] : ( plus_plus_nat @ N3 @ one_one_nat ) ) ) ).

% Suc_eq_plus1
thf(fact_887_plus__1__eq__Suc,axiom,
    ( ( plus_plus_nat @ one_one_nat )
    = suc ) ).

% plus_1_eq_Suc
thf(fact_888_Suc__eq__plus1__left,axiom,
    ( suc
    = ( plus_plus_nat @ one_one_nat ) ) ).

% Suc_eq_plus1_left
thf(fact_889_VEBT__internal_OminNull_Osimps_I5_J,axiom,
    ! [Uz: product_prod_nat_nat,Va: nat,Vb: list_VEBT_VEBT,Vc: vEBT_VEBT] :
      ~ ( vEBT_VEBT_minNull @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ Uz ) @ Va @ Vb @ Vc ) ) ).

% VEBT_internal.minNull.simps(5)
thf(fact_890_vebt__member_Osimps_I2_J,axiom,
    ! [Uu: nat,Uv: list_VEBT_VEBT,Uw: vEBT_VEBT,X: nat] :
      ~ ( vEBT_vebt_member @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu @ Uv @ Uw ) @ X ) ).

% vebt_member.simps(2)
thf(fact_891_VEBT__internal_OminNull_Osimps_I4_J,axiom,
    ! [Uw: nat,Ux: list_VEBT_VEBT,Uy: vEBT_VEBT] : ( vEBT_VEBT_minNull @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Uw @ Ux @ Uy ) ) ).

% VEBT_internal.minNull.simps(4)
thf(fact_892_vebt__insert_Osimps_I5_J,axiom,
    ! [Mi: nat,Ma: nat,Va: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT,X: nat] :
      ( ( vEBT_vebt_insert @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList @ Summary ) @ X )
      = ( if_VEBT_VEBT
        @ ( ( ord_less_nat @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ X @ Mi ) @ Mi @ X ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) )
          & ~ ( ( X = Mi )
              | ( X = Ma ) ) )
        @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ ( if_nat @ ( ord_less_nat @ X @ Mi ) @ X @ Mi ) @ ( ord_max_nat @ ( if_nat @ ( ord_less_nat @ X @ Mi ) @ Mi @ X ) @ Ma ) ) ) @ ( suc @ ( suc @ Va ) ) @ ( list_u1324408373059187874T_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ X @ Mi ) @ Mi @ X ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_insert @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ X @ Mi ) @ Mi @ X ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( ord_less_nat @ X @ Mi ) @ Mi @ X ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( if_VEBT_VEBT @ ( vEBT_VEBT_minNull @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ X @ Mi ) @ Mi @ X ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_insert @ Summary @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ X @ Mi ) @ Mi @ X ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ Summary ) )
        @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList @ Summary ) ) ) ).

% vebt_insert.simps(5)
thf(fact_893_le__add__diff__inverse,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_eq_real @ B @ A )
     => ( ( plus_plus_real @ B @ ( minus_minus_real @ A @ B ) )
        = A ) ) ).

% le_add_diff_inverse
thf(fact_894_le__add__diff__inverse,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_eq_rat @ B @ A )
     => ( ( plus_plus_rat @ B @ ( minus_minus_rat @ A @ B ) )
        = A ) ) ).

% le_add_diff_inverse
thf(fact_895_le__add__diff__inverse,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( plus_plus_nat @ B @ ( minus_minus_nat @ A @ B ) )
        = A ) ) ).

% le_add_diff_inverse
thf(fact_896_le__add__diff__inverse,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_eq_int @ B @ A )
     => ( ( plus_plus_int @ B @ ( minus_minus_int @ A @ B ) )
        = A ) ) ).

% le_add_diff_inverse
thf(fact_897_le__add__diff__inverse2,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_eq_real @ B @ A )
     => ( ( plus_plus_real @ ( minus_minus_real @ A @ B ) @ B )
        = A ) ) ).

% le_add_diff_inverse2
thf(fact_898_le__add__diff__inverse2,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_eq_rat @ B @ A )
     => ( ( plus_plus_rat @ ( minus_minus_rat @ A @ B ) @ B )
        = A ) ) ).

% le_add_diff_inverse2
thf(fact_899_le__add__diff__inverse2,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( plus_plus_nat @ ( minus_minus_nat @ A @ B ) @ B )
        = A ) ) ).

% le_add_diff_inverse2
thf(fact_900_le__add__diff__inverse2,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_eq_int @ B @ A )
     => ( ( plus_plus_int @ ( minus_minus_int @ A @ B ) @ B )
        = A ) ) ).

% le_add_diff_inverse2
thf(fact_901_pred__less__length__list,axiom,
    ! [Deg: nat,X: nat,Ma: nat,TreeList: list_VEBT_VEBT,Mi: nat,Summary: vEBT_VEBT] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
     => ( ( ord_less_eq_nat @ X @ Ma )
       => ( ( ord_less_nat @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) )
         => ( ( vEBT_vebt_pred @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X )
            = ( if_option_nat
              @ ( ( ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                 != none_nat )
                & ( vEBT_VEBT_greater @ ( some_nat @ ( vEBT_VEBT_low @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) )
              @ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( some_nat @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_pred @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
              @ ( if_option_nat
                @ ( ( vEBT_vebt_pred @ Summary @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
                  = none_nat )
                @ ( if_option_nat @ ( ord_less_nat @ Mi @ X ) @ ( some_nat @ Mi ) @ none_nat )
                @ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_pred @ Summary @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_pred @ Summary @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).

% pred_less_length_list
thf(fact_902_pred__lesseq__max,axiom,
    ! [Deg: nat,X: nat,Ma: nat,Mi: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
     => ( ( ord_less_eq_nat @ X @ Ma )
       => ( ( vEBT_vebt_pred @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X )
          = ( if_option_nat @ ( ord_less_nat @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) )
            @ ( if_option_nat
              @ ( ( ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                 != none_nat )
                & ( vEBT_VEBT_greater @ ( some_nat @ ( vEBT_VEBT_low @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) )
              @ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( some_nat @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_pred @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
              @ ( if_option_nat
                @ ( ( vEBT_vebt_pred @ Summary @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
                  = none_nat )
                @ ( if_option_nat @ ( ord_less_nat @ Mi @ X ) @ ( some_nat @ Mi ) @ none_nat )
                @ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_pred @ Summary @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_pred @ Summary @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) )
            @ none_nat ) ) ) ) ).

% pred_lesseq_max
thf(fact_903_succ__greatereq__min,axiom,
    ! [Deg: nat,Mi: nat,X: nat,Ma: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
     => ( ( ord_less_eq_nat @ Mi @ X )
       => ( ( vEBT_vebt_succ @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X )
          = ( if_option_nat @ ( ord_less_nat @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) )
            @ ( if_option_nat
              @ ( ( ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                 != none_nat )
                & ( vEBT_VEBT_less @ ( some_nat @ ( vEBT_VEBT_low @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) )
              @ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( some_nat @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_succ @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
              @ ( if_option_nat
                @ ( ( vEBT_vebt_succ @ Summary @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
                  = none_nat )
                @ none_nat
                @ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_succ @ Summary @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_succ @ Summary @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) )
            @ none_nat ) ) ) ) ).

% succ_greatereq_min
thf(fact_904_succ__less__length__list,axiom,
    ! [Deg: nat,Mi: nat,X: nat,TreeList: list_VEBT_VEBT,Ma: nat,Summary: vEBT_VEBT] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
     => ( ( ord_less_eq_nat @ Mi @ X )
       => ( ( ord_less_nat @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) )
         => ( ( vEBT_vebt_succ @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X )
            = ( if_option_nat
              @ ( ( ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                 != none_nat )
                & ( vEBT_VEBT_less @ ( some_nat @ ( vEBT_VEBT_low @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) )
              @ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( some_nat @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_succ @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
              @ ( if_option_nat
                @ ( ( vEBT_vebt_succ @ Summary @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
                  = none_nat )
                @ none_nat
                @ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_succ @ Summary @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_succ @ Summary @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).

% succ_less_length_list
thf(fact_905_vebt__insert_Osimps_I4_J,axiom,
    ! [V: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT,X: nat] :
      ( ( vEBT_vebt_insert @ ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ V ) ) @ TreeList @ Summary ) @ X )
      = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ X @ X ) ) @ ( suc @ ( suc @ V ) ) @ TreeList @ Summary ) ) ).

% vebt_insert.simps(4)
thf(fact_906_mul__def,axiom,
    ( vEBT_VEBT_mul
    = ( vEBT_V4262088993061758097ft_nat @ times_times_nat ) ) ).

% mul_def
thf(fact_907_add__def,axiom,
    ( vEBT_VEBT_add
    = ( vEBT_V4262088993061758097ft_nat @ plus_plus_nat ) ) ).

% add_def
thf(fact_908_div__exp__eq,axiom,
    ! [A: nat,M: nat,N2: nat] :
      ( ( divide_divide_nat @ ( divide_divide_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
      = ( divide_divide_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N2 ) ) ) ) ).

% div_exp_eq
thf(fact_909_div__exp__eq,axiom,
    ! [A: int,M: nat,N2: nat] :
      ( ( divide_divide_int @ ( divide_divide_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) )
      = ( divide_divide_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N2 ) ) ) ) ).

% div_exp_eq
thf(fact_910_add__shift,axiom,
    ! [X: nat,Y: nat,Z: nat] :
      ( ( ( plus_plus_nat @ X @ Y )
        = Z )
      = ( ( vEBT_VEBT_add @ ( some_nat @ X ) @ ( some_nat @ Y ) )
        = ( some_nat @ Z ) ) ) ).

% add_shift
thf(fact_911_mul__shift,axiom,
    ! [X: nat,Y: nat,Z: nat] :
      ( ( ( times_times_nat @ X @ Y )
        = Z )
      = ( ( vEBT_VEBT_mul @ ( some_nat @ X ) @ ( some_nat @ Y ) )
        = ( some_nat @ Z ) ) ) ).

% mul_shift
thf(fact_912_real__divide__square__eq,axiom,
    ! [R2: real,A: real] :
      ( ( divide_divide_real @ ( times_times_real @ R2 @ A ) @ ( times_times_real @ R2 @ R2 ) )
      = ( divide_divide_real @ A @ R2 ) ) ).

% real_divide_square_eq
thf(fact_913_bits__div__by__1,axiom,
    ! [A: nat] :
      ( ( divide_divide_nat @ A @ one_one_nat )
      = A ) ).

% bits_div_by_1
thf(fact_914_bits__div__by__1,axiom,
    ! [A: int] :
      ( ( divide_divide_int @ A @ one_one_int )
      = A ) ).

% bits_div_by_1
thf(fact_915_div__by__1,axiom,
    ! [A: complex] :
      ( ( divide1717551699836669952omplex @ A @ one_one_complex )
      = A ) ).

% div_by_1
thf(fact_916_div__by__1,axiom,
    ! [A: real] :
      ( ( divide_divide_real @ A @ one_one_real )
      = A ) ).

% div_by_1
thf(fact_917_div__by__1,axiom,
    ! [A: rat] :
      ( ( divide_divide_rat @ A @ one_one_rat )
      = A ) ).

% div_by_1
thf(fact_918_div__by__1,axiom,
    ! [A: nat] :
      ( ( divide_divide_nat @ A @ one_one_nat )
      = A ) ).

% div_by_1
thf(fact_919_div__by__1,axiom,
    ! [A: int] :
      ( ( divide_divide_int @ A @ one_one_int )
      = A ) ).

% div_by_1
thf(fact_920_linorder__neqE__linordered__idom,axiom,
    ! [X: real,Y: real] :
      ( ( X != Y )
     => ( ~ ( ord_less_real @ X @ Y )
       => ( ord_less_real @ Y @ X ) ) ) ).

% linorder_neqE_linordered_idom
thf(fact_921_linorder__neqE__linordered__idom,axiom,
    ! [X: rat,Y: rat] :
      ( ( X != Y )
     => ( ~ ( ord_less_rat @ X @ Y )
       => ( ord_less_rat @ Y @ X ) ) ) ).

% linorder_neqE_linordered_idom
thf(fact_922_linorder__neqE__linordered__idom,axiom,
    ! [X: int,Y: int] :
      ( ( X != Y )
     => ( ~ ( ord_less_int @ X @ Y )
       => ( ord_less_int @ Y @ X ) ) ) ).

% linorder_neqE_linordered_idom
thf(fact_923_combine__common__factor,axiom,
    ! [A: real,E: real,B: real,C: real] :
      ( ( plus_plus_real @ ( times_times_real @ A @ E ) @ ( plus_plus_real @ ( times_times_real @ B @ E ) @ C ) )
      = ( plus_plus_real @ ( times_times_real @ ( plus_plus_real @ A @ B ) @ E ) @ C ) ) ).

% combine_common_factor
thf(fact_924_combine__common__factor,axiom,
    ! [A: rat,E: rat,B: rat,C: rat] :
      ( ( plus_plus_rat @ ( times_times_rat @ A @ E ) @ ( plus_plus_rat @ ( times_times_rat @ B @ E ) @ C ) )
      = ( plus_plus_rat @ ( times_times_rat @ ( plus_plus_rat @ A @ B ) @ E ) @ C ) ) ).

% combine_common_factor
thf(fact_925_combine__common__factor,axiom,
    ! [A: nat,E: nat,B: nat,C: nat] :
      ( ( plus_plus_nat @ ( times_times_nat @ A @ E ) @ ( plus_plus_nat @ ( times_times_nat @ B @ E ) @ C ) )
      = ( plus_plus_nat @ ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ E ) @ C ) ) ).

% combine_common_factor
thf(fact_926_combine__common__factor,axiom,
    ! [A: int,E: int,B: int,C: int] :
      ( ( plus_plus_int @ ( times_times_int @ A @ E ) @ ( plus_plus_int @ ( times_times_int @ B @ E ) @ C ) )
      = ( plus_plus_int @ ( times_times_int @ ( plus_plus_int @ A @ B ) @ E ) @ C ) ) ).

% combine_common_factor
thf(fact_927_distrib__right,axiom,
    ! [A: real,B: real,C: real] :
      ( ( times_times_real @ ( plus_plus_real @ A @ B ) @ C )
      = ( plus_plus_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ).

% distrib_right
thf(fact_928_distrib__right,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( times_times_rat @ ( plus_plus_rat @ A @ B ) @ C )
      = ( plus_plus_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) ) ) ).

% distrib_right
thf(fact_929_distrib__right,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ C )
      = ( plus_plus_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) ) ) ).

% distrib_right
thf(fact_930_distrib__right,axiom,
    ! [A: int,B: int,C: int] :
      ( ( times_times_int @ ( plus_plus_int @ A @ B ) @ C )
      = ( plus_plus_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ).

% distrib_right
thf(fact_931_distrib__left,axiom,
    ! [A: real,B: real,C: real] :
      ( ( times_times_real @ A @ ( plus_plus_real @ B @ C ) )
      = ( plus_plus_real @ ( times_times_real @ A @ B ) @ ( times_times_real @ A @ C ) ) ) ).

% distrib_left
thf(fact_932_distrib__left,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( times_times_rat @ A @ ( plus_plus_rat @ B @ C ) )
      = ( plus_plus_rat @ ( times_times_rat @ A @ B ) @ ( times_times_rat @ A @ C ) ) ) ).

% distrib_left
thf(fact_933_distrib__left,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( times_times_nat @ A @ ( plus_plus_nat @ B @ C ) )
      = ( plus_plus_nat @ ( times_times_nat @ A @ B ) @ ( times_times_nat @ A @ C ) ) ) ).

% distrib_left
thf(fact_934_distrib__left,axiom,
    ! [A: int,B: int,C: int] :
      ( ( times_times_int @ A @ ( plus_plus_int @ B @ C ) )
      = ( plus_plus_int @ ( times_times_int @ A @ B ) @ ( times_times_int @ A @ C ) ) ) ).

% distrib_left
thf(fact_935_comm__semiring__class_Odistrib,axiom,
    ! [A: real,B: real,C: real] :
      ( ( times_times_real @ ( plus_plus_real @ A @ B ) @ C )
      = ( plus_plus_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ).

% comm_semiring_class.distrib
thf(fact_936_comm__semiring__class_Odistrib,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( times_times_rat @ ( plus_plus_rat @ A @ B ) @ C )
      = ( plus_plus_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) ) ) ).

% comm_semiring_class.distrib
thf(fact_937_comm__semiring__class_Odistrib,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ C )
      = ( plus_plus_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) ) ) ).

% comm_semiring_class.distrib
thf(fact_938_comm__semiring__class_Odistrib,axiom,
    ! [A: int,B: int,C: int] :
      ( ( times_times_int @ ( plus_plus_int @ A @ B ) @ C )
      = ( plus_plus_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ).

% comm_semiring_class.distrib
thf(fact_939_ring__class_Oring__distribs_I1_J,axiom,
    ! [A: real,B: real,C: real] :
      ( ( times_times_real @ A @ ( plus_plus_real @ B @ C ) )
      = ( plus_plus_real @ ( times_times_real @ A @ B ) @ ( times_times_real @ A @ C ) ) ) ).

% ring_class.ring_distribs(1)
thf(fact_940_ring__class_Oring__distribs_I1_J,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( times_times_rat @ A @ ( plus_plus_rat @ B @ C ) )
      = ( plus_plus_rat @ ( times_times_rat @ A @ B ) @ ( times_times_rat @ A @ C ) ) ) ).

% ring_class.ring_distribs(1)
thf(fact_941_ring__class_Oring__distribs_I1_J,axiom,
    ! [A: int,B: int,C: int] :
      ( ( times_times_int @ A @ ( plus_plus_int @ B @ C ) )
      = ( plus_plus_int @ ( times_times_int @ A @ B ) @ ( times_times_int @ A @ C ) ) ) ).

% ring_class.ring_distribs(1)
thf(fact_942_ring__class_Oring__distribs_I2_J,axiom,
    ! [A: real,B: real,C: real] :
      ( ( times_times_real @ ( plus_plus_real @ A @ B ) @ C )
      = ( plus_plus_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ).

% ring_class.ring_distribs(2)
thf(fact_943_ring__class_Oring__distribs_I2_J,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( times_times_rat @ ( plus_plus_rat @ A @ B ) @ C )
      = ( plus_plus_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) ) ) ).

% ring_class.ring_distribs(2)
thf(fact_944_ring__class_Oring__distribs_I2_J,axiom,
    ! [A: int,B: int,C: int] :
      ( ( times_times_int @ ( plus_plus_int @ A @ B ) @ C )
      = ( plus_plus_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ).

% ring_class.ring_distribs(2)
thf(fact_945_right__diff__distrib_H,axiom,
    ! [A: real,B: real,C: real] :
      ( ( times_times_real @ A @ ( minus_minus_real @ B @ C ) )
      = ( minus_minus_real @ ( times_times_real @ A @ B ) @ ( times_times_real @ A @ C ) ) ) ).

% right_diff_distrib'
thf(fact_946_right__diff__distrib_H,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( times_times_rat @ A @ ( minus_minus_rat @ B @ C ) )
      = ( minus_minus_rat @ ( times_times_rat @ A @ B ) @ ( times_times_rat @ A @ C ) ) ) ).

% right_diff_distrib'
thf(fact_947_right__diff__distrib_H,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( times_times_nat @ A @ ( minus_minus_nat @ B @ C ) )
      = ( minus_minus_nat @ ( times_times_nat @ A @ B ) @ ( times_times_nat @ A @ C ) ) ) ).

% right_diff_distrib'
thf(fact_948_right__diff__distrib_H,axiom,
    ! [A: int,B: int,C: int] :
      ( ( times_times_int @ A @ ( minus_minus_int @ B @ C ) )
      = ( minus_minus_int @ ( times_times_int @ A @ B ) @ ( times_times_int @ A @ C ) ) ) ).

% right_diff_distrib'
thf(fact_949_left__diff__distrib_H,axiom,
    ! [B: real,C: real,A: real] :
      ( ( times_times_real @ ( minus_minus_real @ B @ C ) @ A )
      = ( minus_minus_real @ ( times_times_real @ B @ A ) @ ( times_times_real @ C @ A ) ) ) ).

% left_diff_distrib'
thf(fact_950_left__diff__distrib_H,axiom,
    ! [B: rat,C: rat,A: rat] :
      ( ( times_times_rat @ ( minus_minus_rat @ B @ C ) @ A )
      = ( minus_minus_rat @ ( times_times_rat @ B @ A ) @ ( times_times_rat @ C @ A ) ) ) ).

% left_diff_distrib'
thf(fact_951_left__diff__distrib_H,axiom,
    ! [B: nat,C: nat,A: nat] :
      ( ( times_times_nat @ ( minus_minus_nat @ B @ C ) @ A )
      = ( minus_minus_nat @ ( times_times_nat @ B @ A ) @ ( times_times_nat @ C @ A ) ) ) ).

% left_diff_distrib'
thf(fact_952_left__diff__distrib_H,axiom,
    ! [B: int,C: int,A: int] :
      ( ( times_times_int @ ( minus_minus_int @ B @ C ) @ A )
      = ( minus_minus_int @ ( times_times_int @ B @ A ) @ ( times_times_int @ C @ A ) ) ) ).

% left_diff_distrib'
thf(fact_953_right__diff__distrib,axiom,
    ! [A: real,B: real,C: real] :
      ( ( times_times_real @ A @ ( minus_minus_real @ B @ C ) )
      = ( minus_minus_real @ ( times_times_real @ A @ B ) @ ( times_times_real @ A @ C ) ) ) ).

% right_diff_distrib
thf(fact_954_right__diff__distrib,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( times_times_rat @ A @ ( minus_minus_rat @ B @ C ) )
      = ( minus_minus_rat @ ( times_times_rat @ A @ B ) @ ( times_times_rat @ A @ C ) ) ) ).

% right_diff_distrib
thf(fact_955_right__diff__distrib,axiom,
    ! [A: int,B: int,C: int] :
      ( ( times_times_int @ A @ ( minus_minus_int @ B @ C ) )
      = ( minus_minus_int @ ( times_times_int @ A @ B ) @ ( times_times_int @ A @ C ) ) ) ).

% right_diff_distrib
thf(fact_956_left__diff__distrib,axiom,
    ! [A: real,B: real,C: real] :
      ( ( times_times_real @ ( minus_minus_real @ A @ B ) @ C )
      = ( minus_minus_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ).

% left_diff_distrib
thf(fact_957_left__diff__distrib,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( times_times_rat @ ( minus_minus_rat @ A @ B ) @ C )
      = ( minus_minus_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) ) ) ).

% left_diff_distrib
thf(fact_958_left__diff__distrib,axiom,
    ! [A: int,B: int,C: int] :
      ( ( times_times_int @ ( minus_minus_int @ A @ B ) @ C )
      = ( minus_minus_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ).

% left_diff_distrib
thf(fact_959_lambda__one,axiom,
    ( ( ^ [X3: complex] : X3 )
    = ( times_times_complex @ one_one_complex ) ) ).

% lambda_one
thf(fact_960_lambda__one,axiom,
    ( ( ^ [X3: real] : X3 )
    = ( times_times_real @ one_one_real ) ) ).

% lambda_one
thf(fact_961_lambda__one,axiom,
    ( ( ^ [X3: rat] : X3 )
    = ( times_times_rat @ one_one_rat ) ) ).

% lambda_one
thf(fact_962_lambda__one,axiom,
    ( ( ^ [X3: nat] : X3 )
    = ( times_times_nat @ one_one_nat ) ) ).

% lambda_one
thf(fact_963_lambda__one,axiom,
    ( ( ^ [X3: int] : X3 )
    = ( times_times_int @ one_one_int ) ) ).

% lambda_one
thf(fact_964_less__1__mult,axiom,
    ! [M: real,N2: real] :
      ( ( ord_less_real @ one_one_real @ M )
     => ( ( ord_less_real @ one_one_real @ N2 )
       => ( ord_less_real @ one_one_real @ ( times_times_real @ M @ N2 ) ) ) ) ).

% less_1_mult
thf(fact_965_less__1__mult,axiom,
    ! [M: rat,N2: rat] :
      ( ( ord_less_rat @ one_one_rat @ M )
     => ( ( ord_less_rat @ one_one_rat @ N2 )
       => ( ord_less_rat @ one_one_rat @ ( times_times_rat @ M @ N2 ) ) ) ) ).

% less_1_mult
thf(fact_966_less__1__mult,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ one_one_nat @ M )
     => ( ( ord_less_nat @ one_one_nat @ N2 )
       => ( ord_less_nat @ one_one_nat @ ( times_times_nat @ M @ N2 ) ) ) ) ).

% less_1_mult
thf(fact_967_less__1__mult,axiom,
    ! [M: int,N2: int] :
      ( ( ord_less_int @ one_one_int @ M )
     => ( ( ord_less_int @ one_one_int @ N2 )
       => ( ord_less_int @ one_one_int @ ( times_times_int @ M @ N2 ) ) ) ) ).

% less_1_mult
thf(fact_968_add__mono1,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ( ord_less_real @ ( plus_plus_real @ A @ one_one_real ) @ ( plus_plus_real @ B @ one_one_real ) ) ) ).

% add_mono1
thf(fact_969_add__mono1,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ord_less_rat @ ( plus_plus_rat @ A @ one_one_rat ) @ ( plus_plus_rat @ B @ one_one_rat ) ) ) ).

% add_mono1
thf(fact_970_add__mono1,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ord_less_nat @ ( plus_plus_nat @ A @ one_one_nat ) @ ( plus_plus_nat @ B @ one_one_nat ) ) ) ).

% add_mono1
thf(fact_971_add__mono1,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ B )
     => ( ord_less_int @ ( plus_plus_int @ A @ one_one_int ) @ ( plus_plus_int @ B @ one_one_int ) ) ) ).

% add_mono1
thf(fact_972_less__add__one,axiom,
    ! [A: real] : ( ord_less_real @ A @ ( plus_plus_real @ A @ one_one_real ) ) ).

% less_add_one
thf(fact_973_less__add__one,axiom,
    ! [A: rat] : ( ord_less_rat @ A @ ( plus_plus_rat @ A @ one_one_rat ) ) ).

% less_add_one
thf(fact_974_less__add__one,axiom,
    ! [A: nat] : ( ord_less_nat @ A @ ( plus_plus_nat @ A @ one_one_nat ) ) ).

% less_add_one
thf(fact_975_less__add__one,axiom,
    ! [A: int] : ( ord_less_int @ A @ ( plus_plus_int @ A @ one_one_int ) ) ).

% less_add_one
thf(fact_976_add__le__add__imp__diff__le,axiom,
    ! [I2: real,K: real,N2: real,J: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ I2 @ K ) @ N2 )
     => ( ( ord_less_eq_real @ N2 @ ( plus_plus_real @ J @ K ) )
       => ( ( ord_less_eq_real @ ( plus_plus_real @ I2 @ K ) @ N2 )
         => ( ( ord_less_eq_real @ N2 @ ( plus_plus_real @ J @ K ) )
           => ( ord_less_eq_real @ ( minus_minus_real @ N2 @ K ) @ J ) ) ) ) ) ).

% add_le_add_imp_diff_le
thf(fact_977_add__le__add__imp__diff__le,axiom,
    ! [I2: rat,K: rat,N2: rat,J: rat] :
      ( ( ord_less_eq_rat @ ( plus_plus_rat @ I2 @ K ) @ N2 )
     => ( ( ord_less_eq_rat @ N2 @ ( plus_plus_rat @ J @ K ) )
       => ( ( ord_less_eq_rat @ ( plus_plus_rat @ I2 @ K ) @ N2 )
         => ( ( ord_less_eq_rat @ N2 @ ( plus_plus_rat @ J @ K ) )
           => ( ord_less_eq_rat @ ( minus_minus_rat @ N2 @ K ) @ J ) ) ) ) ) ).

% add_le_add_imp_diff_le
thf(fact_978_add__le__add__imp__diff__le,axiom,
    ! [I2: nat,K: nat,N2: nat,J: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ I2 @ K ) @ N2 )
     => ( ( ord_less_eq_nat @ N2 @ ( plus_plus_nat @ J @ K ) )
       => ( ( ord_less_eq_nat @ ( plus_plus_nat @ I2 @ K ) @ N2 )
         => ( ( ord_less_eq_nat @ N2 @ ( plus_plus_nat @ J @ K ) )
           => ( ord_less_eq_nat @ ( minus_minus_nat @ N2 @ K ) @ J ) ) ) ) ) ).

% add_le_add_imp_diff_le
thf(fact_979_add__le__add__imp__diff__le,axiom,
    ! [I2: int,K: int,N2: int,J: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ I2 @ K ) @ N2 )
     => ( ( ord_less_eq_int @ N2 @ ( plus_plus_int @ J @ K ) )
       => ( ( ord_less_eq_int @ ( plus_plus_int @ I2 @ K ) @ N2 )
         => ( ( ord_less_eq_int @ N2 @ ( plus_plus_int @ J @ K ) )
           => ( ord_less_eq_int @ ( minus_minus_int @ N2 @ K ) @ J ) ) ) ) ) ).

% add_le_add_imp_diff_le
thf(fact_980_add__le__imp__le__diff,axiom,
    ! [I2: real,K: real,N2: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ I2 @ K ) @ N2 )
     => ( ord_less_eq_real @ I2 @ ( minus_minus_real @ N2 @ K ) ) ) ).

% add_le_imp_le_diff
thf(fact_981_add__le__imp__le__diff,axiom,
    ! [I2: rat,K: rat,N2: rat] :
      ( ( ord_less_eq_rat @ ( plus_plus_rat @ I2 @ K ) @ N2 )
     => ( ord_less_eq_rat @ I2 @ ( minus_minus_rat @ N2 @ K ) ) ) ).

% add_le_imp_le_diff
thf(fact_982_add__le__imp__le__diff,axiom,
    ! [I2: nat,K: nat,N2: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ I2 @ K ) @ N2 )
     => ( ord_less_eq_nat @ I2 @ ( minus_minus_nat @ N2 @ K ) ) ) ).

% add_le_imp_le_diff
thf(fact_983_add__le__imp__le__diff,axiom,
    ! [I2: int,K: int,N2: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ I2 @ K ) @ N2 )
     => ( ord_less_eq_int @ I2 @ ( minus_minus_int @ N2 @ K ) ) ) ).

% add_le_imp_le_diff
thf(fact_984_linordered__semidom__class_Oadd__diff__inverse,axiom,
    ! [A: real,B: real] :
      ( ~ ( ord_less_real @ A @ B )
     => ( ( plus_plus_real @ B @ ( minus_minus_real @ A @ B ) )
        = A ) ) ).

% linordered_semidom_class.add_diff_inverse
thf(fact_985_linordered__semidom__class_Oadd__diff__inverse,axiom,
    ! [A: rat,B: rat] :
      ( ~ ( ord_less_rat @ A @ B )
     => ( ( plus_plus_rat @ B @ ( minus_minus_rat @ A @ B ) )
        = A ) ) ).

% linordered_semidom_class.add_diff_inverse
thf(fact_986_linordered__semidom__class_Oadd__diff__inverse,axiom,
    ! [A: nat,B: nat] :
      ( ~ ( ord_less_nat @ A @ B )
     => ( ( plus_plus_nat @ B @ ( minus_minus_nat @ A @ B ) )
        = A ) ) ).

% linordered_semidom_class.add_diff_inverse
thf(fact_987_linordered__semidom__class_Oadd__diff__inverse,axiom,
    ! [A: int,B: int] :
      ( ~ ( ord_less_int @ A @ B )
     => ( ( plus_plus_int @ B @ ( minus_minus_int @ A @ B ) )
        = A ) ) ).

% linordered_semidom_class.add_diff_inverse
thf(fact_988_square__diff__square__factored,axiom,
    ! [X: real,Y: real] :
      ( ( minus_minus_real @ ( times_times_real @ X @ X ) @ ( times_times_real @ Y @ Y ) )
      = ( times_times_real @ ( plus_plus_real @ X @ Y ) @ ( minus_minus_real @ X @ Y ) ) ) ).

% square_diff_square_factored
thf(fact_989_square__diff__square__factored,axiom,
    ! [X: rat,Y: rat] :
      ( ( minus_minus_rat @ ( times_times_rat @ X @ X ) @ ( times_times_rat @ Y @ Y ) )
      = ( times_times_rat @ ( plus_plus_rat @ X @ Y ) @ ( minus_minus_rat @ X @ Y ) ) ) ).

% square_diff_square_factored
thf(fact_990_square__diff__square__factored,axiom,
    ! [X: int,Y: int] :
      ( ( minus_minus_int @ ( times_times_int @ X @ X ) @ ( times_times_int @ Y @ Y ) )
      = ( times_times_int @ ( plus_plus_int @ X @ Y ) @ ( minus_minus_int @ X @ Y ) ) ) ).

% square_diff_square_factored
thf(fact_991_eq__add__iff2,axiom,
    ! [A: real,E: real,C: real,B: real,D: real] :
      ( ( ( plus_plus_real @ ( times_times_real @ A @ E ) @ C )
        = ( plus_plus_real @ ( times_times_real @ B @ E ) @ D ) )
      = ( C
        = ( plus_plus_real @ ( times_times_real @ ( minus_minus_real @ B @ A ) @ E ) @ D ) ) ) ).

% eq_add_iff2
thf(fact_992_eq__add__iff2,axiom,
    ! [A: rat,E: rat,C: rat,B: rat,D: rat] :
      ( ( ( plus_plus_rat @ ( times_times_rat @ A @ E ) @ C )
        = ( plus_plus_rat @ ( times_times_rat @ B @ E ) @ D ) )
      = ( C
        = ( plus_plus_rat @ ( times_times_rat @ ( minus_minus_rat @ B @ A ) @ E ) @ D ) ) ) ).

% eq_add_iff2
thf(fact_993_eq__add__iff2,axiom,
    ! [A: int,E: int,C: int,B: int,D: int] :
      ( ( ( plus_plus_int @ ( times_times_int @ A @ E ) @ C )
        = ( plus_plus_int @ ( times_times_int @ B @ E ) @ D ) )
      = ( C
        = ( plus_plus_int @ ( times_times_int @ ( minus_minus_int @ B @ A ) @ E ) @ D ) ) ) ).

% eq_add_iff2
thf(fact_994_eq__add__iff1,axiom,
    ! [A: real,E: real,C: real,B: real,D: real] :
      ( ( ( plus_plus_real @ ( times_times_real @ A @ E ) @ C )
        = ( plus_plus_real @ ( times_times_real @ B @ E ) @ D ) )
      = ( ( plus_plus_real @ ( times_times_real @ ( minus_minus_real @ A @ B ) @ E ) @ C )
        = D ) ) ).

% eq_add_iff1
thf(fact_995_eq__add__iff1,axiom,
    ! [A: rat,E: rat,C: rat,B: rat,D: rat] :
      ( ( ( plus_plus_rat @ ( times_times_rat @ A @ E ) @ C )
        = ( plus_plus_rat @ ( times_times_rat @ B @ E ) @ D ) )
      = ( ( plus_plus_rat @ ( times_times_rat @ ( minus_minus_rat @ A @ B ) @ E ) @ C )
        = D ) ) ).

% eq_add_iff1
thf(fact_996_eq__add__iff1,axiom,
    ! [A: int,E: int,C: int,B: int,D: int] :
      ( ( ( plus_plus_int @ ( times_times_int @ A @ E ) @ C )
        = ( plus_plus_int @ ( times_times_int @ B @ E ) @ D ) )
      = ( ( plus_plus_int @ ( times_times_int @ ( minus_minus_int @ A @ B ) @ E ) @ C )
        = D ) ) ).

% eq_add_iff1
thf(fact_997_ordered__ring__class_Ole__add__iff2,axiom,
    ! [A: real,E: real,C: real,B: real,D: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ ( times_times_real @ A @ E ) @ C ) @ ( plus_plus_real @ ( times_times_real @ B @ E ) @ D ) )
      = ( ord_less_eq_real @ C @ ( plus_plus_real @ ( times_times_real @ ( minus_minus_real @ B @ A ) @ E ) @ D ) ) ) ).

% ordered_ring_class.le_add_iff2
thf(fact_998_ordered__ring__class_Ole__add__iff2,axiom,
    ! [A: rat,E: rat,C: rat,B: rat,D: rat] :
      ( ( ord_less_eq_rat @ ( plus_plus_rat @ ( times_times_rat @ A @ E ) @ C ) @ ( plus_plus_rat @ ( times_times_rat @ B @ E ) @ D ) )
      = ( ord_less_eq_rat @ C @ ( plus_plus_rat @ ( times_times_rat @ ( minus_minus_rat @ B @ A ) @ E ) @ D ) ) ) ).

% ordered_ring_class.le_add_iff2
thf(fact_999_ordered__ring__class_Ole__add__iff2,axiom,
    ! [A: int,E: int,C: int,B: int,D: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ ( times_times_int @ A @ E ) @ C ) @ ( plus_plus_int @ ( times_times_int @ B @ E ) @ D ) )
      = ( ord_less_eq_int @ C @ ( plus_plus_int @ ( times_times_int @ ( minus_minus_int @ B @ A ) @ E ) @ D ) ) ) ).

% ordered_ring_class.le_add_iff2
thf(fact_1000_ordered__ring__class_Ole__add__iff1,axiom,
    ! [A: real,E: real,C: real,B: real,D: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ ( times_times_real @ A @ E ) @ C ) @ ( plus_plus_real @ ( times_times_real @ B @ E ) @ D ) )
      = ( ord_less_eq_real @ ( plus_plus_real @ ( times_times_real @ ( minus_minus_real @ A @ B ) @ E ) @ C ) @ D ) ) ).

% ordered_ring_class.le_add_iff1
thf(fact_1001_ordered__ring__class_Ole__add__iff1,axiom,
    ! [A: rat,E: rat,C: rat,B: rat,D: rat] :
      ( ( ord_less_eq_rat @ ( plus_plus_rat @ ( times_times_rat @ A @ E ) @ C ) @ ( plus_plus_rat @ ( times_times_rat @ B @ E ) @ D ) )
      = ( ord_less_eq_rat @ ( plus_plus_rat @ ( times_times_rat @ ( minus_minus_rat @ A @ B ) @ E ) @ C ) @ D ) ) ).

% ordered_ring_class.le_add_iff1
thf(fact_1002_ordered__ring__class_Ole__add__iff1,axiom,
    ! [A: int,E: int,C: int,B: int,D: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ ( times_times_int @ A @ E ) @ C ) @ ( plus_plus_int @ ( times_times_int @ B @ E ) @ D ) )
      = ( ord_less_eq_int @ ( plus_plus_int @ ( times_times_int @ ( minus_minus_int @ A @ B ) @ E ) @ C ) @ D ) ) ).

% ordered_ring_class.le_add_iff1
thf(fact_1003_less__add__iff2,axiom,
    ! [A: real,E: real,C: real,B: real,D: real] :
      ( ( ord_less_real @ ( plus_plus_real @ ( times_times_real @ A @ E ) @ C ) @ ( plus_plus_real @ ( times_times_real @ B @ E ) @ D ) )
      = ( ord_less_real @ C @ ( plus_plus_real @ ( times_times_real @ ( minus_minus_real @ B @ A ) @ E ) @ D ) ) ) ).

% less_add_iff2
thf(fact_1004_less__add__iff2,axiom,
    ! [A: rat,E: rat,C: rat,B: rat,D: rat] :
      ( ( ord_less_rat @ ( plus_plus_rat @ ( times_times_rat @ A @ E ) @ C ) @ ( plus_plus_rat @ ( times_times_rat @ B @ E ) @ D ) )
      = ( ord_less_rat @ C @ ( plus_plus_rat @ ( times_times_rat @ ( minus_minus_rat @ B @ A ) @ E ) @ D ) ) ) ).

% less_add_iff2
thf(fact_1005_less__add__iff2,axiom,
    ! [A: int,E: int,C: int,B: int,D: int] :
      ( ( ord_less_int @ ( plus_plus_int @ ( times_times_int @ A @ E ) @ C ) @ ( plus_plus_int @ ( times_times_int @ B @ E ) @ D ) )
      = ( ord_less_int @ C @ ( plus_plus_int @ ( times_times_int @ ( minus_minus_int @ B @ A ) @ E ) @ D ) ) ) ).

% less_add_iff2
thf(fact_1006_less__add__iff1,axiom,
    ! [A: real,E: real,C: real,B: real,D: real] :
      ( ( ord_less_real @ ( plus_plus_real @ ( times_times_real @ A @ E ) @ C ) @ ( plus_plus_real @ ( times_times_real @ B @ E ) @ D ) )
      = ( ord_less_real @ ( plus_plus_real @ ( times_times_real @ ( minus_minus_real @ A @ B ) @ E ) @ C ) @ D ) ) ).

% less_add_iff1
thf(fact_1007_less__add__iff1,axiom,
    ! [A: rat,E: rat,C: rat,B: rat,D: rat] :
      ( ( ord_less_rat @ ( plus_plus_rat @ ( times_times_rat @ A @ E ) @ C ) @ ( plus_plus_rat @ ( times_times_rat @ B @ E ) @ D ) )
      = ( ord_less_rat @ ( plus_plus_rat @ ( times_times_rat @ ( minus_minus_rat @ A @ B ) @ E ) @ C ) @ D ) ) ).

% less_add_iff1
thf(fact_1008_less__add__iff1,axiom,
    ! [A: int,E: int,C: int,B: int,D: int] :
      ( ( ord_less_int @ ( plus_plus_int @ ( times_times_int @ A @ E ) @ C ) @ ( plus_plus_int @ ( times_times_int @ B @ E ) @ D ) )
      = ( ord_less_int @ ( plus_plus_int @ ( times_times_int @ ( minus_minus_int @ A @ B ) @ E ) @ C ) @ D ) ) ).

% less_add_iff1
thf(fact_1009_square__diff__one__factored,axiom,
    ! [X: complex] :
      ( ( minus_minus_complex @ ( times_times_complex @ X @ X ) @ one_one_complex )
      = ( times_times_complex @ ( plus_plus_complex @ X @ one_one_complex ) @ ( minus_minus_complex @ X @ one_one_complex ) ) ) ).

% square_diff_one_factored
thf(fact_1010_square__diff__one__factored,axiom,
    ! [X: real] :
      ( ( minus_minus_real @ ( times_times_real @ X @ X ) @ one_one_real )
      = ( times_times_real @ ( plus_plus_real @ X @ one_one_real ) @ ( minus_minus_real @ X @ one_one_real ) ) ) ).

% square_diff_one_factored
thf(fact_1011_square__diff__one__factored,axiom,
    ! [X: rat] :
      ( ( minus_minus_rat @ ( times_times_rat @ X @ X ) @ one_one_rat )
      = ( times_times_rat @ ( plus_plus_rat @ X @ one_one_rat ) @ ( minus_minus_rat @ X @ one_one_rat ) ) ) ).

% square_diff_one_factored
thf(fact_1012_square__diff__one__factored,axiom,
    ! [X: int] :
      ( ( minus_minus_int @ ( times_times_int @ X @ X ) @ one_one_int )
      = ( times_times_int @ ( plus_plus_int @ X @ one_one_int ) @ ( minus_minus_int @ X @ one_one_int ) ) ) ).

% square_diff_one_factored
thf(fact_1013_vebt__succ_Osimps_I6_J,axiom,
    ! [X: nat,Mi: nat,Ma: nat,Va: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT] :
      ( ( ( ord_less_nat @ X @ Mi )
       => ( ( vEBT_vebt_succ @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList @ Summary ) @ X )
          = ( some_nat @ Mi ) ) )
      & ( ~ ( ord_less_nat @ X @ Mi )
       => ( ( vEBT_vebt_succ @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList @ Summary ) @ X )
          = ( if_option_nat @ ( ord_less_nat @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) )
            @ ( if_option_nat
              @ ( ( ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                 != none_nat )
                & ( vEBT_VEBT_less @ ( some_nat @ ( vEBT_VEBT_low @ X @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) )
              @ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( some_nat @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_succ @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
              @ ( if_option_nat
                @ ( ( vEBT_vebt_succ @ Summary @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
                  = none_nat )
                @ none_nat
                @ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_succ @ Summary @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_succ @ Summary @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) )
            @ none_nat ) ) ) ) ).

% vebt_succ.simps(6)
thf(fact_1014_vebt__pred_Osimps_I7_J,axiom,
    ! [Ma: nat,X: nat,Mi: nat,Va: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT] :
      ( ( ( ord_less_nat @ Ma @ X )
       => ( ( vEBT_vebt_pred @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList @ Summary ) @ X )
          = ( some_nat @ Ma ) ) )
      & ( ~ ( ord_less_nat @ Ma @ X )
       => ( ( vEBT_vebt_pred @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList @ Summary ) @ X )
          = ( if_option_nat @ ( ord_less_nat @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) )
            @ ( if_option_nat
              @ ( ( ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                 != none_nat )
                & ( vEBT_VEBT_greater @ ( some_nat @ ( vEBT_VEBT_low @ X @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) )
              @ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( some_nat @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_pred @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
              @ ( if_option_nat
                @ ( ( vEBT_vebt_pred @ Summary @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
                  = none_nat )
                @ ( if_option_nat @ ( ord_less_nat @ Mi @ X ) @ ( some_nat @ Mi ) @ none_nat )
                @ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_pred @ Summary @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_pred @ Summary @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) )
            @ none_nat ) ) ) ) ).

% vebt_pred.simps(7)
thf(fact_1015_real__average__minus__first,axiom,
    ! [A: real,B: real] :
      ( ( minus_minus_real @ ( divide_divide_real @ ( plus_plus_real @ A @ B ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ A )
      = ( divide_divide_real @ ( minus_minus_real @ B @ A ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% real_average_minus_first
thf(fact_1016_real__average__minus__second,axiom,
    ! [B: real,A: real] :
      ( ( minus_minus_real @ ( divide_divide_real @ ( plus_plus_real @ B @ A ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ A )
      = ( divide_divide_real @ ( minus_minus_real @ B @ A ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% real_average_minus_second
thf(fact_1017_field__less__half__sum,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ X @ Y )
     => ( ord_less_real @ X @ ( divide_divide_real @ ( plus_plus_real @ X @ Y ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).

% field_less_half_sum
thf(fact_1018_field__less__half__sum,axiom,
    ! [X: rat,Y: rat] :
      ( ( ord_less_rat @ X @ Y )
     => ( ord_less_rat @ X @ ( divide_divide_rat @ ( plus_plus_rat @ X @ Y ) @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) ) ).

% field_less_half_sum
thf(fact_1019_vebt__mint_Osimps_I3_J,axiom,
    ! [Mi: nat,Ma: nat,Ux: nat,Uy: list_VEBT_VEBT,Uz: vEBT_VEBT] :
      ( ( vEBT_vebt_mint @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Ux @ Uy @ Uz ) )
      = ( some_nat @ Mi ) ) ).

% vebt_mint.simps(3)
thf(fact_1020_vebt__maxt_Osimps_I3_J,axiom,
    ! [Mi: nat,Ma: nat,Ux: nat,Uy: list_VEBT_VEBT,Uz: vEBT_VEBT] :
      ( ( vEBT_vebt_maxt @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Ux @ Uy @ Uz ) )
      = ( some_nat @ Ma ) ) ).

% vebt_maxt.simps(3)
thf(fact_1021_succ__empty,axiom,
    ! [T: vEBT_VEBT,N2: nat,X: nat] :
      ( ( vEBT_invar_vebt @ T @ N2 )
     => ( ( ( vEBT_vebt_succ @ T @ X )
          = none_nat )
        = ( ( collect_nat
            @ ^ [Y3: nat] :
                ( ( vEBT_vebt_member @ T @ Y3 )
                & ( ord_less_nat @ X @ Y3 ) ) )
          = bot_bot_set_nat ) ) ) ).

% succ_empty
thf(fact_1022_pred__empty,axiom,
    ! [T: vEBT_VEBT,N2: nat,X: nat] :
      ( ( vEBT_invar_vebt @ T @ N2 )
     => ( ( ( vEBT_vebt_pred @ T @ X )
          = none_nat )
        = ( ( collect_nat
            @ ^ [Y3: nat] :
                ( ( vEBT_vebt_member @ T @ Y3 )
                & ( ord_less_nat @ Y3 @ X ) ) )
          = bot_bot_set_nat ) ) ) ).

% pred_empty
thf(fact_1023_max_Oabsorb3,axiom,
    ! [B: extended_enat,A: extended_enat] :
      ( ( ord_le72135733267957522d_enat @ B @ A )
     => ( ( ord_ma741700101516333627d_enat @ A @ B )
        = A ) ) ).

% max.absorb3
thf(fact_1024_max_Oabsorb3,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( ord_le6747313008572928689nteger @ B @ A )
     => ( ( ord_max_Code_integer @ A @ B )
        = A ) ) ).

% max.absorb3
thf(fact_1025_max_Oabsorb3,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_real @ B @ A )
     => ( ( ord_max_real @ A @ B )
        = A ) ) ).

% max.absorb3
thf(fact_1026_max_Oabsorb3,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_rat @ B @ A )
     => ( ( ord_max_rat @ A @ B )
        = A ) ) ).

% max.absorb3
thf(fact_1027_max_Oabsorb3,axiom,
    ! [B: num,A: num] :
      ( ( ord_less_num @ B @ A )
     => ( ( ord_max_num @ A @ B )
        = A ) ) ).

% max.absorb3
thf(fact_1028_max_Oabsorb3,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ B @ A )
     => ( ( ord_max_nat @ A @ B )
        = A ) ) ).

% max.absorb3
thf(fact_1029_max_Oabsorb3,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ B @ A )
     => ( ( ord_max_int @ A @ B )
        = A ) ) ).

% max.absorb3
thf(fact_1030_max_Oright__idem,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_max_nat @ ( ord_max_nat @ A @ B ) @ B )
      = ( ord_max_nat @ A @ B ) ) ).

% max.right_idem
thf(fact_1031_max_Oright__idem,axiom,
    ! [A: extended_enat,B: extended_enat] :
      ( ( ord_ma741700101516333627d_enat @ ( ord_ma741700101516333627d_enat @ A @ B ) @ B )
      = ( ord_ma741700101516333627d_enat @ A @ B ) ) ).

% max.right_idem
thf(fact_1032_max_Oright__idem,axiom,
    ! [A: int,B: int] :
      ( ( ord_max_int @ ( ord_max_int @ A @ B ) @ B )
      = ( ord_max_int @ A @ B ) ) ).

% max.right_idem
thf(fact_1033_max_Oright__idem,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ord_max_Code_integer @ ( ord_max_Code_integer @ A @ B ) @ B )
      = ( ord_max_Code_integer @ A @ B ) ) ).

% max.right_idem
thf(fact_1034_max_Oleft__idem,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_max_nat @ A @ ( ord_max_nat @ A @ B ) )
      = ( ord_max_nat @ A @ B ) ) ).

% max.left_idem
thf(fact_1035_max_Oleft__idem,axiom,
    ! [A: extended_enat,B: extended_enat] :
      ( ( ord_ma741700101516333627d_enat @ A @ ( ord_ma741700101516333627d_enat @ A @ B ) )
      = ( ord_ma741700101516333627d_enat @ A @ B ) ) ).

% max.left_idem
thf(fact_1036_max_Oleft__idem,axiom,
    ! [A: int,B: int] :
      ( ( ord_max_int @ A @ ( ord_max_int @ A @ B ) )
      = ( ord_max_int @ A @ B ) ) ).

% max.left_idem
thf(fact_1037_max_Oleft__idem,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ord_max_Code_integer @ A @ ( ord_max_Code_integer @ A @ B ) )
      = ( ord_max_Code_integer @ A @ B ) ) ).

% max.left_idem
thf(fact_1038_max_Oidem,axiom,
    ! [A: nat] :
      ( ( ord_max_nat @ A @ A )
      = A ) ).

% max.idem
thf(fact_1039_max_Oidem,axiom,
    ! [A: extended_enat] :
      ( ( ord_ma741700101516333627d_enat @ A @ A )
      = A ) ).

% max.idem
thf(fact_1040_max_Oidem,axiom,
    ! [A: int] :
      ( ( ord_max_int @ A @ A )
      = A ) ).

% max.idem
thf(fact_1041_max_Oidem,axiom,
    ! [A: code_integer] :
      ( ( ord_max_Code_integer @ A @ A )
      = A ) ).

% max.idem
thf(fact_1042_maxt__corr__help__empty,axiom,
    ! [T: vEBT_VEBT,N2: nat] :
      ( ( vEBT_invar_vebt @ T @ N2 )
     => ( ( ( vEBT_vebt_maxt @ T )
          = none_nat )
       => ( ( vEBT_VEBT_set_vebt @ T )
          = bot_bot_set_nat ) ) ) ).

% maxt_corr_help_empty
thf(fact_1043_mint__corr__help__empty,axiom,
    ! [T: vEBT_VEBT,N2: nat] :
      ( ( vEBT_invar_vebt @ T @ N2 )
     => ( ( ( vEBT_vebt_mint @ T )
          = none_nat )
       => ( ( vEBT_VEBT_set_vebt @ T )
          = bot_bot_set_nat ) ) ) ).

% mint_corr_help_empty
thf(fact_1044_max_Obounded__iff,axiom,
    ! [B: extended_enat,C: extended_enat,A: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ ( ord_ma741700101516333627d_enat @ B @ C ) @ A )
      = ( ( ord_le2932123472753598470d_enat @ B @ A )
        & ( ord_le2932123472753598470d_enat @ C @ A ) ) ) ).

% max.bounded_iff
thf(fact_1045_max_Obounded__iff,axiom,
    ! [B: code_integer,C: code_integer,A: code_integer] :
      ( ( ord_le3102999989581377725nteger @ ( ord_max_Code_integer @ B @ C ) @ A )
      = ( ( ord_le3102999989581377725nteger @ B @ A )
        & ( ord_le3102999989581377725nteger @ C @ A ) ) ) ).

% max.bounded_iff
thf(fact_1046_max_Obounded__iff,axiom,
    ! [B: rat,C: rat,A: rat] :
      ( ( ord_less_eq_rat @ ( ord_max_rat @ B @ C ) @ A )
      = ( ( ord_less_eq_rat @ B @ A )
        & ( ord_less_eq_rat @ C @ A ) ) ) ).

% max.bounded_iff
thf(fact_1047_max_Obounded__iff,axiom,
    ! [B: num,C: num,A: num] :
      ( ( ord_less_eq_num @ ( ord_max_num @ B @ C ) @ A )
      = ( ( ord_less_eq_num @ B @ A )
        & ( ord_less_eq_num @ C @ A ) ) ) ).

% max.bounded_iff
thf(fact_1048_max_Obounded__iff,axiom,
    ! [B: nat,C: nat,A: nat] :
      ( ( ord_less_eq_nat @ ( ord_max_nat @ B @ C ) @ A )
      = ( ( ord_less_eq_nat @ B @ A )
        & ( ord_less_eq_nat @ C @ A ) ) ) ).

% max.bounded_iff
thf(fact_1049_max_Obounded__iff,axiom,
    ! [B: int,C: int,A: int] :
      ( ( ord_less_eq_int @ ( ord_max_int @ B @ C ) @ A )
      = ( ( ord_less_eq_int @ B @ A )
        & ( ord_less_eq_int @ C @ A ) ) ) ).

% max.bounded_iff
thf(fact_1050_max_Oabsorb2,axiom,
    ! [A: extended_enat,B: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ A @ B )
     => ( ( ord_ma741700101516333627d_enat @ A @ B )
        = B ) ) ).

% max.absorb2
thf(fact_1051_max_Oabsorb2,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ord_le3102999989581377725nteger @ A @ B )
     => ( ( ord_max_Code_integer @ A @ B )
        = B ) ) ).

% max.absorb2
thf(fact_1052_max_Oabsorb2,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_max_rat @ A @ B )
        = B ) ) ).

% max.absorb2
thf(fact_1053_max_Oabsorb2,axiom,
    ! [A: num,B: num] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( ord_max_num @ A @ B )
        = B ) ) ).

% max.absorb2
thf(fact_1054_max_Oabsorb2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_max_nat @ A @ B )
        = B ) ) ).

% max.absorb2
thf(fact_1055_max_Oabsorb2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_max_int @ A @ B )
        = B ) ) ).

% max.absorb2
thf(fact_1056_max_Oabsorb1,axiom,
    ! [B: extended_enat,A: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ B @ A )
     => ( ( ord_ma741700101516333627d_enat @ A @ B )
        = A ) ) ).

% max.absorb1
thf(fact_1057_max_Oabsorb1,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( ord_le3102999989581377725nteger @ B @ A )
     => ( ( ord_max_Code_integer @ A @ B )
        = A ) ) ).

% max.absorb1
thf(fact_1058_max_Oabsorb1,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_eq_rat @ B @ A )
     => ( ( ord_max_rat @ A @ B )
        = A ) ) ).

% max.absorb1
thf(fact_1059_max_Oabsorb1,axiom,
    ! [B: num,A: num] :
      ( ( ord_less_eq_num @ B @ A )
     => ( ( ord_max_num @ A @ B )
        = A ) ) ).

% max.absorb1
thf(fact_1060_max_Oabsorb1,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( ord_max_nat @ A @ B )
        = A ) ) ).

% max.absorb1
thf(fact_1061_max_Oabsorb1,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_eq_int @ B @ A )
     => ( ( ord_max_int @ A @ B )
        = A ) ) ).

% max.absorb1
thf(fact_1062_max__less__iff__conj,axiom,
    ! [X: extended_enat,Y: extended_enat,Z: extended_enat] :
      ( ( ord_le72135733267957522d_enat @ ( ord_ma741700101516333627d_enat @ X @ Y ) @ Z )
      = ( ( ord_le72135733267957522d_enat @ X @ Z )
        & ( ord_le72135733267957522d_enat @ Y @ Z ) ) ) ).

% max_less_iff_conj
thf(fact_1063_max__less__iff__conj,axiom,
    ! [X: code_integer,Y: code_integer,Z: code_integer] :
      ( ( ord_le6747313008572928689nteger @ ( ord_max_Code_integer @ X @ Y ) @ Z )
      = ( ( ord_le6747313008572928689nteger @ X @ Z )
        & ( ord_le6747313008572928689nteger @ Y @ Z ) ) ) ).

% max_less_iff_conj
thf(fact_1064_max__less__iff__conj,axiom,
    ! [X: real,Y: real,Z: real] :
      ( ( ord_less_real @ ( ord_max_real @ X @ Y ) @ Z )
      = ( ( ord_less_real @ X @ Z )
        & ( ord_less_real @ Y @ Z ) ) ) ).

% max_less_iff_conj
thf(fact_1065_max__less__iff__conj,axiom,
    ! [X: rat,Y: rat,Z: rat] :
      ( ( ord_less_rat @ ( ord_max_rat @ X @ Y ) @ Z )
      = ( ( ord_less_rat @ X @ Z )
        & ( ord_less_rat @ Y @ Z ) ) ) ).

% max_less_iff_conj
thf(fact_1066_max__less__iff__conj,axiom,
    ! [X: num,Y: num,Z: num] :
      ( ( ord_less_num @ ( ord_max_num @ X @ Y ) @ Z )
      = ( ( ord_less_num @ X @ Z )
        & ( ord_less_num @ Y @ Z ) ) ) ).

% max_less_iff_conj
thf(fact_1067_max__less__iff__conj,axiom,
    ! [X: nat,Y: nat,Z: nat] :
      ( ( ord_less_nat @ ( ord_max_nat @ X @ Y ) @ Z )
      = ( ( ord_less_nat @ X @ Z )
        & ( ord_less_nat @ Y @ Z ) ) ) ).

% max_less_iff_conj
thf(fact_1068_max__less__iff__conj,axiom,
    ! [X: int,Y: int,Z: int] :
      ( ( ord_less_int @ ( ord_max_int @ X @ Y ) @ Z )
      = ( ( ord_less_int @ X @ Z )
        & ( ord_less_int @ Y @ Z ) ) ) ).

% max_less_iff_conj
thf(fact_1069_max_Oabsorb4,axiom,
    ! [A: extended_enat,B: extended_enat] :
      ( ( ord_le72135733267957522d_enat @ A @ B )
     => ( ( ord_ma741700101516333627d_enat @ A @ B )
        = B ) ) ).

% max.absorb4
thf(fact_1070_max_Oabsorb4,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ord_le6747313008572928689nteger @ A @ B )
     => ( ( ord_max_Code_integer @ A @ B )
        = B ) ) ).

% max.absorb4
thf(fact_1071_max_Oabsorb4,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_max_real @ A @ B )
        = B ) ) ).

% max.absorb4
thf(fact_1072_max_Oabsorb4,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_max_rat @ A @ B )
        = B ) ) ).

% max.absorb4
thf(fact_1073_max_Oabsorb4,axiom,
    ! [A: num,B: num] :
      ( ( ord_less_num @ A @ B )
     => ( ( ord_max_num @ A @ B )
        = B ) ) ).

% max.absorb4
thf(fact_1074_max_Oabsorb4,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_max_nat @ A @ B )
        = B ) ) ).

% max.absorb4
thf(fact_1075_max_Oabsorb4,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_max_int @ A @ B )
        = B ) ) ).

% max.absorb4
thf(fact_1076_complete__real,axiom,
    ! [S3: set_real] :
      ( ? [X2: real] : ( member_real @ X2 @ S3 )
     => ( ? [Z5: real] :
          ! [X5: real] :
            ( ( member_real @ X5 @ S3 )
           => ( ord_less_eq_real @ X5 @ Z5 ) )
       => ? [Y5: real] :
            ( ! [X2: real] :
                ( ( member_real @ X2 @ S3 )
               => ( ord_less_eq_real @ X2 @ Y5 ) )
            & ! [Z5: real] :
                ( ! [X5: real] :
                    ( ( member_real @ X5 @ S3 )
                   => ( ord_less_eq_real @ X5 @ Z5 ) )
               => ( ord_less_eq_real @ Y5 @ Z5 ) ) ) ) ) ).

% complete_real
thf(fact_1077_less__eq__real__def,axiom,
    ( ord_less_eq_real
    = ( ^ [X3: real,Y3: real] :
          ( ( ord_less_real @ X3 @ Y3 )
          | ( X3 = Y3 ) ) ) ) ).

% less_eq_real_def
thf(fact_1078_real__arch__pow,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ one_one_real @ X )
     => ? [N: nat] : ( ord_less_real @ Y @ ( power_power_real @ X @ N ) ) ) ).

% real_arch_pow
thf(fact_1079_max_Oleft__commute,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ord_max_nat @ B @ ( ord_max_nat @ A @ C ) )
      = ( ord_max_nat @ A @ ( ord_max_nat @ B @ C ) ) ) ).

% max.left_commute
thf(fact_1080_max_Oleft__commute,axiom,
    ! [B: extended_enat,A: extended_enat,C: extended_enat] :
      ( ( ord_ma741700101516333627d_enat @ B @ ( ord_ma741700101516333627d_enat @ A @ C ) )
      = ( ord_ma741700101516333627d_enat @ A @ ( ord_ma741700101516333627d_enat @ B @ C ) ) ) ).

% max.left_commute
thf(fact_1081_max_Oleft__commute,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_max_int @ B @ ( ord_max_int @ A @ C ) )
      = ( ord_max_int @ A @ ( ord_max_int @ B @ C ) ) ) ).

% max.left_commute
thf(fact_1082_max_Oleft__commute,axiom,
    ! [B: code_integer,A: code_integer,C: code_integer] :
      ( ( ord_max_Code_integer @ B @ ( ord_max_Code_integer @ A @ C ) )
      = ( ord_max_Code_integer @ A @ ( ord_max_Code_integer @ B @ C ) ) ) ).

% max.left_commute
thf(fact_1083_max_Ocommute,axiom,
    ( ord_max_nat
    = ( ^ [A4: nat,B4: nat] : ( ord_max_nat @ B4 @ A4 ) ) ) ).

% max.commute
thf(fact_1084_max_Ocommute,axiom,
    ( ord_ma741700101516333627d_enat
    = ( ^ [A4: extended_enat,B4: extended_enat] : ( ord_ma741700101516333627d_enat @ B4 @ A4 ) ) ) ).

% max.commute
thf(fact_1085_max_Ocommute,axiom,
    ( ord_max_int
    = ( ^ [A4: int,B4: int] : ( ord_max_int @ B4 @ A4 ) ) ) ).

% max.commute
thf(fact_1086_max_Ocommute,axiom,
    ( ord_max_Code_integer
    = ( ^ [A4: code_integer,B4: code_integer] : ( ord_max_Code_integer @ B4 @ A4 ) ) ) ).

% max.commute
thf(fact_1087_max_Oassoc,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_max_nat @ ( ord_max_nat @ A @ B ) @ C )
      = ( ord_max_nat @ A @ ( ord_max_nat @ B @ C ) ) ) ).

% max.assoc
thf(fact_1088_max_Oassoc,axiom,
    ! [A: extended_enat,B: extended_enat,C: extended_enat] :
      ( ( ord_ma741700101516333627d_enat @ ( ord_ma741700101516333627d_enat @ A @ B ) @ C )
      = ( ord_ma741700101516333627d_enat @ A @ ( ord_ma741700101516333627d_enat @ B @ C ) ) ) ).

% max.assoc
thf(fact_1089_max_Oassoc,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_max_int @ ( ord_max_int @ A @ B ) @ C )
      = ( ord_max_int @ A @ ( ord_max_int @ B @ C ) ) ) ).

% max.assoc
thf(fact_1090_max_Oassoc,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( ord_max_Code_integer @ ( ord_max_Code_integer @ A @ B ) @ C )
      = ( ord_max_Code_integer @ A @ ( ord_max_Code_integer @ B @ C ) ) ) ).

% max.assoc
thf(fact_1091_mult__commute__abs,axiom,
    ! [C: real] :
      ( ( ^ [X3: real] : ( times_times_real @ X3 @ C ) )
      = ( times_times_real @ C ) ) ).

% mult_commute_abs
thf(fact_1092_mult__commute__abs,axiom,
    ! [C: rat] :
      ( ( ^ [X3: rat] : ( times_times_rat @ X3 @ C ) )
      = ( times_times_rat @ C ) ) ).

% mult_commute_abs
thf(fact_1093_mult__commute__abs,axiom,
    ! [C: nat] :
      ( ( ^ [X3: nat] : ( times_times_nat @ X3 @ C ) )
      = ( times_times_nat @ C ) ) ).

% mult_commute_abs
thf(fact_1094_mult__commute__abs,axiom,
    ! [C: int] :
      ( ( ^ [X3: int] : ( times_times_int @ X3 @ C ) )
      = ( times_times_int @ C ) ) ).

% mult_commute_abs
thf(fact_1095_add__diff__add,axiom,
    ! [A: real,C: real,B: real,D: real] :
      ( ( minus_minus_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ D ) )
      = ( plus_plus_real @ ( minus_minus_real @ A @ B ) @ ( minus_minus_real @ C @ D ) ) ) ).

% add_diff_add
thf(fact_1096_add__diff__add,axiom,
    ! [A: rat,C: rat,B: rat,D: rat] :
      ( ( minus_minus_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ D ) )
      = ( plus_plus_rat @ ( minus_minus_rat @ A @ B ) @ ( minus_minus_rat @ C @ D ) ) ) ).

% add_diff_add
thf(fact_1097_add__diff__add,axiom,
    ! [A: int,C: int,B: int,D: int] :
      ( ( minus_minus_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ D ) )
      = ( plus_plus_int @ ( minus_minus_int @ A @ B ) @ ( minus_minus_int @ C @ D ) ) ) ).

% add_diff_add
thf(fact_1098_max_OcoboundedI2,axiom,
    ! [C: extended_enat,B: extended_enat,A: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ C @ B )
     => ( ord_le2932123472753598470d_enat @ C @ ( ord_ma741700101516333627d_enat @ A @ B ) ) ) ).

% max.coboundedI2
thf(fact_1099_max_OcoboundedI2,axiom,
    ! [C: code_integer,B: code_integer,A: code_integer] :
      ( ( ord_le3102999989581377725nteger @ C @ B )
     => ( ord_le3102999989581377725nteger @ C @ ( ord_max_Code_integer @ A @ B ) ) ) ).

% max.coboundedI2
thf(fact_1100_max_OcoboundedI2,axiom,
    ! [C: rat,B: rat,A: rat] :
      ( ( ord_less_eq_rat @ C @ B )
     => ( ord_less_eq_rat @ C @ ( ord_max_rat @ A @ B ) ) ) ).

% max.coboundedI2
thf(fact_1101_max_OcoboundedI2,axiom,
    ! [C: num,B: num,A: num] :
      ( ( ord_less_eq_num @ C @ B )
     => ( ord_less_eq_num @ C @ ( ord_max_num @ A @ B ) ) ) ).

% max.coboundedI2
thf(fact_1102_max_OcoboundedI2,axiom,
    ! [C: nat,B: nat,A: nat] :
      ( ( ord_less_eq_nat @ C @ B )
     => ( ord_less_eq_nat @ C @ ( ord_max_nat @ A @ B ) ) ) ).

% max.coboundedI2
thf(fact_1103_max_OcoboundedI2,axiom,
    ! [C: int,B: int,A: int] :
      ( ( ord_less_eq_int @ C @ B )
     => ( ord_less_eq_int @ C @ ( ord_max_int @ A @ B ) ) ) ).

% max.coboundedI2
thf(fact_1104_max_OcoboundedI1,axiom,
    ! [C: extended_enat,A: extended_enat,B: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ C @ A )
     => ( ord_le2932123472753598470d_enat @ C @ ( ord_ma741700101516333627d_enat @ A @ B ) ) ) ).

% max.coboundedI1
thf(fact_1105_max_OcoboundedI1,axiom,
    ! [C: code_integer,A: code_integer,B: code_integer] :
      ( ( ord_le3102999989581377725nteger @ C @ A )
     => ( ord_le3102999989581377725nteger @ C @ ( ord_max_Code_integer @ A @ B ) ) ) ).

% max.coboundedI1
thf(fact_1106_max_OcoboundedI1,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_eq_rat @ C @ A )
     => ( ord_less_eq_rat @ C @ ( ord_max_rat @ A @ B ) ) ) ).

% max.coboundedI1
thf(fact_1107_max_OcoboundedI1,axiom,
    ! [C: num,A: num,B: num] :
      ( ( ord_less_eq_num @ C @ A )
     => ( ord_less_eq_num @ C @ ( ord_max_num @ A @ B ) ) ) ).

% max.coboundedI1
thf(fact_1108_max_OcoboundedI1,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_eq_nat @ C @ A )
     => ( ord_less_eq_nat @ C @ ( ord_max_nat @ A @ B ) ) ) ).

% max.coboundedI1
thf(fact_1109_max_OcoboundedI1,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_eq_int @ C @ A )
     => ( ord_less_eq_int @ C @ ( ord_max_int @ A @ B ) ) ) ).

% max.coboundedI1
thf(fact_1110_max_Oabsorb__iff2,axiom,
    ( ord_le2932123472753598470d_enat
    = ( ^ [A4: extended_enat,B4: extended_enat] :
          ( ( ord_ma741700101516333627d_enat @ A4 @ B4 )
          = B4 ) ) ) ).

% max.absorb_iff2
thf(fact_1111_max_Oabsorb__iff2,axiom,
    ( ord_le3102999989581377725nteger
    = ( ^ [A4: code_integer,B4: code_integer] :
          ( ( ord_max_Code_integer @ A4 @ B4 )
          = B4 ) ) ) ).

% max.absorb_iff2
thf(fact_1112_max_Oabsorb__iff2,axiom,
    ( ord_less_eq_rat
    = ( ^ [A4: rat,B4: rat] :
          ( ( ord_max_rat @ A4 @ B4 )
          = B4 ) ) ) ).

% max.absorb_iff2
thf(fact_1113_max_Oabsorb__iff2,axiom,
    ( ord_less_eq_num
    = ( ^ [A4: num,B4: num] :
          ( ( ord_max_num @ A4 @ B4 )
          = B4 ) ) ) ).

% max.absorb_iff2
thf(fact_1114_max_Oabsorb__iff2,axiom,
    ( ord_less_eq_nat
    = ( ^ [A4: nat,B4: nat] :
          ( ( ord_max_nat @ A4 @ B4 )
          = B4 ) ) ) ).

% max.absorb_iff2
thf(fact_1115_max_Oabsorb__iff2,axiom,
    ( ord_less_eq_int
    = ( ^ [A4: int,B4: int] :
          ( ( ord_max_int @ A4 @ B4 )
          = B4 ) ) ) ).

% max.absorb_iff2
thf(fact_1116_max_Oabsorb__iff1,axiom,
    ( ord_le2932123472753598470d_enat
    = ( ^ [B4: extended_enat,A4: extended_enat] :
          ( ( ord_ma741700101516333627d_enat @ A4 @ B4 )
          = A4 ) ) ) ).

% max.absorb_iff1
thf(fact_1117_max_Oabsorb__iff1,axiom,
    ( ord_le3102999989581377725nteger
    = ( ^ [B4: code_integer,A4: code_integer] :
          ( ( ord_max_Code_integer @ A4 @ B4 )
          = A4 ) ) ) ).

% max.absorb_iff1
thf(fact_1118_max_Oabsorb__iff1,axiom,
    ( ord_less_eq_rat
    = ( ^ [B4: rat,A4: rat] :
          ( ( ord_max_rat @ A4 @ B4 )
          = A4 ) ) ) ).

% max.absorb_iff1
thf(fact_1119_max_Oabsorb__iff1,axiom,
    ( ord_less_eq_num
    = ( ^ [B4: num,A4: num] :
          ( ( ord_max_num @ A4 @ B4 )
          = A4 ) ) ) ).

% max.absorb_iff1
thf(fact_1120_max_Oabsorb__iff1,axiom,
    ( ord_less_eq_nat
    = ( ^ [B4: nat,A4: nat] :
          ( ( ord_max_nat @ A4 @ B4 )
          = A4 ) ) ) ).

% max.absorb_iff1
thf(fact_1121_max_Oabsorb__iff1,axiom,
    ( ord_less_eq_int
    = ( ^ [B4: int,A4: int] :
          ( ( ord_max_int @ A4 @ B4 )
          = A4 ) ) ) ).

% max.absorb_iff1
thf(fact_1122_le__max__iff__disj,axiom,
    ! [Z: extended_enat,X: extended_enat,Y: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ Z @ ( ord_ma741700101516333627d_enat @ X @ Y ) )
      = ( ( ord_le2932123472753598470d_enat @ Z @ X )
        | ( ord_le2932123472753598470d_enat @ Z @ Y ) ) ) ).

% le_max_iff_disj
thf(fact_1123_le__max__iff__disj,axiom,
    ! [Z: code_integer,X: code_integer,Y: code_integer] :
      ( ( ord_le3102999989581377725nteger @ Z @ ( ord_max_Code_integer @ X @ Y ) )
      = ( ( ord_le3102999989581377725nteger @ Z @ X )
        | ( ord_le3102999989581377725nteger @ Z @ Y ) ) ) ).

% le_max_iff_disj
thf(fact_1124_le__max__iff__disj,axiom,
    ! [Z: rat,X: rat,Y: rat] :
      ( ( ord_less_eq_rat @ Z @ ( ord_max_rat @ X @ Y ) )
      = ( ( ord_less_eq_rat @ Z @ X )
        | ( ord_less_eq_rat @ Z @ Y ) ) ) ).

% le_max_iff_disj
thf(fact_1125_le__max__iff__disj,axiom,
    ! [Z: num,X: num,Y: num] :
      ( ( ord_less_eq_num @ Z @ ( ord_max_num @ X @ Y ) )
      = ( ( ord_less_eq_num @ Z @ X )
        | ( ord_less_eq_num @ Z @ Y ) ) ) ).

% le_max_iff_disj
thf(fact_1126_le__max__iff__disj,axiom,
    ! [Z: nat,X: nat,Y: nat] :
      ( ( ord_less_eq_nat @ Z @ ( ord_max_nat @ X @ Y ) )
      = ( ( ord_less_eq_nat @ Z @ X )
        | ( ord_less_eq_nat @ Z @ Y ) ) ) ).

% le_max_iff_disj
thf(fact_1127_le__max__iff__disj,axiom,
    ! [Z: int,X: int,Y: int] :
      ( ( ord_less_eq_int @ Z @ ( ord_max_int @ X @ Y ) )
      = ( ( ord_less_eq_int @ Z @ X )
        | ( ord_less_eq_int @ Z @ Y ) ) ) ).

% le_max_iff_disj
thf(fact_1128_max_Ocobounded2,axiom,
    ! [B: extended_enat,A: extended_enat] : ( ord_le2932123472753598470d_enat @ B @ ( ord_ma741700101516333627d_enat @ A @ B ) ) ).

% max.cobounded2
thf(fact_1129_max_Ocobounded2,axiom,
    ! [B: code_integer,A: code_integer] : ( ord_le3102999989581377725nteger @ B @ ( ord_max_Code_integer @ A @ B ) ) ).

% max.cobounded2
thf(fact_1130_max_Ocobounded2,axiom,
    ! [B: rat,A: rat] : ( ord_less_eq_rat @ B @ ( ord_max_rat @ A @ B ) ) ).

% max.cobounded2
thf(fact_1131_max_Ocobounded2,axiom,
    ! [B: num,A: num] : ( ord_less_eq_num @ B @ ( ord_max_num @ A @ B ) ) ).

% max.cobounded2
thf(fact_1132_max_Ocobounded2,axiom,
    ! [B: nat,A: nat] : ( ord_less_eq_nat @ B @ ( ord_max_nat @ A @ B ) ) ).

% max.cobounded2
thf(fact_1133_max_Ocobounded2,axiom,
    ! [B: int,A: int] : ( ord_less_eq_int @ B @ ( ord_max_int @ A @ B ) ) ).

% max.cobounded2
thf(fact_1134_max_Ocobounded1,axiom,
    ! [A: extended_enat,B: extended_enat] : ( ord_le2932123472753598470d_enat @ A @ ( ord_ma741700101516333627d_enat @ A @ B ) ) ).

% max.cobounded1
thf(fact_1135_max_Ocobounded1,axiom,
    ! [A: code_integer,B: code_integer] : ( ord_le3102999989581377725nteger @ A @ ( ord_max_Code_integer @ A @ B ) ) ).

% max.cobounded1
thf(fact_1136_max_Ocobounded1,axiom,
    ! [A: rat,B: rat] : ( ord_less_eq_rat @ A @ ( ord_max_rat @ A @ B ) ) ).

% max.cobounded1
thf(fact_1137_max_Ocobounded1,axiom,
    ! [A: num,B: num] : ( ord_less_eq_num @ A @ ( ord_max_num @ A @ B ) ) ).

% max.cobounded1
thf(fact_1138_max_Ocobounded1,axiom,
    ! [A: nat,B: nat] : ( ord_less_eq_nat @ A @ ( ord_max_nat @ A @ B ) ) ).

% max.cobounded1
thf(fact_1139_max_Ocobounded1,axiom,
    ! [A: int,B: int] : ( ord_less_eq_int @ A @ ( ord_max_int @ A @ B ) ) ).

% max.cobounded1
thf(fact_1140_max_Oorder__iff,axiom,
    ( ord_le2932123472753598470d_enat
    = ( ^ [B4: extended_enat,A4: extended_enat] :
          ( A4
          = ( ord_ma741700101516333627d_enat @ A4 @ B4 ) ) ) ) ).

% max.order_iff
thf(fact_1141_max_Oorder__iff,axiom,
    ( ord_le3102999989581377725nteger
    = ( ^ [B4: code_integer,A4: code_integer] :
          ( A4
          = ( ord_max_Code_integer @ A4 @ B4 ) ) ) ) ).

% max.order_iff
thf(fact_1142_max_Oorder__iff,axiom,
    ( ord_less_eq_rat
    = ( ^ [B4: rat,A4: rat] :
          ( A4
          = ( ord_max_rat @ A4 @ B4 ) ) ) ) ).

% max.order_iff
thf(fact_1143_max_Oorder__iff,axiom,
    ( ord_less_eq_num
    = ( ^ [B4: num,A4: num] :
          ( A4
          = ( ord_max_num @ A4 @ B4 ) ) ) ) ).

% max.order_iff
thf(fact_1144_max_Oorder__iff,axiom,
    ( ord_less_eq_nat
    = ( ^ [B4: nat,A4: nat] :
          ( A4
          = ( ord_max_nat @ A4 @ B4 ) ) ) ) ).

% max.order_iff
thf(fact_1145_max_Oorder__iff,axiom,
    ( ord_less_eq_int
    = ( ^ [B4: int,A4: int] :
          ( A4
          = ( ord_max_int @ A4 @ B4 ) ) ) ) ).

% max.order_iff
thf(fact_1146_max_OboundedI,axiom,
    ! [B: extended_enat,A: extended_enat,C: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ B @ A )
     => ( ( ord_le2932123472753598470d_enat @ C @ A )
       => ( ord_le2932123472753598470d_enat @ ( ord_ma741700101516333627d_enat @ B @ C ) @ A ) ) ) ).

% max.boundedI
thf(fact_1147_max_OboundedI,axiom,
    ! [B: code_integer,A: code_integer,C: code_integer] :
      ( ( ord_le3102999989581377725nteger @ B @ A )
     => ( ( ord_le3102999989581377725nteger @ C @ A )
       => ( ord_le3102999989581377725nteger @ ( ord_max_Code_integer @ B @ C ) @ A ) ) ) ).

% max.boundedI
thf(fact_1148_max_OboundedI,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( ord_less_eq_rat @ B @ A )
     => ( ( ord_less_eq_rat @ C @ A )
       => ( ord_less_eq_rat @ ( ord_max_rat @ B @ C ) @ A ) ) ) ).

% max.boundedI
thf(fact_1149_max_OboundedI,axiom,
    ! [B: num,A: num,C: num] :
      ( ( ord_less_eq_num @ B @ A )
     => ( ( ord_less_eq_num @ C @ A )
       => ( ord_less_eq_num @ ( ord_max_num @ B @ C ) @ A ) ) ) ).

% max.boundedI
thf(fact_1150_max_OboundedI,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( ord_less_eq_nat @ C @ A )
       => ( ord_less_eq_nat @ ( ord_max_nat @ B @ C ) @ A ) ) ) ).

% max.boundedI
thf(fact_1151_max_OboundedI,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_less_eq_int @ B @ A )
     => ( ( ord_less_eq_int @ C @ A )
       => ( ord_less_eq_int @ ( ord_max_int @ B @ C ) @ A ) ) ) ).

% max.boundedI
thf(fact_1152_max_OboundedE,axiom,
    ! [B: extended_enat,C: extended_enat,A: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ ( ord_ma741700101516333627d_enat @ B @ C ) @ A )
     => ~ ( ( ord_le2932123472753598470d_enat @ B @ A )
         => ~ ( ord_le2932123472753598470d_enat @ C @ A ) ) ) ).

% max.boundedE
thf(fact_1153_max_OboundedE,axiom,
    ! [B: code_integer,C: code_integer,A: code_integer] :
      ( ( ord_le3102999989581377725nteger @ ( ord_max_Code_integer @ B @ C ) @ A )
     => ~ ( ( ord_le3102999989581377725nteger @ B @ A )
         => ~ ( ord_le3102999989581377725nteger @ C @ A ) ) ) ).

% max.boundedE
thf(fact_1154_max_OboundedE,axiom,
    ! [B: rat,C: rat,A: rat] :
      ( ( ord_less_eq_rat @ ( ord_max_rat @ B @ C ) @ A )
     => ~ ( ( ord_less_eq_rat @ B @ A )
         => ~ ( ord_less_eq_rat @ C @ A ) ) ) ).

% max.boundedE
thf(fact_1155_max_OboundedE,axiom,
    ! [B: num,C: num,A: num] :
      ( ( ord_less_eq_num @ ( ord_max_num @ B @ C ) @ A )
     => ~ ( ( ord_less_eq_num @ B @ A )
         => ~ ( ord_less_eq_num @ C @ A ) ) ) ).

% max.boundedE
thf(fact_1156_max_OboundedE,axiom,
    ! [B: nat,C: nat,A: nat] :
      ( ( ord_less_eq_nat @ ( ord_max_nat @ B @ C ) @ A )
     => ~ ( ( ord_less_eq_nat @ B @ A )
         => ~ ( ord_less_eq_nat @ C @ A ) ) ) ).

% max.boundedE
thf(fact_1157_max_OboundedE,axiom,
    ! [B: int,C: int,A: int] :
      ( ( ord_less_eq_int @ ( ord_max_int @ B @ C ) @ A )
     => ~ ( ( ord_less_eq_int @ B @ A )
         => ~ ( ord_less_eq_int @ C @ A ) ) ) ).

% max.boundedE
thf(fact_1158_max_OorderI,axiom,
    ! [A: extended_enat,B: extended_enat] :
      ( ( A
        = ( ord_ma741700101516333627d_enat @ A @ B ) )
     => ( ord_le2932123472753598470d_enat @ B @ A ) ) ).

% max.orderI
thf(fact_1159_max_OorderI,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( A
        = ( ord_max_Code_integer @ A @ B ) )
     => ( ord_le3102999989581377725nteger @ B @ A ) ) ).

% max.orderI
thf(fact_1160_max_OorderI,axiom,
    ! [A: rat,B: rat] :
      ( ( A
        = ( ord_max_rat @ A @ B ) )
     => ( ord_less_eq_rat @ B @ A ) ) ).

% max.orderI
thf(fact_1161_max_OorderI,axiom,
    ! [A: num,B: num] :
      ( ( A
        = ( ord_max_num @ A @ B ) )
     => ( ord_less_eq_num @ B @ A ) ) ).

% max.orderI
thf(fact_1162_max_OorderI,axiom,
    ! [A: nat,B: nat] :
      ( ( A
        = ( ord_max_nat @ A @ B ) )
     => ( ord_less_eq_nat @ B @ A ) ) ).

% max.orderI
thf(fact_1163_max_OorderI,axiom,
    ! [A: int,B: int] :
      ( ( A
        = ( ord_max_int @ A @ B ) )
     => ( ord_less_eq_int @ B @ A ) ) ).

% max.orderI
thf(fact_1164_max_OorderE,axiom,
    ! [B: extended_enat,A: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ B @ A )
     => ( A
        = ( ord_ma741700101516333627d_enat @ A @ B ) ) ) ).

% max.orderE
thf(fact_1165_max_OorderE,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( ord_le3102999989581377725nteger @ B @ A )
     => ( A
        = ( ord_max_Code_integer @ A @ B ) ) ) ).

% max.orderE
thf(fact_1166_max_OorderE,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_eq_rat @ B @ A )
     => ( A
        = ( ord_max_rat @ A @ B ) ) ) ).

% max.orderE
thf(fact_1167_max_OorderE,axiom,
    ! [B: num,A: num] :
      ( ( ord_less_eq_num @ B @ A )
     => ( A
        = ( ord_max_num @ A @ B ) ) ) ).

% max.orderE
thf(fact_1168_max_OorderE,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( A
        = ( ord_max_nat @ A @ B ) ) ) ).

% max.orderE
thf(fact_1169_max_OorderE,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_eq_int @ B @ A )
     => ( A
        = ( ord_max_int @ A @ B ) ) ) ).

% max.orderE
thf(fact_1170_max_Omono,axiom,
    ! [C: extended_enat,A: extended_enat,D: extended_enat,B: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ C @ A )
     => ( ( ord_le2932123472753598470d_enat @ D @ B )
       => ( ord_le2932123472753598470d_enat @ ( ord_ma741700101516333627d_enat @ C @ D ) @ ( ord_ma741700101516333627d_enat @ A @ B ) ) ) ) ).

% max.mono
thf(fact_1171_max_Omono,axiom,
    ! [C: code_integer,A: code_integer,D: code_integer,B: code_integer] :
      ( ( ord_le3102999989581377725nteger @ C @ A )
     => ( ( ord_le3102999989581377725nteger @ D @ B )
       => ( ord_le3102999989581377725nteger @ ( ord_max_Code_integer @ C @ D ) @ ( ord_max_Code_integer @ A @ B ) ) ) ) ).

% max.mono
thf(fact_1172_max_Omono,axiom,
    ! [C: rat,A: rat,D: rat,B: rat] :
      ( ( ord_less_eq_rat @ C @ A )
     => ( ( ord_less_eq_rat @ D @ B )
       => ( ord_less_eq_rat @ ( ord_max_rat @ C @ D ) @ ( ord_max_rat @ A @ B ) ) ) ) ).

% max.mono
thf(fact_1173_max_Omono,axiom,
    ! [C: num,A: num,D: num,B: num] :
      ( ( ord_less_eq_num @ C @ A )
     => ( ( ord_less_eq_num @ D @ B )
       => ( ord_less_eq_num @ ( ord_max_num @ C @ D ) @ ( ord_max_num @ A @ B ) ) ) ) ).

% max.mono
thf(fact_1174_max_Omono,axiom,
    ! [C: nat,A: nat,D: nat,B: nat] :
      ( ( ord_less_eq_nat @ C @ A )
     => ( ( ord_less_eq_nat @ D @ B )
       => ( ord_less_eq_nat @ ( ord_max_nat @ C @ D ) @ ( ord_max_nat @ A @ B ) ) ) ) ).

% max.mono
thf(fact_1175_max_Omono,axiom,
    ! [C: int,A: int,D: int,B: int] :
      ( ( ord_less_eq_int @ C @ A )
     => ( ( ord_less_eq_int @ D @ B )
       => ( ord_less_eq_int @ ( ord_max_int @ C @ D ) @ ( ord_max_int @ A @ B ) ) ) ) ).

% max.mono
thf(fact_1176_max_Ostrict__coboundedI2,axiom,
    ! [C: extended_enat,B: extended_enat,A: extended_enat] :
      ( ( ord_le72135733267957522d_enat @ C @ B )
     => ( ord_le72135733267957522d_enat @ C @ ( ord_ma741700101516333627d_enat @ A @ B ) ) ) ).

% max.strict_coboundedI2
thf(fact_1177_max_Ostrict__coboundedI2,axiom,
    ! [C: code_integer,B: code_integer,A: code_integer] :
      ( ( ord_le6747313008572928689nteger @ C @ B )
     => ( ord_le6747313008572928689nteger @ C @ ( ord_max_Code_integer @ A @ B ) ) ) ).

% max.strict_coboundedI2
thf(fact_1178_max_Ostrict__coboundedI2,axiom,
    ! [C: real,B: real,A: real] :
      ( ( ord_less_real @ C @ B )
     => ( ord_less_real @ C @ ( ord_max_real @ A @ B ) ) ) ).

% max.strict_coboundedI2
thf(fact_1179_max_Ostrict__coboundedI2,axiom,
    ! [C: rat,B: rat,A: rat] :
      ( ( ord_less_rat @ C @ B )
     => ( ord_less_rat @ C @ ( ord_max_rat @ A @ B ) ) ) ).

% max.strict_coboundedI2
thf(fact_1180_max_Ostrict__coboundedI2,axiom,
    ! [C: num,B: num,A: num] :
      ( ( ord_less_num @ C @ B )
     => ( ord_less_num @ C @ ( ord_max_num @ A @ B ) ) ) ).

% max.strict_coboundedI2
thf(fact_1181_max_Ostrict__coboundedI2,axiom,
    ! [C: nat,B: nat,A: nat] :
      ( ( ord_less_nat @ C @ B )
     => ( ord_less_nat @ C @ ( ord_max_nat @ A @ B ) ) ) ).

% max.strict_coboundedI2
thf(fact_1182_max_Ostrict__coboundedI2,axiom,
    ! [C: int,B: int,A: int] :
      ( ( ord_less_int @ C @ B )
     => ( ord_less_int @ C @ ( ord_max_int @ A @ B ) ) ) ).

% max.strict_coboundedI2
thf(fact_1183_max_Ostrict__coboundedI1,axiom,
    ! [C: extended_enat,A: extended_enat,B: extended_enat] :
      ( ( ord_le72135733267957522d_enat @ C @ A )
     => ( ord_le72135733267957522d_enat @ C @ ( ord_ma741700101516333627d_enat @ A @ B ) ) ) ).

% max.strict_coboundedI1
thf(fact_1184_max_Ostrict__coboundedI1,axiom,
    ! [C: code_integer,A: code_integer,B: code_integer] :
      ( ( ord_le6747313008572928689nteger @ C @ A )
     => ( ord_le6747313008572928689nteger @ C @ ( ord_max_Code_integer @ A @ B ) ) ) ).

% max.strict_coboundedI1
thf(fact_1185_max_Ostrict__coboundedI1,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ C @ A )
     => ( ord_less_real @ C @ ( ord_max_real @ A @ B ) ) ) ).

% max.strict_coboundedI1
thf(fact_1186_max_Ostrict__coboundedI1,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ C @ A )
     => ( ord_less_rat @ C @ ( ord_max_rat @ A @ B ) ) ) ).

% max.strict_coboundedI1
thf(fact_1187_max_Ostrict__coboundedI1,axiom,
    ! [C: num,A: num,B: num] :
      ( ( ord_less_num @ C @ A )
     => ( ord_less_num @ C @ ( ord_max_num @ A @ B ) ) ) ).

% max.strict_coboundedI1
thf(fact_1188_max_Ostrict__coboundedI1,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_nat @ C @ A )
     => ( ord_less_nat @ C @ ( ord_max_nat @ A @ B ) ) ) ).

% max.strict_coboundedI1
thf(fact_1189_max_Ostrict__coboundedI1,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_int @ C @ A )
     => ( ord_less_int @ C @ ( ord_max_int @ A @ B ) ) ) ).

% max.strict_coboundedI1
thf(fact_1190_max_Ostrict__order__iff,axiom,
    ( ord_le72135733267957522d_enat
    = ( ^ [B4: extended_enat,A4: extended_enat] :
          ( ( A4
            = ( ord_ma741700101516333627d_enat @ A4 @ B4 ) )
          & ( A4 != B4 ) ) ) ) ).

% max.strict_order_iff
thf(fact_1191_max_Ostrict__order__iff,axiom,
    ( ord_le6747313008572928689nteger
    = ( ^ [B4: code_integer,A4: code_integer] :
          ( ( A4
            = ( ord_max_Code_integer @ A4 @ B4 ) )
          & ( A4 != B4 ) ) ) ) ).

% max.strict_order_iff
thf(fact_1192_max_Ostrict__order__iff,axiom,
    ( ord_less_real
    = ( ^ [B4: real,A4: real] :
          ( ( A4
            = ( ord_max_real @ A4 @ B4 ) )
          & ( A4 != B4 ) ) ) ) ).

% max.strict_order_iff
thf(fact_1193_max_Ostrict__order__iff,axiom,
    ( ord_less_rat
    = ( ^ [B4: rat,A4: rat] :
          ( ( A4
            = ( ord_max_rat @ A4 @ B4 ) )
          & ( A4 != B4 ) ) ) ) ).

% max.strict_order_iff
thf(fact_1194_max_Ostrict__order__iff,axiom,
    ( ord_less_num
    = ( ^ [B4: num,A4: num] :
          ( ( A4
            = ( ord_max_num @ A4 @ B4 ) )
          & ( A4 != B4 ) ) ) ) ).

% max.strict_order_iff
thf(fact_1195_max_Ostrict__order__iff,axiom,
    ( ord_less_nat
    = ( ^ [B4: nat,A4: nat] :
          ( ( A4
            = ( ord_max_nat @ A4 @ B4 ) )
          & ( A4 != B4 ) ) ) ) ).

% max.strict_order_iff
thf(fact_1196_max_Ostrict__order__iff,axiom,
    ( ord_less_int
    = ( ^ [B4: int,A4: int] :
          ( ( A4
            = ( ord_max_int @ A4 @ B4 ) )
          & ( A4 != B4 ) ) ) ) ).

% max.strict_order_iff
thf(fact_1197_max_Ostrict__boundedE,axiom,
    ! [B: extended_enat,C: extended_enat,A: extended_enat] :
      ( ( ord_le72135733267957522d_enat @ ( ord_ma741700101516333627d_enat @ B @ C ) @ A )
     => ~ ( ( ord_le72135733267957522d_enat @ B @ A )
         => ~ ( ord_le72135733267957522d_enat @ C @ A ) ) ) ).

% max.strict_boundedE
thf(fact_1198_max_Ostrict__boundedE,axiom,
    ! [B: code_integer,C: code_integer,A: code_integer] :
      ( ( ord_le6747313008572928689nteger @ ( ord_max_Code_integer @ B @ C ) @ A )
     => ~ ( ( ord_le6747313008572928689nteger @ B @ A )
         => ~ ( ord_le6747313008572928689nteger @ C @ A ) ) ) ).

% max.strict_boundedE
thf(fact_1199_max_Ostrict__boundedE,axiom,
    ! [B: real,C: real,A: real] :
      ( ( ord_less_real @ ( ord_max_real @ B @ C ) @ A )
     => ~ ( ( ord_less_real @ B @ A )
         => ~ ( ord_less_real @ C @ A ) ) ) ).

% max.strict_boundedE
thf(fact_1200_max_Ostrict__boundedE,axiom,
    ! [B: rat,C: rat,A: rat] :
      ( ( ord_less_rat @ ( ord_max_rat @ B @ C ) @ A )
     => ~ ( ( ord_less_rat @ B @ A )
         => ~ ( ord_less_rat @ C @ A ) ) ) ).

% max.strict_boundedE
thf(fact_1201_max_Ostrict__boundedE,axiom,
    ! [B: num,C: num,A: num] :
      ( ( ord_less_num @ ( ord_max_num @ B @ C ) @ A )
     => ~ ( ( ord_less_num @ B @ A )
         => ~ ( ord_less_num @ C @ A ) ) ) ).

% max.strict_boundedE
thf(fact_1202_max_Ostrict__boundedE,axiom,
    ! [B: nat,C: nat,A: nat] :
      ( ( ord_less_nat @ ( ord_max_nat @ B @ C ) @ A )
     => ~ ( ( ord_less_nat @ B @ A )
         => ~ ( ord_less_nat @ C @ A ) ) ) ).

% max.strict_boundedE
thf(fact_1203_max_Ostrict__boundedE,axiom,
    ! [B: int,C: int,A: int] :
      ( ( ord_less_int @ ( ord_max_int @ B @ C ) @ A )
     => ~ ( ( ord_less_int @ B @ A )
         => ~ ( ord_less_int @ C @ A ) ) ) ).

% max.strict_boundedE
thf(fact_1204_less__max__iff__disj,axiom,
    ! [Z: extended_enat,X: extended_enat,Y: extended_enat] :
      ( ( ord_le72135733267957522d_enat @ Z @ ( ord_ma741700101516333627d_enat @ X @ Y ) )
      = ( ( ord_le72135733267957522d_enat @ Z @ X )
        | ( ord_le72135733267957522d_enat @ Z @ Y ) ) ) ).

% less_max_iff_disj
thf(fact_1205_less__max__iff__disj,axiom,
    ! [Z: code_integer,X: code_integer,Y: code_integer] :
      ( ( ord_le6747313008572928689nteger @ Z @ ( ord_max_Code_integer @ X @ Y ) )
      = ( ( ord_le6747313008572928689nteger @ Z @ X )
        | ( ord_le6747313008572928689nteger @ Z @ Y ) ) ) ).

% less_max_iff_disj
thf(fact_1206_less__max__iff__disj,axiom,
    ! [Z: real,X: real,Y: real] :
      ( ( ord_less_real @ Z @ ( ord_max_real @ X @ Y ) )
      = ( ( ord_less_real @ Z @ X )
        | ( ord_less_real @ Z @ Y ) ) ) ).

% less_max_iff_disj
thf(fact_1207_less__max__iff__disj,axiom,
    ! [Z: rat,X: rat,Y: rat] :
      ( ( ord_less_rat @ Z @ ( ord_max_rat @ X @ Y ) )
      = ( ( ord_less_rat @ Z @ X )
        | ( ord_less_rat @ Z @ Y ) ) ) ).

% less_max_iff_disj
thf(fact_1208_less__max__iff__disj,axiom,
    ! [Z: num,X: num,Y: num] :
      ( ( ord_less_num @ Z @ ( ord_max_num @ X @ Y ) )
      = ( ( ord_less_num @ Z @ X )
        | ( ord_less_num @ Z @ Y ) ) ) ).

% less_max_iff_disj
thf(fact_1209_less__max__iff__disj,axiom,
    ! [Z: nat,X: nat,Y: nat] :
      ( ( ord_less_nat @ Z @ ( ord_max_nat @ X @ Y ) )
      = ( ( ord_less_nat @ Z @ X )
        | ( ord_less_nat @ Z @ Y ) ) ) ).

% less_max_iff_disj
thf(fact_1210_less__max__iff__disj,axiom,
    ! [Z: int,X: int,Y: int] :
      ( ( ord_less_int @ Z @ ( ord_max_int @ X @ Y ) )
      = ( ( ord_less_int @ Z @ X )
        | ( ord_less_int @ Z @ Y ) ) ) ).

% less_max_iff_disj
thf(fact_1211_VEBT__internal_Ooption__shift_Osimps_I3_J,axiom,
    ! [F: product_prod_nat_nat > product_prod_nat_nat > product_prod_nat_nat,A: product_prod_nat_nat,B: product_prod_nat_nat] :
      ( ( vEBT_V1502963449132264192at_nat @ F @ ( some_P7363390416028606310at_nat @ A ) @ ( some_P7363390416028606310at_nat @ B ) )
      = ( some_P7363390416028606310at_nat @ ( F @ A @ B ) ) ) ).

% VEBT_internal.option_shift.simps(3)
thf(fact_1212_VEBT__internal_Ooption__shift_Osimps_I3_J,axiom,
    ! [F: num > num > num,A: num,B: num] :
      ( ( vEBT_V819420779217536731ft_num @ F @ ( some_num @ A ) @ ( some_num @ B ) )
      = ( some_num @ ( F @ A @ B ) ) ) ).

% VEBT_internal.option_shift.simps(3)
thf(fact_1213_VEBT__internal_Ooption__shift_Osimps_I3_J,axiom,
    ! [F: nat > nat > nat,A: nat,B: nat] :
      ( ( vEBT_V4262088993061758097ft_nat @ F @ ( some_nat @ A ) @ ( some_nat @ B ) )
      = ( some_nat @ ( F @ A @ B ) ) ) ).

% VEBT_internal.option_shift.simps(3)
thf(fact_1214_VEBT__internal_Ooption__shift_Osimps_I1_J,axiom,
    ! [Uu: product_prod_nat_nat > product_prod_nat_nat > product_prod_nat_nat,Uv: option4927543243414619207at_nat] :
      ( ( vEBT_V1502963449132264192at_nat @ Uu @ none_P5556105721700978146at_nat @ Uv )
      = none_P5556105721700978146at_nat ) ).

% VEBT_internal.option_shift.simps(1)
thf(fact_1215_VEBT__internal_Ooption__shift_Osimps_I1_J,axiom,
    ! [Uu: num > num > num,Uv: option_num] :
      ( ( vEBT_V819420779217536731ft_num @ Uu @ none_num @ Uv )
      = none_num ) ).

% VEBT_internal.option_shift.simps(1)
thf(fact_1216_VEBT__internal_Ooption__shift_Osimps_I1_J,axiom,
    ! [Uu: nat > nat > nat,Uv: option_nat] :
      ( ( vEBT_V4262088993061758097ft_nat @ Uu @ none_nat @ Uv )
      = none_nat ) ).

% VEBT_internal.option_shift.simps(1)
thf(fact_1217_mult__diff__mult,axiom,
    ! [X: real,Y: real,A: real,B: real] :
      ( ( minus_minus_real @ ( times_times_real @ X @ Y ) @ ( times_times_real @ A @ B ) )
      = ( plus_plus_real @ ( times_times_real @ X @ ( minus_minus_real @ Y @ B ) ) @ ( times_times_real @ ( minus_minus_real @ X @ A ) @ B ) ) ) ).

% mult_diff_mult
thf(fact_1218_mult__diff__mult,axiom,
    ! [X: rat,Y: rat,A: rat,B: rat] :
      ( ( minus_minus_rat @ ( times_times_rat @ X @ Y ) @ ( times_times_rat @ A @ B ) )
      = ( plus_plus_rat @ ( times_times_rat @ X @ ( minus_minus_rat @ Y @ B ) ) @ ( times_times_rat @ ( minus_minus_rat @ X @ A ) @ B ) ) ) ).

% mult_diff_mult
thf(fact_1219_mult__diff__mult,axiom,
    ! [X: int,Y: int,A: int,B: int] :
      ( ( minus_minus_int @ ( times_times_int @ X @ Y ) @ ( times_times_int @ A @ B ) )
      = ( plus_plus_int @ ( times_times_int @ X @ ( minus_minus_int @ Y @ B ) ) @ ( times_times_int @ ( minus_minus_int @ X @ A ) @ B ) ) ) ).

% mult_diff_mult
thf(fact_1220_VEBT__internal_Ooption__shift_Osimps_I2_J,axiom,
    ! [Uw: product_prod_nat_nat > product_prod_nat_nat > product_prod_nat_nat,V: product_prod_nat_nat] :
      ( ( vEBT_V1502963449132264192at_nat @ Uw @ ( some_P7363390416028606310at_nat @ V ) @ none_P5556105721700978146at_nat )
      = none_P5556105721700978146at_nat ) ).

% VEBT_internal.option_shift.simps(2)
thf(fact_1221_VEBT__internal_Ooption__shift_Osimps_I2_J,axiom,
    ! [Uw: num > num > num,V: num] :
      ( ( vEBT_V819420779217536731ft_num @ Uw @ ( some_num @ V ) @ none_num )
      = none_num ) ).

% VEBT_internal.option_shift.simps(2)
thf(fact_1222_VEBT__internal_Ooption__shift_Osimps_I2_J,axiom,
    ! [Uw: nat > nat > nat,V: nat] :
      ( ( vEBT_V4262088993061758097ft_nat @ Uw @ ( some_nat @ V ) @ none_nat )
      = none_nat ) ).

% VEBT_internal.option_shift.simps(2)
thf(fact_1223_VEBT__internal_Ooption__shift_Oelims,axiom,
    ! [X: product_prod_nat_nat > product_prod_nat_nat > product_prod_nat_nat,Xa2: option4927543243414619207at_nat,Xb: option4927543243414619207at_nat,Y: option4927543243414619207at_nat] :
      ( ( ( vEBT_V1502963449132264192at_nat @ X @ Xa2 @ Xb )
        = Y )
     => ( ( ( Xa2 = none_P5556105721700978146at_nat )
         => ( Y != none_P5556105721700978146at_nat ) )
       => ( ( ? [V2: product_prod_nat_nat] :
                ( Xa2
                = ( some_P7363390416028606310at_nat @ V2 ) )
           => ( ( Xb = none_P5556105721700978146at_nat )
             => ( Y != none_P5556105721700978146at_nat ) ) )
         => ~ ! [A3: product_prod_nat_nat] :
                ( ( Xa2
                  = ( some_P7363390416028606310at_nat @ A3 ) )
               => ! [B2: product_prod_nat_nat] :
                    ( ( Xb
                      = ( some_P7363390416028606310at_nat @ B2 ) )
                   => ( Y
                     != ( some_P7363390416028606310at_nat @ ( X @ A3 @ B2 ) ) ) ) ) ) ) ) ).

% VEBT_internal.option_shift.elims
thf(fact_1224_VEBT__internal_Ooption__shift_Oelims,axiom,
    ! [X: num > num > num,Xa2: option_num,Xb: option_num,Y: option_num] :
      ( ( ( vEBT_V819420779217536731ft_num @ X @ Xa2 @ Xb )
        = Y )
     => ( ( ( Xa2 = none_num )
         => ( Y != none_num ) )
       => ( ( ? [V2: num] :
                ( Xa2
                = ( some_num @ V2 ) )
           => ( ( Xb = none_num )
             => ( Y != none_num ) ) )
         => ~ ! [A3: num] :
                ( ( Xa2
                  = ( some_num @ A3 ) )
               => ! [B2: num] :
                    ( ( Xb
                      = ( some_num @ B2 ) )
                   => ( Y
                     != ( some_num @ ( X @ A3 @ B2 ) ) ) ) ) ) ) ) ).

% VEBT_internal.option_shift.elims
thf(fact_1225_VEBT__internal_Ooption__shift_Oelims,axiom,
    ! [X: nat > nat > nat,Xa2: option_nat,Xb: option_nat,Y: option_nat] :
      ( ( ( vEBT_V4262088993061758097ft_nat @ X @ Xa2 @ Xb )
        = Y )
     => ( ( ( Xa2 = none_nat )
         => ( Y != none_nat ) )
       => ( ( ? [V2: nat] :
                ( Xa2
                = ( some_nat @ V2 ) )
           => ( ( Xb = none_nat )
             => ( Y != none_nat ) ) )
         => ~ ! [A3: nat] :
                ( ( Xa2
                  = ( some_nat @ A3 ) )
               => ! [B2: nat] :
                    ( ( Xb
                      = ( some_nat @ B2 ) )
                   => ( Y
                     != ( some_nat @ ( X @ A3 @ B2 ) ) ) ) ) ) ) ) ).

% VEBT_internal.option_shift.elims
thf(fact_1226_is__succ__in__set__def,axiom,
    ( vEBT_is_succ_in_set
    = ( ^ [Xs: set_nat,X3: nat,Y3: nat] :
          ( ( member_nat @ Y3 @ Xs )
          & ( ord_less_nat @ X3 @ Y3 )
          & ! [Z2: nat] :
              ( ( member_nat @ Z2 @ Xs )
             => ( ( ord_less_nat @ X3 @ Z2 )
               => ( ord_less_eq_nat @ Y3 @ Z2 ) ) ) ) ) ) ).

% is_succ_in_set_def
thf(fact_1227_is__pred__in__set__def,axiom,
    ( vEBT_is_pred_in_set
    = ( ^ [Xs: set_nat,X3: nat,Y3: nat] :
          ( ( member_nat @ Y3 @ Xs )
          & ( ord_less_nat @ Y3 @ X3 )
          & ! [Z2: nat] :
              ( ( member_nat @ Z2 @ Xs )
             => ( ( ord_less_nat @ Z2 @ X3 )
               => ( ord_less_eq_nat @ Z2 @ Y3 ) ) ) ) ) ) ).

% is_pred_in_set_def
thf(fact_1228_vebt__maxt_Osimps_I2_J,axiom,
    ! [Uu: nat,Uv: list_VEBT_VEBT,Uw: vEBT_VEBT] :
      ( ( vEBT_vebt_maxt @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu @ Uv @ Uw ) )
      = none_nat ) ).

% vebt_maxt.simps(2)
thf(fact_1229_vebt__mint_Osimps_I2_J,axiom,
    ! [Uu: nat,Uv: list_VEBT_VEBT,Uw: vEBT_VEBT] :
      ( ( vEBT_vebt_mint @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu @ Uv @ Uw ) )
      = none_nat ) ).

% vebt_mint.simps(2)
thf(fact_1230_vebt__pred_Osimps_I4_J,axiom,
    ! [Uy: nat,Uz: list_VEBT_VEBT,Va: vEBT_VEBT,Vb: nat] :
      ( ( vEBT_vebt_pred @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Uy @ Uz @ Va ) @ Vb )
      = none_nat ) ).

% vebt_pred.simps(4)
thf(fact_1231_vebt__succ_Osimps_I3_J,axiom,
    ! [Ux: nat,Uy: list_VEBT_VEBT,Uz: vEBT_VEBT,Va: nat] :
      ( ( vEBT_vebt_succ @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Ux @ Uy @ Uz ) @ Va )
      = none_nat ) ).

% vebt_succ.simps(3)
thf(fact_1232_field__sum__of__halves,axiom,
    ! [X: real] :
      ( ( plus_plus_real @ ( divide_divide_real @ X @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( divide_divide_real @ X @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
      = X ) ).

% field_sum_of_halves
thf(fact_1233_field__sum__of__halves,axiom,
    ! [X: rat] :
      ( ( plus_plus_rat @ ( divide_divide_rat @ X @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) @ ( divide_divide_rat @ X @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) )
      = X ) ).

% field_sum_of_halves
thf(fact_1234_two__realpow__ge__one,axiom,
    ! [N2: nat] : ( ord_less_eq_real @ one_one_real @ ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ N2 ) ) ).

% two_realpow_ge_one
thf(fact_1235_buildup__gives__empty,axiom,
    ! [N2: nat] :
      ( ( vEBT_VEBT_set_vebt @ ( vEBT_vebt_buildup @ N2 ) )
      = bot_bot_set_nat ) ).

% buildup_gives_empty
thf(fact_1236_max__bot2,axiom,
    ! [X: set_nat] :
      ( ( ord_max_set_nat @ X @ bot_bot_set_nat )
      = X ) ).

% max_bot2
thf(fact_1237_max__bot2,axiom,
    ! [X: set_int] :
      ( ( ord_max_set_int @ X @ bot_bot_set_int )
      = X ) ).

% max_bot2
thf(fact_1238_max__bot2,axiom,
    ! [X: set_real] :
      ( ( ord_max_set_real @ X @ bot_bot_set_real )
      = X ) ).

% max_bot2
thf(fact_1239_max__bot2,axiom,
    ! [X: nat] :
      ( ( ord_max_nat @ X @ bot_bot_nat )
      = X ) ).

% max_bot2
thf(fact_1240_max__bot2,axiom,
    ! [X: extended_enat] :
      ( ( ord_ma741700101516333627d_enat @ X @ bot_bo4199563552545308370d_enat )
      = X ) ).

% max_bot2
thf(fact_1241_max__bot,axiom,
    ! [X: set_nat] :
      ( ( ord_max_set_nat @ bot_bot_set_nat @ X )
      = X ) ).

% max_bot
thf(fact_1242_max__bot,axiom,
    ! [X: set_int] :
      ( ( ord_max_set_int @ bot_bot_set_int @ X )
      = X ) ).

% max_bot
thf(fact_1243_max__bot,axiom,
    ! [X: set_real] :
      ( ( ord_max_set_real @ bot_bot_set_real @ X )
      = X ) ).

% max_bot
thf(fact_1244_max__bot,axiom,
    ! [X: nat] :
      ( ( ord_max_nat @ bot_bot_nat @ X )
      = X ) ).

% max_bot
thf(fact_1245_max__bot,axiom,
    ! [X: extended_enat] :
      ( ( ord_ma741700101516333627d_enat @ bot_bo4199563552545308370d_enat @ X )
      = X ) ).

% max_bot
thf(fact_1246_enat__ord__number_I1_J,axiom,
    ! [M: num,N2: num] :
      ( ( ord_le2932123472753598470d_enat @ ( numera1916890842035813515d_enat @ M ) @ ( numera1916890842035813515d_enat @ N2 ) )
      = ( ord_less_eq_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N2 ) ) ) ).

% enat_ord_number(1)
thf(fact_1247_empty__subsetI,axiom,
    ! [A2: set_nat] : ( ord_less_eq_set_nat @ bot_bot_set_nat @ A2 ) ).

% empty_subsetI
thf(fact_1248_empty__subsetI,axiom,
    ! [A2: set_real] : ( ord_less_eq_set_real @ bot_bot_set_real @ A2 ) ).

% empty_subsetI
thf(fact_1249_empty__subsetI,axiom,
    ! [A2: set_int] : ( ord_less_eq_set_int @ bot_bot_set_int @ A2 ) ).

% empty_subsetI
thf(fact_1250_subset__empty,axiom,
    ! [A2: set_nat] :
      ( ( ord_less_eq_set_nat @ A2 @ bot_bot_set_nat )
      = ( A2 = bot_bot_set_nat ) ) ).

% subset_empty
thf(fact_1251_subset__empty,axiom,
    ! [A2: set_real] :
      ( ( ord_less_eq_set_real @ A2 @ bot_bot_set_real )
      = ( A2 = bot_bot_set_real ) ) ).

% subset_empty
thf(fact_1252_subset__empty,axiom,
    ! [A2: set_int] :
      ( ( ord_less_eq_set_int @ A2 @ bot_bot_set_int )
      = ( A2 = bot_bot_set_int ) ) ).

% subset_empty
thf(fact_1253_Diff__eq__empty__iff,axiom,
    ! [A2: set_real,B3: set_real] :
      ( ( ( minus_minus_set_real @ A2 @ B3 )
        = bot_bot_set_real )
      = ( ord_less_eq_set_real @ A2 @ B3 ) ) ).

% Diff_eq_empty_iff
thf(fact_1254_Diff__eq__empty__iff,axiom,
    ! [A2: set_nat,B3: set_nat] :
      ( ( ( minus_minus_set_nat @ A2 @ B3 )
        = bot_bot_set_nat )
      = ( ord_less_eq_set_nat @ A2 @ B3 ) ) ).

% Diff_eq_empty_iff
thf(fact_1255_Diff__eq__empty__iff,axiom,
    ! [A2: set_int,B3: set_int] :
      ( ( ( minus_minus_set_int @ A2 @ B3 )
        = bot_bot_set_int )
      = ( ord_less_eq_set_int @ A2 @ B3 ) ) ).

% Diff_eq_empty_iff
thf(fact_1256_enat__ord__number_I2_J,axiom,
    ! [M: num,N2: num] :
      ( ( ord_le72135733267957522d_enat @ ( numera1916890842035813515d_enat @ M ) @ ( numera1916890842035813515d_enat @ N2 ) )
      = ( ord_less_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N2 ) ) ) ).

% enat_ord_number(2)
thf(fact_1257_Suc__double__not__eq__double,axiom,
    ! [M: nat,N2: nat] :
      ( ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
     != ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ).

% Suc_double_not_eq_double
thf(fact_1258_double__not__eq__Suc__double,axiom,
    ! [M: nat,N2: nat] :
      ( ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M )
     != ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) ).

% double_not_eq_Suc_double
thf(fact_1259_order__refl,axiom,
    ! [X: set_int] : ( ord_less_eq_set_int @ X @ X ) ).

% order_refl
thf(fact_1260_order__refl,axiom,
    ! [X: rat] : ( ord_less_eq_rat @ X @ X ) ).

% order_refl
thf(fact_1261_order__refl,axiom,
    ! [X: num] : ( ord_less_eq_num @ X @ X ) ).

% order_refl
thf(fact_1262_order__refl,axiom,
    ! [X: nat] : ( ord_less_eq_nat @ X @ X ) ).

% order_refl
thf(fact_1263_order__refl,axiom,
    ! [X: int] : ( ord_less_eq_int @ X @ X ) ).

% order_refl
thf(fact_1264_dual__order_Orefl,axiom,
    ! [A: set_int] : ( ord_less_eq_set_int @ A @ A ) ).

% dual_order.refl
thf(fact_1265_dual__order_Orefl,axiom,
    ! [A: rat] : ( ord_less_eq_rat @ A @ A ) ).

% dual_order.refl
thf(fact_1266_dual__order_Orefl,axiom,
    ! [A: num] : ( ord_less_eq_num @ A @ A ) ).

% dual_order.refl
thf(fact_1267_dual__order_Orefl,axiom,
    ! [A: nat] : ( ord_less_eq_nat @ A @ A ) ).

% dual_order.refl
thf(fact_1268_dual__order_Orefl,axiom,
    ! [A: int] : ( ord_less_eq_int @ A @ A ) ).

% dual_order.refl
thf(fact_1269_subsetI,axiom,
    ! [A2: set_complex,B3: set_complex] :
      ( ! [X5: complex] :
          ( ( member_complex @ X5 @ A2 )
         => ( member_complex @ X5 @ B3 ) )
     => ( ord_le211207098394363844omplex @ A2 @ B3 ) ) ).

% subsetI
thf(fact_1270_subsetI,axiom,
    ! [A2: set_real,B3: set_real] :
      ( ! [X5: real] :
          ( ( member_real @ X5 @ A2 )
         => ( member_real @ X5 @ B3 ) )
     => ( ord_less_eq_set_real @ A2 @ B3 ) ) ).

% subsetI
thf(fact_1271_subsetI,axiom,
    ! [A2: set_set_nat,B3: set_set_nat] :
      ( ! [X5: set_nat] :
          ( ( member_set_nat @ X5 @ A2 )
         => ( member_set_nat @ X5 @ B3 ) )
     => ( ord_le6893508408891458716et_nat @ A2 @ B3 ) ) ).

% subsetI
thf(fact_1272_subsetI,axiom,
    ! [A2: set_nat,B3: set_nat] :
      ( ! [X5: nat] :
          ( ( member_nat @ X5 @ A2 )
         => ( member_nat @ X5 @ B3 ) )
     => ( ord_less_eq_set_nat @ A2 @ B3 ) ) ).

% subsetI
thf(fact_1273_subsetI,axiom,
    ! [A2: set_int,B3: set_int] :
      ( ! [X5: int] :
          ( ( member_int @ X5 @ A2 )
         => ( member_int @ X5 @ B3 ) )
     => ( ord_less_eq_set_int @ A2 @ B3 ) ) ).

% subsetI
thf(fact_1274_psubsetI,axiom,
    ! [A2: set_int,B3: set_int] :
      ( ( ord_less_eq_set_int @ A2 @ B3 )
     => ( ( A2 != B3 )
       => ( ord_less_set_int @ A2 @ B3 ) ) ) ).

% psubsetI
thf(fact_1275_subset__antisym,axiom,
    ! [A2: set_int,B3: set_int] :
      ( ( ord_less_eq_set_int @ A2 @ B3 )
     => ( ( ord_less_eq_set_int @ B3 @ A2 )
       => ( A2 = B3 ) ) ) ).

% subset_antisym
thf(fact_1276_Diff__idemp,axiom,
    ! [A2: set_nat,B3: set_nat] :
      ( ( minus_minus_set_nat @ ( minus_minus_set_nat @ A2 @ B3 ) @ B3 )
      = ( minus_minus_set_nat @ A2 @ B3 ) ) ).

% Diff_idemp
thf(fact_1277_Diff__iff,axiom,
    ! [C: complex,A2: set_complex,B3: set_complex] :
      ( ( member_complex @ C @ ( minus_811609699411566653omplex @ A2 @ B3 ) )
      = ( ( member_complex @ C @ A2 )
        & ~ ( member_complex @ C @ B3 ) ) ) ).

% Diff_iff
thf(fact_1278_Diff__iff,axiom,
    ! [C: real,A2: set_real,B3: set_real] :
      ( ( member_real @ C @ ( minus_minus_set_real @ A2 @ B3 ) )
      = ( ( member_real @ C @ A2 )
        & ~ ( member_real @ C @ B3 ) ) ) ).

% Diff_iff
thf(fact_1279_Diff__iff,axiom,
    ! [C: set_nat,A2: set_set_nat,B3: set_set_nat] :
      ( ( member_set_nat @ C @ ( minus_2163939370556025621et_nat @ A2 @ B3 ) )
      = ( ( member_set_nat @ C @ A2 )
        & ~ ( member_set_nat @ C @ B3 ) ) ) ).

% Diff_iff
thf(fact_1280_Diff__iff,axiom,
    ! [C: int,A2: set_int,B3: set_int] :
      ( ( member_int @ C @ ( minus_minus_set_int @ A2 @ B3 ) )
      = ( ( member_int @ C @ A2 )
        & ~ ( member_int @ C @ B3 ) ) ) ).

% Diff_iff
thf(fact_1281_Diff__iff,axiom,
    ! [C: nat,A2: set_nat,B3: set_nat] :
      ( ( member_nat @ C @ ( minus_minus_set_nat @ A2 @ B3 ) )
      = ( ( member_nat @ C @ A2 )
        & ~ ( member_nat @ C @ B3 ) ) ) ).

% Diff_iff
thf(fact_1282_DiffI,axiom,
    ! [C: complex,A2: set_complex,B3: set_complex] :
      ( ( member_complex @ C @ A2 )
     => ( ~ ( member_complex @ C @ B3 )
       => ( member_complex @ C @ ( minus_811609699411566653omplex @ A2 @ B3 ) ) ) ) ).

% DiffI
thf(fact_1283_DiffI,axiom,
    ! [C: real,A2: set_real,B3: set_real] :
      ( ( member_real @ C @ A2 )
     => ( ~ ( member_real @ C @ B3 )
       => ( member_real @ C @ ( minus_minus_set_real @ A2 @ B3 ) ) ) ) ).

% DiffI
thf(fact_1284_DiffI,axiom,
    ! [C: set_nat,A2: set_set_nat,B3: set_set_nat] :
      ( ( member_set_nat @ C @ A2 )
     => ( ~ ( member_set_nat @ C @ B3 )
       => ( member_set_nat @ C @ ( minus_2163939370556025621et_nat @ A2 @ B3 ) ) ) ) ).

% DiffI
thf(fact_1285_DiffI,axiom,
    ! [C: int,A2: set_int,B3: set_int] :
      ( ( member_int @ C @ A2 )
     => ( ~ ( member_int @ C @ B3 )
       => ( member_int @ C @ ( minus_minus_set_int @ A2 @ B3 ) ) ) ) ).

% DiffI
thf(fact_1286_DiffI,axiom,
    ! [C: nat,A2: set_nat,B3: set_nat] :
      ( ( member_nat @ C @ A2 )
     => ( ~ ( member_nat @ C @ B3 )
       => ( member_nat @ C @ ( minus_minus_set_nat @ A2 @ B3 ) ) ) ) ).

% DiffI
thf(fact_1287_Diff__empty,axiom,
    ! [A2: set_int] :
      ( ( minus_minus_set_int @ A2 @ bot_bot_set_int )
      = A2 ) ).

% Diff_empty
thf(fact_1288_Diff__empty,axiom,
    ! [A2: set_real] :
      ( ( minus_minus_set_real @ A2 @ bot_bot_set_real )
      = A2 ) ).

% Diff_empty
thf(fact_1289_Diff__empty,axiom,
    ! [A2: set_nat] :
      ( ( minus_minus_set_nat @ A2 @ bot_bot_set_nat )
      = A2 ) ).

% Diff_empty
thf(fact_1290_empty__Diff,axiom,
    ! [A2: set_int] :
      ( ( minus_minus_set_int @ bot_bot_set_int @ A2 )
      = bot_bot_set_int ) ).

% empty_Diff
thf(fact_1291_empty__Diff,axiom,
    ! [A2: set_real] :
      ( ( minus_minus_set_real @ bot_bot_set_real @ A2 )
      = bot_bot_set_real ) ).

% empty_Diff
thf(fact_1292_empty__Diff,axiom,
    ! [A2: set_nat] :
      ( ( minus_minus_set_nat @ bot_bot_set_nat @ A2 )
      = bot_bot_set_nat ) ).

% empty_Diff
thf(fact_1293_Diff__cancel,axiom,
    ! [A2: set_int] :
      ( ( minus_minus_set_int @ A2 @ A2 )
      = bot_bot_set_int ) ).

% Diff_cancel
thf(fact_1294_Diff__cancel,axiom,
    ! [A2: set_real] :
      ( ( minus_minus_set_real @ A2 @ A2 )
      = bot_bot_set_real ) ).

% Diff_cancel
thf(fact_1295_Diff__cancel,axiom,
    ! [A2: set_nat] :
      ( ( minus_minus_set_nat @ A2 @ A2 )
      = bot_bot_set_nat ) ).

% Diff_cancel
thf(fact_1296_minus__set__def,axiom,
    ( minus_minus_set_real
    = ( ^ [A5: set_real,B5: set_real] :
          ( collect_real
          @ ( minus_minus_real_o
            @ ^ [X3: real] : ( member_real @ X3 @ A5 )
            @ ^ [X3: real] : ( member_real @ X3 @ B5 ) ) ) ) ) ).

% minus_set_def
thf(fact_1297_minus__set__def,axiom,
    ( minus_1052850069191792384nt_int
    = ( ^ [A5: set_Pr958786334691620121nt_int,B5: set_Pr958786334691620121nt_int] :
          ( collec213857154873943460nt_int
          @ ( minus_711738161318947805_int_o
            @ ^ [X3: product_prod_int_int] : ( member5262025264175285858nt_int @ X3 @ A5 )
            @ ^ [X3: product_prod_int_int] : ( member5262025264175285858nt_int @ X3 @ B5 ) ) ) ) ) ).

% minus_set_def
thf(fact_1298_minus__set__def,axiom,
    ( minus_811609699411566653omplex
    = ( ^ [A5: set_complex,B5: set_complex] :
          ( collect_complex
          @ ( minus_8727706125548526216plex_o
            @ ^ [X3: complex] : ( member_complex @ X3 @ A5 )
            @ ^ [X3: complex] : ( member_complex @ X3 @ B5 ) ) ) ) ) ).

% minus_set_def
thf(fact_1299_minus__set__def,axiom,
    ( minus_2163939370556025621et_nat
    = ( ^ [A5: set_set_nat,B5: set_set_nat] :
          ( collect_set_nat
          @ ( minus_6910147592129066416_nat_o
            @ ^ [X3: set_nat] : ( member_set_nat @ X3 @ A5 )
            @ ^ [X3: set_nat] : ( member_set_nat @ X3 @ B5 ) ) ) ) ) ).

% minus_set_def
thf(fact_1300_minus__set__def,axiom,
    ( minus_minus_set_int
    = ( ^ [A5: set_int,B5: set_int] :
          ( collect_int
          @ ( minus_minus_int_o
            @ ^ [X3: int] : ( member_int @ X3 @ A5 )
            @ ^ [X3: int] : ( member_int @ X3 @ B5 ) ) ) ) ) ).

% minus_set_def
thf(fact_1301_minus__set__def,axiom,
    ( minus_minus_set_nat
    = ( ^ [A5: set_nat,B5: set_nat] :
          ( collect_nat
          @ ( minus_minus_nat_o
            @ ^ [X3: nat] : ( member_nat @ X3 @ A5 )
            @ ^ [X3: nat] : ( member_nat @ X3 @ B5 ) ) ) ) ) ).

% minus_set_def
thf(fact_1302_set__diff__eq,axiom,
    ( minus_minus_set_real
    = ( ^ [A5: set_real,B5: set_real] :
          ( collect_real
          @ ^ [X3: real] :
              ( ( member_real @ X3 @ A5 )
              & ~ ( member_real @ X3 @ B5 ) ) ) ) ) ).

% set_diff_eq
thf(fact_1303_set__diff__eq,axiom,
    ( minus_1052850069191792384nt_int
    = ( ^ [A5: set_Pr958786334691620121nt_int,B5: set_Pr958786334691620121nt_int] :
          ( collec213857154873943460nt_int
          @ ^ [X3: product_prod_int_int] :
              ( ( member5262025264175285858nt_int @ X3 @ A5 )
              & ~ ( member5262025264175285858nt_int @ X3 @ B5 ) ) ) ) ) ).

% set_diff_eq
thf(fact_1304_set__diff__eq,axiom,
    ( minus_811609699411566653omplex
    = ( ^ [A5: set_complex,B5: set_complex] :
          ( collect_complex
          @ ^ [X3: complex] :
              ( ( member_complex @ X3 @ A5 )
              & ~ ( member_complex @ X3 @ B5 ) ) ) ) ) ).

% set_diff_eq
thf(fact_1305_set__diff__eq,axiom,
    ( minus_2163939370556025621et_nat
    = ( ^ [A5: set_set_nat,B5: set_set_nat] :
          ( collect_set_nat
          @ ^ [X3: set_nat] :
              ( ( member_set_nat @ X3 @ A5 )
              & ~ ( member_set_nat @ X3 @ B5 ) ) ) ) ) ).

% set_diff_eq
thf(fact_1306_set__diff__eq,axiom,
    ( minus_minus_set_int
    = ( ^ [A5: set_int,B5: set_int] :
          ( collect_int
          @ ^ [X3: int] :
              ( ( member_int @ X3 @ A5 )
              & ~ ( member_int @ X3 @ B5 ) ) ) ) ) ).

% set_diff_eq
thf(fact_1307_set__diff__eq,axiom,
    ( minus_minus_set_nat
    = ( ^ [A5: set_nat,B5: set_nat] :
          ( collect_nat
          @ ^ [X3: nat] :
              ( ( member_nat @ X3 @ A5 )
              & ~ ( member_nat @ X3 @ B5 ) ) ) ) ) ).

% set_diff_eq
thf(fact_1308_DiffD2,axiom,
    ! [C: complex,A2: set_complex,B3: set_complex] :
      ( ( member_complex @ C @ ( minus_811609699411566653omplex @ A2 @ B3 ) )
     => ~ ( member_complex @ C @ B3 ) ) ).

% DiffD2
thf(fact_1309_DiffD2,axiom,
    ! [C: real,A2: set_real,B3: set_real] :
      ( ( member_real @ C @ ( minus_minus_set_real @ A2 @ B3 ) )
     => ~ ( member_real @ C @ B3 ) ) ).

% DiffD2
thf(fact_1310_DiffD2,axiom,
    ! [C: set_nat,A2: set_set_nat,B3: set_set_nat] :
      ( ( member_set_nat @ C @ ( minus_2163939370556025621et_nat @ A2 @ B3 ) )
     => ~ ( member_set_nat @ C @ B3 ) ) ).

% DiffD2
thf(fact_1311_DiffD2,axiom,
    ! [C: int,A2: set_int,B3: set_int] :
      ( ( member_int @ C @ ( minus_minus_set_int @ A2 @ B3 ) )
     => ~ ( member_int @ C @ B3 ) ) ).

% DiffD2
thf(fact_1312_DiffD2,axiom,
    ! [C: nat,A2: set_nat,B3: set_nat] :
      ( ( member_nat @ C @ ( minus_minus_set_nat @ A2 @ B3 ) )
     => ~ ( member_nat @ C @ B3 ) ) ).

% DiffD2
thf(fact_1313_DiffD1,axiom,
    ! [C: complex,A2: set_complex,B3: set_complex] :
      ( ( member_complex @ C @ ( minus_811609699411566653omplex @ A2 @ B3 ) )
     => ( member_complex @ C @ A2 ) ) ).

% DiffD1
thf(fact_1314_DiffD1,axiom,
    ! [C: real,A2: set_real,B3: set_real] :
      ( ( member_real @ C @ ( minus_minus_set_real @ A2 @ B3 ) )
     => ( member_real @ C @ A2 ) ) ).

% DiffD1
thf(fact_1315_DiffD1,axiom,
    ! [C: set_nat,A2: set_set_nat,B3: set_set_nat] :
      ( ( member_set_nat @ C @ ( minus_2163939370556025621et_nat @ A2 @ B3 ) )
     => ( member_set_nat @ C @ A2 ) ) ).

% DiffD1
thf(fact_1316_DiffD1,axiom,
    ! [C: int,A2: set_int,B3: set_int] :
      ( ( member_int @ C @ ( minus_minus_set_int @ A2 @ B3 ) )
     => ( member_int @ C @ A2 ) ) ).

% DiffD1
thf(fact_1317_DiffD1,axiom,
    ! [C: nat,A2: set_nat,B3: set_nat] :
      ( ( member_nat @ C @ ( minus_minus_set_nat @ A2 @ B3 ) )
     => ( member_nat @ C @ A2 ) ) ).

% DiffD1
thf(fact_1318_DiffE,axiom,
    ! [C: complex,A2: set_complex,B3: set_complex] :
      ( ( member_complex @ C @ ( minus_811609699411566653omplex @ A2 @ B3 ) )
     => ~ ( ( member_complex @ C @ A2 )
         => ( member_complex @ C @ B3 ) ) ) ).

% DiffE
thf(fact_1319_DiffE,axiom,
    ! [C: real,A2: set_real,B3: set_real] :
      ( ( member_real @ C @ ( minus_minus_set_real @ A2 @ B3 ) )
     => ~ ( ( member_real @ C @ A2 )
         => ( member_real @ C @ B3 ) ) ) ).

% DiffE
thf(fact_1320_DiffE,axiom,
    ! [C: set_nat,A2: set_set_nat,B3: set_set_nat] :
      ( ( member_set_nat @ C @ ( minus_2163939370556025621et_nat @ A2 @ B3 ) )
     => ~ ( ( member_set_nat @ C @ A2 )
         => ( member_set_nat @ C @ B3 ) ) ) ).

% DiffE
thf(fact_1321_DiffE,axiom,
    ! [C: int,A2: set_int,B3: set_int] :
      ( ( member_int @ C @ ( minus_minus_set_int @ A2 @ B3 ) )
     => ~ ( ( member_int @ C @ A2 )
         => ( member_int @ C @ B3 ) ) ) ).

% DiffE
thf(fact_1322_DiffE,axiom,
    ! [C: nat,A2: set_nat,B3: set_nat] :
      ( ( member_nat @ C @ ( minus_minus_set_nat @ A2 @ B3 ) )
     => ~ ( ( member_nat @ C @ A2 )
         => ( member_nat @ C @ B3 ) ) ) ).

% DiffE
thf(fact_1323_add__diff__assoc__enat,axiom,
    ! [Z: extended_enat,Y: extended_enat,X: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ Z @ Y )
     => ( ( plus_p3455044024723400733d_enat @ X @ ( minus_3235023915231533773d_enat @ Y @ Z ) )
        = ( minus_3235023915231533773d_enat @ ( plus_p3455044024723400733d_enat @ X @ Y ) @ Z ) ) ) ).

% add_diff_assoc_enat
thf(fact_1324_psubset__imp__ex__mem,axiom,
    ! [A2: set_complex,B3: set_complex] :
      ( ( ord_less_set_complex @ A2 @ B3 )
     => ? [B2: complex] : ( member_complex @ B2 @ ( minus_811609699411566653omplex @ B3 @ A2 ) ) ) ).

% psubset_imp_ex_mem
thf(fact_1325_psubset__imp__ex__mem,axiom,
    ! [A2: set_real,B3: set_real] :
      ( ( ord_less_set_real @ A2 @ B3 )
     => ? [B2: real] : ( member_real @ B2 @ ( minus_minus_set_real @ B3 @ A2 ) ) ) ).

% psubset_imp_ex_mem
thf(fact_1326_psubset__imp__ex__mem,axiom,
    ! [A2: set_set_nat,B3: set_set_nat] :
      ( ( ord_less_set_set_nat @ A2 @ B3 )
     => ? [B2: set_nat] : ( member_set_nat @ B2 @ ( minus_2163939370556025621et_nat @ B3 @ A2 ) ) ) ).

% psubset_imp_ex_mem
thf(fact_1327_psubset__imp__ex__mem,axiom,
    ! [A2: set_int,B3: set_int] :
      ( ( ord_less_set_int @ A2 @ B3 )
     => ? [B2: int] : ( member_int @ B2 @ ( minus_minus_set_int @ B3 @ A2 ) ) ) ).

% psubset_imp_ex_mem
thf(fact_1328_psubset__imp__ex__mem,axiom,
    ! [A2: set_nat,B3: set_nat] :
      ( ( ord_less_set_nat @ A2 @ B3 )
     => ? [B2: nat] : ( member_nat @ B2 @ ( minus_minus_set_nat @ B3 @ A2 ) ) ) ).

% psubset_imp_ex_mem
thf(fact_1329_nle__le,axiom,
    ! [A: rat,B: rat] :
      ( ( ~ ( ord_less_eq_rat @ A @ B ) )
      = ( ( ord_less_eq_rat @ B @ A )
        & ( B != A ) ) ) ).

% nle_le
thf(fact_1330_nle__le,axiom,
    ! [A: num,B: num] :
      ( ( ~ ( ord_less_eq_num @ A @ B ) )
      = ( ( ord_less_eq_num @ B @ A )
        & ( B != A ) ) ) ).

% nle_le
thf(fact_1331_nle__le,axiom,
    ! [A: nat,B: nat] :
      ( ( ~ ( ord_less_eq_nat @ A @ B ) )
      = ( ( ord_less_eq_nat @ B @ A )
        & ( B != A ) ) ) ).

% nle_le
thf(fact_1332_nle__le,axiom,
    ! [A: int,B: int] :
      ( ( ~ ( ord_less_eq_int @ A @ B ) )
      = ( ( ord_less_eq_int @ B @ A )
        & ( B != A ) ) ) ).

% nle_le
thf(fact_1333_le__cases3,axiom,
    ! [X: rat,Y: rat,Z: rat] :
      ( ( ( ord_less_eq_rat @ X @ Y )
       => ~ ( ord_less_eq_rat @ Y @ Z ) )
     => ( ( ( ord_less_eq_rat @ Y @ X )
         => ~ ( ord_less_eq_rat @ X @ Z ) )
       => ( ( ( ord_less_eq_rat @ X @ Z )
           => ~ ( ord_less_eq_rat @ Z @ Y ) )
         => ( ( ( ord_less_eq_rat @ Z @ Y )
             => ~ ( ord_less_eq_rat @ Y @ X ) )
           => ( ( ( ord_less_eq_rat @ Y @ Z )
               => ~ ( ord_less_eq_rat @ Z @ X ) )
             => ~ ( ( ord_less_eq_rat @ Z @ X )
                 => ~ ( ord_less_eq_rat @ X @ Y ) ) ) ) ) ) ) ).

% le_cases3
thf(fact_1334_le__cases3,axiom,
    ! [X: num,Y: num,Z: num] :
      ( ( ( ord_less_eq_num @ X @ Y )
       => ~ ( ord_less_eq_num @ Y @ Z ) )
     => ( ( ( ord_less_eq_num @ Y @ X )
         => ~ ( ord_less_eq_num @ X @ Z ) )
       => ( ( ( ord_less_eq_num @ X @ Z )
           => ~ ( ord_less_eq_num @ Z @ Y ) )
         => ( ( ( ord_less_eq_num @ Z @ Y )
             => ~ ( ord_less_eq_num @ Y @ X ) )
           => ( ( ( ord_less_eq_num @ Y @ Z )
               => ~ ( ord_less_eq_num @ Z @ X ) )
             => ~ ( ( ord_less_eq_num @ Z @ X )
                 => ~ ( ord_less_eq_num @ X @ Y ) ) ) ) ) ) ) ).

% le_cases3
thf(fact_1335_le__cases3,axiom,
    ! [X: nat,Y: nat,Z: nat] :
      ( ( ( ord_less_eq_nat @ X @ Y )
       => ~ ( ord_less_eq_nat @ Y @ Z ) )
     => ( ( ( ord_less_eq_nat @ Y @ X )
         => ~ ( ord_less_eq_nat @ X @ Z ) )
       => ( ( ( ord_less_eq_nat @ X @ Z )
           => ~ ( ord_less_eq_nat @ Z @ Y ) )
         => ( ( ( ord_less_eq_nat @ Z @ Y )
             => ~ ( ord_less_eq_nat @ Y @ X ) )
           => ( ( ( ord_less_eq_nat @ Y @ Z )
               => ~ ( ord_less_eq_nat @ Z @ X ) )
             => ~ ( ( ord_less_eq_nat @ Z @ X )
                 => ~ ( ord_less_eq_nat @ X @ Y ) ) ) ) ) ) ) ).

% le_cases3
thf(fact_1336_le__cases3,axiom,
    ! [X: int,Y: int,Z: int] :
      ( ( ( ord_less_eq_int @ X @ Y )
       => ~ ( ord_less_eq_int @ Y @ Z ) )
     => ( ( ( ord_less_eq_int @ Y @ X )
         => ~ ( ord_less_eq_int @ X @ Z ) )
       => ( ( ( ord_less_eq_int @ X @ Z )
           => ~ ( ord_less_eq_int @ Z @ Y ) )
         => ( ( ( ord_less_eq_int @ Z @ Y )
             => ~ ( ord_less_eq_int @ Y @ X ) )
           => ( ( ( ord_less_eq_int @ Y @ Z )
               => ~ ( ord_less_eq_int @ Z @ X ) )
             => ~ ( ( ord_less_eq_int @ Z @ X )
                 => ~ ( ord_less_eq_int @ X @ Y ) ) ) ) ) ) ) ).

% le_cases3
thf(fact_1337_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y4: set_int,Z3: set_int] : ( Y4 = Z3 ) )
    = ( ^ [X3: set_int,Y3: set_int] :
          ( ( ord_less_eq_set_int @ X3 @ Y3 )
          & ( ord_less_eq_set_int @ Y3 @ X3 ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_1338_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y4: rat,Z3: rat] : ( Y4 = Z3 ) )
    = ( ^ [X3: rat,Y3: rat] :
          ( ( ord_less_eq_rat @ X3 @ Y3 )
          & ( ord_less_eq_rat @ Y3 @ X3 ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_1339_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y4: num,Z3: num] : ( Y4 = Z3 ) )
    = ( ^ [X3: num,Y3: num] :
          ( ( ord_less_eq_num @ X3 @ Y3 )
          & ( ord_less_eq_num @ Y3 @ X3 ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_1340_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y4: nat,Z3: nat] : ( Y4 = Z3 ) )
    = ( ^ [X3: nat,Y3: nat] :
          ( ( ord_less_eq_nat @ X3 @ Y3 )
          & ( ord_less_eq_nat @ Y3 @ X3 ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_1341_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y4: int,Z3: int] : ( Y4 = Z3 ) )
    = ( ^ [X3: int,Y3: int] :
          ( ( ord_less_eq_int @ X3 @ Y3 )
          & ( ord_less_eq_int @ Y3 @ X3 ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_1342_ord__eq__le__trans,axiom,
    ! [A: set_int,B: set_int,C: set_int] :
      ( ( A = B )
     => ( ( ord_less_eq_set_int @ B @ C )
       => ( ord_less_eq_set_int @ A @ C ) ) ) ).

% ord_eq_le_trans
thf(fact_1343_ord__eq__le__trans,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( A = B )
     => ( ( ord_less_eq_rat @ B @ C )
       => ( ord_less_eq_rat @ A @ C ) ) ) ).

% ord_eq_le_trans
thf(fact_1344_ord__eq__le__trans,axiom,
    ! [A: num,B: num,C: num] :
      ( ( A = B )
     => ( ( ord_less_eq_num @ B @ C )
       => ( ord_less_eq_num @ A @ C ) ) ) ).

% ord_eq_le_trans
thf(fact_1345_ord__eq__le__trans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( A = B )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ord_less_eq_nat @ A @ C ) ) ) ).

% ord_eq_le_trans
thf(fact_1346_ord__eq__le__trans,axiom,
    ! [A: int,B: int,C: int] :
      ( ( A = B )
     => ( ( ord_less_eq_int @ B @ C )
       => ( ord_less_eq_int @ A @ C ) ) ) ).

% ord_eq_le_trans
thf(fact_1347_ord__le__eq__trans,axiom,
    ! [A: set_int,B: set_int,C: set_int] :
      ( ( ord_less_eq_set_int @ A @ B )
     => ( ( B = C )
       => ( ord_less_eq_set_int @ A @ C ) ) ) ).

% ord_le_eq_trans
thf(fact_1348_ord__le__eq__trans,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( B = C )
       => ( ord_less_eq_rat @ A @ C ) ) ) ).

% ord_le_eq_trans
thf(fact_1349_ord__le__eq__trans,axiom,
    ! [A: num,B: num,C: num] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( B = C )
       => ( ord_less_eq_num @ A @ C ) ) ) ).

% ord_le_eq_trans
thf(fact_1350_ord__le__eq__trans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( B = C )
       => ( ord_less_eq_nat @ A @ C ) ) ) ).

% ord_le_eq_trans
thf(fact_1351_ord__le__eq__trans,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( B = C )
       => ( ord_less_eq_int @ A @ C ) ) ) ).

% ord_le_eq_trans
thf(fact_1352_order__antisym,axiom,
    ! [X: set_int,Y: set_int] :
      ( ( ord_less_eq_set_int @ X @ Y )
     => ( ( ord_less_eq_set_int @ Y @ X )
       => ( X = Y ) ) ) ).

% order_antisym
thf(fact_1353_order__antisym,axiom,
    ! [X: rat,Y: rat] :
      ( ( ord_less_eq_rat @ X @ Y )
     => ( ( ord_less_eq_rat @ Y @ X )
       => ( X = Y ) ) ) ).

% order_antisym
thf(fact_1354_order__antisym,axiom,
    ! [X: num,Y: num] :
      ( ( ord_less_eq_num @ X @ Y )
     => ( ( ord_less_eq_num @ Y @ X )
       => ( X = Y ) ) ) ).

% order_antisym
thf(fact_1355_order__antisym,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_eq_nat @ X @ Y )
     => ( ( ord_less_eq_nat @ Y @ X )
       => ( X = Y ) ) ) ).

% order_antisym
thf(fact_1356_order__antisym,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_eq_int @ X @ Y )
     => ( ( ord_less_eq_int @ Y @ X )
       => ( X = Y ) ) ) ).

% order_antisym
thf(fact_1357_order_Otrans,axiom,
    ! [A: set_int,B: set_int,C: set_int] :
      ( ( ord_less_eq_set_int @ A @ B )
     => ( ( ord_less_eq_set_int @ B @ C )
       => ( ord_less_eq_set_int @ A @ C ) ) ) ).

% order.trans
thf(fact_1358_order_Otrans,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_rat @ B @ C )
       => ( ord_less_eq_rat @ A @ C ) ) ) ).

% order.trans
thf(fact_1359_order_Otrans,axiom,
    ! [A: num,B: num,C: num] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( ord_less_eq_num @ B @ C )
       => ( ord_less_eq_num @ A @ C ) ) ) ).

% order.trans
thf(fact_1360_order_Otrans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ord_less_eq_nat @ A @ C ) ) ) ).

% order.trans
thf(fact_1361_order_Otrans,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ B @ C )
       => ( ord_less_eq_int @ A @ C ) ) ) ).

% order.trans
thf(fact_1362_order__trans,axiom,
    ! [X: set_int,Y: set_int,Z: set_int] :
      ( ( ord_less_eq_set_int @ X @ Y )
     => ( ( ord_less_eq_set_int @ Y @ Z )
       => ( ord_less_eq_set_int @ X @ Z ) ) ) ).

% order_trans
thf(fact_1363_order__trans,axiom,
    ! [X: rat,Y: rat,Z: rat] :
      ( ( ord_less_eq_rat @ X @ Y )
     => ( ( ord_less_eq_rat @ Y @ Z )
       => ( ord_less_eq_rat @ X @ Z ) ) ) ).

% order_trans
thf(fact_1364_order__trans,axiom,
    ! [X: num,Y: num,Z: num] :
      ( ( ord_less_eq_num @ X @ Y )
     => ( ( ord_less_eq_num @ Y @ Z )
       => ( ord_less_eq_num @ X @ Z ) ) ) ).

% order_trans
thf(fact_1365_order__trans,axiom,
    ! [X: nat,Y: nat,Z: nat] :
      ( ( ord_less_eq_nat @ X @ Y )
     => ( ( ord_less_eq_nat @ Y @ Z )
       => ( ord_less_eq_nat @ X @ Z ) ) ) ).

% order_trans
thf(fact_1366_order__trans,axiom,
    ! [X: int,Y: int,Z: int] :
      ( ( ord_less_eq_int @ X @ Y )
     => ( ( ord_less_eq_int @ Y @ Z )
       => ( ord_less_eq_int @ X @ Z ) ) ) ).

% order_trans
thf(fact_1367_linorder__wlog,axiom,
    ! [P: rat > rat > $o,A: rat,B: rat] :
      ( ! [A3: rat,B2: rat] :
          ( ( ord_less_eq_rat @ A3 @ B2 )
         => ( P @ A3 @ B2 ) )
     => ( ! [A3: rat,B2: rat] :
            ( ( P @ B2 @ A3 )
           => ( P @ A3 @ B2 ) )
       => ( P @ A @ B ) ) ) ).

% linorder_wlog
thf(fact_1368_linorder__wlog,axiom,
    ! [P: num > num > $o,A: num,B: num] :
      ( ! [A3: num,B2: num] :
          ( ( ord_less_eq_num @ A3 @ B2 )
         => ( P @ A3 @ B2 ) )
     => ( ! [A3: num,B2: num] :
            ( ( P @ B2 @ A3 )
           => ( P @ A3 @ B2 ) )
       => ( P @ A @ B ) ) ) ).

% linorder_wlog
thf(fact_1369_linorder__wlog,axiom,
    ! [P: nat > nat > $o,A: nat,B: nat] :
      ( ! [A3: nat,B2: nat] :
          ( ( ord_less_eq_nat @ A3 @ B2 )
         => ( P @ A3 @ B2 ) )
     => ( ! [A3: nat,B2: nat] :
            ( ( P @ B2 @ A3 )
           => ( P @ A3 @ B2 ) )
       => ( P @ A @ B ) ) ) ).

% linorder_wlog
thf(fact_1370_linorder__wlog,axiom,
    ! [P: int > int > $o,A: int,B: int] :
      ( ! [A3: int,B2: int] :
          ( ( ord_less_eq_int @ A3 @ B2 )
         => ( P @ A3 @ B2 ) )
     => ( ! [A3: int,B2: int] :
            ( ( P @ B2 @ A3 )
           => ( P @ A3 @ B2 ) )
       => ( P @ A @ B ) ) ) ).

% linorder_wlog
thf(fact_1371_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y4: set_int,Z3: set_int] : ( Y4 = Z3 ) )
    = ( ^ [A4: set_int,B4: set_int] :
          ( ( ord_less_eq_set_int @ B4 @ A4 )
          & ( ord_less_eq_set_int @ A4 @ B4 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_1372_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y4: rat,Z3: rat] : ( Y4 = Z3 ) )
    = ( ^ [A4: rat,B4: rat] :
          ( ( ord_less_eq_rat @ B4 @ A4 )
          & ( ord_less_eq_rat @ A4 @ B4 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_1373_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y4: num,Z3: num] : ( Y4 = Z3 ) )
    = ( ^ [A4: num,B4: num] :
          ( ( ord_less_eq_num @ B4 @ A4 )
          & ( ord_less_eq_num @ A4 @ B4 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_1374_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y4: nat,Z3: nat] : ( Y4 = Z3 ) )
    = ( ^ [A4: nat,B4: nat] :
          ( ( ord_less_eq_nat @ B4 @ A4 )
          & ( ord_less_eq_nat @ A4 @ B4 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_1375_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y4: int,Z3: int] : ( Y4 = Z3 ) )
    = ( ^ [A4: int,B4: int] :
          ( ( ord_less_eq_int @ B4 @ A4 )
          & ( ord_less_eq_int @ A4 @ B4 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_1376_dual__order_Oantisym,axiom,
    ! [B: set_int,A: set_int] :
      ( ( ord_less_eq_set_int @ B @ A )
     => ( ( ord_less_eq_set_int @ A @ B )
       => ( A = B ) ) ) ).

% dual_order.antisym
thf(fact_1377_dual__order_Oantisym,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_eq_rat @ B @ A )
     => ( ( ord_less_eq_rat @ A @ B )
       => ( A = B ) ) ) ).

% dual_order.antisym
thf(fact_1378_dual__order_Oantisym,axiom,
    ! [B: num,A: num] :
      ( ( ord_less_eq_num @ B @ A )
     => ( ( ord_less_eq_num @ A @ B )
       => ( A = B ) ) ) ).

% dual_order.antisym
thf(fact_1379_dual__order_Oantisym,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( ord_less_eq_nat @ A @ B )
       => ( A = B ) ) ) ).

% dual_order.antisym
thf(fact_1380_dual__order_Oantisym,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_eq_int @ B @ A )
     => ( ( ord_less_eq_int @ A @ B )
       => ( A = B ) ) ) ).

% dual_order.antisym
thf(fact_1381_dual__order_Otrans,axiom,
    ! [B: set_int,A: set_int,C: set_int] :
      ( ( ord_less_eq_set_int @ B @ A )
     => ( ( ord_less_eq_set_int @ C @ B )
       => ( ord_less_eq_set_int @ C @ A ) ) ) ).

% dual_order.trans
thf(fact_1382_dual__order_Otrans,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( ord_less_eq_rat @ B @ A )
     => ( ( ord_less_eq_rat @ C @ B )
       => ( ord_less_eq_rat @ C @ A ) ) ) ).

% dual_order.trans
thf(fact_1383_dual__order_Otrans,axiom,
    ! [B: num,A: num,C: num] :
      ( ( ord_less_eq_num @ B @ A )
     => ( ( ord_less_eq_num @ C @ B )
       => ( ord_less_eq_num @ C @ A ) ) ) ).

% dual_order.trans
thf(fact_1384_dual__order_Otrans,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( ord_less_eq_nat @ C @ B )
       => ( ord_less_eq_nat @ C @ A ) ) ) ).

% dual_order.trans
thf(fact_1385_dual__order_Otrans,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_less_eq_int @ B @ A )
     => ( ( ord_less_eq_int @ C @ B )
       => ( ord_less_eq_int @ C @ A ) ) ) ).

% dual_order.trans
thf(fact_1386_antisym,axiom,
    ! [A: set_int,B: set_int] :
      ( ( ord_less_eq_set_int @ A @ B )
     => ( ( ord_less_eq_set_int @ B @ A )
       => ( A = B ) ) ) ).

% antisym
thf(fact_1387_antisym,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_rat @ B @ A )
       => ( A = B ) ) ) ).

% antisym
thf(fact_1388_antisym,axiom,
    ! [A: num,B: num] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( ord_less_eq_num @ B @ A )
       => ( A = B ) ) ) ).

% antisym
thf(fact_1389_antisym,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ B @ A )
       => ( A = B ) ) ) ).

% antisym
thf(fact_1390_antisym,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ B @ A )
       => ( A = B ) ) ) ).

% antisym
thf(fact_1391_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y4: set_int,Z3: set_int] : ( Y4 = Z3 ) )
    = ( ^ [A4: set_int,B4: set_int] :
          ( ( ord_less_eq_set_int @ A4 @ B4 )
          & ( ord_less_eq_set_int @ B4 @ A4 ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_1392_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y4: rat,Z3: rat] : ( Y4 = Z3 ) )
    = ( ^ [A4: rat,B4: rat] :
          ( ( ord_less_eq_rat @ A4 @ B4 )
          & ( ord_less_eq_rat @ B4 @ A4 ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_1393_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y4: num,Z3: num] : ( Y4 = Z3 ) )
    = ( ^ [A4: num,B4: num] :
          ( ( ord_less_eq_num @ A4 @ B4 )
          & ( ord_less_eq_num @ B4 @ A4 ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_1394_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y4: nat,Z3: nat] : ( Y4 = Z3 ) )
    = ( ^ [A4: nat,B4: nat] :
          ( ( ord_less_eq_nat @ A4 @ B4 )
          & ( ord_less_eq_nat @ B4 @ A4 ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_1395_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y4: int,Z3: int] : ( Y4 = Z3 ) )
    = ( ^ [A4: int,B4: int] :
          ( ( ord_less_eq_int @ A4 @ B4 )
          & ( ord_less_eq_int @ B4 @ A4 ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_1396_order__subst1,axiom,
    ! [A: rat,F: rat > rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_rat @ B @ C )
       => ( ! [X5: rat,Y5: rat] :
              ( ( ord_less_eq_rat @ X5 @ Y5 )
             => ( ord_less_eq_rat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_rat @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_1397_order__subst1,axiom,
    ! [A: rat,F: num > rat,B: num,C: num] :
      ( ( ord_less_eq_rat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_num @ B @ C )
       => ( ! [X5: num,Y5: num] :
              ( ( ord_less_eq_num @ X5 @ Y5 )
             => ( ord_less_eq_rat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_rat @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_1398_order__subst1,axiom,
    ! [A: rat,F: nat > rat,B: nat,C: nat] :
      ( ( ord_less_eq_rat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X5: nat,Y5: nat] :
              ( ( ord_less_eq_nat @ X5 @ Y5 )
             => ( ord_less_eq_rat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_rat @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_1399_order__subst1,axiom,
    ! [A: rat,F: int > rat,B: int,C: int] :
      ( ( ord_less_eq_rat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_int @ B @ C )
       => ( ! [X5: int,Y5: int] :
              ( ( ord_less_eq_int @ X5 @ Y5 )
             => ( ord_less_eq_rat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_rat @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_1400_order__subst1,axiom,
    ! [A: num,F: rat > num,B: rat,C: rat] :
      ( ( ord_less_eq_num @ A @ ( F @ B ) )
     => ( ( ord_less_eq_rat @ B @ C )
       => ( ! [X5: rat,Y5: rat] :
              ( ( ord_less_eq_rat @ X5 @ Y5 )
             => ( ord_less_eq_num @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_num @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_1401_order__subst1,axiom,
    ! [A: num,F: num > num,B: num,C: num] :
      ( ( ord_less_eq_num @ A @ ( F @ B ) )
     => ( ( ord_less_eq_num @ B @ C )
       => ( ! [X5: num,Y5: num] :
              ( ( ord_less_eq_num @ X5 @ Y5 )
             => ( ord_less_eq_num @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_num @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_1402_order__subst1,axiom,
    ! [A: num,F: nat > num,B: nat,C: nat] :
      ( ( ord_less_eq_num @ A @ ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X5: nat,Y5: nat] :
              ( ( ord_less_eq_nat @ X5 @ Y5 )
             => ( ord_less_eq_num @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_num @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_1403_order__subst1,axiom,
    ! [A: num,F: int > num,B: int,C: int] :
      ( ( ord_less_eq_num @ A @ ( F @ B ) )
     => ( ( ord_less_eq_int @ B @ C )
       => ( ! [X5: int,Y5: int] :
              ( ( ord_less_eq_int @ X5 @ Y5 )
             => ( ord_less_eq_num @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_num @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_1404_order__subst1,axiom,
    ! [A: nat,F: rat > nat,B: rat,C: rat] :
      ( ( ord_less_eq_nat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_rat @ B @ C )
       => ( ! [X5: rat,Y5: rat] :
              ( ( ord_less_eq_rat @ X5 @ Y5 )
             => ( ord_less_eq_nat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_1405_order__subst1,axiom,
    ! [A: nat,F: num > nat,B: num,C: num] :
      ( ( ord_less_eq_nat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_num @ B @ C )
       => ( ! [X5: num,Y5: num] :
              ( ( ord_less_eq_num @ X5 @ Y5 )
             => ( ord_less_eq_nat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_1406_order__subst2,axiom,
    ! [A: rat,B: rat,F: rat > rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_rat @ ( F @ B ) @ C )
       => ( ! [X5: rat,Y5: rat] :
              ( ( ord_less_eq_rat @ X5 @ Y5 )
             => ( ord_less_eq_rat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_rat @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_1407_order__subst2,axiom,
    ! [A: rat,B: rat,F: rat > num,C: num] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_num @ ( F @ B ) @ C )
       => ( ! [X5: rat,Y5: rat] :
              ( ( ord_less_eq_rat @ X5 @ Y5 )
             => ( ord_less_eq_num @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_num @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_1408_order__subst2,axiom,
    ! [A: rat,B: rat,F: rat > nat,C: nat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_nat @ ( F @ B ) @ C )
       => ( ! [X5: rat,Y5: rat] :
              ( ( ord_less_eq_rat @ X5 @ Y5 )
             => ( ord_less_eq_nat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_1409_order__subst2,axiom,
    ! [A: rat,B: rat,F: rat > int,C: int] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_int @ ( F @ B ) @ C )
       => ( ! [X5: rat,Y5: rat] :
              ( ( ord_less_eq_rat @ X5 @ Y5 )
             => ( ord_less_eq_int @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_int @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_1410_order__subst2,axiom,
    ! [A: num,B: num,F: num > rat,C: rat] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( ord_less_eq_rat @ ( F @ B ) @ C )
       => ( ! [X5: num,Y5: num] :
              ( ( ord_less_eq_num @ X5 @ Y5 )
             => ( ord_less_eq_rat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_rat @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_1411_order__subst2,axiom,
    ! [A: num,B: num,F: num > num,C: num] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( ord_less_eq_num @ ( F @ B ) @ C )
       => ( ! [X5: num,Y5: num] :
              ( ( ord_less_eq_num @ X5 @ Y5 )
             => ( ord_less_eq_num @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_num @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_1412_order__subst2,axiom,
    ! [A: num,B: num,F: num > nat,C: nat] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( ord_less_eq_nat @ ( F @ B ) @ C )
       => ( ! [X5: num,Y5: num] :
              ( ( ord_less_eq_num @ X5 @ Y5 )
             => ( ord_less_eq_nat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_1413_order__subst2,axiom,
    ! [A: num,B: num,F: num > int,C: int] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( ord_less_eq_int @ ( F @ B ) @ C )
       => ( ! [X5: num,Y5: num] :
              ( ( ord_less_eq_num @ X5 @ Y5 )
             => ( ord_less_eq_int @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_int @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_1414_order__subst2,axiom,
    ! [A: nat,B: nat,F: nat > rat,C: rat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_rat @ ( F @ B ) @ C )
       => ( ! [X5: nat,Y5: nat] :
              ( ( ord_less_eq_nat @ X5 @ Y5 )
             => ( ord_less_eq_rat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_rat @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_1415_order__subst2,axiom,
    ! [A: nat,B: nat,F: nat > num,C: num] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_num @ ( F @ B ) @ C )
       => ( ! [X5: nat,Y5: nat] :
              ( ( ord_less_eq_nat @ X5 @ Y5 )
             => ( ord_less_eq_num @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_num @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_1416_order__eq__refl,axiom,
    ! [X: set_int,Y: set_int] :
      ( ( X = Y )
     => ( ord_less_eq_set_int @ X @ Y ) ) ).

% order_eq_refl
thf(fact_1417_order__eq__refl,axiom,
    ! [X: rat,Y: rat] :
      ( ( X = Y )
     => ( ord_less_eq_rat @ X @ Y ) ) ).

% order_eq_refl
thf(fact_1418_order__eq__refl,axiom,
    ! [X: num,Y: num] :
      ( ( X = Y )
     => ( ord_less_eq_num @ X @ Y ) ) ).

% order_eq_refl
thf(fact_1419_order__eq__refl,axiom,
    ! [X: nat,Y: nat] :
      ( ( X = Y )
     => ( ord_less_eq_nat @ X @ Y ) ) ).

% order_eq_refl
thf(fact_1420_order__eq__refl,axiom,
    ! [X: int,Y: int] :
      ( ( X = Y )
     => ( ord_less_eq_int @ X @ Y ) ) ).

% order_eq_refl
thf(fact_1421_linorder__linear,axiom,
    ! [X: rat,Y: rat] :
      ( ( ord_less_eq_rat @ X @ Y )
      | ( ord_less_eq_rat @ Y @ X ) ) ).

% linorder_linear
thf(fact_1422_linorder__linear,axiom,
    ! [X: num,Y: num] :
      ( ( ord_less_eq_num @ X @ Y )
      | ( ord_less_eq_num @ Y @ X ) ) ).

% linorder_linear
thf(fact_1423_linorder__linear,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_eq_nat @ X @ Y )
      | ( ord_less_eq_nat @ Y @ X ) ) ).

% linorder_linear
thf(fact_1424_linorder__linear,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_eq_int @ X @ Y )
      | ( ord_less_eq_int @ Y @ X ) ) ).

% linorder_linear
thf(fact_1425_ord__eq__le__subst,axiom,
    ! [A: rat,F: rat > rat,B: rat,C: rat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_rat @ B @ C )
       => ( ! [X5: rat,Y5: rat] :
              ( ( ord_less_eq_rat @ X5 @ Y5 )
             => ( ord_less_eq_rat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_rat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_1426_ord__eq__le__subst,axiom,
    ! [A: num,F: rat > num,B: rat,C: rat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_rat @ B @ C )
       => ( ! [X5: rat,Y5: rat] :
              ( ( ord_less_eq_rat @ X5 @ Y5 )
             => ( ord_less_eq_num @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_num @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_1427_ord__eq__le__subst,axiom,
    ! [A: nat,F: rat > nat,B: rat,C: rat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_rat @ B @ C )
       => ( ! [X5: rat,Y5: rat] :
              ( ( ord_less_eq_rat @ X5 @ Y5 )
             => ( ord_less_eq_nat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_1428_ord__eq__le__subst,axiom,
    ! [A: int,F: rat > int,B: rat,C: rat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_rat @ B @ C )
       => ( ! [X5: rat,Y5: rat] :
              ( ( ord_less_eq_rat @ X5 @ Y5 )
             => ( ord_less_eq_int @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_int @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_1429_ord__eq__le__subst,axiom,
    ! [A: rat,F: num > rat,B: num,C: num] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_num @ B @ C )
       => ( ! [X5: num,Y5: num] :
              ( ( ord_less_eq_num @ X5 @ Y5 )
             => ( ord_less_eq_rat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_rat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_1430_ord__eq__le__subst,axiom,
    ! [A: num,F: num > num,B: num,C: num] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_num @ B @ C )
       => ( ! [X5: num,Y5: num] :
              ( ( ord_less_eq_num @ X5 @ Y5 )
             => ( ord_less_eq_num @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_num @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_1431_ord__eq__le__subst,axiom,
    ! [A: nat,F: num > nat,B: num,C: num] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_num @ B @ C )
       => ( ! [X5: num,Y5: num] :
              ( ( ord_less_eq_num @ X5 @ Y5 )
             => ( ord_less_eq_nat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_1432_ord__eq__le__subst,axiom,
    ! [A: int,F: num > int,B: num,C: num] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_num @ B @ C )
       => ( ! [X5: num,Y5: num] :
              ( ( ord_less_eq_num @ X5 @ Y5 )
             => ( ord_less_eq_int @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_int @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_1433_ord__eq__le__subst,axiom,
    ! [A: rat,F: nat > rat,B: nat,C: nat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X5: nat,Y5: nat] :
              ( ( ord_less_eq_nat @ X5 @ Y5 )
             => ( ord_less_eq_rat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_rat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_1434_ord__eq__le__subst,axiom,
    ! [A: num,F: nat > num,B: nat,C: nat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X5: nat,Y5: nat] :
              ( ( ord_less_eq_nat @ X5 @ Y5 )
             => ( ord_less_eq_num @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_num @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_1435_ord__le__eq__subst,axiom,
    ! [A: rat,B: rat,F: rat > rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X5: rat,Y5: rat] :
              ( ( ord_less_eq_rat @ X5 @ Y5 )
             => ( ord_less_eq_rat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_rat @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_1436_ord__le__eq__subst,axiom,
    ! [A: rat,B: rat,F: rat > num,C: num] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X5: rat,Y5: rat] :
              ( ( ord_less_eq_rat @ X5 @ Y5 )
             => ( ord_less_eq_num @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_num @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_1437_ord__le__eq__subst,axiom,
    ! [A: rat,B: rat,F: rat > nat,C: nat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X5: rat,Y5: rat] :
              ( ( ord_less_eq_rat @ X5 @ Y5 )
             => ( ord_less_eq_nat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_1438_ord__le__eq__subst,axiom,
    ! [A: rat,B: rat,F: rat > int,C: int] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X5: rat,Y5: rat] :
              ( ( ord_less_eq_rat @ X5 @ Y5 )
             => ( ord_less_eq_int @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_int @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_1439_ord__le__eq__subst,axiom,
    ! [A: num,B: num,F: num > rat,C: rat] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X5: num,Y5: num] :
              ( ( ord_less_eq_num @ X5 @ Y5 )
             => ( ord_less_eq_rat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_rat @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_1440_ord__le__eq__subst,axiom,
    ! [A: num,B: num,F: num > num,C: num] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X5: num,Y5: num] :
              ( ( ord_less_eq_num @ X5 @ Y5 )
             => ( ord_less_eq_num @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_num @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_1441_ord__le__eq__subst,axiom,
    ! [A: num,B: num,F: num > nat,C: nat] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X5: num,Y5: num] :
              ( ( ord_less_eq_num @ X5 @ Y5 )
             => ( ord_less_eq_nat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_1442_ord__le__eq__subst,axiom,
    ! [A: num,B: num,F: num > int,C: int] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X5: num,Y5: num] :
              ( ( ord_less_eq_num @ X5 @ Y5 )
             => ( ord_less_eq_int @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_int @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_1443_ord__le__eq__subst,axiom,
    ! [A: nat,B: nat,F: nat > rat,C: rat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X5: nat,Y5: nat] :
              ( ( ord_less_eq_nat @ X5 @ Y5 )
             => ( ord_less_eq_rat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_rat @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_1444_ord__le__eq__subst,axiom,
    ! [A: nat,B: nat,F: nat > num,C: num] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X5: nat,Y5: nat] :
              ( ( ord_less_eq_nat @ X5 @ Y5 )
             => ( ord_less_eq_num @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_eq_num @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_1445_linorder__le__cases,axiom,
    ! [X: rat,Y: rat] :
      ( ~ ( ord_less_eq_rat @ X @ Y )
     => ( ord_less_eq_rat @ Y @ X ) ) ).

% linorder_le_cases
thf(fact_1446_linorder__le__cases,axiom,
    ! [X: num,Y: num] :
      ( ~ ( ord_less_eq_num @ X @ Y )
     => ( ord_less_eq_num @ Y @ X ) ) ).

% linorder_le_cases
thf(fact_1447_linorder__le__cases,axiom,
    ! [X: nat,Y: nat] :
      ( ~ ( ord_less_eq_nat @ X @ Y )
     => ( ord_less_eq_nat @ Y @ X ) ) ).

% linorder_le_cases
thf(fact_1448_linorder__le__cases,axiom,
    ! [X: int,Y: int] :
      ( ~ ( ord_less_eq_int @ X @ Y )
     => ( ord_less_eq_int @ Y @ X ) ) ).

% linorder_le_cases
thf(fact_1449_order__antisym__conv,axiom,
    ! [Y: set_int,X: set_int] :
      ( ( ord_less_eq_set_int @ Y @ X )
     => ( ( ord_less_eq_set_int @ X @ Y )
        = ( X = Y ) ) ) ).

% order_antisym_conv
thf(fact_1450_order__antisym__conv,axiom,
    ! [Y: rat,X: rat] :
      ( ( ord_less_eq_rat @ Y @ X )
     => ( ( ord_less_eq_rat @ X @ Y )
        = ( X = Y ) ) ) ).

% order_antisym_conv
thf(fact_1451_order__antisym__conv,axiom,
    ! [Y: num,X: num] :
      ( ( ord_less_eq_num @ Y @ X )
     => ( ( ord_less_eq_num @ X @ Y )
        = ( X = Y ) ) ) ).

% order_antisym_conv
thf(fact_1452_order__antisym__conv,axiom,
    ! [Y: nat,X: nat] :
      ( ( ord_less_eq_nat @ Y @ X )
     => ( ( ord_less_eq_nat @ X @ Y )
        = ( X = Y ) ) ) ).

% order_antisym_conv
thf(fact_1453_order__antisym__conv,axiom,
    ! [Y: int,X: int] :
      ( ( ord_less_eq_int @ Y @ X )
     => ( ( ord_less_eq_int @ X @ Y )
        = ( X = Y ) ) ) ).

% order_antisym_conv
thf(fact_1454_lt__ex,axiom,
    ! [X: real] :
    ? [Y5: real] : ( ord_less_real @ Y5 @ X ) ).

% lt_ex
thf(fact_1455_lt__ex,axiom,
    ! [X: rat] :
    ? [Y5: rat] : ( ord_less_rat @ Y5 @ X ) ).

% lt_ex
thf(fact_1456_lt__ex,axiom,
    ! [X: int] :
    ? [Y5: int] : ( ord_less_int @ Y5 @ X ) ).

% lt_ex
thf(fact_1457_gt__ex,axiom,
    ! [X: real] :
    ? [X_1: real] : ( ord_less_real @ X @ X_1 ) ).

% gt_ex
thf(fact_1458_gt__ex,axiom,
    ! [X: rat] :
    ? [X_1: rat] : ( ord_less_rat @ X @ X_1 ) ).

% gt_ex
thf(fact_1459_gt__ex,axiom,
    ! [X: nat] :
    ? [X_1: nat] : ( ord_less_nat @ X @ X_1 ) ).

% gt_ex
thf(fact_1460_gt__ex,axiom,
    ! [X: int] :
    ? [X_1: int] : ( ord_less_int @ X @ X_1 ) ).

% gt_ex
thf(fact_1461_dense,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ X @ Y )
     => ? [Z4: real] :
          ( ( ord_less_real @ X @ Z4 )
          & ( ord_less_real @ Z4 @ Y ) ) ) ).

% dense
thf(fact_1462_dense,axiom,
    ! [X: rat,Y: rat] :
      ( ( ord_less_rat @ X @ Y )
     => ? [Z4: rat] :
          ( ( ord_less_rat @ X @ Z4 )
          & ( ord_less_rat @ Z4 @ Y ) ) ) ).

% dense
thf(fact_1463_less__imp__neq,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ X @ Y )
     => ( X != Y ) ) ).

% less_imp_neq
thf(fact_1464_less__imp__neq,axiom,
    ! [X: rat,Y: rat] :
      ( ( ord_less_rat @ X @ Y )
     => ( X != Y ) ) ).

% less_imp_neq
thf(fact_1465_less__imp__neq,axiom,
    ! [X: num,Y: num] :
      ( ( ord_less_num @ X @ Y )
     => ( X != Y ) ) ).

% less_imp_neq
thf(fact_1466_less__imp__neq,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_nat @ X @ Y )
     => ( X != Y ) ) ).

% less_imp_neq
thf(fact_1467_less__imp__neq,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_int @ X @ Y )
     => ( X != Y ) ) ).

% less_imp_neq
thf(fact_1468_order_Oasym,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ~ ( ord_less_real @ B @ A ) ) ).

% order.asym
thf(fact_1469_order_Oasym,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ B )
     => ~ ( ord_less_rat @ B @ A ) ) ).

% order.asym
thf(fact_1470_order_Oasym,axiom,
    ! [A: num,B: num] :
      ( ( ord_less_num @ A @ B )
     => ~ ( ord_less_num @ B @ A ) ) ).

% order.asym
thf(fact_1471_order_Oasym,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ~ ( ord_less_nat @ B @ A ) ) ).

% order.asym
thf(fact_1472_order_Oasym,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ B )
     => ~ ( ord_less_int @ B @ A ) ) ).

% order.asym
thf(fact_1473_ord__eq__less__trans,axiom,
    ! [A: real,B: real,C: real] :
      ( ( A = B )
     => ( ( ord_less_real @ B @ C )
       => ( ord_less_real @ A @ C ) ) ) ).

% ord_eq_less_trans
thf(fact_1474_ord__eq__less__trans,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( A = B )
     => ( ( ord_less_rat @ B @ C )
       => ( ord_less_rat @ A @ C ) ) ) ).

% ord_eq_less_trans
thf(fact_1475_ord__eq__less__trans,axiom,
    ! [A: num,B: num,C: num] :
      ( ( A = B )
     => ( ( ord_less_num @ B @ C )
       => ( ord_less_num @ A @ C ) ) ) ).

% ord_eq_less_trans
thf(fact_1476_ord__eq__less__trans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( A = B )
     => ( ( ord_less_nat @ B @ C )
       => ( ord_less_nat @ A @ C ) ) ) ).

% ord_eq_less_trans
thf(fact_1477_ord__eq__less__trans,axiom,
    ! [A: int,B: int,C: int] :
      ( ( A = B )
     => ( ( ord_less_int @ B @ C )
       => ( ord_less_int @ A @ C ) ) ) ).

% ord_eq_less_trans
thf(fact_1478_ord__less__eq__trans,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( B = C )
       => ( ord_less_real @ A @ C ) ) ) ).

% ord_less_eq_trans
thf(fact_1479_ord__less__eq__trans,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( B = C )
       => ( ord_less_rat @ A @ C ) ) ) ).

% ord_less_eq_trans
thf(fact_1480_ord__less__eq__trans,axiom,
    ! [A: num,B: num,C: num] :
      ( ( ord_less_num @ A @ B )
     => ( ( B = C )
       => ( ord_less_num @ A @ C ) ) ) ).

% ord_less_eq_trans
thf(fact_1481_ord__less__eq__trans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( B = C )
       => ( ord_less_nat @ A @ C ) ) ) ).

% ord_less_eq_trans
thf(fact_1482_ord__less__eq__trans,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( B = C )
       => ( ord_less_int @ A @ C ) ) ) ).

% ord_less_eq_trans
thf(fact_1483_less__induct,axiom,
    ! [P: nat > $o,A: nat] :
      ( ! [X5: nat] :
          ( ! [Y2: nat] :
              ( ( ord_less_nat @ Y2 @ X5 )
             => ( P @ Y2 ) )
         => ( P @ X5 ) )
     => ( P @ A ) ) ).

% less_induct
thf(fact_1484_antisym__conv3,axiom,
    ! [Y: real,X: real] :
      ( ~ ( ord_less_real @ Y @ X )
     => ( ( ~ ( ord_less_real @ X @ Y ) )
        = ( X = Y ) ) ) ).

% antisym_conv3
thf(fact_1485_antisym__conv3,axiom,
    ! [Y: rat,X: rat] :
      ( ~ ( ord_less_rat @ Y @ X )
     => ( ( ~ ( ord_less_rat @ X @ Y ) )
        = ( X = Y ) ) ) ).

% antisym_conv3
thf(fact_1486_antisym__conv3,axiom,
    ! [Y: num,X: num] :
      ( ~ ( ord_less_num @ Y @ X )
     => ( ( ~ ( ord_less_num @ X @ Y ) )
        = ( X = Y ) ) ) ).

% antisym_conv3
thf(fact_1487_antisym__conv3,axiom,
    ! [Y: nat,X: nat] :
      ( ~ ( ord_less_nat @ Y @ X )
     => ( ( ~ ( ord_less_nat @ X @ Y ) )
        = ( X = Y ) ) ) ).

% antisym_conv3
thf(fact_1488_antisym__conv3,axiom,
    ! [Y: int,X: int] :
      ( ~ ( ord_less_int @ Y @ X )
     => ( ( ~ ( ord_less_int @ X @ Y ) )
        = ( X = Y ) ) ) ).

% antisym_conv3
thf(fact_1489_linorder__cases,axiom,
    ! [X: real,Y: real] :
      ( ~ ( ord_less_real @ X @ Y )
     => ( ( X != Y )
       => ( ord_less_real @ Y @ X ) ) ) ).

% linorder_cases
thf(fact_1490_linorder__cases,axiom,
    ! [X: rat,Y: rat] :
      ( ~ ( ord_less_rat @ X @ Y )
     => ( ( X != Y )
       => ( ord_less_rat @ Y @ X ) ) ) ).

% linorder_cases
thf(fact_1491_linorder__cases,axiom,
    ! [X: num,Y: num] :
      ( ~ ( ord_less_num @ X @ Y )
     => ( ( X != Y )
       => ( ord_less_num @ Y @ X ) ) ) ).

% linorder_cases
thf(fact_1492_linorder__cases,axiom,
    ! [X: nat,Y: nat] :
      ( ~ ( ord_less_nat @ X @ Y )
     => ( ( X != Y )
       => ( ord_less_nat @ Y @ X ) ) ) ).

% linorder_cases
thf(fact_1493_linorder__cases,axiom,
    ! [X: int,Y: int] :
      ( ~ ( ord_less_int @ X @ Y )
     => ( ( X != Y )
       => ( ord_less_int @ Y @ X ) ) ) ).

% linorder_cases
thf(fact_1494_dual__order_Oasym,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_real @ B @ A )
     => ~ ( ord_less_real @ A @ B ) ) ).

% dual_order.asym
thf(fact_1495_dual__order_Oasym,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_rat @ B @ A )
     => ~ ( ord_less_rat @ A @ B ) ) ).

% dual_order.asym
thf(fact_1496_dual__order_Oasym,axiom,
    ! [B: num,A: num] :
      ( ( ord_less_num @ B @ A )
     => ~ ( ord_less_num @ A @ B ) ) ).

% dual_order.asym
thf(fact_1497_dual__order_Oasym,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ B @ A )
     => ~ ( ord_less_nat @ A @ B ) ) ).

% dual_order.asym
thf(fact_1498_dual__order_Oasym,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ B @ A )
     => ~ ( ord_less_int @ A @ B ) ) ).

% dual_order.asym
thf(fact_1499_dual__order_Oirrefl,axiom,
    ! [A: real] :
      ~ ( ord_less_real @ A @ A ) ).

% dual_order.irrefl
thf(fact_1500_dual__order_Oirrefl,axiom,
    ! [A: rat] :
      ~ ( ord_less_rat @ A @ A ) ).

% dual_order.irrefl
thf(fact_1501_dual__order_Oirrefl,axiom,
    ! [A: num] :
      ~ ( ord_less_num @ A @ A ) ).

% dual_order.irrefl
thf(fact_1502_dual__order_Oirrefl,axiom,
    ! [A: nat] :
      ~ ( ord_less_nat @ A @ A ) ).

% dual_order.irrefl
thf(fact_1503_dual__order_Oirrefl,axiom,
    ! [A: int] :
      ~ ( ord_less_int @ A @ A ) ).

% dual_order.irrefl
thf(fact_1504_exists__least__iff,axiom,
    ( ( ^ [P2: nat > $o] :
        ? [X6: nat] : ( P2 @ X6 ) )
    = ( ^ [P3: nat > $o] :
        ? [N3: nat] :
          ( ( P3 @ N3 )
          & ! [M6: nat] :
              ( ( ord_less_nat @ M6 @ N3 )
             => ~ ( P3 @ M6 ) ) ) ) ) ).

% exists_least_iff
thf(fact_1505_linorder__less__wlog,axiom,
    ! [P: real > real > $o,A: real,B: real] :
      ( ! [A3: real,B2: real] :
          ( ( ord_less_real @ A3 @ B2 )
         => ( P @ A3 @ B2 ) )
     => ( ! [A3: real] : ( P @ A3 @ A3 )
       => ( ! [A3: real,B2: real] :
              ( ( P @ B2 @ A3 )
             => ( P @ A3 @ B2 ) )
         => ( P @ A @ B ) ) ) ) ).

% linorder_less_wlog
thf(fact_1506_linorder__less__wlog,axiom,
    ! [P: rat > rat > $o,A: rat,B: rat] :
      ( ! [A3: rat,B2: rat] :
          ( ( ord_less_rat @ A3 @ B2 )
         => ( P @ A3 @ B2 ) )
     => ( ! [A3: rat] : ( P @ A3 @ A3 )
       => ( ! [A3: rat,B2: rat] :
              ( ( P @ B2 @ A3 )
             => ( P @ A3 @ B2 ) )
         => ( P @ A @ B ) ) ) ) ).

% linorder_less_wlog
thf(fact_1507_linorder__less__wlog,axiom,
    ! [P: num > num > $o,A: num,B: num] :
      ( ! [A3: num,B2: num] :
          ( ( ord_less_num @ A3 @ B2 )
         => ( P @ A3 @ B2 ) )
     => ( ! [A3: num] : ( P @ A3 @ A3 )
       => ( ! [A3: num,B2: num] :
              ( ( P @ B2 @ A3 )
             => ( P @ A3 @ B2 ) )
         => ( P @ A @ B ) ) ) ) ).

% linorder_less_wlog
thf(fact_1508_linorder__less__wlog,axiom,
    ! [P: nat > nat > $o,A: nat,B: nat] :
      ( ! [A3: nat,B2: nat] :
          ( ( ord_less_nat @ A3 @ B2 )
         => ( P @ A3 @ B2 ) )
     => ( ! [A3: nat] : ( P @ A3 @ A3 )
       => ( ! [A3: nat,B2: nat] :
              ( ( P @ B2 @ A3 )
             => ( P @ A3 @ B2 ) )
         => ( P @ A @ B ) ) ) ) ).

% linorder_less_wlog
thf(fact_1509_linorder__less__wlog,axiom,
    ! [P: int > int > $o,A: int,B: int] :
      ( ! [A3: int,B2: int] :
          ( ( ord_less_int @ A3 @ B2 )
         => ( P @ A3 @ B2 ) )
     => ( ! [A3: int] : ( P @ A3 @ A3 )
       => ( ! [A3: int,B2: int] :
              ( ( P @ B2 @ A3 )
             => ( P @ A3 @ B2 ) )
         => ( P @ A @ B ) ) ) ) ).

% linorder_less_wlog
thf(fact_1510_order_Ostrict__trans,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ B @ C )
       => ( ord_less_real @ A @ C ) ) ) ).

% order.strict_trans
thf(fact_1511_order_Ostrict__trans,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_rat @ B @ C )
       => ( ord_less_rat @ A @ C ) ) ) ).

% order.strict_trans
thf(fact_1512_order_Ostrict__trans,axiom,
    ! [A: num,B: num,C: num] :
      ( ( ord_less_num @ A @ B )
     => ( ( ord_less_num @ B @ C )
       => ( ord_less_num @ A @ C ) ) ) ).

% order.strict_trans
thf(fact_1513_order_Ostrict__trans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ B @ C )
       => ( ord_less_nat @ A @ C ) ) ) ).

% order.strict_trans
thf(fact_1514_order_Ostrict__trans,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_int @ B @ C )
       => ( ord_less_int @ A @ C ) ) ) ).

% order.strict_trans
thf(fact_1515_not__less__iff__gr__or__eq,axiom,
    ! [X: real,Y: real] :
      ( ( ~ ( ord_less_real @ X @ Y ) )
      = ( ( ord_less_real @ Y @ X )
        | ( X = Y ) ) ) ).

% not_less_iff_gr_or_eq
thf(fact_1516_not__less__iff__gr__or__eq,axiom,
    ! [X: rat,Y: rat] :
      ( ( ~ ( ord_less_rat @ X @ Y ) )
      = ( ( ord_less_rat @ Y @ X )
        | ( X = Y ) ) ) ).

% not_less_iff_gr_or_eq
thf(fact_1517_not__less__iff__gr__or__eq,axiom,
    ! [X: num,Y: num] :
      ( ( ~ ( ord_less_num @ X @ Y ) )
      = ( ( ord_less_num @ Y @ X )
        | ( X = Y ) ) ) ).

% not_less_iff_gr_or_eq
thf(fact_1518_not__less__iff__gr__or__eq,axiom,
    ! [X: nat,Y: nat] :
      ( ( ~ ( ord_less_nat @ X @ Y ) )
      = ( ( ord_less_nat @ Y @ X )
        | ( X = Y ) ) ) ).

% not_less_iff_gr_or_eq
thf(fact_1519_not__less__iff__gr__or__eq,axiom,
    ! [X: int,Y: int] :
      ( ( ~ ( ord_less_int @ X @ Y ) )
      = ( ( ord_less_int @ Y @ X )
        | ( X = Y ) ) ) ).

% not_less_iff_gr_or_eq
thf(fact_1520_dual__order_Ostrict__trans,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_real @ B @ A )
     => ( ( ord_less_real @ C @ B )
       => ( ord_less_real @ C @ A ) ) ) ).

% dual_order.strict_trans
thf(fact_1521_dual__order_Ostrict__trans,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( ord_less_rat @ B @ A )
     => ( ( ord_less_rat @ C @ B )
       => ( ord_less_rat @ C @ A ) ) ) ).

% dual_order.strict_trans
thf(fact_1522_dual__order_Ostrict__trans,axiom,
    ! [B: num,A: num,C: num] :
      ( ( ord_less_num @ B @ A )
     => ( ( ord_less_num @ C @ B )
       => ( ord_less_num @ C @ A ) ) ) ).

% dual_order.strict_trans
thf(fact_1523_dual__order_Ostrict__trans,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ord_less_nat @ B @ A )
     => ( ( ord_less_nat @ C @ B )
       => ( ord_less_nat @ C @ A ) ) ) ).

% dual_order.strict_trans
thf(fact_1524_dual__order_Ostrict__trans,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_less_int @ B @ A )
     => ( ( ord_less_int @ C @ B )
       => ( ord_less_int @ C @ A ) ) ) ).

% dual_order.strict_trans
thf(fact_1525_order_Ostrict__implies__not__eq,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ( A != B ) ) ).

% order.strict_implies_not_eq
thf(fact_1526_order_Ostrict__implies__not__eq,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( A != B ) ) ).

% order.strict_implies_not_eq
thf(fact_1527_order_Ostrict__implies__not__eq,axiom,
    ! [A: num,B: num] :
      ( ( ord_less_num @ A @ B )
     => ( A != B ) ) ).

% order.strict_implies_not_eq
thf(fact_1528_order_Ostrict__implies__not__eq,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( A != B ) ) ).

% order.strict_implies_not_eq
thf(fact_1529_order_Ostrict__implies__not__eq,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ B )
     => ( A != B ) ) ).

% order.strict_implies_not_eq
thf(fact_1530_dual__order_Ostrict__implies__not__eq,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_real @ B @ A )
     => ( A != B ) ) ).

% dual_order.strict_implies_not_eq
thf(fact_1531_dual__order_Ostrict__implies__not__eq,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_rat @ B @ A )
     => ( A != B ) ) ).

% dual_order.strict_implies_not_eq
thf(fact_1532_dual__order_Ostrict__implies__not__eq,axiom,
    ! [B: num,A: num] :
      ( ( ord_less_num @ B @ A )
     => ( A != B ) ) ).

% dual_order.strict_implies_not_eq
thf(fact_1533_dual__order_Ostrict__implies__not__eq,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ B @ A )
     => ( A != B ) ) ).

% dual_order.strict_implies_not_eq
thf(fact_1534_dual__order_Ostrict__implies__not__eq,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ B @ A )
     => ( A != B ) ) ).

% dual_order.strict_implies_not_eq
thf(fact_1535_linorder__neqE,axiom,
    ! [X: real,Y: real] :
      ( ( X != Y )
     => ( ~ ( ord_less_real @ X @ Y )
       => ( ord_less_real @ Y @ X ) ) ) ).

% linorder_neqE
thf(fact_1536_linorder__neqE,axiom,
    ! [X: rat,Y: rat] :
      ( ( X != Y )
     => ( ~ ( ord_less_rat @ X @ Y )
       => ( ord_less_rat @ Y @ X ) ) ) ).

% linorder_neqE
thf(fact_1537_linorder__neqE,axiom,
    ! [X: num,Y: num] :
      ( ( X != Y )
     => ( ~ ( ord_less_num @ X @ Y )
       => ( ord_less_num @ Y @ X ) ) ) ).

% linorder_neqE
thf(fact_1538_linorder__neqE,axiom,
    ! [X: nat,Y: nat] :
      ( ( X != Y )
     => ( ~ ( ord_less_nat @ X @ Y )
       => ( ord_less_nat @ Y @ X ) ) ) ).

% linorder_neqE
thf(fact_1539_linorder__neqE,axiom,
    ! [X: int,Y: int] :
      ( ( X != Y )
     => ( ~ ( ord_less_int @ X @ Y )
       => ( ord_less_int @ Y @ X ) ) ) ).

% linorder_neqE
thf(fact_1540_order__less__asym,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ X @ Y )
     => ~ ( ord_less_real @ Y @ X ) ) ).

% order_less_asym
thf(fact_1541_order__less__asym,axiom,
    ! [X: rat,Y: rat] :
      ( ( ord_less_rat @ X @ Y )
     => ~ ( ord_less_rat @ Y @ X ) ) ).

% order_less_asym
thf(fact_1542_order__less__asym,axiom,
    ! [X: num,Y: num] :
      ( ( ord_less_num @ X @ Y )
     => ~ ( ord_less_num @ Y @ X ) ) ).

% order_less_asym
thf(fact_1543_order__less__asym,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_nat @ X @ Y )
     => ~ ( ord_less_nat @ Y @ X ) ) ).

% order_less_asym
thf(fact_1544_order__less__asym,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_int @ X @ Y )
     => ~ ( ord_less_int @ Y @ X ) ) ).

% order_less_asym
thf(fact_1545_linorder__neq__iff,axiom,
    ! [X: real,Y: real] :
      ( ( X != Y )
      = ( ( ord_less_real @ X @ Y )
        | ( ord_less_real @ Y @ X ) ) ) ).

% linorder_neq_iff
thf(fact_1546_linorder__neq__iff,axiom,
    ! [X: rat,Y: rat] :
      ( ( X != Y )
      = ( ( ord_less_rat @ X @ Y )
        | ( ord_less_rat @ Y @ X ) ) ) ).

% linorder_neq_iff
thf(fact_1547_linorder__neq__iff,axiom,
    ! [X: num,Y: num] :
      ( ( X != Y )
      = ( ( ord_less_num @ X @ Y )
        | ( ord_less_num @ Y @ X ) ) ) ).

% linorder_neq_iff
thf(fact_1548_linorder__neq__iff,axiom,
    ! [X: nat,Y: nat] :
      ( ( X != Y )
      = ( ( ord_less_nat @ X @ Y )
        | ( ord_less_nat @ Y @ X ) ) ) ).

% linorder_neq_iff
thf(fact_1549_linorder__neq__iff,axiom,
    ! [X: int,Y: int] :
      ( ( X != Y )
      = ( ( ord_less_int @ X @ Y )
        | ( ord_less_int @ Y @ X ) ) ) ).

% linorder_neq_iff
thf(fact_1550_order__less__asym_H,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ~ ( ord_less_real @ B @ A ) ) ).

% order_less_asym'
thf(fact_1551_order__less__asym_H,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ B )
     => ~ ( ord_less_rat @ B @ A ) ) ).

% order_less_asym'
thf(fact_1552_order__less__asym_H,axiom,
    ! [A: num,B: num] :
      ( ( ord_less_num @ A @ B )
     => ~ ( ord_less_num @ B @ A ) ) ).

% order_less_asym'
thf(fact_1553_order__less__asym_H,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ~ ( ord_less_nat @ B @ A ) ) ).

% order_less_asym'
thf(fact_1554_order__less__asym_H,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ B )
     => ~ ( ord_less_int @ B @ A ) ) ).

% order_less_asym'
thf(fact_1555_order__less__trans,axiom,
    ! [X: real,Y: real,Z: real] :
      ( ( ord_less_real @ X @ Y )
     => ( ( ord_less_real @ Y @ Z )
       => ( ord_less_real @ X @ Z ) ) ) ).

% order_less_trans
thf(fact_1556_order__less__trans,axiom,
    ! [X: rat,Y: rat,Z: rat] :
      ( ( ord_less_rat @ X @ Y )
     => ( ( ord_less_rat @ Y @ Z )
       => ( ord_less_rat @ X @ Z ) ) ) ).

% order_less_trans
thf(fact_1557_order__less__trans,axiom,
    ! [X: num,Y: num,Z: num] :
      ( ( ord_less_num @ X @ Y )
     => ( ( ord_less_num @ Y @ Z )
       => ( ord_less_num @ X @ Z ) ) ) ).

% order_less_trans
thf(fact_1558_order__less__trans,axiom,
    ! [X: nat,Y: nat,Z: nat] :
      ( ( ord_less_nat @ X @ Y )
     => ( ( ord_less_nat @ Y @ Z )
       => ( ord_less_nat @ X @ Z ) ) ) ).

% order_less_trans
thf(fact_1559_order__less__trans,axiom,
    ! [X: int,Y: int,Z: int] :
      ( ( ord_less_int @ X @ Y )
     => ( ( ord_less_int @ Y @ Z )
       => ( ord_less_int @ X @ Z ) ) ) ).

% order_less_trans
thf(fact_1560_ord__eq__less__subst,axiom,
    ! [A: real,F: real > real,B: real,C: real] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_real @ B @ C )
       => ( ! [X5: real,Y5: real] :
              ( ( ord_less_real @ X5 @ Y5 )
             => ( ord_less_real @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_1561_ord__eq__less__subst,axiom,
    ! [A: rat,F: real > rat,B: real,C: real] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_real @ B @ C )
       => ( ! [X5: real,Y5: real] :
              ( ( ord_less_real @ X5 @ Y5 )
             => ( ord_less_rat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_1562_ord__eq__less__subst,axiom,
    ! [A: num,F: real > num,B: real,C: real] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_real @ B @ C )
       => ( ! [X5: real,Y5: real] :
              ( ( ord_less_real @ X5 @ Y5 )
             => ( ord_less_num @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_num @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_1563_ord__eq__less__subst,axiom,
    ! [A: nat,F: real > nat,B: real,C: real] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_real @ B @ C )
       => ( ! [X5: real,Y5: real] :
              ( ( ord_less_real @ X5 @ Y5 )
             => ( ord_less_nat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_1564_ord__eq__less__subst,axiom,
    ! [A: int,F: real > int,B: real,C: real] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_real @ B @ C )
       => ( ! [X5: real,Y5: real] :
              ( ( ord_less_real @ X5 @ Y5 )
             => ( ord_less_int @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_1565_ord__eq__less__subst,axiom,
    ! [A: real,F: rat > real,B: rat,C: rat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_rat @ B @ C )
       => ( ! [X5: rat,Y5: rat] :
              ( ( ord_less_rat @ X5 @ Y5 )
             => ( ord_less_real @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_1566_ord__eq__less__subst,axiom,
    ! [A: rat,F: rat > rat,B: rat,C: rat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_rat @ B @ C )
       => ( ! [X5: rat,Y5: rat] :
              ( ( ord_less_rat @ X5 @ Y5 )
             => ( ord_less_rat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_1567_ord__eq__less__subst,axiom,
    ! [A: num,F: rat > num,B: rat,C: rat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_rat @ B @ C )
       => ( ! [X5: rat,Y5: rat] :
              ( ( ord_less_rat @ X5 @ Y5 )
             => ( ord_less_num @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_num @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_1568_ord__eq__less__subst,axiom,
    ! [A: nat,F: rat > nat,B: rat,C: rat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_rat @ B @ C )
       => ( ! [X5: rat,Y5: rat] :
              ( ( ord_less_rat @ X5 @ Y5 )
             => ( ord_less_nat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_1569_ord__eq__less__subst,axiom,
    ! [A: int,F: rat > int,B: rat,C: rat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_rat @ B @ C )
       => ( ! [X5: rat,Y5: rat] :
              ( ( ord_less_rat @ X5 @ Y5 )
             => ( ord_less_int @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_1570_ord__less__eq__subst,axiom,
    ! [A: real,B: real,F: real > real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X5: real,Y5: real] :
              ( ( ord_less_real @ X5 @ Y5 )
             => ( ord_less_real @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_1571_ord__less__eq__subst,axiom,
    ! [A: real,B: real,F: real > rat,C: rat] :
      ( ( ord_less_real @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X5: real,Y5: real] :
              ( ( ord_less_real @ X5 @ Y5 )
             => ( ord_less_rat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_rat @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_1572_ord__less__eq__subst,axiom,
    ! [A: real,B: real,F: real > num,C: num] :
      ( ( ord_less_real @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X5: real,Y5: real] :
              ( ( ord_less_real @ X5 @ Y5 )
             => ( ord_less_num @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_num @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_1573_ord__less__eq__subst,axiom,
    ! [A: real,B: real,F: real > nat,C: nat] :
      ( ( ord_less_real @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X5: real,Y5: real] :
              ( ( ord_less_real @ X5 @ Y5 )
             => ( ord_less_nat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_1574_ord__less__eq__subst,axiom,
    ! [A: real,B: real,F: real > int,C: int] :
      ( ( ord_less_real @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X5: real,Y5: real] :
              ( ( ord_less_real @ X5 @ Y5 )
             => ( ord_less_int @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_1575_ord__less__eq__subst,axiom,
    ! [A: rat,B: rat,F: rat > real,C: real] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X5: rat,Y5: rat] :
              ( ( ord_less_rat @ X5 @ Y5 )
             => ( ord_less_real @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_1576_ord__less__eq__subst,axiom,
    ! [A: rat,B: rat,F: rat > rat,C: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X5: rat,Y5: rat] :
              ( ( ord_less_rat @ X5 @ Y5 )
             => ( ord_less_rat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_rat @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_1577_ord__less__eq__subst,axiom,
    ! [A: rat,B: rat,F: rat > num,C: num] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X5: rat,Y5: rat] :
              ( ( ord_less_rat @ X5 @ Y5 )
             => ( ord_less_num @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_num @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_1578_ord__less__eq__subst,axiom,
    ! [A: rat,B: rat,F: rat > nat,C: nat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X5: rat,Y5: rat] :
              ( ( ord_less_rat @ X5 @ Y5 )
             => ( ord_less_nat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_1579_ord__less__eq__subst,axiom,
    ! [A: rat,B: rat,F: rat > int,C: int] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X5: rat,Y5: rat] :
              ( ( ord_less_rat @ X5 @ Y5 )
             => ( ord_less_int @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_1580_order__less__irrefl,axiom,
    ! [X: real] :
      ~ ( ord_less_real @ X @ X ) ).

% order_less_irrefl
thf(fact_1581_order__less__irrefl,axiom,
    ! [X: rat] :
      ~ ( ord_less_rat @ X @ X ) ).

% order_less_irrefl
thf(fact_1582_order__less__irrefl,axiom,
    ! [X: num] :
      ~ ( ord_less_num @ X @ X ) ).

% order_less_irrefl
thf(fact_1583_order__less__irrefl,axiom,
    ! [X: nat] :
      ~ ( ord_less_nat @ X @ X ) ).

% order_less_irrefl
thf(fact_1584_order__less__irrefl,axiom,
    ! [X: int] :
      ~ ( ord_less_int @ X @ X ) ).

% order_less_irrefl
thf(fact_1585_order__less__subst1,axiom,
    ! [A: real,F: real > real,B: real,C: real] :
      ( ( ord_less_real @ A @ ( F @ B ) )
     => ( ( ord_less_real @ B @ C )
       => ( ! [X5: real,Y5: real] :
              ( ( ord_less_real @ X5 @ Y5 )
             => ( ord_less_real @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_1586_order__less__subst1,axiom,
    ! [A: real,F: rat > real,B: rat,C: rat] :
      ( ( ord_less_real @ A @ ( F @ B ) )
     => ( ( ord_less_rat @ B @ C )
       => ( ! [X5: rat,Y5: rat] :
              ( ( ord_less_rat @ X5 @ Y5 )
             => ( ord_less_real @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_1587_order__less__subst1,axiom,
    ! [A: real,F: num > real,B: num,C: num] :
      ( ( ord_less_real @ A @ ( F @ B ) )
     => ( ( ord_less_num @ B @ C )
       => ( ! [X5: num,Y5: num] :
              ( ( ord_less_num @ X5 @ Y5 )
             => ( ord_less_real @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_1588_order__less__subst1,axiom,
    ! [A: real,F: nat > real,B: nat,C: nat] :
      ( ( ord_less_real @ A @ ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X5: nat,Y5: nat] :
              ( ( ord_less_nat @ X5 @ Y5 )
             => ( ord_less_real @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_1589_order__less__subst1,axiom,
    ! [A: real,F: int > real,B: int,C: int] :
      ( ( ord_less_real @ A @ ( F @ B ) )
     => ( ( ord_less_int @ B @ C )
       => ( ! [X5: int,Y5: int] :
              ( ( ord_less_int @ X5 @ Y5 )
             => ( ord_less_real @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_1590_order__less__subst1,axiom,
    ! [A: rat,F: real > rat,B: real,C: real] :
      ( ( ord_less_rat @ A @ ( F @ B ) )
     => ( ( ord_less_real @ B @ C )
       => ( ! [X5: real,Y5: real] :
              ( ( ord_less_real @ X5 @ Y5 )
             => ( ord_less_rat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_1591_order__less__subst1,axiom,
    ! [A: rat,F: rat > rat,B: rat,C: rat] :
      ( ( ord_less_rat @ A @ ( F @ B ) )
     => ( ( ord_less_rat @ B @ C )
       => ( ! [X5: rat,Y5: rat] :
              ( ( ord_less_rat @ X5 @ Y5 )
             => ( ord_less_rat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_1592_order__less__subst1,axiom,
    ! [A: rat,F: num > rat,B: num,C: num] :
      ( ( ord_less_rat @ A @ ( F @ B ) )
     => ( ( ord_less_num @ B @ C )
       => ( ! [X5: num,Y5: num] :
              ( ( ord_less_num @ X5 @ Y5 )
             => ( ord_less_rat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_1593_order__less__subst1,axiom,
    ! [A: rat,F: nat > rat,B: nat,C: nat] :
      ( ( ord_less_rat @ A @ ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X5: nat,Y5: nat] :
              ( ( ord_less_nat @ X5 @ Y5 )
             => ( ord_less_rat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_1594_order__less__subst1,axiom,
    ! [A: rat,F: int > rat,B: int,C: int] :
      ( ( ord_less_rat @ A @ ( F @ B ) )
     => ( ( ord_less_int @ B @ C )
       => ( ! [X5: int,Y5: int] :
              ( ( ord_less_int @ X5 @ Y5 )
             => ( ord_less_rat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_1595_order__less__subst2,axiom,
    ! [A: real,B: real,F: real > real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ ( F @ B ) @ C )
       => ( ! [X5: real,Y5: real] :
              ( ( ord_less_real @ X5 @ Y5 )
             => ( ord_less_real @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_1596_order__less__subst2,axiom,
    ! [A: real,B: real,F: real > rat,C: rat] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_rat @ ( F @ B ) @ C )
       => ( ! [X5: real,Y5: real] :
              ( ( ord_less_real @ X5 @ Y5 )
             => ( ord_less_rat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_rat @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_1597_order__less__subst2,axiom,
    ! [A: real,B: real,F: real > num,C: num] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_num @ ( F @ B ) @ C )
       => ( ! [X5: real,Y5: real] :
              ( ( ord_less_real @ X5 @ Y5 )
             => ( ord_less_num @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_num @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_1598_order__less__subst2,axiom,
    ! [A: real,B: real,F: real > nat,C: nat] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_nat @ ( F @ B ) @ C )
       => ( ! [X5: real,Y5: real] :
              ( ( ord_less_real @ X5 @ Y5 )
             => ( ord_less_nat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_1599_order__less__subst2,axiom,
    ! [A: real,B: real,F: real > int,C: int] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_int @ ( F @ B ) @ C )
       => ( ! [X5: real,Y5: real] :
              ( ( ord_less_real @ X5 @ Y5 )
             => ( ord_less_int @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_1600_order__less__subst2,axiom,
    ! [A: rat,B: rat,F: rat > real,C: real] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_real @ ( F @ B ) @ C )
       => ( ! [X5: rat,Y5: rat] :
              ( ( ord_less_rat @ X5 @ Y5 )
             => ( ord_less_real @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_1601_order__less__subst2,axiom,
    ! [A: rat,B: rat,F: rat > rat,C: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_rat @ ( F @ B ) @ C )
       => ( ! [X5: rat,Y5: rat] :
              ( ( ord_less_rat @ X5 @ Y5 )
             => ( ord_less_rat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_rat @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_1602_order__less__subst2,axiom,
    ! [A: rat,B: rat,F: rat > num,C: num] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_num @ ( F @ B ) @ C )
       => ( ! [X5: rat,Y5: rat] :
              ( ( ord_less_rat @ X5 @ Y5 )
             => ( ord_less_num @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_num @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_1603_order__less__subst2,axiom,
    ! [A: rat,B: rat,F: rat > nat,C: nat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_nat @ ( F @ B ) @ C )
       => ( ! [X5: rat,Y5: rat] :
              ( ( ord_less_rat @ X5 @ Y5 )
             => ( ord_less_nat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_1604_order__less__subst2,axiom,
    ! [A: rat,B: rat,F: rat > int,C: int] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_int @ ( F @ B ) @ C )
       => ( ! [X5: rat,Y5: rat] :
              ( ( ord_less_rat @ X5 @ Y5 )
             => ( ord_less_int @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_1605_order__less__not__sym,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ X @ Y )
     => ~ ( ord_less_real @ Y @ X ) ) ).

% order_less_not_sym
thf(fact_1606_order__less__not__sym,axiom,
    ! [X: rat,Y: rat] :
      ( ( ord_less_rat @ X @ Y )
     => ~ ( ord_less_rat @ Y @ X ) ) ).

% order_less_not_sym
thf(fact_1607_order__less__not__sym,axiom,
    ! [X: num,Y: num] :
      ( ( ord_less_num @ X @ Y )
     => ~ ( ord_less_num @ Y @ X ) ) ).

% order_less_not_sym
thf(fact_1608_order__less__not__sym,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_nat @ X @ Y )
     => ~ ( ord_less_nat @ Y @ X ) ) ).

% order_less_not_sym
thf(fact_1609_order__less__not__sym,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_int @ X @ Y )
     => ~ ( ord_less_int @ Y @ X ) ) ).

% order_less_not_sym
thf(fact_1610_order__less__imp__triv,axiom,
    ! [X: real,Y: real,P: $o] :
      ( ( ord_less_real @ X @ Y )
     => ( ( ord_less_real @ Y @ X )
       => P ) ) ).

% order_less_imp_triv
thf(fact_1611_order__less__imp__triv,axiom,
    ! [X: rat,Y: rat,P: $o] :
      ( ( ord_less_rat @ X @ Y )
     => ( ( ord_less_rat @ Y @ X )
       => P ) ) ).

% order_less_imp_triv
thf(fact_1612_order__less__imp__triv,axiom,
    ! [X: num,Y: num,P: $o] :
      ( ( ord_less_num @ X @ Y )
     => ( ( ord_less_num @ Y @ X )
       => P ) ) ).

% order_less_imp_triv
thf(fact_1613_order__less__imp__triv,axiom,
    ! [X: nat,Y: nat,P: $o] :
      ( ( ord_less_nat @ X @ Y )
     => ( ( ord_less_nat @ Y @ X )
       => P ) ) ).

% order_less_imp_triv
thf(fact_1614_order__less__imp__triv,axiom,
    ! [X: int,Y: int,P: $o] :
      ( ( ord_less_int @ X @ Y )
     => ( ( ord_less_int @ Y @ X )
       => P ) ) ).

% order_less_imp_triv
thf(fact_1615_linorder__less__linear,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ X @ Y )
      | ( X = Y )
      | ( ord_less_real @ Y @ X ) ) ).

% linorder_less_linear
thf(fact_1616_linorder__less__linear,axiom,
    ! [X: rat,Y: rat] :
      ( ( ord_less_rat @ X @ Y )
      | ( X = Y )
      | ( ord_less_rat @ Y @ X ) ) ).

% linorder_less_linear
thf(fact_1617_linorder__less__linear,axiom,
    ! [X: num,Y: num] :
      ( ( ord_less_num @ X @ Y )
      | ( X = Y )
      | ( ord_less_num @ Y @ X ) ) ).

% linorder_less_linear
thf(fact_1618_linorder__less__linear,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_nat @ X @ Y )
      | ( X = Y )
      | ( ord_less_nat @ Y @ X ) ) ).

% linorder_less_linear
thf(fact_1619_linorder__less__linear,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_int @ X @ Y )
      | ( X = Y )
      | ( ord_less_int @ Y @ X ) ) ).

% linorder_less_linear
thf(fact_1620_order__less__imp__not__eq,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ X @ Y )
     => ( X != Y ) ) ).

% order_less_imp_not_eq
thf(fact_1621_order__less__imp__not__eq,axiom,
    ! [X: rat,Y: rat] :
      ( ( ord_less_rat @ X @ Y )
     => ( X != Y ) ) ).

% order_less_imp_not_eq
thf(fact_1622_order__less__imp__not__eq,axiom,
    ! [X: num,Y: num] :
      ( ( ord_less_num @ X @ Y )
     => ( X != Y ) ) ).

% order_less_imp_not_eq
thf(fact_1623_order__less__imp__not__eq,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_nat @ X @ Y )
     => ( X != Y ) ) ).

% order_less_imp_not_eq
thf(fact_1624_order__less__imp__not__eq,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_int @ X @ Y )
     => ( X != Y ) ) ).

% order_less_imp_not_eq
thf(fact_1625_order__less__imp__not__eq2,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ X @ Y )
     => ( Y != X ) ) ).

% order_less_imp_not_eq2
thf(fact_1626_order__less__imp__not__eq2,axiom,
    ! [X: rat,Y: rat] :
      ( ( ord_less_rat @ X @ Y )
     => ( Y != X ) ) ).

% order_less_imp_not_eq2
thf(fact_1627_order__less__imp__not__eq2,axiom,
    ! [X: num,Y: num] :
      ( ( ord_less_num @ X @ Y )
     => ( Y != X ) ) ).

% order_less_imp_not_eq2
thf(fact_1628_order__less__imp__not__eq2,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_nat @ X @ Y )
     => ( Y != X ) ) ).

% order_less_imp_not_eq2
thf(fact_1629_order__less__imp__not__eq2,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_int @ X @ Y )
     => ( Y != X ) ) ).

% order_less_imp_not_eq2
thf(fact_1630_order__less__imp__not__less,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ X @ Y )
     => ~ ( ord_less_real @ Y @ X ) ) ).

% order_less_imp_not_less
thf(fact_1631_order__less__imp__not__less,axiom,
    ! [X: rat,Y: rat] :
      ( ( ord_less_rat @ X @ Y )
     => ~ ( ord_less_rat @ Y @ X ) ) ).

% order_less_imp_not_less
thf(fact_1632_order__less__imp__not__less,axiom,
    ! [X: num,Y: num] :
      ( ( ord_less_num @ X @ Y )
     => ~ ( ord_less_num @ Y @ X ) ) ).

% order_less_imp_not_less
thf(fact_1633_order__less__imp__not__less,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_nat @ X @ Y )
     => ~ ( ord_less_nat @ Y @ X ) ) ).

% order_less_imp_not_less
thf(fact_1634_order__less__imp__not__less,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_int @ X @ Y )
     => ~ ( ord_less_int @ Y @ X ) ) ).

% order_less_imp_not_less
thf(fact_1635_Diff__mono,axiom,
    ! [A2: set_nat,C2: set_nat,D3: set_nat,B3: set_nat] :
      ( ( ord_less_eq_set_nat @ A2 @ C2 )
     => ( ( ord_less_eq_set_nat @ D3 @ B3 )
       => ( ord_less_eq_set_nat @ ( minus_minus_set_nat @ A2 @ B3 ) @ ( minus_minus_set_nat @ C2 @ D3 ) ) ) ) ).

% Diff_mono
thf(fact_1636_Diff__mono,axiom,
    ! [A2: set_int,C2: set_int,D3: set_int,B3: set_int] :
      ( ( ord_less_eq_set_int @ A2 @ C2 )
     => ( ( ord_less_eq_set_int @ D3 @ B3 )
       => ( ord_less_eq_set_int @ ( minus_minus_set_int @ A2 @ B3 ) @ ( minus_minus_set_int @ C2 @ D3 ) ) ) ) ).

% Diff_mono
thf(fact_1637_Diff__subset,axiom,
    ! [A2: set_nat,B3: set_nat] : ( ord_less_eq_set_nat @ ( minus_minus_set_nat @ A2 @ B3 ) @ A2 ) ).

% Diff_subset
thf(fact_1638_Diff__subset,axiom,
    ! [A2: set_int,B3: set_int] : ( ord_less_eq_set_int @ ( minus_minus_set_int @ A2 @ B3 ) @ A2 ) ).

% Diff_subset
thf(fact_1639_double__diff,axiom,
    ! [A2: set_nat,B3: set_nat,C2: set_nat] :
      ( ( ord_less_eq_set_nat @ A2 @ B3 )
     => ( ( ord_less_eq_set_nat @ B3 @ C2 )
       => ( ( minus_minus_set_nat @ B3 @ ( minus_minus_set_nat @ C2 @ A2 ) )
          = A2 ) ) ) ).

% double_diff
thf(fact_1640_double__diff,axiom,
    ! [A2: set_int,B3: set_int,C2: set_int] :
      ( ( ord_less_eq_set_int @ A2 @ B3 )
     => ( ( ord_less_eq_set_int @ B3 @ C2 )
       => ( ( minus_minus_set_int @ B3 @ ( minus_minus_set_int @ C2 @ A2 ) )
          = A2 ) ) ) ).

% double_diff
thf(fact_1641_in__mono,axiom,
    ! [A2: set_complex,B3: set_complex,X: complex] :
      ( ( ord_le211207098394363844omplex @ A2 @ B3 )
     => ( ( member_complex @ X @ A2 )
       => ( member_complex @ X @ B3 ) ) ) ).

% in_mono
thf(fact_1642_in__mono,axiom,
    ! [A2: set_real,B3: set_real,X: real] :
      ( ( ord_less_eq_set_real @ A2 @ B3 )
     => ( ( member_real @ X @ A2 )
       => ( member_real @ X @ B3 ) ) ) ).

% in_mono
thf(fact_1643_in__mono,axiom,
    ! [A2: set_set_nat,B3: set_set_nat,X: set_nat] :
      ( ( ord_le6893508408891458716et_nat @ A2 @ B3 )
     => ( ( member_set_nat @ X @ A2 )
       => ( member_set_nat @ X @ B3 ) ) ) ).

% in_mono
thf(fact_1644_in__mono,axiom,
    ! [A2: set_nat,B3: set_nat,X: nat] :
      ( ( ord_less_eq_set_nat @ A2 @ B3 )
     => ( ( member_nat @ X @ A2 )
       => ( member_nat @ X @ B3 ) ) ) ).

% in_mono
thf(fact_1645_in__mono,axiom,
    ! [A2: set_int,B3: set_int,X: int] :
      ( ( ord_less_eq_set_int @ A2 @ B3 )
     => ( ( member_int @ X @ A2 )
       => ( member_int @ X @ B3 ) ) ) ).

% in_mono
thf(fact_1646_subsetD,axiom,
    ! [A2: set_complex,B3: set_complex,C: complex] :
      ( ( ord_le211207098394363844omplex @ A2 @ B3 )
     => ( ( member_complex @ C @ A2 )
       => ( member_complex @ C @ B3 ) ) ) ).

% subsetD
thf(fact_1647_subsetD,axiom,
    ! [A2: set_real,B3: set_real,C: real] :
      ( ( ord_less_eq_set_real @ A2 @ B3 )
     => ( ( member_real @ C @ A2 )
       => ( member_real @ C @ B3 ) ) ) ).

% subsetD
thf(fact_1648_subsetD,axiom,
    ! [A2: set_set_nat,B3: set_set_nat,C: set_nat] :
      ( ( ord_le6893508408891458716et_nat @ A2 @ B3 )
     => ( ( member_set_nat @ C @ A2 )
       => ( member_set_nat @ C @ B3 ) ) ) ).

% subsetD
thf(fact_1649_subsetD,axiom,
    ! [A2: set_nat,B3: set_nat,C: nat] :
      ( ( ord_less_eq_set_nat @ A2 @ B3 )
     => ( ( member_nat @ C @ A2 )
       => ( member_nat @ C @ B3 ) ) ) ).

% subsetD
thf(fact_1650_subsetD,axiom,
    ! [A2: set_int,B3: set_int,C: int] :
      ( ( ord_less_eq_set_int @ A2 @ B3 )
     => ( ( member_int @ C @ A2 )
       => ( member_int @ C @ B3 ) ) ) ).

% subsetD
thf(fact_1651_psubsetE,axiom,
    ! [A2: set_int,B3: set_int] :
      ( ( ord_less_set_int @ A2 @ B3 )
     => ~ ( ( ord_less_eq_set_int @ A2 @ B3 )
         => ( ord_less_eq_set_int @ B3 @ A2 ) ) ) ).

% psubsetE
thf(fact_1652_equalityE,axiom,
    ! [A2: set_int,B3: set_int] :
      ( ( A2 = B3 )
     => ~ ( ( ord_less_eq_set_int @ A2 @ B3 )
         => ~ ( ord_less_eq_set_int @ B3 @ A2 ) ) ) ).

% equalityE
thf(fact_1653_subset__eq,axiom,
    ( ord_le211207098394363844omplex
    = ( ^ [A5: set_complex,B5: set_complex] :
        ! [X3: complex] :
          ( ( member_complex @ X3 @ A5 )
         => ( member_complex @ X3 @ B5 ) ) ) ) ).

% subset_eq
thf(fact_1654_subset__eq,axiom,
    ( ord_less_eq_set_real
    = ( ^ [A5: set_real,B5: set_real] :
        ! [X3: real] :
          ( ( member_real @ X3 @ A5 )
         => ( member_real @ X3 @ B5 ) ) ) ) ).

% subset_eq
thf(fact_1655_subset__eq,axiom,
    ( ord_le6893508408891458716et_nat
    = ( ^ [A5: set_set_nat,B5: set_set_nat] :
        ! [X3: set_nat] :
          ( ( member_set_nat @ X3 @ A5 )
         => ( member_set_nat @ X3 @ B5 ) ) ) ) ).

% subset_eq
thf(fact_1656_subset__eq,axiom,
    ( ord_less_eq_set_nat
    = ( ^ [A5: set_nat,B5: set_nat] :
        ! [X3: nat] :
          ( ( member_nat @ X3 @ A5 )
         => ( member_nat @ X3 @ B5 ) ) ) ) ).

% subset_eq
thf(fact_1657_subset__eq,axiom,
    ( ord_less_eq_set_int
    = ( ^ [A5: set_int,B5: set_int] :
        ! [X3: int] :
          ( ( member_int @ X3 @ A5 )
         => ( member_int @ X3 @ B5 ) ) ) ) ).

% subset_eq
thf(fact_1658_equalityD1,axiom,
    ! [A2: set_int,B3: set_int] :
      ( ( A2 = B3 )
     => ( ord_less_eq_set_int @ A2 @ B3 ) ) ).

% equalityD1
thf(fact_1659_equalityD2,axiom,
    ! [A2: set_int,B3: set_int] :
      ( ( A2 = B3 )
     => ( ord_less_eq_set_int @ B3 @ A2 ) ) ).

% equalityD2
thf(fact_1660_psubset__eq,axiom,
    ( ord_less_set_int
    = ( ^ [A5: set_int,B5: set_int] :
          ( ( ord_less_eq_set_int @ A5 @ B5 )
          & ( A5 != B5 ) ) ) ) ).

% psubset_eq
thf(fact_1661_subset__iff,axiom,
    ( ord_le211207098394363844omplex
    = ( ^ [A5: set_complex,B5: set_complex] :
        ! [T2: complex] :
          ( ( member_complex @ T2 @ A5 )
         => ( member_complex @ T2 @ B5 ) ) ) ) ).

% subset_iff
thf(fact_1662_subset__iff,axiom,
    ( ord_less_eq_set_real
    = ( ^ [A5: set_real,B5: set_real] :
        ! [T2: real] :
          ( ( member_real @ T2 @ A5 )
         => ( member_real @ T2 @ B5 ) ) ) ) ).

% subset_iff
thf(fact_1663_subset__iff,axiom,
    ( ord_le6893508408891458716et_nat
    = ( ^ [A5: set_set_nat,B5: set_set_nat] :
        ! [T2: set_nat] :
          ( ( member_set_nat @ T2 @ A5 )
         => ( member_set_nat @ T2 @ B5 ) ) ) ) ).

% subset_iff
thf(fact_1664_subset__iff,axiom,
    ( ord_less_eq_set_nat
    = ( ^ [A5: set_nat,B5: set_nat] :
        ! [T2: nat] :
          ( ( member_nat @ T2 @ A5 )
         => ( member_nat @ T2 @ B5 ) ) ) ) ).

% subset_iff
thf(fact_1665_subset__iff,axiom,
    ( ord_less_eq_set_int
    = ( ^ [A5: set_int,B5: set_int] :
        ! [T2: int] :
          ( ( member_int @ T2 @ A5 )
         => ( member_int @ T2 @ B5 ) ) ) ) ).

% subset_iff
thf(fact_1666_subset__refl,axiom,
    ! [A2: set_int] : ( ord_less_eq_set_int @ A2 @ A2 ) ).

% subset_refl
thf(fact_1667_Collect__mono,axiom,
    ! [P: product_prod_int_int > $o,Q: product_prod_int_int > $o] :
      ( ! [X5: product_prod_int_int] :
          ( ( P @ X5 )
         => ( Q @ X5 ) )
     => ( ord_le2843351958646193337nt_int @ ( collec213857154873943460nt_int @ P ) @ ( collec213857154873943460nt_int @ Q ) ) ) ).

% Collect_mono
thf(fact_1668_Collect__mono,axiom,
    ! [P: complex > $o,Q: complex > $o] :
      ( ! [X5: complex] :
          ( ( P @ X5 )
         => ( Q @ X5 ) )
     => ( ord_le211207098394363844omplex @ ( collect_complex @ P ) @ ( collect_complex @ Q ) ) ) ).

% Collect_mono
thf(fact_1669_Collect__mono,axiom,
    ! [P: set_nat > $o,Q: set_nat > $o] :
      ( ! [X5: set_nat] :
          ( ( P @ X5 )
         => ( Q @ X5 ) )
     => ( ord_le6893508408891458716et_nat @ ( collect_set_nat @ P ) @ ( collect_set_nat @ Q ) ) ) ).

% Collect_mono
thf(fact_1670_Collect__mono,axiom,
    ! [P: nat > $o,Q: nat > $o] :
      ( ! [X5: nat] :
          ( ( P @ X5 )
         => ( Q @ X5 ) )
     => ( ord_less_eq_set_nat @ ( collect_nat @ P ) @ ( collect_nat @ Q ) ) ) ).

% Collect_mono
thf(fact_1671_Collect__mono,axiom,
    ! [P: int > $o,Q: int > $o] :
      ( ! [X5: int] :
          ( ( P @ X5 )
         => ( Q @ X5 ) )
     => ( ord_less_eq_set_int @ ( collect_int @ P ) @ ( collect_int @ Q ) ) ) ).

% Collect_mono
thf(fact_1672_subset__trans,axiom,
    ! [A2: set_int,B3: set_int,C2: set_int] :
      ( ( ord_less_eq_set_int @ A2 @ B3 )
     => ( ( ord_less_eq_set_int @ B3 @ C2 )
       => ( ord_less_eq_set_int @ A2 @ C2 ) ) ) ).

% subset_trans
thf(fact_1673_set__eq__subset,axiom,
    ( ( ^ [Y4: set_int,Z3: set_int] : ( Y4 = Z3 ) )
    = ( ^ [A5: set_int,B5: set_int] :
          ( ( ord_less_eq_set_int @ A5 @ B5 )
          & ( ord_less_eq_set_int @ B5 @ A5 ) ) ) ) ).

% set_eq_subset
thf(fact_1674_Collect__mono__iff,axiom,
    ! [P: product_prod_int_int > $o,Q: product_prod_int_int > $o] :
      ( ( ord_le2843351958646193337nt_int @ ( collec213857154873943460nt_int @ P ) @ ( collec213857154873943460nt_int @ Q ) )
      = ( ! [X3: product_prod_int_int] :
            ( ( P @ X3 )
           => ( Q @ X3 ) ) ) ) ).

% Collect_mono_iff
thf(fact_1675_Collect__mono__iff,axiom,
    ! [P: complex > $o,Q: complex > $o] :
      ( ( ord_le211207098394363844omplex @ ( collect_complex @ P ) @ ( collect_complex @ Q ) )
      = ( ! [X3: complex] :
            ( ( P @ X3 )
           => ( Q @ X3 ) ) ) ) ).

% Collect_mono_iff
thf(fact_1676_Collect__mono__iff,axiom,
    ! [P: set_nat > $o,Q: set_nat > $o] :
      ( ( ord_le6893508408891458716et_nat @ ( collect_set_nat @ P ) @ ( collect_set_nat @ Q ) )
      = ( ! [X3: set_nat] :
            ( ( P @ X3 )
           => ( Q @ X3 ) ) ) ) ).

% Collect_mono_iff
thf(fact_1677_Collect__mono__iff,axiom,
    ! [P: nat > $o,Q: nat > $o] :
      ( ( ord_less_eq_set_nat @ ( collect_nat @ P ) @ ( collect_nat @ Q ) )
      = ( ! [X3: nat] :
            ( ( P @ X3 )
           => ( Q @ X3 ) ) ) ) ).

% Collect_mono_iff
thf(fact_1678_Collect__mono__iff,axiom,
    ! [P: int > $o,Q: int > $o] :
      ( ( ord_less_eq_set_int @ ( collect_int @ P ) @ ( collect_int @ Q ) )
      = ( ! [X3: int] :
            ( ( P @ X3 )
           => ( Q @ X3 ) ) ) ) ).

% Collect_mono_iff
thf(fact_1679_psubset__imp__subset,axiom,
    ! [A2: set_int,B3: set_int] :
      ( ( ord_less_set_int @ A2 @ B3 )
     => ( ord_less_eq_set_int @ A2 @ B3 ) ) ).

% psubset_imp_subset
thf(fact_1680_psubset__subset__trans,axiom,
    ! [A2: set_int,B3: set_int,C2: set_int] :
      ( ( ord_less_set_int @ A2 @ B3 )
     => ( ( ord_less_eq_set_int @ B3 @ C2 )
       => ( ord_less_set_int @ A2 @ C2 ) ) ) ).

% psubset_subset_trans
thf(fact_1681_subset__not__subset__eq,axiom,
    ( ord_less_set_int
    = ( ^ [A5: set_int,B5: set_int] :
          ( ( ord_less_eq_set_int @ A5 @ B5 )
          & ~ ( ord_less_eq_set_int @ B5 @ A5 ) ) ) ) ).

% subset_not_subset_eq
thf(fact_1682_subset__psubset__trans,axiom,
    ! [A2: set_int,B3: set_int,C2: set_int] :
      ( ( ord_less_eq_set_int @ A2 @ B3 )
     => ( ( ord_less_set_int @ B3 @ C2 )
       => ( ord_less_set_int @ A2 @ C2 ) ) ) ).

% subset_psubset_trans
thf(fact_1683_subset__iff__psubset__eq,axiom,
    ( ord_less_eq_set_int
    = ( ^ [A5: set_int,B5: set_int] :
          ( ( ord_less_set_int @ A5 @ B5 )
          | ( A5 = B5 ) ) ) ) ).

% subset_iff_psubset_eq
thf(fact_1684_empty__def,axiom,
    ( bot_bo1796632182523588997nt_int
    = ( collec213857154873943460nt_int
      @ ^ [X3: product_prod_int_int] : $false ) ) ).

% empty_def
thf(fact_1685_empty__def,axiom,
    ( bot_bot_set_complex
    = ( collect_complex
      @ ^ [X3: complex] : $false ) ) ).

% empty_def
thf(fact_1686_empty__def,axiom,
    ( bot_bot_set_set_nat
    = ( collect_set_nat
      @ ^ [X3: set_nat] : $false ) ) ).

% empty_def
thf(fact_1687_empty__def,axiom,
    ( bot_bot_set_nat
    = ( collect_nat
      @ ^ [X3: nat] : $false ) ) ).

% empty_def
thf(fact_1688_empty__def,axiom,
    ( bot_bot_set_int
    = ( collect_int
      @ ^ [X3: int] : $false ) ) ).

% empty_def
thf(fact_1689_empty__def,axiom,
    ( bot_bot_set_real
    = ( collect_real
      @ ^ [X3: real] : $false ) ) ).

% empty_def
thf(fact_1690_Collect__subset,axiom,
    ! [A2: set_real,P: real > $o] :
      ( ord_less_eq_set_real
      @ ( collect_real
        @ ^ [X3: real] :
            ( ( member_real @ X3 @ A2 )
            & ( P @ X3 ) ) )
      @ A2 ) ).

% Collect_subset
thf(fact_1691_Collect__subset,axiom,
    ! [A2: set_Pr958786334691620121nt_int,P: product_prod_int_int > $o] :
      ( ord_le2843351958646193337nt_int
      @ ( collec213857154873943460nt_int
        @ ^ [X3: product_prod_int_int] :
            ( ( member5262025264175285858nt_int @ X3 @ A2 )
            & ( P @ X3 ) ) )
      @ A2 ) ).

% Collect_subset
thf(fact_1692_Collect__subset,axiom,
    ! [A2: set_complex,P: complex > $o] :
      ( ord_le211207098394363844omplex
      @ ( collect_complex
        @ ^ [X3: complex] :
            ( ( member_complex @ X3 @ A2 )
            & ( P @ X3 ) ) )
      @ A2 ) ).

% Collect_subset
thf(fact_1693_Collect__subset,axiom,
    ! [A2: set_set_nat,P: set_nat > $o] :
      ( ord_le6893508408891458716et_nat
      @ ( collect_set_nat
        @ ^ [X3: set_nat] :
            ( ( member_set_nat @ X3 @ A2 )
            & ( P @ X3 ) ) )
      @ A2 ) ).

% Collect_subset
thf(fact_1694_Collect__subset,axiom,
    ! [A2: set_nat,P: nat > $o] :
      ( ord_less_eq_set_nat
      @ ( collect_nat
        @ ^ [X3: nat] :
            ( ( member_nat @ X3 @ A2 )
            & ( P @ X3 ) ) )
      @ A2 ) ).

% Collect_subset
thf(fact_1695_Collect__subset,axiom,
    ! [A2: set_int,P: int > $o] :
      ( ord_less_eq_set_int
      @ ( collect_int
        @ ^ [X3: int] :
            ( ( member_int @ X3 @ A2 )
            & ( P @ X3 ) ) )
      @ A2 ) ).

% Collect_subset
thf(fact_1696_less__eq__set__def,axiom,
    ( ord_le211207098394363844omplex
    = ( ^ [A5: set_complex,B5: set_complex] :
          ( ord_le4573692005234683329plex_o
          @ ^ [X3: complex] : ( member_complex @ X3 @ A5 )
          @ ^ [X3: complex] : ( member_complex @ X3 @ B5 ) ) ) ) ).

% less_eq_set_def
thf(fact_1697_less__eq__set__def,axiom,
    ( ord_less_eq_set_real
    = ( ^ [A5: set_real,B5: set_real] :
          ( ord_less_eq_real_o
          @ ^ [X3: real] : ( member_real @ X3 @ A5 )
          @ ^ [X3: real] : ( member_real @ X3 @ B5 ) ) ) ) ).

% less_eq_set_def
thf(fact_1698_less__eq__set__def,axiom,
    ( ord_le6893508408891458716et_nat
    = ( ^ [A5: set_set_nat,B5: set_set_nat] :
          ( ord_le3964352015994296041_nat_o
          @ ^ [X3: set_nat] : ( member_set_nat @ X3 @ A5 )
          @ ^ [X3: set_nat] : ( member_set_nat @ X3 @ B5 ) ) ) ) ).

% less_eq_set_def
thf(fact_1699_less__eq__set__def,axiom,
    ( ord_less_eq_set_nat
    = ( ^ [A5: set_nat,B5: set_nat] :
          ( ord_less_eq_nat_o
          @ ^ [X3: nat] : ( member_nat @ X3 @ A5 )
          @ ^ [X3: nat] : ( member_nat @ X3 @ B5 ) ) ) ) ).

% less_eq_set_def
thf(fact_1700_less__eq__set__def,axiom,
    ( ord_less_eq_set_int
    = ( ^ [A5: set_int,B5: set_int] :
          ( ord_less_eq_int_o
          @ ^ [X3: int] : ( member_int @ X3 @ A5 )
          @ ^ [X3: int] : ( member_int @ X3 @ B5 ) ) ) ) ).

% less_eq_set_def
thf(fact_1701_leD,axiom,
    ! [Y: real,X: real] :
      ( ( ord_less_eq_real @ Y @ X )
     => ~ ( ord_less_real @ X @ Y ) ) ).

% leD
thf(fact_1702_leD,axiom,
    ! [Y: set_int,X: set_int] :
      ( ( ord_less_eq_set_int @ Y @ X )
     => ~ ( ord_less_set_int @ X @ Y ) ) ).

% leD
thf(fact_1703_leD,axiom,
    ! [Y: rat,X: rat] :
      ( ( ord_less_eq_rat @ Y @ X )
     => ~ ( ord_less_rat @ X @ Y ) ) ).

% leD
thf(fact_1704_leD,axiom,
    ! [Y: num,X: num] :
      ( ( ord_less_eq_num @ Y @ X )
     => ~ ( ord_less_num @ X @ Y ) ) ).

% leD
thf(fact_1705_leD,axiom,
    ! [Y: nat,X: nat] :
      ( ( ord_less_eq_nat @ Y @ X )
     => ~ ( ord_less_nat @ X @ Y ) ) ).

% leD
thf(fact_1706_leD,axiom,
    ! [Y: int,X: int] :
      ( ( ord_less_eq_int @ Y @ X )
     => ~ ( ord_less_int @ X @ Y ) ) ).

% leD
thf(fact_1707_leI,axiom,
    ! [X: real,Y: real] :
      ( ~ ( ord_less_real @ X @ Y )
     => ( ord_less_eq_real @ Y @ X ) ) ).

% leI
thf(fact_1708_leI,axiom,
    ! [X: rat,Y: rat] :
      ( ~ ( ord_less_rat @ X @ Y )
     => ( ord_less_eq_rat @ Y @ X ) ) ).

% leI
thf(fact_1709_leI,axiom,
    ! [X: num,Y: num] :
      ( ~ ( ord_less_num @ X @ Y )
     => ( ord_less_eq_num @ Y @ X ) ) ).

% leI
thf(fact_1710_leI,axiom,
    ! [X: nat,Y: nat] :
      ( ~ ( ord_less_nat @ X @ Y )
     => ( ord_less_eq_nat @ Y @ X ) ) ).

% leI
thf(fact_1711_leI,axiom,
    ! [X: int,Y: int] :
      ( ~ ( ord_less_int @ X @ Y )
     => ( ord_less_eq_int @ Y @ X ) ) ).

% leI
thf(fact_1712_nless__le,axiom,
    ! [A: real,B: real] :
      ( ( ~ ( ord_less_real @ A @ B ) )
      = ( ~ ( ord_less_eq_real @ A @ B )
        | ( A = B ) ) ) ).

% nless_le
thf(fact_1713_nless__le,axiom,
    ! [A: set_int,B: set_int] :
      ( ( ~ ( ord_less_set_int @ A @ B ) )
      = ( ~ ( ord_less_eq_set_int @ A @ B )
        | ( A = B ) ) ) ).

% nless_le
thf(fact_1714_nless__le,axiom,
    ! [A: rat,B: rat] :
      ( ( ~ ( ord_less_rat @ A @ B ) )
      = ( ~ ( ord_less_eq_rat @ A @ B )
        | ( A = B ) ) ) ).

% nless_le
thf(fact_1715_nless__le,axiom,
    ! [A: num,B: num] :
      ( ( ~ ( ord_less_num @ A @ B ) )
      = ( ~ ( ord_less_eq_num @ A @ B )
        | ( A = B ) ) ) ).

% nless_le
thf(fact_1716_nless__le,axiom,
    ! [A: nat,B: nat] :
      ( ( ~ ( ord_less_nat @ A @ B ) )
      = ( ~ ( ord_less_eq_nat @ A @ B )
        | ( A = B ) ) ) ).

% nless_le
thf(fact_1717_nless__le,axiom,
    ! [A: int,B: int] :
      ( ( ~ ( ord_less_int @ A @ B ) )
      = ( ~ ( ord_less_eq_int @ A @ B )
        | ( A = B ) ) ) ).

% nless_le
thf(fact_1718_antisym__conv1,axiom,
    ! [X: real,Y: real] :
      ( ~ ( ord_less_real @ X @ Y )
     => ( ( ord_less_eq_real @ X @ Y )
        = ( X = Y ) ) ) ).

% antisym_conv1
thf(fact_1719_antisym__conv1,axiom,
    ! [X: set_int,Y: set_int] :
      ( ~ ( ord_less_set_int @ X @ Y )
     => ( ( ord_less_eq_set_int @ X @ Y )
        = ( X = Y ) ) ) ).

% antisym_conv1
thf(fact_1720_antisym__conv1,axiom,
    ! [X: rat,Y: rat] :
      ( ~ ( ord_less_rat @ X @ Y )
     => ( ( ord_less_eq_rat @ X @ Y )
        = ( X = Y ) ) ) ).

% antisym_conv1
thf(fact_1721_antisym__conv1,axiom,
    ! [X: num,Y: num] :
      ( ~ ( ord_less_num @ X @ Y )
     => ( ( ord_less_eq_num @ X @ Y )
        = ( X = Y ) ) ) ).

% antisym_conv1
thf(fact_1722_antisym__conv1,axiom,
    ! [X: nat,Y: nat] :
      ( ~ ( ord_less_nat @ X @ Y )
     => ( ( ord_less_eq_nat @ X @ Y )
        = ( X = Y ) ) ) ).

% antisym_conv1
thf(fact_1723_antisym__conv1,axiom,
    ! [X: int,Y: int] :
      ( ~ ( ord_less_int @ X @ Y )
     => ( ( ord_less_eq_int @ X @ Y )
        = ( X = Y ) ) ) ).

% antisym_conv1
thf(fact_1724_antisym__conv2,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ X @ Y )
     => ( ( ~ ( ord_less_real @ X @ Y ) )
        = ( X = Y ) ) ) ).

% antisym_conv2
thf(fact_1725_antisym__conv2,axiom,
    ! [X: set_int,Y: set_int] :
      ( ( ord_less_eq_set_int @ X @ Y )
     => ( ( ~ ( ord_less_set_int @ X @ Y ) )
        = ( X = Y ) ) ) ).

% antisym_conv2
thf(fact_1726_antisym__conv2,axiom,
    ! [X: rat,Y: rat] :
      ( ( ord_less_eq_rat @ X @ Y )
     => ( ( ~ ( ord_less_rat @ X @ Y ) )
        = ( X = Y ) ) ) ).

% antisym_conv2
thf(fact_1727_antisym__conv2,axiom,
    ! [X: num,Y: num] :
      ( ( ord_less_eq_num @ X @ Y )
     => ( ( ~ ( ord_less_num @ X @ Y ) )
        = ( X = Y ) ) ) ).

% antisym_conv2
thf(fact_1728_antisym__conv2,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_eq_nat @ X @ Y )
     => ( ( ~ ( ord_less_nat @ X @ Y ) )
        = ( X = Y ) ) ) ).

% antisym_conv2
thf(fact_1729_antisym__conv2,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_eq_int @ X @ Y )
     => ( ( ~ ( ord_less_int @ X @ Y ) )
        = ( X = Y ) ) ) ).

% antisym_conv2
thf(fact_1730_dense__ge,axiom,
    ! [Z: real,Y: real] :
      ( ! [X5: real] :
          ( ( ord_less_real @ Z @ X5 )
         => ( ord_less_eq_real @ Y @ X5 ) )
     => ( ord_less_eq_real @ Y @ Z ) ) ).

% dense_ge
thf(fact_1731_dense__ge,axiom,
    ! [Z: rat,Y: rat] :
      ( ! [X5: rat] :
          ( ( ord_less_rat @ Z @ X5 )
         => ( ord_less_eq_rat @ Y @ X5 ) )
     => ( ord_less_eq_rat @ Y @ Z ) ) ).

% dense_ge
thf(fact_1732_dense__le,axiom,
    ! [Y: real,Z: real] :
      ( ! [X5: real] :
          ( ( ord_less_real @ X5 @ Y )
         => ( ord_less_eq_real @ X5 @ Z ) )
     => ( ord_less_eq_real @ Y @ Z ) ) ).

% dense_le
thf(fact_1733_dense__le,axiom,
    ! [Y: rat,Z: rat] :
      ( ! [X5: rat] :
          ( ( ord_less_rat @ X5 @ Y )
         => ( ord_less_eq_rat @ X5 @ Z ) )
     => ( ord_less_eq_rat @ Y @ Z ) ) ).

% dense_le
thf(fact_1734_less__le__not__le,axiom,
    ( ord_less_real
    = ( ^ [X3: real,Y3: real] :
          ( ( ord_less_eq_real @ X3 @ Y3 )
          & ~ ( ord_less_eq_real @ Y3 @ X3 ) ) ) ) ).

% less_le_not_le
thf(fact_1735_less__le__not__le,axiom,
    ( ord_less_set_int
    = ( ^ [X3: set_int,Y3: set_int] :
          ( ( ord_less_eq_set_int @ X3 @ Y3 )
          & ~ ( ord_less_eq_set_int @ Y3 @ X3 ) ) ) ) ).

% less_le_not_le
thf(fact_1736_less__le__not__le,axiom,
    ( ord_less_rat
    = ( ^ [X3: rat,Y3: rat] :
          ( ( ord_less_eq_rat @ X3 @ Y3 )
          & ~ ( ord_less_eq_rat @ Y3 @ X3 ) ) ) ) ).

% less_le_not_le
thf(fact_1737_less__le__not__le,axiom,
    ( ord_less_num
    = ( ^ [X3: num,Y3: num] :
          ( ( ord_less_eq_num @ X3 @ Y3 )
          & ~ ( ord_less_eq_num @ Y3 @ X3 ) ) ) ) ).

% less_le_not_le
thf(fact_1738_less__le__not__le,axiom,
    ( ord_less_nat
    = ( ^ [X3: nat,Y3: nat] :
          ( ( ord_less_eq_nat @ X3 @ Y3 )
          & ~ ( ord_less_eq_nat @ Y3 @ X3 ) ) ) ) ).

% less_le_not_le
thf(fact_1739_less__le__not__le,axiom,
    ( ord_less_int
    = ( ^ [X3: int,Y3: int] :
          ( ( ord_less_eq_int @ X3 @ Y3 )
          & ~ ( ord_less_eq_int @ Y3 @ X3 ) ) ) ) ).

% less_le_not_le
thf(fact_1740_not__le__imp__less,axiom,
    ! [Y: real,X: real] :
      ( ~ ( ord_less_eq_real @ Y @ X )
     => ( ord_less_real @ X @ Y ) ) ).

% not_le_imp_less
thf(fact_1741_not__le__imp__less,axiom,
    ! [Y: rat,X: rat] :
      ( ~ ( ord_less_eq_rat @ Y @ X )
     => ( ord_less_rat @ X @ Y ) ) ).

% not_le_imp_less
thf(fact_1742_not__le__imp__less,axiom,
    ! [Y: num,X: num] :
      ( ~ ( ord_less_eq_num @ Y @ X )
     => ( ord_less_num @ X @ Y ) ) ).

% not_le_imp_less
thf(fact_1743_not__le__imp__less,axiom,
    ! [Y: nat,X: nat] :
      ( ~ ( ord_less_eq_nat @ Y @ X )
     => ( ord_less_nat @ X @ Y ) ) ).

% not_le_imp_less
thf(fact_1744_not__le__imp__less,axiom,
    ! [Y: int,X: int] :
      ( ~ ( ord_less_eq_int @ Y @ X )
     => ( ord_less_int @ X @ Y ) ) ).

% not_le_imp_less
thf(fact_1745_order_Oorder__iff__strict,axiom,
    ( ord_less_eq_real
    = ( ^ [A4: real,B4: real] :
          ( ( ord_less_real @ A4 @ B4 )
          | ( A4 = B4 ) ) ) ) ).

% order.order_iff_strict
thf(fact_1746_order_Oorder__iff__strict,axiom,
    ( ord_less_eq_set_int
    = ( ^ [A4: set_int,B4: set_int] :
          ( ( ord_less_set_int @ A4 @ B4 )
          | ( A4 = B4 ) ) ) ) ).

% order.order_iff_strict
thf(fact_1747_order_Oorder__iff__strict,axiom,
    ( ord_less_eq_rat
    = ( ^ [A4: rat,B4: rat] :
          ( ( ord_less_rat @ A4 @ B4 )
          | ( A4 = B4 ) ) ) ) ).

% order.order_iff_strict
thf(fact_1748_order_Oorder__iff__strict,axiom,
    ( ord_less_eq_num
    = ( ^ [A4: num,B4: num] :
          ( ( ord_less_num @ A4 @ B4 )
          | ( A4 = B4 ) ) ) ) ).

% order.order_iff_strict
thf(fact_1749_order_Oorder__iff__strict,axiom,
    ( ord_less_eq_nat
    = ( ^ [A4: nat,B4: nat] :
          ( ( ord_less_nat @ A4 @ B4 )
          | ( A4 = B4 ) ) ) ) ).

% order.order_iff_strict
thf(fact_1750_order_Oorder__iff__strict,axiom,
    ( ord_less_eq_int
    = ( ^ [A4: int,B4: int] :
          ( ( ord_less_int @ A4 @ B4 )
          | ( A4 = B4 ) ) ) ) ).

% order.order_iff_strict
thf(fact_1751_order_Ostrict__iff__order,axiom,
    ( ord_less_real
    = ( ^ [A4: real,B4: real] :
          ( ( ord_less_eq_real @ A4 @ B4 )
          & ( A4 != B4 ) ) ) ) ).

% order.strict_iff_order
thf(fact_1752_order_Ostrict__iff__order,axiom,
    ( ord_less_set_int
    = ( ^ [A4: set_int,B4: set_int] :
          ( ( ord_less_eq_set_int @ A4 @ B4 )
          & ( A4 != B4 ) ) ) ) ).

% order.strict_iff_order
thf(fact_1753_order_Ostrict__iff__order,axiom,
    ( ord_less_rat
    = ( ^ [A4: rat,B4: rat] :
          ( ( ord_less_eq_rat @ A4 @ B4 )
          & ( A4 != B4 ) ) ) ) ).

% order.strict_iff_order
thf(fact_1754_order_Ostrict__iff__order,axiom,
    ( ord_less_num
    = ( ^ [A4: num,B4: num] :
          ( ( ord_less_eq_num @ A4 @ B4 )
          & ( A4 != B4 ) ) ) ) ).

% order.strict_iff_order
thf(fact_1755_order_Ostrict__iff__order,axiom,
    ( ord_less_nat
    = ( ^ [A4: nat,B4: nat] :
          ( ( ord_less_eq_nat @ A4 @ B4 )
          & ( A4 != B4 ) ) ) ) ).

% order.strict_iff_order
thf(fact_1756_order_Ostrict__iff__order,axiom,
    ( ord_less_int
    = ( ^ [A4: int,B4: int] :
          ( ( ord_less_eq_int @ A4 @ B4 )
          & ( A4 != B4 ) ) ) ) ).

% order.strict_iff_order
thf(fact_1757_order_Ostrict__trans1,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_real @ B @ C )
       => ( ord_less_real @ A @ C ) ) ) ).

% order.strict_trans1
thf(fact_1758_order_Ostrict__trans1,axiom,
    ! [A: set_int,B: set_int,C: set_int] :
      ( ( ord_less_eq_set_int @ A @ B )
     => ( ( ord_less_set_int @ B @ C )
       => ( ord_less_set_int @ A @ C ) ) ) ).

% order.strict_trans1
thf(fact_1759_order_Ostrict__trans1,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_rat @ B @ C )
       => ( ord_less_rat @ A @ C ) ) ) ).

% order.strict_trans1
thf(fact_1760_order_Ostrict__trans1,axiom,
    ! [A: num,B: num,C: num] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( ord_less_num @ B @ C )
       => ( ord_less_num @ A @ C ) ) ) ).

% order.strict_trans1
thf(fact_1761_order_Ostrict__trans1,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_nat @ B @ C )
       => ( ord_less_nat @ A @ C ) ) ) ).

% order.strict_trans1
thf(fact_1762_order_Ostrict__trans1,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_int @ B @ C )
       => ( ord_less_int @ A @ C ) ) ) ).

% order.strict_trans1
thf(fact_1763_order_Ostrict__trans2,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_eq_real @ B @ C )
       => ( ord_less_real @ A @ C ) ) ) ).

% order.strict_trans2
thf(fact_1764_order_Ostrict__trans2,axiom,
    ! [A: set_int,B: set_int,C: set_int] :
      ( ( ord_less_set_int @ A @ B )
     => ( ( ord_less_eq_set_int @ B @ C )
       => ( ord_less_set_int @ A @ C ) ) ) ).

% order.strict_trans2
thf(fact_1765_order_Ostrict__trans2,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_eq_rat @ B @ C )
       => ( ord_less_rat @ A @ C ) ) ) ).

% order.strict_trans2
thf(fact_1766_order_Ostrict__trans2,axiom,
    ! [A: num,B: num,C: num] :
      ( ( ord_less_num @ A @ B )
     => ( ( ord_less_eq_num @ B @ C )
       => ( ord_less_num @ A @ C ) ) ) ).

% order.strict_trans2
thf(fact_1767_order_Ostrict__trans2,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ord_less_nat @ A @ C ) ) ) ).

% order.strict_trans2
thf(fact_1768_order_Ostrict__trans2,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_eq_int @ B @ C )
       => ( ord_less_int @ A @ C ) ) ) ).

% order.strict_trans2
thf(fact_1769_order_Ostrict__iff__not,axiom,
    ( ord_less_real
    = ( ^ [A4: real,B4: real] :
          ( ( ord_less_eq_real @ A4 @ B4 )
          & ~ ( ord_less_eq_real @ B4 @ A4 ) ) ) ) ).

% order.strict_iff_not
thf(fact_1770_order_Ostrict__iff__not,axiom,
    ( ord_less_set_int
    = ( ^ [A4: set_int,B4: set_int] :
          ( ( ord_less_eq_set_int @ A4 @ B4 )
          & ~ ( ord_less_eq_set_int @ B4 @ A4 ) ) ) ) ).

% order.strict_iff_not
thf(fact_1771_order_Ostrict__iff__not,axiom,
    ( ord_less_rat
    = ( ^ [A4: rat,B4: rat] :
          ( ( ord_less_eq_rat @ A4 @ B4 )
          & ~ ( ord_less_eq_rat @ B4 @ A4 ) ) ) ) ).

% order.strict_iff_not
thf(fact_1772_order_Ostrict__iff__not,axiom,
    ( ord_less_num
    = ( ^ [A4: num,B4: num] :
          ( ( ord_less_eq_num @ A4 @ B4 )
          & ~ ( ord_less_eq_num @ B4 @ A4 ) ) ) ) ).

% order.strict_iff_not
thf(fact_1773_order_Ostrict__iff__not,axiom,
    ( ord_less_nat
    = ( ^ [A4: nat,B4: nat] :
          ( ( ord_less_eq_nat @ A4 @ B4 )
          & ~ ( ord_less_eq_nat @ B4 @ A4 ) ) ) ) ).

% order.strict_iff_not
thf(fact_1774_order_Ostrict__iff__not,axiom,
    ( ord_less_int
    = ( ^ [A4: int,B4: int] :
          ( ( ord_less_eq_int @ A4 @ B4 )
          & ~ ( ord_less_eq_int @ B4 @ A4 ) ) ) ) ).

% order.strict_iff_not
thf(fact_1775_dense__ge__bounded,axiom,
    ! [Z: real,X: real,Y: real] :
      ( ( ord_less_real @ Z @ X )
     => ( ! [W2: real] :
            ( ( ord_less_real @ Z @ W2 )
           => ( ( ord_less_real @ W2 @ X )
             => ( ord_less_eq_real @ Y @ W2 ) ) )
       => ( ord_less_eq_real @ Y @ Z ) ) ) ).

% dense_ge_bounded
thf(fact_1776_dense__ge__bounded,axiom,
    ! [Z: rat,X: rat,Y: rat] :
      ( ( ord_less_rat @ Z @ X )
     => ( ! [W2: rat] :
            ( ( ord_less_rat @ Z @ W2 )
           => ( ( ord_less_rat @ W2 @ X )
             => ( ord_less_eq_rat @ Y @ W2 ) ) )
       => ( ord_less_eq_rat @ Y @ Z ) ) ) ).

% dense_ge_bounded
thf(fact_1777_dense__le__bounded,axiom,
    ! [X: real,Y: real,Z: real] :
      ( ( ord_less_real @ X @ Y )
     => ( ! [W2: real] :
            ( ( ord_less_real @ X @ W2 )
           => ( ( ord_less_real @ W2 @ Y )
             => ( ord_less_eq_real @ W2 @ Z ) ) )
       => ( ord_less_eq_real @ Y @ Z ) ) ) ).

% dense_le_bounded
thf(fact_1778_dense__le__bounded,axiom,
    ! [X: rat,Y: rat,Z: rat] :
      ( ( ord_less_rat @ X @ Y )
     => ( ! [W2: rat] :
            ( ( ord_less_rat @ X @ W2 )
           => ( ( ord_less_rat @ W2 @ Y )
             => ( ord_less_eq_rat @ W2 @ Z ) ) )
       => ( ord_less_eq_rat @ Y @ Z ) ) ) ).

% dense_le_bounded
thf(fact_1779_dual__order_Oorder__iff__strict,axiom,
    ( ord_less_eq_real
    = ( ^ [B4: real,A4: real] :
          ( ( ord_less_real @ B4 @ A4 )
          | ( A4 = B4 ) ) ) ) ).

% dual_order.order_iff_strict
thf(fact_1780_dual__order_Oorder__iff__strict,axiom,
    ( ord_less_eq_set_int
    = ( ^ [B4: set_int,A4: set_int] :
          ( ( ord_less_set_int @ B4 @ A4 )
          | ( A4 = B4 ) ) ) ) ).

% dual_order.order_iff_strict
thf(fact_1781_dual__order_Oorder__iff__strict,axiom,
    ( ord_less_eq_rat
    = ( ^ [B4: rat,A4: rat] :
          ( ( ord_less_rat @ B4 @ A4 )
          | ( A4 = B4 ) ) ) ) ).

% dual_order.order_iff_strict
thf(fact_1782_dual__order_Oorder__iff__strict,axiom,
    ( ord_less_eq_num
    = ( ^ [B4: num,A4: num] :
          ( ( ord_less_num @ B4 @ A4 )
          | ( A4 = B4 ) ) ) ) ).

% dual_order.order_iff_strict
thf(fact_1783_dual__order_Oorder__iff__strict,axiom,
    ( ord_less_eq_nat
    = ( ^ [B4: nat,A4: nat] :
          ( ( ord_less_nat @ B4 @ A4 )
          | ( A4 = B4 ) ) ) ) ).

% dual_order.order_iff_strict
thf(fact_1784_dual__order_Oorder__iff__strict,axiom,
    ( ord_less_eq_int
    = ( ^ [B4: int,A4: int] :
          ( ( ord_less_int @ B4 @ A4 )
          | ( A4 = B4 ) ) ) ) ).

% dual_order.order_iff_strict
thf(fact_1785_dual__order_Ostrict__iff__order,axiom,
    ( ord_less_real
    = ( ^ [B4: real,A4: real] :
          ( ( ord_less_eq_real @ B4 @ A4 )
          & ( A4 != B4 ) ) ) ) ).

% dual_order.strict_iff_order
thf(fact_1786_dual__order_Ostrict__iff__order,axiom,
    ( ord_less_set_int
    = ( ^ [B4: set_int,A4: set_int] :
          ( ( ord_less_eq_set_int @ B4 @ A4 )
          & ( A4 != B4 ) ) ) ) ).

% dual_order.strict_iff_order
thf(fact_1787_dual__order_Ostrict__iff__order,axiom,
    ( ord_less_rat
    = ( ^ [B4: rat,A4: rat] :
          ( ( ord_less_eq_rat @ B4 @ A4 )
          & ( A4 != B4 ) ) ) ) ).

% dual_order.strict_iff_order
thf(fact_1788_dual__order_Ostrict__iff__order,axiom,
    ( ord_less_num
    = ( ^ [B4: num,A4: num] :
          ( ( ord_less_eq_num @ B4 @ A4 )
          & ( A4 != B4 ) ) ) ) ).

% dual_order.strict_iff_order
thf(fact_1789_dual__order_Ostrict__iff__order,axiom,
    ( ord_less_nat
    = ( ^ [B4: nat,A4: nat] :
          ( ( ord_less_eq_nat @ B4 @ A4 )
          & ( A4 != B4 ) ) ) ) ).

% dual_order.strict_iff_order
thf(fact_1790_dual__order_Ostrict__iff__order,axiom,
    ( ord_less_int
    = ( ^ [B4: int,A4: int] :
          ( ( ord_less_eq_int @ B4 @ A4 )
          & ( A4 != B4 ) ) ) ) ).

% dual_order.strict_iff_order
thf(fact_1791_dual__order_Ostrict__trans1,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_eq_real @ B @ A )
     => ( ( ord_less_real @ C @ B )
       => ( ord_less_real @ C @ A ) ) ) ).

% dual_order.strict_trans1
thf(fact_1792_dual__order_Ostrict__trans1,axiom,
    ! [B: set_int,A: set_int,C: set_int] :
      ( ( ord_less_eq_set_int @ B @ A )
     => ( ( ord_less_set_int @ C @ B )
       => ( ord_less_set_int @ C @ A ) ) ) ).

% dual_order.strict_trans1
thf(fact_1793_dual__order_Ostrict__trans1,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( ord_less_eq_rat @ B @ A )
     => ( ( ord_less_rat @ C @ B )
       => ( ord_less_rat @ C @ A ) ) ) ).

% dual_order.strict_trans1
thf(fact_1794_dual__order_Ostrict__trans1,axiom,
    ! [B: num,A: num,C: num] :
      ( ( ord_less_eq_num @ B @ A )
     => ( ( ord_less_num @ C @ B )
       => ( ord_less_num @ C @ A ) ) ) ).

% dual_order.strict_trans1
thf(fact_1795_dual__order_Ostrict__trans1,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( ord_less_nat @ C @ B )
       => ( ord_less_nat @ C @ A ) ) ) ).

% dual_order.strict_trans1
thf(fact_1796_dual__order_Ostrict__trans1,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_less_eq_int @ B @ A )
     => ( ( ord_less_int @ C @ B )
       => ( ord_less_int @ C @ A ) ) ) ).

% dual_order.strict_trans1
thf(fact_1797_dual__order_Ostrict__trans2,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_real @ B @ A )
     => ( ( ord_less_eq_real @ C @ B )
       => ( ord_less_real @ C @ A ) ) ) ).

% dual_order.strict_trans2
thf(fact_1798_dual__order_Ostrict__trans2,axiom,
    ! [B: set_int,A: set_int,C: set_int] :
      ( ( ord_less_set_int @ B @ A )
     => ( ( ord_less_eq_set_int @ C @ B )
       => ( ord_less_set_int @ C @ A ) ) ) ).

% dual_order.strict_trans2
thf(fact_1799_dual__order_Ostrict__trans2,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( ord_less_rat @ B @ A )
     => ( ( ord_less_eq_rat @ C @ B )
       => ( ord_less_rat @ C @ A ) ) ) ).

% dual_order.strict_trans2
thf(fact_1800_dual__order_Ostrict__trans2,axiom,
    ! [B: num,A: num,C: num] :
      ( ( ord_less_num @ B @ A )
     => ( ( ord_less_eq_num @ C @ B )
       => ( ord_less_num @ C @ A ) ) ) ).

% dual_order.strict_trans2
thf(fact_1801_dual__order_Ostrict__trans2,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ord_less_nat @ B @ A )
     => ( ( ord_less_eq_nat @ C @ B )
       => ( ord_less_nat @ C @ A ) ) ) ).

% dual_order.strict_trans2
thf(fact_1802_dual__order_Ostrict__trans2,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_less_int @ B @ A )
     => ( ( ord_less_eq_int @ C @ B )
       => ( ord_less_int @ C @ A ) ) ) ).

% dual_order.strict_trans2
thf(fact_1803_dual__order_Ostrict__iff__not,axiom,
    ( ord_less_real
    = ( ^ [B4: real,A4: real] :
          ( ( ord_less_eq_real @ B4 @ A4 )
          & ~ ( ord_less_eq_real @ A4 @ B4 ) ) ) ) ).

% dual_order.strict_iff_not
thf(fact_1804_dual__order_Ostrict__iff__not,axiom,
    ( ord_less_set_int
    = ( ^ [B4: set_int,A4: set_int] :
          ( ( ord_less_eq_set_int @ B4 @ A4 )
          & ~ ( ord_less_eq_set_int @ A4 @ B4 ) ) ) ) ).

% dual_order.strict_iff_not
thf(fact_1805_dual__order_Ostrict__iff__not,axiom,
    ( ord_less_rat
    = ( ^ [B4: rat,A4: rat] :
          ( ( ord_less_eq_rat @ B4 @ A4 )
          & ~ ( ord_less_eq_rat @ A4 @ B4 ) ) ) ) ).

% dual_order.strict_iff_not
thf(fact_1806_dual__order_Ostrict__iff__not,axiom,
    ( ord_less_num
    = ( ^ [B4: num,A4: num] :
          ( ( ord_less_eq_num @ B4 @ A4 )
          & ~ ( ord_less_eq_num @ A4 @ B4 ) ) ) ) ).

% dual_order.strict_iff_not
thf(fact_1807_dual__order_Ostrict__iff__not,axiom,
    ( ord_less_nat
    = ( ^ [B4: nat,A4: nat] :
          ( ( ord_less_eq_nat @ B4 @ A4 )
          & ~ ( ord_less_eq_nat @ A4 @ B4 ) ) ) ) ).

% dual_order.strict_iff_not
thf(fact_1808_dual__order_Ostrict__iff__not,axiom,
    ( ord_less_int
    = ( ^ [B4: int,A4: int] :
          ( ( ord_less_eq_int @ B4 @ A4 )
          & ~ ( ord_less_eq_int @ A4 @ B4 ) ) ) ) ).

% dual_order.strict_iff_not
thf(fact_1809_order_Ostrict__implies__order,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ( ord_less_eq_real @ A @ B ) ) ).

% order.strict_implies_order
thf(fact_1810_order_Ostrict__implies__order,axiom,
    ! [A: set_int,B: set_int] :
      ( ( ord_less_set_int @ A @ B )
     => ( ord_less_eq_set_int @ A @ B ) ) ).

% order.strict_implies_order
thf(fact_1811_order_Ostrict__implies__order,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ord_less_eq_rat @ A @ B ) ) ).

% order.strict_implies_order
thf(fact_1812_order_Ostrict__implies__order,axiom,
    ! [A: num,B: num] :
      ( ( ord_less_num @ A @ B )
     => ( ord_less_eq_num @ A @ B ) ) ).

% order.strict_implies_order
thf(fact_1813_order_Ostrict__implies__order,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ord_less_eq_nat @ A @ B ) ) ).

% order.strict_implies_order
thf(fact_1814_order_Ostrict__implies__order,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ B )
     => ( ord_less_eq_int @ A @ B ) ) ).

% order.strict_implies_order
thf(fact_1815_dual__order_Ostrict__implies__order,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_real @ B @ A )
     => ( ord_less_eq_real @ B @ A ) ) ).

% dual_order.strict_implies_order
thf(fact_1816_dual__order_Ostrict__implies__order,axiom,
    ! [B: set_int,A: set_int] :
      ( ( ord_less_set_int @ B @ A )
     => ( ord_less_eq_set_int @ B @ A ) ) ).

% dual_order.strict_implies_order
thf(fact_1817_dual__order_Ostrict__implies__order,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_rat @ B @ A )
     => ( ord_less_eq_rat @ B @ A ) ) ).

% dual_order.strict_implies_order
thf(fact_1818_dual__order_Ostrict__implies__order,axiom,
    ! [B: num,A: num] :
      ( ( ord_less_num @ B @ A )
     => ( ord_less_eq_num @ B @ A ) ) ).

% dual_order.strict_implies_order
thf(fact_1819_dual__order_Ostrict__implies__order,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ B @ A )
     => ( ord_less_eq_nat @ B @ A ) ) ).

% dual_order.strict_implies_order
thf(fact_1820_dual__order_Ostrict__implies__order,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ B @ A )
     => ( ord_less_eq_int @ B @ A ) ) ).

% dual_order.strict_implies_order
thf(fact_1821_order__le__less,axiom,
    ( ord_less_eq_real
    = ( ^ [X3: real,Y3: real] :
          ( ( ord_less_real @ X3 @ Y3 )
          | ( X3 = Y3 ) ) ) ) ).

% order_le_less
thf(fact_1822_order__le__less,axiom,
    ( ord_less_eq_set_int
    = ( ^ [X3: set_int,Y3: set_int] :
          ( ( ord_less_set_int @ X3 @ Y3 )
          | ( X3 = Y3 ) ) ) ) ).

% order_le_less
thf(fact_1823_order__le__less,axiom,
    ( ord_less_eq_rat
    = ( ^ [X3: rat,Y3: rat] :
          ( ( ord_less_rat @ X3 @ Y3 )
          | ( X3 = Y3 ) ) ) ) ).

% order_le_less
thf(fact_1824_order__le__less,axiom,
    ( ord_less_eq_num
    = ( ^ [X3: num,Y3: num] :
          ( ( ord_less_num @ X3 @ Y3 )
          | ( X3 = Y3 ) ) ) ) ).

% order_le_less
thf(fact_1825_order__le__less,axiom,
    ( ord_less_eq_nat
    = ( ^ [X3: nat,Y3: nat] :
          ( ( ord_less_nat @ X3 @ Y3 )
          | ( X3 = Y3 ) ) ) ) ).

% order_le_less
thf(fact_1826_order__le__less,axiom,
    ( ord_less_eq_int
    = ( ^ [X3: int,Y3: int] :
          ( ( ord_less_int @ X3 @ Y3 )
          | ( X3 = Y3 ) ) ) ) ).

% order_le_less
thf(fact_1827_order__less__le,axiom,
    ( ord_less_real
    = ( ^ [X3: real,Y3: real] :
          ( ( ord_less_eq_real @ X3 @ Y3 )
          & ( X3 != Y3 ) ) ) ) ).

% order_less_le
thf(fact_1828_order__less__le,axiom,
    ( ord_less_set_int
    = ( ^ [X3: set_int,Y3: set_int] :
          ( ( ord_less_eq_set_int @ X3 @ Y3 )
          & ( X3 != Y3 ) ) ) ) ).

% order_less_le
thf(fact_1829_order__less__le,axiom,
    ( ord_less_rat
    = ( ^ [X3: rat,Y3: rat] :
          ( ( ord_less_eq_rat @ X3 @ Y3 )
          & ( X3 != Y3 ) ) ) ) ).

% order_less_le
thf(fact_1830_order__less__le,axiom,
    ( ord_less_num
    = ( ^ [X3: num,Y3: num] :
          ( ( ord_less_eq_num @ X3 @ Y3 )
          & ( X3 != Y3 ) ) ) ) ).

% order_less_le
thf(fact_1831_order__less__le,axiom,
    ( ord_less_nat
    = ( ^ [X3: nat,Y3: nat] :
          ( ( ord_less_eq_nat @ X3 @ Y3 )
          & ( X3 != Y3 ) ) ) ) ).

% order_less_le
thf(fact_1832_order__less__le,axiom,
    ( ord_less_int
    = ( ^ [X3: int,Y3: int] :
          ( ( ord_less_eq_int @ X3 @ Y3 )
          & ( X3 != Y3 ) ) ) ) ).

% order_less_le
thf(fact_1833_linorder__not__le,axiom,
    ! [X: real,Y: real] :
      ( ( ~ ( ord_less_eq_real @ X @ Y ) )
      = ( ord_less_real @ Y @ X ) ) ).

% linorder_not_le
thf(fact_1834_linorder__not__le,axiom,
    ! [X: rat,Y: rat] :
      ( ( ~ ( ord_less_eq_rat @ X @ Y ) )
      = ( ord_less_rat @ Y @ X ) ) ).

% linorder_not_le
thf(fact_1835_linorder__not__le,axiom,
    ! [X: num,Y: num] :
      ( ( ~ ( ord_less_eq_num @ X @ Y ) )
      = ( ord_less_num @ Y @ X ) ) ).

% linorder_not_le
thf(fact_1836_linorder__not__le,axiom,
    ! [X: nat,Y: nat] :
      ( ( ~ ( ord_less_eq_nat @ X @ Y ) )
      = ( ord_less_nat @ Y @ X ) ) ).

% linorder_not_le
thf(fact_1837_linorder__not__le,axiom,
    ! [X: int,Y: int] :
      ( ( ~ ( ord_less_eq_int @ X @ Y ) )
      = ( ord_less_int @ Y @ X ) ) ).

% linorder_not_le
thf(fact_1838_linorder__not__less,axiom,
    ! [X: real,Y: real] :
      ( ( ~ ( ord_less_real @ X @ Y ) )
      = ( ord_less_eq_real @ Y @ X ) ) ).

% linorder_not_less
thf(fact_1839_linorder__not__less,axiom,
    ! [X: rat,Y: rat] :
      ( ( ~ ( ord_less_rat @ X @ Y ) )
      = ( ord_less_eq_rat @ Y @ X ) ) ).

% linorder_not_less
thf(fact_1840_linorder__not__less,axiom,
    ! [X: num,Y: num] :
      ( ( ~ ( ord_less_num @ X @ Y ) )
      = ( ord_less_eq_num @ Y @ X ) ) ).

% linorder_not_less
thf(fact_1841_linorder__not__less,axiom,
    ! [X: nat,Y: nat] :
      ( ( ~ ( ord_less_nat @ X @ Y ) )
      = ( ord_less_eq_nat @ Y @ X ) ) ).

% linorder_not_less
thf(fact_1842_linorder__not__less,axiom,
    ! [X: int,Y: int] :
      ( ( ~ ( ord_less_int @ X @ Y ) )
      = ( ord_less_eq_int @ Y @ X ) ) ).

% linorder_not_less
thf(fact_1843_order__less__imp__le,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ X @ Y )
     => ( ord_less_eq_real @ X @ Y ) ) ).

% order_less_imp_le
thf(fact_1844_order__less__imp__le,axiom,
    ! [X: set_int,Y: set_int] :
      ( ( ord_less_set_int @ X @ Y )
     => ( ord_less_eq_set_int @ X @ Y ) ) ).

% order_less_imp_le
thf(fact_1845_order__less__imp__le,axiom,
    ! [X: rat,Y: rat] :
      ( ( ord_less_rat @ X @ Y )
     => ( ord_less_eq_rat @ X @ Y ) ) ).

% order_less_imp_le
thf(fact_1846_order__less__imp__le,axiom,
    ! [X: num,Y: num] :
      ( ( ord_less_num @ X @ Y )
     => ( ord_less_eq_num @ X @ Y ) ) ).

% order_less_imp_le
thf(fact_1847_order__less__imp__le,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_nat @ X @ Y )
     => ( ord_less_eq_nat @ X @ Y ) ) ).

% order_less_imp_le
thf(fact_1848_order__less__imp__le,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_int @ X @ Y )
     => ( ord_less_eq_int @ X @ Y ) ) ).

% order_less_imp_le
thf(fact_1849_order__le__neq__trans,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( A != B )
       => ( ord_less_real @ A @ B ) ) ) ).

% order_le_neq_trans
thf(fact_1850_order__le__neq__trans,axiom,
    ! [A: set_int,B: set_int] :
      ( ( ord_less_eq_set_int @ A @ B )
     => ( ( A != B )
       => ( ord_less_set_int @ A @ B ) ) ) ).

% order_le_neq_trans
thf(fact_1851_order__le__neq__trans,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( A != B )
       => ( ord_less_rat @ A @ B ) ) ) ).

% order_le_neq_trans
thf(fact_1852_order__le__neq__trans,axiom,
    ! [A: num,B: num] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( A != B )
       => ( ord_less_num @ A @ B ) ) ) ).

% order_le_neq_trans
thf(fact_1853_order__le__neq__trans,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( A != B )
       => ( ord_less_nat @ A @ B ) ) ) ).

% order_le_neq_trans
thf(fact_1854_order__le__neq__trans,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( A != B )
       => ( ord_less_int @ A @ B ) ) ) ).

% order_le_neq_trans
thf(fact_1855_order__neq__le__trans,axiom,
    ! [A: real,B: real] :
      ( ( A != B )
     => ( ( ord_less_eq_real @ A @ B )
       => ( ord_less_real @ A @ B ) ) ) ).

% order_neq_le_trans
thf(fact_1856_order__neq__le__trans,axiom,
    ! [A: set_int,B: set_int] :
      ( ( A != B )
     => ( ( ord_less_eq_set_int @ A @ B )
       => ( ord_less_set_int @ A @ B ) ) ) ).

% order_neq_le_trans
thf(fact_1857_order__neq__le__trans,axiom,
    ! [A: rat,B: rat] :
      ( ( A != B )
     => ( ( ord_less_eq_rat @ A @ B )
       => ( ord_less_rat @ A @ B ) ) ) ).

% order_neq_le_trans
thf(fact_1858_order__neq__le__trans,axiom,
    ! [A: num,B: num] :
      ( ( A != B )
     => ( ( ord_less_eq_num @ A @ B )
       => ( ord_less_num @ A @ B ) ) ) ).

% order_neq_le_trans
thf(fact_1859_order__neq__le__trans,axiom,
    ! [A: nat,B: nat] :
      ( ( A != B )
     => ( ( ord_less_eq_nat @ A @ B )
       => ( ord_less_nat @ A @ B ) ) ) ).

% order_neq_le_trans
thf(fact_1860_order__neq__le__trans,axiom,
    ! [A: int,B: int] :
      ( ( A != B )
     => ( ( ord_less_eq_int @ A @ B )
       => ( ord_less_int @ A @ B ) ) ) ).

% order_neq_le_trans
thf(fact_1861_order__le__less__trans,axiom,
    ! [X: real,Y: real,Z: real] :
      ( ( ord_less_eq_real @ X @ Y )
     => ( ( ord_less_real @ Y @ Z )
       => ( ord_less_real @ X @ Z ) ) ) ).

% order_le_less_trans
thf(fact_1862_order__le__less__trans,axiom,
    ! [X: set_int,Y: set_int,Z: set_int] :
      ( ( ord_less_eq_set_int @ X @ Y )
     => ( ( ord_less_set_int @ Y @ Z )
       => ( ord_less_set_int @ X @ Z ) ) ) ).

% order_le_less_trans
thf(fact_1863_order__le__less__trans,axiom,
    ! [X: rat,Y: rat,Z: rat] :
      ( ( ord_less_eq_rat @ X @ Y )
     => ( ( ord_less_rat @ Y @ Z )
       => ( ord_less_rat @ X @ Z ) ) ) ).

% order_le_less_trans
thf(fact_1864_order__le__less__trans,axiom,
    ! [X: num,Y: num,Z: num] :
      ( ( ord_less_eq_num @ X @ Y )
     => ( ( ord_less_num @ Y @ Z )
       => ( ord_less_num @ X @ Z ) ) ) ).

% order_le_less_trans
thf(fact_1865_order__le__less__trans,axiom,
    ! [X: nat,Y: nat,Z: nat] :
      ( ( ord_less_eq_nat @ X @ Y )
     => ( ( ord_less_nat @ Y @ Z )
       => ( ord_less_nat @ X @ Z ) ) ) ).

% order_le_less_trans
thf(fact_1866_order__le__less__trans,axiom,
    ! [X: int,Y: int,Z: int] :
      ( ( ord_less_eq_int @ X @ Y )
     => ( ( ord_less_int @ Y @ Z )
       => ( ord_less_int @ X @ Z ) ) ) ).

% order_le_less_trans
thf(fact_1867_order__less__le__trans,axiom,
    ! [X: real,Y: real,Z: real] :
      ( ( ord_less_real @ X @ Y )
     => ( ( ord_less_eq_real @ Y @ Z )
       => ( ord_less_real @ X @ Z ) ) ) ).

% order_less_le_trans
thf(fact_1868_order__less__le__trans,axiom,
    ! [X: set_int,Y: set_int,Z: set_int] :
      ( ( ord_less_set_int @ X @ Y )
     => ( ( ord_less_eq_set_int @ Y @ Z )
       => ( ord_less_set_int @ X @ Z ) ) ) ).

% order_less_le_trans
thf(fact_1869_order__less__le__trans,axiom,
    ! [X: rat,Y: rat,Z: rat] :
      ( ( ord_less_rat @ X @ Y )
     => ( ( ord_less_eq_rat @ Y @ Z )
       => ( ord_less_rat @ X @ Z ) ) ) ).

% order_less_le_trans
thf(fact_1870_order__less__le__trans,axiom,
    ! [X: num,Y: num,Z: num] :
      ( ( ord_less_num @ X @ Y )
     => ( ( ord_less_eq_num @ Y @ Z )
       => ( ord_less_num @ X @ Z ) ) ) ).

% order_less_le_trans
thf(fact_1871_order__less__le__trans,axiom,
    ! [X: nat,Y: nat,Z: nat] :
      ( ( ord_less_nat @ X @ Y )
     => ( ( ord_less_eq_nat @ Y @ Z )
       => ( ord_less_nat @ X @ Z ) ) ) ).

% order_less_le_trans
thf(fact_1872_order__less__le__trans,axiom,
    ! [X: int,Y: int,Z: int] :
      ( ( ord_less_int @ X @ Y )
     => ( ( ord_less_eq_int @ Y @ Z )
       => ( ord_less_int @ X @ Z ) ) ) ).

% order_less_le_trans
thf(fact_1873_order__le__less__subst1,axiom,
    ! [A: real,F: real > real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ ( F @ B ) )
     => ( ( ord_less_real @ B @ C )
       => ( ! [X5: real,Y5: real] :
              ( ( ord_less_real @ X5 @ Y5 )
             => ( ord_less_real @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_1874_order__le__less__subst1,axiom,
    ! [A: real,F: rat > real,B: rat,C: rat] :
      ( ( ord_less_eq_real @ A @ ( F @ B ) )
     => ( ( ord_less_rat @ B @ C )
       => ( ! [X5: rat,Y5: rat] :
              ( ( ord_less_rat @ X5 @ Y5 )
             => ( ord_less_real @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_1875_order__le__less__subst1,axiom,
    ! [A: real,F: num > real,B: num,C: num] :
      ( ( ord_less_eq_real @ A @ ( F @ B ) )
     => ( ( ord_less_num @ B @ C )
       => ( ! [X5: num,Y5: num] :
              ( ( ord_less_num @ X5 @ Y5 )
             => ( ord_less_real @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_1876_order__le__less__subst1,axiom,
    ! [A: real,F: nat > real,B: nat,C: nat] :
      ( ( ord_less_eq_real @ A @ ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X5: nat,Y5: nat] :
              ( ( ord_less_nat @ X5 @ Y5 )
             => ( ord_less_real @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_1877_order__le__less__subst1,axiom,
    ! [A: real,F: int > real,B: int,C: int] :
      ( ( ord_less_eq_real @ A @ ( F @ B ) )
     => ( ( ord_less_int @ B @ C )
       => ( ! [X5: int,Y5: int] :
              ( ( ord_less_int @ X5 @ Y5 )
             => ( ord_less_real @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_1878_order__le__less__subst1,axiom,
    ! [A: rat,F: real > rat,B: real,C: real] :
      ( ( ord_less_eq_rat @ A @ ( F @ B ) )
     => ( ( ord_less_real @ B @ C )
       => ( ! [X5: real,Y5: real] :
              ( ( ord_less_real @ X5 @ Y5 )
             => ( ord_less_rat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_1879_order__le__less__subst1,axiom,
    ! [A: rat,F: rat > rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ ( F @ B ) )
     => ( ( ord_less_rat @ B @ C )
       => ( ! [X5: rat,Y5: rat] :
              ( ( ord_less_rat @ X5 @ Y5 )
             => ( ord_less_rat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_1880_order__le__less__subst1,axiom,
    ! [A: rat,F: num > rat,B: num,C: num] :
      ( ( ord_less_eq_rat @ A @ ( F @ B ) )
     => ( ( ord_less_num @ B @ C )
       => ( ! [X5: num,Y5: num] :
              ( ( ord_less_num @ X5 @ Y5 )
             => ( ord_less_rat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_1881_order__le__less__subst1,axiom,
    ! [A: rat,F: nat > rat,B: nat,C: nat] :
      ( ( ord_less_eq_rat @ A @ ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X5: nat,Y5: nat] :
              ( ( ord_less_nat @ X5 @ Y5 )
             => ( ord_less_rat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_1882_order__le__less__subst1,axiom,
    ! [A: rat,F: int > rat,B: int,C: int] :
      ( ( ord_less_eq_rat @ A @ ( F @ B ) )
     => ( ( ord_less_int @ B @ C )
       => ( ! [X5: int,Y5: int] :
              ( ( ord_less_int @ X5 @ Y5 )
             => ( ord_less_rat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_1883_order__le__less__subst2,axiom,
    ! [A: rat,B: rat,F: rat > real,C: real] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_real @ ( F @ B ) @ C )
       => ( ! [X5: rat,Y5: rat] :
              ( ( ord_less_eq_rat @ X5 @ Y5 )
             => ( ord_less_eq_real @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_1884_order__le__less__subst2,axiom,
    ! [A: rat,B: rat,F: rat > rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_rat @ ( F @ B ) @ C )
       => ( ! [X5: rat,Y5: rat] :
              ( ( ord_less_eq_rat @ X5 @ Y5 )
             => ( ord_less_eq_rat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_rat @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_1885_order__le__less__subst2,axiom,
    ! [A: rat,B: rat,F: rat > num,C: num] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_num @ ( F @ B ) @ C )
       => ( ! [X5: rat,Y5: rat] :
              ( ( ord_less_eq_rat @ X5 @ Y5 )
             => ( ord_less_eq_num @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_num @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_1886_order__le__less__subst2,axiom,
    ! [A: rat,B: rat,F: rat > nat,C: nat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_nat @ ( F @ B ) @ C )
       => ( ! [X5: rat,Y5: rat] :
              ( ( ord_less_eq_rat @ X5 @ Y5 )
             => ( ord_less_eq_nat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_1887_order__le__less__subst2,axiom,
    ! [A: rat,B: rat,F: rat > int,C: int] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_int @ ( F @ B ) @ C )
       => ( ! [X5: rat,Y5: rat] :
              ( ( ord_less_eq_rat @ X5 @ Y5 )
             => ( ord_less_eq_int @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_1888_order__le__less__subst2,axiom,
    ! [A: num,B: num,F: num > real,C: real] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( ord_less_real @ ( F @ B ) @ C )
       => ( ! [X5: num,Y5: num] :
              ( ( ord_less_eq_num @ X5 @ Y5 )
             => ( ord_less_eq_real @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_1889_order__le__less__subst2,axiom,
    ! [A: num,B: num,F: num > rat,C: rat] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( ord_less_rat @ ( F @ B ) @ C )
       => ( ! [X5: num,Y5: num] :
              ( ( ord_less_eq_num @ X5 @ Y5 )
             => ( ord_less_eq_rat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_rat @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_1890_order__le__less__subst2,axiom,
    ! [A: num,B: num,F: num > num,C: num] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( ord_less_num @ ( F @ B ) @ C )
       => ( ! [X5: num,Y5: num] :
              ( ( ord_less_eq_num @ X5 @ Y5 )
             => ( ord_less_eq_num @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_num @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_1891_order__le__less__subst2,axiom,
    ! [A: num,B: num,F: num > nat,C: nat] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( ord_less_nat @ ( F @ B ) @ C )
       => ( ! [X5: num,Y5: num] :
              ( ( ord_less_eq_num @ X5 @ Y5 )
             => ( ord_less_eq_nat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_1892_order__le__less__subst2,axiom,
    ! [A: num,B: num,F: num > int,C: int] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( ord_less_int @ ( F @ B ) @ C )
       => ( ! [X5: num,Y5: num] :
              ( ( ord_less_eq_num @ X5 @ Y5 )
             => ( ord_less_eq_int @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_1893_order__less__le__subst1,axiom,
    ! [A: real,F: rat > real,B: rat,C: rat] :
      ( ( ord_less_real @ A @ ( F @ B ) )
     => ( ( ord_less_eq_rat @ B @ C )
       => ( ! [X5: rat,Y5: rat] :
              ( ( ord_less_eq_rat @ X5 @ Y5 )
             => ( ord_less_eq_real @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_1894_order__less__le__subst1,axiom,
    ! [A: rat,F: rat > rat,B: rat,C: rat] :
      ( ( ord_less_rat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_rat @ B @ C )
       => ( ! [X5: rat,Y5: rat] :
              ( ( ord_less_eq_rat @ X5 @ Y5 )
             => ( ord_less_eq_rat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_1895_order__less__le__subst1,axiom,
    ! [A: num,F: rat > num,B: rat,C: rat] :
      ( ( ord_less_num @ A @ ( F @ B ) )
     => ( ( ord_less_eq_rat @ B @ C )
       => ( ! [X5: rat,Y5: rat] :
              ( ( ord_less_eq_rat @ X5 @ Y5 )
             => ( ord_less_eq_num @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_num @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_1896_order__less__le__subst1,axiom,
    ! [A: nat,F: rat > nat,B: rat,C: rat] :
      ( ( ord_less_nat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_rat @ B @ C )
       => ( ! [X5: rat,Y5: rat] :
              ( ( ord_less_eq_rat @ X5 @ Y5 )
             => ( ord_less_eq_nat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_1897_order__less__le__subst1,axiom,
    ! [A: int,F: rat > int,B: rat,C: rat] :
      ( ( ord_less_int @ A @ ( F @ B ) )
     => ( ( ord_less_eq_rat @ B @ C )
       => ( ! [X5: rat,Y5: rat] :
              ( ( ord_less_eq_rat @ X5 @ Y5 )
             => ( ord_less_eq_int @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_1898_order__less__le__subst1,axiom,
    ! [A: real,F: num > real,B: num,C: num] :
      ( ( ord_less_real @ A @ ( F @ B ) )
     => ( ( ord_less_eq_num @ B @ C )
       => ( ! [X5: num,Y5: num] :
              ( ( ord_less_eq_num @ X5 @ Y5 )
             => ( ord_less_eq_real @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_1899_order__less__le__subst1,axiom,
    ! [A: rat,F: num > rat,B: num,C: num] :
      ( ( ord_less_rat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_num @ B @ C )
       => ( ! [X5: num,Y5: num] :
              ( ( ord_less_eq_num @ X5 @ Y5 )
             => ( ord_less_eq_rat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_1900_order__less__le__subst1,axiom,
    ! [A: num,F: num > num,B: num,C: num] :
      ( ( ord_less_num @ A @ ( F @ B ) )
     => ( ( ord_less_eq_num @ B @ C )
       => ( ! [X5: num,Y5: num] :
              ( ( ord_less_eq_num @ X5 @ Y5 )
             => ( ord_less_eq_num @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_num @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_1901_order__less__le__subst1,axiom,
    ! [A: nat,F: num > nat,B: num,C: num] :
      ( ( ord_less_nat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_num @ B @ C )
       => ( ! [X5: num,Y5: num] :
              ( ( ord_less_eq_num @ X5 @ Y5 )
             => ( ord_less_eq_nat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_1902_order__less__le__subst1,axiom,
    ! [A: int,F: num > int,B: num,C: num] :
      ( ( ord_less_int @ A @ ( F @ B ) )
     => ( ( ord_less_eq_num @ B @ C )
       => ( ! [X5: num,Y5: num] :
              ( ( ord_less_eq_num @ X5 @ Y5 )
             => ( ord_less_eq_int @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_1903_order__less__le__subst2,axiom,
    ! [A: real,B: real,F: real > real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_eq_real @ ( F @ B ) @ C )
       => ( ! [X5: real,Y5: real] :
              ( ( ord_less_real @ X5 @ Y5 )
             => ( ord_less_real @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_1904_order__less__le__subst2,axiom,
    ! [A: rat,B: rat,F: rat > real,C: real] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_eq_real @ ( F @ B ) @ C )
       => ( ! [X5: rat,Y5: rat] :
              ( ( ord_less_rat @ X5 @ Y5 )
             => ( ord_less_real @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_1905_order__less__le__subst2,axiom,
    ! [A: num,B: num,F: num > real,C: real] :
      ( ( ord_less_num @ A @ B )
     => ( ( ord_less_eq_real @ ( F @ B ) @ C )
       => ( ! [X5: num,Y5: num] :
              ( ( ord_less_num @ X5 @ Y5 )
             => ( ord_less_real @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_1906_order__less__le__subst2,axiom,
    ! [A: nat,B: nat,F: nat > real,C: real] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_real @ ( F @ B ) @ C )
       => ( ! [X5: nat,Y5: nat] :
              ( ( ord_less_nat @ X5 @ Y5 )
             => ( ord_less_real @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_1907_order__less__le__subst2,axiom,
    ! [A: int,B: int,F: int > real,C: real] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_eq_real @ ( F @ B ) @ C )
       => ( ! [X5: int,Y5: int] :
              ( ( ord_less_int @ X5 @ Y5 )
             => ( ord_less_real @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_1908_order__less__le__subst2,axiom,
    ! [A: real,B: real,F: real > rat,C: rat] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_eq_rat @ ( F @ B ) @ C )
       => ( ! [X5: real,Y5: real] :
              ( ( ord_less_real @ X5 @ Y5 )
             => ( ord_less_rat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_rat @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_1909_order__less__le__subst2,axiom,
    ! [A: rat,B: rat,F: rat > rat,C: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_eq_rat @ ( F @ B ) @ C )
       => ( ! [X5: rat,Y5: rat] :
              ( ( ord_less_rat @ X5 @ Y5 )
             => ( ord_less_rat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_rat @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_1910_order__less__le__subst2,axiom,
    ! [A: num,B: num,F: num > rat,C: rat] :
      ( ( ord_less_num @ A @ B )
     => ( ( ord_less_eq_rat @ ( F @ B ) @ C )
       => ( ! [X5: num,Y5: num] :
              ( ( ord_less_num @ X5 @ Y5 )
             => ( ord_less_rat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_rat @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_1911_order__less__le__subst2,axiom,
    ! [A: nat,B: nat,F: nat > rat,C: rat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_rat @ ( F @ B ) @ C )
       => ( ! [X5: nat,Y5: nat] :
              ( ( ord_less_nat @ X5 @ Y5 )
             => ( ord_less_rat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_rat @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_1912_order__less__le__subst2,axiom,
    ! [A: int,B: int,F: int > rat,C: rat] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_eq_rat @ ( F @ B ) @ C )
       => ( ! [X5: int,Y5: int] :
              ( ( ord_less_int @ X5 @ Y5 )
             => ( ord_less_rat @ ( F @ X5 ) @ ( F @ Y5 ) ) )
         => ( ord_less_rat @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_1913_linorder__le__less__linear,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ X @ Y )
      | ( ord_less_real @ Y @ X ) ) ).

% linorder_le_less_linear
thf(fact_1914_linorder__le__less__linear,axiom,
    ! [X: rat,Y: rat] :
      ( ( ord_less_eq_rat @ X @ Y )
      | ( ord_less_rat @ Y @ X ) ) ).

% linorder_le_less_linear
thf(fact_1915_linorder__le__less__linear,axiom,
    ! [X: num,Y: num] :
      ( ( ord_less_eq_num @ X @ Y )
      | ( ord_less_num @ Y @ X ) ) ).

% linorder_le_less_linear
thf(fact_1916_linorder__le__less__linear,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_eq_nat @ X @ Y )
      | ( ord_less_nat @ Y @ X ) ) ).

% linorder_le_less_linear
thf(fact_1917_linorder__le__less__linear,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_eq_int @ X @ Y )
      | ( ord_less_int @ Y @ X ) ) ).

% linorder_le_less_linear
thf(fact_1918_order__le__imp__less__or__eq,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ X @ Y )
     => ( ( ord_less_real @ X @ Y )
        | ( X = Y ) ) ) ).

% order_le_imp_less_or_eq
thf(fact_1919_order__le__imp__less__or__eq,axiom,
    ! [X: set_int,Y: set_int] :
      ( ( ord_less_eq_set_int @ X @ Y )
     => ( ( ord_less_set_int @ X @ Y )
        | ( X = Y ) ) ) ).

% order_le_imp_less_or_eq
thf(fact_1920_order__le__imp__less__or__eq,axiom,
    ! [X: rat,Y: rat] :
      ( ( ord_less_eq_rat @ X @ Y )
     => ( ( ord_less_rat @ X @ Y )
        | ( X = Y ) ) ) ).

% order_le_imp_less_or_eq
thf(fact_1921_order__le__imp__less__or__eq,axiom,
    ! [X: num,Y: num] :
      ( ( ord_less_eq_num @ X @ Y )
     => ( ( ord_less_num @ X @ Y )
        | ( X = Y ) ) ) ).

% order_le_imp_less_or_eq
thf(fact_1922_order__le__imp__less__or__eq,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_eq_nat @ X @ Y )
     => ( ( ord_less_nat @ X @ Y )
        | ( X = Y ) ) ) ).

% order_le_imp_less_or_eq
thf(fact_1923_order__le__imp__less__or__eq,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_eq_int @ X @ Y )
     => ( ( ord_less_int @ X @ Y )
        | ( X = Y ) ) ) ).

% order_le_imp_less_or_eq
thf(fact_1924_bot_Oextremum,axiom,
    ! [A: set_nat] : ( ord_less_eq_set_nat @ bot_bot_set_nat @ A ) ).

% bot.extremum
thf(fact_1925_bot_Oextremum,axiom,
    ! [A: set_real] : ( ord_less_eq_set_real @ bot_bot_set_real @ A ) ).

% bot.extremum
thf(fact_1926_bot_Oextremum,axiom,
    ! [A: set_int] : ( ord_less_eq_set_int @ bot_bot_set_int @ A ) ).

% bot.extremum
thf(fact_1927_bot_Oextremum,axiom,
    ! [A: nat] : ( ord_less_eq_nat @ bot_bot_nat @ A ) ).

% bot.extremum
thf(fact_1928_bot_Oextremum__unique,axiom,
    ! [A: set_nat] :
      ( ( ord_less_eq_set_nat @ A @ bot_bot_set_nat )
      = ( A = bot_bot_set_nat ) ) ).

% bot.extremum_unique
thf(fact_1929_bot_Oextremum__unique,axiom,
    ! [A: set_real] :
      ( ( ord_less_eq_set_real @ A @ bot_bot_set_real )
      = ( A = bot_bot_set_real ) ) ).

% bot.extremum_unique
thf(fact_1930_bot_Oextremum__unique,axiom,
    ! [A: set_int] :
      ( ( ord_less_eq_set_int @ A @ bot_bot_set_int )
      = ( A = bot_bot_set_int ) ) ).

% bot.extremum_unique
thf(fact_1931_bot_Oextremum__unique,axiom,
    ! [A: nat] :
      ( ( ord_less_eq_nat @ A @ bot_bot_nat )
      = ( A = bot_bot_nat ) ) ).

% bot.extremum_unique
thf(fact_1932_bot_Oextremum__uniqueI,axiom,
    ! [A: set_nat] :
      ( ( ord_less_eq_set_nat @ A @ bot_bot_set_nat )
     => ( A = bot_bot_set_nat ) ) ).

% bot.extremum_uniqueI
thf(fact_1933_bot_Oextremum__uniqueI,axiom,
    ! [A: set_real] :
      ( ( ord_less_eq_set_real @ A @ bot_bot_set_real )
     => ( A = bot_bot_set_real ) ) ).

% bot.extremum_uniqueI
thf(fact_1934_bot_Oextremum__uniqueI,axiom,
    ! [A: set_int] :
      ( ( ord_less_eq_set_int @ A @ bot_bot_set_int )
     => ( A = bot_bot_set_int ) ) ).

% bot.extremum_uniqueI
thf(fact_1935_bot_Oextremum__uniqueI,axiom,
    ! [A: nat] :
      ( ( ord_less_eq_nat @ A @ bot_bot_nat )
     => ( A = bot_bot_nat ) ) ).

% bot.extremum_uniqueI
thf(fact_1936_bot_Oextremum__strict,axiom,
    ! [A: set_nat] :
      ~ ( ord_less_set_nat @ A @ bot_bot_set_nat ) ).

% bot.extremum_strict
thf(fact_1937_bot_Oextremum__strict,axiom,
    ! [A: set_int] :
      ~ ( ord_less_set_int @ A @ bot_bot_set_int ) ).

% bot.extremum_strict
thf(fact_1938_bot_Oextremum__strict,axiom,
    ! [A: set_real] :
      ~ ( ord_less_set_real @ A @ bot_bot_set_real ) ).

% bot.extremum_strict
thf(fact_1939_bot_Oextremum__strict,axiom,
    ! [A: nat] :
      ~ ( ord_less_nat @ A @ bot_bot_nat ) ).

% bot.extremum_strict
thf(fact_1940_bot_Onot__eq__extremum,axiom,
    ! [A: set_nat] :
      ( ( A != bot_bot_set_nat )
      = ( ord_less_set_nat @ bot_bot_set_nat @ A ) ) ).

% bot.not_eq_extremum
thf(fact_1941_bot_Onot__eq__extremum,axiom,
    ! [A: set_int] :
      ( ( A != bot_bot_set_int )
      = ( ord_less_set_int @ bot_bot_set_int @ A ) ) ).

% bot.not_eq_extremum
thf(fact_1942_bot_Onot__eq__extremum,axiom,
    ! [A: set_real] :
      ( ( A != bot_bot_set_real )
      = ( ord_less_set_real @ bot_bot_set_real @ A ) ) ).

% bot.not_eq_extremum
thf(fact_1943_bot_Onot__eq__extremum,axiom,
    ! [A: nat] :
      ( ( A != bot_bot_nat )
      = ( ord_less_nat @ bot_bot_nat @ A ) ) ).

% bot.not_eq_extremum
thf(fact_1944_max__def,axiom,
    ( ord_ma741700101516333627d_enat
    = ( ^ [A4: extended_enat,B4: extended_enat] : ( if_Extended_enat @ ( ord_le2932123472753598470d_enat @ A4 @ B4 ) @ B4 @ A4 ) ) ) ).

% max_def
thf(fact_1945_max__def,axiom,
    ( ord_max_Code_integer
    = ( ^ [A4: code_integer,B4: code_integer] : ( if_Code_integer @ ( ord_le3102999989581377725nteger @ A4 @ B4 ) @ B4 @ A4 ) ) ) ).

% max_def
thf(fact_1946_max__def,axiom,
    ( ord_max_set_int
    = ( ^ [A4: set_int,B4: set_int] : ( if_set_int @ ( ord_less_eq_set_int @ A4 @ B4 ) @ B4 @ A4 ) ) ) ).

% max_def
thf(fact_1947_max__def,axiom,
    ( ord_max_rat
    = ( ^ [A4: rat,B4: rat] : ( if_rat @ ( ord_less_eq_rat @ A4 @ B4 ) @ B4 @ A4 ) ) ) ).

% max_def
thf(fact_1948_max__def,axiom,
    ( ord_max_num
    = ( ^ [A4: num,B4: num] : ( if_num @ ( ord_less_eq_num @ A4 @ B4 ) @ B4 @ A4 ) ) ) ).

% max_def
thf(fact_1949_max__def,axiom,
    ( ord_max_nat
    = ( ^ [A4: nat,B4: nat] : ( if_nat @ ( ord_less_eq_nat @ A4 @ B4 ) @ B4 @ A4 ) ) ) ).

% max_def
thf(fact_1950_max__def,axiom,
    ( ord_max_int
    = ( ^ [A4: int,B4: int] : ( if_int @ ( ord_less_eq_int @ A4 @ B4 ) @ B4 @ A4 ) ) ) ).

% max_def
thf(fact_1951_max__absorb1,axiom,
    ! [Y: extended_enat,X: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ Y @ X )
     => ( ( ord_ma741700101516333627d_enat @ X @ Y )
        = X ) ) ).

% max_absorb1
thf(fact_1952_max__absorb1,axiom,
    ! [Y: code_integer,X: code_integer] :
      ( ( ord_le3102999989581377725nteger @ Y @ X )
     => ( ( ord_max_Code_integer @ X @ Y )
        = X ) ) ).

% max_absorb1
thf(fact_1953_max__absorb1,axiom,
    ! [Y: set_int,X: set_int] :
      ( ( ord_less_eq_set_int @ Y @ X )
     => ( ( ord_max_set_int @ X @ Y )
        = X ) ) ).

% max_absorb1
thf(fact_1954_max__absorb1,axiom,
    ! [Y: rat,X: rat] :
      ( ( ord_less_eq_rat @ Y @ X )
     => ( ( ord_max_rat @ X @ Y )
        = X ) ) ).

% max_absorb1
thf(fact_1955_max__absorb1,axiom,
    ! [Y: num,X: num] :
      ( ( ord_less_eq_num @ Y @ X )
     => ( ( ord_max_num @ X @ Y )
        = X ) ) ).

% max_absorb1
thf(fact_1956_max__absorb1,axiom,
    ! [Y: nat,X: nat] :
      ( ( ord_less_eq_nat @ Y @ X )
     => ( ( ord_max_nat @ X @ Y )
        = X ) ) ).

% max_absorb1
thf(fact_1957_max__absorb1,axiom,
    ! [Y: int,X: int] :
      ( ( ord_less_eq_int @ Y @ X )
     => ( ( ord_max_int @ X @ Y )
        = X ) ) ).

% max_absorb1
thf(fact_1958_max__absorb2,axiom,
    ! [X: extended_enat,Y: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ X @ Y )
     => ( ( ord_ma741700101516333627d_enat @ X @ Y )
        = Y ) ) ).

% max_absorb2
thf(fact_1959_max__absorb2,axiom,
    ! [X: code_integer,Y: code_integer] :
      ( ( ord_le3102999989581377725nteger @ X @ Y )
     => ( ( ord_max_Code_integer @ X @ Y )
        = Y ) ) ).

% max_absorb2
thf(fact_1960_max__absorb2,axiom,
    ! [X: set_int,Y: set_int] :
      ( ( ord_less_eq_set_int @ X @ Y )
     => ( ( ord_max_set_int @ X @ Y )
        = Y ) ) ).

% max_absorb2
thf(fact_1961_max__absorb2,axiom,
    ! [X: rat,Y: rat] :
      ( ( ord_less_eq_rat @ X @ Y )
     => ( ( ord_max_rat @ X @ Y )
        = Y ) ) ).

% max_absorb2
thf(fact_1962_max__absorb2,axiom,
    ! [X: num,Y: num] :
      ( ( ord_less_eq_num @ X @ Y )
     => ( ( ord_max_num @ X @ Y )
        = Y ) ) ).

% max_absorb2
thf(fact_1963_max__absorb2,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_eq_nat @ X @ Y )
     => ( ( ord_max_nat @ X @ Y )
        = Y ) ) ).

% max_absorb2
thf(fact_1964_max__absorb2,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_eq_int @ X @ Y )
     => ( ( ord_max_int @ X @ Y )
        = Y ) ) ).

% max_absorb2
thf(fact_1965_add__diff__cancel__right_H,axiom,
    ! [A: real,B: real] :
      ( ( minus_minus_real @ ( plus_plus_real @ A @ B ) @ B )
      = A ) ).

% add_diff_cancel_right'
thf(fact_1966_add__diff__cancel__right_H,axiom,
    ! [A: rat,B: rat] :
      ( ( minus_minus_rat @ ( plus_plus_rat @ A @ B ) @ B )
      = A ) ).

% add_diff_cancel_right'
thf(fact_1967_add__diff__cancel__right_H,axiom,
    ! [A: nat,B: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ A @ B ) @ B )
      = A ) ).

% add_diff_cancel_right'
thf(fact_1968_add__diff__cancel__right_H,axiom,
    ! [A: int,B: int] :
      ( ( minus_minus_int @ ( plus_plus_int @ A @ B ) @ B )
      = A ) ).

% add_diff_cancel_right'
thf(fact_1969_add__diff__cancel__right,axiom,
    ! [A: real,C: real,B: real] :
      ( ( minus_minus_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) )
      = ( minus_minus_real @ A @ B ) ) ).

% add_diff_cancel_right
thf(fact_1970_add__diff__cancel__right,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( minus_minus_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ C ) )
      = ( minus_minus_rat @ A @ B ) ) ).

% add_diff_cancel_right
thf(fact_1971_add__diff__cancel__right,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
      = ( minus_minus_nat @ A @ B ) ) ).

% add_diff_cancel_right
thf(fact_1972_add__diff__cancel__right,axiom,
    ! [A: int,C: int,B: int] :
      ( ( minus_minus_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
      = ( minus_minus_int @ A @ B ) ) ).

% add_diff_cancel_right
thf(fact_1973_add__diff__cancel__left_H,axiom,
    ! [A: real,B: real] :
      ( ( minus_minus_real @ ( plus_plus_real @ A @ B ) @ A )
      = B ) ).

% add_diff_cancel_left'
thf(fact_1974_add__diff__cancel__left_H,axiom,
    ! [A: rat,B: rat] :
      ( ( minus_minus_rat @ ( plus_plus_rat @ A @ B ) @ A )
      = B ) ).

% add_diff_cancel_left'
thf(fact_1975_add__diff__cancel__left_H,axiom,
    ! [A: nat,B: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ A @ B ) @ A )
      = B ) ).

% add_diff_cancel_left'
thf(fact_1976_add__diff__cancel__left_H,axiom,
    ! [A: int,B: int] :
      ( ( minus_minus_int @ ( plus_plus_int @ A @ B ) @ A )
      = B ) ).

% add_diff_cancel_left'
thf(fact_1977_add__diff__cancel__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( minus_minus_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) )
      = ( minus_minus_real @ A @ B ) ) ).

% add_diff_cancel_left
thf(fact_1978_add__diff__cancel__left,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( minus_minus_rat @ ( plus_plus_rat @ C @ A ) @ ( plus_plus_rat @ C @ B ) )
      = ( minus_minus_rat @ A @ B ) ) ).

% add_diff_cancel_left
thf(fact_1979_add__diff__cancel__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
      = ( minus_minus_nat @ A @ B ) ) ).

% add_diff_cancel_left
thf(fact_1980_add__diff__cancel__left,axiom,
    ! [C: int,A: int,B: int] :
      ( ( minus_minus_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
      = ( minus_minus_int @ A @ B ) ) ).

% add_diff_cancel_left
thf(fact_1981_diff__add__cancel,axiom,
    ! [A: real,B: real] :
      ( ( plus_plus_real @ ( minus_minus_real @ A @ B ) @ B )
      = A ) ).

% diff_add_cancel
thf(fact_1982_diff__add__cancel,axiom,
    ! [A: rat,B: rat] :
      ( ( plus_plus_rat @ ( minus_minus_rat @ A @ B ) @ B )
      = A ) ).

% diff_add_cancel
thf(fact_1983_diff__add__cancel,axiom,
    ! [A: int,B: int] :
      ( ( plus_plus_int @ ( minus_minus_int @ A @ B ) @ B )
      = A ) ).

% diff_add_cancel
thf(fact_1984_add__diff__cancel,axiom,
    ! [A: real,B: real] :
      ( ( minus_minus_real @ ( plus_plus_real @ A @ B ) @ B )
      = A ) ).

% add_diff_cancel
thf(fact_1985_add__diff__cancel,axiom,
    ! [A: rat,B: rat] :
      ( ( minus_minus_rat @ ( plus_plus_rat @ A @ B ) @ B )
      = A ) ).

% add_diff_cancel
thf(fact_1986_add__diff__cancel,axiom,
    ! [A: int,B: int] :
      ( ( minus_minus_int @ ( plus_plus_int @ A @ B ) @ B )
      = A ) ).

% add_diff_cancel
thf(fact_1987_times__divide__eq__right,axiom,
    ! [A: complex,B: complex,C: complex] :
      ( ( times_times_complex @ A @ ( divide1717551699836669952omplex @ B @ C ) )
      = ( divide1717551699836669952omplex @ ( times_times_complex @ A @ B ) @ C ) ) ).

% times_divide_eq_right
thf(fact_1988_times__divide__eq__right,axiom,
    ! [A: real,B: real,C: real] :
      ( ( times_times_real @ A @ ( divide_divide_real @ B @ C ) )
      = ( divide_divide_real @ ( times_times_real @ A @ B ) @ C ) ) ).

% times_divide_eq_right
thf(fact_1989_times__divide__eq__right,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( times_times_rat @ A @ ( divide_divide_rat @ B @ C ) )
      = ( divide_divide_rat @ ( times_times_rat @ A @ B ) @ C ) ) ).

% times_divide_eq_right
thf(fact_1990_divide__divide__eq__right,axiom,
    ! [A: complex,B: complex,C: complex] :
      ( ( divide1717551699836669952omplex @ A @ ( divide1717551699836669952omplex @ B @ C ) )
      = ( divide1717551699836669952omplex @ ( times_times_complex @ A @ C ) @ B ) ) ).

% divide_divide_eq_right
thf(fact_1991_divide__divide__eq__right,axiom,
    ! [A: real,B: real,C: real] :
      ( ( divide_divide_real @ A @ ( divide_divide_real @ B @ C ) )
      = ( divide_divide_real @ ( times_times_real @ A @ C ) @ B ) ) ).

% divide_divide_eq_right
thf(fact_1992_divide__divide__eq__right,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( divide_divide_rat @ A @ ( divide_divide_rat @ B @ C ) )
      = ( divide_divide_rat @ ( times_times_rat @ A @ C ) @ B ) ) ).

% divide_divide_eq_right
thf(fact_1993_divide__divide__eq__left,axiom,
    ! [A: complex,B: complex,C: complex] :
      ( ( divide1717551699836669952omplex @ ( divide1717551699836669952omplex @ A @ B ) @ C )
      = ( divide1717551699836669952omplex @ A @ ( times_times_complex @ B @ C ) ) ) ).

% divide_divide_eq_left
thf(fact_1994_divide__divide__eq__left,axiom,
    ! [A: real,B: real,C: real] :
      ( ( divide_divide_real @ ( divide_divide_real @ A @ B ) @ C )
      = ( divide_divide_real @ A @ ( times_times_real @ B @ C ) ) ) ).

% divide_divide_eq_left
thf(fact_1995_divide__divide__eq__left,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( divide_divide_rat @ ( divide_divide_rat @ A @ B ) @ C )
      = ( divide_divide_rat @ A @ ( times_times_rat @ B @ C ) ) ) ).

% divide_divide_eq_left
thf(fact_1996_times__divide__eq__left,axiom,
    ! [B: complex,C: complex,A: complex] :
      ( ( times_times_complex @ ( divide1717551699836669952omplex @ B @ C ) @ A )
      = ( divide1717551699836669952omplex @ ( times_times_complex @ B @ A ) @ C ) ) ).

% times_divide_eq_left
thf(fact_1997_times__divide__eq__left,axiom,
    ! [B: real,C: real,A: real] :
      ( ( times_times_real @ ( divide_divide_real @ B @ C ) @ A )
      = ( divide_divide_real @ ( times_times_real @ B @ A ) @ C ) ) ).

% times_divide_eq_left
thf(fact_1998_times__divide__eq__left,axiom,
    ! [B: rat,C: rat,A: rat] :
      ( ( times_times_rat @ ( divide_divide_rat @ B @ C ) @ A )
      = ( divide_divide_rat @ ( times_times_rat @ B @ A ) @ C ) ) ).

% times_divide_eq_left
thf(fact_1999_add__left__cancel,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ( plus_plus_real @ A @ B )
        = ( plus_plus_real @ A @ C ) )
      = ( B = C ) ) ).

% add_left_cancel
thf(fact_2000_add__left__cancel,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ( plus_plus_rat @ A @ B )
        = ( plus_plus_rat @ A @ C ) )
      = ( B = C ) ) ).

% add_left_cancel
thf(fact_2001_add__left__cancel,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ( plus_plus_nat @ A @ B )
        = ( plus_plus_nat @ A @ C ) )
      = ( B = C ) ) ).

% add_left_cancel
thf(fact_2002_add__left__cancel,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ( plus_plus_int @ A @ B )
        = ( plus_plus_int @ A @ C ) )
      = ( B = C ) ) ).

% add_left_cancel
thf(fact_2003_add__right__cancel,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ( plus_plus_real @ B @ A )
        = ( plus_plus_real @ C @ A ) )
      = ( B = C ) ) ).

% add_right_cancel
thf(fact_2004_add__right__cancel,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( ( plus_plus_rat @ B @ A )
        = ( plus_plus_rat @ C @ A ) )
      = ( B = C ) ) ).

% add_right_cancel
thf(fact_2005_add__right__cancel,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ( plus_plus_nat @ B @ A )
        = ( plus_plus_nat @ C @ A ) )
      = ( B = C ) ) ).

% add_right_cancel
thf(fact_2006_add__right__cancel,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ( plus_plus_int @ B @ A )
        = ( plus_plus_int @ C @ A ) )
      = ( B = C ) ) ).

% add_right_cancel
thf(fact_2007_add__le__cancel__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) )
      = ( ord_less_eq_real @ A @ B ) ) ).

% add_le_cancel_left
thf(fact_2008_add__le__cancel__left,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( plus_plus_rat @ C @ A ) @ ( plus_plus_rat @ C @ B ) )
      = ( ord_less_eq_rat @ A @ B ) ) ).

% add_le_cancel_left
thf(fact_2009_add__le__cancel__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
      = ( ord_less_eq_nat @ A @ B ) ) ).

% add_le_cancel_left
thf(fact_2010_add__le__cancel__left,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
      = ( ord_less_eq_int @ A @ B ) ) ).

% add_le_cancel_left
thf(fact_2011_add__le__cancel__right,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) )
      = ( ord_less_eq_real @ A @ B ) ) ).

% add_le_cancel_right
thf(fact_2012_add__le__cancel__right,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ C ) )
      = ( ord_less_eq_rat @ A @ B ) ) ).

% add_le_cancel_right
thf(fact_2013_add__le__cancel__right,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
      = ( ord_less_eq_nat @ A @ B ) ) ).

% add_le_cancel_right
thf(fact_2014_add__le__cancel__right,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
      = ( ord_less_eq_int @ A @ B ) ) ).

% add_le_cancel_right
thf(fact_2015_add__less__cancel__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) )
      = ( ord_less_real @ A @ B ) ) ).

% add_less_cancel_left
thf(fact_2016_add__less__cancel__left,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ ( plus_plus_rat @ C @ A ) @ ( plus_plus_rat @ C @ B ) )
      = ( ord_less_rat @ A @ B ) ) ).

% add_less_cancel_left
thf(fact_2017_add__less__cancel__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
      = ( ord_less_nat @ A @ B ) ) ).

% add_less_cancel_left
thf(fact_2018_add__less__cancel__left,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
      = ( ord_less_int @ A @ B ) ) ).

% add_less_cancel_left
thf(fact_2019_add__less__cancel__right,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) )
      = ( ord_less_real @ A @ B ) ) ).

% add_less_cancel_right
thf(fact_2020_add__less__cancel__right,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( ord_less_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ C ) )
      = ( ord_less_rat @ A @ B ) ) ).

% add_less_cancel_right
thf(fact_2021_add__less__cancel__right,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
      = ( ord_less_nat @ A @ B ) ) ).

% add_less_cancel_right
thf(fact_2022_add__less__cancel__right,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
      = ( ord_less_int @ A @ B ) ) ).

% add_less_cancel_right
thf(fact_2023_mult_Oright__neutral,axiom,
    ! [A: complex] :
      ( ( times_times_complex @ A @ one_one_complex )
      = A ) ).

% mult.right_neutral
thf(fact_2024_mult_Oright__neutral,axiom,
    ! [A: real] :
      ( ( times_times_real @ A @ one_one_real )
      = A ) ).

% mult.right_neutral
thf(fact_2025_mult_Oright__neutral,axiom,
    ! [A: rat] :
      ( ( times_times_rat @ A @ one_one_rat )
      = A ) ).

% mult.right_neutral
thf(fact_2026_mult_Oright__neutral,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ A @ one_one_nat )
      = A ) ).

% mult.right_neutral
thf(fact_2027_mult_Oright__neutral,axiom,
    ! [A: int] :
      ( ( times_times_int @ A @ one_one_int )
      = A ) ).

% mult.right_neutral
thf(fact_2028_mult__1,axiom,
    ! [A: complex] :
      ( ( times_times_complex @ one_one_complex @ A )
      = A ) ).

% mult_1
thf(fact_2029_mult__1,axiom,
    ! [A: real] :
      ( ( times_times_real @ one_one_real @ A )
      = A ) ).

% mult_1
thf(fact_2030_mult__1,axiom,
    ! [A: rat] :
      ( ( times_times_rat @ one_one_rat @ A )
      = A ) ).

% mult_1
thf(fact_2031_mult__1,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ one_one_nat @ A )
      = A ) ).

% mult_1
thf(fact_2032_mult__1,axiom,
    ! [A: int] :
      ( ( times_times_int @ one_one_int @ A )
      = A ) ).

% mult_1
thf(fact_2033_linordered__field__no__ub,axiom,
    ! [X2: real] :
    ? [X_1: real] : ( ord_less_real @ X2 @ X_1 ) ).

% linordered_field_no_ub
thf(fact_2034_linordered__field__no__ub,axiom,
    ! [X2: rat] :
    ? [X_1: rat] : ( ord_less_rat @ X2 @ X_1 ) ).

% linordered_field_no_ub
thf(fact_2035_linordered__field__no__lb,axiom,
    ! [X2: real] :
    ? [Y5: real] : ( ord_less_real @ Y5 @ X2 ) ).

% linordered_field_no_lb
thf(fact_2036_linordered__field__no__lb,axiom,
    ! [X2: rat] :
    ? [Y5: rat] : ( ord_less_rat @ Y5 @ X2 ) ).

% linordered_field_no_lb
thf(fact_2037_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
    ! [A: real,B: real,C: real] :
      ( ( times_times_real @ ( times_times_real @ A @ B ) @ C )
      = ( times_times_real @ A @ ( times_times_real @ B @ C ) ) ) ).

% ab_semigroup_mult_class.mult_ac(1)
thf(fact_2038_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( times_times_rat @ ( times_times_rat @ A @ B ) @ C )
      = ( times_times_rat @ A @ ( times_times_rat @ B @ C ) ) ) ).

% ab_semigroup_mult_class.mult_ac(1)
thf(fact_2039_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( times_times_nat @ ( times_times_nat @ A @ B ) @ C )
      = ( times_times_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).

% ab_semigroup_mult_class.mult_ac(1)
thf(fact_2040_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
    ! [A: int,B: int,C: int] :
      ( ( times_times_int @ ( times_times_int @ A @ B ) @ C )
      = ( times_times_int @ A @ ( times_times_int @ B @ C ) ) ) ).

% ab_semigroup_mult_class.mult_ac(1)
thf(fact_2041_mult_Oassoc,axiom,
    ! [A: real,B: real,C: real] :
      ( ( times_times_real @ ( times_times_real @ A @ B ) @ C )
      = ( times_times_real @ A @ ( times_times_real @ B @ C ) ) ) ).

% mult.assoc
thf(fact_2042_mult_Oassoc,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( times_times_rat @ ( times_times_rat @ A @ B ) @ C )
      = ( times_times_rat @ A @ ( times_times_rat @ B @ C ) ) ) ).

% mult.assoc
thf(fact_2043_mult_Oassoc,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( times_times_nat @ ( times_times_nat @ A @ B ) @ C )
      = ( times_times_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).

% mult.assoc
thf(fact_2044_mult_Oassoc,axiom,
    ! [A: int,B: int,C: int] :
      ( ( times_times_int @ ( times_times_int @ A @ B ) @ C )
      = ( times_times_int @ A @ ( times_times_int @ B @ C ) ) ) ).

% mult.assoc
thf(fact_2045_mult_Ocommute,axiom,
    ( times_times_real
    = ( ^ [A4: real,B4: real] : ( times_times_real @ B4 @ A4 ) ) ) ).

% mult.commute
thf(fact_2046_mult_Ocommute,axiom,
    ( times_times_rat
    = ( ^ [A4: rat,B4: rat] : ( times_times_rat @ B4 @ A4 ) ) ) ).

% mult.commute
thf(fact_2047_mult_Ocommute,axiom,
    ( times_times_nat
    = ( ^ [A4: nat,B4: nat] : ( times_times_nat @ B4 @ A4 ) ) ) ).

% mult.commute
thf(fact_2048_mult_Ocommute,axiom,
    ( times_times_int
    = ( ^ [A4: int,B4: int] : ( times_times_int @ B4 @ A4 ) ) ) ).

% mult.commute
thf(fact_2049_mult_Oleft__commute,axiom,
    ! [B: real,A: real,C: real] :
      ( ( times_times_real @ B @ ( times_times_real @ A @ C ) )
      = ( times_times_real @ A @ ( times_times_real @ B @ C ) ) ) ).

% mult.left_commute
thf(fact_2050_mult_Oleft__commute,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( times_times_rat @ B @ ( times_times_rat @ A @ C ) )
      = ( times_times_rat @ A @ ( times_times_rat @ B @ C ) ) ) ).

% mult.left_commute
thf(fact_2051_mult_Oleft__commute,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( times_times_nat @ B @ ( times_times_nat @ A @ C ) )
      = ( times_times_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).

% mult.left_commute
thf(fact_2052_mult_Oleft__commute,axiom,
    ! [B: int,A: int,C: int] :
      ( ( times_times_int @ B @ ( times_times_int @ A @ C ) )
      = ( times_times_int @ A @ ( times_times_int @ B @ C ) ) ) ).

% mult.left_commute
thf(fact_2053_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
    ! [A: real,B: real,C: real] :
      ( ( plus_plus_real @ ( plus_plus_real @ A @ B ) @ C )
      = ( plus_plus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).

% ab_semigroup_add_class.add_ac(1)
thf(fact_2054_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( plus_plus_rat @ ( plus_plus_rat @ A @ B ) @ C )
      = ( plus_plus_rat @ A @ ( plus_plus_rat @ B @ C ) ) ) ).

% ab_semigroup_add_class.add_ac(1)
thf(fact_2055_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( plus_plus_nat @ ( plus_plus_nat @ A @ B ) @ C )
      = ( plus_plus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).

% ab_semigroup_add_class.add_ac(1)
thf(fact_2056_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
    ! [A: int,B: int,C: int] :
      ( ( plus_plus_int @ ( plus_plus_int @ A @ B ) @ C )
      = ( plus_plus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).

% ab_semigroup_add_class.add_ac(1)
thf(fact_2057_add__mono__thms__linordered__semiring_I4_J,axiom,
    ! [I2: real,J: real,K: real,L2: real] :
      ( ( ( I2 = J )
        & ( K = L2 ) )
     => ( ( plus_plus_real @ I2 @ K )
        = ( plus_plus_real @ J @ L2 ) ) ) ).

% add_mono_thms_linordered_semiring(4)
thf(fact_2058_add__mono__thms__linordered__semiring_I4_J,axiom,
    ! [I2: rat,J: rat,K: rat,L2: rat] :
      ( ( ( I2 = J )
        & ( K = L2 ) )
     => ( ( plus_plus_rat @ I2 @ K )
        = ( plus_plus_rat @ J @ L2 ) ) ) ).

% add_mono_thms_linordered_semiring(4)
thf(fact_2059_add__mono__thms__linordered__semiring_I4_J,axiom,
    ! [I2: nat,J: nat,K: nat,L2: nat] :
      ( ( ( I2 = J )
        & ( K = L2 ) )
     => ( ( plus_plus_nat @ I2 @ K )
        = ( plus_plus_nat @ J @ L2 ) ) ) ).

% add_mono_thms_linordered_semiring(4)
thf(fact_2060_add__mono__thms__linordered__semiring_I4_J,axiom,
    ! [I2: int,J: int,K: int,L2: int] :
      ( ( ( I2 = J )
        & ( K = L2 ) )
     => ( ( plus_plus_int @ I2 @ K )
        = ( plus_plus_int @ J @ L2 ) ) ) ).

% add_mono_thms_linordered_semiring(4)
thf(fact_2061_group__cancel_Oadd1,axiom,
    ! [A2: real,K: real,A: real,B: real] :
      ( ( A2
        = ( plus_plus_real @ K @ A ) )
     => ( ( plus_plus_real @ A2 @ B )
        = ( plus_plus_real @ K @ ( plus_plus_real @ A @ B ) ) ) ) ).

% group_cancel.add1
thf(fact_2062_group__cancel_Oadd1,axiom,
    ! [A2: rat,K: rat,A: rat,B: rat] :
      ( ( A2
        = ( plus_plus_rat @ K @ A ) )
     => ( ( plus_plus_rat @ A2 @ B )
        = ( plus_plus_rat @ K @ ( plus_plus_rat @ A @ B ) ) ) ) ).

% group_cancel.add1
thf(fact_2063_group__cancel_Oadd1,axiom,
    ! [A2: nat,K: nat,A: nat,B: nat] :
      ( ( A2
        = ( plus_plus_nat @ K @ A ) )
     => ( ( plus_plus_nat @ A2 @ B )
        = ( plus_plus_nat @ K @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% group_cancel.add1
thf(fact_2064_group__cancel_Oadd1,axiom,
    ! [A2: int,K: int,A: int,B: int] :
      ( ( A2
        = ( plus_plus_int @ K @ A ) )
     => ( ( plus_plus_int @ A2 @ B )
        = ( plus_plus_int @ K @ ( plus_plus_int @ A @ B ) ) ) ) ).

% group_cancel.add1
thf(fact_2065_group__cancel_Oadd2,axiom,
    ! [B3: real,K: real,B: real,A: real] :
      ( ( B3
        = ( plus_plus_real @ K @ B ) )
     => ( ( plus_plus_real @ A @ B3 )
        = ( plus_plus_real @ K @ ( plus_plus_real @ A @ B ) ) ) ) ).

% group_cancel.add2
thf(fact_2066_group__cancel_Oadd2,axiom,
    ! [B3: rat,K: rat,B: rat,A: rat] :
      ( ( B3
        = ( plus_plus_rat @ K @ B ) )
     => ( ( plus_plus_rat @ A @ B3 )
        = ( plus_plus_rat @ K @ ( plus_plus_rat @ A @ B ) ) ) ) ).

% group_cancel.add2
thf(fact_2067_group__cancel_Oadd2,axiom,
    ! [B3: nat,K: nat,B: nat,A: nat] :
      ( ( B3
        = ( plus_plus_nat @ K @ B ) )
     => ( ( plus_plus_nat @ A @ B3 )
        = ( plus_plus_nat @ K @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% group_cancel.add2
thf(fact_2068_group__cancel_Oadd2,axiom,
    ! [B3: int,K: int,B: int,A: int] :
      ( ( B3
        = ( plus_plus_int @ K @ B ) )
     => ( ( plus_plus_int @ A @ B3 )
        = ( plus_plus_int @ K @ ( plus_plus_int @ A @ B ) ) ) ) ).

% group_cancel.add2
thf(fact_2069_add_Oassoc,axiom,
    ! [A: real,B: real,C: real] :
      ( ( plus_plus_real @ ( plus_plus_real @ A @ B ) @ C )
      = ( plus_plus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).

% add.assoc
thf(fact_2070_add_Oassoc,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( plus_plus_rat @ ( plus_plus_rat @ A @ B ) @ C )
      = ( plus_plus_rat @ A @ ( plus_plus_rat @ B @ C ) ) ) ).

% add.assoc
thf(fact_2071_add_Oassoc,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( plus_plus_nat @ ( plus_plus_nat @ A @ B ) @ C )
      = ( plus_plus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).

% add.assoc
thf(fact_2072_add_Oassoc,axiom,
    ! [A: int,B: int,C: int] :
      ( ( plus_plus_int @ ( plus_plus_int @ A @ B ) @ C )
      = ( plus_plus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).

% add.assoc
thf(fact_2073_add_Oleft__cancel,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ( plus_plus_real @ A @ B )
        = ( plus_plus_real @ A @ C ) )
      = ( B = C ) ) ).

% add.left_cancel
thf(fact_2074_add_Oleft__cancel,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ( plus_plus_rat @ A @ B )
        = ( plus_plus_rat @ A @ C ) )
      = ( B = C ) ) ).

% add.left_cancel
thf(fact_2075_add_Oleft__cancel,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ( plus_plus_int @ A @ B )
        = ( plus_plus_int @ A @ C ) )
      = ( B = C ) ) ).

% add.left_cancel
thf(fact_2076_add_Oright__cancel,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ( plus_plus_real @ B @ A )
        = ( plus_plus_real @ C @ A ) )
      = ( B = C ) ) ).

% add.right_cancel
thf(fact_2077_add_Oright__cancel,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( ( plus_plus_rat @ B @ A )
        = ( plus_plus_rat @ C @ A ) )
      = ( B = C ) ) ).

% add.right_cancel
thf(fact_2078_add_Oright__cancel,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ( plus_plus_int @ B @ A )
        = ( plus_plus_int @ C @ A ) )
      = ( B = C ) ) ).

% add.right_cancel
thf(fact_2079_add_Ocommute,axiom,
    ( plus_plus_real
    = ( ^ [A4: real,B4: real] : ( plus_plus_real @ B4 @ A4 ) ) ) ).

% add.commute
thf(fact_2080_add_Ocommute,axiom,
    ( plus_plus_rat
    = ( ^ [A4: rat,B4: rat] : ( plus_plus_rat @ B4 @ A4 ) ) ) ).

% add.commute
thf(fact_2081_add_Ocommute,axiom,
    ( plus_plus_nat
    = ( ^ [A4: nat,B4: nat] : ( plus_plus_nat @ B4 @ A4 ) ) ) ).

% add.commute
thf(fact_2082_add_Ocommute,axiom,
    ( plus_plus_int
    = ( ^ [A4: int,B4: int] : ( plus_plus_int @ B4 @ A4 ) ) ) ).

% add.commute
thf(fact_2083_add_Oleft__commute,axiom,
    ! [B: real,A: real,C: real] :
      ( ( plus_plus_real @ B @ ( plus_plus_real @ A @ C ) )
      = ( plus_plus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).

% add.left_commute
thf(fact_2084_add_Oleft__commute,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( plus_plus_rat @ B @ ( plus_plus_rat @ A @ C ) )
      = ( plus_plus_rat @ A @ ( plus_plus_rat @ B @ C ) ) ) ).

% add.left_commute
thf(fact_2085_add_Oleft__commute,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( plus_plus_nat @ B @ ( plus_plus_nat @ A @ C ) )
      = ( plus_plus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).

% add.left_commute
thf(fact_2086_add_Oleft__commute,axiom,
    ! [B: int,A: int,C: int] :
      ( ( plus_plus_int @ B @ ( plus_plus_int @ A @ C ) )
      = ( plus_plus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).

% add.left_commute
thf(fact_2087_add__left__imp__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ( plus_plus_real @ A @ B )
        = ( plus_plus_real @ A @ C ) )
     => ( B = C ) ) ).

% add_left_imp_eq
thf(fact_2088_add__left__imp__eq,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ( plus_plus_rat @ A @ B )
        = ( plus_plus_rat @ A @ C ) )
     => ( B = C ) ) ).

% add_left_imp_eq
thf(fact_2089_add__left__imp__eq,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ( plus_plus_nat @ A @ B )
        = ( plus_plus_nat @ A @ C ) )
     => ( B = C ) ) ).

% add_left_imp_eq
thf(fact_2090_add__left__imp__eq,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ( plus_plus_int @ A @ B )
        = ( plus_plus_int @ A @ C ) )
     => ( B = C ) ) ).

% add_left_imp_eq
thf(fact_2091_add__right__imp__eq,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ( plus_plus_real @ B @ A )
        = ( plus_plus_real @ C @ A ) )
     => ( B = C ) ) ).

% add_right_imp_eq
thf(fact_2092_add__right__imp__eq,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( ( plus_plus_rat @ B @ A )
        = ( plus_plus_rat @ C @ A ) )
     => ( B = C ) ) ).

% add_right_imp_eq
thf(fact_2093_add__right__imp__eq,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ( plus_plus_nat @ B @ A )
        = ( plus_plus_nat @ C @ A ) )
     => ( B = C ) ) ).

% add_right_imp_eq
thf(fact_2094_add__right__imp__eq,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ( plus_plus_int @ B @ A )
        = ( plus_plus_int @ C @ A ) )
     => ( B = C ) ) ).

% add_right_imp_eq
thf(fact_2095_one__reorient,axiom,
    ! [X: complex] :
      ( ( one_one_complex = X )
      = ( X = one_one_complex ) ) ).

% one_reorient
thf(fact_2096_one__reorient,axiom,
    ! [X: real] :
      ( ( one_one_real = X )
      = ( X = one_one_real ) ) ).

% one_reorient
thf(fact_2097_one__reorient,axiom,
    ! [X: rat] :
      ( ( one_one_rat = X )
      = ( X = one_one_rat ) ) ).

% one_reorient
thf(fact_2098_one__reorient,axiom,
    ! [X: nat] :
      ( ( one_one_nat = X )
      = ( X = one_one_nat ) ) ).

% one_reorient
thf(fact_2099_one__reorient,axiom,
    ! [X: int] :
      ( ( one_one_int = X )
      = ( X = one_one_int ) ) ).

% one_reorient
thf(fact_2100_diff__right__commute,axiom,
    ! [A: real,C: real,B: real] :
      ( ( minus_minus_real @ ( minus_minus_real @ A @ C ) @ B )
      = ( minus_minus_real @ ( minus_minus_real @ A @ B ) @ C ) ) ).

% diff_right_commute
thf(fact_2101_diff__right__commute,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( minus_minus_rat @ ( minus_minus_rat @ A @ C ) @ B )
      = ( minus_minus_rat @ ( minus_minus_rat @ A @ B ) @ C ) ) ).

% diff_right_commute
thf(fact_2102_diff__right__commute,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ A @ C ) @ B )
      = ( minus_minus_nat @ ( minus_minus_nat @ A @ B ) @ C ) ) ).

% diff_right_commute
thf(fact_2103_diff__right__commute,axiom,
    ! [A: int,C: int,B: int] :
      ( ( minus_minus_int @ ( minus_minus_int @ A @ C ) @ B )
      = ( minus_minus_int @ ( minus_minus_int @ A @ B ) @ C ) ) ).

% diff_right_commute
thf(fact_2104_diff__eq__diff__eq,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( ( minus_minus_real @ A @ B )
        = ( minus_minus_real @ C @ D ) )
     => ( ( A = B )
        = ( C = D ) ) ) ).

% diff_eq_diff_eq
thf(fact_2105_diff__eq__diff__eq,axiom,
    ! [A: rat,B: rat,C: rat,D: rat] :
      ( ( ( minus_minus_rat @ A @ B )
        = ( minus_minus_rat @ C @ D ) )
     => ( ( A = B )
        = ( C = D ) ) ) ).

% diff_eq_diff_eq
thf(fact_2106_diff__eq__diff__eq,axiom,
    ! [A: int,B: int,C: int,D: int] :
      ( ( ( minus_minus_int @ A @ B )
        = ( minus_minus_int @ C @ D ) )
     => ( ( A = B )
        = ( C = D ) ) ) ).

% diff_eq_diff_eq
thf(fact_2107_add__mono__thms__linordered__semiring_I3_J,axiom,
    ! [I2: real,J: real,K: real,L2: real] :
      ( ( ( ord_less_eq_real @ I2 @ J )
        & ( K = L2 ) )
     => ( ord_less_eq_real @ ( plus_plus_real @ I2 @ K ) @ ( plus_plus_real @ J @ L2 ) ) ) ).

% add_mono_thms_linordered_semiring(3)
thf(fact_2108_add__mono__thms__linordered__semiring_I3_J,axiom,
    ! [I2: rat,J: rat,K: rat,L2: rat] :
      ( ( ( ord_less_eq_rat @ I2 @ J )
        & ( K = L2 ) )
     => ( ord_less_eq_rat @ ( plus_plus_rat @ I2 @ K ) @ ( plus_plus_rat @ J @ L2 ) ) ) ).

% add_mono_thms_linordered_semiring(3)
thf(fact_2109_add__mono__thms__linordered__semiring_I3_J,axiom,
    ! [I2: nat,J: nat,K: nat,L2: nat] :
      ( ( ( ord_less_eq_nat @ I2 @ J )
        & ( K = L2 ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I2 @ K ) @ ( plus_plus_nat @ J @ L2 ) ) ) ).

% add_mono_thms_linordered_semiring(3)
thf(fact_2110_add__mono__thms__linordered__semiring_I3_J,axiom,
    ! [I2: int,J: int,K: int,L2: int] :
      ( ( ( ord_less_eq_int @ I2 @ J )
        & ( K = L2 ) )
     => ( ord_less_eq_int @ ( plus_plus_int @ I2 @ K ) @ ( plus_plus_int @ J @ L2 ) ) ) ).

% add_mono_thms_linordered_semiring(3)
thf(fact_2111_add__mono__thms__linordered__semiring_I2_J,axiom,
    ! [I2: real,J: real,K: real,L2: real] :
      ( ( ( I2 = J )
        & ( ord_less_eq_real @ K @ L2 ) )
     => ( ord_less_eq_real @ ( plus_plus_real @ I2 @ K ) @ ( plus_plus_real @ J @ L2 ) ) ) ).

% add_mono_thms_linordered_semiring(2)
thf(fact_2112_add__mono__thms__linordered__semiring_I2_J,axiom,
    ! [I2: rat,J: rat,K: rat,L2: rat] :
      ( ( ( I2 = J )
        & ( ord_less_eq_rat @ K @ L2 ) )
     => ( ord_less_eq_rat @ ( plus_plus_rat @ I2 @ K ) @ ( plus_plus_rat @ J @ L2 ) ) ) ).

% add_mono_thms_linordered_semiring(2)
thf(fact_2113_add__mono__thms__linordered__semiring_I2_J,axiom,
    ! [I2: nat,J: nat,K: nat,L2: nat] :
      ( ( ( I2 = J )
        & ( ord_less_eq_nat @ K @ L2 ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I2 @ K ) @ ( plus_plus_nat @ J @ L2 ) ) ) ).

% add_mono_thms_linordered_semiring(2)
thf(fact_2114_add__mono__thms__linordered__semiring_I2_J,axiom,
    ! [I2: int,J: int,K: int,L2: int] :
      ( ( ( I2 = J )
        & ( ord_less_eq_int @ K @ L2 ) )
     => ( ord_less_eq_int @ ( plus_plus_int @ I2 @ K ) @ ( plus_plus_int @ J @ L2 ) ) ) ).

% add_mono_thms_linordered_semiring(2)
thf(fact_2115_add__mono__thms__linordered__semiring_I1_J,axiom,
    ! [I2: real,J: real,K: real,L2: real] :
      ( ( ( ord_less_eq_real @ I2 @ J )
        & ( ord_less_eq_real @ K @ L2 ) )
     => ( ord_less_eq_real @ ( plus_plus_real @ I2 @ K ) @ ( plus_plus_real @ J @ L2 ) ) ) ).

% add_mono_thms_linordered_semiring(1)
thf(fact_2116_add__mono__thms__linordered__semiring_I1_J,axiom,
    ! [I2: rat,J: rat,K: rat,L2: rat] :
      ( ( ( ord_less_eq_rat @ I2 @ J )
        & ( ord_less_eq_rat @ K @ L2 ) )
     => ( ord_less_eq_rat @ ( plus_plus_rat @ I2 @ K ) @ ( plus_plus_rat @ J @ L2 ) ) ) ).

% add_mono_thms_linordered_semiring(1)
thf(fact_2117_add__mono__thms__linordered__semiring_I1_J,axiom,
    ! [I2: nat,J: nat,K: nat,L2: nat] :
      ( ( ( ord_less_eq_nat @ I2 @ J )
        & ( ord_less_eq_nat @ K @ L2 ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I2 @ K ) @ ( plus_plus_nat @ J @ L2 ) ) ) ).

% add_mono_thms_linordered_semiring(1)
thf(fact_2118_add__mono__thms__linordered__semiring_I1_J,axiom,
    ! [I2: int,J: int,K: int,L2: int] :
      ( ( ( ord_less_eq_int @ I2 @ J )
        & ( ord_less_eq_int @ K @ L2 ) )
     => ( ord_less_eq_int @ ( plus_plus_int @ I2 @ K ) @ ( plus_plus_int @ J @ L2 ) ) ) ).

% add_mono_thms_linordered_semiring(1)
thf(fact_2119_add__mono,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ C @ D )
       => ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ D ) ) ) ) ).

% add_mono
thf(fact_2120_add__mono,axiom,
    ! [A: rat,B: rat,C: rat,D: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_rat @ C @ D )
       => ( ord_less_eq_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ D ) ) ) ) ).

% add_mono
thf(fact_2121_add__mono,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ D )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ D ) ) ) ) ).

% add_mono
thf(fact_2122_add__mono,axiom,
    ! [A: int,B: int,C: int,D: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ C @ D )
       => ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ D ) ) ) ) ).

% add_mono
thf(fact_2123_add__left__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ord_less_eq_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) ) ) ).

% add_left_mono
thf(fact_2124_add__left__mono,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ord_less_eq_rat @ ( plus_plus_rat @ C @ A ) @ ( plus_plus_rat @ C @ B ) ) ) ).

% add_left_mono
thf(fact_2125_add__left__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) ) ) ).

% add_left_mono
thf(fact_2126_add__left__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ord_less_eq_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) ) ) ).

% add_left_mono
thf(fact_2127_less__eqE,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ~ ! [C3: nat] :
            ( B
           != ( plus_plus_nat @ A @ C3 ) ) ) ).

% less_eqE
thf(fact_2128_add__right__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) ) ) ).

% add_right_mono
thf(fact_2129_add__right__mono,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ord_less_eq_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ C ) ) ) ).

% add_right_mono
thf(fact_2130_add__right__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) ) ) ).

% add_right_mono
thf(fact_2131_add__right__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) ) ) ).

% add_right_mono
thf(fact_2132_le__iff__add,axiom,
    ( ord_less_eq_nat
    = ( ^ [A4: nat,B4: nat] :
        ? [C4: nat] :
          ( B4
          = ( plus_plus_nat @ A4 @ C4 ) ) ) ) ).

% le_iff_add
thf(fact_2133_add__le__imp__le__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) )
     => ( ord_less_eq_real @ A @ B ) ) ).

% add_le_imp_le_left
thf(fact_2134_add__le__imp__le__left,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( plus_plus_rat @ C @ A ) @ ( plus_plus_rat @ C @ B ) )
     => ( ord_less_eq_rat @ A @ B ) ) ).

% add_le_imp_le_left
thf(fact_2135_add__le__imp__le__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
     => ( ord_less_eq_nat @ A @ B ) ) ).

% add_le_imp_le_left
thf(fact_2136_add__le__imp__le__left,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
     => ( ord_less_eq_int @ A @ B ) ) ).

% add_le_imp_le_left
thf(fact_2137_add__le__imp__le__right,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) )
     => ( ord_less_eq_real @ A @ B ) ) ).

% add_le_imp_le_right
thf(fact_2138_add__le__imp__le__right,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ C ) )
     => ( ord_less_eq_rat @ A @ B ) ) ).

% add_le_imp_le_right
thf(fact_2139_add__le__imp__le__right,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
     => ( ord_less_eq_nat @ A @ B ) ) ).

% add_le_imp_le_right
thf(fact_2140_add__le__imp__le__right,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
     => ( ord_less_eq_int @ A @ B ) ) ).

% add_le_imp_le_right
thf(fact_2141_add__mono__thms__linordered__field_I5_J,axiom,
    ! [I2: real,J: real,K: real,L2: real] :
      ( ( ( ord_less_real @ I2 @ J )
        & ( ord_less_real @ K @ L2 ) )
     => ( ord_less_real @ ( plus_plus_real @ I2 @ K ) @ ( plus_plus_real @ J @ L2 ) ) ) ).

% add_mono_thms_linordered_field(5)
thf(fact_2142_add__mono__thms__linordered__field_I5_J,axiom,
    ! [I2: rat,J: rat,K: rat,L2: rat] :
      ( ( ( ord_less_rat @ I2 @ J )
        & ( ord_less_rat @ K @ L2 ) )
     => ( ord_less_rat @ ( plus_plus_rat @ I2 @ K ) @ ( plus_plus_rat @ J @ L2 ) ) ) ).

% add_mono_thms_linordered_field(5)
thf(fact_2143_add__mono__thms__linordered__field_I5_J,axiom,
    ! [I2: nat,J: nat,K: nat,L2: nat] :
      ( ( ( ord_less_nat @ I2 @ J )
        & ( ord_less_nat @ K @ L2 ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I2 @ K ) @ ( plus_plus_nat @ J @ L2 ) ) ) ).

% add_mono_thms_linordered_field(5)
thf(fact_2144_add__mono__thms__linordered__field_I5_J,axiom,
    ! [I2: int,J: int,K: int,L2: int] :
      ( ( ( ord_less_int @ I2 @ J )
        & ( ord_less_int @ K @ L2 ) )
     => ( ord_less_int @ ( plus_plus_int @ I2 @ K ) @ ( plus_plus_int @ J @ L2 ) ) ) ).

% add_mono_thms_linordered_field(5)
thf(fact_2145_add__mono__thms__linordered__field_I2_J,axiom,
    ! [I2: real,J: real,K: real,L2: real] :
      ( ( ( I2 = J )
        & ( ord_less_real @ K @ L2 ) )
     => ( ord_less_real @ ( plus_plus_real @ I2 @ K ) @ ( plus_plus_real @ J @ L2 ) ) ) ).

% add_mono_thms_linordered_field(2)
thf(fact_2146_add__mono__thms__linordered__field_I2_J,axiom,
    ! [I2: rat,J: rat,K: rat,L2: rat] :
      ( ( ( I2 = J )
        & ( ord_less_rat @ K @ L2 ) )
     => ( ord_less_rat @ ( plus_plus_rat @ I2 @ K ) @ ( plus_plus_rat @ J @ L2 ) ) ) ).

% add_mono_thms_linordered_field(2)
thf(fact_2147_add__mono__thms__linordered__field_I2_J,axiom,
    ! [I2: nat,J: nat,K: nat,L2: nat] :
      ( ( ( I2 = J )
        & ( ord_less_nat @ K @ L2 ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I2 @ K ) @ ( plus_plus_nat @ J @ L2 ) ) ) ).

% add_mono_thms_linordered_field(2)
thf(fact_2148_add__mono__thms__linordered__field_I2_J,axiom,
    ! [I2: int,J: int,K: int,L2: int] :
      ( ( ( I2 = J )
        & ( ord_less_int @ K @ L2 ) )
     => ( ord_less_int @ ( plus_plus_int @ I2 @ K ) @ ( plus_plus_int @ J @ L2 ) ) ) ).

% add_mono_thms_linordered_field(2)
thf(fact_2149_add__mono__thms__linordered__field_I1_J,axiom,
    ! [I2: real,J: real,K: real,L2: real] :
      ( ( ( ord_less_real @ I2 @ J )
        & ( K = L2 ) )
     => ( ord_less_real @ ( plus_plus_real @ I2 @ K ) @ ( plus_plus_real @ J @ L2 ) ) ) ).

% add_mono_thms_linordered_field(1)
thf(fact_2150_add__mono__thms__linordered__field_I1_J,axiom,
    ! [I2: rat,J: rat,K: rat,L2: rat] :
      ( ( ( ord_less_rat @ I2 @ J )
        & ( K = L2 ) )
     => ( ord_less_rat @ ( plus_plus_rat @ I2 @ K ) @ ( plus_plus_rat @ J @ L2 ) ) ) ).

% add_mono_thms_linordered_field(1)
thf(fact_2151_add__mono__thms__linordered__field_I1_J,axiom,
    ! [I2: nat,J: nat,K: nat,L2: nat] :
      ( ( ( ord_less_nat @ I2 @ J )
        & ( K = L2 ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I2 @ K ) @ ( plus_plus_nat @ J @ L2 ) ) ) ).

% add_mono_thms_linordered_field(1)
thf(fact_2152_add__mono__thms__linordered__field_I1_J,axiom,
    ! [I2: int,J: int,K: int,L2: int] :
      ( ( ( ord_less_int @ I2 @ J )
        & ( K = L2 ) )
     => ( ord_less_int @ ( plus_plus_int @ I2 @ K ) @ ( plus_plus_int @ J @ L2 ) ) ) ).

% add_mono_thms_linordered_field(1)
thf(fact_2153_add__strict__mono,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ C @ D )
       => ( ord_less_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ D ) ) ) ) ).

% add_strict_mono
thf(fact_2154_add__strict__mono,axiom,
    ! [A: rat,B: rat,C: rat,D: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_rat @ C @ D )
       => ( ord_less_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ D ) ) ) ) ).

% add_strict_mono
thf(fact_2155_add__strict__mono,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ C @ D )
       => ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ D ) ) ) ) ).

% add_strict_mono
thf(fact_2156_add__strict__mono,axiom,
    ! [A: int,B: int,C: int,D: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_int @ C @ D )
       => ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ D ) ) ) ) ).

% add_strict_mono
thf(fact_2157_add__strict__left__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ord_less_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) ) ) ).

% add_strict_left_mono
thf(fact_2158_add__strict__left__mono,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ord_less_rat @ ( plus_plus_rat @ C @ A ) @ ( plus_plus_rat @ C @ B ) ) ) ).

% add_strict_left_mono
thf(fact_2159_add__strict__left__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ord_less_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) ) ) ).

% add_strict_left_mono
thf(fact_2160_add__strict__left__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ord_less_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) ) ) ).

% add_strict_left_mono
thf(fact_2161_add__strict__right__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ord_less_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) ) ) ).

% add_strict_right_mono
thf(fact_2162_add__strict__right__mono,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ord_less_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ C ) ) ) ).

% add_strict_right_mono
thf(fact_2163_add__strict__right__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) ) ) ).

% add_strict_right_mono
thf(fact_2164_add__strict__right__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) ) ) ).

% add_strict_right_mono
thf(fact_2165_add__less__imp__less__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) )
     => ( ord_less_real @ A @ B ) ) ).

% add_less_imp_less_left
thf(fact_2166_add__less__imp__less__left,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ ( plus_plus_rat @ C @ A ) @ ( plus_plus_rat @ C @ B ) )
     => ( ord_less_rat @ A @ B ) ) ).

% add_less_imp_less_left
thf(fact_2167_add__less__imp__less__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
     => ( ord_less_nat @ A @ B ) ) ).

% add_less_imp_less_left
thf(fact_2168_add__less__imp__less__left,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
     => ( ord_less_int @ A @ B ) ) ).

% add_less_imp_less_left
thf(fact_2169_add__less__imp__less__right,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) )
     => ( ord_less_real @ A @ B ) ) ).

% add_less_imp_less_right
thf(fact_2170_add__less__imp__less__right,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( ord_less_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ C ) )
     => ( ord_less_rat @ A @ B ) ) ).

% add_less_imp_less_right
thf(fact_2171_add__less__imp__less__right,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
     => ( ord_less_nat @ A @ B ) ) ).

% add_less_imp_less_right
thf(fact_2172_add__less__imp__less__right,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
     => ( ord_less_int @ A @ B ) ) ).

% add_less_imp_less_right
thf(fact_2173_diff__eq__diff__less__eq,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( ( minus_minus_real @ A @ B )
        = ( minus_minus_real @ C @ D ) )
     => ( ( ord_less_eq_real @ A @ B )
        = ( ord_less_eq_real @ C @ D ) ) ) ).

% diff_eq_diff_less_eq
thf(fact_2174_diff__eq__diff__less__eq,axiom,
    ! [A: rat,B: rat,C: rat,D: rat] :
      ( ( ( minus_minus_rat @ A @ B )
        = ( minus_minus_rat @ C @ D ) )
     => ( ( ord_less_eq_rat @ A @ B )
        = ( ord_less_eq_rat @ C @ D ) ) ) ).

% diff_eq_diff_less_eq
thf(fact_2175_diff__eq__diff__less__eq,axiom,
    ! [A: int,B: int,C: int,D: int] :
      ( ( ( minus_minus_int @ A @ B )
        = ( minus_minus_int @ C @ D ) )
     => ( ( ord_less_eq_int @ A @ B )
        = ( ord_less_eq_int @ C @ D ) ) ) ).

% diff_eq_diff_less_eq
thf(fact_2176_diff__right__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ord_less_eq_real @ ( minus_minus_real @ A @ C ) @ ( minus_minus_real @ B @ C ) ) ) ).

% diff_right_mono
thf(fact_2177_diff__right__mono,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ord_less_eq_rat @ ( minus_minus_rat @ A @ C ) @ ( minus_minus_rat @ B @ C ) ) ) ).

% diff_right_mono
thf(fact_2178_diff__right__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ord_less_eq_int @ ( minus_minus_int @ A @ C ) @ ( minus_minus_int @ B @ C ) ) ) ).

% diff_right_mono
thf(fact_2179_diff__left__mono,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_eq_real @ B @ A )
     => ( ord_less_eq_real @ ( minus_minus_real @ C @ A ) @ ( minus_minus_real @ C @ B ) ) ) ).

% diff_left_mono
thf(fact_2180_diff__left__mono,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( ord_less_eq_rat @ B @ A )
     => ( ord_less_eq_rat @ ( minus_minus_rat @ C @ A ) @ ( minus_minus_rat @ C @ B ) ) ) ).

% diff_left_mono
thf(fact_2181_diff__left__mono,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_less_eq_int @ B @ A )
     => ( ord_less_eq_int @ ( minus_minus_int @ C @ A ) @ ( minus_minus_int @ C @ B ) ) ) ).

% diff_left_mono
thf(fact_2182_diff__mono,axiom,
    ! [A: real,B: real,D: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ D @ C )
       => ( ord_less_eq_real @ ( minus_minus_real @ A @ C ) @ ( minus_minus_real @ B @ D ) ) ) ) ).

% diff_mono
thf(fact_2183_diff__mono,axiom,
    ! [A: rat,B: rat,D: rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_rat @ D @ C )
       => ( ord_less_eq_rat @ ( minus_minus_rat @ A @ C ) @ ( minus_minus_rat @ B @ D ) ) ) ) ).

% diff_mono
thf(fact_2184_diff__mono,axiom,
    ! [A: int,B: int,D: int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ D @ C )
       => ( ord_less_eq_int @ ( minus_minus_int @ A @ C ) @ ( minus_minus_int @ B @ D ) ) ) ) ).

% diff_mono
thf(fact_2185_diff__strict__right__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ord_less_real @ ( minus_minus_real @ A @ C ) @ ( minus_minus_real @ B @ C ) ) ) ).

% diff_strict_right_mono
thf(fact_2186_diff__strict__right__mono,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ord_less_rat @ ( minus_minus_rat @ A @ C ) @ ( minus_minus_rat @ B @ C ) ) ) ).

% diff_strict_right_mono
thf(fact_2187_diff__strict__right__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ord_less_int @ ( minus_minus_int @ A @ C ) @ ( minus_minus_int @ B @ C ) ) ) ).

% diff_strict_right_mono
thf(fact_2188_diff__strict__left__mono,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_real @ B @ A )
     => ( ord_less_real @ ( minus_minus_real @ C @ A ) @ ( minus_minus_real @ C @ B ) ) ) ).

% diff_strict_left_mono
thf(fact_2189_diff__strict__left__mono,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( ord_less_rat @ B @ A )
     => ( ord_less_rat @ ( minus_minus_rat @ C @ A ) @ ( minus_minus_rat @ C @ B ) ) ) ).

% diff_strict_left_mono
thf(fact_2190_diff__strict__left__mono,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_less_int @ B @ A )
     => ( ord_less_int @ ( minus_minus_int @ C @ A ) @ ( minus_minus_int @ C @ B ) ) ) ).

% diff_strict_left_mono
thf(fact_2191_diff__eq__diff__less,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( ( minus_minus_real @ A @ B )
        = ( minus_minus_real @ C @ D ) )
     => ( ( ord_less_real @ A @ B )
        = ( ord_less_real @ C @ D ) ) ) ).

% diff_eq_diff_less
thf(fact_2192_diff__eq__diff__less,axiom,
    ! [A: rat,B: rat,C: rat,D: rat] :
      ( ( ( minus_minus_rat @ A @ B )
        = ( minus_minus_rat @ C @ D ) )
     => ( ( ord_less_rat @ A @ B )
        = ( ord_less_rat @ C @ D ) ) ) ).

% diff_eq_diff_less
thf(fact_2193_diff__eq__diff__less,axiom,
    ! [A: int,B: int,C: int,D: int] :
      ( ( ( minus_minus_int @ A @ B )
        = ( minus_minus_int @ C @ D ) )
     => ( ( ord_less_int @ A @ B )
        = ( ord_less_int @ C @ D ) ) ) ).

% diff_eq_diff_less
thf(fact_2194_diff__strict__mono,axiom,
    ! [A: real,B: real,D: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ D @ C )
       => ( ord_less_real @ ( minus_minus_real @ A @ C ) @ ( minus_minus_real @ B @ D ) ) ) ) ).

% diff_strict_mono
thf(fact_2195_diff__strict__mono,axiom,
    ! [A: rat,B: rat,D: rat,C: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_rat @ D @ C )
       => ( ord_less_rat @ ( minus_minus_rat @ A @ C ) @ ( minus_minus_rat @ B @ D ) ) ) ) ).

% diff_strict_mono
thf(fact_2196_diff__strict__mono,axiom,
    ! [A: int,B: int,D: int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_int @ D @ C )
       => ( ord_less_int @ ( minus_minus_int @ A @ C ) @ ( minus_minus_int @ B @ D ) ) ) ) ).

% diff_strict_mono
thf(fact_2197_comm__monoid__mult__class_Omult__1,axiom,
    ! [A: complex] :
      ( ( times_times_complex @ one_one_complex @ A )
      = A ) ).

% comm_monoid_mult_class.mult_1
thf(fact_2198_comm__monoid__mult__class_Omult__1,axiom,
    ! [A: real] :
      ( ( times_times_real @ one_one_real @ A )
      = A ) ).

% comm_monoid_mult_class.mult_1
thf(fact_2199_comm__monoid__mult__class_Omult__1,axiom,
    ! [A: rat] :
      ( ( times_times_rat @ one_one_rat @ A )
      = A ) ).

% comm_monoid_mult_class.mult_1
thf(fact_2200_comm__monoid__mult__class_Omult__1,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ one_one_nat @ A )
      = A ) ).

% comm_monoid_mult_class.mult_1
thf(fact_2201_comm__monoid__mult__class_Omult__1,axiom,
    ! [A: int] :
      ( ( times_times_int @ one_one_int @ A )
      = A ) ).

% comm_monoid_mult_class.mult_1
thf(fact_2202_mult_Ocomm__neutral,axiom,
    ! [A: complex] :
      ( ( times_times_complex @ A @ one_one_complex )
      = A ) ).

% mult.comm_neutral
thf(fact_2203_mult_Ocomm__neutral,axiom,
    ! [A: real] :
      ( ( times_times_real @ A @ one_one_real )
      = A ) ).

% mult.comm_neutral
thf(fact_2204_mult_Ocomm__neutral,axiom,
    ! [A: rat] :
      ( ( times_times_rat @ A @ one_one_rat )
      = A ) ).

% mult.comm_neutral
thf(fact_2205_mult_Ocomm__neutral,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ A @ one_one_nat )
      = A ) ).

% mult.comm_neutral
thf(fact_2206_mult_Ocomm__neutral,axiom,
    ! [A: int] :
      ( ( times_times_int @ A @ one_one_int )
      = A ) ).

% mult.comm_neutral
thf(fact_2207_times__divide__times__eq,axiom,
    ! [X: complex,Y: complex,Z: complex,W: complex] :
      ( ( times_times_complex @ ( divide1717551699836669952omplex @ X @ Y ) @ ( divide1717551699836669952omplex @ Z @ W ) )
      = ( divide1717551699836669952omplex @ ( times_times_complex @ X @ Z ) @ ( times_times_complex @ Y @ W ) ) ) ).

% times_divide_times_eq
thf(fact_2208_times__divide__times__eq,axiom,
    ! [X: real,Y: real,Z: real,W: real] :
      ( ( times_times_real @ ( divide_divide_real @ X @ Y ) @ ( divide_divide_real @ Z @ W ) )
      = ( divide_divide_real @ ( times_times_real @ X @ Z ) @ ( times_times_real @ Y @ W ) ) ) ).

% times_divide_times_eq
thf(fact_2209_times__divide__times__eq,axiom,
    ! [X: rat,Y: rat,Z: rat,W: rat] :
      ( ( times_times_rat @ ( divide_divide_rat @ X @ Y ) @ ( divide_divide_rat @ Z @ W ) )
      = ( divide_divide_rat @ ( times_times_rat @ X @ Z ) @ ( times_times_rat @ Y @ W ) ) ) ).

% times_divide_times_eq
thf(fact_2210_divide__divide__times__eq,axiom,
    ! [X: complex,Y: complex,Z: complex,W: complex] :
      ( ( divide1717551699836669952omplex @ ( divide1717551699836669952omplex @ X @ Y ) @ ( divide1717551699836669952omplex @ Z @ W ) )
      = ( divide1717551699836669952omplex @ ( times_times_complex @ X @ W ) @ ( times_times_complex @ Y @ Z ) ) ) ).

% divide_divide_times_eq
thf(fact_2211_divide__divide__times__eq,axiom,
    ! [X: real,Y: real,Z: real,W: real] :
      ( ( divide_divide_real @ ( divide_divide_real @ X @ Y ) @ ( divide_divide_real @ Z @ W ) )
      = ( divide_divide_real @ ( times_times_real @ X @ W ) @ ( times_times_real @ Y @ Z ) ) ) ).

% divide_divide_times_eq
thf(fact_2212_divide__divide__times__eq,axiom,
    ! [X: rat,Y: rat,Z: rat,W: rat] :
      ( ( divide_divide_rat @ ( divide_divide_rat @ X @ Y ) @ ( divide_divide_rat @ Z @ W ) )
      = ( divide_divide_rat @ ( times_times_rat @ X @ W ) @ ( times_times_rat @ Y @ Z ) ) ) ).

% divide_divide_times_eq
thf(fact_2213_divide__divide__eq__left_H,axiom,
    ! [A: complex,B: complex,C: complex] :
      ( ( divide1717551699836669952omplex @ ( divide1717551699836669952omplex @ A @ B ) @ C )
      = ( divide1717551699836669952omplex @ A @ ( times_times_complex @ C @ B ) ) ) ).

% divide_divide_eq_left'
thf(fact_2214_divide__divide__eq__left_H,axiom,
    ! [A: real,B: real,C: real] :
      ( ( divide_divide_real @ ( divide_divide_real @ A @ B ) @ C )
      = ( divide_divide_real @ A @ ( times_times_real @ C @ B ) ) ) ).

% divide_divide_eq_left'
thf(fact_2215_divide__divide__eq__left_H,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( divide_divide_rat @ ( divide_divide_rat @ A @ B ) @ C )
      = ( divide_divide_rat @ A @ ( times_times_rat @ C @ B ) ) ) ).

% divide_divide_eq_left'
thf(fact_2216_group__cancel_Osub1,axiom,
    ! [A2: real,K: real,A: real,B: real] :
      ( ( A2
        = ( plus_plus_real @ K @ A ) )
     => ( ( minus_minus_real @ A2 @ B )
        = ( plus_plus_real @ K @ ( minus_minus_real @ A @ B ) ) ) ) ).

% group_cancel.sub1
thf(fact_2217_group__cancel_Osub1,axiom,
    ! [A2: rat,K: rat,A: rat,B: rat] :
      ( ( A2
        = ( plus_plus_rat @ K @ A ) )
     => ( ( minus_minus_rat @ A2 @ B )
        = ( plus_plus_rat @ K @ ( minus_minus_rat @ A @ B ) ) ) ) ).

% group_cancel.sub1
thf(fact_2218_group__cancel_Osub1,axiom,
    ! [A2: int,K: int,A: int,B: int] :
      ( ( A2
        = ( plus_plus_int @ K @ A ) )
     => ( ( minus_minus_int @ A2 @ B )
        = ( plus_plus_int @ K @ ( minus_minus_int @ A @ B ) ) ) ) ).

% group_cancel.sub1
thf(fact_2219_diff__eq__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ( minus_minus_real @ A @ B )
        = C )
      = ( A
        = ( plus_plus_real @ C @ B ) ) ) ).

% diff_eq_eq
thf(fact_2220_diff__eq__eq,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ( minus_minus_rat @ A @ B )
        = C )
      = ( A
        = ( plus_plus_rat @ C @ B ) ) ) ).

% diff_eq_eq
thf(fact_2221_diff__eq__eq,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ( minus_minus_int @ A @ B )
        = C )
      = ( A
        = ( plus_plus_int @ C @ B ) ) ) ).

% diff_eq_eq
thf(fact_2222_eq__diff__eq,axiom,
    ! [A: real,C: real,B: real] :
      ( ( A
        = ( minus_minus_real @ C @ B ) )
      = ( ( plus_plus_real @ A @ B )
        = C ) ) ).

% eq_diff_eq
thf(fact_2223_eq__diff__eq,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( A
        = ( minus_minus_rat @ C @ B ) )
      = ( ( plus_plus_rat @ A @ B )
        = C ) ) ).

% eq_diff_eq
thf(fact_2224_eq__diff__eq,axiom,
    ! [A: int,C: int,B: int] :
      ( ( A
        = ( minus_minus_int @ C @ B ) )
      = ( ( plus_plus_int @ A @ B )
        = C ) ) ).

% eq_diff_eq
thf(fact_2225_add__diff__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( plus_plus_real @ A @ ( minus_minus_real @ B @ C ) )
      = ( minus_minus_real @ ( plus_plus_real @ A @ B ) @ C ) ) ).

% add_diff_eq
thf(fact_2226_add__diff__eq,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( plus_plus_rat @ A @ ( minus_minus_rat @ B @ C ) )
      = ( minus_minus_rat @ ( plus_plus_rat @ A @ B ) @ C ) ) ).

% add_diff_eq
thf(fact_2227_add__diff__eq,axiom,
    ! [A: int,B: int,C: int] :
      ( ( plus_plus_int @ A @ ( minus_minus_int @ B @ C ) )
      = ( minus_minus_int @ ( plus_plus_int @ A @ B ) @ C ) ) ).

% add_diff_eq
thf(fact_2228_diff__diff__eq2,axiom,
    ! [A: real,B: real,C: real] :
      ( ( minus_minus_real @ A @ ( minus_minus_real @ B @ C ) )
      = ( minus_minus_real @ ( plus_plus_real @ A @ C ) @ B ) ) ).

% diff_diff_eq2
thf(fact_2229_diff__diff__eq2,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( minus_minus_rat @ A @ ( minus_minus_rat @ B @ C ) )
      = ( minus_minus_rat @ ( plus_plus_rat @ A @ C ) @ B ) ) ).

% diff_diff_eq2
thf(fact_2230_diff__diff__eq2,axiom,
    ! [A: int,B: int,C: int] :
      ( ( minus_minus_int @ A @ ( minus_minus_int @ B @ C ) )
      = ( minus_minus_int @ ( plus_plus_int @ A @ C ) @ B ) ) ).

% diff_diff_eq2
thf(fact_2231_diff__add__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( plus_plus_real @ ( minus_minus_real @ A @ B ) @ C )
      = ( minus_minus_real @ ( plus_plus_real @ A @ C ) @ B ) ) ).

% diff_add_eq
thf(fact_2232_diff__add__eq,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( plus_plus_rat @ ( minus_minus_rat @ A @ B ) @ C )
      = ( minus_minus_rat @ ( plus_plus_rat @ A @ C ) @ B ) ) ).

% diff_add_eq
thf(fact_2233_diff__add__eq,axiom,
    ! [A: int,B: int,C: int] :
      ( ( plus_plus_int @ ( minus_minus_int @ A @ B ) @ C )
      = ( minus_minus_int @ ( plus_plus_int @ A @ C ) @ B ) ) ).

% diff_add_eq
thf(fact_2234_diff__add__eq__diff__diff__swap,axiom,
    ! [A: real,B: real,C: real] :
      ( ( minus_minus_real @ A @ ( plus_plus_real @ B @ C ) )
      = ( minus_minus_real @ ( minus_minus_real @ A @ C ) @ B ) ) ).

% diff_add_eq_diff_diff_swap
thf(fact_2235_diff__add__eq__diff__diff__swap,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( minus_minus_rat @ A @ ( plus_plus_rat @ B @ C ) )
      = ( minus_minus_rat @ ( minus_minus_rat @ A @ C ) @ B ) ) ).

% diff_add_eq_diff_diff_swap
thf(fact_2236_diff__add__eq__diff__diff__swap,axiom,
    ! [A: int,B: int,C: int] :
      ( ( minus_minus_int @ A @ ( plus_plus_int @ B @ C ) )
      = ( minus_minus_int @ ( minus_minus_int @ A @ C ) @ B ) ) ).

% diff_add_eq_diff_diff_swap
thf(fact_2237_add__implies__diff,axiom,
    ! [C: real,B: real,A: real] :
      ( ( ( plus_plus_real @ C @ B )
        = A )
     => ( C
        = ( minus_minus_real @ A @ B ) ) ) ).

% add_implies_diff
thf(fact_2238_add__implies__diff,axiom,
    ! [C: rat,B: rat,A: rat] :
      ( ( ( plus_plus_rat @ C @ B )
        = A )
     => ( C
        = ( minus_minus_rat @ A @ B ) ) ) ).

% add_implies_diff
thf(fact_2239_add__implies__diff,axiom,
    ! [C: nat,B: nat,A: nat] :
      ( ( ( plus_plus_nat @ C @ B )
        = A )
     => ( C
        = ( minus_minus_nat @ A @ B ) ) ) ).

% add_implies_diff
thf(fact_2240_add__implies__diff,axiom,
    ! [C: int,B: int,A: int] :
      ( ( ( plus_plus_int @ C @ B )
        = A )
     => ( C
        = ( minus_minus_int @ A @ B ) ) ) ).

% add_implies_diff
thf(fact_2241_diff__diff__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( minus_minus_real @ ( minus_minus_real @ A @ B ) @ C )
      = ( minus_minus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).

% diff_diff_eq
thf(fact_2242_diff__diff__eq,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( minus_minus_rat @ ( minus_minus_rat @ A @ B ) @ C )
      = ( minus_minus_rat @ A @ ( plus_plus_rat @ B @ C ) ) ) ).

% diff_diff_eq
thf(fact_2243_diff__diff__eq,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ A @ B ) @ C )
      = ( minus_minus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).

% diff_diff_eq
thf(fact_2244_diff__diff__eq,axiom,
    ! [A: int,B: int,C: int] :
      ( ( minus_minus_int @ ( minus_minus_int @ A @ B ) @ C )
      = ( minus_minus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).

% diff_diff_eq
thf(fact_2245_add__divide__distrib,axiom,
    ! [A: complex,B: complex,C: complex] :
      ( ( divide1717551699836669952omplex @ ( plus_plus_complex @ A @ B ) @ C )
      = ( plus_plus_complex @ ( divide1717551699836669952omplex @ A @ C ) @ ( divide1717551699836669952omplex @ B @ C ) ) ) ).

% add_divide_distrib
thf(fact_2246_add__divide__distrib,axiom,
    ! [A: real,B: real,C: real] :
      ( ( divide_divide_real @ ( plus_plus_real @ A @ B ) @ C )
      = ( plus_plus_real @ ( divide_divide_real @ A @ C ) @ ( divide_divide_real @ B @ C ) ) ) ).

% add_divide_distrib
thf(fact_2247_add__divide__distrib,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( divide_divide_rat @ ( plus_plus_rat @ A @ B ) @ C )
      = ( plus_plus_rat @ ( divide_divide_rat @ A @ C ) @ ( divide_divide_rat @ B @ C ) ) ) ).

% add_divide_distrib
thf(fact_2248_diff__divide__distrib,axiom,
    ! [A: complex,B: complex,C: complex] :
      ( ( divide1717551699836669952omplex @ ( minus_minus_complex @ A @ B ) @ C )
      = ( minus_minus_complex @ ( divide1717551699836669952omplex @ A @ C ) @ ( divide1717551699836669952omplex @ B @ C ) ) ) ).

% diff_divide_distrib
thf(fact_2249_diff__divide__distrib,axiom,
    ! [A: real,B: real,C: real] :
      ( ( divide_divide_real @ ( minus_minus_real @ A @ B ) @ C )
      = ( minus_minus_real @ ( divide_divide_real @ A @ C ) @ ( divide_divide_real @ B @ C ) ) ) ).

% diff_divide_distrib
thf(fact_2250_diff__divide__distrib,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( divide_divide_rat @ ( minus_minus_rat @ A @ B ) @ C )
      = ( minus_minus_rat @ ( divide_divide_rat @ A @ C ) @ ( divide_divide_rat @ B @ C ) ) ) ).

% diff_divide_distrib
thf(fact_2251_max__add__distrib__left,axiom,
    ! [X: real,Y: real,Z: real] :
      ( ( plus_plus_real @ ( ord_max_real @ X @ Y ) @ Z )
      = ( ord_max_real @ ( plus_plus_real @ X @ Z ) @ ( plus_plus_real @ Y @ Z ) ) ) ).

% max_add_distrib_left
thf(fact_2252_max__add__distrib__left,axiom,
    ! [X: rat,Y: rat,Z: rat] :
      ( ( plus_plus_rat @ ( ord_max_rat @ X @ Y ) @ Z )
      = ( ord_max_rat @ ( plus_plus_rat @ X @ Z ) @ ( plus_plus_rat @ Y @ Z ) ) ) ).

% max_add_distrib_left
thf(fact_2253_max__add__distrib__left,axiom,
    ! [X: nat,Y: nat,Z: nat] :
      ( ( plus_plus_nat @ ( ord_max_nat @ X @ Y ) @ Z )
      = ( ord_max_nat @ ( plus_plus_nat @ X @ Z ) @ ( plus_plus_nat @ Y @ Z ) ) ) ).

% max_add_distrib_left
thf(fact_2254_max__add__distrib__left,axiom,
    ! [X: int,Y: int,Z: int] :
      ( ( plus_plus_int @ ( ord_max_int @ X @ Y ) @ Z )
      = ( ord_max_int @ ( plus_plus_int @ X @ Z ) @ ( plus_plus_int @ Y @ Z ) ) ) ).

% max_add_distrib_left
thf(fact_2255_max__add__distrib__left,axiom,
    ! [X: code_integer,Y: code_integer,Z: code_integer] :
      ( ( plus_p5714425477246183910nteger @ ( ord_max_Code_integer @ X @ Y ) @ Z )
      = ( ord_max_Code_integer @ ( plus_p5714425477246183910nteger @ X @ Z ) @ ( plus_p5714425477246183910nteger @ Y @ Z ) ) ) ).

% max_add_distrib_left
thf(fact_2256_max__add__distrib__right,axiom,
    ! [X: real,Y: real,Z: real] :
      ( ( plus_plus_real @ X @ ( ord_max_real @ Y @ Z ) )
      = ( ord_max_real @ ( plus_plus_real @ X @ Y ) @ ( plus_plus_real @ X @ Z ) ) ) ).

% max_add_distrib_right
thf(fact_2257_max__add__distrib__right,axiom,
    ! [X: rat,Y: rat,Z: rat] :
      ( ( plus_plus_rat @ X @ ( ord_max_rat @ Y @ Z ) )
      = ( ord_max_rat @ ( plus_plus_rat @ X @ Y ) @ ( plus_plus_rat @ X @ Z ) ) ) ).

% max_add_distrib_right
thf(fact_2258_max__add__distrib__right,axiom,
    ! [X: nat,Y: nat,Z: nat] :
      ( ( plus_plus_nat @ X @ ( ord_max_nat @ Y @ Z ) )
      = ( ord_max_nat @ ( plus_plus_nat @ X @ Y ) @ ( plus_plus_nat @ X @ Z ) ) ) ).

% max_add_distrib_right
thf(fact_2259_max__add__distrib__right,axiom,
    ! [X: int,Y: int,Z: int] :
      ( ( plus_plus_int @ X @ ( ord_max_int @ Y @ Z ) )
      = ( ord_max_int @ ( plus_plus_int @ X @ Y ) @ ( plus_plus_int @ X @ Z ) ) ) ).

% max_add_distrib_right
thf(fact_2260_max__add__distrib__right,axiom,
    ! [X: code_integer,Y: code_integer,Z: code_integer] :
      ( ( plus_p5714425477246183910nteger @ X @ ( ord_max_Code_integer @ Y @ Z ) )
      = ( ord_max_Code_integer @ ( plus_p5714425477246183910nteger @ X @ Y ) @ ( plus_p5714425477246183910nteger @ X @ Z ) ) ) ).

% max_add_distrib_right
thf(fact_2261_max__diff__distrib__left,axiom,
    ! [X: code_integer,Y: code_integer,Z: code_integer] :
      ( ( minus_8373710615458151222nteger @ ( ord_max_Code_integer @ X @ Y ) @ Z )
      = ( ord_max_Code_integer @ ( minus_8373710615458151222nteger @ X @ Z ) @ ( minus_8373710615458151222nteger @ Y @ Z ) ) ) ).

% max_diff_distrib_left
thf(fact_2262_max__diff__distrib__left,axiom,
    ! [X: real,Y: real,Z: real] :
      ( ( minus_minus_real @ ( ord_max_real @ X @ Y ) @ Z )
      = ( ord_max_real @ ( minus_minus_real @ X @ Z ) @ ( minus_minus_real @ Y @ Z ) ) ) ).

% max_diff_distrib_left
thf(fact_2263_max__diff__distrib__left,axiom,
    ! [X: rat,Y: rat,Z: rat] :
      ( ( minus_minus_rat @ ( ord_max_rat @ X @ Y ) @ Z )
      = ( ord_max_rat @ ( minus_minus_rat @ X @ Z ) @ ( minus_minus_rat @ Y @ Z ) ) ) ).

% max_diff_distrib_left
thf(fact_2264_max__diff__distrib__left,axiom,
    ! [X: int,Y: int,Z: int] :
      ( ( minus_minus_int @ ( ord_max_int @ X @ Y ) @ Z )
      = ( ord_max_int @ ( minus_minus_int @ X @ Z ) @ ( minus_minus_int @ Y @ Z ) ) ) ).

% max_diff_distrib_left
thf(fact_2265_add__mono__thms__linordered__field_I4_J,axiom,
    ! [I2: real,J: real,K: real,L2: real] :
      ( ( ( ord_less_eq_real @ I2 @ J )
        & ( ord_less_real @ K @ L2 ) )
     => ( ord_less_real @ ( plus_plus_real @ I2 @ K ) @ ( plus_plus_real @ J @ L2 ) ) ) ).

% add_mono_thms_linordered_field(4)
thf(fact_2266_add__mono__thms__linordered__field_I4_J,axiom,
    ! [I2: rat,J: rat,K: rat,L2: rat] :
      ( ( ( ord_less_eq_rat @ I2 @ J )
        & ( ord_less_rat @ K @ L2 ) )
     => ( ord_less_rat @ ( plus_plus_rat @ I2 @ K ) @ ( plus_plus_rat @ J @ L2 ) ) ) ).

% add_mono_thms_linordered_field(4)
thf(fact_2267_add__mono__thms__linordered__field_I4_J,axiom,
    ! [I2: nat,J: nat,K: nat,L2: nat] :
      ( ( ( ord_less_eq_nat @ I2 @ J )
        & ( ord_less_nat @ K @ L2 ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I2 @ K ) @ ( plus_plus_nat @ J @ L2 ) ) ) ).

% add_mono_thms_linordered_field(4)
thf(fact_2268_add__mono__thms__linordered__field_I4_J,axiom,
    ! [I2: int,J: int,K: int,L2: int] :
      ( ( ( ord_less_eq_int @ I2 @ J )
        & ( ord_less_int @ K @ L2 ) )
     => ( ord_less_int @ ( plus_plus_int @ I2 @ K ) @ ( plus_plus_int @ J @ L2 ) ) ) ).

% add_mono_thms_linordered_field(4)
thf(fact_2269_add__mono__thms__linordered__field_I3_J,axiom,
    ! [I2: real,J: real,K: real,L2: real] :
      ( ( ( ord_less_real @ I2 @ J )
        & ( ord_less_eq_real @ K @ L2 ) )
     => ( ord_less_real @ ( plus_plus_real @ I2 @ K ) @ ( plus_plus_real @ J @ L2 ) ) ) ).

% add_mono_thms_linordered_field(3)
thf(fact_2270_add__mono__thms__linordered__field_I3_J,axiom,
    ! [I2: rat,J: rat,K: rat,L2: rat] :
      ( ( ( ord_less_rat @ I2 @ J )
        & ( ord_less_eq_rat @ K @ L2 ) )
     => ( ord_less_rat @ ( plus_plus_rat @ I2 @ K ) @ ( plus_plus_rat @ J @ L2 ) ) ) ).

% add_mono_thms_linordered_field(3)
thf(fact_2271_add__mono__thms__linordered__field_I3_J,axiom,
    ! [I2: nat,J: nat,K: nat,L2: nat] :
      ( ( ( ord_less_nat @ I2 @ J )
        & ( ord_less_eq_nat @ K @ L2 ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I2 @ K ) @ ( plus_plus_nat @ J @ L2 ) ) ) ).

% add_mono_thms_linordered_field(3)
thf(fact_2272_add__mono__thms__linordered__field_I3_J,axiom,
    ! [I2: int,J: int,K: int,L2: int] :
      ( ( ( ord_less_int @ I2 @ J )
        & ( ord_less_eq_int @ K @ L2 ) )
     => ( ord_less_int @ ( plus_plus_int @ I2 @ K ) @ ( plus_plus_int @ J @ L2 ) ) ) ).

% add_mono_thms_linordered_field(3)
thf(fact_2273_add__le__less__mono,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_real @ C @ D )
       => ( ord_less_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ D ) ) ) ) ).

% add_le_less_mono
thf(fact_2274_add__le__less__mono,axiom,
    ! [A: rat,B: rat,C: rat,D: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_rat @ C @ D )
       => ( ord_less_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ D ) ) ) ) ).

% add_le_less_mono
thf(fact_2275_add__le__less__mono,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_nat @ C @ D )
       => ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ D ) ) ) ) ).

% add_le_less_mono
thf(fact_2276_add__le__less__mono,axiom,
    ! [A: int,B: int,C: int,D: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_int @ C @ D )
       => ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ D ) ) ) ) ).

% add_le_less_mono
thf(fact_2277_add__less__le__mono,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_eq_real @ C @ D )
       => ( ord_less_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ D ) ) ) ) ).

% add_less_le_mono
thf(fact_2278_add__less__le__mono,axiom,
    ! [A: rat,B: rat,C: rat,D: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_eq_rat @ C @ D )
       => ( ord_less_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ D ) ) ) ) ).

% add_less_le_mono
thf(fact_2279_add__less__le__mono,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ D )
       => ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ D ) ) ) ) ).

% add_less_le_mono
thf(fact_2280_add__less__le__mono,axiom,
    ! [A: int,B: int,C: int,D: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_eq_int @ C @ D )
       => ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ D ) ) ) ) ).

% add_less_le_mono
thf(fact_2281_diff__le__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ ( minus_minus_real @ A @ B ) @ C )
      = ( ord_less_eq_real @ A @ ( plus_plus_real @ C @ B ) ) ) ).

% diff_le_eq
thf(fact_2282_diff__le__eq,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ ( minus_minus_rat @ A @ B ) @ C )
      = ( ord_less_eq_rat @ A @ ( plus_plus_rat @ C @ B ) ) ) ).

% diff_le_eq
thf(fact_2283_diff__le__eq,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ ( minus_minus_int @ A @ B ) @ C )
      = ( ord_less_eq_int @ A @ ( plus_plus_int @ C @ B ) ) ) ).

% diff_le_eq
thf(fact_2284_le__diff__eq,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_eq_real @ A @ ( minus_minus_real @ C @ B ) )
      = ( ord_less_eq_real @ ( plus_plus_real @ A @ B ) @ C ) ) ).

% le_diff_eq
thf(fact_2285_le__diff__eq,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( ord_less_eq_rat @ A @ ( minus_minus_rat @ C @ B ) )
      = ( ord_less_eq_rat @ ( plus_plus_rat @ A @ B ) @ C ) ) ).

% le_diff_eq
thf(fact_2286_le__diff__eq,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_eq_int @ A @ ( minus_minus_int @ C @ B ) )
      = ( ord_less_eq_int @ ( plus_plus_int @ A @ B ) @ C ) ) ).

% le_diff_eq
thf(fact_2287_diff__add,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( plus_plus_nat @ ( minus_minus_nat @ B @ A ) @ A )
        = B ) ) ).

% diff_add
thf(fact_2288_le__add__diff,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ord_less_eq_nat @ C @ ( minus_minus_nat @ ( plus_plus_nat @ B @ C ) @ A ) ) ) ).

% le_add_diff
thf(fact_2289_ordered__cancel__comm__monoid__diff__class_Ole__diff__conv2,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ ( minus_minus_nat @ B @ A ) )
        = ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ B ) ) ) ).

% ordered_cancel_comm_monoid_diff_class.le_diff_conv2
thf(fact_2290_ordered__cancel__comm__monoid__diff__class_Oadd__diff__assoc,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( plus_plus_nat @ C @ ( minus_minus_nat @ B @ A ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ C @ B ) @ A ) ) ) ).

% ordered_cancel_comm_monoid_diff_class.add_diff_assoc
thf(fact_2291_ordered__cancel__comm__monoid__diff__class_Odiff__add__assoc,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ C @ B ) @ A )
        = ( plus_plus_nat @ C @ ( minus_minus_nat @ B @ A ) ) ) ) ).

% ordered_cancel_comm_monoid_diff_class.diff_add_assoc
thf(fact_2292_ordered__cancel__comm__monoid__diff__class_Oadd__diff__assoc2,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( plus_plus_nat @ ( minus_minus_nat @ B @ A ) @ C )
        = ( minus_minus_nat @ ( plus_plus_nat @ B @ C ) @ A ) ) ) ).

% ordered_cancel_comm_monoid_diff_class.add_diff_assoc2
thf(fact_2293_ordered__cancel__comm__monoid__diff__class_Odiff__add__assoc2,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ B @ C ) @ A )
        = ( plus_plus_nat @ ( minus_minus_nat @ B @ A ) @ C ) ) ) ).

% ordered_cancel_comm_monoid_diff_class.diff_add_assoc2
thf(fact_2294_ordered__cancel__comm__monoid__diff__class_Odiff__diff__right,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( minus_minus_nat @ C @ ( minus_minus_nat @ B @ A ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ C @ A ) @ B ) ) ) ).

% ordered_cancel_comm_monoid_diff_class.diff_diff_right
thf(fact_2295_ordered__cancel__comm__monoid__diff__class_Oadd__diff__inverse,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( plus_plus_nat @ A @ ( minus_minus_nat @ B @ A ) )
        = B ) ) ).

% ordered_cancel_comm_monoid_diff_class.add_diff_inverse
thf(fact_2296_ordered__cancel__comm__monoid__diff__class_Ole__imp__diff__is__add,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ A @ B )
       => ( ( ( minus_minus_nat @ B @ A )
            = C )
          = ( B
            = ( plus_plus_nat @ C @ A ) ) ) ) ) ).

% ordered_cancel_comm_monoid_diff_class.le_imp_diff_is_add
thf(fact_2297_diff__less__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ ( minus_minus_real @ A @ B ) @ C )
      = ( ord_less_real @ A @ ( plus_plus_real @ C @ B ) ) ) ).

% diff_less_eq
thf(fact_2298_diff__less__eq,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_rat @ ( minus_minus_rat @ A @ B ) @ C )
      = ( ord_less_rat @ A @ ( plus_plus_rat @ C @ B ) ) ) ).

% diff_less_eq
thf(fact_2299_diff__less__eq,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ ( minus_minus_int @ A @ B ) @ C )
      = ( ord_less_int @ A @ ( plus_plus_int @ C @ B ) ) ) ).

% diff_less_eq
thf(fact_2300_less__diff__eq,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_real @ A @ ( minus_minus_real @ C @ B ) )
      = ( ord_less_real @ ( plus_plus_real @ A @ B ) @ C ) ) ).

% less_diff_eq
thf(fact_2301_less__diff__eq,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( ord_less_rat @ A @ ( minus_minus_rat @ C @ B ) )
      = ( ord_less_rat @ ( plus_plus_rat @ A @ B ) @ C ) ) ).

% less_diff_eq
thf(fact_2302_less__diff__eq,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_int @ A @ ( minus_minus_int @ C @ B ) )
      = ( ord_less_int @ ( plus_plus_int @ A @ B ) @ C ) ) ).

% less_diff_eq
thf(fact_2303_gt__half__sum,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ( ord_less_real @ ( divide_divide_real @ ( plus_plus_real @ A @ B ) @ ( plus_plus_real @ one_one_real @ one_one_real ) ) @ B ) ) ).

% gt_half_sum
thf(fact_2304_gt__half__sum,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ord_less_rat @ ( divide_divide_rat @ ( plus_plus_rat @ A @ B ) @ ( plus_plus_rat @ one_one_rat @ one_one_rat ) ) @ B ) ) ).

% gt_half_sum
thf(fact_2305_less__half__sum,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ( ord_less_real @ A @ ( divide_divide_real @ ( plus_plus_real @ A @ B ) @ ( plus_plus_real @ one_one_real @ one_one_real ) ) ) ) ).

% less_half_sum
thf(fact_2306_less__half__sum,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ord_less_rat @ A @ ( divide_divide_rat @ ( plus_plus_rat @ A @ B ) @ ( plus_plus_rat @ one_one_rat @ one_one_rat ) ) ) ) ).

% less_half_sum
thf(fact_2307_VEBT__internal_Omembermima_Osimps_I4_J,axiom,
    ! [Mi: nat,Ma: nat,V: nat,TreeList: list_VEBT_VEBT,Vc: vEBT_VEBT,X: nat] :
      ( ( vEBT_VEBT_membermima @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ ( suc @ V ) @ TreeList @ Vc ) @ X )
      = ( ( X = Mi )
        | ( X = Ma )
        | ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) )
           => ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
          & ( ord_less_nat @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) ) ) ) ) ).

% VEBT_internal.membermima.simps(4)
thf(fact_2308_VEBT__internal_Onaive__member_Osimps_I3_J,axiom,
    ! [Uy: option4927543243414619207at_nat,V: nat,TreeList: list_VEBT_VEBT,S2: vEBT_VEBT,X: nat] :
      ( ( vEBT_V5719532721284313246member @ ( vEBT_Node @ Uy @ ( suc @ V ) @ TreeList @ S2 ) @ X )
      = ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) )
         => ( vEBT_V5719532721284313246member @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
        & ( ord_less_nat @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) ) ) ) ).

% VEBT_internal.naive_member.simps(3)
thf(fact_2309_VEBT__internal_Omembermima_Osimps_I5_J,axiom,
    ! [V: nat,TreeList: list_VEBT_VEBT,Vd: vEBT_VEBT,X: nat] :
      ( ( vEBT_VEBT_membermima @ ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V ) @ TreeList @ Vd ) @ X )
      = ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) )
         => ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
        & ( ord_less_nat @ ( vEBT_VEBT_high @ X @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) ) ) ) ).

% VEBT_internal.membermima.simps(5)
thf(fact_2310_divmod__step__eq,axiom,
    ! [L2: num,R2: nat,Q2: nat] :
      ( ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ L2 ) @ R2 )
       => ( ( unique5026877609467782581ep_nat @ L2 @ ( product_Pair_nat_nat @ Q2 @ R2 ) )
          = ( product_Pair_nat_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Q2 ) @ one_one_nat ) @ ( minus_minus_nat @ R2 @ ( numeral_numeral_nat @ L2 ) ) ) ) )
      & ( ~ ( ord_less_eq_nat @ ( numeral_numeral_nat @ L2 ) @ R2 )
       => ( ( unique5026877609467782581ep_nat @ L2 @ ( product_Pair_nat_nat @ Q2 @ R2 ) )
          = ( product_Pair_nat_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Q2 ) @ R2 ) ) ) ) ).

% divmod_step_eq
thf(fact_2311_divmod__step__eq,axiom,
    ! [L2: num,R2: int,Q2: int] :
      ( ( ( ord_less_eq_int @ ( numeral_numeral_int @ L2 ) @ R2 )
       => ( ( unique5024387138958732305ep_int @ L2 @ ( product_Pair_int_int @ Q2 @ R2 ) )
          = ( product_Pair_int_int @ ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Q2 ) @ one_one_int ) @ ( minus_minus_int @ R2 @ ( numeral_numeral_int @ L2 ) ) ) ) )
      & ( ~ ( ord_less_eq_int @ ( numeral_numeral_int @ L2 ) @ R2 )
       => ( ( unique5024387138958732305ep_int @ L2 @ ( product_Pair_int_int @ Q2 @ R2 ) )
          = ( product_Pair_int_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Q2 ) @ R2 ) ) ) ) ).

% divmod_step_eq
thf(fact_2312_divmod__step__eq,axiom,
    ! [L2: num,R2: code_integer,Q2: code_integer] :
      ( ( ( ord_le3102999989581377725nteger @ ( numera6620942414471956472nteger @ L2 ) @ R2 )
       => ( ( unique4921790084139445826nteger @ L2 @ ( produc1086072967326762835nteger @ Q2 @ R2 ) )
          = ( produc1086072967326762835nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ Q2 ) @ one_one_Code_integer ) @ ( minus_8373710615458151222nteger @ R2 @ ( numera6620942414471956472nteger @ L2 ) ) ) ) )
      & ( ~ ( ord_le3102999989581377725nteger @ ( numera6620942414471956472nteger @ L2 ) @ R2 )
       => ( ( unique4921790084139445826nteger @ L2 @ ( produc1086072967326762835nteger @ Q2 @ R2 ) )
          = ( produc1086072967326762835nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ Q2 ) @ R2 ) ) ) ) ).

% divmod_step_eq
thf(fact_2313_buildup__nothing__in__leaf,axiom,
    ! [N2: nat,X: nat] :
      ~ ( vEBT_V5719532721284313246member @ ( vEBT_vebt_buildup @ N2 ) @ X ) ).

% buildup_nothing_in_leaf
thf(fact_2314_vebt__pred_Oelims,axiom,
    ! [X: vEBT_VEBT,Xa2: nat,Y: option_nat] :
      ( ( ( vEBT_vebt_pred @ X @ Xa2 )
        = Y )
     => ( ( ? [Uu2: $o,Uv2: $o] :
              ( X
              = ( vEBT_Leaf @ Uu2 @ Uv2 ) )
         => ( ( Xa2 = zero_zero_nat )
           => ( Y != none_nat ) ) )
       => ( ! [A3: $o] :
              ( ? [Uw2: $o] :
                  ( X
                  = ( vEBT_Leaf @ A3 @ Uw2 ) )
             => ( ( Xa2
                  = ( suc @ zero_zero_nat ) )
               => ~ ( ( A3
                     => ( Y
                        = ( some_nat @ zero_zero_nat ) ) )
                    & ( ~ A3
                     => ( Y = none_nat ) ) ) ) )
         => ( ! [A3: $o,B2: $o] :
                ( ( X
                  = ( vEBT_Leaf @ A3 @ B2 ) )
               => ( ? [Va2: nat] :
                      ( Xa2
                      = ( suc @ ( suc @ Va2 ) ) )
                 => ~ ( ( B2
                       => ( Y
                          = ( some_nat @ one_one_nat ) ) )
                      & ( ~ B2
                       => ( ( A3
                           => ( Y
                              = ( some_nat @ zero_zero_nat ) ) )
                          & ( ~ A3
                           => ( Y = none_nat ) ) ) ) ) ) )
           => ( ( ? [Uy2: nat,Uz2: list_VEBT_VEBT,Va3: vEBT_VEBT] :
                    ( X
                    = ( vEBT_Node @ none_P5556105721700978146at_nat @ Uy2 @ Uz2 @ Va3 ) )
               => ( Y != none_nat ) )
             => ( ( ? [V2: product_prod_nat_nat,Vd2: list_VEBT_VEBT,Ve: vEBT_VEBT] :
                      ( X
                      = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ zero_zero_nat @ Vd2 @ Ve ) )
                 => ( Y != none_nat ) )
               => ( ( ? [V2: product_prod_nat_nat,Vh: list_VEBT_VEBT,Vi: vEBT_VEBT] :
                        ( X
                        = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ ( suc @ zero_zero_nat ) @ Vh @ Vi ) )
                   => ( Y != none_nat ) )
                 => ~ ! [Mi2: nat,Ma2: nat,Va2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
                        ( ( X
                          = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary2 ) )
                       => ~ ( ( ( ord_less_nat @ Ma2 @ Xa2 )
                             => ( Y
                                = ( some_nat @ Ma2 ) ) )
                            & ( ~ ( ord_less_nat @ Ma2 @ Xa2 )
                             => ( Y
                                = ( if_option_nat @ ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
                                  @ ( if_option_nat
                                    @ ( ( ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                       != none_nat )
                                      & ( vEBT_VEBT_greater @ ( some_nat @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) )
                                    @ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( some_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_pred @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                    @ ( if_option_nat
                                      @ ( ( vEBT_vebt_pred @ Summary2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
                                        = none_nat )
                                      @ ( if_option_nat @ ( ord_less_nat @ Mi2 @ Xa2 ) @ ( some_nat @ Mi2 ) @ none_nat )
                                      @ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_pred @ Summary2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_pred @ Summary2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) )
                                  @ none_nat ) ) ) ) ) ) ) ) ) ) ) ) ).

% vebt_pred.elims
thf(fact_2315_vebt__succ_Oelims,axiom,
    ! [X: vEBT_VEBT,Xa2: nat,Y: option_nat] :
      ( ( ( vEBT_vebt_succ @ X @ Xa2 )
        = Y )
     => ( ! [Uu2: $o,B2: $o] :
            ( ( X
              = ( vEBT_Leaf @ Uu2 @ B2 ) )
           => ( ( Xa2 = zero_zero_nat )
             => ~ ( ( B2
                   => ( Y
                      = ( some_nat @ one_one_nat ) ) )
                  & ( ~ B2
                   => ( Y = none_nat ) ) ) ) )
       => ( ( ? [Uv2: $o,Uw2: $o] :
                ( X
                = ( vEBT_Leaf @ Uv2 @ Uw2 ) )
           => ( ? [N: nat] :
                  ( Xa2
                  = ( suc @ N ) )
             => ( Y != none_nat ) ) )
         => ( ( ? [Ux2: nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT] :
                  ( X
                  = ( vEBT_Node @ none_P5556105721700978146at_nat @ Ux2 @ Uy2 @ Uz2 ) )
             => ( Y != none_nat ) )
           => ( ( ? [V2: product_prod_nat_nat,Vc2: list_VEBT_VEBT,Vd2: vEBT_VEBT] :
                    ( X
                    = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ zero_zero_nat @ Vc2 @ Vd2 ) )
               => ( Y != none_nat ) )
             => ( ( ? [V2: product_prod_nat_nat,Vg: list_VEBT_VEBT,Vh: vEBT_VEBT] :
                      ( X
                      = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ ( suc @ zero_zero_nat ) @ Vg @ Vh ) )
                 => ( Y != none_nat ) )
               => ~ ! [Mi2: nat,Ma2: nat,Va2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
                      ( ( X
                        = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary2 ) )
                     => ~ ( ( ( ord_less_nat @ Xa2 @ Mi2 )
                           => ( Y
                              = ( some_nat @ Mi2 ) ) )
                          & ( ~ ( ord_less_nat @ Xa2 @ Mi2 )
                           => ( Y
                              = ( if_option_nat @ ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
                                @ ( if_option_nat
                                  @ ( ( ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                     != none_nat )
                                    & ( vEBT_VEBT_less @ ( some_nat @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) )
                                  @ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( some_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_succ @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                  @ ( if_option_nat
                                    @ ( ( vEBT_vebt_succ @ Summary2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
                                      = none_nat )
                                    @ none_nat
                                    @ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_succ @ Summary2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_succ @ Summary2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) )
                                @ none_nat ) ) ) ) ) ) ) ) ) ) ) ).

% vebt_succ.elims
thf(fact_2316_discrete,axiom,
    ( ord_less_nat
    = ( ^ [A4: nat] : ( ord_less_eq_nat @ ( plus_plus_nat @ A4 @ one_one_nat ) ) ) ) ).

% discrete
thf(fact_2317_discrete,axiom,
    ( ord_less_int
    = ( ^ [A4: int] : ( ord_less_eq_int @ ( plus_plus_int @ A4 @ one_one_int ) ) ) ) ).

% discrete
thf(fact_2318_vebt__delete_Oelims,axiom,
    ! [X: vEBT_VEBT,Xa2: nat,Y: vEBT_VEBT] :
      ( ( ( vEBT_vebt_delete @ X @ Xa2 )
        = Y )
     => ( ! [A3: $o,B2: $o] :
            ( ( X
              = ( vEBT_Leaf @ A3 @ B2 ) )
           => ( ( Xa2 = zero_zero_nat )
             => ( Y
               != ( vEBT_Leaf @ $false @ B2 ) ) ) )
       => ( ! [A3: $o] :
              ( ? [B2: $o] :
                  ( X
                  = ( vEBT_Leaf @ A3 @ B2 ) )
             => ( ( Xa2
                  = ( suc @ zero_zero_nat ) )
               => ( Y
                 != ( vEBT_Leaf @ A3 @ $false ) ) ) )
         => ( ! [A3: $o,B2: $o] :
                ( ( X
                  = ( vEBT_Leaf @ A3 @ B2 ) )
               => ( ? [N: nat] :
                      ( Xa2
                      = ( suc @ ( suc @ N ) ) )
                 => ( Y
                   != ( vEBT_Leaf @ A3 @ B2 ) ) ) )
           => ( ! [Deg2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
                  ( ( X
                    = ( vEBT_Node @ none_P5556105721700978146at_nat @ Deg2 @ TreeList2 @ Summary2 ) )
                 => ( Y
                   != ( vEBT_Node @ none_P5556105721700978146at_nat @ Deg2 @ TreeList2 @ Summary2 ) ) )
             => ( ! [Mi2: nat,Ma2: nat,TrLst: list_VEBT_VEBT,Smry: vEBT_VEBT] :
                    ( ( X
                      = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ TrLst @ Smry ) )
                   => ( Y
                     != ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ TrLst @ Smry ) ) )
               => ( ! [Mi2: nat,Ma2: nat,Tr: list_VEBT_VEBT,Sm: vEBT_VEBT] :
                      ( ( X
                        = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ zero_zero_nat ) @ Tr @ Sm ) )
                     => ( Y
                       != ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ zero_zero_nat ) @ Tr @ Sm ) ) )
                 => ~ ! [Mi2: nat,Ma2: nat,Va2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
                        ( ( X
                          = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary2 ) )
                       => ~ ( ( ( ( ord_less_nat @ Xa2 @ Mi2 )
                                | ( ord_less_nat @ Ma2 @ Xa2 ) )
                             => ( Y
                                = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary2 ) ) )
                            & ( ~ ( ( ord_less_nat @ Xa2 @ Mi2 )
                                  | ( ord_less_nat @ Ma2 @ Xa2 ) )
                             => ( ( ( ( Xa2 = Mi2 )
                                    & ( Xa2 = Ma2 ) )
                                 => ( Y
                                    = ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary2 ) ) )
                                & ( ~ ( ( Xa2 = Mi2 )
                                      & ( Xa2 = Ma2 ) )
                                 => ( Y
                                    = ( if_VEBT_VEBT @ ( ord_less_nat @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa2 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
                                      @ ( if_VEBT_VEBT @ ( vEBT_VEBT_minNull @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa2 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( Xa2 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                        @ ( vEBT_Node
                                          @ ( some_P7363390416028606310at_nat
                                            @ ( product_Pair_nat_nat @ ( if_nat @ ( Xa2 = Mi2 ) @ ( if_nat @ ( Xa2 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa2 ) @ Mi2 )
                                              @ ( if_nat
                                                @ ( ( ( Xa2 = Mi2 )
                                                   => ( ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) )
                                                      = Ma2 ) )
                                                  & ( ( Xa2 != Mi2 )
                                                   => ( Xa2 = Ma2 ) ) )
                                                @ ( if_nat
                                                  @ ( ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary2 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa2 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                                    = none_nat )
                                                  @ ( if_nat @ ( Xa2 = Mi2 ) @ ( if_nat @ ( Xa2 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa2 ) @ Mi2 )
                                                  @ ( plus_plus_nat @ ( times_times_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary2 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa2 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ ( list_u1324408373059187874T_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa2 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa2 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( Xa2 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary2 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa2 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) )
                                                @ Ma2 ) ) )
                                          @ ( suc @ ( suc @ Va2 ) )
                                          @ ( list_u1324408373059187874T_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa2 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa2 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( Xa2 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                          @ ( vEBT_vebt_delete @ Summary2 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa2 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                        @ ( vEBT_Node
                                          @ ( some_P7363390416028606310at_nat
                                            @ ( product_Pair_nat_nat @ ( if_nat @ ( Xa2 = Mi2 ) @ ( if_nat @ ( Xa2 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa2 ) @ Mi2 )
                                              @ ( if_nat
                                                @ ( ( ( Xa2 = Mi2 )
                                                   => ( ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) )
                                                      = Ma2 ) )
                                                  & ( ( Xa2 != Mi2 )
                                                   => ( Xa2 = Ma2 ) ) )
                                                @ ( plus_plus_nat @ ( times_times_nat @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa2 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ ( list_u1324408373059187874T_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa2 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa2 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( Xa2 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa2 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) )
                                                @ Ma2 ) ) )
                                          @ ( suc @ ( suc @ Va2 ) )
                                          @ ( list_u1324408373059187874T_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa2 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa2 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( Xa2 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                          @ Summary2 ) )
                                      @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).

% vebt_delete.elims
thf(fact_2319_low__def,axiom,
    ( vEBT_VEBT_low
    = ( ^ [X3: nat,N3: nat] : ( modulo_modulo_nat @ X3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) ) ) ) ).

% low_def
thf(fact_2320_valid__tree__deg__neq__0,axiom,
    ! [T: vEBT_VEBT] :
      ~ ( vEBT_invar_vebt @ T @ zero_zero_nat ) ).

% valid_tree_deg_neq_0
thf(fact_2321_valid__0__not,axiom,
    ! [T: vEBT_VEBT] :
      ~ ( vEBT_invar_vebt @ T @ zero_zero_nat ) ).

% valid_0_not
thf(fact_2322_buildup__nothing__in__min__max,axiom,
    ! [N2: nat,X: nat] :
      ~ ( vEBT_VEBT_membermima @ ( vEBT_vebt_buildup @ N2 ) @ X ) ).

% buildup_nothing_in_min_max
thf(fact_2323_deg__not__0,axiom,
    ! [T: vEBT_VEBT,N2: nat] :
      ( ( vEBT_invar_vebt @ T @ N2 )
     => ( ord_less_nat @ zero_zero_nat @ N2 ) ) ).

% deg_not_0
thf(fact_2324_Leaf__0__not,axiom,
    ! [A: $o,B: $o] :
      ~ ( vEBT_invar_vebt @ ( vEBT_Leaf @ A @ B ) @ zero_zero_nat ) ).

% Leaf_0_not
thf(fact_2325_deg__1__Leafy,axiom,
    ! [T: vEBT_VEBT,N2: nat] :
      ( ( vEBT_invar_vebt @ T @ N2 )
     => ( ( N2 = one_one_nat )
       => ? [A3: $o,B2: $o] :
            ( T
            = ( vEBT_Leaf @ A3 @ B2 ) ) ) ) ).

% deg_1_Leafy
thf(fact_2326_deg__1__Leaf,axiom,
    ! [T: vEBT_VEBT] :
      ( ( vEBT_invar_vebt @ T @ one_one_nat )
     => ? [A3: $o,B2: $o] :
          ( T
          = ( vEBT_Leaf @ A3 @ B2 ) ) ) ).

% deg_1_Leaf
thf(fact_2327_deg1Leaf,axiom,
    ! [T: vEBT_VEBT] :
      ( ( vEBT_invar_vebt @ T @ one_one_nat )
      = ( ? [A4: $o,B4: $o] :
            ( T
            = ( vEBT_Leaf @ A4 @ B4 ) ) ) ) ).

% deg1Leaf
thf(fact_2328_both__member__options__def,axiom,
    ( vEBT_V8194947554948674370ptions
    = ( ^ [T2: vEBT_VEBT,X3: nat] :
          ( ( vEBT_V5719532721284313246member @ T2 @ X3 )
          | ( vEBT_VEBT_membermima @ T2 @ X3 ) ) ) ) ).

% both_member_options_def
thf(fact_2329_buildup__gives__valid,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( vEBT_invar_vebt @ ( vEBT_vebt_buildup @ N2 ) @ N2 ) ) ).

% buildup_gives_valid
thf(fact_2330_zdiv__numeral__Bit0,axiom,
    ! [V: num,W: num] :
      ( ( divide_divide_int @ ( numeral_numeral_int @ ( bit0 @ V ) ) @ ( numeral_numeral_int @ ( bit0 @ W ) ) )
      = ( divide_divide_int @ ( numeral_numeral_int @ V ) @ ( numeral_numeral_int @ W ) ) ) ).

% zdiv_numeral_Bit0
thf(fact_2331_mod__mod__trivial,axiom,
    ! [A: nat,B: nat] :
      ( ( modulo_modulo_nat @ ( modulo_modulo_nat @ A @ B ) @ B )
      = ( modulo_modulo_nat @ A @ B ) ) ).

% mod_mod_trivial
thf(fact_2332_mod__mod__trivial,axiom,
    ! [A: int,B: int] :
      ( ( modulo_modulo_int @ ( modulo_modulo_int @ A @ B ) @ B )
      = ( modulo_modulo_int @ A @ B ) ) ).

% mod_mod_trivial
thf(fact_2333_mod__mod__trivial,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( modulo364778990260209775nteger @ ( modulo364778990260209775nteger @ A @ B ) @ B )
      = ( modulo364778990260209775nteger @ A @ B ) ) ).

% mod_mod_trivial
thf(fact_2334_member__valid__both__member__options,axiom,
    ! [Tree: vEBT_VEBT,N2: nat,X: nat] :
      ( ( vEBT_invar_vebt @ Tree @ N2 )
     => ( ( vEBT_vebt_member @ Tree @ X )
       => ( ( vEBT_V5719532721284313246member @ Tree @ X )
          | ( vEBT_VEBT_membermima @ Tree @ X ) ) ) ) ).

% member_valid_both_member_options
thf(fact_2335_VEBT_Oinject_I2_J,axiom,
    ! [X21: $o,X222: $o,Y21: $o,Y222: $o] :
      ( ( ( vEBT_Leaf @ X21 @ X222 )
        = ( vEBT_Leaf @ Y21 @ Y222 ) )
      = ( ( X21 = Y21 )
        & ( X222 = Y222 ) ) ) ).

% VEBT.inject(2)
thf(fact_2336_le__zero__eq,axiom,
    ! [N2: nat] :
      ( ( ord_less_eq_nat @ N2 @ zero_zero_nat )
      = ( N2 = zero_zero_nat ) ) ).

% le_zero_eq
thf(fact_2337_not__gr__zero,axiom,
    ! [N2: nat] :
      ( ( ~ ( ord_less_nat @ zero_zero_nat @ N2 ) )
      = ( N2 = zero_zero_nat ) ) ).

% not_gr_zero
thf(fact_2338_mult__cancel__right,axiom,
    ! [A: complex,C: complex,B: complex] :
      ( ( ( times_times_complex @ A @ C )
        = ( times_times_complex @ B @ C ) )
      = ( ( C = zero_zero_complex )
        | ( A = B ) ) ) ).

% mult_cancel_right
thf(fact_2339_mult__cancel__right,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ( times_times_real @ A @ C )
        = ( times_times_real @ B @ C ) )
      = ( ( C = zero_zero_real )
        | ( A = B ) ) ) ).

% mult_cancel_right
thf(fact_2340_mult__cancel__right,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( ( times_times_rat @ A @ C )
        = ( times_times_rat @ B @ C ) )
      = ( ( C = zero_zero_rat )
        | ( A = B ) ) ) ).

% mult_cancel_right
thf(fact_2341_mult__cancel__right,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ( times_times_nat @ A @ C )
        = ( times_times_nat @ B @ C ) )
      = ( ( C = zero_zero_nat )
        | ( A = B ) ) ) ).

% mult_cancel_right
thf(fact_2342_mult__cancel__right,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ( times_times_int @ A @ C )
        = ( times_times_int @ B @ C ) )
      = ( ( C = zero_zero_int )
        | ( A = B ) ) ) ).

% mult_cancel_right
thf(fact_2343_mult__cancel__left,axiom,
    ! [C: complex,A: complex,B: complex] :
      ( ( ( times_times_complex @ C @ A )
        = ( times_times_complex @ C @ B ) )
      = ( ( C = zero_zero_complex )
        | ( A = B ) ) ) ).

% mult_cancel_left
thf(fact_2344_mult__cancel__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ( times_times_real @ C @ A )
        = ( times_times_real @ C @ B ) )
      = ( ( C = zero_zero_real )
        | ( A = B ) ) ) ).

% mult_cancel_left
thf(fact_2345_mult__cancel__left,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ( times_times_rat @ C @ A )
        = ( times_times_rat @ C @ B ) )
      = ( ( C = zero_zero_rat )
        | ( A = B ) ) ) ).

% mult_cancel_left
thf(fact_2346_mult__cancel__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ( times_times_nat @ C @ A )
        = ( times_times_nat @ C @ B ) )
      = ( ( C = zero_zero_nat )
        | ( A = B ) ) ) ).

% mult_cancel_left
thf(fact_2347_mult__cancel__left,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ( times_times_int @ C @ A )
        = ( times_times_int @ C @ B ) )
      = ( ( C = zero_zero_int )
        | ( A = B ) ) ) ).

% mult_cancel_left
thf(fact_2348_mult__eq__0__iff,axiom,
    ! [A: complex,B: complex] :
      ( ( ( times_times_complex @ A @ B )
        = zero_zero_complex )
      = ( ( A = zero_zero_complex )
        | ( B = zero_zero_complex ) ) ) ).

% mult_eq_0_iff
thf(fact_2349_mult__eq__0__iff,axiom,
    ! [A: real,B: real] :
      ( ( ( times_times_real @ A @ B )
        = zero_zero_real )
      = ( ( A = zero_zero_real )
        | ( B = zero_zero_real ) ) ) ).

% mult_eq_0_iff
thf(fact_2350_mult__eq__0__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ( times_times_rat @ A @ B )
        = zero_zero_rat )
      = ( ( A = zero_zero_rat )
        | ( B = zero_zero_rat ) ) ) ).

% mult_eq_0_iff
thf(fact_2351_mult__eq__0__iff,axiom,
    ! [A: nat,B: nat] :
      ( ( ( times_times_nat @ A @ B )
        = zero_zero_nat )
      = ( ( A = zero_zero_nat )
        | ( B = zero_zero_nat ) ) ) ).

% mult_eq_0_iff
thf(fact_2352_mult__eq__0__iff,axiom,
    ! [A: int,B: int] :
      ( ( ( times_times_int @ A @ B )
        = zero_zero_int )
      = ( ( A = zero_zero_int )
        | ( B = zero_zero_int ) ) ) ).

% mult_eq_0_iff
thf(fact_2353_mult__zero__right,axiom,
    ! [A: complex] :
      ( ( times_times_complex @ A @ zero_zero_complex )
      = zero_zero_complex ) ).

% mult_zero_right
thf(fact_2354_mult__zero__right,axiom,
    ! [A: real] :
      ( ( times_times_real @ A @ zero_zero_real )
      = zero_zero_real ) ).

% mult_zero_right
thf(fact_2355_mult__zero__right,axiom,
    ! [A: rat] :
      ( ( times_times_rat @ A @ zero_zero_rat )
      = zero_zero_rat ) ).

% mult_zero_right
thf(fact_2356_mult__zero__right,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ A @ zero_zero_nat )
      = zero_zero_nat ) ).

% mult_zero_right
thf(fact_2357_mult__zero__right,axiom,
    ! [A: int] :
      ( ( times_times_int @ A @ zero_zero_int )
      = zero_zero_int ) ).

% mult_zero_right
thf(fact_2358_mult__zero__left,axiom,
    ! [A: complex] :
      ( ( times_times_complex @ zero_zero_complex @ A )
      = zero_zero_complex ) ).

% mult_zero_left
thf(fact_2359_mult__zero__left,axiom,
    ! [A: real] :
      ( ( times_times_real @ zero_zero_real @ A )
      = zero_zero_real ) ).

% mult_zero_left
thf(fact_2360_mult__zero__left,axiom,
    ! [A: rat] :
      ( ( times_times_rat @ zero_zero_rat @ A )
      = zero_zero_rat ) ).

% mult_zero_left
thf(fact_2361_mult__zero__left,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ zero_zero_nat @ A )
      = zero_zero_nat ) ).

% mult_zero_left
thf(fact_2362_mult__zero__left,axiom,
    ! [A: int] :
      ( ( times_times_int @ zero_zero_int @ A )
      = zero_zero_int ) ).

% mult_zero_left
thf(fact_2363_add__0,axiom,
    ! [A: complex] :
      ( ( plus_plus_complex @ zero_zero_complex @ A )
      = A ) ).

% add_0
thf(fact_2364_add__0,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ zero_zero_real @ A )
      = A ) ).

% add_0
thf(fact_2365_add__0,axiom,
    ! [A: rat] :
      ( ( plus_plus_rat @ zero_zero_rat @ A )
      = A ) ).

% add_0
thf(fact_2366_add__0,axiom,
    ! [A: nat] :
      ( ( plus_plus_nat @ zero_zero_nat @ A )
      = A ) ).

% add_0
thf(fact_2367_add__0,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ zero_zero_int @ A )
      = A ) ).

% add_0
thf(fact_2368_zero__eq__add__iff__both__eq__0,axiom,
    ! [X: nat,Y: nat] :
      ( ( zero_zero_nat
        = ( plus_plus_nat @ X @ Y ) )
      = ( ( X = zero_zero_nat )
        & ( Y = zero_zero_nat ) ) ) ).

% zero_eq_add_iff_both_eq_0
thf(fact_2369_add__eq__0__iff__both__eq__0,axiom,
    ! [X: nat,Y: nat] :
      ( ( ( plus_plus_nat @ X @ Y )
        = zero_zero_nat )
      = ( ( X = zero_zero_nat )
        & ( Y = zero_zero_nat ) ) ) ).

% add_eq_0_iff_both_eq_0
thf(fact_2370_add__cancel__right__right,axiom,
    ! [A: complex,B: complex] :
      ( ( A
        = ( plus_plus_complex @ A @ B ) )
      = ( B = zero_zero_complex ) ) ).

% add_cancel_right_right
thf(fact_2371_add__cancel__right__right,axiom,
    ! [A: real,B: real] :
      ( ( A
        = ( plus_plus_real @ A @ B ) )
      = ( B = zero_zero_real ) ) ).

% add_cancel_right_right
thf(fact_2372_add__cancel__right__right,axiom,
    ! [A: rat,B: rat] :
      ( ( A
        = ( plus_plus_rat @ A @ B ) )
      = ( B = zero_zero_rat ) ) ).

% add_cancel_right_right
thf(fact_2373_add__cancel__right__right,axiom,
    ! [A: nat,B: nat] :
      ( ( A
        = ( plus_plus_nat @ A @ B ) )
      = ( B = zero_zero_nat ) ) ).

% add_cancel_right_right
thf(fact_2374_add__cancel__right__right,axiom,
    ! [A: int,B: int] :
      ( ( A
        = ( plus_plus_int @ A @ B ) )
      = ( B = zero_zero_int ) ) ).

% add_cancel_right_right
thf(fact_2375_add__cancel__right__left,axiom,
    ! [A: complex,B: complex] :
      ( ( A
        = ( plus_plus_complex @ B @ A ) )
      = ( B = zero_zero_complex ) ) ).

% add_cancel_right_left
thf(fact_2376_add__cancel__right__left,axiom,
    ! [A: real,B: real] :
      ( ( A
        = ( plus_plus_real @ B @ A ) )
      = ( B = zero_zero_real ) ) ).

% add_cancel_right_left
thf(fact_2377_add__cancel__right__left,axiom,
    ! [A: rat,B: rat] :
      ( ( A
        = ( plus_plus_rat @ B @ A ) )
      = ( B = zero_zero_rat ) ) ).

% add_cancel_right_left
thf(fact_2378_add__cancel__right__left,axiom,
    ! [A: nat,B: nat] :
      ( ( A
        = ( plus_plus_nat @ B @ A ) )
      = ( B = zero_zero_nat ) ) ).

% add_cancel_right_left
thf(fact_2379_add__cancel__right__left,axiom,
    ! [A: int,B: int] :
      ( ( A
        = ( plus_plus_int @ B @ A ) )
      = ( B = zero_zero_int ) ) ).

% add_cancel_right_left
thf(fact_2380_add__cancel__left__right,axiom,
    ! [A: complex,B: complex] :
      ( ( ( plus_plus_complex @ A @ B )
        = A )
      = ( B = zero_zero_complex ) ) ).

% add_cancel_left_right
thf(fact_2381_add__cancel__left__right,axiom,
    ! [A: real,B: real] :
      ( ( ( plus_plus_real @ A @ B )
        = A )
      = ( B = zero_zero_real ) ) ).

% add_cancel_left_right
thf(fact_2382_add__cancel__left__right,axiom,
    ! [A: rat,B: rat] :
      ( ( ( plus_plus_rat @ A @ B )
        = A )
      = ( B = zero_zero_rat ) ) ).

% add_cancel_left_right
thf(fact_2383_add__cancel__left__right,axiom,
    ! [A: nat,B: nat] :
      ( ( ( plus_plus_nat @ A @ B )
        = A )
      = ( B = zero_zero_nat ) ) ).

% add_cancel_left_right
thf(fact_2384_add__cancel__left__right,axiom,
    ! [A: int,B: int] :
      ( ( ( plus_plus_int @ A @ B )
        = A )
      = ( B = zero_zero_int ) ) ).

% add_cancel_left_right
thf(fact_2385_add__cancel__left__left,axiom,
    ! [B: complex,A: complex] :
      ( ( ( plus_plus_complex @ B @ A )
        = A )
      = ( B = zero_zero_complex ) ) ).

% add_cancel_left_left
thf(fact_2386_add__cancel__left__left,axiom,
    ! [B: real,A: real] :
      ( ( ( plus_plus_real @ B @ A )
        = A )
      = ( B = zero_zero_real ) ) ).

% add_cancel_left_left
thf(fact_2387_add__cancel__left__left,axiom,
    ! [B: rat,A: rat] :
      ( ( ( plus_plus_rat @ B @ A )
        = A )
      = ( B = zero_zero_rat ) ) ).

% add_cancel_left_left
thf(fact_2388_add__cancel__left__left,axiom,
    ! [B: nat,A: nat] :
      ( ( ( plus_plus_nat @ B @ A )
        = A )
      = ( B = zero_zero_nat ) ) ).

% add_cancel_left_left
thf(fact_2389_add__cancel__left__left,axiom,
    ! [B: int,A: int] :
      ( ( ( plus_plus_int @ B @ A )
        = A )
      = ( B = zero_zero_int ) ) ).

% add_cancel_left_left
thf(fact_2390_double__zero__sym,axiom,
    ! [A: real] :
      ( ( zero_zero_real
        = ( plus_plus_real @ A @ A ) )
      = ( A = zero_zero_real ) ) ).

% double_zero_sym
thf(fact_2391_double__zero__sym,axiom,
    ! [A: rat] :
      ( ( zero_zero_rat
        = ( plus_plus_rat @ A @ A ) )
      = ( A = zero_zero_rat ) ) ).

% double_zero_sym
thf(fact_2392_double__zero__sym,axiom,
    ! [A: int] :
      ( ( zero_zero_int
        = ( plus_plus_int @ A @ A ) )
      = ( A = zero_zero_int ) ) ).

% double_zero_sym
thf(fact_2393_add_Oright__neutral,axiom,
    ! [A: complex] :
      ( ( plus_plus_complex @ A @ zero_zero_complex )
      = A ) ).

% add.right_neutral
thf(fact_2394_add_Oright__neutral,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ A @ zero_zero_real )
      = A ) ).

% add.right_neutral
thf(fact_2395_add_Oright__neutral,axiom,
    ! [A: rat] :
      ( ( plus_plus_rat @ A @ zero_zero_rat )
      = A ) ).

% add.right_neutral
thf(fact_2396_add_Oright__neutral,axiom,
    ! [A: nat] :
      ( ( plus_plus_nat @ A @ zero_zero_nat )
      = A ) ).

% add.right_neutral
thf(fact_2397_add_Oright__neutral,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ A @ zero_zero_int )
      = A ) ).

% add.right_neutral
thf(fact_2398_diff__self,axiom,
    ! [A: complex] :
      ( ( minus_minus_complex @ A @ A )
      = zero_zero_complex ) ).

% diff_self
thf(fact_2399_diff__self,axiom,
    ! [A: real] :
      ( ( minus_minus_real @ A @ A )
      = zero_zero_real ) ).

% diff_self
thf(fact_2400_diff__self,axiom,
    ! [A: rat] :
      ( ( minus_minus_rat @ A @ A )
      = zero_zero_rat ) ).

% diff_self
thf(fact_2401_diff__self,axiom,
    ! [A: int] :
      ( ( minus_minus_int @ A @ A )
      = zero_zero_int ) ).

% diff_self
thf(fact_2402_diff__0__right,axiom,
    ! [A: complex] :
      ( ( minus_minus_complex @ A @ zero_zero_complex )
      = A ) ).

% diff_0_right
thf(fact_2403_diff__0__right,axiom,
    ! [A: real] :
      ( ( minus_minus_real @ A @ zero_zero_real )
      = A ) ).

% diff_0_right
thf(fact_2404_diff__0__right,axiom,
    ! [A: rat] :
      ( ( minus_minus_rat @ A @ zero_zero_rat )
      = A ) ).

% diff_0_right
thf(fact_2405_diff__0__right,axiom,
    ! [A: int] :
      ( ( minus_minus_int @ A @ zero_zero_int )
      = A ) ).

% diff_0_right
thf(fact_2406_zero__diff,axiom,
    ! [A: nat] :
      ( ( minus_minus_nat @ zero_zero_nat @ A )
      = zero_zero_nat ) ).

% zero_diff
thf(fact_2407_diff__zero,axiom,
    ! [A: complex] :
      ( ( minus_minus_complex @ A @ zero_zero_complex )
      = A ) ).

% diff_zero
thf(fact_2408_diff__zero,axiom,
    ! [A: real] :
      ( ( minus_minus_real @ A @ zero_zero_real )
      = A ) ).

% diff_zero
thf(fact_2409_diff__zero,axiom,
    ! [A: rat] :
      ( ( minus_minus_rat @ A @ zero_zero_rat )
      = A ) ).

% diff_zero
thf(fact_2410_diff__zero,axiom,
    ! [A: nat] :
      ( ( minus_minus_nat @ A @ zero_zero_nat )
      = A ) ).

% diff_zero
thf(fact_2411_diff__zero,axiom,
    ! [A: int] :
      ( ( minus_minus_int @ A @ zero_zero_int )
      = A ) ).

% diff_zero
thf(fact_2412_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
    ! [A: complex] :
      ( ( minus_minus_complex @ A @ A )
      = zero_zero_complex ) ).

% cancel_comm_monoid_add_class.diff_cancel
thf(fact_2413_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
    ! [A: real] :
      ( ( minus_minus_real @ A @ A )
      = zero_zero_real ) ).

% cancel_comm_monoid_add_class.diff_cancel
thf(fact_2414_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
    ! [A: rat] :
      ( ( minus_minus_rat @ A @ A )
      = zero_zero_rat ) ).

% cancel_comm_monoid_add_class.diff_cancel
thf(fact_2415_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
    ! [A: nat] :
      ( ( minus_minus_nat @ A @ A )
      = zero_zero_nat ) ).

% cancel_comm_monoid_add_class.diff_cancel
thf(fact_2416_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
    ! [A: int] :
      ( ( minus_minus_int @ A @ A )
      = zero_zero_int ) ).

% cancel_comm_monoid_add_class.diff_cancel
thf(fact_2417_bits__div__by__0,axiom,
    ! [A: nat] :
      ( ( divide_divide_nat @ A @ zero_zero_nat )
      = zero_zero_nat ) ).

% bits_div_by_0
thf(fact_2418_bits__div__by__0,axiom,
    ! [A: int] :
      ( ( divide_divide_int @ A @ zero_zero_int )
      = zero_zero_int ) ).

% bits_div_by_0
thf(fact_2419_bits__div__0,axiom,
    ! [A: nat] :
      ( ( divide_divide_nat @ zero_zero_nat @ A )
      = zero_zero_nat ) ).

% bits_div_0
thf(fact_2420_bits__div__0,axiom,
    ! [A: int] :
      ( ( divide_divide_int @ zero_zero_int @ A )
      = zero_zero_int ) ).

% bits_div_0
thf(fact_2421_div__by__0,axiom,
    ! [A: complex] :
      ( ( divide1717551699836669952omplex @ A @ zero_zero_complex )
      = zero_zero_complex ) ).

% div_by_0
thf(fact_2422_div__by__0,axiom,
    ! [A: real] :
      ( ( divide_divide_real @ A @ zero_zero_real )
      = zero_zero_real ) ).

% div_by_0
thf(fact_2423_div__by__0,axiom,
    ! [A: rat] :
      ( ( divide_divide_rat @ A @ zero_zero_rat )
      = zero_zero_rat ) ).

% div_by_0
thf(fact_2424_div__by__0,axiom,
    ! [A: nat] :
      ( ( divide_divide_nat @ A @ zero_zero_nat )
      = zero_zero_nat ) ).

% div_by_0
thf(fact_2425_div__by__0,axiom,
    ! [A: int] :
      ( ( divide_divide_int @ A @ zero_zero_int )
      = zero_zero_int ) ).

% div_by_0
thf(fact_2426_div__0,axiom,
    ! [A: complex] :
      ( ( divide1717551699836669952omplex @ zero_zero_complex @ A )
      = zero_zero_complex ) ).

% div_0
thf(fact_2427_div__0,axiom,
    ! [A: real] :
      ( ( divide_divide_real @ zero_zero_real @ A )
      = zero_zero_real ) ).

% div_0
thf(fact_2428_div__0,axiom,
    ! [A: rat] :
      ( ( divide_divide_rat @ zero_zero_rat @ A )
      = zero_zero_rat ) ).

% div_0
thf(fact_2429_div__0,axiom,
    ! [A: nat] :
      ( ( divide_divide_nat @ zero_zero_nat @ A )
      = zero_zero_nat ) ).

% div_0
thf(fact_2430_div__0,axiom,
    ! [A: int] :
      ( ( divide_divide_int @ zero_zero_int @ A )
      = zero_zero_int ) ).

% div_0
thf(fact_2431_division__ring__divide__zero,axiom,
    ! [A: complex] :
      ( ( divide1717551699836669952omplex @ A @ zero_zero_complex )
      = zero_zero_complex ) ).

% division_ring_divide_zero
thf(fact_2432_division__ring__divide__zero,axiom,
    ! [A: real] :
      ( ( divide_divide_real @ A @ zero_zero_real )
      = zero_zero_real ) ).

% division_ring_divide_zero
thf(fact_2433_division__ring__divide__zero,axiom,
    ! [A: rat] :
      ( ( divide_divide_rat @ A @ zero_zero_rat )
      = zero_zero_rat ) ).

% division_ring_divide_zero
thf(fact_2434_divide__cancel__right,axiom,
    ! [A: complex,C: complex,B: complex] :
      ( ( ( divide1717551699836669952omplex @ A @ C )
        = ( divide1717551699836669952omplex @ B @ C ) )
      = ( ( C = zero_zero_complex )
        | ( A = B ) ) ) ).

% divide_cancel_right
thf(fact_2435_divide__cancel__right,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ( divide_divide_real @ A @ C )
        = ( divide_divide_real @ B @ C ) )
      = ( ( C = zero_zero_real )
        | ( A = B ) ) ) ).

% divide_cancel_right
thf(fact_2436_divide__cancel__right,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( ( divide_divide_rat @ A @ C )
        = ( divide_divide_rat @ B @ C ) )
      = ( ( C = zero_zero_rat )
        | ( A = B ) ) ) ).

% divide_cancel_right
thf(fact_2437_divide__cancel__left,axiom,
    ! [C: complex,A: complex,B: complex] :
      ( ( ( divide1717551699836669952omplex @ C @ A )
        = ( divide1717551699836669952omplex @ C @ B ) )
      = ( ( C = zero_zero_complex )
        | ( A = B ) ) ) ).

% divide_cancel_left
thf(fact_2438_divide__cancel__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ( divide_divide_real @ C @ A )
        = ( divide_divide_real @ C @ B ) )
      = ( ( C = zero_zero_real )
        | ( A = B ) ) ) ).

% divide_cancel_left
thf(fact_2439_divide__cancel__left,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ( divide_divide_rat @ C @ A )
        = ( divide_divide_rat @ C @ B ) )
      = ( ( C = zero_zero_rat )
        | ( A = B ) ) ) ).

% divide_cancel_left
thf(fact_2440_divide__eq__0__iff,axiom,
    ! [A: complex,B: complex] :
      ( ( ( divide1717551699836669952omplex @ A @ B )
        = zero_zero_complex )
      = ( ( A = zero_zero_complex )
        | ( B = zero_zero_complex ) ) ) ).

% divide_eq_0_iff
thf(fact_2441_divide__eq__0__iff,axiom,
    ! [A: real,B: real] :
      ( ( ( divide_divide_real @ A @ B )
        = zero_zero_real )
      = ( ( A = zero_zero_real )
        | ( B = zero_zero_real ) ) ) ).

% divide_eq_0_iff
thf(fact_2442_divide__eq__0__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ( divide_divide_rat @ A @ B )
        = zero_zero_rat )
      = ( ( A = zero_zero_rat )
        | ( B = zero_zero_rat ) ) ) ).

% divide_eq_0_iff
thf(fact_2443_bits__mod__0,axiom,
    ! [A: nat] :
      ( ( modulo_modulo_nat @ zero_zero_nat @ A )
      = zero_zero_nat ) ).

% bits_mod_0
thf(fact_2444_bits__mod__0,axiom,
    ! [A: int] :
      ( ( modulo_modulo_int @ zero_zero_int @ A )
      = zero_zero_int ) ).

% bits_mod_0
thf(fact_2445_bits__mod__0,axiom,
    ! [A: code_integer] :
      ( ( modulo364778990260209775nteger @ zero_z3403309356797280102nteger @ A )
      = zero_z3403309356797280102nteger ) ).

% bits_mod_0
thf(fact_2446_mod__self,axiom,
    ! [A: nat] :
      ( ( modulo_modulo_nat @ A @ A )
      = zero_zero_nat ) ).

% mod_self
thf(fact_2447_mod__self,axiom,
    ! [A: int] :
      ( ( modulo_modulo_int @ A @ A )
      = zero_zero_int ) ).

% mod_self
thf(fact_2448_mod__self,axiom,
    ! [A: code_integer] :
      ( ( modulo364778990260209775nteger @ A @ A )
      = zero_z3403309356797280102nteger ) ).

% mod_self
thf(fact_2449_mod__by__0,axiom,
    ! [A: nat] :
      ( ( modulo_modulo_nat @ A @ zero_zero_nat )
      = A ) ).

% mod_by_0
thf(fact_2450_mod__by__0,axiom,
    ! [A: int] :
      ( ( modulo_modulo_int @ A @ zero_zero_int )
      = A ) ).

% mod_by_0
thf(fact_2451_mod__by__0,axiom,
    ! [A: code_integer] :
      ( ( modulo364778990260209775nteger @ A @ zero_z3403309356797280102nteger )
      = A ) ).

% mod_by_0
thf(fact_2452_mod__0,axiom,
    ! [A: nat] :
      ( ( modulo_modulo_nat @ zero_zero_nat @ A )
      = zero_zero_nat ) ).

% mod_0
thf(fact_2453_mod__0,axiom,
    ! [A: int] :
      ( ( modulo_modulo_int @ zero_zero_int @ A )
      = zero_zero_int ) ).

% mod_0
thf(fact_2454_mod__0,axiom,
    ! [A: code_integer] :
      ( ( modulo364778990260209775nteger @ zero_z3403309356797280102nteger @ A )
      = zero_z3403309356797280102nteger ) ).

% mod_0
thf(fact_2455_bot__nat__0_Onot__eq__extremum,axiom,
    ! [A: nat] :
      ( ( A != zero_zero_nat )
      = ( ord_less_nat @ zero_zero_nat @ A ) ) ).

% bot_nat_0.not_eq_extremum
thf(fact_2456_neq0__conv,axiom,
    ! [N2: nat] :
      ( ( N2 != zero_zero_nat )
      = ( ord_less_nat @ zero_zero_nat @ N2 ) ) ).

% neq0_conv
thf(fact_2457_less__nat__zero__code,axiom,
    ! [N2: nat] :
      ~ ( ord_less_nat @ N2 @ zero_zero_nat ) ).

% less_nat_zero_code
thf(fact_2458_Nat_Oadd__0__right,axiom,
    ! [M: nat] :
      ( ( plus_plus_nat @ M @ zero_zero_nat )
      = M ) ).

% Nat.add_0_right
thf(fact_2459_add__is__0,axiom,
    ! [M: nat,N2: nat] :
      ( ( ( plus_plus_nat @ M @ N2 )
        = zero_zero_nat )
      = ( ( M = zero_zero_nat )
        & ( N2 = zero_zero_nat ) ) ) ).

% add_is_0
thf(fact_2460_bot__nat__0_Oextremum,axiom,
    ! [A: nat] : ( ord_less_eq_nat @ zero_zero_nat @ A ) ).

% bot_nat_0.extremum
thf(fact_2461_le0,axiom,
    ! [N2: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N2 ) ).

% le0
thf(fact_2462_mod__add__self2,axiom,
    ! [A: nat,B: nat] :
      ( ( modulo_modulo_nat @ ( plus_plus_nat @ A @ B ) @ B )
      = ( modulo_modulo_nat @ A @ B ) ) ).

% mod_add_self2
thf(fact_2463_mod__add__self2,axiom,
    ! [A: int,B: int] :
      ( ( modulo_modulo_int @ ( plus_plus_int @ A @ B ) @ B )
      = ( modulo_modulo_int @ A @ B ) ) ).

% mod_add_self2
thf(fact_2464_mod__add__self2,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ A @ B ) @ B )
      = ( modulo364778990260209775nteger @ A @ B ) ) ).

% mod_add_self2
thf(fact_2465_mod__add__self1,axiom,
    ! [B: nat,A: nat] :
      ( ( modulo_modulo_nat @ ( plus_plus_nat @ B @ A ) @ B )
      = ( modulo_modulo_nat @ A @ B ) ) ).

% mod_add_self1
thf(fact_2466_mod__add__self1,axiom,
    ! [B: int,A: int] :
      ( ( modulo_modulo_int @ ( plus_plus_int @ B @ A ) @ B )
      = ( modulo_modulo_int @ A @ B ) ) ).

% mod_add_self1
thf(fact_2467_mod__add__self1,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ B @ A ) @ B )
      = ( modulo364778990260209775nteger @ A @ B ) ) ).

% mod_add_self1
thf(fact_2468_mult__cancel2,axiom,
    ! [M: nat,K: nat,N2: nat] :
      ( ( ( times_times_nat @ M @ K )
        = ( times_times_nat @ N2 @ K ) )
      = ( ( M = N2 )
        | ( K = zero_zero_nat ) ) ) ).

% mult_cancel2
thf(fact_2469_mult__cancel1,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( ( times_times_nat @ K @ M )
        = ( times_times_nat @ K @ N2 ) )
      = ( ( M = N2 )
        | ( K = zero_zero_nat ) ) ) ).

% mult_cancel1
thf(fact_2470_mult__0__right,axiom,
    ! [M: nat] :
      ( ( times_times_nat @ M @ zero_zero_nat )
      = zero_zero_nat ) ).

% mult_0_right
thf(fact_2471_mult__is__0,axiom,
    ! [M: nat,N2: nat] :
      ( ( ( times_times_nat @ M @ N2 )
        = zero_zero_nat )
      = ( ( M = zero_zero_nat )
        | ( N2 = zero_zero_nat ) ) ) ).

% mult_is_0
thf(fact_2472_minus__mod__self2,axiom,
    ! [A: int,B: int] :
      ( ( modulo_modulo_int @ ( minus_minus_int @ A @ B ) @ B )
      = ( modulo_modulo_int @ A @ B ) ) ).

% minus_mod_self2
thf(fact_2473_minus__mod__self2,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( modulo364778990260209775nteger @ ( minus_8373710615458151222nteger @ A @ B ) @ B )
      = ( modulo364778990260209775nteger @ A @ B ) ) ).

% minus_mod_self2
thf(fact_2474_diff__0__eq__0,axiom,
    ! [N2: nat] :
      ( ( minus_minus_nat @ zero_zero_nat @ N2 )
      = zero_zero_nat ) ).

% diff_0_eq_0
thf(fact_2475_diff__self__eq__0,axiom,
    ! [M: nat] :
      ( ( minus_minus_nat @ M @ M )
      = zero_zero_nat ) ).

% diff_self_eq_0
thf(fact_2476_mod__less,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ M @ N2 )
     => ( ( modulo_modulo_nat @ M @ N2 )
        = M ) ) ).

% mod_less
thf(fact_2477_max__nat_Oeq__neutr__iff,axiom,
    ! [A: nat,B: nat] :
      ( ( ( ord_max_nat @ A @ B )
        = zero_zero_nat )
      = ( ( A = zero_zero_nat )
        & ( B = zero_zero_nat ) ) ) ).

% max_nat.eq_neutr_iff
thf(fact_2478_max__nat_Oleft__neutral,axiom,
    ! [A: nat] :
      ( ( ord_max_nat @ zero_zero_nat @ A )
      = A ) ).

% max_nat.left_neutral
thf(fact_2479_max__nat_Oneutr__eq__iff,axiom,
    ! [A: nat,B: nat] :
      ( ( zero_zero_nat
        = ( ord_max_nat @ A @ B ) )
      = ( ( A = zero_zero_nat )
        & ( B = zero_zero_nat ) ) ) ).

% max_nat.neutr_eq_iff
thf(fact_2480_max__nat_Oright__neutral,axiom,
    ! [A: nat] :
      ( ( ord_max_nat @ A @ zero_zero_nat )
      = A ) ).

% max_nat.right_neutral
thf(fact_2481_max__0L,axiom,
    ! [N2: nat] :
      ( ( ord_max_nat @ zero_zero_nat @ N2 )
      = N2 ) ).

% max_0L
thf(fact_2482_max__0R,axiom,
    ! [N2: nat] :
      ( ( ord_max_nat @ N2 @ zero_zero_nat )
      = N2 ) ).

% max_0R
thf(fact_2483_zero__le__double__add__iff__zero__le__single__add,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( plus_plus_real @ A @ A ) )
      = ( ord_less_eq_real @ zero_zero_real @ A ) ) ).

% zero_le_double_add_iff_zero_le_single_add
thf(fact_2484_zero__le__double__add__iff__zero__le__single__add,axiom,
    ! [A: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ ( plus_plus_rat @ A @ A ) )
      = ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ).

% zero_le_double_add_iff_zero_le_single_add
thf(fact_2485_zero__le__double__add__iff__zero__le__single__add,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( plus_plus_int @ A @ A ) )
      = ( ord_less_eq_int @ zero_zero_int @ A ) ) ).

% zero_le_double_add_iff_zero_le_single_add
thf(fact_2486_double__add__le__zero__iff__single__add__le__zero,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ A @ A ) @ zero_zero_real )
      = ( ord_less_eq_real @ A @ zero_zero_real ) ) ).

% double_add_le_zero_iff_single_add_le_zero
thf(fact_2487_double__add__le__zero__iff__single__add__le__zero,axiom,
    ! [A: rat] :
      ( ( ord_less_eq_rat @ ( plus_plus_rat @ A @ A ) @ zero_zero_rat )
      = ( ord_less_eq_rat @ A @ zero_zero_rat ) ) ).

% double_add_le_zero_iff_single_add_le_zero
thf(fact_2488_double__add__le__zero__iff__single__add__le__zero,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ A @ A ) @ zero_zero_int )
      = ( ord_less_eq_int @ A @ zero_zero_int ) ) ).

% double_add_le_zero_iff_single_add_le_zero
thf(fact_2489_le__add__same__cancel2,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ ( plus_plus_real @ B @ A ) )
      = ( ord_less_eq_real @ zero_zero_real @ B ) ) ).

% le_add_same_cancel2
thf(fact_2490_le__add__same__cancel2,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ A @ ( plus_plus_rat @ B @ A ) )
      = ( ord_less_eq_rat @ zero_zero_rat @ B ) ) ).

% le_add_same_cancel2
thf(fact_2491_le__add__same__cancel2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ ( plus_plus_nat @ B @ A ) )
      = ( ord_less_eq_nat @ zero_zero_nat @ B ) ) ).

% le_add_same_cancel2
thf(fact_2492_le__add__same__cancel2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ ( plus_plus_int @ B @ A ) )
      = ( ord_less_eq_int @ zero_zero_int @ B ) ) ).

% le_add_same_cancel2
thf(fact_2493_le__add__same__cancel1,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ ( plus_plus_real @ A @ B ) )
      = ( ord_less_eq_real @ zero_zero_real @ B ) ) ).

% le_add_same_cancel1
thf(fact_2494_le__add__same__cancel1,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ A @ ( plus_plus_rat @ A @ B ) )
      = ( ord_less_eq_rat @ zero_zero_rat @ B ) ) ).

% le_add_same_cancel1
thf(fact_2495_le__add__same__cancel1,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ ( plus_plus_nat @ A @ B ) )
      = ( ord_less_eq_nat @ zero_zero_nat @ B ) ) ).

% le_add_same_cancel1
thf(fact_2496_le__add__same__cancel1,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ ( plus_plus_int @ A @ B ) )
      = ( ord_less_eq_int @ zero_zero_int @ B ) ) ).

% le_add_same_cancel1
thf(fact_2497_add__le__same__cancel2,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ A @ B ) @ B )
      = ( ord_less_eq_real @ A @ zero_zero_real ) ) ).

% add_le_same_cancel2
thf(fact_2498_add__le__same__cancel2,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( plus_plus_rat @ A @ B ) @ B )
      = ( ord_less_eq_rat @ A @ zero_zero_rat ) ) ).

% add_le_same_cancel2
thf(fact_2499_add__le__same__cancel2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ A @ B ) @ B )
      = ( ord_less_eq_nat @ A @ zero_zero_nat ) ) ).

% add_le_same_cancel2
thf(fact_2500_add__le__same__cancel2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ A @ B ) @ B )
      = ( ord_less_eq_int @ A @ zero_zero_int ) ) ).

% add_le_same_cancel2
thf(fact_2501_add__le__same__cancel1,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ B @ A ) @ B )
      = ( ord_less_eq_real @ A @ zero_zero_real ) ) ).

% add_le_same_cancel1
thf(fact_2502_add__le__same__cancel1,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_eq_rat @ ( plus_plus_rat @ B @ A ) @ B )
      = ( ord_less_eq_rat @ A @ zero_zero_rat ) ) ).

% add_le_same_cancel1
thf(fact_2503_add__le__same__cancel1,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ B @ A ) @ B )
      = ( ord_less_eq_nat @ A @ zero_zero_nat ) ) ).

% add_le_same_cancel1
thf(fact_2504_add__le__same__cancel1,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ B @ A ) @ B )
      = ( ord_less_eq_int @ A @ zero_zero_int ) ) ).

% add_le_same_cancel1
thf(fact_2505_zero__less__double__add__iff__zero__less__single__add,axiom,
    ! [A: real] :
      ( ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ A @ A ) )
      = ( ord_less_real @ zero_zero_real @ A ) ) ).

% zero_less_double_add_iff_zero_less_single_add
thf(fact_2506_zero__less__double__add__iff__zero__less__single__add,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( plus_plus_rat @ A @ A ) )
      = ( ord_less_rat @ zero_zero_rat @ A ) ) ).

% zero_less_double_add_iff_zero_less_single_add
thf(fact_2507_zero__less__double__add__iff__zero__less__single__add,axiom,
    ! [A: int] :
      ( ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ A @ A ) )
      = ( ord_less_int @ zero_zero_int @ A ) ) ).

% zero_less_double_add_iff_zero_less_single_add
thf(fact_2508_double__add__less__zero__iff__single__add__less__zero,axiom,
    ! [A: real] :
      ( ( ord_less_real @ ( plus_plus_real @ A @ A ) @ zero_zero_real )
      = ( ord_less_real @ A @ zero_zero_real ) ) ).

% double_add_less_zero_iff_single_add_less_zero
thf(fact_2509_double__add__less__zero__iff__single__add__less__zero,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ ( plus_plus_rat @ A @ A ) @ zero_zero_rat )
      = ( ord_less_rat @ A @ zero_zero_rat ) ) ).

% double_add_less_zero_iff_single_add_less_zero
thf(fact_2510_double__add__less__zero__iff__single__add__less__zero,axiom,
    ! [A: int] :
      ( ( ord_less_int @ ( plus_plus_int @ A @ A ) @ zero_zero_int )
      = ( ord_less_int @ A @ zero_zero_int ) ) ).

% double_add_less_zero_iff_single_add_less_zero
thf(fact_2511_less__add__same__cancel2,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ ( plus_plus_real @ B @ A ) )
      = ( ord_less_real @ zero_zero_real @ B ) ) ).

% less_add_same_cancel2
thf(fact_2512_less__add__same__cancel2,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ ( plus_plus_rat @ B @ A ) )
      = ( ord_less_rat @ zero_zero_rat @ B ) ) ).

% less_add_same_cancel2
thf(fact_2513_less__add__same__cancel2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ ( plus_plus_nat @ B @ A ) )
      = ( ord_less_nat @ zero_zero_nat @ B ) ) ).

% less_add_same_cancel2
thf(fact_2514_less__add__same__cancel2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ ( plus_plus_int @ B @ A ) )
      = ( ord_less_int @ zero_zero_int @ B ) ) ).

% less_add_same_cancel2
thf(fact_2515_less__add__same__cancel1,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ ( plus_plus_real @ A @ B ) )
      = ( ord_less_real @ zero_zero_real @ B ) ) ).

% less_add_same_cancel1
thf(fact_2516_less__add__same__cancel1,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ ( plus_plus_rat @ A @ B ) )
      = ( ord_less_rat @ zero_zero_rat @ B ) ) ).

% less_add_same_cancel1
thf(fact_2517_less__add__same__cancel1,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ ( plus_plus_nat @ A @ B ) )
      = ( ord_less_nat @ zero_zero_nat @ B ) ) ).

% less_add_same_cancel1
thf(fact_2518_less__add__same__cancel1,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ ( plus_plus_int @ A @ B ) )
      = ( ord_less_int @ zero_zero_int @ B ) ) ).

% less_add_same_cancel1
thf(fact_2519_add__less__same__cancel2,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ ( plus_plus_real @ A @ B ) @ B )
      = ( ord_less_real @ A @ zero_zero_real ) ) ).

% add_less_same_cancel2
thf(fact_2520_add__less__same__cancel2,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ ( plus_plus_rat @ A @ B ) @ B )
      = ( ord_less_rat @ A @ zero_zero_rat ) ) ).

% add_less_same_cancel2
thf(fact_2521_add__less__same__cancel2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ A @ B ) @ B )
      = ( ord_less_nat @ A @ zero_zero_nat ) ) ).

% add_less_same_cancel2
thf(fact_2522_add__less__same__cancel2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ ( plus_plus_int @ A @ B ) @ B )
      = ( ord_less_int @ A @ zero_zero_int ) ) ).

% add_less_same_cancel2
thf(fact_2523_add__less__same__cancel1,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_real @ ( plus_plus_real @ B @ A ) @ B )
      = ( ord_less_real @ A @ zero_zero_real ) ) ).

% add_less_same_cancel1
thf(fact_2524_add__less__same__cancel1,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_rat @ ( plus_plus_rat @ B @ A ) @ B )
      = ( ord_less_rat @ A @ zero_zero_rat ) ) ).

% add_less_same_cancel1
thf(fact_2525_add__less__same__cancel1,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ B @ A ) @ B )
      = ( ord_less_nat @ A @ zero_zero_nat ) ) ).

% add_less_same_cancel1
thf(fact_2526_add__less__same__cancel1,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ ( plus_plus_int @ B @ A ) @ B )
      = ( ord_less_int @ A @ zero_zero_int ) ) ).

% add_less_same_cancel1
thf(fact_2527_diff__ge__0__iff__ge,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( minus_minus_real @ A @ B ) )
      = ( ord_less_eq_real @ B @ A ) ) ).

% diff_ge_0_iff_ge
thf(fact_2528_diff__ge__0__iff__ge,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ ( minus_minus_rat @ A @ B ) )
      = ( ord_less_eq_rat @ B @ A ) ) ).

% diff_ge_0_iff_ge
thf(fact_2529_diff__ge__0__iff__ge,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( minus_minus_int @ A @ B ) )
      = ( ord_less_eq_int @ B @ A ) ) ).

% diff_ge_0_iff_ge
thf(fact_2530_diff__gt__0__iff__gt,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ ( minus_minus_real @ A @ B ) )
      = ( ord_less_real @ B @ A ) ) ).

% diff_gt_0_iff_gt
thf(fact_2531_diff__gt__0__iff__gt,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( minus_minus_rat @ A @ B ) )
      = ( ord_less_rat @ B @ A ) ) ).

% diff_gt_0_iff_gt
thf(fact_2532_diff__gt__0__iff__gt,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ ( minus_minus_int @ A @ B ) )
      = ( ord_less_int @ B @ A ) ) ).

% diff_gt_0_iff_gt
thf(fact_2533_sum__squares__eq__zero__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ( plus_plus_real @ ( times_times_real @ X @ X ) @ ( times_times_real @ Y @ Y ) )
        = zero_zero_real )
      = ( ( X = zero_zero_real )
        & ( Y = zero_zero_real ) ) ) ).

% sum_squares_eq_zero_iff
thf(fact_2534_sum__squares__eq__zero__iff,axiom,
    ! [X: rat,Y: rat] :
      ( ( ( plus_plus_rat @ ( times_times_rat @ X @ X ) @ ( times_times_rat @ Y @ Y ) )
        = zero_zero_rat )
      = ( ( X = zero_zero_rat )
        & ( Y = zero_zero_rat ) ) ) ).

% sum_squares_eq_zero_iff
thf(fact_2535_sum__squares__eq__zero__iff,axiom,
    ! [X: int,Y: int] :
      ( ( ( plus_plus_int @ ( times_times_int @ X @ X ) @ ( times_times_int @ Y @ Y ) )
        = zero_zero_int )
      = ( ( X = zero_zero_int )
        & ( Y = zero_zero_int ) ) ) ).

% sum_squares_eq_zero_iff
thf(fact_2536_mult__cancel__left1,axiom,
    ! [C: complex,B: complex] :
      ( ( C
        = ( times_times_complex @ C @ B ) )
      = ( ( C = zero_zero_complex )
        | ( B = one_one_complex ) ) ) ).

% mult_cancel_left1
thf(fact_2537_mult__cancel__left1,axiom,
    ! [C: real,B: real] :
      ( ( C
        = ( times_times_real @ C @ B ) )
      = ( ( C = zero_zero_real )
        | ( B = one_one_real ) ) ) ).

% mult_cancel_left1
thf(fact_2538_mult__cancel__left1,axiom,
    ! [C: rat,B: rat] :
      ( ( C
        = ( times_times_rat @ C @ B ) )
      = ( ( C = zero_zero_rat )
        | ( B = one_one_rat ) ) ) ).

% mult_cancel_left1
thf(fact_2539_mult__cancel__left1,axiom,
    ! [C: int,B: int] :
      ( ( C
        = ( times_times_int @ C @ B ) )
      = ( ( C = zero_zero_int )
        | ( B = one_one_int ) ) ) ).

% mult_cancel_left1
thf(fact_2540_mult__cancel__left2,axiom,
    ! [C: complex,A: complex] :
      ( ( ( times_times_complex @ C @ A )
        = C )
      = ( ( C = zero_zero_complex )
        | ( A = one_one_complex ) ) ) ).

% mult_cancel_left2
thf(fact_2541_mult__cancel__left2,axiom,
    ! [C: real,A: real] :
      ( ( ( times_times_real @ C @ A )
        = C )
      = ( ( C = zero_zero_real )
        | ( A = one_one_real ) ) ) ).

% mult_cancel_left2
thf(fact_2542_mult__cancel__left2,axiom,
    ! [C: rat,A: rat] :
      ( ( ( times_times_rat @ C @ A )
        = C )
      = ( ( C = zero_zero_rat )
        | ( A = one_one_rat ) ) ) ).

% mult_cancel_left2
thf(fact_2543_mult__cancel__left2,axiom,
    ! [C: int,A: int] :
      ( ( ( times_times_int @ C @ A )
        = C )
      = ( ( C = zero_zero_int )
        | ( A = one_one_int ) ) ) ).

% mult_cancel_left2
thf(fact_2544_mult__cancel__right1,axiom,
    ! [C: complex,B: complex] :
      ( ( C
        = ( times_times_complex @ B @ C ) )
      = ( ( C = zero_zero_complex )
        | ( B = one_one_complex ) ) ) ).

% mult_cancel_right1
thf(fact_2545_mult__cancel__right1,axiom,
    ! [C: real,B: real] :
      ( ( C
        = ( times_times_real @ B @ C ) )
      = ( ( C = zero_zero_real )
        | ( B = one_one_real ) ) ) ).

% mult_cancel_right1
thf(fact_2546_mult__cancel__right1,axiom,
    ! [C: rat,B: rat] :
      ( ( C
        = ( times_times_rat @ B @ C ) )
      = ( ( C = zero_zero_rat )
        | ( B = one_one_rat ) ) ) ).

% mult_cancel_right1
thf(fact_2547_mult__cancel__right1,axiom,
    ! [C: int,B: int] :
      ( ( C
        = ( times_times_int @ B @ C ) )
      = ( ( C = zero_zero_int )
        | ( B = one_one_int ) ) ) ).

% mult_cancel_right1
thf(fact_2548_mult__cancel__right2,axiom,
    ! [A: complex,C: complex] :
      ( ( ( times_times_complex @ A @ C )
        = C )
      = ( ( C = zero_zero_complex )
        | ( A = one_one_complex ) ) ) ).

% mult_cancel_right2
thf(fact_2549_mult__cancel__right2,axiom,
    ! [A: real,C: real] :
      ( ( ( times_times_real @ A @ C )
        = C )
      = ( ( C = zero_zero_real )
        | ( A = one_one_real ) ) ) ).

% mult_cancel_right2
thf(fact_2550_mult__cancel__right2,axiom,
    ! [A: rat,C: rat] :
      ( ( ( times_times_rat @ A @ C )
        = C )
      = ( ( C = zero_zero_rat )
        | ( A = one_one_rat ) ) ) ).

% mult_cancel_right2
thf(fact_2551_mult__cancel__right2,axiom,
    ! [A: int,C: int] :
      ( ( ( times_times_int @ A @ C )
        = C )
      = ( ( C = zero_zero_int )
        | ( A = one_one_int ) ) ) ).

% mult_cancel_right2
thf(fact_2552_nonzero__mult__div__cancel__right,axiom,
    ! [B: complex,A: complex] :
      ( ( B != zero_zero_complex )
     => ( ( divide1717551699836669952omplex @ ( times_times_complex @ A @ B ) @ B )
        = A ) ) ).

% nonzero_mult_div_cancel_right
thf(fact_2553_nonzero__mult__div__cancel__right,axiom,
    ! [B: real,A: real] :
      ( ( B != zero_zero_real )
     => ( ( divide_divide_real @ ( times_times_real @ A @ B ) @ B )
        = A ) ) ).

% nonzero_mult_div_cancel_right
thf(fact_2554_nonzero__mult__div__cancel__right,axiom,
    ! [B: rat,A: rat] :
      ( ( B != zero_zero_rat )
     => ( ( divide_divide_rat @ ( times_times_rat @ A @ B ) @ B )
        = A ) ) ).

% nonzero_mult_div_cancel_right
thf(fact_2555_nonzero__mult__div__cancel__right,axiom,
    ! [B: nat,A: nat] :
      ( ( B != zero_zero_nat )
     => ( ( divide_divide_nat @ ( times_times_nat @ A @ B ) @ B )
        = A ) ) ).

% nonzero_mult_div_cancel_right
thf(fact_2556_nonzero__mult__div__cancel__right,axiom,
    ! [B: int,A: int] :
      ( ( B != zero_zero_int )
     => ( ( divide_divide_int @ ( times_times_int @ A @ B ) @ B )
        = A ) ) ).

% nonzero_mult_div_cancel_right
thf(fact_2557_nonzero__mult__div__cancel__left,axiom,
    ! [A: complex,B: complex] :
      ( ( A != zero_zero_complex )
     => ( ( divide1717551699836669952omplex @ ( times_times_complex @ A @ B ) @ A )
        = B ) ) ).

% nonzero_mult_div_cancel_left
thf(fact_2558_nonzero__mult__div__cancel__left,axiom,
    ! [A: real,B: real] :
      ( ( A != zero_zero_real )
     => ( ( divide_divide_real @ ( times_times_real @ A @ B ) @ A )
        = B ) ) ).

% nonzero_mult_div_cancel_left
thf(fact_2559_nonzero__mult__div__cancel__left,axiom,
    ! [A: rat,B: rat] :
      ( ( A != zero_zero_rat )
     => ( ( divide_divide_rat @ ( times_times_rat @ A @ B ) @ A )
        = B ) ) ).

% nonzero_mult_div_cancel_left
thf(fact_2560_nonzero__mult__div__cancel__left,axiom,
    ! [A: nat,B: nat] :
      ( ( A != zero_zero_nat )
     => ( ( divide_divide_nat @ ( times_times_nat @ A @ B ) @ A )
        = B ) ) ).

% nonzero_mult_div_cancel_left
thf(fact_2561_nonzero__mult__div__cancel__left,axiom,
    ! [A: int,B: int] :
      ( ( A != zero_zero_int )
     => ( ( divide_divide_int @ ( times_times_int @ A @ B ) @ A )
        = B ) ) ).

% nonzero_mult_div_cancel_left
thf(fact_2562_div__mult__mult1__if,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ( C = zero_zero_nat )
       => ( ( divide_divide_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) )
          = zero_zero_nat ) )
      & ( ( C != zero_zero_nat )
       => ( ( divide_divide_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) )
          = ( divide_divide_nat @ A @ B ) ) ) ) ).

% div_mult_mult1_if
thf(fact_2563_div__mult__mult1__if,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ( C = zero_zero_int )
       => ( ( divide_divide_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
          = zero_zero_int ) )
      & ( ( C != zero_zero_int )
       => ( ( divide_divide_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
          = ( divide_divide_int @ A @ B ) ) ) ) ).

% div_mult_mult1_if
thf(fact_2564_div__mult__mult2,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( C != zero_zero_nat )
     => ( ( divide_divide_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) )
        = ( divide_divide_nat @ A @ B ) ) ) ).

% div_mult_mult2
thf(fact_2565_div__mult__mult2,axiom,
    ! [C: int,A: int,B: int] :
      ( ( C != zero_zero_int )
     => ( ( divide_divide_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
        = ( divide_divide_int @ A @ B ) ) ) ).

% div_mult_mult2
thf(fact_2566_div__mult__mult1,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( C != zero_zero_nat )
     => ( ( divide_divide_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) )
        = ( divide_divide_nat @ A @ B ) ) ) ).

% div_mult_mult1
thf(fact_2567_div__mult__mult1,axiom,
    ! [C: int,A: int,B: int] :
      ( ( C != zero_zero_int )
     => ( ( divide_divide_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
        = ( divide_divide_int @ A @ B ) ) ) ).

% div_mult_mult1
thf(fact_2568_nonzero__mult__divide__mult__cancel__right2,axiom,
    ! [C: complex,A: complex,B: complex] :
      ( ( C != zero_zero_complex )
     => ( ( divide1717551699836669952omplex @ ( times_times_complex @ A @ C ) @ ( times_times_complex @ C @ B ) )
        = ( divide1717551699836669952omplex @ A @ B ) ) ) ).

% nonzero_mult_divide_mult_cancel_right2
thf(fact_2569_nonzero__mult__divide__mult__cancel__right2,axiom,
    ! [C: real,A: real,B: real] :
      ( ( C != zero_zero_real )
     => ( ( divide_divide_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ C @ B ) )
        = ( divide_divide_real @ A @ B ) ) ) ).

% nonzero_mult_divide_mult_cancel_right2
thf(fact_2570_nonzero__mult__divide__mult__cancel__right2,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( C != zero_zero_rat )
     => ( ( divide_divide_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ C @ B ) )
        = ( divide_divide_rat @ A @ B ) ) ) ).

% nonzero_mult_divide_mult_cancel_right2
thf(fact_2571_nonzero__mult__divide__mult__cancel__right,axiom,
    ! [C: complex,A: complex,B: complex] :
      ( ( C != zero_zero_complex )
     => ( ( divide1717551699836669952omplex @ ( times_times_complex @ A @ C ) @ ( times_times_complex @ B @ C ) )
        = ( divide1717551699836669952omplex @ A @ B ) ) ) ).

% nonzero_mult_divide_mult_cancel_right
thf(fact_2572_nonzero__mult__divide__mult__cancel__right,axiom,
    ! [C: real,A: real,B: real] :
      ( ( C != zero_zero_real )
     => ( ( divide_divide_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) )
        = ( divide_divide_real @ A @ B ) ) ) ).

% nonzero_mult_divide_mult_cancel_right
thf(fact_2573_nonzero__mult__divide__mult__cancel__right,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( C != zero_zero_rat )
     => ( ( divide_divide_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) )
        = ( divide_divide_rat @ A @ B ) ) ) ).

% nonzero_mult_divide_mult_cancel_right
thf(fact_2574_nonzero__mult__divide__mult__cancel__left2,axiom,
    ! [C: complex,A: complex,B: complex] :
      ( ( C != zero_zero_complex )
     => ( ( divide1717551699836669952omplex @ ( times_times_complex @ C @ A ) @ ( times_times_complex @ B @ C ) )
        = ( divide1717551699836669952omplex @ A @ B ) ) ) ).

% nonzero_mult_divide_mult_cancel_left2
thf(fact_2575_nonzero__mult__divide__mult__cancel__left2,axiom,
    ! [C: real,A: real,B: real] :
      ( ( C != zero_zero_real )
     => ( ( divide_divide_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ B @ C ) )
        = ( divide_divide_real @ A @ B ) ) ) ).

% nonzero_mult_divide_mult_cancel_left2
thf(fact_2576_nonzero__mult__divide__mult__cancel__left2,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( C != zero_zero_rat )
     => ( ( divide_divide_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ B @ C ) )
        = ( divide_divide_rat @ A @ B ) ) ) ).

% nonzero_mult_divide_mult_cancel_left2
thf(fact_2577_nonzero__mult__divide__mult__cancel__left,axiom,
    ! [C: complex,A: complex,B: complex] :
      ( ( C != zero_zero_complex )
     => ( ( divide1717551699836669952omplex @ ( times_times_complex @ C @ A ) @ ( times_times_complex @ C @ B ) )
        = ( divide1717551699836669952omplex @ A @ B ) ) ) ).

% nonzero_mult_divide_mult_cancel_left
thf(fact_2578_nonzero__mult__divide__mult__cancel__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( C != zero_zero_real )
     => ( ( divide_divide_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
        = ( divide_divide_real @ A @ B ) ) ) ).

% nonzero_mult_divide_mult_cancel_left
thf(fact_2579_nonzero__mult__divide__mult__cancel__left,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( C != zero_zero_rat )
     => ( ( divide_divide_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
        = ( divide_divide_rat @ A @ B ) ) ) ).

% nonzero_mult_divide_mult_cancel_left
thf(fact_2580_mult__divide__mult__cancel__left__if,axiom,
    ! [C: complex,A: complex,B: complex] :
      ( ( ( C = zero_zero_complex )
       => ( ( divide1717551699836669952omplex @ ( times_times_complex @ C @ A ) @ ( times_times_complex @ C @ B ) )
          = zero_zero_complex ) )
      & ( ( C != zero_zero_complex )
       => ( ( divide1717551699836669952omplex @ ( times_times_complex @ C @ A ) @ ( times_times_complex @ C @ B ) )
          = ( divide1717551699836669952omplex @ A @ B ) ) ) ) ).

% mult_divide_mult_cancel_left_if
thf(fact_2581_mult__divide__mult__cancel__left__if,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ( C = zero_zero_real )
       => ( ( divide_divide_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
          = zero_zero_real ) )
      & ( ( C != zero_zero_real )
       => ( ( divide_divide_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
          = ( divide_divide_real @ A @ B ) ) ) ) ).

% mult_divide_mult_cancel_left_if
thf(fact_2582_mult__divide__mult__cancel__left__if,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ( C = zero_zero_rat )
       => ( ( divide_divide_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
          = zero_zero_rat ) )
      & ( ( C != zero_zero_rat )
       => ( ( divide_divide_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
          = ( divide_divide_rat @ A @ B ) ) ) ) ).

% mult_divide_mult_cancel_left_if
thf(fact_2583_diff__add__zero,axiom,
    ! [A: nat,B: nat] :
      ( ( minus_minus_nat @ A @ ( plus_plus_nat @ A @ B ) )
      = zero_zero_nat ) ).

% diff_add_zero
thf(fact_2584_diff__numeral__special_I9_J,axiom,
    ( ( minus_minus_complex @ one_one_complex @ one_one_complex )
    = zero_zero_complex ) ).

% diff_numeral_special(9)
thf(fact_2585_diff__numeral__special_I9_J,axiom,
    ( ( minus_minus_real @ one_one_real @ one_one_real )
    = zero_zero_real ) ).

% diff_numeral_special(9)
thf(fact_2586_diff__numeral__special_I9_J,axiom,
    ( ( minus_minus_rat @ one_one_rat @ one_one_rat )
    = zero_zero_rat ) ).

% diff_numeral_special(9)
thf(fact_2587_diff__numeral__special_I9_J,axiom,
    ( ( minus_minus_int @ one_one_int @ one_one_int )
    = zero_zero_int ) ).

% diff_numeral_special(9)
thf(fact_2588_div__self,axiom,
    ! [A: complex] :
      ( ( A != zero_zero_complex )
     => ( ( divide1717551699836669952omplex @ A @ A )
        = one_one_complex ) ) ).

% div_self
thf(fact_2589_div__self,axiom,
    ! [A: real] :
      ( ( A != zero_zero_real )
     => ( ( divide_divide_real @ A @ A )
        = one_one_real ) ) ).

% div_self
thf(fact_2590_div__self,axiom,
    ! [A: rat] :
      ( ( A != zero_zero_rat )
     => ( ( divide_divide_rat @ A @ A )
        = one_one_rat ) ) ).

% div_self
thf(fact_2591_div__self,axiom,
    ! [A: nat] :
      ( ( A != zero_zero_nat )
     => ( ( divide_divide_nat @ A @ A )
        = one_one_nat ) ) ).

% div_self
thf(fact_2592_div__self,axiom,
    ! [A: int] :
      ( ( A != zero_zero_int )
     => ( ( divide_divide_int @ A @ A )
        = one_one_int ) ) ).

% div_self
thf(fact_2593_zero__eq__1__divide__iff,axiom,
    ! [A: real] :
      ( ( zero_zero_real
        = ( divide_divide_real @ one_one_real @ A ) )
      = ( A = zero_zero_real ) ) ).

% zero_eq_1_divide_iff
thf(fact_2594_zero__eq__1__divide__iff,axiom,
    ! [A: rat] :
      ( ( zero_zero_rat
        = ( divide_divide_rat @ one_one_rat @ A ) )
      = ( A = zero_zero_rat ) ) ).

% zero_eq_1_divide_iff
thf(fact_2595_one__divide__eq__0__iff,axiom,
    ! [A: real] :
      ( ( ( divide_divide_real @ one_one_real @ A )
        = zero_zero_real )
      = ( A = zero_zero_real ) ) ).

% one_divide_eq_0_iff
thf(fact_2596_one__divide__eq__0__iff,axiom,
    ! [A: rat] :
      ( ( ( divide_divide_rat @ one_one_rat @ A )
        = zero_zero_rat )
      = ( A = zero_zero_rat ) ) ).

% one_divide_eq_0_iff
thf(fact_2597_eq__divide__eq__1,axiom,
    ! [B: real,A: real] :
      ( ( one_one_real
        = ( divide_divide_real @ B @ A ) )
      = ( ( A != zero_zero_real )
        & ( A = B ) ) ) ).

% eq_divide_eq_1
thf(fact_2598_eq__divide__eq__1,axiom,
    ! [B: rat,A: rat] :
      ( ( one_one_rat
        = ( divide_divide_rat @ B @ A ) )
      = ( ( A != zero_zero_rat )
        & ( A = B ) ) ) ).

% eq_divide_eq_1
thf(fact_2599_divide__eq__eq__1,axiom,
    ! [B: real,A: real] :
      ( ( ( divide_divide_real @ B @ A )
        = one_one_real )
      = ( ( A != zero_zero_real )
        & ( A = B ) ) ) ).

% divide_eq_eq_1
thf(fact_2600_divide__eq__eq__1,axiom,
    ! [B: rat,A: rat] :
      ( ( ( divide_divide_rat @ B @ A )
        = one_one_rat )
      = ( ( A != zero_zero_rat )
        & ( A = B ) ) ) ).

% divide_eq_eq_1
thf(fact_2601_divide__self__if,axiom,
    ! [A: complex] :
      ( ( ( A = zero_zero_complex )
       => ( ( divide1717551699836669952omplex @ A @ A )
          = zero_zero_complex ) )
      & ( ( A != zero_zero_complex )
       => ( ( divide1717551699836669952omplex @ A @ A )
          = one_one_complex ) ) ) ).

% divide_self_if
thf(fact_2602_divide__self__if,axiom,
    ! [A: real] :
      ( ( ( A = zero_zero_real )
       => ( ( divide_divide_real @ A @ A )
          = zero_zero_real ) )
      & ( ( A != zero_zero_real )
       => ( ( divide_divide_real @ A @ A )
          = one_one_real ) ) ) ).

% divide_self_if
thf(fact_2603_divide__self__if,axiom,
    ! [A: rat] :
      ( ( ( A = zero_zero_rat )
       => ( ( divide_divide_rat @ A @ A )
          = zero_zero_rat ) )
      & ( ( A != zero_zero_rat )
       => ( ( divide_divide_rat @ A @ A )
          = one_one_rat ) ) ) ).

% divide_self_if
thf(fact_2604_divide__self,axiom,
    ! [A: complex] :
      ( ( A != zero_zero_complex )
     => ( ( divide1717551699836669952omplex @ A @ A )
        = one_one_complex ) ) ).

% divide_self
thf(fact_2605_divide__self,axiom,
    ! [A: real] :
      ( ( A != zero_zero_real )
     => ( ( divide_divide_real @ A @ A )
        = one_one_real ) ) ).

% divide_self
thf(fact_2606_divide__self,axiom,
    ! [A: rat] :
      ( ( A != zero_zero_rat )
     => ( ( divide_divide_rat @ A @ A )
        = one_one_rat ) ) ).

% divide_self
thf(fact_2607_one__eq__divide__iff,axiom,
    ! [A: complex,B: complex] :
      ( ( one_one_complex
        = ( divide1717551699836669952omplex @ A @ B ) )
      = ( ( B != zero_zero_complex )
        & ( A = B ) ) ) ).

% one_eq_divide_iff
thf(fact_2608_one__eq__divide__iff,axiom,
    ! [A: real,B: real] :
      ( ( one_one_real
        = ( divide_divide_real @ A @ B ) )
      = ( ( B != zero_zero_real )
        & ( A = B ) ) ) ).

% one_eq_divide_iff
thf(fact_2609_one__eq__divide__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( one_one_rat
        = ( divide_divide_rat @ A @ B ) )
      = ( ( B != zero_zero_rat )
        & ( A = B ) ) ) ).

% one_eq_divide_iff
thf(fact_2610_divide__eq__1__iff,axiom,
    ! [A: complex,B: complex] :
      ( ( ( divide1717551699836669952omplex @ A @ B )
        = one_one_complex )
      = ( ( B != zero_zero_complex )
        & ( A = B ) ) ) ).

% divide_eq_1_iff
thf(fact_2611_divide__eq__1__iff,axiom,
    ! [A: real,B: real] :
      ( ( ( divide_divide_real @ A @ B )
        = one_one_real )
      = ( ( B != zero_zero_real )
        & ( A = B ) ) ) ).

% divide_eq_1_iff
thf(fact_2612_divide__eq__1__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ( divide_divide_rat @ A @ B )
        = one_one_rat )
      = ( ( B != zero_zero_rat )
        & ( A = B ) ) ) ).

% divide_eq_1_iff
thf(fact_2613_power__0__Suc,axiom,
    ! [N2: nat] :
      ( ( power_power_rat @ zero_zero_rat @ ( suc @ N2 ) )
      = zero_zero_rat ) ).

% power_0_Suc
thf(fact_2614_power__0__Suc,axiom,
    ! [N2: nat] :
      ( ( power_power_nat @ zero_zero_nat @ ( suc @ N2 ) )
      = zero_zero_nat ) ).

% power_0_Suc
thf(fact_2615_power__0__Suc,axiom,
    ! [N2: nat] :
      ( ( power_power_real @ zero_zero_real @ ( suc @ N2 ) )
      = zero_zero_real ) ).

% power_0_Suc
thf(fact_2616_power__0__Suc,axiom,
    ! [N2: nat] :
      ( ( power_power_int @ zero_zero_int @ ( suc @ N2 ) )
      = zero_zero_int ) ).

% power_0_Suc
thf(fact_2617_power__0__Suc,axiom,
    ! [N2: nat] :
      ( ( power_power_complex @ zero_zero_complex @ ( suc @ N2 ) )
      = zero_zero_complex ) ).

% power_0_Suc
thf(fact_2618_power__zero__numeral,axiom,
    ! [K: num] :
      ( ( power_power_rat @ zero_zero_rat @ ( numeral_numeral_nat @ K ) )
      = zero_zero_rat ) ).

% power_zero_numeral
thf(fact_2619_power__zero__numeral,axiom,
    ! [K: num] :
      ( ( power_power_nat @ zero_zero_nat @ ( numeral_numeral_nat @ K ) )
      = zero_zero_nat ) ).

% power_zero_numeral
thf(fact_2620_power__zero__numeral,axiom,
    ! [K: num] :
      ( ( power_power_real @ zero_zero_real @ ( numeral_numeral_nat @ K ) )
      = zero_zero_real ) ).

% power_zero_numeral
thf(fact_2621_power__zero__numeral,axiom,
    ! [K: num] :
      ( ( power_power_int @ zero_zero_int @ ( numeral_numeral_nat @ K ) )
      = zero_zero_int ) ).

% power_zero_numeral
thf(fact_2622_power__zero__numeral,axiom,
    ! [K: num] :
      ( ( power_power_complex @ zero_zero_complex @ ( numeral_numeral_nat @ K ) )
      = zero_zero_complex ) ).

% power_zero_numeral
thf(fact_2623_mod__mult__self1__is__0,axiom,
    ! [B: nat,A: nat] :
      ( ( modulo_modulo_nat @ ( times_times_nat @ B @ A ) @ B )
      = zero_zero_nat ) ).

% mod_mult_self1_is_0
thf(fact_2624_mod__mult__self1__is__0,axiom,
    ! [B: int,A: int] :
      ( ( modulo_modulo_int @ ( times_times_int @ B @ A ) @ B )
      = zero_zero_int ) ).

% mod_mult_self1_is_0
thf(fact_2625_mod__mult__self1__is__0,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ B @ A ) @ B )
      = zero_z3403309356797280102nteger ) ).

% mod_mult_self1_is_0
thf(fact_2626_mod__mult__self2__is__0,axiom,
    ! [A: nat,B: nat] :
      ( ( modulo_modulo_nat @ ( times_times_nat @ A @ B ) @ B )
      = zero_zero_nat ) ).

% mod_mult_self2_is_0
thf(fact_2627_mod__mult__self2__is__0,axiom,
    ! [A: int,B: int] :
      ( ( modulo_modulo_int @ ( times_times_int @ A @ B ) @ B )
      = zero_zero_int ) ).

% mod_mult_self2_is_0
thf(fact_2628_mod__mult__self2__is__0,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ A @ B ) @ B )
      = zero_z3403309356797280102nteger ) ).

% mod_mult_self2_is_0
thf(fact_2629_mod__by__1,axiom,
    ! [A: nat] :
      ( ( modulo_modulo_nat @ A @ one_one_nat )
      = zero_zero_nat ) ).

% mod_by_1
thf(fact_2630_mod__by__1,axiom,
    ! [A: int] :
      ( ( modulo_modulo_int @ A @ one_one_int )
      = zero_zero_int ) ).

% mod_by_1
thf(fact_2631_mod__by__1,axiom,
    ! [A: code_integer] :
      ( ( modulo364778990260209775nteger @ A @ one_one_Code_integer )
      = zero_z3403309356797280102nteger ) ).

% mod_by_1
thf(fact_2632_bits__mod__by__1,axiom,
    ! [A: nat] :
      ( ( modulo_modulo_nat @ A @ one_one_nat )
      = zero_zero_nat ) ).

% bits_mod_by_1
thf(fact_2633_bits__mod__by__1,axiom,
    ! [A: int] :
      ( ( modulo_modulo_int @ A @ one_one_int )
      = zero_zero_int ) ).

% bits_mod_by_1
thf(fact_2634_bits__mod__by__1,axiom,
    ! [A: code_integer] :
      ( ( modulo364778990260209775nteger @ A @ one_one_Code_integer )
      = zero_z3403309356797280102nteger ) ).

% bits_mod_by_1
thf(fact_2635_power__Suc0__right,axiom,
    ! [A: nat] :
      ( ( power_power_nat @ A @ ( suc @ zero_zero_nat ) )
      = A ) ).

% power_Suc0_right
thf(fact_2636_power__Suc0__right,axiom,
    ! [A: real] :
      ( ( power_power_real @ A @ ( suc @ zero_zero_nat ) )
      = A ) ).

% power_Suc0_right
thf(fact_2637_power__Suc0__right,axiom,
    ! [A: int] :
      ( ( power_power_int @ A @ ( suc @ zero_zero_nat ) )
      = A ) ).

% power_Suc0_right
thf(fact_2638_power__Suc0__right,axiom,
    ! [A: complex] :
      ( ( power_power_complex @ A @ ( suc @ zero_zero_nat ) )
      = A ) ).

% power_Suc0_right
thf(fact_2639_bits__mod__div__trivial,axiom,
    ! [A: nat,B: nat] :
      ( ( divide_divide_nat @ ( modulo_modulo_nat @ A @ B ) @ B )
      = zero_zero_nat ) ).

% bits_mod_div_trivial
thf(fact_2640_bits__mod__div__trivial,axiom,
    ! [A: int,B: int] :
      ( ( divide_divide_int @ ( modulo_modulo_int @ A @ B ) @ B )
      = zero_zero_int ) ).

% bits_mod_div_trivial
thf(fact_2641_bits__mod__div__trivial,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( divide6298287555418463151nteger @ ( modulo364778990260209775nteger @ A @ B ) @ B )
      = zero_z3403309356797280102nteger ) ).

% bits_mod_div_trivial
thf(fact_2642_mod__div__trivial,axiom,
    ! [A: nat,B: nat] :
      ( ( divide_divide_nat @ ( modulo_modulo_nat @ A @ B ) @ B )
      = zero_zero_nat ) ).

% mod_div_trivial
thf(fact_2643_mod__div__trivial,axiom,
    ! [A: int,B: int] :
      ( ( divide_divide_int @ ( modulo_modulo_int @ A @ B ) @ B )
      = zero_zero_int ) ).

% mod_div_trivial
thf(fact_2644_mod__div__trivial,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( divide6298287555418463151nteger @ ( modulo364778990260209775nteger @ A @ B ) @ B )
      = zero_z3403309356797280102nteger ) ).

% mod_div_trivial
thf(fact_2645_mod__mult__self4,axiom,
    ! [B: nat,C: nat,A: nat] :
      ( ( modulo_modulo_nat @ ( plus_plus_nat @ ( times_times_nat @ B @ C ) @ A ) @ B )
      = ( modulo_modulo_nat @ A @ B ) ) ).

% mod_mult_self4
thf(fact_2646_mod__mult__self4,axiom,
    ! [B: int,C: int,A: int] :
      ( ( modulo_modulo_int @ ( plus_plus_int @ ( times_times_int @ B @ C ) @ A ) @ B )
      = ( modulo_modulo_int @ A @ B ) ) ).

% mod_mult_self4
thf(fact_2647_mod__mult__self4,axiom,
    ! [B: code_integer,C: code_integer,A: code_integer] :
      ( ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ B @ C ) @ A ) @ B )
      = ( modulo364778990260209775nteger @ A @ B ) ) ).

% mod_mult_self4
thf(fact_2648_mod__mult__self3,axiom,
    ! [C: nat,B: nat,A: nat] :
      ( ( modulo_modulo_nat @ ( plus_plus_nat @ ( times_times_nat @ C @ B ) @ A ) @ B )
      = ( modulo_modulo_nat @ A @ B ) ) ).

% mod_mult_self3
thf(fact_2649_mod__mult__self3,axiom,
    ! [C: int,B: int,A: int] :
      ( ( modulo_modulo_int @ ( plus_plus_int @ ( times_times_int @ C @ B ) @ A ) @ B )
      = ( modulo_modulo_int @ A @ B ) ) ).

% mod_mult_self3
thf(fact_2650_mod__mult__self3,axiom,
    ! [C: code_integer,B: code_integer,A: code_integer] :
      ( ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ C @ B ) @ A ) @ B )
      = ( modulo364778990260209775nteger @ A @ B ) ) ).

% mod_mult_self3
thf(fact_2651_mod__mult__self2,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( modulo_modulo_nat @ ( plus_plus_nat @ A @ ( times_times_nat @ B @ C ) ) @ B )
      = ( modulo_modulo_nat @ A @ B ) ) ).

% mod_mult_self2
thf(fact_2652_mod__mult__self2,axiom,
    ! [A: int,B: int,C: int] :
      ( ( modulo_modulo_int @ ( plus_plus_int @ A @ ( times_times_int @ B @ C ) ) @ B )
      = ( modulo_modulo_int @ A @ B ) ) ).

% mod_mult_self2
thf(fact_2653_mod__mult__self2,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ A @ ( times_3573771949741848930nteger @ B @ C ) ) @ B )
      = ( modulo364778990260209775nteger @ A @ B ) ) ).

% mod_mult_self2
thf(fact_2654_mod__mult__self1,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( modulo_modulo_nat @ ( plus_plus_nat @ A @ ( times_times_nat @ C @ B ) ) @ B )
      = ( modulo_modulo_nat @ A @ B ) ) ).

% mod_mult_self1
thf(fact_2655_mod__mult__self1,axiom,
    ! [A: int,C: int,B: int] :
      ( ( modulo_modulo_int @ ( plus_plus_int @ A @ ( times_times_int @ C @ B ) ) @ B )
      = ( modulo_modulo_int @ A @ B ) ) ).

% mod_mult_self1
thf(fact_2656_mod__mult__self1,axiom,
    ! [A: code_integer,C: code_integer,B: code_integer] :
      ( ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ A @ ( times_3573771949741848930nteger @ C @ B ) ) @ B )
      = ( modulo364778990260209775nteger @ A @ B ) ) ).

% mod_mult_self1
thf(fact_2657_less__Suc0,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ N2 @ ( suc @ zero_zero_nat ) )
      = ( N2 = zero_zero_nat ) ) ).

% less_Suc0
thf(fact_2658_zero__less__Suc,axiom,
    ! [N2: nat] : ( ord_less_nat @ zero_zero_nat @ ( suc @ N2 ) ) ).

% zero_less_Suc
thf(fact_2659_max__0__1_I4_J,axiom,
    ! [X: num] :
      ( ( ord_ma741700101516333627d_enat @ ( numera1916890842035813515d_enat @ X ) @ zero_z5237406670263579293d_enat )
      = ( numera1916890842035813515d_enat @ X ) ) ).

% max_0_1(4)
thf(fact_2660_max__0__1_I4_J,axiom,
    ! [X: num] :
      ( ( ord_max_Code_integer @ ( numera6620942414471956472nteger @ X ) @ zero_z3403309356797280102nteger )
      = ( numera6620942414471956472nteger @ X ) ) ).

% max_0_1(4)
thf(fact_2661_max__0__1_I4_J,axiom,
    ! [X: num] :
      ( ( ord_max_real @ ( numeral_numeral_real @ X ) @ zero_zero_real )
      = ( numeral_numeral_real @ X ) ) ).

% max_0_1(4)
thf(fact_2662_max__0__1_I4_J,axiom,
    ! [X: num] :
      ( ( ord_max_rat @ ( numeral_numeral_rat @ X ) @ zero_zero_rat )
      = ( numeral_numeral_rat @ X ) ) ).

% max_0_1(4)
thf(fact_2663_max__0__1_I4_J,axiom,
    ! [X: num] :
      ( ( ord_max_nat @ ( numeral_numeral_nat @ X ) @ zero_zero_nat )
      = ( numeral_numeral_nat @ X ) ) ).

% max_0_1(4)
thf(fact_2664_max__0__1_I4_J,axiom,
    ! [X: num] :
      ( ( ord_max_int @ ( numeral_numeral_int @ X ) @ zero_zero_int )
      = ( numeral_numeral_int @ X ) ) ).

% max_0_1(4)
thf(fact_2665_max__0__1_I3_J,axiom,
    ! [X: num] :
      ( ( ord_ma741700101516333627d_enat @ zero_z5237406670263579293d_enat @ ( numera1916890842035813515d_enat @ X ) )
      = ( numera1916890842035813515d_enat @ X ) ) ).

% max_0_1(3)
thf(fact_2666_max__0__1_I3_J,axiom,
    ! [X: num] :
      ( ( ord_max_Code_integer @ zero_z3403309356797280102nteger @ ( numera6620942414471956472nteger @ X ) )
      = ( numera6620942414471956472nteger @ X ) ) ).

% max_0_1(3)
thf(fact_2667_max__0__1_I3_J,axiom,
    ! [X: num] :
      ( ( ord_max_real @ zero_zero_real @ ( numeral_numeral_real @ X ) )
      = ( numeral_numeral_real @ X ) ) ).

% max_0_1(3)
thf(fact_2668_max__0__1_I3_J,axiom,
    ! [X: num] :
      ( ( ord_max_rat @ zero_zero_rat @ ( numeral_numeral_rat @ X ) )
      = ( numeral_numeral_rat @ X ) ) ).

% max_0_1(3)
thf(fact_2669_max__0__1_I3_J,axiom,
    ! [X: num] :
      ( ( ord_max_nat @ zero_zero_nat @ ( numeral_numeral_nat @ X ) )
      = ( numeral_numeral_nat @ X ) ) ).

% max_0_1(3)
thf(fact_2670_max__0__1_I3_J,axiom,
    ! [X: num] :
      ( ( ord_max_int @ zero_zero_int @ ( numeral_numeral_int @ X ) )
      = ( numeral_numeral_int @ X ) ) ).

% max_0_1(3)
thf(fact_2671_one__eq__mult__iff,axiom,
    ! [M: nat,N2: nat] :
      ( ( ( suc @ zero_zero_nat )
        = ( times_times_nat @ M @ N2 ) )
      = ( ( M
          = ( suc @ zero_zero_nat ) )
        & ( N2
          = ( suc @ zero_zero_nat ) ) ) ) ).

% one_eq_mult_iff
thf(fact_2672_mult__eq__1__iff,axiom,
    ! [M: nat,N2: nat] :
      ( ( ( times_times_nat @ M @ N2 )
        = ( suc @ zero_zero_nat ) )
      = ( ( M
          = ( suc @ zero_zero_nat ) )
        & ( N2
          = ( suc @ zero_zero_nat ) ) ) ) ).

% mult_eq_1_iff
thf(fact_2673_add__gr__0,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ M @ N2 ) )
      = ( ( ord_less_nat @ zero_zero_nat @ M )
        | ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ).

% add_gr_0
thf(fact_2674_max__0__1_I1_J,axiom,
    ( ( ord_max_real @ zero_zero_real @ one_one_real )
    = one_one_real ) ).

% max_0_1(1)
thf(fact_2675_max__0__1_I1_J,axiom,
    ( ( ord_max_rat @ zero_zero_rat @ one_one_rat )
    = one_one_rat ) ).

% max_0_1(1)
thf(fact_2676_max__0__1_I1_J,axiom,
    ( ( ord_max_nat @ zero_zero_nat @ one_one_nat )
    = one_one_nat ) ).

% max_0_1(1)
thf(fact_2677_max__0__1_I1_J,axiom,
    ( ( ord_ma741700101516333627d_enat @ zero_z5237406670263579293d_enat @ one_on7984719198319812577d_enat )
    = one_on7984719198319812577d_enat ) ).

% max_0_1(1)
thf(fact_2678_max__0__1_I1_J,axiom,
    ( ( ord_max_int @ zero_zero_int @ one_one_int )
    = one_one_int ) ).

% max_0_1(1)
thf(fact_2679_max__0__1_I1_J,axiom,
    ( ( ord_max_Code_integer @ zero_z3403309356797280102nteger @ one_one_Code_integer )
    = one_one_Code_integer ) ).

% max_0_1(1)
thf(fact_2680_max__0__1_I2_J,axiom,
    ( ( ord_max_real @ one_one_real @ zero_zero_real )
    = one_one_real ) ).

% max_0_1(2)
thf(fact_2681_max__0__1_I2_J,axiom,
    ( ( ord_max_rat @ one_one_rat @ zero_zero_rat )
    = one_one_rat ) ).

% max_0_1(2)
thf(fact_2682_max__0__1_I2_J,axiom,
    ( ( ord_max_nat @ one_one_nat @ zero_zero_nat )
    = one_one_nat ) ).

% max_0_1(2)
thf(fact_2683_max__0__1_I2_J,axiom,
    ( ( ord_ma741700101516333627d_enat @ one_on7984719198319812577d_enat @ zero_z5237406670263579293d_enat )
    = one_on7984719198319812577d_enat ) ).

% max_0_1(2)
thf(fact_2684_max__0__1_I2_J,axiom,
    ( ( ord_max_int @ one_one_int @ zero_zero_int )
    = one_one_int ) ).

% max_0_1(2)
thf(fact_2685_max__0__1_I2_J,axiom,
    ( ( ord_max_Code_integer @ one_one_Code_integer @ zero_z3403309356797280102nteger )
    = one_one_Code_integer ) ).

% max_0_1(2)
thf(fact_2686_nat__power__eq__Suc__0__iff,axiom,
    ! [X: nat,M: nat] :
      ( ( ( power_power_nat @ X @ M )
        = ( suc @ zero_zero_nat ) )
      = ( ( M = zero_zero_nat )
        | ( X
          = ( suc @ zero_zero_nat ) ) ) ) ).

% nat_power_eq_Suc_0_iff
thf(fact_2687_power__Suc__0,axiom,
    ! [N2: nat] :
      ( ( power_power_nat @ ( suc @ zero_zero_nat ) @ N2 )
      = ( suc @ zero_zero_nat ) ) ).

% power_Suc_0
thf(fact_2688_nat__mult__less__cancel__disj,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( ord_less_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N2 ) )
      = ( ( ord_less_nat @ zero_zero_nat @ K )
        & ( ord_less_nat @ M @ N2 ) ) ) ).

% nat_mult_less_cancel_disj
thf(fact_2689_nat__0__less__mult__iff,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ M @ N2 ) )
      = ( ( ord_less_nat @ zero_zero_nat @ M )
        & ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ).

% nat_0_less_mult_iff
thf(fact_2690_mult__less__cancel2,axiom,
    ! [M: nat,K: nat,N2: nat] :
      ( ( ord_less_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N2 @ K ) )
      = ( ( ord_less_nat @ zero_zero_nat @ K )
        & ( ord_less_nat @ M @ N2 ) ) ) ).

% mult_less_cancel2
thf(fact_2691_div__by__Suc__0,axiom,
    ! [M: nat] :
      ( ( divide_divide_nat @ M @ ( suc @ zero_zero_nat ) )
      = M ) ).

% div_by_Suc_0
thf(fact_2692_nat__zero__less__power__iff,axiom,
    ! [X: nat,N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( power_power_nat @ X @ N2 ) )
      = ( ( ord_less_nat @ zero_zero_nat @ X )
        | ( N2 = zero_zero_nat ) ) ) ).

% nat_zero_less_power_iff
thf(fact_2693_zero__less__diff,axiom,
    ! [N2: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( minus_minus_nat @ N2 @ M ) )
      = ( ord_less_nat @ M @ N2 ) ) ).

% zero_less_diff
thf(fact_2694_div__less,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ M @ N2 )
     => ( ( divide_divide_nat @ M @ N2 )
        = zero_zero_nat ) ) ).

% div_less
thf(fact_2695_diff__is__0__eq,axiom,
    ! [M: nat,N2: nat] :
      ( ( ( minus_minus_nat @ M @ N2 )
        = zero_zero_nat )
      = ( ord_less_eq_nat @ M @ N2 ) ) ).

% diff_is_0_eq
thf(fact_2696_diff__is__0__eq_H,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ( minus_minus_nat @ M @ N2 )
        = zero_zero_nat ) ) ).

% diff_is_0_eq'
thf(fact_2697_less__one,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ N2 @ one_one_nat )
      = ( N2 = zero_zero_nat ) ) ).

% less_one
thf(fact_2698_nat__mult__div__cancel__disj,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( ( K = zero_zero_nat )
       => ( ( divide_divide_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N2 ) )
          = zero_zero_nat ) )
      & ( ( K != zero_zero_nat )
       => ( ( divide_divide_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N2 ) )
          = ( divide_divide_nat @ M @ N2 ) ) ) ) ).

% nat_mult_div_cancel_disj
thf(fact_2699_mod__by__Suc__0,axiom,
    ! [M: nat] :
      ( ( modulo_modulo_nat @ M @ ( suc @ zero_zero_nat ) )
      = zero_zero_nat ) ).

% mod_by_Suc_0
thf(fact_2700_divide__le__0__1__iff,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ ( divide_divide_real @ one_one_real @ A ) @ zero_zero_real )
      = ( ord_less_eq_real @ A @ zero_zero_real ) ) ).

% divide_le_0_1_iff
thf(fact_2701_divide__le__0__1__iff,axiom,
    ! [A: rat] :
      ( ( ord_less_eq_rat @ ( divide_divide_rat @ one_one_rat @ A ) @ zero_zero_rat )
      = ( ord_less_eq_rat @ A @ zero_zero_rat ) ) ).

% divide_le_0_1_iff
thf(fact_2702_zero__le__divide__1__iff,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ one_one_real @ A ) )
      = ( ord_less_eq_real @ zero_zero_real @ A ) ) ).

% zero_le_divide_1_iff
thf(fact_2703_zero__le__divide__1__iff,axiom,
    ! [A: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ ( divide_divide_rat @ one_one_rat @ A ) )
      = ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ).

% zero_le_divide_1_iff
thf(fact_2704_eq__divide__eq__numeral1_I1_J,axiom,
    ! [A: complex,B: complex,W: num] :
      ( ( A
        = ( divide1717551699836669952omplex @ B @ ( numera6690914467698888265omplex @ W ) ) )
      = ( ( ( ( numera6690914467698888265omplex @ W )
           != zero_zero_complex )
         => ( ( times_times_complex @ A @ ( numera6690914467698888265omplex @ W ) )
            = B ) )
        & ( ( ( numera6690914467698888265omplex @ W )
            = zero_zero_complex )
         => ( A = zero_zero_complex ) ) ) ) ).

% eq_divide_eq_numeral1(1)
thf(fact_2705_eq__divide__eq__numeral1_I1_J,axiom,
    ! [A: real,B: real,W: num] :
      ( ( A
        = ( divide_divide_real @ B @ ( numeral_numeral_real @ W ) ) )
      = ( ( ( ( numeral_numeral_real @ W )
           != zero_zero_real )
         => ( ( times_times_real @ A @ ( numeral_numeral_real @ W ) )
            = B ) )
        & ( ( ( numeral_numeral_real @ W )
            = zero_zero_real )
         => ( A = zero_zero_real ) ) ) ) ).

% eq_divide_eq_numeral1(1)
thf(fact_2706_eq__divide__eq__numeral1_I1_J,axiom,
    ! [A: rat,B: rat,W: num] :
      ( ( A
        = ( divide_divide_rat @ B @ ( numeral_numeral_rat @ W ) ) )
      = ( ( ( ( numeral_numeral_rat @ W )
           != zero_zero_rat )
         => ( ( times_times_rat @ A @ ( numeral_numeral_rat @ W ) )
            = B ) )
        & ( ( ( numeral_numeral_rat @ W )
            = zero_zero_rat )
         => ( A = zero_zero_rat ) ) ) ) ).

% eq_divide_eq_numeral1(1)
thf(fact_2707_divide__eq__eq__numeral1_I1_J,axiom,
    ! [B: complex,W: num,A: complex] :
      ( ( ( divide1717551699836669952omplex @ B @ ( numera6690914467698888265omplex @ W ) )
        = A )
      = ( ( ( ( numera6690914467698888265omplex @ W )
           != zero_zero_complex )
         => ( B
            = ( times_times_complex @ A @ ( numera6690914467698888265omplex @ W ) ) ) )
        & ( ( ( numera6690914467698888265omplex @ W )
            = zero_zero_complex )
         => ( A = zero_zero_complex ) ) ) ) ).

% divide_eq_eq_numeral1(1)
thf(fact_2708_divide__eq__eq__numeral1_I1_J,axiom,
    ! [B: real,W: num,A: real] :
      ( ( ( divide_divide_real @ B @ ( numeral_numeral_real @ W ) )
        = A )
      = ( ( ( ( numeral_numeral_real @ W )
           != zero_zero_real )
         => ( B
            = ( times_times_real @ A @ ( numeral_numeral_real @ W ) ) ) )
        & ( ( ( numeral_numeral_real @ W )
            = zero_zero_real )
         => ( A = zero_zero_real ) ) ) ) ).

% divide_eq_eq_numeral1(1)
thf(fact_2709_divide__eq__eq__numeral1_I1_J,axiom,
    ! [B: rat,W: num,A: rat] :
      ( ( ( divide_divide_rat @ B @ ( numeral_numeral_rat @ W ) )
        = A )
      = ( ( ( ( numeral_numeral_rat @ W )
           != zero_zero_rat )
         => ( B
            = ( times_times_rat @ A @ ( numeral_numeral_rat @ W ) ) ) )
        & ( ( ( numeral_numeral_rat @ W )
            = zero_zero_rat )
         => ( A = zero_zero_rat ) ) ) ) ).

% divide_eq_eq_numeral1(1)
thf(fact_2710_divide__less__0__1__iff,axiom,
    ! [A: real] :
      ( ( ord_less_real @ ( divide_divide_real @ one_one_real @ A ) @ zero_zero_real )
      = ( ord_less_real @ A @ zero_zero_real ) ) ).

% divide_less_0_1_iff
thf(fact_2711_divide__less__0__1__iff,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ ( divide_divide_rat @ one_one_rat @ A ) @ zero_zero_rat )
      = ( ord_less_rat @ A @ zero_zero_rat ) ) ).

% divide_less_0_1_iff
thf(fact_2712_divide__less__eq__1__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ( ord_less_real @ ( divide_divide_real @ B @ A ) @ one_one_real )
        = ( ord_less_real @ A @ B ) ) ) ).

% divide_less_eq_1_neg
thf(fact_2713_divide__less__eq__1__neg,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ zero_zero_rat )
     => ( ( ord_less_rat @ ( divide_divide_rat @ B @ A ) @ one_one_rat )
        = ( ord_less_rat @ A @ B ) ) ) ).

% divide_less_eq_1_neg
thf(fact_2714_divide__less__eq__1__pos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ ( divide_divide_real @ B @ A ) @ one_one_real )
        = ( ord_less_real @ B @ A ) ) ) ).

% divide_less_eq_1_pos
thf(fact_2715_divide__less__eq__1__pos,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ( ord_less_rat @ ( divide_divide_rat @ B @ A ) @ one_one_rat )
        = ( ord_less_rat @ B @ A ) ) ) ).

% divide_less_eq_1_pos
thf(fact_2716_less__divide__eq__1__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ( ord_less_real @ one_one_real @ ( divide_divide_real @ B @ A ) )
        = ( ord_less_real @ B @ A ) ) ) ).

% less_divide_eq_1_neg
thf(fact_2717_less__divide__eq__1__neg,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ zero_zero_rat )
     => ( ( ord_less_rat @ one_one_rat @ ( divide_divide_rat @ B @ A ) )
        = ( ord_less_rat @ B @ A ) ) ) ).

% less_divide_eq_1_neg
thf(fact_2718_less__divide__eq__1__pos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ one_one_real @ ( divide_divide_real @ B @ A ) )
        = ( ord_less_real @ A @ B ) ) ) ).

% less_divide_eq_1_pos
thf(fact_2719_less__divide__eq__1__pos,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ( ord_less_rat @ one_one_rat @ ( divide_divide_rat @ B @ A ) )
        = ( ord_less_rat @ A @ B ) ) ) ).

% less_divide_eq_1_pos
thf(fact_2720_zero__less__divide__1__iff,axiom,
    ! [A: real] :
      ( ( ord_less_real @ zero_zero_real @ ( divide_divide_real @ one_one_real @ A ) )
      = ( ord_less_real @ zero_zero_real @ A ) ) ).

% zero_less_divide_1_iff
thf(fact_2721_zero__less__divide__1__iff,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( divide_divide_rat @ one_one_rat @ A ) )
      = ( ord_less_rat @ zero_zero_rat @ A ) ) ).

% zero_less_divide_1_iff
thf(fact_2722_div__mult__self4,axiom,
    ! [B: nat,C: nat,A: nat] :
      ( ( B != zero_zero_nat )
     => ( ( divide_divide_nat @ ( plus_plus_nat @ ( times_times_nat @ B @ C ) @ A ) @ B )
        = ( plus_plus_nat @ C @ ( divide_divide_nat @ A @ B ) ) ) ) ).

% div_mult_self4
thf(fact_2723_div__mult__self4,axiom,
    ! [B: int,C: int,A: int] :
      ( ( B != zero_zero_int )
     => ( ( divide_divide_int @ ( plus_plus_int @ ( times_times_int @ B @ C ) @ A ) @ B )
        = ( plus_plus_int @ C @ ( divide_divide_int @ A @ B ) ) ) ) ).

% div_mult_self4
thf(fact_2724_div__mult__self3,axiom,
    ! [B: nat,C: nat,A: nat] :
      ( ( B != zero_zero_nat )
     => ( ( divide_divide_nat @ ( plus_plus_nat @ ( times_times_nat @ C @ B ) @ A ) @ B )
        = ( plus_plus_nat @ C @ ( divide_divide_nat @ A @ B ) ) ) ) ).

% div_mult_self3
thf(fact_2725_div__mult__self3,axiom,
    ! [B: int,C: int,A: int] :
      ( ( B != zero_zero_int )
     => ( ( divide_divide_int @ ( plus_plus_int @ ( times_times_int @ C @ B ) @ A ) @ B )
        = ( plus_plus_int @ C @ ( divide_divide_int @ A @ B ) ) ) ) ).

% div_mult_self3
thf(fact_2726_div__mult__self2,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( B != zero_zero_nat )
     => ( ( divide_divide_nat @ ( plus_plus_nat @ A @ ( times_times_nat @ B @ C ) ) @ B )
        = ( plus_plus_nat @ C @ ( divide_divide_nat @ A @ B ) ) ) ) ).

% div_mult_self2
thf(fact_2727_div__mult__self2,axiom,
    ! [B: int,A: int,C: int] :
      ( ( B != zero_zero_int )
     => ( ( divide_divide_int @ ( plus_plus_int @ A @ ( times_times_int @ B @ C ) ) @ B )
        = ( plus_plus_int @ C @ ( divide_divide_int @ A @ B ) ) ) ) ).

% div_mult_self2
thf(fact_2728_div__mult__self1,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( B != zero_zero_nat )
     => ( ( divide_divide_nat @ ( plus_plus_nat @ A @ ( times_times_nat @ C @ B ) ) @ B )
        = ( plus_plus_nat @ C @ ( divide_divide_nat @ A @ B ) ) ) ) ).

% div_mult_self1
thf(fact_2729_div__mult__self1,axiom,
    ! [B: int,A: int,C: int] :
      ( ( B != zero_zero_int )
     => ( ( divide_divide_int @ ( plus_plus_int @ A @ ( times_times_int @ C @ B ) ) @ B )
        = ( plus_plus_int @ C @ ( divide_divide_int @ A @ B ) ) ) ) ).

% div_mult_self1
thf(fact_2730_nonzero__divide__mult__cancel__right,axiom,
    ! [B: complex,A: complex] :
      ( ( B != zero_zero_complex )
     => ( ( divide1717551699836669952omplex @ B @ ( times_times_complex @ A @ B ) )
        = ( divide1717551699836669952omplex @ one_one_complex @ A ) ) ) ).

% nonzero_divide_mult_cancel_right
thf(fact_2731_nonzero__divide__mult__cancel__right,axiom,
    ! [B: real,A: real] :
      ( ( B != zero_zero_real )
     => ( ( divide_divide_real @ B @ ( times_times_real @ A @ B ) )
        = ( divide_divide_real @ one_one_real @ A ) ) ) ).

% nonzero_divide_mult_cancel_right
thf(fact_2732_nonzero__divide__mult__cancel__right,axiom,
    ! [B: rat,A: rat] :
      ( ( B != zero_zero_rat )
     => ( ( divide_divide_rat @ B @ ( times_times_rat @ A @ B ) )
        = ( divide_divide_rat @ one_one_rat @ A ) ) ) ).

% nonzero_divide_mult_cancel_right
thf(fact_2733_nonzero__divide__mult__cancel__left,axiom,
    ! [A: complex,B: complex] :
      ( ( A != zero_zero_complex )
     => ( ( divide1717551699836669952omplex @ A @ ( times_times_complex @ A @ B ) )
        = ( divide1717551699836669952omplex @ one_one_complex @ B ) ) ) ).

% nonzero_divide_mult_cancel_left
thf(fact_2734_nonzero__divide__mult__cancel__left,axiom,
    ! [A: real,B: real] :
      ( ( A != zero_zero_real )
     => ( ( divide_divide_real @ A @ ( times_times_real @ A @ B ) )
        = ( divide_divide_real @ one_one_real @ B ) ) ) ).

% nonzero_divide_mult_cancel_left
thf(fact_2735_nonzero__divide__mult__cancel__left,axiom,
    ! [A: rat,B: rat] :
      ( ( A != zero_zero_rat )
     => ( ( divide_divide_rat @ A @ ( times_times_rat @ A @ B ) )
        = ( divide_divide_rat @ one_one_rat @ B ) ) ) ).

% nonzero_divide_mult_cancel_left
thf(fact_2736_power__eq__0__iff,axiom,
    ! [A: rat,N2: nat] :
      ( ( ( power_power_rat @ A @ N2 )
        = zero_zero_rat )
      = ( ( A = zero_zero_rat )
        & ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ).

% power_eq_0_iff
thf(fact_2737_power__eq__0__iff,axiom,
    ! [A: nat,N2: nat] :
      ( ( ( power_power_nat @ A @ N2 )
        = zero_zero_nat )
      = ( ( A = zero_zero_nat )
        & ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ).

% power_eq_0_iff
thf(fact_2738_power__eq__0__iff,axiom,
    ! [A: real,N2: nat] :
      ( ( ( power_power_real @ A @ N2 )
        = zero_zero_real )
      = ( ( A = zero_zero_real )
        & ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ).

% power_eq_0_iff
thf(fact_2739_power__eq__0__iff,axiom,
    ! [A: int,N2: nat] :
      ( ( ( power_power_int @ A @ N2 )
        = zero_zero_int )
      = ( ( A = zero_zero_int )
        & ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ).

% power_eq_0_iff
thf(fact_2740_power__eq__0__iff,axiom,
    ! [A: complex,N2: nat] :
      ( ( ( power_power_complex @ A @ N2 )
        = zero_zero_complex )
      = ( ( A = zero_zero_complex )
        & ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ).

% power_eq_0_iff
thf(fact_2741_one__le__mult__iff,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ ( times_times_nat @ M @ N2 ) )
      = ( ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ M )
        & ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ N2 ) ) ) ).

% one_le_mult_iff
thf(fact_2742_Suc__pred,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( suc @ ( minus_minus_nat @ N2 @ ( suc @ zero_zero_nat ) ) )
        = N2 ) ) ).

% Suc_pred
thf(fact_2743_nat__mult__le__cancel__disj,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N2 ) )
      = ( ( ord_less_nat @ zero_zero_nat @ K )
       => ( ord_less_eq_nat @ M @ N2 ) ) ) ).

% nat_mult_le_cancel_disj
thf(fact_2744_mult__le__cancel2,axiom,
    ! [M: nat,K: nat,N2: nat] :
      ( ( ord_less_eq_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N2 @ K ) )
      = ( ( ord_less_nat @ zero_zero_nat @ K )
       => ( ord_less_eq_nat @ M @ N2 ) ) ) ).

% mult_le_cancel2
thf(fact_2745_div__mult__self1__is__m,axiom,
    ! [N2: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( divide_divide_nat @ ( times_times_nat @ N2 @ M ) @ N2 )
        = M ) ) ).

% div_mult_self1_is_m
thf(fact_2746_div__mult__self__is__m,axiom,
    ! [N2: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( divide_divide_nat @ ( times_times_nat @ M @ N2 ) @ N2 )
        = M ) ) ).

% div_mult_self_is_m
thf(fact_2747_Suc__mod__mult__self4,axiom,
    ! [N2: nat,K: nat,M: nat] :
      ( ( modulo_modulo_nat @ ( suc @ ( plus_plus_nat @ ( times_times_nat @ N2 @ K ) @ M ) ) @ N2 )
      = ( modulo_modulo_nat @ ( suc @ M ) @ N2 ) ) ).

% Suc_mod_mult_self4
thf(fact_2748_Suc__mod__mult__self3,axiom,
    ! [K: nat,N2: nat,M: nat] :
      ( ( modulo_modulo_nat @ ( suc @ ( plus_plus_nat @ ( times_times_nat @ K @ N2 ) @ M ) ) @ N2 )
      = ( modulo_modulo_nat @ ( suc @ M ) @ N2 ) ) ).

% Suc_mod_mult_self3
thf(fact_2749_Suc__mod__mult__self2,axiom,
    ! [M: nat,N2: nat,K: nat] :
      ( ( modulo_modulo_nat @ ( suc @ ( plus_plus_nat @ M @ ( times_times_nat @ N2 @ K ) ) ) @ N2 )
      = ( modulo_modulo_nat @ ( suc @ M ) @ N2 ) ) ).

% Suc_mod_mult_self2
thf(fact_2750_Suc__mod__mult__self1,axiom,
    ! [M: nat,K: nat,N2: nat] :
      ( ( modulo_modulo_nat @ ( suc @ ( plus_plus_nat @ M @ ( times_times_nat @ K @ N2 ) ) ) @ N2 )
      = ( modulo_modulo_nat @ ( suc @ M ) @ N2 ) ) ).

% Suc_mod_mult_self1
thf(fact_2751_divide__le__eq__1__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ( ord_less_eq_real @ ( divide_divide_real @ B @ A ) @ one_one_real )
        = ( ord_less_eq_real @ A @ B ) ) ) ).

% divide_le_eq_1_neg
thf(fact_2752_divide__le__eq__1__neg,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ zero_zero_rat )
     => ( ( ord_less_eq_rat @ ( divide_divide_rat @ B @ A ) @ one_one_rat )
        = ( ord_less_eq_rat @ A @ B ) ) ) ).

% divide_le_eq_1_neg
thf(fact_2753_divide__le__eq__1__pos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ ( divide_divide_real @ B @ A ) @ one_one_real )
        = ( ord_less_eq_real @ B @ A ) ) ) ).

% divide_le_eq_1_pos
thf(fact_2754_divide__le__eq__1__pos,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ( ord_less_eq_rat @ ( divide_divide_rat @ B @ A ) @ one_one_rat )
        = ( ord_less_eq_rat @ B @ A ) ) ) ).

% divide_le_eq_1_pos
thf(fact_2755_le__divide__eq__1__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ( ord_less_eq_real @ one_one_real @ ( divide_divide_real @ B @ A ) )
        = ( ord_less_eq_real @ B @ A ) ) ) ).

% le_divide_eq_1_neg
thf(fact_2756_le__divide__eq__1__neg,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ zero_zero_rat )
     => ( ( ord_less_eq_rat @ one_one_rat @ ( divide_divide_rat @ B @ A ) )
        = ( ord_less_eq_rat @ B @ A ) ) ) ).

% le_divide_eq_1_neg
thf(fact_2757_le__divide__eq__1__pos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ one_one_real @ ( divide_divide_real @ B @ A ) )
        = ( ord_less_eq_real @ A @ B ) ) ) ).

% le_divide_eq_1_pos
thf(fact_2758_le__divide__eq__1__pos,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ( ord_less_eq_rat @ one_one_rat @ ( divide_divide_rat @ B @ A ) )
        = ( ord_less_eq_rat @ A @ B ) ) ) ).

% le_divide_eq_1_pos
thf(fact_2759_zero__eq__power2,axiom,
    ! [A: rat] :
      ( ( ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = zero_zero_rat )
      = ( A = zero_zero_rat ) ) ).

% zero_eq_power2
thf(fact_2760_zero__eq__power2,axiom,
    ! [A: nat] :
      ( ( ( power_power_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = zero_zero_nat )
      = ( A = zero_zero_nat ) ) ).

% zero_eq_power2
thf(fact_2761_zero__eq__power2,axiom,
    ! [A: real] :
      ( ( ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = zero_zero_real )
      = ( A = zero_zero_real ) ) ).

% zero_eq_power2
thf(fact_2762_zero__eq__power2,axiom,
    ! [A: int] :
      ( ( ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = zero_zero_int )
      = ( A = zero_zero_int ) ) ).

% zero_eq_power2
thf(fact_2763_zero__eq__power2,axiom,
    ! [A: complex] :
      ( ( ( power_power_complex @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = zero_zero_complex )
      = ( A = zero_zero_complex ) ) ).

% zero_eq_power2
thf(fact_2764_power__strict__decreasing__iff,axiom,
    ! [B: real,M: nat,N2: nat] :
      ( ( ord_less_real @ zero_zero_real @ B )
     => ( ( ord_less_real @ B @ one_one_real )
       => ( ( ord_less_real @ ( power_power_real @ B @ M ) @ ( power_power_real @ B @ N2 ) )
          = ( ord_less_nat @ N2 @ M ) ) ) ) ).

% power_strict_decreasing_iff
thf(fact_2765_power__strict__decreasing__iff,axiom,
    ! [B: rat,M: nat,N2: nat] :
      ( ( ord_less_rat @ zero_zero_rat @ B )
     => ( ( ord_less_rat @ B @ one_one_rat )
       => ( ( ord_less_rat @ ( power_power_rat @ B @ M ) @ ( power_power_rat @ B @ N2 ) )
          = ( ord_less_nat @ N2 @ M ) ) ) ) ).

% power_strict_decreasing_iff
thf(fact_2766_power__strict__decreasing__iff,axiom,
    ! [B: nat,M: nat,N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ B )
     => ( ( ord_less_nat @ B @ one_one_nat )
       => ( ( ord_less_nat @ ( power_power_nat @ B @ M ) @ ( power_power_nat @ B @ N2 ) )
          = ( ord_less_nat @ N2 @ M ) ) ) ) ).

% power_strict_decreasing_iff
thf(fact_2767_power__strict__decreasing__iff,axiom,
    ! [B: int,M: nat,N2: nat] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ( ord_less_int @ B @ one_one_int )
       => ( ( ord_less_int @ ( power_power_int @ B @ M ) @ ( power_power_int @ B @ N2 ) )
          = ( ord_less_nat @ N2 @ M ) ) ) ) ).

% power_strict_decreasing_iff
thf(fact_2768_power__mono__iff,axiom,
    ! [A: real,B: real,N2: nat] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ zero_zero_real @ B )
       => ( ( ord_less_nat @ zero_zero_nat @ N2 )
         => ( ( ord_less_eq_real @ ( power_power_real @ A @ N2 ) @ ( power_power_real @ B @ N2 ) )
            = ( ord_less_eq_real @ A @ B ) ) ) ) ) ).

% power_mono_iff
thf(fact_2769_power__mono__iff,axiom,
    ! [A: rat,B: rat,N2: nat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ A )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ B )
       => ( ( ord_less_nat @ zero_zero_nat @ N2 )
         => ( ( ord_less_eq_rat @ ( power_power_rat @ A @ N2 ) @ ( power_power_rat @ B @ N2 ) )
            = ( ord_less_eq_rat @ A @ B ) ) ) ) ) ).

% power_mono_iff
thf(fact_2770_power__mono__iff,axiom,
    ! [A: nat,B: nat,N2: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
       => ( ( ord_less_nat @ zero_zero_nat @ N2 )
         => ( ( ord_less_eq_nat @ ( power_power_nat @ A @ N2 ) @ ( power_power_nat @ B @ N2 ) )
            = ( ord_less_eq_nat @ A @ B ) ) ) ) ) ).

% power_mono_iff
thf(fact_2771_power__mono__iff,axiom,
    ! [A: int,B: int,N2: nat] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_eq_int @ zero_zero_int @ B )
       => ( ( ord_less_nat @ zero_zero_nat @ N2 )
         => ( ( ord_less_eq_int @ ( power_power_int @ A @ N2 ) @ ( power_power_int @ B @ N2 ) )
            = ( ord_less_eq_int @ A @ B ) ) ) ) ) ).

% power_mono_iff
thf(fact_2772_bits__one__mod__two__eq__one,axiom,
    ( ( modulo_modulo_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = one_one_nat ) ).

% bits_one_mod_two_eq_one
thf(fact_2773_bits__one__mod__two__eq__one,axiom,
    ( ( modulo_modulo_int @ one_one_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
    = one_one_int ) ).

% bits_one_mod_two_eq_one
thf(fact_2774_bits__one__mod__two__eq__one,axiom,
    ( ( modulo364778990260209775nteger @ one_one_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
    = one_one_Code_integer ) ).

% bits_one_mod_two_eq_one
thf(fact_2775_one__mod__two__eq__one,axiom,
    ( ( modulo_modulo_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = one_one_nat ) ).

% one_mod_two_eq_one
thf(fact_2776_one__mod__two__eq__one,axiom,
    ( ( modulo_modulo_int @ one_one_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
    = one_one_int ) ).

% one_mod_two_eq_one
thf(fact_2777_one__mod__two__eq__one,axiom,
    ( ( modulo364778990260209775nteger @ one_one_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
    = one_one_Code_integer ) ).

% one_mod_two_eq_one
thf(fact_2778_mod2__Suc__Suc,axiom,
    ! [M: nat] :
      ( ( modulo_modulo_nat @ ( suc @ ( suc @ M ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( modulo_modulo_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% mod2_Suc_Suc
thf(fact_2779_Suc__diff__1,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( suc @ ( minus_minus_nat @ N2 @ one_one_nat ) )
        = N2 ) ) ).

% Suc_diff_1
thf(fact_2780_Suc__times__numeral__mod__eq,axiom,
    ! [K: num,N2: nat] :
      ( ( ( numeral_numeral_nat @ K )
       != one_one_nat )
     => ( ( modulo_modulo_nat @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ K ) @ N2 ) ) @ ( numeral_numeral_nat @ K ) )
        = one_one_nat ) ) ).

% Suc_times_numeral_mod_eq
thf(fact_2781_bits__1__div__2,axiom,
    ( ( divide_divide_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = zero_zero_nat ) ).

% bits_1_div_2
thf(fact_2782_bits__1__div__2,axiom,
    ( ( divide_divide_int @ one_one_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
    = zero_zero_int ) ).

% bits_1_div_2
thf(fact_2783_one__div__two__eq__zero,axiom,
    ( ( divide_divide_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = zero_zero_nat ) ).

% one_div_two_eq_zero
thf(fact_2784_one__div__two__eq__zero,axiom,
    ( ( divide_divide_int @ one_one_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
    = zero_zero_int ) ).

% one_div_two_eq_zero
thf(fact_2785_power2__eq__iff__nonneg,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y )
       => ( ( ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
            = ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
          = ( X = Y ) ) ) ) ).

% power2_eq_iff_nonneg
thf(fact_2786_power2__eq__iff__nonneg,axiom,
    ! [X: rat,Y: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ X )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ Y )
       => ( ( ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
            = ( power_power_rat @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
          = ( X = Y ) ) ) ) ).

% power2_eq_iff_nonneg
thf(fact_2787_power2__eq__iff__nonneg,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ X )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ Y )
       => ( ( ( power_power_nat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
            = ( power_power_nat @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
          = ( X = Y ) ) ) ) ).

% power2_eq_iff_nonneg
thf(fact_2788_power2__eq__iff__nonneg,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X )
     => ( ( ord_less_eq_int @ zero_zero_int @ Y )
       => ( ( ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
            = ( power_power_int @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
          = ( X = Y ) ) ) ) ).

% power2_eq_iff_nonneg
thf(fact_2789_power2__less__eq__zero__iff,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ zero_zero_real )
      = ( A = zero_zero_real ) ) ).

% power2_less_eq_zero_iff
thf(fact_2790_power2__less__eq__zero__iff,axiom,
    ! [A: rat] :
      ( ( ord_less_eq_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ zero_zero_rat )
      = ( A = zero_zero_rat ) ) ).

% power2_less_eq_zero_iff
thf(fact_2791_power2__less__eq__zero__iff,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ zero_zero_int )
      = ( A = zero_zero_int ) ) ).

% power2_less_eq_zero_iff
thf(fact_2792_zero__less__power2,axiom,
    ! [A: real] :
      ( ( ord_less_real @ zero_zero_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( A != zero_zero_real ) ) ).

% zero_less_power2
thf(fact_2793_zero__less__power2,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( A != zero_zero_rat ) ) ).

% zero_less_power2
thf(fact_2794_zero__less__power2,axiom,
    ! [A: int] :
      ( ( ord_less_int @ zero_zero_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( A != zero_zero_int ) ) ).

% zero_less_power2
thf(fact_2795_power__decreasing__iff,axiom,
    ! [B: real,M: nat,N2: nat] :
      ( ( ord_less_real @ zero_zero_real @ B )
     => ( ( ord_less_real @ B @ one_one_real )
       => ( ( ord_less_eq_real @ ( power_power_real @ B @ M ) @ ( power_power_real @ B @ N2 ) )
          = ( ord_less_eq_nat @ N2 @ M ) ) ) ) ).

% power_decreasing_iff
thf(fact_2796_power__decreasing__iff,axiom,
    ! [B: rat,M: nat,N2: nat] :
      ( ( ord_less_rat @ zero_zero_rat @ B )
     => ( ( ord_less_rat @ B @ one_one_rat )
       => ( ( ord_less_eq_rat @ ( power_power_rat @ B @ M ) @ ( power_power_rat @ B @ N2 ) )
          = ( ord_less_eq_nat @ N2 @ M ) ) ) ) ).

% power_decreasing_iff
thf(fact_2797_power__decreasing__iff,axiom,
    ! [B: nat,M: nat,N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ B )
     => ( ( ord_less_nat @ B @ one_one_nat )
       => ( ( ord_less_eq_nat @ ( power_power_nat @ B @ M ) @ ( power_power_nat @ B @ N2 ) )
          = ( ord_less_eq_nat @ N2 @ M ) ) ) ) ).

% power_decreasing_iff
thf(fact_2798_power__decreasing__iff,axiom,
    ! [B: int,M: nat,N2: nat] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ( ord_less_int @ B @ one_one_int )
       => ( ( ord_less_eq_int @ ( power_power_int @ B @ M ) @ ( power_power_int @ B @ N2 ) )
          = ( ord_less_eq_nat @ N2 @ M ) ) ) ) ).

% power_decreasing_iff
thf(fact_2799_sum__power2__eq__zero__iff,axiom,
    ! [X: rat,Y: rat] :
      ( ( ( plus_plus_rat @ ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
        = zero_zero_rat )
      = ( ( X = zero_zero_rat )
        & ( Y = zero_zero_rat ) ) ) ).

% sum_power2_eq_zero_iff
thf(fact_2800_sum__power2__eq__zero__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
        = zero_zero_real )
      = ( ( X = zero_zero_real )
        & ( Y = zero_zero_real ) ) ) ).

% sum_power2_eq_zero_iff
thf(fact_2801_sum__power2__eq__zero__iff,axiom,
    ! [X: int,Y: int] :
      ( ( ( plus_plus_int @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
        = zero_zero_int )
      = ( ( X = zero_zero_int )
        & ( Y = zero_zero_int ) ) ) ).

% sum_power2_eq_zero_iff
thf(fact_2802_not__mod__2__eq__1__eq__0,axiom,
    ! [A: nat] :
      ( ( ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
       != one_one_nat )
      = ( ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = zero_zero_nat ) ) ).

% not_mod_2_eq_1_eq_0
thf(fact_2803_not__mod__2__eq__1__eq__0,axiom,
    ! [A: int] :
      ( ( ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
       != one_one_int )
      = ( ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
        = zero_zero_int ) ) ).

% not_mod_2_eq_1_eq_0
thf(fact_2804_not__mod__2__eq__1__eq__0,axiom,
    ! [A: code_integer] :
      ( ( ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
       != one_one_Code_integer )
      = ( ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
        = zero_z3403309356797280102nteger ) ) ).

% not_mod_2_eq_1_eq_0
thf(fact_2805_not__mod__2__eq__0__eq__1,axiom,
    ! [A: nat] :
      ( ( ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
       != zero_zero_nat )
      = ( ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = one_one_nat ) ) ).

% not_mod_2_eq_0_eq_1
thf(fact_2806_not__mod__2__eq__0__eq__1,axiom,
    ! [A: int] :
      ( ( ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
       != zero_zero_int )
      = ( ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
        = one_one_int ) ) ).

% not_mod_2_eq_0_eq_1
thf(fact_2807_not__mod__2__eq__0__eq__1,axiom,
    ! [A: code_integer] :
      ( ( ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
       != zero_z3403309356797280102nteger )
      = ( ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
        = one_one_Code_integer ) ) ).

% not_mod_2_eq_0_eq_1
thf(fact_2808_not__mod2__eq__Suc__0__eq__0,axiom,
    ! [N2: nat] :
      ( ( ( modulo_modulo_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
       != ( suc @ zero_zero_nat ) )
      = ( ( modulo_modulo_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = zero_zero_nat ) ) ).

% not_mod2_eq_Suc_0_eq_0
thf(fact_2809_add__self__mod__2,axiom,
    ! [M: nat] :
      ( ( modulo_modulo_nat @ ( plus_plus_nat @ M @ M ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = zero_zero_nat ) ).

% add_self_mod_2
thf(fact_2810_mod2__gr__0,axiom,
    ! [M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( modulo_modulo_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( ( modulo_modulo_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = one_one_nat ) ) ).

% mod2_gr_0
thf(fact_2811_unique__euclidean__semiring__numeral__class_Opos__mod__bound,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ B )
     => ( ord_less_nat @ ( modulo_modulo_nat @ A @ B ) @ B ) ) ).

% unique_euclidean_semiring_numeral_class.pos_mod_bound
thf(fact_2812_unique__euclidean__semiring__numeral__class_Opos__mod__bound,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ord_less_int @ ( modulo_modulo_int @ A @ B ) @ B ) ) ).

% unique_euclidean_semiring_numeral_class.pos_mod_bound
thf(fact_2813_unique__euclidean__semiring__numeral__class_Opos__mod__bound,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ B )
     => ( ord_le6747313008572928689nteger @ ( modulo364778990260209775nteger @ A @ B ) @ B ) ) ).

% unique_euclidean_semiring_numeral_class.pos_mod_bound
thf(fact_2814_unique__euclidean__semiring__numeral__class_Omod__less__eq__dividend,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A )
     => ( ord_le3102999989581377725nteger @ ( modulo364778990260209775nteger @ A @ B ) @ A ) ) ).

% unique_euclidean_semiring_numeral_class.mod_less_eq_dividend
thf(fact_2815_unique__euclidean__semiring__numeral__class_Omod__less__eq__dividend,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ord_less_eq_nat @ ( modulo_modulo_nat @ A @ B ) @ A ) ) ).

% unique_euclidean_semiring_numeral_class.mod_less_eq_dividend
thf(fact_2816_unique__euclidean__semiring__numeral__class_Omod__less__eq__dividend,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ord_less_eq_int @ ( modulo_modulo_int @ A @ B ) @ A ) ) ).

% unique_euclidean_semiring_numeral_class.mod_less_eq_dividend
thf(fact_2817_mod__Suc,axiom,
    ! [M: nat,N2: nat] :
      ( ( ( ( suc @ ( modulo_modulo_nat @ M @ N2 ) )
          = N2 )
       => ( ( modulo_modulo_nat @ ( suc @ M ) @ N2 )
          = zero_zero_nat ) )
      & ( ( ( suc @ ( modulo_modulo_nat @ M @ N2 ) )
         != N2 )
       => ( ( modulo_modulo_nat @ ( suc @ M ) @ N2 )
          = ( suc @ ( modulo_modulo_nat @ M @ N2 ) ) ) ) ) ).

% mod_Suc
thf(fact_2818_mod__less__divisor,axiom,
    ! [N2: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ord_less_nat @ ( modulo_modulo_nat @ M @ N2 ) @ N2 ) ) ).

% mod_less_divisor
thf(fact_2819_VEBT__internal_Omembermima_Osimps_I1_J,axiom,
    ! [Uu: $o,Uv: $o,Uw: nat] :
      ~ ( vEBT_VEBT_membermima @ ( vEBT_Leaf @ Uu @ Uv ) @ Uw ) ).

% VEBT_internal.membermima.simps(1)
thf(fact_2820_mod__eq__0D,axiom,
    ! [M: nat,D: nat] :
      ( ( ( modulo_modulo_nat @ M @ D )
        = zero_zero_nat )
     => ? [Q3: nat] :
          ( M
          = ( times_times_nat @ D @ Q3 ) ) ) ).

% mod_eq_0D
thf(fact_2821_VEBT_Osize_I4_J,axiom,
    ! [X21: $o,X222: $o] :
      ( ( size_size_VEBT_VEBT @ ( vEBT_Leaf @ X21 @ X222 ) )
      = zero_zero_nat ) ).

% VEBT.size(4)
thf(fact_2822_mod__eq__self__iff__div__eq__0,axiom,
    ! [A: nat,B: nat] :
      ( ( ( modulo_modulo_nat @ A @ B )
        = A )
      = ( ( divide_divide_nat @ A @ B )
        = zero_zero_nat ) ) ).

% mod_eq_self_iff_div_eq_0
thf(fact_2823_mod__eq__self__iff__div__eq__0,axiom,
    ! [A: int,B: int] :
      ( ( ( modulo_modulo_int @ A @ B )
        = A )
      = ( ( divide_divide_int @ A @ B )
        = zero_zero_int ) ) ).

% mod_eq_self_iff_div_eq_0
thf(fact_2824_mod__eq__self__iff__div__eq__0,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ( modulo364778990260209775nteger @ A @ B )
        = A )
      = ( ( divide6298287555418463151nteger @ A @ B )
        = zero_z3403309356797280102nteger ) ) ).

% mod_eq_self_iff_div_eq_0
thf(fact_2825_VEBT__internal_Ovalid_H_Ocases,axiom,
    ! [X: produc9072475918466114483BT_nat] :
      ( ! [Uu2: $o,Uv2: $o,D4: nat] :
          ( X
         != ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uu2 @ Uv2 ) @ D4 ) )
     => ~ ! [Mima: option4927543243414619207at_nat,Deg2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT,Deg3: nat] :
            ( X
           != ( produc738532404422230701BT_nat @ ( vEBT_Node @ Mima @ Deg2 @ TreeList2 @ Summary2 ) @ Deg3 ) ) ) ).

% VEBT_internal.valid'.cases
thf(fact_2826_VEBT__internal_Onaive__member_Osimps_I1_J,axiom,
    ! [A: $o,B: $o,X: nat] :
      ( ( vEBT_V5719532721284313246member @ ( vEBT_Leaf @ A @ B ) @ X )
      = ( ( ( X = zero_zero_nat )
         => A )
        & ( ( X != zero_zero_nat )
         => ( ( ( X = one_one_nat )
             => B )
            & ( X = one_one_nat ) ) ) ) ) ).

% VEBT_internal.naive_member.simps(1)
thf(fact_2827_bot__nat__def,axiom,
    bot_bot_nat = zero_zero_nat ).

% bot_nat_def
thf(fact_2828_vebt__delete_Osimps_I1_J,axiom,
    ! [A: $o,B: $o] :
      ( ( vEBT_vebt_delete @ ( vEBT_Leaf @ A @ B ) @ zero_zero_nat )
      = ( vEBT_Leaf @ $false @ B ) ) ).

% vebt_delete.simps(1)
thf(fact_2829_VEBT__internal_Onaive__member_Ocases,axiom,
    ! [X: produc9072475918466114483BT_nat] :
      ( ! [A3: $o,B2: $o,X5: nat] :
          ( X
         != ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A3 @ B2 ) @ X5 ) )
     => ( ! [Uu2: option4927543243414619207at_nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT,Ux2: nat] :
            ( X
           != ( produc738532404422230701BT_nat @ ( vEBT_Node @ Uu2 @ zero_zero_nat @ Uv2 @ Uw2 ) @ Ux2 ) )
       => ~ ! [Uy2: option4927543243414619207at_nat,V2: nat,TreeList2: list_VEBT_VEBT,S: vEBT_VEBT,X5: nat] :
              ( X
             != ( produc738532404422230701BT_nat @ ( vEBT_Node @ Uy2 @ ( suc @ V2 ) @ TreeList2 @ S ) @ X5 ) ) ) ) ).

% VEBT_internal.naive_member.cases
thf(fact_2830_vebt__buildup_Osimps_I1_J,axiom,
    ( ( vEBT_vebt_buildup @ zero_zero_nat )
    = ( vEBT_Leaf @ $false @ $false ) ) ).

% vebt_buildup.simps(1)
thf(fact_2831_unique__euclidean__semiring__numeral__class_Omod__less,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A )
     => ( ( ord_le6747313008572928689nteger @ A @ B )
       => ( ( modulo364778990260209775nteger @ A @ B )
          = A ) ) ) ).

% unique_euclidean_semiring_numeral_class.mod_less
thf(fact_2832_unique__euclidean__semiring__numeral__class_Omod__less,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ A @ B )
       => ( ( modulo_modulo_nat @ A @ B )
          = A ) ) ) ).

% unique_euclidean_semiring_numeral_class.mod_less
thf(fact_2833_unique__euclidean__semiring__numeral__class_Omod__less,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ A @ B )
       => ( ( modulo_modulo_int @ A @ B )
          = A ) ) ) ).

% unique_euclidean_semiring_numeral_class.mod_less
thf(fact_2834_unique__euclidean__semiring__numeral__class_Opos__mod__sign,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ B )
     => ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( modulo364778990260209775nteger @ A @ B ) ) ) ).

% unique_euclidean_semiring_numeral_class.pos_mod_sign
thf(fact_2835_unique__euclidean__semiring__numeral__class_Opos__mod__sign,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ B )
     => ( ord_less_eq_nat @ zero_zero_nat @ ( modulo_modulo_nat @ A @ B ) ) ) ).

% unique_euclidean_semiring_numeral_class.pos_mod_sign
thf(fact_2836_unique__euclidean__semiring__numeral__class_Opos__mod__sign,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ord_less_eq_int @ zero_zero_int @ ( modulo_modulo_int @ A @ B ) ) ) ).

% unique_euclidean_semiring_numeral_class.pos_mod_sign
thf(fact_2837_cong__exp__iff__simps_I2_J,axiom,
    ! [N2: num,Q2: num] :
      ( ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit0 @ N2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) )
        = zero_zero_nat )
      = ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ N2 ) @ ( numeral_numeral_nat @ Q2 ) )
        = zero_zero_nat ) ) ).

% cong_exp_iff_simps(2)
thf(fact_2838_cong__exp__iff__simps_I2_J,axiom,
    ! [N2: num,Q2: num] :
      ( ( ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit0 @ N2 ) ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) )
        = zero_zero_int )
      = ( ( modulo_modulo_int @ ( numeral_numeral_int @ N2 ) @ ( numeral_numeral_int @ Q2 ) )
        = zero_zero_int ) ) ).

% cong_exp_iff_simps(2)
thf(fact_2839_cong__exp__iff__simps_I2_J,axiom,
    ! [N2: num,Q2: num] :
      ( ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit0 @ N2 ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) )
        = zero_z3403309356797280102nteger )
      = ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ N2 ) @ ( numera6620942414471956472nteger @ Q2 ) )
        = zero_z3403309356797280102nteger ) ) ).

% cong_exp_iff_simps(2)
thf(fact_2840_cong__exp__iff__simps_I1_J,axiom,
    ! [N2: num] :
      ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ N2 ) @ ( numeral_numeral_nat @ one ) )
      = zero_zero_nat ) ).

% cong_exp_iff_simps(1)
thf(fact_2841_cong__exp__iff__simps_I1_J,axiom,
    ! [N2: num] :
      ( ( modulo_modulo_int @ ( numeral_numeral_int @ N2 ) @ ( numeral_numeral_int @ one ) )
      = zero_zero_int ) ).

% cong_exp_iff_simps(1)
thf(fact_2842_cong__exp__iff__simps_I1_J,axiom,
    ! [N2: num] :
      ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ N2 ) @ ( numera6620942414471956472nteger @ one ) )
      = zero_z3403309356797280102nteger ) ).

% cong_exp_iff_simps(1)
thf(fact_2843_VEBT__internal_Onaive__member_Osimps_I2_J,axiom,
    ! [Uu: option4927543243414619207at_nat,Uv: list_VEBT_VEBT,Uw: vEBT_VEBT,Ux: nat] :
      ~ ( vEBT_V5719532721284313246member @ ( vEBT_Node @ Uu @ zero_zero_nat @ Uv @ Uw ) @ Ux ) ).

% VEBT_internal.naive_member.simps(2)
thf(fact_2844_VEBT__internal_Ooption__shift_Ocases,axiom,
    ! [X: produc5542196010084753463at_nat] :
      ( ! [Uu2: product_prod_nat_nat > product_prod_nat_nat > product_prod_nat_nat,Uv2: option4927543243414619207at_nat] :
          ( X
         != ( produc2899441246263362727at_nat @ Uu2 @ ( produc488173922507101015at_nat @ none_P5556105721700978146at_nat @ Uv2 ) ) )
     => ( ! [Uw2: product_prod_nat_nat > product_prod_nat_nat > product_prod_nat_nat,V2: product_prod_nat_nat] :
            ( X
           != ( produc2899441246263362727at_nat @ Uw2 @ ( produc488173922507101015at_nat @ ( some_P7363390416028606310at_nat @ V2 ) @ none_P5556105721700978146at_nat ) ) )
       => ~ ! [F2: product_prod_nat_nat > product_prod_nat_nat > product_prod_nat_nat,A3: product_prod_nat_nat,B2: product_prod_nat_nat] :
              ( X
             != ( produc2899441246263362727at_nat @ F2 @ ( produc488173922507101015at_nat @ ( some_P7363390416028606310at_nat @ A3 ) @ ( some_P7363390416028606310at_nat @ B2 ) ) ) ) ) ) ).

% VEBT_internal.option_shift.cases
thf(fact_2845_VEBT__internal_Ooption__shift_Ocases,axiom,
    ! [X: produc8306885398267862888on_nat] :
      ( ! [Uu2: nat > nat > nat,Uv2: option_nat] :
          ( X
         != ( produc8929957630744042906on_nat @ Uu2 @ ( produc5098337634421038937on_nat @ none_nat @ Uv2 ) ) )
     => ( ! [Uw2: nat > nat > nat,V2: nat] :
            ( X
           != ( produc8929957630744042906on_nat @ Uw2 @ ( produc5098337634421038937on_nat @ ( some_nat @ V2 ) @ none_nat ) ) )
       => ~ ! [F2: nat > nat > nat,A3: nat,B2: nat] :
              ( X
             != ( produc8929957630744042906on_nat @ F2 @ ( produc5098337634421038937on_nat @ ( some_nat @ A3 ) @ ( some_nat @ B2 ) ) ) ) ) ) ).

% VEBT_internal.option_shift.cases
thf(fact_2846_VEBT__internal_Ooption__shift_Ocases,axiom,
    ! [X: produc1193250871479095198on_num] :
      ( ! [Uu2: num > num > num,Uv2: option_num] :
          ( X
         != ( produc5778274026573060048on_num @ Uu2 @ ( produc8585076106096196333on_num @ none_num @ Uv2 ) ) )
     => ( ! [Uw2: num > num > num,V2: num] :
            ( X
           != ( produc5778274026573060048on_num @ Uw2 @ ( produc8585076106096196333on_num @ ( some_num @ V2 ) @ none_num ) ) )
       => ~ ! [F2: num > num > num,A3: num,B2: num] :
              ( X
             != ( produc5778274026573060048on_num @ F2 @ ( produc8585076106096196333on_num @ ( some_num @ A3 ) @ ( some_num @ B2 ) ) ) ) ) ) ).

% VEBT_internal.option_shift.cases
thf(fact_2847_VEBT__internal_Ooption__comp__shift_Ocases,axiom,
    ! [X: produc5491161045314408544at_nat] :
      ( ! [Uu2: product_prod_nat_nat > product_prod_nat_nat > $o,Uv2: option4927543243414619207at_nat] :
          ( X
         != ( produc3994169339658061776at_nat @ Uu2 @ ( produc488173922507101015at_nat @ none_P5556105721700978146at_nat @ Uv2 ) ) )
     => ( ! [Uw2: product_prod_nat_nat > product_prod_nat_nat > $o,V2: product_prod_nat_nat] :
            ( X
           != ( produc3994169339658061776at_nat @ Uw2 @ ( produc488173922507101015at_nat @ ( some_P7363390416028606310at_nat @ V2 ) @ none_P5556105721700978146at_nat ) ) )
       => ~ ! [F2: product_prod_nat_nat > product_prod_nat_nat > $o,X5: product_prod_nat_nat,Y5: product_prod_nat_nat] :
              ( X
             != ( produc3994169339658061776at_nat @ F2 @ ( produc488173922507101015at_nat @ ( some_P7363390416028606310at_nat @ X5 ) @ ( some_P7363390416028606310at_nat @ Y5 ) ) ) ) ) ) ).

% VEBT_internal.option_comp_shift.cases
thf(fact_2848_VEBT__internal_Ooption__comp__shift_Ocases,axiom,
    ! [X: produc2233624965454879586on_nat] :
      ( ! [Uu2: nat > nat > $o,Uv2: option_nat] :
          ( X
         != ( produc4035269172776083154on_nat @ Uu2 @ ( produc5098337634421038937on_nat @ none_nat @ Uv2 ) ) )
     => ( ! [Uw2: nat > nat > $o,V2: nat] :
            ( X
           != ( produc4035269172776083154on_nat @ Uw2 @ ( produc5098337634421038937on_nat @ ( some_nat @ V2 ) @ none_nat ) ) )
       => ~ ! [F2: nat > nat > $o,X5: nat,Y5: nat] :
              ( X
             != ( produc4035269172776083154on_nat @ F2 @ ( produc5098337634421038937on_nat @ ( some_nat @ X5 ) @ ( some_nat @ Y5 ) ) ) ) ) ) ).

% VEBT_internal.option_comp_shift.cases
thf(fact_2849_VEBT__internal_Ooption__comp__shift_Ocases,axiom,
    ! [X: produc7036089656553540234on_num] :
      ( ! [Uu2: num > num > $o,Uv2: option_num] :
          ( X
         != ( produc3576312749637752826on_num @ Uu2 @ ( produc8585076106096196333on_num @ none_num @ Uv2 ) ) )
     => ( ! [Uw2: num > num > $o,V2: num] :
            ( X
           != ( produc3576312749637752826on_num @ Uw2 @ ( produc8585076106096196333on_num @ ( some_num @ V2 ) @ none_num ) ) )
       => ~ ! [F2: num > num > $o,X5: num,Y5: num] :
              ( X
             != ( produc3576312749637752826on_num @ F2 @ ( produc8585076106096196333on_num @ ( some_num @ X5 ) @ ( some_num @ Y5 ) ) ) ) ) ) ).

% VEBT_internal.option_comp_shift.cases
thf(fact_2850_mod__le__divisor,axiom,
    ! [N2: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ord_less_eq_nat @ ( modulo_modulo_nat @ M @ N2 ) @ N2 ) ) ).

% mod_le_divisor
thf(fact_2851_vebt__delete_Osimps_I2_J,axiom,
    ! [A: $o,B: $o] :
      ( ( vEBT_vebt_delete @ ( vEBT_Leaf @ A @ B ) @ ( suc @ zero_zero_nat ) )
      = ( vEBT_Leaf @ A @ $false ) ) ).

% vebt_delete.simps(2)
thf(fact_2852_invar__vebt_Ointros_I1_J,axiom,
    ! [A: $o,B: $o] : ( vEBT_invar_vebt @ ( vEBT_Leaf @ A @ B ) @ ( suc @ zero_zero_nat ) ) ).

% invar_vebt.intros(1)
thf(fact_2853_power__0__left,axiom,
    ! [N2: nat] :
      ( ( ( N2 = zero_zero_nat )
       => ( ( power_power_rat @ zero_zero_rat @ N2 )
          = one_one_rat ) )
      & ( ( N2 != zero_zero_nat )
       => ( ( power_power_rat @ zero_zero_rat @ N2 )
          = zero_zero_rat ) ) ) ).

% power_0_left
thf(fact_2854_power__0__left,axiom,
    ! [N2: nat] :
      ( ( ( N2 = zero_zero_nat )
       => ( ( power_power_nat @ zero_zero_nat @ N2 )
          = one_one_nat ) )
      & ( ( N2 != zero_zero_nat )
       => ( ( power_power_nat @ zero_zero_nat @ N2 )
          = zero_zero_nat ) ) ) ).

% power_0_left
thf(fact_2855_power__0__left,axiom,
    ! [N2: nat] :
      ( ( ( N2 = zero_zero_nat )
       => ( ( power_power_real @ zero_zero_real @ N2 )
          = one_one_real ) )
      & ( ( N2 != zero_zero_nat )
       => ( ( power_power_real @ zero_zero_real @ N2 )
          = zero_zero_real ) ) ) ).

% power_0_left
thf(fact_2856_power__0__left,axiom,
    ! [N2: nat] :
      ( ( ( N2 = zero_zero_nat )
       => ( ( power_power_int @ zero_zero_int @ N2 )
          = one_one_int ) )
      & ( ( N2 != zero_zero_nat )
       => ( ( power_power_int @ zero_zero_int @ N2 )
          = zero_zero_int ) ) ) ).

% power_0_left
thf(fact_2857_power__0__left,axiom,
    ! [N2: nat] :
      ( ( ( N2 = zero_zero_nat )
       => ( ( power_power_complex @ zero_zero_complex @ N2 )
          = one_one_complex ) )
      & ( ( N2 != zero_zero_nat )
       => ( ( power_power_complex @ zero_zero_complex @ N2 )
          = zero_zero_complex ) ) ) ).

% power_0_left
thf(fact_2858_zero__power,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( power_power_rat @ zero_zero_rat @ N2 )
        = zero_zero_rat ) ) ).

% zero_power
thf(fact_2859_zero__power,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( power_power_nat @ zero_zero_nat @ N2 )
        = zero_zero_nat ) ) ).

% zero_power
thf(fact_2860_zero__power,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( power_power_real @ zero_zero_real @ N2 )
        = zero_zero_real ) ) ).

% zero_power
thf(fact_2861_zero__power,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( power_power_int @ zero_zero_int @ N2 )
        = zero_zero_int ) ) ).

% zero_power
thf(fact_2862_zero__power,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( power_power_complex @ zero_zero_complex @ N2 )
        = zero_zero_complex ) ) ).

% zero_power
thf(fact_2863_mod__mult__right__eq,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( modulo_modulo_nat @ ( times_times_nat @ A @ ( modulo_modulo_nat @ B @ C ) ) @ C )
      = ( modulo_modulo_nat @ ( times_times_nat @ A @ B ) @ C ) ) ).

% mod_mult_right_eq
thf(fact_2864_mod__mult__right__eq,axiom,
    ! [A: int,B: int,C: int] :
      ( ( modulo_modulo_int @ ( times_times_int @ A @ ( modulo_modulo_int @ B @ C ) ) @ C )
      = ( modulo_modulo_int @ ( times_times_int @ A @ B ) @ C ) ) ).

% mod_mult_right_eq
thf(fact_2865_mod__mult__right__eq,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ A @ ( modulo364778990260209775nteger @ B @ C ) ) @ C )
      = ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ A @ B ) @ C ) ) ).

% mod_mult_right_eq
thf(fact_2866_mod__mult__left__eq,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( modulo_modulo_nat @ ( times_times_nat @ ( modulo_modulo_nat @ A @ C ) @ B ) @ C )
      = ( modulo_modulo_nat @ ( times_times_nat @ A @ B ) @ C ) ) ).

% mod_mult_left_eq
thf(fact_2867_mod__mult__left__eq,axiom,
    ! [A: int,C: int,B: int] :
      ( ( modulo_modulo_int @ ( times_times_int @ ( modulo_modulo_int @ A @ C ) @ B ) @ C )
      = ( modulo_modulo_int @ ( times_times_int @ A @ B ) @ C ) ) ).

% mod_mult_left_eq
thf(fact_2868_mod__mult__left__eq,axiom,
    ! [A: code_integer,C: code_integer,B: code_integer] :
      ( ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ ( modulo364778990260209775nteger @ A @ C ) @ B ) @ C )
      = ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ A @ B ) @ C ) ) ).

% mod_mult_left_eq
thf(fact_2869_mult__mod__right,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( times_times_nat @ C @ ( modulo_modulo_nat @ A @ B ) )
      = ( modulo_modulo_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) ) ) ).

% mult_mod_right
thf(fact_2870_mult__mod__right,axiom,
    ! [C: int,A: int,B: int] :
      ( ( times_times_int @ C @ ( modulo_modulo_int @ A @ B ) )
      = ( modulo_modulo_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ).

% mult_mod_right
thf(fact_2871_mult__mod__right,axiom,
    ! [C: code_integer,A: code_integer,B: code_integer] :
      ( ( times_3573771949741848930nteger @ C @ ( modulo364778990260209775nteger @ A @ B ) )
      = ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ C @ A ) @ ( times_3573771949741848930nteger @ C @ B ) ) ) ).

% mult_mod_right
thf(fact_2872_mod__mult__mult2,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( modulo_modulo_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) )
      = ( times_times_nat @ ( modulo_modulo_nat @ A @ B ) @ C ) ) ).

% mod_mult_mult2
thf(fact_2873_mod__mult__mult2,axiom,
    ! [A: int,C: int,B: int] :
      ( ( modulo_modulo_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
      = ( times_times_int @ ( modulo_modulo_int @ A @ B ) @ C ) ) ).

% mod_mult_mult2
thf(fact_2874_mod__mult__mult2,axiom,
    ! [A: code_integer,C: code_integer,B: code_integer] :
      ( ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ A @ C ) @ ( times_3573771949741848930nteger @ B @ C ) )
      = ( times_3573771949741848930nteger @ ( modulo364778990260209775nteger @ A @ B ) @ C ) ) ).

% mod_mult_mult2
thf(fact_2875_mod__mult__cong,axiom,
    ! [A: nat,C: nat,A6: nat,B: nat,B6: nat] :
      ( ( ( modulo_modulo_nat @ A @ C )
        = ( modulo_modulo_nat @ A6 @ C ) )
     => ( ( ( modulo_modulo_nat @ B @ C )
          = ( modulo_modulo_nat @ B6 @ C ) )
       => ( ( modulo_modulo_nat @ ( times_times_nat @ A @ B ) @ C )
          = ( modulo_modulo_nat @ ( times_times_nat @ A6 @ B6 ) @ C ) ) ) ) ).

% mod_mult_cong
thf(fact_2876_mod__mult__cong,axiom,
    ! [A: int,C: int,A6: int,B: int,B6: int] :
      ( ( ( modulo_modulo_int @ A @ C )
        = ( modulo_modulo_int @ A6 @ C ) )
     => ( ( ( modulo_modulo_int @ B @ C )
          = ( modulo_modulo_int @ B6 @ C ) )
       => ( ( modulo_modulo_int @ ( times_times_int @ A @ B ) @ C )
          = ( modulo_modulo_int @ ( times_times_int @ A6 @ B6 ) @ C ) ) ) ) ).

% mod_mult_cong
thf(fact_2877_mod__mult__cong,axiom,
    ! [A: code_integer,C: code_integer,A6: code_integer,B: code_integer,B6: code_integer] :
      ( ( ( modulo364778990260209775nteger @ A @ C )
        = ( modulo364778990260209775nteger @ A6 @ C ) )
     => ( ( ( modulo364778990260209775nteger @ B @ C )
          = ( modulo364778990260209775nteger @ B6 @ C ) )
       => ( ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ A @ B ) @ C )
          = ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ A6 @ B6 ) @ C ) ) ) ) ).

% mod_mult_cong
thf(fact_2878_mod__mult__eq,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( modulo_modulo_nat @ ( times_times_nat @ ( modulo_modulo_nat @ A @ C ) @ ( modulo_modulo_nat @ B @ C ) ) @ C )
      = ( modulo_modulo_nat @ ( times_times_nat @ A @ B ) @ C ) ) ).

% mod_mult_eq
thf(fact_2879_mod__mult__eq,axiom,
    ! [A: int,C: int,B: int] :
      ( ( modulo_modulo_int @ ( times_times_int @ ( modulo_modulo_int @ A @ C ) @ ( modulo_modulo_int @ B @ C ) ) @ C )
      = ( modulo_modulo_int @ ( times_times_int @ A @ B ) @ C ) ) ).

% mod_mult_eq
thf(fact_2880_mod__mult__eq,axiom,
    ! [A: code_integer,C: code_integer,B: code_integer] :
      ( ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ ( modulo364778990260209775nteger @ A @ C ) @ ( modulo364778990260209775nteger @ B @ C ) ) @ C )
      = ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ A @ B ) @ C ) ) ).

% mod_mult_eq
thf(fact_2881_mod__add__right__eq,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( modulo_modulo_nat @ ( plus_plus_nat @ A @ ( modulo_modulo_nat @ B @ C ) ) @ C )
      = ( modulo_modulo_nat @ ( plus_plus_nat @ A @ B ) @ C ) ) ).

% mod_add_right_eq
thf(fact_2882_mod__add__right__eq,axiom,
    ! [A: int,B: int,C: int] :
      ( ( modulo_modulo_int @ ( plus_plus_int @ A @ ( modulo_modulo_int @ B @ C ) ) @ C )
      = ( modulo_modulo_int @ ( plus_plus_int @ A @ B ) @ C ) ) ).

% mod_add_right_eq
thf(fact_2883_mod__add__right__eq,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ A @ ( modulo364778990260209775nteger @ B @ C ) ) @ C )
      = ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ A @ B ) @ C ) ) ).

% mod_add_right_eq
thf(fact_2884_mod__add__left__eq,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( modulo_modulo_nat @ ( plus_plus_nat @ ( modulo_modulo_nat @ A @ C ) @ B ) @ C )
      = ( modulo_modulo_nat @ ( plus_plus_nat @ A @ B ) @ C ) ) ).

% mod_add_left_eq
thf(fact_2885_mod__add__left__eq,axiom,
    ! [A: int,C: int,B: int] :
      ( ( modulo_modulo_int @ ( plus_plus_int @ ( modulo_modulo_int @ A @ C ) @ B ) @ C )
      = ( modulo_modulo_int @ ( plus_plus_int @ A @ B ) @ C ) ) ).

% mod_add_left_eq
thf(fact_2886_mod__add__left__eq,axiom,
    ! [A: code_integer,C: code_integer,B: code_integer] :
      ( ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ ( modulo364778990260209775nteger @ A @ C ) @ B ) @ C )
      = ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ A @ B ) @ C ) ) ).

% mod_add_left_eq
thf(fact_2887_mod__add__cong,axiom,
    ! [A: nat,C: nat,A6: nat,B: nat,B6: nat] :
      ( ( ( modulo_modulo_nat @ A @ C )
        = ( modulo_modulo_nat @ A6 @ C ) )
     => ( ( ( modulo_modulo_nat @ B @ C )
          = ( modulo_modulo_nat @ B6 @ C ) )
       => ( ( modulo_modulo_nat @ ( plus_plus_nat @ A @ B ) @ C )
          = ( modulo_modulo_nat @ ( plus_plus_nat @ A6 @ B6 ) @ C ) ) ) ) ).

% mod_add_cong
thf(fact_2888_mod__add__cong,axiom,
    ! [A: int,C: int,A6: int,B: int,B6: int] :
      ( ( ( modulo_modulo_int @ A @ C )
        = ( modulo_modulo_int @ A6 @ C ) )
     => ( ( ( modulo_modulo_int @ B @ C )
          = ( modulo_modulo_int @ B6 @ C ) )
       => ( ( modulo_modulo_int @ ( plus_plus_int @ A @ B ) @ C )
          = ( modulo_modulo_int @ ( plus_plus_int @ A6 @ B6 ) @ C ) ) ) ) ).

% mod_add_cong
thf(fact_2889_mod__add__cong,axiom,
    ! [A: code_integer,C: code_integer,A6: code_integer,B: code_integer,B6: code_integer] :
      ( ( ( modulo364778990260209775nteger @ A @ C )
        = ( modulo364778990260209775nteger @ A6 @ C ) )
     => ( ( ( modulo364778990260209775nteger @ B @ C )
          = ( modulo364778990260209775nteger @ B6 @ C ) )
       => ( ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ A @ B ) @ C )
          = ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ A6 @ B6 ) @ C ) ) ) ) ).

% mod_add_cong
thf(fact_2890_mod__add__eq,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( modulo_modulo_nat @ ( plus_plus_nat @ ( modulo_modulo_nat @ A @ C ) @ ( modulo_modulo_nat @ B @ C ) ) @ C )
      = ( modulo_modulo_nat @ ( plus_plus_nat @ A @ B ) @ C ) ) ).

% mod_add_eq
thf(fact_2891_mod__add__eq,axiom,
    ! [A: int,C: int,B: int] :
      ( ( modulo_modulo_int @ ( plus_plus_int @ ( modulo_modulo_int @ A @ C ) @ ( modulo_modulo_int @ B @ C ) ) @ C )
      = ( modulo_modulo_int @ ( plus_plus_int @ A @ B ) @ C ) ) ).

% mod_add_eq
thf(fact_2892_mod__add__eq,axiom,
    ! [A: code_integer,C: code_integer,B: code_integer] :
      ( ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ ( modulo364778990260209775nteger @ A @ C ) @ ( modulo364778990260209775nteger @ B @ C ) ) @ C )
      = ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ A @ B ) @ C ) ) ).

% mod_add_eq
thf(fact_2893_mod__diff__right__eq,axiom,
    ! [A: int,B: int,C: int] :
      ( ( modulo_modulo_int @ ( minus_minus_int @ A @ ( modulo_modulo_int @ B @ C ) ) @ C )
      = ( modulo_modulo_int @ ( minus_minus_int @ A @ B ) @ C ) ) ).

% mod_diff_right_eq
thf(fact_2894_mod__diff__right__eq,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( modulo364778990260209775nteger @ ( minus_8373710615458151222nteger @ A @ ( modulo364778990260209775nteger @ B @ C ) ) @ C )
      = ( modulo364778990260209775nteger @ ( minus_8373710615458151222nteger @ A @ B ) @ C ) ) ).

% mod_diff_right_eq
thf(fact_2895_mod__diff__left__eq,axiom,
    ! [A: int,C: int,B: int] :
      ( ( modulo_modulo_int @ ( minus_minus_int @ ( modulo_modulo_int @ A @ C ) @ B ) @ C )
      = ( modulo_modulo_int @ ( minus_minus_int @ A @ B ) @ C ) ) ).

% mod_diff_left_eq
thf(fact_2896_mod__diff__left__eq,axiom,
    ! [A: code_integer,C: code_integer,B: code_integer] :
      ( ( modulo364778990260209775nteger @ ( minus_8373710615458151222nteger @ ( modulo364778990260209775nteger @ A @ C ) @ B ) @ C )
      = ( modulo364778990260209775nteger @ ( minus_8373710615458151222nteger @ A @ B ) @ C ) ) ).

% mod_diff_left_eq
thf(fact_2897_mod__diff__cong,axiom,
    ! [A: int,C: int,A6: int,B: int,B6: int] :
      ( ( ( modulo_modulo_int @ A @ C )
        = ( modulo_modulo_int @ A6 @ C ) )
     => ( ( ( modulo_modulo_int @ B @ C )
          = ( modulo_modulo_int @ B6 @ C ) )
       => ( ( modulo_modulo_int @ ( minus_minus_int @ A @ B ) @ C )
          = ( modulo_modulo_int @ ( minus_minus_int @ A6 @ B6 ) @ C ) ) ) ) ).

% mod_diff_cong
thf(fact_2898_mod__diff__cong,axiom,
    ! [A: code_integer,C: code_integer,A6: code_integer,B: code_integer,B6: code_integer] :
      ( ( ( modulo364778990260209775nteger @ A @ C )
        = ( modulo364778990260209775nteger @ A6 @ C ) )
     => ( ( ( modulo364778990260209775nteger @ B @ C )
          = ( modulo364778990260209775nteger @ B6 @ C ) )
       => ( ( modulo364778990260209775nteger @ ( minus_8373710615458151222nteger @ A @ B ) @ C )
          = ( modulo364778990260209775nteger @ ( minus_8373710615458151222nteger @ A6 @ B6 ) @ C ) ) ) ) ).

% mod_diff_cong
thf(fact_2899_mod__diff__eq,axiom,
    ! [A: int,C: int,B: int] :
      ( ( modulo_modulo_int @ ( minus_minus_int @ ( modulo_modulo_int @ A @ C ) @ ( modulo_modulo_int @ B @ C ) ) @ C )
      = ( modulo_modulo_int @ ( minus_minus_int @ A @ B ) @ C ) ) ).

% mod_diff_eq
thf(fact_2900_mod__diff__eq,axiom,
    ! [A: code_integer,C: code_integer,B: code_integer] :
      ( ( modulo364778990260209775nteger @ ( minus_8373710615458151222nteger @ ( modulo364778990260209775nteger @ A @ C ) @ ( modulo364778990260209775nteger @ B @ C ) ) @ C )
      = ( modulo364778990260209775nteger @ ( minus_8373710615458151222nteger @ A @ B ) @ C ) ) ).

% mod_diff_eq
thf(fact_2901_power__mod,axiom,
    ! [A: nat,B: nat,N2: nat] :
      ( ( modulo_modulo_nat @ ( power_power_nat @ ( modulo_modulo_nat @ A @ B ) @ N2 ) @ B )
      = ( modulo_modulo_nat @ ( power_power_nat @ A @ N2 ) @ B ) ) ).

% power_mod
thf(fact_2902_power__mod,axiom,
    ! [A: int,B: int,N2: nat] :
      ( ( modulo_modulo_int @ ( power_power_int @ ( modulo_modulo_int @ A @ B ) @ N2 ) @ B )
      = ( modulo_modulo_int @ ( power_power_int @ A @ N2 ) @ B ) ) ).

% power_mod
thf(fact_2903_power__mod,axiom,
    ! [A: code_integer,B: code_integer,N2: nat] :
      ( ( modulo364778990260209775nteger @ ( power_8256067586552552935nteger @ ( modulo364778990260209775nteger @ A @ B ) @ N2 ) @ B )
      = ( modulo364778990260209775nteger @ ( power_8256067586552552935nteger @ A @ N2 ) @ B ) ) ).

% power_mod
thf(fact_2904_vebt__member_Osimps_I1_J,axiom,
    ! [A: $o,B: $o,X: nat] :
      ( ( vEBT_vebt_member @ ( vEBT_Leaf @ A @ B ) @ X )
      = ( ( ( X = zero_zero_nat )
         => A )
        & ( ( X != zero_zero_nat )
         => ( ( ( X = one_one_nat )
             => B )
            & ( X = one_one_nat ) ) ) ) ) ).

% vebt_member.simps(1)
thf(fact_2905_mod__Suc__eq,axiom,
    ! [M: nat,N2: nat] :
      ( ( modulo_modulo_nat @ ( suc @ ( modulo_modulo_nat @ M @ N2 ) ) @ N2 )
      = ( modulo_modulo_nat @ ( suc @ M ) @ N2 ) ) ).

% mod_Suc_eq
thf(fact_2906_mod__Suc__Suc__eq,axiom,
    ! [M: nat,N2: nat] :
      ( ( modulo_modulo_nat @ ( suc @ ( suc @ ( modulo_modulo_nat @ M @ N2 ) ) ) @ N2 )
      = ( modulo_modulo_nat @ ( suc @ ( suc @ M ) ) @ N2 ) ) ).

% mod_Suc_Suc_eq
thf(fact_2907_VEBT_Oexhaust,axiom,
    ! [Y: vEBT_VEBT] :
      ( ! [X112: option4927543243414619207at_nat,X122: nat,X132: list_VEBT_VEBT,X142: vEBT_VEBT] :
          ( Y
         != ( vEBT_Node @ X112 @ X122 @ X132 @ X142 ) )
     => ~ ! [X212: $o,X223: $o] :
            ( Y
           != ( vEBT_Leaf @ X212 @ X223 ) ) ) ).

% VEBT.exhaust
thf(fact_2908_VEBT_Odistinct_I1_J,axiom,
    ! [X11: option4927543243414619207at_nat,X12: nat,X13: list_VEBT_VEBT,X14: vEBT_VEBT,X21: $o,X222: $o] :
      ( ( vEBT_Node @ X11 @ X12 @ X13 @ X14 )
     != ( vEBT_Leaf @ X21 @ X222 ) ) ).

% VEBT.distinct(1)
thf(fact_2909_vebt__buildup_Osimps_I2_J,axiom,
    ( ( vEBT_vebt_buildup @ ( suc @ zero_zero_nat ) )
    = ( vEBT_Leaf @ $false @ $false ) ) ).

% vebt_buildup.simps(2)
thf(fact_2910_mod__less__eq__dividend,axiom,
    ! [M: nat,N2: nat] : ( ord_less_eq_nat @ ( modulo_modulo_nat @ M @ N2 ) @ M ) ).

% mod_less_eq_dividend
thf(fact_2911_vebt__insert_Osimps_I1_J,axiom,
    ! [X: nat,A: $o,B: $o] :
      ( ( ( X = zero_zero_nat )
       => ( ( vEBT_vebt_insert @ ( vEBT_Leaf @ A @ B ) @ X )
          = ( vEBT_Leaf @ $true @ B ) ) )
      & ( ( X != zero_zero_nat )
       => ( ( ( X = one_one_nat )
           => ( ( vEBT_vebt_insert @ ( vEBT_Leaf @ A @ B ) @ X )
              = ( vEBT_Leaf @ A @ $true ) ) )
          & ( ( X != one_one_nat )
           => ( ( vEBT_vebt_insert @ ( vEBT_Leaf @ A @ B ) @ X )
              = ( vEBT_Leaf @ A @ B ) ) ) ) ) ) ).

% vebt_insert.simps(1)
thf(fact_2912_vebt__pred_Osimps_I1_J,axiom,
    ! [Uu: $o,Uv: $o] :
      ( ( vEBT_vebt_pred @ ( vEBT_Leaf @ Uu @ Uv ) @ zero_zero_nat )
      = none_nat ) ).

% vebt_pred.simps(1)
thf(fact_2913_le__numeral__extra_I3_J,axiom,
    ord_less_eq_real @ zero_zero_real @ zero_zero_real ).

% le_numeral_extra(3)
thf(fact_2914_le__numeral__extra_I3_J,axiom,
    ord_less_eq_rat @ zero_zero_rat @ zero_zero_rat ).

% le_numeral_extra(3)
thf(fact_2915_le__numeral__extra_I3_J,axiom,
    ord_less_eq_nat @ zero_zero_nat @ zero_zero_nat ).

% le_numeral_extra(3)
thf(fact_2916_le__numeral__extra_I3_J,axiom,
    ord_less_eq_int @ zero_zero_int @ zero_zero_int ).

% le_numeral_extra(3)
thf(fact_2917_zero__le,axiom,
    ! [X: nat] : ( ord_less_eq_nat @ zero_zero_nat @ X ) ).

% zero_le
thf(fact_2918_less__numeral__extra_I3_J,axiom,
    ~ ( ord_less_real @ zero_zero_real @ zero_zero_real ) ).

% less_numeral_extra(3)
thf(fact_2919_less__numeral__extra_I3_J,axiom,
    ~ ( ord_less_rat @ zero_zero_rat @ zero_zero_rat ) ).

% less_numeral_extra(3)
thf(fact_2920_less__numeral__extra_I3_J,axiom,
    ~ ( ord_less_nat @ zero_zero_nat @ zero_zero_nat ) ).

% less_numeral_extra(3)
thf(fact_2921_less__numeral__extra_I3_J,axiom,
    ~ ( ord_less_int @ zero_zero_int @ zero_zero_int ) ).

% less_numeral_extra(3)
thf(fact_2922_field__lbound__gt__zero,axiom,
    ! [D1: real,D22: real] :
      ( ( ord_less_real @ zero_zero_real @ D1 )
     => ( ( ord_less_real @ zero_zero_real @ D22 )
       => ? [E2: real] :
            ( ( ord_less_real @ zero_zero_real @ E2 )
            & ( ord_less_real @ E2 @ D1 )
            & ( ord_less_real @ E2 @ D22 ) ) ) ) ).

% field_lbound_gt_zero
thf(fact_2923_field__lbound__gt__zero,axiom,
    ! [D1: rat,D22: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ D1 )
     => ( ( ord_less_rat @ zero_zero_rat @ D22 )
       => ? [E2: rat] :
            ( ( ord_less_rat @ zero_zero_rat @ E2 )
            & ( ord_less_rat @ E2 @ D1 )
            & ( ord_less_rat @ E2 @ D22 ) ) ) ) ).

% field_lbound_gt_zero
thf(fact_2924_gr__zeroI,axiom,
    ! [N2: nat] :
      ( ( N2 != zero_zero_nat )
     => ( ord_less_nat @ zero_zero_nat @ N2 ) ) ).

% gr_zeroI
thf(fact_2925_not__less__zero,axiom,
    ! [N2: nat] :
      ~ ( ord_less_nat @ N2 @ zero_zero_nat ) ).

% not_less_zero
thf(fact_2926_gr__implies__not__zero,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ M @ N2 )
     => ( N2 != zero_zero_nat ) ) ).

% gr_implies_not_zero
thf(fact_2927_zero__less__iff__neq__zero,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
      = ( N2 != zero_zero_nat ) ) ).

% zero_less_iff_neq_zero
thf(fact_2928_zero__neq__numeral,axiom,
    ! [N2: num] :
      ( zero_zero_complex
     != ( numera6690914467698888265omplex @ N2 ) ) ).

% zero_neq_numeral
thf(fact_2929_zero__neq__numeral,axiom,
    ! [N2: num] :
      ( zero_zero_real
     != ( numeral_numeral_real @ N2 ) ) ).

% zero_neq_numeral
thf(fact_2930_zero__neq__numeral,axiom,
    ! [N2: num] :
      ( zero_zero_rat
     != ( numeral_numeral_rat @ N2 ) ) ).

% zero_neq_numeral
thf(fact_2931_zero__neq__numeral,axiom,
    ! [N2: num] :
      ( zero_zero_nat
     != ( numeral_numeral_nat @ N2 ) ) ).

% zero_neq_numeral
thf(fact_2932_zero__neq__numeral,axiom,
    ! [N2: num] :
      ( zero_zero_int
     != ( numeral_numeral_int @ N2 ) ) ).

% zero_neq_numeral
thf(fact_2933_cong__exp__iff__simps_I9_J,axiom,
    ! [M: num,Q2: num,N2: num] :
      ( ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit0 @ M ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) )
        = ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit0 @ N2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) ) )
      = ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ Q2 ) )
        = ( modulo_modulo_nat @ ( numeral_numeral_nat @ N2 ) @ ( numeral_numeral_nat @ Q2 ) ) ) ) ).

% cong_exp_iff_simps(9)
thf(fact_2934_cong__exp__iff__simps_I9_J,axiom,
    ! [M: num,Q2: num,N2: num] :
      ( ( ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit0 @ M ) ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) )
        = ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit0 @ N2 ) ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) ) )
      = ( ( modulo_modulo_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ Q2 ) )
        = ( modulo_modulo_int @ ( numeral_numeral_int @ N2 ) @ ( numeral_numeral_int @ Q2 ) ) ) ) ).

% cong_exp_iff_simps(9)
thf(fact_2935_cong__exp__iff__simps_I9_J,axiom,
    ! [M: num,Q2: num,N2: num] :
      ( ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit0 @ M ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) )
        = ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit0 @ N2 ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) ) )
      = ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ M ) @ ( numera6620942414471956472nteger @ Q2 ) )
        = ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ N2 ) @ ( numera6620942414471956472nteger @ Q2 ) ) ) ) ).

% cong_exp_iff_simps(9)
thf(fact_2936_cong__exp__iff__simps_I4_J,axiom,
    ! [M: num,N2: num] :
      ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ one ) )
      = ( modulo_modulo_nat @ ( numeral_numeral_nat @ N2 ) @ ( numeral_numeral_nat @ one ) ) ) ).

% cong_exp_iff_simps(4)
thf(fact_2937_cong__exp__iff__simps_I4_J,axiom,
    ! [M: num,N2: num] :
      ( ( modulo_modulo_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ one ) )
      = ( modulo_modulo_int @ ( numeral_numeral_int @ N2 ) @ ( numeral_numeral_int @ one ) ) ) ).

% cong_exp_iff_simps(4)
thf(fact_2938_cong__exp__iff__simps_I4_J,axiom,
    ! [M: num,N2: num] :
      ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ M ) @ ( numera6620942414471956472nteger @ one ) )
      = ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ N2 ) @ ( numera6620942414471956472nteger @ one ) ) ) ).

% cong_exp_iff_simps(4)
thf(fact_2939_mult__right__cancel,axiom,
    ! [C: complex,A: complex,B: complex] :
      ( ( C != zero_zero_complex )
     => ( ( ( times_times_complex @ A @ C )
          = ( times_times_complex @ B @ C ) )
        = ( A = B ) ) ) ).

% mult_right_cancel
thf(fact_2940_mult__right__cancel,axiom,
    ! [C: real,A: real,B: real] :
      ( ( C != zero_zero_real )
     => ( ( ( times_times_real @ A @ C )
          = ( times_times_real @ B @ C ) )
        = ( A = B ) ) ) ).

% mult_right_cancel
thf(fact_2941_mult__right__cancel,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( C != zero_zero_rat )
     => ( ( ( times_times_rat @ A @ C )
          = ( times_times_rat @ B @ C ) )
        = ( A = B ) ) ) ).

% mult_right_cancel
thf(fact_2942_mult__right__cancel,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( C != zero_zero_nat )
     => ( ( ( times_times_nat @ A @ C )
          = ( times_times_nat @ B @ C ) )
        = ( A = B ) ) ) ).

% mult_right_cancel
thf(fact_2943_mult__right__cancel,axiom,
    ! [C: int,A: int,B: int] :
      ( ( C != zero_zero_int )
     => ( ( ( times_times_int @ A @ C )
          = ( times_times_int @ B @ C ) )
        = ( A = B ) ) ) ).

% mult_right_cancel
thf(fact_2944_mult__left__cancel,axiom,
    ! [C: complex,A: complex,B: complex] :
      ( ( C != zero_zero_complex )
     => ( ( ( times_times_complex @ C @ A )
          = ( times_times_complex @ C @ B ) )
        = ( A = B ) ) ) ).

% mult_left_cancel
thf(fact_2945_mult__left__cancel,axiom,
    ! [C: real,A: real,B: real] :
      ( ( C != zero_zero_real )
     => ( ( ( times_times_real @ C @ A )
          = ( times_times_real @ C @ B ) )
        = ( A = B ) ) ) ).

% mult_left_cancel
thf(fact_2946_mult__left__cancel,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( C != zero_zero_rat )
     => ( ( ( times_times_rat @ C @ A )
          = ( times_times_rat @ C @ B ) )
        = ( A = B ) ) ) ).

% mult_left_cancel
thf(fact_2947_mult__left__cancel,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( C != zero_zero_nat )
     => ( ( ( times_times_nat @ C @ A )
          = ( times_times_nat @ C @ B ) )
        = ( A = B ) ) ) ).

% mult_left_cancel
thf(fact_2948_mult__left__cancel,axiom,
    ! [C: int,A: int,B: int] :
      ( ( C != zero_zero_int )
     => ( ( ( times_times_int @ C @ A )
          = ( times_times_int @ C @ B ) )
        = ( A = B ) ) ) ).

% mult_left_cancel
thf(fact_2949_no__zero__divisors,axiom,
    ! [A: complex,B: complex] :
      ( ( A != zero_zero_complex )
     => ( ( B != zero_zero_complex )
       => ( ( times_times_complex @ A @ B )
         != zero_zero_complex ) ) ) ).

% no_zero_divisors
thf(fact_2950_no__zero__divisors,axiom,
    ! [A: real,B: real] :
      ( ( A != zero_zero_real )
     => ( ( B != zero_zero_real )
       => ( ( times_times_real @ A @ B )
         != zero_zero_real ) ) ) ).

% no_zero_divisors
thf(fact_2951_no__zero__divisors,axiom,
    ! [A: rat,B: rat] :
      ( ( A != zero_zero_rat )
     => ( ( B != zero_zero_rat )
       => ( ( times_times_rat @ A @ B )
         != zero_zero_rat ) ) ) ).

% no_zero_divisors
thf(fact_2952_no__zero__divisors,axiom,
    ! [A: nat,B: nat] :
      ( ( A != zero_zero_nat )
     => ( ( B != zero_zero_nat )
       => ( ( times_times_nat @ A @ B )
         != zero_zero_nat ) ) ) ).

% no_zero_divisors
thf(fact_2953_no__zero__divisors,axiom,
    ! [A: int,B: int] :
      ( ( A != zero_zero_int )
     => ( ( B != zero_zero_int )
       => ( ( times_times_int @ A @ B )
         != zero_zero_int ) ) ) ).

% no_zero_divisors
thf(fact_2954_divisors__zero,axiom,
    ! [A: complex,B: complex] :
      ( ( ( times_times_complex @ A @ B )
        = zero_zero_complex )
     => ( ( A = zero_zero_complex )
        | ( B = zero_zero_complex ) ) ) ).

% divisors_zero
thf(fact_2955_divisors__zero,axiom,
    ! [A: real,B: real] :
      ( ( ( times_times_real @ A @ B )
        = zero_zero_real )
     => ( ( A = zero_zero_real )
        | ( B = zero_zero_real ) ) ) ).

% divisors_zero
thf(fact_2956_divisors__zero,axiom,
    ! [A: rat,B: rat] :
      ( ( ( times_times_rat @ A @ B )
        = zero_zero_rat )
     => ( ( A = zero_zero_rat )
        | ( B = zero_zero_rat ) ) ) ).

% divisors_zero
thf(fact_2957_divisors__zero,axiom,
    ! [A: nat,B: nat] :
      ( ( ( times_times_nat @ A @ B )
        = zero_zero_nat )
     => ( ( A = zero_zero_nat )
        | ( B = zero_zero_nat ) ) ) ).

% divisors_zero
thf(fact_2958_divisors__zero,axiom,
    ! [A: int,B: int] :
      ( ( ( times_times_int @ A @ B )
        = zero_zero_int )
     => ( ( A = zero_zero_int )
        | ( B = zero_zero_int ) ) ) ).

% divisors_zero
thf(fact_2959_mult__not__zero,axiom,
    ! [A: complex,B: complex] :
      ( ( ( times_times_complex @ A @ B )
       != zero_zero_complex )
     => ( ( A != zero_zero_complex )
        & ( B != zero_zero_complex ) ) ) ).

% mult_not_zero
thf(fact_2960_mult__not__zero,axiom,
    ! [A: real,B: real] :
      ( ( ( times_times_real @ A @ B )
       != zero_zero_real )
     => ( ( A != zero_zero_real )
        & ( B != zero_zero_real ) ) ) ).

% mult_not_zero
thf(fact_2961_mult__not__zero,axiom,
    ! [A: rat,B: rat] :
      ( ( ( times_times_rat @ A @ B )
       != zero_zero_rat )
     => ( ( A != zero_zero_rat )
        & ( B != zero_zero_rat ) ) ) ).

% mult_not_zero
thf(fact_2962_mult__not__zero,axiom,
    ! [A: nat,B: nat] :
      ( ( ( times_times_nat @ A @ B )
       != zero_zero_nat )
     => ( ( A != zero_zero_nat )
        & ( B != zero_zero_nat ) ) ) ).

% mult_not_zero
thf(fact_2963_mult__not__zero,axiom,
    ! [A: int,B: int] :
      ( ( ( times_times_int @ A @ B )
       != zero_zero_int )
     => ( ( A != zero_zero_int )
        & ( B != zero_zero_int ) ) ) ).

% mult_not_zero
thf(fact_2964_add_Ogroup__left__neutral,axiom,
    ! [A: complex] :
      ( ( plus_plus_complex @ zero_zero_complex @ A )
      = A ) ).

% add.group_left_neutral
thf(fact_2965_add_Ogroup__left__neutral,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ zero_zero_real @ A )
      = A ) ).

% add.group_left_neutral
thf(fact_2966_add_Ogroup__left__neutral,axiom,
    ! [A: rat] :
      ( ( plus_plus_rat @ zero_zero_rat @ A )
      = A ) ).

% add.group_left_neutral
thf(fact_2967_add_Ogroup__left__neutral,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ zero_zero_int @ A )
      = A ) ).

% add.group_left_neutral
thf(fact_2968_add_Ocomm__neutral,axiom,
    ! [A: complex] :
      ( ( plus_plus_complex @ A @ zero_zero_complex )
      = A ) ).

% add.comm_neutral
thf(fact_2969_add_Ocomm__neutral,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ A @ zero_zero_real )
      = A ) ).

% add.comm_neutral
thf(fact_2970_add_Ocomm__neutral,axiom,
    ! [A: rat] :
      ( ( plus_plus_rat @ A @ zero_zero_rat )
      = A ) ).

% add.comm_neutral
thf(fact_2971_add_Ocomm__neutral,axiom,
    ! [A: nat] :
      ( ( plus_plus_nat @ A @ zero_zero_nat )
      = A ) ).

% add.comm_neutral
thf(fact_2972_add_Ocomm__neutral,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ A @ zero_zero_int )
      = A ) ).

% add.comm_neutral
thf(fact_2973_comm__monoid__add__class_Oadd__0,axiom,
    ! [A: complex] :
      ( ( plus_plus_complex @ zero_zero_complex @ A )
      = A ) ).

% comm_monoid_add_class.add_0
thf(fact_2974_comm__monoid__add__class_Oadd__0,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ zero_zero_real @ A )
      = A ) ).

% comm_monoid_add_class.add_0
thf(fact_2975_comm__monoid__add__class_Oadd__0,axiom,
    ! [A: rat] :
      ( ( plus_plus_rat @ zero_zero_rat @ A )
      = A ) ).

% comm_monoid_add_class.add_0
thf(fact_2976_comm__monoid__add__class_Oadd__0,axiom,
    ! [A: nat] :
      ( ( plus_plus_nat @ zero_zero_nat @ A )
      = A ) ).

% comm_monoid_add_class.add_0
thf(fact_2977_comm__monoid__add__class_Oadd__0,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ zero_zero_int @ A )
      = A ) ).

% comm_monoid_add_class.add_0
thf(fact_2978_zero__neq__one,axiom,
    zero_zero_complex != one_one_complex ).

% zero_neq_one
thf(fact_2979_zero__neq__one,axiom,
    zero_zero_real != one_one_real ).

% zero_neq_one
thf(fact_2980_zero__neq__one,axiom,
    zero_zero_rat != one_one_rat ).

% zero_neq_one
thf(fact_2981_zero__neq__one,axiom,
    zero_zero_nat != one_one_nat ).

% zero_neq_one
thf(fact_2982_zero__neq__one,axiom,
    zero_zero_int != one_one_int ).

% zero_neq_one
thf(fact_2983_VEBT__internal_Omembermima_Osimps_I2_J,axiom,
    ! [Ux: list_VEBT_VEBT,Uy: vEBT_VEBT,Uz: nat] :
      ~ ( vEBT_VEBT_membermima @ ( vEBT_Node @ none_P5556105721700978146at_nat @ zero_zero_nat @ Ux @ Uy ) @ Uz ) ).

% VEBT_internal.membermima.simps(2)
thf(fact_2984_eq__iff__diff__eq__0,axiom,
    ( ( ^ [Y4: complex,Z3: complex] : ( Y4 = Z3 ) )
    = ( ^ [A4: complex,B4: complex] :
          ( ( minus_minus_complex @ A4 @ B4 )
          = zero_zero_complex ) ) ) ).

% eq_iff_diff_eq_0
thf(fact_2985_eq__iff__diff__eq__0,axiom,
    ( ( ^ [Y4: real,Z3: real] : ( Y4 = Z3 ) )
    = ( ^ [A4: real,B4: real] :
          ( ( minus_minus_real @ A4 @ B4 )
          = zero_zero_real ) ) ) ).

% eq_iff_diff_eq_0
thf(fact_2986_eq__iff__diff__eq__0,axiom,
    ( ( ^ [Y4: rat,Z3: rat] : ( Y4 = Z3 ) )
    = ( ^ [A4: rat,B4: rat] :
          ( ( minus_minus_rat @ A4 @ B4 )
          = zero_zero_rat ) ) ) ).

% eq_iff_diff_eq_0
thf(fact_2987_eq__iff__diff__eq__0,axiom,
    ( ( ^ [Y4: int,Z3: int] : ( Y4 = Z3 ) )
    = ( ^ [A4: int,B4: int] :
          ( ( minus_minus_int @ A4 @ B4 )
          = zero_zero_int ) ) ) ).

% eq_iff_diff_eq_0
thf(fact_2988_power__not__zero,axiom,
    ! [A: rat,N2: nat] :
      ( ( A != zero_zero_rat )
     => ( ( power_power_rat @ A @ N2 )
       != zero_zero_rat ) ) ).

% power_not_zero
thf(fact_2989_power__not__zero,axiom,
    ! [A: nat,N2: nat] :
      ( ( A != zero_zero_nat )
     => ( ( power_power_nat @ A @ N2 )
       != zero_zero_nat ) ) ).

% power_not_zero
thf(fact_2990_power__not__zero,axiom,
    ! [A: real,N2: nat] :
      ( ( A != zero_zero_real )
     => ( ( power_power_real @ A @ N2 )
       != zero_zero_real ) ) ).

% power_not_zero
thf(fact_2991_power__not__zero,axiom,
    ! [A: int,N2: nat] :
      ( ( A != zero_zero_int )
     => ( ( power_power_int @ A @ N2 )
       != zero_zero_int ) ) ).

% power_not_zero
thf(fact_2992_power__not__zero,axiom,
    ! [A: complex,N2: nat] :
      ( ( A != zero_zero_complex )
     => ( ( power_power_complex @ A @ N2 )
       != zero_zero_complex ) ) ).

% power_not_zero
thf(fact_2993_num_Osize_I4_J,axiom,
    ( ( size_size_num @ one )
    = zero_zero_nat ) ).

% num.size(4)
thf(fact_2994_VEBT__internal_OminNull_Osimps_I3_J,axiom,
    ! [Uu: $o] :
      ~ ( vEBT_VEBT_minNull @ ( vEBT_Leaf @ Uu @ $true ) ) ).

% VEBT_internal.minNull.simps(3)
thf(fact_2995_VEBT__internal_OminNull_Osimps_I2_J,axiom,
    ! [Uv: $o] :
      ~ ( vEBT_VEBT_minNull @ ( vEBT_Leaf @ $true @ Uv ) ) ).

% VEBT_internal.minNull.simps(2)
thf(fact_2996_VEBT__internal_OminNull_Osimps_I1_J,axiom,
    vEBT_VEBT_minNull @ ( vEBT_Leaf @ $false @ $false ) ).

% VEBT_internal.minNull.simps(1)
thf(fact_2997_vebt__buildup_Ocases,axiom,
    ! [X: nat] :
      ( ( X != zero_zero_nat )
     => ( ( X
         != ( suc @ zero_zero_nat ) )
       => ~ ! [Va2: nat] :
              ( X
             != ( suc @ ( suc @ Va2 ) ) ) ) ) ).

% vebt_buildup.cases
thf(fact_2998_nat_Odistinct_I1_J,axiom,
    ! [X22: nat] :
      ( zero_zero_nat
     != ( suc @ X22 ) ) ).

% nat.distinct(1)
thf(fact_2999_old_Onat_Odistinct_I2_J,axiom,
    ! [Nat2: nat] :
      ( ( suc @ Nat2 )
     != zero_zero_nat ) ).

% old.nat.distinct(2)
thf(fact_3000_old_Onat_Odistinct_I1_J,axiom,
    ! [Nat2: nat] :
      ( zero_zero_nat
     != ( suc @ Nat2 ) ) ).

% old.nat.distinct(1)
thf(fact_3001_nat_OdiscI,axiom,
    ! [Nat: nat,X22: nat] :
      ( ( Nat
        = ( suc @ X22 ) )
     => ( Nat != zero_zero_nat ) ) ).

% nat.discI
thf(fact_3002_old_Onat_Oexhaust,axiom,
    ! [Y: nat] :
      ( ( Y != zero_zero_nat )
     => ~ ! [Nat3: nat] :
            ( Y
           != ( suc @ Nat3 ) ) ) ).

% old.nat.exhaust
thf(fact_3003_nat__induct,axiom,
    ! [P: nat > $o,N2: nat] :
      ( ( P @ zero_zero_nat )
     => ( ! [N: nat] :
            ( ( P @ N )
           => ( P @ ( suc @ N ) ) )
       => ( P @ N2 ) ) ) ).

% nat_induct
thf(fact_3004_diff__induct,axiom,
    ! [P: nat > nat > $o,M: nat,N2: nat] :
      ( ! [X5: nat] : ( P @ X5 @ zero_zero_nat )
     => ( ! [Y5: nat] : ( P @ zero_zero_nat @ ( suc @ Y5 ) )
       => ( ! [X5: nat,Y5: nat] :
              ( ( P @ X5 @ Y5 )
             => ( P @ ( suc @ X5 ) @ ( suc @ Y5 ) ) )
         => ( P @ M @ N2 ) ) ) ) ).

% diff_induct
thf(fact_3005_zero__induct,axiom,
    ! [P: nat > $o,K: nat] :
      ( ( P @ K )
     => ( ! [N: nat] :
            ( ( P @ ( suc @ N ) )
           => ( P @ N ) )
       => ( P @ zero_zero_nat ) ) ) ).

% zero_induct
thf(fact_3006_Suc__neq__Zero,axiom,
    ! [M: nat] :
      ( ( suc @ M )
     != zero_zero_nat ) ).

% Suc_neq_Zero
thf(fact_3007_Zero__neq__Suc,axiom,
    ! [M: nat] :
      ( zero_zero_nat
     != ( suc @ M ) ) ).

% Zero_neq_Suc
thf(fact_3008_Zero__not__Suc,axiom,
    ! [M: nat] :
      ( zero_zero_nat
     != ( suc @ M ) ) ).

% Zero_not_Suc
thf(fact_3009_not0__implies__Suc,axiom,
    ! [N2: nat] :
      ( ( N2 != zero_zero_nat )
     => ? [M2: nat] :
          ( N2
          = ( suc @ M2 ) ) ) ).

% not0_implies_Suc
thf(fact_3010_bot__nat__0_Oextremum__strict,axiom,
    ! [A: nat] :
      ~ ( ord_less_nat @ A @ zero_zero_nat ) ).

% bot_nat_0.extremum_strict
thf(fact_3011_gr0I,axiom,
    ! [N2: nat] :
      ( ( N2 != zero_zero_nat )
     => ( ord_less_nat @ zero_zero_nat @ N2 ) ) ).

% gr0I
thf(fact_3012_not__gr0,axiom,
    ! [N2: nat] :
      ( ( ~ ( ord_less_nat @ zero_zero_nat @ N2 ) )
      = ( N2 = zero_zero_nat ) ) ).

% not_gr0
thf(fact_3013_not__less0,axiom,
    ! [N2: nat] :
      ~ ( ord_less_nat @ N2 @ zero_zero_nat ) ).

% not_less0
thf(fact_3014_less__zeroE,axiom,
    ! [N2: nat] :
      ~ ( ord_less_nat @ N2 @ zero_zero_nat ) ).

% less_zeroE
thf(fact_3015_gr__implies__not0,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ M @ N2 )
     => ( N2 != zero_zero_nat ) ) ).

% gr_implies_not0
thf(fact_3016_infinite__descent0,axiom,
    ! [P: nat > $o,N2: nat] :
      ( ( P @ zero_zero_nat )
     => ( ! [N: nat] :
            ( ( ord_less_nat @ zero_zero_nat @ N )
           => ( ~ ( P @ N )
             => ? [M3: nat] :
                  ( ( ord_less_nat @ M3 @ N )
                  & ~ ( P @ M3 ) ) ) )
       => ( P @ N2 ) ) ) ).

% infinite_descent0
thf(fact_3017_add__eq__self__zero,axiom,
    ! [M: nat,N2: nat] :
      ( ( ( plus_plus_nat @ M @ N2 )
        = M )
     => ( N2 = zero_zero_nat ) ) ).

% add_eq_self_zero
thf(fact_3018_plus__nat_Oadd__0,axiom,
    ! [N2: nat] :
      ( ( plus_plus_nat @ zero_zero_nat @ N2 )
      = N2 ) ).

% plus_nat.add_0
thf(fact_3019_less__eq__nat_Osimps_I1_J,axiom,
    ! [N2: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N2 ) ).

% less_eq_nat.simps(1)
thf(fact_3020_bot__nat__0_Oextremum__unique,axiom,
    ! [A: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
      = ( A = zero_zero_nat ) ) ).

% bot_nat_0.extremum_unique
thf(fact_3021_bot__nat__0_Oextremum__uniqueI,axiom,
    ! [A: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
     => ( A = zero_zero_nat ) ) ).

% bot_nat_0.extremum_uniqueI
thf(fact_3022_le__0__eq,axiom,
    ! [N2: nat] :
      ( ( ord_less_eq_nat @ N2 @ zero_zero_nat )
      = ( N2 = zero_zero_nat ) ) ).

% le_0_eq
thf(fact_3023_nat__mult__eq__cancel__disj,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( ( times_times_nat @ K @ M )
        = ( times_times_nat @ K @ N2 ) )
      = ( ( K = zero_zero_nat )
        | ( M = N2 ) ) ) ).

% nat_mult_eq_cancel_disj
thf(fact_3024_mult__0,axiom,
    ! [N2: nat] :
      ( ( times_times_nat @ zero_zero_nat @ N2 )
      = zero_zero_nat ) ).

% mult_0
thf(fact_3025_minus__nat_Odiff__0,axiom,
    ! [M: nat] :
      ( ( minus_minus_nat @ M @ zero_zero_nat )
      = M ) ).

% minus_nat.diff_0
thf(fact_3026_diffs0__imp__equal,axiom,
    ! [M: nat,N2: nat] :
      ( ( ( minus_minus_nat @ M @ N2 )
        = zero_zero_nat )
     => ( ( ( minus_minus_nat @ N2 @ M )
          = zero_zero_nat )
       => ( M = N2 ) ) ) ).

% diffs0_imp_equal
thf(fact_3027_nat__mod__eq__iff,axiom,
    ! [X: nat,N2: nat,Y: nat] :
      ( ( ( modulo_modulo_nat @ X @ N2 )
        = ( modulo_modulo_nat @ Y @ N2 ) )
      = ( ? [Q1: nat,Q22: nat] :
            ( ( plus_plus_nat @ X @ ( times_times_nat @ N2 @ Q1 ) )
            = ( plus_plus_nat @ Y @ ( times_times_nat @ N2 @ Q22 ) ) ) ) ) ).

% nat_mod_eq_iff
thf(fact_3028_mod__geq,axiom,
    ! [M: nat,N2: nat] :
      ( ~ ( ord_less_nat @ M @ N2 )
     => ( ( modulo_modulo_nat @ M @ N2 )
        = ( modulo_modulo_nat @ ( minus_minus_nat @ M @ N2 ) @ N2 ) ) ) ).

% mod_geq
thf(fact_3029_unique__euclidean__semiring__numeral__class_Omod__mult2__eq,axiom,
    ! [C: code_integer,A: code_integer,B: code_integer] :
      ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ C )
     => ( ( modulo364778990260209775nteger @ A @ ( times_3573771949741848930nteger @ B @ C ) )
        = ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ B @ ( modulo364778990260209775nteger @ ( divide6298287555418463151nteger @ A @ B ) @ C ) ) @ ( modulo364778990260209775nteger @ A @ B ) ) ) ) ).

% unique_euclidean_semiring_numeral_class.mod_mult2_eq
thf(fact_3030_unique__euclidean__semiring__numeral__class_Omod__mult2__eq,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ C )
     => ( ( modulo_modulo_nat @ A @ ( times_times_nat @ B @ C ) )
        = ( plus_plus_nat @ ( times_times_nat @ B @ ( modulo_modulo_nat @ ( divide_divide_nat @ A @ B ) @ C ) ) @ ( modulo_modulo_nat @ A @ B ) ) ) ) ).

% unique_euclidean_semiring_numeral_class.mod_mult2_eq
thf(fact_3031_unique__euclidean__semiring__numeral__class_Omod__mult2__eq,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ C )
     => ( ( modulo_modulo_int @ A @ ( times_times_int @ B @ C ) )
        = ( plus_plus_int @ ( times_times_int @ B @ ( modulo_modulo_int @ ( divide_divide_int @ A @ B ) @ C ) ) @ ( modulo_modulo_int @ A @ B ) ) ) ) ).

% unique_euclidean_semiring_numeral_class.mod_mult2_eq
thf(fact_3032_split__mod,axiom,
    ! [P: nat > $o,M: nat,N2: nat] :
      ( ( P @ ( modulo_modulo_nat @ M @ N2 ) )
      = ( ( ( N2 = zero_zero_nat )
         => ( P @ M ) )
        & ( ( N2 != zero_zero_nat )
         => ! [I5: nat,J3: nat] :
              ( ( ord_less_nat @ J3 @ N2 )
             => ( ( M
                  = ( plus_plus_nat @ ( times_times_nat @ N2 @ I5 ) @ J3 ) )
               => ( P @ J3 ) ) ) ) ) ) ).

% split_mod
thf(fact_3033_power__eq__iff__eq__base,axiom,
    ! [N2: nat,A: real,B: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( ord_less_eq_real @ zero_zero_real @ A )
       => ( ( ord_less_eq_real @ zero_zero_real @ B )
         => ( ( ( power_power_real @ A @ N2 )
              = ( power_power_real @ B @ N2 ) )
            = ( A = B ) ) ) ) ) ).

% power_eq_iff_eq_base
thf(fact_3034_power__eq__iff__eq__base,axiom,
    ! [N2: nat,A: rat,B: rat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ A )
       => ( ( ord_less_eq_rat @ zero_zero_rat @ B )
         => ( ( ( power_power_rat @ A @ N2 )
              = ( power_power_rat @ B @ N2 ) )
            = ( A = B ) ) ) ) ) ).

% power_eq_iff_eq_base
thf(fact_3035_power__eq__iff__eq__base,axiom,
    ! [N2: nat,A: nat,B: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ A )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
         => ( ( ( power_power_nat @ A @ N2 )
              = ( power_power_nat @ B @ N2 ) )
            = ( A = B ) ) ) ) ) ).

% power_eq_iff_eq_base
thf(fact_3036_power__eq__iff__eq__base,axiom,
    ! [N2: nat,A: int,B: int] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( ord_less_eq_int @ zero_zero_int @ A )
       => ( ( ord_less_eq_int @ zero_zero_int @ B )
         => ( ( ( power_power_int @ A @ N2 )
              = ( power_power_int @ B @ N2 ) )
            = ( A = B ) ) ) ) ) ).

% power_eq_iff_eq_base
thf(fact_3037_power__eq__imp__eq__base,axiom,
    ! [A: real,N2: nat,B: real] :
      ( ( ( power_power_real @ A @ N2 )
        = ( power_power_real @ B @ N2 ) )
     => ( ( ord_less_eq_real @ zero_zero_real @ A )
       => ( ( ord_less_eq_real @ zero_zero_real @ B )
         => ( ( ord_less_nat @ zero_zero_nat @ N2 )
           => ( A = B ) ) ) ) ) ).

% power_eq_imp_eq_base
thf(fact_3038_power__eq__imp__eq__base,axiom,
    ! [A: rat,N2: nat,B: rat] :
      ( ( ( power_power_rat @ A @ N2 )
        = ( power_power_rat @ B @ N2 ) )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ A )
       => ( ( ord_less_eq_rat @ zero_zero_rat @ B )
         => ( ( ord_less_nat @ zero_zero_nat @ N2 )
           => ( A = B ) ) ) ) ) ).

% power_eq_imp_eq_base
thf(fact_3039_power__eq__imp__eq__base,axiom,
    ! [A: nat,N2: nat,B: nat] :
      ( ( ( power_power_nat @ A @ N2 )
        = ( power_power_nat @ B @ N2 ) )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ A )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
         => ( ( ord_less_nat @ zero_zero_nat @ N2 )
           => ( A = B ) ) ) ) ) ).

% power_eq_imp_eq_base
thf(fact_3040_power__eq__imp__eq__base,axiom,
    ! [A: int,N2: nat,B: int] :
      ( ( ( power_power_int @ A @ N2 )
        = ( power_power_int @ B @ N2 ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ A )
       => ( ( ord_less_eq_int @ zero_zero_int @ B )
         => ( ( ord_less_nat @ zero_zero_nat @ N2 )
           => ( A = B ) ) ) ) ) ).

% power_eq_imp_eq_base
thf(fact_3041_lambda__zero,axiom,
    ( ( ^ [H: complex] : zero_zero_complex )
    = ( times_times_complex @ zero_zero_complex ) ) ).

% lambda_zero
thf(fact_3042_lambda__zero,axiom,
    ( ( ^ [H: real] : zero_zero_real )
    = ( times_times_real @ zero_zero_real ) ) ).

% lambda_zero
thf(fact_3043_lambda__zero,axiom,
    ( ( ^ [H: rat] : zero_zero_rat )
    = ( times_times_rat @ zero_zero_rat ) ) ).

% lambda_zero
thf(fact_3044_lambda__zero,axiom,
    ( ( ^ [H: nat] : zero_zero_nat )
    = ( times_times_nat @ zero_zero_nat ) ) ).

% lambda_zero
thf(fact_3045_lambda__zero,axiom,
    ( ( ^ [H: int] : zero_zero_int )
    = ( times_times_int @ zero_zero_int ) ) ).

% lambda_zero
thf(fact_3046_vebt__insert_Ocases,axiom,
    ! [X: produc9072475918466114483BT_nat] :
      ( ! [A3: $o,B2: $o,X5: nat] :
          ( X
         != ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A3 @ B2 ) @ X5 ) )
     => ( ! [Info2: option4927543243414619207at_nat,Ts: list_VEBT_VEBT,S: vEBT_VEBT,X5: nat] :
            ( X
           != ( produc738532404422230701BT_nat @ ( vEBT_Node @ Info2 @ zero_zero_nat @ Ts @ S ) @ X5 ) )
       => ( ! [Info2: option4927543243414619207at_nat,Ts: list_VEBT_VEBT,S: vEBT_VEBT,X5: nat] :
              ( X
             != ( produc738532404422230701BT_nat @ ( vEBT_Node @ Info2 @ ( suc @ zero_zero_nat ) @ Ts @ S ) @ X5 ) )
         => ( ! [V2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT,X5: nat] :
                ( X
               != ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ V2 ) ) @ TreeList2 @ Summary2 ) @ X5 ) )
           => ~ ! [Mi2: nat,Ma2: nat,Va2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT,X5: nat] :
                  ( X
                 != ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary2 ) @ X5 ) ) ) ) ) ) ).

% vebt_insert.cases
thf(fact_3047_vebt__delete_Ocases,axiom,
    ! [X: produc9072475918466114483BT_nat] :
      ( ! [A3: $o,B2: $o] :
          ( X
         != ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A3 @ B2 ) @ zero_zero_nat ) )
     => ( ! [A3: $o,B2: $o] :
            ( X
           != ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A3 @ B2 ) @ ( suc @ zero_zero_nat ) ) )
       => ( ! [A3: $o,B2: $o,N: nat] :
              ( X
             != ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A3 @ B2 ) @ ( suc @ ( suc @ N ) ) ) )
         => ( ! [Deg2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT,Uu2: nat] :
                ( X
               != ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Deg2 @ TreeList2 @ Summary2 ) @ Uu2 ) )
           => ( ! [Mi2: nat,Ma2: nat,TrLst: list_VEBT_VEBT,Smry: vEBT_VEBT,X5: nat] :
                  ( X
                 != ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ TrLst @ Smry ) @ X5 ) )
             => ( ! [Mi2: nat,Ma2: nat,Tr: list_VEBT_VEBT,Sm: vEBT_VEBT,X5: nat] :
                    ( X
                   != ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ zero_zero_nat ) @ Tr @ Sm ) @ X5 ) )
               => ~ ! [Mi2: nat,Ma2: nat,Va2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT,X5: nat] :
                      ( X
                     != ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary2 ) @ X5 ) ) ) ) ) ) ) ) ).

% vebt_delete.cases
thf(fact_3048_VEBT__internal_Omembermima_Ocases,axiom,
    ! [X: produc9072475918466114483BT_nat] :
      ( ! [Uu2: $o,Uv2: $o,Uw2: nat] :
          ( X
         != ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uu2 @ Uv2 ) @ Uw2 ) )
     => ( ! [Ux2: list_VEBT_VEBT,Uy2: vEBT_VEBT,Uz2: nat] :
            ( X
           != ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ zero_zero_nat @ Ux2 @ Uy2 ) @ Uz2 ) )
       => ( ! [Mi2: nat,Ma2: nat,Va3: list_VEBT_VEBT,Vb2: vEBT_VEBT,X5: nat] :
              ( X
             != ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ Va3 @ Vb2 ) @ X5 ) )
         => ( ! [Mi2: nat,Ma2: nat,V2: nat,TreeList2: list_VEBT_VEBT,Vc2: vEBT_VEBT,X5: nat] :
                ( X
               != ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ V2 ) @ TreeList2 @ Vc2 ) @ X5 ) )
           => ~ ! [V2: nat,TreeList2: list_VEBT_VEBT,Vd2: vEBT_VEBT,X5: nat] :
                  ( X
                 != ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V2 ) @ TreeList2 @ Vd2 ) @ X5 ) ) ) ) ) ) ).

% VEBT_internal.membermima.cases
thf(fact_3049_vebt__member_Ocases,axiom,
    ! [X: produc9072475918466114483BT_nat] :
      ( ! [A3: $o,B2: $o,X5: nat] :
          ( X
         != ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A3 @ B2 ) @ X5 ) )
     => ( ! [Uu2: nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT,X5: nat] :
            ( X
           != ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu2 @ Uv2 @ Uw2 ) @ X5 ) )
       => ( ! [V2: product_prod_nat_nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT,X5: nat] :
              ( X
             != ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ zero_zero_nat @ Uy2 @ Uz2 ) @ X5 ) )
         => ( ! [V2: product_prod_nat_nat,Vb2: list_VEBT_VEBT,Vc2: vEBT_VEBT,X5: nat] :
                ( X
               != ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ ( suc @ zero_zero_nat ) @ Vb2 @ Vc2 ) @ X5 ) )
           => ~ ! [Mi2: nat,Ma2: nat,Va2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT,X5: nat] :
                  ( X
                 != ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary2 ) @ X5 ) ) ) ) ) ) ).

% vebt_member.cases
thf(fact_3050_vebt__succ_Ocases,axiom,
    ! [X: produc9072475918466114483BT_nat] :
      ( ! [Uu2: $o,B2: $o] :
          ( X
         != ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uu2 @ B2 ) @ zero_zero_nat ) )
     => ( ! [Uv2: $o,Uw2: $o,N: nat] :
            ( X
           != ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uv2 @ Uw2 ) @ ( suc @ N ) ) )
       => ( ! [Ux2: nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT,Va3: nat] :
              ( X
             != ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Ux2 @ Uy2 @ Uz2 ) @ Va3 ) )
         => ( ! [V2: product_prod_nat_nat,Vc2: list_VEBT_VEBT,Vd2: vEBT_VEBT,Ve: nat] :
                ( X
               != ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ zero_zero_nat @ Vc2 @ Vd2 ) @ Ve ) )
           => ( ! [V2: product_prod_nat_nat,Vg: list_VEBT_VEBT,Vh: vEBT_VEBT,Vi: nat] :
                  ( X
                 != ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ ( suc @ zero_zero_nat ) @ Vg @ Vh ) @ Vi ) )
             => ~ ! [Mi2: nat,Ma2: nat,Va2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT,X5: nat] :
                    ( X
                   != ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary2 ) @ X5 ) ) ) ) ) ) ) ).

% vebt_succ.cases
thf(fact_3051_vebt__pred_Ocases,axiom,
    ! [X: produc9072475918466114483BT_nat] :
      ( ! [Uu2: $o,Uv2: $o] :
          ( X
         != ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uu2 @ Uv2 ) @ zero_zero_nat ) )
     => ( ! [A3: $o,Uw2: $o] :
            ( X
           != ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A3 @ Uw2 ) @ ( suc @ zero_zero_nat ) ) )
       => ( ! [A3: $o,B2: $o,Va2: nat] :
              ( X
             != ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A3 @ B2 ) @ ( suc @ ( suc @ Va2 ) ) ) )
         => ( ! [Uy2: nat,Uz2: list_VEBT_VEBT,Va3: vEBT_VEBT,Vb2: nat] :
                ( X
               != ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Uy2 @ Uz2 @ Va3 ) @ Vb2 ) )
           => ( ! [V2: product_prod_nat_nat,Vd2: list_VEBT_VEBT,Ve: vEBT_VEBT,Vf: nat] :
                  ( X
                 != ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ zero_zero_nat @ Vd2 @ Ve ) @ Vf ) )
             => ( ! [V2: product_prod_nat_nat,Vh: list_VEBT_VEBT,Vi: vEBT_VEBT,Vj: nat] :
                    ( X
                   != ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ ( suc @ zero_zero_nat ) @ Vh @ Vi ) @ Vj ) )
               => ~ ! [Mi2: nat,Ma2: nat,Va2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT,X5: nat] :
                      ( X
                     != ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary2 ) @ X5 ) ) ) ) ) ) ) ) ).

% vebt_pred.cases
thf(fact_3052_VEBT__internal_Omembermima_Osimps_I3_J,axiom,
    ! [Mi: nat,Ma: nat,Va: list_VEBT_VEBT,Vb: vEBT_VEBT,X: nat] :
      ( ( vEBT_VEBT_membermima @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ zero_zero_nat @ Va @ Vb ) @ X )
      = ( ( X = Mi )
        | ( X = Ma ) ) ) ).

% VEBT_internal.membermima.simps(3)
thf(fact_3053_divmod__digit__0_I2_J,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ B )
     => ( ( ord_less_nat @ ( modulo_modulo_nat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) @ B )
       => ( ( modulo_modulo_nat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) )
          = ( modulo_modulo_nat @ A @ B ) ) ) ) ).

% divmod_digit_0(2)
thf(fact_3054_divmod__digit__0_I2_J,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ( ord_less_int @ ( modulo_modulo_int @ A @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) @ B )
       => ( ( modulo_modulo_int @ A @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) )
          = ( modulo_modulo_int @ A @ B ) ) ) ) ).

% divmod_digit_0(2)
thf(fact_3055_divmod__digit__0_I2_J,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ B )
     => ( ( ord_le6747313008572928689nteger @ ( modulo364778990260209775nteger @ A @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) @ B )
       => ( ( modulo364778990260209775nteger @ A @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) )
          = ( modulo364778990260209775nteger @ A @ B ) ) ) ) ).

% divmod_digit_0(2)
thf(fact_3056_cong__exp__iff__simps_I6_J,axiom,
    ! [Q2: num,N2: num] :
      ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ one ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) )
     != ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit0 @ N2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) ) ) ).

% cong_exp_iff_simps(6)
thf(fact_3057_cong__exp__iff__simps_I6_J,axiom,
    ! [Q2: num,N2: num] :
      ( ( modulo_modulo_int @ ( numeral_numeral_int @ one ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) )
     != ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit0 @ N2 ) ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) ) ) ).

% cong_exp_iff_simps(6)
thf(fact_3058_cong__exp__iff__simps_I6_J,axiom,
    ! [Q2: num,N2: num] :
      ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ one ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) )
     != ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit0 @ N2 ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) ) ) ).

% cong_exp_iff_simps(6)
thf(fact_3059_cong__exp__iff__simps_I8_J,axiom,
    ! [M: num,Q2: num] :
      ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit0 @ M ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) )
     != ( modulo_modulo_nat @ ( numeral_numeral_nat @ one ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) ) ) ).

% cong_exp_iff_simps(8)
thf(fact_3060_cong__exp__iff__simps_I8_J,axiom,
    ! [M: num,Q2: num] :
      ( ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit0 @ M ) ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) )
     != ( modulo_modulo_int @ ( numeral_numeral_int @ one ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) ) ) ).

% cong_exp_iff_simps(8)
thf(fact_3061_cong__exp__iff__simps_I8_J,axiom,
    ! [M: num,Q2: num] :
      ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit0 @ M ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) )
     != ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ one ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) ) ) ).

% cong_exp_iff_simps(8)
thf(fact_3062_mod__eqE,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ( modulo_modulo_int @ A @ C )
        = ( modulo_modulo_int @ B @ C ) )
     => ~ ! [D4: int] :
            ( B
           != ( plus_plus_int @ A @ ( times_times_int @ C @ D4 ) ) ) ) ).

% mod_eqE
thf(fact_3063_mod__eqE,axiom,
    ! [A: code_integer,C: code_integer,B: code_integer] :
      ( ( ( modulo364778990260209775nteger @ A @ C )
        = ( modulo364778990260209775nteger @ B @ C ) )
     => ~ ! [D4: code_integer] :
            ( B
           != ( plus_p5714425477246183910nteger @ A @ ( times_3573771949741848930nteger @ C @ D4 ) ) ) ) ).

% mod_eqE
thf(fact_3064_div__add1__eq,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( divide_divide_nat @ ( plus_plus_nat @ A @ B ) @ C )
      = ( plus_plus_nat @ ( plus_plus_nat @ ( divide_divide_nat @ A @ C ) @ ( divide_divide_nat @ B @ C ) ) @ ( divide_divide_nat @ ( plus_plus_nat @ ( modulo_modulo_nat @ A @ C ) @ ( modulo_modulo_nat @ B @ C ) ) @ C ) ) ) ).

% div_add1_eq
thf(fact_3065_div__add1__eq,axiom,
    ! [A: int,B: int,C: int] :
      ( ( divide_divide_int @ ( plus_plus_int @ A @ B ) @ C )
      = ( plus_plus_int @ ( plus_plus_int @ ( divide_divide_int @ A @ C ) @ ( divide_divide_int @ B @ C ) ) @ ( divide_divide_int @ ( plus_plus_int @ ( modulo_modulo_int @ A @ C ) @ ( modulo_modulo_int @ B @ C ) ) @ C ) ) ) ).

% div_add1_eq
thf(fact_3066_div__add1__eq,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( divide6298287555418463151nteger @ ( plus_p5714425477246183910nteger @ A @ B ) @ C )
      = ( plus_p5714425477246183910nteger @ ( plus_p5714425477246183910nteger @ ( divide6298287555418463151nteger @ A @ C ) @ ( divide6298287555418463151nteger @ B @ C ) ) @ ( divide6298287555418463151nteger @ ( plus_p5714425477246183910nteger @ ( modulo364778990260209775nteger @ A @ C ) @ ( modulo364778990260209775nteger @ B @ C ) ) @ C ) ) ) ).

% div_add1_eq
thf(fact_3067_Suc__times__mod__eq,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ M )
     => ( ( modulo_modulo_nat @ ( suc @ ( times_times_nat @ M @ N2 ) ) @ M )
        = one_one_nat ) ) ).

% Suc_times_mod_eq
thf(fact_3068_mod__induct,axiom,
    ! [P: nat > $o,N2: nat,P4: nat,M: nat] :
      ( ( P @ N2 )
     => ( ( ord_less_nat @ N2 @ P4 )
       => ( ( ord_less_nat @ M @ P4 )
         => ( ! [N: nat] :
                ( ( ord_less_nat @ N @ P4 )
               => ( ( P @ N )
                 => ( P @ ( modulo_modulo_nat @ ( suc @ N ) @ P4 ) ) ) )
           => ( P @ M ) ) ) ) ) ).

% mod_induct
thf(fact_3069_mod__Suc__le__divisor,axiom,
    ! [M: nat,N2: nat] : ( ord_less_eq_nat @ ( modulo_modulo_nat @ M @ ( suc @ N2 ) ) @ N2 ) ).

% mod_Suc_le_divisor
thf(fact_3070_nat__mod__eq__lemma,axiom,
    ! [X: nat,N2: nat,Y: nat] :
      ( ( ( modulo_modulo_nat @ X @ N2 )
        = ( modulo_modulo_nat @ Y @ N2 ) )
     => ( ( ord_less_eq_nat @ Y @ X )
       => ? [Q3: nat] :
            ( X
            = ( plus_plus_nat @ Y @ ( times_times_nat @ N2 @ Q3 ) ) ) ) ) ).

% nat_mod_eq_lemma
thf(fact_3071_mod__eq__nat2E,axiom,
    ! [M: nat,Q2: nat,N2: nat] :
      ( ( ( modulo_modulo_nat @ M @ Q2 )
        = ( modulo_modulo_nat @ N2 @ Q2 ) )
     => ( ( ord_less_eq_nat @ M @ N2 )
       => ~ ! [S: nat] :
              ( N2
             != ( plus_plus_nat @ M @ ( times_times_nat @ Q2 @ S ) ) ) ) ) ).

% mod_eq_nat2E
thf(fact_3072_mod__eq__nat1E,axiom,
    ! [M: nat,Q2: nat,N2: nat] :
      ( ( ( modulo_modulo_nat @ M @ Q2 )
        = ( modulo_modulo_nat @ N2 @ Q2 ) )
     => ( ( ord_less_eq_nat @ N2 @ M )
       => ~ ! [S: nat] :
              ( M
             != ( plus_plus_nat @ N2 @ ( times_times_nat @ Q2 @ S ) ) ) ) ) ).

% mod_eq_nat1E
thf(fact_3073_power__strict__mono,axiom,
    ! [A: real,B: real,N2: nat] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_eq_real @ zero_zero_real @ A )
       => ( ( ord_less_nat @ zero_zero_nat @ N2 )
         => ( ord_less_real @ ( power_power_real @ A @ N2 ) @ ( power_power_real @ B @ N2 ) ) ) ) ) ).

% power_strict_mono
thf(fact_3074_power__strict__mono,axiom,
    ! [A: rat,B: rat,N2: nat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ A )
       => ( ( ord_less_nat @ zero_zero_nat @ N2 )
         => ( ord_less_rat @ ( power_power_rat @ A @ N2 ) @ ( power_power_rat @ B @ N2 ) ) ) ) ) ).

% power_strict_mono
thf(fact_3075_power__strict__mono,axiom,
    ! [A: nat,B: nat,N2: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ A )
       => ( ( ord_less_nat @ zero_zero_nat @ N2 )
         => ( ord_less_nat @ ( power_power_nat @ A @ N2 ) @ ( power_power_nat @ B @ N2 ) ) ) ) ) ).

% power_strict_mono
thf(fact_3076_power__strict__mono,axiom,
    ! [A: int,B: int,N2: nat] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_eq_int @ zero_zero_int @ A )
       => ( ( ord_less_nat @ zero_zero_nat @ N2 )
         => ( ord_less_int @ ( power_power_int @ A @ N2 ) @ ( power_power_int @ B @ N2 ) ) ) ) ) ).

% power_strict_mono
thf(fact_3077_vebt__delete_Osimps_I3_J,axiom,
    ! [A: $o,B: $o,N2: nat] :
      ( ( vEBT_vebt_delete @ ( vEBT_Leaf @ A @ B ) @ ( suc @ ( suc @ N2 ) ) )
      = ( vEBT_Leaf @ A @ B ) ) ).

% vebt_delete.simps(3)
thf(fact_3078_mod__if,axiom,
    ( modulo_modulo_nat
    = ( ^ [M6: nat,N3: nat] : ( if_nat @ ( ord_less_nat @ M6 @ N3 ) @ M6 @ ( modulo_modulo_nat @ ( minus_minus_nat @ M6 @ N3 ) @ N3 ) ) ) ) ).

% mod_if
thf(fact_3079_le__mod__geq,axiom,
    ! [N2: nat,M: nat] :
      ( ( ord_less_eq_nat @ N2 @ M )
     => ( ( modulo_modulo_nat @ M @ N2 )
        = ( modulo_modulo_nat @ ( minus_minus_nat @ M @ N2 ) @ N2 ) ) ) ).

% le_mod_geq
thf(fact_3080_vebt__maxt_Osimps_I1_J,axiom,
    ! [B: $o,A: $o] :
      ( ( B
       => ( ( vEBT_vebt_maxt @ ( vEBT_Leaf @ A @ B ) )
          = ( some_nat @ one_one_nat ) ) )
      & ( ~ B
       => ( ( A
           => ( ( vEBT_vebt_maxt @ ( vEBT_Leaf @ A @ B ) )
              = ( some_nat @ zero_zero_nat ) ) )
          & ( ~ A
           => ( ( vEBT_vebt_maxt @ ( vEBT_Leaf @ A @ B ) )
              = none_nat ) ) ) ) ) ).

% vebt_maxt.simps(1)
thf(fact_3081_div__positive,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ B )
     => ( ( ord_less_eq_nat @ B @ A )
       => ( ord_less_nat @ zero_zero_nat @ ( divide_divide_nat @ A @ B ) ) ) ) ).

% div_positive
thf(fact_3082_div__positive,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ( ord_less_eq_int @ B @ A )
       => ( ord_less_int @ zero_zero_int @ ( divide_divide_int @ A @ B ) ) ) ) ).

% div_positive
thf(fact_3083_unique__euclidean__semiring__numeral__class_Odiv__less,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ A @ B )
       => ( ( divide_divide_nat @ A @ B )
          = zero_zero_nat ) ) ) ).

% unique_euclidean_semiring_numeral_class.div_less
thf(fact_3084_unique__euclidean__semiring__numeral__class_Odiv__less,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ A @ B )
       => ( ( divide_divide_int @ A @ B )
          = zero_zero_int ) ) ) ).

% unique_euclidean_semiring_numeral_class.div_less
thf(fact_3085_vebt__mint_Osimps_I1_J,axiom,
    ! [A: $o,B: $o] :
      ( ( A
       => ( ( vEBT_vebt_mint @ ( vEBT_Leaf @ A @ B ) )
          = ( some_nat @ zero_zero_nat ) ) )
      & ( ~ A
       => ( ( B
           => ( ( vEBT_vebt_mint @ ( vEBT_Leaf @ A @ B ) )
              = ( some_nat @ one_one_nat ) ) )
          & ( ~ B
           => ( ( vEBT_vebt_mint @ ( vEBT_Leaf @ A @ B ) )
              = none_nat ) ) ) ) ) ).

% vebt_mint.simps(1)
thf(fact_3086_unique__euclidean__semiring__numeral__class_Odiv__mult2__eq,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ C )
     => ( ( divide_divide_nat @ A @ ( times_times_nat @ B @ C ) )
        = ( divide_divide_nat @ ( divide_divide_nat @ A @ B ) @ C ) ) ) ).

% unique_euclidean_semiring_numeral_class.div_mult2_eq
thf(fact_3087_unique__euclidean__semiring__numeral__class_Odiv__mult2__eq,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ C )
     => ( ( divide_divide_int @ A @ ( times_times_int @ B @ C ) )
        = ( divide_divide_int @ ( divide_divide_int @ A @ B ) @ C ) ) ) ).

% unique_euclidean_semiring_numeral_class.div_mult2_eq
thf(fact_3088_vebt__pred_Osimps_I2_J,axiom,
    ! [A: $o,Uw: $o] :
      ( ( A
       => ( ( vEBT_vebt_pred @ ( vEBT_Leaf @ A @ Uw ) @ ( suc @ zero_zero_nat ) )
          = ( some_nat @ zero_zero_nat ) ) )
      & ( ~ A
       => ( ( vEBT_vebt_pred @ ( vEBT_Leaf @ A @ Uw ) @ ( suc @ zero_zero_nat ) )
          = none_nat ) ) ) ).

% vebt_pred.simps(2)
thf(fact_3089_vebt__succ_Osimps_I1_J,axiom,
    ! [B: $o,Uu: $o] :
      ( ( B
       => ( ( vEBT_vebt_succ @ ( vEBT_Leaf @ Uu @ B ) @ zero_zero_nat )
          = ( some_nat @ one_one_nat ) ) )
      & ( ~ B
       => ( ( vEBT_vebt_succ @ ( vEBT_Leaf @ Uu @ B ) @ zero_zero_nat )
          = none_nat ) ) ) ).

% vebt_succ.simps(1)
thf(fact_3090_not__numeral__le__zero,axiom,
    ! [N2: num] :
      ~ ( ord_less_eq_real @ ( numeral_numeral_real @ N2 ) @ zero_zero_real ) ).

% not_numeral_le_zero
thf(fact_3091_not__numeral__le__zero,axiom,
    ! [N2: num] :
      ~ ( ord_less_eq_rat @ ( numeral_numeral_rat @ N2 ) @ zero_zero_rat ) ).

% not_numeral_le_zero
thf(fact_3092_not__numeral__le__zero,axiom,
    ! [N2: num] :
      ~ ( ord_less_eq_nat @ ( numeral_numeral_nat @ N2 ) @ zero_zero_nat ) ).

% not_numeral_le_zero
thf(fact_3093_not__numeral__le__zero,axiom,
    ! [N2: num] :
      ~ ( ord_less_eq_int @ ( numeral_numeral_int @ N2 ) @ zero_zero_int ) ).

% not_numeral_le_zero
thf(fact_3094_zero__le__numeral,axiom,
    ! [N2: num] : ( ord_less_eq_real @ zero_zero_real @ ( numeral_numeral_real @ N2 ) ) ).

% zero_le_numeral
thf(fact_3095_zero__le__numeral,axiom,
    ! [N2: num] : ( ord_less_eq_rat @ zero_zero_rat @ ( numeral_numeral_rat @ N2 ) ) ).

% zero_le_numeral
thf(fact_3096_zero__le__numeral,axiom,
    ! [N2: num] : ( ord_less_eq_nat @ zero_zero_nat @ ( numeral_numeral_nat @ N2 ) ) ).

% zero_le_numeral
thf(fact_3097_zero__le__numeral,axiom,
    ! [N2: num] : ( ord_less_eq_int @ zero_zero_int @ ( numeral_numeral_int @ N2 ) ) ).

% zero_le_numeral
thf(fact_3098_ordered__comm__semiring__class_Ocomm__mult__left__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ zero_zero_real @ C )
       => ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).

% ordered_comm_semiring_class.comm_mult_left_mono
thf(fact_3099_ordered__comm__semiring__class_Ocomm__mult__left__mono,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ C )
       => ( ord_less_eq_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) ) ) ) ).

% ordered_comm_semiring_class.comm_mult_left_mono
thf(fact_3100_ordered__comm__semiring__class_Ocomm__mult__left__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
       => ( ord_less_eq_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) ) ) ) ).

% ordered_comm_semiring_class.comm_mult_left_mono
thf(fact_3101_ordered__comm__semiring__class_Ocomm__mult__left__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ zero_zero_int @ C )
       => ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).

% ordered_comm_semiring_class.comm_mult_left_mono
thf(fact_3102_zero__le__mult__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
      = ( ( ( ord_less_eq_real @ zero_zero_real @ A )
          & ( ord_less_eq_real @ zero_zero_real @ B ) )
        | ( ( ord_less_eq_real @ A @ zero_zero_real )
          & ( ord_less_eq_real @ B @ zero_zero_real ) ) ) ) ).

% zero_le_mult_iff
thf(fact_3103_zero__le__mult__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) )
      = ( ( ( ord_less_eq_rat @ zero_zero_rat @ A )
          & ( ord_less_eq_rat @ zero_zero_rat @ B ) )
        | ( ( ord_less_eq_rat @ A @ zero_zero_rat )
          & ( ord_less_eq_rat @ B @ zero_zero_rat ) ) ) ) ).

% zero_le_mult_iff
thf(fact_3104_zero__le__mult__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A @ B ) )
      = ( ( ( ord_less_eq_int @ zero_zero_int @ A )
          & ( ord_less_eq_int @ zero_zero_int @ B ) )
        | ( ( ord_less_eq_int @ A @ zero_zero_int )
          & ( ord_less_eq_int @ B @ zero_zero_int ) ) ) ) ).

% zero_le_mult_iff
thf(fact_3105_mult__nonneg__nonpos2,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ B @ zero_zero_real )
       => ( ord_less_eq_real @ ( times_times_real @ B @ A ) @ zero_zero_real ) ) ) ).

% mult_nonneg_nonpos2
thf(fact_3106_mult__nonneg__nonpos2,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ A )
     => ( ( ord_less_eq_rat @ B @ zero_zero_rat )
       => ( ord_less_eq_rat @ ( times_times_rat @ B @ A ) @ zero_zero_rat ) ) ) ).

% mult_nonneg_nonpos2
thf(fact_3107_mult__nonneg__nonpos2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ B @ zero_zero_nat )
       => ( ord_less_eq_nat @ ( times_times_nat @ B @ A ) @ zero_zero_nat ) ) ) ).

% mult_nonneg_nonpos2
thf(fact_3108_mult__nonneg__nonpos2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_eq_int @ B @ zero_zero_int )
       => ( ord_less_eq_int @ ( times_times_int @ B @ A ) @ zero_zero_int ) ) ) ).

% mult_nonneg_nonpos2
thf(fact_3109_mult__nonpos__nonneg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ zero_zero_real )
     => ( ( ord_less_eq_real @ zero_zero_real @ B )
       => ( ord_less_eq_real @ ( times_times_real @ A @ B ) @ zero_zero_real ) ) ) ).

% mult_nonpos_nonneg
thf(fact_3110_mult__nonpos__nonneg,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ A @ zero_zero_rat )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ B )
       => ( ord_less_eq_rat @ ( times_times_rat @ A @ B ) @ zero_zero_rat ) ) ) ).

% mult_nonpos_nonneg
thf(fact_3111_mult__nonpos__nonneg,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
       => ( ord_less_eq_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% mult_nonpos_nonneg
thf(fact_3112_mult__nonpos__nonneg,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ zero_zero_int )
     => ( ( ord_less_eq_int @ zero_zero_int @ B )
       => ( ord_less_eq_int @ ( times_times_int @ A @ B ) @ zero_zero_int ) ) ) ).

% mult_nonpos_nonneg
thf(fact_3113_mult__nonneg__nonpos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ B @ zero_zero_real )
       => ( ord_less_eq_real @ ( times_times_real @ A @ B ) @ zero_zero_real ) ) ) ).

% mult_nonneg_nonpos
thf(fact_3114_mult__nonneg__nonpos,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ A )
     => ( ( ord_less_eq_rat @ B @ zero_zero_rat )
       => ( ord_less_eq_rat @ ( times_times_rat @ A @ B ) @ zero_zero_rat ) ) ) ).

% mult_nonneg_nonpos
thf(fact_3115_mult__nonneg__nonpos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ B @ zero_zero_nat )
       => ( ord_less_eq_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% mult_nonneg_nonpos
thf(fact_3116_mult__nonneg__nonpos,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_eq_int @ B @ zero_zero_int )
       => ( ord_less_eq_int @ ( times_times_int @ A @ B ) @ zero_zero_int ) ) ) ).

% mult_nonneg_nonpos
thf(fact_3117_mult__nonneg__nonneg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ zero_zero_real @ B )
       => ( ord_less_eq_real @ zero_zero_real @ ( times_times_real @ A @ B ) ) ) ) ).

% mult_nonneg_nonneg
thf(fact_3118_mult__nonneg__nonneg,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ A )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ B )
       => ( ord_less_eq_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) ) ) ) ).

% mult_nonneg_nonneg
thf(fact_3119_mult__nonneg__nonneg,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
       => ( ord_less_eq_nat @ zero_zero_nat @ ( times_times_nat @ A @ B ) ) ) ) ).

% mult_nonneg_nonneg
thf(fact_3120_mult__nonneg__nonneg,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_eq_int @ zero_zero_int @ B )
       => ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A @ B ) ) ) ) ).

% mult_nonneg_nonneg
thf(fact_3121_split__mult__neg__le,axiom,
    ! [A: real,B: real] :
      ( ( ( ( ord_less_eq_real @ zero_zero_real @ A )
          & ( ord_less_eq_real @ B @ zero_zero_real ) )
        | ( ( ord_less_eq_real @ A @ zero_zero_real )
          & ( ord_less_eq_real @ zero_zero_real @ B ) ) )
     => ( ord_less_eq_real @ ( times_times_real @ A @ B ) @ zero_zero_real ) ) ).

% split_mult_neg_le
thf(fact_3122_split__mult__neg__le,axiom,
    ! [A: rat,B: rat] :
      ( ( ( ( ord_less_eq_rat @ zero_zero_rat @ A )
          & ( ord_less_eq_rat @ B @ zero_zero_rat ) )
        | ( ( ord_less_eq_rat @ A @ zero_zero_rat )
          & ( ord_less_eq_rat @ zero_zero_rat @ B ) ) )
     => ( ord_less_eq_rat @ ( times_times_rat @ A @ B ) @ zero_zero_rat ) ) ).

% split_mult_neg_le
thf(fact_3123_split__mult__neg__le,axiom,
    ! [A: nat,B: nat] :
      ( ( ( ( ord_less_eq_nat @ zero_zero_nat @ A )
          & ( ord_less_eq_nat @ B @ zero_zero_nat ) )
        | ( ( ord_less_eq_nat @ A @ zero_zero_nat )
          & ( ord_less_eq_nat @ zero_zero_nat @ B ) ) )
     => ( ord_less_eq_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ).

% split_mult_neg_le
thf(fact_3124_split__mult__neg__le,axiom,
    ! [A: int,B: int] :
      ( ( ( ( ord_less_eq_int @ zero_zero_int @ A )
          & ( ord_less_eq_int @ B @ zero_zero_int ) )
        | ( ( ord_less_eq_int @ A @ zero_zero_int )
          & ( ord_less_eq_int @ zero_zero_int @ B ) ) )
     => ( ord_less_eq_int @ ( times_times_int @ A @ B ) @ zero_zero_int ) ) ).

% split_mult_neg_le
thf(fact_3125_mult__le__0__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ ( times_times_real @ A @ B ) @ zero_zero_real )
      = ( ( ( ord_less_eq_real @ zero_zero_real @ A )
          & ( ord_less_eq_real @ B @ zero_zero_real ) )
        | ( ( ord_less_eq_real @ A @ zero_zero_real )
          & ( ord_less_eq_real @ zero_zero_real @ B ) ) ) ) ).

% mult_le_0_iff
thf(fact_3126_mult__le__0__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( times_times_rat @ A @ B ) @ zero_zero_rat )
      = ( ( ( ord_less_eq_rat @ zero_zero_rat @ A )
          & ( ord_less_eq_rat @ B @ zero_zero_rat ) )
        | ( ( ord_less_eq_rat @ A @ zero_zero_rat )
          & ( ord_less_eq_rat @ zero_zero_rat @ B ) ) ) ) ).

% mult_le_0_iff
thf(fact_3127_mult__le__0__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ ( times_times_int @ A @ B ) @ zero_zero_int )
      = ( ( ( ord_less_eq_int @ zero_zero_int @ A )
          & ( ord_less_eq_int @ B @ zero_zero_int ) )
        | ( ( ord_less_eq_int @ A @ zero_zero_int )
          & ( ord_less_eq_int @ zero_zero_int @ B ) ) ) ) ).

% mult_le_0_iff
thf(fact_3128_mult__right__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ zero_zero_real @ C )
       => ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ) ).

% mult_right_mono
thf(fact_3129_mult__right__mono,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ C )
       => ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) ) ) ) ).

% mult_right_mono
thf(fact_3130_mult__right__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
       => ( ord_less_eq_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) ) ) ) ).

% mult_right_mono
thf(fact_3131_mult__right__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ zero_zero_int @ C )
       => ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ) ).

% mult_right_mono
thf(fact_3132_mult__right__mono__neg,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_eq_real @ B @ A )
     => ( ( ord_less_eq_real @ C @ zero_zero_real )
       => ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ) ).

% mult_right_mono_neg
thf(fact_3133_mult__right__mono__neg,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( ord_less_eq_rat @ B @ A )
     => ( ( ord_less_eq_rat @ C @ zero_zero_rat )
       => ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) ) ) ) ).

% mult_right_mono_neg
thf(fact_3134_mult__right__mono__neg,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_less_eq_int @ B @ A )
     => ( ( ord_less_eq_int @ C @ zero_zero_int )
       => ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ) ).

% mult_right_mono_neg
thf(fact_3135_mult__left__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ zero_zero_real @ C )
       => ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).

% mult_left_mono
thf(fact_3136_mult__left__mono,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ C )
       => ( ord_less_eq_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) ) ) ) ).

% mult_left_mono
thf(fact_3137_mult__left__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
       => ( ord_less_eq_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) ) ) ) ).

% mult_left_mono
thf(fact_3138_mult__left__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ zero_zero_int @ C )
       => ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).

% mult_left_mono
thf(fact_3139_mult__nonpos__nonpos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ zero_zero_real )
     => ( ( ord_less_eq_real @ B @ zero_zero_real )
       => ( ord_less_eq_real @ zero_zero_real @ ( times_times_real @ A @ B ) ) ) ) ).

% mult_nonpos_nonpos
thf(fact_3140_mult__nonpos__nonpos,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ A @ zero_zero_rat )
     => ( ( ord_less_eq_rat @ B @ zero_zero_rat )
       => ( ord_less_eq_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) ) ) ) ).

% mult_nonpos_nonpos
thf(fact_3141_mult__nonpos__nonpos,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ zero_zero_int )
     => ( ( ord_less_eq_int @ B @ zero_zero_int )
       => ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A @ B ) ) ) ) ).

% mult_nonpos_nonpos
thf(fact_3142_mult__left__mono__neg,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_eq_real @ B @ A )
     => ( ( ord_less_eq_real @ C @ zero_zero_real )
       => ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).

% mult_left_mono_neg
thf(fact_3143_mult__left__mono__neg,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( ord_less_eq_rat @ B @ A )
     => ( ( ord_less_eq_rat @ C @ zero_zero_rat )
       => ( ord_less_eq_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) ) ) ) ).

% mult_left_mono_neg
thf(fact_3144_mult__left__mono__neg,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_less_eq_int @ B @ A )
     => ( ( ord_less_eq_int @ C @ zero_zero_int )
       => ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).

% mult_left_mono_neg
thf(fact_3145_split__mult__pos__le,axiom,
    ! [A: real,B: real] :
      ( ( ( ( ord_less_eq_real @ zero_zero_real @ A )
          & ( ord_less_eq_real @ zero_zero_real @ B ) )
        | ( ( ord_less_eq_real @ A @ zero_zero_real )
          & ( ord_less_eq_real @ B @ zero_zero_real ) ) )
     => ( ord_less_eq_real @ zero_zero_real @ ( times_times_real @ A @ B ) ) ) ).

% split_mult_pos_le
thf(fact_3146_split__mult__pos__le,axiom,
    ! [A: rat,B: rat] :
      ( ( ( ( ord_less_eq_rat @ zero_zero_rat @ A )
          & ( ord_less_eq_rat @ zero_zero_rat @ B ) )
        | ( ( ord_less_eq_rat @ A @ zero_zero_rat )
          & ( ord_less_eq_rat @ B @ zero_zero_rat ) ) )
     => ( ord_less_eq_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) ) ) ).

% split_mult_pos_le
thf(fact_3147_split__mult__pos__le,axiom,
    ! [A: int,B: int] :
      ( ( ( ( ord_less_eq_int @ zero_zero_int @ A )
          & ( ord_less_eq_int @ zero_zero_int @ B ) )
        | ( ( ord_less_eq_int @ A @ zero_zero_int )
          & ( ord_less_eq_int @ B @ zero_zero_int ) ) )
     => ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A @ B ) ) ) ).

% split_mult_pos_le
thf(fact_3148_zero__le__square,axiom,
    ! [A: real] : ( ord_less_eq_real @ zero_zero_real @ ( times_times_real @ A @ A ) ) ).

% zero_le_square
thf(fact_3149_zero__le__square,axiom,
    ! [A: rat] : ( ord_less_eq_rat @ zero_zero_rat @ ( times_times_rat @ A @ A ) ) ).

% zero_le_square
thf(fact_3150_zero__le__square,axiom,
    ! [A: int] : ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A @ A ) ) ).

% zero_le_square
thf(fact_3151_mult__mono_H,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ C @ D )
       => ( ( ord_less_eq_real @ zero_zero_real @ A )
         => ( ( ord_less_eq_real @ zero_zero_real @ C )
           => ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D ) ) ) ) ) ) ).

% mult_mono'
thf(fact_3152_mult__mono_H,axiom,
    ! [A: rat,B: rat,C: rat,D: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_rat @ C @ D )
       => ( ( ord_less_eq_rat @ zero_zero_rat @ A )
         => ( ( ord_less_eq_rat @ zero_zero_rat @ C )
           => ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ D ) ) ) ) ) ) ).

% mult_mono'
thf(fact_3153_mult__mono_H,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ D )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ A )
         => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
           => ( ord_less_eq_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) ) ) ) ) ) ).

% mult_mono'
thf(fact_3154_mult__mono_H,axiom,
    ! [A: int,B: int,C: int,D: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ C @ D )
       => ( ( ord_less_eq_int @ zero_zero_int @ A )
         => ( ( ord_less_eq_int @ zero_zero_int @ C )
           => ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D ) ) ) ) ) ) ).

% mult_mono'
thf(fact_3155_mult__mono,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ C @ D )
       => ( ( ord_less_eq_real @ zero_zero_real @ B )
         => ( ( ord_less_eq_real @ zero_zero_real @ C )
           => ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D ) ) ) ) ) ) ).

% mult_mono
thf(fact_3156_mult__mono,axiom,
    ! [A: rat,B: rat,C: rat,D: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_rat @ C @ D )
       => ( ( ord_less_eq_rat @ zero_zero_rat @ B )
         => ( ( ord_less_eq_rat @ zero_zero_rat @ C )
           => ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ D ) ) ) ) ) ) ).

% mult_mono
thf(fact_3157_mult__mono,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ D )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
         => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
           => ( ord_less_eq_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) ) ) ) ) ) ).

% mult_mono
thf(fact_3158_mult__mono,axiom,
    ! [A: int,B: int,C: int,D: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ C @ D )
       => ( ( ord_less_eq_int @ zero_zero_int @ B )
         => ( ( ord_less_eq_int @ zero_zero_int @ C )
           => ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D ) ) ) ) ) ) ).

% mult_mono
thf(fact_3159_not__numeral__less__zero,axiom,
    ! [N2: num] :
      ~ ( ord_less_real @ ( numeral_numeral_real @ N2 ) @ zero_zero_real ) ).

% not_numeral_less_zero
thf(fact_3160_not__numeral__less__zero,axiom,
    ! [N2: num] :
      ~ ( ord_less_rat @ ( numeral_numeral_rat @ N2 ) @ zero_zero_rat ) ).

% not_numeral_less_zero
thf(fact_3161_not__numeral__less__zero,axiom,
    ! [N2: num] :
      ~ ( ord_less_nat @ ( numeral_numeral_nat @ N2 ) @ zero_zero_nat ) ).

% not_numeral_less_zero
thf(fact_3162_not__numeral__less__zero,axiom,
    ! [N2: num] :
      ~ ( ord_less_int @ ( numeral_numeral_int @ N2 ) @ zero_zero_int ) ).

% not_numeral_less_zero
thf(fact_3163_zero__less__numeral,axiom,
    ! [N2: num] : ( ord_less_real @ zero_zero_real @ ( numeral_numeral_real @ N2 ) ) ).

% zero_less_numeral
thf(fact_3164_zero__less__numeral,axiom,
    ! [N2: num] : ( ord_less_rat @ zero_zero_rat @ ( numeral_numeral_rat @ N2 ) ) ).

% zero_less_numeral
thf(fact_3165_zero__less__numeral,axiom,
    ! [N2: num] : ( ord_less_nat @ zero_zero_nat @ ( numeral_numeral_nat @ N2 ) ) ).

% zero_less_numeral
thf(fact_3166_zero__less__numeral,axiom,
    ! [N2: num] : ( ord_less_int @ zero_zero_int @ ( numeral_numeral_int @ N2 ) ) ).

% zero_less_numeral
thf(fact_3167_add__nonpos__eq__0__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ X @ zero_zero_real )
     => ( ( ord_less_eq_real @ Y @ zero_zero_real )
       => ( ( ( plus_plus_real @ X @ Y )
            = zero_zero_real )
          = ( ( X = zero_zero_real )
            & ( Y = zero_zero_real ) ) ) ) ) ).

% add_nonpos_eq_0_iff
thf(fact_3168_add__nonpos__eq__0__iff,axiom,
    ! [X: rat,Y: rat] :
      ( ( ord_less_eq_rat @ X @ zero_zero_rat )
     => ( ( ord_less_eq_rat @ Y @ zero_zero_rat )
       => ( ( ( plus_plus_rat @ X @ Y )
            = zero_zero_rat )
          = ( ( X = zero_zero_rat )
            & ( Y = zero_zero_rat ) ) ) ) ) ).

% add_nonpos_eq_0_iff
thf(fact_3169_add__nonpos__eq__0__iff,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_eq_nat @ X @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ Y @ zero_zero_nat )
       => ( ( ( plus_plus_nat @ X @ Y )
            = zero_zero_nat )
          = ( ( X = zero_zero_nat )
            & ( Y = zero_zero_nat ) ) ) ) ) ).

% add_nonpos_eq_0_iff
thf(fact_3170_add__nonpos__eq__0__iff,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_eq_int @ X @ zero_zero_int )
     => ( ( ord_less_eq_int @ Y @ zero_zero_int )
       => ( ( ( plus_plus_int @ X @ Y )
            = zero_zero_int )
          = ( ( X = zero_zero_int )
            & ( Y = zero_zero_int ) ) ) ) ) ).

% add_nonpos_eq_0_iff
thf(fact_3171_add__nonneg__eq__0__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y )
       => ( ( ( plus_plus_real @ X @ Y )
            = zero_zero_real )
          = ( ( X = zero_zero_real )
            & ( Y = zero_zero_real ) ) ) ) ) ).

% add_nonneg_eq_0_iff
thf(fact_3172_add__nonneg__eq__0__iff,axiom,
    ! [X: rat,Y: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ X )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ Y )
       => ( ( ( plus_plus_rat @ X @ Y )
            = zero_zero_rat )
          = ( ( X = zero_zero_rat )
            & ( Y = zero_zero_rat ) ) ) ) ) ).

% add_nonneg_eq_0_iff
thf(fact_3173_add__nonneg__eq__0__iff,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ X )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ Y )
       => ( ( ( plus_plus_nat @ X @ Y )
            = zero_zero_nat )
          = ( ( X = zero_zero_nat )
            & ( Y = zero_zero_nat ) ) ) ) ) ).

% add_nonneg_eq_0_iff
thf(fact_3174_add__nonneg__eq__0__iff,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X )
     => ( ( ord_less_eq_int @ zero_zero_int @ Y )
       => ( ( ( plus_plus_int @ X @ Y )
            = zero_zero_int )
          = ( ( X = zero_zero_int )
            & ( Y = zero_zero_int ) ) ) ) ) ).

% add_nonneg_eq_0_iff
thf(fact_3175_add__nonpos__nonpos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ zero_zero_real )
     => ( ( ord_less_eq_real @ B @ zero_zero_real )
       => ( ord_less_eq_real @ ( plus_plus_real @ A @ B ) @ zero_zero_real ) ) ) ).

% add_nonpos_nonpos
thf(fact_3176_add__nonpos__nonpos,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ A @ zero_zero_rat )
     => ( ( ord_less_eq_rat @ B @ zero_zero_rat )
       => ( ord_less_eq_rat @ ( plus_plus_rat @ A @ B ) @ zero_zero_rat ) ) ) ).

% add_nonpos_nonpos
thf(fact_3177_add__nonpos__nonpos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ B @ zero_zero_nat )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% add_nonpos_nonpos
thf(fact_3178_add__nonpos__nonpos,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ zero_zero_int )
     => ( ( ord_less_eq_int @ B @ zero_zero_int )
       => ( ord_less_eq_int @ ( plus_plus_int @ A @ B ) @ zero_zero_int ) ) ) ).

% add_nonpos_nonpos
thf(fact_3179_add__nonneg__nonneg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ zero_zero_real @ B )
       => ( ord_less_eq_real @ zero_zero_real @ ( plus_plus_real @ A @ B ) ) ) ) ).

% add_nonneg_nonneg
thf(fact_3180_add__nonneg__nonneg,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ A )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ B )
       => ( ord_less_eq_rat @ zero_zero_rat @ ( plus_plus_rat @ A @ B ) ) ) ) ).

% add_nonneg_nonneg
thf(fact_3181_add__nonneg__nonneg,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
       => ( ord_less_eq_nat @ zero_zero_nat @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% add_nonneg_nonneg
thf(fact_3182_add__nonneg__nonneg,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_eq_int @ zero_zero_int @ B )
       => ( ord_less_eq_int @ zero_zero_int @ ( plus_plus_int @ A @ B ) ) ) ) ).

% add_nonneg_nonneg
thf(fact_3183_add__increasing2,axiom,
    ! [C: real,B: real,A: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ C )
     => ( ( ord_less_eq_real @ B @ A )
       => ( ord_less_eq_real @ B @ ( plus_plus_real @ A @ C ) ) ) ) ).

% add_increasing2
thf(fact_3184_add__increasing2,axiom,
    ! [C: rat,B: rat,A: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ C )
     => ( ( ord_less_eq_rat @ B @ A )
       => ( ord_less_eq_rat @ B @ ( plus_plus_rat @ A @ C ) ) ) ) ).

% add_increasing2
thf(fact_3185_add__increasing2,axiom,
    ! [C: nat,B: nat,A: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ C )
     => ( ( ord_less_eq_nat @ B @ A )
       => ( ord_less_eq_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).

% add_increasing2
thf(fact_3186_add__increasing2,axiom,
    ! [C: int,B: int,A: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ C )
     => ( ( ord_less_eq_int @ B @ A )
       => ( ord_less_eq_int @ B @ ( plus_plus_int @ A @ C ) ) ) ) ).

% add_increasing2
thf(fact_3187_add__decreasing2,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_eq_real @ C @ zero_zero_real )
     => ( ( ord_less_eq_real @ A @ B )
       => ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ B ) ) ) ).

% add_decreasing2
thf(fact_3188_add__decreasing2,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_eq_rat @ C @ zero_zero_rat )
     => ( ( ord_less_eq_rat @ A @ B )
       => ( ord_less_eq_rat @ ( plus_plus_rat @ A @ C ) @ B ) ) ) ).

% add_decreasing2
thf(fact_3189_add__decreasing2,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_eq_nat @ C @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ A @ B )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ B ) ) ) ).

% add_decreasing2
thf(fact_3190_add__decreasing2,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_eq_int @ C @ zero_zero_int )
     => ( ( ord_less_eq_int @ A @ B )
       => ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ B ) ) ) ).

% add_decreasing2
thf(fact_3191_add__increasing,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ B @ C )
       => ( ord_less_eq_real @ B @ ( plus_plus_real @ A @ C ) ) ) ) ).

% add_increasing
thf(fact_3192_add__increasing,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ A )
     => ( ( ord_less_eq_rat @ B @ C )
       => ( ord_less_eq_rat @ B @ ( plus_plus_rat @ A @ C ) ) ) ) ).

% add_increasing
thf(fact_3193_add__increasing,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ord_less_eq_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).

% add_increasing
thf(fact_3194_add__increasing,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_eq_int @ B @ C )
       => ( ord_less_eq_int @ B @ ( plus_plus_int @ A @ C ) ) ) ) ).

% add_increasing
thf(fact_3195_add__decreasing,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_eq_real @ A @ zero_zero_real )
     => ( ( ord_less_eq_real @ C @ B )
       => ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ B ) ) ) ).

% add_decreasing
thf(fact_3196_add__decreasing,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( ord_less_eq_rat @ A @ zero_zero_rat )
     => ( ( ord_less_eq_rat @ C @ B )
       => ( ord_less_eq_rat @ ( plus_plus_rat @ A @ C ) @ B ) ) ) ).

% add_decreasing
thf(fact_3197_add__decreasing,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ C @ B )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ B ) ) ) ).

% add_decreasing
thf(fact_3198_add__decreasing,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_eq_int @ A @ zero_zero_int )
     => ( ( ord_less_eq_int @ C @ B )
       => ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ B ) ) ) ).

% add_decreasing
thf(fact_3199_linordered__comm__semiring__strict__class_Ocomm__mult__strict__left__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ zero_zero_real @ C )
       => ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).

% linordered_comm_semiring_strict_class.comm_mult_strict_left_mono
thf(fact_3200_linordered__comm__semiring__strict__class_Ocomm__mult__strict__left__mono,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_rat @ zero_zero_rat @ C )
       => ( ord_less_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) ) ) ) ).

% linordered_comm_semiring_strict_class.comm_mult_strict_left_mono
thf(fact_3201_linordered__comm__semiring__strict__class_Ocomm__mult__strict__left__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ zero_zero_nat @ C )
       => ( ord_less_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) ) ) ) ).

% linordered_comm_semiring_strict_class.comm_mult_strict_left_mono
thf(fact_3202_linordered__comm__semiring__strict__class_Ocomm__mult__strict__left__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_int @ zero_zero_int @ C )
       => ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).

% linordered_comm_semiring_strict_class.comm_mult_strict_left_mono
thf(fact_3203_mult__less__cancel__right__disj,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
          & ( ord_less_real @ A @ B ) )
        | ( ( ord_less_real @ C @ zero_zero_real )
          & ( ord_less_real @ B @ A ) ) ) ) ).

% mult_less_cancel_right_disj
thf(fact_3204_mult__less__cancel__right__disj,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
          & ( ord_less_rat @ A @ B ) )
        | ( ( ord_less_rat @ C @ zero_zero_rat )
          & ( ord_less_rat @ B @ A ) ) ) ) ).

% mult_less_cancel_right_disj
thf(fact_3205_mult__less__cancel__right__disj,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
      = ( ( ( ord_less_int @ zero_zero_int @ C )
          & ( ord_less_int @ A @ B ) )
        | ( ( ord_less_int @ C @ zero_zero_int )
          & ( ord_less_int @ B @ A ) ) ) ) ).

% mult_less_cancel_right_disj
thf(fact_3206_mult__strict__right__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ zero_zero_real @ C )
       => ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ) ).

% mult_strict_right_mono
thf(fact_3207_mult__strict__right__mono,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_rat @ zero_zero_rat @ C )
       => ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) ) ) ) ).

% mult_strict_right_mono
thf(fact_3208_mult__strict__right__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ zero_zero_nat @ C )
       => ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) ) ) ) ).

% mult_strict_right_mono
thf(fact_3209_mult__strict__right__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_int @ zero_zero_int @ C )
       => ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ) ).

% mult_strict_right_mono
thf(fact_3210_mult__strict__right__mono__neg,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_real @ B @ A )
     => ( ( ord_less_real @ C @ zero_zero_real )
       => ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ) ).

% mult_strict_right_mono_neg
thf(fact_3211_mult__strict__right__mono__neg,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( ord_less_rat @ B @ A )
     => ( ( ord_less_rat @ C @ zero_zero_rat )
       => ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) ) ) ) ).

% mult_strict_right_mono_neg
thf(fact_3212_mult__strict__right__mono__neg,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_less_int @ B @ A )
     => ( ( ord_less_int @ C @ zero_zero_int )
       => ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ) ).

% mult_strict_right_mono_neg
thf(fact_3213_mult__less__cancel__left__disj,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
          & ( ord_less_real @ A @ B ) )
        | ( ( ord_less_real @ C @ zero_zero_real )
          & ( ord_less_real @ B @ A ) ) ) ) ).

% mult_less_cancel_left_disj
thf(fact_3214_mult__less__cancel__left__disj,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
          & ( ord_less_rat @ A @ B ) )
        | ( ( ord_less_rat @ C @ zero_zero_rat )
          & ( ord_less_rat @ B @ A ) ) ) ) ).

% mult_less_cancel_left_disj
thf(fact_3215_mult__less__cancel__left__disj,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
      = ( ( ( ord_less_int @ zero_zero_int @ C )
          & ( ord_less_int @ A @ B ) )
        | ( ( ord_less_int @ C @ zero_zero_int )
          & ( ord_less_int @ B @ A ) ) ) ) ).

% mult_less_cancel_left_disj
thf(fact_3216_mult__strict__left__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ zero_zero_real @ C )
       => ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).

% mult_strict_left_mono
thf(fact_3217_mult__strict__left__mono,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_rat @ zero_zero_rat @ C )
       => ( ord_less_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) ) ) ) ).

% mult_strict_left_mono
thf(fact_3218_mult__strict__left__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ zero_zero_nat @ C )
       => ( ord_less_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) ) ) ) ).

% mult_strict_left_mono
thf(fact_3219_mult__strict__left__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_int @ zero_zero_int @ C )
       => ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).

% mult_strict_left_mono
thf(fact_3220_mult__strict__left__mono__neg,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_real @ B @ A )
     => ( ( ord_less_real @ C @ zero_zero_real )
       => ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).

% mult_strict_left_mono_neg
thf(fact_3221_mult__strict__left__mono__neg,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( ord_less_rat @ B @ A )
     => ( ( ord_less_rat @ C @ zero_zero_rat )
       => ( ord_less_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) ) ) ) ).

% mult_strict_left_mono_neg
thf(fact_3222_mult__strict__left__mono__neg,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_less_int @ B @ A )
     => ( ( ord_less_int @ C @ zero_zero_int )
       => ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).

% mult_strict_left_mono_neg
thf(fact_3223_mult__less__cancel__left__pos,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ C )
     => ( ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
        = ( ord_less_real @ A @ B ) ) ) ).

% mult_less_cancel_left_pos
thf(fact_3224_mult__less__cancel__left__pos,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ C )
     => ( ( ord_less_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
        = ( ord_less_rat @ A @ B ) ) ) ).

% mult_less_cancel_left_pos
thf(fact_3225_mult__less__cancel__left__pos,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ C )
     => ( ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
        = ( ord_less_int @ A @ B ) ) ) ).

% mult_less_cancel_left_pos
thf(fact_3226_mult__less__cancel__left__neg,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ C @ zero_zero_real )
     => ( ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
        = ( ord_less_real @ B @ A ) ) ) ).

% mult_less_cancel_left_neg
thf(fact_3227_mult__less__cancel__left__neg,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ C @ zero_zero_rat )
     => ( ( ord_less_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
        = ( ord_less_rat @ B @ A ) ) ) ).

% mult_less_cancel_left_neg
thf(fact_3228_mult__less__cancel__left__neg,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_int @ C @ zero_zero_int )
     => ( ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
        = ( ord_less_int @ B @ A ) ) ) ).

% mult_less_cancel_left_neg
thf(fact_3229_zero__less__mult__pos2,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_real @ zero_zero_real @ ( times_times_real @ B @ A ) )
     => ( ( ord_less_real @ zero_zero_real @ A )
       => ( ord_less_real @ zero_zero_real @ B ) ) ) ).

% zero_less_mult_pos2
thf(fact_3230_zero__less__mult__pos2,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ B @ A ) )
     => ( ( ord_less_rat @ zero_zero_rat @ A )
       => ( ord_less_rat @ zero_zero_rat @ B ) ) ) ).

% zero_less_mult_pos2
thf(fact_3231_zero__less__mult__pos2,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ B @ A ) )
     => ( ( ord_less_nat @ zero_zero_nat @ A )
       => ( ord_less_nat @ zero_zero_nat @ B ) ) ) ).

% zero_less_mult_pos2
thf(fact_3232_zero__less__mult__pos2,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ zero_zero_int @ ( times_times_int @ B @ A ) )
     => ( ( ord_less_int @ zero_zero_int @ A )
       => ( ord_less_int @ zero_zero_int @ B ) ) ) ).

% zero_less_mult_pos2
thf(fact_3233_zero__less__mult__pos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
     => ( ( ord_less_real @ zero_zero_real @ A )
       => ( ord_less_real @ zero_zero_real @ B ) ) ) ).

% zero_less_mult_pos
thf(fact_3234_zero__less__mult__pos,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) )
     => ( ( ord_less_rat @ zero_zero_rat @ A )
       => ( ord_less_rat @ zero_zero_rat @ B ) ) ) ).

% zero_less_mult_pos
thf(fact_3235_zero__less__mult__pos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ A @ B ) )
     => ( ( ord_less_nat @ zero_zero_nat @ A )
       => ( ord_less_nat @ zero_zero_nat @ B ) ) ) ).

% zero_less_mult_pos
thf(fact_3236_zero__less__mult__pos,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ ( times_times_int @ A @ B ) )
     => ( ( ord_less_int @ zero_zero_int @ A )
       => ( ord_less_int @ zero_zero_int @ B ) ) ) ).

% zero_less_mult_pos
thf(fact_3237_zero__less__mult__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
      = ( ( ( ord_less_real @ zero_zero_real @ A )
          & ( ord_less_real @ zero_zero_real @ B ) )
        | ( ( ord_less_real @ A @ zero_zero_real )
          & ( ord_less_real @ B @ zero_zero_real ) ) ) ) ).

% zero_less_mult_iff
thf(fact_3238_zero__less__mult__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ A )
          & ( ord_less_rat @ zero_zero_rat @ B ) )
        | ( ( ord_less_rat @ A @ zero_zero_rat )
          & ( ord_less_rat @ B @ zero_zero_rat ) ) ) ) ).

% zero_less_mult_iff
thf(fact_3239_zero__less__mult__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ ( times_times_int @ A @ B ) )
      = ( ( ( ord_less_int @ zero_zero_int @ A )
          & ( ord_less_int @ zero_zero_int @ B ) )
        | ( ( ord_less_int @ A @ zero_zero_int )
          & ( ord_less_int @ B @ zero_zero_int ) ) ) ) ).

% zero_less_mult_iff
thf(fact_3240_mult__pos__neg2,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ B @ zero_zero_real )
       => ( ord_less_real @ ( times_times_real @ B @ A ) @ zero_zero_real ) ) ) ).

% mult_pos_neg2
thf(fact_3241_mult__pos__neg2,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ( ord_less_rat @ B @ zero_zero_rat )
       => ( ord_less_rat @ ( times_times_rat @ B @ A ) @ zero_zero_rat ) ) ) ).

% mult_pos_neg2
thf(fact_3242_mult__pos__neg2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ B @ zero_zero_nat )
       => ( ord_less_nat @ ( times_times_nat @ B @ A ) @ zero_zero_nat ) ) ) ).

% mult_pos_neg2
thf(fact_3243_mult__pos__neg2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ B @ zero_zero_int )
       => ( ord_less_int @ ( times_times_int @ B @ A ) @ zero_zero_int ) ) ) ).

% mult_pos_neg2
thf(fact_3244_mult__pos__pos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ B )
       => ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) ) ) ) ).

% mult_pos_pos
thf(fact_3245_mult__pos__pos,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ( ord_less_rat @ zero_zero_rat @ B )
       => ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) ) ) ) ).

% mult_pos_pos
thf(fact_3246_mult__pos__pos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ B )
       => ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ A @ B ) ) ) ) ).

% mult_pos_pos
thf(fact_3247_mult__pos__pos,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ zero_zero_int @ B )
       => ( ord_less_int @ zero_zero_int @ ( times_times_int @ A @ B ) ) ) ) ).

% mult_pos_pos
thf(fact_3248_mult__pos__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ B @ zero_zero_real )
       => ( ord_less_real @ ( times_times_real @ A @ B ) @ zero_zero_real ) ) ) ).

% mult_pos_neg
thf(fact_3249_mult__pos__neg,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ( ord_less_rat @ B @ zero_zero_rat )
       => ( ord_less_rat @ ( times_times_rat @ A @ B ) @ zero_zero_rat ) ) ) ).

% mult_pos_neg
thf(fact_3250_mult__pos__neg,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ B @ zero_zero_nat )
       => ( ord_less_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% mult_pos_neg
thf(fact_3251_mult__pos__neg,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ B @ zero_zero_int )
       => ( ord_less_int @ ( times_times_int @ A @ B ) @ zero_zero_int ) ) ) ).

% mult_pos_neg
thf(fact_3252_mult__neg__pos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ( ord_less_real @ zero_zero_real @ B )
       => ( ord_less_real @ ( times_times_real @ A @ B ) @ zero_zero_real ) ) ) ).

% mult_neg_pos
thf(fact_3253_mult__neg__pos,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ zero_zero_rat )
     => ( ( ord_less_rat @ zero_zero_rat @ B )
       => ( ord_less_rat @ ( times_times_rat @ A @ B ) @ zero_zero_rat ) ) ) ).

% mult_neg_pos
thf(fact_3254_mult__neg__pos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ zero_zero_nat )
     => ( ( ord_less_nat @ zero_zero_nat @ B )
       => ( ord_less_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% mult_neg_pos
thf(fact_3255_mult__neg__pos,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ zero_zero_int )
     => ( ( ord_less_int @ zero_zero_int @ B )
       => ( ord_less_int @ ( times_times_int @ A @ B ) @ zero_zero_int ) ) ) ).

% mult_neg_pos
thf(fact_3256_mult__less__0__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ ( times_times_real @ A @ B ) @ zero_zero_real )
      = ( ( ( ord_less_real @ zero_zero_real @ A )
          & ( ord_less_real @ B @ zero_zero_real ) )
        | ( ( ord_less_real @ A @ zero_zero_real )
          & ( ord_less_real @ zero_zero_real @ B ) ) ) ) ).

% mult_less_0_iff
thf(fact_3257_mult__less__0__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ ( times_times_rat @ A @ B ) @ zero_zero_rat )
      = ( ( ( ord_less_rat @ zero_zero_rat @ A )
          & ( ord_less_rat @ B @ zero_zero_rat ) )
        | ( ( ord_less_rat @ A @ zero_zero_rat )
          & ( ord_less_rat @ zero_zero_rat @ B ) ) ) ) ).

% mult_less_0_iff
thf(fact_3258_mult__less__0__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ ( times_times_int @ A @ B ) @ zero_zero_int )
      = ( ( ( ord_less_int @ zero_zero_int @ A )
          & ( ord_less_int @ B @ zero_zero_int ) )
        | ( ( ord_less_int @ A @ zero_zero_int )
          & ( ord_less_int @ zero_zero_int @ B ) ) ) ) ).

% mult_less_0_iff
thf(fact_3259_not__square__less__zero,axiom,
    ! [A: real] :
      ~ ( ord_less_real @ ( times_times_real @ A @ A ) @ zero_zero_real ) ).

% not_square_less_zero
thf(fact_3260_not__square__less__zero,axiom,
    ! [A: rat] :
      ~ ( ord_less_rat @ ( times_times_rat @ A @ A ) @ zero_zero_rat ) ).

% not_square_less_zero
thf(fact_3261_not__square__less__zero,axiom,
    ! [A: int] :
      ~ ( ord_less_int @ ( times_times_int @ A @ A ) @ zero_zero_int ) ).

% not_square_less_zero
thf(fact_3262_mult__neg__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ( ord_less_real @ B @ zero_zero_real )
       => ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) ) ) ) ).

% mult_neg_neg
thf(fact_3263_mult__neg__neg,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ zero_zero_rat )
     => ( ( ord_less_rat @ B @ zero_zero_rat )
       => ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) ) ) ) ).

% mult_neg_neg
thf(fact_3264_mult__neg__neg,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ zero_zero_int )
     => ( ( ord_less_int @ B @ zero_zero_int )
       => ( ord_less_int @ zero_zero_int @ ( times_times_int @ A @ B ) ) ) ) ).

% mult_neg_neg
thf(fact_3265_zero__less__one__class_Ozero__le__one,axiom,
    ord_less_eq_real @ zero_zero_real @ one_one_real ).

% zero_less_one_class.zero_le_one
thf(fact_3266_zero__less__one__class_Ozero__le__one,axiom,
    ord_less_eq_rat @ zero_zero_rat @ one_one_rat ).

% zero_less_one_class.zero_le_one
thf(fact_3267_zero__less__one__class_Ozero__le__one,axiom,
    ord_less_eq_nat @ zero_zero_nat @ one_one_nat ).

% zero_less_one_class.zero_le_one
thf(fact_3268_zero__less__one__class_Ozero__le__one,axiom,
    ord_less_eq_int @ zero_zero_int @ one_one_int ).

% zero_less_one_class.zero_le_one
thf(fact_3269_linordered__nonzero__semiring__class_Ozero__le__one,axiom,
    ord_less_eq_real @ zero_zero_real @ one_one_real ).

% linordered_nonzero_semiring_class.zero_le_one
thf(fact_3270_linordered__nonzero__semiring__class_Ozero__le__one,axiom,
    ord_less_eq_rat @ zero_zero_rat @ one_one_rat ).

% linordered_nonzero_semiring_class.zero_le_one
thf(fact_3271_linordered__nonzero__semiring__class_Ozero__le__one,axiom,
    ord_less_eq_nat @ zero_zero_nat @ one_one_nat ).

% linordered_nonzero_semiring_class.zero_le_one
thf(fact_3272_linordered__nonzero__semiring__class_Ozero__le__one,axiom,
    ord_less_eq_int @ zero_zero_int @ one_one_int ).

% linordered_nonzero_semiring_class.zero_le_one
thf(fact_3273_not__one__le__zero,axiom,
    ~ ( ord_less_eq_real @ one_one_real @ zero_zero_real ) ).

% not_one_le_zero
thf(fact_3274_not__one__le__zero,axiom,
    ~ ( ord_less_eq_rat @ one_one_rat @ zero_zero_rat ) ).

% not_one_le_zero
thf(fact_3275_not__one__le__zero,axiom,
    ~ ( ord_less_eq_nat @ one_one_nat @ zero_zero_nat ) ).

% not_one_le_zero
thf(fact_3276_not__one__le__zero,axiom,
    ~ ( ord_less_eq_int @ one_one_int @ zero_zero_int ) ).

% not_one_le_zero
thf(fact_3277_add__less__zeroD,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ ( plus_plus_real @ X @ Y ) @ zero_zero_real )
     => ( ( ord_less_real @ X @ zero_zero_real )
        | ( ord_less_real @ Y @ zero_zero_real ) ) ) ).

% add_less_zeroD
thf(fact_3278_add__less__zeroD,axiom,
    ! [X: rat,Y: rat] :
      ( ( ord_less_rat @ ( plus_plus_rat @ X @ Y ) @ zero_zero_rat )
     => ( ( ord_less_rat @ X @ zero_zero_rat )
        | ( ord_less_rat @ Y @ zero_zero_rat ) ) ) ).

% add_less_zeroD
thf(fact_3279_add__less__zeroD,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_int @ ( plus_plus_int @ X @ Y ) @ zero_zero_int )
     => ( ( ord_less_int @ X @ zero_zero_int )
        | ( ord_less_int @ Y @ zero_zero_int ) ) ) ).

% add_less_zeroD
thf(fact_3280_pos__add__strict,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ B @ C )
       => ( ord_less_real @ B @ ( plus_plus_real @ A @ C ) ) ) ) ).

% pos_add_strict
thf(fact_3281_pos__add__strict,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ( ord_less_rat @ B @ C )
       => ( ord_less_rat @ B @ ( plus_plus_rat @ A @ C ) ) ) ) ).

% pos_add_strict
thf(fact_3282_pos__add__strict,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ B @ C )
       => ( ord_less_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).

% pos_add_strict
thf(fact_3283_pos__add__strict,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ B @ C )
       => ( ord_less_int @ B @ ( plus_plus_int @ A @ C ) ) ) ) ).

% pos_add_strict
thf(fact_3284_canonically__ordered__monoid__add__class_OlessE,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ~ ! [C3: nat] :
            ( ( B
              = ( plus_plus_nat @ A @ C3 ) )
           => ( C3 = zero_zero_nat ) ) ) ).

% canonically_ordered_monoid_add_class.lessE
thf(fact_3285_add__pos__pos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ B )
       => ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ A @ B ) ) ) ) ).

% add_pos_pos
thf(fact_3286_add__pos__pos,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ( ord_less_rat @ zero_zero_rat @ B )
       => ( ord_less_rat @ zero_zero_rat @ ( plus_plus_rat @ A @ B ) ) ) ) ).

% add_pos_pos
thf(fact_3287_add__pos__pos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ B )
       => ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% add_pos_pos
thf(fact_3288_add__pos__pos,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ zero_zero_int @ B )
       => ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ A @ B ) ) ) ) ).

% add_pos_pos
thf(fact_3289_add__neg__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ( ord_less_real @ B @ zero_zero_real )
       => ( ord_less_real @ ( plus_plus_real @ A @ B ) @ zero_zero_real ) ) ) ).

% add_neg_neg
thf(fact_3290_add__neg__neg,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ zero_zero_rat )
     => ( ( ord_less_rat @ B @ zero_zero_rat )
       => ( ord_less_rat @ ( plus_plus_rat @ A @ B ) @ zero_zero_rat ) ) ) ).

% add_neg_neg
thf(fact_3291_add__neg__neg,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ zero_zero_nat )
     => ( ( ord_less_nat @ B @ zero_zero_nat )
       => ( ord_less_nat @ ( plus_plus_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% add_neg_neg
thf(fact_3292_add__neg__neg,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ zero_zero_int )
     => ( ( ord_less_int @ B @ zero_zero_int )
       => ( ord_less_int @ ( plus_plus_int @ A @ B ) @ zero_zero_int ) ) ) ).

% add_neg_neg
thf(fact_3293_zero__less__one,axiom,
    ord_less_real @ zero_zero_real @ one_one_real ).

% zero_less_one
thf(fact_3294_zero__less__one,axiom,
    ord_less_rat @ zero_zero_rat @ one_one_rat ).

% zero_less_one
thf(fact_3295_zero__less__one,axiom,
    ord_less_nat @ zero_zero_nat @ one_one_nat ).

% zero_less_one
thf(fact_3296_zero__less__one,axiom,
    ord_less_int @ zero_zero_int @ one_one_int ).

% zero_less_one
thf(fact_3297_not__one__less__zero,axiom,
    ~ ( ord_less_real @ one_one_real @ zero_zero_real ) ).

% not_one_less_zero
thf(fact_3298_not__one__less__zero,axiom,
    ~ ( ord_less_rat @ one_one_rat @ zero_zero_rat ) ).

% not_one_less_zero
thf(fact_3299_not__one__less__zero,axiom,
    ~ ( ord_less_nat @ one_one_nat @ zero_zero_nat ) ).

% not_one_less_zero
thf(fact_3300_not__one__less__zero,axiom,
    ~ ( ord_less_int @ one_one_int @ zero_zero_int ) ).

% not_one_less_zero
thf(fact_3301_less__numeral__extra_I1_J,axiom,
    ord_less_real @ zero_zero_real @ one_one_real ).

% less_numeral_extra(1)
thf(fact_3302_less__numeral__extra_I1_J,axiom,
    ord_less_rat @ zero_zero_rat @ one_one_rat ).

% less_numeral_extra(1)
thf(fact_3303_less__numeral__extra_I1_J,axiom,
    ord_less_nat @ zero_zero_nat @ one_one_nat ).

% less_numeral_extra(1)
thf(fact_3304_less__numeral__extra_I1_J,axiom,
    ord_less_int @ zero_zero_int @ one_one_int ).

% less_numeral_extra(1)
thf(fact_3305_le__iff__diff__le__0,axiom,
    ( ord_less_eq_real
    = ( ^ [A4: real,B4: real] : ( ord_less_eq_real @ ( minus_minus_real @ A4 @ B4 ) @ zero_zero_real ) ) ) ).

% le_iff_diff_le_0
thf(fact_3306_le__iff__diff__le__0,axiom,
    ( ord_less_eq_rat
    = ( ^ [A4: rat,B4: rat] : ( ord_less_eq_rat @ ( minus_minus_rat @ A4 @ B4 ) @ zero_zero_rat ) ) ) ).

% le_iff_diff_le_0
thf(fact_3307_le__iff__diff__le__0,axiom,
    ( ord_less_eq_int
    = ( ^ [A4: int,B4: int] : ( ord_less_eq_int @ ( minus_minus_int @ A4 @ B4 ) @ zero_zero_int ) ) ) ).

% le_iff_diff_le_0
thf(fact_3308_divide__right__mono__neg,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ C @ zero_zero_real )
       => ( ord_less_eq_real @ ( divide_divide_real @ B @ C ) @ ( divide_divide_real @ A @ C ) ) ) ) ).

% divide_right_mono_neg
thf(fact_3309_divide__right__mono__neg,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_rat @ C @ zero_zero_rat )
       => ( ord_less_eq_rat @ ( divide_divide_rat @ B @ C ) @ ( divide_divide_rat @ A @ C ) ) ) ) ).

% divide_right_mono_neg
thf(fact_3310_divide__nonpos__nonpos,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ X @ zero_zero_real )
     => ( ( ord_less_eq_real @ Y @ zero_zero_real )
       => ( ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ X @ Y ) ) ) ) ).

% divide_nonpos_nonpos
thf(fact_3311_divide__nonpos__nonpos,axiom,
    ! [X: rat,Y: rat] :
      ( ( ord_less_eq_rat @ X @ zero_zero_rat )
     => ( ( ord_less_eq_rat @ Y @ zero_zero_rat )
       => ( ord_less_eq_rat @ zero_zero_rat @ ( divide_divide_rat @ X @ Y ) ) ) ) ).

% divide_nonpos_nonpos
thf(fact_3312_divide__nonpos__nonneg,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ X @ zero_zero_real )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y )
       => ( ord_less_eq_real @ ( divide_divide_real @ X @ Y ) @ zero_zero_real ) ) ) ).

% divide_nonpos_nonneg
thf(fact_3313_divide__nonpos__nonneg,axiom,
    ! [X: rat,Y: rat] :
      ( ( ord_less_eq_rat @ X @ zero_zero_rat )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ Y )
       => ( ord_less_eq_rat @ ( divide_divide_rat @ X @ Y ) @ zero_zero_rat ) ) ) ).

% divide_nonpos_nonneg
thf(fact_3314_divide__nonneg__nonpos,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ Y @ zero_zero_real )
       => ( ord_less_eq_real @ ( divide_divide_real @ X @ Y ) @ zero_zero_real ) ) ) ).

% divide_nonneg_nonpos
thf(fact_3315_divide__nonneg__nonpos,axiom,
    ! [X: rat,Y: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ X )
     => ( ( ord_less_eq_rat @ Y @ zero_zero_rat )
       => ( ord_less_eq_rat @ ( divide_divide_rat @ X @ Y ) @ zero_zero_rat ) ) ) ).

% divide_nonneg_nonpos
thf(fact_3316_divide__nonneg__nonneg,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y )
       => ( ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ X @ Y ) ) ) ) ).

% divide_nonneg_nonneg
thf(fact_3317_divide__nonneg__nonneg,axiom,
    ! [X: rat,Y: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ X )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ Y )
       => ( ord_less_eq_rat @ zero_zero_rat @ ( divide_divide_rat @ X @ Y ) ) ) ) ).

% divide_nonneg_nonneg
thf(fact_3318_zero__le__divide__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ A @ B ) )
      = ( ( ( ord_less_eq_real @ zero_zero_real @ A )
          & ( ord_less_eq_real @ zero_zero_real @ B ) )
        | ( ( ord_less_eq_real @ A @ zero_zero_real )
          & ( ord_less_eq_real @ B @ zero_zero_real ) ) ) ) ).

% zero_le_divide_iff
thf(fact_3319_zero__le__divide__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ ( divide_divide_rat @ A @ B ) )
      = ( ( ( ord_less_eq_rat @ zero_zero_rat @ A )
          & ( ord_less_eq_rat @ zero_zero_rat @ B ) )
        | ( ( ord_less_eq_rat @ A @ zero_zero_rat )
          & ( ord_less_eq_rat @ B @ zero_zero_rat ) ) ) ) ).

% zero_le_divide_iff
thf(fact_3320_divide__right__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ zero_zero_real @ C )
       => ( ord_less_eq_real @ ( divide_divide_real @ A @ C ) @ ( divide_divide_real @ B @ C ) ) ) ) ).

% divide_right_mono
thf(fact_3321_divide__right__mono,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ C )
       => ( ord_less_eq_rat @ ( divide_divide_rat @ A @ C ) @ ( divide_divide_rat @ B @ C ) ) ) ) ).

% divide_right_mono
thf(fact_3322_divide__le__0__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ ( divide_divide_real @ A @ B ) @ zero_zero_real )
      = ( ( ( ord_less_eq_real @ zero_zero_real @ A )
          & ( ord_less_eq_real @ B @ zero_zero_real ) )
        | ( ( ord_less_eq_real @ A @ zero_zero_real )
          & ( ord_less_eq_real @ zero_zero_real @ B ) ) ) ) ).

% divide_le_0_iff
thf(fact_3323_divide__le__0__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( divide_divide_rat @ A @ B ) @ zero_zero_rat )
      = ( ( ( ord_less_eq_rat @ zero_zero_rat @ A )
          & ( ord_less_eq_rat @ B @ zero_zero_rat ) )
        | ( ( ord_less_eq_rat @ A @ zero_zero_rat )
          & ( ord_less_eq_rat @ zero_zero_rat @ B ) ) ) ) ).

% divide_le_0_iff
thf(fact_3324_zero__le__power,axiom,
    ! [A: real,N2: nat] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ A @ N2 ) ) ) ).

% zero_le_power
thf(fact_3325_zero__le__power,axiom,
    ! [A: rat,N2: nat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ A )
     => ( ord_less_eq_rat @ zero_zero_rat @ ( power_power_rat @ A @ N2 ) ) ) ).

% zero_le_power
thf(fact_3326_zero__le__power,axiom,
    ! [A: nat,N2: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ord_less_eq_nat @ zero_zero_nat @ ( power_power_nat @ A @ N2 ) ) ) ).

% zero_le_power
thf(fact_3327_zero__le__power,axiom,
    ! [A: int,N2: nat] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ A @ N2 ) ) ) ).

% zero_le_power
thf(fact_3328_power__mono,axiom,
    ! [A: real,B: real,N2: nat] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ zero_zero_real @ A )
       => ( ord_less_eq_real @ ( power_power_real @ A @ N2 ) @ ( power_power_real @ B @ N2 ) ) ) ) ).

% power_mono
thf(fact_3329_power__mono,axiom,
    ! [A: rat,B: rat,N2: nat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ A )
       => ( ord_less_eq_rat @ ( power_power_rat @ A @ N2 ) @ ( power_power_rat @ B @ N2 ) ) ) ) ).

% power_mono
thf(fact_3330_power__mono,axiom,
    ! [A: nat,B: nat,N2: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ A )
       => ( ord_less_eq_nat @ ( power_power_nat @ A @ N2 ) @ ( power_power_nat @ B @ N2 ) ) ) ) ).

% power_mono
thf(fact_3331_power__mono,axiom,
    ! [A: int,B: int,N2: nat] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ zero_zero_int @ A )
       => ( ord_less_eq_int @ ( power_power_int @ A @ N2 ) @ ( power_power_int @ B @ N2 ) ) ) ) ).

% power_mono
thf(fact_3332_less__iff__diff__less__0,axiom,
    ( ord_less_real
    = ( ^ [A4: real,B4: real] : ( ord_less_real @ ( minus_minus_real @ A4 @ B4 ) @ zero_zero_real ) ) ) ).

% less_iff_diff_less_0
thf(fact_3333_less__iff__diff__less__0,axiom,
    ( ord_less_rat
    = ( ^ [A4: rat,B4: rat] : ( ord_less_rat @ ( minus_minus_rat @ A4 @ B4 ) @ zero_zero_rat ) ) ) ).

% less_iff_diff_less_0
thf(fact_3334_less__iff__diff__less__0,axiom,
    ( ord_less_int
    = ( ^ [A4: int,B4: int] : ( ord_less_int @ ( minus_minus_int @ A4 @ B4 ) @ zero_zero_int ) ) ) ).

% less_iff_diff_less_0
thf(fact_3335_divide__strict__right__mono__neg,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_real @ B @ A )
     => ( ( ord_less_real @ C @ zero_zero_real )
       => ( ord_less_real @ ( divide_divide_real @ A @ C ) @ ( divide_divide_real @ B @ C ) ) ) ) ).

% divide_strict_right_mono_neg
thf(fact_3336_divide__strict__right__mono__neg,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( ord_less_rat @ B @ A )
     => ( ( ord_less_rat @ C @ zero_zero_rat )
       => ( ord_less_rat @ ( divide_divide_rat @ A @ C ) @ ( divide_divide_rat @ B @ C ) ) ) ) ).

% divide_strict_right_mono_neg
thf(fact_3337_divide__strict__right__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ zero_zero_real @ C )
       => ( ord_less_real @ ( divide_divide_real @ A @ C ) @ ( divide_divide_real @ B @ C ) ) ) ) ).

% divide_strict_right_mono
thf(fact_3338_divide__strict__right__mono,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_rat @ zero_zero_rat @ C )
       => ( ord_less_rat @ ( divide_divide_rat @ A @ C ) @ ( divide_divide_rat @ B @ C ) ) ) ) ).

% divide_strict_right_mono
thf(fact_3339_zero__less__divide__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ ( divide_divide_real @ A @ B ) )
      = ( ( ( ord_less_real @ zero_zero_real @ A )
          & ( ord_less_real @ zero_zero_real @ B ) )
        | ( ( ord_less_real @ A @ zero_zero_real )
          & ( ord_less_real @ B @ zero_zero_real ) ) ) ) ).

% zero_less_divide_iff
thf(fact_3340_zero__less__divide__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( divide_divide_rat @ A @ B ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ A )
          & ( ord_less_rat @ zero_zero_rat @ B ) )
        | ( ( ord_less_rat @ A @ zero_zero_rat )
          & ( ord_less_rat @ B @ zero_zero_rat ) ) ) ) ).

% zero_less_divide_iff
thf(fact_3341_divide__less__cancel,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_real @ ( divide_divide_real @ A @ C ) @ ( divide_divide_real @ B @ C ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_real @ A @ B ) )
        & ( ( ord_less_real @ C @ zero_zero_real )
         => ( ord_less_real @ B @ A ) )
        & ( C != zero_zero_real ) ) ) ).

% divide_less_cancel
thf(fact_3342_divide__less__cancel,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( ord_less_rat @ ( divide_divide_rat @ A @ C ) @ ( divide_divide_rat @ B @ C ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_rat @ A @ B ) )
        & ( ( ord_less_rat @ C @ zero_zero_rat )
         => ( ord_less_rat @ B @ A ) )
        & ( C != zero_zero_rat ) ) ) ).

% divide_less_cancel
thf(fact_3343_divide__less__0__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ ( divide_divide_real @ A @ B ) @ zero_zero_real )
      = ( ( ( ord_less_real @ zero_zero_real @ A )
          & ( ord_less_real @ B @ zero_zero_real ) )
        | ( ( ord_less_real @ A @ zero_zero_real )
          & ( ord_less_real @ zero_zero_real @ B ) ) ) ) ).

% divide_less_0_iff
thf(fact_3344_divide__less__0__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ ( divide_divide_rat @ A @ B ) @ zero_zero_rat )
      = ( ( ( ord_less_rat @ zero_zero_rat @ A )
          & ( ord_less_rat @ B @ zero_zero_rat ) )
        | ( ( ord_less_rat @ A @ zero_zero_rat )
          & ( ord_less_rat @ zero_zero_rat @ B ) ) ) ) ).

% divide_less_0_iff
thf(fact_3345_divide__pos__pos,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ zero_zero_real @ Y )
       => ( ord_less_real @ zero_zero_real @ ( divide_divide_real @ X @ Y ) ) ) ) ).

% divide_pos_pos
thf(fact_3346_divide__pos__pos,axiom,
    ! [X: rat,Y: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ X )
     => ( ( ord_less_rat @ zero_zero_rat @ Y )
       => ( ord_less_rat @ zero_zero_rat @ ( divide_divide_rat @ X @ Y ) ) ) ) ).

% divide_pos_pos
thf(fact_3347_divide__pos__neg,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ Y @ zero_zero_real )
       => ( ord_less_real @ ( divide_divide_real @ X @ Y ) @ zero_zero_real ) ) ) ).

% divide_pos_neg
thf(fact_3348_divide__pos__neg,axiom,
    ! [X: rat,Y: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ X )
     => ( ( ord_less_rat @ Y @ zero_zero_rat )
       => ( ord_less_rat @ ( divide_divide_rat @ X @ Y ) @ zero_zero_rat ) ) ) ).

% divide_pos_neg
thf(fact_3349_divide__neg__pos,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ X @ zero_zero_real )
     => ( ( ord_less_real @ zero_zero_real @ Y )
       => ( ord_less_real @ ( divide_divide_real @ X @ Y ) @ zero_zero_real ) ) ) ).

% divide_neg_pos
thf(fact_3350_divide__neg__pos,axiom,
    ! [X: rat,Y: rat] :
      ( ( ord_less_rat @ X @ zero_zero_rat )
     => ( ( ord_less_rat @ zero_zero_rat @ Y )
       => ( ord_less_rat @ ( divide_divide_rat @ X @ Y ) @ zero_zero_rat ) ) ) ).

% divide_neg_pos
thf(fact_3351_divide__neg__neg,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ X @ zero_zero_real )
     => ( ( ord_less_real @ Y @ zero_zero_real )
       => ( ord_less_real @ zero_zero_real @ ( divide_divide_real @ X @ Y ) ) ) ) ).

% divide_neg_neg
thf(fact_3352_divide__neg__neg,axiom,
    ! [X: rat,Y: rat] :
      ( ( ord_less_rat @ X @ zero_zero_rat )
     => ( ( ord_less_rat @ Y @ zero_zero_rat )
       => ( ord_less_rat @ zero_zero_rat @ ( divide_divide_rat @ X @ Y ) ) ) ) ).

% divide_neg_neg
thf(fact_3353_zero__less__power,axiom,
    ! [A: real,N2: nat] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ord_less_real @ zero_zero_real @ ( power_power_real @ A @ N2 ) ) ) ).

% zero_less_power
thf(fact_3354_zero__less__power,axiom,
    ! [A: rat,N2: nat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ord_less_rat @ zero_zero_rat @ ( power_power_rat @ A @ N2 ) ) ) ).

% zero_less_power
thf(fact_3355_zero__less__power,axiom,
    ! [A: nat,N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ord_less_nat @ zero_zero_nat @ ( power_power_nat @ A @ N2 ) ) ) ).

% zero_less_power
thf(fact_3356_zero__less__power,axiom,
    ! [A: int,N2: nat] :
      ( ( ord_less_int @ zero_zero_int @ A )
     => ( ord_less_int @ zero_zero_int @ ( power_power_int @ A @ N2 ) ) ) ).

% zero_less_power
thf(fact_3357_nonzero__eq__divide__eq,axiom,
    ! [C: complex,A: complex,B: complex] :
      ( ( C != zero_zero_complex )
     => ( ( A
          = ( divide1717551699836669952omplex @ B @ C ) )
        = ( ( times_times_complex @ A @ C )
          = B ) ) ) ).

% nonzero_eq_divide_eq
thf(fact_3358_nonzero__eq__divide__eq,axiom,
    ! [C: real,A: real,B: real] :
      ( ( C != zero_zero_real )
     => ( ( A
          = ( divide_divide_real @ B @ C ) )
        = ( ( times_times_real @ A @ C )
          = B ) ) ) ).

% nonzero_eq_divide_eq
thf(fact_3359_nonzero__eq__divide__eq,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( C != zero_zero_rat )
     => ( ( A
          = ( divide_divide_rat @ B @ C ) )
        = ( ( times_times_rat @ A @ C )
          = B ) ) ) ).

% nonzero_eq_divide_eq
thf(fact_3360_nonzero__divide__eq__eq,axiom,
    ! [C: complex,B: complex,A: complex] :
      ( ( C != zero_zero_complex )
     => ( ( ( divide1717551699836669952omplex @ B @ C )
          = A )
        = ( B
          = ( times_times_complex @ A @ C ) ) ) ) ).

% nonzero_divide_eq_eq
thf(fact_3361_nonzero__divide__eq__eq,axiom,
    ! [C: real,B: real,A: real] :
      ( ( C != zero_zero_real )
     => ( ( ( divide_divide_real @ B @ C )
          = A )
        = ( B
          = ( times_times_real @ A @ C ) ) ) ) ).

% nonzero_divide_eq_eq
thf(fact_3362_nonzero__divide__eq__eq,axiom,
    ! [C: rat,B: rat,A: rat] :
      ( ( C != zero_zero_rat )
     => ( ( ( divide_divide_rat @ B @ C )
          = A )
        = ( B
          = ( times_times_rat @ A @ C ) ) ) ) ).

% nonzero_divide_eq_eq
thf(fact_3363_eq__divide__imp,axiom,
    ! [C: complex,A: complex,B: complex] :
      ( ( C != zero_zero_complex )
     => ( ( ( times_times_complex @ A @ C )
          = B )
       => ( A
          = ( divide1717551699836669952omplex @ B @ C ) ) ) ) ).

% eq_divide_imp
thf(fact_3364_eq__divide__imp,axiom,
    ! [C: real,A: real,B: real] :
      ( ( C != zero_zero_real )
     => ( ( ( times_times_real @ A @ C )
          = B )
       => ( A
          = ( divide_divide_real @ B @ C ) ) ) ) ).

% eq_divide_imp
thf(fact_3365_eq__divide__imp,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( C != zero_zero_rat )
     => ( ( ( times_times_rat @ A @ C )
          = B )
       => ( A
          = ( divide_divide_rat @ B @ C ) ) ) ) ).

% eq_divide_imp
thf(fact_3366_divide__eq__imp,axiom,
    ! [C: complex,B: complex,A: complex] :
      ( ( C != zero_zero_complex )
     => ( ( B
          = ( times_times_complex @ A @ C ) )
       => ( ( divide1717551699836669952omplex @ B @ C )
          = A ) ) ) ).

% divide_eq_imp
thf(fact_3367_divide__eq__imp,axiom,
    ! [C: real,B: real,A: real] :
      ( ( C != zero_zero_real )
     => ( ( B
          = ( times_times_real @ A @ C ) )
       => ( ( divide_divide_real @ B @ C )
          = A ) ) ) ).

% divide_eq_imp
thf(fact_3368_divide__eq__imp,axiom,
    ! [C: rat,B: rat,A: rat] :
      ( ( C != zero_zero_rat )
     => ( ( B
          = ( times_times_rat @ A @ C ) )
       => ( ( divide_divide_rat @ B @ C )
          = A ) ) ) ).

% divide_eq_imp
thf(fact_3369_eq__divide__eq,axiom,
    ! [A: complex,B: complex,C: complex] :
      ( ( A
        = ( divide1717551699836669952omplex @ B @ C ) )
      = ( ( ( C != zero_zero_complex )
         => ( ( times_times_complex @ A @ C )
            = B ) )
        & ( ( C = zero_zero_complex )
         => ( A = zero_zero_complex ) ) ) ) ).

% eq_divide_eq
thf(fact_3370_eq__divide__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( A
        = ( divide_divide_real @ B @ C ) )
      = ( ( ( C != zero_zero_real )
         => ( ( times_times_real @ A @ C )
            = B ) )
        & ( ( C = zero_zero_real )
         => ( A = zero_zero_real ) ) ) ) ).

% eq_divide_eq
thf(fact_3371_eq__divide__eq,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( A
        = ( divide_divide_rat @ B @ C ) )
      = ( ( ( C != zero_zero_rat )
         => ( ( times_times_rat @ A @ C )
            = B ) )
        & ( ( C = zero_zero_rat )
         => ( A = zero_zero_rat ) ) ) ) ).

% eq_divide_eq
thf(fact_3372_divide__eq__eq,axiom,
    ! [B: complex,C: complex,A: complex] :
      ( ( ( divide1717551699836669952omplex @ B @ C )
        = A )
      = ( ( ( C != zero_zero_complex )
         => ( B
            = ( times_times_complex @ A @ C ) ) )
        & ( ( C = zero_zero_complex )
         => ( A = zero_zero_complex ) ) ) ) ).

% divide_eq_eq
thf(fact_3373_divide__eq__eq,axiom,
    ! [B: real,C: real,A: real] :
      ( ( ( divide_divide_real @ B @ C )
        = A )
      = ( ( ( C != zero_zero_real )
         => ( B
            = ( times_times_real @ A @ C ) ) )
        & ( ( C = zero_zero_real )
         => ( A = zero_zero_real ) ) ) ) ).

% divide_eq_eq
thf(fact_3374_divide__eq__eq,axiom,
    ! [B: rat,C: rat,A: rat] :
      ( ( ( divide_divide_rat @ B @ C )
        = A )
      = ( ( ( C != zero_zero_rat )
         => ( B
            = ( times_times_rat @ A @ C ) ) )
        & ( ( C = zero_zero_rat )
         => ( A = zero_zero_rat ) ) ) ) ).

% divide_eq_eq
thf(fact_3375_frac__eq__eq,axiom,
    ! [Y: complex,Z: complex,X: complex,W: complex] :
      ( ( Y != zero_zero_complex )
     => ( ( Z != zero_zero_complex )
       => ( ( ( divide1717551699836669952omplex @ X @ Y )
            = ( divide1717551699836669952omplex @ W @ Z ) )
          = ( ( times_times_complex @ X @ Z )
            = ( times_times_complex @ W @ Y ) ) ) ) ) ).

% frac_eq_eq
thf(fact_3376_frac__eq__eq,axiom,
    ! [Y: real,Z: real,X: real,W: real] :
      ( ( Y != zero_zero_real )
     => ( ( Z != zero_zero_real )
       => ( ( ( divide_divide_real @ X @ Y )
            = ( divide_divide_real @ W @ Z ) )
          = ( ( times_times_real @ X @ Z )
            = ( times_times_real @ W @ Y ) ) ) ) ) ).

% frac_eq_eq
thf(fact_3377_frac__eq__eq,axiom,
    ! [Y: rat,Z: rat,X: rat,W: rat] :
      ( ( Y != zero_zero_rat )
     => ( ( Z != zero_zero_rat )
       => ( ( ( divide_divide_rat @ X @ Y )
            = ( divide_divide_rat @ W @ Z ) )
          = ( ( times_times_rat @ X @ Z )
            = ( times_times_rat @ W @ Y ) ) ) ) ) ).

% frac_eq_eq
thf(fact_3378_right__inverse__eq,axiom,
    ! [B: complex,A: complex] :
      ( ( B != zero_zero_complex )
     => ( ( ( divide1717551699836669952omplex @ A @ B )
          = one_one_complex )
        = ( A = B ) ) ) ).

% right_inverse_eq
thf(fact_3379_right__inverse__eq,axiom,
    ! [B: real,A: real] :
      ( ( B != zero_zero_real )
     => ( ( ( divide_divide_real @ A @ B )
          = one_one_real )
        = ( A = B ) ) ) ).

% right_inverse_eq
thf(fact_3380_right__inverse__eq,axiom,
    ! [B: rat,A: rat] :
      ( ( B != zero_zero_rat )
     => ( ( ( divide_divide_rat @ A @ B )
          = one_one_rat )
        = ( A = B ) ) ) ).

% right_inverse_eq
thf(fact_3381_power__0,axiom,
    ! [A: rat] :
      ( ( power_power_rat @ A @ zero_zero_nat )
      = one_one_rat ) ).

% power_0
thf(fact_3382_power__0,axiom,
    ! [A: nat] :
      ( ( power_power_nat @ A @ zero_zero_nat )
      = one_one_nat ) ).

% power_0
thf(fact_3383_power__0,axiom,
    ! [A: real] :
      ( ( power_power_real @ A @ zero_zero_nat )
      = one_one_real ) ).

% power_0
thf(fact_3384_power__0,axiom,
    ! [A: int] :
      ( ( power_power_int @ A @ zero_zero_nat )
      = one_one_int ) ).

% power_0
thf(fact_3385_power__0,axiom,
    ! [A: complex] :
      ( ( power_power_complex @ A @ zero_zero_nat )
      = one_one_complex ) ).

% power_0
thf(fact_3386_divmod__digit__0_I1_J,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ B )
     => ( ( ord_less_nat @ ( modulo_modulo_nat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) @ B )
       => ( ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) )
          = ( divide_divide_nat @ A @ B ) ) ) ) ).

% divmod_digit_0(1)
thf(fact_3387_divmod__digit__0_I1_J,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ( ord_less_int @ ( modulo_modulo_int @ A @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) @ B )
       => ( ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ A @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) )
          = ( divide_divide_int @ A @ B ) ) ) ) ).

% divmod_digit_0(1)
thf(fact_3388_divmod__digit__0_I1_J,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ B )
     => ( ( ord_le6747313008572928689nteger @ ( modulo364778990260209775nteger @ A @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) @ B )
       => ( ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( divide6298287555418463151nteger @ A @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) )
          = ( divide6298287555418463151nteger @ A @ B ) ) ) ) ).

% divmod_digit_0(1)
thf(fact_3389_Ex__less__Suc2,axiom,
    ! [N2: nat,P: nat > $o] :
      ( ( ? [I5: nat] :
            ( ( ord_less_nat @ I5 @ ( suc @ N2 ) )
            & ( P @ I5 ) ) )
      = ( ( P @ zero_zero_nat )
        | ? [I5: nat] :
            ( ( ord_less_nat @ I5 @ N2 )
            & ( P @ ( suc @ I5 ) ) ) ) ) ).

% Ex_less_Suc2
thf(fact_3390_gr0__conv__Suc,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
      = ( ? [M6: nat] :
            ( N2
            = ( suc @ M6 ) ) ) ) ).

% gr0_conv_Suc
thf(fact_3391_All__less__Suc2,axiom,
    ! [N2: nat,P: nat > $o] :
      ( ( ! [I5: nat] :
            ( ( ord_less_nat @ I5 @ ( suc @ N2 ) )
           => ( P @ I5 ) ) )
      = ( ( P @ zero_zero_nat )
        & ! [I5: nat] :
            ( ( ord_less_nat @ I5 @ N2 )
           => ( P @ ( suc @ I5 ) ) ) ) ) ).

% All_less_Suc2
thf(fact_3392_gr0__implies__Suc,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ? [M2: nat] :
          ( N2
          = ( suc @ M2 ) ) ) ).

% gr0_implies_Suc
thf(fact_3393_less__Suc__eq__0__disj,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ M @ ( suc @ N2 ) )
      = ( ( M = zero_zero_nat )
        | ? [J3: nat] :
            ( ( M
              = ( suc @ J3 ) )
            & ( ord_less_nat @ J3 @ N2 ) ) ) ) ).

% less_Suc_eq_0_disj
thf(fact_3394_one__is__add,axiom,
    ! [M: nat,N2: nat] :
      ( ( ( suc @ zero_zero_nat )
        = ( plus_plus_nat @ M @ N2 ) )
      = ( ( ( M
            = ( suc @ zero_zero_nat ) )
          & ( N2 = zero_zero_nat ) )
        | ( ( M = zero_zero_nat )
          & ( N2
            = ( suc @ zero_zero_nat ) ) ) ) ) ).

% one_is_add
thf(fact_3395_add__is__1,axiom,
    ! [M: nat,N2: nat] :
      ( ( ( plus_plus_nat @ M @ N2 )
        = ( suc @ zero_zero_nat ) )
      = ( ( ( M
            = ( suc @ zero_zero_nat ) )
          & ( N2 = zero_zero_nat ) )
        | ( ( M = zero_zero_nat )
          & ( N2
            = ( suc @ zero_zero_nat ) ) ) ) ) ).

% add_is_1
thf(fact_3396_option_Osize_I4_J,axiom,
    ! [X22: product_prod_nat_nat] :
      ( ( size_s170228958280169651at_nat @ ( some_P7363390416028606310at_nat @ X22 ) )
      = ( suc @ zero_zero_nat ) ) ).

% option.size(4)
thf(fact_3397_option_Osize_I4_J,axiom,
    ! [X22: nat] :
      ( ( size_size_option_nat @ ( some_nat @ X22 ) )
      = ( suc @ zero_zero_nat ) ) ).

% option.size(4)
thf(fact_3398_option_Osize_I4_J,axiom,
    ! [X22: num] :
      ( ( size_size_option_num @ ( some_num @ X22 ) )
      = ( suc @ zero_zero_nat ) ) ).

% option.size(4)
thf(fact_3399_less__imp__add__positive,axiom,
    ! [I2: nat,J: nat] :
      ( ( ord_less_nat @ I2 @ J )
     => ? [K2: nat] :
          ( ( ord_less_nat @ zero_zero_nat @ K2 )
          & ( ( plus_plus_nat @ I2 @ K2 )
            = J ) ) ) ).

% less_imp_add_positive
thf(fact_3400_ex__least__nat__le,axiom,
    ! [P: nat > $o,N2: nat] :
      ( ( P @ N2 )
     => ( ~ ( P @ zero_zero_nat )
       => ? [K2: nat] :
            ( ( ord_less_eq_nat @ K2 @ N2 )
            & ! [I: nat] :
                ( ( ord_less_nat @ I @ K2 )
               => ~ ( P @ I ) )
            & ( P @ K2 ) ) ) ) ).

% ex_least_nat_le
thf(fact_3401_option_Osize_I3_J,axiom,
    ( ( size_size_option_nat @ none_nat )
    = ( suc @ zero_zero_nat ) ) ).

% option.size(3)
thf(fact_3402_option_Osize_I3_J,axiom,
    ( ( size_s170228958280169651at_nat @ none_P5556105721700978146at_nat )
    = ( suc @ zero_zero_nat ) ) ).

% option.size(3)
thf(fact_3403_option_Osize_I3_J,axiom,
    ( ( size_size_option_num @ none_num )
    = ( suc @ zero_zero_nat ) ) ).

% option.size(3)
thf(fact_3404_nat__mult__less__cancel1,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ K )
     => ( ( ord_less_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N2 ) )
        = ( ord_less_nat @ M @ N2 ) ) ) ).

% nat_mult_less_cancel1
thf(fact_3405_nat__mult__eq__cancel1,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ K )
     => ( ( ( times_times_nat @ K @ M )
          = ( times_times_nat @ K @ N2 ) )
        = ( M = N2 ) ) ) ).

% nat_mult_eq_cancel1
thf(fact_3406_mult__less__mono2,axiom,
    ! [I2: nat,J: nat,K: nat] :
      ( ( ord_less_nat @ I2 @ J )
     => ( ( ord_less_nat @ zero_zero_nat @ K )
       => ( ord_less_nat @ ( times_times_nat @ K @ I2 ) @ ( times_times_nat @ K @ J ) ) ) ) ).

% mult_less_mono2
thf(fact_3407_mult__less__mono1,axiom,
    ! [I2: nat,J: nat,K: nat] :
      ( ( ord_less_nat @ I2 @ J )
     => ( ( ord_less_nat @ zero_zero_nat @ K )
       => ( ord_less_nat @ ( times_times_nat @ I2 @ K ) @ ( times_times_nat @ J @ K ) ) ) ) ).

% mult_less_mono1
thf(fact_3408_nat__power__less__imp__less,axiom,
    ! [I2: nat,M: nat,N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ I2 )
     => ( ( ord_less_nat @ ( power_power_nat @ I2 @ M ) @ ( power_power_nat @ I2 @ N2 ) )
       => ( ord_less_nat @ M @ N2 ) ) ) ).

% nat_power_less_imp_less
thf(fact_3409_diff__less,axiom,
    ! [N2: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( ord_less_nat @ zero_zero_nat @ M )
       => ( ord_less_nat @ ( minus_minus_nat @ M @ N2 ) @ M ) ) ) ).

% diff_less
thf(fact_3410_Euclidean__Division_Odiv__eq__0__iff,axiom,
    ! [M: nat,N2: nat] :
      ( ( ( divide_divide_nat @ M @ N2 )
        = zero_zero_nat )
      = ( ( ord_less_nat @ M @ N2 )
        | ( N2 = zero_zero_nat ) ) ) ).

% Euclidean_Division.div_eq_0_iff
thf(fact_3411_One__nat__def,axiom,
    ( one_one_nat
    = ( suc @ zero_zero_nat ) ) ).

% One_nat_def
thf(fact_3412_diff__add__0,axiom,
    ! [N2: nat,M: nat] :
      ( ( minus_minus_nat @ N2 @ ( plus_plus_nat @ N2 @ M ) )
      = zero_zero_nat ) ).

% diff_add_0
thf(fact_3413_bits__stable__imp__add__self,axiom,
    ! [A: nat] :
      ( ( ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = A )
     => ( ( plus_plus_nat @ A @ ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
        = zero_zero_nat ) ) ).

% bits_stable_imp_add_self
thf(fact_3414_bits__stable__imp__add__self,axiom,
    ! [A: int] :
      ( ( ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
        = A )
     => ( ( plus_plus_int @ A @ ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) )
        = zero_zero_int ) ) ).

% bits_stable_imp_add_self
thf(fact_3415_bits__stable__imp__add__self,axiom,
    ! [A: code_integer] :
      ( ( ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
        = A )
     => ( ( plus_p5714425477246183910nteger @ A @ ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) )
        = zero_z3403309356797280102nteger ) ) ).

% bits_stable_imp_add_self
thf(fact_3416_mult__eq__self__implies__10,axiom,
    ! [M: nat,N2: nat] :
      ( ( M
        = ( times_times_nat @ M @ N2 ) )
     => ( ( N2 = one_one_nat )
        | ( M = zero_zero_nat ) ) ) ).

% mult_eq_self_implies_10
thf(fact_3417_vebt__insert_Osimps_I2_J,axiom,
    ! [Info: option4927543243414619207at_nat,Ts2: list_VEBT_VEBT,S2: vEBT_VEBT,X: nat] :
      ( ( vEBT_vebt_insert @ ( vEBT_Node @ Info @ zero_zero_nat @ Ts2 @ S2 ) @ X )
      = ( vEBT_Node @ Info @ zero_zero_nat @ Ts2 @ S2 ) ) ).

% vebt_insert.simps(2)
thf(fact_3418_vebt__pred_Osimps_I3_J,axiom,
    ! [B: $o,A: $o,Va: nat] :
      ( ( B
       => ( ( vEBT_vebt_pred @ ( vEBT_Leaf @ A @ B ) @ ( suc @ ( suc @ Va ) ) )
          = ( some_nat @ one_one_nat ) ) )
      & ( ~ B
       => ( ( A
           => ( ( vEBT_vebt_pred @ ( vEBT_Leaf @ A @ B ) @ ( suc @ ( suc @ Va ) ) )
              = ( some_nat @ zero_zero_nat ) ) )
          & ( ~ A
           => ( ( vEBT_vebt_pred @ ( vEBT_Leaf @ A @ B ) @ ( suc @ ( suc @ Va ) ) )
              = none_nat ) ) ) ) ) ).

% vebt_pred.simps(3)
thf(fact_3419_mod__double__modulus,axiom,
    ! [M: code_integer,X: code_integer] :
      ( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ M )
     => ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ X )
       => ( ( ( modulo364778990260209775nteger @ X @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) )
            = ( modulo364778990260209775nteger @ X @ M ) )
          | ( ( modulo364778990260209775nteger @ X @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) )
            = ( plus_p5714425477246183910nteger @ ( modulo364778990260209775nteger @ X @ M ) @ M ) ) ) ) ) ).

% mod_double_modulus
thf(fact_3420_mod__double__modulus,axiom,
    ! [M: nat,X: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ M )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ X )
       => ( ( ( modulo_modulo_nat @ X @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
            = ( modulo_modulo_nat @ X @ M ) )
          | ( ( modulo_modulo_nat @ X @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
            = ( plus_plus_nat @ ( modulo_modulo_nat @ X @ M ) @ M ) ) ) ) ) ).

% mod_double_modulus
thf(fact_3421_mod__double__modulus,axiom,
    ! [M: int,X: int] :
      ( ( ord_less_int @ zero_zero_int @ M )
     => ( ( ord_less_eq_int @ zero_zero_int @ X )
       => ( ( ( modulo_modulo_int @ X @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) )
            = ( modulo_modulo_int @ X @ M ) )
          | ( ( modulo_modulo_int @ X @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) )
            = ( plus_plus_int @ ( modulo_modulo_int @ X @ M ) @ M ) ) ) ) ) ).

% mod_double_modulus
thf(fact_3422_divmod__digit__1_I2_J,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A )
     => ( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ B )
       => ( ( ord_le3102999989581377725nteger @ B @ ( modulo364778990260209775nteger @ A @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) )
         => ( ( minus_8373710615458151222nteger @ ( modulo364778990260209775nteger @ A @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) @ B )
            = ( modulo364778990260209775nteger @ A @ B ) ) ) ) ) ).

% divmod_digit_1(2)
thf(fact_3423_divmod__digit__1_I2_J,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ B )
       => ( ( ord_less_eq_nat @ B @ ( modulo_modulo_nat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) )
         => ( ( minus_minus_nat @ ( modulo_modulo_nat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) @ B )
            = ( modulo_modulo_nat @ A @ B ) ) ) ) ) ).

% divmod_digit_1(2)
thf(fact_3424_divmod__digit__1_I2_J,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ zero_zero_int @ B )
       => ( ( ord_less_eq_int @ B @ ( modulo_modulo_int @ A @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) )
         => ( ( minus_minus_int @ ( modulo_modulo_int @ A @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) @ B )
            = ( modulo_modulo_int @ A @ B ) ) ) ) ) ).

% divmod_digit_1(2)
thf(fact_3425_mult__div__mod__eq,axiom,
    ! [B: nat,A: nat] :
      ( ( plus_plus_nat @ ( times_times_nat @ B @ ( divide_divide_nat @ A @ B ) ) @ ( modulo_modulo_nat @ A @ B ) )
      = A ) ).

% mult_div_mod_eq
thf(fact_3426_mult__div__mod__eq,axiom,
    ! [B: int,A: int] :
      ( ( plus_plus_int @ ( times_times_int @ B @ ( divide_divide_int @ A @ B ) ) @ ( modulo_modulo_int @ A @ B ) )
      = A ) ).

% mult_div_mod_eq
thf(fact_3427_mult__div__mod__eq,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ B @ ( divide6298287555418463151nteger @ A @ B ) ) @ ( modulo364778990260209775nteger @ A @ B ) )
      = A ) ).

% mult_div_mod_eq
thf(fact_3428_mod__mult__div__eq,axiom,
    ! [A: nat,B: nat] :
      ( ( plus_plus_nat @ ( modulo_modulo_nat @ A @ B ) @ ( times_times_nat @ B @ ( divide_divide_nat @ A @ B ) ) )
      = A ) ).

% mod_mult_div_eq
thf(fact_3429_mod__mult__div__eq,axiom,
    ! [A: int,B: int] :
      ( ( plus_plus_int @ ( modulo_modulo_int @ A @ B ) @ ( times_times_int @ B @ ( divide_divide_int @ A @ B ) ) )
      = A ) ).

% mod_mult_div_eq
thf(fact_3430_mod__mult__div__eq,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( plus_p5714425477246183910nteger @ ( modulo364778990260209775nteger @ A @ B ) @ ( times_3573771949741848930nteger @ B @ ( divide6298287555418463151nteger @ A @ B ) ) )
      = A ) ).

% mod_mult_div_eq
thf(fact_3431_mod__div__mult__eq,axiom,
    ! [A: nat,B: nat] :
      ( ( plus_plus_nat @ ( modulo_modulo_nat @ A @ B ) @ ( times_times_nat @ ( divide_divide_nat @ A @ B ) @ B ) )
      = A ) ).

% mod_div_mult_eq
thf(fact_3432_mod__div__mult__eq,axiom,
    ! [A: int,B: int] :
      ( ( plus_plus_int @ ( modulo_modulo_int @ A @ B ) @ ( times_times_int @ ( divide_divide_int @ A @ B ) @ B ) )
      = A ) ).

% mod_div_mult_eq
thf(fact_3433_mod__div__mult__eq,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( plus_p5714425477246183910nteger @ ( modulo364778990260209775nteger @ A @ B ) @ ( times_3573771949741848930nteger @ ( divide6298287555418463151nteger @ A @ B ) @ B ) )
      = A ) ).

% mod_div_mult_eq
thf(fact_3434_div__mult__mod__eq,axiom,
    ! [A: nat,B: nat] :
      ( ( plus_plus_nat @ ( times_times_nat @ ( divide_divide_nat @ A @ B ) @ B ) @ ( modulo_modulo_nat @ A @ B ) )
      = A ) ).

% div_mult_mod_eq
thf(fact_3435_div__mult__mod__eq,axiom,
    ! [A: int,B: int] :
      ( ( plus_plus_int @ ( times_times_int @ ( divide_divide_int @ A @ B ) @ B ) @ ( modulo_modulo_int @ A @ B ) )
      = A ) ).

% div_mult_mod_eq
thf(fact_3436_div__mult__mod__eq,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( divide6298287555418463151nteger @ A @ B ) @ B ) @ ( modulo364778990260209775nteger @ A @ B ) )
      = A ) ).

% div_mult_mod_eq
thf(fact_3437_mod__div__decomp,axiom,
    ! [A: nat,B: nat] :
      ( A
      = ( plus_plus_nat @ ( times_times_nat @ ( divide_divide_nat @ A @ B ) @ B ) @ ( modulo_modulo_nat @ A @ B ) ) ) ).

% mod_div_decomp
thf(fact_3438_mod__div__decomp,axiom,
    ! [A: int,B: int] :
      ( A
      = ( plus_plus_int @ ( times_times_int @ ( divide_divide_int @ A @ B ) @ B ) @ ( modulo_modulo_int @ A @ B ) ) ) ).

% mod_div_decomp
thf(fact_3439_mod__div__decomp,axiom,
    ! [A: code_integer,B: code_integer] :
      ( A
      = ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( divide6298287555418463151nteger @ A @ B ) @ B ) @ ( modulo364778990260209775nteger @ A @ B ) ) ) ).

% mod_div_decomp
thf(fact_3440_cancel__div__mod__rules_I1_J,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( plus_plus_nat @ ( plus_plus_nat @ ( times_times_nat @ ( divide_divide_nat @ A @ B ) @ B ) @ ( modulo_modulo_nat @ A @ B ) ) @ C )
      = ( plus_plus_nat @ A @ C ) ) ).

% cancel_div_mod_rules(1)
thf(fact_3441_cancel__div__mod__rules_I1_J,axiom,
    ! [A: int,B: int,C: int] :
      ( ( plus_plus_int @ ( plus_plus_int @ ( times_times_int @ ( divide_divide_int @ A @ B ) @ B ) @ ( modulo_modulo_int @ A @ B ) ) @ C )
      = ( plus_plus_int @ A @ C ) ) ).

% cancel_div_mod_rules(1)
thf(fact_3442_cancel__div__mod__rules_I1_J,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( plus_p5714425477246183910nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( divide6298287555418463151nteger @ A @ B ) @ B ) @ ( modulo364778990260209775nteger @ A @ B ) ) @ C )
      = ( plus_p5714425477246183910nteger @ A @ C ) ) ).

% cancel_div_mod_rules(1)
thf(fact_3443_cancel__div__mod__rules_I2_J,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( plus_plus_nat @ ( plus_plus_nat @ ( times_times_nat @ B @ ( divide_divide_nat @ A @ B ) ) @ ( modulo_modulo_nat @ A @ B ) ) @ C )
      = ( plus_plus_nat @ A @ C ) ) ).

% cancel_div_mod_rules(2)
thf(fact_3444_cancel__div__mod__rules_I2_J,axiom,
    ! [B: int,A: int,C: int] :
      ( ( plus_plus_int @ ( plus_plus_int @ ( times_times_int @ B @ ( divide_divide_int @ A @ B ) ) @ ( modulo_modulo_int @ A @ B ) ) @ C )
      = ( plus_plus_int @ A @ C ) ) ).

% cancel_div_mod_rules(2)
thf(fact_3445_cancel__div__mod__rules_I2_J,axiom,
    ! [B: code_integer,A: code_integer,C: code_integer] :
      ( ( plus_p5714425477246183910nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ B @ ( divide6298287555418463151nteger @ A @ B ) ) @ ( modulo364778990260209775nteger @ A @ B ) ) @ C )
      = ( plus_p5714425477246183910nteger @ A @ C ) ) ).

% cancel_div_mod_rules(2)
thf(fact_3446_div__mult1__eq,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( divide_divide_nat @ ( times_times_nat @ A @ B ) @ C )
      = ( plus_plus_nat @ ( times_times_nat @ A @ ( divide_divide_nat @ B @ C ) ) @ ( divide_divide_nat @ ( times_times_nat @ A @ ( modulo_modulo_nat @ B @ C ) ) @ C ) ) ) ).

% div_mult1_eq
thf(fact_3447_div__mult1__eq,axiom,
    ! [A: int,B: int,C: int] :
      ( ( divide_divide_int @ ( times_times_int @ A @ B ) @ C )
      = ( plus_plus_int @ ( times_times_int @ A @ ( divide_divide_int @ B @ C ) ) @ ( divide_divide_int @ ( times_times_int @ A @ ( modulo_modulo_int @ B @ C ) ) @ C ) ) ) ).

% div_mult1_eq
thf(fact_3448_div__mult1__eq,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( divide6298287555418463151nteger @ ( times_3573771949741848930nteger @ A @ B ) @ C )
      = ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ A @ ( divide6298287555418463151nteger @ B @ C ) ) @ ( divide6298287555418463151nteger @ ( times_3573771949741848930nteger @ A @ ( modulo364778990260209775nteger @ B @ C ) ) @ C ) ) ) ).

% div_mult1_eq
thf(fact_3449_minus__mult__div__eq__mod,axiom,
    ! [A: nat,B: nat] :
      ( ( minus_minus_nat @ A @ ( times_times_nat @ B @ ( divide_divide_nat @ A @ B ) ) )
      = ( modulo_modulo_nat @ A @ B ) ) ).

% minus_mult_div_eq_mod
thf(fact_3450_minus__mult__div__eq__mod,axiom,
    ! [A: int,B: int] :
      ( ( minus_minus_int @ A @ ( times_times_int @ B @ ( divide_divide_int @ A @ B ) ) )
      = ( modulo_modulo_int @ A @ B ) ) ).

% minus_mult_div_eq_mod
thf(fact_3451_minus__mult__div__eq__mod,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( minus_8373710615458151222nteger @ A @ ( times_3573771949741848930nteger @ B @ ( divide6298287555418463151nteger @ A @ B ) ) )
      = ( modulo364778990260209775nteger @ A @ B ) ) ).

% minus_mult_div_eq_mod
thf(fact_3452_minus__mod__eq__mult__div,axiom,
    ! [A: nat,B: nat] :
      ( ( minus_minus_nat @ A @ ( modulo_modulo_nat @ A @ B ) )
      = ( times_times_nat @ B @ ( divide_divide_nat @ A @ B ) ) ) ).

% minus_mod_eq_mult_div
thf(fact_3453_minus__mod__eq__mult__div,axiom,
    ! [A: int,B: int] :
      ( ( minus_minus_int @ A @ ( modulo_modulo_int @ A @ B ) )
      = ( times_times_int @ B @ ( divide_divide_int @ A @ B ) ) ) ).

% minus_mod_eq_mult_div
thf(fact_3454_minus__mod__eq__mult__div,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( minus_8373710615458151222nteger @ A @ ( modulo364778990260209775nteger @ A @ B ) )
      = ( times_3573771949741848930nteger @ B @ ( divide6298287555418463151nteger @ A @ B ) ) ) ).

% minus_mod_eq_mult_div
thf(fact_3455_minus__mod__eq__div__mult,axiom,
    ! [A: nat,B: nat] :
      ( ( minus_minus_nat @ A @ ( modulo_modulo_nat @ A @ B ) )
      = ( times_times_nat @ ( divide_divide_nat @ A @ B ) @ B ) ) ).

% minus_mod_eq_div_mult
thf(fact_3456_minus__mod__eq__div__mult,axiom,
    ! [A: int,B: int] :
      ( ( minus_minus_int @ A @ ( modulo_modulo_int @ A @ B ) )
      = ( times_times_int @ ( divide_divide_int @ A @ B ) @ B ) ) ).

% minus_mod_eq_div_mult
thf(fact_3457_minus__mod__eq__div__mult,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( minus_8373710615458151222nteger @ A @ ( modulo364778990260209775nteger @ A @ B ) )
      = ( times_3573771949741848930nteger @ ( divide6298287555418463151nteger @ A @ B ) @ B ) ) ).

% minus_mod_eq_div_mult
thf(fact_3458_minus__div__mult__eq__mod,axiom,
    ! [A: nat,B: nat] :
      ( ( minus_minus_nat @ A @ ( times_times_nat @ ( divide_divide_nat @ A @ B ) @ B ) )
      = ( modulo_modulo_nat @ A @ B ) ) ).

% minus_div_mult_eq_mod
thf(fact_3459_minus__div__mult__eq__mod,axiom,
    ! [A: int,B: int] :
      ( ( minus_minus_int @ A @ ( times_times_int @ ( divide_divide_int @ A @ B ) @ B ) )
      = ( modulo_modulo_int @ A @ B ) ) ).

% minus_div_mult_eq_mod
thf(fact_3460_minus__div__mult__eq__mod,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( minus_8373710615458151222nteger @ A @ ( times_3573771949741848930nteger @ ( divide6298287555418463151nteger @ A @ B ) @ B ) )
      = ( modulo364778990260209775nteger @ A @ B ) ) ).

% minus_div_mult_eq_mod
thf(fact_3461_mod__mult2__eq,axiom,
    ! [M: nat,N2: nat,Q2: nat] :
      ( ( modulo_modulo_nat @ M @ ( times_times_nat @ N2 @ Q2 ) )
      = ( plus_plus_nat @ ( times_times_nat @ N2 @ ( modulo_modulo_nat @ ( divide_divide_nat @ M @ N2 ) @ Q2 ) ) @ ( modulo_modulo_nat @ M @ N2 ) ) ) ).

% mod_mult2_eq
thf(fact_3462_modulo__nat__def,axiom,
    ( modulo_modulo_nat
    = ( ^ [M6: nat,N3: nat] : ( minus_minus_nat @ M6 @ ( times_times_nat @ ( divide_divide_nat @ M6 @ N3 ) @ N3 ) ) ) ) ).

% modulo_nat_def
thf(fact_3463_VEBT__internal_OminNull_Ocases,axiom,
    ! [X: vEBT_VEBT] :
      ( ( X
       != ( vEBT_Leaf @ $false @ $false ) )
     => ( ! [Uv2: $o] :
            ( X
           != ( vEBT_Leaf @ $true @ Uv2 ) )
       => ( ! [Uu2: $o] :
              ( X
             != ( vEBT_Leaf @ Uu2 @ $true ) )
         => ( ! [Uw2: nat,Ux2: list_VEBT_VEBT,Uy2: vEBT_VEBT] :
                ( X
               != ( vEBT_Node @ none_P5556105721700978146at_nat @ Uw2 @ Ux2 @ Uy2 ) )
           => ~ ! [Uz2: product_prod_nat_nat,Va3: nat,Vb2: list_VEBT_VEBT,Vc2: vEBT_VEBT] :
                  ( X
                 != ( vEBT_Node @ ( some_P7363390416028606310at_nat @ Uz2 ) @ Va3 @ Vb2 @ Vc2 ) ) ) ) ) ) ).

% VEBT_internal.minNull.cases
thf(fact_3464_div__geq,axiom,
    ! [N2: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ~ ( ord_less_nat @ M @ N2 )
       => ( ( divide_divide_nat @ M @ N2 )
          = ( suc @ ( divide_divide_nat @ ( minus_minus_nat @ M @ N2 ) @ N2 ) ) ) ) ) ).

% div_geq
thf(fact_3465_VEBT__internal_OminNull_Oelims_I3_J,axiom,
    ! [X: vEBT_VEBT] :
      ( ~ ( vEBT_VEBT_minNull @ X )
     => ( ! [Uv2: $o] :
            ( X
           != ( vEBT_Leaf @ $true @ Uv2 ) )
       => ( ! [Uu2: $o] :
              ( X
             != ( vEBT_Leaf @ Uu2 @ $true ) )
         => ~ ! [Uz2: product_prod_nat_nat,Va3: nat,Vb2: list_VEBT_VEBT,Vc2: vEBT_VEBT] :
                ( X
               != ( vEBT_Node @ ( some_P7363390416028606310at_nat @ Uz2 ) @ Va3 @ Vb2 @ Vc2 ) ) ) ) ) ).

% VEBT_internal.minNull.elims(3)
thf(fact_3466_vebt__succ_Osimps_I2_J,axiom,
    ! [Uv: $o,Uw: $o,N2: nat] :
      ( ( vEBT_vebt_succ @ ( vEBT_Leaf @ Uv @ Uw ) @ ( suc @ N2 ) )
      = none_nat ) ).

% vebt_succ.simps(2)
thf(fact_3467_VEBT__internal_OminNull_Oelims_I2_J,axiom,
    ! [X: vEBT_VEBT] :
      ( ( vEBT_VEBT_minNull @ X )
     => ( ( X
         != ( vEBT_Leaf @ $false @ $false ) )
       => ~ ! [Uw2: nat,Ux2: list_VEBT_VEBT,Uy2: vEBT_VEBT] :
              ( X
             != ( vEBT_Node @ none_P5556105721700978146at_nat @ Uw2 @ Ux2 @ Uy2 ) ) ) ) ).

% VEBT_internal.minNull.elims(2)
thf(fact_3468_mult__le__cancel__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ A @ B ) )
        & ( ( ord_less_real @ C @ zero_zero_real )
         => ( ord_less_eq_real @ B @ A ) ) ) ) ).

% mult_le_cancel_left
thf(fact_3469_mult__le__cancel__left,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_eq_rat @ A @ B ) )
        & ( ( ord_less_rat @ C @ zero_zero_rat )
         => ( ord_less_eq_rat @ B @ A ) ) ) ) ).

% mult_le_cancel_left
thf(fact_3470_mult__le__cancel__left,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
      = ( ( ( ord_less_int @ zero_zero_int @ C )
         => ( ord_less_eq_int @ A @ B ) )
        & ( ( ord_less_int @ C @ zero_zero_int )
         => ( ord_less_eq_int @ B @ A ) ) ) ) ).

% mult_le_cancel_left
thf(fact_3471_mult__le__cancel__right,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ A @ B ) )
        & ( ( ord_less_real @ C @ zero_zero_real )
         => ( ord_less_eq_real @ B @ A ) ) ) ) ).

% mult_le_cancel_right
thf(fact_3472_mult__le__cancel__right,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_eq_rat @ A @ B ) )
        & ( ( ord_less_rat @ C @ zero_zero_rat )
         => ( ord_less_eq_rat @ B @ A ) ) ) ) ).

% mult_le_cancel_right
thf(fact_3473_mult__le__cancel__right,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
      = ( ( ( ord_less_int @ zero_zero_int @ C )
         => ( ord_less_eq_int @ A @ B ) )
        & ( ( ord_less_int @ C @ zero_zero_int )
         => ( ord_less_eq_int @ B @ A ) ) ) ) ).

% mult_le_cancel_right
thf(fact_3474_mult__left__less__imp__less,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
     => ( ( ord_less_eq_real @ zero_zero_real @ C )
       => ( ord_less_real @ A @ B ) ) ) ).

% mult_left_less_imp_less
thf(fact_3475_mult__left__less__imp__less,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ C )
       => ( ord_less_rat @ A @ B ) ) ) ).

% mult_left_less_imp_less
thf(fact_3476_mult__left__less__imp__less,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
       => ( ord_less_nat @ A @ B ) ) ) ).

% mult_left_less_imp_less
thf(fact_3477_mult__left__less__imp__less,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ C )
       => ( ord_less_int @ A @ B ) ) ) ).

% mult_left_less_imp_less
thf(fact_3478_mult__strict__mono,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ C @ D )
       => ( ( ord_less_real @ zero_zero_real @ B )
         => ( ( ord_less_eq_real @ zero_zero_real @ C )
           => ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D ) ) ) ) ) ) ).

% mult_strict_mono
thf(fact_3479_mult__strict__mono,axiom,
    ! [A: rat,B: rat,C: rat,D: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_rat @ C @ D )
       => ( ( ord_less_rat @ zero_zero_rat @ B )
         => ( ( ord_less_eq_rat @ zero_zero_rat @ C )
           => ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ D ) ) ) ) ) ) ).

% mult_strict_mono
thf(fact_3480_mult__strict__mono,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ C @ D )
       => ( ( ord_less_nat @ zero_zero_nat @ B )
         => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
           => ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) ) ) ) ) ) ).

% mult_strict_mono
thf(fact_3481_mult__strict__mono,axiom,
    ! [A: int,B: int,C: int,D: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_int @ C @ D )
       => ( ( ord_less_int @ zero_zero_int @ B )
         => ( ( ord_less_eq_int @ zero_zero_int @ C )
           => ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D ) ) ) ) ) ) ).

% mult_strict_mono
thf(fact_3482_mult__less__cancel__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
      = ( ( ( ord_less_eq_real @ zero_zero_real @ C )
         => ( ord_less_real @ A @ B ) )
        & ( ( ord_less_eq_real @ C @ zero_zero_real )
         => ( ord_less_real @ B @ A ) ) ) ) ).

% mult_less_cancel_left
thf(fact_3483_mult__less__cancel__left,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
      = ( ( ( ord_less_eq_rat @ zero_zero_rat @ C )
         => ( ord_less_rat @ A @ B ) )
        & ( ( ord_less_eq_rat @ C @ zero_zero_rat )
         => ( ord_less_rat @ B @ A ) ) ) ) ).

% mult_less_cancel_left
thf(fact_3484_mult__less__cancel__left,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
      = ( ( ( ord_less_eq_int @ zero_zero_int @ C )
         => ( ord_less_int @ A @ B ) )
        & ( ( ord_less_eq_int @ C @ zero_zero_int )
         => ( ord_less_int @ B @ A ) ) ) ) ).

% mult_less_cancel_left
thf(fact_3485_mult__right__less__imp__less,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) )
     => ( ( ord_less_eq_real @ zero_zero_real @ C )
       => ( ord_less_real @ A @ B ) ) ) ).

% mult_right_less_imp_less
thf(fact_3486_mult__right__less__imp__less,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ C )
       => ( ord_less_rat @ A @ B ) ) ) ).

% mult_right_less_imp_less
thf(fact_3487_mult__right__less__imp__less,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
       => ( ord_less_nat @ A @ B ) ) ) ).

% mult_right_less_imp_less
thf(fact_3488_mult__right__less__imp__less,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ C )
       => ( ord_less_int @ A @ B ) ) ) ).

% mult_right_less_imp_less
thf(fact_3489_mult__strict__mono_H,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ C @ D )
       => ( ( ord_less_eq_real @ zero_zero_real @ A )
         => ( ( ord_less_eq_real @ zero_zero_real @ C )
           => ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D ) ) ) ) ) ) ).

% mult_strict_mono'
thf(fact_3490_mult__strict__mono_H,axiom,
    ! [A: rat,B: rat,C: rat,D: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_rat @ C @ D )
       => ( ( ord_less_eq_rat @ zero_zero_rat @ A )
         => ( ( ord_less_eq_rat @ zero_zero_rat @ C )
           => ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ D ) ) ) ) ) ) ).

% mult_strict_mono'
thf(fact_3491_mult__strict__mono_H,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ C @ D )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ A )
         => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
           => ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) ) ) ) ) ) ).

% mult_strict_mono'
thf(fact_3492_mult__strict__mono_H,axiom,
    ! [A: int,B: int,C: int,D: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_int @ C @ D )
       => ( ( ord_less_eq_int @ zero_zero_int @ A )
         => ( ( ord_less_eq_int @ zero_zero_int @ C )
           => ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D ) ) ) ) ) ) ).

% mult_strict_mono'
thf(fact_3493_mult__less__cancel__right,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) )
      = ( ( ( ord_less_eq_real @ zero_zero_real @ C )
         => ( ord_less_real @ A @ B ) )
        & ( ( ord_less_eq_real @ C @ zero_zero_real )
         => ( ord_less_real @ B @ A ) ) ) ) ).

% mult_less_cancel_right
thf(fact_3494_mult__less__cancel__right,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) )
      = ( ( ( ord_less_eq_rat @ zero_zero_rat @ C )
         => ( ord_less_rat @ A @ B ) )
        & ( ( ord_less_eq_rat @ C @ zero_zero_rat )
         => ( ord_less_rat @ B @ A ) ) ) ) ).

% mult_less_cancel_right
thf(fact_3495_mult__less__cancel__right,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
      = ( ( ( ord_less_eq_int @ zero_zero_int @ C )
         => ( ord_less_int @ A @ B ) )
        & ( ( ord_less_eq_int @ C @ zero_zero_int )
         => ( ord_less_int @ B @ A ) ) ) ) ).

% mult_less_cancel_right
thf(fact_3496_mult__le__cancel__left__neg,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ C @ zero_zero_real )
     => ( ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
        = ( ord_less_eq_real @ B @ A ) ) ) ).

% mult_le_cancel_left_neg
thf(fact_3497_mult__le__cancel__left__neg,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ C @ zero_zero_rat )
     => ( ( ord_less_eq_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
        = ( ord_less_eq_rat @ B @ A ) ) ) ).

% mult_le_cancel_left_neg
thf(fact_3498_mult__le__cancel__left__neg,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_int @ C @ zero_zero_int )
     => ( ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
        = ( ord_less_eq_int @ B @ A ) ) ) ).

% mult_le_cancel_left_neg
thf(fact_3499_mult__le__cancel__left__pos,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ C )
     => ( ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
        = ( ord_less_eq_real @ A @ B ) ) ) ).

% mult_le_cancel_left_pos
thf(fact_3500_mult__le__cancel__left__pos,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ C )
     => ( ( ord_less_eq_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
        = ( ord_less_eq_rat @ A @ B ) ) ) ).

% mult_le_cancel_left_pos
thf(fact_3501_mult__le__cancel__left__pos,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ C )
     => ( ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
        = ( ord_less_eq_int @ A @ B ) ) ) ).

% mult_le_cancel_left_pos
thf(fact_3502_mult__left__le__imp__le,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
     => ( ( ord_less_real @ zero_zero_real @ C )
       => ( ord_less_eq_real @ A @ B ) ) ) ).

% mult_left_le_imp_le
thf(fact_3503_mult__left__le__imp__le,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
     => ( ( ord_less_rat @ zero_zero_rat @ C )
       => ( ord_less_eq_rat @ A @ B ) ) ) ).

% mult_left_le_imp_le
thf(fact_3504_mult__left__le__imp__le,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) )
     => ( ( ord_less_nat @ zero_zero_nat @ C )
       => ( ord_less_eq_nat @ A @ B ) ) ) ).

% mult_left_le_imp_le
thf(fact_3505_mult__left__le__imp__le,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
     => ( ( ord_less_int @ zero_zero_int @ C )
       => ( ord_less_eq_int @ A @ B ) ) ) ).

% mult_left_le_imp_le
thf(fact_3506_mult__right__le__imp__le,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) )
     => ( ( ord_less_real @ zero_zero_real @ C )
       => ( ord_less_eq_real @ A @ B ) ) ) ).

% mult_right_le_imp_le
thf(fact_3507_mult__right__le__imp__le,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) )
     => ( ( ord_less_rat @ zero_zero_rat @ C )
       => ( ord_less_eq_rat @ A @ B ) ) ) ).

% mult_right_le_imp_le
thf(fact_3508_mult__right__le__imp__le,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) )
     => ( ( ord_less_nat @ zero_zero_nat @ C )
       => ( ord_less_eq_nat @ A @ B ) ) ) ).

% mult_right_le_imp_le
thf(fact_3509_mult__right__le__imp__le,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
     => ( ( ord_less_int @ zero_zero_int @ C )
       => ( ord_less_eq_int @ A @ B ) ) ) ).

% mult_right_le_imp_le
thf(fact_3510_mult__le__less__imp__less,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_real @ C @ D )
       => ( ( ord_less_real @ zero_zero_real @ A )
         => ( ( ord_less_eq_real @ zero_zero_real @ C )
           => ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D ) ) ) ) ) ) ).

% mult_le_less_imp_less
thf(fact_3511_mult__le__less__imp__less,axiom,
    ! [A: rat,B: rat,C: rat,D: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_rat @ C @ D )
       => ( ( ord_less_rat @ zero_zero_rat @ A )
         => ( ( ord_less_eq_rat @ zero_zero_rat @ C )
           => ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ D ) ) ) ) ) ) ).

% mult_le_less_imp_less
thf(fact_3512_mult__le__less__imp__less,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_nat @ C @ D )
       => ( ( ord_less_nat @ zero_zero_nat @ A )
         => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
           => ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) ) ) ) ) ) ).

% mult_le_less_imp_less
thf(fact_3513_mult__le__less__imp__less,axiom,
    ! [A: int,B: int,C: int,D: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_int @ C @ D )
       => ( ( ord_less_int @ zero_zero_int @ A )
         => ( ( ord_less_eq_int @ zero_zero_int @ C )
           => ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D ) ) ) ) ) ) ).

% mult_le_less_imp_less
thf(fact_3514_mult__less__le__imp__less,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_eq_real @ C @ D )
       => ( ( ord_less_eq_real @ zero_zero_real @ A )
         => ( ( ord_less_real @ zero_zero_real @ C )
           => ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D ) ) ) ) ) ) ).

% mult_less_le_imp_less
thf(fact_3515_mult__less__le__imp__less,axiom,
    ! [A: rat,B: rat,C: rat,D: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_eq_rat @ C @ D )
       => ( ( ord_less_eq_rat @ zero_zero_rat @ A )
         => ( ( ord_less_rat @ zero_zero_rat @ C )
           => ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ D ) ) ) ) ) ) ).

% mult_less_le_imp_less
thf(fact_3516_mult__less__le__imp__less,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ D )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ A )
         => ( ( ord_less_nat @ zero_zero_nat @ C )
           => ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) ) ) ) ) ) ).

% mult_less_le_imp_less
thf(fact_3517_mult__less__le__imp__less,axiom,
    ! [A: int,B: int,C: int,D: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_eq_int @ C @ D )
       => ( ( ord_less_eq_int @ zero_zero_int @ A )
         => ( ( ord_less_int @ zero_zero_int @ C )
           => ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D ) ) ) ) ) ) ).

% mult_less_le_imp_less
thf(fact_3518_add__strict__increasing2,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ B @ C )
       => ( ord_less_real @ B @ ( plus_plus_real @ A @ C ) ) ) ) ).

% add_strict_increasing2
thf(fact_3519_add__strict__increasing2,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ A )
     => ( ( ord_less_rat @ B @ C )
       => ( ord_less_rat @ B @ ( plus_plus_rat @ A @ C ) ) ) ) ).

% add_strict_increasing2
thf(fact_3520_add__strict__increasing2,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ B @ C )
       => ( ord_less_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).

% add_strict_increasing2
thf(fact_3521_add__strict__increasing2,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ B @ C )
       => ( ord_less_int @ B @ ( plus_plus_int @ A @ C ) ) ) ) ).

% add_strict_increasing2
thf(fact_3522_add__strict__increasing,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ B @ C )
       => ( ord_less_real @ B @ ( plus_plus_real @ A @ C ) ) ) ) ).

% add_strict_increasing
thf(fact_3523_add__strict__increasing,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ( ord_less_eq_rat @ B @ C )
       => ( ord_less_rat @ B @ ( plus_plus_rat @ A @ C ) ) ) ) ).

% add_strict_increasing
thf(fact_3524_add__strict__increasing,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ord_less_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).

% add_strict_increasing
thf(fact_3525_add__strict__increasing,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ zero_zero_int @ A )
     => ( ( ord_less_eq_int @ B @ C )
       => ( ord_less_int @ B @ ( plus_plus_int @ A @ C ) ) ) ) ).

% add_strict_increasing
thf(fact_3526_add__pos__nonneg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ zero_zero_real @ B )
       => ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ A @ B ) ) ) ) ).

% add_pos_nonneg
thf(fact_3527_add__pos__nonneg,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ B )
       => ( ord_less_rat @ zero_zero_rat @ ( plus_plus_rat @ A @ B ) ) ) ) ).

% add_pos_nonneg
thf(fact_3528_add__pos__nonneg,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
       => ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% add_pos_nonneg
thf(fact_3529_add__pos__nonneg,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ A )
     => ( ( ord_less_eq_int @ zero_zero_int @ B )
       => ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ A @ B ) ) ) ) ).

% add_pos_nonneg
thf(fact_3530_add__nonpos__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ zero_zero_real )
     => ( ( ord_less_real @ B @ zero_zero_real )
       => ( ord_less_real @ ( plus_plus_real @ A @ B ) @ zero_zero_real ) ) ) ).

% add_nonpos_neg
thf(fact_3531_add__nonpos__neg,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ A @ zero_zero_rat )
     => ( ( ord_less_rat @ B @ zero_zero_rat )
       => ( ord_less_rat @ ( plus_plus_rat @ A @ B ) @ zero_zero_rat ) ) ) ).

% add_nonpos_neg
thf(fact_3532_add__nonpos__neg,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
     => ( ( ord_less_nat @ B @ zero_zero_nat )
       => ( ord_less_nat @ ( plus_plus_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% add_nonpos_neg
thf(fact_3533_add__nonpos__neg,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ zero_zero_int )
     => ( ( ord_less_int @ B @ zero_zero_int )
       => ( ord_less_int @ ( plus_plus_int @ A @ B ) @ zero_zero_int ) ) ) ).

% add_nonpos_neg
thf(fact_3534_add__nonneg__pos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ B )
       => ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ A @ B ) ) ) ) ).

% add_nonneg_pos
thf(fact_3535_add__nonneg__pos,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ A )
     => ( ( ord_less_rat @ zero_zero_rat @ B )
       => ( ord_less_rat @ zero_zero_rat @ ( plus_plus_rat @ A @ B ) ) ) ) ).

% add_nonneg_pos
thf(fact_3536_add__nonneg__pos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ B )
       => ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% add_nonneg_pos
thf(fact_3537_add__nonneg__pos,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ zero_zero_int @ B )
       => ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ A @ B ) ) ) ) ).

% add_nonneg_pos
thf(fact_3538_add__neg__nonpos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ( ord_less_eq_real @ B @ zero_zero_real )
       => ( ord_less_real @ ( plus_plus_real @ A @ B ) @ zero_zero_real ) ) ) ).

% add_neg_nonpos
thf(fact_3539_add__neg__nonpos,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ zero_zero_rat )
     => ( ( ord_less_eq_rat @ B @ zero_zero_rat )
       => ( ord_less_rat @ ( plus_plus_rat @ A @ B ) @ zero_zero_rat ) ) ) ).

% add_neg_nonpos
thf(fact_3540_add__neg__nonpos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ B @ zero_zero_nat )
       => ( ord_less_nat @ ( plus_plus_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% add_neg_nonpos
thf(fact_3541_add__neg__nonpos,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ zero_zero_int )
     => ( ( ord_less_eq_int @ B @ zero_zero_int )
       => ( ord_less_int @ ( plus_plus_int @ A @ B ) @ zero_zero_int ) ) ) ).

% add_neg_nonpos
thf(fact_3542_field__le__epsilon,axiom,
    ! [X: real,Y: real] :
      ( ! [E2: real] :
          ( ( ord_less_real @ zero_zero_real @ E2 )
         => ( ord_less_eq_real @ X @ ( plus_plus_real @ Y @ E2 ) ) )
     => ( ord_less_eq_real @ X @ Y ) ) ).

% field_le_epsilon
thf(fact_3543_field__le__epsilon,axiom,
    ! [X: rat,Y: rat] :
      ( ! [E2: rat] :
          ( ( ord_less_rat @ zero_zero_rat @ E2 )
         => ( ord_less_eq_rat @ X @ ( plus_plus_rat @ Y @ E2 ) ) )
     => ( ord_less_eq_rat @ X @ Y ) ) ).

% field_le_epsilon
thf(fact_3544_sum__squares__ge__zero,axiom,
    ! [X: real,Y: real] : ( ord_less_eq_real @ zero_zero_real @ ( plus_plus_real @ ( times_times_real @ X @ X ) @ ( times_times_real @ Y @ Y ) ) ) ).

% sum_squares_ge_zero
thf(fact_3545_sum__squares__ge__zero,axiom,
    ! [X: rat,Y: rat] : ( ord_less_eq_rat @ zero_zero_rat @ ( plus_plus_rat @ ( times_times_rat @ X @ X ) @ ( times_times_rat @ Y @ Y ) ) ) ).

% sum_squares_ge_zero
thf(fact_3546_sum__squares__ge__zero,axiom,
    ! [X: int,Y: int] : ( ord_less_eq_int @ zero_zero_int @ ( plus_plus_int @ ( times_times_int @ X @ X ) @ ( times_times_int @ Y @ Y ) ) ) ).

% sum_squares_ge_zero
thf(fact_3547_sum__squares__le__zero__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ ( times_times_real @ X @ X ) @ ( times_times_real @ Y @ Y ) ) @ zero_zero_real )
      = ( ( X = zero_zero_real )
        & ( Y = zero_zero_real ) ) ) ).

% sum_squares_le_zero_iff
thf(fact_3548_sum__squares__le__zero__iff,axiom,
    ! [X: rat,Y: rat] :
      ( ( ord_less_eq_rat @ ( plus_plus_rat @ ( times_times_rat @ X @ X ) @ ( times_times_rat @ Y @ Y ) ) @ zero_zero_rat )
      = ( ( X = zero_zero_rat )
        & ( Y = zero_zero_rat ) ) ) ).

% sum_squares_le_zero_iff
thf(fact_3549_sum__squares__le__zero__iff,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ ( times_times_int @ X @ X ) @ ( times_times_int @ Y @ Y ) ) @ zero_zero_int )
      = ( ( X = zero_zero_int )
        & ( Y = zero_zero_int ) ) ) ).

% sum_squares_le_zero_iff
thf(fact_3550_divide__nonpos__pos,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ X @ zero_zero_real )
     => ( ( ord_less_real @ zero_zero_real @ Y )
       => ( ord_less_eq_real @ ( divide_divide_real @ X @ Y ) @ zero_zero_real ) ) ) ).

% divide_nonpos_pos
thf(fact_3551_divide__nonpos__pos,axiom,
    ! [X: rat,Y: rat] :
      ( ( ord_less_eq_rat @ X @ zero_zero_rat )
     => ( ( ord_less_rat @ zero_zero_rat @ Y )
       => ( ord_less_eq_rat @ ( divide_divide_rat @ X @ Y ) @ zero_zero_rat ) ) ) ).

% divide_nonpos_pos
thf(fact_3552_divide__nonpos__neg,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ X @ zero_zero_real )
     => ( ( ord_less_real @ Y @ zero_zero_real )
       => ( ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ X @ Y ) ) ) ) ).

% divide_nonpos_neg
thf(fact_3553_divide__nonpos__neg,axiom,
    ! [X: rat,Y: rat] :
      ( ( ord_less_eq_rat @ X @ zero_zero_rat )
     => ( ( ord_less_rat @ Y @ zero_zero_rat )
       => ( ord_less_eq_rat @ zero_zero_rat @ ( divide_divide_rat @ X @ Y ) ) ) ) ).

% divide_nonpos_neg
thf(fact_3554_divide__nonneg__pos,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ zero_zero_real @ Y )
       => ( ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ X @ Y ) ) ) ) ).

% divide_nonneg_pos
thf(fact_3555_divide__nonneg__pos,axiom,
    ! [X: rat,Y: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ X )
     => ( ( ord_less_rat @ zero_zero_rat @ Y )
       => ( ord_less_eq_rat @ zero_zero_rat @ ( divide_divide_rat @ X @ Y ) ) ) ) ).

% divide_nonneg_pos
thf(fact_3556_divide__nonneg__neg,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ Y @ zero_zero_real )
       => ( ord_less_eq_real @ ( divide_divide_real @ X @ Y ) @ zero_zero_real ) ) ) ).

% divide_nonneg_neg
thf(fact_3557_divide__nonneg__neg,axiom,
    ! [X: rat,Y: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ X )
     => ( ( ord_less_rat @ Y @ zero_zero_rat )
       => ( ord_less_eq_rat @ ( divide_divide_rat @ X @ Y ) @ zero_zero_rat ) ) ) ).

% divide_nonneg_neg
thf(fact_3558_divide__le__cancel,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_eq_real @ ( divide_divide_real @ A @ C ) @ ( divide_divide_real @ B @ C ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ A @ B ) )
        & ( ( ord_less_real @ C @ zero_zero_real )
         => ( ord_less_eq_real @ B @ A ) ) ) ) ).

% divide_le_cancel
thf(fact_3559_divide__le__cancel,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( divide_divide_rat @ A @ C ) @ ( divide_divide_rat @ B @ C ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_eq_rat @ A @ B ) )
        & ( ( ord_less_rat @ C @ zero_zero_rat )
         => ( ord_less_eq_rat @ B @ A ) ) ) ) ).

% divide_le_cancel
thf(fact_3560_frac__less2,axiom,
    ! [X: real,Y: real,W: real,Z: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ X @ Y )
       => ( ( ord_less_real @ zero_zero_real @ W )
         => ( ( ord_less_real @ W @ Z )
           => ( ord_less_real @ ( divide_divide_real @ X @ Z ) @ ( divide_divide_real @ Y @ W ) ) ) ) ) ) ).

% frac_less2
thf(fact_3561_frac__less2,axiom,
    ! [X: rat,Y: rat,W: rat,Z: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ X )
     => ( ( ord_less_eq_rat @ X @ Y )
       => ( ( ord_less_rat @ zero_zero_rat @ W )
         => ( ( ord_less_rat @ W @ Z )
           => ( ord_less_rat @ ( divide_divide_rat @ X @ Z ) @ ( divide_divide_rat @ Y @ W ) ) ) ) ) ) ).

% frac_less2
thf(fact_3562_frac__less,axiom,
    ! [X: real,Y: real,W: real,Z: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ X @ Y )
       => ( ( ord_less_real @ zero_zero_real @ W )
         => ( ( ord_less_eq_real @ W @ Z )
           => ( ord_less_real @ ( divide_divide_real @ X @ Z ) @ ( divide_divide_real @ Y @ W ) ) ) ) ) ) ).

% frac_less
thf(fact_3563_frac__less,axiom,
    ! [X: rat,Y: rat,W: rat,Z: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ X )
     => ( ( ord_less_rat @ X @ Y )
       => ( ( ord_less_rat @ zero_zero_rat @ W )
         => ( ( ord_less_eq_rat @ W @ Z )
           => ( ord_less_rat @ ( divide_divide_rat @ X @ Z ) @ ( divide_divide_rat @ Y @ W ) ) ) ) ) ) ).

% frac_less
thf(fact_3564_frac__le,axiom,
    ! [Y: real,X: real,W: real,Z: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ Y )
     => ( ( ord_less_eq_real @ X @ Y )
       => ( ( ord_less_real @ zero_zero_real @ W )
         => ( ( ord_less_eq_real @ W @ Z )
           => ( ord_less_eq_real @ ( divide_divide_real @ X @ Z ) @ ( divide_divide_real @ Y @ W ) ) ) ) ) ) ).

% frac_le
thf(fact_3565_frac__le,axiom,
    ! [Y: rat,X: rat,W: rat,Z: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ Y )
     => ( ( ord_less_eq_rat @ X @ Y )
       => ( ( ord_less_rat @ zero_zero_rat @ W )
         => ( ( ord_less_eq_rat @ W @ Z )
           => ( ord_less_eq_rat @ ( divide_divide_rat @ X @ Z ) @ ( divide_divide_rat @ Y @ W ) ) ) ) ) ) ).

% frac_le
thf(fact_3566_mult__left__le__one__le,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y )
       => ( ( ord_less_eq_real @ Y @ one_one_real )
         => ( ord_less_eq_real @ ( times_times_real @ Y @ X ) @ X ) ) ) ) ).

% mult_left_le_one_le
thf(fact_3567_mult__left__le__one__le,axiom,
    ! [X: rat,Y: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ X )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ Y )
       => ( ( ord_less_eq_rat @ Y @ one_one_rat )
         => ( ord_less_eq_rat @ ( times_times_rat @ Y @ X ) @ X ) ) ) ) ).

% mult_left_le_one_le
thf(fact_3568_mult__left__le__one__le,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X )
     => ( ( ord_less_eq_int @ zero_zero_int @ Y )
       => ( ( ord_less_eq_int @ Y @ one_one_int )
         => ( ord_less_eq_int @ ( times_times_int @ Y @ X ) @ X ) ) ) ) ).

% mult_left_le_one_le
thf(fact_3569_mult__right__le__one__le,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y )
       => ( ( ord_less_eq_real @ Y @ one_one_real )
         => ( ord_less_eq_real @ ( times_times_real @ X @ Y ) @ X ) ) ) ) ).

% mult_right_le_one_le
thf(fact_3570_mult__right__le__one__le,axiom,
    ! [X: rat,Y: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ X )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ Y )
       => ( ( ord_less_eq_rat @ Y @ one_one_rat )
         => ( ord_less_eq_rat @ ( times_times_rat @ X @ Y ) @ X ) ) ) ) ).

% mult_right_le_one_le
thf(fact_3571_mult__right__le__one__le,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X )
     => ( ( ord_less_eq_int @ zero_zero_int @ Y )
       => ( ( ord_less_eq_int @ Y @ one_one_int )
         => ( ord_less_eq_int @ ( times_times_int @ X @ Y ) @ X ) ) ) ) ).

% mult_right_le_one_le
thf(fact_3572_mult__le__one,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ one_one_real )
     => ( ( ord_less_eq_real @ zero_zero_real @ B )
       => ( ( ord_less_eq_real @ B @ one_one_real )
         => ( ord_less_eq_real @ ( times_times_real @ A @ B ) @ one_one_real ) ) ) ) ).

% mult_le_one
thf(fact_3573_mult__le__one,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ A @ one_one_rat )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ B )
       => ( ( ord_less_eq_rat @ B @ one_one_rat )
         => ( ord_less_eq_rat @ ( times_times_rat @ A @ B ) @ one_one_rat ) ) ) ) ).

% mult_le_one
thf(fact_3574_mult__le__one,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ one_one_nat )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
       => ( ( ord_less_eq_nat @ B @ one_one_nat )
         => ( ord_less_eq_nat @ ( times_times_nat @ A @ B ) @ one_one_nat ) ) ) ) ).

% mult_le_one
thf(fact_3575_mult__le__one,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ one_one_int )
     => ( ( ord_less_eq_int @ zero_zero_int @ B )
       => ( ( ord_less_eq_int @ B @ one_one_int )
         => ( ord_less_eq_int @ ( times_times_int @ A @ B ) @ one_one_int ) ) ) ) ).

% mult_le_one
thf(fact_3576_mult__left__le,axiom,
    ! [C: real,A: real] :
      ( ( ord_less_eq_real @ C @ one_one_real )
     => ( ( ord_less_eq_real @ zero_zero_real @ A )
       => ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ A ) ) ) ).

% mult_left_le
thf(fact_3577_mult__left__le,axiom,
    ! [C: rat,A: rat] :
      ( ( ord_less_eq_rat @ C @ one_one_rat )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ A )
       => ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ A ) ) ) ).

% mult_left_le
thf(fact_3578_mult__left__le,axiom,
    ! [C: nat,A: nat] :
      ( ( ord_less_eq_nat @ C @ one_one_nat )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ A )
       => ( ord_less_eq_nat @ ( times_times_nat @ A @ C ) @ A ) ) ) ).

% mult_left_le
thf(fact_3579_mult__left__le,axiom,
    ! [C: int,A: int] :
      ( ( ord_less_eq_int @ C @ one_one_int )
     => ( ( ord_less_eq_int @ zero_zero_int @ A )
       => ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ A ) ) ) ).

% mult_left_le
thf(fact_3580_power__less__imp__less__base,axiom,
    ! [A: real,N2: nat,B: real] :
      ( ( ord_less_real @ ( power_power_real @ A @ N2 ) @ ( power_power_real @ B @ N2 ) )
     => ( ( ord_less_eq_real @ zero_zero_real @ B )
       => ( ord_less_real @ A @ B ) ) ) ).

% power_less_imp_less_base
thf(fact_3581_power__less__imp__less__base,axiom,
    ! [A: rat,N2: nat,B: rat] :
      ( ( ord_less_rat @ ( power_power_rat @ A @ N2 ) @ ( power_power_rat @ B @ N2 ) )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ B )
       => ( ord_less_rat @ A @ B ) ) ) ).

% power_less_imp_less_base
thf(fact_3582_power__less__imp__less__base,axiom,
    ! [A: nat,N2: nat,B: nat] :
      ( ( ord_less_nat @ ( power_power_nat @ A @ N2 ) @ ( power_power_nat @ B @ N2 ) )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
       => ( ord_less_nat @ A @ B ) ) ) ).

% power_less_imp_less_base
thf(fact_3583_power__less__imp__less__base,axiom,
    ! [A: int,N2: nat,B: int] :
      ( ( ord_less_int @ ( power_power_int @ A @ N2 ) @ ( power_power_int @ B @ N2 ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ B )
       => ( ord_less_int @ A @ B ) ) ) ).

% power_less_imp_less_base
thf(fact_3584_not__sum__squares__lt__zero,axiom,
    ! [X: real,Y: real] :
      ~ ( ord_less_real @ ( plus_plus_real @ ( times_times_real @ X @ X ) @ ( times_times_real @ Y @ Y ) ) @ zero_zero_real ) ).

% not_sum_squares_lt_zero
thf(fact_3585_not__sum__squares__lt__zero,axiom,
    ! [X: rat,Y: rat] :
      ~ ( ord_less_rat @ ( plus_plus_rat @ ( times_times_rat @ X @ X ) @ ( times_times_rat @ Y @ Y ) ) @ zero_zero_rat ) ).

% not_sum_squares_lt_zero
thf(fact_3586_not__sum__squares__lt__zero,axiom,
    ! [X: int,Y: int] :
      ~ ( ord_less_int @ ( plus_plus_int @ ( times_times_int @ X @ X ) @ ( times_times_int @ Y @ Y ) ) @ zero_zero_int ) ).

% not_sum_squares_lt_zero
thf(fact_3587_sum__squares__gt__zero__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ ( times_times_real @ X @ X ) @ ( times_times_real @ Y @ Y ) ) )
      = ( ( X != zero_zero_real )
        | ( Y != zero_zero_real ) ) ) ).

% sum_squares_gt_zero_iff
thf(fact_3588_sum__squares__gt__zero__iff,axiom,
    ! [X: rat,Y: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( plus_plus_rat @ ( times_times_rat @ X @ X ) @ ( times_times_rat @ Y @ Y ) ) )
      = ( ( X != zero_zero_rat )
        | ( Y != zero_zero_rat ) ) ) ).

% sum_squares_gt_zero_iff
thf(fact_3589_sum__squares__gt__zero__iff,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ ( times_times_int @ X @ X ) @ ( times_times_int @ Y @ Y ) ) )
      = ( ( X != zero_zero_int )
        | ( Y != zero_zero_int ) ) ) ).

% sum_squares_gt_zero_iff
thf(fact_3590_zero__less__two,axiom,
    ord_less_real @ zero_zero_real @ ( plus_plus_real @ one_one_real @ one_one_real ) ).

% zero_less_two
thf(fact_3591_zero__less__two,axiom,
    ord_less_rat @ zero_zero_rat @ ( plus_plus_rat @ one_one_rat @ one_one_rat ) ).

% zero_less_two
thf(fact_3592_zero__less__two,axiom,
    ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ one_one_nat @ one_one_nat ) ).

% zero_less_two
thf(fact_3593_zero__less__two,axiom,
    ord_less_int @ zero_zero_int @ ( plus_plus_int @ one_one_int @ one_one_int ) ).

% zero_less_two
thf(fact_3594_divide__strict__left__mono__neg,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ C @ zero_zero_real )
       => ( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
         => ( ord_less_real @ ( divide_divide_real @ C @ A ) @ ( divide_divide_real @ C @ B ) ) ) ) ) ).

% divide_strict_left_mono_neg
thf(fact_3595_divide__strict__left__mono__neg,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_rat @ C @ zero_zero_rat )
       => ( ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) )
         => ( ord_less_rat @ ( divide_divide_rat @ C @ A ) @ ( divide_divide_rat @ C @ B ) ) ) ) ) ).

% divide_strict_left_mono_neg
thf(fact_3596_divide__strict__left__mono,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_real @ B @ A )
     => ( ( ord_less_real @ zero_zero_real @ C )
       => ( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
         => ( ord_less_real @ ( divide_divide_real @ C @ A ) @ ( divide_divide_real @ C @ B ) ) ) ) ) ).

% divide_strict_left_mono
thf(fact_3597_divide__strict__left__mono,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( ord_less_rat @ B @ A )
     => ( ( ord_less_rat @ zero_zero_rat @ C )
       => ( ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) )
         => ( ord_less_rat @ ( divide_divide_rat @ C @ A ) @ ( divide_divide_rat @ C @ B ) ) ) ) ) ).

% divide_strict_left_mono
thf(fact_3598_mult__imp__less__div__pos,axiom,
    ! [Y: real,Z: real,X: real] :
      ( ( ord_less_real @ zero_zero_real @ Y )
     => ( ( ord_less_real @ ( times_times_real @ Z @ Y ) @ X )
       => ( ord_less_real @ Z @ ( divide_divide_real @ X @ Y ) ) ) ) ).

% mult_imp_less_div_pos
thf(fact_3599_mult__imp__less__div__pos,axiom,
    ! [Y: rat,Z: rat,X: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ Y )
     => ( ( ord_less_rat @ ( times_times_rat @ Z @ Y ) @ X )
       => ( ord_less_rat @ Z @ ( divide_divide_rat @ X @ Y ) ) ) ) ).

% mult_imp_less_div_pos
thf(fact_3600_mult__imp__div__pos__less,axiom,
    ! [Y: real,X: real,Z: real] :
      ( ( ord_less_real @ zero_zero_real @ Y )
     => ( ( ord_less_real @ X @ ( times_times_real @ Z @ Y ) )
       => ( ord_less_real @ ( divide_divide_real @ X @ Y ) @ Z ) ) ) ).

% mult_imp_div_pos_less
thf(fact_3601_mult__imp__div__pos__less,axiom,
    ! [Y: rat,X: rat,Z: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ Y )
     => ( ( ord_less_rat @ X @ ( times_times_rat @ Z @ Y ) )
       => ( ord_less_rat @ ( divide_divide_rat @ X @ Y ) @ Z ) ) ) ).

% mult_imp_div_pos_less
thf(fact_3602_pos__less__divide__eq,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ C )
     => ( ( ord_less_real @ A @ ( divide_divide_real @ B @ C ) )
        = ( ord_less_real @ ( times_times_real @ A @ C ) @ B ) ) ) ).

% pos_less_divide_eq
thf(fact_3603_pos__less__divide__eq,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ C )
     => ( ( ord_less_rat @ A @ ( divide_divide_rat @ B @ C ) )
        = ( ord_less_rat @ ( times_times_rat @ A @ C ) @ B ) ) ) ).

% pos_less_divide_eq
thf(fact_3604_pos__divide__less__eq,axiom,
    ! [C: real,B: real,A: real] :
      ( ( ord_less_real @ zero_zero_real @ C )
     => ( ( ord_less_real @ ( divide_divide_real @ B @ C ) @ A )
        = ( ord_less_real @ B @ ( times_times_real @ A @ C ) ) ) ) ).

% pos_divide_less_eq
thf(fact_3605_pos__divide__less__eq,axiom,
    ! [C: rat,B: rat,A: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ C )
     => ( ( ord_less_rat @ ( divide_divide_rat @ B @ C ) @ A )
        = ( ord_less_rat @ B @ ( times_times_rat @ A @ C ) ) ) ) ).

% pos_divide_less_eq
thf(fact_3606_neg__less__divide__eq,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ C @ zero_zero_real )
     => ( ( ord_less_real @ A @ ( divide_divide_real @ B @ C ) )
        = ( ord_less_real @ B @ ( times_times_real @ A @ C ) ) ) ) ).

% neg_less_divide_eq
thf(fact_3607_neg__less__divide__eq,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ C @ zero_zero_rat )
     => ( ( ord_less_rat @ A @ ( divide_divide_rat @ B @ C ) )
        = ( ord_less_rat @ B @ ( times_times_rat @ A @ C ) ) ) ) ).

% neg_less_divide_eq
thf(fact_3608_neg__divide__less__eq,axiom,
    ! [C: real,B: real,A: real] :
      ( ( ord_less_real @ C @ zero_zero_real )
     => ( ( ord_less_real @ ( divide_divide_real @ B @ C ) @ A )
        = ( ord_less_real @ ( times_times_real @ A @ C ) @ B ) ) ) ).

% neg_divide_less_eq
thf(fact_3609_neg__divide__less__eq,axiom,
    ! [C: rat,B: rat,A: rat] :
      ( ( ord_less_rat @ C @ zero_zero_rat )
     => ( ( ord_less_rat @ ( divide_divide_rat @ B @ C ) @ A )
        = ( ord_less_rat @ ( times_times_rat @ A @ C ) @ B ) ) ) ).

% neg_divide_less_eq
thf(fact_3610_less__divide__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ ( divide_divide_real @ B @ C ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_real @ ( times_times_real @ A @ C ) @ B ) )
        & ( ~ ( ord_less_real @ zero_zero_real @ C )
         => ( ( ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_real @ B @ ( times_times_real @ A @ C ) ) )
            & ( ~ ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_real @ A @ zero_zero_real ) ) ) ) ) ) ).

% less_divide_eq
thf(fact_3611_less__divide__eq,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_rat @ A @ ( divide_divide_rat @ B @ C ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_rat @ ( times_times_rat @ A @ C ) @ B ) )
        & ( ~ ( ord_less_rat @ zero_zero_rat @ C )
         => ( ( ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_rat @ B @ ( times_times_rat @ A @ C ) ) )
            & ( ~ ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_rat @ A @ zero_zero_rat ) ) ) ) ) ) ).

% less_divide_eq
thf(fact_3612_divide__less__eq,axiom,
    ! [B: real,C: real,A: real] :
      ( ( ord_less_real @ ( divide_divide_real @ B @ C ) @ A )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_real @ B @ ( times_times_real @ A @ C ) ) )
        & ( ~ ( ord_less_real @ zero_zero_real @ C )
         => ( ( ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_real @ ( times_times_real @ A @ C ) @ B ) )
            & ( ~ ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_real @ zero_zero_real @ A ) ) ) ) ) ) ).

% divide_less_eq
thf(fact_3613_divide__less__eq,axiom,
    ! [B: rat,C: rat,A: rat] :
      ( ( ord_less_rat @ ( divide_divide_rat @ B @ C ) @ A )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_rat @ B @ ( times_times_rat @ A @ C ) ) )
        & ( ~ ( ord_less_rat @ zero_zero_rat @ C )
         => ( ( ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_rat @ ( times_times_rat @ A @ C ) @ B ) )
            & ( ~ ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_rat @ zero_zero_rat @ A ) ) ) ) ) ) ).

% divide_less_eq
thf(fact_3614_power__le__one,axiom,
    ! [A: real,N2: nat] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ A @ one_one_real )
       => ( ord_less_eq_real @ ( power_power_real @ A @ N2 ) @ one_one_real ) ) ) ).

% power_le_one
thf(fact_3615_power__le__one,axiom,
    ! [A: rat,N2: nat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ A )
     => ( ( ord_less_eq_rat @ A @ one_one_rat )
       => ( ord_less_eq_rat @ ( power_power_rat @ A @ N2 ) @ one_one_rat ) ) ) ).

% power_le_one
thf(fact_3616_power__le__one,axiom,
    ! [A: nat,N2: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ A @ one_one_nat )
       => ( ord_less_eq_nat @ ( power_power_nat @ A @ N2 ) @ one_one_nat ) ) ) ).

% power_le_one
thf(fact_3617_power__le__one,axiom,
    ! [A: int,N2: nat] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_eq_int @ A @ one_one_int )
       => ( ord_less_eq_int @ ( power_power_int @ A @ N2 ) @ one_one_int ) ) ) ).

% power_le_one
thf(fact_3618_eq__divide__eq__numeral_I1_J,axiom,
    ! [W: num,B: complex,C: complex] :
      ( ( ( numera6690914467698888265omplex @ W )
        = ( divide1717551699836669952omplex @ B @ C ) )
      = ( ( ( C != zero_zero_complex )
         => ( ( times_times_complex @ ( numera6690914467698888265omplex @ W ) @ C )
            = B ) )
        & ( ( C = zero_zero_complex )
         => ( ( numera6690914467698888265omplex @ W )
            = zero_zero_complex ) ) ) ) ).

% eq_divide_eq_numeral(1)
thf(fact_3619_eq__divide__eq__numeral_I1_J,axiom,
    ! [W: num,B: real,C: real] :
      ( ( ( numeral_numeral_real @ W )
        = ( divide_divide_real @ B @ C ) )
      = ( ( ( C != zero_zero_real )
         => ( ( times_times_real @ ( numeral_numeral_real @ W ) @ C )
            = B ) )
        & ( ( C = zero_zero_real )
         => ( ( numeral_numeral_real @ W )
            = zero_zero_real ) ) ) ) ).

% eq_divide_eq_numeral(1)
thf(fact_3620_eq__divide__eq__numeral_I1_J,axiom,
    ! [W: num,B: rat,C: rat] :
      ( ( ( numeral_numeral_rat @ W )
        = ( divide_divide_rat @ B @ C ) )
      = ( ( ( C != zero_zero_rat )
         => ( ( times_times_rat @ ( numeral_numeral_rat @ W ) @ C )
            = B ) )
        & ( ( C = zero_zero_rat )
         => ( ( numeral_numeral_rat @ W )
            = zero_zero_rat ) ) ) ) ).

% eq_divide_eq_numeral(1)
thf(fact_3621_divide__eq__eq__numeral_I1_J,axiom,
    ! [B: complex,C: complex,W: num] :
      ( ( ( divide1717551699836669952omplex @ B @ C )
        = ( numera6690914467698888265omplex @ W ) )
      = ( ( ( C != zero_zero_complex )
         => ( B
            = ( times_times_complex @ ( numera6690914467698888265omplex @ W ) @ C ) ) )
        & ( ( C = zero_zero_complex )
         => ( ( numera6690914467698888265omplex @ W )
            = zero_zero_complex ) ) ) ) ).

% divide_eq_eq_numeral(1)
thf(fact_3622_divide__eq__eq__numeral_I1_J,axiom,
    ! [B: real,C: real,W: num] :
      ( ( ( divide_divide_real @ B @ C )
        = ( numeral_numeral_real @ W ) )
      = ( ( ( C != zero_zero_real )
         => ( B
            = ( times_times_real @ ( numeral_numeral_real @ W ) @ C ) ) )
        & ( ( C = zero_zero_real )
         => ( ( numeral_numeral_real @ W )
            = zero_zero_real ) ) ) ) ).

% divide_eq_eq_numeral(1)
thf(fact_3623_divide__eq__eq__numeral_I1_J,axiom,
    ! [B: rat,C: rat,W: num] :
      ( ( ( divide_divide_rat @ B @ C )
        = ( numeral_numeral_rat @ W ) )
      = ( ( ( C != zero_zero_rat )
         => ( B
            = ( times_times_rat @ ( numeral_numeral_rat @ W ) @ C ) ) )
        & ( ( C = zero_zero_rat )
         => ( ( numeral_numeral_rat @ W )
            = zero_zero_rat ) ) ) ) ).

% divide_eq_eq_numeral(1)
thf(fact_3624_divide__less__eq__1,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_real @ ( divide_divide_real @ B @ A ) @ one_one_real )
      = ( ( ( ord_less_real @ zero_zero_real @ A )
          & ( ord_less_real @ B @ A ) )
        | ( ( ord_less_real @ A @ zero_zero_real )
          & ( ord_less_real @ A @ B ) )
        | ( A = zero_zero_real ) ) ) ).

% divide_less_eq_1
thf(fact_3625_divide__less__eq__1,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_rat @ ( divide_divide_rat @ B @ A ) @ one_one_rat )
      = ( ( ( ord_less_rat @ zero_zero_rat @ A )
          & ( ord_less_rat @ B @ A ) )
        | ( ( ord_less_rat @ A @ zero_zero_rat )
          & ( ord_less_rat @ A @ B ) )
        | ( A = zero_zero_rat ) ) ) ).

% divide_less_eq_1
thf(fact_3626_less__divide__eq__1,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_real @ one_one_real @ ( divide_divide_real @ B @ A ) )
      = ( ( ( ord_less_real @ zero_zero_real @ A )
          & ( ord_less_real @ A @ B ) )
        | ( ( ord_less_real @ A @ zero_zero_real )
          & ( ord_less_real @ B @ A ) ) ) ) ).

% less_divide_eq_1
thf(fact_3627_less__divide__eq__1,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_rat @ one_one_rat @ ( divide_divide_rat @ B @ A ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ A )
          & ( ord_less_rat @ A @ B ) )
        | ( ( ord_less_rat @ A @ zero_zero_rat )
          & ( ord_less_rat @ B @ A ) ) ) ) ).

% less_divide_eq_1
thf(fact_3628_divide__add__eq__iff,axiom,
    ! [Z: complex,X: complex,Y: complex] :
      ( ( Z != zero_zero_complex )
     => ( ( plus_plus_complex @ ( divide1717551699836669952omplex @ X @ Z ) @ Y )
        = ( divide1717551699836669952omplex @ ( plus_plus_complex @ X @ ( times_times_complex @ Y @ Z ) ) @ Z ) ) ) ).

% divide_add_eq_iff
thf(fact_3629_divide__add__eq__iff,axiom,
    ! [Z: real,X: real,Y: real] :
      ( ( Z != zero_zero_real )
     => ( ( plus_plus_real @ ( divide_divide_real @ X @ Z ) @ Y )
        = ( divide_divide_real @ ( plus_plus_real @ X @ ( times_times_real @ Y @ Z ) ) @ Z ) ) ) ).

% divide_add_eq_iff
thf(fact_3630_divide__add__eq__iff,axiom,
    ! [Z: rat,X: rat,Y: rat] :
      ( ( Z != zero_zero_rat )
     => ( ( plus_plus_rat @ ( divide_divide_rat @ X @ Z ) @ Y )
        = ( divide_divide_rat @ ( plus_plus_rat @ X @ ( times_times_rat @ Y @ Z ) ) @ Z ) ) ) ).

% divide_add_eq_iff
thf(fact_3631_add__divide__eq__iff,axiom,
    ! [Z: complex,X: complex,Y: complex] :
      ( ( Z != zero_zero_complex )
     => ( ( plus_plus_complex @ X @ ( divide1717551699836669952omplex @ Y @ Z ) )
        = ( divide1717551699836669952omplex @ ( plus_plus_complex @ ( times_times_complex @ X @ Z ) @ Y ) @ Z ) ) ) ).

% add_divide_eq_iff
thf(fact_3632_add__divide__eq__iff,axiom,
    ! [Z: real,X: real,Y: real] :
      ( ( Z != zero_zero_real )
     => ( ( plus_plus_real @ X @ ( divide_divide_real @ Y @ Z ) )
        = ( divide_divide_real @ ( plus_plus_real @ ( times_times_real @ X @ Z ) @ Y ) @ Z ) ) ) ).

% add_divide_eq_iff
thf(fact_3633_add__divide__eq__iff,axiom,
    ! [Z: rat,X: rat,Y: rat] :
      ( ( Z != zero_zero_rat )
     => ( ( plus_plus_rat @ X @ ( divide_divide_rat @ Y @ Z ) )
        = ( divide_divide_rat @ ( plus_plus_rat @ ( times_times_rat @ X @ Z ) @ Y ) @ Z ) ) ) ).

% add_divide_eq_iff
thf(fact_3634_add__num__frac,axiom,
    ! [Y: complex,Z: complex,X: complex] :
      ( ( Y != zero_zero_complex )
     => ( ( plus_plus_complex @ Z @ ( divide1717551699836669952omplex @ X @ Y ) )
        = ( divide1717551699836669952omplex @ ( plus_plus_complex @ X @ ( times_times_complex @ Z @ Y ) ) @ Y ) ) ) ).

% add_num_frac
thf(fact_3635_add__num__frac,axiom,
    ! [Y: real,Z: real,X: real] :
      ( ( Y != zero_zero_real )
     => ( ( plus_plus_real @ Z @ ( divide_divide_real @ X @ Y ) )
        = ( divide_divide_real @ ( plus_plus_real @ X @ ( times_times_real @ Z @ Y ) ) @ Y ) ) ) ).

% add_num_frac
thf(fact_3636_add__num__frac,axiom,
    ! [Y: rat,Z: rat,X: rat] :
      ( ( Y != zero_zero_rat )
     => ( ( plus_plus_rat @ Z @ ( divide_divide_rat @ X @ Y ) )
        = ( divide_divide_rat @ ( plus_plus_rat @ X @ ( times_times_rat @ Z @ Y ) ) @ Y ) ) ) ).

% add_num_frac
thf(fact_3637_add__frac__num,axiom,
    ! [Y: complex,X: complex,Z: complex] :
      ( ( Y != zero_zero_complex )
     => ( ( plus_plus_complex @ ( divide1717551699836669952omplex @ X @ Y ) @ Z )
        = ( divide1717551699836669952omplex @ ( plus_plus_complex @ X @ ( times_times_complex @ Z @ Y ) ) @ Y ) ) ) ).

% add_frac_num
thf(fact_3638_add__frac__num,axiom,
    ! [Y: real,X: real,Z: real] :
      ( ( Y != zero_zero_real )
     => ( ( plus_plus_real @ ( divide_divide_real @ X @ Y ) @ Z )
        = ( divide_divide_real @ ( plus_plus_real @ X @ ( times_times_real @ Z @ Y ) ) @ Y ) ) ) ).

% add_frac_num
thf(fact_3639_add__frac__num,axiom,
    ! [Y: rat,X: rat,Z: rat] :
      ( ( Y != zero_zero_rat )
     => ( ( plus_plus_rat @ ( divide_divide_rat @ X @ Y ) @ Z )
        = ( divide_divide_rat @ ( plus_plus_rat @ X @ ( times_times_rat @ Z @ Y ) ) @ Y ) ) ) ).

% add_frac_num
thf(fact_3640_add__frac__eq,axiom,
    ! [Y: complex,Z: complex,X: complex,W: complex] :
      ( ( Y != zero_zero_complex )
     => ( ( Z != zero_zero_complex )
       => ( ( plus_plus_complex @ ( divide1717551699836669952omplex @ X @ Y ) @ ( divide1717551699836669952omplex @ W @ Z ) )
          = ( divide1717551699836669952omplex @ ( plus_plus_complex @ ( times_times_complex @ X @ Z ) @ ( times_times_complex @ W @ Y ) ) @ ( times_times_complex @ Y @ Z ) ) ) ) ) ).

% add_frac_eq
thf(fact_3641_add__frac__eq,axiom,
    ! [Y: real,Z: real,X: real,W: real] :
      ( ( Y != zero_zero_real )
     => ( ( Z != zero_zero_real )
       => ( ( plus_plus_real @ ( divide_divide_real @ X @ Y ) @ ( divide_divide_real @ W @ Z ) )
          = ( divide_divide_real @ ( plus_plus_real @ ( times_times_real @ X @ Z ) @ ( times_times_real @ W @ Y ) ) @ ( times_times_real @ Y @ Z ) ) ) ) ) ).

% add_frac_eq
thf(fact_3642_add__frac__eq,axiom,
    ! [Y: rat,Z: rat,X: rat,W: rat] :
      ( ( Y != zero_zero_rat )
     => ( ( Z != zero_zero_rat )
       => ( ( plus_plus_rat @ ( divide_divide_rat @ X @ Y ) @ ( divide_divide_rat @ W @ Z ) )
          = ( divide_divide_rat @ ( plus_plus_rat @ ( times_times_rat @ X @ Z ) @ ( times_times_rat @ W @ Y ) ) @ ( times_times_rat @ Y @ Z ) ) ) ) ) ).

% add_frac_eq
thf(fact_3643_add__divide__eq__if__simps_I1_J,axiom,
    ! [Z: complex,A: complex,B: complex] :
      ( ( ( Z = zero_zero_complex )
       => ( ( plus_plus_complex @ A @ ( divide1717551699836669952omplex @ B @ Z ) )
          = A ) )
      & ( ( Z != zero_zero_complex )
       => ( ( plus_plus_complex @ A @ ( divide1717551699836669952omplex @ B @ Z ) )
          = ( divide1717551699836669952omplex @ ( plus_plus_complex @ ( times_times_complex @ A @ Z ) @ B ) @ Z ) ) ) ) ).

% add_divide_eq_if_simps(1)
thf(fact_3644_add__divide__eq__if__simps_I1_J,axiom,
    ! [Z: real,A: real,B: real] :
      ( ( ( Z = zero_zero_real )
       => ( ( plus_plus_real @ A @ ( divide_divide_real @ B @ Z ) )
          = A ) )
      & ( ( Z != zero_zero_real )
       => ( ( plus_plus_real @ A @ ( divide_divide_real @ B @ Z ) )
          = ( divide_divide_real @ ( plus_plus_real @ ( times_times_real @ A @ Z ) @ B ) @ Z ) ) ) ) ).

% add_divide_eq_if_simps(1)
thf(fact_3645_add__divide__eq__if__simps_I1_J,axiom,
    ! [Z: rat,A: rat,B: rat] :
      ( ( ( Z = zero_zero_rat )
       => ( ( plus_plus_rat @ A @ ( divide_divide_rat @ B @ Z ) )
          = A ) )
      & ( ( Z != zero_zero_rat )
       => ( ( plus_plus_rat @ A @ ( divide_divide_rat @ B @ Z ) )
          = ( divide_divide_rat @ ( plus_plus_rat @ ( times_times_rat @ A @ Z ) @ B ) @ Z ) ) ) ) ).

% add_divide_eq_if_simps(1)
thf(fact_3646_add__divide__eq__if__simps_I2_J,axiom,
    ! [Z: complex,A: complex,B: complex] :
      ( ( ( Z = zero_zero_complex )
       => ( ( plus_plus_complex @ ( divide1717551699836669952omplex @ A @ Z ) @ B )
          = B ) )
      & ( ( Z != zero_zero_complex )
       => ( ( plus_plus_complex @ ( divide1717551699836669952omplex @ A @ Z ) @ B )
          = ( divide1717551699836669952omplex @ ( plus_plus_complex @ A @ ( times_times_complex @ B @ Z ) ) @ Z ) ) ) ) ).

% add_divide_eq_if_simps(2)
thf(fact_3647_add__divide__eq__if__simps_I2_J,axiom,
    ! [Z: real,A: real,B: real] :
      ( ( ( Z = zero_zero_real )
       => ( ( plus_plus_real @ ( divide_divide_real @ A @ Z ) @ B )
          = B ) )
      & ( ( Z != zero_zero_real )
       => ( ( plus_plus_real @ ( divide_divide_real @ A @ Z ) @ B )
          = ( divide_divide_real @ ( plus_plus_real @ A @ ( times_times_real @ B @ Z ) ) @ Z ) ) ) ) ).

% add_divide_eq_if_simps(2)
thf(fact_3648_add__divide__eq__if__simps_I2_J,axiom,
    ! [Z: rat,A: rat,B: rat] :
      ( ( ( Z = zero_zero_rat )
       => ( ( plus_plus_rat @ ( divide_divide_rat @ A @ Z ) @ B )
          = B ) )
      & ( ( Z != zero_zero_rat )
       => ( ( plus_plus_rat @ ( divide_divide_rat @ A @ Z ) @ B )
          = ( divide_divide_rat @ ( plus_plus_rat @ A @ ( times_times_rat @ B @ Z ) ) @ Z ) ) ) ) ).

% add_divide_eq_if_simps(2)
thf(fact_3649_power__le__imp__le__base,axiom,
    ! [A: real,N2: nat,B: real] :
      ( ( ord_less_eq_real @ ( power_power_real @ A @ ( suc @ N2 ) ) @ ( power_power_real @ B @ ( suc @ N2 ) ) )
     => ( ( ord_less_eq_real @ zero_zero_real @ B )
       => ( ord_less_eq_real @ A @ B ) ) ) ).

% power_le_imp_le_base
thf(fact_3650_power__le__imp__le__base,axiom,
    ! [A: rat,N2: nat,B: rat] :
      ( ( ord_less_eq_rat @ ( power_power_rat @ A @ ( suc @ N2 ) ) @ ( power_power_rat @ B @ ( suc @ N2 ) ) )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ B )
       => ( ord_less_eq_rat @ A @ B ) ) ) ).

% power_le_imp_le_base
thf(fact_3651_power__le__imp__le__base,axiom,
    ! [A: nat,N2: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( power_power_nat @ A @ ( suc @ N2 ) ) @ ( power_power_nat @ B @ ( suc @ N2 ) ) )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
       => ( ord_less_eq_nat @ A @ B ) ) ) ).

% power_le_imp_le_base
thf(fact_3652_power__le__imp__le__base,axiom,
    ! [A: int,N2: nat,B: int] :
      ( ( ord_less_eq_int @ ( power_power_int @ A @ ( suc @ N2 ) ) @ ( power_power_int @ B @ ( suc @ N2 ) ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ B )
       => ( ord_less_eq_int @ A @ B ) ) ) ).

% power_le_imp_le_base
thf(fact_3653_power__inject__base,axiom,
    ! [A: real,N2: nat,B: real] :
      ( ( ( power_power_real @ A @ ( suc @ N2 ) )
        = ( power_power_real @ B @ ( suc @ N2 ) ) )
     => ( ( ord_less_eq_real @ zero_zero_real @ A )
       => ( ( ord_less_eq_real @ zero_zero_real @ B )
         => ( A = B ) ) ) ) ).

% power_inject_base
thf(fact_3654_power__inject__base,axiom,
    ! [A: rat,N2: nat,B: rat] :
      ( ( ( power_power_rat @ A @ ( suc @ N2 ) )
        = ( power_power_rat @ B @ ( suc @ N2 ) ) )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ A )
       => ( ( ord_less_eq_rat @ zero_zero_rat @ B )
         => ( A = B ) ) ) ) ).

% power_inject_base
thf(fact_3655_power__inject__base,axiom,
    ! [A: nat,N2: nat,B: nat] :
      ( ( ( power_power_nat @ A @ ( suc @ N2 ) )
        = ( power_power_nat @ B @ ( suc @ N2 ) ) )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ A )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
         => ( A = B ) ) ) ) ).

% power_inject_base
thf(fact_3656_power__inject__base,axiom,
    ! [A: int,N2: nat,B: int] :
      ( ( ( power_power_int @ A @ ( suc @ N2 ) )
        = ( power_power_int @ B @ ( suc @ N2 ) ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ A )
       => ( ( ord_less_eq_int @ zero_zero_int @ B )
         => ( A = B ) ) ) ) ).

% power_inject_base
thf(fact_3657_div__add__self2,axiom,
    ! [B: nat,A: nat] :
      ( ( B != zero_zero_nat )
     => ( ( divide_divide_nat @ ( plus_plus_nat @ A @ B ) @ B )
        = ( plus_plus_nat @ ( divide_divide_nat @ A @ B ) @ one_one_nat ) ) ) ).

% div_add_self2
thf(fact_3658_div__add__self2,axiom,
    ! [B: int,A: int] :
      ( ( B != zero_zero_int )
     => ( ( divide_divide_int @ ( plus_plus_int @ A @ B ) @ B )
        = ( plus_plus_int @ ( divide_divide_int @ A @ B ) @ one_one_int ) ) ) ).

% div_add_self2
thf(fact_3659_div__add__self1,axiom,
    ! [B: nat,A: nat] :
      ( ( B != zero_zero_nat )
     => ( ( divide_divide_nat @ ( plus_plus_nat @ B @ A ) @ B )
        = ( plus_plus_nat @ ( divide_divide_nat @ A @ B ) @ one_one_nat ) ) ) ).

% div_add_self1
thf(fact_3660_div__add__self1,axiom,
    ! [B: int,A: int] :
      ( ( B != zero_zero_int )
     => ( ( divide_divide_int @ ( plus_plus_int @ B @ A ) @ B )
        = ( plus_plus_int @ ( divide_divide_int @ A @ B ) @ one_one_int ) ) ) ).

% div_add_self1
thf(fact_3661_divide__diff__eq__iff,axiom,
    ! [Z: complex,X: complex,Y: complex] :
      ( ( Z != zero_zero_complex )
     => ( ( minus_minus_complex @ ( divide1717551699836669952omplex @ X @ Z ) @ Y )
        = ( divide1717551699836669952omplex @ ( minus_minus_complex @ X @ ( times_times_complex @ Y @ Z ) ) @ Z ) ) ) ).

% divide_diff_eq_iff
thf(fact_3662_divide__diff__eq__iff,axiom,
    ! [Z: real,X: real,Y: real] :
      ( ( Z != zero_zero_real )
     => ( ( minus_minus_real @ ( divide_divide_real @ X @ Z ) @ Y )
        = ( divide_divide_real @ ( minus_minus_real @ X @ ( times_times_real @ Y @ Z ) ) @ Z ) ) ) ).

% divide_diff_eq_iff
thf(fact_3663_divide__diff__eq__iff,axiom,
    ! [Z: rat,X: rat,Y: rat] :
      ( ( Z != zero_zero_rat )
     => ( ( minus_minus_rat @ ( divide_divide_rat @ X @ Z ) @ Y )
        = ( divide_divide_rat @ ( minus_minus_rat @ X @ ( times_times_rat @ Y @ Z ) ) @ Z ) ) ) ).

% divide_diff_eq_iff
thf(fact_3664_diff__divide__eq__iff,axiom,
    ! [Z: complex,X: complex,Y: complex] :
      ( ( Z != zero_zero_complex )
     => ( ( minus_minus_complex @ X @ ( divide1717551699836669952omplex @ Y @ Z ) )
        = ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( times_times_complex @ X @ Z ) @ Y ) @ Z ) ) ) ).

% diff_divide_eq_iff
thf(fact_3665_diff__divide__eq__iff,axiom,
    ! [Z: real,X: real,Y: real] :
      ( ( Z != zero_zero_real )
     => ( ( minus_minus_real @ X @ ( divide_divide_real @ Y @ Z ) )
        = ( divide_divide_real @ ( minus_minus_real @ ( times_times_real @ X @ Z ) @ Y ) @ Z ) ) ) ).

% diff_divide_eq_iff
thf(fact_3666_diff__divide__eq__iff,axiom,
    ! [Z: rat,X: rat,Y: rat] :
      ( ( Z != zero_zero_rat )
     => ( ( minus_minus_rat @ X @ ( divide_divide_rat @ Y @ Z ) )
        = ( divide_divide_rat @ ( minus_minus_rat @ ( times_times_rat @ X @ Z ) @ Y ) @ Z ) ) ) ).

% diff_divide_eq_iff
thf(fact_3667_diff__frac__eq,axiom,
    ! [Y: complex,Z: complex,X: complex,W: complex] :
      ( ( Y != zero_zero_complex )
     => ( ( Z != zero_zero_complex )
       => ( ( minus_minus_complex @ ( divide1717551699836669952omplex @ X @ Y ) @ ( divide1717551699836669952omplex @ W @ Z ) )
          = ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( times_times_complex @ X @ Z ) @ ( times_times_complex @ W @ Y ) ) @ ( times_times_complex @ Y @ Z ) ) ) ) ) ).

% diff_frac_eq
thf(fact_3668_diff__frac__eq,axiom,
    ! [Y: real,Z: real,X: real,W: real] :
      ( ( Y != zero_zero_real )
     => ( ( Z != zero_zero_real )
       => ( ( minus_minus_real @ ( divide_divide_real @ X @ Y ) @ ( divide_divide_real @ W @ Z ) )
          = ( divide_divide_real @ ( minus_minus_real @ ( times_times_real @ X @ Z ) @ ( times_times_real @ W @ Y ) ) @ ( times_times_real @ Y @ Z ) ) ) ) ) ).

% diff_frac_eq
thf(fact_3669_diff__frac__eq,axiom,
    ! [Y: rat,Z: rat,X: rat,W: rat] :
      ( ( Y != zero_zero_rat )
     => ( ( Z != zero_zero_rat )
       => ( ( minus_minus_rat @ ( divide_divide_rat @ X @ Y ) @ ( divide_divide_rat @ W @ Z ) )
          = ( divide_divide_rat @ ( minus_minus_rat @ ( times_times_rat @ X @ Z ) @ ( times_times_rat @ W @ Y ) ) @ ( times_times_rat @ Y @ Z ) ) ) ) ) ).

% diff_frac_eq
thf(fact_3670_add__divide__eq__if__simps_I4_J,axiom,
    ! [Z: complex,A: complex,B: complex] :
      ( ( ( Z = zero_zero_complex )
       => ( ( minus_minus_complex @ A @ ( divide1717551699836669952omplex @ B @ Z ) )
          = A ) )
      & ( ( Z != zero_zero_complex )
       => ( ( minus_minus_complex @ A @ ( divide1717551699836669952omplex @ B @ Z ) )
          = ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( times_times_complex @ A @ Z ) @ B ) @ Z ) ) ) ) ).

% add_divide_eq_if_simps(4)
thf(fact_3671_add__divide__eq__if__simps_I4_J,axiom,
    ! [Z: real,A: real,B: real] :
      ( ( ( Z = zero_zero_real )
       => ( ( minus_minus_real @ A @ ( divide_divide_real @ B @ Z ) )
          = A ) )
      & ( ( Z != zero_zero_real )
       => ( ( minus_minus_real @ A @ ( divide_divide_real @ B @ Z ) )
          = ( divide_divide_real @ ( minus_minus_real @ ( times_times_real @ A @ Z ) @ B ) @ Z ) ) ) ) ).

% add_divide_eq_if_simps(4)
thf(fact_3672_add__divide__eq__if__simps_I4_J,axiom,
    ! [Z: rat,A: rat,B: rat] :
      ( ( ( Z = zero_zero_rat )
       => ( ( minus_minus_rat @ A @ ( divide_divide_rat @ B @ Z ) )
          = A ) )
      & ( ( Z != zero_zero_rat )
       => ( ( minus_minus_rat @ A @ ( divide_divide_rat @ B @ Z ) )
          = ( divide_divide_rat @ ( minus_minus_rat @ ( times_times_rat @ A @ Z ) @ B ) @ Z ) ) ) ) ).

% add_divide_eq_if_simps(4)
thf(fact_3673_numeral__1__eq__Suc__0,axiom,
    ( ( numeral_numeral_nat @ one )
    = ( suc @ zero_zero_nat ) ) ).

% numeral_1_eq_Suc_0
thf(fact_3674_num_Osize_I5_J,axiom,
    ! [X22: num] :
      ( ( size_size_num @ ( bit0 @ X22 ) )
      = ( plus_plus_nat @ ( size_size_num @ X22 ) @ ( suc @ zero_zero_nat ) ) ) ).

% num.size(5)
thf(fact_3675_ex__least__nat__less,axiom,
    ! [P: nat > $o,N2: nat] :
      ( ( P @ N2 )
     => ( ~ ( P @ zero_zero_nat )
       => ? [K2: nat] :
            ( ( ord_less_nat @ K2 @ N2 )
            & ! [I: nat] :
                ( ( ord_less_eq_nat @ I @ K2 )
               => ~ ( P @ I ) )
            & ( P @ ( suc @ K2 ) ) ) ) ) ).

% ex_least_nat_less
thf(fact_3676_n__less__n__mult__m,axiom,
    ! [N2: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ M )
       => ( ord_less_nat @ N2 @ ( times_times_nat @ N2 @ M ) ) ) ) ).

% n_less_n_mult_m
thf(fact_3677_n__less__m__mult__n,axiom,
    ! [N2: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ M )
       => ( ord_less_nat @ N2 @ ( times_times_nat @ M @ N2 ) ) ) ) ).

% n_less_m_mult_n
thf(fact_3678_one__less__mult,axiom,
    ! [N2: nat,M: nat] :
      ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ N2 )
     => ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ M )
       => ( ord_less_nat @ ( suc @ zero_zero_nat ) @ ( times_times_nat @ M @ N2 ) ) ) ) ).

% one_less_mult
thf(fact_3679_power__gt__expt,axiom,
    ! [N2: nat,K: nat] :
      ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ N2 )
     => ( ord_less_nat @ K @ ( power_power_nat @ N2 @ K ) ) ) ).

% power_gt_expt
thf(fact_3680_diff__Suc__less,axiom,
    ! [N2: nat,I2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ord_less_nat @ ( minus_minus_nat @ N2 @ ( suc @ I2 ) ) @ N2 ) ) ).

% diff_Suc_less
thf(fact_3681_nat__one__le__power,axiom,
    ! [I2: nat,N2: nat] :
      ( ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ I2 )
     => ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ ( power_power_nat @ I2 @ N2 ) ) ) ).

% nat_one_le_power
thf(fact_3682_nat__mult__le__cancel1,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ K )
     => ( ( ord_less_eq_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N2 ) )
        = ( ord_less_eq_nat @ M @ N2 ) ) ) ).

% nat_mult_le_cancel1
thf(fact_3683_nat__induct__non__zero,axiom,
    ! [N2: nat,P: nat > $o] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( P @ one_one_nat )
       => ( ! [N: nat] :
              ( ( ord_less_nat @ zero_zero_nat @ N )
             => ( ( P @ N )
               => ( P @ ( suc @ N ) ) ) )
         => ( P @ N2 ) ) ) ) ).

% nat_induct_non_zero
thf(fact_3684_length__pos__if__in__set,axiom,
    ! [X: complex,Xs2: list_complex] :
      ( ( member_complex @ X @ ( set_complex2 @ Xs2 ) )
     => ( ord_less_nat @ zero_zero_nat @ ( size_s3451745648224563538omplex @ Xs2 ) ) ) ).

% length_pos_if_in_set
thf(fact_3685_length__pos__if__in__set,axiom,
    ! [X: real,Xs2: list_real] :
      ( ( member_real @ X @ ( set_real2 @ Xs2 ) )
     => ( ord_less_nat @ zero_zero_nat @ ( size_size_list_real @ Xs2 ) ) ) ).

% length_pos_if_in_set
thf(fact_3686_length__pos__if__in__set,axiom,
    ! [X: set_nat,Xs2: list_set_nat] :
      ( ( member_set_nat @ X @ ( set_set_nat2 @ Xs2 ) )
     => ( ord_less_nat @ zero_zero_nat @ ( size_s3254054031482475050et_nat @ Xs2 ) ) ) ).

% length_pos_if_in_set
thf(fact_3687_length__pos__if__in__set,axiom,
    ! [X: nat,Xs2: list_nat] :
      ( ( member_nat @ X @ ( set_nat2 @ Xs2 ) )
     => ( ord_less_nat @ zero_zero_nat @ ( size_size_list_nat @ Xs2 ) ) ) ).

% length_pos_if_in_set
thf(fact_3688_length__pos__if__in__set,axiom,
    ! [X: vEBT_VEBT,Xs2: list_VEBT_VEBT] :
      ( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ Xs2 ) )
     => ( ord_less_nat @ zero_zero_nat @ ( size_s6755466524823107622T_VEBT @ Xs2 ) ) ) ).

% length_pos_if_in_set
thf(fact_3689_length__pos__if__in__set,axiom,
    ! [X: $o,Xs2: list_o] :
      ( ( member_o @ X @ ( set_o2 @ Xs2 ) )
     => ( ord_less_nat @ zero_zero_nat @ ( size_size_list_o @ Xs2 ) ) ) ).

% length_pos_if_in_set
thf(fact_3690_length__pos__if__in__set,axiom,
    ! [X: int,Xs2: list_int] :
      ( ( member_int @ X @ ( set_int2 @ Xs2 ) )
     => ( ord_less_nat @ zero_zero_nat @ ( size_size_list_int @ Xs2 ) ) ) ).

% length_pos_if_in_set
thf(fact_3691_nat__diff__split,axiom,
    ! [P: nat > $o,A: nat,B: nat] :
      ( ( P @ ( minus_minus_nat @ A @ B ) )
      = ( ( ( ord_less_nat @ A @ B )
         => ( P @ zero_zero_nat ) )
        & ! [D2: nat] :
            ( ( A
              = ( plus_plus_nat @ B @ D2 ) )
           => ( P @ D2 ) ) ) ) ).

% nat_diff_split
thf(fact_3692_nat__diff__split__asm,axiom,
    ! [P: nat > $o,A: nat,B: nat] :
      ( ( P @ ( minus_minus_nat @ A @ B ) )
      = ( ~ ( ( ( ord_less_nat @ A @ B )
              & ~ ( P @ zero_zero_nat ) )
            | ? [D2: nat] :
                ( ( A
                  = ( plus_plus_nat @ B @ D2 ) )
                & ~ ( P @ D2 ) ) ) ) ) ).

% nat_diff_split_asm
thf(fact_3693_div__greater__zero__iff,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( divide_divide_nat @ M @ N2 ) )
      = ( ( ord_less_eq_nat @ N2 @ M )
        & ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ).

% div_greater_zero_iff
thf(fact_3694_div__le__mono2,axiom,
    ! [M: nat,N2: nat,K: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ M )
     => ( ( ord_less_eq_nat @ M @ N2 )
       => ( ord_less_eq_nat @ ( divide_divide_nat @ K @ N2 ) @ ( divide_divide_nat @ K @ M ) ) ) ) ).

% div_le_mono2
thf(fact_3695_div__less__iff__less__mult,axiom,
    ! [Q2: nat,M: nat,N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ Q2 )
     => ( ( ord_less_nat @ ( divide_divide_nat @ M @ Q2 ) @ N2 )
        = ( ord_less_nat @ M @ ( times_times_nat @ N2 @ Q2 ) ) ) ) ).

% div_less_iff_less_mult
thf(fact_3696_nat__mult__div__cancel1,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ K )
     => ( ( divide_divide_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N2 ) )
        = ( divide_divide_nat @ M @ N2 ) ) ) ).

% nat_mult_div_cancel1
thf(fact_3697_div__less__dividend,axiom,
    ! [N2: nat,M: nat] :
      ( ( ord_less_nat @ one_one_nat @ N2 )
     => ( ( ord_less_nat @ zero_zero_nat @ M )
       => ( ord_less_nat @ ( divide_divide_nat @ M @ N2 ) @ M ) ) ) ).

% div_less_dividend
thf(fact_3698_div__eq__dividend__iff,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ M )
     => ( ( ( divide_divide_nat @ M @ N2 )
          = M )
        = ( N2 = one_one_nat ) ) ) ).

% div_eq_dividend_iff
thf(fact_3699_divmod__digit__1_I1_J,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A )
     => ( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ B )
       => ( ( ord_le3102999989581377725nteger @ B @ ( modulo364778990260209775nteger @ A @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) )
         => ( ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( divide6298287555418463151nteger @ A @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) ) @ one_one_Code_integer )
            = ( divide6298287555418463151nteger @ A @ B ) ) ) ) ) ).

% divmod_digit_1(1)
thf(fact_3700_divmod__digit__1_I1_J,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ B )
       => ( ( ord_less_eq_nat @ B @ ( modulo_modulo_nat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) )
         => ( ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) ) @ one_one_nat )
            = ( divide_divide_nat @ A @ B ) ) ) ) ) ).

% divmod_digit_1(1)
thf(fact_3701_divmod__digit__1_I1_J,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ zero_zero_int @ B )
       => ( ( ord_less_eq_int @ B @ ( modulo_modulo_int @ A @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) )
         => ( ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ A @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) ) @ one_one_int )
            = ( divide_divide_int @ A @ B ) ) ) ) ) ).

% divmod_digit_1(1)
thf(fact_3702_vebt__insert_Osimps_I3_J,axiom,
    ! [Info: option4927543243414619207at_nat,Ts2: list_VEBT_VEBT,S2: vEBT_VEBT,X: nat] :
      ( ( vEBT_vebt_insert @ ( vEBT_Node @ Info @ ( suc @ zero_zero_nat ) @ Ts2 @ S2 ) @ X )
      = ( vEBT_Node @ Info @ ( suc @ zero_zero_nat ) @ Ts2 @ S2 ) ) ).

% vebt_insert.simps(3)
thf(fact_3703_vebt__member_Osimps_I3_J,axiom,
    ! [V: product_prod_nat_nat,Uy: list_VEBT_VEBT,Uz: vEBT_VEBT,X: nat] :
      ~ ( vEBT_vebt_member @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V ) @ zero_zero_nat @ Uy @ Uz ) @ X ) ).

% vebt_member.simps(3)
thf(fact_3704_vebt__mint_Ocases,axiom,
    ! [X: vEBT_VEBT] :
      ( ! [A3: $o,B2: $o] :
          ( X
         != ( vEBT_Leaf @ A3 @ B2 ) )
     => ( ! [Uu2: nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT] :
            ( X
           != ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu2 @ Uv2 @ Uw2 ) )
       => ~ ! [Mi2: nat,Ma2: nat,Ux2: nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT] :
              ( X
             != ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ Ux2 @ Uy2 @ Uz2 ) ) ) ) ).

% vebt_mint.cases
thf(fact_3705_VEBT__internal_OminNull_Oelims_I1_J,axiom,
    ! [X: vEBT_VEBT,Y: $o] :
      ( ( ( vEBT_VEBT_minNull @ X )
        = Y )
     => ( ( ( X
            = ( vEBT_Leaf @ $false @ $false ) )
         => ~ Y )
       => ( ( ? [Uv2: $o] :
                ( X
                = ( vEBT_Leaf @ $true @ Uv2 ) )
           => Y )
         => ( ( ? [Uu2: $o] :
                  ( X
                  = ( vEBT_Leaf @ Uu2 @ $true ) )
             => Y )
           => ( ( ? [Uw2: nat,Ux2: list_VEBT_VEBT,Uy2: vEBT_VEBT] :
                    ( X
                    = ( vEBT_Node @ none_P5556105721700978146at_nat @ Uw2 @ Ux2 @ Uy2 ) )
               => ~ Y )
             => ~ ( ? [Uz2: product_prod_nat_nat,Va3: nat,Vb2: list_VEBT_VEBT,Vc2: vEBT_VEBT] :
                      ( X
                      = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ Uz2 ) @ Va3 @ Vb2 @ Vc2 ) )
                 => Y ) ) ) ) ) ) ).

% VEBT_internal.minNull.elims(1)
thf(fact_3706_vebt__maxt_Oelims,axiom,
    ! [X: vEBT_VEBT,Y: option_nat] :
      ( ( ( vEBT_vebt_maxt @ X )
        = Y )
     => ( ! [A3: $o,B2: $o] :
            ( ( X
              = ( vEBT_Leaf @ A3 @ B2 ) )
           => ~ ( ( B2
                 => ( Y
                    = ( some_nat @ one_one_nat ) ) )
                & ( ~ B2
                 => ( ( A3
                     => ( Y
                        = ( some_nat @ zero_zero_nat ) ) )
                    & ( ~ A3
                     => ( Y = none_nat ) ) ) ) ) )
       => ( ( ? [Uu2: nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT] :
                ( X
                = ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu2 @ Uv2 @ Uw2 ) )
           => ( Y != none_nat ) )
         => ~ ! [Mi2: nat,Ma2: nat] :
                ( ? [Ux2: nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT] :
                    ( X
                    = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ Ux2 @ Uy2 @ Uz2 ) )
               => ( Y
                 != ( some_nat @ Ma2 ) ) ) ) ) ) ).

% vebt_maxt.elims
thf(fact_3707_vebt__mint_Oelims,axiom,
    ! [X: vEBT_VEBT,Y: option_nat] :
      ( ( ( vEBT_vebt_mint @ X )
        = Y )
     => ( ! [A3: $o,B2: $o] :
            ( ( X
              = ( vEBT_Leaf @ A3 @ B2 ) )
           => ~ ( ( A3
                 => ( Y
                    = ( some_nat @ zero_zero_nat ) ) )
                & ( ~ A3
                 => ( ( B2
                     => ( Y
                        = ( some_nat @ one_one_nat ) ) )
                    & ( ~ B2
                     => ( Y = none_nat ) ) ) ) ) )
       => ( ( ? [Uu2: nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT] :
                ( X
                = ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu2 @ Uv2 @ Uw2 ) )
           => ( Y != none_nat ) )
         => ~ ! [Mi2: nat] :
                ( ? [Ma2: nat,Ux2: nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT] :
                    ( X
                    = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ Ux2 @ Uy2 @ Uz2 ) )
               => ( Y
                 != ( some_nat @ Mi2 ) ) ) ) ) ) ).

% vebt_mint.elims
thf(fact_3708_mult__le__cancel__left1,axiom,
    ! [C: real,B: real] :
      ( ( ord_less_eq_real @ C @ ( times_times_real @ C @ B ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ one_one_real @ B ) )
        & ( ( ord_less_real @ C @ zero_zero_real )
         => ( ord_less_eq_real @ B @ one_one_real ) ) ) ) ).

% mult_le_cancel_left1
thf(fact_3709_mult__le__cancel__left1,axiom,
    ! [C: rat,B: rat] :
      ( ( ord_less_eq_rat @ C @ ( times_times_rat @ C @ B ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_eq_rat @ one_one_rat @ B ) )
        & ( ( ord_less_rat @ C @ zero_zero_rat )
         => ( ord_less_eq_rat @ B @ one_one_rat ) ) ) ) ).

% mult_le_cancel_left1
thf(fact_3710_mult__le__cancel__left1,axiom,
    ! [C: int,B: int] :
      ( ( ord_less_eq_int @ C @ ( times_times_int @ C @ B ) )
      = ( ( ( ord_less_int @ zero_zero_int @ C )
         => ( ord_less_eq_int @ one_one_int @ B ) )
        & ( ( ord_less_int @ C @ zero_zero_int )
         => ( ord_less_eq_int @ B @ one_one_int ) ) ) ) ).

% mult_le_cancel_left1
thf(fact_3711_mult__le__cancel__left2,axiom,
    ! [C: real,A: real] :
      ( ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ C )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ A @ one_one_real ) )
        & ( ( ord_less_real @ C @ zero_zero_real )
         => ( ord_less_eq_real @ one_one_real @ A ) ) ) ) ).

% mult_le_cancel_left2
thf(fact_3712_mult__le__cancel__left2,axiom,
    ! [C: rat,A: rat] :
      ( ( ord_less_eq_rat @ ( times_times_rat @ C @ A ) @ C )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_eq_rat @ A @ one_one_rat ) )
        & ( ( ord_less_rat @ C @ zero_zero_rat )
         => ( ord_less_eq_rat @ one_one_rat @ A ) ) ) ) ).

% mult_le_cancel_left2
thf(fact_3713_mult__le__cancel__left2,axiom,
    ! [C: int,A: int] :
      ( ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ C )
      = ( ( ( ord_less_int @ zero_zero_int @ C )
         => ( ord_less_eq_int @ A @ one_one_int ) )
        & ( ( ord_less_int @ C @ zero_zero_int )
         => ( ord_less_eq_int @ one_one_int @ A ) ) ) ) ).

% mult_le_cancel_left2
thf(fact_3714_mult__le__cancel__right1,axiom,
    ! [C: real,B: real] :
      ( ( ord_less_eq_real @ C @ ( times_times_real @ B @ C ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ one_one_real @ B ) )
        & ( ( ord_less_real @ C @ zero_zero_real )
         => ( ord_less_eq_real @ B @ one_one_real ) ) ) ) ).

% mult_le_cancel_right1
thf(fact_3715_mult__le__cancel__right1,axiom,
    ! [C: rat,B: rat] :
      ( ( ord_less_eq_rat @ C @ ( times_times_rat @ B @ C ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_eq_rat @ one_one_rat @ B ) )
        & ( ( ord_less_rat @ C @ zero_zero_rat )
         => ( ord_less_eq_rat @ B @ one_one_rat ) ) ) ) ).

% mult_le_cancel_right1
thf(fact_3716_mult__le__cancel__right1,axiom,
    ! [C: int,B: int] :
      ( ( ord_less_eq_int @ C @ ( times_times_int @ B @ C ) )
      = ( ( ( ord_less_int @ zero_zero_int @ C )
         => ( ord_less_eq_int @ one_one_int @ B ) )
        & ( ( ord_less_int @ C @ zero_zero_int )
         => ( ord_less_eq_int @ B @ one_one_int ) ) ) ) ).

% mult_le_cancel_right1
thf(fact_3717_mult__le__cancel__right2,axiom,
    ! [A: real,C: real] :
      ( ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ C )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ A @ one_one_real ) )
        & ( ( ord_less_real @ C @ zero_zero_real )
         => ( ord_less_eq_real @ one_one_real @ A ) ) ) ) ).

% mult_le_cancel_right2
thf(fact_3718_mult__le__cancel__right2,axiom,
    ! [A: rat,C: rat] :
      ( ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ C )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_eq_rat @ A @ one_one_rat ) )
        & ( ( ord_less_rat @ C @ zero_zero_rat )
         => ( ord_less_eq_rat @ one_one_rat @ A ) ) ) ) ).

% mult_le_cancel_right2
thf(fact_3719_mult__le__cancel__right2,axiom,
    ! [A: int,C: int] :
      ( ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ C )
      = ( ( ( ord_less_int @ zero_zero_int @ C )
         => ( ord_less_eq_int @ A @ one_one_int ) )
        & ( ( ord_less_int @ C @ zero_zero_int )
         => ( ord_less_eq_int @ one_one_int @ A ) ) ) ) ).

% mult_le_cancel_right2
thf(fact_3720_mult__less__cancel__left1,axiom,
    ! [C: real,B: real] :
      ( ( ord_less_real @ C @ ( times_times_real @ C @ B ) )
      = ( ( ( ord_less_eq_real @ zero_zero_real @ C )
         => ( ord_less_real @ one_one_real @ B ) )
        & ( ( ord_less_eq_real @ C @ zero_zero_real )
         => ( ord_less_real @ B @ one_one_real ) ) ) ) ).

% mult_less_cancel_left1
thf(fact_3721_mult__less__cancel__left1,axiom,
    ! [C: rat,B: rat] :
      ( ( ord_less_rat @ C @ ( times_times_rat @ C @ B ) )
      = ( ( ( ord_less_eq_rat @ zero_zero_rat @ C )
         => ( ord_less_rat @ one_one_rat @ B ) )
        & ( ( ord_less_eq_rat @ C @ zero_zero_rat )
         => ( ord_less_rat @ B @ one_one_rat ) ) ) ) ).

% mult_less_cancel_left1
thf(fact_3722_mult__less__cancel__left1,axiom,
    ! [C: int,B: int] :
      ( ( ord_less_int @ C @ ( times_times_int @ C @ B ) )
      = ( ( ( ord_less_eq_int @ zero_zero_int @ C )
         => ( ord_less_int @ one_one_int @ B ) )
        & ( ( ord_less_eq_int @ C @ zero_zero_int )
         => ( ord_less_int @ B @ one_one_int ) ) ) ) ).

% mult_less_cancel_left1
thf(fact_3723_mult__less__cancel__left2,axiom,
    ! [C: real,A: real] :
      ( ( ord_less_real @ ( times_times_real @ C @ A ) @ C )
      = ( ( ( ord_less_eq_real @ zero_zero_real @ C )
         => ( ord_less_real @ A @ one_one_real ) )
        & ( ( ord_less_eq_real @ C @ zero_zero_real )
         => ( ord_less_real @ one_one_real @ A ) ) ) ) ).

% mult_less_cancel_left2
thf(fact_3724_mult__less__cancel__left2,axiom,
    ! [C: rat,A: rat] :
      ( ( ord_less_rat @ ( times_times_rat @ C @ A ) @ C )
      = ( ( ( ord_less_eq_rat @ zero_zero_rat @ C )
         => ( ord_less_rat @ A @ one_one_rat ) )
        & ( ( ord_less_eq_rat @ C @ zero_zero_rat )
         => ( ord_less_rat @ one_one_rat @ A ) ) ) ) ).

% mult_less_cancel_left2
thf(fact_3725_mult__less__cancel__left2,axiom,
    ! [C: int,A: int] :
      ( ( ord_less_int @ ( times_times_int @ C @ A ) @ C )
      = ( ( ( ord_less_eq_int @ zero_zero_int @ C )
         => ( ord_less_int @ A @ one_one_int ) )
        & ( ( ord_less_eq_int @ C @ zero_zero_int )
         => ( ord_less_int @ one_one_int @ A ) ) ) ) ).

% mult_less_cancel_left2
thf(fact_3726_mult__less__cancel__right1,axiom,
    ! [C: real,B: real] :
      ( ( ord_less_real @ C @ ( times_times_real @ B @ C ) )
      = ( ( ( ord_less_eq_real @ zero_zero_real @ C )
         => ( ord_less_real @ one_one_real @ B ) )
        & ( ( ord_less_eq_real @ C @ zero_zero_real )
         => ( ord_less_real @ B @ one_one_real ) ) ) ) ).

% mult_less_cancel_right1
thf(fact_3727_mult__less__cancel__right1,axiom,
    ! [C: rat,B: rat] :
      ( ( ord_less_rat @ C @ ( times_times_rat @ B @ C ) )
      = ( ( ( ord_less_eq_rat @ zero_zero_rat @ C )
         => ( ord_less_rat @ one_one_rat @ B ) )
        & ( ( ord_less_eq_rat @ C @ zero_zero_rat )
         => ( ord_less_rat @ B @ one_one_rat ) ) ) ) ).

% mult_less_cancel_right1
thf(fact_3728_mult__less__cancel__right1,axiom,
    ! [C: int,B: int] :
      ( ( ord_less_int @ C @ ( times_times_int @ B @ C ) )
      = ( ( ( ord_less_eq_int @ zero_zero_int @ C )
         => ( ord_less_int @ one_one_int @ B ) )
        & ( ( ord_less_eq_int @ C @ zero_zero_int )
         => ( ord_less_int @ B @ one_one_int ) ) ) ) ).

% mult_less_cancel_right1
thf(fact_3729_mult__less__cancel__right2,axiom,
    ! [A: real,C: real] :
      ( ( ord_less_real @ ( times_times_real @ A @ C ) @ C )
      = ( ( ( ord_less_eq_real @ zero_zero_real @ C )
         => ( ord_less_real @ A @ one_one_real ) )
        & ( ( ord_less_eq_real @ C @ zero_zero_real )
         => ( ord_less_real @ one_one_real @ A ) ) ) ) ).

% mult_less_cancel_right2
thf(fact_3730_mult__less__cancel__right2,axiom,
    ! [A: rat,C: rat] :
      ( ( ord_less_rat @ ( times_times_rat @ A @ C ) @ C )
      = ( ( ( ord_less_eq_rat @ zero_zero_rat @ C )
         => ( ord_less_rat @ A @ one_one_rat ) )
        & ( ( ord_less_eq_rat @ C @ zero_zero_rat )
         => ( ord_less_rat @ one_one_rat @ A ) ) ) ) ).

% mult_less_cancel_right2
thf(fact_3731_mult__less__cancel__right2,axiom,
    ! [A: int,C: int] :
      ( ( ord_less_int @ ( times_times_int @ A @ C ) @ C )
      = ( ( ( ord_less_eq_int @ zero_zero_int @ C )
         => ( ord_less_int @ A @ one_one_int ) )
        & ( ( ord_less_eq_int @ C @ zero_zero_int )
         => ( ord_less_int @ one_one_int @ A ) ) ) ) ).

% mult_less_cancel_right2
thf(fact_3732_field__le__mult__one__interval,axiom,
    ! [X: real,Y: real] :
      ( ! [Z4: real] :
          ( ( ord_less_real @ zero_zero_real @ Z4 )
         => ( ( ord_less_real @ Z4 @ one_one_real )
           => ( ord_less_eq_real @ ( times_times_real @ Z4 @ X ) @ Y ) ) )
     => ( ord_less_eq_real @ X @ Y ) ) ).

% field_le_mult_one_interval
thf(fact_3733_field__le__mult__one__interval,axiom,
    ! [X: rat,Y: rat] :
      ( ! [Z4: rat] :
          ( ( ord_less_rat @ zero_zero_rat @ Z4 )
         => ( ( ord_less_rat @ Z4 @ one_one_rat )
           => ( ord_less_eq_rat @ ( times_times_rat @ Z4 @ X ) @ Y ) ) )
     => ( ord_less_eq_rat @ X @ Y ) ) ).

% field_le_mult_one_interval
thf(fact_3734_divide__left__mono__neg,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ C @ zero_zero_real )
       => ( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
         => ( ord_less_eq_real @ ( divide_divide_real @ C @ A ) @ ( divide_divide_real @ C @ B ) ) ) ) ) ).

% divide_left_mono_neg
thf(fact_3735_divide__left__mono__neg,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_rat @ C @ zero_zero_rat )
       => ( ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) )
         => ( ord_less_eq_rat @ ( divide_divide_rat @ C @ A ) @ ( divide_divide_rat @ C @ B ) ) ) ) ) ).

% divide_left_mono_neg
thf(fact_3736_mult__imp__le__div__pos,axiom,
    ! [Y: real,Z: real,X: real] :
      ( ( ord_less_real @ zero_zero_real @ Y )
     => ( ( ord_less_eq_real @ ( times_times_real @ Z @ Y ) @ X )
       => ( ord_less_eq_real @ Z @ ( divide_divide_real @ X @ Y ) ) ) ) ).

% mult_imp_le_div_pos
thf(fact_3737_mult__imp__le__div__pos,axiom,
    ! [Y: rat,Z: rat,X: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ Y )
     => ( ( ord_less_eq_rat @ ( times_times_rat @ Z @ Y ) @ X )
       => ( ord_less_eq_rat @ Z @ ( divide_divide_rat @ X @ Y ) ) ) ) ).

% mult_imp_le_div_pos
thf(fact_3738_mult__imp__div__pos__le,axiom,
    ! [Y: real,X: real,Z: real] :
      ( ( ord_less_real @ zero_zero_real @ Y )
     => ( ( ord_less_eq_real @ X @ ( times_times_real @ Z @ Y ) )
       => ( ord_less_eq_real @ ( divide_divide_real @ X @ Y ) @ Z ) ) ) ).

% mult_imp_div_pos_le
thf(fact_3739_mult__imp__div__pos__le,axiom,
    ! [Y: rat,X: rat,Z: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ Y )
     => ( ( ord_less_eq_rat @ X @ ( times_times_rat @ Z @ Y ) )
       => ( ord_less_eq_rat @ ( divide_divide_rat @ X @ Y ) @ Z ) ) ) ).

% mult_imp_div_pos_le
thf(fact_3740_pos__le__divide__eq,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ C )
     => ( ( ord_less_eq_real @ A @ ( divide_divide_real @ B @ C ) )
        = ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ B ) ) ) ).

% pos_le_divide_eq
thf(fact_3741_pos__le__divide__eq,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ C )
     => ( ( ord_less_eq_rat @ A @ ( divide_divide_rat @ B @ C ) )
        = ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ B ) ) ) ).

% pos_le_divide_eq
thf(fact_3742_pos__divide__le__eq,axiom,
    ! [C: real,B: real,A: real] :
      ( ( ord_less_real @ zero_zero_real @ C )
     => ( ( ord_less_eq_real @ ( divide_divide_real @ B @ C ) @ A )
        = ( ord_less_eq_real @ B @ ( times_times_real @ A @ C ) ) ) ) ).

% pos_divide_le_eq
thf(fact_3743_pos__divide__le__eq,axiom,
    ! [C: rat,B: rat,A: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ C )
     => ( ( ord_less_eq_rat @ ( divide_divide_rat @ B @ C ) @ A )
        = ( ord_less_eq_rat @ B @ ( times_times_rat @ A @ C ) ) ) ) ).

% pos_divide_le_eq
thf(fact_3744_neg__le__divide__eq,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ C @ zero_zero_real )
     => ( ( ord_less_eq_real @ A @ ( divide_divide_real @ B @ C ) )
        = ( ord_less_eq_real @ B @ ( times_times_real @ A @ C ) ) ) ) ).

% neg_le_divide_eq
thf(fact_3745_neg__le__divide__eq,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ C @ zero_zero_rat )
     => ( ( ord_less_eq_rat @ A @ ( divide_divide_rat @ B @ C ) )
        = ( ord_less_eq_rat @ B @ ( times_times_rat @ A @ C ) ) ) ) ).

% neg_le_divide_eq
thf(fact_3746_neg__divide__le__eq,axiom,
    ! [C: real,B: real,A: real] :
      ( ( ord_less_real @ C @ zero_zero_real )
     => ( ( ord_less_eq_real @ ( divide_divide_real @ B @ C ) @ A )
        = ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ B ) ) ) ).

% neg_divide_le_eq
thf(fact_3747_neg__divide__le__eq,axiom,
    ! [C: rat,B: rat,A: rat] :
      ( ( ord_less_rat @ C @ zero_zero_rat )
     => ( ( ord_less_eq_rat @ ( divide_divide_rat @ B @ C ) @ A )
        = ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ B ) ) ) ).

% neg_divide_le_eq
thf(fact_3748_divide__left__mono,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_eq_real @ B @ A )
     => ( ( ord_less_eq_real @ zero_zero_real @ C )
       => ( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
         => ( ord_less_eq_real @ ( divide_divide_real @ C @ A ) @ ( divide_divide_real @ C @ B ) ) ) ) ) ).

% divide_left_mono
thf(fact_3749_divide__left__mono,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( ord_less_eq_rat @ B @ A )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ C )
       => ( ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) )
         => ( ord_less_eq_rat @ ( divide_divide_rat @ C @ A ) @ ( divide_divide_rat @ C @ B ) ) ) ) ) ).

% divide_left_mono
thf(fact_3750_le__divide__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ ( divide_divide_real @ B @ C ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ B ) )
        & ( ~ ( ord_less_real @ zero_zero_real @ C )
         => ( ( ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_eq_real @ B @ ( times_times_real @ A @ C ) ) )
            & ( ~ ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_eq_real @ A @ zero_zero_real ) ) ) ) ) ) ).

% le_divide_eq
thf(fact_3751_le__divide__eq,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ ( divide_divide_rat @ B @ C ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ B ) )
        & ( ~ ( ord_less_rat @ zero_zero_rat @ C )
         => ( ( ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_eq_rat @ B @ ( times_times_rat @ A @ C ) ) )
            & ( ~ ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_eq_rat @ A @ zero_zero_rat ) ) ) ) ) ) ).

% le_divide_eq
thf(fact_3752_divide__le__eq,axiom,
    ! [B: real,C: real,A: real] :
      ( ( ord_less_eq_real @ ( divide_divide_real @ B @ C ) @ A )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ B @ ( times_times_real @ A @ C ) ) )
        & ( ~ ( ord_less_real @ zero_zero_real @ C )
         => ( ( ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ B ) )
            & ( ~ ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_eq_real @ zero_zero_real @ A ) ) ) ) ) ) ).

% divide_le_eq
thf(fact_3753_divide__le__eq,axiom,
    ! [B: rat,C: rat,A: rat] :
      ( ( ord_less_eq_rat @ ( divide_divide_rat @ B @ C ) @ A )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_eq_rat @ B @ ( times_times_rat @ A @ C ) ) )
        & ( ~ ( ord_less_rat @ zero_zero_rat @ C )
         => ( ( ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ B ) )
            & ( ~ ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ) ) ) ) ).

% divide_le_eq
thf(fact_3754_convex__bound__le,axiom,
    ! [X: real,A: real,Y: real,U: real,V: real] :
      ( ( ord_less_eq_real @ X @ A )
     => ( ( ord_less_eq_real @ Y @ A )
       => ( ( ord_less_eq_real @ zero_zero_real @ U )
         => ( ( ord_less_eq_real @ zero_zero_real @ V )
           => ( ( ( plus_plus_real @ U @ V )
                = one_one_real )
             => ( ord_less_eq_real @ ( plus_plus_real @ ( times_times_real @ U @ X ) @ ( times_times_real @ V @ Y ) ) @ A ) ) ) ) ) ) ).

% convex_bound_le
thf(fact_3755_convex__bound__le,axiom,
    ! [X: rat,A: rat,Y: rat,U: rat,V: rat] :
      ( ( ord_less_eq_rat @ X @ A )
     => ( ( ord_less_eq_rat @ Y @ A )
       => ( ( ord_less_eq_rat @ zero_zero_rat @ U )
         => ( ( ord_less_eq_rat @ zero_zero_rat @ V )
           => ( ( ( plus_plus_rat @ U @ V )
                = one_one_rat )
             => ( ord_less_eq_rat @ ( plus_plus_rat @ ( times_times_rat @ U @ X ) @ ( times_times_rat @ V @ Y ) ) @ A ) ) ) ) ) ) ).

% convex_bound_le
thf(fact_3756_convex__bound__le,axiom,
    ! [X: int,A: int,Y: int,U: int,V: int] :
      ( ( ord_less_eq_int @ X @ A )
     => ( ( ord_less_eq_int @ Y @ A )
       => ( ( ord_less_eq_int @ zero_zero_int @ U )
         => ( ( ord_less_eq_int @ zero_zero_int @ V )
           => ( ( ( plus_plus_int @ U @ V )
                = one_one_int )
             => ( ord_less_eq_int @ ( plus_plus_int @ ( times_times_int @ U @ X ) @ ( times_times_int @ V @ Y ) ) @ A ) ) ) ) ) ) ).

% convex_bound_le
thf(fact_3757_divide__le__eq__1,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_eq_real @ ( divide_divide_real @ B @ A ) @ one_one_real )
      = ( ( ( ord_less_real @ zero_zero_real @ A )
          & ( ord_less_eq_real @ B @ A ) )
        | ( ( ord_less_real @ A @ zero_zero_real )
          & ( ord_less_eq_real @ A @ B ) )
        | ( A = zero_zero_real ) ) ) ).

% divide_le_eq_1
thf(fact_3758_divide__le__eq__1,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_eq_rat @ ( divide_divide_rat @ B @ A ) @ one_one_rat )
      = ( ( ( ord_less_rat @ zero_zero_rat @ A )
          & ( ord_less_eq_rat @ B @ A ) )
        | ( ( ord_less_rat @ A @ zero_zero_rat )
          & ( ord_less_eq_rat @ A @ B ) )
        | ( A = zero_zero_rat ) ) ) ).

% divide_le_eq_1
thf(fact_3759_le__divide__eq__1,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_eq_real @ one_one_real @ ( divide_divide_real @ B @ A ) )
      = ( ( ( ord_less_real @ zero_zero_real @ A )
          & ( ord_less_eq_real @ A @ B ) )
        | ( ( ord_less_real @ A @ zero_zero_real )
          & ( ord_less_eq_real @ B @ A ) ) ) ) ).

% le_divide_eq_1
thf(fact_3760_le__divide__eq__1,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_eq_rat @ one_one_rat @ ( divide_divide_rat @ B @ A ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ A )
          & ( ord_less_eq_rat @ A @ B ) )
        | ( ( ord_less_rat @ A @ zero_zero_rat )
          & ( ord_less_eq_rat @ B @ A ) ) ) ) ).

% le_divide_eq_1
thf(fact_3761_less__divide__eq__numeral_I1_J,axiom,
    ! [W: num,B: real,C: real] :
      ( ( ord_less_real @ ( numeral_numeral_real @ W ) @ ( divide_divide_real @ B @ C ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_real @ ( times_times_real @ ( numeral_numeral_real @ W ) @ C ) @ B ) )
        & ( ~ ( ord_less_real @ zero_zero_real @ C )
         => ( ( ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_real @ B @ ( times_times_real @ ( numeral_numeral_real @ W ) @ C ) ) )
            & ( ~ ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_real @ ( numeral_numeral_real @ W ) @ zero_zero_real ) ) ) ) ) ) ).

% less_divide_eq_numeral(1)
thf(fact_3762_less__divide__eq__numeral_I1_J,axiom,
    ! [W: num,B: rat,C: rat] :
      ( ( ord_less_rat @ ( numeral_numeral_rat @ W ) @ ( divide_divide_rat @ B @ C ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_rat @ ( times_times_rat @ ( numeral_numeral_rat @ W ) @ C ) @ B ) )
        & ( ~ ( ord_less_rat @ zero_zero_rat @ C )
         => ( ( ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_rat @ B @ ( times_times_rat @ ( numeral_numeral_rat @ W ) @ C ) ) )
            & ( ~ ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_rat @ ( numeral_numeral_rat @ W ) @ zero_zero_rat ) ) ) ) ) ) ).

% less_divide_eq_numeral(1)
thf(fact_3763_divide__less__eq__numeral_I1_J,axiom,
    ! [B: real,C: real,W: num] :
      ( ( ord_less_real @ ( divide_divide_real @ B @ C ) @ ( numeral_numeral_real @ W ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_real @ B @ ( times_times_real @ ( numeral_numeral_real @ W ) @ C ) ) )
        & ( ~ ( ord_less_real @ zero_zero_real @ C )
         => ( ( ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_real @ ( times_times_real @ ( numeral_numeral_real @ W ) @ C ) @ B ) )
            & ( ~ ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_real @ zero_zero_real @ ( numeral_numeral_real @ W ) ) ) ) ) ) ) ).

% divide_less_eq_numeral(1)
thf(fact_3764_divide__less__eq__numeral_I1_J,axiom,
    ! [B: rat,C: rat,W: num] :
      ( ( ord_less_rat @ ( divide_divide_rat @ B @ C ) @ ( numeral_numeral_rat @ W ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_rat @ B @ ( times_times_rat @ ( numeral_numeral_rat @ W ) @ C ) ) )
        & ( ~ ( ord_less_rat @ zero_zero_rat @ C )
         => ( ( ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_rat @ ( times_times_rat @ ( numeral_numeral_rat @ W ) @ C ) @ B ) )
            & ( ~ ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_rat @ zero_zero_rat @ ( numeral_numeral_rat @ W ) ) ) ) ) ) ) ).

% divide_less_eq_numeral(1)
thf(fact_3765_frac__le__eq,axiom,
    ! [Y: real,Z: real,X: real,W: real] :
      ( ( Y != zero_zero_real )
     => ( ( Z != zero_zero_real )
       => ( ( ord_less_eq_real @ ( divide_divide_real @ X @ Y ) @ ( divide_divide_real @ W @ Z ) )
          = ( ord_less_eq_real @ ( divide_divide_real @ ( minus_minus_real @ ( times_times_real @ X @ Z ) @ ( times_times_real @ W @ Y ) ) @ ( times_times_real @ Y @ Z ) ) @ zero_zero_real ) ) ) ) ).

% frac_le_eq
thf(fact_3766_frac__le__eq,axiom,
    ! [Y: rat,Z: rat,X: rat,W: rat] :
      ( ( Y != zero_zero_rat )
     => ( ( Z != zero_zero_rat )
       => ( ( ord_less_eq_rat @ ( divide_divide_rat @ X @ Y ) @ ( divide_divide_rat @ W @ Z ) )
          = ( ord_less_eq_rat @ ( divide_divide_rat @ ( minus_minus_rat @ ( times_times_rat @ X @ Z ) @ ( times_times_rat @ W @ Y ) ) @ ( times_times_rat @ Y @ Z ) ) @ zero_zero_rat ) ) ) ) ).

% frac_le_eq
thf(fact_3767_power__Suc__less,axiom,
    ! [A: real,N2: nat] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ A @ one_one_real )
       => ( ord_less_real @ ( times_times_real @ A @ ( power_power_real @ A @ N2 ) ) @ ( power_power_real @ A @ N2 ) ) ) ) ).

% power_Suc_less
thf(fact_3768_power__Suc__less,axiom,
    ! [A: rat,N2: nat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ( ord_less_rat @ A @ one_one_rat )
       => ( ord_less_rat @ ( times_times_rat @ A @ ( power_power_rat @ A @ N2 ) ) @ ( power_power_rat @ A @ N2 ) ) ) ) ).

% power_Suc_less
thf(fact_3769_power__Suc__less,axiom,
    ! [A: nat,N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ A @ one_one_nat )
       => ( ord_less_nat @ ( times_times_nat @ A @ ( power_power_nat @ A @ N2 ) ) @ ( power_power_nat @ A @ N2 ) ) ) ) ).

% power_Suc_less
thf(fact_3770_power__Suc__less,axiom,
    ! [A: int,N2: nat] :
      ( ( ord_less_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ A @ one_one_int )
       => ( ord_less_int @ ( times_times_int @ A @ ( power_power_int @ A @ N2 ) ) @ ( power_power_int @ A @ N2 ) ) ) ) ).

% power_Suc_less
thf(fact_3771_frac__less__eq,axiom,
    ! [Y: real,Z: real,X: real,W: real] :
      ( ( Y != zero_zero_real )
     => ( ( Z != zero_zero_real )
       => ( ( ord_less_real @ ( divide_divide_real @ X @ Y ) @ ( divide_divide_real @ W @ Z ) )
          = ( ord_less_real @ ( divide_divide_real @ ( minus_minus_real @ ( times_times_real @ X @ Z ) @ ( times_times_real @ W @ Y ) ) @ ( times_times_real @ Y @ Z ) ) @ zero_zero_real ) ) ) ) ).

% frac_less_eq
thf(fact_3772_frac__less__eq,axiom,
    ! [Y: rat,Z: rat,X: rat,W: rat] :
      ( ( Y != zero_zero_rat )
     => ( ( Z != zero_zero_rat )
       => ( ( ord_less_rat @ ( divide_divide_rat @ X @ Y ) @ ( divide_divide_rat @ W @ Z ) )
          = ( ord_less_rat @ ( divide_divide_rat @ ( minus_minus_rat @ ( times_times_rat @ X @ Z ) @ ( times_times_rat @ W @ Y ) ) @ ( times_times_rat @ Y @ Z ) ) @ zero_zero_rat ) ) ) ) ).

% frac_less_eq
thf(fact_3773_power__Suc__le__self,axiom,
    ! [A: real,N2: nat] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ A @ one_one_real )
       => ( ord_less_eq_real @ ( power_power_real @ A @ ( suc @ N2 ) ) @ A ) ) ) ).

% power_Suc_le_self
thf(fact_3774_power__Suc__le__self,axiom,
    ! [A: rat,N2: nat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ A )
     => ( ( ord_less_eq_rat @ A @ one_one_rat )
       => ( ord_less_eq_rat @ ( power_power_rat @ A @ ( suc @ N2 ) ) @ A ) ) ) ).

% power_Suc_le_self
thf(fact_3775_power__Suc__le__self,axiom,
    ! [A: nat,N2: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ A @ one_one_nat )
       => ( ord_less_eq_nat @ ( power_power_nat @ A @ ( suc @ N2 ) ) @ A ) ) ) ).

% power_Suc_le_self
thf(fact_3776_power__Suc__le__self,axiom,
    ! [A: int,N2: nat] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_eq_int @ A @ one_one_int )
       => ( ord_less_eq_int @ ( power_power_int @ A @ ( suc @ N2 ) ) @ A ) ) ) ).

% power_Suc_le_self
thf(fact_3777_power__Suc__less__one,axiom,
    ! [A: real,N2: nat] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ A @ one_one_real )
       => ( ord_less_real @ ( power_power_real @ A @ ( suc @ N2 ) ) @ one_one_real ) ) ) ).

% power_Suc_less_one
thf(fact_3778_power__Suc__less__one,axiom,
    ! [A: rat,N2: nat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ( ord_less_rat @ A @ one_one_rat )
       => ( ord_less_rat @ ( power_power_rat @ A @ ( suc @ N2 ) ) @ one_one_rat ) ) ) ).

% power_Suc_less_one
thf(fact_3779_power__Suc__less__one,axiom,
    ! [A: nat,N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ A @ one_one_nat )
       => ( ord_less_nat @ ( power_power_nat @ A @ ( suc @ N2 ) ) @ one_one_nat ) ) ) ).

% power_Suc_less_one
thf(fact_3780_power__Suc__less__one,axiom,
    ! [A: int,N2: nat] :
      ( ( ord_less_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ A @ one_one_int )
       => ( ord_less_int @ ( power_power_int @ A @ ( suc @ N2 ) ) @ one_one_int ) ) ) ).

% power_Suc_less_one
thf(fact_3781_zero__power2,axiom,
    ( ( power_power_rat @ zero_zero_rat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = zero_zero_rat ) ).

% zero_power2
thf(fact_3782_zero__power2,axiom,
    ( ( power_power_nat @ zero_zero_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = zero_zero_nat ) ).

% zero_power2
thf(fact_3783_zero__power2,axiom,
    ( ( power_power_real @ zero_zero_real @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = zero_zero_real ) ).

% zero_power2
thf(fact_3784_zero__power2,axiom,
    ( ( power_power_int @ zero_zero_int @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = zero_zero_int ) ).

% zero_power2
thf(fact_3785_zero__power2,axiom,
    ( ( power_power_complex @ zero_zero_complex @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = zero_zero_complex ) ).

% zero_power2
thf(fact_3786_power__strict__decreasing,axiom,
    ! [N2: nat,N4: nat,A: real] :
      ( ( ord_less_nat @ N2 @ N4 )
     => ( ( ord_less_real @ zero_zero_real @ A )
       => ( ( ord_less_real @ A @ one_one_real )
         => ( ord_less_real @ ( power_power_real @ A @ N4 ) @ ( power_power_real @ A @ N2 ) ) ) ) ) ).

% power_strict_decreasing
thf(fact_3787_power__strict__decreasing,axiom,
    ! [N2: nat,N4: nat,A: rat] :
      ( ( ord_less_nat @ N2 @ N4 )
     => ( ( ord_less_rat @ zero_zero_rat @ A )
       => ( ( ord_less_rat @ A @ one_one_rat )
         => ( ord_less_rat @ ( power_power_rat @ A @ N4 ) @ ( power_power_rat @ A @ N2 ) ) ) ) ) ).

% power_strict_decreasing
thf(fact_3788_power__strict__decreasing,axiom,
    ! [N2: nat,N4: nat,A: nat] :
      ( ( ord_less_nat @ N2 @ N4 )
     => ( ( ord_less_nat @ zero_zero_nat @ A )
       => ( ( ord_less_nat @ A @ one_one_nat )
         => ( ord_less_nat @ ( power_power_nat @ A @ N4 ) @ ( power_power_nat @ A @ N2 ) ) ) ) ) ).

% power_strict_decreasing
thf(fact_3789_power__strict__decreasing,axiom,
    ! [N2: nat,N4: nat,A: int] :
      ( ( ord_less_nat @ N2 @ N4 )
     => ( ( ord_less_int @ zero_zero_int @ A )
       => ( ( ord_less_int @ A @ one_one_int )
         => ( ord_less_int @ ( power_power_int @ A @ N4 ) @ ( power_power_int @ A @ N2 ) ) ) ) ) ).

% power_strict_decreasing
thf(fact_3790_power__decreasing,axiom,
    ! [N2: nat,N4: nat,A: real] :
      ( ( ord_less_eq_nat @ N2 @ N4 )
     => ( ( ord_less_eq_real @ zero_zero_real @ A )
       => ( ( ord_less_eq_real @ A @ one_one_real )
         => ( ord_less_eq_real @ ( power_power_real @ A @ N4 ) @ ( power_power_real @ A @ N2 ) ) ) ) ) ).

% power_decreasing
thf(fact_3791_power__decreasing,axiom,
    ! [N2: nat,N4: nat,A: rat] :
      ( ( ord_less_eq_nat @ N2 @ N4 )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ A )
       => ( ( ord_less_eq_rat @ A @ one_one_rat )
         => ( ord_less_eq_rat @ ( power_power_rat @ A @ N4 ) @ ( power_power_rat @ A @ N2 ) ) ) ) ) ).

% power_decreasing
thf(fact_3792_power__decreasing,axiom,
    ! [N2: nat,N4: nat,A: nat] :
      ( ( ord_less_eq_nat @ N2 @ N4 )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ A )
       => ( ( ord_less_eq_nat @ A @ one_one_nat )
         => ( ord_less_eq_nat @ ( power_power_nat @ A @ N4 ) @ ( power_power_nat @ A @ N2 ) ) ) ) ) ).

% power_decreasing
thf(fact_3793_power__decreasing,axiom,
    ! [N2: nat,N4: nat,A: int] :
      ( ( ord_less_eq_nat @ N2 @ N4 )
     => ( ( ord_less_eq_int @ zero_zero_int @ A )
       => ( ( ord_less_eq_int @ A @ one_one_int )
         => ( ord_less_eq_int @ ( power_power_int @ A @ N4 ) @ ( power_power_int @ A @ N2 ) ) ) ) ) ).

% power_decreasing
thf(fact_3794_self__le__power,axiom,
    ! [A: real,N2: nat] :
      ( ( ord_less_eq_real @ one_one_real @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ N2 )
       => ( ord_less_eq_real @ A @ ( power_power_real @ A @ N2 ) ) ) ) ).

% self_le_power
thf(fact_3795_self__le__power,axiom,
    ! [A: rat,N2: nat] :
      ( ( ord_less_eq_rat @ one_one_rat @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ N2 )
       => ( ord_less_eq_rat @ A @ ( power_power_rat @ A @ N2 ) ) ) ) ).

% self_le_power
thf(fact_3796_self__le__power,axiom,
    ! [A: nat,N2: nat] :
      ( ( ord_less_eq_nat @ one_one_nat @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ N2 )
       => ( ord_less_eq_nat @ A @ ( power_power_nat @ A @ N2 ) ) ) ) ).

% self_le_power
thf(fact_3797_self__le__power,axiom,
    ! [A: int,N2: nat] :
      ( ( ord_less_eq_int @ one_one_int @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ N2 )
       => ( ord_less_eq_int @ A @ ( power_power_int @ A @ N2 ) ) ) ) ).

% self_le_power
thf(fact_3798_numeral__2__eq__2,axiom,
    ( ( numeral_numeral_nat @ ( bit0 @ one ) )
    = ( suc @ ( suc @ zero_zero_nat ) ) ) ).

% numeral_2_eq_2
thf(fact_3799_one__less__power,axiom,
    ! [A: real,N2: nat] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ N2 )
       => ( ord_less_real @ one_one_real @ ( power_power_real @ A @ N2 ) ) ) ) ).

% one_less_power
thf(fact_3800_one__less__power,axiom,
    ! [A: rat,N2: nat] :
      ( ( ord_less_rat @ one_one_rat @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ N2 )
       => ( ord_less_rat @ one_one_rat @ ( power_power_rat @ A @ N2 ) ) ) ) ).

% one_less_power
thf(fact_3801_one__less__power,axiom,
    ! [A: nat,N2: nat] :
      ( ( ord_less_nat @ one_one_nat @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ N2 )
       => ( ord_less_nat @ one_one_nat @ ( power_power_nat @ A @ N2 ) ) ) ) ).

% one_less_power
thf(fact_3802_one__less__power,axiom,
    ! [A: int,N2: nat] :
      ( ( ord_less_int @ one_one_int @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ N2 )
       => ( ord_less_int @ one_one_int @ ( power_power_int @ A @ N2 ) ) ) ) ).

% one_less_power
thf(fact_3803_pos2,axiom,
    ord_less_nat @ zero_zero_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ).

% pos2
thf(fact_3804_power__diff,axiom,
    ! [A: complex,N2: nat,M: nat] :
      ( ( A != zero_zero_complex )
     => ( ( ord_less_eq_nat @ N2 @ M )
       => ( ( power_power_complex @ A @ ( minus_minus_nat @ M @ N2 ) )
          = ( divide1717551699836669952omplex @ ( power_power_complex @ A @ M ) @ ( power_power_complex @ A @ N2 ) ) ) ) ) ).

% power_diff
thf(fact_3805_power__diff,axiom,
    ! [A: real,N2: nat,M: nat] :
      ( ( A != zero_zero_real )
     => ( ( ord_less_eq_nat @ N2 @ M )
       => ( ( power_power_real @ A @ ( minus_minus_nat @ M @ N2 ) )
          = ( divide_divide_real @ ( power_power_real @ A @ M ) @ ( power_power_real @ A @ N2 ) ) ) ) ) ).

% power_diff
thf(fact_3806_power__diff,axiom,
    ! [A: rat,N2: nat,M: nat] :
      ( ( A != zero_zero_rat )
     => ( ( ord_less_eq_nat @ N2 @ M )
       => ( ( power_power_rat @ A @ ( minus_minus_nat @ M @ N2 ) )
          = ( divide_divide_rat @ ( power_power_rat @ A @ M ) @ ( power_power_rat @ A @ N2 ) ) ) ) ) ).

% power_diff
thf(fact_3807_power__diff,axiom,
    ! [A: nat,N2: nat,M: nat] :
      ( ( A != zero_zero_nat )
     => ( ( ord_less_eq_nat @ N2 @ M )
       => ( ( power_power_nat @ A @ ( minus_minus_nat @ M @ N2 ) )
          = ( divide_divide_nat @ ( power_power_nat @ A @ M ) @ ( power_power_nat @ A @ N2 ) ) ) ) ) ).

% power_diff
thf(fact_3808_power__diff,axiom,
    ! [A: int,N2: nat,M: nat] :
      ( ( A != zero_zero_int )
     => ( ( ord_less_eq_nat @ N2 @ M )
       => ( ( power_power_int @ A @ ( minus_minus_nat @ M @ N2 ) )
          = ( divide_divide_int @ ( power_power_int @ A @ M ) @ ( power_power_int @ A @ N2 ) ) ) ) ) ).

% power_diff
thf(fact_3809_div__if,axiom,
    ( divide_divide_nat
    = ( ^ [M6: nat,N3: nat] :
          ( if_nat
          @ ( ( ord_less_nat @ M6 @ N3 )
            | ( N3 = zero_zero_nat ) )
          @ zero_zero_nat
          @ ( suc @ ( divide_divide_nat @ ( minus_minus_nat @ M6 @ N3 ) @ N3 ) ) ) ) ) ).

% div_if
thf(fact_3810_dividend__less__times__div,axiom,
    ! [N2: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ord_less_nat @ M @ ( plus_plus_nat @ N2 @ ( times_times_nat @ N2 @ ( divide_divide_nat @ M @ N2 ) ) ) ) ) ).

% dividend_less_times_div
thf(fact_3811_dividend__less__div__times,axiom,
    ! [N2: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ord_less_nat @ M @ ( plus_plus_nat @ N2 @ ( times_times_nat @ ( divide_divide_nat @ M @ N2 ) @ N2 ) ) ) ) ).

% dividend_less_div_times
thf(fact_3812_split__div,axiom,
    ! [P: nat > $o,M: nat,N2: nat] :
      ( ( P @ ( divide_divide_nat @ M @ N2 ) )
      = ( ( ( N2 = zero_zero_nat )
         => ( P @ zero_zero_nat ) )
        & ( ( N2 != zero_zero_nat )
         => ! [I5: nat,J3: nat] :
              ( ( ord_less_nat @ J3 @ N2 )
             => ( ( M
                  = ( plus_plus_nat @ ( times_times_nat @ N2 @ I5 ) @ J3 ) )
               => ( P @ I5 ) ) ) ) ) ) ).

% split_div
thf(fact_3813_less__eq__div__iff__mult__less__eq,axiom,
    ! [Q2: nat,M: nat,N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ Q2 )
     => ( ( ord_less_eq_nat @ M @ ( divide_divide_nat @ N2 @ Q2 ) )
        = ( ord_less_eq_nat @ ( times_times_nat @ M @ Q2 ) @ N2 ) ) ) ).

% less_eq_div_iff_mult_less_eq
thf(fact_3814_Suc__pred_H,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( N2
        = ( suc @ ( minus_minus_nat @ N2 @ one_one_nat ) ) ) ) ).

% Suc_pred'
thf(fact_3815_Suc__diff__eq__diff__pred,axiom,
    ! [N2: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( minus_minus_nat @ ( suc @ M ) @ N2 )
        = ( minus_minus_nat @ M @ ( minus_minus_nat @ N2 @ one_one_nat ) ) ) ) ).

% Suc_diff_eq_diff_pred
thf(fact_3816_VEBT__internal_Onaive__member_Oelims_I1_J,axiom,
    ! [X: vEBT_VEBT,Xa2: nat,Y: $o] :
      ( ( ( vEBT_V5719532721284313246member @ X @ Xa2 )
        = Y )
     => ( ! [A3: $o,B2: $o] :
            ( ( X
              = ( vEBT_Leaf @ A3 @ B2 ) )
           => ( Y
              = ( ~ ( ( ( Xa2 = zero_zero_nat )
                     => A3 )
                    & ( ( Xa2 != zero_zero_nat )
                     => ( ( ( Xa2 = one_one_nat )
                         => B2 )
                        & ( Xa2 = one_one_nat ) ) ) ) ) ) )
       => ( ( ? [Uu2: option4927543243414619207at_nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT] :
                ( X
                = ( vEBT_Node @ Uu2 @ zero_zero_nat @ Uv2 @ Uw2 ) )
           => Y )
         => ~ ! [Uy2: option4927543243414619207at_nat,V2: nat,TreeList2: list_VEBT_VEBT] :
                ( ? [S: vEBT_VEBT] :
                    ( X
                    = ( vEBT_Node @ Uy2 @ ( suc @ V2 ) @ TreeList2 @ S ) )
               => ( Y
                  = ( ~ ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
                         => ( vEBT_V5719532721284313246member @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                        & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) ) ) ) ) ) ).

% VEBT_internal.naive_member.elims(1)
thf(fact_3817_VEBT__internal_Onaive__member_Oelims_I2_J,axiom,
    ! [X: vEBT_VEBT,Xa2: nat] :
      ( ( vEBT_V5719532721284313246member @ X @ Xa2 )
     => ( ! [A3: $o,B2: $o] :
            ( ( X
              = ( vEBT_Leaf @ A3 @ B2 ) )
           => ~ ( ( ( Xa2 = zero_zero_nat )
                 => A3 )
                & ( ( Xa2 != zero_zero_nat )
                 => ( ( ( Xa2 = one_one_nat )
                     => B2 )
                    & ( Xa2 = one_one_nat ) ) ) ) )
       => ~ ! [Uy2: option4927543243414619207at_nat,V2: nat,TreeList2: list_VEBT_VEBT] :
              ( ? [S: vEBT_VEBT] :
                  ( X
                  = ( vEBT_Node @ Uy2 @ ( suc @ V2 ) @ TreeList2 @ S ) )
             => ~ ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
                   => ( vEBT_V5719532721284313246member @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                  & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) ) ) ).

% VEBT_internal.naive_member.elims(2)
thf(fact_3818_VEBT__internal_Onaive__member_Oelims_I3_J,axiom,
    ! [X: vEBT_VEBT,Xa2: nat] :
      ( ~ ( vEBT_V5719532721284313246member @ X @ Xa2 )
     => ( ! [A3: $o,B2: $o] :
            ( ( X
              = ( vEBT_Leaf @ A3 @ B2 ) )
           => ( ( ( Xa2 = zero_zero_nat )
               => A3 )
              & ( ( Xa2 != zero_zero_nat )
               => ( ( ( Xa2 = one_one_nat )
                   => B2 )
                  & ( Xa2 = one_one_nat ) ) ) ) )
       => ( ! [Uu2: option4927543243414619207at_nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT] :
              ( X
             != ( vEBT_Node @ Uu2 @ zero_zero_nat @ Uv2 @ Uw2 ) )
         => ~ ! [Uy2: option4927543243414619207at_nat,V2: nat,TreeList2: list_VEBT_VEBT] :
                ( ? [S: vEBT_VEBT] :
                    ( X
                    = ( vEBT_Node @ Uy2 @ ( suc @ V2 ) @ TreeList2 @ S ) )
               => ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
                   => ( vEBT_V5719532721284313246member @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                  & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) ) ) ) ).

% VEBT_internal.naive_member.elims(3)
thf(fact_3819_add__eq__if,axiom,
    ( plus_plus_nat
    = ( ^ [M6: nat,N3: nat] : ( if_nat @ ( M6 = zero_zero_nat ) @ N3 @ ( suc @ ( plus_plus_nat @ ( minus_minus_nat @ M6 @ one_one_nat ) @ N3 ) ) ) ) ) ).

% add_eq_if
thf(fact_3820_mult__eq__if,axiom,
    ( times_times_nat
    = ( ^ [M6: nat,N3: nat] : ( if_nat @ ( M6 = zero_zero_nat ) @ zero_zero_nat @ ( plus_plus_nat @ N3 @ ( times_times_nat @ ( minus_minus_nat @ M6 @ one_one_nat ) @ N3 ) ) ) ) ) ).

% mult_eq_if
thf(fact_3821_vebt__delete_Osimps_I5_J,axiom,
    ! [Mi: nat,Ma: nat,TrLst2: list_VEBT_VEBT,Smry2: vEBT_VEBT,X: nat] :
      ( ( vEBT_vebt_delete @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ zero_zero_nat @ TrLst2 @ Smry2 ) @ X )
      = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ zero_zero_nat @ TrLst2 @ Smry2 ) ) ).

% vebt_delete.simps(5)
thf(fact_3822_vebt__member_Osimps_I4_J,axiom,
    ! [V: product_prod_nat_nat,Vb: list_VEBT_VEBT,Vc: vEBT_VEBT,X: nat] :
      ~ ( vEBT_vebt_member @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V ) @ ( suc @ zero_zero_nat ) @ Vb @ Vc ) @ X ) ).

% vebt_member.simps(4)
thf(fact_3823_vebt__succ_Osimps_I4_J,axiom,
    ! [V: product_prod_nat_nat,Vc: list_VEBT_VEBT,Vd: vEBT_VEBT,Ve2: nat] :
      ( ( vEBT_vebt_succ @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V ) @ zero_zero_nat @ Vc @ Vd ) @ Ve2 )
      = none_nat ) ).

% vebt_succ.simps(4)
thf(fact_3824_vebt__pred_Osimps_I5_J,axiom,
    ! [V: product_prod_nat_nat,Vd: list_VEBT_VEBT,Ve2: vEBT_VEBT,Vf2: nat] :
      ( ( vEBT_vebt_pred @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V ) @ zero_zero_nat @ Vd @ Ve2 ) @ Vf2 )
      = none_nat ) ).

% vebt_pred.simps(5)
thf(fact_3825_VEBT__internal_Omembermima_Oelims_I1_J,axiom,
    ! [X: vEBT_VEBT,Xa2: nat,Y: $o] :
      ( ( ( vEBT_VEBT_membermima @ X @ Xa2 )
        = Y )
     => ( ( ? [Uu2: $o,Uv2: $o] :
              ( X
              = ( vEBT_Leaf @ Uu2 @ Uv2 ) )
         => Y )
       => ( ( ? [Ux2: list_VEBT_VEBT,Uy2: vEBT_VEBT] :
                ( X
                = ( vEBT_Node @ none_P5556105721700978146at_nat @ zero_zero_nat @ Ux2 @ Uy2 ) )
           => Y )
         => ( ! [Mi2: nat,Ma2: nat] :
                ( ? [Va3: list_VEBT_VEBT,Vb2: vEBT_VEBT] :
                    ( X
                    = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ Va3 @ Vb2 ) )
               => ( Y
                  = ( ~ ( ( Xa2 = Mi2 )
                        | ( Xa2 = Ma2 ) ) ) ) )
           => ( ! [Mi2: nat,Ma2: nat,V2: nat,TreeList2: list_VEBT_VEBT] :
                  ( ? [Vc2: vEBT_VEBT] :
                      ( X
                      = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ V2 ) @ TreeList2 @ Vc2 ) )
                 => ( Y
                    = ( ~ ( ( Xa2 = Mi2 )
                          | ( Xa2 = Ma2 )
                          | ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
                             => ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                            & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) ) ) )
             => ~ ! [V2: nat,TreeList2: list_VEBT_VEBT] :
                    ( ? [Vd2: vEBT_VEBT] :
                        ( X
                        = ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V2 ) @ TreeList2 @ Vd2 ) )
                   => ( Y
                      = ( ~ ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
                             => ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                            & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) ) ) ) ) ) ) ) ).

% VEBT_internal.membermima.elims(1)
thf(fact_3826_VEBT__internal_Omembermima_Oelims_I3_J,axiom,
    ! [X: vEBT_VEBT,Xa2: nat] :
      ( ~ ( vEBT_VEBT_membermima @ X @ Xa2 )
     => ( ! [Uu2: $o,Uv2: $o] :
            ( X
           != ( vEBT_Leaf @ Uu2 @ Uv2 ) )
       => ( ! [Ux2: list_VEBT_VEBT,Uy2: vEBT_VEBT] :
              ( X
             != ( vEBT_Node @ none_P5556105721700978146at_nat @ zero_zero_nat @ Ux2 @ Uy2 ) )
         => ( ! [Mi2: nat,Ma2: nat] :
                ( ? [Va3: list_VEBT_VEBT,Vb2: vEBT_VEBT] :
                    ( X
                    = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ Va3 @ Vb2 ) )
               => ( ( Xa2 = Mi2 )
                  | ( Xa2 = Ma2 ) ) )
           => ( ! [Mi2: nat,Ma2: nat,V2: nat,TreeList2: list_VEBT_VEBT] :
                  ( ? [Vc2: vEBT_VEBT] :
                      ( X
                      = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ V2 ) @ TreeList2 @ Vc2 ) )
                 => ( ( Xa2 = Mi2 )
                    | ( Xa2 = Ma2 )
                    | ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
                       => ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                      & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) )
             => ~ ! [V2: nat,TreeList2: list_VEBT_VEBT] :
                    ( ? [Vd2: vEBT_VEBT] :
                        ( X
                        = ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V2 ) @ TreeList2 @ Vd2 ) )
                   => ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
                       => ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                      & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) ) ) ) ) ) ).

% VEBT_internal.membermima.elims(3)
thf(fact_3827_le__divide__eq__numeral_I1_J,axiom,
    ! [W: num,B: real,C: real] :
      ( ( ord_less_eq_real @ ( numeral_numeral_real @ W ) @ ( divide_divide_real @ B @ C ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ ( times_times_real @ ( numeral_numeral_real @ W ) @ C ) @ B ) )
        & ( ~ ( ord_less_real @ zero_zero_real @ C )
         => ( ( ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_eq_real @ B @ ( times_times_real @ ( numeral_numeral_real @ W ) @ C ) ) )
            & ( ~ ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_eq_real @ ( numeral_numeral_real @ W ) @ zero_zero_real ) ) ) ) ) ) ).

% le_divide_eq_numeral(1)
thf(fact_3828_le__divide__eq__numeral_I1_J,axiom,
    ! [W: num,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ ( numeral_numeral_rat @ W ) @ ( divide_divide_rat @ B @ C ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_eq_rat @ ( times_times_rat @ ( numeral_numeral_rat @ W ) @ C ) @ B ) )
        & ( ~ ( ord_less_rat @ zero_zero_rat @ C )
         => ( ( ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_eq_rat @ B @ ( times_times_rat @ ( numeral_numeral_rat @ W ) @ C ) ) )
            & ( ~ ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_eq_rat @ ( numeral_numeral_rat @ W ) @ zero_zero_rat ) ) ) ) ) ) ).

% le_divide_eq_numeral(1)
thf(fact_3829_divide__le__eq__numeral_I1_J,axiom,
    ! [B: real,C: real,W: num] :
      ( ( ord_less_eq_real @ ( divide_divide_real @ B @ C ) @ ( numeral_numeral_real @ W ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ B @ ( times_times_real @ ( numeral_numeral_real @ W ) @ C ) ) )
        & ( ~ ( ord_less_real @ zero_zero_real @ C )
         => ( ( ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_eq_real @ ( times_times_real @ ( numeral_numeral_real @ W ) @ C ) @ B ) )
            & ( ~ ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_eq_real @ zero_zero_real @ ( numeral_numeral_real @ W ) ) ) ) ) ) ) ).

% divide_le_eq_numeral(1)
thf(fact_3830_divide__le__eq__numeral_I1_J,axiom,
    ! [B: rat,C: rat,W: num] :
      ( ( ord_less_eq_rat @ ( divide_divide_rat @ B @ C ) @ ( numeral_numeral_rat @ W ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_eq_rat @ B @ ( times_times_rat @ ( numeral_numeral_rat @ W ) @ C ) ) )
        & ( ~ ( ord_less_rat @ zero_zero_rat @ C )
         => ( ( ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_eq_rat @ ( times_times_rat @ ( numeral_numeral_rat @ W ) @ C ) @ B ) )
            & ( ~ ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_eq_rat @ zero_zero_rat @ ( numeral_numeral_rat @ W ) ) ) ) ) ) ) ).

% divide_le_eq_numeral(1)
thf(fact_3831_convex__bound__lt,axiom,
    ! [X: real,A: real,Y: real,U: real,V: real] :
      ( ( ord_less_real @ X @ A )
     => ( ( ord_less_real @ Y @ A )
       => ( ( ord_less_eq_real @ zero_zero_real @ U )
         => ( ( ord_less_eq_real @ zero_zero_real @ V )
           => ( ( ( plus_plus_real @ U @ V )
                = one_one_real )
             => ( ord_less_real @ ( plus_plus_real @ ( times_times_real @ U @ X ) @ ( times_times_real @ V @ Y ) ) @ A ) ) ) ) ) ) ).

% convex_bound_lt
thf(fact_3832_convex__bound__lt,axiom,
    ! [X: rat,A: rat,Y: rat,U: rat,V: rat] :
      ( ( ord_less_rat @ X @ A )
     => ( ( ord_less_rat @ Y @ A )
       => ( ( ord_less_eq_rat @ zero_zero_rat @ U )
         => ( ( ord_less_eq_rat @ zero_zero_rat @ V )
           => ( ( ( plus_plus_rat @ U @ V )
                = one_one_rat )
             => ( ord_less_rat @ ( plus_plus_rat @ ( times_times_rat @ U @ X ) @ ( times_times_rat @ V @ Y ) ) @ A ) ) ) ) ) ) ).

% convex_bound_lt
thf(fact_3833_convex__bound__lt,axiom,
    ! [X: int,A: int,Y: int,U: int,V: int] :
      ( ( ord_less_int @ X @ A )
     => ( ( ord_less_int @ Y @ A )
       => ( ( ord_less_eq_int @ zero_zero_int @ U )
         => ( ( ord_less_eq_int @ zero_zero_int @ V )
           => ( ( ( plus_plus_int @ U @ V )
                = one_one_int )
             => ( ord_less_int @ ( plus_plus_int @ ( times_times_int @ U @ X ) @ ( times_times_int @ V @ Y ) ) @ A ) ) ) ) ) ) ).

% convex_bound_lt
thf(fact_3834_half__gt__zero__iff,axiom,
    ! [A: real] :
      ( ( ord_less_real @ zero_zero_real @ ( divide_divide_real @ A @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
      = ( ord_less_real @ zero_zero_real @ A ) ) ).

% half_gt_zero_iff
thf(fact_3835_half__gt__zero__iff,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( divide_divide_rat @ A @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) )
      = ( ord_less_rat @ zero_zero_rat @ A ) ) ).

% half_gt_zero_iff
thf(fact_3836_half__gt__zero,axiom,
    ! [A: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ord_less_real @ zero_zero_real @ ( divide_divide_real @ A @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).

% half_gt_zero
thf(fact_3837_half__gt__zero,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ord_less_rat @ zero_zero_rat @ ( divide_divide_rat @ A @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) ) ).

% half_gt_zero
thf(fact_3838_scaling__mono,axiom,
    ! [U: real,V: real,R2: real,S2: real] :
      ( ( ord_less_eq_real @ U @ V )
     => ( ( ord_less_eq_real @ zero_zero_real @ R2 )
       => ( ( ord_less_eq_real @ R2 @ S2 )
         => ( ord_less_eq_real @ ( plus_plus_real @ U @ ( divide_divide_real @ ( times_times_real @ R2 @ ( minus_minus_real @ V @ U ) ) @ S2 ) ) @ V ) ) ) ) ).

% scaling_mono
thf(fact_3839_scaling__mono,axiom,
    ! [U: rat,V: rat,R2: rat,S2: rat] :
      ( ( ord_less_eq_rat @ U @ V )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ R2 )
       => ( ( ord_less_eq_rat @ R2 @ S2 )
         => ( ord_less_eq_rat @ ( plus_plus_rat @ U @ ( divide_divide_rat @ ( times_times_rat @ R2 @ ( minus_minus_rat @ V @ U ) ) @ S2 ) ) @ V ) ) ) ) ).

% scaling_mono
thf(fact_3840_power2__le__imp__le,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y )
       => ( ord_less_eq_real @ X @ Y ) ) ) ).

% power2_le_imp_le
thf(fact_3841_power2__le__imp__le,axiom,
    ! [X: rat,Y: rat] :
      ( ( ord_less_eq_rat @ ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ Y )
       => ( ord_less_eq_rat @ X @ Y ) ) ) ).

% power2_le_imp_le
thf(fact_3842_power2__le__imp__le,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_eq_nat @ ( power_power_nat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_nat @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ Y )
       => ( ord_less_eq_nat @ X @ Y ) ) ) ).

% power2_le_imp_le
thf(fact_3843_power2__le__imp__le,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_eq_int @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ Y )
       => ( ord_less_eq_int @ X @ Y ) ) ) ).

% power2_le_imp_le
thf(fact_3844_power2__eq__imp__eq,axiom,
    ! [X: real,Y: real] :
      ( ( ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
     => ( ( ord_less_eq_real @ zero_zero_real @ X )
       => ( ( ord_less_eq_real @ zero_zero_real @ Y )
         => ( X = Y ) ) ) ) ).

% power2_eq_imp_eq
thf(fact_3845_power2__eq__imp__eq,axiom,
    ! [X: rat,Y: rat] :
      ( ( ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( power_power_rat @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ X )
       => ( ( ord_less_eq_rat @ zero_zero_rat @ Y )
         => ( X = Y ) ) ) ) ).

% power2_eq_imp_eq
thf(fact_3846_power2__eq__imp__eq,axiom,
    ! [X: nat,Y: nat] :
      ( ( ( power_power_nat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( power_power_nat @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ X )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ Y )
         => ( X = Y ) ) ) ) ).

% power2_eq_imp_eq
thf(fact_3847_power2__eq__imp__eq,axiom,
    ! [X: int,Y: int] :
      ( ( ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( power_power_int @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ X )
       => ( ( ord_less_eq_int @ zero_zero_int @ Y )
         => ( X = Y ) ) ) ) ).

% power2_eq_imp_eq
thf(fact_3848_zero__le__power2,axiom,
    ! [A: real] : ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% zero_le_power2
thf(fact_3849_zero__le__power2,axiom,
    ! [A: rat] : ( ord_less_eq_rat @ zero_zero_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% zero_le_power2
thf(fact_3850_zero__le__power2,axiom,
    ! [A: int] : ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% zero_le_power2
thf(fact_3851_power2__less__0,axiom,
    ! [A: real] :
      ~ ( ord_less_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ zero_zero_real ) ).

% power2_less_0
thf(fact_3852_power2__less__0,axiom,
    ! [A: rat] :
      ~ ( ord_less_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ zero_zero_rat ) ).

% power2_less_0
thf(fact_3853_power2__less__0,axiom,
    ! [A: int] :
      ~ ( ord_less_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ zero_zero_int ) ).

% power2_less_0
thf(fact_3854_exp__add__not__zero__imp__right,axiom,
    ! [M: nat,N2: nat] :
      ( ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N2 ) )
       != zero_zero_nat )
     => ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
       != zero_zero_nat ) ) ).

% exp_add_not_zero_imp_right
thf(fact_3855_exp__add__not__zero__imp__right,axiom,
    ! [M: nat,N2: nat] :
      ( ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N2 ) )
       != zero_zero_int )
     => ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 )
       != zero_zero_int ) ) ).

% exp_add_not_zero_imp_right
thf(fact_3856_exp__add__not__zero__imp__left,axiom,
    ! [M: nat,N2: nat] :
      ( ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N2 ) )
       != zero_zero_nat )
     => ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M )
       != zero_zero_nat ) ) ).

% exp_add_not_zero_imp_left
thf(fact_3857_exp__add__not__zero__imp__left,axiom,
    ! [M: nat,N2: nat] :
      ( ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N2 ) )
       != zero_zero_int )
     => ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M )
       != zero_zero_int ) ) ).

% exp_add_not_zero_imp_left
thf(fact_3858_exp__not__zero__imp__exp__diff__not__zero,axiom,
    ! [N2: nat,M: nat] :
      ( ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
       != zero_zero_nat )
     => ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N2 @ M ) )
       != zero_zero_nat ) ) ).

% exp_not_zero_imp_exp_diff_not_zero
thf(fact_3859_exp__not__zero__imp__exp__diff__not__zero,axiom,
    ! [N2: nat,M: nat] :
      ( ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 )
       != zero_zero_int )
     => ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N2 @ M ) )
       != zero_zero_int ) ) ).

% exp_not_zero_imp_exp_diff_not_zero
thf(fact_3860_power__diff__power__eq,axiom,
    ! [A: nat,N2: nat,M: nat] :
      ( ( A != zero_zero_nat )
     => ( ( ( ord_less_eq_nat @ N2 @ M )
         => ( ( divide_divide_nat @ ( power_power_nat @ A @ M ) @ ( power_power_nat @ A @ N2 ) )
            = ( power_power_nat @ A @ ( minus_minus_nat @ M @ N2 ) ) ) )
        & ( ~ ( ord_less_eq_nat @ N2 @ M )
         => ( ( divide_divide_nat @ ( power_power_nat @ A @ M ) @ ( power_power_nat @ A @ N2 ) )
            = ( divide_divide_nat @ one_one_nat @ ( power_power_nat @ A @ ( minus_minus_nat @ N2 @ M ) ) ) ) ) ) ) ).

% power_diff_power_eq
thf(fact_3861_power__diff__power__eq,axiom,
    ! [A: int,N2: nat,M: nat] :
      ( ( A != zero_zero_int )
     => ( ( ( ord_less_eq_nat @ N2 @ M )
         => ( ( divide_divide_int @ ( power_power_int @ A @ M ) @ ( power_power_int @ A @ N2 ) )
            = ( power_power_int @ A @ ( minus_minus_nat @ M @ N2 ) ) ) )
        & ( ~ ( ord_less_eq_nat @ N2 @ M )
         => ( ( divide_divide_int @ ( power_power_int @ A @ M ) @ ( power_power_int @ A @ N2 ) )
            = ( divide_divide_int @ one_one_int @ ( power_power_int @ A @ ( minus_minus_nat @ N2 @ M ) ) ) ) ) ) ) ).

% power_diff_power_eq
thf(fact_3862_less__2__cases__iff,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( ( N2 = zero_zero_nat )
        | ( N2
          = ( suc @ zero_zero_nat ) ) ) ) ).

% less_2_cases_iff
thf(fact_3863_less__2__cases,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
     => ( ( N2 = zero_zero_nat )
        | ( N2
          = ( suc @ zero_zero_nat ) ) ) ) ).

% less_2_cases
thf(fact_3864_nat__induct2,axiom,
    ! [P: nat > $o,N2: nat] :
      ( ( P @ zero_zero_nat )
     => ( ( P @ one_one_nat )
       => ( ! [N: nat] :
              ( ( P @ N )
             => ( P @ ( plus_plus_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
         => ( P @ N2 ) ) ) ) ).

% nat_induct2
thf(fact_3865_power__eq__if,axiom,
    ( power_power_complex
    = ( ^ [P5: complex,M6: nat] : ( if_complex @ ( M6 = zero_zero_nat ) @ one_one_complex @ ( times_times_complex @ P5 @ ( power_power_complex @ P5 @ ( minus_minus_nat @ M6 @ one_one_nat ) ) ) ) ) ) ).

% power_eq_if
thf(fact_3866_power__eq__if,axiom,
    ( power_power_real
    = ( ^ [P5: real,M6: nat] : ( if_real @ ( M6 = zero_zero_nat ) @ one_one_real @ ( times_times_real @ P5 @ ( power_power_real @ P5 @ ( minus_minus_nat @ M6 @ one_one_nat ) ) ) ) ) ) ).

% power_eq_if
thf(fact_3867_power__eq__if,axiom,
    ( power_power_rat
    = ( ^ [P5: rat,M6: nat] : ( if_rat @ ( M6 = zero_zero_nat ) @ one_one_rat @ ( times_times_rat @ P5 @ ( power_power_rat @ P5 @ ( minus_minus_nat @ M6 @ one_one_nat ) ) ) ) ) ) ).

% power_eq_if
thf(fact_3868_power__eq__if,axiom,
    ( power_power_nat
    = ( ^ [P5: nat,M6: nat] : ( if_nat @ ( M6 = zero_zero_nat ) @ one_one_nat @ ( times_times_nat @ P5 @ ( power_power_nat @ P5 @ ( minus_minus_nat @ M6 @ one_one_nat ) ) ) ) ) ) ).

% power_eq_if
thf(fact_3869_power__eq__if,axiom,
    ( power_power_int
    = ( ^ [P5: int,M6: nat] : ( if_int @ ( M6 = zero_zero_nat ) @ one_one_int @ ( times_times_int @ P5 @ ( power_power_int @ P5 @ ( minus_minus_nat @ M6 @ one_one_nat ) ) ) ) ) ) ).

% power_eq_if
thf(fact_3870_power__minus__mult,axiom,
    ! [N2: nat,A: complex] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( times_times_complex @ ( power_power_complex @ A @ ( minus_minus_nat @ N2 @ one_one_nat ) ) @ A )
        = ( power_power_complex @ A @ N2 ) ) ) ).

% power_minus_mult
thf(fact_3871_power__minus__mult,axiom,
    ! [N2: nat,A: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( times_times_real @ ( power_power_real @ A @ ( minus_minus_nat @ N2 @ one_one_nat ) ) @ A )
        = ( power_power_real @ A @ N2 ) ) ) ).

% power_minus_mult
thf(fact_3872_power__minus__mult,axiom,
    ! [N2: nat,A: rat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( times_times_rat @ ( power_power_rat @ A @ ( minus_minus_nat @ N2 @ one_one_nat ) ) @ A )
        = ( power_power_rat @ A @ N2 ) ) ) ).

% power_minus_mult
thf(fact_3873_power__minus__mult,axiom,
    ! [N2: nat,A: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( times_times_nat @ ( power_power_nat @ A @ ( minus_minus_nat @ N2 @ one_one_nat ) ) @ A )
        = ( power_power_nat @ A @ N2 ) ) ) ).

% power_minus_mult
thf(fact_3874_power__minus__mult,axiom,
    ! [N2: nat,A: int] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( times_times_int @ ( power_power_int @ A @ ( minus_minus_nat @ N2 @ one_one_nat ) ) @ A )
        = ( power_power_int @ A @ N2 ) ) ) ).

% power_minus_mult
thf(fact_3875_split__div_H,axiom,
    ! [P: nat > $o,M: nat,N2: nat] :
      ( ( P @ ( divide_divide_nat @ M @ N2 ) )
      = ( ( ( N2 = zero_zero_nat )
          & ( P @ zero_zero_nat ) )
        | ? [Q4: nat] :
            ( ( ord_less_eq_nat @ ( times_times_nat @ N2 @ Q4 ) @ M )
            & ( ord_less_nat @ M @ ( times_times_nat @ N2 @ ( suc @ Q4 ) ) )
            & ( P @ Q4 ) ) ) ) ).

% split_div'
thf(fact_3876_le__div__geq,axiom,
    ! [N2: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( ord_less_eq_nat @ N2 @ M )
       => ( ( divide_divide_nat @ M @ N2 )
          = ( suc @ ( divide_divide_nat @ ( minus_minus_nat @ M @ N2 ) @ N2 ) ) ) ) ) ).

% le_div_geq
thf(fact_3877_div__exp__mod__exp__eq,axiom,
    ! [A: nat,N2: nat,M: nat] :
      ( ( modulo_modulo_nat @ ( divide_divide_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
      = ( divide_divide_nat @ ( modulo_modulo_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ N2 @ M ) ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) ).

% div_exp_mod_exp_eq
thf(fact_3878_div__exp__mod__exp__eq,axiom,
    ! [A: int,N2: nat,M: nat] :
      ( ( modulo_modulo_int @ ( divide_divide_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) )
      = ( divide_divide_int @ ( modulo_modulo_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_nat @ N2 @ M ) ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) ) ) ).

% div_exp_mod_exp_eq
thf(fact_3879_div__exp__mod__exp__eq,axiom,
    ! [A: code_integer,N2: nat,M: nat] :
      ( ( modulo364778990260209775nteger @ ( divide6298287555418463151nteger @ A @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N2 ) ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) )
      = ( divide6298287555418463151nteger @ ( modulo364778990260209775nteger @ A @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( plus_plus_nat @ N2 @ M ) ) ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N2 ) ) ) ).

% div_exp_mod_exp_eq
thf(fact_3880_vebt__delete_Osimps_I6_J,axiom,
    ! [Mi: nat,Ma: nat,Tr2: list_VEBT_VEBT,Sm2: vEBT_VEBT,X: nat] :
      ( ( vEBT_vebt_delete @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ ( suc @ zero_zero_nat ) @ Tr2 @ Sm2 ) @ X )
      = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ ( suc @ zero_zero_nat ) @ Tr2 @ Sm2 ) ) ).

% vebt_delete.simps(6)
thf(fact_3881_vebt__succ_Osimps_I5_J,axiom,
    ! [V: product_prod_nat_nat,Vg2: list_VEBT_VEBT,Vh2: vEBT_VEBT,Vi2: nat] :
      ( ( vEBT_vebt_succ @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V ) @ ( suc @ zero_zero_nat ) @ Vg2 @ Vh2 ) @ Vi2 )
      = none_nat ) ).

% vebt_succ.simps(5)
thf(fact_3882_vebt__pred_Osimps_I6_J,axiom,
    ! [V: product_prod_nat_nat,Vh2: list_VEBT_VEBT,Vi2: vEBT_VEBT,Vj2: nat] :
      ( ( vEBT_vebt_pred @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V ) @ ( suc @ zero_zero_nat ) @ Vh2 @ Vi2 ) @ Vj2 )
      = none_nat ) ).

% vebt_pred.simps(6)
thf(fact_3883_power2__less__imp__less,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y )
       => ( ord_less_real @ X @ Y ) ) ) ).

% power2_less_imp_less
thf(fact_3884_power2__less__imp__less,axiom,
    ! [X: rat,Y: rat] :
      ( ( ord_less_rat @ ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ Y )
       => ( ord_less_rat @ X @ Y ) ) ) ).

% power2_less_imp_less
thf(fact_3885_power2__less__imp__less,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_nat @ ( power_power_nat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_nat @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ Y )
       => ( ord_less_nat @ X @ Y ) ) ) ).

% power2_less_imp_less
thf(fact_3886_power2__less__imp__less,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_int @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ Y )
       => ( ord_less_int @ X @ Y ) ) ) ).

% power2_less_imp_less
thf(fact_3887_sum__power2__le__zero__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ zero_zero_real )
      = ( ( X = zero_zero_real )
        & ( Y = zero_zero_real ) ) ) ).

% sum_power2_le_zero_iff
thf(fact_3888_sum__power2__le__zero__iff,axiom,
    ! [X: rat,Y: rat] :
      ( ( ord_less_eq_rat @ ( plus_plus_rat @ ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ zero_zero_rat )
      = ( ( X = zero_zero_rat )
        & ( Y = zero_zero_rat ) ) ) ).

% sum_power2_le_zero_iff
thf(fact_3889_sum__power2__le__zero__iff,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ zero_zero_int )
      = ( ( X = zero_zero_int )
        & ( Y = zero_zero_int ) ) ) ).

% sum_power2_le_zero_iff
thf(fact_3890_sum__power2__ge__zero,axiom,
    ! [X: real,Y: real] : ( ord_less_eq_real @ zero_zero_real @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% sum_power2_ge_zero
thf(fact_3891_sum__power2__ge__zero,axiom,
    ! [X: rat,Y: rat] : ( ord_less_eq_rat @ zero_zero_rat @ ( plus_plus_rat @ ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% sum_power2_ge_zero
thf(fact_3892_sum__power2__ge__zero,axiom,
    ! [X: int,Y: int] : ( ord_less_eq_int @ zero_zero_int @ ( plus_plus_int @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% sum_power2_ge_zero
thf(fact_3893_sum__power2__gt__zero__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
      = ( ( X != zero_zero_real )
        | ( Y != zero_zero_real ) ) ) ).

% sum_power2_gt_zero_iff
thf(fact_3894_sum__power2__gt__zero__iff,axiom,
    ! [X: rat,Y: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( plus_plus_rat @ ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
      = ( ( X != zero_zero_rat )
        | ( Y != zero_zero_rat ) ) ) ).

% sum_power2_gt_zero_iff
thf(fact_3895_sum__power2__gt__zero__iff,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
      = ( ( X != zero_zero_int )
        | ( Y != zero_zero_int ) ) ) ).

% sum_power2_gt_zero_iff
thf(fact_3896_not__sum__power2__lt__zero,axiom,
    ! [X: real,Y: real] :
      ~ ( ord_less_real @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ zero_zero_real ) ).

% not_sum_power2_lt_zero
thf(fact_3897_not__sum__power2__lt__zero,axiom,
    ! [X: rat,Y: rat] :
      ~ ( ord_less_rat @ ( plus_plus_rat @ ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ zero_zero_rat ) ).

% not_sum_power2_lt_zero
thf(fact_3898_not__sum__power2__lt__zero,axiom,
    ! [X: int,Y: int] :
      ~ ( ord_less_int @ ( plus_plus_int @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ zero_zero_int ) ).

% not_sum_power2_lt_zero
thf(fact_3899_zero__le__even__power_H,axiom,
    ! [A: real,N2: nat] : ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) ).

% zero_le_even_power'
thf(fact_3900_zero__le__even__power_H,axiom,
    ! [A: rat,N2: nat] : ( ord_less_eq_rat @ zero_zero_rat @ ( power_power_rat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) ).

% zero_le_even_power'
thf(fact_3901_zero__le__even__power_H,axiom,
    ! [A: int,N2: nat] : ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) ).

% zero_le_even_power'
thf(fact_3902_nat__bit__induct,axiom,
    ! [P: nat > $o,N2: nat] :
      ( ( P @ zero_zero_nat )
     => ( ! [N: nat] :
            ( ( P @ N )
           => ( ( ord_less_nat @ zero_zero_nat @ N )
             => ( P @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) )
       => ( ! [N: nat] :
              ( ( P @ N )
             => ( P @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) )
         => ( P @ N2 ) ) ) ) ).

% nat_bit_induct
thf(fact_3903_Suc__n__div__2__gt__zero,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ord_less_nat @ zero_zero_nat @ ( divide_divide_nat @ ( suc @ N2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% Suc_n_div_2_gt_zero
thf(fact_3904_div__2__gt__zero,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ N2 )
     => ( ord_less_nat @ zero_zero_nat @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% div_2_gt_zero
thf(fact_3905_mult__exp__mod__exp__eq,axiom,
    ! [M: nat,N2: nat,A: nat] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ( modulo_modulo_nat @ ( times_times_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
        = ( times_times_nat @ ( modulo_modulo_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N2 @ M ) ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) ) ) ).

% mult_exp_mod_exp_eq
thf(fact_3906_mult__exp__mod__exp__eq,axiom,
    ! [M: nat,N2: nat,A: int] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ( modulo_modulo_int @ ( times_times_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) )
        = ( times_times_int @ ( modulo_modulo_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N2 @ M ) ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) ) ) ) ).

% mult_exp_mod_exp_eq
thf(fact_3907_mult__exp__mod__exp__eq,axiom,
    ! [M: nat,N2: nat,A: code_integer] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ A @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N2 ) )
        = ( times_3573771949741848930nteger @ ( modulo364778990260209775nteger @ A @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N2 @ M ) ) ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) ) ) ) ).

% mult_exp_mod_exp_eq
thf(fact_3908_odd__0__le__power__imp__0__le,axiom,
    ! [A: real,N2: nat] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) )
     => ( ord_less_eq_real @ zero_zero_real @ A ) ) ).

% odd_0_le_power_imp_0_le
thf(fact_3909_odd__0__le__power__imp__0__le,axiom,
    ! [A: rat,N2: nat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ ( power_power_rat @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) )
     => ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ).

% odd_0_le_power_imp_0_le
thf(fact_3910_odd__0__le__power__imp__0__le,axiom,
    ! [A: int,N2: nat] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) )
     => ( ord_less_eq_int @ zero_zero_int @ A ) ) ).

% odd_0_le_power_imp_0_le
thf(fact_3911_odd__power__less__zero,axiom,
    ! [A: real,N2: nat] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ord_less_real @ ( power_power_real @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) @ zero_zero_real ) ) ).

% odd_power_less_zero
thf(fact_3912_odd__power__less__zero,axiom,
    ! [A: rat,N2: nat] :
      ( ( ord_less_rat @ A @ zero_zero_rat )
     => ( ord_less_rat @ ( power_power_rat @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) @ zero_zero_rat ) ) ).

% odd_power_less_zero
thf(fact_3913_odd__power__less__zero,axiom,
    ! [A: int,N2: nat] :
      ( ( ord_less_int @ A @ zero_zero_int )
     => ( ord_less_int @ ( power_power_int @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) @ zero_zero_int ) ) ).

% odd_power_less_zero
thf(fact_3914_VEBT__internal_Oexp__split__high__low_I1_J,axiom,
    ! [X: nat,N2: nat,M: nat] :
      ( ( ord_less_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ N2 @ M ) ) )
     => ( ( ord_less_nat @ zero_zero_nat @ N2 )
       => ( ( ord_less_nat @ zero_zero_nat @ M )
         => ( ord_less_nat @ ( vEBT_VEBT_high @ X @ N2 ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) ) ) ) ).

% VEBT_internal.exp_split_high_low(1)
thf(fact_3915_VEBT__internal_Oexp__split__high__low_I2_J,axiom,
    ! [X: nat,N2: nat,M: nat] :
      ( ( ord_less_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ N2 @ M ) ) )
     => ( ( ord_less_nat @ zero_zero_nat @ N2 )
       => ( ( ord_less_nat @ zero_zero_nat @ M )
         => ( ord_less_nat @ ( vEBT_VEBT_low @ X @ N2 ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) ) ) ).

% VEBT_internal.exp_split_high_low(2)
thf(fact_3916_vebt__member_Oelims_I2_J,axiom,
    ! [X: vEBT_VEBT,Xa2: nat] :
      ( ( vEBT_vebt_member @ X @ Xa2 )
     => ( ! [A3: $o,B2: $o] :
            ( ( X
              = ( vEBT_Leaf @ A3 @ B2 ) )
           => ~ ( ( ( Xa2 = zero_zero_nat )
                 => A3 )
                & ( ( Xa2 != zero_zero_nat )
                 => ( ( ( Xa2 = one_one_nat )
                     => B2 )
                    & ( Xa2 = one_one_nat ) ) ) ) )
       => ~ ! [Mi2: nat,Ma2: nat,Va2: nat,TreeList2: list_VEBT_VEBT] :
              ( ? [Summary2: vEBT_VEBT] :
                  ( X
                  = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary2 ) )
             => ~ ( ( Xa2 != Mi2 )
                 => ( ( Xa2 != Ma2 )
                   => ( ~ ( ord_less_nat @ Xa2 @ Mi2 )
                      & ( ~ ( ord_less_nat @ Xa2 @ Mi2 )
                       => ( ~ ( ord_less_nat @ Ma2 @ Xa2 )
                          & ( ~ ( ord_less_nat @ Ma2 @ Xa2 )
                           => ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
                               => ( vEBT_vebt_member @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                              & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) ) ) ) ) ) ) ) ) ).

% vebt_member.elims(2)
thf(fact_3917_vebt__member_Oelims_I1_J,axiom,
    ! [X: vEBT_VEBT,Xa2: nat,Y: $o] :
      ( ( ( vEBT_vebt_member @ X @ Xa2 )
        = Y )
     => ( ! [A3: $o,B2: $o] :
            ( ( X
              = ( vEBT_Leaf @ A3 @ B2 ) )
           => ( Y
              = ( ~ ( ( ( Xa2 = zero_zero_nat )
                     => A3 )
                    & ( ( Xa2 != zero_zero_nat )
                     => ( ( ( Xa2 = one_one_nat )
                         => B2 )
                        & ( Xa2 = one_one_nat ) ) ) ) ) ) )
       => ( ( ? [Uu2: nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT] :
                ( X
                = ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu2 @ Uv2 @ Uw2 ) )
           => Y )
         => ( ( ? [V2: product_prod_nat_nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT] :
                  ( X
                  = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ zero_zero_nat @ Uy2 @ Uz2 ) )
             => Y )
           => ( ( ? [V2: product_prod_nat_nat,Vb2: list_VEBT_VEBT,Vc2: vEBT_VEBT] :
                    ( X
                    = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ ( suc @ zero_zero_nat ) @ Vb2 @ Vc2 ) )
               => Y )
             => ~ ! [Mi2: nat,Ma2: nat,Va2: nat,TreeList2: list_VEBT_VEBT] :
                    ( ? [Summary2: vEBT_VEBT] :
                        ( X
                        = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary2 ) )
                   => ( Y
                      = ( ~ ( ( Xa2 != Mi2 )
                           => ( ( Xa2 != Ma2 )
                             => ( ~ ( ord_less_nat @ Xa2 @ Mi2 )
                                & ( ~ ( ord_less_nat @ Xa2 @ Mi2 )
                                 => ( ~ ( ord_less_nat @ Ma2 @ Xa2 )
                                    & ( ~ ( ord_less_nat @ Ma2 @ Xa2 )
                                     => ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
                                         => ( vEBT_vebt_member @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                        & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).

% vebt_member.elims(1)
thf(fact_3918_vebt__member_Oelims_I3_J,axiom,
    ! [X: vEBT_VEBT,Xa2: nat] :
      ( ~ ( vEBT_vebt_member @ X @ Xa2 )
     => ( ! [A3: $o,B2: $o] :
            ( ( X
              = ( vEBT_Leaf @ A3 @ B2 ) )
           => ( ( ( Xa2 = zero_zero_nat )
               => A3 )
              & ( ( Xa2 != zero_zero_nat )
               => ( ( ( Xa2 = one_one_nat )
                   => B2 )
                  & ( Xa2 = one_one_nat ) ) ) ) )
       => ( ! [Uu2: nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT] :
              ( X
             != ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu2 @ Uv2 @ Uw2 ) )
         => ( ! [V2: product_prod_nat_nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT] :
                ( X
               != ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ zero_zero_nat @ Uy2 @ Uz2 ) )
           => ( ! [V2: product_prod_nat_nat,Vb2: list_VEBT_VEBT,Vc2: vEBT_VEBT] :
                  ( X
                 != ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ ( suc @ zero_zero_nat ) @ Vb2 @ Vc2 ) )
             => ~ ! [Mi2: nat,Ma2: nat,Va2: nat,TreeList2: list_VEBT_VEBT] :
                    ( ? [Summary2: vEBT_VEBT] :
                        ( X
                        = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary2 ) )
                   => ( ( Xa2 != Mi2 )
                     => ( ( Xa2 != Ma2 )
                       => ( ~ ( ord_less_nat @ Xa2 @ Mi2 )
                          & ( ~ ( ord_less_nat @ Xa2 @ Mi2 )
                           => ( ~ ( ord_less_nat @ Ma2 @ Xa2 )
                              & ( ~ ( ord_less_nat @ Ma2 @ Xa2 )
                               => ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
                                   => ( vEBT_vebt_member @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                  & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).

% vebt_member.elims(3)
thf(fact_3919_VEBT__internal_Omembermima_Oelims_I2_J,axiom,
    ! [X: vEBT_VEBT,Xa2: nat] :
      ( ( vEBT_VEBT_membermima @ X @ Xa2 )
     => ( ! [Mi2: nat,Ma2: nat] :
            ( ? [Va3: list_VEBT_VEBT,Vb2: vEBT_VEBT] :
                ( X
                = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ Va3 @ Vb2 ) )
           => ~ ( ( Xa2 = Mi2 )
                | ( Xa2 = Ma2 ) ) )
       => ( ! [Mi2: nat,Ma2: nat,V2: nat,TreeList2: list_VEBT_VEBT] :
              ( ? [Vc2: vEBT_VEBT] :
                  ( X
                  = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ V2 ) @ TreeList2 @ Vc2 ) )
             => ~ ( ( Xa2 = Mi2 )
                  | ( Xa2 = Ma2 )
                  | ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
                     => ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                    & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) )
         => ~ ! [V2: nat,TreeList2: list_VEBT_VEBT] :
                ( ? [Vd2: vEBT_VEBT] :
                    ( X
                    = ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V2 ) @ TreeList2 @ Vd2 ) )
               => ~ ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
                     => ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                    & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) ) ) ) ).

% VEBT_internal.membermima.elims(2)
thf(fact_3920_arith__geo__mean,axiom,
    ! [U: real,X: real,Y: real] :
      ( ( ( power_power_real @ U @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( times_times_real @ X @ Y ) )
     => ( ( ord_less_eq_real @ zero_zero_real @ X )
       => ( ( ord_less_eq_real @ zero_zero_real @ Y )
         => ( ord_less_eq_real @ U @ ( divide_divide_real @ ( plus_plus_real @ X @ Y ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ).

% arith_geo_mean
thf(fact_3921_arith__geo__mean,axiom,
    ! [U: rat,X: rat,Y: rat] :
      ( ( ( power_power_rat @ U @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( times_times_rat @ X @ Y ) )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ X )
       => ( ( ord_less_eq_rat @ zero_zero_rat @ Y )
         => ( ord_less_eq_rat @ U @ ( divide_divide_rat @ ( plus_plus_rat @ X @ Y ) @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% arith_geo_mean
thf(fact_3922_invar__vebt_Osimps,axiom,
    ( vEBT_invar_vebt
    = ( ^ [A1: vEBT_VEBT,A22: nat] :
          ( ( ? [A4: $o,B4: $o] :
                ( A1
                = ( vEBT_Leaf @ A4 @ B4 ) )
            & ( A22
              = ( suc @ zero_zero_nat ) ) )
          | ? [TreeList3: list_VEBT_VEBT,N3: nat,Summary3: vEBT_VEBT] :
              ( ( A1
                = ( vEBT_Node @ none_P5556105721700978146at_nat @ A22 @ TreeList3 @ Summary3 ) )
              & ! [X3: vEBT_VEBT] :
                  ( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
                 => ( vEBT_invar_vebt @ X3 @ N3 ) )
              & ( vEBT_invar_vebt @ Summary3 @ N3 )
              & ( ( size_s6755466524823107622T_VEBT @ TreeList3 )
                = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) )
              & ( A22
                = ( plus_plus_nat @ N3 @ N3 ) )
              & ~ ? [X4: nat] : ( vEBT_V8194947554948674370ptions @ Summary3 @ X4 )
              & ! [X3: vEBT_VEBT] :
                  ( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
                 => ~ ? [X4: nat] : ( vEBT_V8194947554948674370ptions @ X3 @ X4 ) ) )
          | ? [TreeList3: list_VEBT_VEBT,N3: nat,Summary3: vEBT_VEBT] :
              ( ( A1
                = ( vEBT_Node @ none_P5556105721700978146at_nat @ A22 @ TreeList3 @ Summary3 ) )
              & ! [X3: vEBT_VEBT] :
                  ( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
                 => ( vEBT_invar_vebt @ X3 @ N3 ) )
              & ( vEBT_invar_vebt @ Summary3 @ ( suc @ N3 ) )
              & ( ( size_s6755466524823107622T_VEBT @ TreeList3 )
                = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ N3 ) ) )
              & ( A22
                = ( plus_plus_nat @ N3 @ ( suc @ N3 ) ) )
              & ~ ? [X4: nat] : ( vEBT_V8194947554948674370ptions @ Summary3 @ X4 )
              & ! [X3: vEBT_VEBT] :
                  ( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
                 => ~ ? [X4: nat] : ( vEBT_V8194947554948674370ptions @ X3 @ X4 ) ) )
          | ? [TreeList3: list_VEBT_VEBT,N3: nat,Summary3: vEBT_VEBT,Mi3: nat,Ma3: nat] :
              ( ( A1
                = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi3 @ Ma3 ) ) @ A22 @ TreeList3 @ Summary3 ) )
              & ! [X3: vEBT_VEBT] :
                  ( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
                 => ( vEBT_invar_vebt @ X3 @ N3 ) )
              & ( vEBT_invar_vebt @ Summary3 @ N3 )
              & ( ( size_s6755466524823107622T_VEBT @ TreeList3 )
                = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) )
              & ( A22
                = ( plus_plus_nat @ N3 @ N3 ) )
              & ! [I5: nat] :
                  ( ( ord_less_nat @ I5 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) )
                 => ( ( ? [X4: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList3 @ I5 ) @ X4 ) )
                    = ( vEBT_V8194947554948674370ptions @ Summary3 @ I5 ) ) )
              & ( ( Mi3 = Ma3 )
               => ! [X3: vEBT_VEBT] :
                    ( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
                   => ~ ? [X4: nat] : ( vEBT_V8194947554948674370ptions @ X3 @ X4 ) ) )
              & ( ord_less_eq_nat @ Mi3 @ Ma3 )
              & ( ord_less_nat @ Ma3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A22 ) )
              & ( ( Mi3 != Ma3 )
               => ! [I5: nat] :
                    ( ( ord_less_nat @ I5 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) )
                   => ( ( ( ( vEBT_VEBT_high @ Ma3 @ N3 )
                          = I5 )
                       => ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList3 @ I5 ) @ ( vEBT_VEBT_low @ Ma3 @ N3 ) ) )
                      & ! [X3: nat] :
                          ( ( ( ( vEBT_VEBT_high @ X3 @ N3 )
                              = I5 )
                            & ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList3 @ I5 ) @ ( vEBT_VEBT_low @ X3 @ N3 ) ) )
                         => ( ( ord_less_nat @ Mi3 @ X3 )
                            & ( ord_less_eq_nat @ X3 @ Ma3 ) ) ) ) ) ) )
          | ? [TreeList3: list_VEBT_VEBT,N3: nat,Summary3: vEBT_VEBT,Mi3: nat,Ma3: nat] :
              ( ( A1
                = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi3 @ Ma3 ) ) @ A22 @ TreeList3 @ Summary3 ) )
              & ! [X3: vEBT_VEBT] :
                  ( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
                 => ( vEBT_invar_vebt @ X3 @ N3 ) )
              & ( vEBT_invar_vebt @ Summary3 @ ( suc @ N3 ) )
              & ( ( size_s6755466524823107622T_VEBT @ TreeList3 )
                = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ N3 ) ) )
              & ( A22
                = ( plus_plus_nat @ N3 @ ( suc @ N3 ) ) )
              & ! [I5: nat] :
                  ( ( ord_less_nat @ I5 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ N3 ) ) )
                 => ( ( ? [X4: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList3 @ I5 ) @ X4 ) )
                    = ( vEBT_V8194947554948674370ptions @ Summary3 @ I5 ) ) )
              & ( ( Mi3 = Ma3 )
               => ! [X3: vEBT_VEBT] :
                    ( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
                   => ~ ? [X4: nat] : ( vEBT_V8194947554948674370ptions @ X3 @ X4 ) ) )
              & ( ord_less_eq_nat @ Mi3 @ Ma3 )
              & ( ord_less_nat @ Ma3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A22 ) )
              & ( ( Mi3 != Ma3 )
               => ! [I5: nat] :
                    ( ( ord_less_nat @ I5 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ N3 ) ) )
                   => ( ( ( ( vEBT_VEBT_high @ Ma3 @ N3 )
                          = I5 )
                       => ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList3 @ I5 ) @ ( vEBT_VEBT_low @ Ma3 @ N3 ) ) )
                      & ! [X3: nat] :
                          ( ( ( ( vEBT_VEBT_high @ X3 @ N3 )
                              = I5 )
                            & ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList3 @ I5 ) @ ( vEBT_VEBT_low @ X3 @ N3 ) ) )
                         => ( ( ord_less_nat @ Mi3 @ X3 )
                            & ( ord_less_eq_nat @ X3 @ Ma3 ) ) ) ) ) ) ) ) ) ) ).

% invar_vebt.simps
thf(fact_3923_invar__vebt_Ocases,axiom,
    ! [A12: vEBT_VEBT,A23: nat] :
      ( ( vEBT_invar_vebt @ A12 @ A23 )
     => ( ( ? [A3: $o,B2: $o] :
              ( A12
              = ( vEBT_Leaf @ A3 @ B2 ) )
         => ( A23
           != ( suc @ zero_zero_nat ) ) )
       => ( ! [TreeList2: list_VEBT_VEBT,N: nat,Summary2: vEBT_VEBT,M2: nat,Deg2: nat] :
              ( ( A12
                = ( vEBT_Node @ none_P5556105721700978146at_nat @ Deg2 @ TreeList2 @ Summary2 ) )
             => ( ( A23 = Deg2 )
               => ( ! [X2: vEBT_VEBT] :
                      ( ( member_VEBT_VEBT @ X2 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
                     => ( vEBT_invar_vebt @ X2 @ N ) )
                 => ( ( vEBT_invar_vebt @ Summary2 @ M2 )
                   => ( ( ( size_s6755466524823107622T_VEBT @ TreeList2 )
                        = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M2 ) )
                     => ( ( M2 = N )
                       => ( ( Deg2
                            = ( plus_plus_nat @ N @ M2 ) )
                         => ( ~ ? [X_12: nat] : ( vEBT_V8194947554948674370ptions @ Summary2 @ X_12 )
                           => ~ ! [X2: vEBT_VEBT] :
                                  ( ( member_VEBT_VEBT @ X2 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
                                 => ~ ? [X_12: nat] : ( vEBT_V8194947554948674370ptions @ X2 @ X_12 ) ) ) ) ) ) ) ) ) )
         => ( ! [TreeList2: list_VEBT_VEBT,N: nat,Summary2: vEBT_VEBT,M2: nat,Deg2: nat] :
                ( ( A12
                  = ( vEBT_Node @ none_P5556105721700978146at_nat @ Deg2 @ TreeList2 @ Summary2 ) )
               => ( ( A23 = Deg2 )
                 => ( ! [X2: vEBT_VEBT] :
                        ( ( member_VEBT_VEBT @ X2 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
                       => ( vEBT_invar_vebt @ X2 @ N ) )
                   => ( ( vEBT_invar_vebt @ Summary2 @ M2 )
                     => ( ( ( size_s6755466524823107622T_VEBT @ TreeList2 )
                          = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M2 ) )
                       => ( ( M2
                            = ( suc @ N ) )
                         => ( ( Deg2
                              = ( plus_plus_nat @ N @ M2 ) )
                           => ( ~ ? [X_12: nat] : ( vEBT_V8194947554948674370ptions @ Summary2 @ X_12 )
                             => ~ ! [X2: vEBT_VEBT] :
                                    ( ( member_VEBT_VEBT @ X2 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
                                   => ~ ? [X_12: nat] : ( vEBT_V8194947554948674370ptions @ X2 @ X_12 ) ) ) ) ) ) ) ) ) )
           => ( ! [TreeList2: list_VEBT_VEBT,N: nat,Summary2: vEBT_VEBT,M2: nat,Deg2: nat,Mi2: nat,Ma2: nat] :
                  ( ( A12
                    = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ Deg2 @ TreeList2 @ Summary2 ) )
                 => ( ( A23 = Deg2 )
                   => ( ! [X2: vEBT_VEBT] :
                          ( ( member_VEBT_VEBT @ X2 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
                         => ( vEBT_invar_vebt @ X2 @ N ) )
                     => ( ( vEBT_invar_vebt @ Summary2 @ M2 )
                       => ( ( ( size_s6755466524823107622T_VEBT @ TreeList2 )
                            = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M2 ) )
                         => ( ( M2 = N )
                           => ( ( Deg2
                                = ( plus_plus_nat @ N @ M2 ) )
                             => ( ! [I: nat] :
                                    ( ( ord_less_nat @ I @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M2 ) )
                                   => ( ( ? [X4: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList2 @ I ) @ X4 ) )
                                      = ( vEBT_V8194947554948674370ptions @ Summary2 @ I ) ) )
                               => ( ( ( Mi2 = Ma2 )
                                   => ! [X2: vEBT_VEBT] :
                                        ( ( member_VEBT_VEBT @ X2 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
                                       => ~ ? [X_12: nat] : ( vEBT_V8194947554948674370ptions @ X2 @ X_12 ) ) )
                                 => ( ( ord_less_eq_nat @ Mi2 @ Ma2 )
                                   => ( ( ord_less_nat @ Ma2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
                                     => ~ ( ( Mi2 != Ma2 )
                                         => ! [I: nat] :
                                              ( ( ord_less_nat @ I @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M2 ) )
                                             => ( ( ( ( vEBT_VEBT_high @ Ma2 @ N )
                                                    = I )
                                                 => ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList2 @ I ) @ ( vEBT_VEBT_low @ Ma2 @ N ) ) )
                                                & ! [X2: nat] :
                                                    ( ( ( ( vEBT_VEBT_high @ X2 @ N )
                                                        = I )
                                                      & ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList2 @ I ) @ ( vEBT_VEBT_low @ X2 @ N ) ) )
                                                   => ( ( ord_less_nat @ Mi2 @ X2 )
                                                      & ( ord_less_eq_nat @ X2 @ Ma2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) )
             => ~ ! [TreeList2: list_VEBT_VEBT,N: nat,Summary2: vEBT_VEBT,M2: nat,Deg2: nat,Mi2: nat,Ma2: nat] :
                    ( ( A12
                      = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ Deg2 @ TreeList2 @ Summary2 ) )
                   => ( ( A23 = Deg2 )
                     => ( ! [X2: vEBT_VEBT] :
                            ( ( member_VEBT_VEBT @ X2 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
                           => ( vEBT_invar_vebt @ X2 @ N ) )
                       => ( ( vEBT_invar_vebt @ Summary2 @ M2 )
                         => ( ( ( size_s6755466524823107622T_VEBT @ TreeList2 )
                              = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M2 ) )
                           => ( ( M2
                                = ( suc @ N ) )
                             => ( ( Deg2
                                  = ( plus_plus_nat @ N @ M2 ) )
                               => ( ! [I: nat] :
                                      ( ( ord_less_nat @ I @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M2 ) )
                                     => ( ( ? [X4: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList2 @ I ) @ X4 ) )
                                        = ( vEBT_V8194947554948674370ptions @ Summary2 @ I ) ) )
                                 => ( ( ( Mi2 = Ma2 )
                                     => ! [X2: vEBT_VEBT] :
                                          ( ( member_VEBT_VEBT @ X2 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
                                         => ~ ? [X_12: nat] : ( vEBT_V8194947554948674370ptions @ X2 @ X_12 ) ) )
                                   => ( ( ord_less_eq_nat @ Mi2 @ Ma2 )
                                     => ( ( ord_less_nat @ Ma2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
                                       => ~ ( ( Mi2 != Ma2 )
                                           => ! [I: nat] :
                                                ( ( ord_less_nat @ I @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M2 ) )
                                               => ( ( ( ( vEBT_VEBT_high @ Ma2 @ N )
                                                      = I )
                                                   => ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList2 @ I ) @ ( vEBT_VEBT_low @ Ma2 @ N ) ) )
                                                  & ! [X2: nat] :
                                                      ( ( ( ( vEBT_VEBT_high @ X2 @ N )
                                                          = I )
                                                        & ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList2 @ I ) @ ( vEBT_VEBT_low @ X2 @ N ) ) )
                                                     => ( ( ord_less_nat @ Mi2 @ X2 )
                                                        & ( ord_less_eq_nat @ X2 @ Ma2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).

% invar_vebt.cases
thf(fact_3924_vebt__insert_Oelims,axiom,
    ! [X: vEBT_VEBT,Xa2: nat,Y: vEBT_VEBT] :
      ( ( ( vEBT_vebt_insert @ X @ Xa2 )
        = Y )
     => ( ! [A3: $o,B2: $o] :
            ( ( X
              = ( vEBT_Leaf @ A3 @ B2 ) )
           => ~ ( ( ( Xa2 = zero_zero_nat )
                 => ( Y
                    = ( vEBT_Leaf @ $true @ B2 ) ) )
                & ( ( Xa2 != zero_zero_nat )
                 => ( ( ( Xa2 = one_one_nat )
                     => ( Y
                        = ( vEBT_Leaf @ A3 @ $true ) ) )
                    & ( ( Xa2 != one_one_nat )
                     => ( Y
                        = ( vEBT_Leaf @ A3 @ B2 ) ) ) ) ) ) )
       => ( ! [Info2: option4927543243414619207at_nat,Ts: list_VEBT_VEBT,S: vEBT_VEBT] :
              ( ( X
                = ( vEBT_Node @ Info2 @ zero_zero_nat @ Ts @ S ) )
             => ( Y
               != ( vEBT_Node @ Info2 @ zero_zero_nat @ Ts @ S ) ) )
         => ( ! [Info2: option4927543243414619207at_nat,Ts: list_VEBT_VEBT,S: vEBT_VEBT] :
                ( ( X
                  = ( vEBT_Node @ Info2 @ ( suc @ zero_zero_nat ) @ Ts @ S ) )
               => ( Y
                 != ( vEBT_Node @ Info2 @ ( suc @ zero_zero_nat ) @ Ts @ S ) ) )
           => ( ! [V2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
                  ( ( X
                    = ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ V2 ) ) @ TreeList2 @ Summary2 ) )
                 => ( Y
                   != ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Xa2 @ Xa2 ) ) @ ( suc @ ( suc @ V2 ) ) @ TreeList2 @ Summary2 ) ) )
             => ~ ! [Mi2: nat,Ma2: nat,Va2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
                    ( ( X
                      = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary2 ) )
                   => ( Y
                     != ( if_VEBT_VEBT
                        @ ( ( ord_less_nat @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa2 @ Mi2 ) @ Mi2 @ Xa2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
                          & ~ ( ( Xa2 = Mi2 )
                              | ( Xa2 = Ma2 ) ) )
                        @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ ( if_nat @ ( ord_less_nat @ Xa2 @ Mi2 ) @ Xa2 @ Mi2 ) @ ( ord_max_nat @ ( if_nat @ ( ord_less_nat @ Xa2 @ Mi2 ) @ Mi2 @ Xa2 ) @ Ma2 ) ) ) @ ( suc @ ( suc @ Va2 ) ) @ ( list_u1324408373059187874T_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa2 @ Mi2 ) @ Mi2 @ Xa2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_insert @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa2 @ Mi2 ) @ Mi2 @ Xa2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( ord_less_nat @ Xa2 @ Mi2 ) @ Mi2 @ Xa2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( if_VEBT_VEBT @ ( vEBT_VEBT_minNull @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa2 @ Mi2 ) @ Mi2 @ Xa2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_insert @ Summary2 @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa2 @ Mi2 ) @ Mi2 @ Xa2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ Summary2 ) )
                        @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary2 ) ) ) ) ) ) ) ) ) ).

% vebt_insert.elims
thf(fact_3925_verit__le__mono__div,axiom,
    ! [A2: nat,B3: nat,N2: nat] :
      ( ( ord_less_nat @ A2 @ B3 )
     => ( ( ord_less_nat @ zero_zero_nat @ N2 )
       => ( ord_less_eq_nat
          @ ( plus_plus_nat @ ( divide_divide_nat @ A2 @ N2 )
            @ ( if_nat
              @ ( ( modulo_modulo_nat @ B3 @ N2 )
                = zero_zero_nat )
              @ one_one_nat
              @ zero_zero_nat ) )
          @ ( divide_divide_nat @ B3 @ N2 ) ) ) ) ).

% verit_le_mono_div
thf(fact_3926_inrange,axiom,
    ! [T: vEBT_VEBT,N2: nat] :
      ( ( vEBT_invar_vebt @ T @ N2 )
     => ( ord_less_eq_set_nat @ ( vEBT_VEBT_set_vebt @ T ) @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ ( minus_minus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) @ one_one_nat ) ) ) ) ).

% inrange
thf(fact_3927_set__bit__0,axiom,
    ! [A: int] :
      ( ( bit_se7879613467334960850it_int @ zero_zero_nat @ A )
      = ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ).

% set_bit_0
thf(fact_3928_set__bit__0,axiom,
    ! [A: nat] :
      ( ( bit_se7882103937844011126it_nat @ zero_zero_nat @ A )
      = ( plus_plus_nat @ one_one_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% set_bit_0
thf(fact_3929_vebt__succ_Opelims,axiom,
    ! [X: vEBT_VEBT,Xa2: nat,Y: option_nat] :
      ( ( ( vEBT_vebt_succ @ X @ Xa2 )
        = Y )
     => ( ( accp_P2887432264394892906BT_nat @ vEBT_vebt_succ_rel @ ( produc738532404422230701BT_nat @ X @ Xa2 ) )
       => ( ! [Uu2: $o,B2: $o] :
              ( ( X
                = ( vEBT_Leaf @ Uu2 @ B2 ) )
             => ( ( Xa2 = zero_zero_nat )
               => ( ( ( B2
                     => ( Y
                        = ( some_nat @ one_one_nat ) ) )
                    & ( ~ B2
                     => ( Y = none_nat ) ) )
                 => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_succ_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uu2 @ B2 ) @ zero_zero_nat ) ) ) ) )
         => ( ! [Uv2: $o,Uw2: $o] :
                ( ( X
                  = ( vEBT_Leaf @ Uv2 @ Uw2 ) )
               => ! [N: nat] :
                    ( ( Xa2
                      = ( suc @ N ) )
                   => ( ( Y = none_nat )
                     => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_succ_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uv2 @ Uw2 ) @ ( suc @ N ) ) ) ) ) )
           => ( ! [Ux2: nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT] :
                  ( ( X
                    = ( vEBT_Node @ none_P5556105721700978146at_nat @ Ux2 @ Uy2 @ Uz2 ) )
                 => ( ( Y = none_nat )
                   => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_succ_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Ux2 @ Uy2 @ Uz2 ) @ Xa2 ) ) ) )
             => ( ! [V2: product_prod_nat_nat,Vc2: list_VEBT_VEBT,Vd2: vEBT_VEBT] :
                    ( ( X
                      = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ zero_zero_nat @ Vc2 @ Vd2 ) )
                   => ( ( Y = none_nat )
                     => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_succ_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ zero_zero_nat @ Vc2 @ Vd2 ) @ Xa2 ) ) ) )
               => ( ! [V2: product_prod_nat_nat,Vg: list_VEBT_VEBT,Vh: vEBT_VEBT] :
                      ( ( X
                        = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ ( suc @ zero_zero_nat ) @ Vg @ Vh ) )
                     => ( ( Y = none_nat )
                       => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_succ_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ ( suc @ zero_zero_nat ) @ Vg @ Vh ) @ Xa2 ) ) ) )
                 => ~ ! [Mi2: nat,Ma2: nat,Va2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
                        ( ( X
                          = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary2 ) )
                       => ( ( ( ( ord_less_nat @ Xa2 @ Mi2 )
                             => ( Y
                                = ( some_nat @ Mi2 ) ) )
                            & ( ~ ( ord_less_nat @ Xa2 @ Mi2 )
                             => ( Y
                                = ( if_option_nat @ ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
                                  @ ( if_option_nat
                                    @ ( ( ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                       != none_nat )
                                      & ( vEBT_VEBT_less @ ( some_nat @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) )
                                    @ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( some_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_succ @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                    @ ( if_option_nat
                                      @ ( ( vEBT_vebt_succ @ Summary2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
                                        = none_nat )
                                      @ none_nat
                                      @ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_succ @ Summary2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_succ @ Summary2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) )
                                  @ none_nat ) ) ) )
                         => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_succ_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary2 ) @ Xa2 ) ) ) ) ) ) ) ) ) ) ) ).

% vebt_succ.pelims
thf(fact_3930_vebt__pred_Opelims,axiom,
    ! [X: vEBT_VEBT,Xa2: nat,Y: option_nat] :
      ( ( ( vEBT_vebt_pred @ X @ Xa2 )
        = Y )
     => ( ( accp_P2887432264394892906BT_nat @ vEBT_vebt_pred_rel @ ( produc738532404422230701BT_nat @ X @ Xa2 ) )
       => ( ! [Uu2: $o,Uv2: $o] :
              ( ( X
                = ( vEBT_Leaf @ Uu2 @ Uv2 ) )
             => ( ( Xa2 = zero_zero_nat )
               => ( ( Y = none_nat )
                 => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_pred_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uu2 @ Uv2 ) @ zero_zero_nat ) ) ) ) )
         => ( ! [A3: $o,Uw2: $o] :
                ( ( X
                  = ( vEBT_Leaf @ A3 @ Uw2 ) )
               => ( ( Xa2
                    = ( suc @ zero_zero_nat ) )
                 => ( ( ( A3
                       => ( Y
                          = ( some_nat @ zero_zero_nat ) ) )
                      & ( ~ A3
                       => ( Y = none_nat ) ) )
                   => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_pred_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A3 @ Uw2 ) @ ( suc @ zero_zero_nat ) ) ) ) ) )
           => ( ! [A3: $o,B2: $o] :
                  ( ( X
                    = ( vEBT_Leaf @ A3 @ B2 ) )
                 => ! [Va2: nat] :
                      ( ( Xa2
                        = ( suc @ ( suc @ Va2 ) ) )
                     => ( ( ( B2
                           => ( Y
                              = ( some_nat @ one_one_nat ) ) )
                          & ( ~ B2
                           => ( ( A3
                               => ( Y
                                  = ( some_nat @ zero_zero_nat ) ) )
                              & ( ~ A3
                               => ( Y = none_nat ) ) ) ) )
                       => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_pred_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A3 @ B2 ) @ ( suc @ ( suc @ Va2 ) ) ) ) ) ) )
             => ( ! [Uy2: nat,Uz2: list_VEBT_VEBT,Va3: vEBT_VEBT] :
                    ( ( X
                      = ( vEBT_Node @ none_P5556105721700978146at_nat @ Uy2 @ Uz2 @ Va3 ) )
                   => ( ( Y = none_nat )
                     => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_pred_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Uy2 @ Uz2 @ Va3 ) @ Xa2 ) ) ) )
               => ( ! [V2: product_prod_nat_nat,Vd2: list_VEBT_VEBT,Ve: vEBT_VEBT] :
                      ( ( X
                        = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ zero_zero_nat @ Vd2 @ Ve ) )
                     => ( ( Y = none_nat )
                       => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_pred_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ zero_zero_nat @ Vd2 @ Ve ) @ Xa2 ) ) ) )
                 => ( ! [V2: product_prod_nat_nat,Vh: list_VEBT_VEBT,Vi: vEBT_VEBT] :
                        ( ( X
                          = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ ( suc @ zero_zero_nat ) @ Vh @ Vi ) )
                       => ( ( Y = none_nat )
                         => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_pred_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ ( suc @ zero_zero_nat ) @ Vh @ Vi ) @ Xa2 ) ) ) )
                   => ~ ! [Mi2: nat,Ma2: nat,Va2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
                          ( ( X
                            = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary2 ) )
                         => ( ( ( ( ord_less_nat @ Ma2 @ Xa2 )
                               => ( Y
                                  = ( some_nat @ Ma2 ) ) )
                              & ( ~ ( ord_less_nat @ Ma2 @ Xa2 )
                               => ( Y
                                  = ( if_option_nat @ ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
                                    @ ( if_option_nat
                                      @ ( ( ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                         != none_nat )
                                        & ( vEBT_VEBT_greater @ ( some_nat @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) )
                                      @ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( some_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_pred @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                      @ ( if_option_nat
                                        @ ( ( vEBT_vebt_pred @ Summary2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
                                          = none_nat )
                                        @ ( if_option_nat @ ( ord_less_nat @ Mi2 @ Xa2 ) @ ( some_nat @ Mi2 ) @ none_nat )
                                        @ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_pred @ Summary2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_pred @ Summary2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) )
                                    @ none_nat ) ) ) )
                           => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_pred_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary2 ) @ Xa2 ) ) ) ) ) ) ) ) ) ) ) ) ).

% vebt_pred.pelims
thf(fact_3931_double__eq__0__iff,axiom,
    ! [A: real] :
      ( ( ( plus_plus_real @ A @ A )
        = zero_zero_real )
      = ( A = zero_zero_real ) ) ).

% double_eq_0_iff
thf(fact_3932_double__eq__0__iff,axiom,
    ! [A: rat] :
      ( ( ( plus_plus_rat @ A @ A )
        = zero_zero_rat )
      = ( A = zero_zero_rat ) ) ).

% double_eq_0_iff
thf(fact_3933_double__eq__0__iff,axiom,
    ! [A: int] :
      ( ( ( plus_plus_int @ A @ A )
        = zero_zero_int )
      = ( A = zero_zero_int ) ) ).

% double_eq_0_iff
thf(fact_3934_vebt__delete_Opelims,axiom,
    ! [X: vEBT_VEBT,Xa2: nat,Y: vEBT_VEBT] :
      ( ( ( vEBT_vebt_delete @ X @ Xa2 )
        = Y )
     => ( ( accp_P2887432264394892906BT_nat @ vEBT_vebt_delete_rel @ ( produc738532404422230701BT_nat @ X @ Xa2 ) )
       => ( ! [A3: $o,B2: $o] :
              ( ( X
                = ( vEBT_Leaf @ A3 @ B2 ) )
             => ( ( Xa2 = zero_zero_nat )
               => ( ( Y
                    = ( vEBT_Leaf @ $false @ B2 ) )
                 => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_delete_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A3 @ B2 ) @ zero_zero_nat ) ) ) ) )
         => ( ! [A3: $o,B2: $o] :
                ( ( X
                  = ( vEBT_Leaf @ A3 @ B2 ) )
               => ( ( Xa2
                    = ( suc @ zero_zero_nat ) )
                 => ( ( Y
                      = ( vEBT_Leaf @ A3 @ $false ) )
                   => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_delete_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A3 @ B2 ) @ ( suc @ zero_zero_nat ) ) ) ) ) )
           => ( ! [A3: $o,B2: $o] :
                  ( ( X
                    = ( vEBT_Leaf @ A3 @ B2 ) )
                 => ! [N: nat] :
                      ( ( Xa2
                        = ( suc @ ( suc @ N ) ) )
                     => ( ( Y
                          = ( vEBT_Leaf @ A3 @ B2 ) )
                       => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_delete_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A3 @ B2 ) @ ( suc @ ( suc @ N ) ) ) ) ) ) )
             => ( ! [Deg2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
                    ( ( X
                      = ( vEBT_Node @ none_P5556105721700978146at_nat @ Deg2 @ TreeList2 @ Summary2 ) )
                   => ( ( Y
                        = ( vEBT_Node @ none_P5556105721700978146at_nat @ Deg2 @ TreeList2 @ Summary2 ) )
                     => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_delete_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Deg2 @ TreeList2 @ Summary2 ) @ Xa2 ) ) ) )
               => ( ! [Mi2: nat,Ma2: nat,TrLst: list_VEBT_VEBT,Smry: vEBT_VEBT] :
                      ( ( X
                        = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ TrLst @ Smry ) )
                     => ( ( Y
                          = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ TrLst @ Smry ) )
                       => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_delete_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ TrLst @ Smry ) @ Xa2 ) ) ) )
                 => ( ! [Mi2: nat,Ma2: nat,Tr: list_VEBT_VEBT,Sm: vEBT_VEBT] :
                        ( ( X
                          = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ zero_zero_nat ) @ Tr @ Sm ) )
                       => ( ( Y
                            = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ zero_zero_nat ) @ Tr @ Sm ) )
                         => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_delete_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ zero_zero_nat ) @ Tr @ Sm ) @ Xa2 ) ) ) )
                   => ~ ! [Mi2: nat,Ma2: nat,Va2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
                          ( ( X
                            = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary2 ) )
                         => ( ( ( ( ( ord_less_nat @ Xa2 @ Mi2 )
                                  | ( ord_less_nat @ Ma2 @ Xa2 ) )
                               => ( Y
                                  = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary2 ) ) )
                              & ( ~ ( ( ord_less_nat @ Xa2 @ Mi2 )
                                    | ( ord_less_nat @ Ma2 @ Xa2 ) )
                               => ( ( ( ( Xa2 = Mi2 )
                                      & ( Xa2 = Ma2 ) )
                                   => ( Y
                                      = ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary2 ) ) )
                                  & ( ~ ( ( Xa2 = Mi2 )
                                        & ( Xa2 = Ma2 ) )
                                   => ( Y
                                      = ( if_VEBT_VEBT @ ( ord_less_nat @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa2 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
                                        @ ( if_VEBT_VEBT @ ( vEBT_VEBT_minNull @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa2 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( Xa2 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                          @ ( vEBT_Node
                                            @ ( some_P7363390416028606310at_nat
                                              @ ( product_Pair_nat_nat @ ( if_nat @ ( Xa2 = Mi2 ) @ ( if_nat @ ( Xa2 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa2 ) @ Mi2 )
                                                @ ( if_nat
                                                  @ ( ( ( Xa2 = Mi2 )
                                                     => ( ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) )
                                                        = Ma2 ) )
                                                    & ( ( Xa2 != Mi2 )
                                                     => ( Xa2 = Ma2 ) ) )
                                                  @ ( if_nat
                                                    @ ( ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary2 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa2 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                                      = none_nat )
                                                    @ ( if_nat @ ( Xa2 = Mi2 ) @ ( if_nat @ ( Xa2 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa2 ) @ Mi2 )
                                                    @ ( plus_plus_nat @ ( times_times_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary2 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa2 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ ( list_u1324408373059187874T_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa2 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa2 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( Xa2 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ Summary2 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa2 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) )
                                                  @ Ma2 ) ) )
                                            @ ( suc @ ( suc @ Va2 ) )
                                            @ ( list_u1324408373059187874T_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa2 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa2 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( Xa2 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                            @ ( vEBT_vebt_delete @ Summary2 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa2 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                          @ ( vEBT_Node
                                            @ ( some_P7363390416028606310at_nat
                                              @ ( product_Pair_nat_nat @ ( if_nat @ ( Xa2 = Mi2 ) @ ( if_nat @ ( Xa2 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa2 ) @ Mi2 )
                                                @ ( if_nat
                                                  @ ( ( ( Xa2 = Mi2 )
                                                     => ( ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) )
                                                        = Ma2 ) )
                                                    & ( ( Xa2 != Mi2 )
                                                     => ( Xa2 = Ma2 ) ) )
                                                  @ ( plus_plus_nat @ ( times_times_nat @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa2 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ ( list_u1324408373059187874T_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa2 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa2 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( Xa2 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa2 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) )
                                                  @ Ma2 ) ) )
                                            @ ( suc @ ( suc @ Va2 ) )
                                            @ ( list_u1324408373059187874T_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa2 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( Xa2 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( Xa2 = Mi2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList2 @ ( the_nat @ ( vEBT_vebt_mint @ Summary2 ) ) ) ) ) ) @ Xa2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                            @ Summary2 ) )
                                        @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary2 ) ) ) ) ) ) )
                           => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_delete_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary2 ) @ Xa2 ) ) ) ) ) ) ) ) ) ) ) ) ).

% vebt_delete.pelims
thf(fact_3935_unset__bit__0,axiom,
    ! [A: int] :
      ( ( bit_se4203085406695923979it_int @ zero_zero_nat @ A )
      = ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ).

% unset_bit_0
thf(fact_3936_unset__bit__0,axiom,
    ! [A: nat] :
      ( ( bit_se4205575877204974255it_nat @ zero_zero_nat @ A )
      = ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% unset_bit_0
thf(fact_3937_div__mod__decomp,axiom,
    ! [A2: nat,N2: nat] :
      ( A2
      = ( plus_plus_nat @ ( times_times_nat @ ( divide_divide_nat @ A2 @ N2 ) @ N2 ) @ ( modulo_modulo_nat @ A2 @ N2 ) ) ) ).

% div_mod_decomp
thf(fact_3938_verit__eq__simplify_I8_J,axiom,
    ! [X22: num,Y22: num] :
      ( ( ( bit0 @ X22 )
        = ( bit0 @ Y22 ) )
      = ( X22 = Y22 ) ) ).

% verit_eq_simplify(8)
thf(fact_3939_div__pos__pos__trivial,axiom,
    ! [K: int,L2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ K )
     => ( ( ord_less_int @ K @ L2 )
       => ( ( divide_divide_int @ K @ L2 )
          = zero_zero_int ) ) ) ).

% div_pos_pos_trivial
thf(fact_3940_div__neg__neg__trivial,axiom,
    ! [K: int,L2: int] :
      ( ( ord_less_eq_int @ K @ zero_zero_int )
     => ( ( ord_less_int @ L2 @ K )
       => ( ( divide_divide_int @ K @ L2 )
          = zero_zero_int ) ) ) ).

% div_neg_neg_trivial
thf(fact_3941_idiff__0__right,axiom,
    ! [N2: extended_enat] :
      ( ( minus_3235023915231533773d_enat @ N2 @ zero_z5237406670263579293d_enat )
      = N2 ) ).

% idiff_0_right
thf(fact_3942_idiff__0,axiom,
    ! [N2: extended_enat] :
      ( ( minus_3235023915231533773d_enat @ zero_z5237406670263579293d_enat @ N2 )
      = zero_z5237406670263579293d_enat ) ).

% idiff_0
thf(fact_3943_not__real__square__gt__zero,axiom,
    ! [X: real] :
      ( ( ~ ( ord_less_real @ zero_zero_real @ ( times_times_real @ X @ X ) ) )
      = ( X = zero_zero_real ) ) ).

% not_real_square_gt_zero
thf(fact_3944_zmod__numeral__Bit0,axiom,
    ! [V: num,W: num] :
      ( ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit0 @ V ) ) @ ( numeral_numeral_int @ ( bit0 @ W ) ) )
      = ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( modulo_modulo_int @ ( numeral_numeral_int @ V ) @ ( numeral_numeral_int @ W ) ) ) ) ).

% zmod_numeral_Bit0
thf(fact_3945_half__negative__int__iff,axiom,
    ! [K: int] :
      ( ( ord_less_int @ ( divide_divide_int @ K @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ zero_zero_int )
      = ( ord_less_int @ K @ zero_zero_int ) ) ).

% half_negative_int_iff
thf(fact_3946_half__nonnegative__int__iff,axiom,
    ! [K: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( divide_divide_int @ K @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) )
      = ( ord_less_eq_int @ zero_zero_int @ K ) ) ).

% half_nonnegative_int_iff
thf(fact_3947_div__pos__geq,axiom,
    ! [L2: int,K: int] :
      ( ( ord_less_int @ zero_zero_int @ L2 )
     => ( ( ord_less_eq_int @ L2 @ K )
       => ( ( divide_divide_int @ K @ L2 )
          = ( plus_plus_int @ ( divide_divide_int @ ( minus_minus_int @ K @ L2 ) @ L2 ) @ one_one_int ) ) ) ) ).

% div_pos_geq
thf(fact_3948_verit__le__mono__div__int,axiom,
    ! [A2: int,B3: int,N2: int] :
      ( ( ord_less_int @ A2 @ B3 )
     => ( ( ord_less_int @ zero_zero_int @ N2 )
       => ( ord_less_eq_int
          @ ( plus_plus_int @ ( divide_divide_int @ A2 @ N2 )
            @ ( if_int
              @ ( ( modulo_modulo_int @ B3 @ N2 )
                = zero_zero_int )
              @ one_one_int
              @ zero_zero_int ) )
          @ ( divide_divide_int @ B3 @ N2 ) ) ) ) ).

% verit_le_mono_div_int
thf(fact_3949_zmod__zmult2__eq,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ C )
     => ( ( modulo_modulo_int @ A @ ( times_times_int @ B @ C ) )
        = ( plus_plus_int @ ( times_times_int @ B @ ( modulo_modulo_int @ ( divide_divide_int @ A @ B ) @ C ) ) @ ( modulo_modulo_int @ A @ B ) ) ) ) ).

% zmod_zmult2_eq
thf(fact_3950_zdiv__zmult2__eq,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ C )
     => ( ( divide_divide_int @ A @ ( times_times_int @ B @ C ) )
        = ( divide_divide_int @ ( divide_divide_int @ A @ B ) @ C ) ) ) ).

% zdiv_zmult2_eq
thf(fact_3951_nonneg1__imp__zdiv__pos__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ zero_zero_int @ ( divide_divide_int @ A @ B ) )
        = ( ( ord_less_eq_int @ B @ A )
          & ( ord_less_int @ zero_zero_int @ B ) ) ) ) ).

% nonneg1_imp_zdiv_pos_iff
thf(fact_3952_pos__imp__zdiv__nonneg__iff,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ( ord_less_eq_int @ zero_zero_int @ ( divide_divide_int @ A @ B ) )
        = ( ord_less_eq_int @ zero_zero_int @ A ) ) ) ).

% pos_imp_zdiv_nonneg_iff
thf(fact_3953_neg__imp__zdiv__nonneg__iff,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ B @ zero_zero_int )
     => ( ( ord_less_eq_int @ zero_zero_int @ ( divide_divide_int @ A @ B ) )
        = ( ord_less_eq_int @ A @ zero_zero_int ) ) ) ).

% neg_imp_zdiv_nonneg_iff
thf(fact_3954_pos__imp__zdiv__pos__iff,axiom,
    ! [K: int,I2: int] :
      ( ( ord_less_int @ zero_zero_int @ K )
     => ( ( ord_less_int @ zero_zero_int @ ( divide_divide_int @ I2 @ K ) )
        = ( ord_less_eq_int @ K @ I2 ) ) ) ).

% pos_imp_zdiv_pos_iff
thf(fact_3955_div__nonpos__pos__le0,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ zero_zero_int )
     => ( ( ord_less_int @ zero_zero_int @ B )
       => ( ord_less_eq_int @ ( divide_divide_int @ A @ B ) @ zero_zero_int ) ) ) ).

% div_nonpos_pos_le0
thf(fact_3956_div__nonneg__neg__le0,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ B @ zero_zero_int )
       => ( ord_less_eq_int @ ( divide_divide_int @ A @ B ) @ zero_zero_int ) ) ) ).

% div_nonneg_neg_le0
thf(fact_3957_div__positive__int,axiom,
    ! [L2: int,K: int] :
      ( ( ord_less_eq_int @ L2 @ K )
     => ( ( ord_less_int @ zero_zero_int @ L2 )
       => ( ord_less_int @ zero_zero_int @ ( divide_divide_int @ K @ L2 ) ) ) ) ).

% div_positive_int
thf(fact_3958_split__pos__lemma,axiom,
    ! [K: int,P: int > int > $o,N2: int] :
      ( ( ord_less_int @ zero_zero_int @ K )
     => ( ( P @ ( divide_divide_int @ N2 @ K ) @ ( modulo_modulo_int @ N2 @ K ) )
        = ( ! [I5: int,J3: int] :
              ( ( ( ord_less_eq_int @ zero_zero_int @ J3 )
                & ( ord_less_int @ J3 @ K )
                & ( N2
                  = ( plus_plus_int @ ( times_times_int @ K @ I5 ) @ J3 ) ) )
             => ( P @ I5 @ J3 ) ) ) ) ) ).

% split_pos_lemma
thf(fact_3959_split__neg__lemma,axiom,
    ! [K: int,P: int > int > $o,N2: int] :
      ( ( ord_less_int @ K @ zero_zero_int )
     => ( ( P @ ( divide_divide_int @ N2 @ K ) @ ( modulo_modulo_int @ N2 @ K ) )
        = ( ! [I5: int,J3: int] :
              ( ( ( ord_less_int @ K @ J3 )
                & ( ord_less_eq_int @ J3 @ zero_zero_int )
                & ( N2
                  = ( plus_plus_int @ ( times_times_int @ K @ I5 ) @ J3 ) ) )
             => ( P @ I5 @ J3 ) ) ) ) ) ).

% split_neg_lemma
thf(fact_3960_div__int__pos__iff,axiom,
    ! [K: int,L2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( divide_divide_int @ K @ L2 ) )
      = ( ( K = zero_zero_int )
        | ( L2 = zero_zero_int )
        | ( ( ord_less_eq_int @ zero_zero_int @ K )
          & ( ord_less_eq_int @ zero_zero_int @ L2 ) )
        | ( ( ord_less_int @ K @ zero_zero_int )
          & ( ord_less_int @ L2 @ zero_zero_int ) ) ) ) ).

% div_int_pos_iff
thf(fact_3961_zdiv__mono2__neg,axiom,
    ! [A: int,B6: int,B: int] :
      ( ( ord_less_int @ A @ zero_zero_int )
     => ( ( ord_less_int @ zero_zero_int @ B6 )
       => ( ( ord_less_eq_int @ B6 @ B )
         => ( ord_less_eq_int @ ( divide_divide_int @ A @ B6 ) @ ( divide_divide_int @ A @ B ) ) ) ) ) ).

% zdiv_mono2_neg
thf(fact_3962_zdiv__mono1__neg,axiom,
    ! [A: int,A6: int,B: int] :
      ( ( ord_less_eq_int @ A @ A6 )
     => ( ( ord_less_int @ B @ zero_zero_int )
       => ( ord_less_eq_int @ ( divide_divide_int @ A6 @ B ) @ ( divide_divide_int @ A @ B ) ) ) ) ).

% zdiv_mono1_neg
thf(fact_3963_int__div__pos__eq,axiom,
    ! [A: int,B: int,Q2: int,R2: int] :
      ( ( A
        = ( plus_plus_int @ ( times_times_int @ B @ Q2 ) @ R2 ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ R2 )
       => ( ( ord_less_int @ R2 @ B )
         => ( ( divide_divide_int @ A @ B )
            = Q2 ) ) ) ) ).

% int_div_pos_eq
thf(fact_3964_int__div__neg__eq,axiom,
    ! [A: int,B: int,Q2: int,R2: int] :
      ( ( A
        = ( plus_plus_int @ ( times_times_int @ B @ Q2 ) @ R2 ) )
     => ( ( ord_less_eq_int @ R2 @ zero_zero_int )
       => ( ( ord_less_int @ B @ R2 )
         => ( ( divide_divide_int @ A @ B )
            = Q2 ) ) ) ) ).

% int_div_neg_eq
thf(fact_3965_zdiv__eq__0__iff,axiom,
    ! [I2: int,K: int] :
      ( ( ( divide_divide_int @ I2 @ K )
        = zero_zero_int )
      = ( ( K = zero_zero_int )
        | ( ( ord_less_eq_int @ zero_zero_int @ I2 )
          & ( ord_less_int @ I2 @ K ) )
        | ( ( ord_less_eq_int @ I2 @ zero_zero_int )
          & ( ord_less_int @ K @ I2 ) ) ) ) ).

% zdiv_eq_0_iff
thf(fact_3966_zdiv__mono2,axiom,
    ! [A: int,B6: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ zero_zero_int @ B6 )
       => ( ( ord_less_eq_int @ B6 @ B )
         => ( ord_less_eq_int @ ( divide_divide_int @ A @ B ) @ ( divide_divide_int @ A @ B6 ) ) ) ) ) ).

% zdiv_mono2
thf(fact_3967_zdiv__mono1,axiom,
    ! [A: int,A6: int,B: int] :
      ( ( ord_less_eq_int @ A @ A6 )
     => ( ( ord_less_int @ zero_zero_int @ B )
       => ( ord_less_eq_int @ ( divide_divide_int @ A @ B ) @ ( divide_divide_int @ A6 @ B ) ) ) ) ).

% zdiv_mono1
thf(fact_3968_split__zdiv,axiom,
    ! [P: int > $o,N2: int,K: int] :
      ( ( P @ ( divide_divide_int @ N2 @ K ) )
      = ( ( ( K = zero_zero_int )
         => ( P @ zero_zero_int ) )
        & ( ( ord_less_int @ zero_zero_int @ K )
         => ! [I5: int,J3: int] :
              ( ( ( ord_less_eq_int @ zero_zero_int @ J3 )
                & ( ord_less_int @ J3 @ K )
                & ( N2
                  = ( plus_plus_int @ ( times_times_int @ K @ I5 ) @ J3 ) ) )
             => ( P @ I5 ) ) )
        & ( ( ord_less_int @ K @ zero_zero_int )
         => ! [I5: int,J3: int] :
              ( ( ( ord_less_int @ K @ J3 )
                & ( ord_less_eq_int @ J3 @ zero_zero_int )
                & ( N2
                  = ( plus_plus_int @ ( times_times_int @ K @ I5 ) @ J3 ) ) )
             => ( P @ I5 ) ) ) ) ) ).

% split_zdiv
thf(fact_3969_div__mod__decomp__int,axiom,
    ! [A2: int,N2: int] :
      ( A2
      = ( plus_plus_int @ ( times_times_int @ ( divide_divide_int @ A2 @ N2 ) @ N2 ) @ ( modulo_modulo_int @ A2 @ N2 ) ) ) ).

% div_mod_decomp_int
thf(fact_3970_pos__zmod__mult__2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( modulo_modulo_int @ ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) )
        = ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( modulo_modulo_int @ B @ A ) ) ) ) ) ).

% pos_zmod_mult_2
thf(fact_3971_neg__zmod__mult__2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ zero_zero_int )
     => ( ( modulo_modulo_int @ ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) )
        = ( minus_minus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( modulo_modulo_int @ ( plus_plus_int @ B @ one_one_int ) @ A ) ) @ one_one_int ) ) ) ).

% neg_zmod_mult_2
thf(fact_3972_enat__0__less__mult__iff,axiom,
    ! [M: extended_enat,N2: extended_enat] :
      ( ( ord_le72135733267957522d_enat @ zero_z5237406670263579293d_enat @ ( times_7803423173614009249d_enat @ M @ N2 ) )
      = ( ( ord_le72135733267957522d_enat @ zero_z5237406670263579293d_enat @ M )
        & ( ord_le72135733267957522d_enat @ zero_z5237406670263579293d_enat @ N2 ) ) ) ).

% enat_0_less_mult_iff
thf(fact_3973_iadd__is__0,axiom,
    ! [M: extended_enat,N2: extended_enat] :
      ( ( ( plus_p3455044024723400733d_enat @ M @ N2 )
        = zero_z5237406670263579293d_enat )
      = ( ( M = zero_z5237406670263579293d_enat )
        & ( N2 = zero_z5237406670263579293d_enat ) ) ) ).

% iadd_is_0
thf(fact_3974_ile0__eq,axiom,
    ! [N2: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ N2 @ zero_z5237406670263579293d_enat )
      = ( N2 = zero_z5237406670263579293d_enat ) ) ).

% ile0_eq
thf(fact_3975_i0__lb,axiom,
    ! [N2: extended_enat] : ( ord_le2932123472753598470d_enat @ zero_z5237406670263579293d_enat @ N2 ) ).

% i0_lb
thf(fact_3976_ex__nat__less,axiom,
    ! [N2: nat,P: nat > $o] :
      ( ( ? [M6: nat] :
            ( ( ord_less_eq_nat @ M6 @ N2 )
            & ( P @ M6 ) ) )
      = ( ? [X3: nat] :
            ( ( member_nat @ X3 @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N2 ) )
            & ( P @ X3 ) ) ) ) ).

% ex_nat_less
thf(fact_3977_all__nat__less,axiom,
    ! [N2: nat,P: nat > $o] :
      ( ( ! [M6: nat] :
            ( ( ord_less_eq_nat @ M6 @ N2 )
           => ( P @ M6 ) ) )
      = ( ! [X3: nat] :
            ( ( member_nat @ X3 @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N2 ) )
           => ( P @ X3 ) ) ) ) ).

% all_nat_less
thf(fact_3978_not__exp__less__eq__0__int,axiom,
    ! [N2: nat] :
      ~ ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) @ zero_zero_int ) ).

% not_exp_less_eq_0_int
thf(fact_3979_neg__zdiv__mult__2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ zero_zero_int )
     => ( ( divide_divide_int @ ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) )
        = ( divide_divide_int @ ( plus_plus_int @ B @ one_one_int ) @ A ) ) ) ).

% neg_zdiv_mult_2
thf(fact_3980_pos__zdiv__mult__2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( divide_divide_int @ ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) )
        = ( divide_divide_int @ B @ A ) ) ) ).

% pos_zdiv_mult_2
thf(fact_3981_verit__la__disequality,axiom,
    ! [A: rat,B: rat] :
      ( ( A = B )
      | ~ ( ord_less_eq_rat @ A @ B )
      | ~ ( ord_less_eq_rat @ B @ A ) ) ).

% verit_la_disequality
thf(fact_3982_verit__la__disequality,axiom,
    ! [A: num,B: num] :
      ( ( A = B )
      | ~ ( ord_less_eq_num @ A @ B )
      | ~ ( ord_less_eq_num @ B @ A ) ) ).

% verit_la_disequality
thf(fact_3983_verit__la__disequality,axiom,
    ! [A: nat,B: nat] :
      ( ( A = B )
      | ~ ( ord_less_eq_nat @ A @ B )
      | ~ ( ord_less_eq_nat @ B @ A ) ) ).

% verit_la_disequality
thf(fact_3984_verit__la__disequality,axiom,
    ! [A: int,B: int] :
      ( ( A = B )
      | ~ ( ord_less_eq_int @ A @ B )
      | ~ ( ord_less_eq_int @ B @ A ) ) ).

% verit_la_disequality
thf(fact_3985_verit__comp__simplify1_I2_J,axiom,
    ! [A: set_int] : ( ord_less_eq_set_int @ A @ A ) ).

% verit_comp_simplify1(2)
thf(fact_3986_verit__comp__simplify1_I2_J,axiom,
    ! [A: rat] : ( ord_less_eq_rat @ A @ A ) ).

% verit_comp_simplify1(2)
thf(fact_3987_verit__comp__simplify1_I2_J,axiom,
    ! [A: num] : ( ord_less_eq_num @ A @ A ) ).

% verit_comp_simplify1(2)
thf(fact_3988_verit__comp__simplify1_I2_J,axiom,
    ! [A: nat] : ( ord_less_eq_nat @ A @ A ) ).

% verit_comp_simplify1(2)
thf(fact_3989_verit__comp__simplify1_I2_J,axiom,
    ! [A: int] : ( ord_less_eq_int @ A @ A ) ).

% verit_comp_simplify1(2)
thf(fact_3990_verit__comp__simplify1_I1_J,axiom,
    ! [A: real] :
      ~ ( ord_less_real @ A @ A ) ).

% verit_comp_simplify1(1)
thf(fact_3991_verit__comp__simplify1_I1_J,axiom,
    ! [A: rat] :
      ~ ( ord_less_rat @ A @ A ) ).

% verit_comp_simplify1(1)
thf(fact_3992_verit__comp__simplify1_I1_J,axiom,
    ! [A: num] :
      ~ ( ord_less_num @ A @ A ) ).

% verit_comp_simplify1(1)
thf(fact_3993_verit__comp__simplify1_I1_J,axiom,
    ! [A: nat] :
      ~ ( ord_less_nat @ A @ A ) ).

% verit_comp_simplify1(1)
thf(fact_3994_verit__comp__simplify1_I1_J,axiom,
    ! [A: int] :
      ~ ( ord_less_int @ A @ A ) ).

% verit_comp_simplify1(1)
thf(fact_3995_realpow__pos__nth2,axiom,
    ! [A: real,N2: nat] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ? [R3: real] :
          ( ( ord_less_real @ zero_zero_real @ R3 )
          & ( ( power_power_real @ R3 @ ( suc @ N2 ) )
            = A ) ) ) ).

% realpow_pos_nth2
thf(fact_3996_real__arch__pow__inv,axiom,
    ! [Y: real,X: real] :
      ( ( ord_less_real @ zero_zero_real @ Y )
     => ( ( ord_less_real @ X @ one_one_real )
       => ? [N: nat] : ( ord_less_real @ ( power_power_real @ X @ N ) @ Y ) ) ) ).

% real_arch_pow_inv
thf(fact_3997_int__power__div__base,axiom,
    ! [M: nat,K: int] :
      ( ( ord_less_nat @ zero_zero_nat @ M )
     => ( ( ord_less_int @ zero_zero_int @ K )
       => ( ( divide_divide_int @ ( power_power_int @ K @ M ) @ K )
          = ( power_power_int @ K @ ( minus_minus_nat @ M @ ( suc @ zero_zero_nat ) ) ) ) ) ) ).

% int_power_div_base
thf(fact_3998_realpow__pos__nth__unique,axiom,
    ! [N2: nat,A: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( ord_less_real @ zero_zero_real @ A )
       => ? [X5: real] :
            ( ( ord_less_real @ zero_zero_real @ X5 )
            & ( ( power_power_real @ X5 @ N2 )
              = A )
            & ! [Y2: real] :
                ( ( ( ord_less_real @ zero_zero_real @ Y2 )
                  & ( ( power_power_real @ Y2 @ N2 )
                    = A ) )
               => ( Y2 = X5 ) ) ) ) ) ).

% realpow_pos_nth_unique
thf(fact_3999_realpow__pos__nth,axiom,
    ! [N2: nat,A: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( ord_less_real @ zero_zero_real @ A )
       => ? [R3: real] :
            ( ( ord_less_real @ zero_zero_real @ R3 )
            & ( ( power_power_real @ R3 @ N2 )
              = A ) ) ) ) ).

% realpow_pos_nth
thf(fact_4000_verit__comp__simplify1_I3_J,axiom,
    ! [B6: real,A6: real] :
      ( ( ~ ( ord_less_eq_real @ B6 @ A6 ) )
      = ( ord_less_real @ A6 @ B6 ) ) ).

% verit_comp_simplify1(3)
thf(fact_4001_verit__comp__simplify1_I3_J,axiom,
    ! [B6: rat,A6: rat] :
      ( ( ~ ( ord_less_eq_rat @ B6 @ A6 ) )
      = ( ord_less_rat @ A6 @ B6 ) ) ).

% verit_comp_simplify1(3)
thf(fact_4002_verit__comp__simplify1_I3_J,axiom,
    ! [B6: num,A6: num] :
      ( ( ~ ( ord_less_eq_num @ B6 @ A6 ) )
      = ( ord_less_num @ A6 @ B6 ) ) ).

% verit_comp_simplify1(3)
thf(fact_4003_verit__comp__simplify1_I3_J,axiom,
    ! [B6: nat,A6: nat] :
      ( ( ~ ( ord_less_eq_nat @ B6 @ A6 ) )
      = ( ord_less_nat @ A6 @ B6 ) ) ).

% verit_comp_simplify1(3)
thf(fact_4004_verit__comp__simplify1_I3_J,axiom,
    ! [B6: int,A6: int] :
      ( ( ~ ( ord_less_eq_int @ B6 @ A6 ) )
      = ( ord_less_int @ A6 @ B6 ) ) ).

% verit_comp_simplify1(3)
thf(fact_4005_verit__sum__simplify,axiom,
    ! [A: complex] :
      ( ( plus_plus_complex @ A @ zero_zero_complex )
      = A ) ).

% verit_sum_simplify
thf(fact_4006_verit__sum__simplify,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ A @ zero_zero_real )
      = A ) ).

% verit_sum_simplify
thf(fact_4007_verit__sum__simplify,axiom,
    ! [A: rat] :
      ( ( plus_plus_rat @ A @ zero_zero_rat )
      = A ) ).

% verit_sum_simplify
thf(fact_4008_verit__sum__simplify,axiom,
    ! [A: nat] :
      ( ( plus_plus_nat @ A @ zero_zero_nat )
      = A ) ).

% verit_sum_simplify
thf(fact_4009_verit__sum__simplify,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ A @ zero_zero_int )
      = A ) ).

% verit_sum_simplify
thf(fact_4010_verit__eq__simplify_I10_J,axiom,
    ! [X22: num] :
      ( one
     != ( bit0 @ X22 ) ) ).

% verit_eq_simplify(10)
thf(fact_4011_max__def__raw,axiom,
    ( ord_ma741700101516333627d_enat
    = ( ^ [A4: extended_enat,B4: extended_enat] : ( if_Extended_enat @ ( ord_le2932123472753598470d_enat @ A4 @ B4 ) @ B4 @ A4 ) ) ) ).

% max_def_raw
thf(fact_4012_max__def__raw,axiom,
    ( ord_max_Code_integer
    = ( ^ [A4: code_integer,B4: code_integer] : ( if_Code_integer @ ( ord_le3102999989581377725nteger @ A4 @ B4 ) @ B4 @ A4 ) ) ) ).

% max_def_raw
thf(fact_4013_max__def__raw,axiom,
    ( ord_max_set_int
    = ( ^ [A4: set_int,B4: set_int] : ( if_set_int @ ( ord_less_eq_set_int @ A4 @ B4 ) @ B4 @ A4 ) ) ) ).

% max_def_raw
thf(fact_4014_max__def__raw,axiom,
    ( ord_max_rat
    = ( ^ [A4: rat,B4: rat] : ( if_rat @ ( ord_less_eq_rat @ A4 @ B4 ) @ B4 @ A4 ) ) ) ).

% max_def_raw
thf(fact_4015_max__def__raw,axiom,
    ( ord_max_num
    = ( ^ [A4: num,B4: num] : ( if_num @ ( ord_less_eq_num @ A4 @ B4 ) @ B4 @ A4 ) ) ) ).

% max_def_raw
thf(fact_4016_max__def__raw,axiom,
    ( ord_max_nat
    = ( ^ [A4: nat,B4: nat] : ( if_nat @ ( ord_less_eq_nat @ A4 @ B4 ) @ B4 @ A4 ) ) ) ).

% max_def_raw
thf(fact_4017_max__def__raw,axiom,
    ( ord_max_int
    = ( ^ [A4: int,B4: int] : ( if_int @ ( ord_less_eq_int @ A4 @ B4 ) @ B4 @ A4 ) ) ) ).

% max_def_raw
thf(fact_4018_div__less__mono,axiom,
    ! [A2: nat,B3: nat,N2: nat] :
      ( ( ord_less_nat @ A2 @ B3 )
     => ( ( ord_less_nat @ zero_zero_nat @ N2 )
       => ( ( ( modulo_modulo_nat @ A2 @ N2 )
            = zero_zero_nat )
         => ( ( ( modulo_modulo_nat @ B3 @ N2 )
              = zero_zero_nat )
           => ( ord_less_nat @ ( divide_divide_nat @ A2 @ N2 ) @ ( divide_divide_nat @ B3 @ N2 ) ) ) ) ) ) ).

% div_less_mono
thf(fact_4019_set__bit__Suc,axiom,
    ! [N2: nat,A: code_integer] :
      ( ( bit_se2793503036327961859nteger @ ( suc @ N2 ) @ A )
      = ( plus_p5714425477246183910nteger @ ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_se2793503036327961859nteger @ N2 @ ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ) ).

% set_bit_Suc
thf(fact_4020_set__bit__Suc,axiom,
    ! [N2: nat,A: int] :
      ( ( bit_se7879613467334960850it_int @ ( suc @ N2 ) @ A )
      = ( plus_plus_int @ ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se7879613467334960850it_int @ N2 @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ).

% set_bit_Suc
thf(fact_4021_set__bit__Suc,axiom,
    ! [N2: nat,A: nat] :
      ( ( bit_se7882103937844011126it_nat @ ( suc @ N2 ) @ A )
      = ( plus_plus_nat @ ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se7882103937844011126it_nat @ N2 @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% set_bit_Suc
thf(fact_4022_unset__bit__Suc,axiom,
    ! [N2: nat,A: code_integer] :
      ( ( bit_se8260200283734997820nteger @ ( suc @ N2 ) @ A )
      = ( plus_p5714425477246183910nteger @ ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_se8260200283734997820nteger @ N2 @ ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ) ).

% unset_bit_Suc
thf(fact_4023_unset__bit__Suc,axiom,
    ! [N2: nat,A: int] :
      ( ( bit_se4203085406695923979it_int @ ( suc @ N2 ) @ A )
      = ( plus_plus_int @ ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se4203085406695923979it_int @ N2 @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ).

% unset_bit_Suc
thf(fact_4024_unset__bit__Suc,axiom,
    ! [N2: nat,A: nat] :
      ( ( bit_se4205575877204974255it_nat @ ( suc @ N2 ) @ A )
      = ( plus_plus_nat @ ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se4205575877204974255it_nat @ N2 @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% unset_bit_Suc
thf(fact_4025_vebt__insert_Opelims,axiom,
    ! [X: vEBT_VEBT,Xa2: nat,Y: vEBT_VEBT] :
      ( ( ( vEBT_vebt_insert @ X @ Xa2 )
        = Y )
     => ( ( accp_P2887432264394892906BT_nat @ vEBT_vebt_insert_rel @ ( produc738532404422230701BT_nat @ X @ Xa2 ) )
       => ( ! [A3: $o,B2: $o] :
              ( ( X
                = ( vEBT_Leaf @ A3 @ B2 ) )
             => ( ( ( ( Xa2 = zero_zero_nat )
                   => ( Y
                      = ( vEBT_Leaf @ $true @ B2 ) ) )
                  & ( ( Xa2 != zero_zero_nat )
                   => ( ( ( Xa2 = one_one_nat )
                       => ( Y
                          = ( vEBT_Leaf @ A3 @ $true ) ) )
                      & ( ( Xa2 != one_one_nat )
                       => ( Y
                          = ( vEBT_Leaf @ A3 @ B2 ) ) ) ) ) )
               => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_insert_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A3 @ B2 ) @ Xa2 ) ) ) )
         => ( ! [Info2: option4927543243414619207at_nat,Ts: list_VEBT_VEBT,S: vEBT_VEBT] :
                ( ( X
                  = ( vEBT_Node @ Info2 @ zero_zero_nat @ Ts @ S ) )
               => ( ( Y
                    = ( vEBT_Node @ Info2 @ zero_zero_nat @ Ts @ S ) )
                 => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_insert_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ Info2 @ zero_zero_nat @ Ts @ S ) @ Xa2 ) ) ) )
           => ( ! [Info2: option4927543243414619207at_nat,Ts: list_VEBT_VEBT,S: vEBT_VEBT] :
                  ( ( X
                    = ( vEBT_Node @ Info2 @ ( suc @ zero_zero_nat ) @ Ts @ S ) )
                 => ( ( Y
                      = ( vEBT_Node @ Info2 @ ( suc @ zero_zero_nat ) @ Ts @ S ) )
                   => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_insert_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ Info2 @ ( suc @ zero_zero_nat ) @ Ts @ S ) @ Xa2 ) ) ) )
             => ( ! [V2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
                    ( ( X
                      = ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ V2 ) ) @ TreeList2 @ Summary2 ) )
                   => ( ( Y
                        = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Xa2 @ Xa2 ) ) @ ( suc @ ( suc @ V2 ) ) @ TreeList2 @ Summary2 ) )
                     => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_insert_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ V2 ) ) @ TreeList2 @ Summary2 ) @ Xa2 ) ) ) )
               => ~ ! [Mi2: nat,Ma2: nat,Va2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
                      ( ( X
                        = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary2 ) )
                     => ( ( Y
                          = ( if_VEBT_VEBT
                            @ ( ( ord_less_nat @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa2 @ Mi2 ) @ Mi2 @ Xa2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
                              & ~ ( ( Xa2 = Mi2 )
                                  | ( Xa2 = Ma2 ) ) )
                            @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ ( if_nat @ ( ord_less_nat @ Xa2 @ Mi2 ) @ Xa2 @ Mi2 ) @ ( ord_max_nat @ ( if_nat @ ( ord_less_nat @ Xa2 @ Mi2 ) @ Mi2 @ Xa2 ) @ Ma2 ) ) ) @ ( suc @ ( suc @ Va2 ) ) @ ( list_u1324408373059187874T_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa2 @ Mi2 ) @ Mi2 @ Xa2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_insert @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa2 @ Mi2 ) @ Mi2 @ Xa2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( ord_less_nat @ Xa2 @ Mi2 ) @ Mi2 @ Xa2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( if_VEBT_VEBT @ ( vEBT_VEBT_minNull @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa2 @ Mi2 ) @ Mi2 @ Xa2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_insert @ Summary2 @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa2 @ Mi2 ) @ Mi2 @ Xa2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ Summary2 ) )
                            @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary2 ) ) )
                       => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_insert_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary2 ) @ Xa2 ) ) ) ) ) ) ) ) ) ) ).

% vebt_insert.pelims
thf(fact_4026_vebt__member_Opelims_I3_J,axiom,
    ! [X: vEBT_VEBT,Xa2: nat] :
      ( ~ ( vEBT_vebt_member @ X @ Xa2 )
     => ( ( accp_P2887432264394892906BT_nat @ vEBT_vebt_member_rel @ ( produc738532404422230701BT_nat @ X @ Xa2 ) )
       => ( ! [A3: $o,B2: $o] :
              ( ( X
                = ( vEBT_Leaf @ A3 @ B2 ) )
             => ( ( accp_P2887432264394892906BT_nat @ vEBT_vebt_member_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A3 @ B2 ) @ Xa2 ) )
               => ( ( ( Xa2 = zero_zero_nat )
                   => A3 )
                  & ( ( Xa2 != zero_zero_nat )
                   => ( ( ( Xa2 = one_one_nat )
                       => B2 )
                      & ( Xa2 = one_one_nat ) ) ) ) ) )
         => ( ! [Uu2: nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT] :
                ( ( X
                  = ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu2 @ Uv2 @ Uw2 ) )
               => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_member_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu2 @ Uv2 @ Uw2 ) @ Xa2 ) ) )
           => ( ! [V2: product_prod_nat_nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT] :
                  ( ( X
                    = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ zero_zero_nat @ Uy2 @ Uz2 ) )
                 => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_member_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ zero_zero_nat @ Uy2 @ Uz2 ) @ Xa2 ) ) )
             => ( ! [V2: product_prod_nat_nat,Vb2: list_VEBT_VEBT,Vc2: vEBT_VEBT] :
                    ( ( X
                      = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ ( suc @ zero_zero_nat ) @ Vb2 @ Vc2 ) )
                   => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_member_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ ( suc @ zero_zero_nat ) @ Vb2 @ Vc2 ) @ Xa2 ) ) )
               => ~ ! [Mi2: nat,Ma2: nat,Va2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
                      ( ( X
                        = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary2 ) )
                     => ( ( accp_P2887432264394892906BT_nat @ vEBT_vebt_member_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary2 ) @ Xa2 ) )
                       => ( ( Xa2 != Mi2 )
                         => ( ( Xa2 != Ma2 )
                           => ( ~ ( ord_less_nat @ Xa2 @ Mi2 )
                              & ( ~ ( ord_less_nat @ Xa2 @ Mi2 )
                               => ( ~ ( ord_less_nat @ Ma2 @ Xa2 )
                                  & ( ~ ( ord_less_nat @ Ma2 @ Xa2 )
                                   => ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
                                       => ( vEBT_vebt_member @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                      & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).

% vebt_member.pelims(3)
thf(fact_4027_vebt__member_Opelims_I1_J,axiom,
    ! [X: vEBT_VEBT,Xa2: nat,Y: $o] :
      ( ( ( vEBT_vebt_member @ X @ Xa2 )
        = Y )
     => ( ( accp_P2887432264394892906BT_nat @ vEBT_vebt_member_rel @ ( produc738532404422230701BT_nat @ X @ Xa2 ) )
       => ( ! [A3: $o,B2: $o] :
              ( ( X
                = ( vEBT_Leaf @ A3 @ B2 ) )
             => ( ( Y
                  = ( ( ( Xa2 = zero_zero_nat )
                     => A3 )
                    & ( ( Xa2 != zero_zero_nat )
                     => ( ( ( Xa2 = one_one_nat )
                         => B2 )
                        & ( Xa2 = one_one_nat ) ) ) ) )
               => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_member_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A3 @ B2 ) @ Xa2 ) ) ) )
         => ( ! [Uu2: nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT] :
                ( ( X
                  = ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu2 @ Uv2 @ Uw2 ) )
               => ( ~ Y
                 => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_member_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu2 @ Uv2 @ Uw2 ) @ Xa2 ) ) ) )
           => ( ! [V2: product_prod_nat_nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT] :
                  ( ( X
                    = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ zero_zero_nat @ Uy2 @ Uz2 ) )
                 => ( ~ Y
                   => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_member_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ zero_zero_nat @ Uy2 @ Uz2 ) @ Xa2 ) ) ) )
             => ( ! [V2: product_prod_nat_nat,Vb2: list_VEBT_VEBT,Vc2: vEBT_VEBT] :
                    ( ( X
                      = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ ( suc @ zero_zero_nat ) @ Vb2 @ Vc2 ) )
                   => ( ~ Y
                     => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_member_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ ( suc @ zero_zero_nat ) @ Vb2 @ Vc2 ) @ Xa2 ) ) ) )
               => ~ ! [Mi2: nat,Ma2: nat,Va2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
                      ( ( X
                        = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary2 ) )
                     => ( ( Y
                          = ( ( Xa2 != Mi2 )
                           => ( ( Xa2 != Ma2 )
                             => ( ~ ( ord_less_nat @ Xa2 @ Mi2 )
                                & ( ~ ( ord_less_nat @ Xa2 @ Mi2 )
                                 => ( ~ ( ord_less_nat @ Ma2 @ Xa2 )
                                    & ( ~ ( ord_less_nat @ Ma2 @ Xa2 )
                                     => ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
                                         => ( vEBT_vebt_member @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                        & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) ) ) ) ) ) )
                       => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_member_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary2 ) @ Xa2 ) ) ) ) ) ) ) ) ) ) ).

% vebt_member.pelims(1)
thf(fact_4028_VEBT__internal_Onaive__member_Opelims_I3_J,axiom,
    ! [X: vEBT_VEBT,Xa2: nat] :
      ( ~ ( vEBT_V5719532721284313246member @ X @ Xa2 )
     => ( ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ X @ Xa2 ) )
       => ( ! [A3: $o,B2: $o] :
              ( ( X
                = ( vEBT_Leaf @ A3 @ B2 ) )
             => ( ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A3 @ B2 ) @ Xa2 ) )
               => ( ( ( Xa2 = zero_zero_nat )
                   => A3 )
                  & ( ( Xa2 != zero_zero_nat )
                   => ( ( ( Xa2 = one_one_nat )
                       => B2 )
                      & ( Xa2 = one_one_nat ) ) ) ) ) )
         => ( ! [Uu2: option4927543243414619207at_nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT] :
                ( ( X
                  = ( vEBT_Node @ Uu2 @ zero_zero_nat @ Uv2 @ Uw2 ) )
               => ~ ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ Uu2 @ zero_zero_nat @ Uv2 @ Uw2 ) @ Xa2 ) ) )
           => ~ ! [Uy2: option4927543243414619207at_nat,V2: nat,TreeList2: list_VEBT_VEBT,S: vEBT_VEBT] :
                  ( ( X
                    = ( vEBT_Node @ Uy2 @ ( suc @ V2 ) @ TreeList2 @ S ) )
                 => ( ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ Uy2 @ ( suc @ V2 ) @ TreeList2 @ S ) @ Xa2 ) )
                   => ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
                       => ( vEBT_V5719532721284313246member @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                      & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) ) ) ) ) ) ).

% VEBT_internal.naive_member.pelims(3)
thf(fact_4029_VEBT__internal_Onaive__member_Opelims_I2_J,axiom,
    ! [X: vEBT_VEBT,Xa2: nat] :
      ( ( vEBT_V5719532721284313246member @ X @ Xa2 )
     => ( ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ X @ Xa2 ) )
       => ( ! [A3: $o,B2: $o] :
              ( ( X
                = ( vEBT_Leaf @ A3 @ B2 ) )
             => ( ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A3 @ B2 ) @ Xa2 ) )
               => ~ ( ( ( Xa2 = zero_zero_nat )
                     => A3 )
                    & ( ( Xa2 != zero_zero_nat )
                     => ( ( ( Xa2 = one_one_nat )
                         => B2 )
                        & ( Xa2 = one_one_nat ) ) ) ) ) )
         => ~ ! [Uy2: option4927543243414619207at_nat,V2: nat,TreeList2: list_VEBT_VEBT,S: vEBT_VEBT] :
                ( ( X
                  = ( vEBT_Node @ Uy2 @ ( suc @ V2 ) @ TreeList2 @ S ) )
               => ( ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ Uy2 @ ( suc @ V2 ) @ TreeList2 @ S ) @ Xa2 ) )
                 => ~ ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
                       => ( vEBT_V5719532721284313246member @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                      & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) ) ) ) ) ).

% VEBT_internal.naive_member.pelims(2)
thf(fact_4030_VEBT__internal_Onaive__member_Opelims_I1_J,axiom,
    ! [X: vEBT_VEBT,Xa2: nat,Y: $o] :
      ( ( ( vEBT_V5719532721284313246member @ X @ Xa2 )
        = Y )
     => ( ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ X @ Xa2 ) )
       => ( ! [A3: $o,B2: $o] :
              ( ( X
                = ( vEBT_Leaf @ A3 @ B2 ) )
             => ( ( Y
                  = ( ( ( Xa2 = zero_zero_nat )
                     => A3 )
                    & ( ( Xa2 != zero_zero_nat )
                     => ( ( ( Xa2 = one_one_nat )
                         => B2 )
                        & ( Xa2 = one_one_nat ) ) ) ) )
               => ~ ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A3 @ B2 ) @ Xa2 ) ) ) )
         => ( ! [Uu2: option4927543243414619207at_nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT] :
                ( ( X
                  = ( vEBT_Node @ Uu2 @ zero_zero_nat @ Uv2 @ Uw2 ) )
               => ( ~ Y
                 => ~ ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ Uu2 @ zero_zero_nat @ Uv2 @ Uw2 ) @ Xa2 ) ) ) )
           => ~ ! [Uy2: option4927543243414619207at_nat,V2: nat,TreeList2: list_VEBT_VEBT,S: vEBT_VEBT] :
                  ( ( X
                    = ( vEBT_Node @ Uy2 @ ( suc @ V2 ) @ TreeList2 @ S ) )
                 => ( ( Y
                      = ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
                         => ( vEBT_V5719532721284313246member @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                        & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) )
                   => ~ ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ Uy2 @ ( suc @ V2 ) @ TreeList2 @ S ) @ Xa2 ) ) ) ) ) ) ) ) ).

% VEBT_internal.naive_member.pelims(1)
thf(fact_4031_vebt__member_Opelims_I2_J,axiom,
    ! [X: vEBT_VEBT,Xa2: nat] :
      ( ( vEBT_vebt_member @ X @ Xa2 )
     => ( ( accp_P2887432264394892906BT_nat @ vEBT_vebt_member_rel @ ( produc738532404422230701BT_nat @ X @ Xa2 ) )
       => ( ! [A3: $o,B2: $o] :
              ( ( X
                = ( vEBT_Leaf @ A3 @ B2 ) )
             => ( ( accp_P2887432264394892906BT_nat @ vEBT_vebt_member_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A3 @ B2 ) @ Xa2 ) )
               => ~ ( ( ( Xa2 = zero_zero_nat )
                     => A3 )
                    & ( ( Xa2 != zero_zero_nat )
                     => ( ( ( Xa2 = one_one_nat )
                         => B2 )
                        & ( Xa2 = one_one_nat ) ) ) ) ) )
         => ~ ! [Mi2: nat,Ma2: nat,Va2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
                ( ( X
                  = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary2 ) )
               => ( ( accp_P2887432264394892906BT_nat @ vEBT_vebt_member_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va2 ) ) @ TreeList2 @ Summary2 ) @ Xa2 ) )
                 => ~ ( ( Xa2 != Mi2 )
                     => ( ( Xa2 != Ma2 )
                       => ( ~ ( ord_less_nat @ Xa2 @ Mi2 )
                          & ( ~ ( ord_less_nat @ Xa2 @ Mi2 )
                           => ( ~ ( ord_less_nat @ Ma2 @ Xa2 )
                              & ( ~ ( ord_less_nat @ Ma2 @ Xa2 )
                               => ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
                                   => ( vEBT_vebt_member @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                  & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).

% vebt_member.pelims(2)
thf(fact_4032_VEBT__internal_Omembermima_Opelims_I3_J,axiom,
    ! [X: vEBT_VEBT,Xa2: nat] :
      ( ~ ( vEBT_VEBT_membermima @ X @ Xa2 )
     => ( ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ X @ Xa2 ) )
       => ( ! [Uu2: $o,Uv2: $o] :
              ( ( X
                = ( vEBT_Leaf @ Uu2 @ Uv2 ) )
             => ~ ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uu2 @ Uv2 ) @ Xa2 ) ) )
         => ( ! [Ux2: list_VEBT_VEBT,Uy2: vEBT_VEBT] :
                ( ( X
                  = ( vEBT_Node @ none_P5556105721700978146at_nat @ zero_zero_nat @ Ux2 @ Uy2 ) )
               => ~ ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ zero_zero_nat @ Ux2 @ Uy2 ) @ Xa2 ) ) )
           => ( ! [Mi2: nat,Ma2: nat,Va3: list_VEBT_VEBT,Vb2: vEBT_VEBT] :
                  ( ( X
                    = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ Va3 @ Vb2 ) )
                 => ( ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ Va3 @ Vb2 ) @ Xa2 ) )
                   => ( ( Xa2 = Mi2 )
                      | ( Xa2 = Ma2 ) ) ) )
             => ( ! [Mi2: nat,Ma2: nat,V2: nat,TreeList2: list_VEBT_VEBT,Vc2: vEBT_VEBT] :
                    ( ( X
                      = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ V2 ) @ TreeList2 @ Vc2 ) )
                   => ( ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ V2 ) @ TreeList2 @ Vc2 ) @ Xa2 ) )
                     => ( ( Xa2 = Mi2 )
                        | ( Xa2 = Ma2 )
                        | ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
                           => ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                          & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) ) )
               => ~ ! [V2: nat,TreeList2: list_VEBT_VEBT,Vd2: vEBT_VEBT] :
                      ( ( X
                        = ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V2 ) @ TreeList2 @ Vd2 ) )
                     => ( ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V2 ) @ TreeList2 @ Vd2 ) @ Xa2 ) )
                       => ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
                           => ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                          & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) ) ) ) ) ) ) ) ).

% VEBT_internal.membermima.pelims(3)
thf(fact_4033_max__enat__simps_I2_J,axiom,
    ! [Q2: extended_enat] :
      ( ( ord_ma741700101516333627d_enat @ Q2 @ zero_z5237406670263579293d_enat )
      = Q2 ) ).

% max_enat_simps(2)
thf(fact_4034_max__enat__simps_I3_J,axiom,
    ! [Q2: extended_enat] :
      ( ( ord_ma741700101516333627d_enat @ zero_z5237406670263579293d_enat @ Q2 )
      = Q2 ) ).

% max_enat_simps(3)
thf(fact_4035_set__bit__nonnegative__int__iff,axiom,
    ! [N2: nat,K: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( bit_se7879613467334960850it_int @ N2 @ K ) )
      = ( ord_less_eq_int @ zero_zero_int @ K ) ) ).

% set_bit_nonnegative_int_iff
thf(fact_4036_unset__bit__nonnegative__int__iff,axiom,
    ! [N2: nat,K: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( bit_se4203085406695923979it_int @ N2 @ K ) )
      = ( ord_less_eq_int @ zero_zero_int @ K ) ) ).

% unset_bit_nonnegative_int_iff
thf(fact_4037_unset__bit__negative__int__iff,axiom,
    ! [N2: nat,K: int] :
      ( ( ord_less_int @ ( bit_se4203085406695923979it_int @ N2 @ K ) @ zero_zero_int )
      = ( ord_less_int @ K @ zero_zero_int ) ) ).

% unset_bit_negative_int_iff
thf(fact_4038_set__bit__negative__int__iff,axiom,
    ! [N2: nat,K: int] :
      ( ( ord_less_int @ ( bit_se7879613467334960850it_int @ N2 @ K ) @ zero_zero_int )
      = ( ord_less_int @ K @ zero_zero_int ) ) ).

% set_bit_negative_int_iff
thf(fact_4039_zle__add1__eq__le,axiom,
    ! [W: int,Z: int] :
      ( ( ord_less_int @ W @ ( plus_plus_int @ Z @ one_one_int ) )
      = ( ord_less_eq_int @ W @ Z ) ) ).

% zle_add1_eq_le
thf(fact_4040_zle__diff1__eq,axiom,
    ! [W: int,Z: int] :
      ( ( ord_less_eq_int @ W @ ( minus_minus_int @ Z @ one_one_int ) )
      = ( ord_less_int @ W @ Z ) ) ).

% zle_diff1_eq
thf(fact_4041_mod__neg__neg__trivial,axiom,
    ! [K: int,L2: int] :
      ( ( ord_less_eq_int @ K @ zero_zero_int )
     => ( ( ord_less_int @ L2 @ K )
       => ( ( modulo_modulo_int @ K @ L2 )
          = K ) ) ) ).

% mod_neg_neg_trivial
thf(fact_4042_mod__pos__pos__trivial,axiom,
    ! [K: int,L2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ K )
     => ( ( ord_less_int @ K @ L2 )
       => ( ( modulo_modulo_int @ K @ L2 )
          = K ) ) ) ).

% mod_pos_pos_trivial
thf(fact_4043_int__less__induct,axiom,
    ! [I2: int,K: int,P: int > $o] :
      ( ( ord_less_int @ I2 @ K )
     => ( ( P @ ( minus_minus_int @ K @ one_one_int ) )
       => ( ! [I3: int] :
              ( ( ord_less_int @ I3 @ K )
             => ( ( P @ I3 )
               => ( P @ ( minus_minus_int @ I3 @ one_one_int ) ) ) )
         => ( P @ I2 ) ) ) ) ).

% int_less_induct
thf(fact_4044_minus__int__code_I1_J,axiom,
    ! [K: int] :
      ( ( minus_minus_int @ K @ zero_zero_int )
      = K ) ).

% minus_int_code(1)
thf(fact_4045_mod__pos__geq,axiom,
    ! [L2: int,K: int] :
      ( ( ord_less_int @ zero_zero_int @ L2 )
     => ( ( ord_less_eq_int @ L2 @ K )
       => ( ( modulo_modulo_int @ K @ L2 )
          = ( modulo_modulo_int @ ( minus_minus_int @ K @ L2 ) @ L2 ) ) ) ) ).

% mod_pos_geq
thf(fact_4046_neg__mod__bound,axiom,
    ! [L2: int,K: int] :
      ( ( ord_less_int @ L2 @ zero_zero_int )
     => ( ord_less_int @ L2 @ ( modulo_modulo_int @ K @ L2 ) ) ) ).

% neg_mod_bound
thf(fact_4047_Euclidean__Division_Opos__mod__bound,axiom,
    ! [L2: int,K: int] :
      ( ( ord_less_int @ zero_zero_int @ L2 )
     => ( ord_less_int @ ( modulo_modulo_int @ K @ L2 ) @ L2 ) ) ).

% Euclidean_Division.pos_mod_bound
thf(fact_4048_zmult__zless__mono2,axiom,
    ! [I2: int,J: int,K: int] :
      ( ( ord_less_int @ I2 @ J )
     => ( ( ord_less_int @ zero_zero_int @ K )
       => ( ord_less_int @ ( times_times_int @ K @ I2 ) @ ( times_times_int @ K @ J ) ) ) ) ).

% zmult_zless_mono2
thf(fact_4049_less__eq__int__code_I1_J,axiom,
    ord_less_eq_int @ zero_zero_int @ zero_zero_int ).

% less_eq_int_code(1)
thf(fact_4050_split__zmod,axiom,
    ! [P: int > $o,N2: int,K: int] :
      ( ( P @ ( modulo_modulo_int @ N2 @ K ) )
      = ( ( ( K = zero_zero_int )
         => ( P @ N2 ) )
        & ( ( ord_less_int @ zero_zero_int @ K )
         => ! [I5: int,J3: int] :
              ( ( ( ord_less_eq_int @ zero_zero_int @ J3 )
                & ( ord_less_int @ J3 @ K )
                & ( N2
                  = ( plus_plus_int @ ( times_times_int @ K @ I5 ) @ J3 ) ) )
             => ( P @ J3 ) ) )
        & ( ( ord_less_int @ K @ zero_zero_int )
         => ! [I5: int,J3: int] :
              ( ( ( ord_less_int @ K @ J3 )
                & ( ord_less_eq_int @ J3 @ zero_zero_int )
                & ( N2
                  = ( plus_plus_int @ ( times_times_int @ K @ I5 ) @ J3 ) ) )
             => ( P @ J3 ) ) ) ) ) ).

% split_zmod
thf(fact_4051_q__pos__lemma,axiom,
    ! [B6: int,Q5: int,R4: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( plus_plus_int @ ( times_times_int @ B6 @ Q5 ) @ R4 ) )
     => ( ( ord_less_int @ R4 @ B6 )
       => ( ( ord_less_int @ zero_zero_int @ B6 )
         => ( ord_less_eq_int @ zero_zero_int @ Q5 ) ) ) ) ).

% q_pos_lemma
thf(fact_4052_neg__mod__conj,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ B @ zero_zero_int )
     => ( ( ord_less_eq_int @ ( modulo_modulo_int @ A @ B ) @ zero_zero_int )
        & ( ord_less_int @ B @ ( modulo_modulo_int @ A @ B ) ) ) ) ).

% neg_mod_conj
thf(fact_4053_pos__mod__conj,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ( ord_less_eq_int @ zero_zero_int @ ( modulo_modulo_int @ A @ B ) )
        & ( ord_less_int @ ( modulo_modulo_int @ A @ B ) @ B ) ) ) ).

% pos_mod_conj
thf(fact_4054_int__mod__neg__eq,axiom,
    ! [A: int,B: int,Q2: int,R2: int] :
      ( ( A
        = ( plus_plus_int @ ( times_times_int @ B @ Q2 ) @ R2 ) )
     => ( ( ord_less_eq_int @ R2 @ zero_zero_int )
       => ( ( ord_less_int @ B @ R2 )
         => ( ( modulo_modulo_int @ A @ B )
            = R2 ) ) ) ) ).

% int_mod_neg_eq
thf(fact_4055_int__mod__pos__eq,axiom,
    ! [A: int,B: int,Q2: int,R2: int] :
      ( ( A
        = ( plus_plus_int @ ( times_times_int @ B @ Q2 ) @ R2 ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ R2 )
       => ( ( ord_less_int @ R2 @ B )
         => ( ( modulo_modulo_int @ A @ B )
            = R2 ) ) ) ) ).

% int_mod_pos_eq
thf(fact_4056_zdiv__mono2__lemma,axiom,
    ! [B: int,Q2: int,R2: int,B6: int,Q5: int,R4: int] :
      ( ( ( plus_plus_int @ ( times_times_int @ B @ Q2 ) @ R2 )
        = ( plus_plus_int @ ( times_times_int @ B6 @ Q5 ) @ R4 ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ ( plus_plus_int @ ( times_times_int @ B6 @ Q5 ) @ R4 ) )
       => ( ( ord_less_int @ R4 @ B6 )
         => ( ( ord_less_eq_int @ zero_zero_int @ R2 )
           => ( ( ord_less_int @ zero_zero_int @ B6 )
             => ( ( ord_less_eq_int @ B6 @ B )
               => ( ord_less_eq_int @ Q2 @ Q5 ) ) ) ) ) ) ) ).

% zdiv_mono2_lemma
thf(fact_4057_zmod__trivial__iff,axiom,
    ! [I2: int,K: int] :
      ( ( ( modulo_modulo_int @ I2 @ K )
        = I2 )
      = ( ( K = zero_zero_int )
        | ( ( ord_less_eq_int @ zero_zero_int @ I2 )
          & ( ord_less_int @ I2 @ K ) )
        | ( ( ord_less_eq_int @ I2 @ zero_zero_int )
          & ( ord_less_int @ K @ I2 ) ) ) ) ).

% zmod_trivial_iff
thf(fact_4058_zdiv__mono2__neg__lemma,axiom,
    ! [B: int,Q2: int,R2: int,B6: int,Q5: int,R4: int] :
      ( ( ( plus_plus_int @ ( times_times_int @ B @ Q2 ) @ R2 )
        = ( plus_plus_int @ ( times_times_int @ B6 @ Q5 ) @ R4 ) )
     => ( ( ord_less_int @ ( plus_plus_int @ ( times_times_int @ B6 @ Q5 ) @ R4 ) @ zero_zero_int )
       => ( ( ord_less_int @ R2 @ B )
         => ( ( ord_less_eq_int @ zero_zero_int @ R4 )
           => ( ( ord_less_int @ zero_zero_int @ B6 )
             => ( ( ord_less_eq_int @ B6 @ B )
               => ( ord_less_eq_int @ Q5 @ Q2 ) ) ) ) ) ) ) ).

% zdiv_mono2_neg_lemma
thf(fact_4059_unique__quotient__lemma,axiom,
    ! [B: int,Q5: int,R4: int,Q2: int,R2: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ ( times_times_int @ B @ Q5 ) @ R4 ) @ ( plus_plus_int @ ( times_times_int @ B @ Q2 ) @ R2 ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ R4 )
       => ( ( ord_less_int @ R4 @ B )
         => ( ( ord_less_int @ R2 @ B )
           => ( ord_less_eq_int @ Q5 @ Q2 ) ) ) ) ) ).

% unique_quotient_lemma
thf(fact_4060_zmod__le__nonneg__dividend,axiom,
    ! [M: int,K: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ M )
     => ( ord_less_eq_int @ ( modulo_modulo_int @ M @ K ) @ M ) ) ).

% zmod_le_nonneg_dividend
thf(fact_4061_neg__mod__sign,axiom,
    ! [L2: int,K: int] :
      ( ( ord_less_int @ L2 @ zero_zero_int )
     => ( ord_less_eq_int @ ( modulo_modulo_int @ K @ L2 ) @ zero_zero_int ) ) ).

% neg_mod_sign
thf(fact_4062_Euclidean__Division_Opos__mod__sign,axiom,
    ! [L2: int,K: int] :
      ( ( ord_less_int @ zero_zero_int @ L2 )
     => ( ord_less_eq_int @ zero_zero_int @ ( modulo_modulo_int @ K @ L2 ) ) ) ).

% Euclidean_Division.pos_mod_sign
thf(fact_4063_unique__quotient__lemma__neg,axiom,
    ! [B: int,Q5: int,R4: int,Q2: int,R2: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ ( times_times_int @ B @ Q5 ) @ R4 ) @ ( plus_plus_int @ ( times_times_int @ B @ Q2 ) @ R2 ) )
     => ( ( ord_less_eq_int @ R2 @ zero_zero_int )
       => ( ( ord_less_int @ B @ R2 )
         => ( ( ord_less_int @ B @ R4 )
           => ( ord_less_eq_int @ Q2 @ Q5 ) ) ) ) ) ).

% unique_quotient_lemma_neg
thf(fact_4064_mod__pos__neg__trivial,axiom,
    ! [K: int,L2: int] :
      ( ( ord_less_int @ zero_zero_int @ K )
     => ( ( ord_less_eq_int @ ( plus_plus_int @ K @ L2 ) @ zero_zero_int )
       => ( ( modulo_modulo_int @ K @ L2 )
          = ( plus_plus_int @ K @ L2 ) ) ) ) ).

% mod_pos_neg_trivial
thf(fact_4065_int__one__le__iff__zero__less,axiom,
    ! [Z: int] :
      ( ( ord_less_eq_int @ one_one_int @ Z )
      = ( ord_less_int @ zero_zero_int @ Z ) ) ).

% int_one_le_iff_zero_less
thf(fact_4066_zless__imp__add1__zle,axiom,
    ! [W: int,Z: int] :
      ( ( ord_less_int @ W @ Z )
     => ( ord_less_eq_int @ ( plus_plus_int @ W @ one_one_int ) @ Z ) ) ).

% zless_imp_add1_zle
thf(fact_4067_pos__zmult__eq__1__iff,axiom,
    ! [M: int,N2: int] :
      ( ( ord_less_int @ zero_zero_int @ M )
     => ( ( ( times_times_int @ M @ N2 )
          = one_one_int )
        = ( ( M = one_one_int )
          & ( N2 = one_one_int ) ) ) ) ).

% pos_zmult_eq_1_iff
thf(fact_4068_odd__less__0__iff,axiom,
    ! [Z: int] :
      ( ( ord_less_int @ ( plus_plus_int @ ( plus_plus_int @ one_one_int @ Z ) @ Z ) @ zero_zero_int )
      = ( ord_less_int @ Z @ zero_zero_int ) ) ).

% odd_less_0_iff
thf(fact_4069_zless__add1__eq,axiom,
    ! [W: int,Z: int] :
      ( ( ord_less_int @ W @ ( plus_plus_int @ Z @ one_one_int ) )
      = ( ( ord_less_int @ W @ Z )
        | ( W = Z ) ) ) ).

% zless_add1_eq
thf(fact_4070_le__imp__0__less,axiom,
    ! [Z: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z )
     => ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ one_one_int @ Z ) ) ) ).

% le_imp_0_less
thf(fact_4071_int__gr__induct,axiom,
    ! [K: int,I2: int,P: int > $o] :
      ( ( ord_less_int @ K @ I2 )
     => ( ( P @ ( plus_plus_int @ K @ one_one_int ) )
       => ( ! [I3: int] :
              ( ( ord_less_int @ K @ I3 )
             => ( ( P @ I3 )
               => ( P @ ( plus_plus_int @ I3 @ one_one_int ) ) ) )
         => ( P @ I2 ) ) ) ) ).

% int_gr_induct
thf(fact_4072_odd__nonzero,axiom,
    ! [Z: int] :
      ( ( plus_plus_int @ ( plus_plus_int @ one_one_int @ Z ) @ Z )
     != zero_zero_int ) ).

% odd_nonzero
thf(fact_4073_add1__zle__eq,axiom,
    ! [W: int,Z: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ W @ one_one_int ) @ Z )
      = ( ord_less_int @ W @ Z ) ) ).

% add1_zle_eq
thf(fact_4074_plus__int__code_I2_J,axiom,
    ! [L2: int] :
      ( ( plus_plus_int @ zero_zero_int @ L2 )
      = L2 ) ).

% plus_int_code(2)
thf(fact_4075_plus__int__code_I1_J,axiom,
    ! [K: int] :
      ( ( plus_plus_int @ K @ zero_zero_int )
      = K ) ).

% plus_int_code(1)
thf(fact_4076_zmod__eq__0__iff,axiom,
    ! [M: int,D: int] :
      ( ( ( modulo_modulo_int @ M @ D )
        = zero_zero_int )
      = ( ? [Q4: int] :
            ( M
            = ( times_times_int @ D @ Q4 ) ) ) ) ).

% zmod_eq_0_iff
thf(fact_4077_zmod__eq__0D,axiom,
    ! [M: int,D: int] :
      ( ( ( modulo_modulo_int @ M @ D )
        = zero_zero_int )
     => ? [Q3: int] :
          ( M
          = ( times_times_int @ D @ Q3 ) ) ) ).

% zmod_eq_0D
thf(fact_4078_times__int__code_I1_J,axiom,
    ! [K: int] :
      ( ( times_times_int @ K @ zero_zero_int )
      = zero_zero_int ) ).

% times_int_code(1)
thf(fact_4079_times__int__code_I2_J,axiom,
    ! [L2: int] :
      ( ( times_times_int @ zero_zero_int @ L2 )
      = zero_zero_int ) ).

% times_int_code(2)
thf(fact_4080_imult__is__0,axiom,
    ! [M: extended_enat,N2: extended_enat] :
      ( ( ( times_7803423173614009249d_enat @ M @ N2 )
        = zero_z5237406670263579293d_enat )
      = ( ( M = zero_z5237406670263579293d_enat )
        | ( N2 = zero_z5237406670263579293d_enat ) ) ) ).

% imult_is_0
thf(fact_4081_int__distrib_I1_J,axiom,
    ! [Z1: int,Z22: int,W: int] :
      ( ( times_times_int @ ( plus_plus_int @ Z1 @ Z22 ) @ W )
      = ( plus_plus_int @ ( times_times_int @ Z1 @ W ) @ ( times_times_int @ Z22 @ W ) ) ) ).

% int_distrib(1)
thf(fact_4082_int__distrib_I2_J,axiom,
    ! [W: int,Z1: int,Z22: int] :
      ( ( times_times_int @ W @ ( plus_plus_int @ Z1 @ Z22 ) )
      = ( plus_plus_int @ ( times_times_int @ W @ Z1 ) @ ( times_times_int @ W @ Z22 ) ) ) ).

% int_distrib(2)
thf(fact_4083_int__ge__induct,axiom,
    ! [K: int,I2: int,P: int > $o] :
      ( ( ord_less_eq_int @ K @ I2 )
     => ( ( P @ K )
       => ( ! [I3: int] :
              ( ( ord_less_eq_int @ K @ I3 )
             => ( ( P @ I3 )
               => ( P @ ( plus_plus_int @ I3 @ one_one_int ) ) ) )
         => ( P @ I2 ) ) ) ) ).

% int_ge_induct
thf(fact_4084_set__bit__greater__eq,axiom,
    ! [K: int,N2: nat] : ( ord_less_eq_int @ K @ ( bit_se7879613467334960850it_int @ N2 @ K ) ) ).

% set_bit_greater_eq
thf(fact_4085_unset__bit__less__eq,axiom,
    ! [N2: nat,K: int] : ( ord_less_eq_int @ ( bit_se4203085406695923979it_int @ N2 @ K ) @ K ) ).

% unset_bit_less_eq
thf(fact_4086_verit__la__generic,axiom,
    ! [A: int,X: int] :
      ( ( ord_less_eq_int @ A @ X )
      | ( A = X )
      | ( ord_less_eq_int @ X @ A ) ) ).

% verit_la_generic
thf(fact_4087_int__distrib_I4_J,axiom,
    ! [W: int,Z1: int,Z22: int] :
      ( ( times_times_int @ W @ ( minus_minus_int @ Z1 @ Z22 ) )
      = ( minus_minus_int @ ( times_times_int @ W @ Z1 ) @ ( times_times_int @ W @ Z22 ) ) ) ).

% int_distrib(4)
thf(fact_4088_int__distrib_I3_J,axiom,
    ! [Z1: int,Z22: int,W: int] :
      ( ( times_times_int @ ( minus_minus_int @ Z1 @ Z22 ) @ W )
      = ( minus_minus_int @ ( times_times_int @ Z1 @ W ) @ ( times_times_int @ Z22 @ W ) ) ) ).

% int_distrib(3)
thf(fact_4089_int__le__induct,axiom,
    ! [I2: int,K: int,P: int > $o] :
      ( ( ord_less_eq_int @ I2 @ K )
     => ( ( P @ K )
       => ( ! [I3: int] :
              ( ( ord_less_eq_int @ I3 @ K )
             => ( ( P @ I3 )
               => ( P @ ( minus_minus_int @ I3 @ one_one_int ) ) ) )
         => ( P @ I2 ) ) ) ) ).

% int_le_induct
thf(fact_4090_int__induct,axiom,
    ! [P: int > $o,K: int,I2: int] :
      ( ( P @ K )
     => ( ! [I3: int] :
            ( ( ord_less_eq_int @ K @ I3 )
           => ( ( P @ I3 )
             => ( P @ ( plus_plus_int @ I3 @ one_one_int ) ) ) )
       => ( ! [I3: int] :
              ( ( ord_less_eq_int @ I3 @ K )
             => ( ( P @ I3 )
               => ( P @ ( minus_minus_int @ I3 @ one_one_int ) ) ) )
         => ( P @ I2 ) ) ) ) ).

% int_induct
thf(fact_4091_VEBT__internal_Omembermima_Opelims_I2_J,axiom,
    ! [X: vEBT_VEBT,Xa2: nat] :
      ( ( vEBT_VEBT_membermima @ X @ Xa2 )
     => ( ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ X @ Xa2 ) )
       => ( ! [Mi2: nat,Ma2: nat,Va3: list_VEBT_VEBT,Vb2: vEBT_VEBT] :
              ( ( X
                = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ Va3 @ Vb2 ) )
             => ( ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ Va3 @ Vb2 ) @ Xa2 ) )
               => ~ ( ( Xa2 = Mi2 )
                    | ( Xa2 = Ma2 ) ) ) )
         => ( ! [Mi2: nat,Ma2: nat,V2: nat,TreeList2: list_VEBT_VEBT,Vc2: vEBT_VEBT] :
                ( ( X
                  = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ V2 ) @ TreeList2 @ Vc2 ) )
               => ( ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ V2 ) @ TreeList2 @ Vc2 ) @ Xa2 ) )
                 => ~ ( ( Xa2 = Mi2 )
                      | ( Xa2 = Ma2 )
                      | ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
                         => ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                        & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) ) )
           => ~ ! [V2: nat,TreeList2: list_VEBT_VEBT,Vd2: vEBT_VEBT] :
                  ( ( X
                    = ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V2 ) @ TreeList2 @ Vd2 ) )
                 => ( ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V2 ) @ TreeList2 @ Vd2 ) @ Xa2 ) )
                   => ~ ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
                         => ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                        & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) ) ) ) ) ) ).

% VEBT_internal.membermima.pelims(2)
thf(fact_4092_VEBT__internal_Omembermima_Opelims_I1_J,axiom,
    ! [X: vEBT_VEBT,Xa2: nat,Y: $o] :
      ( ( ( vEBT_VEBT_membermima @ X @ Xa2 )
        = Y )
     => ( ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ X @ Xa2 ) )
       => ( ! [Uu2: $o,Uv2: $o] :
              ( ( X
                = ( vEBT_Leaf @ Uu2 @ Uv2 ) )
             => ( ~ Y
               => ~ ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uu2 @ Uv2 ) @ Xa2 ) ) ) )
         => ( ! [Ux2: list_VEBT_VEBT,Uy2: vEBT_VEBT] :
                ( ( X
                  = ( vEBT_Node @ none_P5556105721700978146at_nat @ zero_zero_nat @ Ux2 @ Uy2 ) )
               => ( ~ Y
                 => ~ ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ zero_zero_nat @ Ux2 @ Uy2 ) @ Xa2 ) ) ) )
           => ( ! [Mi2: nat,Ma2: nat,Va3: list_VEBT_VEBT,Vb2: vEBT_VEBT] :
                  ( ( X
                    = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ Va3 @ Vb2 ) )
                 => ( ( Y
                      = ( ( Xa2 = Mi2 )
                        | ( Xa2 = Ma2 ) ) )
                   => ~ ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ Va3 @ Vb2 ) @ Xa2 ) ) ) )
             => ( ! [Mi2: nat,Ma2: nat,V2: nat,TreeList2: list_VEBT_VEBT,Vc2: vEBT_VEBT] :
                    ( ( X
                      = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ V2 ) @ TreeList2 @ Vc2 ) )
                   => ( ( Y
                        = ( ( Xa2 = Mi2 )
                          | ( Xa2 = Ma2 )
                          | ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
                             => ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                            & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) ) )
                     => ~ ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ V2 ) @ TreeList2 @ Vc2 ) @ Xa2 ) ) ) )
               => ~ ! [V2: nat,TreeList2: list_VEBT_VEBT,Vd2: vEBT_VEBT] :
                      ( ( X
                        = ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V2 ) @ TreeList2 @ Vd2 ) )
                     => ( ( Y
                          = ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) )
                             => ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                            & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList2 ) ) ) )
                       => ~ ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V2 ) @ TreeList2 @ Vd2 ) @ Xa2 ) ) ) ) ) ) ) ) ) ) ).

% VEBT_internal.membermima.pelims(1)
thf(fact_4093_atLeastatMost__empty,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_rat @ B @ A )
     => ( ( set_or633870826150836451st_rat @ A @ B )
        = bot_bot_set_rat ) ) ).

% atLeastatMost_empty
thf(fact_4094_atLeastatMost__empty,axiom,
    ! [B: num,A: num] :
      ( ( ord_less_num @ B @ A )
     => ( ( set_or7049704709247886629st_num @ A @ B )
        = bot_bot_set_num ) ) ).

% atLeastatMost_empty
thf(fact_4095_atLeastatMost__empty,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ B @ A )
     => ( ( set_or1269000886237332187st_nat @ A @ B )
        = bot_bot_set_nat ) ) ).

% atLeastatMost_empty
thf(fact_4096_atLeastatMost__empty,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ B @ A )
     => ( ( set_or1266510415728281911st_int @ A @ B )
        = bot_bot_set_int ) ) ).

% atLeastatMost_empty
thf(fact_4097_atLeastatMost__empty,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_real @ B @ A )
     => ( ( set_or1222579329274155063t_real @ A @ B )
        = bot_bot_set_real ) ) ).

% atLeastatMost_empty
thf(fact_4098_atLeastatMost__subset__iff,axiom,
    ! [A: set_int,B: set_int,C: set_int,D: set_int] :
      ( ( ord_le4403425263959731960et_int @ ( set_or370866239135849197et_int @ A @ B ) @ ( set_or370866239135849197et_int @ C @ D ) )
      = ( ~ ( ord_less_eq_set_int @ A @ B )
        | ( ( ord_less_eq_set_int @ C @ A )
          & ( ord_less_eq_set_int @ B @ D ) ) ) ) ).

% atLeastatMost_subset_iff
thf(fact_4099_atLeastatMost__subset__iff,axiom,
    ! [A: rat,B: rat,C: rat,D: rat] :
      ( ( ord_less_eq_set_rat @ ( set_or633870826150836451st_rat @ A @ B ) @ ( set_or633870826150836451st_rat @ C @ D ) )
      = ( ~ ( ord_less_eq_rat @ A @ B )
        | ( ( ord_less_eq_rat @ C @ A )
          & ( ord_less_eq_rat @ B @ D ) ) ) ) ).

% atLeastatMost_subset_iff
thf(fact_4100_atLeastatMost__subset__iff,axiom,
    ! [A: num,B: num,C: num,D: num] :
      ( ( ord_less_eq_set_num @ ( set_or7049704709247886629st_num @ A @ B ) @ ( set_or7049704709247886629st_num @ C @ D ) )
      = ( ~ ( ord_less_eq_num @ A @ B )
        | ( ( ord_less_eq_num @ C @ A )
          & ( ord_less_eq_num @ B @ D ) ) ) ) ).

% atLeastatMost_subset_iff
thf(fact_4101_atLeastatMost__subset__iff,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_eq_set_nat @ ( set_or1269000886237332187st_nat @ A @ B ) @ ( set_or1269000886237332187st_nat @ C @ D ) )
      = ( ~ ( ord_less_eq_nat @ A @ B )
        | ( ( ord_less_eq_nat @ C @ A )
          & ( ord_less_eq_nat @ B @ D ) ) ) ) ).

% atLeastatMost_subset_iff
thf(fact_4102_atLeastatMost__subset__iff,axiom,
    ! [A: int,B: int,C: int,D: int] :
      ( ( ord_less_eq_set_int @ ( set_or1266510415728281911st_int @ A @ B ) @ ( set_or1266510415728281911st_int @ C @ D ) )
      = ( ~ ( ord_less_eq_int @ A @ B )
        | ( ( ord_less_eq_int @ C @ A )
          & ( ord_less_eq_int @ B @ D ) ) ) ) ).

% atLeastatMost_subset_iff
thf(fact_4103_atLeastatMost__subset__iff,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( ord_less_eq_set_real @ ( set_or1222579329274155063t_real @ A @ B ) @ ( set_or1222579329274155063t_real @ C @ D ) )
      = ( ~ ( ord_less_eq_real @ A @ B )
        | ( ( ord_less_eq_real @ C @ A )
          & ( ord_less_eq_real @ B @ D ) ) ) ) ).

% atLeastatMost_subset_iff
thf(fact_4104_atLeastatMost__empty__iff,axiom,
    ! [A: set_int,B: set_int] :
      ( ( ( set_or370866239135849197et_int @ A @ B )
        = bot_bot_set_set_int )
      = ( ~ ( ord_less_eq_set_int @ A @ B ) ) ) ).

% atLeastatMost_empty_iff
thf(fact_4105_atLeastatMost__empty__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ( set_or633870826150836451st_rat @ A @ B )
        = bot_bot_set_rat )
      = ( ~ ( ord_less_eq_rat @ A @ B ) ) ) ).

% atLeastatMost_empty_iff
thf(fact_4106_atLeastatMost__empty__iff,axiom,
    ! [A: num,B: num] :
      ( ( ( set_or7049704709247886629st_num @ A @ B )
        = bot_bot_set_num )
      = ( ~ ( ord_less_eq_num @ A @ B ) ) ) ).

% atLeastatMost_empty_iff
thf(fact_4107_atLeastatMost__empty__iff,axiom,
    ! [A: nat,B: nat] :
      ( ( ( set_or1269000886237332187st_nat @ A @ B )
        = bot_bot_set_nat )
      = ( ~ ( ord_less_eq_nat @ A @ B ) ) ) ).

% atLeastatMost_empty_iff
thf(fact_4108_atLeastatMost__empty__iff,axiom,
    ! [A: int,B: int] :
      ( ( ( set_or1266510415728281911st_int @ A @ B )
        = bot_bot_set_int )
      = ( ~ ( ord_less_eq_int @ A @ B ) ) ) ).

% atLeastatMost_empty_iff
thf(fact_4109_atLeastatMost__empty__iff,axiom,
    ! [A: real,B: real] :
      ( ( ( set_or1222579329274155063t_real @ A @ B )
        = bot_bot_set_real )
      = ( ~ ( ord_less_eq_real @ A @ B ) ) ) ).

% atLeastatMost_empty_iff
thf(fact_4110_atLeastatMost__empty__iff2,axiom,
    ! [A: set_int,B: set_int] :
      ( ( bot_bot_set_set_int
        = ( set_or370866239135849197et_int @ A @ B ) )
      = ( ~ ( ord_less_eq_set_int @ A @ B ) ) ) ).

% atLeastatMost_empty_iff2
thf(fact_4111_atLeastatMost__empty__iff2,axiom,
    ! [A: rat,B: rat] :
      ( ( bot_bot_set_rat
        = ( set_or633870826150836451st_rat @ A @ B ) )
      = ( ~ ( ord_less_eq_rat @ A @ B ) ) ) ).

% atLeastatMost_empty_iff2
thf(fact_4112_atLeastatMost__empty__iff2,axiom,
    ! [A: num,B: num] :
      ( ( bot_bot_set_num
        = ( set_or7049704709247886629st_num @ A @ B ) )
      = ( ~ ( ord_less_eq_num @ A @ B ) ) ) ).

% atLeastatMost_empty_iff2
thf(fact_4113_atLeastatMost__empty__iff2,axiom,
    ! [A: nat,B: nat] :
      ( ( bot_bot_set_nat
        = ( set_or1269000886237332187st_nat @ A @ B ) )
      = ( ~ ( ord_less_eq_nat @ A @ B ) ) ) ).

% atLeastatMost_empty_iff2
thf(fact_4114_atLeastatMost__empty__iff2,axiom,
    ! [A: int,B: int] :
      ( ( bot_bot_set_int
        = ( set_or1266510415728281911st_int @ A @ B ) )
      = ( ~ ( ord_less_eq_int @ A @ B ) ) ) ).

% atLeastatMost_empty_iff2
thf(fact_4115_atLeastatMost__empty__iff2,axiom,
    ! [A: real,B: real] :
      ( ( bot_bot_set_real
        = ( set_or1222579329274155063t_real @ A @ B ) )
      = ( ~ ( ord_less_eq_real @ A @ B ) ) ) ).

% atLeastatMost_empty_iff2
thf(fact_4116_decr__mult__lemma,axiom,
    ! [D: int,P: int > $o,K: int] :
      ( ( ord_less_int @ zero_zero_int @ D )
     => ( ! [X5: int] :
            ( ( P @ X5 )
           => ( P @ ( minus_minus_int @ X5 @ D ) ) )
       => ( ( ord_less_eq_int @ zero_zero_int @ K )
         => ! [X2: int] :
              ( ( P @ X2 )
             => ( P @ ( minus_minus_int @ X2 @ ( times_times_int @ K @ D ) ) ) ) ) ) ) ).

% decr_mult_lemma
thf(fact_4117_incr__mult__lemma,axiom,
    ! [D: int,P: int > $o,K: int] :
      ( ( ord_less_int @ zero_zero_int @ D )
     => ( ! [X5: int] :
            ( ( P @ X5 )
           => ( P @ ( plus_plus_int @ X5 @ D ) ) )
       => ( ( ord_less_eq_int @ zero_zero_int @ K )
         => ! [X2: int] :
              ( ( P @ X2 )
             => ( P @ ( plus_plus_int @ X2 @ ( times_times_int @ K @ D ) ) ) ) ) ) ) ).

% incr_mult_lemma
thf(fact_4118_Icc__eq__Icc,axiom,
    ! [L2: set_int,H2: set_int,L3: set_int,H3: set_int] :
      ( ( ( set_or370866239135849197et_int @ L2 @ H2 )
        = ( set_or370866239135849197et_int @ L3 @ H3 ) )
      = ( ( ( L2 = L3 )
          & ( H2 = H3 ) )
        | ( ~ ( ord_less_eq_set_int @ L2 @ H2 )
          & ~ ( ord_less_eq_set_int @ L3 @ H3 ) ) ) ) ).

% Icc_eq_Icc
thf(fact_4119_Icc__eq__Icc,axiom,
    ! [L2: rat,H2: rat,L3: rat,H3: rat] :
      ( ( ( set_or633870826150836451st_rat @ L2 @ H2 )
        = ( set_or633870826150836451st_rat @ L3 @ H3 ) )
      = ( ( ( L2 = L3 )
          & ( H2 = H3 ) )
        | ( ~ ( ord_less_eq_rat @ L2 @ H2 )
          & ~ ( ord_less_eq_rat @ L3 @ H3 ) ) ) ) ).

% Icc_eq_Icc
thf(fact_4120_Icc__eq__Icc,axiom,
    ! [L2: num,H2: num,L3: num,H3: num] :
      ( ( ( set_or7049704709247886629st_num @ L2 @ H2 )
        = ( set_or7049704709247886629st_num @ L3 @ H3 ) )
      = ( ( ( L2 = L3 )
          & ( H2 = H3 ) )
        | ( ~ ( ord_less_eq_num @ L2 @ H2 )
          & ~ ( ord_less_eq_num @ L3 @ H3 ) ) ) ) ).

% Icc_eq_Icc
thf(fact_4121_Icc__eq__Icc,axiom,
    ! [L2: nat,H2: nat,L3: nat,H3: nat] :
      ( ( ( set_or1269000886237332187st_nat @ L2 @ H2 )
        = ( set_or1269000886237332187st_nat @ L3 @ H3 ) )
      = ( ( ( L2 = L3 )
          & ( H2 = H3 ) )
        | ( ~ ( ord_less_eq_nat @ L2 @ H2 )
          & ~ ( ord_less_eq_nat @ L3 @ H3 ) ) ) ) ).

% Icc_eq_Icc
thf(fact_4122_Icc__eq__Icc,axiom,
    ! [L2: int,H2: int,L3: int,H3: int] :
      ( ( ( set_or1266510415728281911st_int @ L2 @ H2 )
        = ( set_or1266510415728281911st_int @ L3 @ H3 ) )
      = ( ( ( L2 = L3 )
          & ( H2 = H3 ) )
        | ( ~ ( ord_less_eq_int @ L2 @ H2 )
          & ~ ( ord_less_eq_int @ L3 @ H3 ) ) ) ) ).

% Icc_eq_Icc
thf(fact_4123_Icc__eq__Icc,axiom,
    ! [L2: real,H2: real,L3: real,H3: real] :
      ( ( ( set_or1222579329274155063t_real @ L2 @ H2 )
        = ( set_or1222579329274155063t_real @ L3 @ H3 ) )
      = ( ( ( L2 = L3 )
          & ( H2 = H3 ) )
        | ( ~ ( ord_less_eq_real @ L2 @ H2 )
          & ~ ( ord_less_eq_real @ L3 @ H3 ) ) ) ) ).

% Icc_eq_Icc
thf(fact_4124_atLeastAtMost__iff,axiom,
    ! [I2: set_nat,L2: set_nat,U: set_nat] :
      ( ( member_set_nat @ I2 @ ( set_or4548717258645045905et_nat @ L2 @ U ) )
      = ( ( ord_less_eq_set_nat @ L2 @ I2 )
        & ( ord_less_eq_set_nat @ I2 @ U ) ) ) ).

% atLeastAtMost_iff
thf(fact_4125_atLeastAtMost__iff,axiom,
    ! [I2: set_int,L2: set_int,U: set_int] :
      ( ( member_set_int @ I2 @ ( set_or370866239135849197et_int @ L2 @ U ) )
      = ( ( ord_less_eq_set_int @ L2 @ I2 )
        & ( ord_less_eq_set_int @ I2 @ U ) ) ) ).

% atLeastAtMost_iff
thf(fact_4126_atLeastAtMost__iff,axiom,
    ! [I2: rat,L2: rat,U: rat] :
      ( ( member_rat @ I2 @ ( set_or633870826150836451st_rat @ L2 @ U ) )
      = ( ( ord_less_eq_rat @ L2 @ I2 )
        & ( ord_less_eq_rat @ I2 @ U ) ) ) ).

% atLeastAtMost_iff
thf(fact_4127_atLeastAtMost__iff,axiom,
    ! [I2: num,L2: num,U: num] :
      ( ( member_num @ I2 @ ( set_or7049704709247886629st_num @ L2 @ U ) )
      = ( ( ord_less_eq_num @ L2 @ I2 )
        & ( ord_less_eq_num @ I2 @ U ) ) ) ).

% atLeastAtMost_iff
thf(fact_4128_atLeastAtMost__iff,axiom,
    ! [I2: nat,L2: nat,U: nat] :
      ( ( member_nat @ I2 @ ( set_or1269000886237332187st_nat @ L2 @ U ) )
      = ( ( ord_less_eq_nat @ L2 @ I2 )
        & ( ord_less_eq_nat @ I2 @ U ) ) ) ).

% atLeastAtMost_iff
thf(fact_4129_atLeastAtMost__iff,axiom,
    ! [I2: int,L2: int,U: int] :
      ( ( member_int @ I2 @ ( set_or1266510415728281911st_int @ L2 @ U ) )
      = ( ( ord_less_eq_int @ L2 @ I2 )
        & ( ord_less_eq_int @ I2 @ U ) ) ) ).

% atLeastAtMost_iff
thf(fact_4130_atLeastAtMost__iff,axiom,
    ! [I2: real,L2: real,U: real] :
      ( ( member_real @ I2 @ ( set_or1222579329274155063t_real @ L2 @ U ) )
      = ( ( ord_less_eq_real @ L2 @ I2 )
        & ( ord_less_eq_real @ I2 @ U ) ) ) ).

% atLeastAtMost_iff
thf(fact_4131_aset_I2_J,axiom,
    ! [D3: int,A2: set_int,P: int > $o,Q: int > $o] :
      ( ! [X5: int] :
          ( ! [Xa: int] :
              ( ( member_int @ Xa @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
             => ! [Xb2: int] :
                  ( ( member_int @ Xb2 @ A2 )
                 => ( X5
                   != ( minus_minus_int @ Xb2 @ Xa ) ) ) )
         => ( ( P @ X5 )
           => ( P @ ( plus_plus_int @ X5 @ D3 ) ) ) )
     => ( ! [X5: int] :
            ( ! [Xa: int] :
                ( ( member_int @ Xa @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
               => ! [Xb2: int] :
                    ( ( member_int @ Xb2 @ A2 )
                   => ( X5
                     != ( minus_minus_int @ Xb2 @ Xa ) ) ) )
           => ( ( Q @ X5 )
             => ( Q @ ( plus_plus_int @ X5 @ D3 ) ) ) )
       => ! [X2: int] :
            ( ! [Xa3: int] :
                ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
               => ! [Xb3: int] :
                    ( ( member_int @ Xb3 @ A2 )
                   => ( X2
                     != ( minus_minus_int @ Xb3 @ Xa3 ) ) ) )
           => ( ( ( P @ X2 )
                | ( Q @ X2 ) )
             => ( ( P @ ( plus_plus_int @ X2 @ D3 ) )
                | ( Q @ ( plus_plus_int @ X2 @ D3 ) ) ) ) ) ) ) ).

% aset(2)
thf(fact_4132_aset_I1_J,axiom,
    ! [D3: int,A2: set_int,P: int > $o,Q: int > $o] :
      ( ! [X5: int] :
          ( ! [Xa: int] :
              ( ( member_int @ Xa @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
             => ! [Xb2: int] :
                  ( ( member_int @ Xb2 @ A2 )
                 => ( X5
                   != ( minus_minus_int @ Xb2 @ Xa ) ) ) )
         => ( ( P @ X5 )
           => ( P @ ( plus_plus_int @ X5 @ D3 ) ) ) )
     => ( ! [X5: int] :
            ( ! [Xa: int] :
                ( ( member_int @ Xa @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
               => ! [Xb2: int] :
                    ( ( member_int @ Xb2 @ A2 )
                   => ( X5
                     != ( minus_minus_int @ Xb2 @ Xa ) ) ) )
           => ( ( Q @ X5 )
             => ( Q @ ( plus_plus_int @ X5 @ D3 ) ) ) )
       => ! [X2: int] :
            ( ! [Xa3: int] :
                ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
               => ! [Xb3: int] :
                    ( ( member_int @ Xb3 @ A2 )
                   => ( X2
                     != ( minus_minus_int @ Xb3 @ Xa3 ) ) ) )
           => ( ( ( P @ X2 )
                & ( Q @ X2 ) )
             => ( ( P @ ( plus_plus_int @ X2 @ D3 ) )
                & ( Q @ ( plus_plus_int @ X2 @ D3 ) ) ) ) ) ) ) ).

% aset(1)
thf(fact_4133_bset_I2_J,axiom,
    ! [D3: int,B3: set_int,P: int > $o,Q: int > $o] :
      ( ! [X5: int] :
          ( ! [Xa: int] :
              ( ( member_int @ Xa @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
             => ! [Xb2: int] :
                  ( ( member_int @ Xb2 @ B3 )
                 => ( X5
                   != ( plus_plus_int @ Xb2 @ Xa ) ) ) )
         => ( ( P @ X5 )
           => ( P @ ( minus_minus_int @ X5 @ D3 ) ) ) )
     => ( ! [X5: int] :
            ( ! [Xa: int] :
                ( ( member_int @ Xa @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
               => ! [Xb2: int] :
                    ( ( member_int @ Xb2 @ B3 )
                   => ( X5
                     != ( plus_plus_int @ Xb2 @ Xa ) ) ) )
           => ( ( Q @ X5 )
             => ( Q @ ( minus_minus_int @ X5 @ D3 ) ) ) )
       => ! [X2: int] :
            ( ! [Xa3: int] :
                ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
               => ! [Xb3: int] :
                    ( ( member_int @ Xb3 @ B3 )
                   => ( X2
                     != ( plus_plus_int @ Xb3 @ Xa3 ) ) ) )
           => ( ( ( P @ X2 )
                | ( Q @ X2 ) )
             => ( ( P @ ( minus_minus_int @ X2 @ D3 ) )
                | ( Q @ ( minus_minus_int @ X2 @ D3 ) ) ) ) ) ) ) ).

% bset(2)
thf(fact_4134_bset_I1_J,axiom,
    ! [D3: int,B3: set_int,P: int > $o,Q: int > $o] :
      ( ! [X5: int] :
          ( ! [Xa: int] :
              ( ( member_int @ Xa @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
             => ! [Xb2: int] :
                  ( ( member_int @ Xb2 @ B3 )
                 => ( X5
                   != ( plus_plus_int @ Xb2 @ Xa ) ) ) )
         => ( ( P @ X5 )
           => ( P @ ( minus_minus_int @ X5 @ D3 ) ) ) )
     => ( ! [X5: int] :
            ( ! [Xa: int] :
                ( ( member_int @ Xa @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
               => ! [Xb2: int] :
                    ( ( member_int @ Xb2 @ B3 )
                   => ( X5
                     != ( plus_plus_int @ Xb2 @ Xa ) ) ) )
           => ( ( Q @ X5 )
             => ( Q @ ( minus_minus_int @ X5 @ D3 ) ) ) )
       => ! [X2: int] :
            ( ! [Xa3: int] :
                ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
               => ! [Xb3: int] :
                    ( ( member_int @ Xb3 @ B3 )
                   => ( X2
                     != ( plus_plus_int @ Xb3 @ Xa3 ) ) ) )
           => ( ( ( P @ X2 )
                & ( Q @ X2 ) )
             => ( ( P @ ( minus_minus_int @ X2 @ D3 ) )
                & ( Q @ ( minus_minus_int @ X2 @ D3 ) ) ) ) ) ) ) ).

% bset(1)
thf(fact_4135_pinf_I1_J,axiom,
    ! [P: real > $o,P6: real > $o,Q: real > $o,Q6: real > $o] :
      ( ? [Z5: real] :
        ! [X5: real] :
          ( ( ord_less_real @ Z5 @ X5 )
         => ( ( P @ X5 )
            = ( P6 @ X5 ) ) )
     => ( ? [Z5: real] :
          ! [X5: real] :
            ( ( ord_less_real @ Z5 @ X5 )
           => ( ( Q @ X5 )
              = ( Q6 @ X5 ) ) )
       => ? [Z4: real] :
          ! [X2: real] :
            ( ( ord_less_real @ Z4 @ X2 )
           => ( ( ( P @ X2 )
                & ( Q @ X2 ) )
              = ( ( P6 @ X2 )
                & ( Q6 @ X2 ) ) ) ) ) ) ).

% pinf(1)
thf(fact_4136_pinf_I1_J,axiom,
    ! [P: rat > $o,P6: rat > $o,Q: rat > $o,Q6: rat > $o] :
      ( ? [Z5: rat] :
        ! [X5: rat] :
          ( ( ord_less_rat @ Z5 @ X5 )
         => ( ( P @ X5 )
            = ( P6 @ X5 ) ) )
     => ( ? [Z5: rat] :
          ! [X5: rat] :
            ( ( ord_less_rat @ Z5 @ X5 )
           => ( ( Q @ X5 )
              = ( Q6 @ X5 ) ) )
       => ? [Z4: rat] :
          ! [X2: rat] :
            ( ( ord_less_rat @ Z4 @ X2 )
           => ( ( ( P @ X2 )
                & ( Q @ X2 ) )
              = ( ( P6 @ X2 )
                & ( Q6 @ X2 ) ) ) ) ) ) ).

% pinf(1)
thf(fact_4137_pinf_I1_J,axiom,
    ! [P: num > $o,P6: num > $o,Q: num > $o,Q6: num > $o] :
      ( ? [Z5: num] :
        ! [X5: num] :
          ( ( ord_less_num @ Z5 @ X5 )
         => ( ( P @ X5 )
            = ( P6 @ X5 ) ) )
     => ( ? [Z5: num] :
          ! [X5: num] :
            ( ( ord_less_num @ Z5 @ X5 )
           => ( ( Q @ X5 )
              = ( Q6 @ X5 ) ) )
       => ? [Z4: num] :
          ! [X2: num] :
            ( ( ord_less_num @ Z4 @ X2 )
           => ( ( ( P @ X2 )
                & ( Q @ X2 ) )
              = ( ( P6 @ X2 )
                & ( Q6 @ X2 ) ) ) ) ) ) ).

% pinf(1)
thf(fact_4138_pinf_I1_J,axiom,
    ! [P: nat > $o,P6: nat > $o,Q: nat > $o,Q6: nat > $o] :
      ( ? [Z5: nat] :
        ! [X5: nat] :
          ( ( ord_less_nat @ Z5 @ X5 )
         => ( ( P @ X5 )
            = ( P6 @ X5 ) ) )
     => ( ? [Z5: nat] :
          ! [X5: nat] :
            ( ( ord_less_nat @ Z5 @ X5 )
           => ( ( Q @ X5 )
              = ( Q6 @ X5 ) ) )
       => ? [Z4: nat] :
          ! [X2: nat] :
            ( ( ord_less_nat @ Z4 @ X2 )
           => ( ( ( P @ X2 )
                & ( Q @ X2 ) )
              = ( ( P6 @ X2 )
                & ( Q6 @ X2 ) ) ) ) ) ) ).

% pinf(1)
thf(fact_4139_pinf_I1_J,axiom,
    ! [P: int > $o,P6: int > $o,Q: int > $o,Q6: int > $o] :
      ( ? [Z5: int] :
        ! [X5: int] :
          ( ( ord_less_int @ Z5 @ X5 )
         => ( ( P @ X5 )
            = ( P6 @ X5 ) ) )
     => ( ? [Z5: int] :
          ! [X5: int] :
            ( ( ord_less_int @ Z5 @ X5 )
           => ( ( Q @ X5 )
              = ( Q6 @ X5 ) ) )
       => ? [Z4: int] :
          ! [X2: int] :
            ( ( ord_less_int @ Z4 @ X2 )
           => ( ( ( P @ X2 )
                & ( Q @ X2 ) )
              = ( ( P6 @ X2 )
                & ( Q6 @ X2 ) ) ) ) ) ) ).

% pinf(1)
thf(fact_4140_pinf_I2_J,axiom,
    ! [P: real > $o,P6: real > $o,Q: real > $o,Q6: real > $o] :
      ( ? [Z5: real] :
        ! [X5: real] :
          ( ( ord_less_real @ Z5 @ X5 )
         => ( ( P @ X5 )
            = ( P6 @ X5 ) ) )
     => ( ? [Z5: real] :
          ! [X5: real] :
            ( ( ord_less_real @ Z5 @ X5 )
           => ( ( Q @ X5 )
              = ( Q6 @ X5 ) ) )
       => ? [Z4: real] :
          ! [X2: real] :
            ( ( ord_less_real @ Z4 @ X2 )
           => ( ( ( P @ X2 )
                | ( Q @ X2 ) )
              = ( ( P6 @ X2 )
                | ( Q6 @ X2 ) ) ) ) ) ) ).

% pinf(2)
thf(fact_4141_pinf_I2_J,axiom,
    ! [P: rat > $o,P6: rat > $o,Q: rat > $o,Q6: rat > $o] :
      ( ? [Z5: rat] :
        ! [X5: rat] :
          ( ( ord_less_rat @ Z5 @ X5 )
         => ( ( P @ X5 )
            = ( P6 @ X5 ) ) )
     => ( ? [Z5: rat] :
          ! [X5: rat] :
            ( ( ord_less_rat @ Z5 @ X5 )
           => ( ( Q @ X5 )
              = ( Q6 @ X5 ) ) )
       => ? [Z4: rat] :
          ! [X2: rat] :
            ( ( ord_less_rat @ Z4 @ X2 )
           => ( ( ( P @ X2 )
                | ( Q @ X2 ) )
              = ( ( P6 @ X2 )
                | ( Q6 @ X2 ) ) ) ) ) ) ).

% pinf(2)
thf(fact_4142_pinf_I2_J,axiom,
    ! [P: num > $o,P6: num > $o,Q: num > $o,Q6: num > $o] :
      ( ? [Z5: num] :
        ! [X5: num] :
          ( ( ord_less_num @ Z5 @ X5 )
         => ( ( P @ X5 )
            = ( P6 @ X5 ) ) )
     => ( ? [Z5: num] :
          ! [X5: num] :
            ( ( ord_less_num @ Z5 @ X5 )
           => ( ( Q @ X5 )
              = ( Q6 @ X5 ) ) )
       => ? [Z4: num] :
          ! [X2: num] :
            ( ( ord_less_num @ Z4 @ X2 )
           => ( ( ( P @ X2 )
                | ( Q @ X2 ) )
              = ( ( P6 @ X2 )
                | ( Q6 @ X2 ) ) ) ) ) ) ).

% pinf(2)
thf(fact_4143_pinf_I2_J,axiom,
    ! [P: nat > $o,P6: nat > $o,Q: nat > $o,Q6: nat > $o] :
      ( ? [Z5: nat] :
        ! [X5: nat] :
          ( ( ord_less_nat @ Z5 @ X5 )
         => ( ( P @ X5 )
            = ( P6 @ X5 ) ) )
     => ( ? [Z5: nat] :
          ! [X5: nat] :
            ( ( ord_less_nat @ Z5 @ X5 )
           => ( ( Q @ X5 )
              = ( Q6 @ X5 ) ) )
       => ? [Z4: nat] :
          ! [X2: nat] :
            ( ( ord_less_nat @ Z4 @ X2 )
           => ( ( ( P @ X2 )
                | ( Q @ X2 ) )
              = ( ( P6 @ X2 )
                | ( Q6 @ X2 ) ) ) ) ) ) ).

% pinf(2)
thf(fact_4144_pinf_I2_J,axiom,
    ! [P: int > $o,P6: int > $o,Q: int > $o,Q6: int > $o] :
      ( ? [Z5: int] :
        ! [X5: int] :
          ( ( ord_less_int @ Z5 @ X5 )
         => ( ( P @ X5 )
            = ( P6 @ X5 ) ) )
     => ( ? [Z5: int] :
          ! [X5: int] :
            ( ( ord_less_int @ Z5 @ X5 )
           => ( ( Q @ X5 )
              = ( Q6 @ X5 ) ) )
       => ? [Z4: int] :
          ! [X2: int] :
            ( ( ord_less_int @ Z4 @ X2 )
           => ( ( ( P @ X2 )
                | ( Q @ X2 ) )
              = ( ( P6 @ X2 )
                | ( Q6 @ X2 ) ) ) ) ) ) ).

% pinf(2)
thf(fact_4145_pinf_I3_J,axiom,
    ! [T: real] :
    ? [Z4: real] :
    ! [X2: real] :
      ( ( ord_less_real @ Z4 @ X2 )
     => ( X2 != T ) ) ).

% pinf(3)
thf(fact_4146_pinf_I3_J,axiom,
    ! [T: rat] :
    ? [Z4: rat] :
    ! [X2: rat] :
      ( ( ord_less_rat @ Z4 @ X2 )
     => ( X2 != T ) ) ).

% pinf(3)
thf(fact_4147_pinf_I3_J,axiom,
    ! [T: num] :
    ? [Z4: num] :
    ! [X2: num] :
      ( ( ord_less_num @ Z4 @ X2 )
     => ( X2 != T ) ) ).

% pinf(3)
thf(fact_4148_pinf_I3_J,axiom,
    ! [T: nat] :
    ? [Z4: nat] :
    ! [X2: nat] :
      ( ( ord_less_nat @ Z4 @ X2 )
     => ( X2 != T ) ) ).

% pinf(3)
thf(fact_4149_pinf_I3_J,axiom,
    ! [T: int] :
    ? [Z4: int] :
    ! [X2: int] :
      ( ( ord_less_int @ Z4 @ X2 )
     => ( X2 != T ) ) ).

% pinf(3)
thf(fact_4150_pinf_I4_J,axiom,
    ! [T: real] :
    ? [Z4: real] :
    ! [X2: real] :
      ( ( ord_less_real @ Z4 @ X2 )
     => ( X2 != T ) ) ).

% pinf(4)
thf(fact_4151_pinf_I4_J,axiom,
    ! [T: rat] :
    ? [Z4: rat] :
    ! [X2: rat] :
      ( ( ord_less_rat @ Z4 @ X2 )
     => ( X2 != T ) ) ).

% pinf(4)
thf(fact_4152_pinf_I4_J,axiom,
    ! [T: num] :
    ? [Z4: num] :
    ! [X2: num] :
      ( ( ord_less_num @ Z4 @ X2 )
     => ( X2 != T ) ) ).

% pinf(4)
thf(fact_4153_pinf_I4_J,axiom,
    ! [T: nat] :
    ? [Z4: nat] :
    ! [X2: nat] :
      ( ( ord_less_nat @ Z4 @ X2 )
     => ( X2 != T ) ) ).

% pinf(4)
thf(fact_4154_pinf_I4_J,axiom,
    ! [T: int] :
    ? [Z4: int] :
    ! [X2: int] :
      ( ( ord_less_int @ Z4 @ X2 )
     => ( X2 != T ) ) ).

% pinf(4)
thf(fact_4155_pinf_I5_J,axiom,
    ! [T: real] :
    ? [Z4: real] :
    ! [X2: real] :
      ( ( ord_less_real @ Z4 @ X2 )
     => ~ ( ord_less_real @ X2 @ T ) ) ).

% pinf(5)
thf(fact_4156_pinf_I5_J,axiom,
    ! [T: rat] :
    ? [Z4: rat] :
    ! [X2: rat] :
      ( ( ord_less_rat @ Z4 @ X2 )
     => ~ ( ord_less_rat @ X2 @ T ) ) ).

% pinf(5)
thf(fact_4157_pinf_I5_J,axiom,
    ! [T: num] :
    ? [Z4: num] :
    ! [X2: num] :
      ( ( ord_less_num @ Z4 @ X2 )
     => ~ ( ord_less_num @ X2 @ T ) ) ).

% pinf(5)
thf(fact_4158_pinf_I5_J,axiom,
    ! [T: nat] :
    ? [Z4: nat] :
    ! [X2: nat] :
      ( ( ord_less_nat @ Z4 @ X2 )
     => ~ ( ord_less_nat @ X2 @ T ) ) ).

% pinf(5)
thf(fact_4159_pinf_I5_J,axiom,
    ! [T: int] :
    ? [Z4: int] :
    ! [X2: int] :
      ( ( ord_less_int @ Z4 @ X2 )
     => ~ ( ord_less_int @ X2 @ T ) ) ).

% pinf(5)
thf(fact_4160_pinf_I7_J,axiom,
    ! [T: real] :
    ? [Z4: real] :
    ! [X2: real] :
      ( ( ord_less_real @ Z4 @ X2 )
     => ( ord_less_real @ T @ X2 ) ) ).

% pinf(7)
thf(fact_4161_pinf_I7_J,axiom,
    ! [T: rat] :
    ? [Z4: rat] :
    ! [X2: rat] :
      ( ( ord_less_rat @ Z4 @ X2 )
     => ( ord_less_rat @ T @ X2 ) ) ).

% pinf(7)
thf(fact_4162_pinf_I7_J,axiom,
    ! [T: num] :
    ? [Z4: num] :
    ! [X2: num] :
      ( ( ord_less_num @ Z4 @ X2 )
     => ( ord_less_num @ T @ X2 ) ) ).

% pinf(7)
thf(fact_4163_pinf_I7_J,axiom,
    ! [T: nat] :
    ? [Z4: nat] :
    ! [X2: nat] :
      ( ( ord_less_nat @ Z4 @ X2 )
     => ( ord_less_nat @ T @ X2 ) ) ).

% pinf(7)
thf(fact_4164_pinf_I7_J,axiom,
    ! [T: int] :
    ? [Z4: int] :
    ! [X2: int] :
      ( ( ord_less_int @ Z4 @ X2 )
     => ( ord_less_int @ T @ X2 ) ) ).

% pinf(7)
thf(fact_4165_minf_I1_J,axiom,
    ! [P: real > $o,P6: real > $o,Q: real > $o,Q6: real > $o] :
      ( ? [Z5: real] :
        ! [X5: real] :
          ( ( ord_less_real @ X5 @ Z5 )
         => ( ( P @ X5 )
            = ( P6 @ X5 ) ) )
     => ( ? [Z5: real] :
          ! [X5: real] :
            ( ( ord_less_real @ X5 @ Z5 )
           => ( ( Q @ X5 )
              = ( Q6 @ X5 ) ) )
       => ? [Z4: real] :
          ! [X2: real] :
            ( ( ord_less_real @ X2 @ Z4 )
           => ( ( ( P @ X2 )
                & ( Q @ X2 ) )
              = ( ( P6 @ X2 )
                & ( Q6 @ X2 ) ) ) ) ) ) ).

% minf(1)
thf(fact_4166_minf_I1_J,axiom,
    ! [P: rat > $o,P6: rat > $o,Q: rat > $o,Q6: rat > $o] :
      ( ? [Z5: rat] :
        ! [X5: rat] :
          ( ( ord_less_rat @ X5 @ Z5 )
         => ( ( P @ X5 )
            = ( P6 @ X5 ) ) )
     => ( ? [Z5: rat] :
          ! [X5: rat] :
            ( ( ord_less_rat @ X5 @ Z5 )
           => ( ( Q @ X5 )
              = ( Q6 @ X5 ) ) )
       => ? [Z4: rat] :
          ! [X2: rat] :
            ( ( ord_less_rat @ X2 @ Z4 )
           => ( ( ( P @ X2 )
                & ( Q @ X2 ) )
              = ( ( P6 @ X2 )
                & ( Q6 @ X2 ) ) ) ) ) ) ).

% minf(1)
thf(fact_4167_minf_I1_J,axiom,
    ! [P: num > $o,P6: num > $o,Q: num > $o,Q6: num > $o] :
      ( ? [Z5: num] :
        ! [X5: num] :
          ( ( ord_less_num @ X5 @ Z5 )
         => ( ( P @ X5 )
            = ( P6 @ X5 ) ) )
     => ( ? [Z5: num] :
          ! [X5: num] :
            ( ( ord_less_num @ X5 @ Z5 )
           => ( ( Q @ X5 )
              = ( Q6 @ X5 ) ) )
       => ? [Z4: num] :
          ! [X2: num] :
            ( ( ord_less_num @ X2 @ Z4 )
           => ( ( ( P @ X2 )
                & ( Q @ X2 ) )
              = ( ( P6 @ X2 )
                & ( Q6 @ X2 ) ) ) ) ) ) ).

% minf(1)
thf(fact_4168_minf_I1_J,axiom,
    ! [P: nat > $o,P6: nat > $o,Q: nat > $o,Q6: nat > $o] :
      ( ? [Z5: nat] :
        ! [X5: nat] :
          ( ( ord_less_nat @ X5 @ Z5 )
         => ( ( P @ X5 )
            = ( P6 @ X5 ) ) )
     => ( ? [Z5: nat] :
          ! [X5: nat] :
            ( ( ord_less_nat @ X5 @ Z5 )
           => ( ( Q @ X5 )
              = ( Q6 @ X5 ) ) )
       => ? [Z4: nat] :
          ! [X2: nat] :
            ( ( ord_less_nat @ X2 @ Z4 )
           => ( ( ( P @ X2 )
                & ( Q @ X2 ) )
              = ( ( P6 @ X2 )
                & ( Q6 @ X2 ) ) ) ) ) ) ).

% minf(1)
thf(fact_4169_minf_I1_J,axiom,
    ! [P: int > $o,P6: int > $o,Q: int > $o,Q6: int > $o] :
      ( ? [Z5: int] :
        ! [X5: int] :
          ( ( ord_less_int @ X5 @ Z5 )
         => ( ( P @ X5 )
            = ( P6 @ X5 ) ) )
     => ( ? [Z5: int] :
          ! [X5: int] :
            ( ( ord_less_int @ X5 @ Z5 )
           => ( ( Q @ X5 )
              = ( Q6 @ X5 ) ) )
       => ? [Z4: int] :
          ! [X2: int] :
            ( ( ord_less_int @ X2 @ Z4 )
           => ( ( ( P @ X2 )
                & ( Q @ X2 ) )
              = ( ( P6 @ X2 )
                & ( Q6 @ X2 ) ) ) ) ) ) ).

% minf(1)
thf(fact_4170_minf_I2_J,axiom,
    ! [P: real > $o,P6: real > $o,Q: real > $o,Q6: real > $o] :
      ( ? [Z5: real] :
        ! [X5: real] :
          ( ( ord_less_real @ X5 @ Z5 )
         => ( ( P @ X5 )
            = ( P6 @ X5 ) ) )
     => ( ? [Z5: real] :
          ! [X5: real] :
            ( ( ord_less_real @ X5 @ Z5 )
           => ( ( Q @ X5 )
              = ( Q6 @ X5 ) ) )
       => ? [Z4: real] :
          ! [X2: real] :
            ( ( ord_less_real @ X2 @ Z4 )
           => ( ( ( P @ X2 )
                | ( Q @ X2 ) )
              = ( ( P6 @ X2 )
                | ( Q6 @ X2 ) ) ) ) ) ) ).

% minf(2)
thf(fact_4171_minf_I2_J,axiom,
    ! [P: rat > $o,P6: rat > $o,Q: rat > $o,Q6: rat > $o] :
      ( ? [Z5: rat] :
        ! [X5: rat] :
          ( ( ord_less_rat @ X5 @ Z5 )
         => ( ( P @ X5 )
            = ( P6 @ X5 ) ) )
     => ( ? [Z5: rat] :
          ! [X5: rat] :
            ( ( ord_less_rat @ X5 @ Z5 )
           => ( ( Q @ X5 )
              = ( Q6 @ X5 ) ) )
       => ? [Z4: rat] :
          ! [X2: rat] :
            ( ( ord_less_rat @ X2 @ Z4 )
           => ( ( ( P @ X2 )
                | ( Q @ X2 ) )
              = ( ( P6 @ X2 )
                | ( Q6 @ X2 ) ) ) ) ) ) ).

% minf(2)
thf(fact_4172_minf_I2_J,axiom,
    ! [P: num > $o,P6: num > $o,Q: num > $o,Q6: num > $o] :
      ( ? [Z5: num] :
        ! [X5: num] :
          ( ( ord_less_num @ X5 @ Z5 )
         => ( ( P @ X5 )
            = ( P6 @ X5 ) ) )
     => ( ? [Z5: num] :
          ! [X5: num] :
            ( ( ord_less_num @ X5 @ Z5 )
           => ( ( Q @ X5 )
              = ( Q6 @ X5 ) ) )
       => ? [Z4: num] :
          ! [X2: num] :
            ( ( ord_less_num @ X2 @ Z4 )
           => ( ( ( P @ X2 )
                | ( Q @ X2 ) )
              = ( ( P6 @ X2 )
                | ( Q6 @ X2 ) ) ) ) ) ) ).

% minf(2)
thf(fact_4173_minf_I2_J,axiom,
    ! [P: nat > $o,P6: nat > $o,Q: nat > $o,Q6: nat > $o] :
      ( ? [Z5: nat] :
        ! [X5: nat] :
          ( ( ord_less_nat @ X5 @ Z5 )
         => ( ( P @ X5 )
            = ( P6 @ X5 ) ) )
     => ( ? [Z5: nat] :
          ! [X5: nat] :
            ( ( ord_less_nat @ X5 @ Z5 )
           => ( ( Q @ X5 )
              = ( Q6 @ X5 ) ) )
       => ? [Z4: nat] :
          ! [X2: nat] :
            ( ( ord_less_nat @ X2 @ Z4 )
           => ( ( ( P @ X2 )
                | ( Q @ X2 ) )
              = ( ( P6 @ X2 )
                | ( Q6 @ X2 ) ) ) ) ) ) ).

% minf(2)
thf(fact_4174_minf_I2_J,axiom,
    ! [P: int > $o,P6: int > $o,Q: int > $o,Q6: int > $o] :
      ( ? [Z5: int] :
        ! [X5: int] :
          ( ( ord_less_int @ X5 @ Z5 )
         => ( ( P @ X5 )
            = ( P6 @ X5 ) ) )
     => ( ? [Z5: int] :
          ! [X5: int] :
            ( ( ord_less_int @ X5 @ Z5 )
           => ( ( Q @ X5 )
              = ( Q6 @ X5 ) ) )
       => ? [Z4: int] :
          ! [X2: int] :
            ( ( ord_less_int @ X2 @ Z4 )
           => ( ( ( P @ X2 )
                | ( Q @ X2 ) )
              = ( ( P6 @ X2 )
                | ( Q6 @ X2 ) ) ) ) ) ) ).

% minf(2)
thf(fact_4175_minf_I3_J,axiom,
    ! [T: real] :
    ? [Z4: real] :
    ! [X2: real] :
      ( ( ord_less_real @ X2 @ Z4 )
     => ( X2 != T ) ) ).

% minf(3)
thf(fact_4176_minf_I3_J,axiom,
    ! [T: rat] :
    ? [Z4: rat] :
    ! [X2: rat] :
      ( ( ord_less_rat @ X2 @ Z4 )
     => ( X2 != T ) ) ).

% minf(3)
thf(fact_4177_minf_I3_J,axiom,
    ! [T: num] :
    ? [Z4: num] :
    ! [X2: num] :
      ( ( ord_less_num @ X2 @ Z4 )
     => ( X2 != T ) ) ).

% minf(3)
thf(fact_4178_minf_I3_J,axiom,
    ! [T: nat] :
    ? [Z4: nat] :
    ! [X2: nat] :
      ( ( ord_less_nat @ X2 @ Z4 )
     => ( X2 != T ) ) ).

% minf(3)
thf(fact_4179_minf_I3_J,axiom,
    ! [T: int] :
    ? [Z4: int] :
    ! [X2: int] :
      ( ( ord_less_int @ X2 @ Z4 )
     => ( X2 != T ) ) ).

% minf(3)
thf(fact_4180_minf_I4_J,axiom,
    ! [T: real] :
    ? [Z4: real] :
    ! [X2: real] :
      ( ( ord_less_real @ X2 @ Z4 )
     => ( X2 != T ) ) ).

% minf(4)
thf(fact_4181_minf_I4_J,axiom,
    ! [T: rat] :
    ? [Z4: rat] :
    ! [X2: rat] :
      ( ( ord_less_rat @ X2 @ Z4 )
     => ( X2 != T ) ) ).

% minf(4)
thf(fact_4182_minf_I4_J,axiom,
    ! [T: num] :
    ? [Z4: num] :
    ! [X2: num] :
      ( ( ord_less_num @ X2 @ Z4 )
     => ( X2 != T ) ) ).

% minf(4)
thf(fact_4183_minf_I4_J,axiom,
    ! [T: nat] :
    ? [Z4: nat] :
    ! [X2: nat] :
      ( ( ord_less_nat @ X2 @ Z4 )
     => ( X2 != T ) ) ).

% minf(4)
thf(fact_4184_minf_I4_J,axiom,
    ! [T: int] :
    ? [Z4: int] :
    ! [X2: int] :
      ( ( ord_less_int @ X2 @ Z4 )
     => ( X2 != T ) ) ).

% minf(4)
thf(fact_4185_minf_I5_J,axiom,
    ! [T: real] :
    ? [Z4: real] :
    ! [X2: real] :
      ( ( ord_less_real @ X2 @ Z4 )
     => ( ord_less_real @ X2 @ T ) ) ).

% minf(5)
thf(fact_4186_minf_I5_J,axiom,
    ! [T: rat] :
    ? [Z4: rat] :
    ! [X2: rat] :
      ( ( ord_less_rat @ X2 @ Z4 )
     => ( ord_less_rat @ X2 @ T ) ) ).

% minf(5)
thf(fact_4187_minf_I5_J,axiom,
    ! [T: num] :
    ? [Z4: num] :
    ! [X2: num] :
      ( ( ord_less_num @ X2 @ Z4 )
     => ( ord_less_num @ X2 @ T ) ) ).

% minf(5)
thf(fact_4188_minf_I5_J,axiom,
    ! [T: nat] :
    ? [Z4: nat] :
    ! [X2: nat] :
      ( ( ord_less_nat @ X2 @ Z4 )
     => ( ord_less_nat @ X2 @ T ) ) ).

% minf(5)
thf(fact_4189_minf_I5_J,axiom,
    ! [T: int] :
    ? [Z4: int] :
    ! [X2: int] :
      ( ( ord_less_int @ X2 @ Z4 )
     => ( ord_less_int @ X2 @ T ) ) ).

% minf(5)
thf(fact_4190_minf_I7_J,axiom,
    ! [T: real] :
    ? [Z4: real] :
    ! [X2: real] :
      ( ( ord_less_real @ X2 @ Z4 )
     => ~ ( ord_less_real @ T @ X2 ) ) ).

% minf(7)
thf(fact_4191_minf_I7_J,axiom,
    ! [T: rat] :
    ? [Z4: rat] :
    ! [X2: rat] :
      ( ( ord_less_rat @ X2 @ Z4 )
     => ~ ( ord_less_rat @ T @ X2 ) ) ).

% minf(7)
thf(fact_4192_minf_I7_J,axiom,
    ! [T: num] :
    ? [Z4: num] :
    ! [X2: num] :
      ( ( ord_less_num @ X2 @ Z4 )
     => ~ ( ord_less_num @ T @ X2 ) ) ).

% minf(7)
thf(fact_4193_minf_I7_J,axiom,
    ! [T: nat] :
    ? [Z4: nat] :
    ! [X2: nat] :
      ( ( ord_less_nat @ X2 @ Z4 )
     => ~ ( ord_less_nat @ T @ X2 ) ) ).

% minf(7)
thf(fact_4194_minf_I7_J,axiom,
    ! [T: int] :
    ? [Z4: int] :
    ! [X2: int] :
      ( ( ord_less_int @ X2 @ Z4 )
     => ~ ( ord_less_int @ T @ X2 ) ) ).

% minf(7)
thf(fact_4195_bounded__Max__nat,axiom,
    ! [P: nat > $o,X: nat,M7: nat] :
      ( ( P @ X )
     => ( ! [X5: nat] :
            ( ( P @ X5 )
           => ( ord_less_eq_nat @ X5 @ M7 ) )
       => ~ ! [M2: nat] :
              ( ( P @ M2 )
             => ~ ! [X2: nat] :
                    ( ( P @ X2 )
                   => ( ord_less_eq_nat @ X2 @ M2 ) ) ) ) ) ).

% bounded_Max_nat
thf(fact_4196_fold__atLeastAtMost__nat_Ocases,axiom,
    ! [X: produc3368934014287244435at_num] :
      ~ ! [F2: nat > num > num,A3: nat,B2: nat,Acc: num] :
          ( X
         != ( produc851828971589881931at_num @ F2 @ ( produc1195630363706982562at_num @ A3 @ ( product_Pair_nat_num @ B2 @ Acc ) ) ) ) ).

% fold_atLeastAtMost_nat.cases
thf(fact_4197_fold__atLeastAtMost__nat_Ocases,axiom,
    ! [X: produc4471711990508489141at_nat] :
      ~ ! [F2: nat > nat > nat,A3: nat,B2: nat,Acc: nat] :
          ( X
         != ( produc3209952032786966637at_nat @ F2 @ ( produc487386426758144856at_nat @ A3 @ ( product_Pair_nat_nat @ B2 @ Acc ) ) ) ) ).

% fold_atLeastAtMost_nat.cases
thf(fact_4198_periodic__finite__ex,axiom,
    ! [D: int,P: int > $o] :
      ( ( ord_less_int @ zero_zero_int @ D )
     => ( ! [X5: int,K2: int] :
            ( ( P @ X5 )
            = ( P @ ( minus_minus_int @ X5 @ ( times_times_int @ K2 @ D ) ) ) )
       => ( ( ? [X4: int] : ( P @ X4 ) )
          = ( ? [X3: int] :
                ( ( member_int @ X3 @ ( set_or1266510415728281911st_int @ one_one_int @ D ) )
                & ( P @ X3 ) ) ) ) ) ) ).

% periodic_finite_ex
thf(fact_4199_bset_I3_J,axiom,
    ! [D3: int,T: int,B3: set_int] :
      ( ( ord_less_int @ zero_zero_int @ D3 )
     => ( ( member_int @ ( minus_minus_int @ T @ one_one_int ) @ B3 )
       => ! [X2: int] :
            ( ! [Xa3: int] :
                ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
               => ! [Xb3: int] :
                    ( ( member_int @ Xb3 @ B3 )
                   => ( X2
                     != ( plus_plus_int @ Xb3 @ Xa3 ) ) ) )
           => ( ( X2 = T )
             => ( ( minus_minus_int @ X2 @ D3 )
                = T ) ) ) ) ) ).

% bset(3)
thf(fact_4200_bset_I4_J,axiom,
    ! [D3: int,T: int,B3: set_int] :
      ( ( ord_less_int @ zero_zero_int @ D3 )
     => ( ( member_int @ T @ B3 )
       => ! [X2: int] :
            ( ! [Xa3: int] :
                ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
               => ! [Xb3: int] :
                    ( ( member_int @ Xb3 @ B3 )
                   => ( X2
                     != ( plus_plus_int @ Xb3 @ Xa3 ) ) ) )
           => ( ( X2 != T )
             => ( ( minus_minus_int @ X2 @ D3 )
               != T ) ) ) ) ) ).

% bset(4)
thf(fact_4201_bset_I5_J,axiom,
    ! [D3: int,B3: set_int,T: int] :
      ( ( ord_less_int @ zero_zero_int @ D3 )
     => ! [X2: int] :
          ( ! [Xa3: int] :
              ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
             => ! [Xb3: int] :
                  ( ( member_int @ Xb3 @ B3 )
                 => ( X2
                   != ( plus_plus_int @ Xb3 @ Xa3 ) ) ) )
         => ( ( ord_less_int @ X2 @ T )
           => ( ord_less_int @ ( minus_minus_int @ X2 @ D3 ) @ T ) ) ) ) ).

% bset(5)
thf(fact_4202_bset_I7_J,axiom,
    ! [D3: int,T: int,B3: set_int] :
      ( ( ord_less_int @ zero_zero_int @ D3 )
     => ( ( member_int @ T @ B3 )
       => ! [X2: int] :
            ( ! [Xa3: int] :
                ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
               => ! [Xb3: int] :
                    ( ( member_int @ Xb3 @ B3 )
                   => ( X2
                     != ( plus_plus_int @ Xb3 @ Xa3 ) ) ) )
           => ( ( ord_less_int @ T @ X2 )
             => ( ord_less_int @ T @ ( minus_minus_int @ X2 @ D3 ) ) ) ) ) ) ).

% bset(7)
thf(fact_4203_aset_I3_J,axiom,
    ! [D3: int,T: int,A2: set_int] :
      ( ( ord_less_int @ zero_zero_int @ D3 )
     => ( ( member_int @ ( plus_plus_int @ T @ one_one_int ) @ A2 )
       => ! [X2: int] :
            ( ! [Xa3: int] :
                ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
               => ! [Xb3: int] :
                    ( ( member_int @ Xb3 @ A2 )
                   => ( X2
                     != ( minus_minus_int @ Xb3 @ Xa3 ) ) ) )
           => ( ( X2 = T )
             => ( ( plus_plus_int @ X2 @ D3 )
                = T ) ) ) ) ) ).

% aset(3)
thf(fact_4204_aset_I4_J,axiom,
    ! [D3: int,T: int,A2: set_int] :
      ( ( ord_less_int @ zero_zero_int @ D3 )
     => ( ( member_int @ T @ A2 )
       => ! [X2: int] :
            ( ! [Xa3: int] :
                ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
               => ! [Xb3: int] :
                    ( ( member_int @ Xb3 @ A2 )
                   => ( X2
                     != ( minus_minus_int @ Xb3 @ Xa3 ) ) ) )
           => ( ( X2 != T )
             => ( ( plus_plus_int @ X2 @ D3 )
               != T ) ) ) ) ) ).

% aset(4)
thf(fact_4205_aset_I5_J,axiom,
    ! [D3: int,T: int,A2: set_int] :
      ( ( ord_less_int @ zero_zero_int @ D3 )
     => ( ( member_int @ T @ A2 )
       => ! [X2: int] :
            ( ! [Xa3: int] :
                ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
               => ! [Xb3: int] :
                    ( ( member_int @ Xb3 @ A2 )
                   => ( X2
                     != ( minus_minus_int @ Xb3 @ Xa3 ) ) ) )
           => ( ( ord_less_int @ X2 @ T )
             => ( ord_less_int @ ( plus_plus_int @ X2 @ D3 ) @ T ) ) ) ) ) ).

% aset(5)
thf(fact_4206_aset_I7_J,axiom,
    ! [D3: int,A2: set_int,T: int] :
      ( ( ord_less_int @ zero_zero_int @ D3 )
     => ! [X2: int] :
          ( ! [Xa3: int] :
              ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
             => ! [Xb3: int] :
                  ( ( member_int @ Xb3 @ A2 )
                 => ( X2
                   != ( minus_minus_int @ Xb3 @ Xa3 ) ) ) )
         => ( ( ord_less_int @ T @ X2 )
           => ( ord_less_int @ T @ ( plus_plus_int @ X2 @ D3 ) ) ) ) ) ).

% aset(7)
thf(fact_4207_bset_I6_J,axiom,
    ! [D3: int,B3: set_int,T: int] :
      ( ( ord_less_int @ zero_zero_int @ D3 )
     => ! [X2: int] :
          ( ! [Xa3: int] :
              ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
             => ! [Xb3: int] :
                  ( ( member_int @ Xb3 @ B3 )
                 => ( X2
                   != ( plus_plus_int @ Xb3 @ Xa3 ) ) ) )
         => ( ( ord_less_eq_int @ X2 @ T )
           => ( ord_less_eq_int @ ( minus_minus_int @ X2 @ D3 ) @ T ) ) ) ) ).

% bset(6)
thf(fact_4208_bset_I8_J,axiom,
    ! [D3: int,T: int,B3: set_int] :
      ( ( ord_less_int @ zero_zero_int @ D3 )
     => ( ( member_int @ ( minus_minus_int @ T @ one_one_int ) @ B3 )
       => ! [X2: int] :
            ( ! [Xa3: int] :
                ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
               => ! [Xb3: int] :
                    ( ( member_int @ Xb3 @ B3 )
                   => ( X2
                     != ( plus_plus_int @ Xb3 @ Xa3 ) ) ) )
           => ( ( ord_less_eq_int @ T @ X2 )
             => ( ord_less_eq_int @ T @ ( minus_minus_int @ X2 @ D3 ) ) ) ) ) ) ).

% bset(8)
thf(fact_4209_aset_I6_J,axiom,
    ! [D3: int,T: int,A2: set_int] :
      ( ( ord_less_int @ zero_zero_int @ D3 )
     => ( ( member_int @ ( plus_plus_int @ T @ one_one_int ) @ A2 )
       => ! [X2: int] :
            ( ! [Xa3: int] :
                ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
               => ! [Xb3: int] :
                    ( ( member_int @ Xb3 @ A2 )
                   => ( X2
                     != ( minus_minus_int @ Xb3 @ Xa3 ) ) ) )
           => ( ( ord_less_eq_int @ X2 @ T )
             => ( ord_less_eq_int @ ( plus_plus_int @ X2 @ D3 ) @ T ) ) ) ) ) ).

% aset(6)
thf(fact_4210_aset_I8_J,axiom,
    ! [D3: int,A2: set_int,T: int] :
      ( ( ord_less_int @ zero_zero_int @ D3 )
     => ! [X2: int] :
          ( ! [Xa3: int] :
              ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
             => ! [Xb3: int] :
                  ( ( member_int @ Xb3 @ A2 )
                 => ( X2
                   != ( minus_minus_int @ Xb3 @ Xa3 ) ) ) )
         => ( ( ord_less_eq_int @ T @ X2 )
           => ( ord_less_eq_int @ T @ ( plus_plus_int @ X2 @ D3 ) ) ) ) ) ).

% aset(8)
thf(fact_4211_cppi,axiom,
    ! [D3: int,P: int > $o,P6: int > $o,A2: set_int] :
      ( ( ord_less_int @ zero_zero_int @ D3 )
     => ( ? [Z5: int] :
          ! [X5: int] :
            ( ( ord_less_int @ Z5 @ X5 )
           => ( ( P @ X5 )
              = ( P6 @ X5 ) ) )
       => ( ! [X5: int] :
              ( ! [Xa: int] :
                  ( ( member_int @ Xa @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
                 => ! [Xb2: int] :
                      ( ( member_int @ Xb2 @ A2 )
                     => ( X5
                       != ( minus_minus_int @ Xb2 @ Xa ) ) ) )
             => ( ( P @ X5 )
               => ( P @ ( plus_plus_int @ X5 @ D3 ) ) ) )
         => ( ! [X5: int,K2: int] :
                ( ( P6 @ X5 )
                = ( P6 @ ( minus_minus_int @ X5 @ ( times_times_int @ K2 @ D3 ) ) ) )
           => ( ( ? [X4: int] : ( P @ X4 ) )
              = ( ? [X3: int] :
                    ( ( member_int @ X3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
                    & ( P6 @ X3 ) )
                | ? [X3: int] :
                    ( ( member_int @ X3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
                    & ? [Y3: int] :
                        ( ( member_int @ Y3 @ A2 )
                        & ( P @ ( minus_minus_int @ Y3 @ X3 ) ) ) ) ) ) ) ) ) ) ).

% cppi
thf(fact_4212_cpmi,axiom,
    ! [D3: int,P: int > $o,P6: int > $o,B3: set_int] :
      ( ( ord_less_int @ zero_zero_int @ D3 )
     => ( ? [Z5: int] :
          ! [X5: int] :
            ( ( ord_less_int @ X5 @ Z5 )
           => ( ( P @ X5 )
              = ( P6 @ X5 ) ) )
       => ( ! [X5: int] :
              ( ! [Xa: int] :
                  ( ( member_int @ Xa @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
                 => ! [Xb2: int] :
                      ( ( member_int @ Xb2 @ B3 )
                     => ( X5
                       != ( plus_plus_int @ Xb2 @ Xa ) ) ) )
             => ( ( P @ X5 )
               => ( P @ ( minus_minus_int @ X5 @ D3 ) ) ) )
         => ( ! [X5: int,K2: int] :
                ( ( P6 @ X5 )
                = ( P6 @ ( minus_minus_int @ X5 @ ( times_times_int @ K2 @ D3 ) ) ) )
           => ( ( ? [X4: int] : ( P @ X4 ) )
              = ( ? [X3: int] :
                    ( ( member_int @ X3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
                    & ( P6 @ X3 ) )
                | ? [X3: int] :
                    ( ( member_int @ X3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
                    & ? [Y3: int] :
                        ( ( member_int @ Y3 @ B3 )
                        & ( P @ ( plus_plus_int @ Y3 @ X3 ) ) ) ) ) ) ) ) ) ) ).

% cpmi
thf(fact_4213_pinf_I6_J,axiom,
    ! [T: real] :
    ? [Z4: real] :
    ! [X2: real] :
      ( ( ord_less_real @ Z4 @ X2 )
     => ~ ( ord_less_eq_real @ X2 @ T ) ) ).

% pinf(6)
thf(fact_4214_pinf_I6_J,axiom,
    ! [T: rat] :
    ? [Z4: rat] :
    ! [X2: rat] :
      ( ( ord_less_rat @ Z4 @ X2 )
     => ~ ( ord_less_eq_rat @ X2 @ T ) ) ).

% pinf(6)
thf(fact_4215_pinf_I6_J,axiom,
    ! [T: num] :
    ? [Z4: num] :
    ! [X2: num] :
      ( ( ord_less_num @ Z4 @ X2 )
     => ~ ( ord_less_eq_num @ X2 @ T ) ) ).

% pinf(6)
thf(fact_4216_pinf_I6_J,axiom,
    ! [T: nat] :
    ? [Z4: nat] :
    ! [X2: nat] :
      ( ( ord_less_nat @ Z4 @ X2 )
     => ~ ( ord_less_eq_nat @ X2 @ T ) ) ).

% pinf(6)
thf(fact_4217_pinf_I6_J,axiom,
    ! [T: int] :
    ? [Z4: int] :
    ! [X2: int] :
      ( ( ord_less_int @ Z4 @ X2 )
     => ~ ( ord_less_eq_int @ X2 @ T ) ) ).

% pinf(6)
thf(fact_4218_pinf_I8_J,axiom,
    ! [T: real] :
    ? [Z4: real] :
    ! [X2: real] :
      ( ( ord_less_real @ Z4 @ X2 )
     => ( ord_less_eq_real @ T @ X2 ) ) ).

% pinf(8)
thf(fact_4219_pinf_I8_J,axiom,
    ! [T: rat] :
    ? [Z4: rat] :
    ! [X2: rat] :
      ( ( ord_less_rat @ Z4 @ X2 )
     => ( ord_less_eq_rat @ T @ X2 ) ) ).

% pinf(8)
thf(fact_4220_pinf_I8_J,axiom,
    ! [T: num] :
    ? [Z4: num] :
    ! [X2: num] :
      ( ( ord_less_num @ Z4 @ X2 )
     => ( ord_less_eq_num @ T @ X2 ) ) ).

% pinf(8)
thf(fact_4221_pinf_I8_J,axiom,
    ! [T: nat] :
    ? [Z4: nat] :
    ! [X2: nat] :
      ( ( ord_less_nat @ Z4 @ X2 )
     => ( ord_less_eq_nat @ T @ X2 ) ) ).

% pinf(8)
thf(fact_4222_pinf_I8_J,axiom,
    ! [T: int] :
    ? [Z4: int] :
    ! [X2: int] :
      ( ( ord_less_int @ Z4 @ X2 )
     => ( ord_less_eq_int @ T @ X2 ) ) ).

% pinf(8)
thf(fact_4223_minf_I6_J,axiom,
    ! [T: real] :
    ? [Z4: real] :
    ! [X2: real] :
      ( ( ord_less_real @ X2 @ Z4 )
     => ( ord_less_eq_real @ X2 @ T ) ) ).

% minf(6)
thf(fact_4224_minf_I6_J,axiom,
    ! [T: rat] :
    ? [Z4: rat] :
    ! [X2: rat] :
      ( ( ord_less_rat @ X2 @ Z4 )
     => ( ord_less_eq_rat @ X2 @ T ) ) ).

% minf(6)
thf(fact_4225_minf_I6_J,axiom,
    ! [T: num] :
    ? [Z4: num] :
    ! [X2: num] :
      ( ( ord_less_num @ X2 @ Z4 )
     => ( ord_less_eq_num @ X2 @ T ) ) ).

% minf(6)
thf(fact_4226_minf_I6_J,axiom,
    ! [T: nat] :
    ? [Z4: nat] :
    ! [X2: nat] :
      ( ( ord_less_nat @ X2 @ Z4 )
     => ( ord_less_eq_nat @ X2 @ T ) ) ).

% minf(6)
thf(fact_4227_minf_I6_J,axiom,
    ! [T: int] :
    ? [Z4: int] :
    ! [X2: int] :
      ( ( ord_less_int @ X2 @ Z4 )
     => ( ord_less_eq_int @ X2 @ T ) ) ).

% minf(6)
thf(fact_4228_minf_I8_J,axiom,
    ! [T: real] :
    ? [Z4: real] :
    ! [X2: real] :
      ( ( ord_less_real @ X2 @ Z4 )
     => ~ ( ord_less_eq_real @ T @ X2 ) ) ).

% minf(8)
thf(fact_4229_minf_I8_J,axiom,
    ! [T: rat] :
    ? [Z4: rat] :
    ! [X2: rat] :
      ( ( ord_less_rat @ X2 @ Z4 )
     => ~ ( ord_less_eq_rat @ T @ X2 ) ) ).

% minf(8)
thf(fact_4230_minf_I8_J,axiom,
    ! [T: num] :
    ? [Z4: num] :
    ! [X2: num] :
      ( ( ord_less_num @ X2 @ Z4 )
     => ~ ( ord_less_eq_num @ T @ X2 ) ) ).

% minf(8)
thf(fact_4231_minf_I8_J,axiom,
    ! [T: nat] :
    ? [Z4: nat] :
    ! [X2: nat] :
      ( ( ord_less_nat @ X2 @ Z4 )
     => ~ ( ord_less_eq_nat @ T @ X2 ) ) ).

% minf(8)
thf(fact_4232_minf_I8_J,axiom,
    ! [T: int] :
    ? [Z4: int] :
    ! [X2: int] :
      ( ( ord_less_int @ X2 @ Z4 )
     => ~ ( ord_less_eq_int @ T @ X2 ) ) ).

% minf(8)
thf(fact_4233_inf__period_I2_J,axiom,
    ! [P: real > $o,D3: real,Q: real > $o] :
      ( ! [X5: real,K2: real] :
          ( ( P @ X5 )
          = ( P @ ( minus_minus_real @ X5 @ ( times_times_real @ K2 @ D3 ) ) ) )
     => ( ! [X5: real,K2: real] :
            ( ( Q @ X5 )
            = ( Q @ ( minus_minus_real @ X5 @ ( times_times_real @ K2 @ D3 ) ) ) )
       => ! [X2: real,K4: real] :
            ( ( ( P @ X2 )
              | ( Q @ X2 ) )
            = ( ( P @ ( minus_minus_real @ X2 @ ( times_times_real @ K4 @ D3 ) ) )
              | ( Q @ ( minus_minus_real @ X2 @ ( times_times_real @ K4 @ D3 ) ) ) ) ) ) ) ).

% inf_period(2)
thf(fact_4234_inf__period_I2_J,axiom,
    ! [P: rat > $o,D3: rat,Q: rat > $o] :
      ( ! [X5: rat,K2: rat] :
          ( ( P @ X5 )
          = ( P @ ( minus_minus_rat @ X5 @ ( times_times_rat @ K2 @ D3 ) ) ) )
     => ( ! [X5: rat,K2: rat] :
            ( ( Q @ X5 )
            = ( Q @ ( minus_minus_rat @ X5 @ ( times_times_rat @ K2 @ D3 ) ) ) )
       => ! [X2: rat,K4: rat] :
            ( ( ( P @ X2 )
              | ( Q @ X2 ) )
            = ( ( P @ ( minus_minus_rat @ X2 @ ( times_times_rat @ K4 @ D3 ) ) )
              | ( Q @ ( minus_minus_rat @ X2 @ ( times_times_rat @ K4 @ D3 ) ) ) ) ) ) ) ).

% inf_period(2)
thf(fact_4235_inf__period_I2_J,axiom,
    ! [P: int > $o,D3: int,Q: int > $o] :
      ( ! [X5: int,K2: int] :
          ( ( P @ X5 )
          = ( P @ ( minus_minus_int @ X5 @ ( times_times_int @ K2 @ D3 ) ) ) )
     => ( ! [X5: int,K2: int] :
            ( ( Q @ X5 )
            = ( Q @ ( minus_minus_int @ X5 @ ( times_times_int @ K2 @ D3 ) ) ) )
       => ! [X2: int,K4: int] :
            ( ( ( P @ X2 )
              | ( Q @ X2 ) )
            = ( ( P @ ( minus_minus_int @ X2 @ ( times_times_int @ K4 @ D3 ) ) )
              | ( Q @ ( minus_minus_int @ X2 @ ( times_times_int @ K4 @ D3 ) ) ) ) ) ) ) ).

% inf_period(2)
thf(fact_4236_inf__period_I1_J,axiom,
    ! [P: real > $o,D3: real,Q: real > $o] :
      ( ! [X5: real,K2: real] :
          ( ( P @ X5 )
          = ( P @ ( minus_minus_real @ X5 @ ( times_times_real @ K2 @ D3 ) ) ) )
     => ( ! [X5: real,K2: real] :
            ( ( Q @ X5 )
            = ( Q @ ( minus_minus_real @ X5 @ ( times_times_real @ K2 @ D3 ) ) ) )
       => ! [X2: real,K4: real] :
            ( ( ( P @ X2 )
              & ( Q @ X2 ) )
            = ( ( P @ ( minus_minus_real @ X2 @ ( times_times_real @ K4 @ D3 ) ) )
              & ( Q @ ( minus_minus_real @ X2 @ ( times_times_real @ K4 @ D3 ) ) ) ) ) ) ) ).

% inf_period(1)
thf(fact_4237_inf__period_I1_J,axiom,
    ! [P: rat > $o,D3: rat,Q: rat > $o] :
      ( ! [X5: rat,K2: rat] :
          ( ( P @ X5 )
          = ( P @ ( minus_minus_rat @ X5 @ ( times_times_rat @ K2 @ D3 ) ) ) )
     => ( ! [X5: rat,K2: rat] :
            ( ( Q @ X5 )
            = ( Q @ ( minus_minus_rat @ X5 @ ( times_times_rat @ K2 @ D3 ) ) ) )
       => ! [X2: rat,K4: rat] :
            ( ( ( P @ X2 )
              & ( Q @ X2 ) )
            = ( ( P @ ( minus_minus_rat @ X2 @ ( times_times_rat @ K4 @ D3 ) ) )
              & ( Q @ ( minus_minus_rat @ X2 @ ( times_times_rat @ K4 @ D3 ) ) ) ) ) ) ) ).

% inf_period(1)
thf(fact_4238_inf__period_I1_J,axiom,
    ! [P: int > $o,D3: int,Q: int > $o] :
      ( ! [X5: int,K2: int] :
          ( ( P @ X5 )
          = ( P @ ( minus_minus_int @ X5 @ ( times_times_int @ K2 @ D3 ) ) ) )
     => ( ! [X5: int,K2: int] :
            ( ( Q @ X5 )
            = ( Q @ ( minus_minus_int @ X5 @ ( times_times_int @ K2 @ D3 ) ) ) )
       => ! [X2: int,K4: int] :
            ( ( ( P @ X2 )
              & ( Q @ X2 ) )
            = ( ( P @ ( minus_minus_int @ X2 @ ( times_times_int @ K4 @ D3 ) ) )
              & ( Q @ ( minus_minus_int @ X2 @ ( times_times_int @ K4 @ D3 ) ) ) ) ) ) ) ).

% inf_period(1)
thf(fact_4239_conj__le__cong,axiom,
    ! [X: int,X7: int,P: $o,P6: $o] :
      ( ( X = X7 )
     => ( ( ( ord_less_eq_int @ zero_zero_int @ X7 )
         => ( P = P6 ) )
       => ( ( ( ord_less_eq_int @ zero_zero_int @ X )
            & P )
          = ( ( ord_less_eq_int @ zero_zero_int @ X7 )
            & P6 ) ) ) ) ).

% conj_le_cong
thf(fact_4240_imp__le__cong,axiom,
    ! [X: int,X7: int,P: $o,P6: $o] :
      ( ( X = X7 )
     => ( ( ( ord_less_eq_int @ zero_zero_int @ X7 )
         => ( P = P6 ) )
       => ( ( ( ord_less_eq_int @ zero_zero_int @ X )
           => P )
          = ( ( ord_less_eq_int @ zero_zero_int @ X7 )
           => P6 ) ) ) ) ).

% imp_le_cong
thf(fact_4241_atLeastatMost__psubset__iff,axiom,
    ! [A: set_int,B: set_int,C: set_int,D: set_int] :
      ( ( ord_less_set_set_int @ ( set_or370866239135849197et_int @ A @ B ) @ ( set_or370866239135849197et_int @ C @ D ) )
      = ( ( ~ ( ord_less_eq_set_int @ A @ B )
          | ( ( ord_less_eq_set_int @ C @ A )
            & ( ord_less_eq_set_int @ B @ D )
            & ( ( ord_less_set_int @ C @ A )
              | ( ord_less_set_int @ B @ D ) ) ) )
        & ( ord_less_eq_set_int @ C @ D ) ) ) ).

% atLeastatMost_psubset_iff
thf(fact_4242_atLeastatMost__psubset__iff,axiom,
    ! [A: rat,B: rat,C: rat,D: rat] :
      ( ( ord_less_set_rat @ ( set_or633870826150836451st_rat @ A @ B ) @ ( set_or633870826150836451st_rat @ C @ D ) )
      = ( ( ~ ( ord_less_eq_rat @ A @ B )
          | ( ( ord_less_eq_rat @ C @ A )
            & ( ord_less_eq_rat @ B @ D )
            & ( ( ord_less_rat @ C @ A )
              | ( ord_less_rat @ B @ D ) ) ) )
        & ( ord_less_eq_rat @ C @ D ) ) ) ).

% atLeastatMost_psubset_iff
thf(fact_4243_atLeastatMost__psubset__iff,axiom,
    ! [A: num,B: num,C: num,D: num] :
      ( ( ord_less_set_num @ ( set_or7049704709247886629st_num @ A @ B ) @ ( set_or7049704709247886629st_num @ C @ D ) )
      = ( ( ~ ( ord_less_eq_num @ A @ B )
          | ( ( ord_less_eq_num @ C @ A )
            & ( ord_less_eq_num @ B @ D )
            & ( ( ord_less_num @ C @ A )
              | ( ord_less_num @ B @ D ) ) ) )
        & ( ord_less_eq_num @ C @ D ) ) ) ).

% atLeastatMost_psubset_iff
thf(fact_4244_atLeastatMost__psubset__iff,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_set_nat @ ( set_or1269000886237332187st_nat @ A @ B ) @ ( set_or1269000886237332187st_nat @ C @ D ) )
      = ( ( ~ ( ord_less_eq_nat @ A @ B )
          | ( ( ord_less_eq_nat @ C @ A )
            & ( ord_less_eq_nat @ B @ D )
            & ( ( ord_less_nat @ C @ A )
              | ( ord_less_nat @ B @ D ) ) ) )
        & ( ord_less_eq_nat @ C @ D ) ) ) ).

% atLeastatMost_psubset_iff
thf(fact_4245_atLeastatMost__psubset__iff,axiom,
    ! [A: int,B: int,C: int,D: int] :
      ( ( ord_less_set_int @ ( set_or1266510415728281911st_int @ A @ B ) @ ( set_or1266510415728281911st_int @ C @ D ) )
      = ( ( ~ ( ord_less_eq_int @ A @ B )
          | ( ( ord_less_eq_int @ C @ A )
            & ( ord_less_eq_int @ B @ D )
            & ( ( ord_less_int @ C @ A )
              | ( ord_less_int @ B @ D ) ) ) )
        & ( ord_less_eq_int @ C @ D ) ) ) ).

% atLeastatMost_psubset_iff
thf(fact_4246_atLeastatMost__psubset__iff,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( ord_less_set_real @ ( set_or1222579329274155063t_real @ A @ B ) @ ( set_or1222579329274155063t_real @ C @ D ) )
      = ( ( ~ ( ord_less_eq_real @ A @ B )
          | ( ( ord_less_eq_real @ C @ A )
            & ( ord_less_eq_real @ B @ D )
            & ( ( ord_less_real @ C @ A )
              | ( ord_less_real @ B @ D ) ) ) )
        & ( ord_less_eq_real @ C @ D ) ) ) ).

% atLeastatMost_psubset_iff
thf(fact_4247_plusinfinity,axiom,
    ! [D: int,P6: int > $o,P: int > $o] :
      ( ( ord_less_int @ zero_zero_int @ D )
     => ( ! [X5: int,K2: int] :
            ( ( P6 @ X5 )
            = ( P6 @ ( minus_minus_int @ X5 @ ( times_times_int @ K2 @ D ) ) ) )
       => ( ? [Z5: int] :
            ! [X5: int] :
              ( ( ord_less_int @ Z5 @ X5 )
             => ( ( P @ X5 )
                = ( P6 @ X5 ) ) )
         => ( ? [X_12: int] : ( P6 @ X_12 )
           => ? [X_1: int] : ( P @ X_1 ) ) ) ) ) ).

% plusinfinity
thf(fact_4248_minusinfinity,axiom,
    ! [D: int,P1: int > $o,P: int > $o] :
      ( ( ord_less_int @ zero_zero_int @ D )
     => ( ! [X5: int,K2: int] :
            ( ( P1 @ X5 )
            = ( P1 @ ( minus_minus_int @ X5 @ ( times_times_int @ K2 @ D ) ) ) )
       => ( ? [Z5: int] :
            ! [X5: int] :
              ( ( ord_less_int @ X5 @ Z5 )
             => ( ( P @ X5 )
                = ( P1 @ X5 ) ) )
         => ( ? [X_12: int] : ( P1 @ X_12 )
           => ? [X_1: int] : ( P @ X_1 ) ) ) ) ) ).

% minusinfinity
thf(fact_4249_flip__bit__Suc,axiom,
    ! [N2: nat,A: code_integer] :
      ( ( bit_se1345352211410354436nteger @ ( suc @ N2 ) @ A )
      = ( plus_p5714425477246183910nteger @ ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_se1345352211410354436nteger @ N2 @ ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ) ).

% flip_bit_Suc
thf(fact_4250_flip__bit__Suc,axiom,
    ! [N2: nat,A: int] :
      ( ( bit_se2159334234014336723it_int @ ( suc @ N2 ) @ A )
      = ( plus_plus_int @ ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se2159334234014336723it_int @ N2 @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ).

% flip_bit_Suc
thf(fact_4251_flip__bit__Suc,axiom,
    ! [N2: nat,A: nat] :
      ( ( bit_se2161824704523386999it_nat @ ( suc @ N2 ) @ A )
      = ( plus_plus_nat @ ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se2161824704523386999it_nat @ N2 @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% flip_bit_Suc
thf(fact_4252_Bolzano,axiom,
    ! [A: real,B: real,P: real > real > $o] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ! [A3: real,B2: real,C3: real] :
            ( ( P @ A3 @ B2 )
           => ( ( P @ B2 @ C3 )
             => ( ( ord_less_eq_real @ A3 @ B2 )
               => ( ( ord_less_eq_real @ B2 @ C3 )
                 => ( P @ A3 @ C3 ) ) ) ) )
       => ( ! [X5: real] :
              ( ( ord_less_eq_real @ A @ X5 )
             => ( ( ord_less_eq_real @ X5 @ B )
               => ? [D5: real] :
                    ( ( ord_less_real @ zero_zero_real @ D5 )
                    & ! [A3: real,B2: real] :
                        ( ( ( ord_less_eq_real @ A3 @ X5 )
                          & ( ord_less_eq_real @ X5 @ B2 )
                          & ( ord_less_real @ ( minus_minus_real @ B2 @ A3 ) @ D5 ) )
                       => ( P @ A3 @ B2 ) ) ) ) )
         => ( P @ A @ B ) ) ) ) ).

% Bolzano
thf(fact_4253_mult__le__cancel__iff2,axiom,
    ! [Z: real,X: real,Y: real] :
      ( ( ord_less_real @ zero_zero_real @ Z )
     => ( ( ord_less_eq_real @ ( times_times_real @ Z @ X ) @ ( times_times_real @ Z @ Y ) )
        = ( ord_less_eq_real @ X @ Y ) ) ) ).

% mult_le_cancel_iff2
thf(fact_4254_mult__le__cancel__iff2,axiom,
    ! [Z: rat,X: rat,Y: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ Z )
     => ( ( ord_less_eq_rat @ ( times_times_rat @ Z @ X ) @ ( times_times_rat @ Z @ Y ) )
        = ( ord_less_eq_rat @ X @ Y ) ) ) ).

% mult_le_cancel_iff2
thf(fact_4255_mult__le__cancel__iff2,axiom,
    ! [Z: int,X: int,Y: int] :
      ( ( ord_less_int @ zero_zero_int @ Z )
     => ( ( ord_less_eq_int @ ( times_times_int @ Z @ X ) @ ( times_times_int @ Z @ Y ) )
        = ( ord_less_eq_int @ X @ Y ) ) ) ).

% mult_le_cancel_iff2
thf(fact_4256_mult__le__cancel__iff1,axiom,
    ! [Z: real,X: real,Y: real] :
      ( ( ord_less_real @ zero_zero_real @ Z )
     => ( ( ord_less_eq_real @ ( times_times_real @ X @ Z ) @ ( times_times_real @ Y @ Z ) )
        = ( ord_less_eq_real @ X @ Y ) ) ) ).

% mult_le_cancel_iff1
thf(fact_4257_mult__le__cancel__iff1,axiom,
    ! [Z: rat,X: rat,Y: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ Z )
     => ( ( ord_less_eq_rat @ ( times_times_rat @ X @ Z ) @ ( times_times_rat @ Y @ Z ) )
        = ( ord_less_eq_rat @ X @ Y ) ) ) ).

% mult_le_cancel_iff1
thf(fact_4258_mult__le__cancel__iff1,axiom,
    ! [Z: int,X: int,Y: int] :
      ( ( ord_less_int @ zero_zero_int @ Z )
     => ( ( ord_less_eq_int @ ( times_times_int @ X @ Z ) @ ( times_times_int @ Y @ Z ) )
        = ( ord_less_eq_int @ X @ Y ) ) ) ).

% mult_le_cancel_iff1
thf(fact_4259_divides__aux__eq,axiom,
    ! [Q2: nat,R2: nat] :
      ( ( unique6322359934112328802ux_nat @ ( product_Pair_nat_nat @ Q2 @ R2 ) )
      = ( R2 = zero_zero_nat ) ) ).

% divides_aux_eq
thf(fact_4260_divides__aux__eq,axiom,
    ! [Q2: int,R2: int] :
      ( ( unique6319869463603278526ux_int @ ( product_Pair_int_int @ Q2 @ R2 ) )
      = ( R2 = zero_zero_int ) ) ).

% divides_aux_eq
thf(fact_4261_flip__bit__nonnegative__int__iff,axiom,
    ! [N2: nat,K: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( bit_se2159334234014336723it_int @ N2 @ K ) )
      = ( ord_less_eq_int @ zero_zero_int @ K ) ) ).

% flip_bit_nonnegative_int_iff
thf(fact_4262_flip__bit__negative__int__iff,axiom,
    ! [N2: nat,K: int] :
      ( ( ord_less_int @ ( bit_se2159334234014336723it_int @ N2 @ K ) @ zero_zero_int )
      = ( ord_less_int @ K @ zero_zero_int ) ) ).

% flip_bit_negative_int_iff
thf(fact_4263_mult__less__iff1,axiom,
    ! [Z: real,X: real,Y: real] :
      ( ( ord_less_real @ zero_zero_real @ Z )
     => ( ( ord_less_real @ ( times_times_real @ X @ Z ) @ ( times_times_real @ Y @ Z ) )
        = ( ord_less_real @ X @ Y ) ) ) ).

% mult_less_iff1
thf(fact_4264_mult__less__iff1,axiom,
    ! [Z: rat,X: rat,Y: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ Z )
     => ( ( ord_less_rat @ ( times_times_rat @ X @ Z ) @ ( times_times_rat @ Y @ Z ) )
        = ( ord_less_rat @ X @ Y ) ) ) ).

% mult_less_iff1
thf(fact_4265_mult__less__iff1,axiom,
    ! [Z: int,X: int,Y: int] :
      ( ( ord_less_int @ zero_zero_int @ Z )
     => ( ( ord_less_int @ ( times_times_int @ X @ Z ) @ ( times_times_int @ Y @ Z ) )
        = ( ord_less_int @ X @ Y ) ) ) ).

% mult_less_iff1
thf(fact_4266_neg__eucl__rel__int__mult__2,axiom,
    ! [B: int,A: int,Q2: int,R2: int] :
      ( ( ord_less_eq_int @ B @ zero_zero_int )
     => ( ( eucl_rel_int @ ( plus_plus_int @ A @ one_one_int ) @ B @ ( product_Pair_int_int @ Q2 @ R2 ) )
       => ( eucl_rel_int @ ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) @ ( product_Pair_int_int @ Q2 @ ( minus_minus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ R2 ) @ one_one_int ) ) ) ) ) ).

% neg_eucl_rel_int_mult_2
thf(fact_4267_product__nth,axiom,
    ! [N2: nat,Xs2: list_num,Ys: list_num] :
      ( ( ord_less_nat @ N2 @ ( times_times_nat @ ( size_size_list_num @ Xs2 ) @ ( size_size_list_num @ Ys ) ) )
     => ( ( nth_Pr6456567536196504476um_num @ ( product_num_num @ Xs2 @ Ys ) @ N2 )
        = ( product_Pair_num_num @ ( nth_num @ Xs2 @ ( divide_divide_nat @ N2 @ ( size_size_list_num @ Ys ) ) ) @ ( nth_num @ Ys @ ( modulo_modulo_nat @ N2 @ ( size_size_list_num @ Ys ) ) ) ) ) ) ).

% product_nth
thf(fact_4268_product__nth,axiom,
    ! [N2: nat,Xs2: list_nat,Ys: list_num] :
      ( ( ord_less_nat @ N2 @ ( times_times_nat @ ( size_size_list_nat @ Xs2 ) @ ( size_size_list_num @ Ys ) ) )
     => ( ( nth_Pr8326237132889035090at_num @ ( product_nat_num @ Xs2 @ Ys ) @ N2 )
        = ( product_Pair_nat_num @ ( nth_nat @ Xs2 @ ( divide_divide_nat @ N2 @ ( size_size_list_num @ Ys ) ) ) @ ( nth_num @ Ys @ ( modulo_modulo_nat @ N2 @ ( size_size_list_num @ Ys ) ) ) ) ) ) ).

% product_nth
thf(fact_4269_product__nth,axiom,
    ! [N2: nat,Xs2: list_nat,Ys: list_nat] :
      ( ( ord_less_nat @ N2 @ ( times_times_nat @ ( size_size_list_nat @ Xs2 ) @ ( size_size_list_nat @ Ys ) ) )
     => ( ( nth_Pr7617993195940197384at_nat @ ( product_nat_nat @ Xs2 @ Ys ) @ N2 )
        = ( product_Pair_nat_nat @ ( nth_nat @ Xs2 @ ( divide_divide_nat @ N2 @ ( size_size_list_nat @ Ys ) ) ) @ ( nth_nat @ Ys @ ( modulo_modulo_nat @ N2 @ ( size_size_list_nat @ Ys ) ) ) ) ) ) ).

% product_nth
thf(fact_4270_product__nth,axiom,
    ! [N2: nat,Xs2: list_nat,Ys: list_VEBT_VEBT] :
      ( ( ord_less_nat @ N2 @ ( times_times_nat @ ( size_size_list_nat @ Xs2 ) @ ( size_s6755466524823107622T_VEBT @ Ys ) ) )
     => ( ( nth_Pr744662078594809490T_VEBT @ ( produc7156399406898700509T_VEBT @ Xs2 @ Ys ) @ N2 )
        = ( produc599794634098209291T_VEBT @ ( nth_nat @ Xs2 @ ( divide_divide_nat @ N2 @ ( size_s6755466524823107622T_VEBT @ Ys ) ) ) @ ( nth_VEBT_VEBT @ Ys @ ( modulo_modulo_nat @ N2 @ ( size_s6755466524823107622T_VEBT @ Ys ) ) ) ) ) ) ).

% product_nth
thf(fact_4271_product__nth,axiom,
    ! [N2: nat,Xs2: list_nat,Ys: list_o] :
      ( ( ord_less_nat @ N2 @ ( times_times_nat @ ( size_size_list_nat @ Xs2 ) @ ( size_size_list_o @ Ys ) ) )
     => ( ( nth_Pr112076138515278198_nat_o @ ( product_nat_o @ Xs2 @ Ys ) @ N2 )
        = ( product_Pair_nat_o @ ( nth_nat @ Xs2 @ ( divide_divide_nat @ N2 @ ( size_size_list_o @ Ys ) ) ) @ ( nth_o @ Ys @ ( modulo_modulo_nat @ N2 @ ( size_size_list_o @ Ys ) ) ) ) ) ) ).

% product_nth
thf(fact_4272_product__nth,axiom,
    ! [N2: nat,Xs2: list_Code_integer,Ys: list_o] :
      ( ( ord_less_nat @ N2 @ ( times_times_nat @ ( size_s3445333598471063425nteger @ Xs2 ) @ ( size_size_list_o @ Ys ) ) )
     => ( ( nth_Pr8522763379788166057eger_o @ ( produc3607205314601156340eger_o @ Xs2 @ Ys ) @ N2 )
        = ( produc6677183202524767010eger_o @ ( nth_Code_integer @ Xs2 @ ( divide_divide_nat @ N2 @ ( size_size_list_o @ Ys ) ) ) @ ( nth_o @ Ys @ ( modulo_modulo_nat @ N2 @ ( size_size_list_o @ Ys ) ) ) ) ) ) ).

% product_nth
thf(fact_4273_product__nth,axiom,
    ! [N2: nat,Xs2: list_nat,Ys: list_int] :
      ( ( ord_less_nat @ N2 @ ( times_times_nat @ ( size_size_list_nat @ Xs2 ) @ ( size_size_list_int @ Ys ) ) )
     => ( ( nth_Pr3440142176431000676at_int @ ( product_nat_int @ Xs2 @ Ys ) @ N2 )
        = ( product_Pair_nat_int @ ( nth_nat @ Xs2 @ ( divide_divide_nat @ N2 @ ( size_size_list_int @ Ys ) ) ) @ ( nth_int @ Ys @ ( modulo_modulo_nat @ N2 @ ( size_size_list_int @ Ys ) ) ) ) ) ) ).

% product_nth
thf(fact_4274_product__nth,axiom,
    ! [N2: nat,Xs2: list_VEBT_VEBT,Ys: list_nat] :
      ( ( ord_less_nat @ N2 @ ( times_times_nat @ ( size_s6755466524823107622T_VEBT @ Xs2 ) @ ( size_size_list_nat @ Ys ) ) )
     => ( ( nth_Pr1791586995822124652BT_nat @ ( produc7295137177222721919BT_nat @ Xs2 @ Ys ) @ N2 )
        = ( produc738532404422230701BT_nat @ ( nth_VEBT_VEBT @ Xs2 @ ( divide_divide_nat @ N2 @ ( size_size_list_nat @ Ys ) ) ) @ ( nth_nat @ Ys @ ( modulo_modulo_nat @ N2 @ ( size_size_list_nat @ Ys ) ) ) ) ) ) ).

% product_nth
thf(fact_4275_product__nth,axiom,
    ! [N2: nat,Xs2: list_VEBT_VEBT,Ys: list_VEBT_VEBT] :
      ( ( ord_less_nat @ N2 @ ( times_times_nat @ ( size_s6755466524823107622T_VEBT @ Xs2 ) @ ( size_s6755466524823107622T_VEBT @ Ys ) ) )
     => ( ( nth_Pr4953567300277697838T_VEBT @ ( produc4743750530478302277T_VEBT @ Xs2 @ Ys ) @ N2 )
        = ( produc537772716801021591T_VEBT @ ( nth_VEBT_VEBT @ Xs2 @ ( divide_divide_nat @ N2 @ ( size_s6755466524823107622T_VEBT @ Ys ) ) ) @ ( nth_VEBT_VEBT @ Ys @ ( modulo_modulo_nat @ N2 @ ( size_s6755466524823107622T_VEBT @ Ys ) ) ) ) ) ) ).

% product_nth
thf(fact_4276_product__nth,axiom,
    ! [N2: nat,Xs2: list_VEBT_VEBT,Ys: list_o] :
      ( ( ord_less_nat @ N2 @ ( times_times_nat @ ( size_s6755466524823107622T_VEBT @ Xs2 ) @ ( size_size_list_o @ Ys ) ) )
     => ( ( nth_Pr4606735188037164562VEBT_o @ ( product_VEBT_VEBT_o @ Xs2 @ Ys ) @ N2 )
        = ( produc8721562602347293563VEBT_o @ ( nth_VEBT_VEBT @ Xs2 @ ( divide_divide_nat @ N2 @ ( size_size_list_o @ Ys ) ) ) @ ( nth_o @ Ys @ ( modulo_modulo_nat @ N2 @ ( size_size_list_o @ Ys ) ) ) ) ) ) ).

% product_nth
thf(fact_4277_obtain__set__pred,axiom,
    ! [Z: nat,X: nat,A2: set_nat] :
      ( ( ord_less_nat @ Z @ X )
     => ( ( vEBT_VEBT_min_in_set @ A2 @ Z )
       => ( ( finite_finite_nat @ A2 )
         => ? [X_1: nat] : ( vEBT_is_pred_in_set @ A2 @ X @ X_1 ) ) ) ) ).

% obtain_set_pred
thf(fact_4278_obtain__set__succ,axiom,
    ! [X: nat,Z: nat,A2: set_nat,B3: set_nat] :
      ( ( ord_less_nat @ X @ Z )
     => ( ( vEBT_VEBT_max_in_set @ A2 @ Z )
       => ( ( finite_finite_nat @ B3 )
         => ( ( A2 = B3 )
           => ? [X_1: nat] : ( vEBT_is_succ_in_set @ A2 @ X @ X_1 ) ) ) ) ) ).

% obtain_set_succ
thf(fact_4279_set__vebt__finite,axiom,
    ! [T: vEBT_VEBT,N2: nat] :
      ( ( vEBT_invar_vebt @ T @ N2 )
     => ( finite_finite_nat @ ( vEBT_VEBT_set_vebt @ T ) ) ) ).

% set_vebt_finite
thf(fact_4280_succ__none__empty,axiom,
    ! [Xs2: set_nat,A: nat] :
      ( ~ ? [X_1: nat] : ( vEBT_is_succ_in_set @ Xs2 @ A @ X_1 )
     => ( ( finite_finite_nat @ Xs2 )
       => ~ ? [X2: nat] :
              ( ( member_nat @ X2 @ Xs2 )
              & ( ord_less_nat @ A @ X2 ) ) ) ) ).

% succ_none_empty
thf(fact_4281_pred__none__empty,axiom,
    ! [Xs2: set_nat,A: nat] :
      ( ~ ? [X_1: nat] : ( vEBT_is_pred_in_set @ Xs2 @ A @ X_1 )
     => ( ( finite_finite_nat @ Xs2 )
       => ~ ? [X2: nat] :
              ( ( member_nat @ X2 @ Xs2 )
              & ( ord_less_nat @ X2 @ A ) ) ) ) ).

% pred_none_empty
thf(fact_4282_prod_Oinject,axiom,
    ! [X1: code_integer,X22: $o,Y1: code_integer,Y22: $o] :
      ( ( ( produc6677183202524767010eger_o @ X1 @ X22 )
        = ( produc6677183202524767010eger_o @ Y1 @ Y22 ) )
      = ( ( X1 = Y1 )
        & ( X22 = Y22 ) ) ) ).

% prod.inject
thf(fact_4283_prod_Oinject,axiom,
    ! [X1: num,X22: num,Y1: num,Y22: num] :
      ( ( ( product_Pair_num_num @ X1 @ X22 )
        = ( product_Pair_num_num @ Y1 @ Y22 ) )
      = ( ( X1 = Y1 )
        & ( X22 = Y22 ) ) ) ).

% prod.inject
thf(fact_4284_prod_Oinject,axiom,
    ! [X1: nat,X22: num,Y1: nat,Y22: num] :
      ( ( ( product_Pair_nat_num @ X1 @ X22 )
        = ( product_Pair_nat_num @ Y1 @ Y22 ) )
      = ( ( X1 = Y1 )
        & ( X22 = Y22 ) ) ) ).

% prod.inject
thf(fact_4285_prod_Oinject,axiom,
    ! [X1: nat,X22: nat,Y1: nat,Y22: nat] :
      ( ( ( product_Pair_nat_nat @ X1 @ X22 )
        = ( product_Pair_nat_nat @ Y1 @ Y22 ) )
      = ( ( X1 = Y1 )
        & ( X22 = Y22 ) ) ) ).

% prod.inject
thf(fact_4286_prod_Oinject,axiom,
    ! [X1: int,X22: int,Y1: int,Y22: int] :
      ( ( ( product_Pair_int_int @ X1 @ X22 )
        = ( product_Pair_int_int @ Y1 @ Y22 ) )
      = ( ( X1 = Y1 )
        & ( X22 = Y22 ) ) ) ).

% prod.inject
thf(fact_4287_old_Oprod_Oinject,axiom,
    ! [A: code_integer,B: $o,A6: code_integer,B6: $o] :
      ( ( ( produc6677183202524767010eger_o @ A @ B )
        = ( produc6677183202524767010eger_o @ A6 @ B6 ) )
      = ( ( A = A6 )
        & ( B = B6 ) ) ) ).

% old.prod.inject
thf(fact_4288_old_Oprod_Oinject,axiom,
    ! [A: num,B: num,A6: num,B6: num] :
      ( ( ( product_Pair_num_num @ A @ B )
        = ( product_Pair_num_num @ A6 @ B6 ) )
      = ( ( A = A6 )
        & ( B = B6 ) ) ) ).

% old.prod.inject
thf(fact_4289_old_Oprod_Oinject,axiom,
    ! [A: nat,B: num,A6: nat,B6: num] :
      ( ( ( product_Pair_nat_num @ A @ B )
        = ( product_Pair_nat_num @ A6 @ B6 ) )
      = ( ( A = A6 )
        & ( B = B6 ) ) ) ).

% old.prod.inject
thf(fact_4290_old_Oprod_Oinject,axiom,
    ! [A: nat,B: nat,A6: nat,B6: nat] :
      ( ( ( product_Pair_nat_nat @ A @ B )
        = ( product_Pair_nat_nat @ A6 @ B6 ) )
      = ( ( A = A6 )
        & ( B = B6 ) ) ) ).

% old.prod.inject
thf(fact_4291_old_Oprod_Oinject,axiom,
    ! [A: int,B: int,A6: int,B6: int] :
      ( ( ( product_Pair_int_int @ A @ B )
        = ( product_Pair_int_int @ A6 @ B6 ) )
      = ( ( A = A6 )
        & ( B = B6 ) ) ) ).

% old.prod.inject
thf(fact_4292_List_Ofinite__set,axiom,
    ! [Xs2: list_VEBT_VEBT] : ( finite5795047828879050333T_VEBT @ ( set_VEBT_VEBT2 @ Xs2 ) ) ).

% List.finite_set
thf(fact_4293_List_Ofinite__set,axiom,
    ! [Xs2: list_nat] : ( finite_finite_nat @ ( set_nat2 @ Xs2 ) ) ).

% List.finite_set
thf(fact_4294_List_Ofinite__set,axiom,
    ! [Xs2: list_int] : ( finite_finite_int @ ( set_int2 @ Xs2 ) ) ).

% List.finite_set
thf(fact_4295_List_Ofinite__set,axiom,
    ! [Xs2: list_complex] : ( finite3207457112153483333omplex @ ( set_complex2 @ Xs2 ) ) ).

% List.finite_set
thf(fact_4296_infinite__Icc__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ~ ( finite_finite_rat @ ( set_or633870826150836451st_rat @ A @ B ) ) )
      = ( ord_less_rat @ A @ B ) ) ).

% infinite_Icc_iff
thf(fact_4297_infinite__Icc__iff,axiom,
    ! [A: real,B: real] :
      ( ( ~ ( finite_finite_real @ ( set_or1222579329274155063t_real @ A @ B ) ) )
      = ( ord_less_real @ A @ B ) ) ).

% infinite_Icc_iff
thf(fact_4298_length__product,axiom,
    ! [Xs2: list_VEBT_VEBT,Ys: list_VEBT_VEBT] :
      ( ( size_s7466405169056248089T_VEBT @ ( produc4743750530478302277T_VEBT @ Xs2 @ Ys ) )
      = ( times_times_nat @ ( size_s6755466524823107622T_VEBT @ Xs2 ) @ ( size_s6755466524823107622T_VEBT @ Ys ) ) ) ).

% length_product
thf(fact_4299_length__product,axiom,
    ! [Xs2: list_VEBT_VEBT,Ys: list_o] :
      ( ( size_s9168528473962070013VEBT_o @ ( product_VEBT_VEBT_o @ Xs2 @ Ys ) )
      = ( times_times_nat @ ( size_s6755466524823107622T_VEBT @ Xs2 ) @ ( size_size_list_o @ Ys ) ) ) ).

% length_product
thf(fact_4300_length__product,axiom,
    ! [Xs2: list_VEBT_VEBT,Ys: list_int] :
      ( ( size_s3661962791536183091BT_int @ ( produc7292646706713671643BT_int @ Xs2 @ Ys ) )
      = ( times_times_nat @ ( size_s6755466524823107622T_VEBT @ Xs2 ) @ ( size_size_list_int @ Ys ) ) ) ).

% length_product
thf(fact_4301_length__product,axiom,
    ! [Xs2: list_o,Ys: list_VEBT_VEBT] :
      ( ( size_s4313452262239582901T_VEBT @ ( product_o_VEBT_VEBT @ Xs2 @ Ys ) )
      = ( times_times_nat @ ( size_size_list_o @ Xs2 ) @ ( size_s6755466524823107622T_VEBT @ Ys ) ) ) ).

% length_product
thf(fact_4302_length__product,axiom,
    ! [Xs2: list_o,Ys: list_o] :
      ( ( size_s1515746228057227161od_o_o @ ( product_o_o @ Xs2 @ Ys ) )
      = ( times_times_nat @ ( size_size_list_o @ Xs2 ) @ ( size_size_list_o @ Ys ) ) ) ).

% length_product
thf(fact_4303_length__product,axiom,
    ! [Xs2: list_o,Ys: list_int] :
      ( ( size_s2953683556165314199_o_int @ ( product_o_int @ Xs2 @ Ys ) )
      = ( times_times_nat @ ( size_size_list_o @ Xs2 ) @ ( size_size_list_int @ Ys ) ) ) ).

% length_product
thf(fact_4304_length__product,axiom,
    ! [Xs2: list_int,Ys: list_VEBT_VEBT] :
      ( ( size_s6639371672096860321T_VEBT @ ( produc662631939642741121T_VEBT @ Xs2 @ Ys ) )
      = ( times_times_nat @ ( size_size_list_int @ Xs2 ) @ ( size_s6755466524823107622T_VEBT @ Ys ) ) ) ).

% length_product
thf(fact_4305_length__product,axiom,
    ! [Xs2: list_int,Ys: list_o] :
      ( ( size_s4246224855604898693_int_o @ ( product_int_o @ Xs2 @ Ys ) )
      = ( times_times_nat @ ( size_size_list_int @ Xs2 ) @ ( size_size_list_o @ Ys ) ) ) ).

% length_product
thf(fact_4306_length__product,axiom,
    ! [Xs2: list_int,Ys: list_int] :
      ( ( size_s5157815400016825771nt_int @ ( product_int_int @ Xs2 @ Ys ) )
      = ( times_times_nat @ ( size_size_list_int @ Xs2 ) @ ( size_size_list_int @ Ys ) ) ) ).

% length_product
thf(fact_4307_finite__nat__set__iff__bounded,axiom,
    ( finite_finite_nat
    = ( ^ [N6: set_nat] :
        ? [M6: nat] :
        ! [X3: nat] :
          ( ( member_nat @ X3 @ N6 )
         => ( ord_less_nat @ X3 @ M6 ) ) ) ) ).

% finite_nat_set_iff_bounded
thf(fact_4308_bounded__nat__set__is__finite,axiom,
    ! [N4: set_nat,N2: nat] :
      ( ! [X5: nat] :
          ( ( member_nat @ X5 @ N4 )
         => ( ord_less_nat @ X5 @ N2 ) )
     => ( finite_finite_nat @ N4 ) ) ).

% bounded_nat_set_is_finite
thf(fact_4309_finite__nat__set__iff__bounded__le,axiom,
    ( finite_finite_nat
    = ( ^ [N6: set_nat] :
        ? [M6: nat] :
        ! [X3: nat] :
          ( ( member_nat @ X3 @ N6 )
         => ( ord_less_eq_nat @ X3 @ M6 ) ) ) ) ).

% finite_nat_set_iff_bounded_le
thf(fact_4310_finite__list,axiom,
    ! [A2: set_VEBT_VEBT] :
      ( ( finite5795047828879050333T_VEBT @ A2 )
     => ? [Xs3: list_VEBT_VEBT] :
          ( ( set_VEBT_VEBT2 @ Xs3 )
          = A2 ) ) ).

% finite_list
thf(fact_4311_finite__list,axiom,
    ! [A2: set_nat] :
      ( ( finite_finite_nat @ A2 )
     => ? [Xs3: list_nat] :
          ( ( set_nat2 @ Xs3 )
          = A2 ) ) ).

% finite_list
thf(fact_4312_finite__list,axiom,
    ! [A2: set_int] :
      ( ( finite_finite_int @ A2 )
     => ? [Xs3: list_int] :
          ( ( set_int2 @ Xs3 )
          = A2 ) ) ).

% finite_list
thf(fact_4313_finite__list,axiom,
    ! [A2: set_complex] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ? [Xs3: list_complex] :
          ( ( set_complex2 @ Xs3 )
          = A2 ) ) ).

% finite_list
thf(fact_4314_finite__M__bounded__by__nat,axiom,
    ! [P: nat > $o,I2: nat] :
      ( finite_finite_nat
      @ ( collect_nat
        @ ^ [K3: nat] :
            ( ( P @ K3 )
            & ( ord_less_nat @ K3 @ I2 ) ) ) ) ).

% finite_M_bounded_by_nat
thf(fact_4315_finite__less__ub,axiom,
    ! [F: nat > nat,U: nat] :
      ( ! [N: nat] : ( ord_less_eq_nat @ N @ ( F @ N ) )
     => ( finite_finite_nat
        @ ( collect_nat
          @ ^ [N3: nat] : ( ord_less_eq_nat @ ( F @ N3 ) @ U ) ) ) ) ).

% finite_less_ub
thf(fact_4316_finite__lists__length__eq,axiom,
    ! [A2: set_nat,N2: nat] :
      ( ( finite_finite_nat @ A2 )
     => ( finite8100373058378681591st_nat
        @ ( collect_list_nat
          @ ^ [Xs: list_nat] :
              ( ( ord_less_eq_set_nat @ ( set_nat2 @ Xs ) @ A2 )
              & ( ( size_size_list_nat @ Xs )
                = N2 ) ) ) ) ) ).

% finite_lists_length_eq
thf(fact_4317_finite__lists__length__eq,axiom,
    ! [A2: set_complex,N2: nat] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( finite8712137658972009173omplex
        @ ( collect_list_complex
          @ ^ [Xs: list_complex] :
              ( ( ord_le211207098394363844omplex @ ( set_complex2 @ Xs ) @ A2 )
              & ( ( size_s3451745648224563538omplex @ Xs )
                = N2 ) ) ) ) ) ).

% finite_lists_length_eq
thf(fact_4318_finite__lists__length__eq,axiom,
    ! [A2: set_VEBT_VEBT,N2: nat] :
      ( ( finite5795047828879050333T_VEBT @ A2 )
     => ( finite3004134309566078307T_VEBT
        @ ( collec5608196760682091941T_VEBT
          @ ^ [Xs: list_VEBT_VEBT] :
              ( ( ord_le4337996190870823476T_VEBT @ ( set_VEBT_VEBT2 @ Xs ) @ A2 )
              & ( ( size_s6755466524823107622T_VEBT @ Xs )
                = N2 ) ) ) ) ) ).

% finite_lists_length_eq
thf(fact_4319_finite__lists__length__eq,axiom,
    ! [A2: set_o,N2: nat] :
      ( ( finite_finite_o @ A2 )
     => ( finite_finite_list_o
        @ ( collect_list_o
          @ ^ [Xs: list_o] :
              ( ( ord_less_eq_set_o @ ( set_o2 @ Xs ) @ A2 )
              & ( ( size_size_list_o @ Xs )
                = N2 ) ) ) ) ) ).

% finite_lists_length_eq
thf(fact_4320_finite__lists__length__eq,axiom,
    ! [A2: set_int,N2: nat] :
      ( ( finite_finite_int @ A2 )
     => ( finite3922522038869484883st_int
        @ ( collect_list_int
          @ ^ [Xs: list_int] :
              ( ( ord_less_eq_set_int @ ( set_int2 @ Xs ) @ A2 )
              & ( ( size_size_list_int @ Xs )
                = N2 ) ) ) ) ) ).

% finite_lists_length_eq
thf(fact_4321_infinite__Icc,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ B )
     => ~ ( finite_finite_rat @ ( set_or633870826150836451st_rat @ A @ B ) ) ) ).

% infinite_Icc
thf(fact_4322_infinite__Icc,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ~ ( finite_finite_real @ ( set_or1222579329274155063t_real @ A @ B ) ) ) ).

% infinite_Icc
thf(fact_4323_finite__lists__length__le,axiom,
    ! [A2: set_nat,N2: nat] :
      ( ( finite_finite_nat @ A2 )
     => ( finite8100373058378681591st_nat
        @ ( collect_list_nat
          @ ^ [Xs: list_nat] :
              ( ( ord_less_eq_set_nat @ ( set_nat2 @ Xs ) @ A2 )
              & ( ord_less_eq_nat @ ( size_size_list_nat @ Xs ) @ N2 ) ) ) ) ) ).

% finite_lists_length_le
thf(fact_4324_finite__lists__length__le,axiom,
    ! [A2: set_complex,N2: nat] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( finite8712137658972009173omplex
        @ ( collect_list_complex
          @ ^ [Xs: list_complex] :
              ( ( ord_le211207098394363844omplex @ ( set_complex2 @ Xs ) @ A2 )
              & ( ord_less_eq_nat @ ( size_s3451745648224563538omplex @ Xs ) @ N2 ) ) ) ) ) ).

% finite_lists_length_le
thf(fact_4325_finite__lists__length__le,axiom,
    ! [A2: set_VEBT_VEBT,N2: nat] :
      ( ( finite5795047828879050333T_VEBT @ A2 )
     => ( finite3004134309566078307T_VEBT
        @ ( collec5608196760682091941T_VEBT
          @ ^ [Xs: list_VEBT_VEBT] :
              ( ( ord_le4337996190870823476T_VEBT @ ( set_VEBT_VEBT2 @ Xs ) @ A2 )
              & ( ord_less_eq_nat @ ( size_s6755466524823107622T_VEBT @ Xs ) @ N2 ) ) ) ) ) ).

% finite_lists_length_le
thf(fact_4326_finite__lists__length__le,axiom,
    ! [A2: set_o,N2: nat] :
      ( ( finite_finite_o @ A2 )
     => ( finite_finite_list_o
        @ ( collect_list_o
          @ ^ [Xs: list_o] :
              ( ( ord_less_eq_set_o @ ( set_o2 @ Xs ) @ A2 )
              & ( ord_less_eq_nat @ ( size_size_list_o @ Xs ) @ N2 ) ) ) ) ) ).

% finite_lists_length_le
thf(fact_4327_finite__lists__length__le,axiom,
    ! [A2: set_int,N2: nat] :
      ( ( finite_finite_int @ A2 )
     => ( finite3922522038869484883st_int
        @ ( collect_list_int
          @ ^ [Xs: list_int] :
              ( ( ord_less_eq_set_int @ ( set_int2 @ Xs ) @ A2 )
              & ( ord_less_eq_nat @ ( size_size_list_int @ Xs ) @ N2 ) ) ) ) ) ).

% finite_lists_length_le
thf(fact_4328_eucl__rel__int__dividesI,axiom,
    ! [L2: int,K: int,Q2: int] :
      ( ( L2 != zero_zero_int )
     => ( ( K
          = ( times_times_int @ Q2 @ L2 ) )
       => ( eucl_rel_int @ K @ L2 @ ( product_Pair_int_int @ Q2 @ zero_zero_int ) ) ) ) ).

% eucl_rel_int_dividesI
thf(fact_4329_old_Oprod_Oexhaust,axiom,
    ! [Y: produc6271795597528267376eger_o] :
      ~ ! [A3: code_integer,B2: $o] :
          ( Y
         != ( produc6677183202524767010eger_o @ A3 @ B2 ) ) ).

% old.prod.exhaust
thf(fact_4330_old_Oprod_Oexhaust,axiom,
    ! [Y: product_prod_num_num] :
      ~ ! [A3: num,B2: num] :
          ( Y
         != ( product_Pair_num_num @ A3 @ B2 ) ) ).

% old.prod.exhaust
thf(fact_4331_old_Oprod_Oexhaust,axiom,
    ! [Y: product_prod_nat_num] :
      ~ ! [A3: nat,B2: num] :
          ( Y
         != ( product_Pair_nat_num @ A3 @ B2 ) ) ).

% old.prod.exhaust
thf(fact_4332_old_Oprod_Oexhaust,axiom,
    ! [Y: product_prod_nat_nat] :
      ~ ! [A3: nat,B2: nat] :
          ( Y
         != ( product_Pair_nat_nat @ A3 @ B2 ) ) ).

% old.prod.exhaust
thf(fact_4333_old_Oprod_Oexhaust,axiom,
    ! [Y: product_prod_int_int] :
      ~ ! [A3: int,B2: int] :
          ( Y
         != ( product_Pair_int_int @ A3 @ B2 ) ) ).

% old.prod.exhaust
thf(fact_4334_surj__pair,axiom,
    ! [P4: produc6271795597528267376eger_o] :
    ? [X5: code_integer,Y5: $o] :
      ( P4
      = ( produc6677183202524767010eger_o @ X5 @ Y5 ) ) ).

% surj_pair
thf(fact_4335_surj__pair,axiom,
    ! [P4: product_prod_num_num] :
    ? [X5: num,Y5: num] :
      ( P4
      = ( product_Pair_num_num @ X5 @ Y5 ) ) ).

% surj_pair
thf(fact_4336_surj__pair,axiom,
    ! [P4: product_prod_nat_num] :
    ? [X5: nat,Y5: num] :
      ( P4
      = ( product_Pair_nat_num @ X5 @ Y5 ) ) ).

% surj_pair
thf(fact_4337_surj__pair,axiom,
    ! [P4: product_prod_nat_nat] :
    ? [X5: nat,Y5: nat] :
      ( P4
      = ( product_Pair_nat_nat @ X5 @ Y5 ) ) ).

% surj_pair
thf(fact_4338_surj__pair,axiom,
    ! [P4: product_prod_int_int] :
    ? [X5: int,Y5: int] :
      ( P4
      = ( product_Pair_int_int @ X5 @ Y5 ) ) ).

% surj_pair
thf(fact_4339_prod__cases,axiom,
    ! [P: produc6271795597528267376eger_o > $o,P4: produc6271795597528267376eger_o] :
      ( ! [A3: code_integer,B2: $o] : ( P @ ( produc6677183202524767010eger_o @ A3 @ B2 ) )
     => ( P @ P4 ) ) ).

% prod_cases
thf(fact_4340_prod__cases,axiom,
    ! [P: product_prod_num_num > $o,P4: product_prod_num_num] :
      ( ! [A3: num,B2: num] : ( P @ ( product_Pair_num_num @ A3 @ B2 ) )
     => ( P @ P4 ) ) ).

% prod_cases
thf(fact_4341_prod__cases,axiom,
    ! [P: product_prod_nat_num > $o,P4: product_prod_nat_num] :
      ( ! [A3: nat,B2: num] : ( P @ ( product_Pair_nat_num @ A3 @ B2 ) )
     => ( P @ P4 ) ) ).

% prod_cases
thf(fact_4342_prod__cases,axiom,
    ! [P: product_prod_nat_nat > $o,P4: product_prod_nat_nat] :
      ( ! [A3: nat,B2: nat] : ( P @ ( product_Pair_nat_nat @ A3 @ B2 ) )
     => ( P @ P4 ) ) ).

% prod_cases
thf(fact_4343_prod__cases,axiom,
    ! [P: product_prod_int_int > $o,P4: product_prod_int_int] :
      ( ! [A3: int,B2: int] : ( P @ ( product_Pair_int_int @ A3 @ B2 ) )
     => ( P @ P4 ) ) ).

% prod_cases
thf(fact_4344_Pair__inject,axiom,
    ! [A: code_integer,B: $o,A6: code_integer,B6: $o] :
      ( ( ( produc6677183202524767010eger_o @ A @ B )
        = ( produc6677183202524767010eger_o @ A6 @ B6 ) )
     => ~ ( ( A = A6 )
         => ( B = ~ B6 ) ) ) ).

% Pair_inject
thf(fact_4345_Pair__inject,axiom,
    ! [A: num,B: num,A6: num,B6: num] :
      ( ( ( product_Pair_num_num @ A @ B )
        = ( product_Pair_num_num @ A6 @ B6 ) )
     => ~ ( ( A = A6 )
         => ( B != B6 ) ) ) ).

% Pair_inject
thf(fact_4346_Pair__inject,axiom,
    ! [A: nat,B: num,A6: nat,B6: num] :
      ( ( ( product_Pair_nat_num @ A @ B )
        = ( product_Pair_nat_num @ A6 @ B6 ) )
     => ~ ( ( A = A6 )
         => ( B != B6 ) ) ) ).

% Pair_inject
thf(fact_4347_Pair__inject,axiom,
    ! [A: nat,B: nat,A6: nat,B6: nat] :
      ( ( ( product_Pair_nat_nat @ A @ B )
        = ( product_Pair_nat_nat @ A6 @ B6 ) )
     => ~ ( ( A = A6 )
         => ( B != B6 ) ) ) ).

% Pair_inject
thf(fact_4348_Pair__inject,axiom,
    ! [A: int,B: int,A6: int,B6: int] :
      ( ( ( product_Pair_int_int @ A @ B )
        = ( product_Pair_int_int @ A6 @ B6 ) )
     => ~ ( ( A = A6 )
         => ( B != B6 ) ) ) ).

% Pair_inject
thf(fact_4349_subset__eq__atLeast0__atMost__finite,axiom,
    ! [N4: set_nat,N2: nat] :
      ( ( ord_less_eq_set_nat @ N4 @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N2 ) )
     => ( finite_finite_nat @ N4 ) ) ).

% subset_eq_atLeast0_atMost_finite
thf(fact_4350_eucl__rel__int__iff,axiom,
    ! [K: int,L2: int,Q2: int,R2: int] :
      ( ( eucl_rel_int @ K @ L2 @ ( product_Pair_int_int @ Q2 @ R2 ) )
      = ( ( K
          = ( plus_plus_int @ ( times_times_int @ L2 @ Q2 ) @ R2 ) )
        & ( ( ord_less_int @ zero_zero_int @ L2 )
         => ( ( ord_less_eq_int @ zero_zero_int @ R2 )
            & ( ord_less_int @ R2 @ L2 ) ) )
        & ( ~ ( ord_less_int @ zero_zero_int @ L2 )
         => ( ( ( ord_less_int @ L2 @ zero_zero_int )
             => ( ( ord_less_int @ L2 @ R2 )
                & ( ord_less_eq_int @ R2 @ zero_zero_int ) ) )
            & ( ~ ( ord_less_int @ L2 @ zero_zero_int )
             => ( Q2 = zero_zero_int ) ) ) ) ) ) ).

% eucl_rel_int_iff
thf(fact_4351_pos__eucl__rel__int__mult__2,axiom,
    ! [B: int,A: int,Q2: int,R2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ B )
     => ( ( eucl_rel_int @ A @ B @ ( product_Pair_int_int @ Q2 @ R2 ) )
       => ( eucl_rel_int @ ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) @ ( product_Pair_int_int @ Q2 @ ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ R2 ) ) ) ) ) ) ).

% pos_eucl_rel_int_mult_2
thf(fact_4352_finite__Collect__le__nat,axiom,
    ! [K: nat] :
      ( finite_finite_nat
      @ ( collect_nat
        @ ^ [N3: nat] : ( ord_less_eq_nat @ N3 @ K ) ) ) ).

% finite_Collect_le_nat
thf(fact_4353_finite__Collect__less__nat,axiom,
    ! [K: nat] :
      ( finite_finite_nat
      @ ( collect_nat
        @ ^ [N3: nat] : ( ord_less_nat @ N3 @ K ) ) ) ).

% finite_Collect_less_nat
thf(fact_4354_finite__Collect__subsets,axiom,
    ! [A2: set_nat] :
      ( ( finite_finite_nat @ A2 )
     => ( finite1152437895449049373et_nat
        @ ( collect_set_nat
          @ ^ [B5: set_nat] : ( ord_less_eq_set_nat @ B5 @ A2 ) ) ) ) ).

% finite_Collect_subsets
thf(fact_4355_finite__Collect__subsets,axiom,
    ! [A2: set_complex] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( finite6551019134538273531omplex
        @ ( collect_set_complex
          @ ^ [B5: set_complex] : ( ord_le211207098394363844omplex @ B5 @ A2 ) ) ) ) ).

% finite_Collect_subsets
thf(fact_4356_finite__Collect__subsets,axiom,
    ! [A2: set_int] :
      ( ( finite_finite_int @ A2 )
     => ( finite6197958912794628473et_int
        @ ( collect_set_int
          @ ^ [B5: set_int] : ( ord_less_eq_set_int @ B5 @ A2 ) ) ) ) ).

% finite_Collect_subsets
thf(fact_4357_finite__roots__unity,axiom,
    ! [N2: nat] :
      ( ( ord_less_eq_nat @ one_one_nat @ N2 )
     => ( finite_finite_real
        @ ( collect_real
          @ ^ [Z2: real] :
              ( ( power_power_real @ Z2 @ N2 )
              = one_one_real ) ) ) ) ).

% finite_roots_unity
thf(fact_4358_finite__roots__unity,axiom,
    ! [N2: nat] :
      ( ( ord_less_eq_nat @ one_one_nat @ N2 )
     => ( finite3207457112153483333omplex
        @ ( collect_complex
          @ ^ [Z2: complex] :
              ( ( power_power_complex @ Z2 @ N2 )
              = one_one_complex ) ) ) ) ).

% finite_roots_unity
thf(fact_4359_finite__Diff2,axiom,
    ! [B3: set_int,A2: set_int] :
      ( ( finite_finite_int @ B3 )
     => ( ( finite_finite_int @ ( minus_minus_set_int @ A2 @ B3 ) )
        = ( finite_finite_int @ A2 ) ) ) ).

% finite_Diff2
thf(fact_4360_finite__Diff2,axiom,
    ! [B3: set_complex,A2: set_complex] :
      ( ( finite3207457112153483333omplex @ B3 )
     => ( ( finite3207457112153483333omplex @ ( minus_811609699411566653omplex @ A2 @ B3 ) )
        = ( finite3207457112153483333omplex @ A2 ) ) ) ).

% finite_Diff2
thf(fact_4361_finite__Diff2,axiom,
    ! [B3: set_nat,A2: set_nat] :
      ( ( finite_finite_nat @ B3 )
     => ( ( finite_finite_nat @ ( minus_minus_set_nat @ A2 @ B3 ) )
        = ( finite_finite_nat @ A2 ) ) ) ).

% finite_Diff2
thf(fact_4362_finite__Diff,axiom,
    ! [A2: set_int,B3: set_int] :
      ( ( finite_finite_int @ A2 )
     => ( finite_finite_int @ ( minus_minus_set_int @ A2 @ B3 ) ) ) ).

% finite_Diff
thf(fact_4363_finite__Diff,axiom,
    ! [A2: set_complex,B3: set_complex] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( finite3207457112153483333omplex @ ( minus_811609699411566653omplex @ A2 @ B3 ) ) ) ).

% finite_Diff
thf(fact_4364_finite__Diff,axiom,
    ! [A2: set_nat,B3: set_nat] :
      ( ( finite_finite_nat @ A2 )
     => ( finite_finite_nat @ ( minus_minus_set_nat @ A2 @ B3 ) ) ) ).

% finite_Diff
thf(fact_4365_finite__Collect__disjI,axiom,
    ! [P: product_prod_int_int > $o,Q: product_prod_int_int > $o] :
      ( ( finite2998713641127702882nt_int
        @ ( collec213857154873943460nt_int
          @ ^ [X3: product_prod_int_int] :
              ( ( P @ X3 )
              | ( Q @ X3 ) ) ) )
      = ( ( finite2998713641127702882nt_int @ ( collec213857154873943460nt_int @ P ) )
        & ( finite2998713641127702882nt_int @ ( collec213857154873943460nt_int @ Q ) ) ) ) ).

% finite_Collect_disjI
thf(fact_4366_finite__Collect__disjI,axiom,
    ! [P: set_nat > $o,Q: set_nat > $o] :
      ( ( finite1152437895449049373et_nat
        @ ( collect_set_nat
          @ ^ [X3: set_nat] :
              ( ( P @ X3 )
              | ( Q @ X3 ) ) ) )
      = ( ( finite1152437895449049373et_nat @ ( collect_set_nat @ P ) )
        & ( finite1152437895449049373et_nat @ ( collect_set_nat @ Q ) ) ) ) ).

% finite_Collect_disjI
thf(fact_4367_finite__Collect__disjI,axiom,
    ! [P: nat > $o,Q: nat > $o] :
      ( ( finite_finite_nat
        @ ( collect_nat
          @ ^ [X3: nat] :
              ( ( P @ X3 )
              | ( Q @ X3 ) ) ) )
      = ( ( finite_finite_nat @ ( collect_nat @ P ) )
        & ( finite_finite_nat @ ( collect_nat @ Q ) ) ) ) ).

% finite_Collect_disjI
thf(fact_4368_finite__Collect__disjI,axiom,
    ! [P: int > $o,Q: int > $o] :
      ( ( finite_finite_int
        @ ( collect_int
          @ ^ [X3: int] :
              ( ( P @ X3 )
              | ( Q @ X3 ) ) ) )
      = ( ( finite_finite_int @ ( collect_int @ P ) )
        & ( finite_finite_int @ ( collect_int @ Q ) ) ) ) ).

% finite_Collect_disjI
thf(fact_4369_finite__Collect__disjI,axiom,
    ! [P: complex > $o,Q: complex > $o] :
      ( ( finite3207457112153483333omplex
        @ ( collect_complex
          @ ^ [X3: complex] :
              ( ( P @ X3 )
              | ( Q @ X3 ) ) ) )
      = ( ( finite3207457112153483333omplex @ ( collect_complex @ P ) )
        & ( finite3207457112153483333omplex @ ( collect_complex @ Q ) ) ) ) ).

% finite_Collect_disjI
thf(fact_4370_finite__Collect__conjI,axiom,
    ! [P: product_prod_int_int > $o,Q: product_prod_int_int > $o] :
      ( ( ( finite2998713641127702882nt_int @ ( collec213857154873943460nt_int @ P ) )
        | ( finite2998713641127702882nt_int @ ( collec213857154873943460nt_int @ Q ) ) )
     => ( finite2998713641127702882nt_int
        @ ( collec213857154873943460nt_int
          @ ^ [X3: product_prod_int_int] :
              ( ( P @ X3 )
              & ( Q @ X3 ) ) ) ) ) ).

% finite_Collect_conjI
thf(fact_4371_finite__Collect__conjI,axiom,
    ! [P: set_nat > $o,Q: set_nat > $o] :
      ( ( ( finite1152437895449049373et_nat @ ( collect_set_nat @ P ) )
        | ( finite1152437895449049373et_nat @ ( collect_set_nat @ Q ) ) )
     => ( finite1152437895449049373et_nat
        @ ( collect_set_nat
          @ ^ [X3: set_nat] :
              ( ( P @ X3 )
              & ( Q @ X3 ) ) ) ) ) ).

% finite_Collect_conjI
thf(fact_4372_finite__Collect__conjI,axiom,
    ! [P: nat > $o,Q: nat > $o] :
      ( ( ( finite_finite_nat @ ( collect_nat @ P ) )
        | ( finite_finite_nat @ ( collect_nat @ Q ) ) )
     => ( finite_finite_nat
        @ ( collect_nat
          @ ^ [X3: nat] :
              ( ( P @ X3 )
              & ( Q @ X3 ) ) ) ) ) ).

% finite_Collect_conjI
thf(fact_4373_finite__Collect__conjI,axiom,
    ! [P: int > $o,Q: int > $o] :
      ( ( ( finite_finite_int @ ( collect_int @ P ) )
        | ( finite_finite_int @ ( collect_int @ Q ) ) )
     => ( finite_finite_int
        @ ( collect_int
          @ ^ [X3: int] :
              ( ( P @ X3 )
              & ( Q @ X3 ) ) ) ) ) ).

% finite_Collect_conjI
thf(fact_4374_finite__Collect__conjI,axiom,
    ! [P: complex > $o,Q: complex > $o] :
      ( ( ( finite3207457112153483333omplex @ ( collect_complex @ P ) )
        | ( finite3207457112153483333omplex @ ( collect_complex @ Q ) ) )
     => ( finite3207457112153483333omplex
        @ ( collect_complex
          @ ^ [X3: complex] :
              ( ( P @ X3 )
              & ( Q @ X3 ) ) ) ) ) ).

% finite_Collect_conjI
thf(fact_4375_finite__interval__int1,axiom,
    ! [A: int,B: int] :
      ( finite_finite_int
      @ ( collect_int
        @ ^ [I5: int] :
            ( ( ord_less_eq_int @ A @ I5 )
            & ( ord_less_eq_int @ I5 @ B ) ) ) ) ).

% finite_interval_int1
thf(fact_4376_finite__interval__int4,axiom,
    ! [A: int,B: int] :
      ( finite_finite_int
      @ ( collect_int
        @ ^ [I5: int] :
            ( ( ord_less_int @ A @ I5 )
            & ( ord_less_int @ I5 @ B ) ) ) ) ).

% finite_interval_int4
thf(fact_4377_finite__interval__int3,axiom,
    ! [A: int,B: int] :
      ( finite_finite_int
      @ ( collect_int
        @ ^ [I5: int] :
            ( ( ord_less_int @ A @ I5 )
            & ( ord_less_eq_int @ I5 @ B ) ) ) ) ).

% finite_interval_int3
thf(fact_4378_finite__interval__int2,axiom,
    ! [A: int,B: int] :
      ( finite_finite_int
      @ ( collect_int
        @ ^ [I5: int] :
            ( ( ord_less_eq_int @ A @ I5 )
            & ( ord_less_int @ I5 @ B ) ) ) ) ).

% finite_interval_int2
thf(fact_4379_finite__maxlen,axiom,
    ! [M7: set_list_VEBT_VEBT] :
      ( ( finite3004134309566078307T_VEBT @ M7 )
     => ? [N: nat] :
        ! [X2: list_VEBT_VEBT] :
          ( ( member2936631157270082147T_VEBT @ X2 @ M7 )
         => ( ord_less_nat @ ( size_s6755466524823107622T_VEBT @ X2 ) @ N ) ) ) ).

% finite_maxlen
thf(fact_4380_finite__maxlen,axiom,
    ! [M7: set_list_o] :
      ( ( finite_finite_list_o @ M7 )
     => ? [N: nat] :
        ! [X2: list_o] :
          ( ( member_list_o @ X2 @ M7 )
         => ( ord_less_nat @ ( size_size_list_o @ X2 ) @ N ) ) ) ).

% finite_maxlen
thf(fact_4381_finite__maxlen,axiom,
    ! [M7: set_list_int] :
      ( ( finite3922522038869484883st_int @ M7 )
     => ? [N: nat] :
        ! [X2: list_int] :
          ( ( member_list_int @ X2 @ M7 )
         => ( ord_less_nat @ ( size_size_list_int @ X2 ) @ N ) ) ) ).

% finite_maxlen
thf(fact_4382_not__finite__existsD,axiom,
    ! [P: product_prod_int_int > $o] :
      ( ~ ( finite2998713641127702882nt_int @ ( collec213857154873943460nt_int @ P ) )
     => ? [X_1: product_prod_int_int] : ( P @ X_1 ) ) ).

% not_finite_existsD
thf(fact_4383_not__finite__existsD,axiom,
    ! [P: set_nat > $o] :
      ( ~ ( finite1152437895449049373et_nat @ ( collect_set_nat @ P ) )
     => ? [X_1: set_nat] : ( P @ X_1 ) ) ).

% not_finite_existsD
thf(fact_4384_not__finite__existsD,axiom,
    ! [P: nat > $o] :
      ( ~ ( finite_finite_nat @ ( collect_nat @ P ) )
     => ? [X_1: nat] : ( P @ X_1 ) ) ).

% not_finite_existsD
thf(fact_4385_not__finite__existsD,axiom,
    ! [P: int > $o] :
      ( ~ ( finite_finite_int @ ( collect_int @ P ) )
     => ? [X_1: int] : ( P @ X_1 ) ) ).

% not_finite_existsD
thf(fact_4386_not__finite__existsD,axiom,
    ! [P: complex > $o] :
      ( ~ ( finite3207457112153483333omplex @ ( collect_complex @ P ) )
     => ? [X_1: complex] : ( P @ X_1 ) ) ).

% not_finite_existsD
thf(fact_4387_pigeonhole__infinite__rel,axiom,
    ! [A2: set_real,B3: set_nat,R: real > nat > $o] :
      ( ~ ( finite_finite_real @ A2 )
     => ( ( finite_finite_nat @ B3 )
       => ( ! [X5: real] :
              ( ( member_real @ X5 @ A2 )
             => ? [Xa: nat] :
                  ( ( member_nat @ Xa @ B3 )
                  & ( R @ X5 @ Xa ) ) )
         => ? [X5: nat] :
              ( ( member_nat @ X5 @ B3 )
              & ~ ( finite_finite_real
                  @ ( collect_real
                    @ ^ [A4: real] :
                        ( ( member_real @ A4 @ A2 )
                        & ( R @ A4 @ X5 ) ) ) ) ) ) ) ) ).

% pigeonhole_infinite_rel
thf(fact_4388_pigeonhole__infinite__rel,axiom,
    ! [A2: set_real,B3: set_int,R: real > int > $o] :
      ( ~ ( finite_finite_real @ A2 )
     => ( ( finite_finite_int @ B3 )
       => ( ! [X5: real] :
              ( ( member_real @ X5 @ A2 )
             => ? [Xa: int] :
                  ( ( member_int @ Xa @ B3 )
                  & ( R @ X5 @ Xa ) ) )
         => ? [X5: int] :
              ( ( member_int @ X5 @ B3 )
              & ~ ( finite_finite_real
                  @ ( collect_real
                    @ ^ [A4: real] :
                        ( ( member_real @ A4 @ A2 )
                        & ( R @ A4 @ X5 ) ) ) ) ) ) ) ) ).

% pigeonhole_infinite_rel
thf(fact_4389_pigeonhole__infinite__rel,axiom,
    ! [A2: set_real,B3: set_complex,R: real > complex > $o] :
      ( ~ ( finite_finite_real @ A2 )
     => ( ( finite3207457112153483333omplex @ B3 )
       => ( ! [X5: real] :
              ( ( member_real @ X5 @ A2 )
             => ? [Xa: complex] :
                  ( ( member_complex @ Xa @ B3 )
                  & ( R @ X5 @ Xa ) ) )
         => ? [X5: complex] :
              ( ( member_complex @ X5 @ B3 )
              & ~ ( finite_finite_real
                  @ ( collect_real
                    @ ^ [A4: real] :
                        ( ( member_real @ A4 @ A2 )
                        & ( R @ A4 @ X5 ) ) ) ) ) ) ) ) ).

% pigeonhole_infinite_rel
thf(fact_4390_pigeonhole__infinite__rel,axiom,
    ! [A2: set_nat,B3: set_nat,R: nat > nat > $o] :
      ( ~ ( finite_finite_nat @ A2 )
     => ( ( finite_finite_nat @ B3 )
       => ( ! [X5: nat] :
              ( ( member_nat @ X5 @ A2 )
             => ? [Xa: nat] :
                  ( ( member_nat @ Xa @ B3 )
                  & ( R @ X5 @ Xa ) ) )
         => ? [X5: nat] :
              ( ( member_nat @ X5 @ B3 )
              & ~ ( finite_finite_nat
                  @ ( collect_nat
                    @ ^ [A4: nat] :
                        ( ( member_nat @ A4 @ A2 )
                        & ( R @ A4 @ X5 ) ) ) ) ) ) ) ) ).

% pigeonhole_infinite_rel
thf(fact_4391_pigeonhole__infinite__rel,axiom,
    ! [A2: set_nat,B3: set_int,R: nat > int > $o] :
      ( ~ ( finite_finite_nat @ A2 )
     => ( ( finite_finite_int @ B3 )
       => ( ! [X5: nat] :
              ( ( member_nat @ X5 @ A2 )
             => ? [Xa: int] :
                  ( ( member_int @ Xa @ B3 )
                  & ( R @ X5 @ Xa ) ) )
         => ? [X5: int] :
              ( ( member_int @ X5 @ B3 )
              & ~ ( finite_finite_nat
                  @ ( collect_nat
                    @ ^ [A4: nat] :
                        ( ( member_nat @ A4 @ A2 )
                        & ( R @ A4 @ X5 ) ) ) ) ) ) ) ) ).

% pigeonhole_infinite_rel
thf(fact_4392_pigeonhole__infinite__rel,axiom,
    ! [A2: set_nat,B3: set_complex,R: nat > complex > $o] :
      ( ~ ( finite_finite_nat @ A2 )
     => ( ( finite3207457112153483333omplex @ B3 )
       => ( ! [X5: nat] :
              ( ( member_nat @ X5 @ A2 )
             => ? [Xa: complex] :
                  ( ( member_complex @ Xa @ B3 )
                  & ( R @ X5 @ Xa ) ) )
         => ? [X5: complex] :
              ( ( member_complex @ X5 @ B3 )
              & ~ ( finite_finite_nat
                  @ ( collect_nat
                    @ ^ [A4: nat] :
                        ( ( member_nat @ A4 @ A2 )
                        & ( R @ A4 @ X5 ) ) ) ) ) ) ) ) ).

% pigeonhole_infinite_rel
thf(fact_4393_pigeonhole__infinite__rel,axiom,
    ! [A2: set_int,B3: set_nat,R: int > nat > $o] :
      ( ~ ( finite_finite_int @ A2 )
     => ( ( finite_finite_nat @ B3 )
       => ( ! [X5: int] :
              ( ( member_int @ X5 @ A2 )
             => ? [Xa: nat] :
                  ( ( member_nat @ Xa @ B3 )
                  & ( R @ X5 @ Xa ) ) )
         => ? [X5: nat] :
              ( ( member_nat @ X5 @ B3 )
              & ~ ( finite_finite_int
                  @ ( collect_int
                    @ ^ [A4: int] :
                        ( ( member_int @ A4 @ A2 )
                        & ( R @ A4 @ X5 ) ) ) ) ) ) ) ) ).

% pigeonhole_infinite_rel
thf(fact_4394_pigeonhole__infinite__rel,axiom,
    ! [A2: set_int,B3: set_int,R: int > int > $o] :
      ( ~ ( finite_finite_int @ A2 )
     => ( ( finite_finite_int @ B3 )
       => ( ! [X5: int] :
              ( ( member_int @ X5 @ A2 )
             => ? [Xa: int] :
                  ( ( member_int @ Xa @ B3 )
                  & ( R @ X5 @ Xa ) ) )
         => ? [X5: int] :
              ( ( member_int @ X5 @ B3 )
              & ~ ( finite_finite_int
                  @ ( collect_int
                    @ ^ [A4: int] :
                        ( ( member_int @ A4 @ A2 )
                        & ( R @ A4 @ X5 ) ) ) ) ) ) ) ) ).

% pigeonhole_infinite_rel
thf(fact_4395_pigeonhole__infinite__rel,axiom,
    ! [A2: set_int,B3: set_complex,R: int > complex > $o] :
      ( ~ ( finite_finite_int @ A2 )
     => ( ( finite3207457112153483333omplex @ B3 )
       => ( ! [X5: int] :
              ( ( member_int @ X5 @ A2 )
             => ? [Xa: complex] :
                  ( ( member_complex @ Xa @ B3 )
                  & ( R @ X5 @ Xa ) ) )
         => ? [X5: complex] :
              ( ( member_complex @ X5 @ B3 )
              & ~ ( finite_finite_int
                  @ ( collect_int
                    @ ^ [A4: int] :
                        ( ( member_int @ A4 @ A2 )
                        & ( R @ A4 @ X5 ) ) ) ) ) ) ) ) ).

% pigeonhole_infinite_rel
thf(fact_4396_pigeonhole__infinite__rel,axiom,
    ! [A2: set_complex,B3: set_nat,R: complex > nat > $o] :
      ( ~ ( finite3207457112153483333omplex @ A2 )
     => ( ( finite_finite_nat @ B3 )
       => ( ! [X5: complex] :
              ( ( member_complex @ X5 @ A2 )
             => ? [Xa: nat] :
                  ( ( member_nat @ Xa @ B3 )
                  & ( R @ X5 @ Xa ) ) )
         => ? [X5: nat] :
              ( ( member_nat @ X5 @ B3 )
              & ~ ( finite3207457112153483333omplex
                  @ ( collect_complex
                    @ ^ [A4: complex] :
                        ( ( member_complex @ A4 @ A2 )
                        & ( R @ A4 @ X5 ) ) ) ) ) ) ) ) ).

% pigeonhole_infinite_rel
thf(fact_4397_finite__has__minimal2,axiom,
    ! [A2: set_real,A: real] :
      ( ( finite_finite_real @ A2 )
     => ( ( member_real @ A @ A2 )
       => ? [X5: real] :
            ( ( member_real @ X5 @ A2 )
            & ( ord_less_eq_real @ X5 @ A )
            & ! [Xa: real] :
                ( ( member_real @ Xa @ A2 )
               => ( ( ord_less_eq_real @ Xa @ X5 )
                 => ( X5 = Xa ) ) ) ) ) ) ).

% finite_has_minimal2
thf(fact_4398_finite__has__minimal2,axiom,
    ! [A2: set_set_nat,A: set_nat] :
      ( ( finite1152437895449049373et_nat @ A2 )
     => ( ( member_set_nat @ A @ A2 )
       => ? [X5: set_nat] :
            ( ( member_set_nat @ X5 @ A2 )
            & ( ord_less_eq_set_nat @ X5 @ A )
            & ! [Xa: set_nat] :
                ( ( member_set_nat @ Xa @ A2 )
               => ( ( ord_less_eq_set_nat @ Xa @ X5 )
                 => ( X5 = Xa ) ) ) ) ) ) ).

% finite_has_minimal2
thf(fact_4399_finite__has__minimal2,axiom,
    ! [A2: set_set_int,A: set_int] :
      ( ( finite6197958912794628473et_int @ A2 )
     => ( ( member_set_int @ A @ A2 )
       => ? [X5: set_int] :
            ( ( member_set_int @ X5 @ A2 )
            & ( ord_less_eq_set_int @ X5 @ A )
            & ! [Xa: set_int] :
                ( ( member_set_int @ Xa @ A2 )
               => ( ( ord_less_eq_set_int @ Xa @ X5 )
                 => ( X5 = Xa ) ) ) ) ) ) ).

% finite_has_minimal2
thf(fact_4400_finite__has__minimal2,axiom,
    ! [A2: set_rat,A: rat] :
      ( ( finite_finite_rat @ A2 )
     => ( ( member_rat @ A @ A2 )
       => ? [X5: rat] :
            ( ( member_rat @ X5 @ A2 )
            & ( ord_less_eq_rat @ X5 @ A )
            & ! [Xa: rat] :
                ( ( member_rat @ Xa @ A2 )
               => ( ( ord_less_eq_rat @ Xa @ X5 )
                 => ( X5 = Xa ) ) ) ) ) ) ).

% finite_has_minimal2
thf(fact_4401_finite__has__minimal2,axiom,
    ! [A2: set_num,A: num] :
      ( ( finite_finite_num @ A2 )
     => ( ( member_num @ A @ A2 )
       => ? [X5: num] :
            ( ( member_num @ X5 @ A2 )
            & ( ord_less_eq_num @ X5 @ A )
            & ! [Xa: num] :
                ( ( member_num @ Xa @ A2 )
               => ( ( ord_less_eq_num @ Xa @ X5 )
                 => ( X5 = Xa ) ) ) ) ) ) ).

% finite_has_minimal2
thf(fact_4402_finite__has__minimal2,axiom,
    ! [A2: set_nat,A: nat] :
      ( ( finite_finite_nat @ A2 )
     => ( ( member_nat @ A @ A2 )
       => ? [X5: nat] :
            ( ( member_nat @ X5 @ A2 )
            & ( ord_less_eq_nat @ X5 @ A )
            & ! [Xa: nat] :
                ( ( member_nat @ Xa @ A2 )
               => ( ( ord_less_eq_nat @ Xa @ X5 )
                 => ( X5 = Xa ) ) ) ) ) ) ).

% finite_has_minimal2
thf(fact_4403_finite__has__minimal2,axiom,
    ! [A2: set_int,A: int] :
      ( ( finite_finite_int @ A2 )
     => ( ( member_int @ A @ A2 )
       => ? [X5: int] :
            ( ( member_int @ X5 @ A2 )
            & ( ord_less_eq_int @ X5 @ A )
            & ! [Xa: int] :
                ( ( member_int @ Xa @ A2 )
               => ( ( ord_less_eq_int @ Xa @ X5 )
                 => ( X5 = Xa ) ) ) ) ) ) ).

% finite_has_minimal2
thf(fact_4404_finite__has__maximal2,axiom,
    ! [A2: set_real,A: real] :
      ( ( finite_finite_real @ A2 )
     => ( ( member_real @ A @ A2 )
       => ? [X5: real] :
            ( ( member_real @ X5 @ A2 )
            & ( ord_less_eq_real @ A @ X5 )
            & ! [Xa: real] :
                ( ( member_real @ Xa @ A2 )
               => ( ( ord_less_eq_real @ X5 @ Xa )
                 => ( X5 = Xa ) ) ) ) ) ) ).

% finite_has_maximal2
thf(fact_4405_finite__has__maximal2,axiom,
    ! [A2: set_set_nat,A: set_nat] :
      ( ( finite1152437895449049373et_nat @ A2 )
     => ( ( member_set_nat @ A @ A2 )
       => ? [X5: set_nat] :
            ( ( member_set_nat @ X5 @ A2 )
            & ( ord_less_eq_set_nat @ A @ X5 )
            & ! [Xa: set_nat] :
                ( ( member_set_nat @ Xa @ A2 )
               => ( ( ord_less_eq_set_nat @ X5 @ Xa )
                 => ( X5 = Xa ) ) ) ) ) ) ).

% finite_has_maximal2
thf(fact_4406_finite__has__maximal2,axiom,
    ! [A2: set_set_int,A: set_int] :
      ( ( finite6197958912794628473et_int @ A2 )
     => ( ( member_set_int @ A @ A2 )
       => ? [X5: set_int] :
            ( ( member_set_int @ X5 @ A2 )
            & ( ord_less_eq_set_int @ A @ X5 )
            & ! [Xa: set_int] :
                ( ( member_set_int @ Xa @ A2 )
               => ( ( ord_less_eq_set_int @ X5 @ Xa )
                 => ( X5 = Xa ) ) ) ) ) ) ).

% finite_has_maximal2
thf(fact_4407_finite__has__maximal2,axiom,
    ! [A2: set_rat,A: rat] :
      ( ( finite_finite_rat @ A2 )
     => ( ( member_rat @ A @ A2 )
       => ? [X5: rat] :
            ( ( member_rat @ X5 @ A2 )
            & ( ord_less_eq_rat @ A @ X5 )
            & ! [Xa: rat] :
                ( ( member_rat @ Xa @ A2 )
               => ( ( ord_less_eq_rat @ X5 @ Xa )
                 => ( X5 = Xa ) ) ) ) ) ) ).

% finite_has_maximal2
thf(fact_4408_finite__has__maximal2,axiom,
    ! [A2: set_num,A: num] :
      ( ( finite_finite_num @ A2 )
     => ( ( member_num @ A @ A2 )
       => ? [X5: num] :
            ( ( member_num @ X5 @ A2 )
            & ( ord_less_eq_num @ A @ X5 )
            & ! [Xa: num] :
                ( ( member_num @ Xa @ A2 )
               => ( ( ord_less_eq_num @ X5 @ Xa )
                 => ( X5 = Xa ) ) ) ) ) ) ).

% finite_has_maximal2
thf(fact_4409_finite__has__maximal2,axiom,
    ! [A2: set_nat,A: nat] :
      ( ( finite_finite_nat @ A2 )
     => ( ( member_nat @ A @ A2 )
       => ? [X5: nat] :
            ( ( member_nat @ X5 @ A2 )
            & ( ord_less_eq_nat @ A @ X5 )
            & ! [Xa: nat] :
                ( ( member_nat @ Xa @ A2 )
               => ( ( ord_less_eq_nat @ X5 @ Xa )
                 => ( X5 = Xa ) ) ) ) ) ) ).

% finite_has_maximal2
thf(fact_4410_finite__has__maximal2,axiom,
    ! [A2: set_int,A: int] :
      ( ( finite_finite_int @ A2 )
     => ( ( member_int @ A @ A2 )
       => ? [X5: int] :
            ( ( member_int @ X5 @ A2 )
            & ( ord_less_eq_int @ A @ X5 )
            & ! [Xa: int] :
                ( ( member_int @ Xa @ A2 )
               => ( ( ord_less_eq_int @ X5 @ Xa )
                 => ( X5 = Xa ) ) ) ) ) ) ).

% finite_has_maximal2
thf(fact_4411_finite__subset,axiom,
    ! [A2: set_nat,B3: set_nat] :
      ( ( ord_less_eq_set_nat @ A2 @ B3 )
     => ( ( finite_finite_nat @ B3 )
       => ( finite_finite_nat @ A2 ) ) ) ).

% finite_subset
thf(fact_4412_finite__subset,axiom,
    ! [A2: set_complex,B3: set_complex] :
      ( ( ord_le211207098394363844omplex @ A2 @ B3 )
     => ( ( finite3207457112153483333omplex @ B3 )
       => ( finite3207457112153483333omplex @ A2 ) ) ) ).

% finite_subset
thf(fact_4413_finite__subset,axiom,
    ! [A2: set_int,B3: set_int] :
      ( ( ord_less_eq_set_int @ A2 @ B3 )
     => ( ( finite_finite_int @ B3 )
       => ( finite_finite_int @ A2 ) ) ) ).

% finite_subset
thf(fact_4414_infinite__super,axiom,
    ! [S3: set_nat,T3: set_nat] :
      ( ( ord_less_eq_set_nat @ S3 @ T3 )
     => ( ~ ( finite_finite_nat @ S3 )
       => ~ ( finite_finite_nat @ T3 ) ) ) ).

% infinite_super
thf(fact_4415_infinite__super,axiom,
    ! [S3: set_complex,T3: set_complex] :
      ( ( ord_le211207098394363844omplex @ S3 @ T3 )
     => ( ~ ( finite3207457112153483333omplex @ S3 )
       => ~ ( finite3207457112153483333omplex @ T3 ) ) ) ).

% infinite_super
thf(fact_4416_infinite__super,axiom,
    ! [S3: set_int,T3: set_int] :
      ( ( ord_less_eq_set_int @ S3 @ T3 )
     => ( ~ ( finite_finite_int @ S3 )
       => ~ ( finite_finite_int @ T3 ) ) ) ).

% infinite_super
thf(fact_4417_rev__finite__subset,axiom,
    ! [B3: set_nat,A2: set_nat] :
      ( ( finite_finite_nat @ B3 )
     => ( ( ord_less_eq_set_nat @ A2 @ B3 )
       => ( finite_finite_nat @ A2 ) ) ) ).

% rev_finite_subset
thf(fact_4418_rev__finite__subset,axiom,
    ! [B3: set_complex,A2: set_complex] :
      ( ( finite3207457112153483333omplex @ B3 )
     => ( ( ord_le211207098394363844omplex @ A2 @ B3 )
       => ( finite3207457112153483333omplex @ A2 ) ) ) ).

% rev_finite_subset
thf(fact_4419_rev__finite__subset,axiom,
    ! [B3: set_int,A2: set_int] :
      ( ( finite_finite_int @ B3 )
     => ( ( ord_less_eq_set_int @ A2 @ B3 )
       => ( finite_finite_int @ A2 ) ) ) ).

% rev_finite_subset
thf(fact_4420_Diff__infinite__finite,axiom,
    ! [T3: set_int,S3: set_int] :
      ( ( finite_finite_int @ T3 )
     => ( ~ ( finite_finite_int @ S3 )
       => ~ ( finite_finite_int @ ( minus_minus_set_int @ S3 @ T3 ) ) ) ) ).

% Diff_infinite_finite
thf(fact_4421_Diff__infinite__finite,axiom,
    ! [T3: set_complex,S3: set_complex] :
      ( ( finite3207457112153483333omplex @ T3 )
     => ( ~ ( finite3207457112153483333omplex @ S3 )
       => ~ ( finite3207457112153483333omplex @ ( minus_811609699411566653omplex @ S3 @ T3 ) ) ) ) ).

% Diff_infinite_finite
thf(fact_4422_Diff__infinite__finite,axiom,
    ! [T3: set_nat,S3: set_nat] :
      ( ( finite_finite_nat @ T3 )
     => ( ~ ( finite_finite_nat @ S3 )
       => ~ ( finite_finite_nat @ ( minus_minus_set_nat @ S3 @ T3 ) ) ) ) ).

% Diff_infinite_finite
thf(fact_4423_finite__has__maximal,axiom,
    ! [A2: set_real] :
      ( ( finite_finite_real @ A2 )
     => ( ( A2 != bot_bot_set_real )
       => ? [X5: real] :
            ( ( member_real @ X5 @ A2 )
            & ! [Xa: real] :
                ( ( member_real @ Xa @ A2 )
               => ( ( ord_less_eq_real @ X5 @ Xa )
                 => ( X5 = Xa ) ) ) ) ) ) ).

% finite_has_maximal
thf(fact_4424_finite__has__maximal,axiom,
    ! [A2: set_set_int] :
      ( ( finite6197958912794628473et_int @ A2 )
     => ( ( A2 != bot_bot_set_set_int )
       => ? [X5: set_int] :
            ( ( member_set_int @ X5 @ A2 )
            & ! [Xa: set_int] :
                ( ( member_set_int @ Xa @ A2 )
               => ( ( ord_less_eq_set_int @ X5 @ Xa )
                 => ( X5 = Xa ) ) ) ) ) ) ).

% finite_has_maximal
thf(fact_4425_finite__has__maximal,axiom,
    ! [A2: set_rat] :
      ( ( finite_finite_rat @ A2 )
     => ( ( A2 != bot_bot_set_rat )
       => ? [X5: rat] :
            ( ( member_rat @ X5 @ A2 )
            & ! [Xa: rat] :
                ( ( member_rat @ Xa @ A2 )
               => ( ( ord_less_eq_rat @ X5 @ Xa )
                 => ( X5 = Xa ) ) ) ) ) ) ).

% finite_has_maximal
thf(fact_4426_finite__has__maximal,axiom,
    ! [A2: set_num] :
      ( ( finite_finite_num @ A2 )
     => ( ( A2 != bot_bot_set_num )
       => ? [X5: num] :
            ( ( member_num @ X5 @ A2 )
            & ! [Xa: num] :
                ( ( member_num @ Xa @ A2 )
               => ( ( ord_less_eq_num @ X5 @ Xa )
                 => ( X5 = Xa ) ) ) ) ) ) ).

% finite_has_maximal
thf(fact_4427_finite__has__maximal,axiom,
    ! [A2: set_nat] :
      ( ( finite_finite_nat @ A2 )
     => ( ( A2 != bot_bot_set_nat )
       => ? [X5: nat] :
            ( ( member_nat @ X5 @ A2 )
            & ! [Xa: nat] :
                ( ( member_nat @ Xa @ A2 )
               => ( ( ord_less_eq_nat @ X5 @ Xa )
                 => ( X5 = Xa ) ) ) ) ) ) ).

% finite_has_maximal
thf(fact_4428_finite__has__maximal,axiom,
    ! [A2: set_int] :
      ( ( finite_finite_int @ A2 )
     => ( ( A2 != bot_bot_set_int )
       => ? [X5: int] :
            ( ( member_int @ X5 @ A2 )
            & ! [Xa: int] :
                ( ( member_int @ Xa @ A2 )
               => ( ( ord_less_eq_int @ X5 @ Xa )
                 => ( X5 = Xa ) ) ) ) ) ) ).

% finite_has_maximal
thf(fact_4429_finite__has__minimal,axiom,
    ! [A2: set_real] :
      ( ( finite_finite_real @ A2 )
     => ( ( A2 != bot_bot_set_real )
       => ? [X5: real] :
            ( ( member_real @ X5 @ A2 )
            & ! [Xa: real] :
                ( ( member_real @ Xa @ A2 )
               => ( ( ord_less_eq_real @ Xa @ X5 )
                 => ( X5 = Xa ) ) ) ) ) ) ).

% finite_has_minimal
thf(fact_4430_finite__has__minimal,axiom,
    ! [A2: set_set_int] :
      ( ( finite6197958912794628473et_int @ A2 )
     => ( ( A2 != bot_bot_set_set_int )
       => ? [X5: set_int] :
            ( ( member_set_int @ X5 @ A2 )
            & ! [Xa: set_int] :
                ( ( member_set_int @ Xa @ A2 )
               => ( ( ord_less_eq_set_int @ Xa @ X5 )
                 => ( X5 = Xa ) ) ) ) ) ) ).

% finite_has_minimal
thf(fact_4431_finite__has__minimal,axiom,
    ! [A2: set_rat] :
      ( ( finite_finite_rat @ A2 )
     => ( ( A2 != bot_bot_set_rat )
       => ? [X5: rat] :
            ( ( member_rat @ X5 @ A2 )
            & ! [Xa: rat] :
                ( ( member_rat @ Xa @ A2 )
               => ( ( ord_less_eq_rat @ Xa @ X5 )
                 => ( X5 = Xa ) ) ) ) ) ) ).

% finite_has_minimal
thf(fact_4432_finite__has__minimal,axiom,
    ! [A2: set_num] :
      ( ( finite_finite_num @ A2 )
     => ( ( A2 != bot_bot_set_num )
       => ? [X5: num] :
            ( ( member_num @ X5 @ A2 )
            & ! [Xa: num] :
                ( ( member_num @ Xa @ A2 )
               => ( ( ord_less_eq_num @ Xa @ X5 )
                 => ( X5 = Xa ) ) ) ) ) ) ).

% finite_has_minimal
thf(fact_4433_finite__has__minimal,axiom,
    ! [A2: set_nat] :
      ( ( finite_finite_nat @ A2 )
     => ( ( A2 != bot_bot_set_nat )
       => ? [X5: nat] :
            ( ( member_nat @ X5 @ A2 )
            & ! [Xa: nat] :
                ( ( member_nat @ Xa @ A2 )
               => ( ( ord_less_eq_nat @ Xa @ X5 )
                 => ( X5 = Xa ) ) ) ) ) ) ).

% finite_has_minimal
thf(fact_4434_finite__has__minimal,axiom,
    ! [A2: set_int] :
      ( ( finite_finite_int @ A2 )
     => ( ( A2 != bot_bot_set_int )
       => ? [X5: int] :
            ( ( member_int @ X5 @ A2 )
            & ! [Xa: int] :
                ( ( member_int @ Xa @ A2 )
               => ( ( ord_less_eq_int @ Xa @ X5 )
                 => ( X5 = Xa ) ) ) ) ) ) ).

% finite_has_minimal
thf(fact_4435_arcosh__1,axiom,
    ( ( arcosh_real @ one_one_real )
    = zero_zero_real ) ).

% arcosh_1
thf(fact_4436_finite__nth__roots,axiom,
    ! [N2: nat,C: complex] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( finite3207457112153483333omplex
        @ ( collect_complex
          @ ^ [Z2: complex] :
              ( ( power_power_complex @ Z2 @ N2 )
              = C ) ) ) ) ).

% finite_nth_roots
thf(fact_4437_prod_Ofinite__Collect__op,axiom,
    ! [I6: set_real,X: real > complex,Y: real > complex] :
      ( ( finite_finite_real
        @ ( collect_real
          @ ^ [I5: real] :
              ( ( member_real @ I5 @ I6 )
              & ( ( X @ I5 )
               != one_one_complex ) ) ) )
     => ( ( finite_finite_real
          @ ( collect_real
            @ ^ [I5: real] :
                ( ( member_real @ I5 @ I6 )
                & ( ( Y @ I5 )
                 != one_one_complex ) ) ) )
       => ( finite_finite_real
          @ ( collect_real
            @ ^ [I5: real] :
                ( ( member_real @ I5 @ I6 )
                & ( ( times_times_complex @ ( X @ I5 ) @ ( Y @ I5 ) )
                 != one_one_complex ) ) ) ) ) ) ).

% prod.finite_Collect_op
thf(fact_4438_prod_Ofinite__Collect__op,axiom,
    ! [I6: set_nat,X: nat > complex,Y: nat > complex] :
      ( ( finite_finite_nat
        @ ( collect_nat
          @ ^ [I5: nat] :
              ( ( member_nat @ I5 @ I6 )
              & ( ( X @ I5 )
               != one_one_complex ) ) ) )
     => ( ( finite_finite_nat
          @ ( collect_nat
            @ ^ [I5: nat] :
                ( ( member_nat @ I5 @ I6 )
                & ( ( Y @ I5 )
                 != one_one_complex ) ) ) )
       => ( finite_finite_nat
          @ ( collect_nat
            @ ^ [I5: nat] :
                ( ( member_nat @ I5 @ I6 )
                & ( ( times_times_complex @ ( X @ I5 ) @ ( Y @ I5 ) )
                 != one_one_complex ) ) ) ) ) ) ).

% prod.finite_Collect_op
thf(fact_4439_prod_Ofinite__Collect__op,axiom,
    ! [I6: set_int,X: int > complex,Y: int > complex] :
      ( ( finite_finite_int
        @ ( collect_int
          @ ^ [I5: int] :
              ( ( member_int @ I5 @ I6 )
              & ( ( X @ I5 )
               != one_one_complex ) ) ) )
     => ( ( finite_finite_int
          @ ( collect_int
            @ ^ [I5: int] :
                ( ( member_int @ I5 @ I6 )
                & ( ( Y @ I5 )
                 != one_one_complex ) ) ) )
       => ( finite_finite_int
          @ ( collect_int
            @ ^ [I5: int] :
                ( ( member_int @ I5 @ I6 )
                & ( ( times_times_complex @ ( X @ I5 ) @ ( Y @ I5 ) )
                 != one_one_complex ) ) ) ) ) ) ).

% prod.finite_Collect_op
thf(fact_4440_prod_Ofinite__Collect__op,axiom,
    ! [I6: set_complex,X: complex > complex,Y: complex > complex] :
      ( ( finite3207457112153483333omplex
        @ ( collect_complex
          @ ^ [I5: complex] :
              ( ( member_complex @ I5 @ I6 )
              & ( ( X @ I5 )
               != one_one_complex ) ) ) )
     => ( ( finite3207457112153483333omplex
          @ ( collect_complex
            @ ^ [I5: complex] :
                ( ( member_complex @ I5 @ I6 )
                & ( ( Y @ I5 )
                 != one_one_complex ) ) ) )
       => ( finite3207457112153483333omplex
          @ ( collect_complex
            @ ^ [I5: complex] :
                ( ( member_complex @ I5 @ I6 )
                & ( ( times_times_complex @ ( X @ I5 ) @ ( Y @ I5 ) )
                 != one_one_complex ) ) ) ) ) ) ).

% prod.finite_Collect_op
thf(fact_4441_prod_Ofinite__Collect__op,axiom,
    ! [I6: set_real,X: real > real,Y: real > real] :
      ( ( finite_finite_real
        @ ( collect_real
          @ ^ [I5: real] :
              ( ( member_real @ I5 @ I6 )
              & ( ( X @ I5 )
               != one_one_real ) ) ) )
     => ( ( finite_finite_real
          @ ( collect_real
            @ ^ [I5: real] :
                ( ( member_real @ I5 @ I6 )
                & ( ( Y @ I5 )
                 != one_one_real ) ) ) )
       => ( finite_finite_real
          @ ( collect_real
            @ ^ [I5: real] :
                ( ( member_real @ I5 @ I6 )
                & ( ( times_times_real @ ( X @ I5 ) @ ( Y @ I5 ) )
                 != one_one_real ) ) ) ) ) ) ).

% prod.finite_Collect_op
thf(fact_4442_prod_Ofinite__Collect__op,axiom,
    ! [I6: set_nat,X: nat > real,Y: nat > real] :
      ( ( finite_finite_nat
        @ ( collect_nat
          @ ^ [I5: nat] :
              ( ( member_nat @ I5 @ I6 )
              & ( ( X @ I5 )
               != one_one_real ) ) ) )
     => ( ( finite_finite_nat
          @ ( collect_nat
            @ ^ [I5: nat] :
                ( ( member_nat @ I5 @ I6 )
                & ( ( Y @ I5 )
                 != one_one_real ) ) ) )
       => ( finite_finite_nat
          @ ( collect_nat
            @ ^ [I5: nat] :
                ( ( member_nat @ I5 @ I6 )
                & ( ( times_times_real @ ( X @ I5 ) @ ( Y @ I5 ) )
                 != one_one_real ) ) ) ) ) ) ).

% prod.finite_Collect_op
thf(fact_4443_prod_Ofinite__Collect__op,axiom,
    ! [I6: set_int,X: int > real,Y: int > real] :
      ( ( finite_finite_int
        @ ( collect_int
          @ ^ [I5: int] :
              ( ( member_int @ I5 @ I6 )
              & ( ( X @ I5 )
               != one_one_real ) ) ) )
     => ( ( finite_finite_int
          @ ( collect_int
            @ ^ [I5: int] :
                ( ( member_int @ I5 @ I6 )
                & ( ( Y @ I5 )
                 != one_one_real ) ) ) )
       => ( finite_finite_int
          @ ( collect_int
            @ ^ [I5: int] :
                ( ( member_int @ I5 @ I6 )
                & ( ( times_times_real @ ( X @ I5 ) @ ( Y @ I5 ) )
                 != one_one_real ) ) ) ) ) ) ).

% prod.finite_Collect_op
thf(fact_4444_prod_Ofinite__Collect__op,axiom,
    ! [I6: set_complex,X: complex > real,Y: complex > real] :
      ( ( finite3207457112153483333omplex
        @ ( collect_complex
          @ ^ [I5: complex] :
              ( ( member_complex @ I5 @ I6 )
              & ( ( X @ I5 )
               != one_one_real ) ) ) )
     => ( ( finite3207457112153483333omplex
          @ ( collect_complex
            @ ^ [I5: complex] :
                ( ( member_complex @ I5 @ I6 )
                & ( ( Y @ I5 )
                 != one_one_real ) ) ) )
       => ( finite3207457112153483333omplex
          @ ( collect_complex
            @ ^ [I5: complex] :
                ( ( member_complex @ I5 @ I6 )
                & ( ( times_times_real @ ( X @ I5 ) @ ( Y @ I5 ) )
                 != one_one_real ) ) ) ) ) ) ).

% prod.finite_Collect_op
thf(fact_4445_prod_Ofinite__Collect__op,axiom,
    ! [I6: set_real,X: real > rat,Y: real > rat] :
      ( ( finite_finite_real
        @ ( collect_real
          @ ^ [I5: real] :
              ( ( member_real @ I5 @ I6 )
              & ( ( X @ I5 )
               != one_one_rat ) ) ) )
     => ( ( finite_finite_real
          @ ( collect_real
            @ ^ [I5: real] :
                ( ( member_real @ I5 @ I6 )
                & ( ( Y @ I5 )
                 != one_one_rat ) ) ) )
       => ( finite_finite_real
          @ ( collect_real
            @ ^ [I5: real] :
                ( ( member_real @ I5 @ I6 )
                & ( ( times_times_rat @ ( X @ I5 ) @ ( Y @ I5 ) )
                 != one_one_rat ) ) ) ) ) ) ).

% prod.finite_Collect_op
thf(fact_4446_prod_Ofinite__Collect__op,axiom,
    ! [I6: set_nat,X: nat > rat,Y: nat > rat] :
      ( ( finite_finite_nat
        @ ( collect_nat
          @ ^ [I5: nat] :
              ( ( member_nat @ I5 @ I6 )
              & ( ( X @ I5 )
               != one_one_rat ) ) ) )
     => ( ( finite_finite_nat
          @ ( collect_nat
            @ ^ [I5: nat] :
                ( ( member_nat @ I5 @ I6 )
                & ( ( Y @ I5 )
                 != one_one_rat ) ) ) )
       => ( finite_finite_nat
          @ ( collect_nat
            @ ^ [I5: nat] :
                ( ( member_nat @ I5 @ I6 )
                & ( ( times_times_rat @ ( X @ I5 ) @ ( Y @ I5 ) )
                 != one_one_rat ) ) ) ) ) ) ).

% prod.finite_Collect_op
thf(fact_4447_sum_Ofinite__Collect__op,axiom,
    ! [I6: set_real,X: real > complex,Y: real > complex] :
      ( ( finite_finite_real
        @ ( collect_real
          @ ^ [I5: real] :
              ( ( member_real @ I5 @ I6 )
              & ( ( X @ I5 )
               != zero_zero_complex ) ) ) )
     => ( ( finite_finite_real
          @ ( collect_real
            @ ^ [I5: real] :
                ( ( member_real @ I5 @ I6 )
                & ( ( Y @ I5 )
                 != zero_zero_complex ) ) ) )
       => ( finite_finite_real
          @ ( collect_real
            @ ^ [I5: real] :
                ( ( member_real @ I5 @ I6 )
                & ( ( plus_plus_complex @ ( X @ I5 ) @ ( Y @ I5 ) )
                 != zero_zero_complex ) ) ) ) ) ) ).

% sum.finite_Collect_op
thf(fact_4448_sum_Ofinite__Collect__op,axiom,
    ! [I6: set_nat,X: nat > complex,Y: nat > complex] :
      ( ( finite_finite_nat
        @ ( collect_nat
          @ ^ [I5: nat] :
              ( ( member_nat @ I5 @ I6 )
              & ( ( X @ I5 )
               != zero_zero_complex ) ) ) )
     => ( ( finite_finite_nat
          @ ( collect_nat
            @ ^ [I5: nat] :
                ( ( member_nat @ I5 @ I6 )
                & ( ( Y @ I5 )
                 != zero_zero_complex ) ) ) )
       => ( finite_finite_nat
          @ ( collect_nat
            @ ^ [I5: nat] :
                ( ( member_nat @ I5 @ I6 )
                & ( ( plus_plus_complex @ ( X @ I5 ) @ ( Y @ I5 ) )
                 != zero_zero_complex ) ) ) ) ) ) ).

% sum.finite_Collect_op
thf(fact_4449_sum_Ofinite__Collect__op,axiom,
    ! [I6: set_int,X: int > complex,Y: int > complex] :
      ( ( finite_finite_int
        @ ( collect_int
          @ ^ [I5: int] :
              ( ( member_int @ I5 @ I6 )
              & ( ( X @ I5 )
               != zero_zero_complex ) ) ) )
     => ( ( finite_finite_int
          @ ( collect_int
            @ ^ [I5: int] :
                ( ( member_int @ I5 @ I6 )
                & ( ( Y @ I5 )
                 != zero_zero_complex ) ) ) )
       => ( finite_finite_int
          @ ( collect_int
            @ ^ [I5: int] :
                ( ( member_int @ I5 @ I6 )
                & ( ( plus_plus_complex @ ( X @ I5 ) @ ( Y @ I5 ) )
                 != zero_zero_complex ) ) ) ) ) ) ).

% sum.finite_Collect_op
thf(fact_4450_sum_Ofinite__Collect__op,axiom,
    ! [I6: set_complex,X: complex > complex,Y: complex > complex] :
      ( ( finite3207457112153483333omplex
        @ ( collect_complex
          @ ^ [I5: complex] :
              ( ( member_complex @ I5 @ I6 )
              & ( ( X @ I5 )
               != zero_zero_complex ) ) ) )
     => ( ( finite3207457112153483333omplex
          @ ( collect_complex
            @ ^ [I5: complex] :
                ( ( member_complex @ I5 @ I6 )
                & ( ( Y @ I5 )
                 != zero_zero_complex ) ) ) )
       => ( finite3207457112153483333omplex
          @ ( collect_complex
            @ ^ [I5: complex] :
                ( ( member_complex @ I5 @ I6 )
                & ( ( plus_plus_complex @ ( X @ I5 ) @ ( Y @ I5 ) )
                 != zero_zero_complex ) ) ) ) ) ) ).

% sum.finite_Collect_op
thf(fact_4451_sum_Ofinite__Collect__op,axiom,
    ! [I6: set_real,X: real > real,Y: real > real] :
      ( ( finite_finite_real
        @ ( collect_real
          @ ^ [I5: real] :
              ( ( member_real @ I5 @ I6 )
              & ( ( X @ I5 )
               != zero_zero_real ) ) ) )
     => ( ( finite_finite_real
          @ ( collect_real
            @ ^ [I5: real] :
                ( ( member_real @ I5 @ I6 )
                & ( ( Y @ I5 )
                 != zero_zero_real ) ) ) )
       => ( finite_finite_real
          @ ( collect_real
            @ ^ [I5: real] :
                ( ( member_real @ I5 @ I6 )
                & ( ( plus_plus_real @ ( X @ I5 ) @ ( Y @ I5 ) )
                 != zero_zero_real ) ) ) ) ) ) ).

% sum.finite_Collect_op
thf(fact_4452_sum_Ofinite__Collect__op,axiom,
    ! [I6: set_nat,X: nat > real,Y: nat > real] :
      ( ( finite_finite_nat
        @ ( collect_nat
          @ ^ [I5: nat] :
              ( ( member_nat @ I5 @ I6 )
              & ( ( X @ I5 )
               != zero_zero_real ) ) ) )
     => ( ( finite_finite_nat
          @ ( collect_nat
            @ ^ [I5: nat] :
                ( ( member_nat @ I5 @ I6 )
                & ( ( Y @ I5 )
                 != zero_zero_real ) ) ) )
       => ( finite_finite_nat
          @ ( collect_nat
            @ ^ [I5: nat] :
                ( ( member_nat @ I5 @ I6 )
                & ( ( plus_plus_real @ ( X @ I5 ) @ ( Y @ I5 ) )
                 != zero_zero_real ) ) ) ) ) ) ).

% sum.finite_Collect_op
thf(fact_4453_sum_Ofinite__Collect__op,axiom,
    ! [I6: set_int,X: int > real,Y: int > real] :
      ( ( finite_finite_int
        @ ( collect_int
          @ ^ [I5: int] :
              ( ( member_int @ I5 @ I6 )
              & ( ( X @ I5 )
               != zero_zero_real ) ) ) )
     => ( ( finite_finite_int
          @ ( collect_int
            @ ^ [I5: int] :
                ( ( member_int @ I5 @ I6 )
                & ( ( Y @ I5 )
                 != zero_zero_real ) ) ) )
       => ( finite_finite_int
          @ ( collect_int
            @ ^ [I5: int] :
                ( ( member_int @ I5 @ I6 )
                & ( ( plus_plus_real @ ( X @ I5 ) @ ( Y @ I5 ) )
                 != zero_zero_real ) ) ) ) ) ) ).

% sum.finite_Collect_op
thf(fact_4454_sum_Ofinite__Collect__op,axiom,
    ! [I6: set_complex,X: complex > real,Y: complex > real] :
      ( ( finite3207457112153483333omplex
        @ ( collect_complex
          @ ^ [I5: complex] :
              ( ( member_complex @ I5 @ I6 )
              & ( ( X @ I5 )
               != zero_zero_real ) ) ) )
     => ( ( finite3207457112153483333omplex
          @ ( collect_complex
            @ ^ [I5: complex] :
                ( ( member_complex @ I5 @ I6 )
                & ( ( Y @ I5 )
                 != zero_zero_real ) ) ) )
       => ( finite3207457112153483333omplex
          @ ( collect_complex
            @ ^ [I5: complex] :
                ( ( member_complex @ I5 @ I6 )
                & ( ( plus_plus_real @ ( X @ I5 ) @ ( Y @ I5 ) )
                 != zero_zero_real ) ) ) ) ) ) ).

% sum.finite_Collect_op
thf(fact_4455_sum_Ofinite__Collect__op,axiom,
    ! [I6: set_real,X: real > rat,Y: real > rat] :
      ( ( finite_finite_real
        @ ( collect_real
          @ ^ [I5: real] :
              ( ( member_real @ I5 @ I6 )
              & ( ( X @ I5 )
               != zero_zero_rat ) ) ) )
     => ( ( finite_finite_real
          @ ( collect_real
            @ ^ [I5: real] :
                ( ( member_real @ I5 @ I6 )
                & ( ( Y @ I5 )
                 != zero_zero_rat ) ) ) )
       => ( finite_finite_real
          @ ( collect_real
            @ ^ [I5: real] :
                ( ( member_real @ I5 @ I6 )
                & ( ( plus_plus_rat @ ( X @ I5 ) @ ( Y @ I5 ) )
                 != zero_zero_rat ) ) ) ) ) ) ).

% sum.finite_Collect_op
thf(fact_4456_sum_Ofinite__Collect__op,axiom,
    ! [I6: set_nat,X: nat > rat,Y: nat > rat] :
      ( ( finite_finite_nat
        @ ( collect_nat
          @ ^ [I5: nat] :
              ( ( member_nat @ I5 @ I6 )
              & ( ( X @ I5 )
               != zero_zero_rat ) ) ) )
     => ( ( finite_finite_nat
          @ ( collect_nat
            @ ^ [I5: nat] :
                ( ( member_nat @ I5 @ I6 )
                & ( ( Y @ I5 )
                 != zero_zero_rat ) ) ) )
       => ( finite_finite_nat
          @ ( collect_nat
            @ ^ [I5: nat] :
                ( ( member_nat @ I5 @ I6 )
                & ( ( plus_plus_rat @ ( X @ I5 ) @ ( Y @ I5 ) )
                 != zero_zero_rat ) ) ) ) ) ) ).

% sum.finite_Collect_op
thf(fact_4457_gcd__nat__induct,axiom,
    ! [P: nat > nat > $o,M: nat,N2: nat] :
      ( ! [M2: nat] : ( P @ M2 @ zero_zero_nat )
     => ( ! [M2: nat,N: nat] :
            ( ( ord_less_nat @ zero_zero_nat @ N )
           => ( ( P @ N @ ( modulo_modulo_nat @ M2 @ N ) )
             => ( P @ M2 @ N ) ) )
       => ( P @ M @ N2 ) ) ) ).

% gcd_nat_induct
thf(fact_4458_concat__bit__Suc,axiom,
    ! [N2: nat,K: int,L2: int] :
      ( ( bit_concat_bit @ ( suc @ N2 ) @ K @ L2 )
      = ( plus_plus_int @ ( modulo_modulo_int @ K @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_concat_bit @ N2 @ ( divide_divide_int @ K @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ L2 ) ) ) ) ).

% concat_bit_Suc
thf(fact_4459_dbl__simps_I3_J,axiom,
    ( ( neg_nu7009210354673126013omplex @ one_one_complex )
    = ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ).

% dbl_simps(3)
thf(fact_4460_dbl__simps_I3_J,axiom,
    ( ( neg_numeral_dbl_real @ one_one_real )
    = ( numeral_numeral_real @ ( bit0 @ one ) ) ) ).

% dbl_simps(3)
thf(fact_4461_dbl__simps_I3_J,axiom,
    ( ( neg_numeral_dbl_rat @ one_one_rat )
    = ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ).

% dbl_simps(3)
thf(fact_4462_dbl__simps_I3_J,axiom,
    ( ( neg_numeral_dbl_int @ one_one_int )
    = ( numeral_numeral_int @ ( bit0 @ one ) ) ) ).

% dbl_simps(3)
thf(fact_4463_even__succ__mod__exp,axiom,
    ! [A: nat,N2: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ N2 )
       => ( ( modulo_modulo_nat @ ( plus_plus_nat @ one_one_nat @ A ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
          = ( plus_plus_nat @ one_one_nat @ ( modulo_modulo_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) ) ) ) ).

% even_succ_mod_exp
thf(fact_4464_even__succ__mod__exp,axiom,
    ! [A: int,N2: nat] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ N2 )
       => ( ( modulo_modulo_int @ ( plus_plus_int @ one_one_int @ A ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) )
          = ( plus_plus_int @ one_one_int @ ( modulo_modulo_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) ) ) ) ) ) ).

% even_succ_mod_exp
thf(fact_4465_even__succ__mod__exp,axiom,
    ! [A: code_integer,N2: nat] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ N2 )
       => ( ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ one_one_Code_integer @ A ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N2 ) )
          = ( plus_p5714425477246183910nteger @ one_one_Code_integer @ ( modulo364778990260209775nteger @ A @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N2 ) ) ) ) ) ) ).

% even_succ_mod_exp
thf(fact_4466_even__succ__div__exp,axiom,
    ! [A: code_integer,N2: nat] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ N2 )
       => ( ( divide6298287555418463151nteger @ ( plus_p5714425477246183910nteger @ one_one_Code_integer @ A ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N2 ) )
          = ( divide6298287555418463151nteger @ A @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N2 ) ) ) ) ) ).

% even_succ_div_exp
thf(fact_4467_even__succ__div__exp,axiom,
    ! [A: nat,N2: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ N2 )
       => ( ( divide_divide_nat @ ( plus_plus_nat @ one_one_nat @ A ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
          = ( divide_divide_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) ) ) ).

% even_succ_div_exp
thf(fact_4468_even__succ__div__exp,axiom,
    ! [A: int,N2: nat] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ N2 )
       => ( ( divide_divide_int @ ( plus_plus_int @ one_one_int @ A ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) )
          = ( divide_divide_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) ) ) ) ) ).

% even_succ_div_exp
thf(fact_4469_nat__dvd__1__iff__1,axiom,
    ! [M: nat] :
      ( ( dvd_dvd_nat @ M @ one_one_nat )
      = ( M = one_one_nat ) ) ).

% nat_dvd_1_iff_1
thf(fact_4470_dvd__0__left__iff,axiom,
    ! [A: code_integer] :
      ( ( dvd_dvd_Code_integer @ zero_z3403309356797280102nteger @ A )
      = ( A = zero_z3403309356797280102nteger ) ) ).

% dvd_0_left_iff
thf(fact_4471_dvd__0__left__iff,axiom,
    ! [A: complex] :
      ( ( dvd_dvd_complex @ zero_zero_complex @ A )
      = ( A = zero_zero_complex ) ) ).

% dvd_0_left_iff
thf(fact_4472_dvd__0__left__iff,axiom,
    ! [A: real] :
      ( ( dvd_dvd_real @ zero_zero_real @ A )
      = ( A = zero_zero_real ) ) ).

% dvd_0_left_iff
thf(fact_4473_dvd__0__left__iff,axiom,
    ! [A: rat] :
      ( ( dvd_dvd_rat @ zero_zero_rat @ A )
      = ( A = zero_zero_rat ) ) ).

% dvd_0_left_iff
thf(fact_4474_dvd__0__left__iff,axiom,
    ! [A: nat] :
      ( ( dvd_dvd_nat @ zero_zero_nat @ A )
      = ( A = zero_zero_nat ) ) ).

% dvd_0_left_iff
thf(fact_4475_dvd__0__left__iff,axiom,
    ! [A: int] :
      ( ( dvd_dvd_int @ zero_zero_int @ A )
      = ( A = zero_zero_int ) ) ).

% dvd_0_left_iff
thf(fact_4476_dvd__0__right,axiom,
    ! [A: code_integer] : ( dvd_dvd_Code_integer @ A @ zero_z3403309356797280102nteger ) ).

% dvd_0_right
thf(fact_4477_dvd__0__right,axiom,
    ! [A: complex] : ( dvd_dvd_complex @ A @ zero_zero_complex ) ).

% dvd_0_right
thf(fact_4478_dvd__0__right,axiom,
    ! [A: real] : ( dvd_dvd_real @ A @ zero_zero_real ) ).

% dvd_0_right
thf(fact_4479_dvd__0__right,axiom,
    ! [A: rat] : ( dvd_dvd_rat @ A @ zero_zero_rat ) ).

% dvd_0_right
thf(fact_4480_dvd__0__right,axiom,
    ! [A: nat] : ( dvd_dvd_nat @ A @ zero_zero_nat ) ).

% dvd_0_right
thf(fact_4481_dvd__0__right,axiom,
    ! [A: int] : ( dvd_dvd_int @ A @ zero_zero_int ) ).

% dvd_0_right
thf(fact_4482_dvd__add__triv__right__iff,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ ( plus_p5714425477246183910nteger @ B @ A ) )
      = ( dvd_dvd_Code_integer @ A @ B ) ) ).

% dvd_add_triv_right_iff
thf(fact_4483_dvd__add__triv__right__iff,axiom,
    ! [A: real,B: real] :
      ( ( dvd_dvd_real @ A @ ( plus_plus_real @ B @ A ) )
      = ( dvd_dvd_real @ A @ B ) ) ).

% dvd_add_triv_right_iff
thf(fact_4484_dvd__add__triv__right__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( dvd_dvd_rat @ A @ ( plus_plus_rat @ B @ A ) )
      = ( dvd_dvd_rat @ A @ B ) ) ).

% dvd_add_triv_right_iff
thf(fact_4485_dvd__add__triv__right__iff,axiom,
    ! [A: nat,B: nat] :
      ( ( dvd_dvd_nat @ A @ ( plus_plus_nat @ B @ A ) )
      = ( dvd_dvd_nat @ A @ B ) ) ).

% dvd_add_triv_right_iff
thf(fact_4486_dvd__add__triv__right__iff,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ A @ ( plus_plus_int @ B @ A ) )
      = ( dvd_dvd_int @ A @ B ) ) ).

% dvd_add_triv_right_iff
thf(fact_4487_dvd__add__triv__left__iff,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ ( plus_p5714425477246183910nteger @ A @ B ) )
      = ( dvd_dvd_Code_integer @ A @ B ) ) ).

% dvd_add_triv_left_iff
thf(fact_4488_dvd__add__triv__left__iff,axiom,
    ! [A: real,B: real] :
      ( ( dvd_dvd_real @ A @ ( plus_plus_real @ A @ B ) )
      = ( dvd_dvd_real @ A @ B ) ) ).

% dvd_add_triv_left_iff
thf(fact_4489_dvd__add__triv__left__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( dvd_dvd_rat @ A @ ( plus_plus_rat @ A @ B ) )
      = ( dvd_dvd_rat @ A @ B ) ) ).

% dvd_add_triv_left_iff
thf(fact_4490_dvd__add__triv__left__iff,axiom,
    ! [A: nat,B: nat] :
      ( ( dvd_dvd_nat @ A @ ( plus_plus_nat @ A @ B ) )
      = ( dvd_dvd_nat @ A @ B ) ) ).

% dvd_add_triv_left_iff
thf(fact_4491_dvd__add__triv__left__iff,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ A @ ( plus_plus_int @ A @ B ) )
      = ( dvd_dvd_int @ A @ B ) ) ).

% dvd_add_triv_left_iff
thf(fact_4492_dvd__1__iff__1,axiom,
    ! [M: nat] :
      ( ( dvd_dvd_nat @ M @ ( suc @ zero_zero_nat ) )
      = ( M
        = ( suc @ zero_zero_nat ) ) ) ).

% dvd_1_iff_1
thf(fact_4493_dvd__1__left,axiom,
    ! [K: nat] : ( dvd_dvd_nat @ ( suc @ zero_zero_nat ) @ K ) ).

% dvd_1_left
thf(fact_4494_div__dvd__div,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ B )
     => ( ( dvd_dvd_Code_integer @ A @ C )
       => ( ( dvd_dvd_Code_integer @ ( divide6298287555418463151nteger @ B @ A ) @ ( divide6298287555418463151nteger @ C @ A ) )
          = ( dvd_dvd_Code_integer @ B @ C ) ) ) ) ).

% div_dvd_div
thf(fact_4495_div__dvd__div,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( dvd_dvd_nat @ A @ B )
     => ( ( dvd_dvd_nat @ A @ C )
       => ( ( dvd_dvd_nat @ ( divide_divide_nat @ B @ A ) @ ( divide_divide_nat @ C @ A ) )
          = ( dvd_dvd_nat @ B @ C ) ) ) ) ).

% div_dvd_div
thf(fact_4496_div__dvd__div,axiom,
    ! [A: int,B: int,C: int] :
      ( ( dvd_dvd_int @ A @ B )
     => ( ( dvd_dvd_int @ A @ C )
       => ( ( dvd_dvd_int @ ( divide_divide_int @ B @ A ) @ ( divide_divide_int @ C @ A ) )
          = ( dvd_dvd_int @ B @ C ) ) ) ) ).

% div_dvd_div
thf(fact_4497_nat__mult__dvd__cancel__disj,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( dvd_dvd_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N2 ) )
      = ( ( K = zero_zero_nat )
        | ( dvd_dvd_nat @ M @ N2 ) ) ) ).

% nat_mult_dvd_cancel_disj
thf(fact_4498_concat__bit__0,axiom,
    ! [K: int,L2: int] :
      ( ( bit_concat_bit @ zero_zero_nat @ K @ L2 )
      = L2 ) ).

% concat_bit_0
thf(fact_4499_dbl__simps_I2_J,axiom,
    ( ( neg_nu7009210354673126013omplex @ zero_zero_complex )
    = zero_zero_complex ) ).

% dbl_simps(2)
thf(fact_4500_dbl__simps_I2_J,axiom,
    ( ( neg_numeral_dbl_real @ zero_zero_real )
    = zero_zero_real ) ).

% dbl_simps(2)
thf(fact_4501_dbl__simps_I2_J,axiom,
    ( ( neg_numeral_dbl_rat @ zero_zero_rat )
    = zero_zero_rat ) ).

% dbl_simps(2)
thf(fact_4502_dbl__simps_I2_J,axiom,
    ( ( neg_numeral_dbl_int @ zero_zero_int )
    = zero_zero_int ) ).

% dbl_simps(2)
thf(fact_4503_dvd__mult__cancel__left,axiom,
    ! [C: code_integer,A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ C @ A ) @ ( times_3573771949741848930nteger @ C @ B ) )
      = ( ( C = zero_z3403309356797280102nteger )
        | ( dvd_dvd_Code_integer @ A @ B ) ) ) ).

% dvd_mult_cancel_left
thf(fact_4504_dvd__mult__cancel__left,axiom,
    ! [C: complex,A: complex,B: complex] :
      ( ( dvd_dvd_complex @ ( times_times_complex @ C @ A ) @ ( times_times_complex @ C @ B ) )
      = ( ( C = zero_zero_complex )
        | ( dvd_dvd_complex @ A @ B ) ) ) ).

% dvd_mult_cancel_left
thf(fact_4505_dvd__mult__cancel__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( dvd_dvd_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
      = ( ( C = zero_zero_real )
        | ( dvd_dvd_real @ A @ B ) ) ) ).

% dvd_mult_cancel_left
thf(fact_4506_dvd__mult__cancel__left,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( dvd_dvd_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
      = ( ( C = zero_zero_rat )
        | ( dvd_dvd_rat @ A @ B ) ) ) ).

% dvd_mult_cancel_left
thf(fact_4507_dvd__mult__cancel__left,axiom,
    ! [C: int,A: int,B: int] :
      ( ( dvd_dvd_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
      = ( ( C = zero_zero_int )
        | ( dvd_dvd_int @ A @ B ) ) ) ).

% dvd_mult_cancel_left
thf(fact_4508_dvd__mult__cancel__right,axiom,
    ! [A: code_integer,C: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ A @ C ) @ ( times_3573771949741848930nteger @ B @ C ) )
      = ( ( C = zero_z3403309356797280102nteger )
        | ( dvd_dvd_Code_integer @ A @ B ) ) ) ).

% dvd_mult_cancel_right
thf(fact_4509_dvd__mult__cancel__right,axiom,
    ! [A: complex,C: complex,B: complex] :
      ( ( dvd_dvd_complex @ ( times_times_complex @ A @ C ) @ ( times_times_complex @ B @ C ) )
      = ( ( C = zero_zero_complex )
        | ( dvd_dvd_complex @ A @ B ) ) ) ).

% dvd_mult_cancel_right
thf(fact_4510_dvd__mult__cancel__right,axiom,
    ! [A: real,C: real,B: real] :
      ( ( dvd_dvd_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) )
      = ( ( C = zero_zero_real )
        | ( dvd_dvd_real @ A @ B ) ) ) ).

% dvd_mult_cancel_right
thf(fact_4511_dvd__mult__cancel__right,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( dvd_dvd_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) )
      = ( ( C = zero_zero_rat )
        | ( dvd_dvd_rat @ A @ B ) ) ) ).

% dvd_mult_cancel_right
thf(fact_4512_dvd__mult__cancel__right,axiom,
    ! [A: int,C: int,B: int] :
      ( ( dvd_dvd_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
      = ( ( C = zero_zero_int )
        | ( dvd_dvd_int @ A @ B ) ) ) ).

% dvd_mult_cancel_right
thf(fact_4513_dvd__times__left__cancel__iff,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( A != zero_z3403309356797280102nteger )
     => ( ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ A @ B ) @ ( times_3573771949741848930nteger @ A @ C ) )
        = ( dvd_dvd_Code_integer @ B @ C ) ) ) ).

% dvd_times_left_cancel_iff
thf(fact_4514_dvd__times__left__cancel__iff,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( A != zero_zero_nat )
     => ( ( dvd_dvd_nat @ ( times_times_nat @ A @ B ) @ ( times_times_nat @ A @ C ) )
        = ( dvd_dvd_nat @ B @ C ) ) ) ).

% dvd_times_left_cancel_iff
thf(fact_4515_dvd__times__left__cancel__iff,axiom,
    ! [A: int,B: int,C: int] :
      ( ( A != zero_zero_int )
     => ( ( dvd_dvd_int @ ( times_times_int @ A @ B ) @ ( times_times_int @ A @ C ) )
        = ( dvd_dvd_int @ B @ C ) ) ) ).

% dvd_times_left_cancel_iff
thf(fact_4516_dvd__times__right__cancel__iff,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( A != zero_z3403309356797280102nteger )
     => ( ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ B @ A ) @ ( times_3573771949741848930nteger @ C @ A ) )
        = ( dvd_dvd_Code_integer @ B @ C ) ) ) ).

% dvd_times_right_cancel_iff
thf(fact_4517_dvd__times__right__cancel__iff,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( A != zero_zero_nat )
     => ( ( dvd_dvd_nat @ ( times_times_nat @ B @ A ) @ ( times_times_nat @ C @ A ) )
        = ( dvd_dvd_nat @ B @ C ) ) ) ).

% dvd_times_right_cancel_iff
thf(fact_4518_dvd__times__right__cancel__iff,axiom,
    ! [A: int,B: int,C: int] :
      ( ( A != zero_zero_int )
     => ( ( dvd_dvd_int @ ( times_times_int @ B @ A ) @ ( times_times_int @ C @ A ) )
        = ( dvd_dvd_int @ B @ C ) ) ) ).

% dvd_times_right_cancel_iff
thf(fact_4519_dvd__add__times__triv__right__iff,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ ( plus_p5714425477246183910nteger @ B @ ( times_3573771949741848930nteger @ C @ A ) ) )
      = ( dvd_dvd_Code_integer @ A @ B ) ) ).

% dvd_add_times_triv_right_iff
thf(fact_4520_dvd__add__times__triv__right__iff,axiom,
    ! [A: real,B: real,C: real] :
      ( ( dvd_dvd_real @ A @ ( plus_plus_real @ B @ ( times_times_real @ C @ A ) ) )
      = ( dvd_dvd_real @ A @ B ) ) ).

% dvd_add_times_triv_right_iff
thf(fact_4521_dvd__add__times__triv__right__iff,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( dvd_dvd_rat @ A @ ( plus_plus_rat @ B @ ( times_times_rat @ C @ A ) ) )
      = ( dvd_dvd_rat @ A @ B ) ) ).

% dvd_add_times_triv_right_iff
thf(fact_4522_dvd__add__times__triv__right__iff,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( dvd_dvd_nat @ A @ ( plus_plus_nat @ B @ ( times_times_nat @ C @ A ) ) )
      = ( dvd_dvd_nat @ A @ B ) ) ).

% dvd_add_times_triv_right_iff
thf(fact_4523_dvd__add__times__triv__right__iff,axiom,
    ! [A: int,B: int,C: int] :
      ( ( dvd_dvd_int @ A @ ( plus_plus_int @ B @ ( times_times_int @ C @ A ) ) )
      = ( dvd_dvd_int @ A @ B ) ) ).

% dvd_add_times_triv_right_iff
thf(fact_4524_dvd__add__times__triv__left__iff,axiom,
    ! [A: code_integer,C: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ C @ A ) @ B ) )
      = ( dvd_dvd_Code_integer @ A @ B ) ) ).

% dvd_add_times_triv_left_iff
thf(fact_4525_dvd__add__times__triv__left__iff,axiom,
    ! [A: real,C: real,B: real] :
      ( ( dvd_dvd_real @ A @ ( plus_plus_real @ ( times_times_real @ C @ A ) @ B ) )
      = ( dvd_dvd_real @ A @ B ) ) ).

% dvd_add_times_triv_left_iff
thf(fact_4526_dvd__add__times__triv__left__iff,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( dvd_dvd_rat @ A @ ( plus_plus_rat @ ( times_times_rat @ C @ A ) @ B ) )
      = ( dvd_dvd_rat @ A @ B ) ) ).

% dvd_add_times_triv_left_iff
thf(fact_4527_dvd__add__times__triv__left__iff,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( dvd_dvd_nat @ A @ ( plus_plus_nat @ ( times_times_nat @ C @ A ) @ B ) )
      = ( dvd_dvd_nat @ A @ B ) ) ).

% dvd_add_times_triv_left_iff
thf(fact_4528_dvd__add__times__triv__left__iff,axiom,
    ! [A: int,C: int,B: int] :
      ( ( dvd_dvd_int @ A @ ( plus_plus_int @ ( times_times_int @ C @ A ) @ B ) )
      = ( dvd_dvd_int @ A @ B ) ) ).

% dvd_add_times_triv_left_iff
thf(fact_4529_unit__prod,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ one_one_Code_integer )
     => ( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
       => ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ A @ B ) @ one_one_Code_integer ) ) ) ).

% unit_prod
thf(fact_4530_unit__prod,axiom,
    ! [A: nat,B: nat] :
      ( ( dvd_dvd_nat @ A @ one_one_nat )
     => ( ( dvd_dvd_nat @ B @ one_one_nat )
       => ( dvd_dvd_nat @ ( times_times_nat @ A @ B ) @ one_one_nat ) ) ) ).

% unit_prod
thf(fact_4531_unit__prod,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ A @ one_one_int )
     => ( ( dvd_dvd_int @ B @ one_one_int )
       => ( dvd_dvd_int @ ( times_times_int @ A @ B ) @ one_one_int ) ) ) ).

% unit_prod
thf(fact_4532_dvd__mult__div__cancel,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ B )
     => ( ( times_3573771949741848930nteger @ A @ ( divide6298287555418463151nteger @ B @ A ) )
        = B ) ) ).

% dvd_mult_div_cancel
thf(fact_4533_dvd__mult__div__cancel,axiom,
    ! [A: nat,B: nat] :
      ( ( dvd_dvd_nat @ A @ B )
     => ( ( times_times_nat @ A @ ( divide_divide_nat @ B @ A ) )
        = B ) ) ).

% dvd_mult_div_cancel
thf(fact_4534_dvd__mult__div__cancel,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ A @ B )
     => ( ( times_times_int @ A @ ( divide_divide_int @ B @ A ) )
        = B ) ) ).

% dvd_mult_div_cancel
thf(fact_4535_dvd__div__mult__self,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ B )
     => ( ( times_3573771949741848930nteger @ ( divide6298287555418463151nteger @ B @ A ) @ A )
        = B ) ) ).

% dvd_div_mult_self
thf(fact_4536_dvd__div__mult__self,axiom,
    ! [A: nat,B: nat] :
      ( ( dvd_dvd_nat @ A @ B )
     => ( ( times_times_nat @ ( divide_divide_nat @ B @ A ) @ A )
        = B ) ) ).

% dvd_div_mult_self
thf(fact_4537_dvd__div__mult__self,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ A @ B )
     => ( ( times_times_int @ ( divide_divide_int @ B @ A ) @ A )
        = B ) ) ).

% dvd_div_mult_self
thf(fact_4538_div__add,axiom,
    ! [C: code_integer,A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ C @ A )
     => ( ( dvd_dvd_Code_integer @ C @ B )
       => ( ( divide6298287555418463151nteger @ ( plus_p5714425477246183910nteger @ A @ B ) @ C )
          = ( plus_p5714425477246183910nteger @ ( divide6298287555418463151nteger @ A @ C ) @ ( divide6298287555418463151nteger @ B @ C ) ) ) ) ) ).

% div_add
thf(fact_4539_div__add,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( dvd_dvd_nat @ C @ A )
     => ( ( dvd_dvd_nat @ C @ B )
       => ( ( divide_divide_nat @ ( plus_plus_nat @ A @ B ) @ C )
          = ( plus_plus_nat @ ( divide_divide_nat @ A @ C ) @ ( divide_divide_nat @ B @ C ) ) ) ) ) ).

% div_add
thf(fact_4540_div__add,axiom,
    ! [C: int,A: int,B: int] :
      ( ( dvd_dvd_int @ C @ A )
     => ( ( dvd_dvd_int @ C @ B )
       => ( ( divide_divide_int @ ( plus_plus_int @ A @ B ) @ C )
          = ( plus_plus_int @ ( divide_divide_int @ A @ C ) @ ( divide_divide_int @ B @ C ) ) ) ) ) ).

% div_add
thf(fact_4541_unit__div__1__div__1,axiom,
    ! [A: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ one_one_Code_integer )
     => ( ( divide6298287555418463151nteger @ one_one_Code_integer @ ( divide6298287555418463151nteger @ one_one_Code_integer @ A ) )
        = A ) ) ).

% unit_div_1_div_1
thf(fact_4542_unit__div__1__div__1,axiom,
    ! [A: nat] :
      ( ( dvd_dvd_nat @ A @ one_one_nat )
     => ( ( divide_divide_nat @ one_one_nat @ ( divide_divide_nat @ one_one_nat @ A ) )
        = A ) ) ).

% unit_div_1_div_1
thf(fact_4543_unit__div__1__div__1,axiom,
    ! [A: int] :
      ( ( dvd_dvd_int @ A @ one_one_int )
     => ( ( divide_divide_int @ one_one_int @ ( divide_divide_int @ one_one_int @ A ) )
        = A ) ) ).

% unit_div_1_div_1
thf(fact_4544_unit__div__1__unit,axiom,
    ! [A: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ one_one_Code_integer )
     => ( dvd_dvd_Code_integer @ ( divide6298287555418463151nteger @ one_one_Code_integer @ A ) @ one_one_Code_integer ) ) ).

% unit_div_1_unit
thf(fact_4545_unit__div__1__unit,axiom,
    ! [A: nat] :
      ( ( dvd_dvd_nat @ A @ one_one_nat )
     => ( dvd_dvd_nat @ ( divide_divide_nat @ one_one_nat @ A ) @ one_one_nat ) ) ).

% unit_div_1_unit
thf(fact_4546_unit__div__1__unit,axiom,
    ! [A: int] :
      ( ( dvd_dvd_int @ A @ one_one_int )
     => ( dvd_dvd_int @ ( divide_divide_int @ one_one_int @ A ) @ one_one_int ) ) ).

% unit_div_1_unit
thf(fact_4547_unit__div,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ one_one_Code_integer )
     => ( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
       => ( dvd_dvd_Code_integer @ ( divide6298287555418463151nteger @ A @ B ) @ one_one_Code_integer ) ) ) ).

% unit_div
thf(fact_4548_unit__div,axiom,
    ! [A: nat,B: nat] :
      ( ( dvd_dvd_nat @ A @ one_one_nat )
     => ( ( dvd_dvd_nat @ B @ one_one_nat )
       => ( dvd_dvd_nat @ ( divide_divide_nat @ A @ B ) @ one_one_nat ) ) ) ).

% unit_div
thf(fact_4549_unit__div,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ A @ one_one_int )
     => ( ( dvd_dvd_int @ B @ one_one_int )
       => ( dvd_dvd_int @ ( divide_divide_int @ A @ B ) @ one_one_int ) ) ) ).

% unit_div
thf(fact_4550_div__diff,axiom,
    ! [C: code_integer,A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ C @ A )
     => ( ( dvd_dvd_Code_integer @ C @ B )
       => ( ( divide6298287555418463151nteger @ ( minus_8373710615458151222nteger @ A @ B ) @ C )
          = ( minus_8373710615458151222nteger @ ( divide6298287555418463151nteger @ A @ C ) @ ( divide6298287555418463151nteger @ B @ C ) ) ) ) ) ).

% div_diff
thf(fact_4551_div__diff,axiom,
    ! [C: int,A: int,B: int] :
      ( ( dvd_dvd_int @ C @ A )
     => ( ( dvd_dvd_int @ C @ B )
       => ( ( divide_divide_int @ ( minus_minus_int @ A @ B ) @ C )
          = ( minus_minus_int @ ( divide_divide_int @ A @ C ) @ ( divide_divide_int @ B @ C ) ) ) ) ) ).

% div_diff
thf(fact_4552_dvd__imp__mod__0,axiom,
    ! [A: nat,B: nat] :
      ( ( dvd_dvd_nat @ A @ B )
     => ( ( modulo_modulo_nat @ B @ A )
        = zero_zero_nat ) ) ).

% dvd_imp_mod_0
thf(fact_4553_dvd__imp__mod__0,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ A @ B )
     => ( ( modulo_modulo_int @ B @ A )
        = zero_zero_int ) ) ).

% dvd_imp_mod_0
thf(fact_4554_dvd__imp__mod__0,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ B )
     => ( ( modulo364778990260209775nteger @ B @ A )
        = zero_z3403309356797280102nteger ) ) ).

% dvd_imp_mod_0
thf(fact_4555_concat__bit__nonnegative__iff,axiom,
    ! [N2: nat,K: int,L2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( bit_concat_bit @ N2 @ K @ L2 ) )
      = ( ord_less_eq_int @ zero_zero_int @ L2 ) ) ).

% concat_bit_nonnegative_iff
thf(fact_4556_concat__bit__negative__iff,axiom,
    ! [N2: nat,K: int,L2: int] :
      ( ( ord_less_int @ ( bit_concat_bit @ N2 @ K @ L2 ) @ zero_zero_int )
      = ( ord_less_int @ L2 @ zero_zero_int ) ) ).

% concat_bit_negative_iff
thf(fact_4557_dbl__simps_I5_J,axiom,
    ! [K: num] :
      ( ( neg_nu7009210354673126013omplex @ ( numera6690914467698888265omplex @ K ) )
      = ( numera6690914467698888265omplex @ ( bit0 @ K ) ) ) ).

% dbl_simps(5)
thf(fact_4558_dbl__simps_I5_J,axiom,
    ! [K: num] :
      ( ( neg_numeral_dbl_real @ ( numeral_numeral_real @ K ) )
      = ( numeral_numeral_real @ ( bit0 @ K ) ) ) ).

% dbl_simps(5)
thf(fact_4559_dbl__simps_I5_J,axiom,
    ! [K: num] :
      ( ( neg_numeral_dbl_rat @ ( numeral_numeral_rat @ K ) )
      = ( numeral_numeral_rat @ ( bit0 @ K ) ) ) ).

% dbl_simps(5)
thf(fact_4560_dbl__simps_I5_J,axiom,
    ! [K: num] :
      ( ( neg_numeral_dbl_int @ ( numeral_numeral_int @ K ) )
      = ( numeral_numeral_int @ ( bit0 @ K ) ) ) ).

% dbl_simps(5)
thf(fact_4561_even__Suc__Suc__iff,axiom,
    ! [N2: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ N2 ) ) )
      = ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ).

% even_Suc_Suc_iff
thf(fact_4562_even__Suc,axiom,
    ! [N2: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ N2 ) )
      = ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) ).

% even_Suc
thf(fact_4563_unit__div__mult__self,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ one_one_Code_integer )
     => ( ( times_3573771949741848930nteger @ ( divide6298287555418463151nteger @ B @ A ) @ A )
        = B ) ) ).

% unit_div_mult_self
thf(fact_4564_unit__div__mult__self,axiom,
    ! [A: nat,B: nat] :
      ( ( dvd_dvd_nat @ A @ one_one_nat )
     => ( ( times_times_nat @ ( divide_divide_nat @ B @ A ) @ A )
        = B ) ) ).

% unit_div_mult_self
thf(fact_4565_unit__div__mult__self,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ A @ one_one_int )
     => ( ( times_times_int @ ( divide_divide_int @ B @ A ) @ A )
        = B ) ) ).

% unit_div_mult_self
thf(fact_4566_unit__mult__div__div,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ one_one_Code_integer )
     => ( ( times_3573771949741848930nteger @ B @ ( divide6298287555418463151nteger @ one_one_Code_integer @ A ) )
        = ( divide6298287555418463151nteger @ B @ A ) ) ) ).

% unit_mult_div_div
thf(fact_4567_unit__mult__div__div,axiom,
    ! [A: nat,B: nat] :
      ( ( dvd_dvd_nat @ A @ one_one_nat )
     => ( ( times_times_nat @ B @ ( divide_divide_nat @ one_one_nat @ A ) )
        = ( divide_divide_nat @ B @ A ) ) ) ).

% unit_mult_div_div
thf(fact_4568_unit__mult__div__div,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ A @ one_one_int )
     => ( ( times_times_int @ B @ ( divide_divide_int @ one_one_int @ A ) )
        = ( divide_divide_int @ B @ A ) ) ) ).

% unit_mult_div_div
thf(fact_4569_pow__divides__pow__iff,axiom,
    ! [N2: nat,A: nat,B: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( dvd_dvd_nat @ ( power_power_nat @ A @ N2 ) @ ( power_power_nat @ B @ N2 ) )
        = ( dvd_dvd_nat @ A @ B ) ) ) ).

% pow_divides_pow_iff
thf(fact_4570_pow__divides__pow__iff,axiom,
    ! [N2: nat,A: int,B: int] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( dvd_dvd_int @ ( power_power_int @ A @ N2 ) @ ( power_power_int @ B @ N2 ) )
        = ( dvd_dvd_int @ A @ B ) ) ) ).

% pow_divides_pow_iff
thf(fact_4571_even__mult__iff,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( times_3573771949741848930nteger @ A @ B ) )
      = ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
        | ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) ) ).

% even_mult_iff
thf(fact_4572_even__mult__iff,axiom,
    ! [A: nat,B: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( times_times_nat @ A @ B ) )
      = ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
        | ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) ) ).

% even_mult_iff
thf(fact_4573_even__mult__iff,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( times_times_int @ A @ B ) )
      = ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
        | ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) ) ).

% even_mult_iff
thf(fact_4574_even__add,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( plus_p5714425477246183910nteger @ A @ B ) )
      = ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
        = ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) ) ).

% even_add
thf(fact_4575_even__add,axiom,
    ! [A: nat,B: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ A @ B ) )
      = ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
        = ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) ) ).

% even_add
thf(fact_4576_even__add,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ A @ B ) )
      = ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
        = ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) ) ).

% even_add
thf(fact_4577_odd__add,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( plus_p5714425477246183910nteger @ A @ B ) ) )
      = ( ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) )
       != ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) ) ) ).

% odd_add
thf(fact_4578_odd__add,axiom,
    ! [A: nat,B: nat] :
      ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ A @ B ) ) )
      = ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) )
       != ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) ) ) ).

% odd_add
thf(fact_4579_odd__add,axiom,
    ! [A: int,B: int] :
      ( ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ A @ B ) ) )
      = ( ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) )
       != ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) ) ) ).

% odd_add
thf(fact_4580_even__mod__2__iff,axiom,
    ! [A: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) ) ).

% even_mod_2_iff
thf(fact_4581_even__mod__2__iff,axiom,
    ! [A: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) )
      = ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) ).

% even_mod_2_iff
thf(fact_4582_even__mod__2__iff,axiom,
    ! [A: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) )
      = ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) ) ).

% even_mod_2_iff
thf(fact_4583_even__Suc__div__two,axiom,
    ! [N2: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ( divide_divide_nat @ ( suc @ N2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% even_Suc_div_two
thf(fact_4584_odd__Suc__div__two,axiom,
    ! [N2: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ( divide_divide_nat @ ( suc @ N2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( suc @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% odd_Suc_div_two
thf(fact_4585_zero__le__power__eq__numeral,axiom,
    ! [A: real,W: num] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ W ) ) )
      = ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
        | ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
          & ( ord_less_eq_real @ zero_zero_real @ A ) ) ) ) ).

% zero_le_power_eq_numeral
thf(fact_4586_zero__le__power__eq__numeral,axiom,
    ! [A: rat,W: num] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ W ) ) )
      = ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
        | ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
          & ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ) ) ).

% zero_le_power_eq_numeral
thf(fact_4587_zero__le__power__eq__numeral,axiom,
    ! [A: int,W: num] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ W ) ) )
      = ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
        | ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
          & ( ord_less_eq_int @ zero_zero_int @ A ) ) ) ) ).

% zero_le_power_eq_numeral
thf(fact_4588_power__less__zero__eq__numeral,axiom,
    ! [A: real,W: num] :
      ( ( ord_less_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ W ) ) @ zero_zero_real )
      = ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
        & ( ord_less_real @ A @ zero_zero_real ) ) ) ).

% power_less_zero_eq_numeral
thf(fact_4589_power__less__zero__eq__numeral,axiom,
    ! [A: rat,W: num] :
      ( ( ord_less_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ W ) ) @ zero_zero_rat )
      = ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
        & ( ord_less_rat @ A @ zero_zero_rat ) ) ) ).

% power_less_zero_eq_numeral
thf(fact_4590_power__less__zero__eq__numeral,axiom,
    ! [A: int,W: num] :
      ( ( ord_less_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ W ) ) @ zero_zero_int )
      = ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
        & ( ord_less_int @ A @ zero_zero_int ) ) ) ).

% power_less_zero_eq_numeral
thf(fact_4591_power__less__zero__eq,axiom,
    ! [A: real,N2: nat] :
      ( ( ord_less_real @ ( power_power_real @ A @ N2 ) @ zero_zero_real )
      = ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
        & ( ord_less_real @ A @ zero_zero_real ) ) ) ).

% power_less_zero_eq
thf(fact_4592_power__less__zero__eq,axiom,
    ! [A: rat,N2: nat] :
      ( ( ord_less_rat @ ( power_power_rat @ A @ N2 ) @ zero_zero_rat )
      = ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
        & ( ord_less_rat @ A @ zero_zero_rat ) ) ) ).

% power_less_zero_eq
thf(fact_4593_power__less__zero__eq,axiom,
    ! [A: int,N2: nat] :
      ( ( ord_less_int @ ( power_power_int @ A @ N2 ) @ zero_zero_int )
      = ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
        & ( ord_less_int @ A @ zero_zero_int ) ) ) ).

% power_less_zero_eq
thf(fact_4594_even__plus__one__iff,axiom,
    ! [A: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( plus_p5714425477246183910nteger @ A @ one_one_Code_integer ) )
      = ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) ) ) ).

% even_plus_one_iff
thf(fact_4595_even__plus__one__iff,axiom,
    ! [A: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ A @ one_one_nat ) )
      = ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) ) ) ).

% even_plus_one_iff
thf(fact_4596_even__plus__one__iff,axiom,
    ! [A: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ A @ one_one_int ) )
      = ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) ) ).

% even_plus_one_iff
thf(fact_4597_even__diff,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( minus_8373710615458151222nteger @ A @ B ) )
      = ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( plus_p5714425477246183910nteger @ A @ B ) ) ) ).

% even_diff
thf(fact_4598_even__diff,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( minus_minus_int @ A @ B ) )
      = ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ A @ B ) ) ) ).

% even_diff
thf(fact_4599_odd__Suc__minus__one,axiom,
    ! [N2: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ( suc @ ( minus_minus_nat @ N2 @ ( suc @ zero_zero_nat ) ) )
        = N2 ) ) ).

% odd_Suc_minus_one
thf(fact_4600_even__diff__nat,axiom,
    ! [M: nat,N2: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ M @ N2 ) )
      = ( ( ord_less_nat @ M @ N2 )
        | ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N2 ) ) ) ) ).

% even_diff_nat
thf(fact_4601_zero__less__power__eq__numeral,axiom,
    ! [A: real,W: num] :
      ( ( ord_less_real @ zero_zero_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ W ) ) )
      = ( ( ( numeral_numeral_nat @ W )
          = zero_zero_nat )
        | ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
          & ( A != zero_zero_real ) )
        | ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
          & ( ord_less_real @ zero_zero_real @ A ) ) ) ) ).

% zero_less_power_eq_numeral
thf(fact_4602_zero__less__power__eq__numeral,axiom,
    ! [A: rat,W: num] :
      ( ( ord_less_rat @ zero_zero_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ W ) ) )
      = ( ( ( numeral_numeral_nat @ W )
          = zero_zero_nat )
        | ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
          & ( A != zero_zero_rat ) )
        | ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
          & ( ord_less_rat @ zero_zero_rat @ A ) ) ) ) ).

% zero_less_power_eq_numeral
thf(fact_4603_zero__less__power__eq__numeral,axiom,
    ! [A: int,W: num] :
      ( ( ord_less_int @ zero_zero_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ W ) ) )
      = ( ( ( numeral_numeral_nat @ W )
          = zero_zero_nat )
        | ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
          & ( A != zero_zero_int ) )
        | ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
          & ( ord_less_int @ zero_zero_int @ A ) ) ) ) ).

% zero_less_power_eq_numeral
thf(fact_4604_even__succ__div__two,axiom,
    ! [A: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
     => ( ( divide6298287555418463151nteger @ ( plus_p5714425477246183910nteger @ A @ one_one_Code_integer ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
        = ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ).

% even_succ_div_two
thf(fact_4605_even__succ__div__two,axiom,
    ! [A: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
     => ( ( divide_divide_nat @ ( plus_plus_nat @ A @ one_one_nat ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% even_succ_div_two
thf(fact_4606_even__succ__div__two,axiom,
    ! [A: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
     => ( ( divide_divide_int @ ( plus_plus_int @ A @ one_one_int ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
        = ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ).

% even_succ_div_two
thf(fact_4607_odd__succ__div__two,axiom,
    ! [A: code_integer] :
      ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
     => ( ( divide6298287555418463151nteger @ ( plus_p5714425477246183910nteger @ A @ one_one_Code_integer ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
        = ( plus_p5714425477246183910nteger @ ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ one_one_Code_integer ) ) ) ).

% odd_succ_div_two
thf(fact_4608_odd__succ__div__two,axiom,
    ! [A: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
     => ( ( divide_divide_nat @ ( plus_plus_nat @ A @ one_one_nat ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( plus_plus_nat @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) ).

% odd_succ_div_two
thf(fact_4609_odd__succ__div__two,axiom,
    ! [A: int] :
      ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
     => ( ( divide_divide_int @ ( plus_plus_int @ A @ one_one_int ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
        = ( plus_plus_int @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ one_one_int ) ) ) ).

% odd_succ_div_two
thf(fact_4610_even__succ__div__2,axiom,
    ! [A: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
     => ( ( divide6298287555418463151nteger @ ( plus_p5714425477246183910nteger @ one_one_Code_integer @ A ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
        = ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ).

% even_succ_div_2
thf(fact_4611_even__succ__div__2,axiom,
    ! [A: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
     => ( ( divide_divide_nat @ ( plus_plus_nat @ one_one_nat @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% even_succ_div_2
thf(fact_4612_even__succ__div__2,axiom,
    ! [A: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
     => ( ( divide_divide_int @ ( plus_plus_int @ one_one_int @ A ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
        = ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ).

% even_succ_div_2
thf(fact_4613_even__power,axiom,
    ! [A: code_integer,N2: nat] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( power_8256067586552552935nteger @ A @ N2 ) )
      = ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
        & ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ).

% even_power
thf(fact_4614_even__power,axiom,
    ! [A: nat,N2: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( power_power_nat @ A @ N2 ) )
      = ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
        & ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ).

% even_power
thf(fact_4615_even__power,axiom,
    ! [A: int,N2: nat] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( power_power_int @ A @ N2 ) )
      = ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
        & ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ).

% even_power
thf(fact_4616_odd__two__times__div__two__nat,axiom,
    ! [N2: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
        = ( minus_minus_nat @ N2 @ one_one_nat ) ) ) ).

% odd_two_times_div_two_nat
thf(fact_4617_odd__two__times__div__two__succ,axiom,
    ! [A: code_integer] :
      ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
     => ( ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) @ one_one_Code_integer )
        = A ) ) ).

% odd_two_times_div_two_succ
thf(fact_4618_odd__two__times__div__two__succ,axiom,
    ! [A: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
     => ( ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ one_one_nat )
        = A ) ) ).

% odd_two_times_div_two_succ
thf(fact_4619_odd__two__times__div__two__succ,axiom,
    ! [A: int] :
      ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
     => ( ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) @ one_one_int )
        = A ) ) ).

% odd_two_times_div_two_succ
thf(fact_4620_power__le__zero__eq__numeral,axiom,
    ! [A: real,W: num] :
      ( ( ord_less_eq_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ W ) ) @ zero_zero_real )
      = ( ( ord_less_nat @ zero_zero_nat @ ( numeral_numeral_nat @ W ) )
        & ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
            & ( ord_less_eq_real @ A @ zero_zero_real ) )
          | ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
            & ( A = zero_zero_real ) ) ) ) ) ).

% power_le_zero_eq_numeral
thf(fact_4621_power__le__zero__eq__numeral,axiom,
    ! [A: rat,W: num] :
      ( ( ord_less_eq_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ W ) ) @ zero_zero_rat )
      = ( ( ord_less_nat @ zero_zero_nat @ ( numeral_numeral_nat @ W ) )
        & ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
            & ( ord_less_eq_rat @ A @ zero_zero_rat ) )
          | ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
            & ( A = zero_zero_rat ) ) ) ) ) ).

% power_le_zero_eq_numeral
thf(fact_4622_power__le__zero__eq__numeral,axiom,
    ! [A: int,W: num] :
      ( ( ord_less_eq_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ W ) ) @ zero_zero_int )
      = ( ( ord_less_nat @ zero_zero_nat @ ( numeral_numeral_nat @ W ) )
        & ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
            & ( ord_less_eq_int @ A @ zero_zero_int ) )
          | ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
            & ( A = zero_zero_int ) ) ) ) ) ).

% power_le_zero_eq_numeral
thf(fact_4623_semiring__parity__class_Oeven__mask__iff,axiom,
    ! [N2: nat] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( minus_8373710615458151222nteger @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N2 ) @ one_one_Code_integer ) )
      = ( N2 = zero_zero_nat ) ) ).

% semiring_parity_class.even_mask_iff
thf(fact_4624_semiring__parity__class_Oeven__mask__iff,axiom,
    ! [N2: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) @ one_one_nat ) )
      = ( N2 = zero_zero_nat ) ) ).

% semiring_parity_class.even_mask_iff
thf(fact_4625_semiring__parity__class_Oeven__mask__iff,axiom,
    ! [N2: nat] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( minus_minus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) @ one_one_int ) )
      = ( N2 = zero_zero_nat ) ) ).

% semiring_parity_class.even_mask_iff
thf(fact_4626_dvd__trans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( dvd_dvd_nat @ A @ B )
     => ( ( dvd_dvd_nat @ B @ C )
       => ( dvd_dvd_nat @ A @ C ) ) ) ).

% dvd_trans
thf(fact_4627_dvd__trans,axiom,
    ! [A: int,B: int,C: int] :
      ( ( dvd_dvd_int @ A @ B )
     => ( ( dvd_dvd_int @ B @ C )
       => ( dvd_dvd_int @ A @ C ) ) ) ).

% dvd_trans
thf(fact_4628_dvd__trans,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ B )
     => ( ( dvd_dvd_Code_integer @ B @ C )
       => ( dvd_dvd_Code_integer @ A @ C ) ) ) ).

% dvd_trans
thf(fact_4629_dvd__refl,axiom,
    ! [A: nat] : ( dvd_dvd_nat @ A @ A ) ).

% dvd_refl
thf(fact_4630_dvd__refl,axiom,
    ! [A: int] : ( dvd_dvd_int @ A @ A ) ).

% dvd_refl
thf(fact_4631_dvd__refl,axiom,
    ! [A: code_integer] : ( dvd_dvd_Code_integer @ A @ A ) ).

% dvd_refl
thf(fact_4632_division__decomp,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( dvd_dvd_nat @ A @ ( times_times_nat @ B @ C ) )
     => ? [B7: nat,C5: nat] :
          ( ( A
            = ( times_times_nat @ B7 @ C5 ) )
          & ( dvd_dvd_nat @ B7 @ B )
          & ( dvd_dvd_nat @ C5 @ C ) ) ) ).

% division_decomp
thf(fact_4633_division__decomp,axiom,
    ! [A: int,B: int,C: int] :
      ( ( dvd_dvd_int @ A @ ( times_times_int @ B @ C ) )
     => ? [B7: int,C5: int] :
          ( ( A
            = ( times_times_int @ B7 @ C5 ) )
          & ( dvd_dvd_int @ B7 @ B )
          & ( dvd_dvd_int @ C5 @ C ) ) ) ).

% division_decomp
thf(fact_4634_dvd__productE,axiom,
    ! [P4: nat,A: nat,B: nat] :
      ( ( dvd_dvd_nat @ P4 @ ( times_times_nat @ A @ B ) )
     => ~ ! [X5: nat,Y5: nat] :
            ( ( P4
              = ( times_times_nat @ X5 @ Y5 ) )
           => ( ( dvd_dvd_nat @ X5 @ A )
             => ~ ( dvd_dvd_nat @ Y5 @ B ) ) ) ) ).

% dvd_productE
thf(fact_4635_dvd__productE,axiom,
    ! [P4: int,A: int,B: int] :
      ( ( dvd_dvd_int @ P4 @ ( times_times_int @ A @ B ) )
     => ~ ! [X5: int,Y5: int] :
            ( ( P4
              = ( times_times_int @ X5 @ Y5 ) )
           => ( ( dvd_dvd_int @ X5 @ A )
             => ~ ( dvd_dvd_int @ Y5 @ B ) ) ) ) ).

% dvd_productE
thf(fact_4636_dvd__0__left,axiom,
    ! [A: code_integer] :
      ( ( dvd_dvd_Code_integer @ zero_z3403309356797280102nteger @ A )
     => ( A = zero_z3403309356797280102nteger ) ) ).

% dvd_0_left
thf(fact_4637_dvd__0__left,axiom,
    ! [A: complex] :
      ( ( dvd_dvd_complex @ zero_zero_complex @ A )
     => ( A = zero_zero_complex ) ) ).

% dvd_0_left
thf(fact_4638_dvd__0__left,axiom,
    ! [A: real] :
      ( ( dvd_dvd_real @ zero_zero_real @ A )
     => ( A = zero_zero_real ) ) ).

% dvd_0_left
thf(fact_4639_dvd__0__left,axiom,
    ! [A: rat] :
      ( ( dvd_dvd_rat @ zero_zero_rat @ A )
     => ( A = zero_zero_rat ) ) ).

% dvd_0_left
thf(fact_4640_dvd__0__left,axiom,
    ! [A: nat] :
      ( ( dvd_dvd_nat @ zero_zero_nat @ A )
     => ( A = zero_zero_nat ) ) ).

% dvd_0_left
thf(fact_4641_dvd__0__left,axiom,
    ! [A: int] :
      ( ( dvd_dvd_int @ zero_zero_int @ A )
     => ( A = zero_zero_int ) ) ).

% dvd_0_left
thf(fact_4642_dvd__triv__right,axiom,
    ! [A: code_integer,B: code_integer] : ( dvd_dvd_Code_integer @ A @ ( times_3573771949741848930nteger @ B @ A ) ) ).

% dvd_triv_right
thf(fact_4643_dvd__triv__right,axiom,
    ! [A: real,B: real] : ( dvd_dvd_real @ A @ ( times_times_real @ B @ A ) ) ).

% dvd_triv_right
thf(fact_4644_dvd__triv__right,axiom,
    ! [A: rat,B: rat] : ( dvd_dvd_rat @ A @ ( times_times_rat @ B @ A ) ) ).

% dvd_triv_right
thf(fact_4645_dvd__triv__right,axiom,
    ! [A: nat,B: nat] : ( dvd_dvd_nat @ A @ ( times_times_nat @ B @ A ) ) ).

% dvd_triv_right
thf(fact_4646_dvd__triv__right,axiom,
    ! [A: int,B: int] : ( dvd_dvd_int @ A @ ( times_times_int @ B @ A ) ) ).

% dvd_triv_right
thf(fact_4647_dvd__mult__right,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ A @ B ) @ C )
     => ( dvd_dvd_Code_integer @ B @ C ) ) ).

% dvd_mult_right
thf(fact_4648_dvd__mult__right,axiom,
    ! [A: real,B: real,C: real] :
      ( ( dvd_dvd_real @ ( times_times_real @ A @ B ) @ C )
     => ( dvd_dvd_real @ B @ C ) ) ).

% dvd_mult_right
thf(fact_4649_dvd__mult__right,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( dvd_dvd_rat @ ( times_times_rat @ A @ B ) @ C )
     => ( dvd_dvd_rat @ B @ C ) ) ).

% dvd_mult_right
thf(fact_4650_dvd__mult__right,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( dvd_dvd_nat @ ( times_times_nat @ A @ B ) @ C )
     => ( dvd_dvd_nat @ B @ C ) ) ).

% dvd_mult_right
thf(fact_4651_dvd__mult__right,axiom,
    ! [A: int,B: int,C: int] :
      ( ( dvd_dvd_int @ ( times_times_int @ A @ B ) @ C )
     => ( dvd_dvd_int @ B @ C ) ) ).

% dvd_mult_right
thf(fact_4652_mult__dvd__mono,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer,D: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ B )
     => ( ( dvd_dvd_Code_integer @ C @ D )
       => ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ A @ C ) @ ( times_3573771949741848930nteger @ B @ D ) ) ) ) ).

% mult_dvd_mono
thf(fact_4653_mult__dvd__mono,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( dvd_dvd_real @ A @ B )
     => ( ( dvd_dvd_real @ C @ D )
       => ( dvd_dvd_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D ) ) ) ) ).

% mult_dvd_mono
thf(fact_4654_mult__dvd__mono,axiom,
    ! [A: rat,B: rat,C: rat,D: rat] :
      ( ( dvd_dvd_rat @ A @ B )
     => ( ( dvd_dvd_rat @ C @ D )
       => ( dvd_dvd_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ D ) ) ) ) ).

% mult_dvd_mono
thf(fact_4655_mult__dvd__mono,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( dvd_dvd_nat @ A @ B )
     => ( ( dvd_dvd_nat @ C @ D )
       => ( dvd_dvd_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) ) ) ) ).

% mult_dvd_mono
thf(fact_4656_mult__dvd__mono,axiom,
    ! [A: int,B: int,C: int,D: int] :
      ( ( dvd_dvd_int @ A @ B )
     => ( ( dvd_dvd_int @ C @ D )
       => ( dvd_dvd_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D ) ) ) ) ).

% mult_dvd_mono
thf(fact_4657_dvd__triv__left,axiom,
    ! [A: code_integer,B: code_integer] : ( dvd_dvd_Code_integer @ A @ ( times_3573771949741848930nteger @ A @ B ) ) ).

% dvd_triv_left
thf(fact_4658_dvd__triv__left,axiom,
    ! [A: real,B: real] : ( dvd_dvd_real @ A @ ( times_times_real @ A @ B ) ) ).

% dvd_triv_left
thf(fact_4659_dvd__triv__left,axiom,
    ! [A: rat,B: rat] : ( dvd_dvd_rat @ A @ ( times_times_rat @ A @ B ) ) ).

% dvd_triv_left
thf(fact_4660_dvd__triv__left,axiom,
    ! [A: nat,B: nat] : ( dvd_dvd_nat @ A @ ( times_times_nat @ A @ B ) ) ).

% dvd_triv_left
thf(fact_4661_dvd__triv__left,axiom,
    ! [A: int,B: int] : ( dvd_dvd_int @ A @ ( times_times_int @ A @ B ) ) ).

% dvd_triv_left
thf(fact_4662_dvd__mult__left,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ A @ B ) @ C )
     => ( dvd_dvd_Code_integer @ A @ C ) ) ).

% dvd_mult_left
thf(fact_4663_dvd__mult__left,axiom,
    ! [A: real,B: real,C: real] :
      ( ( dvd_dvd_real @ ( times_times_real @ A @ B ) @ C )
     => ( dvd_dvd_real @ A @ C ) ) ).

% dvd_mult_left
thf(fact_4664_dvd__mult__left,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( dvd_dvd_rat @ ( times_times_rat @ A @ B ) @ C )
     => ( dvd_dvd_rat @ A @ C ) ) ).

% dvd_mult_left
thf(fact_4665_dvd__mult__left,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( dvd_dvd_nat @ ( times_times_nat @ A @ B ) @ C )
     => ( dvd_dvd_nat @ A @ C ) ) ).

% dvd_mult_left
thf(fact_4666_dvd__mult__left,axiom,
    ! [A: int,B: int,C: int] :
      ( ( dvd_dvd_int @ ( times_times_int @ A @ B ) @ C )
     => ( dvd_dvd_int @ A @ C ) ) ).

% dvd_mult_left
thf(fact_4667_dvd__mult2,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ B )
     => ( dvd_dvd_Code_integer @ A @ ( times_3573771949741848930nteger @ B @ C ) ) ) ).

% dvd_mult2
thf(fact_4668_dvd__mult2,axiom,
    ! [A: real,B: real,C: real] :
      ( ( dvd_dvd_real @ A @ B )
     => ( dvd_dvd_real @ A @ ( times_times_real @ B @ C ) ) ) ).

% dvd_mult2
thf(fact_4669_dvd__mult2,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( dvd_dvd_rat @ A @ B )
     => ( dvd_dvd_rat @ A @ ( times_times_rat @ B @ C ) ) ) ).

% dvd_mult2
thf(fact_4670_dvd__mult2,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( dvd_dvd_nat @ A @ B )
     => ( dvd_dvd_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).

% dvd_mult2
thf(fact_4671_dvd__mult2,axiom,
    ! [A: int,B: int,C: int] :
      ( ( dvd_dvd_int @ A @ B )
     => ( dvd_dvd_int @ A @ ( times_times_int @ B @ C ) ) ) ).

% dvd_mult2
thf(fact_4672_dvd__mult,axiom,
    ! [A: code_integer,C: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ C )
     => ( dvd_dvd_Code_integer @ A @ ( times_3573771949741848930nteger @ B @ C ) ) ) ).

% dvd_mult
thf(fact_4673_dvd__mult,axiom,
    ! [A: real,C: real,B: real] :
      ( ( dvd_dvd_real @ A @ C )
     => ( dvd_dvd_real @ A @ ( times_times_real @ B @ C ) ) ) ).

% dvd_mult
thf(fact_4674_dvd__mult,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( dvd_dvd_rat @ A @ C )
     => ( dvd_dvd_rat @ A @ ( times_times_rat @ B @ C ) ) ) ).

% dvd_mult
thf(fact_4675_dvd__mult,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( dvd_dvd_nat @ A @ C )
     => ( dvd_dvd_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).

% dvd_mult
thf(fact_4676_dvd__mult,axiom,
    ! [A: int,C: int,B: int] :
      ( ( dvd_dvd_int @ A @ C )
     => ( dvd_dvd_int @ A @ ( times_times_int @ B @ C ) ) ) ).

% dvd_mult
thf(fact_4677_dvd__def,axiom,
    ( dvd_dvd_Code_integer
    = ( ^ [B4: code_integer,A4: code_integer] :
        ? [K3: code_integer] :
          ( A4
          = ( times_3573771949741848930nteger @ B4 @ K3 ) ) ) ) ).

% dvd_def
thf(fact_4678_dvd__def,axiom,
    ( dvd_dvd_real
    = ( ^ [B4: real,A4: real] :
        ? [K3: real] :
          ( A4
          = ( times_times_real @ B4 @ K3 ) ) ) ) ).

% dvd_def
thf(fact_4679_dvd__def,axiom,
    ( dvd_dvd_rat
    = ( ^ [B4: rat,A4: rat] :
        ? [K3: rat] :
          ( A4
          = ( times_times_rat @ B4 @ K3 ) ) ) ) ).

% dvd_def
thf(fact_4680_dvd__def,axiom,
    ( dvd_dvd_nat
    = ( ^ [B4: nat,A4: nat] :
        ? [K3: nat] :
          ( A4
          = ( times_times_nat @ B4 @ K3 ) ) ) ) ).

% dvd_def
thf(fact_4681_dvd__def,axiom,
    ( dvd_dvd_int
    = ( ^ [B4: int,A4: int] :
        ? [K3: int] :
          ( A4
          = ( times_times_int @ B4 @ K3 ) ) ) ) ).

% dvd_def
thf(fact_4682_dvdI,axiom,
    ! [A: code_integer,B: code_integer,K: code_integer] :
      ( ( A
        = ( times_3573771949741848930nteger @ B @ K ) )
     => ( dvd_dvd_Code_integer @ B @ A ) ) ).

% dvdI
thf(fact_4683_dvdI,axiom,
    ! [A: real,B: real,K: real] :
      ( ( A
        = ( times_times_real @ B @ K ) )
     => ( dvd_dvd_real @ B @ A ) ) ).

% dvdI
thf(fact_4684_dvdI,axiom,
    ! [A: rat,B: rat,K: rat] :
      ( ( A
        = ( times_times_rat @ B @ K ) )
     => ( dvd_dvd_rat @ B @ A ) ) ).

% dvdI
thf(fact_4685_dvdI,axiom,
    ! [A: nat,B: nat,K: nat] :
      ( ( A
        = ( times_times_nat @ B @ K ) )
     => ( dvd_dvd_nat @ B @ A ) ) ).

% dvdI
thf(fact_4686_dvdI,axiom,
    ! [A: int,B: int,K: int] :
      ( ( A
        = ( times_times_int @ B @ K ) )
     => ( dvd_dvd_int @ B @ A ) ) ).

% dvdI
thf(fact_4687_dvdE,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ B @ A )
     => ~ ! [K2: code_integer] :
            ( A
           != ( times_3573771949741848930nteger @ B @ K2 ) ) ) ).

% dvdE
thf(fact_4688_dvdE,axiom,
    ! [B: real,A: real] :
      ( ( dvd_dvd_real @ B @ A )
     => ~ ! [K2: real] :
            ( A
           != ( times_times_real @ B @ K2 ) ) ) ).

% dvdE
thf(fact_4689_dvdE,axiom,
    ! [B: rat,A: rat] :
      ( ( dvd_dvd_rat @ B @ A )
     => ~ ! [K2: rat] :
            ( A
           != ( times_times_rat @ B @ K2 ) ) ) ).

% dvdE
thf(fact_4690_dvdE,axiom,
    ! [B: nat,A: nat] :
      ( ( dvd_dvd_nat @ B @ A )
     => ~ ! [K2: nat] :
            ( A
           != ( times_times_nat @ B @ K2 ) ) ) ).

% dvdE
thf(fact_4691_dvdE,axiom,
    ! [B: int,A: int] :
      ( ( dvd_dvd_int @ B @ A )
     => ~ ! [K2: int] :
            ( A
           != ( times_times_int @ B @ K2 ) ) ) ).

% dvdE
thf(fact_4692_dvd__add__right__iff,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ B )
     => ( ( dvd_dvd_Code_integer @ A @ ( plus_p5714425477246183910nteger @ B @ C ) )
        = ( dvd_dvd_Code_integer @ A @ C ) ) ) ).

% dvd_add_right_iff
thf(fact_4693_dvd__add__right__iff,axiom,
    ! [A: real,B: real,C: real] :
      ( ( dvd_dvd_real @ A @ B )
     => ( ( dvd_dvd_real @ A @ ( plus_plus_real @ B @ C ) )
        = ( dvd_dvd_real @ A @ C ) ) ) ).

% dvd_add_right_iff
thf(fact_4694_dvd__add__right__iff,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( dvd_dvd_rat @ A @ B )
     => ( ( dvd_dvd_rat @ A @ ( plus_plus_rat @ B @ C ) )
        = ( dvd_dvd_rat @ A @ C ) ) ) ).

% dvd_add_right_iff
thf(fact_4695_dvd__add__right__iff,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( dvd_dvd_nat @ A @ B )
     => ( ( dvd_dvd_nat @ A @ ( plus_plus_nat @ B @ C ) )
        = ( dvd_dvd_nat @ A @ C ) ) ) ).

% dvd_add_right_iff
thf(fact_4696_dvd__add__right__iff,axiom,
    ! [A: int,B: int,C: int] :
      ( ( dvd_dvd_int @ A @ B )
     => ( ( dvd_dvd_int @ A @ ( plus_plus_int @ B @ C ) )
        = ( dvd_dvd_int @ A @ C ) ) ) ).

% dvd_add_right_iff
thf(fact_4697_dvd__add__left__iff,axiom,
    ! [A: code_integer,C: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ C )
     => ( ( dvd_dvd_Code_integer @ A @ ( plus_p5714425477246183910nteger @ B @ C ) )
        = ( dvd_dvd_Code_integer @ A @ B ) ) ) ).

% dvd_add_left_iff
thf(fact_4698_dvd__add__left__iff,axiom,
    ! [A: real,C: real,B: real] :
      ( ( dvd_dvd_real @ A @ C )
     => ( ( dvd_dvd_real @ A @ ( plus_plus_real @ B @ C ) )
        = ( dvd_dvd_real @ A @ B ) ) ) ).

% dvd_add_left_iff
thf(fact_4699_dvd__add__left__iff,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( dvd_dvd_rat @ A @ C )
     => ( ( dvd_dvd_rat @ A @ ( plus_plus_rat @ B @ C ) )
        = ( dvd_dvd_rat @ A @ B ) ) ) ).

% dvd_add_left_iff
thf(fact_4700_dvd__add__left__iff,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( dvd_dvd_nat @ A @ C )
     => ( ( dvd_dvd_nat @ A @ ( plus_plus_nat @ B @ C ) )
        = ( dvd_dvd_nat @ A @ B ) ) ) ).

% dvd_add_left_iff
thf(fact_4701_dvd__add__left__iff,axiom,
    ! [A: int,C: int,B: int] :
      ( ( dvd_dvd_int @ A @ C )
     => ( ( dvd_dvd_int @ A @ ( plus_plus_int @ B @ C ) )
        = ( dvd_dvd_int @ A @ B ) ) ) ).

% dvd_add_left_iff
thf(fact_4702_dvd__add,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ B )
     => ( ( dvd_dvd_Code_integer @ A @ C )
       => ( dvd_dvd_Code_integer @ A @ ( plus_p5714425477246183910nteger @ B @ C ) ) ) ) ).

% dvd_add
thf(fact_4703_dvd__add,axiom,
    ! [A: real,B: real,C: real] :
      ( ( dvd_dvd_real @ A @ B )
     => ( ( dvd_dvd_real @ A @ C )
       => ( dvd_dvd_real @ A @ ( plus_plus_real @ B @ C ) ) ) ) ).

% dvd_add
thf(fact_4704_dvd__add,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( dvd_dvd_rat @ A @ B )
     => ( ( dvd_dvd_rat @ A @ C )
       => ( dvd_dvd_rat @ A @ ( plus_plus_rat @ B @ C ) ) ) ) ).

% dvd_add
thf(fact_4705_dvd__add,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( dvd_dvd_nat @ A @ B )
     => ( ( dvd_dvd_nat @ A @ C )
       => ( dvd_dvd_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ) ).

% dvd_add
thf(fact_4706_dvd__add,axiom,
    ! [A: int,B: int,C: int] :
      ( ( dvd_dvd_int @ A @ B )
     => ( ( dvd_dvd_int @ A @ C )
       => ( dvd_dvd_int @ A @ ( plus_plus_int @ B @ C ) ) ) ) ).

% dvd_add
thf(fact_4707_one__dvd,axiom,
    ! [A: code_integer] : ( dvd_dvd_Code_integer @ one_one_Code_integer @ A ) ).

% one_dvd
thf(fact_4708_one__dvd,axiom,
    ! [A: complex] : ( dvd_dvd_complex @ one_one_complex @ A ) ).

% one_dvd
thf(fact_4709_one__dvd,axiom,
    ! [A: real] : ( dvd_dvd_real @ one_one_real @ A ) ).

% one_dvd
thf(fact_4710_one__dvd,axiom,
    ! [A: rat] : ( dvd_dvd_rat @ one_one_rat @ A ) ).

% one_dvd
thf(fact_4711_one__dvd,axiom,
    ! [A: nat] : ( dvd_dvd_nat @ one_one_nat @ A ) ).

% one_dvd
thf(fact_4712_one__dvd,axiom,
    ! [A: int] : ( dvd_dvd_int @ one_one_int @ A ) ).

% one_dvd
thf(fact_4713_unit__imp__dvd,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
     => ( dvd_dvd_Code_integer @ B @ A ) ) ).

% unit_imp_dvd
thf(fact_4714_unit__imp__dvd,axiom,
    ! [B: nat,A: nat] :
      ( ( dvd_dvd_nat @ B @ one_one_nat )
     => ( dvd_dvd_nat @ B @ A ) ) ).

% unit_imp_dvd
thf(fact_4715_unit__imp__dvd,axiom,
    ! [B: int,A: int] :
      ( ( dvd_dvd_int @ B @ one_one_int )
     => ( dvd_dvd_int @ B @ A ) ) ).

% unit_imp_dvd
thf(fact_4716_dvd__unit__imp__unit,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ B )
     => ( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
       => ( dvd_dvd_Code_integer @ A @ one_one_Code_integer ) ) ) ).

% dvd_unit_imp_unit
thf(fact_4717_dvd__unit__imp__unit,axiom,
    ! [A: nat,B: nat] :
      ( ( dvd_dvd_nat @ A @ B )
     => ( ( dvd_dvd_nat @ B @ one_one_nat )
       => ( dvd_dvd_nat @ A @ one_one_nat ) ) ) ).

% dvd_unit_imp_unit
thf(fact_4718_dvd__unit__imp__unit,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ A @ B )
     => ( ( dvd_dvd_int @ B @ one_one_int )
       => ( dvd_dvd_int @ A @ one_one_int ) ) ) ).

% dvd_unit_imp_unit
thf(fact_4719_dvd__diff,axiom,
    ! [X: code_integer,Y: code_integer,Z: code_integer] :
      ( ( dvd_dvd_Code_integer @ X @ Y )
     => ( ( dvd_dvd_Code_integer @ X @ Z )
       => ( dvd_dvd_Code_integer @ X @ ( minus_8373710615458151222nteger @ Y @ Z ) ) ) ) ).

% dvd_diff
thf(fact_4720_dvd__diff,axiom,
    ! [X: real,Y: real,Z: real] :
      ( ( dvd_dvd_real @ X @ Y )
     => ( ( dvd_dvd_real @ X @ Z )
       => ( dvd_dvd_real @ X @ ( minus_minus_real @ Y @ Z ) ) ) ) ).

% dvd_diff
thf(fact_4721_dvd__diff,axiom,
    ! [X: rat,Y: rat,Z: rat] :
      ( ( dvd_dvd_rat @ X @ Y )
     => ( ( dvd_dvd_rat @ X @ Z )
       => ( dvd_dvd_rat @ X @ ( minus_minus_rat @ Y @ Z ) ) ) ) ).

% dvd_diff
thf(fact_4722_dvd__diff,axiom,
    ! [X: int,Y: int,Z: int] :
      ( ( dvd_dvd_int @ X @ Y )
     => ( ( dvd_dvd_int @ X @ Z )
       => ( dvd_dvd_int @ X @ ( minus_minus_int @ Y @ Z ) ) ) ) ).

% dvd_diff
thf(fact_4723_dvd__diff__commute,axiom,
    ! [A: code_integer,C: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ ( minus_8373710615458151222nteger @ C @ B ) )
      = ( dvd_dvd_Code_integer @ A @ ( minus_8373710615458151222nteger @ B @ C ) ) ) ).

% dvd_diff_commute
thf(fact_4724_dvd__diff__commute,axiom,
    ! [A: int,C: int,B: int] :
      ( ( dvd_dvd_int @ A @ ( minus_minus_int @ C @ B ) )
      = ( dvd_dvd_int @ A @ ( minus_minus_int @ B @ C ) ) ) ).

% dvd_diff_commute
thf(fact_4725_div__div__div__same,axiom,
    ! [D: code_integer,B: code_integer,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ D @ B )
     => ( ( dvd_dvd_Code_integer @ B @ A )
       => ( ( divide6298287555418463151nteger @ ( divide6298287555418463151nteger @ A @ D ) @ ( divide6298287555418463151nteger @ B @ D ) )
          = ( divide6298287555418463151nteger @ A @ B ) ) ) ) ).

% div_div_div_same
thf(fact_4726_div__div__div__same,axiom,
    ! [D: nat,B: nat,A: nat] :
      ( ( dvd_dvd_nat @ D @ B )
     => ( ( dvd_dvd_nat @ B @ A )
       => ( ( divide_divide_nat @ ( divide_divide_nat @ A @ D ) @ ( divide_divide_nat @ B @ D ) )
          = ( divide_divide_nat @ A @ B ) ) ) ) ).

% div_div_div_same
thf(fact_4727_div__div__div__same,axiom,
    ! [D: int,B: int,A: int] :
      ( ( dvd_dvd_int @ D @ B )
     => ( ( dvd_dvd_int @ B @ A )
       => ( ( divide_divide_int @ ( divide_divide_int @ A @ D ) @ ( divide_divide_int @ B @ D ) )
          = ( divide_divide_int @ A @ B ) ) ) ) ).

% div_div_div_same
thf(fact_4728_dvd__div__eq__cancel,axiom,
    ! [A: code_integer,C: code_integer,B: code_integer] :
      ( ( ( divide6298287555418463151nteger @ A @ C )
        = ( divide6298287555418463151nteger @ B @ C ) )
     => ( ( dvd_dvd_Code_integer @ C @ A )
       => ( ( dvd_dvd_Code_integer @ C @ B )
         => ( A = B ) ) ) ) ).

% dvd_div_eq_cancel
thf(fact_4729_dvd__div__eq__cancel,axiom,
    ! [A: complex,C: complex,B: complex] :
      ( ( ( divide1717551699836669952omplex @ A @ C )
        = ( divide1717551699836669952omplex @ B @ C ) )
     => ( ( dvd_dvd_complex @ C @ A )
       => ( ( dvd_dvd_complex @ C @ B )
         => ( A = B ) ) ) ) ).

% dvd_div_eq_cancel
thf(fact_4730_dvd__div__eq__cancel,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ( divide_divide_real @ A @ C )
        = ( divide_divide_real @ B @ C ) )
     => ( ( dvd_dvd_real @ C @ A )
       => ( ( dvd_dvd_real @ C @ B )
         => ( A = B ) ) ) ) ).

% dvd_div_eq_cancel
thf(fact_4731_dvd__div__eq__cancel,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( ( divide_divide_rat @ A @ C )
        = ( divide_divide_rat @ B @ C ) )
     => ( ( dvd_dvd_rat @ C @ A )
       => ( ( dvd_dvd_rat @ C @ B )
         => ( A = B ) ) ) ) ).

% dvd_div_eq_cancel
thf(fact_4732_dvd__div__eq__cancel,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ( divide_divide_nat @ A @ C )
        = ( divide_divide_nat @ B @ C ) )
     => ( ( dvd_dvd_nat @ C @ A )
       => ( ( dvd_dvd_nat @ C @ B )
         => ( A = B ) ) ) ) ).

% dvd_div_eq_cancel
thf(fact_4733_dvd__div__eq__cancel,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ( divide_divide_int @ A @ C )
        = ( divide_divide_int @ B @ C ) )
     => ( ( dvd_dvd_int @ C @ A )
       => ( ( dvd_dvd_int @ C @ B )
         => ( A = B ) ) ) ) ).

% dvd_div_eq_cancel
thf(fact_4734_dvd__div__eq__iff,axiom,
    ! [C: code_integer,A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ C @ A )
     => ( ( dvd_dvd_Code_integer @ C @ B )
       => ( ( ( divide6298287555418463151nteger @ A @ C )
            = ( divide6298287555418463151nteger @ B @ C ) )
          = ( A = B ) ) ) ) ).

% dvd_div_eq_iff
thf(fact_4735_dvd__div__eq__iff,axiom,
    ! [C: complex,A: complex,B: complex] :
      ( ( dvd_dvd_complex @ C @ A )
     => ( ( dvd_dvd_complex @ C @ B )
       => ( ( ( divide1717551699836669952omplex @ A @ C )
            = ( divide1717551699836669952omplex @ B @ C ) )
          = ( A = B ) ) ) ) ).

% dvd_div_eq_iff
thf(fact_4736_dvd__div__eq__iff,axiom,
    ! [C: real,A: real,B: real] :
      ( ( dvd_dvd_real @ C @ A )
     => ( ( dvd_dvd_real @ C @ B )
       => ( ( ( divide_divide_real @ A @ C )
            = ( divide_divide_real @ B @ C ) )
          = ( A = B ) ) ) ) ).

% dvd_div_eq_iff
thf(fact_4737_dvd__div__eq__iff,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( dvd_dvd_rat @ C @ A )
     => ( ( dvd_dvd_rat @ C @ B )
       => ( ( ( divide_divide_rat @ A @ C )
            = ( divide_divide_rat @ B @ C ) )
          = ( A = B ) ) ) ) ).

% dvd_div_eq_iff
thf(fact_4738_dvd__div__eq__iff,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( dvd_dvd_nat @ C @ A )
     => ( ( dvd_dvd_nat @ C @ B )
       => ( ( ( divide_divide_nat @ A @ C )
            = ( divide_divide_nat @ B @ C ) )
          = ( A = B ) ) ) ) ).

% dvd_div_eq_iff
thf(fact_4739_dvd__div__eq__iff,axiom,
    ! [C: int,A: int,B: int] :
      ( ( dvd_dvd_int @ C @ A )
     => ( ( dvd_dvd_int @ C @ B )
       => ( ( ( divide_divide_int @ A @ C )
            = ( divide_divide_int @ B @ C ) )
          = ( A = B ) ) ) ) ).

% dvd_div_eq_iff
thf(fact_4740_dvd__power__same,axiom,
    ! [X: code_integer,Y: code_integer,N2: nat] :
      ( ( dvd_dvd_Code_integer @ X @ Y )
     => ( dvd_dvd_Code_integer @ ( power_8256067586552552935nteger @ X @ N2 ) @ ( power_8256067586552552935nteger @ Y @ N2 ) ) ) ).

% dvd_power_same
thf(fact_4741_dvd__power__same,axiom,
    ! [X: nat,Y: nat,N2: nat] :
      ( ( dvd_dvd_nat @ X @ Y )
     => ( dvd_dvd_nat @ ( power_power_nat @ X @ N2 ) @ ( power_power_nat @ Y @ N2 ) ) ) ).

% dvd_power_same
thf(fact_4742_dvd__power__same,axiom,
    ! [X: real,Y: real,N2: nat] :
      ( ( dvd_dvd_real @ X @ Y )
     => ( dvd_dvd_real @ ( power_power_real @ X @ N2 ) @ ( power_power_real @ Y @ N2 ) ) ) ).

% dvd_power_same
thf(fact_4743_dvd__power__same,axiom,
    ! [X: int,Y: int,N2: nat] :
      ( ( dvd_dvd_int @ X @ Y )
     => ( dvd_dvd_int @ ( power_power_int @ X @ N2 ) @ ( power_power_int @ Y @ N2 ) ) ) ).

% dvd_power_same
thf(fact_4744_dvd__power__same,axiom,
    ! [X: complex,Y: complex,N2: nat] :
      ( ( dvd_dvd_complex @ X @ Y )
     => ( dvd_dvd_complex @ ( power_power_complex @ X @ N2 ) @ ( power_power_complex @ Y @ N2 ) ) ) ).

% dvd_power_same
thf(fact_4745_mod__mod__cancel,axiom,
    ! [C: nat,B: nat,A: nat] :
      ( ( dvd_dvd_nat @ C @ B )
     => ( ( modulo_modulo_nat @ ( modulo_modulo_nat @ A @ B ) @ C )
        = ( modulo_modulo_nat @ A @ C ) ) ) ).

% mod_mod_cancel
thf(fact_4746_mod__mod__cancel,axiom,
    ! [C: int,B: int,A: int] :
      ( ( dvd_dvd_int @ C @ B )
     => ( ( modulo_modulo_int @ ( modulo_modulo_int @ A @ B ) @ C )
        = ( modulo_modulo_int @ A @ C ) ) ) ).

% mod_mod_cancel
thf(fact_4747_mod__mod__cancel,axiom,
    ! [C: code_integer,B: code_integer,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ C @ B )
     => ( ( modulo364778990260209775nteger @ ( modulo364778990260209775nteger @ A @ B ) @ C )
        = ( modulo364778990260209775nteger @ A @ C ) ) ) ).

% mod_mod_cancel
thf(fact_4748_dvd__mod,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( dvd_dvd_nat @ K @ M )
     => ( ( dvd_dvd_nat @ K @ N2 )
       => ( dvd_dvd_nat @ K @ ( modulo_modulo_nat @ M @ N2 ) ) ) ) ).

% dvd_mod
thf(fact_4749_dvd__mod,axiom,
    ! [K: int,M: int,N2: int] :
      ( ( dvd_dvd_int @ K @ M )
     => ( ( dvd_dvd_int @ K @ N2 )
       => ( dvd_dvd_int @ K @ ( modulo_modulo_int @ M @ N2 ) ) ) ) ).

% dvd_mod
thf(fact_4750_dvd__mod,axiom,
    ! [K: code_integer,M: code_integer,N2: code_integer] :
      ( ( dvd_dvd_Code_integer @ K @ M )
     => ( ( dvd_dvd_Code_integer @ K @ N2 )
       => ( dvd_dvd_Code_integer @ K @ ( modulo364778990260209775nteger @ M @ N2 ) ) ) ) ).

% dvd_mod
thf(fact_4751_dvd__mod__imp__dvd,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( dvd_dvd_nat @ C @ ( modulo_modulo_nat @ A @ B ) )
     => ( ( dvd_dvd_nat @ C @ B )
       => ( dvd_dvd_nat @ C @ A ) ) ) ).

% dvd_mod_imp_dvd
thf(fact_4752_dvd__mod__imp__dvd,axiom,
    ! [C: int,A: int,B: int] :
      ( ( dvd_dvd_int @ C @ ( modulo_modulo_int @ A @ B ) )
     => ( ( dvd_dvd_int @ C @ B )
       => ( dvd_dvd_int @ C @ A ) ) ) ).

% dvd_mod_imp_dvd
thf(fact_4753_dvd__mod__imp__dvd,axiom,
    ! [C: code_integer,A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ C @ ( modulo364778990260209775nteger @ A @ B ) )
     => ( ( dvd_dvd_Code_integer @ C @ B )
       => ( dvd_dvd_Code_integer @ C @ A ) ) ) ).

% dvd_mod_imp_dvd
thf(fact_4754_dvd__mod__iff,axiom,
    ! [C: nat,B: nat,A: nat] :
      ( ( dvd_dvd_nat @ C @ B )
     => ( ( dvd_dvd_nat @ C @ ( modulo_modulo_nat @ A @ B ) )
        = ( dvd_dvd_nat @ C @ A ) ) ) ).

% dvd_mod_iff
thf(fact_4755_dvd__mod__iff,axiom,
    ! [C: int,B: int,A: int] :
      ( ( dvd_dvd_int @ C @ B )
     => ( ( dvd_dvd_int @ C @ ( modulo_modulo_int @ A @ B ) )
        = ( dvd_dvd_int @ C @ A ) ) ) ).

% dvd_mod_iff
thf(fact_4756_dvd__mod__iff,axiom,
    ! [C: code_integer,B: code_integer,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ C @ B )
     => ( ( dvd_dvd_Code_integer @ C @ ( modulo364778990260209775nteger @ A @ B ) )
        = ( dvd_dvd_Code_integer @ C @ A ) ) ) ).

% dvd_mod_iff
thf(fact_4757_dvd__diff__nat,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( dvd_dvd_nat @ K @ M )
     => ( ( dvd_dvd_nat @ K @ N2 )
       => ( dvd_dvd_nat @ K @ ( minus_minus_nat @ M @ N2 ) ) ) ) ).

% dvd_diff_nat
thf(fact_4758_zdvd__zdiffD,axiom,
    ! [K: int,M: int,N2: int] :
      ( ( dvd_dvd_int @ K @ ( minus_minus_int @ M @ N2 ) )
     => ( ( dvd_dvd_int @ K @ N2 )
       => ( dvd_dvd_int @ K @ M ) ) ) ).

% zdvd_zdiffD
thf(fact_4759_dvd__pos__nat,axiom,
    ! [N2: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( dvd_dvd_nat @ M @ N2 )
       => ( ord_less_nat @ zero_zero_nat @ M ) ) ) ).

% dvd_pos_nat
thf(fact_4760_bezout__lemma__nat,axiom,
    ! [D: nat,A: nat,B: nat,X: nat,Y: nat] :
      ( ( dvd_dvd_nat @ D @ A )
     => ( ( dvd_dvd_nat @ D @ B )
       => ( ( ( ( times_times_nat @ A @ X )
              = ( plus_plus_nat @ ( times_times_nat @ B @ Y ) @ D ) )
            | ( ( times_times_nat @ B @ X )
              = ( plus_plus_nat @ ( times_times_nat @ A @ Y ) @ D ) ) )
         => ? [X5: nat,Y5: nat] :
              ( ( dvd_dvd_nat @ D @ A )
              & ( dvd_dvd_nat @ D @ ( plus_plus_nat @ A @ B ) )
              & ( ( ( times_times_nat @ A @ X5 )
                  = ( plus_plus_nat @ ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ Y5 ) @ D ) )
                | ( ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ X5 )
                  = ( plus_plus_nat @ ( times_times_nat @ A @ Y5 ) @ D ) ) ) ) ) ) ) ).

% bezout_lemma_nat
thf(fact_4761_bezout__add__nat,axiom,
    ! [A: nat,B: nat] :
    ? [D4: nat,X5: nat,Y5: nat] :
      ( ( dvd_dvd_nat @ D4 @ A )
      & ( dvd_dvd_nat @ D4 @ B )
      & ( ( ( times_times_nat @ A @ X5 )
          = ( plus_plus_nat @ ( times_times_nat @ B @ Y5 ) @ D4 ) )
        | ( ( times_times_nat @ B @ X5 )
          = ( plus_plus_nat @ ( times_times_nat @ A @ Y5 ) @ D4 ) ) ) ) ).

% bezout_add_nat
thf(fact_4762_bezout1__nat,axiom,
    ! [A: nat,B: nat] :
    ? [D4: nat,X5: nat,Y5: nat] :
      ( ( dvd_dvd_nat @ D4 @ A )
      & ( dvd_dvd_nat @ D4 @ B )
      & ( ( ( minus_minus_nat @ ( times_times_nat @ A @ X5 ) @ ( times_times_nat @ B @ Y5 ) )
          = D4 )
        | ( ( minus_minus_nat @ ( times_times_nat @ B @ X5 ) @ ( times_times_nat @ A @ Y5 ) )
          = D4 ) ) ) ).

% bezout1_nat
thf(fact_4763_subset__divisors__dvd,axiom,
    ! [A: complex,B: complex] :
      ( ( ord_le211207098394363844omplex
        @ ( collect_complex
          @ ^ [C4: complex] : ( dvd_dvd_complex @ C4 @ A ) )
        @ ( collect_complex
          @ ^ [C4: complex] : ( dvd_dvd_complex @ C4 @ B ) ) )
      = ( dvd_dvd_complex @ A @ B ) ) ).

% subset_divisors_dvd
thf(fact_4764_subset__divisors__dvd,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_set_nat
        @ ( collect_nat
          @ ^ [C4: nat] : ( dvd_dvd_nat @ C4 @ A ) )
        @ ( collect_nat
          @ ^ [C4: nat] : ( dvd_dvd_nat @ C4 @ B ) ) )
      = ( dvd_dvd_nat @ A @ B ) ) ).

% subset_divisors_dvd
thf(fact_4765_subset__divisors__dvd,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ord_le7084787975880047091nteger
        @ ( collect_Code_integer
          @ ^ [C4: code_integer] : ( dvd_dvd_Code_integer @ C4 @ A ) )
        @ ( collect_Code_integer
          @ ^ [C4: code_integer] : ( dvd_dvd_Code_integer @ C4 @ B ) ) )
      = ( dvd_dvd_Code_integer @ A @ B ) ) ).

% subset_divisors_dvd
thf(fact_4766_subset__divisors__dvd,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_set_int
        @ ( collect_int
          @ ^ [C4: int] : ( dvd_dvd_int @ C4 @ A ) )
        @ ( collect_int
          @ ^ [C4: int] : ( dvd_dvd_int @ C4 @ B ) ) )
      = ( dvd_dvd_int @ A @ B ) ) ).

% subset_divisors_dvd
thf(fact_4767_concat__bit__assoc,axiom,
    ! [N2: nat,K: int,M: nat,L2: int,R2: int] :
      ( ( bit_concat_bit @ N2 @ K @ ( bit_concat_bit @ M @ L2 @ R2 ) )
      = ( bit_concat_bit @ ( plus_plus_nat @ M @ N2 ) @ ( bit_concat_bit @ N2 @ K @ L2 ) @ R2 ) ) ).

% concat_bit_assoc
thf(fact_4768_strict__subset__divisors__dvd,axiom,
    ! [A: complex,B: complex] :
      ( ( ord_less_set_complex
        @ ( collect_complex
          @ ^ [C4: complex] : ( dvd_dvd_complex @ C4 @ A ) )
        @ ( collect_complex
          @ ^ [C4: complex] : ( dvd_dvd_complex @ C4 @ B ) ) )
      = ( ( dvd_dvd_complex @ A @ B )
        & ~ ( dvd_dvd_complex @ B @ A ) ) ) ).

% strict_subset_divisors_dvd
thf(fact_4769_strict__subset__divisors__dvd,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_set_nat
        @ ( collect_nat
          @ ^ [C4: nat] : ( dvd_dvd_nat @ C4 @ A ) )
        @ ( collect_nat
          @ ^ [C4: nat] : ( dvd_dvd_nat @ C4 @ B ) ) )
      = ( ( dvd_dvd_nat @ A @ B )
        & ~ ( dvd_dvd_nat @ B @ A ) ) ) ).

% strict_subset_divisors_dvd
thf(fact_4770_strict__subset__divisors__dvd,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_set_int
        @ ( collect_int
          @ ^ [C4: int] : ( dvd_dvd_int @ C4 @ A ) )
        @ ( collect_int
          @ ^ [C4: int] : ( dvd_dvd_int @ C4 @ B ) ) )
      = ( ( dvd_dvd_int @ A @ B )
        & ~ ( dvd_dvd_int @ B @ A ) ) ) ).

% strict_subset_divisors_dvd
thf(fact_4771_strict__subset__divisors__dvd,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ord_le1307284697595431911nteger
        @ ( collect_Code_integer
          @ ^ [C4: code_integer] : ( dvd_dvd_Code_integer @ C4 @ A ) )
        @ ( collect_Code_integer
          @ ^ [C4: code_integer] : ( dvd_dvd_Code_integer @ C4 @ B ) ) )
      = ( ( dvd_dvd_Code_integer @ A @ B )
        & ~ ( dvd_dvd_Code_integer @ B @ A ) ) ) ).

% strict_subset_divisors_dvd
thf(fact_4772_finite__divisors__int,axiom,
    ! [I2: int] :
      ( ( I2 != zero_zero_int )
     => ( finite_finite_int
        @ ( collect_int
          @ ^ [D2: int] : ( dvd_dvd_int @ D2 @ I2 ) ) ) ) ).

% finite_divisors_int
thf(fact_4773_not__is__unit__0,axiom,
    ~ ( dvd_dvd_Code_integer @ zero_z3403309356797280102nteger @ one_one_Code_integer ) ).

% not_is_unit_0
thf(fact_4774_not__is__unit__0,axiom,
    ~ ( dvd_dvd_nat @ zero_zero_nat @ one_one_nat ) ).

% not_is_unit_0
thf(fact_4775_not__is__unit__0,axiom,
    ~ ( dvd_dvd_int @ zero_zero_int @ one_one_int ) ).

% not_is_unit_0
thf(fact_4776_pinf_I9_J,axiom,
    ! [D: code_integer,S2: code_integer] :
    ? [Z4: code_integer] :
    ! [X2: code_integer] :
      ( ( ord_le6747313008572928689nteger @ Z4 @ X2 )
     => ( ( dvd_dvd_Code_integer @ D @ ( plus_p5714425477246183910nteger @ X2 @ S2 ) )
        = ( dvd_dvd_Code_integer @ D @ ( plus_p5714425477246183910nteger @ X2 @ S2 ) ) ) ) ).

% pinf(9)
thf(fact_4777_pinf_I9_J,axiom,
    ! [D: real,S2: real] :
    ? [Z4: real] :
    ! [X2: real] :
      ( ( ord_less_real @ Z4 @ X2 )
     => ( ( dvd_dvd_real @ D @ ( plus_plus_real @ X2 @ S2 ) )
        = ( dvd_dvd_real @ D @ ( plus_plus_real @ X2 @ S2 ) ) ) ) ).

% pinf(9)
thf(fact_4778_pinf_I9_J,axiom,
    ! [D: rat,S2: rat] :
    ? [Z4: rat] :
    ! [X2: rat] :
      ( ( ord_less_rat @ Z4 @ X2 )
     => ( ( dvd_dvd_rat @ D @ ( plus_plus_rat @ X2 @ S2 ) )
        = ( dvd_dvd_rat @ D @ ( plus_plus_rat @ X2 @ S2 ) ) ) ) ).

% pinf(9)
thf(fact_4779_pinf_I9_J,axiom,
    ! [D: nat,S2: nat] :
    ? [Z4: nat] :
    ! [X2: nat] :
      ( ( ord_less_nat @ Z4 @ X2 )
     => ( ( dvd_dvd_nat @ D @ ( plus_plus_nat @ X2 @ S2 ) )
        = ( dvd_dvd_nat @ D @ ( plus_plus_nat @ X2 @ S2 ) ) ) ) ).

% pinf(9)
thf(fact_4780_pinf_I9_J,axiom,
    ! [D: int,S2: int] :
    ? [Z4: int] :
    ! [X2: int] :
      ( ( ord_less_int @ Z4 @ X2 )
     => ( ( dvd_dvd_int @ D @ ( plus_plus_int @ X2 @ S2 ) )
        = ( dvd_dvd_int @ D @ ( plus_plus_int @ X2 @ S2 ) ) ) ) ).

% pinf(9)
thf(fact_4781_pinf_I10_J,axiom,
    ! [D: code_integer,S2: code_integer] :
    ? [Z4: code_integer] :
    ! [X2: code_integer] :
      ( ( ord_le6747313008572928689nteger @ Z4 @ X2 )
     => ( ( ~ ( dvd_dvd_Code_integer @ D @ ( plus_p5714425477246183910nteger @ X2 @ S2 ) ) )
        = ( ~ ( dvd_dvd_Code_integer @ D @ ( plus_p5714425477246183910nteger @ X2 @ S2 ) ) ) ) ) ).

% pinf(10)
thf(fact_4782_pinf_I10_J,axiom,
    ! [D: real,S2: real] :
    ? [Z4: real] :
    ! [X2: real] :
      ( ( ord_less_real @ Z4 @ X2 )
     => ( ( ~ ( dvd_dvd_real @ D @ ( plus_plus_real @ X2 @ S2 ) ) )
        = ( ~ ( dvd_dvd_real @ D @ ( plus_plus_real @ X2 @ S2 ) ) ) ) ) ).

% pinf(10)
thf(fact_4783_pinf_I10_J,axiom,
    ! [D: rat,S2: rat] :
    ? [Z4: rat] :
    ! [X2: rat] :
      ( ( ord_less_rat @ Z4 @ X2 )
     => ( ( ~ ( dvd_dvd_rat @ D @ ( plus_plus_rat @ X2 @ S2 ) ) )
        = ( ~ ( dvd_dvd_rat @ D @ ( plus_plus_rat @ X2 @ S2 ) ) ) ) ) ).

% pinf(10)
thf(fact_4784_pinf_I10_J,axiom,
    ! [D: nat,S2: nat] :
    ? [Z4: nat] :
    ! [X2: nat] :
      ( ( ord_less_nat @ Z4 @ X2 )
     => ( ( ~ ( dvd_dvd_nat @ D @ ( plus_plus_nat @ X2 @ S2 ) ) )
        = ( ~ ( dvd_dvd_nat @ D @ ( plus_plus_nat @ X2 @ S2 ) ) ) ) ) ).

% pinf(10)
thf(fact_4785_pinf_I10_J,axiom,
    ! [D: int,S2: int] :
    ? [Z4: int] :
    ! [X2: int] :
      ( ( ord_less_int @ Z4 @ X2 )
     => ( ( ~ ( dvd_dvd_int @ D @ ( plus_plus_int @ X2 @ S2 ) ) )
        = ( ~ ( dvd_dvd_int @ D @ ( plus_plus_int @ X2 @ S2 ) ) ) ) ) ).

% pinf(10)
thf(fact_4786_minf_I9_J,axiom,
    ! [D: code_integer,S2: code_integer] :
    ? [Z4: code_integer] :
    ! [X2: code_integer] :
      ( ( ord_le6747313008572928689nteger @ X2 @ Z4 )
     => ( ( dvd_dvd_Code_integer @ D @ ( plus_p5714425477246183910nteger @ X2 @ S2 ) )
        = ( dvd_dvd_Code_integer @ D @ ( plus_p5714425477246183910nteger @ X2 @ S2 ) ) ) ) ).

% minf(9)
thf(fact_4787_minf_I9_J,axiom,
    ! [D: real,S2: real] :
    ? [Z4: real] :
    ! [X2: real] :
      ( ( ord_less_real @ X2 @ Z4 )
     => ( ( dvd_dvd_real @ D @ ( plus_plus_real @ X2 @ S2 ) )
        = ( dvd_dvd_real @ D @ ( plus_plus_real @ X2 @ S2 ) ) ) ) ).

% minf(9)
thf(fact_4788_minf_I9_J,axiom,
    ! [D: rat,S2: rat] :
    ? [Z4: rat] :
    ! [X2: rat] :
      ( ( ord_less_rat @ X2 @ Z4 )
     => ( ( dvd_dvd_rat @ D @ ( plus_plus_rat @ X2 @ S2 ) )
        = ( dvd_dvd_rat @ D @ ( plus_plus_rat @ X2 @ S2 ) ) ) ) ).

% minf(9)
thf(fact_4789_minf_I9_J,axiom,
    ! [D: nat,S2: nat] :
    ? [Z4: nat] :
    ! [X2: nat] :
      ( ( ord_less_nat @ X2 @ Z4 )
     => ( ( dvd_dvd_nat @ D @ ( plus_plus_nat @ X2 @ S2 ) )
        = ( dvd_dvd_nat @ D @ ( plus_plus_nat @ X2 @ S2 ) ) ) ) ).

% minf(9)
thf(fact_4790_minf_I9_J,axiom,
    ! [D: int,S2: int] :
    ? [Z4: int] :
    ! [X2: int] :
      ( ( ord_less_int @ X2 @ Z4 )
     => ( ( dvd_dvd_int @ D @ ( plus_plus_int @ X2 @ S2 ) )
        = ( dvd_dvd_int @ D @ ( plus_plus_int @ X2 @ S2 ) ) ) ) ).

% minf(9)
thf(fact_4791_minf_I10_J,axiom,
    ! [D: code_integer,S2: code_integer] :
    ? [Z4: code_integer] :
    ! [X2: code_integer] :
      ( ( ord_le6747313008572928689nteger @ X2 @ Z4 )
     => ( ( ~ ( dvd_dvd_Code_integer @ D @ ( plus_p5714425477246183910nteger @ X2 @ S2 ) ) )
        = ( ~ ( dvd_dvd_Code_integer @ D @ ( plus_p5714425477246183910nteger @ X2 @ S2 ) ) ) ) ) ).

% minf(10)
thf(fact_4792_minf_I10_J,axiom,
    ! [D: real,S2: real] :
    ? [Z4: real] :
    ! [X2: real] :
      ( ( ord_less_real @ X2 @ Z4 )
     => ( ( ~ ( dvd_dvd_real @ D @ ( plus_plus_real @ X2 @ S2 ) ) )
        = ( ~ ( dvd_dvd_real @ D @ ( plus_plus_real @ X2 @ S2 ) ) ) ) ) ).

% minf(10)
thf(fact_4793_minf_I10_J,axiom,
    ! [D: rat,S2: rat] :
    ? [Z4: rat] :
    ! [X2: rat] :
      ( ( ord_less_rat @ X2 @ Z4 )
     => ( ( ~ ( dvd_dvd_rat @ D @ ( plus_plus_rat @ X2 @ S2 ) ) )
        = ( ~ ( dvd_dvd_rat @ D @ ( plus_plus_rat @ X2 @ S2 ) ) ) ) ) ).

% minf(10)
thf(fact_4794_minf_I10_J,axiom,
    ! [D: nat,S2: nat] :
    ? [Z4: nat] :
    ! [X2: nat] :
      ( ( ord_less_nat @ X2 @ Z4 )
     => ( ( ~ ( dvd_dvd_nat @ D @ ( plus_plus_nat @ X2 @ S2 ) ) )
        = ( ~ ( dvd_dvd_nat @ D @ ( plus_plus_nat @ X2 @ S2 ) ) ) ) ) ).

% minf(10)
thf(fact_4795_minf_I10_J,axiom,
    ! [D: int,S2: int] :
    ? [Z4: int] :
    ! [X2: int] :
      ( ( ord_less_int @ X2 @ Z4 )
     => ( ( ~ ( dvd_dvd_int @ D @ ( plus_plus_int @ X2 @ S2 ) ) )
        = ( ~ ( dvd_dvd_int @ D @ ( plus_plus_int @ X2 @ S2 ) ) ) ) ) ).

% minf(10)
thf(fact_4796_dvd__div__eq__0__iff,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ B @ A )
     => ( ( ( divide6298287555418463151nteger @ A @ B )
          = zero_z3403309356797280102nteger )
        = ( A = zero_z3403309356797280102nteger ) ) ) ).

% dvd_div_eq_0_iff
thf(fact_4797_dvd__div__eq__0__iff,axiom,
    ! [B: complex,A: complex] :
      ( ( dvd_dvd_complex @ B @ A )
     => ( ( ( divide1717551699836669952omplex @ A @ B )
          = zero_zero_complex )
        = ( A = zero_zero_complex ) ) ) ).

% dvd_div_eq_0_iff
thf(fact_4798_dvd__div__eq__0__iff,axiom,
    ! [B: real,A: real] :
      ( ( dvd_dvd_real @ B @ A )
     => ( ( ( divide_divide_real @ A @ B )
          = zero_zero_real )
        = ( A = zero_zero_real ) ) ) ).

% dvd_div_eq_0_iff
thf(fact_4799_dvd__div__eq__0__iff,axiom,
    ! [B: rat,A: rat] :
      ( ( dvd_dvd_rat @ B @ A )
     => ( ( ( divide_divide_rat @ A @ B )
          = zero_zero_rat )
        = ( A = zero_zero_rat ) ) ) ).

% dvd_div_eq_0_iff
thf(fact_4800_dvd__div__eq__0__iff,axiom,
    ! [B: nat,A: nat] :
      ( ( dvd_dvd_nat @ B @ A )
     => ( ( ( divide_divide_nat @ A @ B )
          = zero_zero_nat )
        = ( A = zero_zero_nat ) ) ) ).

% dvd_div_eq_0_iff
thf(fact_4801_dvd__div__eq__0__iff,axiom,
    ! [B: int,A: int] :
      ( ( dvd_dvd_int @ B @ A )
     => ( ( ( divide_divide_int @ A @ B )
          = zero_zero_int )
        = ( A = zero_zero_int ) ) ) ).

% dvd_div_eq_0_iff
thf(fact_4802_is__unit__mult__iff,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ A @ B ) @ one_one_Code_integer )
      = ( ( dvd_dvd_Code_integer @ A @ one_one_Code_integer )
        & ( dvd_dvd_Code_integer @ B @ one_one_Code_integer ) ) ) ).

% is_unit_mult_iff
thf(fact_4803_is__unit__mult__iff,axiom,
    ! [A: nat,B: nat] :
      ( ( dvd_dvd_nat @ ( times_times_nat @ A @ B ) @ one_one_nat )
      = ( ( dvd_dvd_nat @ A @ one_one_nat )
        & ( dvd_dvd_nat @ B @ one_one_nat ) ) ) ).

% is_unit_mult_iff
thf(fact_4804_is__unit__mult__iff,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ ( times_times_int @ A @ B ) @ one_one_int )
      = ( ( dvd_dvd_int @ A @ one_one_int )
        & ( dvd_dvd_int @ B @ one_one_int ) ) ) ).

% is_unit_mult_iff
thf(fact_4805_dvd__mult__unit__iff,axiom,
    ! [B: code_integer,A: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
     => ( ( dvd_dvd_Code_integer @ A @ ( times_3573771949741848930nteger @ C @ B ) )
        = ( dvd_dvd_Code_integer @ A @ C ) ) ) ).

% dvd_mult_unit_iff
thf(fact_4806_dvd__mult__unit__iff,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( dvd_dvd_nat @ B @ one_one_nat )
     => ( ( dvd_dvd_nat @ A @ ( times_times_nat @ C @ B ) )
        = ( dvd_dvd_nat @ A @ C ) ) ) ).

% dvd_mult_unit_iff
thf(fact_4807_dvd__mult__unit__iff,axiom,
    ! [B: int,A: int,C: int] :
      ( ( dvd_dvd_int @ B @ one_one_int )
     => ( ( dvd_dvd_int @ A @ ( times_times_int @ C @ B ) )
        = ( dvd_dvd_int @ A @ C ) ) ) ).

% dvd_mult_unit_iff
thf(fact_4808_mult__unit__dvd__iff,axiom,
    ! [B: code_integer,A: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
     => ( ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ A @ B ) @ C )
        = ( dvd_dvd_Code_integer @ A @ C ) ) ) ).

% mult_unit_dvd_iff
thf(fact_4809_mult__unit__dvd__iff,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( dvd_dvd_nat @ B @ one_one_nat )
     => ( ( dvd_dvd_nat @ ( times_times_nat @ A @ B ) @ C )
        = ( dvd_dvd_nat @ A @ C ) ) ) ).

% mult_unit_dvd_iff
thf(fact_4810_mult__unit__dvd__iff,axiom,
    ! [B: int,A: int,C: int] :
      ( ( dvd_dvd_int @ B @ one_one_int )
     => ( ( dvd_dvd_int @ ( times_times_int @ A @ B ) @ C )
        = ( dvd_dvd_int @ A @ C ) ) ) ).

% mult_unit_dvd_iff
thf(fact_4811_dvd__mult__unit__iff_H,axiom,
    ! [B: code_integer,A: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
     => ( ( dvd_dvd_Code_integer @ A @ ( times_3573771949741848930nteger @ B @ C ) )
        = ( dvd_dvd_Code_integer @ A @ C ) ) ) ).

% dvd_mult_unit_iff'
thf(fact_4812_dvd__mult__unit__iff_H,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( dvd_dvd_nat @ B @ one_one_nat )
     => ( ( dvd_dvd_nat @ A @ ( times_times_nat @ B @ C ) )
        = ( dvd_dvd_nat @ A @ C ) ) ) ).

% dvd_mult_unit_iff'
thf(fact_4813_dvd__mult__unit__iff_H,axiom,
    ! [B: int,A: int,C: int] :
      ( ( dvd_dvd_int @ B @ one_one_int )
     => ( ( dvd_dvd_int @ A @ ( times_times_int @ B @ C ) )
        = ( dvd_dvd_int @ A @ C ) ) ) ).

% dvd_mult_unit_iff'
thf(fact_4814_mult__unit__dvd__iff_H,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ one_one_Code_integer )
     => ( ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ A @ B ) @ C )
        = ( dvd_dvd_Code_integer @ B @ C ) ) ) ).

% mult_unit_dvd_iff'
thf(fact_4815_mult__unit__dvd__iff_H,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( dvd_dvd_nat @ A @ one_one_nat )
     => ( ( dvd_dvd_nat @ ( times_times_nat @ A @ B ) @ C )
        = ( dvd_dvd_nat @ B @ C ) ) ) ).

% mult_unit_dvd_iff'
thf(fact_4816_mult__unit__dvd__iff_H,axiom,
    ! [A: int,B: int,C: int] :
      ( ( dvd_dvd_int @ A @ one_one_int )
     => ( ( dvd_dvd_int @ ( times_times_int @ A @ B ) @ C )
        = ( dvd_dvd_int @ B @ C ) ) ) ).

% mult_unit_dvd_iff'
thf(fact_4817_unit__mult__left__cancel,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ one_one_Code_integer )
     => ( ( ( times_3573771949741848930nteger @ A @ B )
          = ( times_3573771949741848930nteger @ A @ C ) )
        = ( B = C ) ) ) ).

% unit_mult_left_cancel
thf(fact_4818_unit__mult__left__cancel,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( dvd_dvd_nat @ A @ one_one_nat )
     => ( ( ( times_times_nat @ A @ B )
          = ( times_times_nat @ A @ C ) )
        = ( B = C ) ) ) ).

% unit_mult_left_cancel
thf(fact_4819_unit__mult__left__cancel,axiom,
    ! [A: int,B: int,C: int] :
      ( ( dvd_dvd_int @ A @ one_one_int )
     => ( ( ( times_times_int @ A @ B )
          = ( times_times_int @ A @ C ) )
        = ( B = C ) ) ) ).

% unit_mult_left_cancel
thf(fact_4820_unit__mult__right__cancel,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ one_one_Code_integer )
     => ( ( ( times_3573771949741848930nteger @ B @ A )
          = ( times_3573771949741848930nteger @ C @ A ) )
        = ( B = C ) ) ) ).

% unit_mult_right_cancel
thf(fact_4821_unit__mult__right__cancel,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( dvd_dvd_nat @ A @ one_one_nat )
     => ( ( ( times_times_nat @ B @ A )
          = ( times_times_nat @ C @ A ) )
        = ( B = C ) ) ) ).

% unit_mult_right_cancel
thf(fact_4822_unit__mult__right__cancel,axiom,
    ! [A: int,B: int,C: int] :
      ( ( dvd_dvd_int @ A @ one_one_int )
     => ( ( ( times_times_int @ B @ A )
          = ( times_times_int @ C @ A ) )
        = ( B = C ) ) ) ).

% unit_mult_right_cancel
thf(fact_4823_div__mult__div__if__dvd,axiom,
    ! [B: code_integer,A: code_integer,D: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ B @ A )
     => ( ( dvd_dvd_Code_integer @ D @ C )
       => ( ( times_3573771949741848930nteger @ ( divide6298287555418463151nteger @ A @ B ) @ ( divide6298287555418463151nteger @ C @ D ) )
          = ( divide6298287555418463151nteger @ ( times_3573771949741848930nteger @ A @ C ) @ ( times_3573771949741848930nteger @ B @ D ) ) ) ) ) ).

% div_mult_div_if_dvd
thf(fact_4824_div__mult__div__if__dvd,axiom,
    ! [B: nat,A: nat,D: nat,C: nat] :
      ( ( dvd_dvd_nat @ B @ A )
     => ( ( dvd_dvd_nat @ D @ C )
       => ( ( times_times_nat @ ( divide_divide_nat @ A @ B ) @ ( divide_divide_nat @ C @ D ) )
          = ( divide_divide_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) ) ) ) ) ).

% div_mult_div_if_dvd
thf(fact_4825_div__mult__div__if__dvd,axiom,
    ! [B: int,A: int,D: int,C: int] :
      ( ( dvd_dvd_int @ B @ A )
     => ( ( dvd_dvd_int @ D @ C )
       => ( ( times_times_int @ ( divide_divide_int @ A @ B ) @ ( divide_divide_int @ C @ D ) )
          = ( divide_divide_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D ) ) ) ) ) ).

% div_mult_div_if_dvd
thf(fact_4826_dvd__mult__imp__div,axiom,
    ! [A: code_integer,C: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ A @ C ) @ B )
     => ( dvd_dvd_Code_integer @ A @ ( divide6298287555418463151nteger @ B @ C ) ) ) ).

% dvd_mult_imp_div
thf(fact_4827_dvd__mult__imp__div,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( dvd_dvd_nat @ ( times_times_nat @ A @ C ) @ B )
     => ( dvd_dvd_nat @ A @ ( divide_divide_nat @ B @ C ) ) ) ).

% dvd_mult_imp_div
thf(fact_4828_dvd__mult__imp__div,axiom,
    ! [A: int,C: int,B: int] :
      ( ( dvd_dvd_int @ ( times_times_int @ A @ C ) @ B )
     => ( dvd_dvd_int @ A @ ( divide_divide_int @ B @ C ) ) ) ).

% dvd_mult_imp_div
thf(fact_4829_dvd__div__mult2__eq,axiom,
    ! [B: code_integer,C: code_integer,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ B @ C ) @ A )
     => ( ( divide6298287555418463151nteger @ A @ ( times_3573771949741848930nteger @ B @ C ) )
        = ( divide6298287555418463151nteger @ ( divide6298287555418463151nteger @ A @ B ) @ C ) ) ) ).

% dvd_div_mult2_eq
thf(fact_4830_dvd__div__mult2__eq,axiom,
    ! [B: nat,C: nat,A: nat] :
      ( ( dvd_dvd_nat @ ( times_times_nat @ B @ C ) @ A )
     => ( ( divide_divide_nat @ A @ ( times_times_nat @ B @ C ) )
        = ( divide_divide_nat @ ( divide_divide_nat @ A @ B ) @ C ) ) ) ).

% dvd_div_mult2_eq
thf(fact_4831_dvd__div__mult2__eq,axiom,
    ! [B: int,C: int,A: int] :
      ( ( dvd_dvd_int @ ( times_times_int @ B @ C ) @ A )
     => ( ( divide_divide_int @ A @ ( times_times_int @ B @ C ) )
        = ( divide_divide_int @ ( divide_divide_int @ A @ B ) @ C ) ) ) ).

% dvd_div_mult2_eq
thf(fact_4832_div__div__eq__right,axiom,
    ! [C: code_integer,B: code_integer,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ C @ B )
     => ( ( dvd_dvd_Code_integer @ B @ A )
       => ( ( divide6298287555418463151nteger @ A @ ( divide6298287555418463151nteger @ B @ C ) )
          = ( times_3573771949741848930nteger @ ( divide6298287555418463151nteger @ A @ B ) @ C ) ) ) ) ).

% div_div_eq_right
thf(fact_4833_div__div__eq__right,axiom,
    ! [C: nat,B: nat,A: nat] :
      ( ( dvd_dvd_nat @ C @ B )
     => ( ( dvd_dvd_nat @ B @ A )
       => ( ( divide_divide_nat @ A @ ( divide_divide_nat @ B @ C ) )
          = ( times_times_nat @ ( divide_divide_nat @ A @ B ) @ C ) ) ) ) ).

% div_div_eq_right
thf(fact_4834_div__div__eq__right,axiom,
    ! [C: int,B: int,A: int] :
      ( ( dvd_dvd_int @ C @ B )
     => ( ( dvd_dvd_int @ B @ A )
       => ( ( divide_divide_int @ A @ ( divide_divide_int @ B @ C ) )
          = ( times_times_int @ ( divide_divide_int @ A @ B ) @ C ) ) ) ) ).

% div_div_eq_right
thf(fact_4835_div__mult__swap,axiom,
    ! [C: code_integer,B: code_integer,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ C @ B )
     => ( ( times_3573771949741848930nteger @ A @ ( divide6298287555418463151nteger @ B @ C ) )
        = ( divide6298287555418463151nteger @ ( times_3573771949741848930nteger @ A @ B ) @ C ) ) ) ).

% div_mult_swap
thf(fact_4836_div__mult__swap,axiom,
    ! [C: nat,B: nat,A: nat] :
      ( ( dvd_dvd_nat @ C @ B )
     => ( ( times_times_nat @ A @ ( divide_divide_nat @ B @ C ) )
        = ( divide_divide_nat @ ( times_times_nat @ A @ B ) @ C ) ) ) ).

% div_mult_swap
thf(fact_4837_div__mult__swap,axiom,
    ! [C: int,B: int,A: int] :
      ( ( dvd_dvd_int @ C @ B )
     => ( ( times_times_int @ A @ ( divide_divide_int @ B @ C ) )
        = ( divide_divide_int @ ( times_times_int @ A @ B ) @ C ) ) ) ).

% div_mult_swap
thf(fact_4838_dvd__div__mult,axiom,
    ! [C: code_integer,B: code_integer,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ C @ B )
     => ( ( times_3573771949741848930nteger @ ( divide6298287555418463151nteger @ B @ C ) @ A )
        = ( divide6298287555418463151nteger @ ( times_3573771949741848930nteger @ B @ A ) @ C ) ) ) ).

% dvd_div_mult
thf(fact_4839_dvd__div__mult,axiom,
    ! [C: nat,B: nat,A: nat] :
      ( ( dvd_dvd_nat @ C @ B )
     => ( ( times_times_nat @ ( divide_divide_nat @ B @ C ) @ A )
        = ( divide_divide_nat @ ( times_times_nat @ B @ A ) @ C ) ) ) ).

% dvd_div_mult
thf(fact_4840_dvd__div__mult,axiom,
    ! [C: int,B: int,A: int] :
      ( ( dvd_dvd_int @ C @ B )
     => ( ( times_times_int @ ( divide_divide_int @ B @ C ) @ A )
        = ( divide_divide_int @ ( times_times_int @ B @ A ) @ C ) ) ) ).

% dvd_div_mult
thf(fact_4841_div__plus__div__distrib__dvd__right,axiom,
    ! [C: code_integer,B: code_integer,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ C @ B )
     => ( ( divide6298287555418463151nteger @ ( plus_p5714425477246183910nteger @ A @ B ) @ C )
        = ( plus_p5714425477246183910nteger @ ( divide6298287555418463151nteger @ A @ C ) @ ( divide6298287555418463151nteger @ B @ C ) ) ) ) ).

% div_plus_div_distrib_dvd_right
thf(fact_4842_div__plus__div__distrib__dvd__right,axiom,
    ! [C: nat,B: nat,A: nat] :
      ( ( dvd_dvd_nat @ C @ B )
     => ( ( divide_divide_nat @ ( plus_plus_nat @ A @ B ) @ C )
        = ( plus_plus_nat @ ( divide_divide_nat @ A @ C ) @ ( divide_divide_nat @ B @ C ) ) ) ) ).

% div_plus_div_distrib_dvd_right
thf(fact_4843_div__plus__div__distrib__dvd__right,axiom,
    ! [C: int,B: int,A: int] :
      ( ( dvd_dvd_int @ C @ B )
     => ( ( divide_divide_int @ ( plus_plus_int @ A @ B ) @ C )
        = ( plus_plus_int @ ( divide_divide_int @ A @ C ) @ ( divide_divide_int @ B @ C ) ) ) ) ).

% div_plus_div_distrib_dvd_right
thf(fact_4844_div__plus__div__distrib__dvd__left,axiom,
    ! [C: code_integer,A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ C @ A )
     => ( ( divide6298287555418463151nteger @ ( plus_p5714425477246183910nteger @ A @ B ) @ C )
        = ( plus_p5714425477246183910nteger @ ( divide6298287555418463151nteger @ A @ C ) @ ( divide6298287555418463151nteger @ B @ C ) ) ) ) ).

% div_plus_div_distrib_dvd_left
thf(fact_4845_div__plus__div__distrib__dvd__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( dvd_dvd_nat @ C @ A )
     => ( ( divide_divide_nat @ ( plus_plus_nat @ A @ B ) @ C )
        = ( plus_plus_nat @ ( divide_divide_nat @ A @ C ) @ ( divide_divide_nat @ B @ C ) ) ) ) ).

% div_plus_div_distrib_dvd_left
thf(fact_4846_div__plus__div__distrib__dvd__left,axiom,
    ! [C: int,A: int,B: int] :
      ( ( dvd_dvd_int @ C @ A )
     => ( ( divide_divide_int @ ( plus_plus_int @ A @ B ) @ C )
        = ( plus_plus_int @ ( divide_divide_int @ A @ C ) @ ( divide_divide_int @ B @ C ) ) ) ) ).

% div_plus_div_distrib_dvd_left
thf(fact_4847_dvd__div__unit__iff,axiom,
    ! [B: code_integer,A: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
     => ( ( dvd_dvd_Code_integer @ A @ ( divide6298287555418463151nteger @ C @ B ) )
        = ( dvd_dvd_Code_integer @ A @ C ) ) ) ).

% dvd_div_unit_iff
thf(fact_4848_dvd__div__unit__iff,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( dvd_dvd_nat @ B @ one_one_nat )
     => ( ( dvd_dvd_nat @ A @ ( divide_divide_nat @ C @ B ) )
        = ( dvd_dvd_nat @ A @ C ) ) ) ).

% dvd_div_unit_iff
thf(fact_4849_dvd__div__unit__iff,axiom,
    ! [B: int,A: int,C: int] :
      ( ( dvd_dvd_int @ B @ one_one_int )
     => ( ( dvd_dvd_int @ A @ ( divide_divide_int @ C @ B ) )
        = ( dvd_dvd_int @ A @ C ) ) ) ).

% dvd_div_unit_iff
thf(fact_4850_div__unit__dvd__iff,axiom,
    ! [B: code_integer,A: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
     => ( ( dvd_dvd_Code_integer @ ( divide6298287555418463151nteger @ A @ B ) @ C )
        = ( dvd_dvd_Code_integer @ A @ C ) ) ) ).

% div_unit_dvd_iff
thf(fact_4851_div__unit__dvd__iff,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( dvd_dvd_nat @ B @ one_one_nat )
     => ( ( dvd_dvd_nat @ ( divide_divide_nat @ A @ B ) @ C )
        = ( dvd_dvd_nat @ A @ C ) ) ) ).

% div_unit_dvd_iff
thf(fact_4852_div__unit__dvd__iff,axiom,
    ! [B: int,A: int,C: int] :
      ( ( dvd_dvd_int @ B @ one_one_int )
     => ( ( dvd_dvd_int @ ( divide_divide_int @ A @ B ) @ C )
        = ( dvd_dvd_int @ A @ C ) ) ) ).

% div_unit_dvd_iff
thf(fact_4853_unit__div__cancel,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ one_one_Code_integer )
     => ( ( ( divide6298287555418463151nteger @ B @ A )
          = ( divide6298287555418463151nteger @ C @ A ) )
        = ( B = C ) ) ) ).

% unit_div_cancel
thf(fact_4854_unit__div__cancel,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( dvd_dvd_nat @ A @ one_one_nat )
     => ( ( ( divide_divide_nat @ B @ A )
          = ( divide_divide_nat @ C @ A ) )
        = ( B = C ) ) ) ).

% unit_div_cancel
thf(fact_4855_unit__div__cancel,axiom,
    ! [A: int,B: int,C: int] :
      ( ( dvd_dvd_int @ A @ one_one_int )
     => ( ( ( divide_divide_int @ B @ A )
          = ( divide_divide_int @ C @ A ) )
        = ( B = C ) ) ) ).

% unit_div_cancel
thf(fact_4856_div__power,axiom,
    ! [B: code_integer,A: code_integer,N2: nat] :
      ( ( dvd_dvd_Code_integer @ B @ A )
     => ( ( power_8256067586552552935nteger @ ( divide6298287555418463151nteger @ A @ B ) @ N2 )
        = ( divide6298287555418463151nteger @ ( power_8256067586552552935nteger @ A @ N2 ) @ ( power_8256067586552552935nteger @ B @ N2 ) ) ) ) ).

% div_power
thf(fact_4857_div__power,axiom,
    ! [B: nat,A: nat,N2: nat] :
      ( ( dvd_dvd_nat @ B @ A )
     => ( ( power_power_nat @ ( divide_divide_nat @ A @ B ) @ N2 )
        = ( divide_divide_nat @ ( power_power_nat @ A @ N2 ) @ ( power_power_nat @ B @ N2 ) ) ) ) ).

% div_power
thf(fact_4858_div__power,axiom,
    ! [B: int,A: int,N2: nat] :
      ( ( dvd_dvd_int @ B @ A )
     => ( ( power_power_int @ ( divide_divide_int @ A @ B ) @ N2 )
        = ( divide_divide_int @ ( power_power_int @ A @ N2 ) @ ( power_power_int @ B @ N2 ) ) ) ) ).

% div_power
thf(fact_4859_mod__eq__0__iff__dvd,axiom,
    ! [A: nat,B: nat] :
      ( ( ( modulo_modulo_nat @ A @ B )
        = zero_zero_nat )
      = ( dvd_dvd_nat @ B @ A ) ) ).

% mod_eq_0_iff_dvd
thf(fact_4860_mod__eq__0__iff__dvd,axiom,
    ! [A: int,B: int] :
      ( ( ( modulo_modulo_int @ A @ B )
        = zero_zero_int )
      = ( dvd_dvd_int @ B @ A ) ) ).

% mod_eq_0_iff_dvd
thf(fact_4861_mod__eq__0__iff__dvd,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ( modulo364778990260209775nteger @ A @ B )
        = zero_z3403309356797280102nteger )
      = ( dvd_dvd_Code_integer @ B @ A ) ) ).

% mod_eq_0_iff_dvd
thf(fact_4862_dvd__eq__mod__eq__0,axiom,
    ( dvd_dvd_nat
    = ( ^ [A4: nat,B4: nat] :
          ( ( modulo_modulo_nat @ B4 @ A4 )
          = zero_zero_nat ) ) ) ).

% dvd_eq_mod_eq_0
thf(fact_4863_dvd__eq__mod__eq__0,axiom,
    ( dvd_dvd_int
    = ( ^ [A4: int,B4: int] :
          ( ( modulo_modulo_int @ B4 @ A4 )
          = zero_zero_int ) ) ) ).

% dvd_eq_mod_eq_0
thf(fact_4864_dvd__eq__mod__eq__0,axiom,
    ( dvd_dvd_Code_integer
    = ( ^ [A4: code_integer,B4: code_integer] :
          ( ( modulo364778990260209775nteger @ B4 @ A4 )
          = zero_z3403309356797280102nteger ) ) ) ).

% dvd_eq_mod_eq_0
thf(fact_4865_mod__0__imp__dvd,axiom,
    ! [A: nat,B: nat] :
      ( ( ( modulo_modulo_nat @ A @ B )
        = zero_zero_nat )
     => ( dvd_dvd_nat @ B @ A ) ) ).

% mod_0_imp_dvd
thf(fact_4866_mod__0__imp__dvd,axiom,
    ! [A: int,B: int] :
      ( ( ( modulo_modulo_int @ A @ B )
        = zero_zero_int )
     => ( dvd_dvd_int @ B @ A ) ) ).

% mod_0_imp_dvd
thf(fact_4867_mod__0__imp__dvd,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ( modulo364778990260209775nteger @ A @ B )
        = zero_z3403309356797280102nteger )
     => ( dvd_dvd_Code_integer @ B @ A ) ) ).

% mod_0_imp_dvd
thf(fact_4868_le__imp__power__dvd,axiom,
    ! [M: nat,N2: nat,A: code_integer] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( dvd_dvd_Code_integer @ ( power_8256067586552552935nteger @ A @ M ) @ ( power_8256067586552552935nteger @ A @ N2 ) ) ) ).

% le_imp_power_dvd
thf(fact_4869_le__imp__power__dvd,axiom,
    ! [M: nat,N2: nat,A: nat] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( dvd_dvd_nat @ ( power_power_nat @ A @ M ) @ ( power_power_nat @ A @ N2 ) ) ) ).

% le_imp_power_dvd
thf(fact_4870_le__imp__power__dvd,axiom,
    ! [M: nat,N2: nat,A: real] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( dvd_dvd_real @ ( power_power_real @ A @ M ) @ ( power_power_real @ A @ N2 ) ) ) ).

% le_imp_power_dvd
thf(fact_4871_le__imp__power__dvd,axiom,
    ! [M: nat,N2: nat,A: int] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( dvd_dvd_int @ ( power_power_int @ A @ M ) @ ( power_power_int @ A @ N2 ) ) ) ).

% le_imp_power_dvd
thf(fact_4872_le__imp__power__dvd,axiom,
    ! [M: nat,N2: nat,A: complex] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( dvd_dvd_complex @ ( power_power_complex @ A @ M ) @ ( power_power_complex @ A @ N2 ) ) ) ).

% le_imp_power_dvd
thf(fact_4873_power__le__dvd,axiom,
    ! [A: code_integer,N2: nat,B: code_integer,M: nat] :
      ( ( dvd_dvd_Code_integer @ ( power_8256067586552552935nteger @ A @ N2 ) @ B )
     => ( ( ord_less_eq_nat @ M @ N2 )
       => ( dvd_dvd_Code_integer @ ( power_8256067586552552935nteger @ A @ M ) @ B ) ) ) ).

% power_le_dvd
thf(fact_4874_power__le__dvd,axiom,
    ! [A: nat,N2: nat,B: nat,M: nat] :
      ( ( dvd_dvd_nat @ ( power_power_nat @ A @ N2 ) @ B )
     => ( ( ord_less_eq_nat @ M @ N2 )
       => ( dvd_dvd_nat @ ( power_power_nat @ A @ M ) @ B ) ) ) ).

% power_le_dvd
thf(fact_4875_power__le__dvd,axiom,
    ! [A: real,N2: nat,B: real,M: nat] :
      ( ( dvd_dvd_real @ ( power_power_real @ A @ N2 ) @ B )
     => ( ( ord_less_eq_nat @ M @ N2 )
       => ( dvd_dvd_real @ ( power_power_real @ A @ M ) @ B ) ) ) ).

% power_le_dvd
thf(fact_4876_power__le__dvd,axiom,
    ! [A: int,N2: nat,B: int,M: nat] :
      ( ( dvd_dvd_int @ ( power_power_int @ A @ N2 ) @ B )
     => ( ( ord_less_eq_nat @ M @ N2 )
       => ( dvd_dvd_int @ ( power_power_int @ A @ M ) @ B ) ) ) ).

% power_le_dvd
thf(fact_4877_power__le__dvd,axiom,
    ! [A: complex,N2: nat,B: complex,M: nat] :
      ( ( dvd_dvd_complex @ ( power_power_complex @ A @ N2 ) @ B )
     => ( ( ord_less_eq_nat @ M @ N2 )
       => ( dvd_dvd_complex @ ( power_power_complex @ A @ M ) @ B ) ) ) ).

% power_le_dvd
thf(fact_4878_dvd__power__le,axiom,
    ! [X: code_integer,Y: code_integer,N2: nat,M: nat] :
      ( ( dvd_dvd_Code_integer @ X @ Y )
     => ( ( ord_less_eq_nat @ N2 @ M )
       => ( dvd_dvd_Code_integer @ ( power_8256067586552552935nteger @ X @ N2 ) @ ( power_8256067586552552935nteger @ Y @ M ) ) ) ) ).

% dvd_power_le
thf(fact_4879_dvd__power__le,axiom,
    ! [X: nat,Y: nat,N2: nat,M: nat] :
      ( ( dvd_dvd_nat @ X @ Y )
     => ( ( ord_less_eq_nat @ N2 @ M )
       => ( dvd_dvd_nat @ ( power_power_nat @ X @ N2 ) @ ( power_power_nat @ Y @ M ) ) ) ) ).

% dvd_power_le
thf(fact_4880_dvd__power__le,axiom,
    ! [X: real,Y: real,N2: nat,M: nat] :
      ( ( dvd_dvd_real @ X @ Y )
     => ( ( ord_less_eq_nat @ N2 @ M )
       => ( dvd_dvd_real @ ( power_power_real @ X @ N2 ) @ ( power_power_real @ Y @ M ) ) ) ) ).

% dvd_power_le
thf(fact_4881_dvd__power__le,axiom,
    ! [X: int,Y: int,N2: nat,M: nat] :
      ( ( dvd_dvd_int @ X @ Y )
     => ( ( ord_less_eq_nat @ N2 @ M )
       => ( dvd_dvd_int @ ( power_power_int @ X @ N2 ) @ ( power_power_int @ Y @ M ) ) ) ) ).

% dvd_power_le
thf(fact_4882_dvd__power__le,axiom,
    ! [X: complex,Y: complex,N2: nat,M: nat] :
      ( ( dvd_dvd_complex @ X @ Y )
     => ( ( ord_less_eq_nat @ N2 @ M )
       => ( dvd_dvd_complex @ ( power_power_complex @ X @ N2 ) @ ( power_power_complex @ Y @ M ) ) ) ) ).

% dvd_power_le
thf(fact_4883_dvd__minus__mod,axiom,
    ! [B: nat,A: nat] : ( dvd_dvd_nat @ B @ ( minus_minus_nat @ A @ ( modulo_modulo_nat @ A @ B ) ) ) ).

% dvd_minus_mod
thf(fact_4884_dvd__minus__mod,axiom,
    ! [B: int,A: int] : ( dvd_dvd_int @ B @ ( minus_minus_int @ A @ ( modulo_modulo_int @ A @ B ) ) ) ).

% dvd_minus_mod
thf(fact_4885_dvd__minus__mod,axiom,
    ! [B: code_integer,A: code_integer] : ( dvd_dvd_Code_integer @ B @ ( minus_8373710615458151222nteger @ A @ ( modulo364778990260209775nteger @ A @ B ) ) ) ).

% dvd_minus_mod
thf(fact_4886_mod__eq__dvd__iff,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ( modulo_modulo_int @ A @ C )
        = ( modulo_modulo_int @ B @ C ) )
      = ( dvd_dvd_int @ C @ ( minus_minus_int @ A @ B ) ) ) ).

% mod_eq_dvd_iff
thf(fact_4887_mod__eq__dvd__iff,axiom,
    ! [A: code_integer,C: code_integer,B: code_integer] :
      ( ( ( modulo364778990260209775nteger @ A @ C )
        = ( modulo364778990260209775nteger @ B @ C ) )
      = ( dvd_dvd_Code_integer @ C @ ( minus_8373710615458151222nteger @ A @ B ) ) ) ).

% mod_eq_dvd_iff
thf(fact_4888_bezout__add__strong__nat,axiom,
    ! [A: nat,B: nat] :
      ( ( A != zero_zero_nat )
     => ? [D4: nat,X5: nat,Y5: nat] :
          ( ( dvd_dvd_nat @ D4 @ A )
          & ( dvd_dvd_nat @ D4 @ B )
          & ( ( times_times_nat @ A @ X5 )
            = ( plus_plus_nat @ ( times_times_nat @ B @ Y5 ) @ D4 ) ) ) ) ).

% bezout_add_strong_nat
thf(fact_4889_nat__dvd__not__less,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ M )
     => ( ( ord_less_nat @ M @ N2 )
       => ~ ( dvd_dvd_nat @ N2 @ M ) ) ) ).

% nat_dvd_not_less
thf(fact_4890_dvd__minus__self,axiom,
    ! [M: nat,N2: nat] :
      ( ( dvd_dvd_nat @ M @ ( minus_minus_nat @ N2 @ M ) )
      = ( ( ord_less_nat @ N2 @ M )
        | ( dvd_dvd_nat @ M @ N2 ) ) ) ).

% dvd_minus_self
thf(fact_4891_zdvd__antisym__nonneg,axiom,
    ! [M: int,N2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ M )
     => ( ( ord_less_eq_int @ zero_zero_int @ N2 )
       => ( ( dvd_dvd_int @ M @ N2 )
         => ( ( dvd_dvd_int @ N2 @ M )
           => ( M = N2 ) ) ) ) ) ).

% zdvd_antisym_nonneg
thf(fact_4892_dvd__diffD,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( dvd_dvd_nat @ K @ ( minus_minus_nat @ M @ N2 ) )
     => ( ( dvd_dvd_nat @ K @ N2 )
       => ( ( ord_less_eq_nat @ N2 @ M )
         => ( dvd_dvd_nat @ K @ M ) ) ) ) ).

% dvd_diffD
thf(fact_4893_dvd__diffD1,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( dvd_dvd_nat @ K @ ( minus_minus_nat @ M @ N2 ) )
     => ( ( dvd_dvd_nat @ K @ M )
       => ( ( ord_less_eq_nat @ N2 @ M )
         => ( dvd_dvd_nat @ K @ N2 ) ) ) ) ).

% dvd_diffD1
thf(fact_4894_less__eq__dvd__minus,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ( dvd_dvd_nat @ M @ N2 )
        = ( dvd_dvd_nat @ M @ ( minus_minus_nat @ N2 @ M ) ) ) ) ).

% less_eq_dvd_minus
thf(fact_4895_zdvd__mult__cancel,axiom,
    ! [K: int,M: int,N2: int] :
      ( ( dvd_dvd_int @ ( times_times_int @ K @ M ) @ ( times_times_int @ K @ N2 ) )
     => ( ( K != zero_zero_int )
       => ( dvd_dvd_int @ M @ N2 ) ) ) ).

% zdvd_mult_cancel
thf(fact_4896_zdvd__mono,axiom,
    ! [K: int,M: int,T: int] :
      ( ( K != zero_zero_int )
     => ( ( dvd_dvd_int @ M @ T )
        = ( dvd_dvd_int @ ( times_times_int @ K @ M ) @ ( times_times_int @ K @ T ) ) ) ) ).

% zdvd_mono
thf(fact_4897_dbl__def,axiom,
    ( neg_numeral_dbl_real
    = ( ^ [X3: real] : ( plus_plus_real @ X3 @ X3 ) ) ) ).

% dbl_def
thf(fact_4898_dbl__def,axiom,
    ( neg_numeral_dbl_rat
    = ( ^ [X3: rat] : ( plus_plus_rat @ X3 @ X3 ) ) ) ).

% dbl_def
thf(fact_4899_dbl__def,axiom,
    ( neg_numeral_dbl_int
    = ( ^ [X3: int] : ( plus_plus_int @ X3 @ X3 ) ) ) ).

% dbl_def
thf(fact_4900_zdvd__reduce,axiom,
    ! [K: int,N2: int,M: int] :
      ( ( dvd_dvd_int @ K @ ( plus_plus_int @ N2 @ ( times_times_int @ K @ M ) ) )
      = ( dvd_dvd_int @ K @ N2 ) ) ).

% zdvd_reduce
thf(fact_4901_zdvd__period,axiom,
    ! [A: int,D: int,X: int,T: int,C: int] :
      ( ( dvd_dvd_int @ A @ D )
     => ( ( dvd_dvd_int @ A @ ( plus_plus_int @ X @ T ) )
        = ( dvd_dvd_int @ A @ ( plus_plus_int @ ( plus_plus_int @ X @ ( times_times_int @ C @ D ) ) @ T ) ) ) ) ).

% zdvd_period
thf(fact_4902_finite__divisors__nat,axiom,
    ! [M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ M )
     => ( finite_finite_nat
        @ ( collect_nat
          @ ^ [D2: nat] : ( dvd_dvd_nat @ D2 @ M ) ) ) ) ).

% finite_divisors_nat
thf(fact_4903_div2__even__ext__nat,axiom,
    ! [X: nat,Y: nat] :
      ( ( ( divide_divide_nat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( divide_divide_nat @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
     => ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ X )
          = ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Y ) )
       => ( X = Y ) ) ) ).

% div2_even_ext_nat
thf(fact_4904_unity__coeff__ex,axiom,
    ! [P: code_integer > $o,L2: code_integer] :
      ( ( ? [X3: code_integer] : ( P @ ( times_3573771949741848930nteger @ L2 @ X3 ) ) )
      = ( ? [X3: code_integer] :
            ( ( dvd_dvd_Code_integer @ L2 @ ( plus_p5714425477246183910nteger @ X3 @ zero_z3403309356797280102nteger ) )
            & ( P @ X3 ) ) ) ) ).

% unity_coeff_ex
thf(fact_4905_unity__coeff__ex,axiom,
    ! [P: complex > $o,L2: complex] :
      ( ( ? [X3: complex] : ( P @ ( times_times_complex @ L2 @ X3 ) ) )
      = ( ? [X3: complex] :
            ( ( dvd_dvd_complex @ L2 @ ( plus_plus_complex @ X3 @ zero_zero_complex ) )
            & ( P @ X3 ) ) ) ) ).

% unity_coeff_ex
thf(fact_4906_unity__coeff__ex,axiom,
    ! [P: real > $o,L2: real] :
      ( ( ? [X3: real] : ( P @ ( times_times_real @ L2 @ X3 ) ) )
      = ( ? [X3: real] :
            ( ( dvd_dvd_real @ L2 @ ( plus_plus_real @ X3 @ zero_zero_real ) )
            & ( P @ X3 ) ) ) ) ).

% unity_coeff_ex
thf(fact_4907_unity__coeff__ex,axiom,
    ! [P: rat > $o,L2: rat] :
      ( ( ? [X3: rat] : ( P @ ( times_times_rat @ L2 @ X3 ) ) )
      = ( ? [X3: rat] :
            ( ( dvd_dvd_rat @ L2 @ ( plus_plus_rat @ X3 @ zero_zero_rat ) )
            & ( P @ X3 ) ) ) ) ).

% unity_coeff_ex
thf(fact_4908_unity__coeff__ex,axiom,
    ! [P: nat > $o,L2: nat] :
      ( ( ? [X3: nat] : ( P @ ( times_times_nat @ L2 @ X3 ) ) )
      = ( ? [X3: nat] :
            ( ( dvd_dvd_nat @ L2 @ ( plus_plus_nat @ X3 @ zero_zero_nat ) )
            & ( P @ X3 ) ) ) ) ).

% unity_coeff_ex
thf(fact_4909_unity__coeff__ex,axiom,
    ! [P: int > $o,L2: int] :
      ( ( ? [X3: int] : ( P @ ( times_times_int @ L2 @ X3 ) ) )
      = ( ? [X3: int] :
            ( ( dvd_dvd_int @ L2 @ ( plus_plus_int @ X3 @ zero_zero_int ) )
            & ( P @ X3 ) ) ) ) ).

% unity_coeff_ex
thf(fact_4910_unit__dvdE,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ one_one_Code_integer )
     => ~ ( ( A != zero_z3403309356797280102nteger )
         => ! [C3: code_integer] :
              ( B
             != ( times_3573771949741848930nteger @ A @ C3 ) ) ) ) ).

% unit_dvdE
thf(fact_4911_unit__dvdE,axiom,
    ! [A: nat,B: nat] :
      ( ( dvd_dvd_nat @ A @ one_one_nat )
     => ~ ( ( A != zero_zero_nat )
         => ! [C3: nat] :
              ( B
             != ( times_times_nat @ A @ C3 ) ) ) ) ).

% unit_dvdE
thf(fact_4912_unit__dvdE,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ A @ one_one_int )
     => ~ ( ( A != zero_zero_int )
         => ! [C3: int] :
              ( B
             != ( times_times_int @ A @ C3 ) ) ) ) ).

% unit_dvdE
thf(fact_4913_dvd__div__div__eq__mult,axiom,
    ! [A: code_integer,C: code_integer,B: code_integer,D: code_integer] :
      ( ( A != zero_z3403309356797280102nteger )
     => ( ( C != zero_z3403309356797280102nteger )
       => ( ( dvd_dvd_Code_integer @ A @ B )
         => ( ( dvd_dvd_Code_integer @ C @ D )
           => ( ( ( divide6298287555418463151nteger @ B @ A )
                = ( divide6298287555418463151nteger @ D @ C ) )
              = ( ( times_3573771949741848930nteger @ B @ C )
                = ( times_3573771949741848930nteger @ A @ D ) ) ) ) ) ) ) ).

% dvd_div_div_eq_mult
thf(fact_4914_dvd__div__div__eq__mult,axiom,
    ! [A: nat,C: nat,B: nat,D: nat] :
      ( ( A != zero_zero_nat )
     => ( ( C != zero_zero_nat )
       => ( ( dvd_dvd_nat @ A @ B )
         => ( ( dvd_dvd_nat @ C @ D )
           => ( ( ( divide_divide_nat @ B @ A )
                = ( divide_divide_nat @ D @ C ) )
              = ( ( times_times_nat @ B @ C )
                = ( times_times_nat @ A @ D ) ) ) ) ) ) ) ).

% dvd_div_div_eq_mult
thf(fact_4915_dvd__div__div__eq__mult,axiom,
    ! [A: int,C: int,B: int,D: int] :
      ( ( A != zero_zero_int )
     => ( ( C != zero_zero_int )
       => ( ( dvd_dvd_int @ A @ B )
         => ( ( dvd_dvd_int @ C @ D )
           => ( ( ( divide_divide_int @ B @ A )
                = ( divide_divide_int @ D @ C ) )
              = ( ( times_times_int @ B @ C )
                = ( times_times_int @ A @ D ) ) ) ) ) ) ) ).

% dvd_div_div_eq_mult
thf(fact_4916_dvd__div__iff__mult,axiom,
    ! [C: code_integer,B: code_integer,A: code_integer] :
      ( ( C != zero_z3403309356797280102nteger )
     => ( ( dvd_dvd_Code_integer @ C @ B )
       => ( ( dvd_dvd_Code_integer @ A @ ( divide6298287555418463151nteger @ B @ C ) )
          = ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ A @ C ) @ B ) ) ) ) ).

% dvd_div_iff_mult
thf(fact_4917_dvd__div__iff__mult,axiom,
    ! [C: nat,B: nat,A: nat] :
      ( ( C != zero_zero_nat )
     => ( ( dvd_dvd_nat @ C @ B )
       => ( ( dvd_dvd_nat @ A @ ( divide_divide_nat @ B @ C ) )
          = ( dvd_dvd_nat @ ( times_times_nat @ A @ C ) @ B ) ) ) ) ).

% dvd_div_iff_mult
thf(fact_4918_dvd__div__iff__mult,axiom,
    ! [C: int,B: int,A: int] :
      ( ( C != zero_zero_int )
     => ( ( dvd_dvd_int @ C @ B )
       => ( ( dvd_dvd_int @ A @ ( divide_divide_int @ B @ C ) )
          = ( dvd_dvd_int @ ( times_times_int @ A @ C ) @ B ) ) ) ) ).

% dvd_div_iff_mult
thf(fact_4919_div__dvd__iff__mult,axiom,
    ! [B: code_integer,A: code_integer,C: code_integer] :
      ( ( B != zero_z3403309356797280102nteger )
     => ( ( dvd_dvd_Code_integer @ B @ A )
       => ( ( dvd_dvd_Code_integer @ ( divide6298287555418463151nteger @ A @ B ) @ C )
          = ( dvd_dvd_Code_integer @ A @ ( times_3573771949741848930nteger @ C @ B ) ) ) ) ) ).

% div_dvd_iff_mult
thf(fact_4920_div__dvd__iff__mult,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( B != zero_zero_nat )
     => ( ( dvd_dvd_nat @ B @ A )
       => ( ( dvd_dvd_nat @ ( divide_divide_nat @ A @ B ) @ C )
          = ( dvd_dvd_nat @ A @ ( times_times_nat @ C @ B ) ) ) ) ) ).

% div_dvd_iff_mult
thf(fact_4921_div__dvd__iff__mult,axiom,
    ! [B: int,A: int,C: int] :
      ( ( B != zero_zero_int )
     => ( ( dvd_dvd_int @ B @ A )
       => ( ( dvd_dvd_int @ ( divide_divide_int @ A @ B ) @ C )
          = ( dvd_dvd_int @ A @ ( times_times_int @ C @ B ) ) ) ) ) ).

% div_dvd_iff_mult
thf(fact_4922_dvd__div__eq__mult,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( A != zero_z3403309356797280102nteger )
     => ( ( dvd_dvd_Code_integer @ A @ B )
       => ( ( ( divide6298287555418463151nteger @ B @ A )
            = C )
          = ( B
            = ( times_3573771949741848930nteger @ C @ A ) ) ) ) ) ).

% dvd_div_eq_mult
thf(fact_4923_dvd__div__eq__mult,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( A != zero_zero_nat )
     => ( ( dvd_dvd_nat @ A @ B )
       => ( ( ( divide_divide_nat @ B @ A )
            = C )
          = ( B
            = ( times_times_nat @ C @ A ) ) ) ) ) ).

% dvd_div_eq_mult
thf(fact_4924_dvd__div__eq__mult,axiom,
    ! [A: int,B: int,C: int] :
      ( ( A != zero_zero_int )
     => ( ( dvd_dvd_int @ A @ B )
       => ( ( ( divide_divide_int @ B @ A )
            = C )
          = ( B
            = ( times_times_int @ C @ A ) ) ) ) ) ).

% dvd_div_eq_mult
thf(fact_4925_even__numeral,axiom,
    ! [N2: num] : ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ N2 ) ) ) ).

% even_numeral
thf(fact_4926_even__numeral,axiom,
    ! [N2: num] : ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ ( bit0 @ N2 ) ) ) ).

% even_numeral
thf(fact_4927_even__numeral,axiom,
    ! [N2: num] : ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( numeral_numeral_int @ ( bit0 @ N2 ) ) ) ).

% even_numeral
thf(fact_4928_unit__div__eq__0__iff,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
     => ( ( ( divide6298287555418463151nteger @ A @ B )
          = zero_z3403309356797280102nteger )
        = ( A = zero_z3403309356797280102nteger ) ) ) ).

% unit_div_eq_0_iff
thf(fact_4929_unit__div__eq__0__iff,axiom,
    ! [B: nat,A: nat] :
      ( ( dvd_dvd_nat @ B @ one_one_nat )
     => ( ( ( divide_divide_nat @ A @ B )
          = zero_zero_nat )
        = ( A = zero_zero_nat ) ) ) ).

% unit_div_eq_0_iff
thf(fact_4930_unit__div__eq__0__iff,axiom,
    ! [B: int,A: int] :
      ( ( dvd_dvd_int @ B @ one_one_int )
     => ( ( ( divide_divide_int @ A @ B )
          = zero_zero_int )
        = ( A = zero_zero_int ) ) ) ).

% unit_div_eq_0_iff
thf(fact_4931_inf__period_I3_J,axiom,
    ! [D: code_integer,D3: code_integer,T: code_integer] :
      ( ( dvd_dvd_Code_integer @ D @ D3 )
     => ! [X2: code_integer,K4: code_integer] :
          ( ( dvd_dvd_Code_integer @ D @ ( plus_p5714425477246183910nteger @ X2 @ T ) )
          = ( dvd_dvd_Code_integer @ D @ ( plus_p5714425477246183910nteger @ ( minus_8373710615458151222nteger @ X2 @ ( times_3573771949741848930nteger @ K4 @ D3 ) ) @ T ) ) ) ) ).

% inf_period(3)
thf(fact_4932_inf__period_I3_J,axiom,
    ! [D: real,D3: real,T: real] :
      ( ( dvd_dvd_real @ D @ D3 )
     => ! [X2: real,K4: real] :
          ( ( dvd_dvd_real @ D @ ( plus_plus_real @ X2 @ T ) )
          = ( dvd_dvd_real @ D @ ( plus_plus_real @ ( minus_minus_real @ X2 @ ( times_times_real @ K4 @ D3 ) ) @ T ) ) ) ) ).

% inf_period(3)
thf(fact_4933_inf__period_I3_J,axiom,
    ! [D: rat,D3: rat,T: rat] :
      ( ( dvd_dvd_rat @ D @ D3 )
     => ! [X2: rat,K4: rat] :
          ( ( dvd_dvd_rat @ D @ ( plus_plus_rat @ X2 @ T ) )
          = ( dvd_dvd_rat @ D @ ( plus_plus_rat @ ( minus_minus_rat @ X2 @ ( times_times_rat @ K4 @ D3 ) ) @ T ) ) ) ) ).

% inf_period(3)
thf(fact_4934_inf__period_I3_J,axiom,
    ! [D: int,D3: int,T: int] :
      ( ( dvd_dvd_int @ D @ D3 )
     => ! [X2: int,K4: int] :
          ( ( dvd_dvd_int @ D @ ( plus_plus_int @ X2 @ T ) )
          = ( dvd_dvd_int @ D @ ( plus_plus_int @ ( minus_minus_int @ X2 @ ( times_times_int @ K4 @ D3 ) ) @ T ) ) ) ) ).

% inf_period(3)
thf(fact_4935_inf__period_I4_J,axiom,
    ! [D: code_integer,D3: code_integer,T: code_integer] :
      ( ( dvd_dvd_Code_integer @ D @ D3 )
     => ! [X2: code_integer,K4: code_integer] :
          ( ( ~ ( dvd_dvd_Code_integer @ D @ ( plus_p5714425477246183910nteger @ X2 @ T ) ) )
          = ( ~ ( dvd_dvd_Code_integer @ D @ ( plus_p5714425477246183910nteger @ ( minus_8373710615458151222nteger @ X2 @ ( times_3573771949741848930nteger @ K4 @ D3 ) ) @ T ) ) ) ) ) ).

% inf_period(4)
thf(fact_4936_inf__period_I4_J,axiom,
    ! [D: real,D3: real,T: real] :
      ( ( dvd_dvd_real @ D @ D3 )
     => ! [X2: real,K4: real] :
          ( ( ~ ( dvd_dvd_real @ D @ ( plus_plus_real @ X2 @ T ) ) )
          = ( ~ ( dvd_dvd_real @ D @ ( plus_plus_real @ ( minus_minus_real @ X2 @ ( times_times_real @ K4 @ D3 ) ) @ T ) ) ) ) ) ).

% inf_period(4)
thf(fact_4937_inf__period_I4_J,axiom,
    ! [D: rat,D3: rat,T: rat] :
      ( ( dvd_dvd_rat @ D @ D3 )
     => ! [X2: rat,K4: rat] :
          ( ( ~ ( dvd_dvd_rat @ D @ ( plus_plus_rat @ X2 @ T ) ) )
          = ( ~ ( dvd_dvd_rat @ D @ ( plus_plus_rat @ ( minus_minus_rat @ X2 @ ( times_times_rat @ K4 @ D3 ) ) @ T ) ) ) ) ) ).

% inf_period(4)
thf(fact_4938_inf__period_I4_J,axiom,
    ! [D: int,D3: int,T: int] :
      ( ( dvd_dvd_int @ D @ D3 )
     => ! [X2: int,K4: int] :
          ( ( ~ ( dvd_dvd_int @ D @ ( plus_plus_int @ X2 @ T ) ) )
          = ( ~ ( dvd_dvd_int @ D @ ( plus_plus_int @ ( minus_minus_int @ X2 @ ( times_times_int @ K4 @ D3 ) ) @ T ) ) ) ) ) ).

% inf_period(4)
thf(fact_4939_is__unit__div__mult2__eq,axiom,
    ! [B: code_integer,C: code_integer,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
     => ( ( dvd_dvd_Code_integer @ C @ one_one_Code_integer )
       => ( ( divide6298287555418463151nteger @ A @ ( times_3573771949741848930nteger @ B @ C ) )
          = ( divide6298287555418463151nteger @ ( divide6298287555418463151nteger @ A @ B ) @ C ) ) ) ) ).

% is_unit_div_mult2_eq
thf(fact_4940_is__unit__div__mult2__eq,axiom,
    ! [B: nat,C: nat,A: nat] :
      ( ( dvd_dvd_nat @ B @ one_one_nat )
     => ( ( dvd_dvd_nat @ C @ one_one_nat )
       => ( ( divide_divide_nat @ A @ ( times_times_nat @ B @ C ) )
          = ( divide_divide_nat @ ( divide_divide_nat @ A @ B ) @ C ) ) ) ) ).

% is_unit_div_mult2_eq
thf(fact_4941_is__unit__div__mult2__eq,axiom,
    ! [B: int,C: int,A: int] :
      ( ( dvd_dvd_int @ B @ one_one_int )
     => ( ( dvd_dvd_int @ C @ one_one_int )
       => ( ( divide_divide_int @ A @ ( times_times_int @ B @ C ) )
          = ( divide_divide_int @ ( divide_divide_int @ A @ B ) @ C ) ) ) ) ).

% is_unit_div_mult2_eq
thf(fact_4942_unit__div__mult__swap,axiom,
    ! [C: code_integer,A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ C @ one_one_Code_integer )
     => ( ( times_3573771949741848930nteger @ A @ ( divide6298287555418463151nteger @ B @ C ) )
        = ( divide6298287555418463151nteger @ ( times_3573771949741848930nteger @ A @ B ) @ C ) ) ) ).

% unit_div_mult_swap
thf(fact_4943_unit__div__mult__swap,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( dvd_dvd_nat @ C @ one_one_nat )
     => ( ( times_times_nat @ A @ ( divide_divide_nat @ B @ C ) )
        = ( divide_divide_nat @ ( times_times_nat @ A @ B ) @ C ) ) ) ).

% unit_div_mult_swap
thf(fact_4944_unit__div__mult__swap,axiom,
    ! [C: int,A: int,B: int] :
      ( ( dvd_dvd_int @ C @ one_one_int )
     => ( ( times_times_int @ A @ ( divide_divide_int @ B @ C ) )
        = ( divide_divide_int @ ( times_times_int @ A @ B ) @ C ) ) ) ).

% unit_div_mult_swap
thf(fact_4945_unit__div__commute,axiom,
    ! [B: code_integer,A: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
     => ( ( times_3573771949741848930nteger @ ( divide6298287555418463151nteger @ A @ B ) @ C )
        = ( divide6298287555418463151nteger @ ( times_3573771949741848930nteger @ A @ C ) @ B ) ) ) ).

% unit_div_commute
thf(fact_4946_unit__div__commute,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( dvd_dvd_nat @ B @ one_one_nat )
     => ( ( times_times_nat @ ( divide_divide_nat @ A @ B ) @ C )
        = ( divide_divide_nat @ ( times_times_nat @ A @ C ) @ B ) ) ) ).

% unit_div_commute
thf(fact_4947_unit__div__commute,axiom,
    ! [B: int,A: int,C: int] :
      ( ( dvd_dvd_int @ B @ one_one_int )
     => ( ( times_times_int @ ( divide_divide_int @ A @ B ) @ C )
        = ( divide_divide_int @ ( times_times_int @ A @ C ) @ B ) ) ) ).

% unit_div_commute
thf(fact_4948_div__mult__unit2,axiom,
    ! [C: code_integer,B: code_integer,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ C @ one_one_Code_integer )
     => ( ( dvd_dvd_Code_integer @ B @ A )
       => ( ( divide6298287555418463151nteger @ A @ ( times_3573771949741848930nteger @ B @ C ) )
          = ( divide6298287555418463151nteger @ ( divide6298287555418463151nteger @ A @ B ) @ C ) ) ) ) ).

% div_mult_unit2
thf(fact_4949_div__mult__unit2,axiom,
    ! [C: nat,B: nat,A: nat] :
      ( ( dvd_dvd_nat @ C @ one_one_nat )
     => ( ( dvd_dvd_nat @ B @ A )
       => ( ( divide_divide_nat @ A @ ( times_times_nat @ B @ C ) )
          = ( divide_divide_nat @ ( divide_divide_nat @ A @ B ) @ C ) ) ) ) ).

% div_mult_unit2
thf(fact_4950_div__mult__unit2,axiom,
    ! [C: int,B: int,A: int] :
      ( ( dvd_dvd_int @ C @ one_one_int )
     => ( ( dvd_dvd_int @ B @ A )
       => ( ( divide_divide_int @ A @ ( times_times_int @ B @ C ) )
          = ( divide_divide_int @ ( divide_divide_int @ A @ B ) @ C ) ) ) ) ).

% div_mult_unit2
thf(fact_4951_unit__eq__div2,axiom,
    ! [B: code_integer,A: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
     => ( ( A
          = ( divide6298287555418463151nteger @ C @ B ) )
        = ( ( times_3573771949741848930nteger @ A @ B )
          = C ) ) ) ).

% unit_eq_div2
thf(fact_4952_unit__eq__div2,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( dvd_dvd_nat @ B @ one_one_nat )
     => ( ( A
          = ( divide_divide_nat @ C @ B ) )
        = ( ( times_times_nat @ A @ B )
          = C ) ) ) ).

% unit_eq_div2
thf(fact_4953_unit__eq__div2,axiom,
    ! [B: int,A: int,C: int] :
      ( ( dvd_dvd_int @ B @ one_one_int )
     => ( ( A
          = ( divide_divide_int @ C @ B ) )
        = ( ( times_times_int @ A @ B )
          = C ) ) ) ).

% unit_eq_div2
thf(fact_4954_unit__eq__div1,axiom,
    ! [B: code_integer,A: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
     => ( ( ( divide6298287555418463151nteger @ A @ B )
          = C )
        = ( A
          = ( times_3573771949741848930nteger @ C @ B ) ) ) ) ).

% unit_eq_div1
thf(fact_4955_unit__eq__div1,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( dvd_dvd_nat @ B @ one_one_nat )
     => ( ( ( divide_divide_nat @ A @ B )
          = C )
        = ( A
          = ( times_times_nat @ C @ B ) ) ) ) ).

% unit_eq_div1
thf(fact_4956_unit__eq__div1,axiom,
    ! [B: int,A: int,C: int] :
      ( ( dvd_dvd_int @ B @ one_one_int )
     => ( ( ( divide_divide_int @ A @ B )
          = C )
        = ( A
          = ( times_times_int @ C @ B ) ) ) ) ).

% unit_eq_div1
thf(fact_4957_is__unit__power__iff,axiom,
    ! [A: code_integer,N2: nat] :
      ( ( dvd_dvd_Code_integer @ ( power_8256067586552552935nteger @ A @ N2 ) @ one_one_Code_integer )
      = ( ( dvd_dvd_Code_integer @ A @ one_one_Code_integer )
        | ( N2 = zero_zero_nat ) ) ) ).

% is_unit_power_iff
thf(fact_4958_is__unit__power__iff,axiom,
    ! [A: nat,N2: nat] :
      ( ( dvd_dvd_nat @ ( power_power_nat @ A @ N2 ) @ one_one_nat )
      = ( ( dvd_dvd_nat @ A @ one_one_nat )
        | ( N2 = zero_zero_nat ) ) ) ).

% is_unit_power_iff
thf(fact_4959_is__unit__power__iff,axiom,
    ! [A: int,N2: nat] :
      ( ( dvd_dvd_int @ ( power_power_int @ A @ N2 ) @ one_one_int )
      = ( ( dvd_dvd_int @ A @ one_one_int )
        | ( N2 = zero_zero_nat ) ) ) ).

% is_unit_power_iff
thf(fact_4960_unit__imp__mod__eq__0,axiom,
    ! [B: nat,A: nat] :
      ( ( dvd_dvd_nat @ B @ one_one_nat )
     => ( ( modulo_modulo_nat @ A @ B )
        = zero_zero_nat ) ) ).

% unit_imp_mod_eq_0
thf(fact_4961_unit__imp__mod__eq__0,axiom,
    ! [B: int,A: int] :
      ( ( dvd_dvd_int @ B @ one_one_int )
     => ( ( modulo_modulo_int @ A @ B )
        = zero_zero_int ) ) ).

% unit_imp_mod_eq_0
thf(fact_4962_unit__imp__mod__eq__0,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
     => ( ( modulo364778990260209775nteger @ A @ B )
        = zero_z3403309356797280102nteger ) ) ).

% unit_imp_mod_eq_0
thf(fact_4963_dvd__imp__le,axiom,
    ! [K: nat,N2: nat] :
      ( ( dvd_dvd_nat @ K @ N2 )
     => ( ( ord_less_nat @ zero_zero_nat @ N2 )
       => ( ord_less_eq_nat @ K @ N2 ) ) ) ).

% dvd_imp_le
thf(fact_4964_dvd__mult__cancel,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( dvd_dvd_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N2 ) )
     => ( ( ord_less_nat @ zero_zero_nat @ K )
       => ( dvd_dvd_nat @ M @ N2 ) ) ) ).

% dvd_mult_cancel
thf(fact_4965_nat__mult__dvd__cancel1,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ K )
     => ( ( dvd_dvd_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N2 ) )
        = ( dvd_dvd_nat @ M @ N2 ) ) ) ).

% nat_mult_dvd_cancel1
thf(fact_4966_zdvd__imp__le,axiom,
    ! [Z: int,N2: int] :
      ( ( dvd_dvd_int @ Z @ N2 )
     => ( ( ord_less_int @ zero_zero_int @ N2 )
       => ( ord_less_eq_int @ Z @ N2 ) ) ) ).

% zdvd_imp_le
thf(fact_4967_mod__greater__zero__iff__not__dvd,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( modulo_modulo_nat @ M @ N2 ) )
      = ( ~ ( dvd_dvd_nat @ N2 @ M ) ) ) ).

% mod_greater_zero_iff_not_dvd
thf(fact_4968_mod__eq__dvd__iff__nat,axiom,
    ! [N2: nat,M: nat,Q2: nat] :
      ( ( ord_less_eq_nat @ N2 @ M )
     => ( ( ( modulo_modulo_nat @ M @ Q2 )
          = ( modulo_modulo_nat @ N2 @ Q2 ) )
        = ( dvd_dvd_nat @ Q2 @ ( minus_minus_nat @ M @ N2 ) ) ) ) ).

% mod_eq_dvd_iff_nat
thf(fact_4969_prod__decode__aux_Ocases,axiom,
    ! [X: product_prod_nat_nat] :
      ~ ! [K2: nat,M2: nat] :
          ( X
         != ( product_Pair_nat_nat @ K2 @ M2 ) ) ).

% prod_decode_aux.cases
thf(fact_4970_even__zero,axiom,
    dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ zero_z3403309356797280102nteger ).

% even_zero
thf(fact_4971_even__zero,axiom,
    dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ zero_zero_nat ).

% even_zero
thf(fact_4972_even__zero,axiom,
    dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ zero_zero_int ).

% even_zero
thf(fact_4973_evenE,axiom,
    ! [A: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
     => ~ ! [B2: code_integer] :
            ( A
           != ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B2 ) ) ) ).

% evenE
thf(fact_4974_evenE,axiom,
    ! [A: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
     => ~ ! [B2: nat] :
            ( A
           != ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B2 ) ) ) ).

% evenE
thf(fact_4975_evenE,axiom,
    ! [A: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
     => ~ ! [B2: int] :
            ( A
           != ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B2 ) ) ) ).

% evenE
thf(fact_4976_odd__even__add,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
     => ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B )
       => ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( plus_p5714425477246183910nteger @ A @ B ) ) ) ) ).

% odd_even_add
thf(fact_4977_odd__even__add,axiom,
    ! [A: nat,B: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
     => ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B )
       => ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% odd_even_add
thf(fact_4978_odd__even__add,axiom,
    ! [A: int,B: int] :
      ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
     => ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B )
       => ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ A @ B ) ) ) ) ).

% odd_even_add
thf(fact_4979_is__unit__div__mult__cancel__right,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( A != zero_z3403309356797280102nteger )
     => ( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
       => ( ( divide6298287555418463151nteger @ A @ ( times_3573771949741848930nteger @ B @ A ) )
          = ( divide6298287555418463151nteger @ one_one_Code_integer @ B ) ) ) ) ).

% is_unit_div_mult_cancel_right
thf(fact_4980_is__unit__div__mult__cancel__right,axiom,
    ! [A: nat,B: nat] :
      ( ( A != zero_zero_nat )
     => ( ( dvd_dvd_nat @ B @ one_one_nat )
       => ( ( divide_divide_nat @ A @ ( times_times_nat @ B @ A ) )
          = ( divide_divide_nat @ one_one_nat @ B ) ) ) ) ).

% is_unit_div_mult_cancel_right
thf(fact_4981_is__unit__div__mult__cancel__right,axiom,
    ! [A: int,B: int] :
      ( ( A != zero_zero_int )
     => ( ( dvd_dvd_int @ B @ one_one_int )
       => ( ( divide_divide_int @ A @ ( times_times_int @ B @ A ) )
          = ( divide_divide_int @ one_one_int @ B ) ) ) ) ).

% is_unit_div_mult_cancel_right
thf(fact_4982_is__unit__div__mult__cancel__left,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( A != zero_z3403309356797280102nteger )
     => ( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
       => ( ( divide6298287555418463151nteger @ A @ ( times_3573771949741848930nteger @ A @ B ) )
          = ( divide6298287555418463151nteger @ one_one_Code_integer @ B ) ) ) ) ).

% is_unit_div_mult_cancel_left
thf(fact_4983_is__unit__div__mult__cancel__left,axiom,
    ! [A: nat,B: nat] :
      ( ( A != zero_zero_nat )
     => ( ( dvd_dvd_nat @ B @ one_one_nat )
       => ( ( divide_divide_nat @ A @ ( times_times_nat @ A @ B ) )
          = ( divide_divide_nat @ one_one_nat @ B ) ) ) ) ).

% is_unit_div_mult_cancel_left
thf(fact_4984_is__unit__div__mult__cancel__left,axiom,
    ! [A: int,B: int] :
      ( ( A != zero_zero_int )
     => ( ( dvd_dvd_int @ B @ one_one_int )
       => ( ( divide_divide_int @ A @ ( times_times_int @ A @ B ) )
          = ( divide_divide_int @ one_one_int @ B ) ) ) ) ).

% is_unit_div_mult_cancel_left
thf(fact_4985_is__unitE,axiom,
    ! [A: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ one_one_Code_integer )
     => ~ ( ( A != zero_z3403309356797280102nteger )
         => ! [B2: code_integer] :
              ( ( B2 != zero_z3403309356797280102nteger )
             => ( ( dvd_dvd_Code_integer @ B2 @ one_one_Code_integer )
               => ( ( ( divide6298287555418463151nteger @ one_one_Code_integer @ A )
                    = B2 )
                 => ( ( ( divide6298287555418463151nteger @ one_one_Code_integer @ B2 )
                      = A )
                   => ( ( ( times_3573771949741848930nteger @ A @ B2 )
                        = one_one_Code_integer )
                     => ( ( divide6298287555418463151nteger @ C @ A )
                       != ( times_3573771949741848930nteger @ C @ B2 ) ) ) ) ) ) ) ) ) ).

% is_unitE
thf(fact_4986_is__unitE,axiom,
    ! [A: nat,C: nat] :
      ( ( dvd_dvd_nat @ A @ one_one_nat )
     => ~ ( ( A != zero_zero_nat )
         => ! [B2: nat] :
              ( ( B2 != zero_zero_nat )
             => ( ( dvd_dvd_nat @ B2 @ one_one_nat )
               => ( ( ( divide_divide_nat @ one_one_nat @ A )
                    = B2 )
                 => ( ( ( divide_divide_nat @ one_one_nat @ B2 )
                      = A )
                   => ( ( ( times_times_nat @ A @ B2 )
                        = one_one_nat )
                     => ( ( divide_divide_nat @ C @ A )
                       != ( times_times_nat @ C @ B2 ) ) ) ) ) ) ) ) ) ).

% is_unitE
thf(fact_4987_is__unitE,axiom,
    ! [A: int,C: int] :
      ( ( dvd_dvd_int @ A @ one_one_int )
     => ~ ( ( A != zero_zero_int )
         => ! [B2: int] :
              ( ( B2 != zero_zero_int )
             => ( ( dvd_dvd_int @ B2 @ one_one_int )
               => ( ( ( divide_divide_int @ one_one_int @ A )
                    = B2 )
                 => ( ( ( divide_divide_int @ one_one_int @ B2 )
                      = A )
                   => ( ( ( times_times_int @ A @ B2 )
                        = one_one_int )
                     => ( ( divide_divide_int @ C @ A )
                       != ( times_times_int @ C @ B2 ) ) ) ) ) ) ) ) ) ).

% is_unitE
thf(fact_4988_odd__one,axiom,
    ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ one_one_Code_integer ) ).

% odd_one
thf(fact_4989_odd__one,axiom,
    ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ one_one_nat ) ).

% odd_one
thf(fact_4990_odd__one,axiom,
    ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ one_one_int ) ).

% odd_one
thf(fact_4991_bit__eq__rec,axiom,
    ( ( ^ [Y4: code_integer,Z3: code_integer] : ( Y4 = Z3 ) )
    = ( ^ [A4: code_integer,B4: code_integer] :
          ( ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A4 )
            = ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B4 ) )
          & ( ( divide6298287555418463151nteger @ A4 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
            = ( divide6298287555418463151nteger @ B4 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ) ).

% bit_eq_rec
thf(fact_4992_bit__eq__rec,axiom,
    ( ( ^ [Y4: nat,Z3: nat] : ( Y4 = Z3 ) )
    = ( ^ [A4: nat,B4: nat] :
          ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A4 )
            = ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B4 ) )
          & ( ( divide_divide_nat @ A4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
            = ( divide_divide_nat @ B4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% bit_eq_rec
thf(fact_4993_bit__eq__rec,axiom,
    ( ( ^ [Y4: int,Z3: int] : ( Y4 = Z3 ) )
    = ( ^ [A4: int,B4: int] :
          ( ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A4 )
            = ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B4 ) )
          & ( ( divide_divide_int @ A4 @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
            = ( divide_divide_int @ B4 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ).

% bit_eq_rec
thf(fact_4994_dvd__power__iff,axiom,
    ! [X: code_integer,M: nat,N2: nat] :
      ( ( X != zero_z3403309356797280102nteger )
     => ( ( dvd_dvd_Code_integer @ ( power_8256067586552552935nteger @ X @ M ) @ ( power_8256067586552552935nteger @ X @ N2 ) )
        = ( ( dvd_dvd_Code_integer @ X @ one_one_Code_integer )
          | ( ord_less_eq_nat @ M @ N2 ) ) ) ) ).

% dvd_power_iff
thf(fact_4995_dvd__power__iff,axiom,
    ! [X: nat,M: nat,N2: nat] :
      ( ( X != zero_zero_nat )
     => ( ( dvd_dvd_nat @ ( power_power_nat @ X @ M ) @ ( power_power_nat @ X @ N2 ) )
        = ( ( dvd_dvd_nat @ X @ one_one_nat )
          | ( ord_less_eq_nat @ M @ N2 ) ) ) ) ).

% dvd_power_iff
thf(fact_4996_dvd__power__iff,axiom,
    ! [X: int,M: nat,N2: nat] :
      ( ( X != zero_zero_int )
     => ( ( dvd_dvd_int @ ( power_power_int @ X @ M ) @ ( power_power_int @ X @ N2 ) )
        = ( ( dvd_dvd_int @ X @ one_one_int )
          | ( ord_less_eq_nat @ M @ N2 ) ) ) ) ).

% dvd_power_iff
thf(fact_4997_dvd__power,axiom,
    ! [N2: nat,X: code_integer] :
      ( ( ( ord_less_nat @ zero_zero_nat @ N2 )
        | ( X = one_one_Code_integer ) )
     => ( dvd_dvd_Code_integer @ X @ ( power_8256067586552552935nteger @ X @ N2 ) ) ) ).

% dvd_power
thf(fact_4998_dvd__power,axiom,
    ! [N2: nat,X: rat] :
      ( ( ( ord_less_nat @ zero_zero_nat @ N2 )
        | ( X = one_one_rat ) )
     => ( dvd_dvd_rat @ X @ ( power_power_rat @ X @ N2 ) ) ) ).

% dvd_power
thf(fact_4999_dvd__power,axiom,
    ! [N2: nat,X: nat] :
      ( ( ( ord_less_nat @ zero_zero_nat @ N2 )
        | ( X = one_one_nat ) )
     => ( dvd_dvd_nat @ X @ ( power_power_nat @ X @ N2 ) ) ) ).

% dvd_power
thf(fact_5000_dvd__power,axiom,
    ! [N2: nat,X: real] :
      ( ( ( ord_less_nat @ zero_zero_nat @ N2 )
        | ( X = one_one_real ) )
     => ( dvd_dvd_real @ X @ ( power_power_real @ X @ N2 ) ) ) ).

% dvd_power
thf(fact_5001_dvd__power,axiom,
    ! [N2: nat,X: int] :
      ( ( ( ord_less_nat @ zero_zero_nat @ N2 )
        | ( X = one_one_int ) )
     => ( dvd_dvd_int @ X @ ( power_power_int @ X @ N2 ) ) ) ).

% dvd_power
thf(fact_5002_dvd__power,axiom,
    ! [N2: nat,X: complex] :
      ( ( ( ord_less_nat @ zero_zero_nat @ N2 )
        | ( X = one_one_complex ) )
     => ( dvd_dvd_complex @ X @ ( power_power_complex @ X @ N2 ) ) ) ).

% dvd_power
thf(fact_5003_even__even__mod__4__iff,axiom,
    ! [N2: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
      = ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( modulo_modulo_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ) ).

% even_even_mod_4_iff
thf(fact_5004_dvd__mult__cancel1,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ M )
     => ( ( dvd_dvd_nat @ ( times_times_nat @ M @ N2 ) @ M )
        = ( N2 = one_one_nat ) ) ) ).

% dvd_mult_cancel1
thf(fact_5005_dvd__mult__cancel2,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ M )
     => ( ( dvd_dvd_nat @ ( times_times_nat @ N2 @ M ) @ M )
        = ( N2 = one_one_nat ) ) ) ).

% dvd_mult_cancel2
thf(fact_5006_dvd__minus__add,axiom,
    ! [Q2: nat,N2: nat,R2: nat,M: nat] :
      ( ( ord_less_eq_nat @ Q2 @ N2 )
     => ( ( ord_less_eq_nat @ Q2 @ ( times_times_nat @ R2 @ M ) )
       => ( ( dvd_dvd_nat @ M @ ( minus_minus_nat @ N2 @ Q2 ) )
          = ( dvd_dvd_nat @ M @ ( plus_plus_nat @ N2 @ ( minus_minus_nat @ ( times_times_nat @ R2 @ M ) @ Q2 ) ) ) ) ) ) ).

% dvd_minus_add
thf(fact_5007_power__dvd__imp__le,axiom,
    ! [I2: nat,M: nat,N2: nat] :
      ( ( dvd_dvd_nat @ ( power_power_nat @ I2 @ M ) @ ( power_power_nat @ I2 @ N2 ) )
     => ( ( ord_less_nat @ one_one_nat @ I2 )
       => ( ord_less_eq_nat @ M @ N2 ) ) ) ).

% power_dvd_imp_le
thf(fact_5008_mod__nat__eqI,axiom,
    ! [R2: nat,N2: nat,M: nat] :
      ( ( ord_less_nat @ R2 @ N2 )
     => ( ( ord_less_eq_nat @ R2 @ M )
       => ( ( dvd_dvd_nat @ N2 @ ( minus_minus_nat @ M @ R2 ) )
         => ( ( modulo_modulo_nat @ M @ N2 )
            = R2 ) ) ) ) ).

% mod_nat_eqI
thf(fact_5009_mod__int__pos__iff,axiom,
    ! [K: int,L2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( modulo_modulo_int @ K @ L2 ) )
      = ( ( dvd_dvd_int @ L2 @ K )
        | ( ( L2 = zero_zero_int )
          & ( ord_less_eq_int @ zero_zero_int @ K ) )
        | ( ord_less_int @ zero_zero_int @ L2 ) ) ) ).

% mod_int_pos_iff
thf(fact_5010_bset_I9_J,axiom,
    ! [D: int,D3: int,B3: set_int,T: int] :
      ( ( dvd_dvd_int @ D @ D3 )
     => ! [X2: int] :
          ( ! [Xa3: int] :
              ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
             => ! [Xb3: int] :
                  ( ( member_int @ Xb3 @ B3 )
                 => ( X2
                   != ( plus_plus_int @ Xb3 @ Xa3 ) ) ) )
         => ( ( dvd_dvd_int @ D @ ( plus_plus_int @ X2 @ T ) )
           => ( dvd_dvd_int @ D @ ( plus_plus_int @ ( minus_minus_int @ X2 @ D3 ) @ T ) ) ) ) ) ).

% bset(9)
thf(fact_5011_bset_I10_J,axiom,
    ! [D: int,D3: int,B3: set_int,T: int] :
      ( ( dvd_dvd_int @ D @ D3 )
     => ! [X2: int] :
          ( ! [Xa3: int] :
              ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
             => ! [Xb3: int] :
                  ( ( member_int @ Xb3 @ B3 )
                 => ( X2
                   != ( plus_plus_int @ Xb3 @ Xa3 ) ) ) )
         => ( ~ ( dvd_dvd_int @ D @ ( plus_plus_int @ X2 @ T ) )
           => ~ ( dvd_dvd_int @ D @ ( plus_plus_int @ ( minus_minus_int @ X2 @ D3 ) @ T ) ) ) ) ) ).

% bset(10)
thf(fact_5012_aset_I9_J,axiom,
    ! [D: int,D3: int,A2: set_int,T: int] :
      ( ( dvd_dvd_int @ D @ D3 )
     => ! [X2: int] :
          ( ! [Xa3: int] :
              ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
             => ! [Xb3: int] :
                  ( ( member_int @ Xb3 @ A2 )
                 => ( X2
                   != ( minus_minus_int @ Xb3 @ Xa3 ) ) ) )
         => ( ( dvd_dvd_int @ D @ ( plus_plus_int @ X2 @ T ) )
           => ( dvd_dvd_int @ D @ ( plus_plus_int @ ( plus_plus_int @ X2 @ D3 ) @ T ) ) ) ) ) ).

% aset(9)
thf(fact_5013_aset_I10_J,axiom,
    ! [D: int,D3: int,A2: set_int,T: int] :
      ( ( dvd_dvd_int @ D @ D3 )
     => ! [X2: int] :
          ( ! [Xa3: int] :
              ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
             => ! [Xb3: int] :
                  ( ( member_int @ Xb3 @ A2 )
                 => ( X2
                   != ( minus_minus_int @ Xb3 @ Xa3 ) ) ) )
         => ( ~ ( dvd_dvd_int @ D @ ( plus_plus_int @ X2 @ T ) )
           => ~ ( dvd_dvd_int @ D @ ( plus_plus_int @ ( plus_plus_int @ X2 @ D3 ) @ T ) ) ) ) ) ).

% aset(10)
thf(fact_5014_even__two__times__div__two,axiom,
    ! [A: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
     => ( ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) )
        = A ) ) ).

% even_two_times_div_two
thf(fact_5015_even__two__times__div__two,axiom,
    ! [A: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
     => ( ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
        = A ) ) ).

% even_two_times_div_two
thf(fact_5016_even__two__times__div__two,axiom,
    ! [A: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
     => ( ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) )
        = A ) ) ).

% even_two_times_div_two
thf(fact_5017_even__iff__mod__2__eq__zero,axiom,
    ! [A: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
      = ( ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = zero_zero_nat ) ) ).

% even_iff_mod_2_eq_zero
thf(fact_5018_even__iff__mod__2__eq__zero,axiom,
    ! [A: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
      = ( ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
        = zero_zero_int ) ) ).

% even_iff_mod_2_eq_zero
thf(fact_5019_even__iff__mod__2__eq__zero,axiom,
    ! [A: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
      = ( ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
        = zero_z3403309356797280102nteger ) ) ).

% even_iff_mod_2_eq_zero
thf(fact_5020_odd__iff__mod__2__eq__one,axiom,
    ! [A: nat] :
      ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) )
      = ( ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = one_one_nat ) ) ).

% odd_iff_mod_2_eq_one
thf(fact_5021_odd__iff__mod__2__eq__one,axiom,
    ! [A: int] :
      ( ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) )
      = ( ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
        = one_one_int ) ) ).

% odd_iff_mod_2_eq_one
thf(fact_5022_odd__iff__mod__2__eq__one,axiom,
    ! [A: code_integer] :
      ( ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) )
      = ( ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
        = one_one_Code_integer ) ) ).

% odd_iff_mod_2_eq_one
thf(fact_5023_power__mono__odd,axiom,
    ! [N2: nat,A: real,B: real] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ( ord_less_eq_real @ A @ B )
       => ( ord_less_eq_real @ ( power_power_real @ A @ N2 ) @ ( power_power_real @ B @ N2 ) ) ) ) ).

% power_mono_odd
thf(fact_5024_power__mono__odd,axiom,
    ! [N2: nat,A: rat,B: rat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ( ord_less_eq_rat @ A @ B )
       => ( ord_less_eq_rat @ ( power_power_rat @ A @ N2 ) @ ( power_power_rat @ B @ N2 ) ) ) ) ).

% power_mono_odd
thf(fact_5025_power__mono__odd,axiom,
    ! [N2: nat,A: int,B: int] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ( ord_less_eq_int @ A @ B )
       => ( ord_less_eq_int @ ( power_power_int @ A @ N2 ) @ ( power_power_int @ B @ N2 ) ) ) ) ).

% power_mono_odd
thf(fact_5026_odd__pos,axiom,
    ! [N2: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ord_less_nat @ zero_zero_nat @ N2 ) ) ).

% odd_pos
thf(fact_5027_dvd__power__iff__le,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K )
     => ( ( dvd_dvd_nat @ ( power_power_nat @ K @ M ) @ ( power_power_nat @ K @ N2 ) )
        = ( ord_less_eq_nat @ M @ N2 ) ) ) ).

% dvd_power_iff_le
thf(fact_5028_even__unset__bit__iff,axiom,
    ! [M: nat,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_se8260200283734997820nteger @ M @ A ) )
      = ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
        | ( M = zero_zero_nat ) ) ) ).

% even_unset_bit_iff
thf(fact_5029_even__unset__bit__iff,axiom,
    ! [M: nat,A: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se4203085406695923979it_int @ M @ A ) )
      = ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
        | ( M = zero_zero_nat ) ) ) ).

% even_unset_bit_iff
thf(fact_5030_even__unset__bit__iff,axiom,
    ! [M: nat,A: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se4205575877204974255it_nat @ M @ A ) )
      = ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
        | ( M = zero_zero_nat ) ) ) ).

% even_unset_bit_iff
thf(fact_5031_even__set__bit__iff,axiom,
    ! [M: nat,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_se2793503036327961859nteger @ M @ A ) )
      = ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
        & ( M != zero_zero_nat ) ) ) ).

% even_set_bit_iff
thf(fact_5032_even__set__bit__iff,axiom,
    ! [M: nat,A: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se7879613467334960850it_int @ M @ A ) )
      = ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
        & ( M != zero_zero_nat ) ) ) ).

% even_set_bit_iff
thf(fact_5033_even__set__bit__iff,axiom,
    ! [M: nat,A: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se7882103937844011126it_nat @ M @ A ) )
      = ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
        & ( M != zero_zero_nat ) ) ) ).

% even_set_bit_iff
thf(fact_5034_even__flip__bit__iff,axiom,
    ! [M: nat,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_se1345352211410354436nteger @ M @ A ) )
      = ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
       != ( M = zero_zero_nat ) ) ) ).

% even_flip_bit_iff
thf(fact_5035_even__flip__bit__iff,axiom,
    ! [M: nat,A: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se2159334234014336723it_int @ M @ A ) )
      = ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
       != ( M = zero_zero_nat ) ) ) ).

% even_flip_bit_iff
thf(fact_5036_even__flip__bit__iff,axiom,
    ! [M: nat,A: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se2161824704523386999it_nat @ M @ A ) )
      = ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
       != ( M = zero_zero_nat ) ) ) ).

% even_flip_bit_iff
thf(fact_5037_even__diff__iff,axiom,
    ! [K: int,L2: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( minus_minus_int @ K @ L2 ) )
      = ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ K @ L2 ) ) ) ).

% even_diff_iff
thf(fact_5038_oddE,axiom,
    ! [A: code_integer] :
      ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
     => ~ ! [B2: code_integer] :
            ( A
           != ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B2 ) @ one_one_Code_integer ) ) ) ).

% oddE
thf(fact_5039_oddE,axiom,
    ! [A: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
     => ~ ! [B2: nat] :
            ( A
           != ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B2 ) @ one_one_nat ) ) ) ).

% oddE
thf(fact_5040_oddE,axiom,
    ! [A: int] :
      ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
     => ~ ! [B2: int] :
            ( A
           != ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B2 ) @ one_one_int ) ) ) ).

% oddE
thf(fact_5041_parity__cases,axiom,
    ! [A: nat] :
      ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
       => ( ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
         != zero_zero_nat ) )
     => ~ ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
         => ( ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
           != one_one_nat ) ) ) ).

% parity_cases
thf(fact_5042_parity__cases,axiom,
    ! [A: int] :
      ( ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
       => ( ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
         != zero_zero_int ) )
     => ~ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
         => ( ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
           != one_one_int ) ) ) ).

% parity_cases
thf(fact_5043_parity__cases,axiom,
    ! [A: code_integer] :
      ( ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
       => ( ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
         != zero_z3403309356797280102nteger ) )
     => ~ ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
         => ( ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
           != one_one_Code_integer ) ) ) ).

% parity_cases
thf(fact_5044_mod2__eq__if,axiom,
    ! [A: nat] :
      ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
       => ( ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
          = zero_zero_nat ) )
      & ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
       => ( ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
          = one_one_nat ) ) ) ).

% mod2_eq_if
thf(fact_5045_mod2__eq__if,axiom,
    ! [A: int] :
      ( ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
       => ( ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
          = zero_zero_int ) )
      & ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
       => ( ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
          = one_one_int ) ) ) ).

% mod2_eq_if
thf(fact_5046_mod2__eq__if,axiom,
    ! [A: code_integer] :
      ( ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
       => ( ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
          = zero_z3403309356797280102nteger ) )
      & ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
       => ( ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
          = one_one_Code_integer ) ) ) ).

% mod2_eq_if
thf(fact_5047_zero__le__even__power,axiom,
    ! [N2: nat,A: real] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ A @ N2 ) ) ) ).

% zero_le_even_power
thf(fact_5048_zero__le__even__power,axiom,
    ! [N2: nat,A: rat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ord_less_eq_rat @ zero_zero_rat @ ( power_power_rat @ A @ N2 ) ) ) ).

% zero_le_even_power
thf(fact_5049_zero__le__even__power,axiom,
    ! [N2: nat,A: int] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ A @ N2 ) ) ) ).

% zero_le_even_power
thf(fact_5050_zero__le__odd__power,axiom,
    ! [N2: nat,A: real] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ A @ N2 ) )
        = ( ord_less_eq_real @ zero_zero_real @ A ) ) ) ).

% zero_le_odd_power
thf(fact_5051_zero__le__odd__power,axiom,
    ! [N2: nat,A: rat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ ( power_power_rat @ A @ N2 ) )
        = ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ) ).

% zero_le_odd_power
thf(fact_5052_zero__le__odd__power,axiom,
    ! [N2: nat,A: int] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ A @ N2 ) )
        = ( ord_less_eq_int @ zero_zero_int @ A ) ) ) ).

% zero_le_odd_power
thf(fact_5053_zero__le__power__eq,axiom,
    ! [A: real,N2: nat] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ A @ N2 ) )
      = ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
        | ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
          & ( ord_less_eq_real @ zero_zero_real @ A ) ) ) ) ).

% zero_le_power_eq
thf(fact_5054_zero__le__power__eq,axiom,
    ! [A: rat,N2: nat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ ( power_power_rat @ A @ N2 ) )
      = ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
        | ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
          & ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ) ) ).

% zero_le_power_eq
thf(fact_5055_zero__le__power__eq,axiom,
    ! [A: int,N2: nat] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ A @ N2 ) )
      = ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
        | ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
          & ( ord_less_eq_int @ zero_zero_int @ A ) ) ) ) ).

% zero_le_power_eq
thf(fact_5056_list__decode_Ocases,axiom,
    ! [X: nat] :
      ( ( X != zero_zero_nat )
     => ~ ! [N: nat] :
            ( X
           != ( suc @ N ) ) ) ).

% list_decode.cases
thf(fact_5057_zero__less__power__eq,axiom,
    ! [A: real,N2: nat] :
      ( ( ord_less_real @ zero_zero_real @ ( power_power_real @ A @ N2 ) )
      = ( ( N2 = zero_zero_nat )
        | ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
          & ( A != zero_zero_real ) )
        | ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
          & ( ord_less_real @ zero_zero_real @ A ) ) ) ) ).

% zero_less_power_eq
thf(fact_5058_zero__less__power__eq,axiom,
    ! [A: rat,N2: nat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( power_power_rat @ A @ N2 ) )
      = ( ( N2 = zero_zero_nat )
        | ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
          & ( A != zero_zero_rat ) )
        | ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
          & ( ord_less_rat @ zero_zero_rat @ A ) ) ) ) ).

% zero_less_power_eq
thf(fact_5059_zero__less__power__eq,axiom,
    ! [A: int,N2: nat] :
      ( ( ord_less_int @ zero_zero_int @ ( power_power_int @ A @ N2 ) )
      = ( ( N2 = zero_zero_nat )
        | ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
          & ( A != zero_zero_int ) )
        | ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
          & ( ord_less_int @ zero_zero_int @ A ) ) ) ) ).

% zero_less_power_eq
thf(fact_5060_Euclid__induct,axiom,
    ! [P: nat > nat > $o,A: nat,B: nat] :
      ( ! [A3: nat,B2: nat] :
          ( ( P @ A3 @ B2 )
          = ( P @ B2 @ A3 ) )
     => ( ! [A3: nat] : ( P @ A3 @ zero_zero_nat )
       => ( ! [A3: nat,B2: nat] :
              ( ( P @ A3 @ B2 )
             => ( P @ A3 @ ( plus_plus_nat @ A3 @ B2 ) ) )
         => ( P @ A @ B ) ) ) ) ).

% Euclid_induct
thf(fact_5061_even__mask__div__iff_H,axiom,
    ! [M: nat,N2: nat] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( divide6298287555418463151nteger @ ( minus_8373710615458151222nteger @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) @ one_one_Code_integer ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N2 ) ) )
      = ( ord_less_eq_nat @ M @ N2 ) ) ).

% even_mask_div_iff'
thf(fact_5062_even__mask__div__iff_H,axiom,
    ! [M: nat,N2: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( minus_minus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) @ one_one_nat ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) )
      = ( ord_less_eq_nat @ M @ N2 ) ) ).

% even_mask_div_iff'
thf(fact_5063_even__mask__div__iff_H,axiom,
    ! [M: nat,N2: nat] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ ( minus_minus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) @ one_one_int ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) ) )
      = ( ord_less_eq_nat @ M @ N2 ) ) ).

% even_mask_div_iff'
thf(fact_5064_power__le__zero__eq,axiom,
    ! [A: real,N2: nat] :
      ( ( ord_less_eq_real @ ( power_power_real @ A @ N2 ) @ zero_zero_real )
      = ( ( ord_less_nat @ zero_zero_nat @ N2 )
        & ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
            & ( ord_less_eq_real @ A @ zero_zero_real ) )
          | ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
            & ( A = zero_zero_real ) ) ) ) ) ).

% power_le_zero_eq
thf(fact_5065_power__le__zero__eq,axiom,
    ! [A: rat,N2: nat] :
      ( ( ord_less_eq_rat @ ( power_power_rat @ A @ N2 ) @ zero_zero_rat )
      = ( ( ord_less_nat @ zero_zero_nat @ N2 )
        & ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
            & ( ord_less_eq_rat @ A @ zero_zero_rat ) )
          | ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
            & ( A = zero_zero_rat ) ) ) ) ) ).

% power_le_zero_eq
thf(fact_5066_power__le__zero__eq,axiom,
    ! [A: int,N2: nat] :
      ( ( ord_less_eq_int @ ( power_power_int @ A @ N2 ) @ zero_zero_int )
      = ( ( ord_less_nat @ zero_zero_nat @ N2 )
        & ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
            & ( ord_less_eq_int @ A @ zero_zero_int ) )
          | ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
            & ( A = zero_zero_int ) ) ) ) ) ).

% power_le_zero_eq
thf(fact_5067_even__mod__4__div__2,axiom,
    ! [N2: nat] :
      ( ( ( modulo_modulo_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
        = ( suc @ zero_zero_nat ) )
     => ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( minus_minus_nat @ N2 @ ( suc @ zero_zero_nat ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% even_mod_4_div_2
thf(fact_5068_even__mask__div__iff,axiom,
    ! [M: nat,N2: nat] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( divide6298287555418463151nteger @ ( minus_8373710615458151222nteger @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) @ one_one_Code_integer ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N2 ) ) )
      = ( ( ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N2 )
          = zero_z3403309356797280102nteger )
        | ( ord_less_eq_nat @ M @ N2 ) ) ) ).

% even_mask_div_iff
thf(fact_5069_even__mask__div__iff,axiom,
    ! [M: nat,N2: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( minus_minus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) @ one_one_nat ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) )
      = ( ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
          = zero_zero_nat )
        | ( ord_less_eq_nat @ M @ N2 ) ) ) ).

% even_mask_div_iff
thf(fact_5070_even__mask__div__iff,axiom,
    ! [M: nat,N2: nat] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ ( minus_minus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) @ one_one_int ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) ) )
      = ( ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 )
          = zero_zero_int )
        | ( ord_less_eq_nat @ M @ N2 ) ) ) ).

% even_mask_div_iff
thf(fact_5071_even__mult__exp__div__exp__iff,axiom,
    ! [A: code_integer,M: nat,N2: nat] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( divide6298287555418463151nteger @ ( times_3573771949741848930nteger @ A @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N2 ) ) )
      = ( ( ord_less_nat @ N2 @ M )
        | ( ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N2 )
          = zero_z3403309356797280102nteger )
        | ( ( ord_less_eq_nat @ M @ N2 )
          & ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( divide6298287555418463151nteger @ A @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N2 @ M ) ) ) ) ) ) ) ).

% even_mult_exp_div_exp_iff
thf(fact_5072_even__mult__exp__div__exp__iff,axiom,
    ! [A: nat,M: nat,N2: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( times_times_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) )
      = ( ( ord_less_nat @ N2 @ M )
        | ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
          = zero_zero_nat )
        | ( ( ord_less_eq_nat @ M @ N2 )
          & ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N2 @ M ) ) ) ) ) ) ) ).

% even_mult_exp_div_exp_iff
thf(fact_5073_even__mult__exp__div__exp__iff,axiom,
    ! [A: int,M: nat,N2: nat] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ ( times_times_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) ) )
      = ( ( ord_less_nat @ N2 @ M )
        | ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 )
          = zero_zero_int )
        | ( ( ord_less_eq_nat @ M @ N2 )
          & ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N2 @ M ) ) ) ) ) ) ) ).

% even_mult_exp_div_exp_iff
thf(fact_5074_infinite__growing,axiom,
    ! [X8: set_real] :
      ( ( X8 != bot_bot_set_real )
     => ( ! [X5: real] :
            ( ( member_real @ X5 @ X8 )
           => ? [Xa: real] :
                ( ( member_real @ Xa @ X8 )
                & ( ord_less_real @ X5 @ Xa ) ) )
       => ~ ( finite_finite_real @ X8 ) ) ) ).

% infinite_growing
thf(fact_5075_infinite__growing,axiom,
    ! [X8: set_rat] :
      ( ( X8 != bot_bot_set_rat )
     => ( ! [X5: rat] :
            ( ( member_rat @ X5 @ X8 )
           => ? [Xa: rat] :
                ( ( member_rat @ Xa @ X8 )
                & ( ord_less_rat @ X5 @ Xa ) ) )
       => ~ ( finite_finite_rat @ X8 ) ) ) ).

% infinite_growing
thf(fact_5076_infinite__growing,axiom,
    ! [X8: set_num] :
      ( ( X8 != bot_bot_set_num )
     => ( ! [X5: num] :
            ( ( member_num @ X5 @ X8 )
           => ? [Xa: num] :
                ( ( member_num @ Xa @ X8 )
                & ( ord_less_num @ X5 @ Xa ) ) )
       => ~ ( finite_finite_num @ X8 ) ) ) ).

% infinite_growing
thf(fact_5077_infinite__growing,axiom,
    ! [X8: set_nat] :
      ( ( X8 != bot_bot_set_nat )
     => ( ! [X5: nat] :
            ( ( member_nat @ X5 @ X8 )
           => ? [Xa: nat] :
                ( ( member_nat @ Xa @ X8 )
                & ( ord_less_nat @ X5 @ Xa ) ) )
       => ~ ( finite_finite_nat @ X8 ) ) ) ).

% infinite_growing
thf(fact_5078_infinite__growing,axiom,
    ! [X8: set_int] :
      ( ( X8 != bot_bot_set_int )
     => ( ! [X5: int] :
            ( ( member_int @ X5 @ X8 )
           => ? [Xa: int] :
                ( ( member_int @ Xa @ X8 )
                & ( ord_less_int @ X5 @ Xa ) ) )
       => ~ ( finite_finite_int @ X8 ) ) ) ).

% infinite_growing
thf(fact_5079_ex__min__if__finite,axiom,
    ! [S3: set_real] :
      ( ( finite_finite_real @ S3 )
     => ( ( S3 != bot_bot_set_real )
       => ? [X5: real] :
            ( ( member_real @ X5 @ S3 )
            & ~ ? [Xa: real] :
                  ( ( member_real @ Xa @ S3 )
                  & ( ord_less_real @ Xa @ X5 ) ) ) ) ) ).

% ex_min_if_finite
thf(fact_5080_ex__min__if__finite,axiom,
    ! [S3: set_rat] :
      ( ( finite_finite_rat @ S3 )
     => ( ( S3 != bot_bot_set_rat )
       => ? [X5: rat] :
            ( ( member_rat @ X5 @ S3 )
            & ~ ? [Xa: rat] :
                  ( ( member_rat @ Xa @ S3 )
                  & ( ord_less_rat @ Xa @ X5 ) ) ) ) ) ).

% ex_min_if_finite
thf(fact_5081_ex__min__if__finite,axiom,
    ! [S3: set_num] :
      ( ( finite_finite_num @ S3 )
     => ( ( S3 != bot_bot_set_num )
       => ? [X5: num] :
            ( ( member_num @ X5 @ S3 )
            & ~ ? [Xa: num] :
                  ( ( member_num @ Xa @ S3 )
                  & ( ord_less_num @ Xa @ X5 ) ) ) ) ) ).

% ex_min_if_finite
thf(fact_5082_ex__min__if__finite,axiom,
    ! [S3: set_nat] :
      ( ( finite_finite_nat @ S3 )
     => ( ( S3 != bot_bot_set_nat )
       => ? [X5: nat] :
            ( ( member_nat @ X5 @ S3 )
            & ~ ? [Xa: nat] :
                  ( ( member_nat @ Xa @ S3 )
                  & ( ord_less_nat @ Xa @ X5 ) ) ) ) ) ).

% ex_min_if_finite
thf(fact_5083_ex__min__if__finite,axiom,
    ! [S3: set_int] :
      ( ( finite_finite_int @ S3 )
     => ( ( S3 != bot_bot_set_int )
       => ? [X5: int] :
            ( ( member_int @ X5 @ S3 )
            & ~ ? [Xa: int] :
                  ( ( member_int @ Xa @ S3 )
                  & ( ord_less_int @ Xa @ X5 ) ) ) ) ) ).

% ex_min_if_finite
thf(fact_5084_triangle__def,axiom,
    ( nat_triangle
    = ( ^ [N3: nat] : ( divide_divide_nat @ ( times_times_nat @ N3 @ ( suc @ N3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% triangle_def
thf(fact_5085_vebt__buildup_Oelims,axiom,
    ! [X: nat,Y: vEBT_VEBT] :
      ( ( ( vEBT_vebt_buildup @ X )
        = Y )
     => ( ( ( X = zero_zero_nat )
         => ( Y
           != ( vEBT_Leaf @ $false @ $false ) ) )
       => ( ( ( X
              = ( suc @ zero_zero_nat ) )
           => ( Y
             != ( vEBT_Leaf @ $false @ $false ) ) )
         => ~ ! [Va2: nat] :
                ( ( X
                  = ( suc @ ( suc @ Va2 ) ) )
               => ~ ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ Va2 ) ) )
                     => ( Y
                        = ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ Va2 ) ) @ ( replicate_VEBT_VEBT @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) )
                    & ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ Va2 ) ) )
                     => ( Y
                        = ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ Va2 ) ) @ ( replicate_VEBT_VEBT @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( suc @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ) ) ).

% vebt_buildup.elims
thf(fact_5086_flip__bit__0,axiom,
    ! [A: code_integer] :
      ( ( bit_se1345352211410354436nteger @ zero_zero_nat @ A )
      = ( plus_p5714425477246183910nteger @ ( zero_n356916108424825756nteger @ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) ) @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ).

% flip_bit_0
thf(fact_5087_flip__bit__0,axiom,
    ! [A: int] :
      ( ( bit_se2159334234014336723it_int @ zero_zero_nat @ A )
      = ( plus_plus_int @ ( zero_n2684676970156552555ol_int @ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ).

% flip_bit_0
thf(fact_5088_flip__bit__0,axiom,
    ! [A: nat] :
      ( ( bit_se2161824704523386999it_nat @ zero_zero_nat @ A )
      = ( plus_plus_nat @ ( zero_n2687167440665602831ol_nat @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% flip_bit_0
thf(fact_5089_option_Osize__gen_I2_J,axiom,
    ! [X: product_prod_nat_nat > nat,X22: product_prod_nat_nat] :
      ( ( size_o8335143837870341156at_nat @ X @ ( some_P7363390416028606310at_nat @ X22 ) )
      = ( plus_plus_nat @ ( X @ X22 ) @ ( suc @ zero_zero_nat ) ) ) ).

% option.size_gen(2)
thf(fact_5090_option_Osize__gen_I2_J,axiom,
    ! [X: nat > nat,X22: nat] :
      ( ( size_option_nat @ X @ ( some_nat @ X22 ) )
      = ( plus_plus_nat @ ( X @ X22 ) @ ( suc @ zero_zero_nat ) ) ) ).

% option.size_gen(2)
thf(fact_5091_option_Osize__gen_I2_J,axiom,
    ! [X: num > nat,X22: num] :
      ( ( size_option_num @ X @ ( some_num @ X22 ) )
      = ( plus_plus_nat @ ( X @ X22 ) @ ( suc @ zero_zero_nat ) ) ) ).

% option.size_gen(2)
thf(fact_5092_signed__take__bit__Suc,axiom,
    ! [N2: nat,A: code_integer] :
      ( ( bit_ri6519982836138164636nteger @ ( suc @ N2 ) @ A )
      = ( plus_p5714425477246183910nteger @ ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_ri6519982836138164636nteger @ N2 @ ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ) ).

% signed_take_bit_Suc
thf(fact_5093_signed__take__bit__Suc,axiom,
    ! [N2: nat,A: int] :
      ( ( bit_ri631733984087533419it_int @ ( suc @ N2 ) @ A )
      = ( plus_plus_int @ ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_ri631733984087533419it_int @ N2 @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ).

% signed_take_bit_Suc
thf(fact_5094_set__decode__Suc,axiom,
    ! [N2: nat,X: nat] :
      ( ( member_nat @ ( suc @ N2 ) @ ( nat_set_decode @ X ) )
      = ( member_nat @ N2 @ ( nat_set_decode @ ( divide_divide_nat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% set_decode_Suc
thf(fact_5095_diff__shunt__var,axiom,
    ! [X: set_real,Y: set_real] :
      ( ( ( minus_minus_set_real @ X @ Y )
        = bot_bot_set_real )
      = ( ord_less_eq_set_real @ X @ Y ) ) ).

% diff_shunt_var
thf(fact_5096_diff__shunt__var,axiom,
    ! [X: set_nat,Y: set_nat] :
      ( ( ( minus_minus_set_nat @ X @ Y )
        = bot_bot_set_nat )
      = ( ord_less_eq_set_nat @ X @ Y ) ) ).

% diff_shunt_var
thf(fact_5097_diff__shunt__var,axiom,
    ! [X: set_int,Y: set_int] :
      ( ( ( minus_minus_set_int @ X @ Y )
        = bot_bot_set_int )
      = ( ord_less_eq_set_int @ X @ Y ) ) ).

% diff_shunt_var
thf(fact_5098_intind,axiom,
    ! [I2: nat,N2: nat,P: nat > $o,X: nat] :
      ( ( ord_less_nat @ I2 @ N2 )
     => ( ( P @ X )
       => ( P @ ( nth_nat @ ( replicate_nat @ N2 @ X ) @ I2 ) ) ) ) ).

% intind
thf(fact_5099_intind,axiom,
    ! [I2: nat,N2: nat,P: int > $o,X: int] :
      ( ( ord_less_nat @ I2 @ N2 )
     => ( ( P @ X )
       => ( P @ ( nth_int @ ( replicate_int @ N2 @ X ) @ I2 ) ) ) ) ).

% intind
thf(fact_5100_intind,axiom,
    ! [I2: nat,N2: nat,P: vEBT_VEBT > $o,X: vEBT_VEBT] :
      ( ( ord_less_nat @ I2 @ N2 )
     => ( ( P @ X )
       => ( P @ ( nth_VEBT_VEBT @ ( replicate_VEBT_VEBT @ N2 @ X ) @ I2 ) ) ) ) ).

% intind
thf(fact_5101_of__bool__less__eq__iff,axiom,
    ! [P: $o,Q: $o] :
      ( ( ord_less_eq_rat @ ( zero_n2052037380579107095ol_rat @ P ) @ ( zero_n2052037380579107095ol_rat @ Q ) )
      = ( P
       => Q ) ) ).

% of_bool_less_eq_iff
thf(fact_5102_of__bool__less__eq__iff,axiom,
    ! [P: $o,Q: $o] :
      ( ( ord_less_eq_nat @ ( zero_n2687167440665602831ol_nat @ P ) @ ( zero_n2687167440665602831ol_nat @ Q ) )
      = ( P
       => Q ) ) ).

% of_bool_less_eq_iff
thf(fact_5103_of__bool__less__eq__iff,axiom,
    ! [P: $o,Q: $o] :
      ( ( ord_less_eq_int @ ( zero_n2684676970156552555ol_int @ P ) @ ( zero_n2684676970156552555ol_int @ Q ) )
      = ( P
       => Q ) ) ).

% of_bool_less_eq_iff
thf(fact_5104_of__bool__less__eq__iff,axiom,
    ! [P: $o,Q: $o] :
      ( ( ord_le3102999989581377725nteger @ ( zero_n356916108424825756nteger @ P ) @ ( zero_n356916108424825756nteger @ Q ) )
      = ( P
       => Q ) ) ).

% of_bool_less_eq_iff
thf(fact_5105_of__bool__eq_I1_J,axiom,
    ( ( zero_n1201886186963655149omplex @ $false )
    = zero_zero_complex ) ).

% of_bool_eq(1)
thf(fact_5106_of__bool__eq_I1_J,axiom,
    ( ( zero_n3304061248610475627l_real @ $false )
    = zero_zero_real ) ).

% of_bool_eq(1)
thf(fact_5107_of__bool__eq_I1_J,axiom,
    ( ( zero_n2052037380579107095ol_rat @ $false )
    = zero_zero_rat ) ).

% of_bool_eq(1)
thf(fact_5108_of__bool__eq_I1_J,axiom,
    ( ( zero_n2687167440665602831ol_nat @ $false )
    = zero_zero_nat ) ).

% of_bool_eq(1)
thf(fact_5109_of__bool__eq_I1_J,axiom,
    ( ( zero_n2684676970156552555ol_int @ $false )
    = zero_zero_int ) ).

% of_bool_eq(1)
thf(fact_5110_of__bool__eq_I1_J,axiom,
    ( ( zero_n356916108424825756nteger @ $false )
    = zero_z3403309356797280102nteger ) ).

% of_bool_eq(1)
thf(fact_5111_of__bool__eq__0__iff,axiom,
    ! [P: $o] :
      ( ( ( zero_n1201886186963655149omplex @ P )
        = zero_zero_complex )
      = ~ P ) ).

% of_bool_eq_0_iff
thf(fact_5112_of__bool__eq__0__iff,axiom,
    ! [P: $o] :
      ( ( ( zero_n3304061248610475627l_real @ P )
        = zero_zero_real )
      = ~ P ) ).

% of_bool_eq_0_iff
thf(fact_5113_of__bool__eq__0__iff,axiom,
    ! [P: $o] :
      ( ( ( zero_n2052037380579107095ol_rat @ P )
        = zero_zero_rat )
      = ~ P ) ).

% of_bool_eq_0_iff
thf(fact_5114_of__bool__eq__0__iff,axiom,
    ! [P: $o] :
      ( ( ( zero_n2687167440665602831ol_nat @ P )
        = zero_zero_nat )
      = ~ P ) ).

% of_bool_eq_0_iff
thf(fact_5115_of__bool__eq__0__iff,axiom,
    ! [P: $o] :
      ( ( ( zero_n2684676970156552555ol_int @ P )
        = zero_zero_int )
      = ~ P ) ).

% of_bool_eq_0_iff
thf(fact_5116_of__bool__eq__0__iff,axiom,
    ! [P: $o] :
      ( ( ( zero_n356916108424825756nteger @ P )
        = zero_z3403309356797280102nteger )
      = ~ P ) ).

% of_bool_eq_0_iff
thf(fact_5117_of__bool__less__iff,axiom,
    ! [P: $o,Q: $o] :
      ( ( ord_less_real @ ( zero_n3304061248610475627l_real @ P ) @ ( zero_n3304061248610475627l_real @ Q ) )
      = ( ~ P
        & Q ) ) ).

% of_bool_less_iff
thf(fact_5118_of__bool__less__iff,axiom,
    ! [P: $o,Q: $o] :
      ( ( ord_less_rat @ ( zero_n2052037380579107095ol_rat @ P ) @ ( zero_n2052037380579107095ol_rat @ Q ) )
      = ( ~ P
        & Q ) ) ).

% of_bool_less_iff
thf(fact_5119_of__bool__less__iff,axiom,
    ! [P: $o,Q: $o] :
      ( ( ord_less_nat @ ( zero_n2687167440665602831ol_nat @ P ) @ ( zero_n2687167440665602831ol_nat @ Q ) )
      = ( ~ P
        & Q ) ) ).

% of_bool_less_iff
thf(fact_5120_of__bool__less__iff,axiom,
    ! [P: $o,Q: $o] :
      ( ( ord_less_int @ ( zero_n2684676970156552555ol_int @ P ) @ ( zero_n2684676970156552555ol_int @ Q ) )
      = ( ~ P
        & Q ) ) ).

% of_bool_less_iff
thf(fact_5121_of__bool__less__iff,axiom,
    ! [P: $o,Q: $o] :
      ( ( ord_le6747313008572928689nteger @ ( zero_n356916108424825756nteger @ P ) @ ( zero_n356916108424825756nteger @ Q ) )
      = ( ~ P
        & Q ) ) ).

% of_bool_less_iff
thf(fact_5122_of__bool__eq__1__iff,axiom,
    ! [P: $o] :
      ( ( ( zero_n1201886186963655149omplex @ P )
        = one_one_complex )
      = P ) ).

% of_bool_eq_1_iff
thf(fact_5123_of__bool__eq__1__iff,axiom,
    ! [P: $o] :
      ( ( ( zero_n3304061248610475627l_real @ P )
        = one_one_real )
      = P ) ).

% of_bool_eq_1_iff
thf(fact_5124_of__bool__eq__1__iff,axiom,
    ! [P: $o] :
      ( ( ( zero_n2052037380579107095ol_rat @ P )
        = one_one_rat )
      = P ) ).

% of_bool_eq_1_iff
thf(fact_5125_of__bool__eq__1__iff,axiom,
    ! [P: $o] :
      ( ( ( zero_n2687167440665602831ol_nat @ P )
        = one_one_nat )
      = P ) ).

% of_bool_eq_1_iff
thf(fact_5126_of__bool__eq__1__iff,axiom,
    ! [P: $o] :
      ( ( ( zero_n2684676970156552555ol_int @ P )
        = one_one_int )
      = P ) ).

% of_bool_eq_1_iff
thf(fact_5127_of__bool__eq__1__iff,axiom,
    ! [P: $o] :
      ( ( ( zero_n356916108424825756nteger @ P )
        = one_one_Code_integer )
      = P ) ).

% of_bool_eq_1_iff
thf(fact_5128_of__bool__eq_I2_J,axiom,
    ( ( zero_n1201886186963655149omplex @ $true )
    = one_one_complex ) ).

% of_bool_eq(2)
thf(fact_5129_of__bool__eq_I2_J,axiom,
    ( ( zero_n3304061248610475627l_real @ $true )
    = one_one_real ) ).

% of_bool_eq(2)
thf(fact_5130_of__bool__eq_I2_J,axiom,
    ( ( zero_n2052037380579107095ol_rat @ $true )
    = one_one_rat ) ).

% of_bool_eq(2)
thf(fact_5131_of__bool__eq_I2_J,axiom,
    ( ( zero_n2687167440665602831ol_nat @ $true )
    = one_one_nat ) ).

% of_bool_eq(2)
thf(fact_5132_of__bool__eq_I2_J,axiom,
    ( ( zero_n2684676970156552555ol_int @ $true )
    = one_one_int ) ).

% of_bool_eq(2)
thf(fact_5133_of__bool__eq_I2_J,axiom,
    ( ( zero_n356916108424825756nteger @ $true )
    = one_one_Code_integer ) ).

% of_bool_eq(2)
thf(fact_5134_signed__take__bit__of__0,axiom,
    ! [N2: nat] :
      ( ( bit_ri631733984087533419it_int @ N2 @ zero_zero_int )
      = zero_zero_int ) ).

% signed_take_bit_of_0
thf(fact_5135_replicate__eq__replicate,axiom,
    ! [M: nat,X: vEBT_VEBT,N2: nat,Y: vEBT_VEBT] :
      ( ( ( replicate_VEBT_VEBT @ M @ X )
        = ( replicate_VEBT_VEBT @ N2 @ Y ) )
      = ( ( M = N2 )
        & ( ( M != zero_zero_nat )
         => ( X = Y ) ) ) ) ).

% replicate_eq_replicate
thf(fact_5136_length__replicate,axiom,
    ! [N2: nat,X: vEBT_VEBT] :
      ( ( size_s6755466524823107622T_VEBT @ ( replicate_VEBT_VEBT @ N2 @ X ) )
      = N2 ) ).

% length_replicate
thf(fact_5137_length__replicate,axiom,
    ! [N2: nat,X: $o] :
      ( ( size_size_list_o @ ( replicate_o @ N2 @ X ) )
      = N2 ) ).

% length_replicate
thf(fact_5138_length__replicate,axiom,
    ! [N2: nat,X: int] :
      ( ( size_size_list_int @ ( replicate_int @ N2 @ X ) )
      = N2 ) ).

% length_replicate
thf(fact_5139_of__bool__or__iff,axiom,
    ! [P: $o,Q: $o] :
      ( ( zero_n2687167440665602831ol_nat
        @ ( P
          | Q ) )
      = ( ord_max_nat @ ( zero_n2687167440665602831ol_nat @ P ) @ ( zero_n2687167440665602831ol_nat @ Q ) ) ) ).

% of_bool_or_iff
thf(fact_5140_of__bool__or__iff,axiom,
    ! [P: $o,Q: $o] :
      ( ( zero_n2684676970156552555ol_int
        @ ( P
          | Q ) )
      = ( ord_max_int @ ( zero_n2684676970156552555ol_int @ P ) @ ( zero_n2684676970156552555ol_int @ Q ) ) ) ).

% of_bool_or_iff
thf(fact_5141_of__bool__or__iff,axiom,
    ! [P: $o,Q: $o] :
      ( ( zero_n356916108424825756nteger
        @ ( P
          | Q ) )
      = ( ord_max_Code_integer @ ( zero_n356916108424825756nteger @ P ) @ ( zero_n356916108424825756nteger @ Q ) ) ) ).

% of_bool_or_iff
thf(fact_5142_zero__less__of__bool__iff,axiom,
    ! [P: $o] :
      ( ( ord_less_real @ zero_zero_real @ ( zero_n3304061248610475627l_real @ P ) )
      = P ) ).

% zero_less_of_bool_iff
thf(fact_5143_zero__less__of__bool__iff,axiom,
    ! [P: $o] :
      ( ( ord_less_rat @ zero_zero_rat @ ( zero_n2052037380579107095ol_rat @ P ) )
      = P ) ).

% zero_less_of_bool_iff
thf(fact_5144_zero__less__of__bool__iff,axiom,
    ! [P: $o] :
      ( ( ord_less_nat @ zero_zero_nat @ ( zero_n2687167440665602831ol_nat @ P ) )
      = P ) ).

% zero_less_of_bool_iff
thf(fact_5145_zero__less__of__bool__iff,axiom,
    ! [P: $o] :
      ( ( ord_less_int @ zero_zero_int @ ( zero_n2684676970156552555ol_int @ P ) )
      = P ) ).

% zero_less_of_bool_iff
thf(fact_5146_zero__less__of__bool__iff,axiom,
    ! [P: $o] :
      ( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ ( zero_n356916108424825756nteger @ P ) )
      = P ) ).

% zero_less_of_bool_iff
thf(fact_5147_of__bool__less__one__iff,axiom,
    ! [P: $o] :
      ( ( ord_less_real @ ( zero_n3304061248610475627l_real @ P ) @ one_one_real )
      = ~ P ) ).

% of_bool_less_one_iff
thf(fact_5148_of__bool__less__one__iff,axiom,
    ! [P: $o] :
      ( ( ord_less_rat @ ( zero_n2052037380579107095ol_rat @ P ) @ one_one_rat )
      = ~ P ) ).

% of_bool_less_one_iff
thf(fact_5149_of__bool__less__one__iff,axiom,
    ! [P: $o] :
      ( ( ord_less_nat @ ( zero_n2687167440665602831ol_nat @ P ) @ one_one_nat )
      = ~ P ) ).

% of_bool_less_one_iff
thf(fact_5150_of__bool__less__one__iff,axiom,
    ! [P: $o] :
      ( ( ord_less_int @ ( zero_n2684676970156552555ol_int @ P ) @ one_one_int )
      = ~ P ) ).

% of_bool_less_one_iff
thf(fact_5151_of__bool__less__one__iff,axiom,
    ! [P: $o] :
      ( ( ord_le6747313008572928689nteger @ ( zero_n356916108424825756nteger @ P ) @ one_one_Code_integer )
      = ~ P ) ).

% of_bool_less_one_iff
thf(fact_5152_of__bool__not__iff,axiom,
    ! [P: $o] :
      ( ( zero_n1201886186963655149omplex @ ~ P )
      = ( minus_minus_complex @ one_one_complex @ ( zero_n1201886186963655149omplex @ P ) ) ) ).

% of_bool_not_iff
thf(fact_5153_of__bool__not__iff,axiom,
    ! [P: $o] :
      ( ( zero_n3304061248610475627l_real @ ~ P )
      = ( minus_minus_real @ one_one_real @ ( zero_n3304061248610475627l_real @ P ) ) ) ).

% of_bool_not_iff
thf(fact_5154_of__bool__not__iff,axiom,
    ! [P: $o] :
      ( ( zero_n2052037380579107095ol_rat @ ~ P )
      = ( minus_minus_rat @ one_one_rat @ ( zero_n2052037380579107095ol_rat @ P ) ) ) ).

% of_bool_not_iff
thf(fact_5155_of__bool__not__iff,axiom,
    ! [P: $o] :
      ( ( zero_n2684676970156552555ol_int @ ~ P )
      = ( minus_minus_int @ one_one_int @ ( zero_n2684676970156552555ol_int @ P ) ) ) ).

% of_bool_not_iff
thf(fact_5156_of__bool__not__iff,axiom,
    ! [P: $o] :
      ( ( zero_n356916108424825756nteger @ ~ P )
      = ( minus_8373710615458151222nteger @ one_one_Code_integer @ ( zero_n356916108424825756nteger @ P ) ) ) ).

% of_bool_not_iff
thf(fact_5157_Suc__0__mod__eq,axiom,
    ! [N2: nat] :
      ( ( modulo_modulo_nat @ ( suc @ zero_zero_nat ) @ N2 )
      = ( zero_n2687167440665602831ol_nat
        @ ( N2
         != ( suc @ zero_zero_nat ) ) ) ) ).

% Suc_0_mod_eq
thf(fact_5158_signed__take__bit__Suc__1,axiom,
    ! [N2: nat] :
      ( ( bit_ri631733984087533419it_int @ ( suc @ N2 ) @ one_one_int )
      = one_one_int ) ).

% signed_take_bit_Suc_1
thf(fact_5159_signed__take__bit__numeral__of__1,axiom,
    ! [K: num] :
      ( ( bit_ri631733984087533419it_int @ ( numeral_numeral_nat @ K ) @ one_one_int )
      = one_one_int ) ).

% signed_take_bit_numeral_of_1
thf(fact_5160_Ball__set__replicate,axiom,
    ! [N2: nat,A: int,P: int > $o] :
      ( ( ! [X3: int] :
            ( ( member_int @ X3 @ ( set_int2 @ ( replicate_int @ N2 @ A ) ) )
           => ( P @ X3 ) ) )
      = ( ( P @ A )
        | ( N2 = zero_zero_nat ) ) ) ).

% Ball_set_replicate
thf(fact_5161_Ball__set__replicate,axiom,
    ! [N2: nat,A: vEBT_VEBT,P: vEBT_VEBT > $o] :
      ( ( ! [X3: vEBT_VEBT] :
            ( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ ( replicate_VEBT_VEBT @ N2 @ A ) ) )
           => ( P @ X3 ) ) )
      = ( ( P @ A )
        | ( N2 = zero_zero_nat ) ) ) ).

% Ball_set_replicate
thf(fact_5162_Bex__set__replicate,axiom,
    ! [N2: nat,A: int,P: int > $o] :
      ( ( ? [X3: int] :
            ( ( member_int @ X3 @ ( set_int2 @ ( replicate_int @ N2 @ A ) ) )
            & ( P @ X3 ) ) )
      = ( ( P @ A )
        & ( N2 != zero_zero_nat ) ) ) ).

% Bex_set_replicate
thf(fact_5163_Bex__set__replicate,axiom,
    ! [N2: nat,A: vEBT_VEBT,P: vEBT_VEBT > $o] :
      ( ( ? [X3: vEBT_VEBT] :
            ( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ ( replicate_VEBT_VEBT @ N2 @ A ) ) )
            & ( P @ X3 ) ) )
      = ( ( P @ A )
        & ( N2 != zero_zero_nat ) ) ) ).

% Bex_set_replicate
thf(fact_5164_in__set__replicate,axiom,
    ! [X: complex,N2: nat,Y: complex] :
      ( ( member_complex @ X @ ( set_complex2 @ ( replicate_complex @ N2 @ Y ) ) )
      = ( ( X = Y )
        & ( N2 != zero_zero_nat ) ) ) ).

% in_set_replicate
thf(fact_5165_in__set__replicate,axiom,
    ! [X: real,N2: nat,Y: real] :
      ( ( member_real @ X @ ( set_real2 @ ( replicate_real @ N2 @ Y ) ) )
      = ( ( X = Y )
        & ( N2 != zero_zero_nat ) ) ) ).

% in_set_replicate
thf(fact_5166_in__set__replicate,axiom,
    ! [X: set_nat,N2: nat,Y: set_nat] :
      ( ( member_set_nat @ X @ ( set_set_nat2 @ ( replicate_set_nat @ N2 @ Y ) ) )
      = ( ( X = Y )
        & ( N2 != zero_zero_nat ) ) ) ).

% in_set_replicate
thf(fact_5167_in__set__replicate,axiom,
    ! [X: nat,N2: nat,Y: nat] :
      ( ( member_nat @ X @ ( set_nat2 @ ( replicate_nat @ N2 @ Y ) ) )
      = ( ( X = Y )
        & ( N2 != zero_zero_nat ) ) ) ).

% in_set_replicate
thf(fact_5168_in__set__replicate,axiom,
    ! [X: int,N2: nat,Y: int] :
      ( ( member_int @ X @ ( set_int2 @ ( replicate_int @ N2 @ Y ) ) )
      = ( ( X = Y )
        & ( N2 != zero_zero_nat ) ) ) ).

% in_set_replicate
thf(fact_5169_in__set__replicate,axiom,
    ! [X: vEBT_VEBT,N2: nat,Y: vEBT_VEBT] :
      ( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ ( replicate_VEBT_VEBT @ N2 @ Y ) ) )
      = ( ( X = Y )
        & ( N2 != zero_zero_nat ) ) ) ).

% in_set_replicate
thf(fact_5170_nth__replicate,axiom,
    ! [I2: nat,N2: nat,X: nat] :
      ( ( ord_less_nat @ I2 @ N2 )
     => ( ( nth_nat @ ( replicate_nat @ N2 @ X ) @ I2 )
        = X ) ) ).

% nth_replicate
thf(fact_5171_nth__replicate,axiom,
    ! [I2: nat,N2: nat,X: int] :
      ( ( ord_less_nat @ I2 @ N2 )
     => ( ( nth_int @ ( replicate_int @ N2 @ X ) @ I2 )
        = X ) ) ).

% nth_replicate
thf(fact_5172_nth__replicate,axiom,
    ! [I2: nat,N2: nat,X: vEBT_VEBT] :
      ( ( ord_less_nat @ I2 @ N2 )
     => ( ( nth_VEBT_VEBT @ ( replicate_VEBT_VEBT @ N2 @ X ) @ I2 )
        = X ) ) ).

% nth_replicate
thf(fact_5173_triangle__Suc,axiom,
    ! [N2: nat] :
      ( ( nat_triangle @ ( suc @ N2 ) )
      = ( plus_plus_nat @ ( nat_triangle @ N2 ) @ ( suc @ N2 ) ) ) ).

% triangle_Suc
thf(fact_5174_signed__take__bit__Suc__bit0,axiom,
    ! [N2: nat,K: num] :
      ( ( bit_ri631733984087533419it_int @ ( suc @ N2 ) @ ( numeral_numeral_int @ ( bit0 @ K ) ) )
      = ( times_times_int @ ( bit_ri631733984087533419it_int @ N2 @ ( numeral_numeral_int @ K ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).

% signed_take_bit_Suc_bit0
thf(fact_5175_odd__of__bool__self,axiom,
    ! [P4: $o] :
      ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( zero_n2687167440665602831ol_nat @ P4 ) ) )
      = P4 ) ).

% odd_of_bool_self
thf(fact_5176_odd__of__bool__self,axiom,
    ! [P4: $o] :
      ( ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( zero_n2684676970156552555ol_int @ P4 ) ) )
      = P4 ) ).

% odd_of_bool_self
thf(fact_5177_odd__of__bool__self,axiom,
    ! [P4: $o] :
      ( ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( zero_n356916108424825756nteger @ P4 ) ) )
      = P4 ) ).

% odd_of_bool_self
thf(fact_5178_of__bool__half__eq__0,axiom,
    ! [B: $o] :
      ( ( divide_divide_nat @ ( zero_n2687167440665602831ol_nat @ B ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = zero_zero_nat ) ).

% of_bool_half_eq_0
thf(fact_5179_of__bool__half__eq__0,axiom,
    ! [B: $o] :
      ( ( divide_divide_int @ ( zero_n2684676970156552555ol_int @ B ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
      = zero_zero_int ) ).

% of_bool_half_eq_0
thf(fact_5180_of__bool__half__eq__0,axiom,
    ! [B: $o] :
      ( ( divide6298287555418463151nteger @ ( zero_n356916108424825756nteger @ B ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
      = zero_z3403309356797280102nteger ) ).

% of_bool_half_eq_0
thf(fact_5181_set__decode__0,axiom,
    ! [X: nat] :
      ( ( member_nat @ zero_zero_nat @ ( nat_set_decode @ X ) )
      = ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ X ) ) ) ).

% set_decode_0
thf(fact_5182_one__div__2__pow__eq,axiom,
    ! [N2: nat] :
      ( ( divide_divide_nat @ one_one_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
      = ( zero_n2687167440665602831ol_nat @ ( N2 = zero_zero_nat ) ) ) ).

% one_div_2_pow_eq
thf(fact_5183_one__div__2__pow__eq,axiom,
    ! [N2: nat] :
      ( ( divide_divide_int @ one_one_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) )
      = ( zero_n2684676970156552555ol_int @ ( N2 = zero_zero_nat ) ) ) ).

% one_div_2_pow_eq
thf(fact_5184_one__div__2__pow__eq,axiom,
    ! [N2: nat] :
      ( ( divide6298287555418463151nteger @ one_one_Code_integer @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N2 ) )
      = ( zero_n356916108424825756nteger @ ( N2 = zero_zero_nat ) ) ) ).

% one_div_2_pow_eq
thf(fact_5185_bits__1__div__exp,axiom,
    ! [N2: nat] :
      ( ( divide_divide_nat @ one_one_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
      = ( zero_n2687167440665602831ol_nat @ ( N2 = zero_zero_nat ) ) ) ).

% bits_1_div_exp
thf(fact_5186_bits__1__div__exp,axiom,
    ! [N2: nat] :
      ( ( divide_divide_int @ one_one_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) )
      = ( zero_n2684676970156552555ol_int @ ( N2 = zero_zero_nat ) ) ) ).

% bits_1_div_exp
thf(fact_5187_bits__1__div__exp,axiom,
    ! [N2: nat] :
      ( ( divide6298287555418463151nteger @ one_one_Code_integer @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N2 ) )
      = ( zero_n356916108424825756nteger @ ( N2 = zero_zero_nat ) ) ) ).

% bits_1_div_exp
thf(fact_5188_one__mod__2__pow__eq,axiom,
    ! [N2: nat] :
      ( ( modulo_modulo_nat @ one_one_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
      = ( zero_n2687167440665602831ol_nat @ ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ).

% one_mod_2_pow_eq
thf(fact_5189_one__mod__2__pow__eq,axiom,
    ! [N2: nat] :
      ( ( modulo_modulo_int @ one_one_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) )
      = ( zero_n2684676970156552555ol_int @ ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ).

% one_mod_2_pow_eq
thf(fact_5190_one__mod__2__pow__eq,axiom,
    ! [N2: nat] :
      ( ( modulo364778990260209775nteger @ one_one_Code_integer @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N2 ) )
      = ( zero_n356916108424825756nteger @ ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ).

% one_mod_2_pow_eq
thf(fact_5191_dvd__antisym,axiom,
    ! [M: nat,N2: nat] :
      ( ( dvd_dvd_nat @ M @ N2 )
     => ( ( dvd_dvd_nat @ N2 @ M )
       => ( M = N2 ) ) ) ).

% dvd_antisym
thf(fact_5192_of__bool__eq__iff,axiom,
    ! [P4: $o,Q2: $o] :
      ( ( ( zero_n2687167440665602831ol_nat @ P4 )
        = ( zero_n2687167440665602831ol_nat @ Q2 ) )
      = ( P4 = Q2 ) ) ).

% of_bool_eq_iff
thf(fact_5193_of__bool__eq__iff,axiom,
    ! [P4: $o,Q2: $o] :
      ( ( ( zero_n2684676970156552555ol_int @ P4 )
        = ( zero_n2684676970156552555ol_int @ Q2 ) )
      = ( P4 = Q2 ) ) ).

% of_bool_eq_iff
thf(fact_5194_of__bool__eq__iff,axiom,
    ! [P4: $o,Q2: $o] :
      ( ( ( zero_n356916108424825756nteger @ P4 )
        = ( zero_n356916108424825756nteger @ Q2 ) )
      = ( P4 = Q2 ) ) ).

% of_bool_eq_iff
thf(fact_5195_of__bool__conj,axiom,
    ! [P: $o,Q: $o] :
      ( ( zero_n3304061248610475627l_real
        @ ( P
          & Q ) )
      = ( times_times_real @ ( zero_n3304061248610475627l_real @ P ) @ ( zero_n3304061248610475627l_real @ Q ) ) ) ).

% of_bool_conj
thf(fact_5196_of__bool__conj,axiom,
    ! [P: $o,Q: $o] :
      ( ( zero_n2052037380579107095ol_rat
        @ ( P
          & Q ) )
      = ( times_times_rat @ ( zero_n2052037380579107095ol_rat @ P ) @ ( zero_n2052037380579107095ol_rat @ Q ) ) ) ).

% of_bool_conj
thf(fact_5197_of__bool__conj,axiom,
    ! [P: $o,Q: $o] :
      ( ( zero_n2687167440665602831ol_nat
        @ ( P
          & Q ) )
      = ( times_times_nat @ ( zero_n2687167440665602831ol_nat @ P ) @ ( zero_n2687167440665602831ol_nat @ Q ) ) ) ).

% of_bool_conj
thf(fact_5198_of__bool__conj,axiom,
    ! [P: $o,Q: $o] :
      ( ( zero_n2684676970156552555ol_int
        @ ( P
          & Q ) )
      = ( times_times_int @ ( zero_n2684676970156552555ol_int @ P ) @ ( zero_n2684676970156552555ol_int @ Q ) ) ) ).

% of_bool_conj
thf(fact_5199_of__bool__conj,axiom,
    ! [P: $o,Q: $o] :
      ( ( zero_n356916108424825756nteger
        @ ( P
          & Q ) )
      = ( times_3573771949741848930nteger @ ( zero_n356916108424825756nteger @ P ) @ ( zero_n356916108424825756nteger @ Q ) ) ) ).

% of_bool_conj
thf(fact_5200_signed__take__bit__mult,axiom,
    ! [N2: nat,K: int,L2: int] :
      ( ( bit_ri631733984087533419it_int @ N2 @ ( times_times_int @ ( bit_ri631733984087533419it_int @ N2 @ K ) @ ( bit_ri631733984087533419it_int @ N2 @ L2 ) ) )
      = ( bit_ri631733984087533419it_int @ N2 @ ( times_times_int @ K @ L2 ) ) ) ).

% signed_take_bit_mult
thf(fact_5201_signed__take__bit__add,axiom,
    ! [N2: nat,K: int,L2: int] :
      ( ( bit_ri631733984087533419it_int @ N2 @ ( plus_plus_int @ ( bit_ri631733984087533419it_int @ N2 @ K ) @ ( bit_ri631733984087533419it_int @ N2 @ L2 ) ) )
      = ( bit_ri631733984087533419it_int @ N2 @ ( plus_plus_int @ K @ L2 ) ) ) ).

% signed_take_bit_add
thf(fact_5202_signed__take__bit__diff,axiom,
    ! [N2: nat,K: int,L2: int] :
      ( ( bit_ri631733984087533419it_int @ N2 @ ( minus_minus_int @ ( bit_ri631733984087533419it_int @ N2 @ K ) @ ( bit_ri631733984087533419it_int @ N2 @ L2 ) ) )
      = ( bit_ri631733984087533419it_int @ N2 @ ( minus_minus_int @ K @ L2 ) ) ) ).

% signed_take_bit_diff
thf(fact_5203_zero__less__eq__of__bool,axiom,
    ! [P: $o] : ( ord_less_eq_real @ zero_zero_real @ ( zero_n3304061248610475627l_real @ P ) ) ).

% zero_less_eq_of_bool
thf(fact_5204_zero__less__eq__of__bool,axiom,
    ! [P: $o] : ( ord_less_eq_rat @ zero_zero_rat @ ( zero_n2052037380579107095ol_rat @ P ) ) ).

% zero_less_eq_of_bool
thf(fact_5205_zero__less__eq__of__bool,axiom,
    ! [P: $o] : ( ord_less_eq_nat @ zero_zero_nat @ ( zero_n2687167440665602831ol_nat @ P ) ) ).

% zero_less_eq_of_bool
thf(fact_5206_zero__less__eq__of__bool,axiom,
    ! [P: $o] : ( ord_less_eq_int @ zero_zero_int @ ( zero_n2684676970156552555ol_int @ P ) ) ).

% zero_less_eq_of_bool
thf(fact_5207_zero__less__eq__of__bool,axiom,
    ! [P: $o] : ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( zero_n356916108424825756nteger @ P ) ) ).

% zero_less_eq_of_bool
thf(fact_5208_of__bool__less__eq__one,axiom,
    ! [P: $o] : ( ord_less_eq_real @ ( zero_n3304061248610475627l_real @ P ) @ one_one_real ) ).

% of_bool_less_eq_one
thf(fact_5209_of__bool__less__eq__one,axiom,
    ! [P: $o] : ( ord_less_eq_rat @ ( zero_n2052037380579107095ol_rat @ P ) @ one_one_rat ) ).

% of_bool_less_eq_one
thf(fact_5210_of__bool__less__eq__one,axiom,
    ! [P: $o] : ( ord_less_eq_nat @ ( zero_n2687167440665602831ol_nat @ P ) @ one_one_nat ) ).

% of_bool_less_eq_one
thf(fact_5211_of__bool__less__eq__one,axiom,
    ! [P: $o] : ( ord_less_eq_int @ ( zero_n2684676970156552555ol_int @ P ) @ one_one_int ) ).

% of_bool_less_eq_one
thf(fact_5212_of__bool__less__eq__one,axiom,
    ! [P: $o] : ( ord_le3102999989581377725nteger @ ( zero_n356916108424825756nteger @ P ) @ one_one_Code_integer ) ).

% of_bool_less_eq_one
thf(fact_5213_of__bool__def,axiom,
    ( zero_n1201886186963655149omplex
    = ( ^ [P5: $o] : ( if_complex @ P5 @ one_one_complex @ zero_zero_complex ) ) ) ).

% of_bool_def
thf(fact_5214_of__bool__def,axiom,
    ( zero_n3304061248610475627l_real
    = ( ^ [P5: $o] : ( if_real @ P5 @ one_one_real @ zero_zero_real ) ) ) ).

% of_bool_def
thf(fact_5215_of__bool__def,axiom,
    ( zero_n2052037380579107095ol_rat
    = ( ^ [P5: $o] : ( if_rat @ P5 @ one_one_rat @ zero_zero_rat ) ) ) ).

% of_bool_def
thf(fact_5216_of__bool__def,axiom,
    ( zero_n2687167440665602831ol_nat
    = ( ^ [P5: $o] : ( if_nat @ P5 @ one_one_nat @ zero_zero_nat ) ) ) ).

% of_bool_def
thf(fact_5217_of__bool__def,axiom,
    ( zero_n2684676970156552555ol_int
    = ( ^ [P5: $o] : ( if_int @ P5 @ one_one_int @ zero_zero_int ) ) ) ).

% of_bool_def
thf(fact_5218_of__bool__def,axiom,
    ( zero_n356916108424825756nteger
    = ( ^ [P5: $o] : ( if_Code_integer @ P5 @ one_one_Code_integer @ zero_z3403309356797280102nteger ) ) ) ).

% of_bool_def
thf(fact_5219_split__of__bool,axiom,
    ! [P: complex > $o,P4: $o] :
      ( ( P @ ( zero_n1201886186963655149omplex @ P4 ) )
      = ( ( P4
         => ( P @ one_one_complex ) )
        & ( ~ P4
         => ( P @ zero_zero_complex ) ) ) ) ).

% split_of_bool
thf(fact_5220_split__of__bool,axiom,
    ! [P: real > $o,P4: $o] :
      ( ( P @ ( zero_n3304061248610475627l_real @ P4 ) )
      = ( ( P4
         => ( P @ one_one_real ) )
        & ( ~ P4
         => ( P @ zero_zero_real ) ) ) ) ).

% split_of_bool
thf(fact_5221_split__of__bool,axiom,
    ! [P: rat > $o,P4: $o] :
      ( ( P @ ( zero_n2052037380579107095ol_rat @ P4 ) )
      = ( ( P4
         => ( P @ one_one_rat ) )
        & ( ~ P4
         => ( P @ zero_zero_rat ) ) ) ) ).

% split_of_bool
thf(fact_5222_split__of__bool,axiom,
    ! [P: nat > $o,P4: $o] :
      ( ( P @ ( zero_n2687167440665602831ol_nat @ P4 ) )
      = ( ( P4
         => ( P @ one_one_nat ) )
        & ( ~ P4
         => ( P @ zero_zero_nat ) ) ) ) ).

% split_of_bool
thf(fact_5223_split__of__bool,axiom,
    ! [P: int > $o,P4: $o] :
      ( ( P @ ( zero_n2684676970156552555ol_int @ P4 ) )
      = ( ( P4
         => ( P @ one_one_int ) )
        & ( ~ P4
         => ( P @ zero_zero_int ) ) ) ) ).

% split_of_bool
thf(fact_5224_split__of__bool,axiom,
    ! [P: code_integer > $o,P4: $o] :
      ( ( P @ ( zero_n356916108424825756nteger @ P4 ) )
      = ( ( P4
         => ( P @ one_one_Code_integer ) )
        & ( ~ P4
         => ( P @ zero_z3403309356797280102nteger ) ) ) ) ).

% split_of_bool
thf(fact_5225_split__of__bool__asm,axiom,
    ! [P: complex > $o,P4: $o] :
      ( ( P @ ( zero_n1201886186963655149omplex @ P4 ) )
      = ( ~ ( ( P4
              & ~ ( P @ one_one_complex ) )
            | ( ~ P4
              & ~ ( P @ zero_zero_complex ) ) ) ) ) ).

% split_of_bool_asm
thf(fact_5226_split__of__bool__asm,axiom,
    ! [P: real > $o,P4: $o] :
      ( ( P @ ( zero_n3304061248610475627l_real @ P4 ) )
      = ( ~ ( ( P4
              & ~ ( P @ one_one_real ) )
            | ( ~ P4
              & ~ ( P @ zero_zero_real ) ) ) ) ) ).

% split_of_bool_asm
thf(fact_5227_split__of__bool__asm,axiom,
    ! [P: rat > $o,P4: $o] :
      ( ( P @ ( zero_n2052037380579107095ol_rat @ P4 ) )
      = ( ~ ( ( P4
              & ~ ( P @ one_one_rat ) )
            | ( ~ P4
              & ~ ( P @ zero_zero_rat ) ) ) ) ) ).

% split_of_bool_asm
thf(fact_5228_split__of__bool__asm,axiom,
    ! [P: nat > $o,P4: $o] :
      ( ( P @ ( zero_n2687167440665602831ol_nat @ P4 ) )
      = ( ~ ( ( P4
              & ~ ( P @ one_one_nat ) )
            | ( ~ P4
              & ~ ( P @ zero_zero_nat ) ) ) ) ) ).

% split_of_bool_asm
thf(fact_5229_split__of__bool__asm,axiom,
    ! [P: int > $o,P4: $o] :
      ( ( P @ ( zero_n2684676970156552555ol_int @ P4 ) )
      = ( ~ ( ( P4
              & ~ ( P @ one_one_int ) )
            | ( ~ P4
              & ~ ( P @ zero_zero_int ) ) ) ) ) ).

% split_of_bool_asm
thf(fact_5230_split__of__bool__asm,axiom,
    ! [P: code_integer > $o,P4: $o] :
      ( ( P @ ( zero_n356916108424825756nteger @ P4 ) )
      = ( ~ ( ( P4
              & ~ ( P @ one_one_Code_integer ) )
            | ( ~ P4
              & ~ ( P @ zero_z3403309356797280102nteger ) ) ) ) ) ).

% split_of_bool_asm
thf(fact_5231_replicate__length__same,axiom,
    ! [Xs2: list_VEBT_VEBT,X: vEBT_VEBT] :
      ( ! [X5: vEBT_VEBT] :
          ( ( member_VEBT_VEBT @ X5 @ ( set_VEBT_VEBT2 @ Xs2 ) )
         => ( X5 = X ) )
     => ( ( replicate_VEBT_VEBT @ ( size_s6755466524823107622T_VEBT @ Xs2 ) @ X )
        = Xs2 ) ) ).

% replicate_length_same
thf(fact_5232_replicate__length__same,axiom,
    ! [Xs2: list_o,X: $o] :
      ( ! [X5: $o] :
          ( ( member_o @ X5 @ ( set_o2 @ Xs2 ) )
         => ( X5 = X ) )
     => ( ( replicate_o @ ( size_size_list_o @ Xs2 ) @ X )
        = Xs2 ) ) ).

% replicate_length_same
thf(fact_5233_replicate__length__same,axiom,
    ! [Xs2: list_int,X: int] :
      ( ! [X5: int] :
          ( ( member_int @ X5 @ ( set_int2 @ Xs2 ) )
         => ( X5 = X ) )
     => ( ( replicate_int @ ( size_size_list_int @ Xs2 ) @ X )
        = Xs2 ) ) ).

% replicate_length_same
thf(fact_5234_replicate__eqI,axiom,
    ! [Xs2: list_complex,N2: nat,X: complex] :
      ( ( ( size_s3451745648224563538omplex @ Xs2 )
        = N2 )
     => ( ! [Y5: complex] :
            ( ( member_complex @ Y5 @ ( set_complex2 @ Xs2 ) )
           => ( Y5 = X ) )
       => ( Xs2
          = ( replicate_complex @ N2 @ X ) ) ) ) ).

% replicate_eqI
thf(fact_5235_replicate__eqI,axiom,
    ! [Xs2: list_real,N2: nat,X: real] :
      ( ( ( size_size_list_real @ Xs2 )
        = N2 )
     => ( ! [Y5: real] :
            ( ( member_real @ Y5 @ ( set_real2 @ Xs2 ) )
           => ( Y5 = X ) )
       => ( Xs2
          = ( replicate_real @ N2 @ X ) ) ) ) ).

% replicate_eqI
thf(fact_5236_replicate__eqI,axiom,
    ! [Xs2: list_set_nat,N2: nat,X: set_nat] :
      ( ( ( size_s3254054031482475050et_nat @ Xs2 )
        = N2 )
     => ( ! [Y5: set_nat] :
            ( ( member_set_nat @ Y5 @ ( set_set_nat2 @ Xs2 ) )
           => ( Y5 = X ) )
       => ( Xs2
          = ( replicate_set_nat @ N2 @ X ) ) ) ) ).

% replicate_eqI
thf(fact_5237_replicate__eqI,axiom,
    ! [Xs2: list_nat,N2: nat,X: nat] :
      ( ( ( size_size_list_nat @ Xs2 )
        = N2 )
     => ( ! [Y5: nat] :
            ( ( member_nat @ Y5 @ ( set_nat2 @ Xs2 ) )
           => ( Y5 = X ) )
       => ( Xs2
          = ( replicate_nat @ N2 @ X ) ) ) ) ).

% replicate_eqI
thf(fact_5238_replicate__eqI,axiom,
    ! [Xs2: list_VEBT_VEBT,N2: nat,X: vEBT_VEBT] :
      ( ( ( size_s6755466524823107622T_VEBT @ Xs2 )
        = N2 )
     => ( ! [Y5: vEBT_VEBT] :
            ( ( member_VEBT_VEBT @ Y5 @ ( set_VEBT_VEBT2 @ Xs2 ) )
           => ( Y5 = X ) )
       => ( Xs2
          = ( replicate_VEBT_VEBT @ N2 @ X ) ) ) ) ).

% replicate_eqI
thf(fact_5239_replicate__eqI,axiom,
    ! [Xs2: list_o,N2: nat,X: $o] :
      ( ( ( size_size_list_o @ Xs2 )
        = N2 )
     => ( ! [Y5: $o] :
            ( ( member_o @ Y5 @ ( set_o2 @ Xs2 ) )
           => ( Y5 = X ) )
       => ( Xs2
          = ( replicate_o @ N2 @ X ) ) ) ) ).

% replicate_eqI
thf(fact_5240_replicate__eqI,axiom,
    ! [Xs2: list_int,N2: nat,X: int] :
      ( ( ( size_size_list_int @ Xs2 )
        = N2 )
     => ( ! [Y5: int] :
            ( ( member_int @ Y5 @ ( set_int2 @ Xs2 ) )
           => ( Y5 = X ) )
       => ( Xs2
          = ( replicate_int @ N2 @ X ) ) ) ) ).

% replicate_eqI
thf(fact_5241_subset__decode__imp__le,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_eq_set_nat @ ( nat_set_decode @ M ) @ ( nat_set_decode @ N2 ) )
     => ( ord_less_eq_nat @ M @ N2 ) ) ).

% subset_decode_imp_le
thf(fact_5242_of__bool__odd__eq__mod__2,axiom,
    ! [A: nat] :
      ( ( zero_n2687167440665602831ol_nat
        @ ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) )
      = ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% of_bool_odd_eq_mod_2
thf(fact_5243_of__bool__odd__eq__mod__2,axiom,
    ! [A: int] :
      ( ( zero_n2684676970156552555ol_int
        @ ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) )
      = ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).

% of_bool_odd_eq_mod_2
thf(fact_5244_of__bool__odd__eq__mod__2,axiom,
    ! [A: code_integer] :
      ( ( zero_n356916108424825756nteger
        @ ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) )
      = ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ).

% of_bool_odd_eq_mod_2
thf(fact_5245_signed__take__bit__int__less__exp,axiom,
    ! [N2: nat,K: int] : ( ord_less_int @ ( bit_ri631733984087533419it_int @ N2 @ K ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) ) ).

% signed_take_bit_int_less_exp
thf(fact_5246_even__signed__take__bit__iff,axiom,
    ! [M: nat,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_ri6519982836138164636nteger @ M @ A ) )
      = ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) ) ).

% even_signed_take_bit_iff
thf(fact_5247_even__signed__take__bit__iff,axiom,
    ! [M: nat,A: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_ri631733984087533419it_int @ M @ A ) )
      = ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) ).

% even_signed_take_bit_iff
thf(fact_5248_bits__induct,axiom,
    ! [P: nat > $o,A: nat] :
      ( ! [A3: nat] :
          ( ( ( divide_divide_nat @ A3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
            = A3 )
         => ( P @ A3 ) )
     => ( ! [A3: nat,B2: $o] :
            ( ( P @ A3 )
           => ( ( ( divide_divide_nat @ ( plus_plus_nat @ ( zero_n2687167440665602831ol_nat @ B2 ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
                = A3 )
             => ( P @ ( plus_plus_nat @ ( zero_n2687167440665602831ol_nat @ B2 ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A3 ) ) ) ) )
       => ( P @ A ) ) ) ).

% bits_induct
thf(fact_5249_bits__induct,axiom,
    ! [P: int > $o,A: int] :
      ( ! [A3: int] :
          ( ( ( divide_divide_int @ A3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
            = A3 )
         => ( P @ A3 ) )
     => ( ! [A3: int,B2: $o] :
            ( ( P @ A3 )
           => ( ( ( divide_divide_int @ ( plus_plus_int @ ( zero_n2684676970156552555ol_int @ B2 ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A3 ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
                = A3 )
             => ( P @ ( plus_plus_int @ ( zero_n2684676970156552555ol_int @ B2 ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A3 ) ) ) ) )
       => ( P @ A ) ) ) ).

% bits_induct
thf(fact_5250_bits__induct,axiom,
    ! [P: code_integer > $o,A: code_integer] :
      ( ! [A3: code_integer] :
          ( ( ( divide6298287555418463151nteger @ A3 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
            = A3 )
         => ( P @ A3 ) )
     => ( ! [A3: code_integer,B2: $o] :
            ( ( P @ A3 )
           => ( ( ( divide6298287555418463151nteger @ ( plus_p5714425477246183910nteger @ ( zero_n356916108424825756nteger @ B2 ) @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A3 ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
                = A3 )
             => ( P @ ( plus_p5714425477246183910nteger @ ( zero_n356916108424825756nteger @ B2 ) @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A3 ) ) ) ) )
       => ( P @ A ) ) ) ).

% bits_induct
thf(fact_5251_signed__take__bit__int__greater__eq__self__iff,axiom,
    ! [K: int,N2: nat] :
      ( ( ord_less_eq_int @ K @ ( bit_ri631733984087533419it_int @ N2 @ K ) )
      = ( ord_less_int @ K @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) ) ) ).

% signed_take_bit_int_greater_eq_self_iff
thf(fact_5252_signed__take__bit__int__less__self__iff,axiom,
    ! [N2: nat,K: int] :
      ( ( ord_less_int @ ( bit_ri631733984087533419it_int @ N2 @ K ) @ K )
      = ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) @ K ) ) ).

% signed_take_bit_int_less_self_iff
thf(fact_5253_exp__mod__exp,axiom,
    ! [M: nat,N2: nat] :
      ( ( modulo_modulo_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
      = ( times_times_nat @ ( zero_n2687167440665602831ol_nat @ ( ord_less_nat @ M @ N2 ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) ) ).

% exp_mod_exp
thf(fact_5254_exp__mod__exp,axiom,
    ! [M: nat,N2: nat] :
      ( ( modulo_modulo_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) )
      = ( times_times_int @ ( zero_n2684676970156552555ol_int @ ( ord_less_nat @ M @ N2 ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) ) ) ).

% exp_mod_exp
thf(fact_5255_exp__mod__exp,axiom,
    ! [M: nat,N2: nat] :
      ( ( modulo364778990260209775nteger @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N2 ) )
      = ( times_3573771949741848930nteger @ ( zero_n356916108424825756nteger @ ( ord_less_nat @ M @ N2 ) ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) ) ) ).

% exp_mod_exp
thf(fact_5256_signed__take__bit__int__less__eq,axiom,
    ! [N2: nat,K: int] :
      ( ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) @ K )
     => ( ord_less_eq_int @ ( bit_ri631733984087533419it_int @ N2 @ K ) @ ( minus_minus_int @ K @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( suc @ N2 ) ) ) ) ) ).

% signed_take_bit_int_less_eq
thf(fact_5257_option_Osize__gen_I1_J,axiom,
    ! [X: nat > nat] :
      ( ( size_option_nat @ X @ none_nat )
      = ( suc @ zero_zero_nat ) ) ).

% option.size_gen(1)
thf(fact_5258_option_Osize__gen_I1_J,axiom,
    ! [X: product_prod_nat_nat > nat] :
      ( ( size_o8335143837870341156at_nat @ X @ none_P5556105721700978146at_nat )
      = ( suc @ zero_zero_nat ) ) ).

% option.size_gen(1)
thf(fact_5259_option_Osize__gen_I1_J,axiom,
    ! [X: num > nat] :
      ( ( size_option_num @ X @ none_num )
      = ( suc @ zero_zero_nat ) ) ).

% option.size_gen(1)
thf(fact_5260_set__decode__def,axiom,
    ( nat_set_decode
    = ( ^ [X3: nat] :
          ( collect_nat
          @ ^ [N3: nat] :
              ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ X3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) ) ) ) ) ) ).

% set_decode_def
thf(fact_5261_exp__div__exp__eq,axiom,
    ! [M: nat,N2: nat] :
      ( ( divide_divide_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
      = ( times_times_nat
        @ ( zero_n2687167440665602831ol_nat
          @ ( ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M )
             != zero_zero_nat )
            & ( ord_less_eq_nat @ N2 @ M ) ) )
        @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ M @ N2 ) ) ) ) ).

% exp_div_exp_eq
thf(fact_5262_exp__div__exp__eq,axiom,
    ! [M: nat,N2: nat] :
      ( ( divide_divide_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) )
      = ( times_times_int
        @ ( zero_n2684676970156552555ol_int
          @ ( ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M )
             != zero_zero_int )
            & ( ord_less_eq_nat @ N2 @ M ) ) )
        @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( minus_minus_nat @ M @ N2 ) ) ) ) ).

% exp_div_exp_eq
thf(fact_5263_exp__div__exp__eq,axiom,
    ! [M: nat,N2: nat] :
      ( ( divide6298287555418463151nteger @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N2 ) )
      = ( times_3573771949741848930nteger
        @ ( zero_n356916108424825756nteger
          @ ( ( ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M )
             != zero_z3403309356797280102nteger )
            & ( ord_less_eq_nat @ N2 @ M ) ) )
        @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( minus_minus_nat @ M @ N2 ) ) ) ) ).

% exp_div_exp_eq
thf(fact_5264_vebt__buildup_Osimps_I3_J,axiom,
    ! [Va: nat] :
      ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ Va ) ) )
       => ( ( vEBT_vebt_buildup @ ( suc @ ( suc @ Va ) ) )
          = ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ Va ) ) @ ( replicate_VEBT_VEBT @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) )
      & ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ Va ) ) )
       => ( ( vEBT_vebt_buildup @ ( suc @ ( suc @ Va ) ) )
          = ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ Va ) ) @ ( replicate_VEBT_VEBT @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( suc @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ).

% vebt_buildup.simps(3)
thf(fact_5265_Divides_Oadjust__div__eq,axiom,
    ! [Q2: int,R2: int] :
      ( ( adjust_div @ ( product_Pair_int_int @ Q2 @ R2 ) )
      = ( plus_plus_int @ Q2 @ ( zero_n2684676970156552555ol_int @ ( R2 != zero_zero_int ) ) ) ) ).

% Divides.adjust_div_eq
thf(fact_5266_signed__take__bit__rec,axiom,
    ( bit_ri6519982836138164636nteger
    = ( ^ [N3: nat,A4: code_integer] : ( if_Code_integer @ ( N3 = zero_zero_nat ) @ ( uminus1351360451143612070nteger @ ( modulo364778990260209775nteger @ A4 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) @ ( plus_p5714425477246183910nteger @ ( modulo364778990260209775nteger @ A4 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_ri6519982836138164636nteger @ ( minus_minus_nat @ N3 @ one_one_nat ) @ ( divide6298287555418463151nteger @ A4 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ).

% signed_take_bit_rec
thf(fact_5267_signed__take__bit__rec,axiom,
    ( bit_ri631733984087533419it_int
    = ( ^ [N3: nat,A4: int] : ( if_int @ ( N3 = zero_zero_nat ) @ ( uminus_uminus_int @ ( modulo_modulo_int @ A4 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) @ ( plus_plus_int @ ( modulo_modulo_int @ A4 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_ri631733984087533419it_int @ ( minus_minus_nat @ N3 @ one_one_nat ) @ ( divide_divide_int @ A4 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ).

% signed_take_bit_rec
thf(fact_5268_vebt__buildup_Opelims,axiom,
    ! [X: nat,Y: vEBT_VEBT] :
      ( ( ( vEBT_vebt_buildup @ X )
        = Y )
     => ( ( accp_nat @ vEBT_v4011308405150292612up_rel @ X )
       => ( ( ( X = zero_zero_nat )
           => ( ( Y
                = ( vEBT_Leaf @ $false @ $false ) )
             => ~ ( accp_nat @ vEBT_v4011308405150292612up_rel @ zero_zero_nat ) ) )
         => ( ( ( X
                = ( suc @ zero_zero_nat ) )
             => ( ( Y
                  = ( vEBT_Leaf @ $false @ $false ) )
               => ~ ( accp_nat @ vEBT_v4011308405150292612up_rel @ ( suc @ zero_zero_nat ) ) ) )
           => ~ ! [Va2: nat] :
                  ( ( X
                    = ( suc @ ( suc @ Va2 ) ) )
                 => ( ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ Va2 ) ) )
                       => ( Y
                          = ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ Va2 ) ) @ ( replicate_VEBT_VEBT @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) )
                      & ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ Va2 ) ) )
                       => ( Y
                          = ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ Va2 ) ) @ ( replicate_VEBT_VEBT @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( suc @ ( divide_divide_nat @ ( suc @ ( suc @ Va2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) )
                   => ~ ( accp_nat @ vEBT_v4011308405150292612up_rel @ ( suc @ ( suc @ Va2 ) ) ) ) ) ) ) ) ) ).

% vebt_buildup.pelims
thf(fact_5269_add__scale__eq__noteq,axiom,
    ! [R2: complex,A: complex,B: complex,C: complex,D: complex] :
      ( ( R2 != zero_zero_complex )
     => ( ( ( A = B )
          & ( C != D ) )
       => ( ( plus_plus_complex @ A @ ( times_times_complex @ R2 @ C ) )
         != ( plus_plus_complex @ B @ ( times_times_complex @ R2 @ D ) ) ) ) ) ).

% add_scale_eq_noteq
thf(fact_5270_add__scale__eq__noteq,axiom,
    ! [R2: real,A: real,B: real,C: real,D: real] :
      ( ( R2 != zero_zero_real )
     => ( ( ( A = B )
          & ( C != D ) )
       => ( ( plus_plus_real @ A @ ( times_times_real @ R2 @ C ) )
         != ( plus_plus_real @ B @ ( times_times_real @ R2 @ D ) ) ) ) ) ).

% add_scale_eq_noteq
thf(fact_5271_add__scale__eq__noteq,axiom,
    ! [R2: rat,A: rat,B: rat,C: rat,D: rat] :
      ( ( R2 != zero_zero_rat )
     => ( ( ( A = B )
          & ( C != D ) )
       => ( ( plus_plus_rat @ A @ ( times_times_rat @ R2 @ C ) )
         != ( plus_plus_rat @ B @ ( times_times_rat @ R2 @ D ) ) ) ) ) ).

% add_scale_eq_noteq
thf(fact_5272_add__scale__eq__noteq,axiom,
    ! [R2: nat,A: nat,B: nat,C: nat,D: nat] :
      ( ( R2 != zero_zero_nat )
     => ( ( ( A = B )
          & ( C != D ) )
       => ( ( plus_plus_nat @ A @ ( times_times_nat @ R2 @ C ) )
         != ( plus_plus_nat @ B @ ( times_times_nat @ R2 @ D ) ) ) ) ) ).

% add_scale_eq_noteq
thf(fact_5273_add__scale__eq__noteq,axiom,
    ! [R2: int,A: int,B: int,C: int,D: int] :
      ( ( R2 != zero_zero_int )
     => ( ( ( A = B )
          & ( C != D ) )
       => ( ( plus_plus_int @ A @ ( times_times_int @ R2 @ C ) )
         != ( plus_plus_int @ B @ ( times_times_int @ R2 @ D ) ) ) ) ) ).

% add_scale_eq_noteq
thf(fact_5274_artanh__def,axiom,
    ( artanh_real
    = ( ^ [X3: real] : ( divide_divide_real @ ( ln_ln_real @ ( divide_divide_real @ ( plus_plus_real @ one_one_real @ X3 ) @ ( minus_minus_real @ one_one_real @ X3 ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).

% artanh_def
thf(fact_5275_Sum__Icc__int,axiom,
    ! [M: int,N2: int] :
      ( ( ord_less_eq_int @ M @ N2 )
     => ( ( groups4538972089207619220nt_int
          @ ^ [X3: int] : X3
          @ ( set_or1266510415728281911st_int @ M @ N2 ) )
        = ( divide_divide_int @ ( minus_minus_int @ ( times_times_int @ N2 @ ( plus_plus_int @ N2 @ one_one_int ) ) @ ( times_times_int @ M @ ( minus_minus_int @ M @ one_one_int ) ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ).

% Sum_Icc_int
thf(fact_5276_divmod__step__def,axiom,
    ( unique5026877609467782581ep_nat
    = ( ^ [L: num] :
          ( produc2626176000494625587at_nat
          @ ^ [Q4: nat,R5: nat] : ( if_Pro6206227464963214023at_nat @ ( ord_less_eq_nat @ ( numeral_numeral_nat @ L ) @ R5 ) @ ( product_Pair_nat_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Q4 ) @ one_one_nat ) @ ( minus_minus_nat @ R5 @ ( numeral_numeral_nat @ L ) ) ) @ ( product_Pair_nat_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Q4 ) @ R5 ) ) ) ) ) ).

% divmod_step_def
thf(fact_5277_divmod__step__def,axiom,
    ( unique5024387138958732305ep_int
    = ( ^ [L: num] :
          ( produc4245557441103728435nt_int
          @ ^ [Q4: int,R5: int] : ( if_Pro3027730157355071871nt_int @ ( ord_less_eq_int @ ( numeral_numeral_int @ L ) @ R5 ) @ ( product_Pair_int_int @ ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Q4 ) @ one_one_int ) @ ( minus_minus_int @ R5 @ ( numeral_numeral_int @ L ) ) ) @ ( product_Pair_int_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Q4 ) @ R5 ) ) ) ) ) ).

% divmod_step_def
thf(fact_5278_divmod__step__def,axiom,
    ( unique4921790084139445826nteger
    = ( ^ [L: num] :
          ( produc6916734918728496179nteger
          @ ^ [Q4: code_integer,R5: code_integer] : ( if_Pro6119634080678213985nteger @ ( ord_le3102999989581377725nteger @ ( numera6620942414471956472nteger @ L ) @ R5 ) @ ( produc1086072967326762835nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ Q4 ) @ one_one_Code_integer ) @ ( minus_8373710615458151222nteger @ R5 @ ( numera6620942414471956472nteger @ L ) ) ) @ ( produc1086072967326762835nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ Q4 ) @ R5 ) ) ) ) ) ).

% divmod_step_def
thf(fact_5279_Compl__anti__mono,axiom,
    ! [A2: set_int,B3: set_int] :
      ( ( ord_less_eq_set_int @ A2 @ B3 )
     => ( ord_less_eq_set_int @ ( uminus1532241313380277803et_int @ B3 ) @ ( uminus1532241313380277803et_int @ A2 ) ) ) ).

% Compl_anti_mono
thf(fact_5280_Compl__subset__Compl__iff,axiom,
    ! [A2: set_int,B3: set_int] :
      ( ( ord_less_eq_set_int @ ( uminus1532241313380277803et_int @ A2 ) @ ( uminus1532241313380277803et_int @ B3 ) )
      = ( ord_less_eq_set_int @ B3 @ A2 ) ) ).

% Compl_subset_Compl_iff
thf(fact_5281_neg__le__iff__le,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) )
      = ( ord_less_eq_real @ A @ B ) ) ).

% neg_le_iff_le
thf(fact_5282_neg__le__iff__le,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ B ) @ ( uminus1351360451143612070nteger @ A ) )
      = ( ord_le3102999989581377725nteger @ A @ B ) ) ).

% neg_le_iff_le
thf(fact_5283_neg__le__iff__le,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_eq_rat @ ( uminus_uminus_rat @ B ) @ ( uminus_uminus_rat @ A ) )
      = ( ord_less_eq_rat @ A @ B ) ) ).

% neg_le_iff_le
thf(fact_5284_neg__le__iff__le,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_eq_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) )
      = ( ord_less_eq_int @ A @ B ) ) ).

% neg_le_iff_le
thf(fact_5285_compl__le__compl__iff,axiom,
    ! [X: set_int,Y: set_int] :
      ( ( ord_less_eq_set_int @ ( uminus1532241313380277803et_int @ X ) @ ( uminus1532241313380277803et_int @ Y ) )
      = ( ord_less_eq_set_int @ Y @ X ) ) ).

% compl_le_compl_iff
thf(fact_5286_neg__less__iff__less,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) )
      = ( ord_less_real @ A @ B ) ) ).

% neg_less_iff_less
thf(fact_5287_neg__less__iff__less,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) )
      = ( ord_less_int @ A @ B ) ) ).

% neg_less_iff_less
thf(fact_5288_neg__less__iff__less,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_rat @ ( uminus_uminus_rat @ B ) @ ( uminus_uminus_rat @ A ) )
      = ( ord_less_rat @ A @ B ) ) ).

% neg_less_iff_less
thf(fact_5289_neg__less__iff__less,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ B ) @ ( uminus1351360451143612070nteger @ A ) )
      = ( ord_le6747313008572928689nteger @ A @ B ) ) ).

% neg_less_iff_less
thf(fact_5290_neg__numeral__eq__iff,axiom,
    ! [M: num,N2: num] :
      ( ( ( uminus_uminus_real @ ( numeral_numeral_real @ M ) )
        = ( uminus_uminus_real @ ( numeral_numeral_real @ N2 ) ) )
      = ( M = N2 ) ) ).

% neg_numeral_eq_iff
thf(fact_5291_neg__numeral__eq__iff,axiom,
    ! [M: num,N2: num] :
      ( ( ( uminus_uminus_int @ ( numeral_numeral_int @ M ) )
        = ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) )
      = ( M = N2 ) ) ).

% neg_numeral_eq_iff
thf(fact_5292_neg__numeral__eq__iff,axiom,
    ! [M: num,N2: num] :
      ( ( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ M ) )
        = ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N2 ) ) )
      = ( M = N2 ) ) ).

% neg_numeral_eq_iff
thf(fact_5293_neg__numeral__eq__iff,axiom,
    ! [M: num,N2: num] :
      ( ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) )
        = ( uminus_uminus_rat @ ( numeral_numeral_rat @ N2 ) ) )
      = ( M = N2 ) ) ).

% neg_numeral_eq_iff
thf(fact_5294_neg__numeral__eq__iff,axiom,
    ! [M: num,N2: num] :
      ( ( ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) )
        = ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N2 ) ) )
      = ( M = N2 ) ) ).

% neg_numeral_eq_iff
thf(fact_5295_mult__minus__right,axiom,
    ! [A: real,B: real] :
      ( ( times_times_real @ A @ ( uminus_uminus_real @ B ) )
      = ( uminus_uminus_real @ ( times_times_real @ A @ B ) ) ) ).

% mult_minus_right
thf(fact_5296_mult__minus__right,axiom,
    ! [A: int,B: int] :
      ( ( times_times_int @ A @ ( uminus_uminus_int @ B ) )
      = ( uminus_uminus_int @ ( times_times_int @ A @ B ) ) ) ).

% mult_minus_right
thf(fact_5297_mult__minus__right,axiom,
    ! [A: complex,B: complex] :
      ( ( times_times_complex @ A @ ( uminus1482373934393186551omplex @ B ) )
      = ( uminus1482373934393186551omplex @ ( times_times_complex @ A @ B ) ) ) ).

% mult_minus_right
thf(fact_5298_mult__minus__right,axiom,
    ! [A: rat,B: rat] :
      ( ( times_times_rat @ A @ ( uminus_uminus_rat @ B ) )
      = ( uminus_uminus_rat @ ( times_times_rat @ A @ B ) ) ) ).

% mult_minus_right
thf(fact_5299_mult__minus__right,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( times_3573771949741848930nteger @ A @ ( uminus1351360451143612070nteger @ B ) )
      = ( uminus1351360451143612070nteger @ ( times_3573771949741848930nteger @ A @ B ) ) ) ).

% mult_minus_right
thf(fact_5300_minus__mult__minus,axiom,
    ! [A: real,B: real] :
      ( ( times_times_real @ ( uminus_uminus_real @ A ) @ ( uminus_uminus_real @ B ) )
      = ( times_times_real @ A @ B ) ) ).

% minus_mult_minus
thf(fact_5301_minus__mult__minus,axiom,
    ! [A: int,B: int] :
      ( ( times_times_int @ ( uminus_uminus_int @ A ) @ ( uminus_uminus_int @ B ) )
      = ( times_times_int @ A @ B ) ) ).

% minus_mult_minus
thf(fact_5302_minus__mult__minus,axiom,
    ! [A: complex,B: complex] :
      ( ( times_times_complex @ ( uminus1482373934393186551omplex @ A ) @ ( uminus1482373934393186551omplex @ B ) )
      = ( times_times_complex @ A @ B ) ) ).

% minus_mult_minus
thf(fact_5303_minus__mult__minus,axiom,
    ! [A: rat,B: rat] :
      ( ( times_times_rat @ ( uminus_uminus_rat @ A ) @ ( uminus_uminus_rat @ B ) )
      = ( times_times_rat @ A @ B ) ) ).

% minus_mult_minus
thf(fact_5304_minus__mult__minus,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ A ) @ ( uminus1351360451143612070nteger @ B ) )
      = ( times_3573771949741848930nteger @ A @ B ) ) ).

% minus_mult_minus
thf(fact_5305_mult__minus__left,axiom,
    ! [A: real,B: real] :
      ( ( times_times_real @ ( uminus_uminus_real @ A ) @ B )
      = ( uminus_uminus_real @ ( times_times_real @ A @ B ) ) ) ).

% mult_minus_left
thf(fact_5306_mult__minus__left,axiom,
    ! [A: int,B: int] :
      ( ( times_times_int @ ( uminus_uminus_int @ A ) @ B )
      = ( uminus_uminus_int @ ( times_times_int @ A @ B ) ) ) ).

% mult_minus_left
thf(fact_5307_mult__minus__left,axiom,
    ! [A: complex,B: complex] :
      ( ( times_times_complex @ ( uminus1482373934393186551omplex @ A ) @ B )
      = ( uminus1482373934393186551omplex @ ( times_times_complex @ A @ B ) ) ) ).

% mult_minus_left
thf(fact_5308_mult__minus__left,axiom,
    ! [A: rat,B: rat] :
      ( ( times_times_rat @ ( uminus_uminus_rat @ A ) @ B )
      = ( uminus_uminus_rat @ ( times_times_rat @ A @ B ) ) ) ).

% mult_minus_left
thf(fact_5309_mult__minus__left,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ A ) @ B )
      = ( uminus1351360451143612070nteger @ ( times_3573771949741848930nteger @ A @ B ) ) ) ).

% mult_minus_left
thf(fact_5310_minus__add__distrib,axiom,
    ! [A: real,B: real] :
      ( ( uminus_uminus_real @ ( plus_plus_real @ A @ B ) )
      = ( plus_plus_real @ ( uminus_uminus_real @ A ) @ ( uminus_uminus_real @ B ) ) ) ).

% minus_add_distrib
thf(fact_5311_minus__add__distrib,axiom,
    ! [A: int,B: int] :
      ( ( uminus_uminus_int @ ( plus_plus_int @ A @ B ) )
      = ( plus_plus_int @ ( uminus_uminus_int @ A ) @ ( uminus_uminus_int @ B ) ) ) ).

% minus_add_distrib
thf(fact_5312_minus__add__distrib,axiom,
    ! [A: complex,B: complex] :
      ( ( uminus1482373934393186551omplex @ ( plus_plus_complex @ A @ B ) )
      = ( plus_plus_complex @ ( uminus1482373934393186551omplex @ A ) @ ( uminus1482373934393186551omplex @ B ) ) ) ).

% minus_add_distrib
thf(fact_5313_minus__add__distrib,axiom,
    ! [A: rat,B: rat] :
      ( ( uminus_uminus_rat @ ( plus_plus_rat @ A @ B ) )
      = ( plus_plus_rat @ ( uminus_uminus_rat @ A ) @ ( uminus_uminus_rat @ B ) ) ) ).

% minus_add_distrib
thf(fact_5314_minus__add__distrib,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( uminus1351360451143612070nteger @ ( plus_p5714425477246183910nteger @ A @ B ) )
      = ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ A ) @ ( uminus1351360451143612070nteger @ B ) ) ) ).

% minus_add_distrib
thf(fact_5315_minus__add__cancel,axiom,
    ! [A: real,B: real] :
      ( ( plus_plus_real @ ( uminus_uminus_real @ A ) @ ( plus_plus_real @ A @ B ) )
      = B ) ).

% minus_add_cancel
thf(fact_5316_minus__add__cancel,axiom,
    ! [A: int,B: int] :
      ( ( plus_plus_int @ ( uminus_uminus_int @ A ) @ ( plus_plus_int @ A @ B ) )
      = B ) ).

% minus_add_cancel
thf(fact_5317_minus__add__cancel,axiom,
    ! [A: complex,B: complex] :
      ( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ A ) @ ( plus_plus_complex @ A @ B ) )
      = B ) ).

% minus_add_cancel
thf(fact_5318_minus__add__cancel,axiom,
    ! [A: rat,B: rat] :
      ( ( plus_plus_rat @ ( uminus_uminus_rat @ A ) @ ( plus_plus_rat @ A @ B ) )
      = B ) ).

% minus_add_cancel
thf(fact_5319_minus__add__cancel,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ A ) @ ( plus_p5714425477246183910nteger @ A @ B ) )
      = B ) ).

% minus_add_cancel
thf(fact_5320_add__minus__cancel,axiom,
    ! [A: real,B: real] :
      ( ( plus_plus_real @ A @ ( plus_plus_real @ ( uminus_uminus_real @ A ) @ B ) )
      = B ) ).

% add_minus_cancel
thf(fact_5321_add__minus__cancel,axiom,
    ! [A: int,B: int] :
      ( ( plus_plus_int @ A @ ( plus_plus_int @ ( uminus_uminus_int @ A ) @ B ) )
      = B ) ).

% add_minus_cancel
thf(fact_5322_add__minus__cancel,axiom,
    ! [A: complex,B: complex] :
      ( ( plus_plus_complex @ A @ ( plus_plus_complex @ ( uminus1482373934393186551omplex @ A ) @ B ) )
      = B ) ).

% add_minus_cancel
thf(fact_5323_add__minus__cancel,axiom,
    ! [A: rat,B: rat] :
      ( ( plus_plus_rat @ A @ ( plus_plus_rat @ ( uminus_uminus_rat @ A ) @ B ) )
      = B ) ).

% add_minus_cancel
thf(fact_5324_add__minus__cancel,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( plus_p5714425477246183910nteger @ A @ ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ A ) @ B ) )
      = B ) ).

% add_minus_cancel
thf(fact_5325_minus__diff__eq,axiom,
    ! [A: real,B: real] :
      ( ( uminus_uminus_real @ ( minus_minus_real @ A @ B ) )
      = ( minus_minus_real @ B @ A ) ) ).

% minus_diff_eq
thf(fact_5326_minus__diff__eq,axiom,
    ! [A: int,B: int] :
      ( ( uminus_uminus_int @ ( minus_minus_int @ A @ B ) )
      = ( minus_minus_int @ B @ A ) ) ).

% minus_diff_eq
thf(fact_5327_minus__diff__eq,axiom,
    ! [A: complex,B: complex] :
      ( ( uminus1482373934393186551omplex @ ( minus_minus_complex @ A @ B ) )
      = ( minus_minus_complex @ B @ A ) ) ).

% minus_diff_eq
thf(fact_5328_minus__diff__eq,axiom,
    ! [A: rat,B: rat] :
      ( ( uminus_uminus_rat @ ( minus_minus_rat @ A @ B ) )
      = ( minus_minus_rat @ B @ A ) ) ).

% minus_diff_eq
thf(fact_5329_minus__diff__eq,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( uminus1351360451143612070nteger @ ( minus_8373710615458151222nteger @ A @ B ) )
      = ( minus_8373710615458151222nteger @ B @ A ) ) ).

% minus_diff_eq
thf(fact_5330_div__minus__minus,axiom,
    ! [A: int,B: int] :
      ( ( divide_divide_int @ ( uminus_uminus_int @ A ) @ ( uminus_uminus_int @ B ) )
      = ( divide_divide_int @ A @ B ) ) ).

% div_minus_minus
thf(fact_5331_div__minus__minus,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( divide6298287555418463151nteger @ ( uminus1351360451143612070nteger @ A ) @ ( uminus1351360451143612070nteger @ B ) )
      = ( divide6298287555418463151nteger @ A @ B ) ) ).

% div_minus_minus
thf(fact_5332_minus__dvd__iff,axiom,
    ! [X: real,Y: real] :
      ( ( dvd_dvd_real @ ( uminus_uminus_real @ X ) @ Y )
      = ( dvd_dvd_real @ X @ Y ) ) ).

% minus_dvd_iff
thf(fact_5333_minus__dvd__iff,axiom,
    ! [X: int,Y: int] :
      ( ( dvd_dvd_int @ ( uminus_uminus_int @ X ) @ Y )
      = ( dvd_dvd_int @ X @ Y ) ) ).

% minus_dvd_iff
thf(fact_5334_minus__dvd__iff,axiom,
    ! [X: complex,Y: complex] :
      ( ( dvd_dvd_complex @ ( uminus1482373934393186551omplex @ X ) @ Y )
      = ( dvd_dvd_complex @ X @ Y ) ) ).

% minus_dvd_iff
thf(fact_5335_minus__dvd__iff,axiom,
    ! [X: rat,Y: rat] :
      ( ( dvd_dvd_rat @ ( uminus_uminus_rat @ X ) @ Y )
      = ( dvd_dvd_rat @ X @ Y ) ) ).

% minus_dvd_iff
thf(fact_5336_minus__dvd__iff,axiom,
    ! [X: code_integer,Y: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( uminus1351360451143612070nteger @ X ) @ Y )
      = ( dvd_dvd_Code_integer @ X @ Y ) ) ).

% minus_dvd_iff
thf(fact_5337_dvd__minus__iff,axiom,
    ! [X: real,Y: real] :
      ( ( dvd_dvd_real @ X @ ( uminus_uminus_real @ Y ) )
      = ( dvd_dvd_real @ X @ Y ) ) ).

% dvd_minus_iff
thf(fact_5338_dvd__minus__iff,axiom,
    ! [X: int,Y: int] :
      ( ( dvd_dvd_int @ X @ ( uminus_uminus_int @ Y ) )
      = ( dvd_dvd_int @ X @ Y ) ) ).

% dvd_minus_iff
thf(fact_5339_dvd__minus__iff,axiom,
    ! [X: complex,Y: complex] :
      ( ( dvd_dvd_complex @ X @ ( uminus1482373934393186551omplex @ Y ) )
      = ( dvd_dvd_complex @ X @ Y ) ) ).

% dvd_minus_iff
thf(fact_5340_dvd__minus__iff,axiom,
    ! [X: rat,Y: rat] :
      ( ( dvd_dvd_rat @ X @ ( uminus_uminus_rat @ Y ) )
      = ( dvd_dvd_rat @ X @ Y ) ) ).

% dvd_minus_iff
thf(fact_5341_dvd__minus__iff,axiom,
    ! [X: code_integer,Y: code_integer] :
      ( ( dvd_dvd_Code_integer @ X @ ( uminus1351360451143612070nteger @ Y ) )
      = ( dvd_dvd_Code_integer @ X @ Y ) ) ).

% dvd_minus_iff
thf(fact_5342_mod__minus__minus,axiom,
    ! [A: int,B: int] :
      ( ( modulo_modulo_int @ ( uminus_uminus_int @ A ) @ ( uminus_uminus_int @ B ) )
      = ( uminus_uminus_int @ ( modulo_modulo_int @ A @ B ) ) ) ).

% mod_minus_minus
thf(fact_5343_mod__minus__minus,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( modulo364778990260209775nteger @ ( uminus1351360451143612070nteger @ A ) @ ( uminus1351360451143612070nteger @ B ) )
      = ( uminus1351360451143612070nteger @ ( modulo364778990260209775nteger @ A @ B ) ) ) ).

% mod_minus_minus
thf(fact_5344_real__add__minus__iff,axiom,
    ! [X: real,A: real] :
      ( ( ( plus_plus_real @ X @ ( uminus_uminus_real @ A ) )
        = zero_zero_real )
      = ( X = A ) ) ).

% real_add_minus_iff
thf(fact_5345_sum_Oneutral__const,axiom,
    ! [A2: set_int] :
      ( ( groups4538972089207619220nt_int
        @ ^ [Uu3: int] : zero_zero_int
        @ A2 )
      = zero_zero_int ) ).

% sum.neutral_const
thf(fact_5346_sum_Oneutral__const,axiom,
    ! [A2: set_complex] :
      ( ( groups7754918857620584856omplex
        @ ^ [Uu3: complex] : zero_zero_complex
        @ A2 )
      = zero_zero_complex ) ).

% sum.neutral_const
thf(fact_5347_sum_Oneutral__const,axiom,
    ! [A2: set_nat] :
      ( ( groups3542108847815614940at_nat
        @ ^ [Uu3: nat] : zero_zero_nat
        @ A2 )
      = zero_zero_nat ) ).

% sum.neutral_const
thf(fact_5348_sum_Oneutral__const,axiom,
    ! [A2: set_nat] :
      ( ( groups6591440286371151544t_real
        @ ^ [Uu3: nat] : zero_zero_real
        @ A2 )
      = zero_zero_real ) ).

% sum.neutral_const
thf(fact_5349_case__prod__conv,axiom,
    ! [F: nat > nat > product_prod_nat_nat > product_prod_nat_nat,A: nat,B: nat] :
      ( ( produc27273713700761075at_nat @ F @ ( product_Pair_nat_nat @ A @ B ) )
      = ( F @ A @ B ) ) ).

% case_prod_conv
thf(fact_5350_case__prod__conv,axiom,
    ! [F: nat > nat > product_prod_nat_nat > $o,A: nat,B: nat] :
      ( ( produc8739625826339149834_nat_o @ F @ ( product_Pair_nat_nat @ A @ B ) )
      = ( F @ A @ B ) ) ).

% case_prod_conv
thf(fact_5351_case__prod__conv,axiom,
    ! [F: int > int > product_prod_int_int,A: int,B: int] :
      ( ( produc4245557441103728435nt_int @ F @ ( product_Pair_int_int @ A @ B ) )
      = ( F @ A @ B ) ) ).

% case_prod_conv
thf(fact_5352_case__prod__conv,axiom,
    ! [F: int > int > $o,A: int,B: int] :
      ( ( produc4947309494688390418_int_o @ F @ ( product_Pair_int_int @ A @ B ) )
      = ( F @ A @ B ) ) ).

% case_prod_conv
thf(fact_5353_case__prod__conv,axiom,
    ! [F: int > int > int,A: int,B: int] :
      ( ( produc8211389475949308722nt_int @ F @ ( product_Pair_int_int @ A @ B ) )
      = ( F @ A @ B ) ) ).

% case_prod_conv
thf(fact_5354_neg__less__eq__nonneg,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ A ) @ A )
      = ( ord_less_eq_real @ zero_zero_real @ A ) ) ).

% neg_less_eq_nonneg
thf(fact_5355_neg__less__eq__nonneg,axiom,
    ! [A: code_integer] :
      ( ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ A ) @ A )
      = ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A ) ) ).

% neg_less_eq_nonneg
thf(fact_5356_neg__less__eq__nonneg,axiom,
    ! [A: rat] :
      ( ( ord_less_eq_rat @ ( uminus_uminus_rat @ A ) @ A )
      = ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ).

% neg_less_eq_nonneg
thf(fact_5357_neg__less__eq__nonneg,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ A )
      = ( ord_less_eq_int @ zero_zero_int @ A ) ) ).

% neg_less_eq_nonneg
thf(fact_5358_less__eq__neg__nonpos,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ A @ ( uminus_uminus_real @ A ) )
      = ( ord_less_eq_real @ A @ zero_zero_real ) ) ).

% less_eq_neg_nonpos
thf(fact_5359_less__eq__neg__nonpos,axiom,
    ! [A: code_integer] :
      ( ( ord_le3102999989581377725nteger @ A @ ( uminus1351360451143612070nteger @ A ) )
      = ( ord_le3102999989581377725nteger @ A @ zero_z3403309356797280102nteger ) ) ).

% less_eq_neg_nonpos
thf(fact_5360_less__eq__neg__nonpos,axiom,
    ! [A: rat] :
      ( ( ord_less_eq_rat @ A @ ( uminus_uminus_rat @ A ) )
      = ( ord_less_eq_rat @ A @ zero_zero_rat ) ) ).

% less_eq_neg_nonpos
thf(fact_5361_less__eq__neg__nonpos,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ A @ ( uminus_uminus_int @ A ) )
      = ( ord_less_eq_int @ A @ zero_zero_int ) ) ).

% less_eq_neg_nonpos
thf(fact_5362_neg__le__0__iff__le,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ A ) @ zero_zero_real )
      = ( ord_less_eq_real @ zero_zero_real @ A ) ) ).

% neg_le_0_iff_le
thf(fact_5363_neg__le__0__iff__le,axiom,
    ! [A: code_integer] :
      ( ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ A ) @ zero_z3403309356797280102nteger )
      = ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A ) ) ).

% neg_le_0_iff_le
thf(fact_5364_neg__le__0__iff__le,axiom,
    ! [A: rat] :
      ( ( ord_less_eq_rat @ ( uminus_uminus_rat @ A ) @ zero_zero_rat )
      = ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ).

% neg_le_0_iff_le
thf(fact_5365_neg__le__0__iff__le,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ zero_zero_int )
      = ( ord_less_eq_int @ zero_zero_int @ A ) ) ).

% neg_le_0_iff_le
thf(fact_5366_neg__0__le__iff__le,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( uminus_uminus_real @ A ) )
      = ( ord_less_eq_real @ A @ zero_zero_real ) ) ).

% neg_0_le_iff_le
thf(fact_5367_neg__0__le__iff__le,axiom,
    ! [A: code_integer] :
      ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( uminus1351360451143612070nteger @ A ) )
      = ( ord_le3102999989581377725nteger @ A @ zero_z3403309356797280102nteger ) ) ).

% neg_0_le_iff_le
thf(fact_5368_neg__0__le__iff__le,axiom,
    ! [A: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ ( uminus_uminus_rat @ A ) )
      = ( ord_less_eq_rat @ A @ zero_zero_rat ) ) ).

% neg_0_le_iff_le
thf(fact_5369_neg__0__le__iff__le,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( uminus_uminus_int @ A ) )
      = ( ord_less_eq_int @ A @ zero_zero_int ) ) ).

% neg_0_le_iff_le
thf(fact_5370_neg__less__0__iff__less,axiom,
    ! [A: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ A ) @ zero_zero_real )
      = ( ord_less_real @ zero_zero_real @ A ) ) ).

% neg_less_0_iff_less
thf(fact_5371_neg__less__0__iff__less,axiom,
    ! [A: int] :
      ( ( ord_less_int @ ( uminus_uminus_int @ A ) @ zero_zero_int )
      = ( ord_less_int @ zero_zero_int @ A ) ) ).

% neg_less_0_iff_less
thf(fact_5372_neg__less__0__iff__less,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ ( uminus_uminus_rat @ A ) @ zero_zero_rat )
      = ( ord_less_rat @ zero_zero_rat @ A ) ) ).

% neg_less_0_iff_less
thf(fact_5373_neg__less__0__iff__less,axiom,
    ! [A: code_integer] :
      ( ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ A ) @ zero_z3403309356797280102nteger )
      = ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ A ) ) ).

% neg_less_0_iff_less
thf(fact_5374_neg__0__less__iff__less,axiom,
    ! [A: real] :
      ( ( ord_less_real @ zero_zero_real @ ( uminus_uminus_real @ A ) )
      = ( ord_less_real @ A @ zero_zero_real ) ) ).

% neg_0_less_iff_less
thf(fact_5375_neg__0__less__iff__less,axiom,
    ! [A: int] :
      ( ( ord_less_int @ zero_zero_int @ ( uminus_uminus_int @ A ) )
      = ( ord_less_int @ A @ zero_zero_int ) ) ).

% neg_0_less_iff_less
thf(fact_5376_neg__0__less__iff__less,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( uminus_uminus_rat @ A ) )
      = ( ord_less_rat @ A @ zero_zero_rat ) ) ).

% neg_0_less_iff_less
thf(fact_5377_neg__0__less__iff__less,axiom,
    ! [A: code_integer] :
      ( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ ( uminus1351360451143612070nteger @ A ) )
      = ( ord_le6747313008572928689nteger @ A @ zero_z3403309356797280102nteger ) ) ).

% neg_0_less_iff_less
thf(fact_5378_neg__less__pos,axiom,
    ! [A: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ A ) @ A )
      = ( ord_less_real @ zero_zero_real @ A ) ) ).

% neg_less_pos
thf(fact_5379_neg__less__pos,axiom,
    ! [A: int] :
      ( ( ord_less_int @ ( uminus_uminus_int @ A ) @ A )
      = ( ord_less_int @ zero_zero_int @ A ) ) ).

% neg_less_pos
thf(fact_5380_neg__less__pos,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ ( uminus_uminus_rat @ A ) @ A )
      = ( ord_less_rat @ zero_zero_rat @ A ) ) ).

% neg_less_pos
thf(fact_5381_neg__less__pos,axiom,
    ! [A: code_integer] :
      ( ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ A ) @ A )
      = ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ A ) ) ).

% neg_less_pos
thf(fact_5382_less__neg__neg,axiom,
    ! [A: real] :
      ( ( ord_less_real @ A @ ( uminus_uminus_real @ A ) )
      = ( ord_less_real @ A @ zero_zero_real ) ) ).

% less_neg_neg
thf(fact_5383_less__neg__neg,axiom,
    ! [A: int] :
      ( ( ord_less_int @ A @ ( uminus_uminus_int @ A ) )
      = ( ord_less_int @ A @ zero_zero_int ) ) ).

% less_neg_neg
thf(fact_5384_less__neg__neg,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ A @ ( uminus_uminus_rat @ A ) )
      = ( ord_less_rat @ A @ zero_zero_rat ) ) ).

% less_neg_neg
thf(fact_5385_less__neg__neg,axiom,
    ! [A: code_integer] :
      ( ( ord_le6747313008572928689nteger @ A @ ( uminus1351360451143612070nteger @ A ) )
      = ( ord_le6747313008572928689nteger @ A @ zero_z3403309356797280102nteger ) ) ).

% less_neg_neg
thf(fact_5386_ab__left__minus,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ ( uminus_uminus_real @ A ) @ A )
      = zero_zero_real ) ).

% ab_left_minus
thf(fact_5387_ab__left__minus,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ ( uminus_uminus_int @ A ) @ A )
      = zero_zero_int ) ).

% ab_left_minus
thf(fact_5388_ab__left__minus,axiom,
    ! [A: complex] :
      ( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ A ) @ A )
      = zero_zero_complex ) ).

% ab_left_minus
thf(fact_5389_ab__left__minus,axiom,
    ! [A: rat] :
      ( ( plus_plus_rat @ ( uminus_uminus_rat @ A ) @ A )
      = zero_zero_rat ) ).

% ab_left_minus
thf(fact_5390_ab__left__minus,axiom,
    ! [A: code_integer] :
      ( ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ A ) @ A )
      = zero_z3403309356797280102nteger ) ).

% ab_left_minus
thf(fact_5391_add_Oright__inverse,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ A @ ( uminus_uminus_real @ A ) )
      = zero_zero_real ) ).

% add.right_inverse
thf(fact_5392_add_Oright__inverse,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ A @ ( uminus_uminus_int @ A ) )
      = zero_zero_int ) ).

% add.right_inverse
thf(fact_5393_add_Oright__inverse,axiom,
    ! [A: complex] :
      ( ( plus_plus_complex @ A @ ( uminus1482373934393186551omplex @ A ) )
      = zero_zero_complex ) ).

% add.right_inverse
thf(fact_5394_add_Oright__inverse,axiom,
    ! [A: rat] :
      ( ( plus_plus_rat @ A @ ( uminus_uminus_rat @ A ) )
      = zero_zero_rat ) ).

% add.right_inverse
thf(fact_5395_add_Oright__inverse,axiom,
    ! [A: code_integer] :
      ( ( plus_p5714425477246183910nteger @ A @ ( uminus1351360451143612070nteger @ A ) )
      = zero_z3403309356797280102nteger ) ).

% add.right_inverse
thf(fact_5396_diff__0,axiom,
    ! [A: real] :
      ( ( minus_minus_real @ zero_zero_real @ A )
      = ( uminus_uminus_real @ A ) ) ).

% diff_0
thf(fact_5397_diff__0,axiom,
    ! [A: int] :
      ( ( minus_minus_int @ zero_zero_int @ A )
      = ( uminus_uminus_int @ A ) ) ).

% diff_0
thf(fact_5398_diff__0,axiom,
    ! [A: complex] :
      ( ( minus_minus_complex @ zero_zero_complex @ A )
      = ( uminus1482373934393186551omplex @ A ) ) ).

% diff_0
thf(fact_5399_diff__0,axiom,
    ! [A: rat] :
      ( ( minus_minus_rat @ zero_zero_rat @ A )
      = ( uminus_uminus_rat @ A ) ) ).

% diff_0
thf(fact_5400_diff__0,axiom,
    ! [A: code_integer] :
      ( ( minus_8373710615458151222nteger @ zero_z3403309356797280102nteger @ A )
      = ( uminus1351360451143612070nteger @ A ) ) ).

% diff_0
thf(fact_5401_verit__minus__simplify_I3_J,axiom,
    ! [B: real] :
      ( ( minus_minus_real @ zero_zero_real @ B )
      = ( uminus_uminus_real @ B ) ) ).

% verit_minus_simplify(3)
thf(fact_5402_verit__minus__simplify_I3_J,axiom,
    ! [B: int] :
      ( ( minus_minus_int @ zero_zero_int @ B )
      = ( uminus_uminus_int @ B ) ) ).

% verit_minus_simplify(3)
thf(fact_5403_verit__minus__simplify_I3_J,axiom,
    ! [B: complex] :
      ( ( minus_minus_complex @ zero_zero_complex @ B )
      = ( uminus1482373934393186551omplex @ B ) ) ).

% verit_minus_simplify(3)
thf(fact_5404_verit__minus__simplify_I3_J,axiom,
    ! [B: rat] :
      ( ( minus_minus_rat @ zero_zero_rat @ B )
      = ( uminus_uminus_rat @ B ) ) ).

% verit_minus_simplify(3)
thf(fact_5405_verit__minus__simplify_I3_J,axiom,
    ! [B: code_integer] :
      ( ( minus_8373710615458151222nteger @ zero_z3403309356797280102nteger @ B )
      = ( uminus1351360451143612070nteger @ B ) ) ).

% verit_minus_simplify(3)
thf(fact_5406_add__neg__numeral__simps_I3_J,axiom,
    ! [M: num,N2: num] :
      ( ( plus_plus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N2 ) ) )
      = ( uminus_uminus_real @ ( plus_plus_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N2 ) ) ) ) ).

% add_neg_numeral_simps(3)
thf(fact_5407_add__neg__numeral__simps_I3_J,axiom,
    ! [M: num,N2: num] :
      ( ( plus_plus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) )
      = ( uminus_uminus_int @ ( plus_plus_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N2 ) ) ) ) ).

% add_neg_numeral_simps(3)
thf(fact_5408_add__neg__numeral__simps_I3_J,axiom,
    ! [M: num,N2: num] :
      ( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ M ) ) @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N2 ) ) )
      = ( uminus1482373934393186551omplex @ ( plus_plus_complex @ ( numera6690914467698888265omplex @ M ) @ ( numera6690914467698888265omplex @ N2 ) ) ) ) ).

% add_neg_numeral_simps(3)
thf(fact_5409_add__neg__numeral__simps_I3_J,axiom,
    ! [M: num,N2: num] :
      ( ( plus_plus_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N2 ) ) )
      = ( uminus_uminus_rat @ ( plus_plus_rat @ ( numeral_numeral_rat @ M ) @ ( numeral_numeral_rat @ N2 ) ) ) ) ).

% add_neg_numeral_simps(3)
thf(fact_5410_add__neg__numeral__simps_I3_J,axiom,
    ! [M: num,N2: num] :
      ( ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N2 ) ) )
      = ( uminus1351360451143612070nteger @ ( plus_p5714425477246183910nteger @ ( numera6620942414471956472nteger @ M ) @ ( numera6620942414471956472nteger @ N2 ) ) ) ) ).

% add_neg_numeral_simps(3)
thf(fact_5411_mult__minus1,axiom,
    ! [Z: real] :
      ( ( times_times_real @ ( uminus_uminus_real @ one_one_real ) @ Z )
      = ( uminus_uminus_real @ Z ) ) ).

% mult_minus1
thf(fact_5412_mult__minus1,axiom,
    ! [Z: int] :
      ( ( times_times_int @ ( uminus_uminus_int @ one_one_int ) @ Z )
      = ( uminus_uminus_int @ Z ) ) ).

% mult_minus1
thf(fact_5413_mult__minus1,axiom,
    ! [Z: complex] :
      ( ( times_times_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ Z )
      = ( uminus1482373934393186551omplex @ Z ) ) ).

% mult_minus1
thf(fact_5414_mult__minus1,axiom,
    ! [Z: rat] :
      ( ( times_times_rat @ ( uminus_uminus_rat @ one_one_rat ) @ Z )
      = ( uminus_uminus_rat @ Z ) ) ).

% mult_minus1
thf(fact_5415_mult__minus1,axiom,
    ! [Z: code_integer] :
      ( ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ Z )
      = ( uminus1351360451143612070nteger @ Z ) ) ).

% mult_minus1
thf(fact_5416_mult__minus1__right,axiom,
    ! [Z: real] :
      ( ( times_times_real @ Z @ ( uminus_uminus_real @ one_one_real ) )
      = ( uminus_uminus_real @ Z ) ) ).

% mult_minus1_right
thf(fact_5417_mult__minus1__right,axiom,
    ! [Z: int] :
      ( ( times_times_int @ Z @ ( uminus_uminus_int @ one_one_int ) )
      = ( uminus_uminus_int @ Z ) ) ).

% mult_minus1_right
thf(fact_5418_mult__minus1__right,axiom,
    ! [Z: complex] :
      ( ( times_times_complex @ Z @ ( uminus1482373934393186551omplex @ one_one_complex ) )
      = ( uminus1482373934393186551omplex @ Z ) ) ).

% mult_minus1_right
thf(fact_5419_mult__minus1__right,axiom,
    ! [Z: rat] :
      ( ( times_times_rat @ Z @ ( uminus_uminus_rat @ one_one_rat ) )
      = ( uminus_uminus_rat @ Z ) ) ).

% mult_minus1_right
thf(fact_5420_mult__minus1__right,axiom,
    ! [Z: code_integer] :
      ( ( times_3573771949741848930nteger @ Z @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
      = ( uminus1351360451143612070nteger @ Z ) ) ).

% mult_minus1_right
thf(fact_5421_diff__minus__eq__add,axiom,
    ! [A: real,B: real] :
      ( ( minus_minus_real @ A @ ( uminus_uminus_real @ B ) )
      = ( plus_plus_real @ A @ B ) ) ).

% diff_minus_eq_add
thf(fact_5422_diff__minus__eq__add,axiom,
    ! [A: int,B: int] :
      ( ( minus_minus_int @ A @ ( uminus_uminus_int @ B ) )
      = ( plus_plus_int @ A @ B ) ) ).

% diff_minus_eq_add
thf(fact_5423_diff__minus__eq__add,axiom,
    ! [A: complex,B: complex] :
      ( ( minus_minus_complex @ A @ ( uminus1482373934393186551omplex @ B ) )
      = ( plus_plus_complex @ A @ B ) ) ).

% diff_minus_eq_add
thf(fact_5424_diff__minus__eq__add,axiom,
    ! [A: rat,B: rat] :
      ( ( minus_minus_rat @ A @ ( uminus_uminus_rat @ B ) )
      = ( plus_plus_rat @ A @ B ) ) ).

% diff_minus_eq_add
thf(fact_5425_diff__minus__eq__add,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( minus_8373710615458151222nteger @ A @ ( uminus1351360451143612070nteger @ B ) )
      = ( plus_p5714425477246183910nteger @ A @ B ) ) ).

% diff_minus_eq_add
thf(fact_5426_uminus__add__conv__diff,axiom,
    ! [A: real,B: real] :
      ( ( plus_plus_real @ ( uminus_uminus_real @ A ) @ B )
      = ( minus_minus_real @ B @ A ) ) ).

% uminus_add_conv_diff
thf(fact_5427_uminus__add__conv__diff,axiom,
    ! [A: int,B: int] :
      ( ( plus_plus_int @ ( uminus_uminus_int @ A ) @ B )
      = ( minus_minus_int @ B @ A ) ) ).

% uminus_add_conv_diff
thf(fact_5428_uminus__add__conv__diff,axiom,
    ! [A: complex,B: complex] :
      ( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ A ) @ B )
      = ( minus_minus_complex @ B @ A ) ) ).

% uminus_add_conv_diff
thf(fact_5429_uminus__add__conv__diff,axiom,
    ! [A: rat,B: rat] :
      ( ( plus_plus_rat @ ( uminus_uminus_rat @ A ) @ B )
      = ( minus_minus_rat @ B @ A ) ) ).

% uminus_add_conv_diff
thf(fact_5430_uminus__add__conv__diff,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ A ) @ B )
      = ( minus_8373710615458151222nteger @ B @ A ) ) ).

% uminus_add_conv_diff
thf(fact_5431_div__minus1__right,axiom,
    ! [A: int] :
      ( ( divide_divide_int @ A @ ( uminus_uminus_int @ one_one_int ) )
      = ( uminus_uminus_int @ A ) ) ).

% div_minus1_right
thf(fact_5432_div__minus1__right,axiom,
    ! [A: code_integer] :
      ( ( divide6298287555418463151nteger @ A @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
      = ( uminus1351360451143612070nteger @ A ) ) ).

% div_minus1_right
thf(fact_5433_divide__minus1,axiom,
    ! [X: real] :
      ( ( divide_divide_real @ X @ ( uminus_uminus_real @ one_one_real ) )
      = ( uminus_uminus_real @ X ) ) ).

% divide_minus1
thf(fact_5434_divide__minus1,axiom,
    ! [X: complex] :
      ( ( divide1717551699836669952omplex @ X @ ( uminus1482373934393186551omplex @ one_one_complex ) )
      = ( uminus1482373934393186551omplex @ X ) ) ).

% divide_minus1
thf(fact_5435_divide__minus1,axiom,
    ! [X: rat] :
      ( ( divide_divide_rat @ X @ ( uminus_uminus_rat @ one_one_rat ) )
      = ( uminus_uminus_rat @ X ) ) ).

% divide_minus1
thf(fact_5436_minus__mod__self1,axiom,
    ! [B: int,A: int] :
      ( ( modulo_modulo_int @ ( minus_minus_int @ B @ A ) @ B )
      = ( modulo_modulo_int @ ( uminus_uminus_int @ A ) @ B ) ) ).

% minus_mod_self1
thf(fact_5437_minus__mod__self1,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( modulo364778990260209775nteger @ ( minus_8373710615458151222nteger @ B @ A ) @ B )
      = ( modulo364778990260209775nteger @ ( uminus1351360451143612070nteger @ A ) @ B ) ) ).

% minus_mod_self1
thf(fact_5438_ln__le__cancel__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ zero_zero_real @ Y )
       => ( ( ord_less_eq_real @ ( ln_ln_real @ X ) @ ( ln_ln_real @ Y ) )
          = ( ord_less_eq_real @ X @ Y ) ) ) ) ).

% ln_le_cancel_iff
thf(fact_5439_ln__one,axiom,
    ( ( ln_ln_real @ one_one_real )
    = zero_zero_real ) ).

% ln_one
thf(fact_5440_signed__take__bit__of__minus__1,axiom,
    ! [N2: nat] :
      ( ( bit_ri6519982836138164636nteger @ N2 @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
      = ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% signed_take_bit_of_minus_1
thf(fact_5441_signed__take__bit__of__minus__1,axiom,
    ! [N2: nat] :
      ( ( bit_ri631733984087533419it_int @ N2 @ ( uminus_uminus_int @ one_one_int ) )
      = ( uminus_uminus_int @ one_one_int ) ) ).

% signed_take_bit_of_minus_1
thf(fact_5442_sum_Odelta_H,axiom,
    ! [S3: set_real,A: real,B: real > complex] :
      ( ( finite_finite_real @ S3 )
     => ( ( ( member_real @ A @ S3 )
         => ( ( groups5754745047067104278omplex
              @ ^ [K3: real] : ( if_complex @ ( A = K3 ) @ ( B @ K3 ) @ zero_zero_complex )
              @ S3 )
            = ( B @ A ) ) )
        & ( ~ ( member_real @ A @ S3 )
         => ( ( groups5754745047067104278omplex
              @ ^ [K3: real] : ( if_complex @ ( A = K3 ) @ ( B @ K3 ) @ zero_zero_complex )
              @ S3 )
            = zero_zero_complex ) ) ) ) ).

% sum.delta'
thf(fact_5443_sum_Odelta_H,axiom,
    ! [S3: set_nat,A: nat,B: nat > complex] :
      ( ( finite_finite_nat @ S3 )
     => ( ( ( member_nat @ A @ S3 )
         => ( ( groups2073611262835488442omplex
              @ ^ [K3: nat] : ( if_complex @ ( A = K3 ) @ ( B @ K3 ) @ zero_zero_complex )
              @ S3 )
            = ( B @ A ) ) )
        & ( ~ ( member_nat @ A @ S3 )
         => ( ( groups2073611262835488442omplex
              @ ^ [K3: nat] : ( if_complex @ ( A = K3 ) @ ( B @ K3 ) @ zero_zero_complex )
              @ S3 )
            = zero_zero_complex ) ) ) ) ).

% sum.delta'
thf(fact_5444_sum_Odelta_H,axiom,
    ! [S3: set_int,A: int,B: int > complex] :
      ( ( finite_finite_int @ S3 )
     => ( ( ( member_int @ A @ S3 )
         => ( ( groups3049146728041665814omplex
              @ ^ [K3: int] : ( if_complex @ ( A = K3 ) @ ( B @ K3 ) @ zero_zero_complex )
              @ S3 )
            = ( B @ A ) ) )
        & ( ~ ( member_int @ A @ S3 )
         => ( ( groups3049146728041665814omplex
              @ ^ [K3: int] : ( if_complex @ ( A = K3 ) @ ( B @ K3 ) @ zero_zero_complex )
              @ S3 )
            = zero_zero_complex ) ) ) ) ).

% sum.delta'
thf(fact_5445_sum_Odelta_H,axiom,
    ! [S3: set_real,A: real,B: real > real] :
      ( ( finite_finite_real @ S3 )
     => ( ( ( member_real @ A @ S3 )
         => ( ( groups8097168146408367636l_real
              @ ^ [K3: real] : ( if_real @ ( A = K3 ) @ ( B @ K3 ) @ zero_zero_real )
              @ S3 )
            = ( B @ A ) ) )
        & ( ~ ( member_real @ A @ S3 )
         => ( ( groups8097168146408367636l_real
              @ ^ [K3: real] : ( if_real @ ( A = K3 ) @ ( B @ K3 ) @ zero_zero_real )
              @ S3 )
            = zero_zero_real ) ) ) ) ).

% sum.delta'
thf(fact_5446_sum_Odelta_H,axiom,
    ! [S3: set_int,A: int,B: int > real] :
      ( ( finite_finite_int @ S3 )
     => ( ( ( member_int @ A @ S3 )
         => ( ( groups8778361861064173332t_real
              @ ^ [K3: int] : ( if_real @ ( A = K3 ) @ ( B @ K3 ) @ zero_zero_real )
              @ S3 )
            = ( B @ A ) ) )
        & ( ~ ( member_int @ A @ S3 )
         => ( ( groups8778361861064173332t_real
              @ ^ [K3: int] : ( if_real @ ( A = K3 ) @ ( B @ K3 ) @ zero_zero_real )
              @ S3 )
            = zero_zero_real ) ) ) ) ).

% sum.delta'
thf(fact_5447_sum_Odelta_H,axiom,
    ! [S3: set_complex,A: complex,B: complex > real] :
      ( ( finite3207457112153483333omplex @ S3 )
     => ( ( ( member_complex @ A @ S3 )
         => ( ( groups5808333547571424918x_real
              @ ^ [K3: complex] : ( if_real @ ( A = K3 ) @ ( B @ K3 ) @ zero_zero_real )
              @ S3 )
            = ( B @ A ) ) )
        & ( ~ ( member_complex @ A @ S3 )
         => ( ( groups5808333547571424918x_real
              @ ^ [K3: complex] : ( if_real @ ( A = K3 ) @ ( B @ K3 ) @ zero_zero_real )
              @ S3 )
            = zero_zero_real ) ) ) ) ).

% sum.delta'
thf(fact_5448_sum_Odelta_H,axiom,
    ! [S3: set_real,A: real,B: real > rat] :
      ( ( finite_finite_real @ S3 )
     => ( ( ( member_real @ A @ S3 )
         => ( ( groups1300246762558778688al_rat
              @ ^ [K3: real] : ( if_rat @ ( A = K3 ) @ ( B @ K3 ) @ zero_zero_rat )
              @ S3 )
            = ( B @ A ) ) )
        & ( ~ ( member_real @ A @ S3 )
         => ( ( groups1300246762558778688al_rat
              @ ^ [K3: real] : ( if_rat @ ( A = K3 ) @ ( B @ K3 ) @ zero_zero_rat )
              @ S3 )
            = zero_zero_rat ) ) ) ) ).

% sum.delta'
thf(fact_5449_sum_Odelta_H,axiom,
    ! [S3: set_nat,A: nat,B: nat > rat] :
      ( ( finite_finite_nat @ S3 )
     => ( ( ( member_nat @ A @ S3 )
         => ( ( groups2906978787729119204at_rat
              @ ^ [K3: nat] : ( if_rat @ ( A = K3 ) @ ( B @ K3 ) @ zero_zero_rat )
              @ S3 )
            = ( B @ A ) ) )
        & ( ~ ( member_nat @ A @ S3 )
         => ( ( groups2906978787729119204at_rat
              @ ^ [K3: nat] : ( if_rat @ ( A = K3 ) @ ( B @ K3 ) @ zero_zero_rat )
              @ S3 )
            = zero_zero_rat ) ) ) ) ).

% sum.delta'
thf(fact_5450_sum_Odelta_H,axiom,
    ! [S3: set_int,A: int,B: int > rat] :
      ( ( finite_finite_int @ S3 )
     => ( ( ( member_int @ A @ S3 )
         => ( ( groups3906332499630173760nt_rat
              @ ^ [K3: int] : ( if_rat @ ( A = K3 ) @ ( B @ K3 ) @ zero_zero_rat )
              @ S3 )
            = ( B @ A ) ) )
        & ( ~ ( member_int @ A @ S3 )
         => ( ( groups3906332499630173760nt_rat
              @ ^ [K3: int] : ( if_rat @ ( A = K3 ) @ ( B @ K3 ) @ zero_zero_rat )
              @ S3 )
            = zero_zero_rat ) ) ) ) ).

% sum.delta'
thf(fact_5451_sum_Odelta_H,axiom,
    ! [S3: set_complex,A: complex,B: complex > rat] :
      ( ( finite3207457112153483333omplex @ S3 )
     => ( ( ( member_complex @ A @ S3 )
         => ( ( groups5058264527183730370ex_rat
              @ ^ [K3: complex] : ( if_rat @ ( A = K3 ) @ ( B @ K3 ) @ zero_zero_rat )
              @ S3 )
            = ( B @ A ) ) )
        & ( ~ ( member_complex @ A @ S3 )
         => ( ( groups5058264527183730370ex_rat
              @ ^ [K3: complex] : ( if_rat @ ( A = K3 ) @ ( B @ K3 ) @ zero_zero_rat )
              @ S3 )
            = zero_zero_rat ) ) ) ) ).

% sum.delta'
thf(fact_5452_sum_Odelta,axiom,
    ! [S3: set_real,A: real,B: real > complex] :
      ( ( finite_finite_real @ S3 )
     => ( ( ( member_real @ A @ S3 )
         => ( ( groups5754745047067104278omplex
              @ ^ [K3: real] : ( if_complex @ ( K3 = A ) @ ( B @ K3 ) @ zero_zero_complex )
              @ S3 )
            = ( B @ A ) ) )
        & ( ~ ( member_real @ A @ S3 )
         => ( ( groups5754745047067104278omplex
              @ ^ [K3: real] : ( if_complex @ ( K3 = A ) @ ( B @ K3 ) @ zero_zero_complex )
              @ S3 )
            = zero_zero_complex ) ) ) ) ).

% sum.delta
thf(fact_5453_sum_Odelta,axiom,
    ! [S3: set_nat,A: nat,B: nat > complex] :
      ( ( finite_finite_nat @ S3 )
     => ( ( ( member_nat @ A @ S3 )
         => ( ( groups2073611262835488442omplex
              @ ^ [K3: nat] : ( if_complex @ ( K3 = A ) @ ( B @ K3 ) @ zero_zero_complex )
              @ S3 )
            = ( B @ A ) ) )
        & ( ~ ( member_nat @ A @ S3 )
         => ( ( groups2073611262835488442omplex
              @ ^ [K3: nat] : ( if_complex @ ( K3 = A ) @ ( B @ K3 ) @ zero_zero_complex )
              @ S3 )
            = zero_zero_complex ) ) ) ) ).

% sum.delta
thf(fact_5454_sum_Odelta,axiom,
    ! [S3: set_int,A: int,B: int > complex] :
      ( ( finite_finite_int @ S3 )
     => ( ( ( member_int @ A @ S3 )
         => ( ( groups3049146728041665814omplex
              @ ^ [K3: int] : ( if_complex @ ( K3 = A ) @ ( B @ K3 ) @ zero_zero_complex )
              @ S3 )
            = ( B @ A ) ) )
        & ( ~ ( member_int @ A @ S3 )
         => ( ( groups3049146728041665814omplex
              @ ^ [K3: int] : ( if_complex @ ( K3 = A ) @ ( B @ K3 ) @ zero_zero_complex )
              @ S3 )
            = zero_zero_complex ) ) ) ) ).

% sum.delta
thf(fact_5455_sum_Odelta,axiom,
    ! [S3: set_real,A: real,B: real > real] :
      ( ( finite_finite_real @ S3 )
     => ( ( ( member_real @ A @ S3 )
         => ( ( groups8097168146408367636l_real
              @ ^ [K3: real] : ( if_real @ ( K3 = A ) @ ( B @ K3 ) @ zero_zero_real )
              @ S3 )
            = ( B @ A ) ) )
        & ( ~ ( member_real @ A @ S3 )
         => ( ( groups8097168146408367636l_real
              @ ^ [K3: real] : ( if_real @ ( K3 = A ) @ ( B @ K3 ) @ zero_zero_real )
              @ S3 )
            = zero_zero_real ) ) ) ) ).

% sum.delta
thf(fact_5456_sum_Odelta,axiom,
    ! [S3: set_int,A: int,B: int > real] :
      ( ( finite_finite_int @ S3 )
     => ( ( ( member_int @ A @ S3 )
         => ( ( groups8778361861064173332t_real
              @ ^ [K3: int] : ( if_real @ ( K3 = A ) @ ( B @ K3 ) @ zero_zero_real )
              @ S3 )
            = ( B @ A ) ) )
        & ( ~ ( member_int @ A @ S3 )
         => ( ( groups8778361861064173332t_real
              @ ^ [K3: int] : ( if_real @ ( K3 = A ) @ ( B @ K3 ) @ zero_zero_real )
              @ S3 )
            = zero_zero_real ) ) ) ) ).

% sum.delta
thf(fact_5457_sum_Odelta,axiom,
    ! [S3: set_complex,A: complex,B: complex > real] :
      ( ( finite3207457112153483333omplex @ S3 )
     => ( ( ( member_complex @ A @ S3 )
         => ( ( groups5808333547571424918x_real
              @ ^ [K3: complex] : ( if_real @ ( K3 = A ) @ ( B @ K3 ) @ zero_zero_real )
              @ S3 )
            = ( B @ A ) ) )
        & ( ~ ( member_complex @ A @ S3 )
         => ( ( groups5808333547571424918x_real
              @ ^ [K3: complex] : ( if_real @ ( K3 = A ) @ ( B @ K3 ) @ zero_zero_real )
              @ S3 )
            = zero_zero_real ) ) ) ) ).

% sum.delta
thf(fact_5458_sum_Odelta,axiom,
    ! [S3: set_real,A: real,B: real > rat] :
      ( ( finite_finite_real @ S3 )
     => ( ( ( member_real @ A @ S3 )
         => ( ( groups1300246762558778688al_rat
              @ ^ [K3: real] : ( if_rat @ ( K3 = A ) @ ( B @ K3 ) @ zero_zero_rat )
              @ S3 )
            = ( B @ A ) ) )
        & ( ~ ( member_real @ A @ S3 )
         => ( ( groups1300246762558778688al_rat
              @ ^ [K3: real] : ( if_rat @ ( K3 = A ) @ ( B @ K3 ) @ zero_zero_rat )
              @ S3 )
            = zero_zero_rat ) ) ) ) ).

% sum.delta
thf(fact_5459_sum_Odelta,axiom,
    ! [S3: set_nat,A: nat,B: nat > rat] :
      ( ( finite_finite_nat @ S3 )
     => ( ( ( member_nat @ A @ S3 )
         => ( ( groups2906978787729119204at_rat
              @ ^ [K3: nat] : ( if_rat @ ( K3 = A ) @ ( B @ K3 ) @ zero_zero_rat )
              @ S3 )
            = ( B @ A ) ) )
        & ( ~ ( member_nat @ A @ S3 )
         => ( ( groups2906978787729119204at_rat
              @ ^ [K3: nat] : ( if_rat @ ( K3 = A ) @ ( B @ K3 ) @ zero_zero_rat )
              @ S3 )
            = zero_zero_rat ) ) ) ) ).

% sum.delta
thf(fact_5460_sum_Odelta,axiom,
    ! [S3: set_int,A: int,B: int > rat] :
      ( ( finite_finite_int @ S3 )
     => ( ( ( member_int @ A @ S3 )
         => ( ( groups3906332499630173760nt_rat
              @ ^ [K3: int] : ( if_rat @ ( K3 = A ) @ ( B @ K3 ) @ zero_zero_rat )
              @ S3 )
            = ( B @ A ) ) )
        & ( ~ ( member_int @ A @ S3 )
         => ( ( groups3906332499630173760nt_rat
              @ ^ [K3: int] : ( if_rat @ ( K3 = A ) @ ( B @ K3 ) @ zero_zero_rat )
              @ S3 )
            = zero_zero_rat ) ) ) ) ).

% sum.delta
thf(fact_5461_sum_Odelta,axiom,
    ! [S3: set_complex,A: complex,B: complex > rat] :
      ( ( finite3207457112153483333omplex @ S3 )
     => ( ( ( member_complex @ A @ S3 )
         => ( ( groups5058264527183730370ex_rat
              @ ^ [K3: complex] : ( if_rat @ ( K3 = A ) @ ( B @ K3 ) @ zero_zero_rat )
              @ S3 )
            = ( B @ A ) ) )
        & ( ~ ( member_complex @ A @ S3 )
         => ( ( groups5058264527183730370ex_rat
              @ ^ [K3: complex] : ( if_rat @ ( K3 = A ) @ ( B @ K3 ) @ zero_zero_rat )
              @ S3 )
            = zero_zero_rat ) ) ) ) ).

% sum.delta
thf(fact_5462_dbl__simps_I1_J,axiom,
    ! [K: num] :
      ( ( neg_numeral_dbl_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ K ) ) )
      = ( uminus_uminus_real @ ( neg_numeral_dbl_real @ ( numeral_numeral_real @ K ) ) ) ) ).

% dbl_simps(1)
thf(fact_5463_dbl__simps_I1_J,axiom,
    ! [K: num] :
      ( ( neg_numeral_dbl_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) )
      = ( uminus_uminus_int @ ( neg_numeral_dbl_int @ ( numeral_numeral_int @ K ) ) ) ) ).

% dbl_simps(1)
thf(fact_5464_dbl__simps_I1_J,axiom,
    ! [K: num] :
      ( ( neg_nu7009210354673126013omplex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ K ) ) )
      = ( uminus1482373934393186551omplex @ ( neg_nu7009210354673126013omplex @ ( numera6690914467698888265omplex @ K ) ) ) ) ).

% dbl_simps(1)
thf(fact_5465_dbl__simps_I1_J,axiom,
    ! [K: num] :
      ( ( neg_numeral_dbl_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ K ) ) )
      = ( uminus_uminus_rat @ ( neg_numeral_dbl_rat @ ( numeral_numeral_rat @ K ) ) ) ) ).

% dbl_simps(1)
thf(fact_5466_dbl__simps_I1_J,axiom,
    ! [K: num] :
      ( ( neg_nu8804712462038260780nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ K ) ) )
      = ( uminus1351360451143612070nteger @ ( neg_nu8804712462038260780nteger @ ( numera6620942414471956472nteger @ K ) ) ) ) ).

% dbl_simps(1)
thf(fact_5467_add__neg__numeral__special_I8_J,axiom,
    ( ( plus_plus_real @ ( uminus_uminus_real @ one_one_real ) @ one_one_real )
    = zero_zero_real ) ).

% add_neg_numeral_special(8)
thf(fact_5468_add__neg__numeral__special_I8_J,axiom,
    ( ( plus_plus_int @ ( uminus_uminus_int @ one_one_int ) @ one_one_int )
    = zero_zero_int ) ).

% add_neg_numeral_special(8)
thf(fact_5469_add__neg__numeral__special_I8_J,axiom,
    ( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ one_one_complex )
    = zero_zero_complex ) ).

% add_neg_numeral_special(8)
thf(fact_5470_add__neg__numeral__special_I8_J,axiom,
    ( ( plus_plus_rat @ ( uminus_uminus_rat @ one_one_rat ) @ one_one_rat )
    = zero_zero_rat ) ).

% add_neg_numeral_special(8)
thf(fact_5471_add__neg__numeral__special_I8_J,axiom,
    ( ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ one_one_Code_integer )
    = zero_z3403309356797280102nteger ) ).

% add_neg_numeral_special(8)
thf(fact_5472_add__neg__numeral__special_I7_J,axiom,
    ( ( plus_plus_real @ one_one_real @ ( uminus_uminus_real @ one_one_real ) )
    = zero_zero_real ) ).

% add_neg_numeral_special(7)
thf(fact_5473_add__neg__numeral__special_I7_J,axiom,
    ( ( plus_plus_int @ one_one_int @ ( uminus_uminus_int @ one_one_int ) )
    = zero_zero_int ) ).

% add_neg_numeral_special(7)
thf(fact_5474_add__neg__numeral__special_I7_J,axiom,
    ( ( plus_plus_complex @ one_one_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) )
    = zero_zero_complex ) ).

% add_neg_numeral_special(7)
thf(fact_5475_add__neg__numeral__special_I7_J,axiom,
    ( ( plus_plus_rat @ one_one_rat @ ( uminus_uminus_rat @ one_one_rat ) )
    = zero_zero_rat ) ).

% add_neg_numeral_special(7)
thf(fact_5476_add__neg__numeral__special_I7_J,axiom,
    ( ( plus_p5714425477246183910nteger @ one_one_Code_integer @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
    = zero_z3403309356797280102nteger ) ).

% add_neg_numeral_special(7)
thf(fact_5477_diff__numeral__special_I12_J,axiom,
    ( ( minus_minus_real @ ( uminus_uminus_real @ one_one_real ) @ ( uminus_uminus_real @ one_one_real ) )
    = zero_zero_real ) ).

% diff_numeral_special(12)
thf(fact_5478_diff__numeral__special_I12_J,axiom,
    ( ( minus_minus_int @ ( uminus_uminus_int @ one_one_int ) @ ( uminus_uminus_int @ one_one_int ) )
    = zero_zero_int ) ).

% diff_numeral_special(12)
thf(fact_5479_diff__numeral__special_I12_J,axiom,
    ( ( minus_minus_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ ( uminus1482373934393186551omplex @ one_one_complex ) )
    = zero_zero_complex ) ).

% diff_numeral_special(12)
thf(fact_5480_diff__numeral__special_I12_J,axiom,
    ( ( minus_minus_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( uminus_uminus_rat @ one_one_rat ) )
    = zero_zero_rat ) ).

% diff_numeral_special(12)
thf(fact_5481_diff__numeral__special_I12_J,axiom,
    ( ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
    = zero_z3403309356797280102nteger ) ).

% diff_numeral_special(12)
thf(fact_5482_numeral__eq__neg__one__iff,axiom,
    ! [N2: num] :
      ( ( ( uminus_uminus_real @ ( numeral_numeral_real @ N2 ) )
        = ( uminus_uminus_real @ one_one_real ) )
      = ( N2 = one ) ) ).

% numeral_eq_neg_one_iff
thf(fact_5483_numeral__eq__neg__one__iff,axiom,
    ! [N2: num] :
      ( ( ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) )
        = ( uminus_uminus_int @ one_one_int ) )
      = ( N2 = one ) ) ).

% numeral_eq_neg_one_iff
thf(fact_5484_numeral__eq__neg__one__iff,axiom,
    ! [N2: num] :
      ( ( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N2 ) )
        = ( uminus1482373934393186551omplex @ one_one_complex ) )
      = ( N2 = one ) ) ).

% numeral_eq_neg_one_iff
thf(fact_5485_numeral__eq__neg__one__iff,axiom,
    ! [N2: num] :
      ( ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ N2 ) )
        = ( uminus_uminus_rat @ one_one_rat ) )
      = ( N2 = one ) ) ).

% numeral_eq_neg_one_iff
thf(fact_5486_numeral__eq__neg__one__iff,axiom,
    ! [N2: num] :
      ( ( ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N2 ) )
        = ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
      = ( N2 = one ) ) ).

% numeral_eq_neg_one_iff
thf(fact_5487_neg__one__eq__numeral__iff,axiom,
    ! [N2: num] :
      ( ( ( uminus_uminus_real @ one_one_real )
        = ( uminus_uminus_real @ ( numeral_numeral_real @ N2 ) ) )
      = ( N2 = one ) ) ).

% neg_one_eq_numeral_iff
thf(fact_5488_neg__one__eq__numeral__iff,axiom,
    ! [N2: num] :
      ( ( ( uminus_uminus_int @ one_one_int )
        = ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) )
      = ( N2 = one ) ) ).

% neg_one_eq_numeral_iff
thf(fact_5489_neg__one__eq__numeral__iff,axiom,
    ! [N2: num] :
      ( ( ( uminus1482373934393186551omplex @ one_one_complex )
        = ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N2 ) ) )
      = ( N2 = one ) ) ).

% neg_one_eq_numeral_iff
thf(fact_5490_neg__one__eq__numeral__iff,axiom,
    ! [N2: num] :
      ( ( ( uminus_uminus_rat @ one_one_rat )
        = ( uminus_uminus_rat @ ( numeral_numeral_rat @ N2 ) ) )
      = ( N2 = one ) ) ).

% neg_one_eq_numeral_iff
thf(fact_5491_neg__one__eq__numeral__iff,axiom,
    ! [N2: num] :
      ( ( ( uminus1351360451143612070nteger @ one_one_Code_integer )
        = ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N2 ) ) )
      = ( N2 = one ) ) ).

% neg_one_eq_numeral_iff
thf(fact_5492_left__minus__one__mult__self,axiom,
    ! [N2: nat,A: real] :
      ( ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N2 ) @ ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N2 ) @ A ) )
      = A ) ).

% left_minus_one_mult_self
thf(fact_5493_left__minus__one__mult__self,axiom,
    ! [N2: nat,A: int] :
      ( ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N2 ) @ ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N2 ) @ A ) )
      = A ) ).

% left_minus_one_mult_self
thf(fact_5494_left__minus__one__mult__self,axiom,
    ! [N2: nat,A: complex] :
      ( ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N2 ) @ ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N2 ) @ A ) )
      = A ) ).

% left_minus_one_mult_self
thf(fact_5495_left__minus__one__mult__self,axiom,
    ! [N2: nat,A: rat] :
      ( ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ N2 ) @ ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ N2 ) @ A ) )
      = A ) ).

% left_minus_one_mult_self
thf(fact_5496_left__minus__one__mult__self,axiom,
    ! [N2: nat,A: code_integer] :
      ( ( times_3573771949741848930nteger @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ N2 ) @ ( times_3573771949741848930nteger @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ N2 ) @ A ) )
      = A ) ).

% left_minus_one_mult_self
thf(fact_5497_minus__one__mult__self,axiom,
    ! [N2: nat] :
      ( ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N2 ) @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N2 ) )
      = one_one_real ) ).

% minus_one_mult_self
thf(fact_5498_minus__one__mult__self,axiom,
    ! [N2: nat] :
      ( ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N2 ) @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N2 ) )
      = one_one_int ) ).

% minus_one_mult_self
thf(fact_5499_minus__one__mult__self,axiom,
    ! [N2: nat] :
      ( ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N2 ) @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N2 ) )
      = one_one_complex ) ).

% minus_one_mult_self
thf(fact_5500_minus__one__mult__self,axiom,
    ! [N2: nat] :
      ( ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ N2 ) @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ N2 ) )
      = one_one_rat ) ).

% minus_one_mult_self
thf(fact_5501_minus__one__mult__self,axiom,
    ! [N2: nat] :
      ( ( times_3573771949741848930nteger @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ N2 ) @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ N2 ) )
      = one_one_Code_integer ) ).

% minus_one_mult_self
thf(fact_5502_mod__minus1__right,axiom,
    ! [A: int] :
      ( ( modulo_modulo_int @ A @ ( uminus_uminus_int @ one_one_int ) )
      = zero_zero_int ) ).

% mod_minus1_right
thf(fact_5503_mod__minus1__right,axiom,
    ! [A: code_integer] :
      ( ( modulo364778990260209775nteger @ A @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
      = zero_z3403309356797280102nteger ) ).

% mod_minus1_right
thf(fact_5504_max__number__of_I4_J,axiom,
    ! [U: num,V: num] :
      ( ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ U ) ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) )
       => ( ( ord_max_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ U ) ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) )
          = ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) ) )
      & ( ~ ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ U ) ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) )
       => ( ( ord_max_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ U ) ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) )
          = ( uminus_uminus_real @ ( numeral_numeral_real @ U ) ) ) ) ) ).

% max_number_of(4)
thf(fact_5505_max__number__of_I4_J,axiom,
    ! [U: num,V: num] :
      ( ( ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ U ) ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) )
       => ( ( ord_max_Code_integer @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ U ) ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) )
          = ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) ) )
      & ( ~ ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ U ) ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) )
       => ( ( ord_max_Code_integer @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ U ) ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) )
          = ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ U ) ) ) ) ) ).

% max_number_of(4)
thf(fact_5506_max__number__of_I4_J,axiom,
    ! [U: num,V: num] :
      ( ( ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ U ) ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) )
       => ( ( ord_max_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ U ) ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) )
          = ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) ) )
      & ( ~ ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ U ) ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) )
       => ( ( ord_max_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ U ) ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) )
          = ( uminus_uminus_rat @ ( numeral_numeral_rat @ U ) ) ) ) ) ).

% max_number_of(4)
thf(fact_5507_max__number__of_I4_J,axiom,
    ! [U: num,V: num] :
      ( ( ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ U ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
       => ( ( ord_max_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ U ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
          = ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) ) )
      & ( ~ ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ U ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
       => ( ( ord_max_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ U ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
          = ( uminus_uminus_int @ ( numeral_numeral_int @ U ) ) ) ) ) ).

% max_number_of(4)
thf(fact_5508_max__number__of_I3_J,axiom,
    ! [U: num,V: num] :
      ( ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ U ) ) @ ( numeral_numeral_real @ V ) )
       => ( ( ord_max_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ U ) ) @ ( numeral_numeral_real @ V ) )
          = ( numeral_numeral_real @ V ) ) )
      & ( ~ ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ U ) ) @ ( numeral_numeral_real @ V ) )
       => ( ( ord_max_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ U ) ) @ ( numeral_numeral_real @ V ) )
          = ( uminus_uminus_real @ ( numeral_numeral_real @ U ) ) ) ) ) ).

% max_number_of(3)
thf(fact_5509_max__number__of_I3_J,axiom,
    ! [U: num,V: num] :
      ( ( ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ U ) ) @ ( numera6620942414471956472nteger @ V ) )
       => ( ( ord_max_Code_integer @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ U ) ) @ ( numera6620942414471956472nteger @ V ) )
          = ( numera6620942414471956472nteger @ V ) ) )
      & ( ~ ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ U ) ) @ ( numera6620942414471956472nteger @ V ) )
       => ( ( ord_max_Code_integer @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ U ) ) @ ( numera6620942414471956472nteger @ V ) )
          = ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ U ) ) ) ) ) ).

% max_number_of(3)
thf(fact_5510_max__number__of_I3_J,axiom,
    ! [U: num,V: num] :
      ( ( ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ U ) ) @ ( numeral_numeral_rat @ V ) )
       => ( ( ord_max_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ U ) ) @ ( numeral_numeral_rat @ V ) )
          = ( numeral_numeral_rat @ V ) ) )
      & ( ~ ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ U ) ) @ ( numeral_numeral_rat @ V ) )
       => ( ( ord_max_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ U ) ) @ ( numeral_numeral_rat @ V ) )
          = ( uminus_uminus_rat @ ( numeral_numeral_rat @ U ) ) ) ) ) ).

% max_number_of(3)
thf(fact_5511_max__number__of_I3_J,axiom,
    ! [U: num,V: num] :
      ( ( ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ U ) ) @ ( numeral_numeral_int @ V ) )
       => ( ( ord_max_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ U ) ) @ ( numeral_numeral_int @ V ) )
          = ( numeral_numeral_int @ V ) ) )
      & ( ~ ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ U ) ) @ ( numeral_numeral_int @ V ) )
       => ( ( ord_max_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ U ) ) @ ( numeral_numeral_int @ V ) )
          = ( uminus_uminus_int @ ( numeral_numeral_int @ U ) ) ) ) ) ).

% max_number_of(3)
thf(fact_5512_max__number__of_I2_J,axiom,
    ! [U: num,V: num] :
      ( ( ( ord_less_eq_real @ ( numeral_numeral_real @ U ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) )
       => ( ( ord_max_real @ ( numeral_numeral_real @ U ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) )
          = ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) ) )
      & ( ~ ( ord_less_eq_real @ ( numeral_numeral_real @ U ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) )
       => ( ( ord_max_real @ ( numeral_numeral_real @ U ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) )
          = ( numeral_numeral_real @ U ) ) ) ) ).

% max_number_of(2)
thf(fact_5513_max__number__of_I2_J,axiom,
    ! [U: num,V: num] :
      ( ( ( ord_le3102999989581377725nteger @ ( numera6620942414471956472nteger @ U ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) )
       => ( ( ord_max_Code_integer @ ( numera6620942414471956472nteger @ U ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) )
          = ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) ) )
      & ( ~ ( ord_le3102999989581377725nteger @ ( numera6620942414471956472nteger @ U ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) )
       => ( ( ord_max_Code_integer @ ( numera6620942414471956472nteger @ U ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) )
          = ( numera6620942414471956472nteger @ U ) ) ) ) ).

% max_number_of(2)
thf(fact_5514_max__number__of_I2_J,axiom,
    ! [U: num,V: num] :
      ( ( ( ord_less_eq_rat @ ( numeral_numeral_rat @ U ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) )
       => ( ( ord_max_rat @ ( numeral_numeral_rat @ U ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) )
          = ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) ) )
      & ( ~ ( ord_less_eq_rat @ ( numeral_numeral_rat @ U ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) )
       => ( ( ord_max_rat @ ( numeral_numeral_rat @ U ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) )
          = ( numeral_numeral_rat @ U ) ) ) ) ).

% max_number_of(2)
thf(fact_5515_max__number__of_I2_J,axiom,
    ! [U: num,V: num] :
      ( ( ( ord_less_eq_int @ ( numeral_numeral_int @ U ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
       => ( ( ord_max_int @ ( numeral_numeral_int @ U ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
          = ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) ) )
      & ( ~ ( ord_less_eq_int @ ( numeral_numeral_int @ U ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
       => ( ( ord_max_int @ ( numeral_numeral_int @ U ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
          = ( numeral_numeral_int @ U ) ) ) ) ).

% max_number_of(2)
thf(fact_5516_ln__le__zero__iff,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ ( ln_ln_real @ X ) @ zero_zero_real )
        = ( ord_less_eq_real @ X @ one_one_real ) ) ) ).

% ln_le_zero_iff
thf(fact_5517_ln__ge__zero__iff,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ zero_zero_real @ ( ln_ln_real @ X ) )
        = ( ord_less_eq_real @ one_one_real @ X ) ) ) ).

% ln_ge_zero_iff
thf(fact_5518_semiring__norm_I168_J,axiom,
    ! [V: num,W: num,Y: real] :
      ( ( plus_plus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) @ ( plus_plus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ Y ) )
      = ( plus_plus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ ( plus_plus_num @ V @ W ) ) ) @ Y ) ) ).

% semiring_norm(168)
thf(fact_5519_semiring__norm_I168_J,axiom,
    ! [V: num,W: num,Y: int] :
      ( ( plus_plus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) @ ( plus_plus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ W ) ) @ Y ) )
      = ( plus_plus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( plus_plus_num @ V @ W ) ) ) @ Y ) ) ).

% semiring_norm(168)
thf(fact_5520_semiring__norm_I168_J,axiom,
    ! [V: num,W: num,Y: complex] :
      ( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ V ) ) @ ( plus_plus_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) @ Y ) )
      = ( plus_plus_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( plus_plus_num @ V @ W ) ) ) @ Y ) ) ).

% semiring_norm(168)
thf(fact_5521_semiring__norm_I168_J,axiom,
    ! [V: num,W: num,Y: rat] :
      ( ( plus_plus_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) @ ( plus_plus_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ Y ) )
      = ( plus_plus_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( plus_plus_num @ V @ W ) ) ) @ Y ) ) ).

% semiring_norm(168)
thf(fact_5522_semiring__norm_I168_J,axiom,
    ! [V: num,W: num,Y: code_integer] :
      ( ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) @ ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ W ) ) @ Y ) )
      = ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( plus_plus_num @ V @ W ) ) ) @ Y ) ) ).

% semiring_norm(168)
thf(fact_5523_diff__numeral__simps_I3_J,axiom,
    ! [M: num,N2: num] :
      ( ( minus_minus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( numeral_numeral_real @ N2 ) )
      = ( uminus_uminus_real @ ( numeral_numeral_real @ ( plus_plus_num @ M @ N2 ) ) ) ) ).

% diff_numeral_simps(3)
thf(fact_5524_diff__numeral__simps_I3_J,axiom,
    ! [M: num,N2: num] :
      ( ( minus_minus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N2 ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( plus_plus_num @ M @ N2 ) ) ) ) ).

% diff_numeral_simps(3)
thf(fact_5525_diff__numeral__simps_I3_J,axiom,
    ! [M: num,N2: num] :
      ( ( minus_minus_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ M ) ) @ ( numera6690914467698888265omplex @ N2 ) )
      = ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( plus_plus_num @ M @ N2 ) ) ) ) ).

% diff_numeral_simps(3)
thf(fact_5526_diff__numeral__simps_I3_J,axiom,
    ! [M: num,N2: num] :
      ( ( minus_minus_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( numeral_numeral_rat @ N2 ) )
      = ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( plus_plus_num @ M @ N2 ) ) ) ) ).

% diff_numeral_simps(3)
thf(fact_5527_diff__numeral__simps_I3_J,axiom,
    ! [M: num,N2: num] :
      ( ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( numera6620942414471956472nteger @ N2 ) )
      = ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( plus_plus_num @ M @ N2 ) ) ) ) ).

% diff_numeral_simps(3)
thf(fact_5528_diff__numeral__simps_I2_J,axiom,
    ! [M: num,N2: num] :
      ( ( minus_minus_real @ ( numeral_numeral_real @ M ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N2 ) ) )
      = ( numeral_numeral_real @ ( plus_plus_num @ M @ N2 ) ) ) ).

% diff_numeral_simps(2)
thf(fact_5529_diff__numeral__simps_I2_J,axiom,
    ! [M: num,N2: num] :
      ( ( minus_minus_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) )
      = ( numeral_numeral_int @ ( plus_plus_num @ M @ N2 ) ) ) ).

% diff_numeral_simps(2)
thf(fact_5530_diff__numeral__simps_I2_J,axiom,
    ! [M: num,N2: num] :
      ( ( minus_minus_complex @ ( numera6690914467698888265omplex @ M ) @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N2 ) ) )
      = ( numera6690914467698888265omplex @ ( plus_plus_num @ M @ N2 ) ) ) ).

% diff_numeral_simps(2)
thf(fact_5531_diff__numeral__simps_I2_J,axiom,
    ! [M: num,N2: num] :
      ( ( minus_minus_rat @ ( numeral_numeral_rat @ M ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N2 ) ) )
      = ( numeral_numeral_rat @ ( plus_plus_num @ M @ N2 ) ) ) ).

% diff_numeral_simps(2)
thf(fact_5532_diff__numeral__simps_I2_J,axiom,
    ! [M: num,N2: num] :
      ( ( minus_8373710615458151222nteger @ ( numera6620942414471956472nteger @ M ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N2 ) ) )
      = ( numera6620942414471956472nteger @ ( plus_plus_num @ M @ N2 ) ) ) ).

% diff_numeral_simps(2)
thf(fact_5533_mult__neg__numeral__simps_I1_J,axiom,
    ! [M: num,N2: num] :
      ( ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N2 ) ) )
      = ( numeral_numeral_real @ ( times_times_num @ M @ N2 ) ) ) ).

% mult_neg_numeral_simps(1)
thf(fact_5534_mult__neg__numeral__simps_I1_J,axiom,
    ! [M: num,N2: num] :
      ( ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) )
      = ( numeral_numeral_int @ ( times_times_num @ M @ N2 ) ) ) ).

% mult_neg_numeral_simps(1)
thf(fact_5535_mult__neg__numeral__simps_I1_J,axiom,
    ! [M: num,N2: num] :
      ( ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ M ) ) @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N2 ) ) )
      = ( numera6690914467698888265omplex @ ( times_times_num @ M @ N2 ) ) ) ).

% mult_neg_numeral_simps(1)
thf(fact_5536_mult__neg__numeral__simps_I1_J,axiom,
    ! [M: num,N2: num] :
      ( ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N2 ) ) )
      = ( numeral_numeral_rat @ ( times_times_num @ M @ N2 ) ) ) ).

% mult_neg_numeral_simps(1)
thf(fact_5537_mult__neg__numeral__simps_I1_J,axiom,
    ! [M: num,N2: num] :
      ( ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N2 ) ) )
      = ( numera6620942414471956472nteger @ ( times_times_num @ M @ N2 ) ) ) ).

% mult_neg_numeral_simps(1)
thf(fact_5538_mult__neg__numeral__simps_I2_J,axiom,
    ! [M: num,N2: num] :
      ( ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( numeral_numeral_real @ N2 ) )
      = ( uminus_uminus_real @ ( numeral_numeral_real @ ( times_times_num @ M @ N2 ) ) ) ) ).

% mult_neg_numeral_simps(2)
thf(fact_5539_mult__neg__numeral__simps_I2_J,axiom,
    ! [M: num,N2: num] :
      ( ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N2 ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( times_times_num @ M @ N2 ) ) ) ) ).

% mult_neg_numeral_simps(2)
thf(fact_5540_mult__neg__numeral__simps_I2_J,axiom,
    ! [M: num,N2: num] :
      ( ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ M ) ) @ ( numera6690914467698888265omplex @ N2 ) )
      = ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( times_times_num @ M @ N2 ) ) ) ) ).

% mult_neg_numeral_simps(2)
thf(fact_5541_mult__neg__numeral__simps_I2_J,axiom,
    ! [M: num,N2: num] :
      ( ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( numeral_numeral_rat @ N2 ) )
      = ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( times_times_num @ M @ N2 ) ) ) ) ).

% mult_neg_numeral_simps(2)
thf(fact_5542_mult__neg__numeral__simps_I2_J,axiom,
    ! [M: num,N2: num] :
      ( ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( numera6620942414471956472nteger @ N2 ) )
      = ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( times_times_num @ M @ N2 ) ) ) ) ).

% mult_neg_numeral_simps(2)
thf(fact_5543_mult__neg__numeral__simps_I3_J,axiom,
    ! [M: num,N2: num] :
      ( ( times_times_real @ ( numeral_numeral_real @ M ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N2 ) ) )
      = ( uminus_uminus_real @ ( numeral_numeral_real @ ( times_times_num @ M @ N2 ) ) ) ) ).

% mult_neg_numeral_simps(3)
thf(fact_5544_mult__neg__numeral__simps_I3_J,axiom,
    ! [M: num,N2: num] :
      ( ( times_times_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( times_times_num @ M @ N2 ) ) ) ) ).

% mult_neg_numeral_simps(3)
thf(fact_5545_mult__neg__numeral__simps_I3_J,axiom,
    ! [M: num,N2: num] :
      ( ( times_times_complex @ ( numera6690914467698888265omplex @ M ) @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N2 ) ) )
      = ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( times_times_num @ M @ N2 ) ) ) ) ).

% mult_neg_numeral_simps(3)
thf(fact_5546_mult__neg__numeral__simps_I3_J,axiom,
    ! [M: num,N2: num] :
      ( ( times_times_rat @ ( numeral_numeral_rat @ M ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N2 ) ) )
      = ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( times_times_num @ M @ N2 ) ) ) ) ).

% mult_neg_numeral_simps(3)
thf(fact_5547_mult__neg__numeral__simps_I3_J,axiom,
    ! [M: num,N2: num] :
      ( ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ M ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N2 ) ) )
      = ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( times_times_num @ M @ N2 ) ) ) ) ).

% mult_neg_numeral_simps(3)
thf(fact_5548_semiring__norm_I170_J,axiom,
    ! [V: num,W: num,Y: real] :
      ( ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) @ ( times_times_real @ ( numeral_numeral_real @ W ) @ Y ) )
      = ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ ( times_times_num @ V @ W ) ) ) @ Y ) ) ).

% semiring_norm(170)
thf(fact_5549_semiring__norm_I170_J,axiom,
    ! [V: num,W: num,Y: int] :
      ( ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) @ ( times_times_int @ ( numeral_numeral_int @ W ) @ Y ) )
      = ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( times_times_num @ V @ W ) ) ) @ Y ) ) ).

% semiring_norm(170)
thf(fact_5550_semiring__norm_I170_J,axiom,
    ! [V: num,W: num,Y: complex] :
      ( ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ V ) ) @ ( times_times_complex @ ( numera6690914467698888265omplex @ W ) @ Y ) )
      = ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( times_times_num @ V @ W ) ) ) @ Y ) ) ).

% semiring_norm(170)
thf(fact_5551_semiring__norm_I170_J,axiom,
    ! [V: num,W: num,Y: rat] :
      ( ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) @ ( times_times_rat @ ( numeral_numeral_rat @ W ) @ Y ) )
      = ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( times_times_num @ V @ W ) ) ) @ Y ) ) ).

% semiring_norm(170)
thf(fact_5552_semiring__norm_I170_J,axiom,
    ! [V: num,W: num,Y: code_integer] :
      ( ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ W ) @ Y ) )
      = ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( times_times_num @ V @ W ) ) ) @ Y ) ) ).

% semiring_norm(170)
thf(fact_5553_semiring__norm_I171_J,axiom,
    ! [V: num,W: num,Y: real] :
      ( ( times_times_real @ ( numeral_numeral_real @ V ) @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ Y ) )
      = ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ ( times_times_num @ V @ W ) ) ) @ Y ) ) ).

% semiring_norm(171)
thf(fact_5554_semiring__norm_I171_J,axiom,
    ! [V: num,W: num,Y: int] :
      ( ( times_times_int @ ( numeral_numeral_int @ V ) @ ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ W ) ) @ Y ) )
      = ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( times_times_num @ V @ W ) ) ) @ Y ) ) ).

% semiring_norm(171)
thf(fact_5555_semiring__norm_I171_J,axiom,
    ! [V: num,W: num,Y: complex] :
      ( ( times_times_complex @ ( numera6690914467698888265omplex @ V ) @ ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) @ Y ) )
      = ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( times_times_num @ V @ W ) ) ) @ Y ) ) ).

% semiring_norm(171)
thf(fact_5556_semiring__norm_I171_J,axiom,
    ! [V: num,W: num,Y: rat] :
      ( ( times_times_rat @ ( numeral_numeral_rat @ V ) @ ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ Y ) )
      = ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( times_times_num @ V @ W ) ) ) @ Y ) ) ).

% semiring_norm(171)
thf(fact_5557_semiring__norm_I171_J,axiom,
    ! [V: num,W: num,Y: code_integer] :
      ( ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ V ) @ ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ W ) ) @ Y ) )
      = ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( times_times_num @ V @ W ) ) ) @ Y ) ) ).

% semiring_norm(171)
thf(fact_5558_semiring__norm_I172_J,axiom,
    ! [V: num,W: num,Y: real] :
      ( ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ Y ) )
      = ( times_times_real @ ( numeral_numeral_real @ ( times_times_num @ V @ W ) ) @ Y ) ) ).

% semiring_norm(172)
thf(fact_5559_semiring__norm_I172_J,axiom,
    ! [V: num,W: num,Y: int] :
      ( ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) @ ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ W ) ) @ Y ) )
      = ( times_times_int @ ( numeral_numeral_int @ ( times_times_num @ V @ W ) ) @ Y ) ) ).

% semiring_norm(172)
thf(fact_5560_semiring__norm_I172_J,axiom,
    ! [V: num,W: num,Y: complex] :
      ( ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ V ) ) @ ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) @ Y ) )
      = ( times_times_complex @ ( numera6690914467698888265omplex @ ( times_times_num @ V @ W ) ) @ Y ) ) ).

% semiring_norm(172)
thf(fact_5561_semiring__norm_I172_J,axiom,
    ! [V: num,W: num,Y: rat] :
      ( ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) @ ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ Y ) )
      = ( times_times_rat @ ( numeral_numeral_rat @ ( times_times_num @ V @ W ) ) @ Y ) ) ).

% semiring_norm(172)
thf(fact_5562_semiring__norm_I172_J,axiom,
    ! [V: num,W: num,Y: code_integer] :
      ( ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) @ ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ W ) ) @ Y ) )
      = ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( times_times_num @ V @ W ) ) @ Y ) ) ).

% semiring_norm(172)
thf(fact_5563_neg__numeral__le__iff,axiom,
    ! [M: num,N2: num] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N2 ) ) )
      = ( ord_less_eq_num @ N2 @ M ) ) ).

% neg_numeral_le_iff
thf(fact_5564_neg__numeral__le__iff,axiom,
    ! [M: num,N2: num] :
      ( ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N2 ) ) )
      = ( ord_less_eq_num @ N2 @ M ) ) ).

% neg_numeral_le_iff
thf(fact_5565_neg__numeral__le__iff,axiom,
    ! [M: num,N2: num] :
      ( ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N2 ) ) )
      = ( ord_less_eq_num @ N2 @ M ) ) ).

% neg_numeral_le_iff
thf(fact_5566_neg__numeral__le__iff,axiom,
    ! [M: num,N2: num] :
      ( ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) )
      = ( ord_less_eq_num @ N2 @ M ) ) ).

% neg_numeral_le_iff
thf(fact_5567_neg__numeral__less__iff,axiom,
    ! [M: num,N2: num] :
      ( ( ord_less_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N2 ) ) )
      = ( ord_less_num @ N2 @ M ) ) ).

% neg_numeral_less_iff
thf(fact_5568_neg__numeral__less__iff,axiom,
    ! [M: num,N2: num] :
      ( ( ord_less_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) )
      = ( ord_less_num @ N2 @ M ) ) ).

% neg_numeral_less_iff
thf(fact_5569_neg__numeral__less__iff,axiom,
    ! [M: num,N2: num] :
      ( ( ord_less_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N2 ) ) )
      = ( ord_less_num @ N2 @ M ) ) ).

% neg_numeral_less_iff
thf(fact_5570_neg__numeral__less__iff,axiom,
    ! [M: num,N2: num] :
      ( ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N2 ) ) )
      = ( ord_less_num @ N2 @ M ) ) ).

% neg_numeral_less_iff
thf(fact_5571_not__neg__one__le__neg__numeral__iff,axiom,
    ! [M: num] :
      ( ( ~ ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) ) )
      = ( M != one ) ) ).

% not_neg_one_le_neg_numeral_iff
thf(fact_5572_not__neg__one__le__neg__numeral__iff,axiom,
    ! [M: num] :
      ( ( ~ ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) ) )
      = ( M != one ) ) ).

% not_neg_one_le_neg_numeral_iff
thf(fact_5573_not__neg__one__le__neg__numeral__iff,axiom,
    ! [M: num] :
      ( ( ~ ( ord_less_eq_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) ) )
      = ( M != one ) ) ).

% not_neg_one_le_neg_numeral_iff
thf(fact_5574_not__neg__one__le__neg__numeral__iff,axiom,
    ! [M: num] :
      ( ( ~ ( ord_less_eq_int @ ( uminus_uminus_int @ one_one_int ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) ) )
      = ( M != one ) ) ).

% not_neg_one_le_neg_numeral_iff
thf(fact_5575_le__divide__eq__numeral1_I2_J,axiom,
    ! [A: real,B: real,W: num] :
      ( ( ord_less_eq_real @ A @ ( divide_divide_real @ B @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) )
      = ( ord_less_eq_real @ B @ ( times_times_real @ A @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) ) ) ).

% le_divide_eq_numeral1(2)
thf(fact_5576_le__divide__eq__numeral1_I2_J,axiom,
    ! [A: rat,B: rat,W: num] :
      ( ( ord_less_eq_rat @ A @ ( divide_divide_rat @ B @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) )
      = ( ord_less_eq_rat @ B @ ( times_times_rat @ A @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) ) ) ).

% le_divide_eq_numeral1(2)
thf(fact_5577_divide__le__eq__numeral1_I2_J,axiom,
    ! [B: real,W: num,A: real] :
      ( ( ord_less_eq_real @ ( divide_divide_real @ B @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) @ A )
      = ( ord_less_eq_real @ ( times_times_real @ A @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) @ B ) ) ).

% divide_le_eq_numeral1(2)
thf(fact_5578_divide__le__eq__numeral1_I2_J,axiom,
    ! [B: rat,W: num,A: rat] :
      ( ( ord_less_eq_rat @ ( divide_divide_rat @ B @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) @ A )
      = ( ord_less_eq_rat @ ( times_times_rat @ A @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) @ B ) ) ).

% divide_le_eq_numeral1(2)
thf(fact_5579_eq__divide__eq__numeral1_I2_J,axiom,
    ! [A: real,B: real,W: num] :
      ( ( A
        = ( divide_divide_real @ B @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) )
      = ( ( ( ( uminus_uminus_real @ ( numeral_numeral_real @ W ) )
           != zero_zero_real )
         => ( ( times_times_real @ A @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) )
            = B ) )
        & ( ( ( uminus_uminus_real @ ( numeral_numeral_real @ W ) )
            = zero_zero_real )
         => ( A = zero_zero_real ) ) ) ) ).

% eq_divide_eq_numeral1(2)
thf(fact_5580_eq__divide__eq__numeral1_I2_J,axiom,
    ! [A: complex,B: complex,W: num] :
      ( ( A
        = ( divide1717551699836669952omplex @ B @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) ) )
      = ( ( ( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) )
           != zero_zero_complex )
         => ( ( times_times_complex @ A @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) )
            = B ) )
        & ( ( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) )
            = zero_zero_complex )
         => ( A = zero_zero_complex ) ) ) ) ).

% eq_divide_eq_numeral1(2)
thf(fact_5581_eq__divide__eq__numeral1_I2_J,axiom,
    ! [A: rat,B: rat,W: num] :
      ( ( A
        = ( divide_divide_rat @ B @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) )
      = ( ( ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) )
           != zero_zero_rat )
         => ( ( times_times_rat @ A @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) )
            = B ) )
        & ( ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) )
            = zero_zero_rat )
         => ( A = zero_zero_rat ) ) ) ) ).

% eq_divide_eq_numeral1(2)
thf(fact_5582_divide__eq__eq__numeral1_I2_J,axiom,
    ! [B: real,W: num,A: real] :
      ( ( ( divide_divide_real @ B @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) )
        = A )
      = ( ( ( ( uminus_uminus_real @ ( numeral_numeral_real @ W ) )
           != zero_zero_real )
         => ( B
            = ( times_times_real @ A @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) ) )
        & ( ( ( uminus_uminus_real @ ( numeral_numeral_real @ W ) )
            = zero_zero_real )
         => ( A = zero_zero_real ) ) ) ) ).

% divide_eq_eq_numeral1(2)
thf(fact_5583_divide__eq__eq__numeral1_I2_J,axiom,
    ! [B: complex,W: num,A: complex] :
      ( ( ( divide1717551699836669952omplex @ B @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) )
        = A )
      = ( ( ( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) )
           != zero_zero_complex )
         => ( B
            = ( times_times_complex @ A @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) ) ) )
        & ( ( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) )
            = zero_zero_complex )
         => ( A = zero_zero_complex ) ) ) ) ).

% divide_eq_eq_numeral1(2)
thf(fact_5584_divide__eq__eq__numeral1_I2_J,axiom,
    ! [B: rat,W: num,A: rat] :
      ( ( ( divide_divide_rat @ B @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) )
        = A )
      = ( ( ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) )
           != zero_zero_rat )
         => ( B
            = ( times_times_rat @ A @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) ) )
        & ( ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) )
            = zero_zero_rat )
         => ( A = zero_zero_rat ) ) ) ) ).

% divide_eq_eq_numeral1(2)
thf(fact_5585_neg__numeral__less__neg__one__iff,axiom,
    ! [M: num] :
      ( ( ord_less_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( uminus_uminus_real @ one_one_real ) )
      = ( M != one ) ) ).

% neg_numeral_less_neg_one_iff
thf(fact_5586_neg__numeral__less__neg__one__iff,axiom,
    ! [M: num] :
      ( ( ord_less_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ one_one_int ) )
      = ( M != one ) ) ).

% neg_numeral_less_neg_one_iff
thf(fact_5587_neg__numeral__less__neg__one__iff,axiom,
    ! [M: num] :
      ( ( ord_less_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( uminus_uminus_rat @ one_one_rat ) )
      = ( M != one ) ) ).

% neg_numeral_less_neg_one_iff
thf(fact_5588_neg__numeral__less__neg__one__iff,axiom,
    ! [M: num] :
      ( ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
      = ( M != one ) ) ).

% neg_numeral_less_neg_one_iff
thf(fact_5589_less__divide__eq__numeral1_I2_J,axiom,
    ! [A: real,B: real,W: num] :
      ( ( ord_less_real @ A @ ( divide_divide_real @ B @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) )
      = ( ord_less_real @ B @ ( times_times_real @ A @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) ) ) ).

% less_divide_eq_numeral1(2)
thf(fact_5590_less__divide__eq__numeral1_I2_J,axiom,
    ! [A: rat,B: rat,W: num] :
      ( ( ord_less_rat @ A @ ( divide_divide_rat @ B @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) )
      = ( ord_less_rat @ B @ ( times_times_rat @ A @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) ) ) ).

% less_divide_eq_numeral1(2)
thf(fact_5591_divide__less__eq__numeral1_I2_J,axiom,
    ! [B: real,W: num,A: real] :
      ( ( ord_less_real @ ( divide_divide_real @ B @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) @ A )
      = ( ord_less_real @ ( times_times_real @ A @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) @ B ) ) ).

% divide_less_eq_numeral1(2)
thf(fact_5592_divide__less__eq__numeral1_I2_J,axiom,
    ! [B: rat,W: num,A: rat] :
      ( ( ord_less_rat @ ( divide_divide_rat @ B @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) @ A )
      = ( ord_less_rat @ ( times_times_rat @ A @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) @ B ) ) ).

% divide_less_eq_numeral1(2)
thf(fact_5593_power2__minus,axiom,
    ! [A: real] :
      ( ( power_power_real @ ( uminus_uminus_real @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power2_minus
thf(fact_5594_power2__minus,axiom,
    ! [A: int] :
      ( ( power_power_int @ ( uminus_uminus_int @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power2_minus
thf(fact_5595_power2__minus,axiom,
    ! [A: complex] :
      ( ( power_power_complex @ ( uminus1482373934393186551omplex @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( power_power_complex @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power2_minus
thf(fact_5596_power2__minus,axiom,
    ! [A: rat] :
      ( ( power_power_rat @ ( uminus_uminus_rat @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power2_minus
thf(fact_5597_power2__minus,axiom,
    ! [A: code_integer] :
      ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( power_8256067586552552935nteger @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power2_minus
thf(fact_5598_add__neg__numeral__special_I9_J,axiom,
    ( ( plus_plus_real @ ( uminus_uminus_real @ one_one_real ) @ ( uminus_uminus_real @ one_one_real ) )
    = ( uminus_uminus_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% add_neg_numeral_special(9)
thf(fact_5599_add__neg__numeral__special_I9_J,axiom,
    ( ( plus_plus_int @ ( uminus_uminus_int @ one_one_int ) @ ( uminus_uminus_int @ one_one_int ) )
    = ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).

% add_neg_numeral_special(9)
thf(fact_5600_add__neg__numeral__special_I9_J,axiom,
    ( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ ( uminus1482373934393186551omplex @ one_one_complex ) )
    = ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ).

% add_neg_numeral_special(9)
thf(fact_5601_add__neg__numeral__special_I9_J,axiom,
    ( ( plus_plus_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( uminus_uminus_rat @ one_one_rat ) )
    = ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) ).

% add_neg_numeral_special(9)
thf(fact_5602_add__neg__numeral__special_I9_J,axiom,
    ( ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
    = ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ).

% add_neg_numeral_special(9)
thf(fact_5603_diff__numeral__special_I10_J,axiom,
    ( ( minus_minus_real @ ( uminus_uminus_real @ one_one_real ) @ one_one_real )
    = ( uminus_uminus_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% diff_numeral_special(10)
thf(fact_5604_diff__numeral__special_I10_J,axiom,
    ( ( minus_minus_int @ ( uminus_uminus_int @ one_one_int ) @ one_one_int )
    = ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).

% diff_numeral_special(10)
thf(fact_5605_diff__numeral__special_I10_J,axiom,
    ( ( minus_minus_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ one_one_complex )
    = ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ).

% diff_numeral_special(10)
thf(fact_5606_diff__numeral__special_I10_J,axiom,
    ( ( minus_minus_rat @ ( uminus_uminus_rat @ one_one_rat ) @ one_one_rat )
    = ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) ).

% diff_numeral_special(10)
thf(fact_5607_diff__numeral__special_I10_J,axiom,
    ( ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ one_one_Code_integer )
    = ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ).

% diff_numeral_special(10)
thf(fact_5608_diff__numeral__special_I11_J,axiom,
    ( ( minus_minus_real @ one_one_real @ ( uminus_uminus_real @ one_one_real ) )
    = ( numeral_numeral_real @ ( bit0 @ one ) ) ) ).

% diff_numeral_special(11)
thf(fact_5609_diff__numeral__special_I11_J,axiom,
    ( ( minus_minus_int @ one_one_int @ ( uminus_uminus_int @ one_one_int ) )
    = ( numeral_numeral_int @ ( bit0 @ one ) ) ) ).

% diff_numeral_special(11)
thf(fact_5610_diff__numeral__special_I11_J,axiom,
    ( ( minus_minus_complex @ one_one_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) )
    = ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ).

% diff_numeral_special(11)
thf(fact_5611_diff__numeral__special_I11_J,axiom,
    ( ( minus_minus_rat @ one_one_rat @ ( uminus_uminus_rat @ one_one_rat ) )
    = ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ).

% diff_numeral_special(11)
thf(fact_5612_diff__numeral__special_I11_J,axiom,
    ( ( minus_8373710615458151222nteger @ one_one_Code_integer @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
    = ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ).

% diff_numeral_special(11)
thf(fact_5613_minus__1__div__2__eq,axiom,
    ( ( divide_divide_int @ ( uminus_uminus_int @ one_one_int ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
    = ( uminus_uminus_int @ one_one_int ) ) ).

% minus_1_div_2_eq
thf(fact_5614_minus__1__div__2__eq,axiom,
    ( ( divide6298287555418463151nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
    = ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% minus_1_div_2_eq
thf(fact_5615_minus__1__mod__2__eq,axiom,
    ( ( modulo_modulo_int @ ( uminus_uminus_int @ one_one_int ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
    = one_one_int ) ).

% minus_1_mod_2_eq
thf(fact_5616_minus__1__mod__2__eq,axiom,
    ( ( modulo364778990260209775nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
    = one_one_Code_integer ) ).

% minus_1_mod_2_eq
thf(fact_5617_bits__minus__1__mod__2__eq,axiom,
    ( ( modulo_modulo_int @ ( uminus_uminus_int @ one_one_int ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
    = one_one_int ) ).

% bits_minus_1_mod_2_eq
thf(fact_5618_bits__minus__1__mod__2__eq,axiom,
    ( ( modulo364778990260209775nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
    = one_one_Code_integer ) ).

% bits_minus_1_mod_2_eq
thf(fact_5619_Power_Oring__1__class_Opower__minus__even,axiom,
    ! [A: real,N2: nat] :
      ( ( power_power_real @ ( uminus_uminus_real @ A ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
      = ( power_power_real @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) ).

% Power.ring_1_class.power_minus_even
thf(fact_5620_Power_Oring__1__class_Opower__minus__even,axiom,
    ! [A: int,N2: nat] :
      ( ( power_power_int @ ( uminus_uminus_int @ A ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
      = ( power_power_int @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) ).

% Power.ring_1_class.power_minus_even
thf(fact_5621_Power_Oring__1__class_Opower__minus__even,axiom,
    ! [A: complex,N2: nat] :
      ( ( power_power_complex @ ( uminus1482373934393186551omplex @ A ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
      = ( power_power_complex @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) ).

% Power.ring_1_class.power_minus_even
thf(fact_5622_Power_Oring__1__class_Opower__minus__even,axiom,
    ! [A: rat,N2: nat] :
      ( ( power_power_rat @ ( uminus_uminus_rat @ A ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
      = ( power_power_rat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) ).

% Power.ring_1_class.power_minus_even
thf(fact_5623_Power_Oring__1__class_Opower__minus__even,axiom,
    ! [A: code_integer,N2: nat] :
      ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ A ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
      = ( power_8256067586552552935nteger @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) ).

% Power.ring_1_class.power_minus_even
thf(fact_5624_Parity_Oring__1__class_Opower__minus__even,axiom,
    ! [N2: nat,A: real] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ( power_power_real @ ( uminus_uminus_real @ A ) @ N2 )
        = ( power_power_real @ A @ N2 ) ) ) ).

% Parity.ring_1_class.power_minus_even
thf(fact_5625_Parity_Oring__1__class_Opower__minus__even,axiom,
    ! [N2: nat,A: int] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ( power_power_int @ ( uminus_uminus_int @ A ) @ N2 )
        = ( power_power_int @ A @ N2 ) ) ) ).

% Parity.ring_1_class.power_minus_even
thf(fact_5626_Parity_Oring__1__class_Opower__minus__even,axiom,
    ! [N2: nat,A: complex] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ( power_power_complex @ ( uminus1482373934393186551omplex @ A ) @ N2 )
        = ( power_power_complex @ A @ N2 ) ) ) ).

% Parity.ring_1_class.power_minus_even
thf(fact_5627_Parity_Oring__1__class_Opower__minus__even,axiom,
    ! [N2: nat,A: rat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ( power_power_rat @ ( uminus_uminus_rat @ A ) @ N2 )
        = ( power_power_rat @ A @ N2 ) ) ) ).

% Parity.ring_1_class.power_minus_even
thf(fact_5628_Parity_Oring__1__class_Opower__minus__even,axiom,
    ! [N2: nat,A: code_integer] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ A ) @ N2 )
        = ( power_8256067586552552935nteger @ A @ N2 ) ) ) ).

% Parity.ring_1_class.power_minus_even
thf(fact_5629_power__minus__odd,axiom,
    ! [N2: nat,A: real] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ( power_power_real @ ( uminus_uminus_real @ A ) @ N2 )
        = ( uminus_uminus_real @ ( power_power_real @ A @ N2 ) ) ) ) ).

% power_minus_odd
thf(fact_5630_power__minus__odd,axiom,
    ! [N2: nat,A: int] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ( power_power_int @ ( uminus_uminus_int @ A ) @ N2 )
        = ( uminus_uminus_int @ ( power_power_int @ A @ N2 ) ) ) ) ).

% power_minus_odd
thf(fact_5631_power__minus__odd,axiom,
    ! [N2: nat,A: complex] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ( power_power_complex @ ( uminus1482373934393186551omplex @ A ) @ N2 )
        = ( uminus1482373934393186551omplex @ ( power_power_complex @ A @ N2 ) ) ) ) ).

% power_minus_odd
thf(fact_5632_power__minus__odd,axiom,
    ! [N2: nat,A: rat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ( power_power_rat @ ( uminus_uminus_rat @ A ) @ N2 )
        = ( uminus_uminus_rat @ ( power_power_rat @ A @ N2 ) ) ) ) ).

% power_minus_odd
thf(fact_5633_power__minus__odd,axiom,
    ! [N2: nat,A: code_integer] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ A ) @ N2 )
        = ( uminus1351360451143612070nteger @ ( power_8256067586552552935nteger @ A @ N2 ) ) ) ) ).

% power_minus_odd
thf(fact_5634_diff__numeral__special_I4_J,axiom,
    ! [M: num] :
      ( ( minus_minus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ one_one_real )
      = ( uminus_uminus_real @ ( numeral_numeral_real @ ( plus_plus_num @ M @ one ) ) ) ) ).

% diff_numeral_special(4)
thf(fact_5635_diff__numeral__special_I4_J,axiom,
    ! [M: num] :
      ( ( minus_minus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ one_one_int )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( plus_plus_num @ M @ one ) ) ) ) ).

% diff_numeral_special(4)
thf(fact_5636_diff__numeral__special_I4_J,axiom,
    ! [M: num] :
      ( ( minus_minus_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ M ) ) @ one_one_complex )
      = ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( plus_plus_num @ M @ one ) ) ) ) ).

% diff_numeral_special(4)
thf(fact_5637_diff__numeral__special_I4_J,axiom,
    ! [M: num] :
      ( ( minus_minus_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ one_one_rat )
      = ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( plus_plus_num @ M @ one ) ) ) ) ).

% diff_numeral_special(4)
thf(fact_5638_diff__numeral__special_I4_J,axiom,
    ! [M: num] :
      ( ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ one_one_Code_integer )
      = ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( plus_plus_num @ M @ one ) ) ) ) ).

% diff_numeral_special(4)
thf(fact_5639_diff__numeral__special_I3_J,axiom,
    ! [N2: num] :
      ( ( minus_minus_real @ one_one_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ N2 ) ) )
      = ( numeral_numeral_real @ ( plus_plus_num @ one @ N2 ) ) ) ).

% diff_numeral_special(3)
thf(fact_5640_diff__numeral__special_I3_J,axiom,
    ! [N2: num] :
      ( ( minus_minus_int @ one_one_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) )
      = ( numeral_numeral_int @ ( plus_plus_num @ one @ N2 ) ) ) ).

% diff_numeral_special(3)
thf(fact_5641_diff__numeral__special_I3_J,axiom,
    ! [N2: num] :
      ( ( minus_minus_complex @ one_one_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N2 ) ) )
      = ( numera6690914467698888265omplex @ ( plus_plus_num @ one @ N2 ) ) ) ).

% diff_numeral_special(3)
thf(fact_5642_diff__numeral__special_I3_J,axiom,
    ! [N2: num] :
      ( ( minus_minus_rat @ one_one_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N2 ) ) )
      = ( numeral_numeral_rat @ ( plus_plus_num @ one @ N2 ) ) ) ).

% diff_numeral_special(3)
thf(fact_5643_diff__numeral__special_I3_J,axiom,
    ! [N2: num] :
      ( ( minus_8373710615458151222nteger @ one_one_Code_integer @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N2 ) ) )
      = ( numera6620942414471956472nteger @ ( plus_plus_num @ one @ N2 ) ) ) ).

% diff_numeral_special(3)
thf(fact_5644_signed__take__bit__Suc__minus__bit0,axiom,
    ! [N2: nat,K: num] :
      ( ( bit_ri631733984087533419it_int @ ( suc @ N2 ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ K ) ) ) )
      = ( times_times_int @ ( bit_ri631733984087533419it_int @ N2 @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).

% signed_take_bit_Suc_minus_bit0
thf(fact_5645_dbl__simps_I4_J,axiom,
    ( ( neg_numeral_dbl_real @ ( uminus_uminus_real @ one_one_real ) )
    = ( uminus_uminus_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% dbl_simps(4)
thf(fact_5646_dbl__simps_I4_J,axiom,
    ( ( neg_numeral_dbl_int @ ( uminus_uminus_int @ one_one_int ) )
    = ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).

% dbl_simps(4)
thf(fact_5647_dbl__simps_I4_J,axiom,
    ( ( neg_nu7009210354673126013omplex @ ( uminus1482373934393186551omplex @ one_one_complex ) )
    = ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ).

% dbl_simps(4)
thf(fact_5648_dbl__simps_I4_J,axiom,
    ( ( neg_numeral_dbl_rat @ ( uminus_uminus_rat @ one_one_rat ) )
    = ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) ).

% dbl_simps(4)
thf(fact_5649_dbl__simps_I4_J,axiom,
    ( ( neg_nu8804712462038260780nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
    = ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ).

% dbl_simps(4)
thf(fact_5650_power__minus1__even,axiom,
    ! [N2: nat] :
      ( ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
      = one_one_real ) ).

% power_minus1_even
thf(fact_5651_power__minus1__even,axiom,
    ! [N2: nat] :
      ( ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
      = one_one_int ) ).

% power_minus1_even
thf(fact_5652_power__minus1__even,axiom,
    ! [N2: nat] :
      ( ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
      = one_one_complex ) ).

% power_minus1_even
thf(fact_5653_power__minus1__even,axiom,
    ! [N2: nat] :
      ( ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
      = one_one_rat ) ).

% power_minus1_even
thf(fact_5654_power__minus1__even,axiom,
    ! [N2: nat] :
      ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
      = one_one_Code_integer ) ).

% power_minus1_even
thf(fact_5655_neg__one__even__power,axiom,
    ! [N2: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N2 )
        = one_one_real ) ) ).

% neg_one_even_power
thf(fact_5656_neg__one__even__power,axiom,
    ! [N2: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N2 )
        = one_one_int ) ) ).

% neg_one_even_power
thf(fact_5657_neg__one__even__power,axiom,
    ! [N2: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N2 )
        = one_one_complex ) ) ).

% neg_one_even_power
thf(fact_5658_neg__one__even__power,axiom,
    ! [N2: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ N2 )
        = one_one_rat ) ) ).

% neg_one_even_power
thf(fact_5659_neg__one__even__power,axiom,
    ! [N2: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ N2 )
        = one_one_Code_integer ) ) ).

% neg_one_even_power
thf(fact_5660_neg__one__odd__power,axiom,
    ! [N2: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N2 )
        = ( uminus_uminus_real @ one_one_real ) ) ) ).

% neg_one_odd_power
thf(fact_5661_neg__one__odd__power,axiom,
    ! [N2: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N2 )
        = ( uminus_uminus_int @ one_one_int ) ) ) ).

% neg_one_odd_power
thf(fact_5662_neg__one__odd__power,axiom,
    ! [N2: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N2 )
        = ( uminus1482373934393186551omplex @ one_one_complex ) ) ) ).

% neg_one_odd_power
thf(fact_5663_neg__one__odd__power,axiom,
    ! [N2: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ N2 )
        = ( uminus_uminus_rat @ one_one_rat ) ) ) ).

% neg_one_odd_power
thf(fact_5664_neg__one__odd__power,axiom,
    ! [N2: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ N2 )
        = ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ) ).

% neg_one_odd_power
thf(fact_5665_signed__take__bit__0,axiom,
    ! [A: code_integer] :
      ( ( bit_ri6519982836138164636nteger @ zero_zero_nat @ A )
      = ( uminus1351360451143612070nteger @ ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ).

% signed_take_bit_0
thf(fact_5666_signed__take__bit__0,axiom,
    ! [A: int] :
      ( ( bit_ri631733984087533419it_int @ zero_zero_nat @ A )
      = ( uminus_uminus_int @ ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ).

% signed_take_bit_0
thf(fact_5667_signed__take__bit__minus,axiom,
    ! [N2: nat,K: int] :
      ( ( bit_ri631733984087533419it_int @ N2 @ ( uminus_uminus_int @ ( bit_ri631733984087533419it_int @ N2 @ K ) ) )
      = ( bit_ri631733984087533419it_int @ N2 @ ( uminus_uminus_int @ K ) ) ) ).

% signed_take_bit_minus
thf(fact_5668_sum__negf,axiom,
    ! [F: int > int,A2: set_int] :
      ( ( groups4538972089207619220nt_int
        @ ^ [X3: int] : ( uminus_uminus_int @ ( F @ X3 ) )
        @ A2 )
      = ( uminus_uminus_int @ ( groups4538972089207619220nt_int @ F @ A2 ) ) ) ).

% sum_negf
thf(fact_5669_sum__negf,axiom,
    ! [F: complex > complex,A2: set_complex] :
      ( ( groups7754918857620584856omplex
        @ ^ [X3: complex] : ( uminus1482373934393186551omplex @ ( F @ X3 ) )
        @ A2 )
      = ( uminus1482373934393186551omplex @ ( groups7754918857620584856omplex @ F @ A2 ) ) ) ).

% sum_negf
thf(fact_5670_sum__negf,axiom,
    ! [F: nat > real,A2: set_nat] :
      ( ( groups6591440286371151544t_real
        @ ^ [X3: nat] : ( uminus_uminus_real @ ( F @ X3 ) )
        @ A2 )
      = ( uminus_uminus_real @ ( groups6591440286371151544t_real @ F @ A2 ) ) ) ).

% sum_negf
thf(fact_5671_sum_Oswap,axiom,
    ! [G: int > int > int,B3: set_int,A2: set_int] :
      ( ( groups4538972089207619220nt_int
        @ ^ [I5: int] : ( groups4538972089207619220nt_int @ ( G @ I5 ) @ B3 )
        @ A2 )
      = ( groups4538972089207619220nt_int
        @ ^ [J3: int] :
            ( groups4538972089207619220nt_int
            @ ^ [I5: int] : ( G @ I5 @ J3 )
            @ A2 )
        @ B3 ) ) ).

% sum.swap
thf(fact_5672_sum_Oswap,axiom,
    ! [G: complex > complex > complex,B3: set_complex,A2: set_complex] :
      ( ( groups7754918857620584856omplex
        @ ^ [I5: complex] : ( groups7754918857620584856omplex @ ( G @ I5 ) @ B3 )
        @ A2 )
      = ( groups7754918857620584856omplex
        @ ^ [J3: complex] :
            ( groups7754918857620584856omplex
            @ ^ [I5: complex] : ( G @ I5 @ J3 )
            @ A2 )
        @ B3 ) ) ).

% sum.swap
thf(fact_5673_sum_Oswap,axiom,
    ! [G: nat > nat > nat,B3: set_nat,A2: set_nat] :
      ( ( groups3542108847815614940at_nat
        @ ^ [I5: nat] : ( groups3542108847815614940at_nat @ ( G @ I5 ) @ B3 )
        @ A2 )
      = ( groups3542108847815614940at_nat
        @ ^ [J3: nat] :
            ( groups3542108847815614940at_nat
            @ ^ [I5: nat] : ( G @ I5 @ J3 )
            @ A2 )
        @ B3 ) ) ).

% sum.swap
thf(fact_5674_sum_Oswap,axiom,
    ! [G: nat > nat > real,B3: set_nat,A2: set_nat] :
      ( ( groups6591440286371151544t_real
        @ ^ [I5: nat] : ( groups6591440286371151544t_real @ ( G @ I5 ) @ B3 )
        @ A2 )
      = ( groups6591440286371151544t_real
        @ ^ [J3: nat] :
            ( groups6591440286371151544t_real
            @ ^ [I5: nat] : ( G @ I5 @ J3 )
            @ A2 )
        @ B3 ) ) ).

% sum.swap
thf(fact_5675_prod_Ocase__distrib,axiom,
    ! [H2: $o > $o,F: int > int > $o,Prod: product_prod_int_int] :
      ( ( H2 @ ( produc4947309494688390418_int_o @ F @ Prod ) )
      = ( produc4947309494688390418_int_o
        @ ^ [X15: int,X24: int] : ( H2 @ ( F @ X15 @ X24 ) )
        @ Prod ) ) ).

% prod.case_distrib
thf(fact_5676_prod_Ocase__distrib,axiom,
    ! [H2: $o > int,F: int > int > $o,Prod: product_prod_int_int] :
      ( ( H2 @ ( produc4947309494688390418_int_o @ F @ Prod ) )
      = ( produc8211389475949308722nt_int
        @ ^ [X15: int,X24: int] : ( H2 @ ( F @ X15 @ X24 ) )
        @ Prod ) ) ).

% prod.case_distrib
thf(fact_5677_prod_Ocase__distrib,axiom,
    ! [H2: int > $o,F: int > int > int,Prod: product_prod_int_int] :
      ( ( H2 @ ( produc8211389475949308722nt_int @ F @ Prod ) )
      = ( produc4947309494688390418_int_o
        @ ^ [X15: int,X24: int] : ( H2 @ ( F @ X15 @ X24 ) )
        @ Prod ) ) ).

% prod.case_distrib
thf(fact_5678_prod_Ocase__distrib,axiom,
    ! [H2: int > int,F: int > int > int,Prod: product_prod_int_int] :
      ( ( H2 @ ( produc8211389475949308722nt_int @ F @ Prod ) )
      = ( produc8211389475949308722nt_int
        @ ^ [X15: int,X24: int] : ( H2 @ ( F @ X15 @ X24 ) )
        @ Prod ) ) ).

% prod.case_distrib
thf(fact_5679_prod_Ocase__distrib,axiom,
    ! [H2: product_prod_int_int > $o,F: int > int > product_prod_int_int,Prod: product_prod_int_int] :
      ( ( H2 @ ( produc4245557441103728435nt_int @ F @ Prod ) )
      = ( produc4947309494688390418_int_o
        @ ^ [X15: int,X24: int] : ( H2 @ ( F @ X15 @ X24 ) )
        @ Prod ) ) ).

% prod.case_distrib
thf(fact_5680_prod_Ocase__distrib,axiom,
    ! [H2: product_prod_int_int > int,F: int > int > product_prod_int_int,Prod: product_prod_int_int] :
      ( ( H2 @ ( produc4245557441103728435nt_int @ F @ Prod ) )
      = ( produc8211389475949308722nt_int
        @ ^ [X15: int,X24: int] : ( H2 @ ( F @ X15 @ X24 ) )
        @ Prod ) ) ).

% prod.case_distrib
thf(fact_5681_prod_Ocase__distrib,axiom,
    ! [H2: $o > product_prod_int_int,F: int > int > $o,Prod: product_prod_int_int] :
      ( ( H2 @ ( produc4947309494688390418_int_o @ F @ Prod ) )
      = ( produc4245557441103728435nt_int
        @ ^ [X15: int,X24: int] : ( H2 @ ( F @ X15 @ X24 ) )
        @ Prod ) ) ).

% prod.case_distrib
thf(fact_5682_prod_Ocase__distrib,axiom,
    ! [H2: int > product_prod_int_int,F: int > int > int,Prod: product_prod_int_int] :
      ( ( H2 @ ( produc8211389475949308722nt_int @ F @ Prod ) )
      = ( produc4245557441103728435nt_int
        @ ^ [X15: int,X24: int] : ( H2 @ ( F @ X15 @ X24 ) )
        @ Prod ) ) ).

% prod.case_distrib
thf(fact_5683_prod_Ocase__distrib,axiom,
    ! [H2: product_prod_int_int > product_prod_int_int,F: int > int > product_prod_int_int,Prod: product_prod_int_int] :
      ( ( H2 @ ( produc4245557441103728435nt_int @ F @ Prod ) )
      = ( produc4245557441103728435nt_int
        @ ^ [X15: int,X24: int] : ( H2 @ ( F @ X15 @ X24 ) )
        @ Prod ) ) ).

% prod.case_distrib
thf(fact_5684_prod_Ocase__distrib,axiom,
    ! [H2: ( product_prod_nat_nat > $o ) > product_prod_nat_nat > $o,F: nat > nat > product_prod_nat_nat > $o,Prod: product_prod_nat_nat] :
      ( ( H2 @ ( produc8739625826339149834_nat_o @ F @ Prod ) )
      = ( produc8739625826339149834_nat_o
        @ ^ [X15: nat,X24: nat] : ( H2 @ ( F @ X15 @ X24 ) )
        @ Prod ) ) ).

% prod.case_distrib
thf(fact_5685_le__minus__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ ( uminus_uminus_real @ B ) )
      = ( ord_less_eq_real @ B @ ( uminus_uminus_real @ A ) ) ) ).

% le_minus_iff
thf(fact_5686_le__minus__iff,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ord_le3102999989581377725nteger @ A @ ( uminus1351360451143612070nteger @ B ) )
      = ( ord_le3102999989581377725nteger @ B @ ( uminus1351360451143612070nteger @ A ) ) ) ).

% le_minus_iff
thf(fact_5687_le__minus__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ A @ ( uminus_uminus_rat @ B ) )
      = ( ord_less_eq_rat @ B @ ( uminus_uminus_rat @ A ) ) ) ).

% le_minus_iff
thf(fact_5688_le__minus__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ ( uminus_uminus_int @ B ) )
      = ( ord_less_eq_int @ B @ ( uminus_uminus_int @ A ) ) ) ).

% le_minus_iff
thf(fact_5689_minus__le__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ A ) @ B )
      = ( ord_less_eq_real @ ( uminus_uminus_real @ B ) @ A ) ) ).

% minus_le_iff
thf(fact_5690_minus__le__iff,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ A ) @ B )
      = ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ B ) @ A ) ) ).

% minus_le_iff
thf(fact_5691_minus__le__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( uminus_uminus_rat @ A ) @ B )
      = ( ord_less_eq_rat @ ( uminus_uminus_rat @ B ) @ A ) ) ).

% minus_le_iff
thf(fact_5692_minus__le__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ B )
      = ( ord_less_eq_int @ ( uminus_uminus_int @ B ) @ A ) ) ).

% minus_le_iff
thf(fact_5693_le__imp__neg__le,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ord_less_eq_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) ) ) ).

% le_imp_neg_le
thf(fact_5694_le__imp__neg__le,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ord_le3102999989581377725nteger @ A @ B )
     => ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ B ) @ ( uminus1351360451143612070nteger @ A ) ) ) ).

% le_imp_neg_le
thf(fact_5695_le__imp__neg__le,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ord_less_eq_rat @ ( uminus_uminus_rat @ B ) @ ( uminus_uminus_rat @ A ) ) ) ).

% le_imp_neg_le
thf(fact_5696_le__imp__neg__le,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ord_less_eq_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) ) ) ).

% le_imp_neg_le
thf(fact_5697_compl__le__swap2,axiom,
    ! [Y: set_int,X: set_int] :
      ( ( ord_less_eq_set_int @ ( uminus1532241313380277803et_int @ Y ) @ X )
     => ( ord_less_eq_set_int @ ( uminus1532241313380277803et_int @ X ) @ Y ) ) ).

% compl_le_swap2
thf(fact_5698_compl__le__swap1,axiom,
    ! [Y: set_int,X: set_int] :
      ( ( ord_less_eq_set_int @ Y @ ( uminus1532241313380277803et_int @ X ) )
     => ( ord_less_eq_set_int @ X @ ( uminus1532241313380277803et_int @ Y ) ) ) ).

% compl_le_swap1
thf(fact_5699_compl__mono,axiom,
    ! [X: set_int,Y: set_int] :
      ( ( ord_less_eq_set_int @ X @ Y )
     => ( ord_less_eq_set_int @ ( uminus1532241313380277803et_int @ Y ) @ ( uminus1532241313380277803et_int @ X ) ) ) ).

% compl_mono
thf(fact_5700_less__minus__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ ( uminus_uminus_real @ B ) )
      = ( ord_less_real @ B @ ( uminus_uminus_real @ A ) ) ) ).

% less_minus_iff
thf(fact_5701_less__minus__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ ( uminus_uminus_int @ B ) )
      = ( ord_less_int @ B @ ( uminus_uminus_int @ A ) ) ) ).

% less_minus_iff
thf(fact_5702_less__minus__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ ( uminus_uminus_rat @ B ) )
      = ( ord_less_rat @ B @ ( uminus_uminus_rat @ A ) ) ) ).

% less_minus_iff
thf(fact_5703_less__minus__iff,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ord_le6747313008572928689nteger @ A @ ( uminus1351360451143612070nteger @ B ) )
      = ( ord_le6747313008572928689nteger @ B @ ( uminus1351360451143612070nteger @ A ) ) ) ).

% less_minus_iff
thf(fact_5704_minus__less__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ A ) @ B )
      = ( ord_less_real @ ( uminus_uminus_real @ B ) @ A ) ) ).

% minus_less_iff
thf(fact_5705_minus__less__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ ( uminus_uminus_int @ A ) @ B )
      = ( ord_less_int @ ( uminus_uminus_int @ B ) @ A ) ) ).

% minus_less_iff
thf(fact_5706_minus__less__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ ( uminus_uminus_rat @ A ) @ B )
      = ( ord_less_rat @ ( uminus_uminus_rat @ B ) @ A ) ) ).

% minus_less_iff
thf(fact_5707_minus__less__iff,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ A ) @ B )
      = ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ B ) @ A ) ) ).

% minus_less_iff
thf(fact_5708_verit__negate__coefficient_I2_J,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ( ord_less_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) ) ) ).

% verit_negate_coefficient(2)
thf(fact_5709_verit__negate__coefficient_I2_J,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ B )
     => ( ord_less_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) ) ) ).

% verit_negate_coefficient(2)
thf(fact_5710_verit__negate__coefficient_I2_J,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ord_less_rat @ ( uminus_uminus_rat @ B ) @ ( uminus_uminus_rat @ A ) ) ) ).

% verit_negate_coefficient(2)
thf(fact_5711_verit__negate__coefficient_I2_J,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ord_le6747313008572928689nteger @ A @ B )
     => ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ B ) @ ( uminus1351360451143612070nteger @ A ) ) ) ).

% verit_negate_coefficient(2)
thf(fact_5712_numeral__neq__neg__numeral,axiom,
    ! [M: num,N2: num] :
      ( ( numeral_numeral_real @ M )
     != ( uminus_uminus_real @ ( numeral_numeral_real @ N2 ) ) ) ).

% numeral_neq_neg_numeral
thf(fact_5713_numeral__neq__neg__numeral,axiom,
    ! [M: num,N2: num] :
      ( ( numeral_numeral_int @ M )
     != ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) ) ).

% numeral_neq_neg_numeral
thf(fact_5714_numeral__neq__neg__numeral,axiom,
    ! [M: num,N2: num] :
      ( ( numera6690914467698888265omplex @ M )
     != ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N2 ) ) ) ).

% numeral_neq_neg_numeral
thf(fact_5715_numeral__neq__neg__numeral,axiom,
    ! [M: num,N2: num] :
      ( ( numeral_numeral_rat @ M )
     != ( uminus_uminus_rat @ ( numeral_numeral_rat @ N2 ) ) ) ).

% numeral_neq_neg_numeral
thf(fact_5716_numeral__neq__neg__numeral,axiom,
    ! [M: num,N2: num] :
      ( ( numera6620942414471956472nteger @ M )
     != ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N2 ) ) ) ).

% numeral_neq_neg_numeral
thf(fact_5717_neg__numeral__neq__numeral,axiom,
    ! [M: num,N2: num] :
      ( ( uminus_uminus_real @ ( numeral_numeral_real @ M ) )
     != ( numeral_numeral_real @ N2 ) ) ).

% neg_numeral_neq_numeral
thf(fact_5718_neg__numeral__neq__numeral,axiom,
    ! [M: num,N2: num] :
      ( ( uminus_uminus_int @ ( numeral_numeral_int @ M ) )
     != ( numeral_numeral_int @ N2 ) ) ).

% neg_numeral_neq_numeral
thf(fact_5719_neg__numeral__neq__numeral,axiom,
    ! [M: num,N2: num] :
      ( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ M ) )
     != ( numera6690914467698888265omplex @ N2 ) ) ).

% neg_numeral_neq_numeral
thf(fact_5720_neg__numeral__neq__numeral,axiom,
    ! [M: num,N2: num] :
      ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) )
     != ( numeral_numeral_rat @ N2 ) ) ).

% neg_numeral_neq_numeral
thf(fact_5721_neg__numeral__neq__numeral,axiom,
    ! [M: num,N2: num] :
      ( ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) )
     != ( numera6620942414471956472nteger @ N2 ) ) ).

% neg_numeral_neq_numeral
thf(fact_5722_minus__mult__commute,axiom,
    ! [A: real,B: real] :
      ( ( times_times_real @ ( uminus_uminus_real @ A ) @ B )
      = ( times_times_real @ A @ ( uminus_uminus_real @ B ) ) ) ).

% minus_mult_commute
thf(fact_5723_minus__mult__commute,axiom,
    ! [A: int,B: int] :
      ( ( times_times_int @ ( uminus_uminus_int @ A ) @ B )
      = ( times_times_int @ A @ ( uminus_uminus_int @ B ) ) ) ).

% minus_mult_commute
thf(fact_5724_minus__mult__commute,axiom,
    ! [A: complex,B: complex] :
      ( ( times_times_complex @ ( uminus1482373934393186551omplex @ A ) @ B )
      = ( times_times_complex @ A @ ( uminus1482373934393186551omplex @ B ) ) ) ).

% minus_mult_commute
thf(fact_5725_minus__mult__commute,axiom,
    ! [A: rat,B: rat] :
      ( ( times_times_rat @ ( uminus_uminus_rat @ A ) @ B )
      = ( times_times_rat @ A @ ( uminus_uminus_rat @ B ) ) ) ).

% minus_mult_commute
thf(fact_5726_minus__mult__commute,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ A ) @ B )
      = ( times_3573771949741848930nteger @ A @ ( uminus1351360451143612070nteger @ B ) ) ) ).

% minus_mult_commute
thf(fact_5727_square__eq__iff,axiom,
    ! [A: real,B: real] :
      ( ( ( times_times_real @ A @ A )
        = ( times_times_real @ B @ B ) )
      = ( ( A = B )
        | ( A
          = ( uminus_uminus_real @ B ) ) ) ) ).

% square_eq_iff
thf(fact_5728_square__eq__iff,axiom,
    ! [A: int,B: int] :
      ( ( ( times_times_int @ A @ A )
        = ( times_times_int @ B @ B ) )
      = ( ( A = B )
        | ( A
          = ( uminus_uminus_int @ B ) ) ) ) ).

% square_eq_iff
thf(fact_5729_square__eq__iff,axiom,
    ! [A: complex,B: complex] :
      ( ( ( times_times_complex @ A @ A )
        = ( times_times_complex @ B @ B ) )
      = ( ( A = B )
        | ( A
          = ( uminus1482373934393186551omplex @ B ) ) ) ) ).

% square_eq_iff
thf(fact_5730_square__eq__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ( times_times_rat @ A @ A )
        = ( times_times_rat @ B @ B ) )
      = ( ( A = B )
        | ( A
          = ( uminus_uminus_rat @ B ) ) ) ) ).

% square_eq_iff
thf(fact_5731_square__eq__iff,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ( times_3573771949741848930nteger @ A @ A )
        = ( times_3573771949741848930nteger @ B @ B ) )
      = ( ( A = B )
        | ( A
          = ( uminus1351360451143612070nteger @ B ) ) ) ) ).

% square_eq_iff
thf(fact_5732_is__num__normalize_I8_J,axiom,
    ! [A: real,B: real] :
      ( ( uminus_uminus_real @ ( plus_plus_real @ A @ B ) )
      = ( plus_plus_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) ) ) ).

% is_num_normalize(8)
thf(fact_5733_is__num__normalize_I8_J,axiom,
    ! [A: int,B: int] :
      ( ( uminus_uminus_int @ ( plus_plus_int @ A @ B ) )
      = ( plus_plus_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) ) ) ).

% is_num_normalize(8)
thf(fact_5734_is__num__normalize_I8_J,axiom,
    ! [A: complex,B: complex] :
      ( ( uminus1482373934393186551omplex @ ( plus_plus_complex @ A @ B ) )
      = ( plus_plus_complex @ ( uminus1482373934393186551omplex @ B ) @ ( uminus1482373934393186551omplex @ A ) ) ) ).

% is_num_normalize(8)
thf(fact_5735_is__num__normalize_I8_J,axiom,
    ! [A: rat,B: rat] :
      ( ( uminus_uminus_rat @ ( plus_plus_rat @ A @ B ) )
      = ( plus_plus_rat @ ( uminus_uminus_rat @ B ) @ ( uminus_uminus_rat @ A ) ) ) ).

% is_num_normalize(8)
thf(fact_5736_is__num__normalize_I8_J,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( uminus1351360451143612070nteger @ ( plus_p5714425477246183910nteger @ A @ B ) )
      = ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ B ) @ ( uminus1351360451143612070nteger @ A ) ) ) ).

% is_num_normalize(8)
thf(fact_5737_add_Oinverse__distrib__swap,axiom,
    ! [A: real,B: real] :
      ( ( uminus_uminus_real @ ( plus_plus_real @ A @ B ) )
      = ( plus_plus_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) ) ) ).

% add.inverse_distrib_swap
thf(fact_5738_add_Oinverse__distrib__swap,axiom,
    ! [A: int,B: int] :
      ( ( uminus_uminus_int @ ( plus_plus_int @ A @ B ) )
      = ( plus_plus_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) ) ) ).

% add.inverse_distrib_swap
thf(fact_5739_add_Oinverse__distrib__swap,axiom,
    ! [A: complex,B: complex] :
      ( ( uminus1482373934393186551omplex @ ( plus_plus_complex @ A @ B ) )
      = ( plus_plus_complex @ ( uminus1482373934393186551omplex @ B ) @ ( uminus1482373934393186551omplex @ A ) ) ) ).

% add.inverse_distrib_swap
thf(fact_5740_add_Oinverse__distrib__swap,axiom,
    ! [A: rat,B: rat] :
      ( ( uminus_uminus_rat @ ( plus_plus_rat @ A @ B ) )
      = ( plus_plus_rat @ ( uminus_uminus_rat @ B ) @ ( uminus_uminus_rat @ A ) ) ) ).

% add.inverse_distrib_swap
thf(fact_5741_add_Oinverse__distrib__swap,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( uminus1351360451143612070nteger @ ( plus_p5714425477246183910nteger @ A @ B ) )
      = ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ B ) @ ( uminus1351360451143612070nteger @ A ) ) ) ).

% add.inverse_distrib_swap
thf(fact_5742_group__cancel_Oneg1,axiom,
    ! [A2: real,K: real,A: real] :
      ( ( A2
        = ( plus_plus_real @ K @ A ) )
     => ( ( uminus_uminus_real @ A2 )
        = ( plus_plus_real @ ( uminus_uminus_real @ K ) @ ( uminus_uminus_real @ A ) ) ) ) ).

% group_cancel.neg1
thf(fact_5743_group__cancel_Oneg1,axiom,
    ! [A2: int,K: int,A: int] :
      ( ( A2
        = ( plus_plus_int @ K @ A ) )
     => ( ( uminus_uminus_int @ A2 )
        = ( plus_plus_int @ ( uminus_uminus_int @ K ) @ ( uminus_uminus_int @ A ) ) ) ) ).

% group_cancel.neg1
thf(fact_5744_group__cancel_Oneg1,axiom,
    ! [A2: complex,K: complex,A: complex] :
      ( ( A2
        = ( plus_plus_complex @ K @ A ) )
     => ( ( uminus1482373934393186551omplex @ A2 )
        = ( plus_plus_complex @ ( uminus1482373934393186551omplex @ K ) @ ( uminus1482373934393186551omplex @ A ) ) ) ) ).

% group_cancel.neg1
thf(fact_5745_group__cancel_Oneg1,axiom,
    ! [A2: rat,K: rat,A: rat] :
      ( ( A2
        = ( plus_plus_rat @ K @ A ) )
     => ( ( uminus_uminus_rat @ A2 )
        = ( plus_plus_rat @ ( uminus_uminus_rat @ K ) @ ( uminus_uminus_rat @ A ) ) ) ) ).

% group_cancel.neg1
thf(fact_5746_group__cancel_Oneg1,axiom,
    ! [A2: code_integer,K: code_integer,A: code_integer] :
      ( ( A2
        = ( plus_p5714425477246183910nteger @ K @ A ) )
     => ( ( uminus1351360451143612070nteger @ A2 )
        = ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ K ) @ ( uminus1351360451143612070nteger @ A ) ) ) ) ).

% group_cancel.neg1
thf(fact_5747_one__neq__neg__one,axiom,
    ( one_one_real
   != ( uminus_uminus_real @ one_one_real ) ) ).

% one_neq_neg_one
thf(fact_5748_one__neq__neg__one,axiom,
    ( one_one_int
   != ( uminus_uminus_int @ one_one_int ) ) ).

% one_neq_neg_one
thf(fact_5749_one__neq__neg__one,axiom,
    ( one_one_complex
   != ( uminus1482373934393186551omplex @ one_one_complex ) ) ).

% one_neq_neg_one
thf(fact_5750_one__neq__neg__one,axiom,
    ( one_one_rat
   != ( uminus_uminus_rat @ one_one_rat ) ) ).

% one_neq_neg_one
thf(fact_5751_one__neq__neg__one,axiom,
    ( one_one_Code_integer
   != ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% one_neq_neg_one
thf(fact_5752_minus__diff__minus,axiom,
    ! [A: real,B: real] :
      ( ( minus_minus_real @ ( uminus_uminus_real @ A ) @ ( uminus_uminus_real @ B ) )
      = ( uminus_uminus_real @ ( minus_minus_real @ A @ B ) ) ) ).

% minus_diff_minus
thf(fact_5753_minus__diff__minus,axiom,
    ! [A: int,B: int] :
      ( ( minus_minus_int @ ( uminus_uminus_int @ A ) @ ( uminus_uminus_int @ B ) )
      = ( uminus_uminus_int @ ( minus_minus_int @ A @ B ) ) ) ).

% minus_diff_minus
thf(fact_5754_minus__diff__minus,axiom,
    ! [A: complex,B: complex] :
      ( ( minus_minus_complex @ ( uminus1482373934393186551omplex @ A ) @ ( uminus1482373934393186551omplex @ B ) )
      = ( uminus1482373934393186551omplex @ ( minus_minus_complex @ A @ B ) ) ) ).

% minus_diff_minus
thf(fact_5755_minus__diff__minus,axiom,
    ! [A: rat,B: rat] :
      ( ( minus_minus_rat @ ( uminus_uminus_rat @ A ) @ ( uminus_uminus_rat @ B ) )
      = ( uminus_uminus_rat @ ( minus_minus_rat @ A @ B ) ) ) ).

% minus_diff_minus
thf(fact_5756_minus__diff__minus,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ A ) @ ( uminus1351360451143612070nteger @ B ) )
      = ( uminus1351360451143612070nteger @ ( minus_8373710615458151222nteger @ A @ B ) ) ) ).

% minus_diff_minus
thf(fact_5757_minus__diff__commute,axiom,
    ! [B: real,A: real] :
      ( ( minus_minus_real @ ( uminus_uminus_real @ B ) @ A )
      = ( minus_minus_real @ ( uminus_uminus_real @ A ) @ B ) ) ).

% minus_diff_commute
thf(fact_5758_minus__diff__commute,axiom,
    ! [B: int,A: int] :
      ( ( minus_minus_int @ ( uminus_uminus_int @ B ) @ A )
      = ( minus_minus_int @ ( uminus_uminus_int @ A ) @ B ) ) ).

% minus_diff_commute
thf(fact_5759_minus__diff__commute,axiom,
    ! [B: complex,A: complex] :
      ( ( minus_minus_complex @ ( uminus1482373934393186551omplex @ B ) @ A )
      = ( minus_minus_complex @ ( uminus1482373934393186551omplex @ A ) @ B ) ) ).

% minus_diff_commute
thf(fact_5760_minus__diff__commute,axiom,
    ! [B: rat,A: rat] :
      ( ( minus_minus_rat @ ( uminus_uminus_rat @ B ) @ A )
      = ( minus_minus_rat @ ( uminus_uminus_rat @ A ) @ B ) ) ).

% minus_diff_commute
thf(fact_5761_minus__diff__commute,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ B ) @ A )
      = ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ A ) @ B ) ) ).

% minus_diff_commute
thf(fact_5762_div__minus__right,axiom,
    ! [A: int,B: int] :
      ( ( divide_divide_int @ A @ ( uminus_uminus_int @ B ) )
      = ( divide_divide_int @ ( uminus_uminus_int @ A ) @ B ) ) ).

% div_minus_right
thf(fact_5763_div__minus__right,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( divide6298287555418463151nteger @ A @ ( uminus1351360451143612070nteger @ B ) )
      = ( divide6298287555418463151nteger @ ( uminus1351360451143612070nteger @ A ) @ B ) ) ).

% div_minus_right
thf(fact_5764_minus__divide__left,axiom,
    ! [A: real,B: real] :
      ( ( uminus_uminus_real @ ( divide_divide_real @ A @ B ) )
      = ( divide_divide_real @ ( uminus_uminus_real @ A ) @ B ) ) ).

% minus_divide_left
thf(fact_5765_minus__divide__left,axiom,
    ! [A: complex,B: complex] :
      ( ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ A @ B ) )
      = ( divide1717551699836669952omplex @ ( uminus1482373934393186551omplex @ A ) @ B ) ) ).

% minus_divide_left
thf(fact_5766_minus__divide__left,axiom,
    ! [A: rat,B: rat] :
      ( ( uminus_uminus_rat @ ( divide_divide_rat @ A @ B ) )
      = ( divide_divide_rat @ ( uminus_uminus_rat @ A ) @ B ) ) ).

% minus_divide_left
thf(fact_5767_minus__divide__divide,axiom,
    ! [A: real,B: real] :
      ( ( divide_divide_real @ ( uminus_uminus_real @ A ) @ ( uminus_uminus_real @ B ) )
      = ( divide_divide_real @ A @ B ) ) ).

% minus_divide_divide
thf(fact_5768_minus__divide__divide,axiom,
    ! [A: complex,B: complex] :
      ( ( divide1717551699836669952omplex @ ( uminus1482373934393186551omplex @ A ) @ ( uminus1482373934393186551omplex @ B ) )
      = ( divide1717551699836669952omplex @ A @ B ) ) ).

% minus_divide_divide
thf(fact_5769_minus__divide__divide,axiom,
    ! [A: rat,B: rat] :
      ( ( divide_divide_rat @ ( uminus_uminus_rat @ A ) @ ( uminus_uminus_rat @ B ) )
      = ( divide_divide_rat @ A @ B ) ) ).

% minus_divide_divide
thf(fact_5770_minus__divide__right,axiom,
    ! [A: real,B: real] :
      ( ( uminus_uminus_real @ ( divide_divide_real @ A @ B ) )
      = ( divide_divide_real @ A @ ( uminus_uminus_real @ B ) ) ) ).

% minus_divide_right
thf(fact_5771_minus__divide__right,axiom,
    ! [A: complex,B: complex] :
      ( ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ A @ B ) )
      = ( divide1717551699836669952omplex @ A @ ( uminus1482373934393186551omplex @ B ) ) ) ).

% minus_divide_right
thf(fact_5772_minus__divide__right,axiom,
    ! [A: rat,B: rat] :
      ( ( uminus_uminus_rat @ ( divide_divide_rat @ A @ B ) )
      = ( divide_divide_rat @ A @ ( uminus_uminus_rat @ B ) ) ) ).

% minus_divide_right
thf(fact_5773_old_Oprod_Ocase,axiom,
    ! [F: nat > nat > product_prod_nat_nat > product_prod_nat_nat,X1: nat,X22: nat] :
      ( ( produc27273713700761075at_nat @ F @ ( product_Pair_nat_nat @ X1 @ X22 ) )
      = ( F @ X1 @ X22 ) ) ).

% old.prod.case
thf(fact_5774_old_Oprod_Ocase,axiom,
    ! [F: nat > nat > product_prod_nat_nat > $o,X1: nat,X22: nat] :
      ( ( produc8739625826339149834_nat_o @ F @ ( product_Pair_nat_nat @ X1 @ X22 ) )
      = ( F @ X1 @ X22 ) ) ).

% old.prod.case
thf(fact_5775_old_Oprod_Ocase,axiom,
    ! [F: int > int > product_prod_int_int,X1: int,X22: int] :
      ( ( produc4245557441103728435nt_int @ F @ ( product_Pair_int_int @ X1 @ X22 ) )
      = ( F @ X1 @ X22 ) ) ).

% old.prod.case
thf(fact_5776_old_Oprod_Ocase,axiom,
    ! [F: int > int > $o,X1: int,X22: int] :
      ( ( produc4947309494688390418_int_o @ F @ ( product_Pair_int_int @ X1 @ X22 ) )
      = ( F @ X1 @ X22 ) ) ).

% old.prod.case
thf(fact_5777_old_Oprod_Ocase,axiom,
    ! [F: int > int > int,X1: int,X22: int] :
      ( ( produc8211389475949308722nt_int @ F @ ( product_Pair_int_int @ X1 @ X22 ) )
      = ( F @ X1 @ X22 ) ) ).

% old.prod.case
thf(fact_5778_mod__minus__right,axiom,
    ! [A: int,B: int] :
      ( ( modulo_modulo_int @ A @ ( uminus_uminus_int @ B ) )
      = ( uminus_uminus_int @ ( modulo_modulo_int @ ( uminus_uminus_int @ A ) @ B ) ) ) ).

% mod_minus_right
thf(fact_5779_mod__minus__right,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( modulo364778990260209775nteger @ A @ ( uminus1351360451143612070nteger @ B ) )
      = ( uminus1351360451143612070nteger @ ( modulo364778990260209775nteger @ ( uminus1351360451143612070nteger @ A ) @ B ) ) ) ).

% mod_minus_right
thf(fact_5780_mod__minus__cong,axiom,
    ! [A: int,B: int,A6: int] :
      ( ( ( modulo_modulo_int @ A @ B )
        = ( modulo_modulo_int @ A6 @ B ) )
     => ( ( modulo_modulo_int @ ( uminus_uminus_int @ A ) @ B )
        = ( modulo_modulo_int @ ( uminus_uminus_int @ A6 ) @ B ) ) ) ).

% mod_minus_cong
thf(fact_5781_mod__minus__cong,axiom,
    ! [A: code_integer,B: code_integer,A6: code_integer] :
      ( ( ( modulo364778990260209775nteger @ A @ B )
        = ( modulo364778990260209775nteger @ A6 @ B ) )
     => ( ( modulo364778990260209775nteger @ ( uminus1351360451143612070nteger @ A ) @ B )
        = ( modulo364778990260209775nteger @ ( uminus1351360451143612070nteger @ A6 ) @ B ) ) ) ).

% mod_minus_cong
thf(fact_5782_mod__minus__eq,axiom,
    ! [A: int,B: int] :
      ( ( modulo_modulo_int @ ( uminus_uminus_int @ ( modulo_modulo_int @ A @ B ) ) @ B )
      = ( modulo_modulo_int @ ( uminus_uminus_int @ A ) @ B ) ) ).

% mod_minus_eq
thf(fact_5783_mod__minus__eq,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( modulo364778990260209775nteger @ ( uminus1351360451143612070nteger @ ( modulo364778990260209775nteger @ A @ B ) ) @ B )
      = ( modulo364778990260209775nteger @ ( uminus1351360451143612070nteger @ A ) @ B ) ) ).

% mod_minus_eq
thf(fact_5784_sum__mono,axiom,
    ! [K5: set_complex,F: complex > rat,G: complex > rat] :
      ( ! [I3: complex] :
          ( ( member_complex @ I3 @ K5 )
         => ( ord_less_eq_rat @ ( F @ I3 ) @ ( G @ I3 ) ) )
     => ( ord_less_eq_rat @ ( groups5058264527183730370ex_rat @ F @ K5 ) @ ( groups5058264527183730370ex_rat @ G @ K5 ) ) ) ).

% sum_mono
thf(fact_5785_sum__mono,axiom,
    ! [K5: set_real,F: real > rat,G: real > rat] :
      ( ! [I3: real] :
          ( ( member_real @ I3 @ K5 )
         => ( ord_less_eq_rat @ ( F @ I3 ) @ ( G @ I3 ) ) )
     => ( ord_less_eq_rat @ ( groups1300246762558778688al_rat @ F @ K5 ) @ ( groups1300246762558778688al_rat @ G @ K5 ) ) ) ).

% sum_mono
thf(fact_5786_sum__mono,axiom,
    ! [K5: set_nat,F: nat > rat,G: nat > rat] :
      ( ! [I3: nat] :
          ( ( member_nat @ I3 @ K5 )
         => ( ord_less_eq_rat @ ( F @ I3 ) @ ( G @ I3 ) ) )
     => ( ord_less_eq_rat @ ( groups2906978787729119204at_rat @ F @ K5 ) @ ( groups2906978787729119204at_rat @ G @ K5 ) ) ) ).

% sum_mono
thf(fact_5787_sum__mono,axiom,
    ! [K5: set_int,F: int > rat,G: int > rat] :
      ( ! [I3: int] :
          ( ( member_int @ I3 @ K5 )
         => ( ord_less_eq_rat @ ( F @ I3 ) @ ( G @ I3 ) ) )
     => ( ord_less_eq_rat @ ( groups3906332499630173760nt_rat @ F @ K5 ) @ ( groups3906332499630173760nt_rat @ G @ K5 ) ) ) ).

% sum_mono
thf(fact_5788_sum__mono,axiom,
    ! [K5: set_complex,F: complex > nat,G: complex > nat] :
      ( ! [I3: complex] :
          ( ( member_complex @ I3 @ K5 )
         => ( ord_less_eq_nat @ ( F @ I3 ) @ ( G @ I3 ) ) )
     => ( ord_less_eq_nat @ ( groups5693394587270226106ex_nat @ F @ K5 ) @ ( groups5693394587270226106ex_nat @ G @ K5 ) ) ) ).

% sum_mono
thf(fact_5789_sum__mono,axiom,
    ! [K5: set_real,F: real > nat,G: real > nat] :
      ( ! [I3: real] :
          ( ( member_real @ I3 @ K5 )
         => ( ord_less_eq_nat @ ( F @ I3 ) @ ( G @ I3 ) ) )
     => ( ord_less_eq_nat @ ( groups1935376822645274424al_nat @ F @ K5 ) @ ( groups1935376822645274424al_nat @ G @ K5 ) ) ) ).

% sum_mono
thf(fact_5790_sum__mono,axiom,
    ! [K5: set_int,F: int > nat,G: int > nat] :
      ( ! [I3: int] :
          ( ( member_int @ I3 @ K5 )
         => ( ord_less_eq_nat @ ( F @ I3 ) @ ( G @ I3 ) ) )
     => ( ord_less_eq_nat @ ( groups4541462559716669496nt_nat @ F @ K5 ) @ ( groups4541462559716669496nt_nat @ G @ K5 ) ) ) ).

% sum_mono
thf(fact_5791_sum__mono,axiom,
    ! [K5: set_complex,F: complex > int,G: complex > int] :
      ( ! [I3: complex] :
          ( ( member_complex @ I3 @ K5 )
         => ( ord_less_eq_int @ ( F @ I3 ) @ ( G @ I3 ) ) )
     => ( ord_less_eq_int @ ( groups5690904116761175830ex_int @ F @ K5 ) @ ( groups5690904116761175830ex_int @ G @ K5 ) ) ) ).

% sum_mono
thf(fact_5792_sum__mono,axiom,
    ! [K5: set_real,F: real > int,G: real > int] :
      ( ! [I3: real] :
          ( ( member_real @ I3 @ K5 )
         => ( ord_less_eq_int @ ( F @ I3 ) @ ( G @ I3 ) ) )
     => ( ord_less_eq_int @ ( groups1932886352136224148al_int @ F @ K5 ) @ ( groups1932886352136224148al_int @ G @ K5 ) ) ) ).

% sum_mono
thf(fact_5793_sum__mono,axiom,
    ! [K5: set_nat,F: nat > int,G: nat > int] :
      ( ! [I3: nat] :
          ( ( member_nat @ I3 @ K5 )
         => ( ord_less_eq_int @ ( F @ I3 ) @ ( G @ I3 ) ) )
     => ( ord_less_eq_int @ ( groups3539618377306564664at_int @ F @ K5 ) @ ( groups3539618377306564664at_int @ G @ K5 ) ) ) ).

% sum_mono
thf(fact_5794_sum__product,axiom,
    ! [F: int > int,A2: set_int,G: int > int,B3: set_int] :
      ( ( times_times_int @ ( groups4538972089207619220nt_int @ F @ A2 ) @ ( groups4538972089207619220nt_int @ G @ B3 ) )
      = ( groups4538972089207619220nt_int
        @ ^ [I5: int] :
            ( groups4538972089207619220nt_int
            @ ^ [J3: int] : ( times_times_int @ ( F @ I5 ) @ ( G @ J3 ) )
            @ B3 )
        @ A2 ) ) ).

% sum_product
thf(fact_5795_sum__product,axiom,
    ! [F: complex > complex,A2: set_complex,G: complex > complex,B3: set_complex] :
      ( ( times_times_complex @ ( groups7754918857620584856omplex @ F @ A2 ) @ ( groups7754918857620584856omplex @ G @ B3 ) )
      = ( groups7754918857620584856omplex
        @ ^ [I5: complex] :
            ( groups7754918857620584856omplex
            @ ^ [J3: complex] : ( times_times_complex @ ( F @ I5 ) @ ( G @ J3 ) )
            @ B3 )
        @ A2 ) ) ).

% sum_product
thf(fact_5796_sum__product,axiom,
    ! [F: nat > nat,A2: set_nat,G: nat > nat,B3: set_nat] :
      ( ( times_times_nat @ ( groups3542108847815614940at_nat @ F @ A2 ) @ ( groups3542108847815614940at_nat @ G @ B3 ) )
      = ( groups3542108847815614940at_nat
        @ ^ [I5: nat] :
            ( groups3542108847815614940at_nat
            @ ^ [J3: nat] : ( times_times_nat @ ( F @ I5 ) @ ( G @ J3 ) )
            @ B3 )
        @ A2 ) ) ).

% sum_product
thf(fact_5797_sum__product,axiom,
    ! [F: nat > real,A2: set_nat,G: nat > real,B3: set_nat] :
      ( ( times_times_real @ ( groups6591440286371151544t_real @ F @ A2 ) @ ( groups6591440286371151544t_real @ G @ B3 ) )
      = ( groups6591440286371151544t_real
        @ ^ [I5: nat] :
            ( groups6591440286371151544t_real
            @ ^ [J3: nat] : ( times_times_real @ ( F @ I5 ) @ ( G @ J3 ) )
            @ B3 )
        @ A2 ) ) ).

% sum_product
thf(fact_5798_sum__distrib__right,axiom,
    ! [F: int > int,A2: set_int,R2: int] :
      ( ( times_times_int @ ( groups4538972089207619220nt_int @ F @ A2 ) @ R2 )
      = ( groups4538972089207619220nt_int
        @ ^ [N3: int] : ( times_times_int @ ( F @ N3 ) @ R2 )
        @ A2 ) ) ).

% sum_distrib_right
thf(fact_5799_sum__distrib__right,axiom,
    ! [F: complex > complex,A2: set_complex,R2: complex] :
      ( ( times_times_complex @ ( groups7754918857620584856omplex @ F @ A2 ) @ R2 )
      = ( groups7754918857620584856omplex
        @ ^ [N3: complex] : ( times_times_complex @ ( F @ N3 ) @ R2 )
        @ A2 ) ) ).

% sum_distrib_right
thf(fact_5800_sum__distrib__right,axiom,
    ! [F: nat > nat,A2: set_nat,R2: nat] :
      ( ( times_times_nat @ ( groups3542108847815614940at_nat @ F @ A2 ) @ R2 )
      = ( groups3542108847815614940at_nat
        @ ^ [N3: nat] : ( times_times_nat @ ( F @ N3 ) @ R2 )
        @ A2 ) ) ).

% sum_distrib_right
thf(fact_5801_sum__distrib__right,axiom,
    ! [F: nat > real,A2: set_nat,R2: real] :
      ( ( times_times_real @ ( groups6591440286371151544t_real @ F @ A2 ) @ R2 )
      = ( groups6591440286371151544t_real
        @ ^ [N3: nat] : ( times_times_real @ ( F @ N3 ) @ R2 )
        @ A2 ) ) ).

% sum_distrib_right
thf(fact_5802_sum__distrib__left,axiom,
    ! [R2: int,F: int > int,A2: set_int] :
      ( ( times_times_int @ R2 @ ( groups4538972089207619220nt_int @ F @ A2 ) )
      = ( groups4538972089207619220nt_int
        @ ^ [N3: int] : ( times_times_int @ R2 @ ( F @ N3 ) )
        @ A2 ) ) ).

% sum_distrib_left
thf(fact_5803_sum__distrib__left,axiom,
    ! [R2: complex,F: complex > complex,A2: set_complex] :
      ( ( times_times_complex @ R2 @ ( groups7754918857620584856omplex @ F @ A2 ) )
      = ( groups7754918857620584856omplex
        @ ^ [N3: complex] : ( times_times_complex @ R2 @ ( F @ N3 ) )
        @ A2 ) ) ).

% sum_distrib_left
thf(fact_5804_sum__distrib__left,axiom,
    ! [R2: nat,F: nat > nat,A2: set_nat] :
      ( ( times_times_nat @ R2 @ ( groups3542108847815614940at_nat @ F @ A2 ) )
      = ( groups3542108847815614940at_nat
        @ ^ [N3: nat] : ( times_times_nat @ R2 @ ( F @ N3 ) )
        @ A2 ) ) ).

% sum_distrib_left
thf(fact_5805_sum__distrib__left,axiom,
    ! [R2: real,F: nat > real,A2: set_nat] :
      ( ( times_times_real @ R2 @ ( groups6591440286371151544t_real @ F @ A2 ) )
      = ( groups6591440286371151544t_real
        @ ^ [N3: nat] : ( times_times_real @ R2 @ ( F @ N3 ) )
        @ A2 ) ) ).

% sum_distrib_left
thf(fact_5806_sum_Odistrib,axiom,
    ! [G: int > int,H2: int > int,A2: set_int] :
      ( ( groups4538972089207619220nt_int
        @ ^ [X3: int] : ( plus_plus_int @ ( G @ X3 ) @ ( H2 @ X3 ) )
        @ A2 )
      = ( plus_plus_int @ ( groups4538972089207619220nt_int @ G @ A2 ) @ ( groups4538972089207619220nt_int @ H2 @ A2 ) ) ) ).

% sum.distrib
thf(fact_5807_sum_Odistrib,axiom,
    ! [G: complex > complex,H2: complex > complex,A2: set_complex] :
      ( ( groups7754918857620584856omplex
        @ ^ [X3: complex] : ( plus_plus_complex @ ( G @ X3 ) @ ( H2 @ X3 ) )
        @ A2 )
      = ( plus_plus_complex @ ( groups7754918857620584856omplex @ G @ A2 ) @ ( groups7754918857620584856omplex @ H2 @ A2 ) ) ) ).

% sum.distrib
thf(fact_5808_sum_Odistrib,axiom,
    ! [G: nat > nat,H2: nat > nat,A2: set_nat] :
      ( ( groups3542108847815614940at_nat
        @ ^ [X3: nat] : ( plus_plus_nat @ ( G @ X3 ) @ ( H2 @ X3 ) )
        @ A2 )
      = ( plus_plus_nat @ ( groups3542108847815614940at_nat @ G @ A2 ) @ ( groups3542108847815614940at_nat @ H2 @ A2 ) ) ) ).

% sum.distrib
thf(fact_5809_sum_Odistrib,axiom,
    ! [G: nat > real,H2: nat > real,A2: set_nat] :
      ( ( groups6591440286371151544t_real
        @ ^ [X3: nat] : ( plus_plus_real @ ( G @ X3 ) @ ( H2 @ X3 ) )
        @ A2 )
      = ( plus_plus_real @ ( groups6591440286371151544t_real @ G @ A2 ) @ ( groups6591440286371151544t_real @ H2 @ A2 ) ) ) ).

% sum.distrib
thf(fact_5810_sum__subtractf,axiom,
    ! [F: int > int,G: int > int,A2: set_int] :
      ( ( groups4538972089207619220nt_int
        @ ^ [X3: int] : ( minus_minus_int @ ( F @ X3 ) @ ( G @ X3 ) )
        @ A2 )
      = ( minus_minus_int @ ( groups4538972089207619220nt_int @ F @ A2 ) @ ( groups4538972089207619220nt_int @ G @ A2 ) ) ) ).

% sum_subtractf
thf(fact_5811_sum__subtractf,axiom,
    ! [F: complex > complex,G: complex > complex,A2: set_complex] :
      ( ( groups7754918857620584856omplex
        @ ^ [X3: complex] : ( minus_minus_complex @ ( F @ X3 ) @ ( G @ X3 ) )
        @ A2 )
      = ( minus_minus_complex @ ( groups7754918857620584856omplex @ F @ A2 ) @ ( groups7754918857620584856omplex @ G @ A2 ) ) ) ).

% sum_subtractf
thf(fact_5812_sum__subtractf,axiom,
    ! [F: nat > real,G: nat > real,A2: set_nat] :
      ( ( groups6591440286371151544t_real
        @ ^ [X3: nat] : ( minus_minus_real @ ( F @ X3 ) @ ( G @ X3 ) )
        @ A2 )
      = ( minus_minus_real @ ( groups6591440286371151544t_real @ F @ A2 ) @ ( groups6591440286371151544t_real @ G @ A2 ) ) ) ).

% sum_subtractf
thf(fact_5813_sum__divide__distrib,axiom,
    ! [F: complex > complex,A2: set_complex,R2: complex] :
      ( ( divide1717551699836669952omplex @ ( groups7754918857620584856omplex @ F @ A2 ) @ R2 )
      = ( groups7754918857620584856omplex
        @ ^ [N3: complex] : ( divide1717551699836669952omplex @ ( F @ N3 ) @ R2 )
        @ A2 ) ) ).

% sum_divide_distrib
thf(fact_5814_sum__divide__distrib,axiom,
    ! [F: nat > real,A2: set_nat,R2: real] :
      ( ( divide_divide_real @ ( groups6591440286371151544t_real @ F @ A2 ) @ R2 )
      = ( groups6591440286371151544t_real
        @ ^ [N3: nat] : ( divide_divide_real @ ( F @ N3 ) @ R2 )
        @ A2 ) ) ).

% sum_divide_distrib
thf(fact_5815_sum_Oswap__restrict,axiom,
    ! [A2: set_real,B3: set_int,G: real > int > int,R: real > int > $o] :
      ( ( finite_finite_real @ A2 )
     => ( ( finite_finite_int @ B3 )
       => ( ( groups1932886352136224148al_int
            @ ^ [X3: real] :
                ( groups4538972089207619220nt_int @ ( G @ X3 )
                @ ( collect_int
                  @ ^ [Y3: int] :
                      ( ( member_int @ Y3 @ B3 )
                      & ( R @ X3 @ Y3 ) ) ) )
            @ A2 )
          = ( groups4538972089207619220nt_int
            @ ^ [Y3: int] :
                ( groups1932886352136224148al_int
                @ ^ [X3: real] : ( G @ X3 @ Y3 )
                @ ( collect_real
                  @ ^ [X3: real] :
                      ( ( member_real @ X3 @ A2 )
                      & ( R @ X3 @ Y3 ) ) ) )
            @ B3 ) ) ) ) ).

% sum.swap_restrict
thf(fact_5816_sum_Oswap__restrict,axiom,
    ! [A2: set_nat,B3: set_int,G: nat > int > int,R: nat > int > $o] :
      ( ( finite_finite_nat @ A2 )
     => ( ( finite_finite_int @ B3 )
       => ( ( groups3539618377306564664at_int
            @ ^ [X3: nat] :
                ( groups4538972089207619220nt_int @ ( G @ X3 )
                @ ( collect_int
                  @ ^ [Y3: int] :
                      ( ( member_int @ Y3 @ B3 )
                      & ( R @ X3 @ Y3 ) ) ) )
            @ A2 )
          = ( groups4538972089207619220nt_int
            @ ^ [Y3: int] :
                ( groups3539618377306564664at_int
                @ ^ [X3: nat] : ( G @ X3 @ Y3 )
                @ ( collect_nat
                  @ ^ [X3: nat] :
                      ( ( member_nat @ X3 @ A2 )
                      & ( R @ X3 @ Y3 ) ) ) )
            @ B3 ) ) ) ) ).

% sum.swap_restrict
thf(fact_5817_sum_Oswap__restrict,axiom,
    ! [A2: set_complex,B3: set_int,G: complex > int > int,R: complex > int > $o] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( ( finite_finite_int @ B3 )
       => ( ( groups5690904116761175830ex_int
            @ ^ [X3: complex] :
                ( groups4538972089207619220nt_int @ ( G @ X3 )
                @ ( collect_int
                  @ ^ [Y3: int] :
                      ( ( member_int @ Y3 @ B3 )
                      & ( R @ X3 @ Y3 ) ) ) )
            @ A2 )
          = ( groups4538972089207619220nt_int
            @ ^ [Y3: int] :
                ( groups5690904116761175830ex_int
                @ ^ [X3: complex] : ( G @ X3 @ Y3 )
                @ ( collect_complex
                  @ ^ [X3: complex] :
                      ( ( member_complex @ X3 @ A2 )
                      & ( R @ X3 @ Y3 ) ) ) )
            @ B3 ) ) ) ) ).

% sum.swap_restrict
thf(fact_5818_sum_Oswap__restrict,axiom,
    ! [A2: set_real,B3: set_complex,G: real > complex > complex,R: real > complex > $o] :
      ( ( finite_finite_real @ A2 )
     => ( ( finite3207457112153483333omplex @ B3 )
       => ( ( groups5754745047067104278omplex
            @ ^ [X3: real] :
                ( groups7754918857620584856omplex @ ( G @ X3 )
                @ ( collect_complex
                  @ ^ [Y3: complex] :
                      ( ( member_complex @ Y3 @ B3 )
                      & ( R @ X3 @ Y3 ) ) ) )
            @ A2 )
          = ( groups7754918857620584856omplex
            @ ^ [Y3: complex] :
                ( groups5754745047067104278omplex
                @ ^ [X3: real] : ( G @ X3 @ Y3 )
                @ ( collect_real
                  @ ^ [X3: real] :
                      ( ( member_real @ X3 @ A2 )
                      & ( R @ X3 @ Y3 ) ) ) )
            @ B3 ) ) ) ) ).

% sum.swap_restrict
thf(fact_5819_sum_Oswap__restrict,axiom,
    ! [A2: set_nat,B3: set_complex,G: nat > complex > complex,R: nat > complex > $o] :
      ( ( finite_finite_nat @ A2 )
     => ( ( finite3207457112153483333omplex @ B3 )
       => ( ( groups2073611262835488442omplex
            @ ^ [X3: nat] :
                ( groups7754918857620584856omplex @ ( G @ X3 )
                @ ( collect_complex
                  @ ^ [Y3: complex] :
                      ( ( member_complex @ Y3 @ B3 )
                      & ( R @ X3 @ Y3 ) ) ) )
            @ A2 )
          = ( groups7754918857620584856omplex
            @ ^ [Y3: complex] :
                ( groups2073611262835488442omplex
                @ ^ [X3: nat] : ( G @ X3 @ Y3 )
                @ ( collect_nat
                  @ ^ [X3: nat] :
                      ( ( member_nat @ X3 @ A2 )
                      & ( R @ X3 @ Y3 ) ) ) )
            @ B3 ) ) ) ) ).

% sum.swap_restrict
thf(fact_5820_sum_Oswap__restrict,axiom,
    ! [A2: set_int,B3: set_complex,G: int > complex > complex,R: int > complex > $o] :
      ( ( finite_finite_int @ A2 )
     => ( ( finite3207457112153483333omplex @ B3 )
       => ( ( groups3049146728041665814omplex
            @ ^ [X3: int] :
                ( groups7754918857620584856omplex @ ( G @ X3 )
                @ ( collect_complex
                  @ ^ [Y3: complex] :
                      ( ( member_complex @ Y3 @ B3 )
                      & ( R @ X3 @ Y3 ) ) ) )
            @ A2 )
          = ( groups7754918857620584856omplex
            @ ^ [Y3: complex] :
                ( groups3049146728041665814omplex
                @ ^ [X3: int] : ( G @ X3 @ Y3 )
                @ ( collect_int
                  @ ^ [X3: int] :
                      ( ( member_int @ X3 @ A2 )
                      & ( R @ X3 @ Y3 ) ) ) )
            @ B3 ) ) ) ) ).

% sum.swap_restrict
thf(fact_5821_sum_Oswap__restrict,axiom,
    ! [A2: set_real,B3: set_nat,G: real > nat > nat,R: real > nat > $o] :
      ( ( finite_finite_real @ A2 )
     => ( ( finite_finite_nat @ B3 )
       => ( ( groups1935376822645274424al_nat
            @ ^ [X3: real] :
                ( groups3542108847815614940at_nat @ ( G @ X3 )
                @ ( collect_nat
                  @ ^ [Y3: nat] :
                      ( ( member_nat @ Y3 @ B3 )
                      & ( R @ X3 @ Y3 ) ) ) )
            @ A2 )
          = ( groups3542108847815614940at_nat
            @ ^ [Y3: nat] :
                ( groups1935376822645274424al_nat
                @ ^ [X3: real] : ( G @ X3 @ Y3 )
                @ ( collect_real
                  @ ^ [X3: real] :
                      ( ( member_real @ X3 @ A2 )
                      & ( R @ X3 @ Y3 ) ) ) )
            @ B3 ) ) ) ) ).

% sum.swap_restrict
thf(fact_5822_sum_Oswap__restrict,axiom,
    ! [A2: set_int,B3: set_nat,G: int > nat > nat,R: int > nat > $o] :
      ( ( finite_finite_int @ A2 )
     => ( ( finite_finite_nat @ B3 )
       => ( ( groups4541462559716669496nt_nat
            @ ^ [X3: int] :
                ( groups3542108847815614940at_nat @ ( G @ X3 )
                @ ( collect_nat
                  @ ^ [Y3: nat] :
                      ( ( member_nat @ Y3 @ B3 )
                      & ( R @ X3 @ Y3 ) ) ) )
            @ A2 )
          = ( groups3542108847815614940at_nat
            @ ^ [Y3: nat] :
                ( groups4541462559716669496nt_nat
                @ ^ [X3: int] : ( G @ X3 @ Y3 )
                @ ( collect_int
                  @ ^ [X3: int] :
                      ( ( member_int @ X3 @ A2 )
                      & ( R @ X3 @ Y3 ) ) ) )
            @ B3 ) ) ) ) ).

% sum.swap_restrict
thf(fact_5823_sum_Oswap__restrict,axiom,
    ! [A2: set_complex,B3: set_nat,G: complex > nat > nat,R: complex > nat > $o] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( ( finite_finite_nat @ B3 )
       => ( ( groups5693394587270226106ex_nat
            @ ^ [X3: complex] :
                ( groups3542108847815614940at_nat @ ( G @ X3 )
                @ ( collect_nat
                  @ ^ [Y3: nat] :
                      ( ( member_nat @ Y3 @ B3 )
                      & ( R @ X3 @ Y3 ) ) ) )
            @ A2 )
          = ( groups3542108847815614940at_nat
            @ ^ [Y3: nat] :
                ( groups5693394587270226106ex_nat
                @ ^ [X3: complex] : ( G @ X3 @ Y3 )
                @ ( collect_complex
                  @ ^ [X3: complex] :
                      ( ( member_complex @ X3 @ A2 )
                      & ( R @ X3 @ Y3 ) ) ) )
            @ B3 ) ) ) ) ).

% sum.swap_restrict
thf(fact_5824_sum_Oswap__restrict,axiom,
    ! [A2: set_real,B3: set_nat,G: real > nat > real,R: real > nat > $o] :
      ( ( finite_finite_real @ A2 )
     => ( ( finite_finite_nat @ B3 )
       => ( ( groups8097168146408367636l_real
            @ ^ [X3: real] :
                ( groups6591440286371151544t_real @ ( G @ X3 )
                @ ( collect_nat
                  @ ^ [Y3: nat] :
                      ( ( member_nat @ Y3 @ B3 )
                      & ( R @ X3 @ Y3 ) ) ) )
            @ A2 )
          = ( groups6591440286371151544t_real
            @ ^ [Y3: nat] :
                ( groups8097168146408367636l_real
                @ ^ [X3: real] : ( G @ X3 @ Y3 )
                @ ( collect_real
                  @ ^ [X3: real] :
                      ( ( member_real @ X3 @ A2 )
                      & ( R @ X3 @ Y3 ) ) ) )
            @ B3 ) ) ) ) ).

% sum.swap_restrict
thf(fact_5825_mod__sum__eq,axiom,
    ! [F: int > int,A: int,A2: set_int] :
      ( ( modulo_modulo_int
        @ ( groups4538972089207619220nt_int
          @ ^ [I5: int] : ( modulo_modulo_int @ ( F @ I5 ) @ A )
          @ A2 )
        @ A )
      = ( modulo_modulo_int @ ( groups4538972089207619220nt_int @ F @ A2 ) @ A ) ) ).

% mod_sum_eq
thf(fact_5826_mod__sum__eq,axiom,
    ! [F: nat > nat,A: nat,A2: set_nat] :
      ( ( modulo_modulo_nat
        @ ( groups3542108847815614940at_nat
          @ ^ [I5: nat] : ( modulo_modulo_nat @ ( F @ I5 ) @ A )
          @ A2 )
        @ A )
      = ( modulo_modulo_nat @ ( groups3542108847815614940at_nat @ F @ A2 ) @ A ) ) ).

% mod_sum_eq
thf(fact_5827_cond__case__prod__eta,axiom,
    ! [F: nat > nat > product_prod_nat_nat > product_prod_nat_nat,G: product_prod_nat_nat > product_prod_nat_nat > product_prod_nat_nat] :
      ( ! [X5: nat,Y5: nat] :
          ( ( F @ X5 @ Y5 )
          = ( G @ ( product_Pair_nat_nat @ X5 @ Y5 ) ) )
     => ( ( produc27273713700761075at_nat @ F )
        = G ) ) ).

% cond_case_prod_eta
thf(fact_5828_cond__case__prod__eta,axiom,
    ! [F: nat > nat > product_prod_nat_nat > $o,G: product_prod_nat_nat > product_prod_nat_nat > $o] :
      ( ! [X5: nat,Y5: nat] :
          ( ( F @ X5 @ Y5 )
          = ( G @ ( product_Pair_nat_nat @ X5 @ Y5 ) ) )
     => ( ( produc8739625826339149834_nat_o @ F )
        = G ) ) ).

% cond_case_prod_eta
thf(fact_5829_cond__case__prod__eta,axiom,
    ! [F: int > int > product_prod_int_int,G: product_prod_int_int > product_prod_int_int] :
      ( ! [X5: int,Y5: int] :
          ( ( F @ X5 @ Y5 )
          = ( G @ ( product_Pair_int_int @ X5 @ Y5 ) ) )
     => ( ( produc4245557441103728435nt_int @ F )
        = G ) ) ).

% cond_case_prod_eta
thf(fact_5830_cond__case__prod__eta,axiom,
    ! [F: int > int > $o,G: product_prod_int_int > $o] :
      ( ! [X5: int,Y5: int] :
          ( ( F @ X5 @ Y5 )
          = ( G @ ( product_Pair_int_int @ X5 @ Y5 ) ) )
     => ( ( produc4947309494688390418_int_o @ F )
        = G ) ) ).

% cond_case_prod_eta
thf(fact_5831_cond__case__prod__eta,axiom,
    ! [F: int > int > int,G: product_prod_int_int > int] :
      ( ! [X5: int,Y5: int] :
          ( ( F @ X5 @ Y5 )
          = ( G @ ( product_Pair_int_int @ X5 @ Y5 ) ) )
     => ( ( produc8211389475949308722nt_int @ F )
        = G ) ) ).

% cond_case_prod_eta
thf(fact_5832_case__prod__eta,axiom,
    ! [F: product_prod_nat_nat > product_prod_nat_nat > product_prod_nat_nat] :
      ( ( produc27273713700761075at_nat
        @ ^ [X3: nat,Y3: nat] : ( F @ ( product_Pair_nat_nat @ X3 @ Y3 ) ) )
      = F ) ).

% case_prod_eta
thf(fact_5833_case__prod__eta,axiom,
    ! [F: product_prod_nat_nat > product_prod_nat_nat > $o] :
      ( ( produc8739625826339149834_nat_o
        @ ^ [X3: nat,Y3: nat] : ( F @ ( product_Pair_nat_nat @ X3 @ Y3 ) ) )
      = F ) ).

% case_prod_eta
thf(fact_5834_case__prod__eta,axiom,
    ! [F: product_prod_int_int > product_prod_int_int] :
      ( ( produc4245557441103728435nt_int
        @ ^ [X3: int,Y3: int] : ( F @ ( product_Pair_int_int @ X3 @ Y3 ) ) )
      = F ) ).

% case_prod_eta
thf(fact_5835_case__prod__eta,axiom,
    ! [F: product_prod_int_int > $o] :
      ( ( produc4947309494688390418_int_o
        @ ^ [X3: int,Y3: int] : ( F @ ( product_Pair_int_int @ X3 @ Y3 ) ) )
      = F ) ).

% case_prod_eta
thf(fact_5836_case__prod__eta,axiom,
    ! [F: product_prod_int_int > int] :
      ( ( produc8211389475949308722nt_int
        @ ^ [X3: int,Y3: int] : ( F @ ( product_Pair_int_int @ X3 @ Y3 ) ) )
      = F ) ).

% case_prod_eta
thf(fact_5837_case__prodE2,axiom,
    ! [Q: ( product_prod_nat_nat > product_prod_nat_nat ) > $o,P: nat > nat > product_prod_nat_nat > product_prod_nat_nat,Z: product_prod_nat_nat] :
      ( ( Q @ ( produc27273713700761075at_nat @ P @ Z ) )
     => ~ ! [X5: nat,Y5: nat] :
            ( ( Z
              = ( product_Pair_nat_nat @ X5 @ Y5 ) )
           => ~ ( Q @ ( P @ X5 @ Y5 ) ) ) ) ).

% case_prodE2
thf(fact_5838_case__prodE2,axiom,
    ! [Q: ( product_prod_nat_nat > $o ) > $o,P: nat > nat > product_prod_nat_nat > $o,Z: product_prod_nat_nat] :
      ( ( Q @ ( produc8739625826339149834_nat_o @ P @ Z ) )
     => ~ ! [X5: nat,Y5: nat] :
            ( ( Z
              = ( product_Pair_nat_nat @ X5 @ Y5 ) )
           => ~ ( Q @ ( P @ X5 @ Y5 ) ) ) ) ).

% case_prodE2
thf(fact_5839_case__prodE2,axiom,
    ! [Q: product_prod_int_int > $o,P: int > int > product_prod_int_int,Z: product_prod_int_int] :
      ( ( Q @ ( produc4245557441103728435nt_int @ P @ Z ) )
     => ~ ! [X5: int,Y5: int] :
            ( ( Z
              = ( product_Pair_int_int @ X5 @ Y5 ) )
           => ~ ( Q @ ( P @ X5 @ Y5 ) ) ) ) ).

% case_prodE2
thf(fact_5840_case__prodE2,axiom,
    ! [Q: $o > $o,P: int > int > $o,Z: product_prod_int_int] :
      ( ( Q @ ( produc4947309494688390418_int_o @ P @ Z ) )
     => ~ ! [X5: int,Y5: int] :
            ( ( Z
              = ( product_Pair_int_int @ X5 @ Y5 ) )
           => ~ ( Q @ ( P @ X5 @ Y5 ) ) ) ) ).

% case_prodE2
thf(fact_5841_case__prodE2,axiom,
    ! [Q: int > $o,P: int > int > int,Z: product_prod_int_int] :
      ( ( Q @ ( produc8211389475949308722nt_int @ P @ Z ) )
     => ~ ! [X5: int,Y5: int] :
            ( ( Z
              = ( product_Pair_int_int @ X5 @ Y5 ) )
           => ~ ( Q @ ( P @ X5 @ Y5 ) ) ) ) ).

% case_prodE2
thf(fact_5842_sum__nonneg,axiom,
    ! [A2: set_complex,F: complex > real] :
      ( ! [X5: complex] :
          ( ( member_complex @ X5 @ A2 )
         => ( ord_less_eq_real @ zero_zero_real @ ( F @ X5 ) ) )
     => ( ord_less_eq_real @ zero_zero_real @ ( groups5808333547571424918x_real @ F @ A2 ) ) ) ).

% sum_nonneg
thf(fact_5843_sum__nonneg,axiom,
    ! [A2: set_real,F: real > real] :
      ( ! [X5: real] :
          ( ( member_real @ X5 @ A2 )
         => ( ord_less_eq_real @ zero_zero_real @ ( F @ X5 ) ) )
     => ( ord_less_eq_real @ zero_zero_real @ ( groups8097168146408367636l_real @ F @ A2 ) ) ) ).

% sum_nonneg
thf(fact_5844_sum__nonneg,axiom,
    ! [A2: set_int,F: int > real] :
      ( ! [X5: int] :
          ( ( member_int @ X5 @ A2 )
         => ( ord_less_eq_real @ zero_zero_real @ ( F @ X5 ) ) )
     => ( ord_less_eq_real @ zero_zero_real @ ( groups8778361861064173332t_real @ F @ A2 ) ) ) ).

% sum_nonneg
thf(fact_5845_sum__nonneg,axiom,
    ! [A2: set_complex,F: complex > rat] :
      ( ! [X5: complex] :
          ( ( member_complex @ X5 @ A2 )
         => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X5 ) ) )
     => ( ord_less_eq_rat @ zero_zero_rat @ ( groups5058264527183730370ex_rat @ F @ A2 ) ) ) ).

% sum_nonneg
thf(fact_5846_sum__nonneg,axiom,
    ! [A2: set_real,F: real > rat] :
      ( ! [X5: real] :
          ( ( member_real @ X5 @ A2 )
         => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X5 ) ) )
     => ( ord_less_eq_rat @ zero_zero_rat @ ( groups1300246762558778688al_rat @ F @ A2 ) ) ) ).

% sum_nonneg
thf(fact_5847_sum__nonneg,axiom,
    ! [A2: set_nat,F: nat > rat] :
      ( ! [X5: nat] :
          ( ( member_nat @ X5 @ A2 )
         => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X5 ) ) )
     => ( ord_less_eq_rat @ zero_zero_rat @ ( groups2906978787729119204at_rat @ F @ A2 ) ) ) ).

% sum_nonneg
thf(fact_5848_sum__nonneg,axiom,
    ! [A2: set_int,F: int > rat] :
      ( ! [X5: int] :
          ( ( member_int @ X5 @ A2 )
         => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X5 ) ) )
     => ( ord_less_eq_rat @ zero_zero_rat @ ( groups3906332499630173760nt_rat @ F @ A2 ) ) ) ).

% sum_nonneg
thf(fact_5849_sum__nonneg,axiom,
    ! [A2: set_complex,F: complex > nat] :
      ( ! [X5: complex] :
          ( ( member_complex @ X5 @ A2 )
         => ( ord_less_eq_nat @ zero_zero_nat @ ( F @ X5 ) ) )
     => ( ord_less_eq_nat @ zero_zero_nat @ ( groups5693394587270226106ex_nat @ F @ A2 ) ) ) ).

% sum_nonneg
thf(fact_5850_sum__nonneg,axiom,
    ! [A2: set_real,F: real > nat] :
      ( ! [X5: real] :
          ( ( member_real @ X5 @ A2 )
         => ( ord_less_eq_nat @ zero_zero_nat @ ( F @ X5 ) ) )
     => ( ord_less_eq_nat @ zero_zero_nat @ ( groups1935376822645274424al_nat @ F @ A2 ) ) ) ).

% sum_nonneg
thf(fact_5851_sum__nonneg,axiom,
    ! [A2: set_int,F: int > nat] :
      ( ! [X5: int] :
          ( ( member_int @ X5 @ A2 )
         => ( ord_less_eq_nat @ zero_zero_nat @ ( F @ X5 ) ) )
     => ( ord_less_eq_nat @ zero_zero_nat @ ( groups4541462559716669496nt_nat @ F @ A2 ) ) ) ).

% sum_nonneg
thf(fact_5852_sum__nonpos,axiom,
    ! [A2: set_complex,F: complex > real] :
      ( ! [X5: complex] :
          ( ( member_complex @ X5 @ A2 )
         => ( ord_less_eq_real @ ( F @ X5 ) @ zero_zero_real ) )
     => ( ord_less_eq_real @ ( groups5808333547571424918x_real @ F @ A2 ) @ zero_zero_real ) ) ).

% sum_nonpos
thf(fact_5853_sum__nonpos,axiom,
    ! [A2: set_real,F: real > real] :
      ( ! [X5: real] :
          ( ( member_real @ X5 @ A2 )
         => ( ord_less_eq_real @ ( F @ X5 ) @ zero_zero_real ) )
     => ( ord_less_eq_real @ ( groups8097168146408367636l_real @ F @ A2 ) @ zero_zero_real ) ) ).

% sum_nonpos
thf(fact_5854_sum__nonpos,axiom,
    ! [A2: set_int,F: int > real] :
      ( ! [X5: int] :
          ( ( member_int @ X5 @ A2 )
         => ( ord_less_eq_real @ ( F @ X5 ) @ zero_zero_real ) )
     => ( ord_less_eq_real @ ( groups8778361861064173332t_real @ F @ A2 ) @ zero_zero_real ) ) ).

% sum_nonpos
thf(fact_5855_sum__nonpos,axiom,
    ! [A2: set_complex,F: complex > rat] :
      ( ! [X5: complex] :
          ( ( member_complex @ X5 @ A2 )
         => ( ord_less_eq_rat @ ( F @ X5 ) @ zero_zero_rat ) )
     => ( ord_less_eq_rat @ ( groups5058264527183730370ex_rat @ F @ A2 ) @ zero_zero_rat ) ) ).

% sum_nonpos
thf(fact_5856_sum__nonpos,axiom,
    ! [A2: set_real,F: real > rat] :
      ( ! [X5: real] :
          ( ( member_real @ X5 @ A2 )
         => ( ord_less_eq_rat @ ( F @ X5 ) @ zero_zero_rat ) )
     => ( ord_less_eq_rat @ ( groups1300246762558778688al_rat @ F @ A2 ) @ zero_zero_rat ) ) ).

% sum_nonpos
thf(fact_5857_sum__nonpos,axiom,
    ! [A2: set_nat,F: nat > rat] :
      ( ! [X5: nat] :
          ( ( member_nat @ X5 @ A2 )
         => ( ord_less_eq_rat @ ( F @ X5 ) @ zero_zero_rat ) )
     => ( ord_less_eq_rat @ ( groups2906978787729119204at_rat @ F @ A2 ) @ zero_zero_rat ) ) ).

% sum_nonpos
thf(fact_5858_sum__nonpos,axiom,
    ! [A2: set_int,F: int > rat] :
      ( ! [X5: int] :
          ( ( member_int @ X5 @ A2 )
         => ( ord_less_eq_rat @ ( F @ X5 ) @ zero_zero_rat ) )
     => ( ord_less_eq_rat @ ( groups3906332499630173760nt_rat @ F @ A2 ) @ zero_zero_rat ) ) ).

% sum_nonpos
thf(fact_5859_sum__nonpos,axiom,
    ! [A2: set_complex,F: complex > nat] :
      ( ! [X5: complex] :
          ( ( member_complex @ X5 @ A2 )
         => ( ord_less_eq_nat @ ( F @ X5 ) @ zero_zero_nat ) )
     => ( ord_less_eq_nat @ ( groups5693394587270226106ex_nat @ F @ A2 ) @ zero_zero_nat ) ) ).

% sum_nonpos
thf(fact_5860_sum__nonpos,axiom,
    ! [A2: set_real,F: real > nat] :
      ( ! [X5: real] :
          ( ( member_real @ X5 @ A2 )
         => ( ord_less_eq_nat @ ( F @ X5 ) @ zero_zero_nat ) )
     => ( ord_less_eq_nat @ ( groups1935376822645274424al_nat @ F @ A2 ) @ zero_zero_nat ) ) ).

% sum_nonpos
thf(fact_5861_sum__nonpos,axiom,
    ! [A2: set_int,F: int > nat] :
      ( ! [X5: int] :
          ( ( member_int @ X5 @ A2 )
         => ( ord_less_eq_nat @ ( F @ X5 ) @ zero_zero_nat ) )
     => ( ord_less_eq_nat @ ( groups4541462559716669496nt_nat @ F @ A2 ) @ zero_zero_nat ) ) ).

% sum_nonpos
thf(fact_5862_ln__add__one__self__le__self2,axiom,
    ! [X: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ X )
     => ( ord_less_eq_real @ ( ln_ln_real @ ( plus_plus_real @ one_one_real @ X ) ) @ X ) ) ).

% ln_add_one_self_le_self2
thf(fact_5863_sum__mono__inv,axiom,
    ! [F: real > rat,I6: set_real,G: real > rat,I2: real] :
      ( ( ( groups1300246762558778688al_rat @ F @ I6 )
        = ( groups1300246762558778688al_rat @ G @ I6 ) )
     => ( ! [I3: real] :
            ( ( member_real @ I3 @ I6 )
           => ( ord_less_eq_rat @ ( F @ I3 ) @ ( G @ I3 ) ) )
       => ( ( member_real @ I2 @ I6 )
         => ( ( finite_finite_real @ I6 )
           => ( ( F @ I2 )
              = ( G @ I2 ) ) ) ) ) ) ).

% sum_mono_inv
thf(fact_5864_sum__mono__inv,axiom,
    ! [F: nat > rat,I6: set_nat,G: nat > rat,I2: nat] :
      ( ( ( groups2906978787729119204at_rat @ F @ I6 )
        = ( groups2906978787729119204at_rat @ G @ I6 ) )
     => ( ! [I3: nat] :
            ( ( member_nat @ I3 @ I6 )
           => ( ord_less_eq_rat @ ( F @ I3 ) @ ( G @ I3 ) ) )
       => ( ( member_nat @ I2 @ I6 )
         => ( ( finite_finite_nat @ I6 )
           => ( ( F @ I2 )
              = ( G @ I2 ) ) ) ) ) ) ).

% sum_mono_inv
thf(fact_5865_sum__mono__inv,axiom,
    ! [F: int > rat,I6: set_int,G: int > rat,I2: int] :
      ( ( ( groups3906332499630173760nt_rat @ F @ I6 )
        = ( groups3906332499630173760nt_rat @ G @ I6 ) )
     => ( ! [I3: int] :
            ( ( member_int @ I3 @ I6 )
           => ( ord_less_eq_rat @ ( F @ I3 ) @ ( G @ I3 ) ) )
       => ( ( member_int @ I2 @ I6 )
         => ( ( finite_finite_int @ I6 )
           => ( ( F @ I2 )
              = ( G @ I2 ) ) ) ) ) ) ).

% sum_mono_inv
thf(fact_5866_sum__mono__inv,axiom,
    ! [F: complex > rat,I6: set_complex,G: complex > rat,I2: complex] :
      ( ( ( groups5058264527183730370ex_rat @ F @ I6 )
        = ( groups5058264527183730370ex_rat @ G @ I6 ) )
     => ( ! [I3: complex] :
            ( ( member_complex @ I3 @ I6 )
           => ( ord_less_eq_rat @ ( F @ I3 ) @ ( G @ I3 ) ) )
       => ( ( member_complex @ I2 @ I6 )
         => ( ( finite3207457112153483333omplex @ I6 )
           => ( ( F @ I2 )
              = ( G @ I2 ) ) ) ) ) ) ).

% sum_mono_inv
thf(fact_5867_sum__mono__inv,axiom,
    ! [F: real > nat,I6: set_real,G: real > nat,I2: real] :
      ( ( ( groups1935376822645274424al_nat @ F @ I6 )
        = ( groups1935376822645274424al_nat @ G @ I6 ) )
     => ( ! [I3: real] :
            ( ( member_real @ I3 @ I6 )
           => ( ord_less_eq_nat @ ( F @ I3 ) @ ( G @ I3 ) ) )
       => ( ( member_real @ I2 @ I6 )
         => ( ( finite_finite_real @ I6 )
           => ( ( F @ I2 )
              = ( G @ I2 ) ) ) ) ) ) ).

% sum_mono_inv
thf(fact_5868_sum__mono__inv,axiom,
    ! [F: int > nat,I6: set_int,G: int > nat,I2: int] :
      ( ( ( groups4541462559716669496nt_nat @ F @ I6 )
        = ( groups4541462559716669496nt_nat @ G @ I6 ) )
     => ( ! [I3: int] :
            ( ( member_int @ I3 @ I6 )
           => ( ord_less_eq_nat @ ( F @ I3 ) @ ( G @ I3 ) ) )
       => ( ( member_int @ I2 @ I6 )
         => ( ( finite_finite_int @ I6 )
           => ( ( F @ I2 )
              = ( G @ I2 ) ) ) ) ) ) ).

% sum_mono_inv
thf(fact_5869_sum__mono__inv,axiom,
    ! [F: complex > nat,I6: set_complex,G: complex > nat,I2: complex] :
      ( ( ( groups5693394587270226106ex_nat @ F @ I6 )
        = ( groups5693394587270226106ex_nat @ G @ I6 ) )
     => ( ! [I3: complex] :
            ( ( member_complex @ I3 @ I6 )
           => ( ord_less_eq_nat @ ( F @ I3 ) @ ( G @ I3 ) ) )
       => ( ( member_complex @ I2 @ I6 )
         => ( ( finite3207457112153483333omplex @ I6 )
           => ( ( F @ I2 )
              = ( G @ I2 ) ) ) ) ) ) ).

% sum_mono_inv
thf(fact_5870_sum__mono__inv,axiom,
    ! [F: real > int,I6: set_real,G: real > int,I2: real] :
      ( ( ( groups1932886352136224148al_int @ F @ I6 )
        = ( groups1932886352136224148al_int @ G @ I6 ) )
     => ( ! [I3: real] :
            ( ( member_real @ I3 @ I6 )
           => ( ord_less_eq_int @ ( F @ I3 ) @ ( G @ I3 ) ) )
       => ( ( member_real @ I2 @ I6 )
         => ( ( finite_finite_real @ I6 )
           => ( ( F @ I2 )
              = ( G @ I2 ) ) ) ) ) ) ).

% sum_mono_inv
thf(fact_5871_sum__mono__inv,axiom,
    ! [F: nat > int,I6: set_nat,G: nat > int,I2: nat] :
      ( ( ( groups3539618377306564664at_int @ F @ I6 )
        = ( groups3539618377306564664at_int @ G @ I6 ) )
     => ( ! [I3: nat] :
            ( ( member_nat @ I3 @ I6 )
           => ( ord_less_eq_int @ ( F @ I3 ) @ ( G @ I3 ) ) )
       => ( ( member_nat @ I2 @ I6 )
         => ( ( finite_finite_nat @ I6 )
           => ( ( F @ I2 )
              = ( G @ I2 ) ) ) ) ) ) ).

% sum_mono_inv
thf(fact_5872_sum__mono__inv,axiom,
    ! [F: complex > int,I6: set_complex,G: complex > int,I2: complex] :
      ( ( ( groups5690904116761175830ex_int @ F @ I6 )
        = ( groups5690904116761175830ex_int @ G @ I6 ) )
     => ( ! [I3: complex] :
            ( ( member_complex @ I3 @ I6 )
           => ( ord_less_eq_int @ ( F @ I3 ) @ ( G @ I3 ) ) )
       => ( ( member_complex @ I2 @ I6 )
         => ( ( finite3207457112153483333omplex @ I6 )
           => ( ( F @ I2 )
              = ( G @ I2 ) ) ) ) ) ) ).

% sum_mono_inv
thf(fact_5873_not__numeral__le__neg__numeral,axiom,
    ! [M: num,N2: num] :
      ~ ( ord_less_eq_real @ ( numeral_numeral_real @ M ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N2 ) ) ) ).

% not_numeral_le_neg_numeral
thf(fact_5874_not__numeral__le__neg__numeral,axiom,
    ! [M: num,N2: num] :
      ~ ( ord_le3102999989581377725nteger @ ( numera6620942414471956472nteger @ M ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N2 ) ) ) ).

% not_numeral_le_neg_numeral
thf(fact_5875_not__numeral__le__neg__numeral,axiom,
    ! [M: num,N2: num] :
      ~ ( ord_less_eq_rat @ ( numeral_numeral_rat @ M ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N2 ) ) ) ).

% not_numeral_le_neg_numeral
thf(fact_5876_not__numeral__le__neg__numeral,axiom,
    ! [M: num,N2: num] :
      ~ ( ord_less_eq_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) ) ).

% not_numeral_le_neg_numeral
thf(fact_5877_neg__numeral__le__numeral,axiom,
    ! [M: num,N2: num] : ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( numeral_numeral_real @ N2 ) ) ).

% neg_numeral_le_numeral
thf(fact_5878_neg__numeral__le__numeral,axiom,
    ! [M: num,N2: num] : ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( numera6620942414471956472nteger @ N2 ) ) ).

% neg_numeral_le_numeral
thf(fact_5879_neg__numeral__le__numeral,axiom,
    ! [M: num,N2: num] : ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( numeral_numeral_rat @ N2 ) ) ).

% neg_numeral_le_numeral
thf(fact_5880_neg__numeral__le__numeral,axiom,
    ! [M: num,N2: num] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N2 ) ) ).

% neg_numeral_le_numeral
thf(fact_5881_zero__neq__neg__numeral,axiom,
    ! [N2: num] :
      ( zero_zero_real
     != ( uminus_uminus_real @ ( numeral_numeral_real @ N2 ) ) ) ).

% zero_neq_neg_numeral
thf(fact_5882_zero__neq__neg__numeral,axiom,
    ! [N2: num] :
      ( zero_zero_int
     != ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) ) ).

% zero_neq_neg_numeral
thf(fact_5883_zero__neq__neg__numeral,axiom,
    ! [N2: num] :
      ( zero_zero_complex
     != ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N2 ) ) ) ).

% zero_neq_neg_numeral
thf(fact_5884_zero__neq__neg__numeral,axiom,
    ! [N2: num] :
      ( zero_zero_rat
     != ( uminus_uminus_rat @ ( numeral_numeral_rat @ N2 ) ) ) ).

% zero_neq_neg_numeral
thf(fact_5885_zero__neq__neg__numeral,axiom,
    ! [N2: num] :
      ( zero_z3403309356797280102nteger
     != ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N2 ) ) ) ).

% zero_neq_neg_numeral
thf(fact_5886_not__numeral__less__neg__numeral,axiom,
    ! [M: num,N2: num] :
      ~ ( ord_less_real @ ( numeral_numeral_real @ M ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N2 ) ) ) ).

% not_numeral_less_neg_numeral
thf(fact_5887_not__numeral__less__neg__numeral,axiom,
    ! [M: num,N2: num] :
      ~ ( ord_less_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) ) ).

% not_numeral_less_neg_numeral
thf(fact_5888_not__numeral__less__neg__numeral,axiom,
    ! [M: num,N2: num] :
      ~ ( ord_less_rat @ ( numeral_numeral_rat @ M ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N2 ) ) ) ).

% not_numeral_less_neg_numeral
thf(fact_5889_not__numeral__less__neg__numeral,axiom,
    ! [M: num,N2: num] :
      ~ ( ord_le6747313008572928689nteger @ ( numera6620942414471956472nteger @ M ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N2 ) ) ) ).

% not_numeral_less_neg_numeral
thf(fact_5890_neg__numeral__less__numeral,axiom,
    ! [M: num,N2: num] : ( ord_less_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( numeral_numeral_real @ N2 ) ) ).

% neg_numeral_less_numeral
thf(fact_5891_neg__numeral__less__numeral,axiom,
    ! [M: num,N2: num] : ( ord_less_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N2 ) ) ).

% neg_numeral_less_numeral
thf(fact_5892_neg__numeral__less__numeral,axiom,
    ! [M: num,N2: num] : ( ord_less_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( numeral_numeral_rat @ N2 ) ) ).

% neg_numeral_less_numeral
thf(fact_5893_neg__numeral__less__numeral,axiom,
    ! [M: num,N2: num] : ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( numera6620942414471956472nteger @ N2 ) ) ).

% neg_numeral_less_numeral
thf(fact_5894_add__eq__0__iff,axiom,
    ! [A: real,B: real] :
      ( ( ( plus_plus_real @ A @ B )
        = zero_zero_real )
      = ( B
        = ( uminus_uminus_real @ A ) ) ) ).

% add_eq_0_iff
thf(fact_5895_add__eq__0__iff,axiom,
    ! [A: int,B: int] :
      ( ( ( plus_plus_int @ A @ B )
        = zero_zero_int )
      = ( B
        = ( uminus_uminus_int @ A ) ) ) ).

% add_eq_0_iff
thf(fact_5896_add__eq__0__iff,axiom,
    ! [A: complex,B: complex] :
      ( ( ( plus_plus_complex @ A @ B )
        = zero_zero_complex )
      = ( B
        = ( uminus1482373934393186551omplex @ A ) ) ) ).

% add_eq_0_iff
thf(fact_5897_add__eq__0__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ( plus_plus_rat @ A @ B )
        = zero_zero_rat )
      = ( B
        = ( uminus_uminus_rat @ A ) ) ) ).

% add_eq_0_iff
thf(fact_5898_add__eq__0__iff,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ( plus_p5714425477246183910nteger @ A @ B )
        = zero_z3403309356797280102nteger )
      = ( B
        = ( uminus1351360451143612070nteger @ A ) ) ) ).

% add_eq_0_iff
thf(fact_5899_ab__group__add__class_Oab__left__minus,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ ( uminus_uminus_real @ A ) @ A )
      = zero_zero_real ) ).

% ab_group_add_class.ab_left_minus
thf(fact_5900_ab__group__add__class_Oab__left__minus,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ ( uminus_uminus_int @ A ) @ A )
      = zero_zero_int ) ).

% ab_group_add_class.ab_left_minus
thf(fact_5901_ab__group__add__class_Oab__left__minus,axiom,
    ! [A: complex] :
      ( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ A ) @ A )
      = zero_zero_complex ) ).

% ab_group_add_class.ab_left_minus
thf(fact_5902_ab__group__add__class_Oab__left__minus,axiom,
    ! [A: rat] :
      ( ( plus_plus_rat @ ( uminus_uminus_rat @ A ) @ A )
      = zero_zero_rat ) ).

% ab_group_add_class.ab_left_minus
thf(fact_5903_ab__group__add__class_Oab__left__minus,axiom,
    ! [A: code_integer] :
      ( ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ A ) @ A )
      = zero_z3403309356797280102nteger ) ).

% ab_group_add_class.ab_left_minus
thf(fact_5904_add_Oinverse__unique,axiom,
    ! [A: real,B: real] :
      ( ( ( plus_plus_real @ A @ B )
        = zero_zero_real )
     => ( ( uminus_uminus_real @ A )
        = B ) ) ).

% add.inverse_unique
thf(fact_5905_add_Oinverse__unique,axiom,
    ! [A: int,B: int] :
      ( ( ( plus_plus_int @ A @ B )
        = zero_zero_int )
     => ( ( uminus_uminus_int @ A )
        = B ) ) ).

% add.inverse_unique
thf(fact_5906_add_Oinverse__unique,axiom,
    ! [A: complex,B: complex] :
      ( ( ( plus_plus_complex @ A @ B )
        = zero_zero_complex )
     => ( ( uminus1482373934393186551omplex @ A )
        = B ) ) ).

% add.inverse_unique
thf(fact_5907_add_Oinverse__unique,axiom,
    ! [A: rat,B: rat] :
      ( ( ( plus_plus_rat @ A @ B )
        = zero_zero_rat )
     => ( ( uminus_uminus_rat @ A )
        = B ) ) ).

% add.inverse_unique
thf(fact_5908_add_Oinverse__unique,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ( plus_p5714425477246183910nteger @ A @ B )
        = zero_z3403309356797280102nteger )
     => ( ( uminus1351360451143612070nteger @ A )
        = B ) ) ).

% add.inverse_unique
thf(fact_5909_eq__neg__iff__add__eq__0,axiom,
    ! [A: real,B: real] :
      ( ( A
        = ( uminus_uminus_real @ B ) )
      = ( ( plus_plus_real @ A @ B )
        = zero_zero_real ) ) ).

% eq_neg_iff_add_eq_0
thf(fact_5910_eq__neg__iff__add__eq__0,axiom,
    ! [A: int,B: int] :
      ( ( A
        = ( uminus_uminus_int @ B ) )
      = ( ( plus_plus_int @ A @ B )
        = zero_zero_int ) ) ).

% eq_neg_iff_add_eq_0
thf(fact_5911_eq__neg__iff__add__eq__0,axiom,
    ! [A: complex,B: complex] :
      ( ( A
        = ( uminus1482373934393186551omplex @ B ) )
      = ( ( plus_plus_complex @ A @ B )
        = zero_zero_complex ) ) ).

% eq_neg_iff_add_eq_0
thf(fact_5912_eq__neg__iff__add__eq__0,axiom,
    ! [A: rat,B: rat] :
      ( ( A
        = ( uminus_uminus_rat @ B ) )
      = ( ( plus_plus_rat @ A @ B )
        = zero_zero_rat ) ) ).

% eq_neg_iff_add_eq_0
thf(fact_5913_eq__neg__iff__add__eq__0,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( A
        = ( uminus1351360451143612070nteger @ B ) )
      = ( ( plus_p5714425477246183910nteger @ A @ B )
        = zero_z3403309356797280102nteger ) ) ).

% eq_neg_iff_add_eq_0
thf(fact_5914_neg__eq__iff__add__eq__0,axiom,
    ! [A: real,B: real] :
      ( ( ( uminus_uminus_real @ A )
        = B )
      = ( ( plus_plus_real @ A @ B )
        = zero_zero_real ) ) ).

% neg_eq_iff_add_eq_0
thf(fact_5915_neg__eq__iff__add__eq__0,axiom,
    ! [A: int,B: int] :
      ( ( ( uminus_uminus_int @ A )
        = B )
      = ( ( plus_plus_int @ A @ B )
        = zero_zero_int ) ) ).

% neg_eq_iff_add_eq_0
thf(fact_5916_neg__eq__iff__add__eq__0,axiom,
    ! [A: complex,B: complex] :
      ( ( ( uminus1482373934393186551omplex @ A )
        = B )
      = ( ( plus_plus_complex @ A @ B )
        = zero_zero_complex ) ) ).

% neg_eq_iff_add_eq_0
thf(fact_5917_neg__eq__iff__add__eq__0,axiom,
    ! [A: rat,B: rat] :
      ( ( ( uminus_uminus_rat @ A )
        = B )
      = ( ( plus_plus_rat @ A @ B )
        = zero_zero_rat ) ) ).

% neg_eq_iff_add_eq_0
thf(fact_5918_neg__eq__iff__add__eq__0,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ( uminus1351360451143612070nteger @ A )
        = B )
      = ( ( plus_p5714425477246183910nteger @ A @ B )
        = zero_z3403309356797280102nteger ) ) ).

% neg_eq_iff_add_eq_0
thf(fact_5919_le__minus__one__simps_I4_J,axiom,
    ~ ( ord_less_eq_real @ one_one_real @ ( uminus_uminus_real @ one_one_real ) ) ).

% le_minus_one_simps(4)
thf(fact_5920_le__minus__one__simps_I4_J,axiom,
    ~ ( ord_le3102999989581377725nteger @ one_one_Code_integer @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% le_minus_one_simps(4)
thf(fact_5921_le__minus__one__simps_I4_J,axiom,
    ~ ( ord_less_eq_rat @ one_one_rat @ ( uminus_uminus_rat @ one_one_rat ) ) ).

% le_minus_one_simps(4)
thf(fact_5922_le__minus__one__simps_I4_J,axiom,
    ~ ( ord_less_eq_int @ one_one_int @ ( uminus_uminus_int @ one_one_int ) ) ).

% le_minus_one_simps(4)
thf(fact_5923_le__minus__one__simps_I2_J,axiom,
    ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ one_one_real ).

% le_minus_one_simps(2)
thf(fact_5924_le__minus__one__simps_I2_J,axiom,
    ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ one_one_Code_integer ).

% le_minus_one_simps(2)
thf(fact_5925_le__minus__one__simps_I2_J,axiom,
    ord_less_eq_rat @ ( uminus_uminus_rat @ one_one_rat ) @ one_one_rat ).

% le_minus_one_simps(2)
thf(fact_5926_le__minus__one__simps_I2_J,axiom,
    ord_less_eq_int @ ( uminus_uminus_int @ one_one_int ) @ one_one_int ).

% le_minus_one_simps(2)
thf(fact_5927_zero__neq__neg__one,axiom,
    ( zero_zero_real
   != ( uminus_uminus_real @ one_one_real ) ) ).

% zero_neq_neg_one
thf(fact_5928_zero__neq__neg__one,axiom,
    ( zero_zero_int
   != ( uminus_uminus_int @ one_one_int ) ) ).

% zero_neq_neg_one
thf(fact_5929_zero__neq__neg__one,axiom,
    ( zero_zero_complex
   != ( uminus1482373934393186551omplex @ one_one_complex ) ) ).

% zero_neq_neg_one
thf(fact_5930_zero__neq__neg__one,axiom,
    ( zero_zero_rat
   != ( uminus_uminus_rat @ one_one_rat ) ) ).

% zero_neq_neg_one
thf(fact_5931_zero__neq__neg__one,axiom,
    ( zero_z3403309356797280102nteger
   != ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% zero_neq_neg_one
thf(fact_5932_numeral__times__minus__swap,axiom,
    ! [W: num,X: real] :
      ( ( times_times_real @ ( numeral_numeral_real @ W ) @ ( uminus_uminus_real @ X ) )
      = ( times_times_real @ X @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) ) ).

% numeral_times_minus_swap
thf(fact_5933_numeral__times__minus__swap,axiom,
    ! [W: num,X: int] :
      ( ( times_times_int @ ( numeral_numeral_int @ W ) @ ( uminus_uminus_int @ X ) )
      = ( times_times_int @ X @ ( uminus_uminus_int @ ( numeral_numeral_int @ W ) ) ) ) ).

% numeral_times_minus_swap
thf(fact_5934_numeral__times__minus__swap,axiom,
    ! [W: num,X: complex] :
      ( ( times_times_complex @ ( numera6690914467698888265omplex @ W ) @ ( uminus1482373934393186551omplex @ X ) )
      = ( times_times_complex @ X @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) ) ) ).

% numeral_times_minus_swap
thf(fact_5935_numeral__times__minus__swap,axiom,
    ! [W: num,X: rat] :
      ( ( times_times_rat @ ( numeral_numeral_rat @ W ) @ ( uminus_uminus_rat @ X ) )
      = ( times_times_rat @ X @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) ) ).

% numeral_times_minus_swap
thf(fact_5936_numeral__times__minus__swap,axiom,
    ! [W: num,X: code_integer] :
      ( ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ W ) @ ( uminus1351360451143612070nteger @ X ) )
      = ( times_3573771949741848930nteger @ X @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ W ) ) ) ) ).

% numeral_times_minus_swap
thf(fact_5937_less__minus__one__simps_I4_J,axiom,
    ~ ( ord_less_real @ one_one_real @ ( uminus_uminus_real @ one_one_real ) ) ).

% less_minus_one_simps(4)
thf(fact_5938_less__minus__one__simps_I4_J,axiom,
    ~ ( ord_less_int @ one_one_int @ ( uminus_uminus_int @ one_one_int ) ) ).

% less_minus_one_simps(4)
thf(fact_5939_less__minus__one__simps_I4_J,axiom,
    ~ ( ord_less_rat @ one_one_rat @ ( uminus_uminus_rat @ one_one_rat ) ) ).

% less_minus_one_simps(4)
thf(fact_5940_less__minus__one__simps_I4_J,axiom,
    ~ ( ord_le6747313008572928689nteger @ one_one_Code_integer @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% less_minus_one_simps(4)
thf(fact_5941_less__minus__one__simps_I2_J,axiom,
    ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ one_one_real ).

% less_minus_one_simps(2)
thf(fact_5942_less__minus__one__simps_I2_J,axiom,
    ord_less_int @ ( uminus_uminus_int @ one_one_int ) @ one_one_int ).

% less_minus_one_simps(2)
thf(fact_5943_less__minus__one__simps_I2_J,axiom,
    ord_less_rat @ ( uminus_uminus_rat @ one_one_rat ) @ one_one_rat ).

% less_minus_one_simps(2)
thf(fact_5944_less__minus__one__simps_I2_J,axiom,
    ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ one_one_Code_integer ).

% less_minus_one_simps(2)
thf(fact_5945_nonzero__minus__divide__divide,axiom,
    ! [B: real,A: real] :
      ( ( B != zero_zero_real )
     => ( ( divide_divide_real @ ( uminus_uminus_real @ A ) @ ( uminus_uminus_real @ B ) )
        = ( divide_divide_real @ A @ B ) ) ) ).

% nonzero_minus_divide_divide
thf(fact_5946_nonzero__minus__divide__divide,axiom,
    ! [B: complex,A: complex] :
      ( ( B != zero_zero_complex )
     => ( ( divide1717551699836669952omplex @ ( uminus1482373934393186551omplex @ A ) @ ( uminus1482373934393186551omplex @ B ) )
        = ( divide1717551699836669952omplex @ A @ B ) ) ) ).

% nonzero_minus_divide_divide
thf(fact_5947_nonzero__minus__divide__divide,axiom,
    ! [B: rat,A: rat] :
      ( ( B != zero_zero_rat )
     => ( ( divide_divide_rat @ ( uminus_uminus_rat @ A ) @ ( uminus_uminus_rat @ B ) )
        = ( divide_divide_rat @ A @ B ) ) ) ).

% nonzero_minus_divide_divide
thf(fact_5948_nonzero__minus__divide__right,axiom,
    ! [B: real,A: real] :
      ( ( B != zero_zero_real )
     => ( ( uminus_uminus_real @ ( divide_divide_real @ A @ B ) )
        = ( divide_divide_real @ A @ ( uminus_uminus_real @ B ) ) ) ) ).

% nonzero_minus_divide_right
thf(fact_5949_nonzero__minus__divide__right,axiom,
    ! [B: complex,A: complex] :
      ( ( B != zero_zero_complex )
     => ( ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ A @ B ) )
        = ( divide1717551699836669952omplex @ A @ ( uminus1482373934393186551omplex @ B ) ) ) ) ).

% nonzero_minus_divide_right
thf(fact_5950_nonzero__minus__divide__right,axiom,
    ! [B: rat,A: rat] :
      ( ( B != zero_zero_rat )
     => ( ( uminus_uminus_rat @ ( divide_divide_rat @ A @ B ) )
        = ( divide_divide_rat @ A @ ( uminus_uminus_rat @ B ) ) ) ) ).

% nonzero_minus_divide_right
thf(fact_5951_numeral__neq__neg__one,axiom,
    ! [N2: num] :
      ( ( numeral_numeral_real @ N2 )
     != ( uminus_uminus_real @ one_one_real ) ) ).

% numeral_neq_neg_one
thf(fact_5952_numeral__neq__neg__one,axiom,
    ! [N2: num] :
      ( ( numeral_numeral_int @ N2 )
     != ( uminus_uminus_int @ one_one_int ) ) ).

% numeral_neq_neg_one
thf(fact_5953_numeral__neq__neg__one,axiom,
    ! [N2: num] :
      ( ( numera6690914467698888265omplex @ N2 )
     != ( uminus1482373934393186551omplex @ one_one_complex ) ) ).

% numeral_neq_neg_one
thf(fact_5954_numeral__neq__neg__one,axiom,
    ! [N2: num] :
      ( ( numeral_numeral_rat @ N2 )
     != ( uminus_uminus_rat @ one_one_rat ) ) ).

% numeral_neq_neg_one
thf(fact_5955_numeral__neq__neg__one,axiom,
    ! [N2: num] :
      ( ( numera6620942414471956472nteger @ N2 )
     != ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% numeral_neq_neg_one
thf(fact_5956_one__neq__neg__numeral,axiom,
    ! [N2: num] :
      ( one_one_real
     != ( uminus_uminus_real @ ( numeral_numeral_real @ N2 ) ) ) ).

% one_neq_neg_numeral
thf(fact_5957_one__neq__neg__numeral,axiom,
    ! [N2: num] :
      ( one_one_int
     != ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) ) ).

% one_neq_neg_numeral
thf(fact_5958_one__neq__neg__numeral,axiom,
    ! [N2: num] :
      ( one_one_complex
     != ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N2 ) ) ) ).

% one_neq_neg_numeral
thf(fact_5959_one__neq__neg__numeral,axiom,
    ! [N2: num] :
      ( one_one_rat
     != ( uminus_uminus_rat @ ( numeral_numeral_rat @ N2 ) ) ) ).

% one_neq_neg_numeral
thf(fact_5960_one__neq__neg__numeral,axiom,
    ! [N2: num] :
      ( one_one_Code_integer
     != ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N2 ) ) ) ).

% one_neq_neg_numeral
thf(fact_5961_square__eq__1__iff,axiom,
    ! [X: real] :
      ( ( ( times_times_real @ X @ X )
        = one_one_real )
      = ( ( X = one_one_real )
        | ( X
          = ( uminus_uminus_real @ one_one_real ) ) ) ) ).

% square_eq_1_iff
thf(fact_5962_square__eq__1__iff,axiom,
    ! [X: int] :
      ( ( ( times_times_int @ X @ X )
        = one_one_int )
      = ( ( X = one_one_int )
        | ( X
          = ( uminus_uminus_int @ one_one_int ) ) ) ) ).

% square_eq_1_iff
thf(fact_5963_square__eq__1__iff,axiom,
    ! [X: complex] :
      ( ( ( times_times_complex @ X @ X )
        = one_one_complex )
      = ( ( X = one_one_complex )
        | ( X
          = ( uminus1482373934393186551omplex @ one_one_complex ) ) ) ) ).

% square_eq_1_iff
thf(fact_5964_square__eq__1__iff,axiom,
    ! [X: rat] :
      ( ( ( times_times_rat @ X @ X )
        = one_one_rat )
      = ( ( X = one_one_rat )
        | ( X
          = ( uminus_uminus_rat @ one_one_rat ) ) ) ) ).

% square_eq_1_iff
thf(fact_5965_square__eq__1__iff,axiom,
    ! [X: code_integer] :
      ( ( ( times_3573771949741848930nteger @ X @ X )
        = one_one_Code_integer )
      = ( ( X = one_one_Code_integer )
        | ( X
          = ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ) ) ).

% square_eq_1_iff
thf(fact_5966_group__cancel_Osub2,axiom,
    ! [B3: real,K: real,B: real,A: real] :
      ( ( B3
        = ( plus_plus_real @ K @ B ) )
     => ( ( minus_minus_real @ A @ B3 )
        = ( plus_plus_real @ ( uminus_uminus_real @ K ) @ ( minus_minus_real @ A @ B ) ) ) ) ).

% group_cancel.sub2
thf(fact_5967_group__cancel_Osub2,axiom,
    ! [B3: int,K: int,B: int,A: int] :
      ( ( B3
        = ( plus_plus_int @ K @ B ) )
     => ( ( minus_minus_int @ A @ B3 )
        = ( plus_plus_int @ ( uminus_uminus_int @ K ) @ ( minus_minus_int @ A @ B ) ) ) ) ).

% group_cancel.sub2
thf(fact_5968_group__cancel_Osub2,axiom,
    ! [B3: complex,K: complex,B: complex,A: complex] :
      ( ( B3
        = ( plus_plus_complex @ K @ B ) )
     => ( ( minus_minus_complex @ A @ B3 )
        = ( plus_plus_complex @ ( uminus1482373934393186551omplex @ K ) @ ( minus_minus_complex @ A @ B ) ) ) ) ).

% group_cancel.sub2
thf(fact_5969_group__cancel_Osub2,axiom,
    ! [B3: rat,K: rat,B: rat,A: rat] :
      ( ( B3
        = ( plus_plus_rat @ K @ B ) )
     => ( ( minus_minus_rat @ A @ B3 )
        = ( plus_plus_rat @ ( uminus_uminus_rat @ K ) @ ( minus_minus_rat @ A @ B ) ) ) ) ).

% group_cancel.sub2
thf(fact_5970_group__cancel_Osub2,axiom,
    ! [B3: code_integer,K: code_integer,B: code_integer,A: code_integer] :
      ( ( B3
        = ( plus_p5714425477246183910nteger @ K @ B ) )
     => ( ( minus_8373710615458151222nteger @ A @ B3 )
        = ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ K ) @ ( minus_8373710615458151222nteger @ A @ B ) ) ) ) ).

% group_cancel.sub2
thf(fact_5971_diff__conv__add__uminus,axiom,
    ( minus_minus_real
    = ( ^ [A4: real,B4: real] : ( plus_plus_real @ A4 @ ( uminus_uminus_real @ B4 ) ) ) ) ).

% diff_conv_add_uminus
thf(fact_5972_diff__conv__add__uminus,axiom,
    ( minus_minus_int
    = ( ^ [A4: int,B4: int] : ( plus_plus_int @ A4 @ ( uminus_uminus_int @ B4 ) ) ) ) ).

% diff_conv_add_uminus
thf(fact_5973_diff__conv__add__uminus,axiom,
    ( minus_minus_complex
    = ( ^ [A4: complex,B4: complex] : ( plus_plus_complex @ A4 @ ( uminus1482373934393186551omplex @ B4 ) ) ) ) ).

% diff_conv_add_uminus
thf(fact_5974_diff__conv__add__uminus,axiom,
    ( minus_minus_rat
    = ( ^ [A4: rat,B4: rat] : ( plus_plus_rat @ A4 @ ( uminus_uminus_rat @ B4 ) ) ) ) ).

% diff_conv_add_uminus
thf(fact_5975_diff__conv__add__uminus,axiom,
    ( minus_8373710615458151222nteger
    = ( ^ [A4: code_integer,B4: code_integer] : ( plus_p5714425477246183910nteger @ A4 @ ( uminus1351360451143612070nteger @ B4 ) ) ) ) ).

% diff_conv_add_uminus
thf(fact_5976_ab__group__add__class_Oab__diff__conv__add__uminus,axiom,
    ( minus_minus_real
    = ( ^ [A4: real,B4: real] : ( plus_plus_real @ A4 @ ( uminus_uminus_real @ B4 ) ) ) ) ).

% ab_group_add_class.ab_diff_conv_add_uminus
thf(fact_5977_ab__group__add__class_Oab__diff__conv__add__uminus,axiom,
    ( minus_minus_int
    = ( ^ [A4: int,B4: int] : ( plus_plus_int @ A4 @ ( uminus_uminus_int @ B4 ) ) ) ) ).

% ab_group_add_class.ab_diff_conv_add_uminus
thf(fact_5978_ab__group__add__class_Oab__diff__conv__add__uminus,axiom,
    ( minus_minus_complex
    = ( ^ [A4: complex,B4: complex] : ( plus_plus_complex @ A4 @ ( uminus1482373934393186551omplex @ B4 ) ) ) ) ).

% ab_group_add_class.ab_diff_conv_add_uminus
thf(fact_5979_ab__group__add__class_Oab__diff__conv__add__uminus,axiom,
    ( minus_minus_rat
    = ( ^ [A4: rat,B4: rat] : ( plus_plus_rat @ A4 @ ( uminus_uminus_rat @ B4 ) ) ) ) ).

% ab_group_add_class.ab_diff_conv_add_uminus
thf(fact_5980_ab__group__add__class_Oab__diff__conv__add__uminus,axiom,
    ( minus_8373710615458151222nteger
    = ( ^ [A4: code_integer,B4: code_integer] : ( plus_p5714425477246183910nteger @ A4 @ ( uminus1351360451143612070nteger @ B4 ) ) ) ) ).

% ab_group_add_class.ab_diff_conv_add_uminus
thf(fact_5981_dvd__neg__div,axiom,
    ! [B: real,A: real] :
      ( ( dvd_dvd_real @ B @ A )
     => ( ( divide_divide_real @ ( uminus_uminus_real @ A ) @ B )
        = ( uminus_uminus_real @ ( divide_divide_real @ A @ B ) ) ) ) ).

% dvd_neg_div
thf(fact_5982_dvd__neg__div,axiom,
    ! [B: int,A: int] :
      ( ( dvd_dvd_int @ B @ A )
     => ( ( divide_divide_int @ ( uminus_uminus_int @ A ) @ B )
        = ( uminus_uminus_int @ ( divide_divide_int @ A @ B ) ) ) ) ).

% dvd_neg_div
thf(fact_5983_dvd__neg__div,axiom,
    ! [B: complex,A: complex] :
      ( ( dvd_dvd_complex @ B @ A )
     => ( ( divide1717551699836669952omplex @ ( uminus1482373934393186551omplex @ A ) @ B )
        = ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ A @ B ) ) ) ) ).

% dvd_neg_div
thf(fact_5984_dvd__neg__div,axiom,
    ! [B: rat,A: rat] :
      ( ( dvd_dvd_rat @ B @ A )
     => ( ( divide_divide_rat @ ( uminus_uminus_rat @ A ) @ B )
        = ( uminus_uminus_rat @ ( divide_divide_rat @ A @ B ) ) ) ) ).

% dvd_neg_div
thf(fact_5985_dvd__neg__div,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ B @ A )
     => ( ( divide6298287555418463151nteger @ ( uminus1351360451143612070nteger @ A ) @ B )
        = ( uminus1351360451143612070nteger @ ( divide6298287555418463151nteger @ A @ B ) ) ) ) ).

% dvd_neg_div
thf(fact_5986_dvd__div__neg,axiom,
    ! [B: real,A: real] :
      ( ( dvd_dvd_real @ B @ A )
     => ( ( divide_divide_real @ A @ ( uminus_uminus_real @ B ) )
        = ( uminus_uminus_real @ ( divide_divide_real @ A @ B ) ) ) ) ).

% dvd_div_neg
thf(fact_5987_dvd__div__neg,axiom,
    ! [B: int,A: int] :
      ( ( dvd_dvd_int @ B @ A )
     => ( ( divide_divide_int @ A @ ( uminus_uminus_int @ B ) )
        = ( uminus_uminus_int @ ( divide_divide_int @ A @ B ) ) ) ) ).

% dvd_div_neg
thf(fact_5988_dvd__div__neg,axiom,
    ! [B: complex,A: complex] :
      ( ( dvd_dvd_complex @ B @ A )
     => ( ( divide1717551699836669952omplex @ A @ ( uminus1482373934393186551omplex @ B ) )
        = ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ A @ B ) ) ) ) ).

% dvd_div_neg
thf(fact_5989_dvd__div__neg,axiom,
    ! [B: rat,A: rat] :
      ( ( dvd_dvd_rat @ B @ A )
     => ( ( divide_divide_rat @ A @ ( uminus_uminus_rat @ B ) )
        = ( uminus_uminus_rat @ ( divide_divide_rat @ A @ B ) ) ) ) ).

% dvd_div_neg
thf(fact_5990_dvd__div__neg,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ B @ A )
     => ( ( divide6298287555418463151nteger @ A @ ( uminus1351360451143612070nteger @ B ) )
        = ( uminus1351360451143612070nteger @ ( divide6298287555418463151nteger @ A @ B ) ) ) ) ).

% dvd_div_neg
thf(fact_5991_subset__Compl__self__eq,axiom,
    ! [A2: set_nat] :
      ( ( ord_less_eq_set_nat @ A2 @ ( uminus5710092332889474511et_nat @ A2 ) )
      = ( A2 = bot_bot_set_nat ) ) ).

% subset_Compl_self_eq
thf(fact_5992_subset__Compl__self__eq,axiom,
    ! [A2: set_real] :
      ( ( ord_less_eq_set_real @ A2 @ ( uminus612125837232591019t_real @ A2 ) )
      = ( A2 = bot_bot_set_real ) ) ).

% subset_Compl_self_eq
thf(fact_5993_subset__Compl__self__eq,axiom,
    ! [A2: set_int] :
      ( ( ord_less_eq_set_int @ A2 @ ( uminus1532241313380277803et_int @ A2 ) )
      = ( A2 = bot_bot_set_int ) ) ).

% subset_Compl_self_eq
thf(fact_5994_real__minus__mult__self__le,axiom,
    ! [U: real,X: real] : ( ord_less_eq_real @ ( uminus_uminus_real @ ( times_times_real @ U @ U ) ) @ ( times_times_real @ X @ X ) ) ).

% real_minus_mult_self_le
thf(fact_5995_pos__zmult__eq__1__iff__lemma,axiom,
    ! [M: int,N2: int] :
      ( ( ( times_times_int @ M @ N2 )
        = one_one_int )
     => ( ( M = one_one_int )
        | ( M
          = ( uminus_uminus_int @ one_one_int ) ) ) ) ).

% pos_zmult_eq_1_iff_lemma
thf(fact_5996_zmult__eq__1__iff,axiom,
    ! [M: int,N2: int] :
      ( ( ( times_times_int @ M @ N2 )
        = one_one_int )
      = ( ( ( M = one_one_int )
          & ( N2 = one_one_int ) )
        | ( ( M
            = ( uminus_uminus_int @ one_one_int ) )
          & ( N2
            = ( uminus_uminus_int @ one_one_int ) ) ) ) ) ).

% zmult_eq_1_iff
thf(fact_5997_minus__int__code_I2_J,axiom,
    ! [L2: int] :
      ( ( minus_minus_int @ zero_zero_int @ L2 )
      = ( uminus_uminus_int @ L2 ) ) ).

% minus_int_code(2)
thf(fact_5998_sum_Ointer__filter,axiom,
    ! [A2: set_real,G: real > complex,P: real > $o] :
      ( ( finite_finite_real @ A2 )
     => ( ( groups5754745047067104278omplex @ G
          @ ( collect_real
            @ ^ [X3: real] :
                ( ( member_real @ X3 @ A2 )
                & ( P @ X3 ) ) ) )
        = ( groups5754745047067104278omplex
          @ ^ [X3: real] : ( if_complex @ ( P @ X3 ) @ ( G @ X3 ) @ zero_zero_complex )
          @ A2 ) ) ) ).

% sum.inter_filter
thf(fact_5999_sum_Ointer__filter,axiom,
    ! [A2: set_nat,G: nat > complex,P: nat > $o] :
      ( ( finite_finite_nat @ A2 )
     => ( ( groups2073611262835488442omplex @ G
          @ ( collect_nat
            @ ^ [X3: nat] :
                ( ( member_nat @ X3 @ A2 )
                & ( P @ X3 ) ) ) )
        = ( groups2073611262835488442omplex
          @ ^ [X3: nat] : ( if_complex @ ( P @ X3 ) @ ( G @ X3 ) @ zero_zero_complex )
          @ A2 ) ) ) ).

% sum.inter_filter
thf(fact_6000_sum_Ointer__filter,axiom,
    ! [A2: set_int,G: int > complex,P: int > $o] :
      ( ( finite_finite_int @ A2 )
     => ( ( groups3049146728041665814omplex @ G
          @ ( collect_int
            @ ^ [X3: int] :
                ( ( member_int @ X3 @ A2 )
                & ( P @ X3 ) ) ) )
        = ( groups3049146728041665814omplex
          @ ^ [X3: int] : ( if_complex @ ( P @ X3 ) @ ( G @ X3 ) @ zero_zero_complex )
          @ A2 ) ) ) ).

% sum.inter_filter
thf(fact_6001_sum_Ointer__filter,axiom,
    ! [A2: set_real,G: real > real,P: real > $o] :
      ( ( finite_finite_real @ A2 )
     => ( ( groups8097168146408367636l_real @ G
          @ ( collect_real
            @ ^ [X3: real] :
                ( ( member_real @ X3 @ A2 )
                & ( P @ X3 ) ) ) )
        = ( groups8097168146408367636l_real
          @ ^ [X3: real] : ( if_real @ ( P @ X3 ) @ ( G @ X3 ) @ zero_zero_real )
          @ A2 ) ) ) ).

% sum.inter_filter
thf(fact_6002_sum_Ointer__filter,axiom,
    ! [A2: set_int,G: int > real,P: int > $o] :
      ( ( finite_finite_int @ A2 )
     => ( ( groups8778361861064173332t_real @ G
          @ ( collect_int
            @ ^ [X3: int] :
                ( ( member_int @ X3 @ A2 )
                & ( P @ X3 ) ) ) )
        = ( groups8778361861064173332t_real
          @ ^ [X3: int] : ( if_real @ ( P @ X3 ) @ ( G @ X3 ) @ zero_zero_real )
          @ A2 ) ) ) ).

% sum.inter_filter
thf(fact_6003_sum_Ointer__filter,axiom,
    ! [A2: set_complex,G: complex > real,P: complex > $o] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( ( groups5808333547571424918x_real @ G
          @ ( collect_complex
            @ ^ [X3: complex] :
                ( ( member_complex @ X3 @ A2 )
                & ( P @ X3 ) ) ) )
        = ( groups5808333547571424918x_real
          @ ^ [X3: complex] : ( if_real @ ( P @ X3 ) @ ( G @ X3 ) @ zero_zero_real )
          @ A2 ) ) ) ).

% sum.inter_filter
thf(fact_6004_sum_Ointer__filter,axiom,
    ! [A2: set_real,G: real > rat,P: real > $o] :
      ( ( finite_finite_real @ A2 )
     => ( ( groups1300246762558778688al_rat @ G
          @ ( collect_real
            @ ^ [X3: real] :
                ( ( member_real @ X3 @ A2 )
                & ( P @ X3 ) ) ) )
        = ( groups1300246762558778688al_rat
          @ ^ [X3: real] : ( if_rat @ ( P @ X3 ) @ ( G @ X3 ) @ zero_zero_rat )
          @ A2 ) ) ) ).

% sum.inter_filter
thf(fact_6005_sum_Ointer__filter,axiom,
    ! [A2: set_nat,G: nat > rat,P: nat > $o] :
      ( ( finite_finite_nat @ A2 )
     => ( ( groups2906978787729119204at_rat @ G
          @ ( collect_nat
            @ ^ [X3: nat] :
                ( ( member_nat @ X3 @ A2 )
                & ( P @ X3 ) ) ) )
        = ( groups2906978787729119204at_rat
          @ ^ [X3: nat] : ( if_rat @ ( P @ X3 ) @ ( G @ X3 ) @ zero_zero_rat )
          @ A2 ) ) ) ).

% sum.inter_filter
thf(fact_6006_sum_Ointer__filter,axiom,
    ! [A2: set_int,G: int > rat,P: int > $o] :
      ( ( finite_finite_int @ A2 )
     => ( ( groups3906332499630173760nt_rat @ G
          @ ( collect_int
            @ ^ [X3: int] :
                ( ( member_int @ X3 @ A2 )
                & ( P @ X3 ) ) ) )
        = ( groups3906332499630173760nt_rat
          @ ^ [X3: int] : ( if_rat @ ( P @ X3 ) @ ( G @ X3 ) @ zero_zero_rat )
          @ A2 ) ) ) ).

% sum.inter_filter
thf(fact_6007_sum_Ointer__filter,axiom,
    ! [A2: set_complex,G: complex > rat,P: complex > $o] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( ( groups5058264527183730370ex_rat @ G
          @ ( collect_complex
            @ ^ [X3: complex] :
                ( ( member_complex @ X3 @ A2 )
                & ( P @ X3 ) ) ) )
        = ( groups5058264527183730370ex_rat
          @ ^ [X3: complex] : ( if_rat @ ( P @ X3 ) @ ( G @ X3 ) @ zero_zero_rat )
          @ A2 ) ) ) ).

% sum.inter_filter
thf(fact_6008_minus__real__def,axiom,
    ( minus_minus_real
    = ( ^ [X3: real,Y3: real] : ( plus_plus_real @ X3 @ ( uminus_uminus_real @ Y3 ) ) ) ) ).

% minus_real_def
thf(fact_6009_ln__one__minus__pos__upper__bound,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ X @ one_one_real )
       => ( ord_less_eq_real @ ( ln_ln_real @ ( minus_minus_real @ one_one_real @ X ) ) @ ( uminus_uminus_real @ X ) ) ) ) ).

% ln_one_minus_pos_upper_bound
thf(fact_6010_sum__le__included,axiom,
    ! [S2: set_int,T: set_int,G: int > real,I2: int > int,F: int > real] :
      ( ( finite_finite_int @ S2 )
     => ( ( finite_finite_int @ T )
       => ( ! [X5: int] :
              ( ( member_int @ X5 @ T )
             => ( ord_less_eq_real @ zero_zero_real @ ( G @ X5 ) ) )
         => ( ! [X5: int] :
                ( ( member_int @ X5 @ S2 )
               => ? [Xa: int] :
                    ( ( member_int @ Xa @ T )
                    & ( ( I2 @ Xa )
                      = X5 )
                    & ( ord_less_eq_real @ ( F @ X5 ) @ ( G @ Xa ) ) ) )
           => ( ord_less_eq_real @ ( groups8778361861064173332t_real @ F @ S2 ) @ ( groups8778361861064173332t_real @ G @ T ) ) ) ) ) ) ).

% sum_le_included
thf(fact_6011_sum__le__included,axiom,
    ! [S2: set_int,T: set_complex,G: complex > real,I2: complex > int,F: int > real] :
      ( ( finite_finite_int @ S2 )
     => ( ( finite3207457112153483333omplex @ T )
       => ( ! [X5: complex] :
              ( ( member_complex @ X5 @ T )
             => ( ord_less_eq_real @ zero_zero_real @ ( G @ X5 ) ) )
         => ( ! [X5: int] :
                ( ( member_int @ X5 @ S2 )
               => ? [Xa: complex] :
                    ( ( member_complex @ Xa @ T )
                    & ( ( I2 @ Xa )
                      = X5 )
                    & ( ord_less_eq_real @ ( F @ X5 ) @ ( G @ Xa ) ) ) )
           => ( ord_less_eq_real @ ( groups8778361861064173332t_real @ F @ S2 ) @ ( groups5808333547571424918x_real @ G @ T ) ) ) ) ) ) ).

% sum_le_included
thf(fact_6012_sum__le__included,axiom,
    ! [S2: set_complex,T: set_int,G: int > real,I2: int > complex,F: complex > real] :
      ( ( finite3207457112153483333omplex @ S2 )
     => ( ( finite_finite_int @ T )
       => ( ! [X5: int] :
              ( ( member_int @ X5 @ T )
             => ( ord_less_eq_real @ zero_zero_real @ ( G @ X5 ) ) )
         => ( ! [X5: complex] :
                ( ( member_complex @ X5 @ S2 )
               => ? [Xa: int] :
                    ( ( member_int @ Xa @ T )
                    & ( ( I2 @ Xa )
                      = X5 )
                    & ( ord_less_eq_real @ ( F @ X5 ) @ ( G @ Xa ) ) ) )
           => ( ord_less_eq_real @ ( groups5808333547571424918x_real @ F @ S2 ) @ ( groups8778361861064173332t_real @ G @ T ) ) ) ) ) ) ).

% sum_le_included
thf(fact_6013_sum__le__included,axiom,
    ! [S2: set_complex,T: set_complex,G: complex > real,I2: complex > complex,F: complex > real] :
      ( ( finite3207457112153483333omplex @ S2 )
     => ( ( finite3207457112153483333omplex @ T )
       => ( ! [X5: complex] :
              ( ( member_complex @ X5 @ T )
             => ( ord_less_eq_real @ zero_zero_real @ ( G @ X5 ) ) )
         => ( ! [X5: complex] :
                ( ( member_complex @ X5 @ S2 )
               => ? [Xa: complex] :
                    ( ( member_complex @ Xa @ T )
                    & ( ( I2 @ Xa )
                      = X5 )
                    & ( ord_less_eq_real @ ( F @ X5 ) @ ( G @ Xa ) ) ) )
           => ( ord_less_eq_real @ ( groups5808333547571424918x_real @ F @ S2 ) @ ( groups5808333547571424918x_real @ G @ T ) ) ) ) ) ) ).

% sum_le_included
thf(fact_6014_sum__le__included,axiom,
    ! [S2: set_nat,T: set_nat,G: nat > rat,I2: nat > nat,F: nat > rat] :
      ( ( finite_finite_nat @ S2 )
     => ( ( finite_finite_nat @ T )
       => ( ! [X5: nat] :
              ( ( member_nat @ X5 @ T )
             => ( ord_less_eq_rat @ zero_zero_rat @ ( G @ X5 ) ) )
         => ( ! [X5: nat] :
                ( ( member_nat @ X5 @ S2 )
               => ? [Xa: nat] :
                    ( ( member_nat @ Xa @ T )
                    & ( ( I2 @ Xa )
                      = X5 )
                    & ( ord_less_eq_rat @ ( F @ X5 ) @ ( G @ Xa ) ) ) )
           => ( ord_less_eq_rat @ ( groups2906978787729119204at_rat @ F @ S2 ) @ ( groups2906978787729119204at_rat @ G @ T ) ) ) ) ) ) ).

% sum_le_included
thf(fact_6015_sum__le__included,axiom,
    ! [S2: set_nat,T: set_int,G: int > rat,I2: int > nat,F: nat > rat] :
      ( ( finite_finite_nat @ S2 )
     => ( ( finite_finite_int @ T )
       => ( ! [X5: int] :
              ( ( member_int @ X5 @ T )
             => ( ord_less_eq_rat @ zero_zero_rat @ ( G @ X5 ) ) )
         => ( ! [X5: nat] :
                ( ( member_nat @ X5 @ S2 )
               => ? [Xa: int] :
                    ( ( member_int @ Xa @ T )
                    & ( ( I2 @ Xa )
                      = X5 )
                    & ( ord_less_eq_rat @ ( F @ X5 ) @ ( G @ Xa ) ) ) )
           => ( ord_less_eq_rat @ ( groups2906978787729119204at_rat @ F @ S2 ) @ ( groups3906332499630173760nt_rat @ G @ T ) ) ) ) ) ) ).

% sum_le_included
thf(fact_6016_sum__le__included,axiom,
    ! [S2: set_nat,T: set_complex,G: complex > rat,I2: complex > nat,F: nat > rat] :
      ( ( finite_finite_nat @ S2 )
     => ( ( finite3207457112153483333omplex @ T )
       => ( ! [X5: complex] :
              ( ( member_complex @ X5 @ T )
             => ( ord_less_eq_rat @ zero_zero_rat @ ( G @ X5 ) ) )
         => ( ! [X5: nat] :
                ( ( member_nat @ X5 @ S2 )
               => ? [Xa: complex] :
                    ( ( member_complex @ Xa @ T )
                    & ( ( I2 @ Xa )
                      = X5 )
                    & ( ord_less_eq_rat @ ( F @ X5 ) @ ( G @ Xa ) ) ) )
           => ( ord_less_eq_rat @ ( groups2906978787729119204at_rat @ F @ S2 ) @ ( groups5058264527183730370ex_rat @ G @ T ) ) ) ) ) ) ).

% sum_le_included
thf(fact_6017_sum__le__included,axiom,
    ! [S2: set_int,T: set_nat,G: nat > rat,I2: nat > int,F: int > rat] :
      ( ( finite_finite_int @ S2 )
     => ( ( finite_finite_nat @ T )
       => ( ! [X5: nat] :
              ( ( member_nat @ X5 @ T )
             => ( ord_less_eq_rat @ zero_zero_rat @ ( G @ X5 ) ) )
         => ( ! [X5: int] :
                ( ( member_int @ X5 @ S2 )
               => ? [Xa: nat] :
                    ( ( member_nat @ Xa @ T )
                    & ( ( I2 @ Xa )
                      = X5 )
                    & ( ord_less_eq_rat @ ( F @ X5 ) @ ( G @ Xa ) ) ) )
           => ( ord_less_eq_rat @ ( groups3906332499630173760nt_rat @ F @ S2 ) @ ( groups2906978787729119204at_rat @ G @ T ) ) ) ) ) ) ).

% sum_le_included
thf(fact_6018_sum__le__included,axiom,
    ! [S2: set_int,T: set_int,G: int > rat,I2: int > int,F: int > rat] :
      ( ( finite_finite_int @ S2 )
     => ( ( finite_finite_int @ T )
       => ( ! [X5: int] :
              ( ( member_int @ X5 @ T )
             => ( ord_less_eq_rat @ zero_zero_rat @ ( G @ X5 ) ) )
         => ( ! [X5: int] :
                ( ( member_int @ X5 @ S2 )
               => ? [Xa: int] :
                    ( ( member_int @ Xa @ T )
                    & ( ( I2 @ Xa )
                      = X5 )
                    & ( ord_less_eq_rat @ ( F @ X5 ) @ ( G @ Xa ) ) ) )
           => ( ord_less_eq_rat @ ( groups3906332499630173760nt_rat @ F @ S2 ) @ ( groups3906332499630173760nt_rat @ G @ T ) ) ) ) ) ) ).

% sum_le_included
thf(fact_6019_sum__le__included,axiom,
    ! [S2: set_int,T: set_complex,G: complex > rat,I2: complex > int,F: int > rat] :
      ( ( finite_finite_int @ S2 )
     => ( ( finite3207457112153483333omplex @ T )
       => ( ! [X5: complex] :
              ( ( member_complex @ X5 @ T )
             => ( ord_less_eq_rat @ zero_zero_rat @ ( G @ X5 ) ) )
         => ( ! [X5: int] :
                ( ( member_int @ X5 @ S2 )
               => ? [Xa: complex] :
                    ( ( member_complex @ Xa @ T )
                    & ( ( I2 @ Xa )
                      = X5 )
                    & ( ord_less_eq_rat @ ( F @ X5 ) @ ( G @ Xa ) ) ) )
           => ( ord_less_eq_rat @ ( groups3906332499630173760nt_rat @ F @ S2 ) @ ( groups5058264527183730370ex_rat @ G @ T ) ) ) ) ) ) ).

% sum_le_included
thf(fact_6020_sum__nonneg__eq__0__iff,axiom,
    ! [A2: set_real,F: real > real] :
      ( ( finite_finite_real @ A2 )
     => ( ! [X5: real] :
            ( ( member_real @ X5 @ A2 )
           => ( ord_less_eq_real @ zero_zero_real @ ( F @ X5 ) ) )
       => ( ( ( groups8097168146408367636l_real @ F @ A2 )
            = zero_zero_real )
          = ( ! [X3: real] :
                ( ( member_real @ X3 @ A2 )
               => ( ( F @ X3 )
                  = zero_zero_real ) ) ) ) ) ) ).

% sum_nonneg_eq_0_iff
thf(fact_6021_sum__nonneg__eq__0__iff,axiom,
    ! [A2: set_int,F: int > real] :
      ( ( finite_finite_int @ A2 )
     => ( ! [X5: int] :
            ( ( member_int @ X5 @ A2 )
           => ( ord_less_eq_real @ zero_zero_real @ ( F @ X5 ) ) )
       => ( ( ( groups8778361861064173332t_real @ F @ A2 )
            = zero_zero_real )
          = ( ! [X3: int] :
                ( ( member_int @ X3 @ A2 )
               => ( ( F @ X3 )
                  = zero_zero_real ) ) ) ) ) ) ).

% sum_nonneg_eq_0_iff
thf(fact_6022_sum__nonneg__eq__0__iff,axiom,
    ! [A2: set_complex,F: complex > real] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( ! [X5: complex] :
            ( ( member_complex @ X5 @ A2 )
           => ( ord_less_eq_real @ zero_zero_real @ ( F @ X5 ) ) )
       => ( ( ( groups5808333547571424918x_real @ F @ A2 )
            = zero_zero_real )
          = ( ! [X3: complex] :
                ( ( member_complex @ X3 @ A2 )
               => ( ( F @ X3 )
                  = zero_zero_real ) ) ) ) ) ) ).

% sum_nonneg_eq_0_iff
thf(fact_6023_sum__nonneg__eq__0__iff,axiom,
    ! [A2: set_real,F: real > rat] :
      ( ( finite_finite_real @ A2 )
     => ( ! [X5: real] :
            ( ( member_real @ X5 @ A2 )
           => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X5 ) ) )
       => ( ( ( groups1300246762558778688al_rat @ F @ A2 )
            = zero_zero_rat )
          = ( ! [X3: real] :
                ( ( member_real @ X3 @ A2 )
               => ( ( F @ X3 )
                  = zero_zero_rat ) ) ) ) ) ) ).

% sum_nonneg_eq_0_iff
thf(fact_6024_sum__nonneg__eq__0__iff,axiom,
    ! [A2: set_nat,F: nat > rat] :
      ( ( finite_finite_nat @ A2 )
     => ( ! [X5: nat] :
            ( ( member_nat @ X5 @ A2 )
           => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X5 ) ) )
       => ( ( ( groups2906978787729119204at_rat @ F @ A2 )
            = zero_zero_rat )
          = ( ! [X3: nat] :
                ( ( member_nat @ X3 @ A2 )
               => ( ( F @ X3 )
                  = zero_zero_rat ) ) ) ) ) ) ).

% sum_nonneg_eq_0_iff
thf(fact_6025_sum__nonneg__eq__0__iff,axiom,
    ! [A2: set_int,F: int > rat] :
      ( ( finite_finite_int @ A2 )
     => ( ! [X5: int] :
            ( ( member_int @ X5 @ A2 )
           => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X5 ) ) )
       => ( ( ( groups3906332499630173760nt_rat @ F @ A2 )
            = zero_zero_rat )
          = ( ! [X3: int] :
                ( ( member_int @ X3 @ A2 )
               => ( ( F @ X3 )
                  = zero_zero_rat ) ) ) ) ) ) ).

% sum_nonneg_eq_0_iff
thf(fact_6026_sum__nonneg__eq__0__iff,axiom,
    ! [A2: set_complex,F: complex > rat] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( ! [X5: complex] :
            ( ( member_complex @ X5 @ A2 )
           => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X5 ) ) )
       => ( ( ( groups5058264527183730370ex_rat @ F @ A2 )
            = zero_zero_rat )
          = ( ! [X3: complex] :
                ( ( member_complex @ X3 @ A2 )
               => ( ( F @ X3 )
                  = zero_zero_rat ) ) ) ) ) ) ).

% sum_nonneg_eq_0_iff
thf(fact_6027_sum__nonneg__eq__0__iff,axiom,
    ! [A2: set_real,F: real > nat] :
      ( ( finite_finite_real @ A2 )
     => ( ! [X5: real] :
            ( ( member_real @ X5 @ A2 )
           => ( ord_less_eq_nat @ zero_zero_nat @ ( F @ X5 ) ) )
       => ( ( ( groups1935376822645274424al_nat @ F @ A2 )
            = zero_zero_nat )
          = ( ! [X3: real] :
                ( ( member_real @ X3 @ A2 )
               => ( ( F @ X3 )
                  = zero_zero_nat ) ) ) ) ) ) ).

% sum_nonneg_eq_0_iff
thf(fact_6028_sum__nonneg__eq__0__iff,axiom,
    ! [A2: set_int,F: int > nat] :
      ( ( finite_finite_int @ A2 )
     => ( ! [X5: int] :
            ( ( member_int @ X5 @ A2 )
           => ( ord_less_eq_nat @ zero_zero_nat @ ( F @ X5 ) ) )
       => ( ( ( groups4541462559716669496nt_nat @ F @ A2 )
            = zero_zero_nat )
          = ( ! [X3: int] :
                ( ( member_int @ X3 @ A2 )
               => ( ( F @ X3 )
                  = zero_zero_nat ) ) ) ) ) ) ).

% sum_nonneg_eq_0_iff
thf(fact_6029_sum__nonneg__eq__0__iff,axiom,
    ! [A2: set_complex,F: complex > nat] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( ! [X5: complex] :
            ( ( member_complex @ X5 @ A2 )
           => ( ord_less_eq_nat @ zero_zero_nat @ ( F @ X5 ) ) )
       => ( ( ( groups5693394587270226106ex_nat @ F @ A2 )
            = zero_zero_nat )
          = ( ! [X3: complex] :
                ( ( member_complex @ X3 @ A2 )
               => ( ( F @ X3 )
                  = zero_zero_nat ) ) ) ) ) ) ).

% sum_nonneg_eq_0_iff
thf(fact_6030_sum__strict__mono__ex1,axiom,
    ! [A2: set_int,F: int > real,G: int > real] :
      ( ( finite_finite_int @ A2 )
     => ( ! [X5: int] :
            ( ( member_int @ X5 @ A2 )
           => ( ord_less_eq_real @ ( F @ X5 ) @ ( G @ X5 ) ) )
       => ( ? [X2: int] :
              ( ( member_int @ X2 @ A2 )
              & ( ord_less_real @ ( F @ X2 ) @ ( G @ X2 ) ) )
         => ( ord_less_real @ ( groups8778361861064173332t_real @ F @ A2 ) @ ( groups8778361861064173332t_real @ G @ A2 ) ) ) ) ) ).

% sum_strict_mono_ex1
thf(fact_6031_sum__strict__mono__ex1,axiom,
    ! [A2: set_complex,F: complex > real,G: complex > real] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( ! [X5: complex] :
            ( ( member_complex @ X5 @ A2 )
           => ( ord_less_eq_real @ ( F @ X5 ) @ ( G @ X5 ) ) )
       => ( ? [X2: complex] :
              ( ( member_complex @ X2 @ A2 )
              & ( ord_less_real @ ( F @ X2 ) @ ( G @ X2 ) ) )
         => ( ord_less_real @ ( groups5808333547571424918x_real @ F @ A2 ) @ ( groups5808333547571424918x_real @ G @ A2 ) ) ) ) ) ).

% sum_strict_mono_ex1
thf(fact_6032_sum__strict__mono__ex1,axiom,
    ! [A2: set_nat,F: nat > rat,G: nat > rat] :
      ( ( finite_finite_nat @ A2 )
     => ( ! [X5: nat] :
            ( ( member_nat @ X5 @ A2 )
           => ( ord_less_eq_rat @ ( F @ X5 ) @ ( G @ X5 ) ) )
       => ( ? [X2: nat] :
              ( ( member_nat @ X2 @ A2 )
              & ( ord_less_rat @ ( F @ X2 ) @ ( G @ X2 ) ) )
         => ( ord_less_rat @ ( groups2906978787729119204at_rat @ F @ A2 ) @ ( groups2906978787729119204at_rat @ G @ A2 ) ) ) ) ) ).

% sum_strict_mono_ex1
thf(fact_6033_sum__strict__mono__ex1,axiom,
    ! [A2: set_int,F: int > rat,G: int > rat] :
      ( ( finite_finite_int @ A2 )
     => ( ! [X5: int] :
            ( ( member_int @ X5 @ A2 )
           => ( ord_less_eq_rat @ ( F @ X5 ) @ ( G @ X5 ) ) )
       => ( ? [X2: int] :
              ( ( member_int @ X2 @ A2 )
              & ( ord_less_rat @ ( F @ X2 ) @ ( G @ X2 ) ) )
         => ( ord_less_rat @ ( groups3906332499630173760nt_rat @ F @ A2 ) @ ( groups3906332499630173760nt_rat @ G @ A2 ) ) ) ) ) ).

% sum_strict_mono_ex1
thf(fact_6034_sum__strict__mono__ex1,axiom,
    ! [A2: set_complex,F: complex > rat,G: complex > rat] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( ! [X5: complex] :
            ( ( member_complex @ X5 @ A2 )
           => ( ord_less_eq_rat @ ( F @ X5 ) @ ( G @ X5 ) ) )
       => ( ? [X2: complex] :
              ( ( member_complex @ X2 @ A2 )
              & ( ord_less_rat @ ( F @ X2 ) @ ( G @ X2 ) ) )
         => ( ord_less_rat @ ( groups5058264527183730370ex_rat @ F @ A2 ) @ ( groups5058264527183730370ex_rat @ G @ A2 ) ) ) ) ) ).

% sum_strict_mono_ex1
thf(fact_6035_sum__strict__mono__ex1,axiom,
    ! [A2: set_int,F: int > nat,G: int > nat] :
      ( ( finite_finite_int @ A2 )
     => ( ! [X5: int] :
            ( ( member_int @ X5 @ A2 )
           => ( ord_less_eq_nat @ ( F @ X5 ) @ ( G @ X5 ) ) )
       => ( ? [X2: int] :
              ( ( member_int @ X2 @ A2 )
              & ( ord_less_nat @ ( F @ X2 ) @ ( G @ X2 ) ) )
         => ( ord_less_nat @ ( groups4541462559716669496nt_nat @ F @ A2 ) @ ( groups4541462559716669496nt_nat @ G @ A2 ) ) ) ) ) ).

% sum_strict_mono_ex1
thf(fact_6036_sum__strict__mono__ex1,axiom,
    ! [A2: set_complex,F: complex > nat,G: complex > nat] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( ! [X5: complex] :
            ( ( member_complex @ X5 @ A2 )
           => ( ord_less_eq_nat @ ( F @ X5 ) @ ( G @ X5 ) ) )
       => ( ? [X2: complex] :
              ( ( member_complex @ X2 @ A2 )
              & ( ord_less_nat @ ( F @ X2 ) @ ( G @ X2 ) ) )
         => ( ord_less_nat @ ( groups5693394587270226106ex_nat @ F @ A2 ) @ ( groups5693394587270226106ex_nat @ G @ A2 ) ) ) ) ) ).

% sum_strict_mono_ex1
thf(fact_6037_sum__strict__mono__ex1,axiom,
    ! [A2: set_nat,F: nat > int,G: nat > int] :
      ( ( finite_finite_nat @ A2 )
     => ( ! [X5: nat] :
            ( ( member_nat @ X5 @ A2 )
           => ( ord_less_eq_int @ ( F @ X5 ) @ ( G @ X5 ) ) )
       => ( ? [X2: nat] :
              ( ( member_nat @ X2 @ A2 )
              & ( ord_less_int @ ( F @ X2 ) @ ( G @ X2 ) ) )
         => ( ord_less_int @ ( groups3539618377306564664at_int @ F @ A2 ) @ ( groups3539618377306564664at_int @ G @ A2 ) ) ) ) ) ).

% sum_strict_mono_ex1
thf(fact_6038_sum__strict__mono__ex1,axiom,
    ! [A2: set_complex,F: complex > int,G: complex > int] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( ! [X5: complex] :
            ( ( member_complex @ X5 @ A2 )
           => ( ord_less_eq_int @ ( F @ X5 ) @ ( G @ X5 ) ) )
       => ( ? [X2: complex] :
              ( ( member_complex @ X2 @ A2 )
              & ( ord_less_int @ ( F @ X2 ) @ ( G @ X2 ) ) )
         => ( ord_less_int @ ( groups5690904116761175830ex_int @ F @ A2 ) @ ( groups5690904116761175830ex_int @ G @ A2 ) ) ) ) ) ).

% sum_strict_mono_ex1
thf(fact_6039_sum__strict__mono__ex1,axiom,
    ! [A2: set_int,F: int > int,G: int > int] :
      ( ( finite_finite_int @ A2 )
     => ( ! [X5: int] :
            ( ( member_int @ X5 @ A2 )
           => ( ord_less_eq_int @ ( F @ X5 ) @ ( G @ X5 ) ) )
       => ( ? [X2: int] :
              ( ( member_int @ X2 @ A2 )
              & ( ord_less_int @ ( F @ X2 ) @ ( G @ X2 ) ) )
         => ( ord_less_int @ ( groups4538972089207619220nt_int @ F @ A2 ) @ ( groups4538972089207619220nt_int @ G @ A2 ) ) ) ) ) ).

% sum_strict_mono_ex1
thf(fact_6040_sum_Orelated,axiom,
    ! [R: complex > complex > $o,S3: set_nat,H2: nat > complex,G: nat > complex] :
      ( ( R @ zero_zero_complex @ zero_zero_complex )
     => ( ! [X16: complex,Y15: complex,X23: complex,Y23: complex] :
            ( ( ( R @ X16 @ X23 )
              & ( R @ Y15 @ Y23 ) )
           => ( R @ ( plus_plus_complex @ X16 @ Y15 ) @ ( plus_plus_complex @ X23 @ Y23 ) ) )
       => ( ( finite_finite_nat @ S3 )
         => ( ! [X5: nat] :
                ( ( member_nat @ X5 @ S3 )
               => ( R @ ( H2 @ X5 ) @ ( G @ X5 ) ) )
           => ( R @ ( groups2073611262835488442omplex @ H2 @ S3 ) @ ( groups2073611262835488442omplex @ G @ S3 ) ) ) ) ) ) ).

% sum.related
thf(fact_6041_sum_Orelated,axiom,
    ! [R: complex > complex > $o,S3: set_int,H2: int > complex,G: int > complex] :
      ( ( R @ zero_zero_complex @ zero_zero_complex )
     => ( ! [X16: complex,Y15: complex,X23: complex,Y23: complex] :
            ( ( ( R @ X16 @ X23 )
              & ( R @ Y15 @ Y23 ) )
           => ( R @ ( plus_plus_complex @ X16 @ Y15 ) @ ( plus_plus_complex @ X23 @ Y23 ) ) )
       => ( ( finite_finite_int @ S3 )
         => ( ! [X5: int] :
                ( ( member_int @ X5 @ S3 )
               => ( R @ ( H2 @ X5 ) @ ( G @ X5 ) ) )
           => ( R @ ( groups3049146728041665814omplex @ H2 @ S3 ) @ ( groups3049146728041665814omplex @ G @ S3 ) ) ) ) ) ) ).

% sum.related
thf(fact_6042_sum_Orelated,axiom,
    ! [R: real > real > $o,S3: set_int,H2: int > real,G: int > real] :
      ( ( R @ zero_zero_real @ zero_zero_real )
     => ( ! [X16: real,Y15: real,X23: real,Y23: real] :
            ( ( ( R @ X16 @ X23 )
              & ( R @ Y15 @ Y23 ) )
           => ( R @ ( plus_plus_real @ X16 @ Y15 ) @ ( plus_plus_real @ X23 @ Y23 ) ) )
       => ( ( finite_finite_int @ S3 )
         => ( ! [X5: int] :
                ( ( member_int @ X5 @ S3 )
               => ( R @ ( H2 @ X5 ) @ ( G @ X5 ) ) )
           => ( R @ ( groups8778361861064173332t_real @ H2 @ S3 ) @ ( groups8778361861064173332t_real @ G @ S3 ) ) ) ) ) ) ).

% sum.related
thf(fact_6043_sum_Orelated,axiom,
    ! [R: real > real > $o,S3: set_complex,H2: complex > real,G: complex > real] :
      ( ( R @ zero_zero_real @ zero_zero_real )
     => ( ! [X16: real,Y15: real,X23: real,Y23: real] :
            ( ( ( R @ X16 @ X23 )
              & ( R @ Y15 @ Y23 ) )
           => ( R @ ( plus_plus_real @ X16 @ Y15 ) @ ( plus_plus_real @ X23 @ Y23 ) ) )
       => ( ( finite3207457112153483333omplex @ S3 )
         => ( ! [X5: complex] :
                ( ( member_complex @ X5 @ S3 )
               => ( R @ ( H2 @ X5 ) @ ( G @ X5 ) ) )
           => ( R @ ( groups5808333547571424918x_real @ H2 @ S3 ) @ ( groups5808333547571424918x_real @ G @ S3 ) ) ) ) ) ) ).

% sum.related
thf(fact_6044_sum_Orelated,axiom,
    ! [R: rat > rat > $o,S3: set_nat,H2: nat > rat,G: nat > rat] :
      ( ( R @ zero_zero_rat @ zero_zero_rat )
     => ( ! [X16: rat,Y15: rat,X23: rat,Y23: rat] :
            ( ( ( R @ X16 @ X23 )
              & ( R @ Y15 @ Y23 ) )
           => ( R @ ( plus_plus_rat @ X16 @ Y15 ) @ ( plus_plus_rat @ X23 @ Y23 ) ) )
       => ( ( finite_finite_nat @ S3 )
         => ( ! [X5: nat] :
                ( ( member_nat @ X5 @ S3 )
               => ( R @ ( H2 @ X5 ) @ ( G @ X5 ) ) )
           => ( R @ ( groups2906978787729119204at_rat @ H2 @ S3 ) @ ( groups2906978787729119204at_rat @ G @ S3 ) ) ) ) ) ) ).

% sum.related
thf(fact_6045_sum_Orelated,axiom,
    ! [R: rat > rat > $o,S3: set_int,H2: int > rat,G: int > rat] :
      ( ( R @ zero_zero_rat @ zero_zero_rat )
     => ( ! [X16: rat,Y15: rat,X23: rat,Y23: rat] :
            ( ( ( R @ X16 @ X23 )
              & ( R @ Y15 @ Y23 ) )
           => ( R @ ( plus_plus_rat @ X16 @ Y15 ) @ ( plus_plus_rat @ X23 @ Y23 ) ) )
       => ( ( finite_finite_int @ S3 )
         => ( ! [X5: int] :
                ( ( member_int @ X5 @ S3 )
               => ( R @ ( H2 @ X5 ) @ ( G @ X5 ) ) )
           => ( R @ ( groups3906332499630173760nt_rat @ H2 @ S3 ) @ ( groups3906332499630173760nt_rat @ G @ S3 ) ) ) ) ) ) ).

% sum.related
thf(fact_6046_sum_Orelated,axiom,
    ! [R: rat > rat > $o,S3: set_complex,H2: complex > rat,G: complex > rat] :
      ( ( R @ zero_zero_rat @ zero_zero_rat )
     => ( ! [X16: rat,Y15: rat,X23: rat,Y23: rat] :
            ( ( ( R @ X16 @ X23 )
              & ( R @ Y15 @ Y23 ) )
           => ( R @ ( plus_plus_rat @ X16 @ Y15 ) @ ( plus_plus_rat @ X23 @ Y23 ) ) )
       => ( ( finite3207457112153483333omplex @ S3 )
         => ( ! [X5: complex] :
                ( ( member_complex @ X5 @ S3 )
               => ( R @ ( H2 @ X5 ) @ ( G @ X5 ) ) )
           => ( R @ ( groups5058264527183730370ex_rat @ H2 @ S3 ) @ ( groups5058264527183730370ex_rat @ G @ S3 ) ) ) ) ) ) ).

% sum.related
thf(fact_6047_sum_Orelated,axiom,
    ! [R: nat > nat > $o,S3: set_int,H2: int > nat,G: int > nat] :
      ( ( R @ zero_zero_nat @ zero_zero_nat )
     => ( ! [X16: nat,Y15: nat,X23: nat,Y23: nat] :
            ( ( ( R @ X16 @ X23 )
              & ( R @ Y15 @ Y23 ) )
           => ( R @ ( plus_plus_nat @ X16 @ Y15 ) @ ( plus_plus_nat @ X23 @ Y23 ) ) )
       => ( ( finite_finite_int @ S3 )
         => ( ! [X5: int] :
                ( ( member_int @ X5 @ S3 )
               => ( R @ ( H2 @ X5 ) @ ( G @ X5 ) ) )
           => ( R @ ( groups4541462559716669496nt_nat @ H2 @ S3 ) @ ( groups4541462559716669496nt_nat @ G @ S3 ) ) ) ) ) ) ).

% sum.related
thf(fact_6048_sum_Orelated,axiom,
    ! [R: nat > nat > $o,S3: set_complex,H2: complex > nat,G: complex > nat] :
      ( ( R @ zero_zero_nat @ zero_zero_nat )
     => ( ! [X16: nat,Y15: nat,X23: nat,Y23: nat] :
            ( ( ( R @ X16 @ X23 )
              & ( R @ Y15 @ Y23 ) )
           => ( R @ ( plus_plus_nat @ X16 @ Y15 ) @ ( plus_plus_nat @ X23 @ Y23 ) ) )
       => ( ( finite3207457112153483333omplex @ S3 )
         => ( ! [X5: complex] :
                ( ( member_complex @ X5 @ S3 )
               => ( R @ ( H2 @ X5 ) @ ( G @ X5 ) ) )
           => ( R @ ( groups5693394587270226106ex_nat @ H2 @ S3 ) @ ( groups5693394587270226106ex_nat @ G @ S3 ) ) ) ) ) ) ).

% sum.related
thf(fact_6049_sum_Orelated,axiom,
    ! [R: int > int > $o,S3: set_nat,H2: nat > int,G: nat > int] :
      ( ( R @ zero_zero_int @ zero_zero_int )
     => ( ! [X16: int,Y15: int,X23: int,Y23: int] :
            ( ( ( R @ X16 @ X23 )
              & ( R @ Y15 @ Y23 ) )
           => ( R @ ( plus_plus_int @ X16 @ Y15 ) @ ( plus_plus_int @ X23 @ Y23 ) ) )
       => ( ( finite_finite_nat @ S3 )
         => ( ! [X5: nat] :
                ( ( member_nat @ X5 @ S3 )
               => ( R @ ( H2 @ X5 ) @ ( G @ X5 ) ) )
           => ( R @ ( groups3539618377306564664at_int @ H2 @ S3 ) @ ( groups3539618377306564664at_int @ G @ S3 ) ) ) ) ) ) ).

% sum.related
thf(fact_6050_sum__strict__mono,axiom,
    ! [A2: set_complex,F: complex > real,G: complex > real] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( ( A2 != bot_bot_set_complex )
       => ( ! [X5: complex] :
              ( ( member_complex @ X5 @ A2 )
             => ( ord_less_real @ ( F @ X5 ) @ ( G @ X5 ) ) )
         => ( ord_less_real @ ( groups5808333547571424918x_real @ F @ A2 ) @ ( groups5808333547571424918x_real @ G @ A2 ) ) ) ) ) ).

% sum_strict_mono
thf(fact_6051_sum__strict__mono,axiom,
    ! [A2: set_int,F: int > real,G: int > real] :
      ( ( finite_finite_int @ A2 )
     => ( ( A2 != bot_bot_set_int )
       => ( ! [X5: int] :
              ( ( member_int @ X5 @ A2 )
             => ( ord_less_real @ ( F @ X5 ) @ ( G @ X5 ) ) )
         => ( ord_less_real @ ( groups8778361861064173332t_real @ F @ A2 ) @ ( groups8778361861064173332t_real @ G @ A2 ) ) ) ) ) ).

% sum_strict_mono
thf(fact_6052_sum__strict__mono,axiom,
    ! [A2: set_real,F: real > real,G: real > real] :
      ( ( finite_finite_real @ A2 )
     => ( ( A2 != bot_bot_set_real )
       => ( ! [X5: real] :
              ( ( member_real @ X5 @ A2 )
             => ( ord_less_real @ ( F @ X5 ) @ ( G @ X5 ) ) )
         => ( ord_less_real @ ( groups8097168146408367636l_real @ F @ A2 ) @ ( groups8097168146408367636l_real @ G @ A2 ) ) ) ) ) ).

% sum_strict_mono
thf(fact_6053_sum__strict__mono,axiom,
    ! [A2: set_complex,F: complex > rat,G: complex > rat] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( ( A2 != bot_bot_set_complex )
       => ( ! [X5: complex] :
              ( ( member_complex @ X5 @ A2 )
             => ( ord_less_rat @ ( F @ X5 ) @ ( G @ X5 ) ) )
         => ( ord_less_rat @ ( groups5058264527183730370ex_rat @ F @ A2 ) @ ( groups5058264527183730370ex_rat @ G @ A2 ) ) ) ) ) ).

% sum_strict_mono
thf(fact_6054_sum__strict__mono,axiom,
    ! [A2: set_nat,F: nat > rat,G: nat > rat] :
      ( ( finite_finite_nat @ A2 )
     => ( ( A2 != bot_bot_set_nat )
       => ( ! [X5: nat] :
              ( ( member_nat @ X5 @ A2 )
             => ( ord_less_rat @ ( F @ X5 ) @ ( G @ X5 ) ) )
         => ( ord_less_rat @ ( groups2906978787729119204at_rat @ F @ A2 ) @ ( groups2906978787729119204at_rat @ G @ A2 ) ) ) ) ) ).

% sum_strict_mono
thf(fact_6055_sum__strict__mono,axiom,
    ! [A2: set_int,F: int > rat,G: int > rat] :
      ( ( finite_finite_int @ A2 )
     => ( ( A2 != bot_bot_set_int )
       => ( ! [X5: int] :
              ( ( member_int @ X5 @ A2 )
             => ( ord_less_rat @ ( F @ X5 ) @ ( G @ X5 ) ) )
         => ( ord_less_rat @ ( groups3906332499630173760nt_rat @ F @ A2 ) @ ( groups3906332499630173760nt_rat @ G @ A2 ) ) ) ) ) ).

% sum_strict_mono
thf(fact_6056_sum__strict__mono,axiom,
    ! [A2: set_real,F: real > rat,G: real > rat] :
      ( ( finite_finite_real @ A2 )
     => ( ( A2 != bot_bot_set_real )
       => ( ! [X5: real] :
              ( ( member_real @ X5 @ A2 )
             => ( ord_less_rat @ ( F @ X5 ) @ ( G @ X5 ) ) )
         => ( ord_less_rat @ ( groups1300246762558778688al_rat @ F @ A2 ) @ ( groups1300246762558778688al_rat @ G @ A2 ) ) ) ) ) ).

% sum_strict_mono
thf(fact_6057_sum__strict__mono,axiom,
    ! [A2: set_complex,F: complex > nat,G: complex > nat] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( ( A2 != bot_bot_set_complex )
       => ( ! [X5: complex] :
              ( ( member_complex @ X5 @ A2 )
             => ( ord_less_nat @ ( F @ X5 ) @ ( G @ X5 ) ) )
         => ( ord_less_nat @ ( groups5693394587270226106ex_nat @ F @ A2 ) @ ( groups5693394587270226106ex_nat @ G @ A2 ) ) ) ) ) ).

% sum_strict_mono
thf(fact_6058_sum__strict__mono,axiom,
    ! [A2: set_int,F: int > nat,G: int > nat] :
      ( ( finite_finite_int @ A2 )
     => ( ( A2 != bot_bot_set_int )
       => ( ! [X5: int] :
              ( ( member_int @ X5 @ A2 )
             => ( ord_less_nat @ ( F @ X5 ) @ ( G @ X5 ) ) )
         => ( ord_less_nat @ ( groups4541462559716669496nt_nat @ F @ A2 ) @ ( groups4541462559716669496nt_nat @ G @ A2 ) ) ) ) ) ).

% sum_strict_mono
thf(fact_6059_sum__strict__mono,axiom,
    ! [A2: set_real,F: real > nat,G: real > nat] :
      ( ( finite_finite_real @ A2 )
     => ( ( A2 != bot_bot_set_real )
       => ( ! [X5: real] :
              ( ( member_real @ X5 @ A2 )
             => ( ord_less_nat @ ( F @ X5 ) @ ( G @ X5 ) ) )
         => ( ord_less_nat @ ( groups1935376822645274424al_nat @ F @ A2 ) @ ( groups1935376822645274424al_nat @ G @ A2 ) ) ) ) ) ).

% sum_strict_mono
thf(fact_6060_ln__bound,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ord_less_eq_real @ ( ln_ln_real @ X ) @ X ) ) ).

% ln_bound
thf(fact_6061_ln__ge__zero,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ one_one_real @ X )
     => ( ord_less_eq_real @ zero_zero_real @ ( ln_ln_real @ X ) ) ) ).

% ln_ge_zero
thf(fact_6062_sum_Oreindex__bij__witness__not__neutral,axiom,
    ! [S4: set_real,T4: set_real,S3: set_real,I2: real > real,J: real > real,T3: set_real,G: real > complex,H2: real > complex] :
      ( ( finite_finite_real @ S4 )
     => ( ( finite_finite_real @ T4 )
       => ( ! [A3: real] :
              ( ( member_real @ A3 @ ( minus_minus_set_real @ S3 @ S4 ) )
             => ( ( I2 @ ( J @ A3 ) )
                = A3 ) )
         => ( ! [A3: real] :
                ( ( member_real @ A3 @ ( minus_minus_set_real @ S3 @ S4 ) )
               => ( member_real @ ( J @ A3 ) @ ( minus_minus_set_real @ T3 @ T4 ) ) )
           => ( ! [B2: real] :
                  ( ( member_real @ B2 @ ( minus_minus_set_real @ T3 @ T4 ) )
                 => ( ( J @ ( I2 @ B2 ) )
                    = B2 ) )
             => ( ! [B2: real] :
                    ( ( member_real @ B2 @ ( minus_minus_set_real @ T3 @ T4 ) )
                   => ( member_real @ ( I2 @ B2 ) @ ( minus_minus_set_real @ S3 @ S4 ) ) )
               => ( ! [A3: real] :
                      ( ( member_real @ A3 @ S4 )
                     => ( ( G @ A3 )
                        = zero_zero_complex ) )
                 => ( ! [B2: real] :
                        ( ( member_real @ B2 @ T4 )
                       => ( ( H2 @ B2 )
                          = zero_zero_complex ) )
                   => ( ! [A3: real] :
                          ( ( member_real @ A3 @ S3 )
                         => ( ( H2 @ ( J @ A3 ) )
                            = ( G @ A3 ) ) )
                     => ( ( groups5754745047067104278omplex @ G @ S3 )
                        = ( groups5754745047067104278omplex @ H2 @ T3 ) ) ) ) ) ) ) ) ) ) ) ).

% sum.reindex_bij_witness_not_neutral
thf(fact_6063_sum_Oreindex__bij__witness__not__neutral,axiom,
    ! [S4: set_real,T4: set_int,S3: set_real,I2: int > real,J: real > int,T3: set_int,G: real > complex,H2: int > complex] :
      ( ( finite_finite_real @ S4 )
     => ( ( finite_finite_int @ T4 )
       => ( ! [A3: real] :
              ( ( member_real @ A3 @ ( minus_minus_set_real @ S3 @ S4 ) )
             => ( ( I2 @ ( J @ A3 ) )
                = A3 ) )
         => ( ! [A3: real] :
                ( ( member_real @ A3 @ ( minus_minus_set_real @ S3 @ S4 ) )
               => ( member_int @ ( J @ A3 ) @ ( minus_minus_set_int @ T3 @ T4 ) ) )
           => ( ! [B2: int] :
                  ( ( member_int @ B2 @ ( minus_minus_set_int @ T3 @ T4 ) )
                 => ( ( J @ ( I2 @ B2 ) )
                    = B2 ) )
             => ( ! [B2: int] :
                    ( ( member_int @ B2 @ ( minus_minus_set_int @ T3 @ T4 ) )
                   => ( member_real @ ( I2 @ B2 ) @ ( minus_minus_set_real @ S3 @ S4 ) ) )
               => ( ! [A3: real] :
                      ( ( member_real @ A3 @ S4 )
                     => ( ( G @ A3 )
                        = zero_zero_complex ) )
                 => ( ! [B2: int] :
                        ( ( member_int @ B2 @ T4 )
                       => ( ( H2 @ B2 )
                          = zero_zero_complex ) )
                   => ( ! [A3: real] :
                          ( ( member_real @ A3 @ S3 )
                         => ( ( H2 @ ( J @ A3 ) )
                            = ( G @ A3 ) ) )
                     => ( ( groups5754745047067104278omplex @ G @ S3 )
                        = ( groups3049146728041665814omplex @ H2 @ T3 ) ) ) ) ) ) ) ) ) ) ) ).

% sum.reindex_bij_witness_not_neutral
thf(fact_6064_sum_Oreindex__bij__witness__not__neutral,axiom,
    ! [S4: set_int,T4: set_real,S3: set_int,I2: real > int,J: int > real,T3: set_real,G: int > complex,H2: real > complex] :
      ( ( finite_finite_int @ S4 )
     => ( ( finite_finite_real @ T4 )
       => ( ! [A3: int] :
              ( ( member_int @ A3 @ ( minus_minus_set_int @ S3 @ S4 ) )
             => ( ( I2 @ ( J @ A3 ) )
                = A3 ) )
         => ( ! [A3: int] :
                ( ( member_int @ A3 @ ( minus_minus_set_int @ S3 @ S4 ) )
               => ( member_real @ ( J @ A3 ) @ ( minus_minus_set_real @ T3 @ T4 ) ) )
           => ( ! [B2: real] :
                  ( ( member_real @ B2 @ ( minus_minus_set_real @ T3 @ T4 ) )
                 => ( ( J @ ( I2 @ B2 ) )
                    = B2 ) )
             => ( ! [B2: real] :
                    ( ( member_real @ B2 @ ( minus_minus_set_real @ T3 @ T4 ) )
                   => ( member_int @ ( I2 @ B2 ) @ ( minus_minus_set_int @ S3 @ S4 ) ) )
               => ( ! [A3: int] :
                      ( ( member_int @ A3 @ S4 )
                     => ( ( G @ A3 )
                        = zero_zero_complex ) )
                 => ( ! [B2: real] :
                        ( ( member_real @ B2 @ T4 )
                       => ( ( H2 @ B2 )
                          = zero_zero_complex ) )
                   => ( ! [A3: int] :
                          ( ( member_int @ A3 @ S3 )
                         => ( ( H2 @ ( J @ A3 ) )
                            = ( G @ A3 ) ) )
                     => ( ( groups3049146728041665814omplex @ G @ S3 )
                        = ( groups5754745047067104278omplex @ H2 @ T3 ) ) ) ) ) ) ) ) ) ) ) ).

% sum.reindex_bij_witness_not_neutral
thf(fact_6065_sum_Oreindex__bij__witness__not__neutral,axiom,
    ! [S4: set_int,T4: set_int,S3: set_int,I2: int > int,J: int > int,T3: set_int,G: int > complex,H2: int > complex] :
      ( ( finite_finite_int @ S4 )
     => ( ( finite_finite_int @ T4 )
       => ( ! [A3: int] :
              ( ( member_int @ A3 @ ( minus_minus_set_int @ S3 @ S4 ) )
             => ( ( I2 @ ( J @ A3 ) )
                = A3 ) )
         => ( ! [A3: int] :
                ( ( member_int @ A3 @ ( minus_minus_set_int @ S3 @ S4 ) )
               => ( member_int @ ( J @ A3 ) @ ( minus_minus_set_int @ T3 @ T4 ) ) )
           => ( ! [B2: int] :
                  ( ( member_int @ B2 @ ( minus_minus_set_int @ T3 @ T4 ) )
                 => ( ( J @ ( I2 @ B2 ) )
                    = B2 ) )
             => ( ! [B2: int] :
                    ( ( member_int @ B2 @ ( minus_minus_set_int @ T3 @ T4 ) )
                   => ( member_int @ ( I2 @ B2 ) @ ( minus_minus_set_int @ S3 @ S4 ) ) )
               => ( ! [A3: int] :
                      ( ( member_int @ A3 @ S4 )
                     => ( ( G @ A3 )
                        = zero_zero_complex ) )
                 => ( ! [B2: int] :
                        ( ( member_int @ B2 @ T4 )
                       => ( ( H2 @ B2 )
                          = zero_zero_complex ) )
                   => ( ! [A3: int] :
                          ( ( member_int @ A3 @ S3 )
                         => ( ( H2 @ ( J @ A3 ) )
                            = ( G @ A3 ) ) )
                     => ( ( groups3049146728041665814omplex @ G @ S3 )
                        = ( groups3049146728041665814omplex @ H2 @ T3 ) ) ) ) ) ) ) ) ) ) ) ).

% sum.reindex_bij_witness_not_neutral
thf(fact_6066_sum_Oreindex__bij__witness__not__neutral,axiom,
    ! [S4: set_real,T4: set_real,S3: set_real,I2: real > real,J: real > real,T3: set_real,G: real > real,H2: real > real] :
      ( ( finite_finite_real @ S4 )
     => ( ( finite_finite_real @ T4 )
       => ( ! [A3: real] :
              ( ( member_real @ A3 @ ( minus_minus_set_real @ S3 @ S4 ) )
             => ( ( I2 @ ( J @ A3 ) )
                = A3 ) )
         => ( ! [A3: real] :
                ( ( member_real @ A3 @ ( minus_minus_set_real @ S3 @ S4 ) )
               => ( member_real @ ( J @ A3 ) @ ( minus_minus_set_real @ T3 @ T4 ) ) )
           => ( ! [B2: real] :
                  ( ( member_real @ B2 @ ( minus_minus_set_real @ T3 @ T4 ) )
                 => ( ( J @ ( I2 @ B2 ) )
                    = B2 ) )
             => ( ! [B2: real] :
                    ( ( member_real @ B2 @ ( minus_minus_set_real @ T3 @ T4 ) )
                   => ( member_real @ ( I2 @ B2 ) @ ( minus_minus_set_real @ S3 @ S4 ) ) )
               => ( ! [A3: real] :
                      ( ( member_real @ A3 @ S4 )
                     => ( ( G @ A3 )
                        = zero_zero_real ) )
                 => ( ! [B2: real] :
                        ( ( member_real @ B2 @ T4 )
                       => ( ( H2 @ B2 )
                          = zero_zero_real ) )
                   => ( ! [A3: real] :
                          ( ( member_real @ A3 @ S3 )
                         => ( ( H2 @ ( J @ A3 ) )
                            = ( G @ A3 ) ) )
                     => ( ( groups8097168146408367636l_real @ G @ S3 )
                        = ( groups8097168146408367636l_real @ H2 @ T3 ) ) ) ) ) ) ) ) ) ) ) ).

% sum.reindex_bij_witness_not_neutral
thf(fact_6067_sum_Oreindex__bij__witness__not__neutral,axiom,
    ! [S4: set_real,T4: set_int,S3: set_real,I2: int > real,J: real > int,T3: set_int,G: real > real,H2: int > real] :
      ( ( finite_finite_real @ S4 )
     => ( ( finite_finite_int @ T4 )
       => ( ! [A3: real] :
              ( ( member_real @ A3 @ ( minus_minus_set_real @ S3 @ S4 ) )
             => ( ( I2 @ ( J @ A3 ) )
                = A3 ) )
         => ( ! [A3: real] :
                ( ( member_real @ A3 @ ( minus_minus_set_real @ S3 @ S4 ) )
               => ( member_int @ ( J @ A3 ) @ ( minus_minus_set_int @ T3 @ T4 ) ) )
           => ( ! [B2: int] :
                  ( ( member_int @ B2 @ ( minus_minus_set_int @ T3 @ T4 ) )
                 => ( ( J @ ( I2 @ B2 ) )
                    = B2 ) )
             => ( ! [B2: int] :
                    ( ( member_int @ B2 @ ( minus_minus_set_int @ T3 @ T4 ) )
                   => ( member_real @ ( I2 @ B2 ) @ ( minus_minus_set_real @ S3 @ S4 ) ) )
               => ( ! [A3: real] :
                      ( ( member_real @ A3 @ S4 )
                     => ( ( G @ A3 )
                        = zero_zero_real ) )
                 => ( ! [B2: int] :
                        ( ( member_int @ B2 @ T4 )
                       => ( ( H2 @ B2 )
                          = zero_zero_real ) )
                   => ( ! [A3: real] :
                          ( ( member_real @ A3 @ S3 )
                         => ( ( H2 @ ( J @ A3 ) )
                            = ( G @ A3 ) ) )
                     => ( ( groups8097168146408367636l_real @ G @ S3 )
                        = ( groups8778361861064173332t_real @ H2 @ T3 ) ) ) ) ) ) ) ) ) ) ) ).

% sum.reindex_bij_witness_not_neutral
thf(fact_6068_sum_Oreindex__bij__witness__not__neutral,axiom,
    ! [S4: set_real,T4: set_complex,S3: set_real,I2: complex > real,J: real > complex,T3: set_complex,G: real > real,H2: complex > real] :
      ( ( finite_finite_real @ S4 )
     => ( ( finite3207457112153483333omplex @ T4 )
       => ( ! [A3: real] :
              ( ( member_real @ A3 @ ( minus_minus_set_real @ S3 @ S4 ) )
             => ( ( I2 @ ( J @ A3 ) )
                = A3 ) )
         => ( ! [A3: real] :
                ( ( member_real @ A3 @ ( minus_minus_set_real @ S3 @ S4 ) )
               => ( member_complex @ ( J @ A3 ) @ ( minus_811609699411566653omplex @ T3 @ T4 ) ) )
           => ( ! [B2: complex] :
                  ( ( member_complex @ B2 @ ( minus_811609699411566653omplex @ T3 @ T4 ) )
                 => ( ( J @ ( I2 @ B2 ) )
                    = B2 ) )
             => ( ! [B2: complex] :
                    ( ( member_complex @ B2 @ ( minus_811609699411566653omplex @ T3 @ T4 ) )
                   => ( member_real @ ( I2 @ B2 ) @ ( minus_minus_set_real @ S3 @ S4 ) ) )
               => ( ! [A3: real] :
                      ( ( member_real @ A3 @ S4 )
                     => ( ( G @ A3 )
                        = zero_zero_real ) )
                 => ( ! [B2: complex] :
                        ( ( member_complex @ B2 @ T4 )
                       => ( ( H2 @ B2 )
                          = zero_zero_real ) )
                   => ( ! [A3: real] :
                          ( ( member_real @ A3 @ S3 )
                         => ( ( H2 @ ( J @ A3 ) )
                            = ( G @ A3 ) ) )
                     => ( ( groups8097168146408367636l_real @ G @ S3 )
                        = ( groups5808333547571424918x_real @ H2 @ T3 ) ) ) ) ) ) ) ) ) ) ) ).

% sum.reindex_bij_witness_not_neutral
thf(fact_6069_sum_Oreindex__bij__witness__not__neutral,axiom,
    ! [S4: set_int,T4: set_real,S3: set_int,I2: real > int,J: int > real,T3: set_real,G: int > real,H2: real > real] :
      ( ( finite_finite_int @ S4 )
     => ( ( finite_finite_real @ T4 )
       => ( ! [A3: int] :
              ( ( member_int @ A3 @ ( minus_minus_set_int @ S3 @ S4 ) )
             => ( ( I2 @ ( J @ A3 ) )
                = A3 ) )
         => ( ! [A3: int] :
                ( ( member_int @ A3 @ ( minus_minus_set_int @ S3 @ S4 ) )
               => ( member_real @ ( J @ A3 ) @ ( minus_minus_set_real @ T3 @ T4 ) ) )
           => ( ! [B2: real] :
                  ( ( member_real @ B2 @ ( minus_minus_set_real @ T3 @ T4 ) )
                 => ( ( J @ ( I2 @ B2 ) )
                    = B2 ) )
             => ( ! [B2: real] :
                    ( ( member_real @ B2 @ ( minus_minus_set_real @ T3 @ T4 ) )
                   => ( member_int @ ( I2 @ B2 ) @ ( minus_minus_set_int @ S3 @ S4 ) ) )
               => ( ! [A3: int] :
                      ( ( member_int @ A3 @ S4 )
                     => ( ( G @ A3 )
                        = zero_zero_real ) )
                 => ( ! [B2: real] :
                        ( ( member_real @ B2 @ T4 )
                       => ( ( H2 @ B2 )
                          = zero_zero_real ) )
                   => ( ! [A3: int] :
                          ( ( member_int @ A3 @ S3 )
                         => ( ( H2 @ ( J @ A3 ) )
                            = ( G @ A3 ) ) )
                     => ( ( groups8778361861064173332t_real @ G @ S3 )
                        = ( groups8097168146408367636l_real @ H2 @ T3 ) ) ) ) ) ) ) ) ) ) ) ).

% sum.reindex_bij_witness_not_neutral
thf(fact_6070_sum_Oreindex__bij__witness__not__neutral,axiom,
    ! [S4: set_int,T4: set_int,S3: set_int,I2: int > int,J: int > int,T3: set_int,G: int > real,H2: int > real] :
      ( ( finite_finite_int @ S4 )
     => ( ( finite_finite_int @ T4 )
       => ( ! [A3: int] :
              ( ( member_int @ A3 @ ( minus_minus_set_int @ S3 @ S4 ) )
             => ( ( I2 @ ( J @ A3 ) )
                = A3 ) )
         => ( ! [A3: int] :
                ( ( member_int @ A3 @ ( minus_minus_set_int @ S3 @ S4 ) )
               => ( member_int @ ( J @ A3 ) @ ( minus_minus_set_int @ T3 @ T4 ) ) )
           => ( ! [B2: int] :
                  ( ( member_int @ B2 @ ( minus_minus_set_int @ T3 @ T4 ) )
                 => ( ( J @ ( I2 @ B2 ) )
                    = B2 ) )
             => ( ! [B2: int] :
                    ( ( member_int @ B2 @ ( minus_minus_set_int @ T3 @ T4 ) )
                   => ( member_int @ ( I2 @ B2 ) @ ( minus_minus_set_int @ S3 @ S4 ) ) )
               => ( ! [A3: int] :
                      ( ( member_int @ A3 @ S4 )
                     => ( ( G @ A3 )
                        = zero_zero_real ) )
                 => ( ! [B2: int] :
                        ( ( member_int @ B2 @ T4 )
                       => ( ( H2 @ B2 )
                          = zero_zero_real ) )
                   => ( ! [A3: int] :
                          ( ( member_int @ A3 @ S3 )
                         => ( ( H2 @ ( J @ A3 ) )
                            = ( G @ A3 ) ) )
                     => ( ( groups8778361861064173332t_real @ G @ S3 )
                        = ( groups8778361861064173332t_real @ H2 @ T3 ) ) ) ) ) ) ) ) ) ) ) ).

% sum.reindex_bij_witness_not_neutral
thf(fact_6071_sum_Oreindex__bij__witness__not__neutral,axiom,
    ! [S4: set_int,T4: set_complex,S3: set_int,I2: complex > int,J: int > complex,T3: set_complex,G: int > real,H2: complex > real] :
      ( ( finite_finite_int @ S4 )
     => ( ( finite3207457112153483333omplex @ T4 )
       => ( ! [A3: int] :
              ( ( member_int @ A3 @ ( minus_minus_set_int @ S3 @ S4 ) )
             => ( ( I2 @ ( J @ A3 ) )
                = A3 ) )
         => ( ! [A3: int] :
                ( ( member_int @ A3 @ ( minus_minus_set_int @ S3 @ S4 ) )
               => ( member_complex @ ( J @ A3 ) @ ( minus_811609699411566653omplex @ T3 @ T4 ) ) )
           => ( ! [B2: complex] :
                  ( ( member_complex @ B2 @ ( minus_811609699411566653omplex @ T3 @ T4 ) )
                 => ( ( J @ ( I2 @ B2 ) )
                    = B2 ) )
             => ( ! [B2: complex] :
                    ( ( member_complex @ B2 @ ( minus_811609699411566653omplex @ T3 @ T4 ) )
                   => ( member_int @ ( I2 @ B2 ) @ ( minus_minus_set_int @ S3 @ S4 ) ) )
               => ( ! [A3: int] :
                      ( ( member_int @ A3 @ S4 )
                     => ( ( G @ A3 )
                        = zero_zero_real ) )
                 => ( ! [B2: complex] :
                        ( ( member_complex @ B2 @ T4 )
                       => ( ( H2 @ B2 )
                          = zero_zero_real ) )
                   => ( ! [A3: int] :
                          ( ( member_int @ A3 @ S3 )
                         => ( ( H2 @ ( J @ A3 ) )
                            = ( G @ A3 ) ) )
                     => ( ( groups8778361861064173332t_real @ G @ S3 )
                        = ( groups5808333547571424918x_real @ H2 @ T3 ) ) ) ) ) ) ) ) ) ) ) ).

% sum.reindex_bij_witness_not_neutral
thf(fact_6072_neg__numeral__le__zero,axiom,
    ! [N2: num] : ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ N2 ) ) @ zero_zero_real ) ).

% neg_numeral_le_zero
thf(fact_6073_neg__numeral__le__zero,axiom,
    ! [N2: num] : ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N2 ) ) @ zero_z3403309356797280102nteger ) ).

% neg_numeral_le_zero
thf(fact_6074_neg__numeral__le__zero,axiom,
    ! [N2: num] : ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N2 ) ) @ zero_zero_rat ) ).

% neg_numeral_le_zero
thf(fact_6075_neg__numeral__le__zero,axiom,
    ! [N2: num] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) @ zero_zero_int ) ).

% neg_numeral_le_zero
thf(fact_6076_not__zero__le__neg__numeral,axiom,
    ! [N2: num] :
      ~ ( ord_less_eq_real @ zero_zero_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ N2 ) ) ) ).

% not_zero_le_neg_numeral
thf(fact_6077_not__zero__le__neg__numeral,axiom,
    ! [N2: num] :
      ~ ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N2 ) ) ) ).

% not_zero_le_neg_numeral
thf(fact_6078_not__zero__le__neg__numeral,axiom,
    ! [N2: num] :
      ~ ( ord_less_eq_rat @ zero_zero_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N2 ) ) ) ).

% not_zero_le_neg_numeral
thf(fact_6079_not__zero__le__neg__numeral,axiom,
    ! [N2: num] :
      ~ ( ord_less_eq_int @ zero_zero_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) ) ).

% not_zero_le_neg_numeral
thf(fact_6080_neg__numeral__less__zero,axiom,
    ! [N2: num] : ( ord_less_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ N2 ) ) @ zero_zero_real ) ).

% neg_numeral_less_zero
thf(fact_6081_neg__numeral__less__zero,axiom,
    ! [N2: num] : ( ord_less_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) @ zero_zero_int ) ).

% neg_numeral_less_zero
thf(fact_6082_neg__numeral__less__zero,axiom,
    ! [N2: num] : ( ord_less_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N2 ) ) @ zero_zero_rat ) ).

% neg_numeral_less_zero
thf(fact_6083_neg__numeral__less__zero,axiom,
    ! [N2: num] : ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N2 ) ) @ zero_z3403309356797280102nteger ) ).

% neg_numeral_less_zero
thf(fact_6084_not__zero__less__neg__numeral,axiom,
    ! [N2: num] :
      ~ ( ord_less_real @ zero_zero_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ N2 ) ) ) ).

% not_zero_less_neg_numeral
thf(fact_6085_not__zero__less__neg__numeral,axiom,
    ! [N2: num] :
      ~ ( ord_less_int @ zero_zero_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) ) ).

% not_zero_less_neg_numeral
thf(fact_6086_not__zero__less__neg__numeral,axiom,
    ! [N2: num] :
      ~ ( ord_less_rat @ zero_zero_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N2 ) ) ) ).

% not_zero_less_neg_numeral
thf(fact_6087_not__zero__less__neg__numeral,axiom,
    ! [N2: num] :
      ~ ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N2 ) ) ) ).

% not_zero_less_neg_numeral
thf(fact_6088_le__minus__one__simps_I3_J,axiom,
    ~ ( ord_less_eq_real @ zero_zero_real @ ( uminus_uminus_real @ one_one_real ) ) ).

% le_minus_one_simps(3)
thf(fact_6089_le__minus__one__simps_I3_J,axiom,
    ~ ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% le_minus_one_simps(3)
thf(fact_6090_le__minus__one__simps_I3_J,axiom,
    ~ ( ord_less_eq_rat @ zero_zero_rat @ ( uminus_uminus_rat @ one_one_rat ) ) ).

% le_minus_one_simps(3)
thf(fact_6091_le__minus__one__simps_I3_J,axiom,
    ~ ( ord_less_eq_int @ zero_zero_int @ ( uminus_uminus_int @ one_one_int ) ) ).

% le_minus_one_simps(3)
thf(fact_6092_le__minus__one__simps_I1_J,axiom,
    ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ zero_zero_real ).

% le_minus_one_simps(1)
thf(fact_6093_le__minus__one__simps_I1_J,axiom,
    ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ zero_z3403309356797280102nteger ).

% le_minus_one_simps(1)
thf(fact_6094_le__minus__one__simps_I1_J,axiom,
    ord_less_eq_rat @ ( uminus_uminus_rat @ one_one_rat ) @ zero_zero_rat ).

% le_minus_one_simps(1)
thf(fact_6095_le__minus__one__simps_I1_J,axiom,
    ord_less_eq_int @ ( uminus_uminus_int @ one_one_int ) @ zero_zero_int ).

% le_minus_one_simps(1)
thf(fact_6096_less__minus__one__simps_I3_J,axiom,
    ~ ( ord_less_real @ zero_zero_real @ ( uminus_uminus_real @ one_one_real ) ) ).

% less_minus_one_simps(3)
thf(fact_6097_less__minus__one__simps_I3_J,axiom,
    ~ ( ord_less_int @ zero_zero_int @ ( uminus_uminus_int @ one_one_int ) ) ).

% less_minus_one_simps(3)
thf(fact_6098_less__minus__one__simps_I3_J,axiom,
    ~ ( ord_less_rat @ zero_zero_rat @ ( uminus_uminus_rat @ one_one_rat ) ) ).

% less_minus_one_simps(3)
thf(fact_6099_less__minus__one__simps_I3_J,axiom,
    ~ ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% less_minus_one_simps(3)
thf(fact_6100_less__minus__one__simps_I1_J,axiom,
    ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ zero_zero_real ).

% less_minus_one_simps(1)
thf(fact_6101_less__minus__one__simps_I1_J,axiom,
    ord_less_int @ ( uminus_uminus_int @ one_one_int ) @ zero_zero_int ).

% less_minus_one_simps(1)
thf(fact_6102_less__minus__one__simps_I1_J,axiom,
    ord_less_rat @ ( uminus_uminus_rat @ one_one_rat ) @ zero_zero_rat ).

% less_minus_one_simps(1)
thf(fact_6103_less__minus__one__simps_I1_J,axiom,
    ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ zero_z3403309356797280102nteger ).

% less_minus_one_simps(1)
thf(fact_6104_neg__numeral__le__one,axiom,
    ! [M: num] : ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ one_one_real ) ).

% neg_numeral_le_one
thf(fact_6105_neg__numeral__le__one,axiom,
    ! [M: num] : ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ one_one_Code_integer ) ).

% neg_numeral_le_one
thf(fact_6106_neg__numeral__le__one,axiom,
    ! [M: num] : ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ one_one_rat ) ).

% neg_numeral_le_one
thf(fact_6107_neg__numeral__le__one,axiom,
    ! [M: num] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ one_one_int ) ).

% neg_numeral_le_one
thf(fact_6108_neg__one__le__numeral,axiom,
    ! [M: num] : ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ ( numeral_numeral_real @ M ) ) ).

% neg_one_le_numeral
thf(fact_6109_neg__one__le__numeral,axiom,
    ! [M: num] : ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( numera6620942414471956472nteger @ M ) ) ).

% neg_one_le_numeral
thf(fact_6110_neg__one__le__numeral,axiom,
    ! [M: num] : ( ord_less_eq_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( numeral_numeral_rat @ M ) ) ).

% neg_one_le_numeral
thf(fact_6111_neg__one__le__numeral,axiom,
    ! [M: num] : ( ord_less_eq_int @ ( uminus_uminus_int @ one_one_int ) @ ( numeral_numeral_int @ M ) ) ).

% neg_one_le_numeral
thf(fact_6112_neg__numeral__le__neg__one,axiom,
    ! [M: num] : ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( uminus_uminus_real @ one_one_real ) ) ).

% neg_numeral_le_neg_one
thf(fact_6113_neg__numeral__le__neg__one,axiom,
    ! [M: num] : ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% neg_numeral_le_neg_one
thf(fact_6114_neg__numeral__le__neg__one,axiom,
    ! [M: num] : ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( uminus_uminus_rat @ one_one_rat ) ) ).

% neg_numeral_le_neg_one
thf(fact_6115_neg__numeral__le__neg__one,axiom,
    ! [M: num] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ one_one_int ) ) ).

% neg_numeral_le_neg_one
thf(fact_6116_not__numeral__le__neg__one,axiom,
    ! [M: num] :
      ~ ( ord_less_eq_real @ ( numeral_numeral_real @ M ) @ ( uminus_uminus_real @ one_one_real ) ) ).

% not_numeral_le_neg_one
thf(fact_6117_not__numeral__le__neg__one,axiom,
    ! [M: num] :
      ~ ( ord_le3102999989581377725nteger @ ( numera6620942414471956472nteger @ M ) @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% not_numeral_le_neg_one
thf(fact_6118_not__numeral__le__neg__one,axiom,
    ! [M: num] :
      ~ ( ord_less_eq_rat @ ( numeral_numeral_rat @ M ) @ ( uminus_uminus_rat @ one_one_rat ) ) ).

% not_numeral_le_neg_one
thf(fact_6119_not__numeral__le__neg__one,axiom,
    ! [M: num] :
      ~ ( ord_less_eq_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ one_one_int ) ) ).

% not_numeral_le_neg_one
thf(fact_6120_not__one__le__neg__numeral,axiom,
    ! [M: num] :
      ~ ( ord_less_eq_real @ one_one_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) ) ).

% not_one_le_neg_numeral
thf(fact_6121_not__one__le__neg__numeral,axiom,
    ! [M: num] :
      ~ ( ord_le3102999989581377725nteger @ one_one_Code_integer @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) ) ).

% not_one_le_neg_numeral
thf(fact_6122_not__one__le__neg__numeral,axiom,
    ! [M: num] :
      ~ ( ord_less_eq_rat @ one_one_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) ) ).

% not_one_le_neg_numeral
thf(fact_6123_not__one__le__neg__numeral,axiom,
    ! [M: num] :
      ~ ( ord_less_eq_int @ one_one_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) ) ).

% not_one_le_neg_numeral
thf(fact_6124_neg__numeral__less__one,axiom,
    ! [M: num] : ( ord_less_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ one_one_real ) ).

% neg_numeral_less_one
thf(fact_6125_neg__numeral__less__one,axiom,
    ! [M: num] : ( ord_less_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ one_one_int ) ).

% neg_numeral_less_one
thf(fact_6126_neg__numeral__less__one,axiom,
    ! [M: num] : ( ord_less_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ one_one_rat ) ).

% neg_numeral_less_one
thf(fact_6127_neg__numeral__less__one,axiom,
    ! [M: num] : ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ one_one_Code_integer ) ).

% neg_numeral_less_one
thf(fact_6128_neg__one__less__numeral,axiom,
    ! [M: num] : ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ ( numeral_numeral_real @ M ) ) ).

% neg_one_less_numeral
thf(fact_6129_neg__one__less__numeral,axiom,
    ! [M: num] : ( ord_less_int @ ( uminus_uminus_int @ one_one_int ) @ ( numeral_numeral_int @ M ) ) ).

% neg_one_less_numeral
thf(fact_6130_neg__one__less__numeral,axiom,
    ! [M: num] : ( ord_less_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( numeral_numeral_rat @ M ) ) ).

% neg_one_less_numeral
thf(fact_6131_neg__one__less__numeral,axiom,
    ! [M: num] : ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( numera6620942414471956472nteger @ M ) ) ).

% neg_one_less_numeral
thf(fact_6132_not__numeral__less__neg__one,axiom,
    ! [M: num] :
      ~ ( ord_less_real @ ( numeral_numeral_real @ M ) @ ( uminus_uminus_real @ one_one_real ) ) ).

% not_numeral_less_neg_one
thf(fact_6133_not__numeral__less__neg__one,axiom,
    ! [M: num] :
      ~ ( ord_less_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ one_one_int ) ) ).

% not_numeral_less_neg_one
thf(fact_6134_not__numeral__less__neg__one,axiom,
    ! [M: num] :
      ~ ( ord_less_rat @ ( numeral_numeral_rat @ M ) @ ( uminus_uminus_rat @ one_one_rat ) ) ).

% not_numeral_less_neg_one
thf(fact_6135_not__numeral__less__neg__one,axiom,
    ! [M: num] :
      ~ ( ord_le6747313008572928689nteger @ ( numera6620942414471956472nteger @ M ) @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% not_numeral_less_neg_one
thf(fact_6136_not__one__less__neg__numeral,axiom,
    ! [M: num] :
      ~ ( ord_less_real @ one_one_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) ) ).

% not_one_less_neg_numeral
thf(fact_6137_not__one__less__neg__numeral,axiom,
    ! [M: num] :
      ~ ( ord_less_int @ one_one_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) ) ).

% not_one_less_neg_numeral
thf(fact_6138_not__one__less__neg__numeral,axiom,
    ! [M: num] :
      ~ ( ord_less_rat @ one_one_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) ) ).

% not_one_less_neg_numeral
thf(fact_6139_not__one__less__neg__numeral,axiom,
    ! [M: num] :
      ~ ( ord_le6747313008572928689nteger @ one_one_Code_integer @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) ) ).

% not_one_less_neg_numeral
thf(fact_6140_not__neg__one__less__neg__numeral,axiom,
    ! [M: num] :
      ~ ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) ) ).

% not_neg_one_less_neg_numeral
thf(fact_6141_not__neg__one__less__neg__numeral,axiom,
    ! [M: num] :
      ~ ( ord_less_int @ ( uminus_uminus_int @ one_one_int ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) ) ).

% not_neg_one_less_neg_numeral
thf(fact_6142_not__neg__one__less__neg__numeral,axiom,
    ! [M: num] :
      ~ ( ord_less_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) ) ).

% not_neg_one_less_neg_numeral
thf(fact_6143_not__neg__one__less__neg__numeral,axiom,
    ! [M: num] :
      ~ ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) ) ).

% not_neg_one_less_neg_numeral
thf(fact_6144_mult__1s__ring__1_I1_J,axiom,
    ! [B: real] :
      ( ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ one ) ) @ B )
      = ( uminus_uminus_real @ B ) ) ).

% mult_1s_ring_1(1)
thf(fact_6145_mult__1s__ring__1_I1_J,axiom,
    ! [B: int] :
      ( ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ one ) ) @ B )
      = ( uminus_uminus_int @ B ) ) ).

% mult_1s_ring_1(1)
thf(fact_6146_mult__1s__ring__1_I1_J,axiom,
    ! [B: complex] :
      ( ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ one ) ) @ B )
      = ( uminus1482373934393186551omplex @ B ) ) ).

% mult_1s_ring_1(1)
thf(fact_6147_mult__1s__ring__1_I1_J,axiom,
    ! [B: rat] :
      ( ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ one ) ) @ B )
      = ( uminus_uminus_rat @ B ) ) ).

% mult_1s_ring_1(1)
thf(fact_6148_mult__1s__ring__1_I1_J,axiom,
    ! [B: code_integer] :
      ( ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ one ) ) @ B )
      = ( uminus1351360451143612070nteger @ B ) ) ).

% mult_1s_ring_1(1)
thf(fact_6149_mult__1s__ring__1_I2_J,axiom,
    ! [B: real] :
      ( ( times_times_real @ B @ ( uminus_uminus_real @ ( numeral_numeral_real @ one ) ) )
      = ( uminus_uminus_real @ B ) ) ).

% mult_1s_ring_1(2)
thf(fact_6150_mult__1s__ring__1_I2_J,axiom,
    ! [B: int] :
      ( ( times_times_int @ B @ ( uminus_uminus_int @ ( numeral_numeral_int @ one ) ) )
      = ( uminus_uminus_int @ B ) ) ).

% mult_1s_ring_1(2)
thf(fact_6151_mult__1s__ring__1_I2_J,axiom,
    ! [B: complex] :
      ( ( times_times_complex @ B @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ one ) ) )
      = ( uminus1482373934393186551omplex @ B ) ) ).

% mult_1s_ring_1(2)
thf(fact_6152_mult__1s__ring__1_I2_J,axiom,
    ! [B: rat] :
      ( ( times_times_rat @ B @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ one ) ) )
      = ( uminus_uminus_rat @ B ) ) ).

% mult_1s_ring_1(2)
thf(fact_6153_mult__1s__ring__1_I2_J,axiom,
    ! [B: code_integer] :
      ( ( times_3573771949741848930nteger @ B @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ one ) ) )
      = ( uminus1351360451143612070nteger @ B ) ) ).

% mult_1s_ring_1(2)
thf(fact_6154_nonzero__neg__divide__eq__eq2,axiom,
    ! [B: real,C: real,A: real] :
      ( ( B != zero_zero_real )
     => ( ( C
          = ( uminus_uminus_real @ ( divide_divide_real @ A @ B ) ) )
        = ( ( times_times_real @ C @ B )
          = ( uminus_uminus_real @ A ) ) ) ) ).

% nonzero_neg_divide_eq_eq2
thf(fact_6155_nonzero__neg__divide__eq__eq2,axiom,
    ! [B: complex,C: complex,A: complex] :
      ( ( B != zero_zero_complex )
     => ( ( C
          = ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ A @ B ) ) )
        = ( ( times_times_complex @ C @ B )
          = ( uminus1482373934393186551omplex @ A ) ) ) ) ).

% nonzero_neg_divide_eq_eq2
thf(fact_6156_nonzero__neg__divide__eq__eq2,axiom,
    ! [B: rat,C: rat,A: rat] :
      ( ( B != zero_zero_rat )
     => ( ( C
          = ( uminus_uminus_rat @ ( divide_divide_rat @ A @ B ) ) )
        = ( ( times_times_rat @ C @ B )
          = ( uminus_uminus_rat @ A ) ) ) ) ).

% nonzero_neg_divide_eq_eq2
thf(fact_6157_nonzero__neg__divide__eq__eq,axiom,
    ! [B: real,A: real,C: real] :
      ( ( B != zero_zero_real )
     => ( ( ( uminus_uminus_real @ ( divide_divide_real @ A @ B ) )
          = C )
        = ( ( uminus_uminus_real @ A )
          = ( times_times_real @ C @ B ) ) ) ) ).

% nonzero_neg_divide_eq_eq
thf(fact_6158_nonzero__neg__divide__eq__eq,axiom,
    ! [B: complex,A: complex,C: complex] :
      ( ( B != zero_zero_complex )
     => ( ( ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ A @ B ) )
          = C )
        = ( ( uminus1482373934393186551omplex @ A )
          = ( times_times_complex @ C @ B ) ) ) ) ).

% nonzero_neg_divide_eq_eq
thf(fact_6159_nonzero__neg__divide__eq__eq,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( B != zero_zero_rat )
     => ( ( ( uminus_uminus_rat @ ( divide_divide_rat @ A @ B ) )
          = C )
        = ( ( uminus_uminus_rat @ A )
          = ( times_times_rat @ C @ B ) ) ) ) ).

% nonzero_neg_divide_eq_eq
thf(fact_6160_minus__divide__eq__eq,axiom,
    ! [B: real,C: real,A: real] :
      ( ( ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) )
        = A )
      = ( ( ( C != zero_zero_real )
         => ( ( uminus_uminus_real @ B )
            = ( times_times_real @ A @ C ) ) )
        & ( ( C = zero_zero_real )
         => ( A = zero_zero_real ) ) ) ) ).

% minus_divide_eq_eq
thf(fact_6161_minus__divide__eq__eq,axiom,
    ! [B: complex,C: complex,A: complex] :
      ( ( ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ B @ C ) )
        = A )
      = ( ( ( C != zero_zero_complex )
         => ( ( uminus1482373934393186551omplex @ B )
            = ( times_times_complex @ A @ C ) ) )
        & ( ( C = zero_zero_complex )
         => ( A = zero_zero_complex ) ) ) ) ).

% minus_divide_eq_eq
thf(fact_6162_minus__divide__eq__eq,axiom,
    ! [B: rat,C: rat,A: rat] :
      ( ( ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) )
        = A )
      = ( ( ( C != zero_zero_rat )
         => ( ( uminus_uminus_rat @ B )
            = ( times_times_rat @ A @ C ) ) )
        & ( ( C = zero_zero_rat )
         => ( A = zero_zero_rat ) ) ) ) ).

% minus_divide_eq_eq
thf(fact_6163_eq__minus__divide__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( A
        = ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) )
      = ( ( ( C != zero_zero_real )
         => ( ( times_times_real @ A @ C )
            = ( uminus_uminus_real @ B ) ) )
        & ( ( C = zero_zero_real )
         => ( A = zero_zero_real ) ) ) ) ).

% eq_minus_divide_eq
thf(fact_6164_eq__minus__divide__eq,axiom,
    ! [A: complex,B: complex,C: complex] :
      ( ( A
        = ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ B @ C ) ) )
      = ( ( ( C != zero_zero_complex )
         => ( ( times_times_complex @ A @ C )
            = ( uminus1482373934393186551omplex @ B ) ) )
        & ( ( C = zero_zero_complex )
         => ( A = zero_zero_complex ) ) ) ) ).

% eq_minus_divide_eq
thf(fact_6165_eq__minus__divide__eq,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( A
        = ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) )
      = ( ( ( C != zero_zero_rat )
         => ( ( times_times_rat @ A @ C )
            = ( uminus_uminus_rat @ B ) ) )
        & ( ( C = zero_zero_rat )
         => ( A = zero_zero_rat ) ) ) ) ).

% eq_minus_divide_eq
thf(fact_6166_uminus__numeral__One,axiom,
    ( ( uminus_uminus_real @ ( numeral_numeral_real @ one ) )
    = ( uminus_uminus_real @ one_one_real ) ) ).

% uminus_numeral_One
thf(fact_6167_uminus__numeral__One,axiom,
    ( ( uminus_uminus_int @ ( numeral_numeral_int @ one ) )
    = ( uminus_uminus_int @ one_one_int ) ) ).

% uminus_numeral_One
thf(fact_6168_uminus__numeral__One,axiom,
    ( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ one ) )
    = ( uminus1482373934393186551omplex @ one_one_complex ) ) ).

% uminus_numeral_One
thf(fact_6169_uminus__numeral__One,axiom,
    ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ one ) )
    = ( uminus_uminus_rat @ one_one_rat ) ) ).

% uminus_numeral_One
thf(fact_6170_uminus__numeral__One,axiom,
    ( ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ one ) )
    = ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% uminus_numeral_One
thf(fact_6171_divide__eq__minus__1__iff,axiom,
    ! [A: real,B: real] :
      ( ( ( divide_divide_real @ A @ B )
        = ( uminus_uminus_real @ one_one_real ) )
      = ( ( B != zero_zero_real )
        & ( A
          = ( uminus_uminus_real @ B ) ) ) ) ).

% divide_eq_minus_1_iff
thf(fact_6172_divide__eq__minus__1__iff,axiom,
    ! [A: complex,B: complex] :
      ( ( ( divide1717551699836669952omplex @ A @ B )
        = ( uminus1482373934393186551omplex @ one_one_complex ) )
      = ( ( B != zero_zero_complex )
        & ( A
          = ( uminus1482373934393186551omplex @ B ) ) ) ) ).

% divide_eq_minus_1_iff
thf(fact_6173_divide__eq__minus__1__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ( divide_divide_rat @ A @ B )
        = ( uminus_uminus_rat @ one_one_rat ) )
      = ( ( B != zero_zero_rat )
        & ( A
          = ( uminus_uminus_rat @ B ) ) ) ) ).

% divide_eq_minus_1_iff
thf(fact_6174_power__minus,axiom,
    ! [A: real,N2: nat] :
      ( ( power_power_real @ ( uminus_uminus_real @ A ) @ N2 )
      = ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N2 ) @ ( power_power_real @ A @ N2 ) ) ) ).

% power_minus
thf(fact_6175_power__minus,axiom,
    ! [A: int,N2: nat] :
      ( ( power_power_int @ ( uminus_uminus_int @ A ) @ N2 )
      = ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N2 ) @ ( power_power_int @ A @ N2 ) ) ) ).

% power_minus
thf(fact_6176_power__minus,axiom,
    ! [A: complex,N2: nat] :
      ( ( power_power_complex @ ( uminus1482373934393186551omplex @ A ) @ N2 )
      = ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N2 ) @ ( power_power_complex @ A @ N2 ) ) ) ).

% power_minus
thf(fact_6177_power__minus,axiom,
    ! [A: rat,N2: nat] :
      ( ( power_power_rat @ ( uminus_uminus_rat @ A ) @ N2 )
      = ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ N2 ) @ ( power_power_rat @ A @ N2 ) ) ) ).

% power_minus
thf(fact_6178_power__minus,axiom,
    ! [A: code_integer,N2: nat] :
      ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ A ) @ N2 )
      = ( times_3573771949741848930nteger @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ N2 ) @ ( power_8256067586552552935nteger @ A @ N2 ) ) ) ).

% power_minus
thf(fact_6179_power__minus__Bit0,axiom,
    ! [X: real,K: num] :
      ( ( power_power_real @ ( uminus_uminus_real @ X ) @ ( numeral_numeral_nat @ ( bit0 @ K ) ) )
      = ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ K ) ) ) ) ).

% power_minus_Bit0
thf(fact_6180_power__minus__Bit0,axiom,
    ! [X: int,K: num] :
      ( ( power_power_int @ ( uminus_uminus_int @ X ) @ ( numeral_numeral_nat @ ( bit0 @ K ) ) )
      = ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ K ) ) ) ) ).

% power_minus_Bit0
thf(fact_6181_power__minus__Bit0,axiom,
    ! [X: complex,K: num] :
      ( ( power_power_complex @ ( uminus1482373934393186551omplex @ X ) @ ( numeral_numeral_nat @ ( bit0 @ K ) ) )
      = ( power_power_complex @ X @ ( numeral_numeral_nat @ ( bit0 @ K ) ) ) ) ).

% power_minus_Bit0
thf(fact_6182_power__minus__Bit0,axiom,
    ! [X: rat,K: num] :
      ( ( power_power_rat @ ( uminus_uminus_rat @ X ) @ ( numeral_numeral_nat @ ( bit0 @ K ) ) )
      = ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ K ) ) ) ) ).

% power_minus_Bit0
thf(fact_6183_power__minus__Bit0,axiom,
    ! [X: code_integer,K: num] :
      ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ X ) @ ( numeral_numeral_nat @ ( bit0 @ K ) ) )
      = ( power_8256067586552552935nteger @ X @ ( numeral_numeral_nat @ ( bit0 @ K ) ) ) ) ).

% power_minus_Bit0
thf(fact_6184_sum__nonneg__leq__bound,axiom,
    ! [S2: set_real,F: real > real,B3: real,I2: real] :
      ( ( finite_finite_real @ S2 )
     => ( ! [I3: real] :
            ( ( member_real @ I3 @ S2 )
           => ( ord_less_eq_real @ zero_zero_real @ ( F @ I3 ) ) )
       => ( ( ( groups8097168146408367636l_real @ F @ S2 )
            = B3 )
         => ( ( member_real @ I2 @ S2 )
           => ( ord_less_eq_real @ ( F @ I2 ) @ B3 ) ) ) ) ) ).

% sum_nonneg_leq_bound
thf(fact_6185_sum__nonneg__leq__bound,axiom,
    ! [S2: set_int,F: int > real,B3: real,I2: int] :
      ( ( finite_finite_int @ S2 )
     => ( ! [I3: int] :
            ( ( member_int @ I3 @ S2 )
           => ( ord_less_eq_real @ zero_zero_real @ ( F @ I3 ) ) )
       => ( ( ( groups8778361861064173332t_real @ F @ S2 )
            = B3 )
         => ( ( member_int @ I2 @ S2 )
           => ( ord_less_eq_real @ ( F @ I2 ) @ B3 ) ) ) ) ) ).

% sum_nonneg_leq_bound
thf(fact_6186_sum__nonneg__leq__bound,axiom,
    ! [S2: set_complex,F: complex > real,B3: real,I2: complex] :
      ( ( finite3207457112153483333omplex @ S2 )
     => ( ! [I3: complex] :
            ( ( member_complex @ I3 @ S2 )
           => ( ord_less_eq_real @ zero_zero_real @ ( F @ I3 ) ) )
       => ( ( ( groups5808333547571424918x_real @ F @ S2 )
            = B3 )
         => ( ( member_complex @ I2 @ S2 )
           => ( ord_less_eq_real @ ( F @ I2 ) @ B3 ) ) ) ) ) ).

% sum_nonneg_leq_bound
thf(fact_6187_sum__nonneg__leq__bound,axiom,
    ! [S2: set_real,F: real > rat,B3: rat,I2: real] :
      ( ( finite_finite_real @ S2 )
     => ( ! [I3: real] :
            ( ( member_real @ I3 @ S2 )
           => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I3 ) ) )
       => ( ( ( groups1300246762558778688al_rat @ F @ S2 )
            = B3 )
         => ( ( member_real @ I2 @ S2 )
           => ( ord_less_eq_rat @ ( F @ I2 ) @ B3 ) ) ) ) ) ).

% sum_nonneg_leq_bound
thf(fact_6188_sum__nonneg__leq__bound,axiom,
    ! [S2: set_nat,F: nat > rat,B3: rat,I2: nat] :
      ( ( finite_finite_nat @ S2 )
     => ( ! [I3: nat] :
            ( ( member_nat @ I3 @ S2 )
           => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I3 ) ) )
       => ( ( ( groups2906978787729119204at_rat @ F @ S2 )
            = B3 )
         => ( ( member_nat @ I2 @ S2 )
           => ( ord_less_eq_rat @ ( F @ I2 ) @ B3 ) ) ) ) ) ).

% sum_nonneg_leq_bound
thf(fact_6189_sum__nonneg__leq__bound,axiom,
    ! [S2: set_int,F: int > rat,B3: rat,I2: int] :
      ( ( finite_finite_int @ S2 )
     => ( ! [I3: int] :
            ( ( member_int @ I3 @ S2 )
           => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I3 ) ) )
       => ( ( ( groups3906332499630173760nt_rat @ F @ S2 )
            = B3 )
         => ( ( member_int @ I2 @ S2 )
           => ( ord_less_eq_rat @ ( F @ I2 ) @ B3 ) ) ) ) ) ).

% sum_nonneg_leq_bound
thf(fact_6190_sum__nonneg__leq__bound,axiom,
    ! [S2: set_complex,F: complex > rat,B3: rat,I2: complex] :
      ( ( finite3207457112153483333omplex @ S2 )
     => ( ! [I3: complex] :
            ( ( member_complex @ I3 @ S2 )
           => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I3 ) ) )
       => ( ( ( groups5058264527183730370ex_rat @ F @ S2 )
            = B3 )
         => ( ( member_complex @ I2 @ S2 )
           => ( ord_less_eq_rat @ ( F @ I2 ) @ B3 ) ) ) ) ) ).

% sum_nonneg_leq_bound
thf(fact_6191_sum__nonneg__leq__bound,axiom,
    ! [S2: set_real,F: real > nat,B3: nat,I2: real] :
      ( ( finite_finite_real @ S2 )
     => ( ! [I3: real] :
            ( ( member_real @ I3 @ S2 )
           => ( ord_less_eq_nat @ zero_zero_nat @ ( F @ I3 ) ) )
       => ( ( ( groups1935376822645274424al_nat @ F @ S2 )
            = B3 )
         => ( ( member_real @ I2 @ S2 )
           => ( ord_less_eq_nat @ ( F @ I2 ) @ B3 ) ) ) ) ) ).

% sum_nonneg_leq_bound
thf(fact_6192_sum__nonneg__leq__bound,axiom,
    ! [S2: set_int,F: int > nat,B3: nat,I2: int] :
      ( ( finite_finite_int @ S2 )
     => ( ! [I3: int] :
            ( ( member_int @ I3 @ S2 )
           => ( ord_less_eq_nat @ zero_zero_nat @ ( F @ I3 ) ) )
       => ( ( ( groups4541462559716669496nt_nat @ F @ S2 )
            = B3 )
         => ( ( member_int @ I2 @ S2 )
           => ( ord_less_eq_nat @ ( F @ I2 ) @ B3 ) ) ) ) ) ).

% sum_nonneg_leq_bound
thf(fact_6193_sum__nonneg__leq__bound,axiom,
    ! [S2: set_complex,F: complex > nat,B3: nat,I2: complex] :
      ( ( finite3207457112153483333omplex @ S2 )
     => ( ! [I3: complex] :
            ( ( member_complex @ I3 @ S2 )
           => ( ord_less_eq_nat @ zero_zero_nat @ ( F @ I3 ) ) )
       => ( ( ( groups5693394587270226106ex_nat @ F @ S2 )
            = B3 )
         => ( ( member_complex @ I2 @ S2 )
           => ( ord_less_eq_nat @ ( F @ I2 ) @ B3 ) ) ) ) ) ).

% sum_nonneg_leq_bound
thf(fact_6194_sum__nonneg__0,axiom,
    ! [S2: set_real,F: real > real,I2: real] :
      ( ( finite_finite_real @ S2 )
     => ( ! [I3: real] :
            ( ( member_real @ I3 @ S2 )
           => ( ord_less_eq_real @ zero_zero_real @ ( F @ I3 ) ) )
       => ( ( ( groups8097168146408367636l_real @ F @ S2 )
            = zero_zero_real )
         => ( ( member_real @ I2 @ S2 )
           => ( ( F @ I2 )
              = zero_zero_real ) ) ) ) ) ).

% sum_nonneg_0
thf(fact_6195_sum__nonneg__0,axiom,
    ! [S2: set_int,F: int > real,I2: int] :
      ( ( finite_finite_int @ S2 )
     => ( ! [I3: int] :
            ( ( member_int @ I3 @ S2 )
           => ( ord_less_eq_real @ zero_zero_real @ ( F @ I3 ) ) )
       => ( ( ( groups8778361861064173332t_real @ F @ S2 )
            = zero_zero_real )
         => ( ( member_int @ I2 @ S2 )
           => ( ( F @ I2 )
              = zero_zero_real ) ) ) ) ) ).

% sum_nonneg_0
thf(fact_6196_sum__nonneg__0,axiom,
    ! [S2: set_complex,F: complex > real,I2: complex] :
      ( ( finite3207457112153483333omplex @ S2 )
     => ( ! [I3: complex] :
            ( ( member_complex @ I3 @ S2 )
           => ( ord_less_eq_real @ zero_zero_real @ ( F @ I3 ) ) )
       => ( ( ( groups5808333547571424918x_real @ F @ S2 )
            = zero_zero_real )
         => ( ( member_complex @ I2 @ S2 )
           => ( ( F @ I2 )
              = zero_zero_real ) ) ) ) ) ).

% sum_nonneg_0
thf(fact_6197_sum__nonneg__0,axiom,
    ! [S2: set_real,F: real > rat,I2: real] :
      ( ( finite_finite_real @ S2 )
     => ( ! [I3: real] :
            ( ( member_real @ I3 @ S2 )
           => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I3 ) ) )
       => ( ( ( groups1300246762558778688al_rat @ F @ S2 )
            = zero_zero_rat )
         => ( ( member_real @ I2 @ S2 )
           => ( ( F @ I2 )
              = zero_zero_rat ) ) ) ) ) ).

% sum_nonneg_0
thf(fact_6198_sum__nonneg__0,axiom,
    ! [S2: set_nat,F: nat > rat,I2: nat] :
      ( ( finite_finite_nat @ S2 )
     => ( ! [I3: nat] :
            ( ( member_nat @ I3 @ S2 )
           => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I3 ) ) )
       => ( ( ( groups2906978787729119204at_rat @ F @ S2 )
            = zero_zero_rat )
         => ( ( member_nat @ I2 @ S2 )
           => ( ( F @ I2 )
              = zero_zero_rat ) ) ) ) ) ).

% sum_nonneg_0
thf(fact_6199_sum__nonneg__0,axiom,
    ! [S2: set_int,F: int > rat,I2: int] :
      ( ( finite_finite_int @ S2 )
     => ( ! [I3: int] :
            ( ( member_int @ I3 @ S2 )
           => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I3 ) ) )
       => ( ( ( groups3906332499630173760nt_rat @ F @ S2 )
            = zero_zero_rat )
         => ( ( member_int @ I2 @ S2 )
           => ( ( F @ I2 )
              = zero_zero_rat ) ) ) ) ) ).

% sum_nonneg_0
thf(fact_6200_sum__nonneg__0,axiom,
    ! [S2: set_complex,F: complex > rat,I2: complex] :
      ( ( finite3207457112153483333omplex @ S2 )
     => ( ! [I3: complex] :
            ( ( member_complex @ I3 @ S2 )
           => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I3 ) ) )
       => ( ( ( groups5058264527183730370ex_rat @ F @ S2 )
            = zero_zero_rat )
         => ( ( member_complex @ I2 @ S2 )
           => ( ( F @ I2 )
              = zero_zero_rat ) ) ) ) ) ).

% sum_nonneg_0
thf(fact_6201_sum__nonneg__0,axiom,
    ! [S2: set_real,F: real > nat,I2: real] :
      ( ( finite_finite_real @ S2 )
     => ( ! [I3: real] :
            ( ( member_real @ I3 @ S2 )
           => ( ord_less_eq_nat @ zero_zero_nat @ ( F @ I3 ) ) )
       => ( ( ( groups1935376822645274424al_nat @ F @ S2 )
            = zero_zero_nat )
         => ( ( member_real @ I2 @ S2 )
           => ( ( F @ I2 )
              = zero_zero_nat ) ) ) ) ) ).

% sum_nonneg_0
thf(fact_6202_sum__nonneg__0,axiom,
    ! [S2: set_int,F: int > nat,I2: int] :
      ( ( finite_finite_int @ S2 )
     => ( ! [I3: int] :
            ( ( member_int @ I3 @ S2 )
           => ( ord_less_eq_nat @ zero_zero_nat @ ( F @ I3 ) ) )
       => ( ( ( groups4541462559716669496nt_nat @ F @ S2 )
            = zero_zero_nat )
         => ( ( member_int @ I2 @ S2 )
           => ( ( F @ I2 )
              = zero_zero_nat ) ) ) ) ) ).

% sum_nonneg_0
thf(fact_6203_sum__nonneg__0,axiom,
    ! [S2: set_complex,F: complex > nat,I2: complex] :
      ( ( finite3207457112153483333omplex @ S2 )
     => ( ! [I3: complex] :
            ( ( member_complex @ I3 @ S2 )
           => ( ord_less_eq_nat @ zero_zero_nat @ ( F @ I3 ) ) )
       => ( ( ( groups5693394587270226106ex_nat @ F @ S2 )
            = zero_zero_nat )
         => ( ( member_complex @ I2 @ S2 )
           => ( ( F @ I2 )
              = zero_zero_nat ) ) ) ) ) ).

% sum_nonneg_0
thf(fact_6204_sum_Osetdiff__irrelevant,axiom,
    ! [A2: set_int,G: int > complex] :
      ( ( finite_finite_int @ A2 )
     => ( ( groups3049146728041665814omplex @ G
          @ ( minus_minus_set_int @ A2
            @ ( collect_int
              @ ^ [X3: int] :
                  ( ( G @ X3 )
                  = zero_zero_complex ) ) ) )
        = ( groups3049146728041665814omplex @ G @ A2 ) ) ) ).

% sum.setdiff_irrelevant
thf(fact_6205_sum_Osetdiff__irrelevant,axiom,
    ! [A2: set_int,G: int > real] :
      ( ( finite_finite_int @ A2 )
     => ( ( groups8778361861064173332t_real @ G
          @ ( minus_minus_set_int @ A2
            @ ( collect_int
              @ ^ [X3: int] :
                  ( ( G @ X3 )
                  = zero_zero_real ) ) ) )
        = ( groups8778361861064173332t_real @ G @ A2 ) ) ) ).

% sum.setdiff_irrelevant
thf(fact_6206_sum_Osetdiff__irrelevant,axiom,
    ! [A2: set_complex,G: complex > real] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( ( groups5808333547571424918x_real @ G
          @ ( minus_811609699411566653omplex @ A2
            @ ( collect_complex
              @ ^ [X3: complex] :
                  ( ( G @ X3 )
                  = zero_zero_real ) ) ) )
        = ( groups5808333547571424918x_real @ G @ A2 ) ) ) ).

% sum.setdiff_irrelevant
thf(fact_6207_sum_Osetdiff__irrelevant,axiom,
    ! [A2: set_int,G: int > rat] :
      ( ( finite_finite_int @ A2 )
     => ( ( groups3906332499630173760nt_rat @ G
          @ ( minus_minus_set_int @ A2
            @ ( collect_int
              @ ^ [X3: int] :
                  ( ( G @ X3 )
                  = zero_zero_rat ) ) ) )
        = ( groups3906332499630173760nt_rat @ G @ A2 ) ) ) ).

% sum.setdiff_irrelevant
thf(fact_6208_sum_Osetdiff__irrelevant,axiom,
    ! [A2: set_complex,G: complex > rat] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( ( groups5058264527183730370ex_rat @ G
          @ ( minus_811609699411566653omplex @ A2
            @ ( collect_complex
              @ ^ [X3: complex] :
                  ( ( G @ X3 )
                  = zero_zero_rat ) ) ) )
        = ( groups5058264527183730370ex_rat @ G @ A2 ) ) ) ).

% sum.setdiff_irrelevant
thf(fact_6209_sum_Osetdiff__irrelevant,axiom,
    ! [A2: set_int,G: int > nat] :
      ( ( finite_finite_int @ A2 )
     => ( ( groups4541462559716669496nt_nat @ G
          @ ( minus_minus_set_int @ A2
            @ ( collect_int
              @ ^ [X3: int] :
                  ( ( G @ X3 )
                  = zero_zero_nat ) ) ) )
        = ( groups4541462559716669496nt_nat @ G @ A2 ) ) ) ).

% sum.setdiff_irrelevant
thf(fact_6210_sum_Osetdiff__irrelevant,axiom,
    ! [A2: set_complex,G: complex > nat] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( ( groups5693394587270226106ex_nat @ G
          @ ( minus_811609699411566653omplex @ A2
            @ ( collect_complex
              @ ^ [X3: complex] :
                  ( ( G @ X3 )
                  = zero_zero_nat ) ) ) )
        = ( groups5693394587270226106ex_nat @ G @ A2 ) ) ) ).

% sum.setdiff_irrelevant
thf(fact_6211_sum_Osetdiff__irrelevant,axiom,
    ! [A2: set_complex,G: complex > int] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( ( groups5690904116761175830ex_int @ G
          @ ( minus_811609699411566653omplex @ A2
            @ ( collect_complex
              @ ^ [X3: complex] :
                  ( ( G @ X3 )
                  = zero_zero_int ) ) ) )
        = ( groups5690904116761175830ex_int @ G @ A2 ) ) ) ).

% sum.setdiff_irrelevant
thf(fact_6212_sum_Osetdiff__irrelevant,axiom,
    ! [A2: set_nat,G: nat > complex] :
      ( ( finite_finite_nat @ A2 )
     => ( ( groups2073611262835488442omplex @ G
          @ ( minus_minus_set_nat @ A2
            @ ( collect_nat
              @ ^ [X3: nat] :
                  ( ( G @ X3 )
                  = zero_zero_complex ) ) ) )
        = ( groups2073611262835488442omplex @ G @ A2 ) ) ) ).

% sum.setdiff_irrelevant
thf(fact_6213_sum_Osetdiff__irrelevant,axiom,
    ! [A2: set_nat,G: nat > rat] :
      ( ( finite_finite_nat @ A2 )
     => ( ( groups2906978787729119204at_rat @ G
          @ ( minus_minus_set_nat @ A2
            @ ( collect_nat
              @ ^ [X3: nat] :
                  ( ( G @ X3 )
                  = zero_zero_rat ) ) ) )
        = ( groups2906978787729119204at_rat @ G @ A2 ) ) ) ).

% sum.setdiff_irrelevant
thf(fact_6214_real__add__less__0__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ ( plus_plus_real @ X @ Y ) @ zero_zero_real )
      = ( ord_less_real @ Y @ ( uminus_uminus_real @ X ) ) ) ).

% real_add_less_0_iff
thf(fact_6215_real__0__less__add__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ X @ Y ) )
      = ( ord_less_real @ ( uminus_uminus_real @ X ) @ Y ) ) ).

% real_0_less_add_iff
thf(fact_6216_real__add__le__0__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ X @ Y ) @ zero_zero_real )
      = ( ord_less_eq_real @ Y @ ( uminus_uminus_real @ X ) ) ) ).

% real_add_le_0_iff
thf(fact_6217_real__0__le__add__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( plus_plus_real @ X @ Y ) )
      = ( ord_less_eq_real @ ( uminus_uminus_real @ X ) @ Y ) ) ).

% real_0_le_add_iff
thf(fact_6218_zmod__zminus2__eq__if,axiom,
    ! [A: int,B: int] :
      ( ( ( ( modulo_modulo_int @ A @ B )
          = zero_zero_int )
       => ( ( modulo_modulo_int @ A @ ( uminus_uminus_int @ B ) )
          = zero_zero_int ) )
      & ( ( ( modulo_modulo_int @ A @ B )
         != zero_zero_int )
       => ( ( modulo_modulo_int @ A @ ( uminus_uminus_int @ B ) )
          = ( minus_minus_int @ ( modulo_modulo_int @ A @ B ) @ B ) ) ) ) ).

% zmod_zminus2_eq_if
thf(fact_6219_zmod__zminus1__eq__if,axiom,
    ! [A: int,B: int] :
      ( ( ( ( modulo_modulo_int @ A @ B )
          = zero_zero_int )
       => ( ( modulo_modulo_int @ ( uminus_uminus_int @ A ) @ B )
          = zero_zero_int ) )
      & ( ( ( modulo_modulo_int @ A @ B )
         != zero_zero_int )
       => ( ( modulo_modulo_int @ ( uminus_uminus_int @ A ) @ B )
          = ( minus_minus_int @ B @ ( modulo_modulo_int @ A @ B ) ) ) ) ) ).

% zmod_zminus1_eq_if
thf(fact_6220_sum__pos2,axiom,
    ! [I6: set_real,I2: real,F: real > real] :
      ( ( finite_finite_real @ I6 )
     => ( ( member_real @ I2 @ I6 )
       => ( ( ord_less_real @ zero_zero_real @ ( F @ I2 ) )
         => ( ! [I3: real] :
                ( ( member_real @ I3 @ I6 )
               => ( ord_less_eq_real @ zero_zero_real @ ( F @ I3 ) ) )
           => ( ord_less_real @ zero_zero_real @ ( groups8097168146408367636l_real @ F @ I6 ) ) ) ) ) ) ).

% sum_pos2
thf(fact_6221_sum__pos2,axiom,
    ! [I6: set_int,I2: int,F: int > real] :
      ( ( finite_finite_int @ I6 )
     => ( ( member_int @ I2 @ I6 )
       => ( ( ord_less_real @ zero_zero_real @ ( F @ I2 ) )
         => ( ! [I3: int] :
                ( ( member_int @ I3 @ I6 )
               => ( ord_less_eq_real @ zero_zero_real @ ( F @ I3 ) ) )
           => ( ord_less_real @ zero_zero_real @ ( groups8778361861064173332t_real @ F @ I6 ) ) ) ) ) ) ).

% sum_pos2
thf(fact_6222_sum__pos2,axiom,
    ! [I6: set_complex,I2: complex,F: complex > real] :
      ( ( finite3207457112153483333omplex @ I6 )
     => ( ( member_complex @ I2 @ I6 )
       => ( ( ord_less_real @ zero_zero_real @ ( F @ I2 ) )
         => ( ! [I3: complex] :
                ( ( member_complex @ I3 @ I6 )
               => ( ord_less_eq_real @ zero_zero_real @ ( F @ I3 ) ) )
           => ( ord_less_real @ zero_zero_real @ ( groups5808333547571424918x_real @ F @ I6 ) ) ) ) ) ) ).

% sum_pos2
thf(fact_6223_sum__pos2,axiom,
    ! [I6: set_real,I2: real,F: real > rat] :
      ( ( finite_finite_real @ I6 )
     => ( ( member_real @ I2 @ I6 )
       => ( ( ord_less_rat @ zero_zero_rat @ ( F @ I2 ) )
         => ( ! [I3: real] :
                ( ( member_real @ I3 @ I6 )
               => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I3 ) ) )
           => ( ord_less_rat @ zero_zero_rat @ ( groups1300246762558778688al_rat @ F @ I6 ) ) ) ) ) ) ).

% sum_pos2
thf(fact_6224_sum__pos2,axiom,
    ! [I6: set_nat,I2: nat,F: nat > rat] :
      ( ( finite_finite_nat @ I6 )
     => ( ( member_nat @ I2 @ I6 )
       => ( ( ord_less_rat @ zero_zero_rat @ ( F @ I2 ) )
         => ( ! [I3: nat] :
                ( ( member_nat @ I3 @ I6 )
               => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I3 ) ) )
           => ( ord_less_rat @ zero_zero_rat @ ( groups2906978787729119204at_rat @ F @ I6 ) ) ) ) ) ) ).

% sum_pos2
thf(fact_6225_sum__pos2,axiom,
    ! [I6: set_int,I2: int,F: int > rat] :
      ( ( finite_finite_int @ I6 )
     => ( ( member_int @ I2 @ I6 )
       => ( ( ord_less_rat @ zero_zero_rat @ ( F @ I2 ) )
         => ( ! [I3: int] :
                ( ( member_int @ I3 @ I6 )
               => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I3 ) ) )
           => ( ord_less_rat @ zero_zero_rat @ ( groups3906332499630173760nt_rat @ F @ I6 ) ) ) ) ) ) ).

% sum_pos2
thf(fact_6226_sum__pos2,axiom,
    ! [I6: set_complex,I2: complex,F: complex > rat] :
      ( ( finite3207457112153483333omplex @ I6 )
     => ( ( member_complex @ I2 @ I6 )
       => ( ( ord_less_rat @ zero_zero_rat @ ( F @ I2 ) )
         => ( ! [I3: complex] :
                ( ( member_complex @ I3 @ I6 )
               => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I3 ) ) )
           => ( ord_less_rat @ zero_zero_rat @ ( groups5058264527183730370ex_rat @ F @ I6 ) ) ) ) ) ) ).

% sum_pos2
thf(fact_6227_sum__pos2,axiom,
    ! [I6: set_real,I2: real,F: real > nat] :
      ( ( finite_finite_real @ I6 )
     => ( ( member_real @ I2 @ I6 )
       => ( ( ord_less_nat @ zero_zero_nat @ ( F @ I2 ) )
         => ( ! [I3: real] :
                ( ( member_real @ I3 @ I6 )
               => ( ord_less_eq_nat @ zero_zero_nat @ ( F @ I3 ) ) )
           => ( ord_less_nat @ zero_zero_nat @ ( groups1935376822645274424al_nat @ F @ I6 ) ) ) ) ) ) ).

% sum_pos2
thf(fact_6228_sum__pos2,axiom,
    ! [I6: set_int,I2: int,F: int > nat] :
      ( ( finite_finite_int @ I6 )
     => ( ( member_int @ I2 @ I6 )
       => ( ( ord_less_nat @ zero_zero_nat @ ( F @ I2 ) )
         => ( ! [I3: int] :
                ( ( member_int @ I3 @ I6 )
               => ( ord_less_eq_nat @ zero_zero_nat @ ( F @ I3 ) ) )
           => ( ord_less_nat @ zero_zero_nat @ ( groups4541462559716669496nt_nat @ F @ I6 ) ) ) ) ) ) ).

% sum_pos2
thf(fact_6229_sum__pos2,axiom,
    ! [I6: set_complex,I2: complex,F: complex > nat] :
      ( ( finite3207457112153483333omplex @ I6 )
     => ( ( member_complex @ I2 @ I6 )
       => ( ( ord_less_nat @ zero_zero_nat @ ( F @ I2 ) )
         => ( ! [I3: complex] :
                ( ( member_complex @ I3 @ I6 )
               => ( ord_less_eq_nat @ zero_zero_nat @ ( F @ I3 ) ) )
           => ( ord_less_nat @ zero_zero_nat @ ( groups5693394587270226106ex_nat @ F @ I6 ) ) ) ) ) ) ).

% sum_pos2
thf(fact_6230_sum__pos,axiom,
    ! [I6: set_complex,F: complex > real] :
      ( ( finite3207457112153483333omplex @ I6 )
     => ( ( I6 != bot_bot_set_complex )
       => ( ! [I3: complex] :
              ( ( member_complex @ I3 @ I6 )
             => ( ord_less_real @ zero_zero_real @ ( F @ I3 ) ) )
         => ( ord_less_real @ zero_zero_real @ ( groups5808333547571424918x_real @ F @ I6 ) ) ) ) ) ).

% sum_pos
thf(fact_6231_sum__pos,axiom,
    ! [I6: set_int,F: int > real] :
      ( ( finite_finite_int @ I6 )
     => ( ( I6 != bot_bot_set_int )
       => ( ! [I3: int] :
              ( ( member_int @ I3 @ I6 )
             => ( ord_less_real @ zero_zero_real @ ( F @ I3 ) ) )
         => ( ord_less_real @ zero_zero_real @ ( groups8778361861064173332t_real @ F @ I6 ) ) ) ) ) ).

% sum_pos
thf(fact_6232_sum__pos,axiom,
    ! [I6: set_real,F: real > real] :
      ( ( finite_finite_real @ I6 )
     => ( ( I6 != bot_bot_set_real )
       => ( ! [I3: real] :
              ( ( member_real @ I3 @ I6 )
             => ( ord_less_real @ zero_zero_real @ ( F @ I3 ) ) )
         => ( ord_less_real @ zero_zero_real @ ( groups8097168146408367636l_real @ F @ I6 ) ) ) ) ) ).

% sum_pos
thf(fact_6233_sum__pos,axiom,
    ! [I6: set_complex,F: complex > rat] :
      ( ( finite3207457112153483333omplex @ I6 )
     => ( ( I6 != bot_bot_set_complex )
       => ( ! [I3: complex] :
              ( ( member_complex @ I3 @ I6 )
             => ( ord_less_rat @ zero_zero_rat @ ( F @ I3 ) ) )
         => ( ord_less_rat @ zero_zero_rat @ ( groups5058264527183730370ex_rat @ F @ I6 ) ) ) ) ) ).

% sum_pos
thf(fact_6234_sum__pos,axiom,
    ! [I6: set_nat,F: nat > rat] :
      ( ( finite_finite_nat @ I6 )
     => ( ( I6 != bot_bot_set_nat )
       => ( ! [I3: nat] :
              ( ( member_nat @ I3 @ I6 )
             => ( ord_less_rat @ zero_zero_rat @ ( F @ I3 ) ) )
         => ( ord_less_rat @ zero_zero_rat @ ( groups2906978787729119204at_rat @ F @ I6 ) ) ) ) ) ).

% sum_pos
thf(fact_6235_sum__pos,axiom,
    ! [I6: set_int,F: int > rat] :
      ( ( finite_finite_int @ I6 )
     => ( ( I6 != bot_bot_set_int )
       => ( ! [I3: int] :
              ( ( member_int @ I3 @ I6 )
             => ( ord_less_rat @ zero_zero_rat @ ( F @ I3 ) ) )
         => ( ord_less_rat @ zero_zero_rat @ ( groups3906332499630173760nt_rat @ F @ I6 ) ) ) ) ) ).

% sum_pos
thf(fact_6236_sum__pos,axiom,
    ! [I6: set_real,F: real > rat] :
      ( ( finite_finite_real @ I6 )
     => ( ( I6 != bot_bot_set_real )
       => ( ! [I3: real] :
              ( ( member_real @ I3 @ I6 )
             => ( ord_less_rat @ zero_zero_rat @ ( F @ I3 ) ) )
         => ( ord_less_rat @ zero_zero_rat @ ( groups1300246762558778688al_rat @ F @ I6 ) ) ) ) ) ).

% sum_pos
thf(fact_6237_sum__pos,axiom,
    ! [I6: set_complex,F: complex > nat] :
      ( ( finite3207457112153483333omplex @ I6 )
     => ( ( I6 != bot_bot_set_complex )
       => ( ! [I3: complex] :
              ( ( member_complex @ I3 @ I6 )
             => ( ord_less_nat @ zero_zero_nat @ ( F @ I3 ) ) )
         => ( ord_less_nat @ zero_zero_nat @ ( groups5693394587270226106ex_nat @ F @ I6 ) ) ) ) ) ).

% sum_pos
thf(fact_6238_sum__pos,axiom,
    ! [I6: set_int,F: int > nat] :
      ( ( finite_finite_int @ I6 )
     => ( ( I6 != bot_bot_set_int )
       => ( ! [I3: int] :
              ( ( member_int @ I3 @ I6 )
             => ( ord_less_nat @ zero_zero_nat @ ( F @ I3 ) ) )
         => ( ord_less_nat @ zero_zero_nat @ ( groups4541462559716669496nt_nat @ F @ I6 ) ) ) ) ) ).

% sum_pos
thf(fact_6239_sum__pos,axiom,
    ! [I6: set_real,F: real > nat] :
      ( ( finite_finite_real @ I6 )
     => ( ( I6 != bot_bot_set_real )
       => ( ! [I3: real] :
              ( ( member_real @ I3 @ I6 )
             => ( ord_less_nat @ zero_zero_nat @ ( F @ I3 ) ) )
         => ( ord_less_nat @ zero_zero_nat @ ( groups1935376822645274424al_nat @ F @ I6 ) ) ) ) ) ).

% sum_pos
thf(fact_6240_ln__ge__zero__imp__ge__one,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( ln_ln_real @ X ) )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ( ord_less_eq_real @ one_one_real @ X ) ) ) ).

% ln_ge_zero_imp_ge_one
thf(fact_6241_sum_Omono__neutral__cong__right,axiom,
    ! [T3: set_real,S3: set_real,G: real > complex,H2: real > complex] :
      ( ( finite_finite_real @ T3 )
     => ( ( ord_less_eq_set_real @ S3 @ T3 )
       => ( ! [X5: real] :
              ( ( member_real @ X5 @ ( minus_minus_set_real @ T3 @ S3 ) )
             => ( ( G @ X5 )
                = zero_zero_complex ) )
         => ( ! [X5: real] :
                ( ( member_real @ X5 @ S3 )
               => ( ( G @ X5 )
                  = ( H2 @ X5 ) ) )
           => ( ( groups5754745047067104278omplex @ G @ T3 )
              = ( groups5754745047067104278omplex @ H2 @ S3 ) ) ) ) ) ) ).

% sum.mono_neutral_cong_right
thf(fact_6242_sum_Omono__neutral__cong__right,axiom,
    ! [T3: set_real,S3: set_real,G: real > real,H2: real > real] :
      ( ( finite_finite_real @ T3 )
     => ( ( ord_less_eq_set_real @ S3 @ T3 )
       => ( ! [X5: real] :
              ( ( member_real @ X5 @ ( minus_minus_set_real @ T3 @ S3 ) )
             => ( ( G @ X5 )
                = zero_zero_real ) )
         => ( ! [X5: real] :
                ( ( member_real @ X5 @ S3 )
               => ( ( G @ X5 )
                  = ( H2 @ X5 ) ) )
           => ( ( groups8097168146408367636l_real @ G @ T3 )
              = ( groups8097168146408367636l_real @ H2 @ S3 ) ) ) ) ) ) ).

% sum.mono_neutral_cong_right
thf(fact_6243_sum_Omono__neutral__cong__right,axiom,
    ! [T3: set_complex,S3: set_complex,G: complex > real,H2: complex > real] :
      ( ( finite3207457112153483333omplex @ T3 )
     => ( ( ord_le211207098394363844omplex @ S3 @ T3 )
       => ( ! [X5: complex] :
              ( ( member_complex @ X5 @ ( minus_811609699411566653omplex @ T3 @ S3 ) )
             => ( ( G @ X5 )
                = zero_zero_real ) )
         => ( ! [X5: complex] :
                ( ( member_complex @ X5 @ S3 )
               => ( ( G @ X5 )
                  = ( H2 @ X5 ) ) )
           => ( ( groups5808333547571424918x_real @ G @ T3 )
              = ( groups5808333547571424918x_real @ H2 @ S3 ) ) ) ) ) ) ).

% sum.mono_neutral_cong_right
thf(fact_6244_sum_Omono__neutral__cong__right,axiom,
    ! [T3: set_real,S3: set_real,G: real > rat,H2: real > rat] :
      ( ( finite_finite_real @ T3 )
     => ( ( ord_less_eq_set_real @ S3 @ T3 )
       => ( ! [X5: real] :
              ( ( member_real @ X5 @ ( minus_minus_set_real @ T3 @ S3 ) )
             => ( ( G @ X5 )
                = zero_zero_rat ) )
         => ( ! [X5: real] :
                ( ( member_real @ X5 @ S3 )
               => ( ( G @ X5 )
                  = ( H2 @ X5 ) ) )
           => ( ( groups1300246762558778688al_rat @ G @ T3 )
              = ( groups1300246762558778688al_rat @ H2 @ S3 ) ) ) ) ) ) ).

% sum.mono_neutral_cong_right
thf(fact_6245_sum_Omono__neutral__cong__right,axiom,
    ! [T3: set_complex,S3: set_complex,G: complex > rat,H2: complex > rat] :
      ( ( finite3207457112153483333omplex @ T3 )
     => ( ( ord_le211207098394363844omplex @ S3 @ T3 )
       => ( ! [X5: complex] :
              ( ( member_complex @ X5 @ ( minus_811609699411566653omplex @ T3 @ S3 ) )
             => ( ( G @ X5 )
                = zero_zero_rat ) )
         => ( ! [X5: complex] :
                ( ( member_complex @ X5 @ S3 )
               => ( ( G @ X5 )
                  = ( H2 @ X5 ) ) )
           => ( ( groups5058264527183730370ex_rat @ G @ T3 )
              = ( groups5058264527183730370ex_rat @ H2 @ S3 ) ) ) ) ) ) ).

% sum.mono_neutral_cong_right
thf(fact_6246_sum_Omono__neutral__cong__right,axiom,
    ! [T3: set_real,S3: set_real,G: real > nat,H2: real > nat] :
      ( ( finite_finite_real @ T3 )
     => ( ( ord_less_eq_set_real @ S3 @ T3 )
       => ( ! [X5: real] :
              ( ( member_real @ X5 @ ( minus_minus_set_real @ T3 @ S3 ) )
             => ( ( G @ X5 )
                = zero_zero_nat ) )
         => ( ! [X5: real] :
                ( ( member_real @ X5 @ S3 )
               => ( ( G @ X5 )
                  = ( H2 @ X5 ) ) )
           => ( ( groups1935376822645274424al_nat @ G @ T3 )
              = ( groups1935376822645274424al_nat @ H2 @ S3 ) ) ) ) ) ) ).

% sum.mono_neutral_cong_right
thf(fact_6247_sum_Omono__neutral__cong__right,axiom,
    ! [T3: set_complex,S3: set_complex,G: complex > nat,H2: complex > nat] :
      ( ( finite3207457112153483333omplex @ T3 )
     => ( ( ord_le211207098394363844omplex @ S3 @ T3 )
       => ( ! [X5: complex] :
              ( ( member_complex @ X5 @ ( minus_811609699411566653omplex @ T3 @ S3 ) )
             => ( ( G @ X5 )
                = zero_zero_nat ) )
         => ( ! [X5: complex] :
                ( ( member_complex @ X5 @ S3 )
               => ( ( G @ X5 )
                  = ( H2 @ X5 ) ) )
           => ( ( groups5693394587270226106ex_nat @ G @ T3 )
              = ( groups5693394587270226106ex_nat @ H2 @ S3 ) ) ) ) ) ) ).

% sum.mono_neutral_cong_right
thf(fact_6248_sum_Omono__neutral__cong__right,axiom,
    ! [T3: set_real,S3: set_real,G: real > int,H2: real > int] :
      ( ( finite_finite_real @ T3 )
     => ( ( ord_less_eq_set_real @ S3 @ T3 )
       => ( ! [X5: real] :
              ( ( member_real @ X5 @ ( minus_minus_set_real @ T3 @ S3 ) )
             => ( ( G @ X5 )
                = zero_zero_int ) )
         => ( ! [X5: real] :
                ( ( member_real @ X5 @ S3 )
               => ( ( G @ X5 )
                  = ( H2 @ X5 ) ) )
           => ( ( groups1932886352136224148al_int @ G @ T3 )
              = ( groups1932886352136224148al_int @ H2 @ S3 ) ) ) ) ) ) ).

% sum.mono_neutral_cong_right
thf(fact_6249_sum_Omono__neutral__cong__right,axiom,
    ! [T3: set_complex,S3: set_complex,G: complex > int,H2: complex > int] :
      ( ( finite3207457112153483333omplex @ T3 )
     => ( ( ord_le211207098394363844omplex @ S3 @ T3 )
       => ( ! [X5: complex] :
              ( ( member_complex @ X5 @ ( minus_811609699411566653omplex @ T3 @ S3 ) )
             => ( ( G @ X5 )
                = zero_zero_int ) )
         => ( ! [X5: complex] :
                ( ( member_complex @ X5 @ S3 )
               => ( ( G @ X5 )
                  = ( H2 @ X5 ) ) )
           => ( ( groups5690904116761175830ex_int @ G @ T3 )
              = ( groups5690904116761175830ex_int @ H2 @ S3 ) ) ) ) ) ) ).

% sum.mono_neutral_cong_right
thf(fact_6250_sum_Omono__neutral__cong__right,axiom,
    ! [T3: set_nat,S3: set_nat,G: nat > complex,H2: nat > complex] :
      ( ( finite_finite_nat @ T3 )
     => ( ( ord_less_eq_set_nat @ S3 @ T3 )
       => ( ! [X5: nat] :
              ( ( member_nat @ X5 @ ( minus_minus_set_nat @ T3 @ S3 ) )
             => ( ( G @ X5 )
                = zero_zero_complex ) )
         => ( ! [X5: nat] :
                ( ( member_nat @ X5 @ S3 )
               => ( ( G @ X5 )
                  = ( H2 @ X5 ) ) )
           => ( ( groups2073611262835488442omplex @ G @ T3 )
              = ( groups2073611262835488442omplex @ H2 @ S3 ) ) ) ) ) ) ).

% sum.mono_neutral_cong_right
thf(fact_6251_sum_Omono__neutral__cong__left,axiom,
    ! [T3: set_real,S3: set_real,H2: real > complex,G: real > complex] :
      ( ( finite_finite_real @ T3 )
     => ( ( ord_less_eq_set_real @ S3 @ T3 )
       => ( ! [X5: real] :
              ( ( member_real @ X5 @ ( minus_minus_set_real @ T3 @ S3 ) )
             => ( ( H2 @ X5 )
                = zero_zero_complex ) )
         => ( ! [X5: real] :
                ( ( member_real @ X5 @ S3 )
               => ( ( G @ X5 )
                  = ( H2 @ X5 ) ) )
           => ( ( groups5754745047067104278omplex @ G @ S3 )
              = ( groups5754745047067104278omplex @ H2 @ T3 ) ) ) ) ) ) ).

% sum.mono_neutral_cong_left
thf(fact_6252_sum_Omono__neutral__cong__left,axiom,
    ! [T3: set_real,S3: set_real,H2: real > real,G: real > real] :
      ( ( finite_finite_real @ T3 )
     => ( ( ord_less_eq_set_real @ S3 @ T3 )
       => ( ! [X5: real] :
              ( ( member_real @ X5 @ ( minus_minus_set_real @ T3 @ S3 ) )
             => ( ( H2 @ X5 )
                = zero_zero_real ) )
         => ( ! [X5: real] :
                ( ( member_real @ X5 @ S3 )
               => ( ( G @ X5 )
                  = ( H2 @ X5 ) ) )
           => ( ( groups8097168146408367636l_real @ G @ S3 )
              = ( groups8097168146408367636l_real @ H2 @ T3 ) ) ) ) ) ) ).

% sum.mono_neutral_cong_left
thf(fact_6253_sum_Omono__neutral__cong__left,axiom,
    ! [T3: set_complex,S3: set_complex,H2: complex > real,G: complex > real] :
      ( ( finite3207457112153483333omplex @ T3 )
     => ( ( ord_le211207098394363844omplex @ S3 @ T3 )
       => ( ! [X5: complex] :
              ( ( member_complex @ X5 @ ( minus_811609699411566653omplex @ T3 @ S3 ) )
             => ( ( H2 @ X5 )
                = zero_zero_real ) )
         => ( ! [X5: complex] :
                ( ( member_complex @ X5 @ S3 )
               => ( ( G @ X5 )
                  = ( H2 @ X5 ) ) )
           => ( ( groups5808333547571424918x_real @ G @ S3 )
              = ( groups5808333547571424918x_real @ H2 @ T3 ) ) ) ) ) ) ).

% sum.mono_neutral_cong_left
thf(fact_6254_sum_Omono__neutral__cong__left,axiom,
    ! [T3: set_real,S3: set_real,H2: real > rat,G: real > rat] :
      ( ( finite_finite_real @ T3 )
     => ( ( ord_less_eq_set_real @ S3 @ T3 )
       => ( ! [X5: real] :
              ( ( member_real @ X5 @ ( minus_minus_set_real @ T3 @ S3 ) )
             => ( ( H2 @ X5 )
                = zero_zero_rat ) )
         => ( ! [X5: real] :
                ( ( member_real @ X5 @ S3 )
               => ( ( G @ X5 )
                  = ( H2 @ X5 ) ) )
           => ( ( groups1300246762558778688al_rat @ G @ S3 )
              = ( groups1300246762558778688al_rat @ H2 @ T3 ) ) ) ) ) ) ).

% sum.mono_neutral_cong_left
thf(fact_6255_sum_Omono__neutral__cong__left,axiom,
    ! [T3: set_complex,S3: set_complex,H2: complex > rat,G: complex > rat] :
      ( ( finite3207457112153483333omplex @ T3 )
     => ( ( ord_le211207098394363844omplex @ S3 @ T3 )
       => ( ! [X5: complex] :
              ( ( member_complex @ X5 @ ( minus_811609699411566653omplex @ T3 @ S3 ) )
             => ( ( H2 @ X5 )
                = zero_zero_rat ) )
         => ( ! [X5: complex] :
                ( ( member_complex @ X5 @ S3 )
               => ( ( G @ X5 )
                  = ( H2 @ X5 ) ) )
           => ( ( groups5058264527183730370ex_rat @ G @ S3 )
              = ( groups5058264527183730370ex_rat @ H2 @ T3 ) ) ) ) ) ) ).

% sum.mono_neutral_cong_left
thf(fact_6256_sum_Omono__neutral__cong__left,axiom,
    ! [T3: set_real,S3: set_real,H2: real > nat,G: real > nat] :
      ( ( finite_finite_real @ T3 )
     => ( ( ord_less_eq_set_real @ S3 @ T3 )
       => ( ! [X5: real] :
              ( ( member_real @ X5 @ ( minus_minus_set_real @ T3 @ S3 ) )
             => ( ( H2 @ X5 )
                = zero_zero_nat ) )
         => ( ! [X5: real] :
                ( ( member_real @ X5 @ S3 )
               => ( ( G @ X5 )
                  = ( H2 @ X5 ) ) )
           => ( ( groups1935376822645274424al_nat @ G @ S3 )
              = ( groups1935376822645274424al_nat @ H2 @ T3 ) ) ) ) ) ) ).

% sum.mono_neutral_cong_left
thf(fact_6257_sum_Omono__neutral__cong__left,axiom,
    ! [T3: set_complex,S3: set_complex,H2: complex > nat,G: complex > nat] :
      ( ( finite3207457112153483333omplex @ T3 )
     => ( ( ord_le211207098394363844omplex @ S3 @ T3 )
       => ( ! [X5: complex] :
              ( ( member_complex @ X5 @ ( minus_811609699411566653omplex @ T3 @ S3 ) )
             => ( ( H2 @ X5 )
                = zero_zero_nat ) )
         => ( ! [X5: complex] :
                ( ( member_complex @ X5 @ S3 )
               => ( ( G @ X5 )
                  = ( H2 @ X5 ) ) )
           => ( ( groups5693394587270226106ex_nat @ G @ S3 )
              = ( groups5693394587270226106ex_nat @ H2 @ T3 ) ) ) ) ) ) ).

% sum.mono_neutral_cong_left
thf(fact_6258_sum_Omono__neutral__cong__left,axiom,
    ! [T3: set_real,S3: set_real,H2: real > int,G: real > int] :
      ( ( finite_finite_real @ T3 )
     => ( ( ord_less_eq_set_real @ S3 @ T3 )
       => ( ! [X5: real] :
              ( ( member_real @ X5 @ ( minus_minus_set_real @ T3 @ S3 ) )
             => ( ( H2 @ X5 )
                = zero_zero_int ) )
         => ( ! [X5: real] :
                ( ( member_real @ X5 @ S3 )
               => ( ( G @ X5 )
                  = ( H2 @ X5 ) ) )
           => ( ( groups1932886352136224148al_int @ G @ S3 )
              = ( groups1932886352136224148al_int @ H2 @ T3 ) ) ) ) ) ) ).

% sum.mono_neutral_cong_left
thf(fact_6259_sum_Omono__neutral__cong__left,axiom,
    ! [T3: set_complex,S3: set_complex,H2: complex > int,G: complex > int] :
      ( ( finite3207457112153483333omplex @ T3 )
     => ( ( ord_le211207098394363844omplex @ S3 @ T3 )
       => ( ! [X5: complex] :
              ( ( member_complex @ X5 @ ( minus_811609699411566653omplex @ T3 @ S3 ) )
             => ( ( H2 @ X5 )
                = zero_zero_int ) )
         => ( ! [X5: complex] :
                ( ( member_complex @ X5 @ S3 )
               => ( ( G @ X5 )
                  = ( H2 @ X5 ) ) )
           => ( ( groups5690904116761175830ex_int @ G @ S3 )
              = ( groups5690904116761175830ex_int @ H2 @ T3 ) ) ) ) ) ) ).

% sum.mono_neutral_cong_left
thf(fact_6260_sum_Omono__neutral__cong__left,axiom,
    ! [T3: set_nat,S3: set_nat,H2: nat > complex,G: nat > complex] :
      ( ( finite_finite_nat @ T3 )
     => ( ( ord_less_eq_set_nat @ S3 @ T3 )
       => ( ! [X5: nat] :
              ( ( member_nat @ X5 @ ( minus_minus_set_nat @ T3 @ S3 ) )
             => ( ( H2 @ X5 )
                = zero_zero_complex ) )
         => ( ! [X5: nat] :
                ( ( member_nat @ X5 @ S3 )
               => ( ( G @ X5 )
                  = ( H2 @ X5 ) ) )
           => ( ( groups2073611262835488442omplex @ G @ S3 )
              = ( groups2073611262835488442omplex @ H2 @ T3 ) ) ) ) ) ) ).

% sum.mono_neutral_cong_left
thf(fact_6261_sum_Omono__neutral__right,axiom,
    ! [T3: set_complex,S3: set_complex,G: complex > real] :
      ( ( finite3207457112153483333omplex @ T3 )
     => ( ( ord_le211207098394363844omplex @ S3 @ T3 )
       => ( ! [X5: complex] :
              ( ( member_complex @ X5 @ ( minus_811609699411566653omplex @ T3 @ S3 ) )
             => ( ( G @ X5 )
                = zero_zero_real ) )
         => ( ( groups5808333547571424918x_real @ G @ T3 )
            = ( groups5808333547571424918x_real @ G @ S3 ) ) ) ) ) ).

% sum.mono_neutral_right
thf(fact_6262_sum_Omono__neutral__right,axiom,
    ! [T3: set_complex,S3: set_complex,G: complex > rat] :
      ( ( finite3207457112153483333omplex @ T3 )
     => ( ( ord_le211207098394363844omplex @ S3 @ T3 )
       => ( ! [X5: complex] :
              ( ( member_complex @ X5 @ ( minus_811609699411566653omplex @ T3 @ S3 ) )
             => ( ( G @ X5 )
                = zero_zero_rat ) )
         => ( ( groups5058264527183730370ex_rat @ G @ T3 )
            = ( groups5058264527183730370ex_rat @ G @ S3 ) ) ) ) ) ).

% sum.mono_neutral_right
thf(fact_6263_sum_Omono__neutral__right,axiom,
    ! [T3: set_complex,S3: set_complex,G: complex > nat] :
      ( ( finite3207457112153483333omplex @ T3 )
     => ( ( ord_le211207098394363844omplex @ S3 @ T3 )
       => ( ! [X5: complex] :
              ( ( member_complex @ X5 @ ( minus_811609699411566653omplex @ T3 @ S3 ) )
             => ( ( G @ X5 )
                = zero_zero_nat ) )
         => ( ( groups5693394587270226106ex_nat @ G @ T3 )
            = ( groups5693394587270226106ex_nat @ G @ S3 ) ) ) ) ) ).

% sum.mono_neutral_right
thf(fact_6264_sum_Omono__neutral__right,axiom,
    ! [T3: set_complex,S3: set_complex,G: complex > int] :
      ( ( finite3207457112153483333omplex @ T3 )
     => ( ( ord_le211207098394363844omplex @ S3 @ T3 )
       => ( ! [X5: complex] :
              ( ( member_complex @ X5 @ ( minus_811609699411566653omplex @ T3 @ S3 ) )
             => ( ( G @ X5 )
                = zero_zero_int ) )
         => ( ( groups5690904116761175830ex_int @ G @ T3 )
            = ( groups5690904116761175830ex_int @ G @ S3 ) ) ) ) ) ).

% sum.mono_neutral_right
thf(fact_6265_sum_Omono__neutral__right,axiom,
    ! [T3: set_nat,S3: set_nat,G: nat > complex] :
      ( ( finite_finite_nat @ T3 )
     => ( ( ord_less_eq_set_nat @ S3 @ T3 )
       => ( ! [X5: nat] :
              ( ( member_nat @ X5 @ ( minus_minus_set_nat @ T3 @ S3 ) )
             => ( ( G @ X5 )
                = zero_zero_complex ) )
         => ( ( groups2073611262835488442omplex @ G @ T3 )
            = ( groups2073611262835488442omplex @ G @ S3 ) ) ) ) ) ).

% sum.mono_neutral_right
thf(fact_6266_sum_Omono__neutral__right,axiom,
    ! [T3: set_nat,S3: set_nat,G: nat > rat] :
      ( ( finite_finite_nat @ T3 )
     => ( ( ord_less_eq_set_nat @ S3 @ T3 )
       => ( ! [X5: nat] :
              ( ( member_nat @ X5 @ ( minus_minus_set_nat @ T3 @ S3 ) )
             => ( ( G @ X5 )
                = zero_zero_rat ) )
         => ( ( groups2906978787729119204at_rat @ G @ T3 )
            = ( groups2906978787729119204at_rat @ G @ S3 ) ) ) ) ) ).

% sum.mono_neutral_right
thf(fact_6267_sum_Omono__neutral__right,axiom,
    ! [T3: set_nat,S3: set_nat,G: nat > int] :
      ( ( finite_finite_nat @ T3 )
     => ( ( ord_less_eq_set_nat @ S3 @ T3 )
       => ( ! [X5: nat] :
              ( ( member_nat @ X5 @ ( minus_minus_set_nat @ T3 @ S3 ) )
             => ( ( G @ X5 )
                = zero_zero_int ) )
         => ( ( groups3539618377306564664at_int @ G @ T3 )
            = ( groups3539618377306564664at_int @ G @ S3 ) ) ) ) ) ).

% sum.mono_neutral_right
thf(fact_6268_sum_Omono__neutral__right,axiom,
    ! [T3: set_int,S3: set_int,G: int > complex] :
      ( ( finite_finite_int @ T3 )
     => ( ( ord_less_eq_set_int @ S3 @ T3 )
       => ( ! [X5: int] :
              ( ( member_int @ X5 @ ( minus_minus_set_int @ T3 @ S3 ) )
             => ( ( G @ X5 )
                = zero_zero_complex ) )
         => ( ( groups3049146728041665814omplex @ G @ T3 )
            = ( groups3049146728041665814omplex @ G @ S3 ) ) ) ) ) ).

% sum.mono_neutral_right
thf(fact_6269_sum_Omono__neutral__right,axiom,
    ! [T3: set_int,S3: set_int,G: int > real] :
      ( ( finite_finite_int @ T3 )
     => ( ( ord_less_eq_set_int @ S3 @ T3 )
       => ( ! [X5: int] :
              ( ( member_int @ X5 @ ( minus_minus_set_int @ T3 @ S3 ) )
             => ( ( G @ X5 )
                = zero_zero_real ) )
         => ( ( groups8778361861064173332t_real @ G @ T3 )
            = ( groups8778361861064173332t_real @ G @ S3 ) ) ) ) ) ).

% sum.mono_neutral_right
thf(fact_6270_sum_Omono__neutral__right,axiom,
    ! [T3: set_int,S3: set_int,G: int > rat] :
      ( ( finite_finite_int @ T3 )
     => ( ( ord_less_eq_set_int @ S3 @ T3 )
       => ( ! [X5: int] :
              ( ( member_int @ X5 @ ( minus_minus_set_int @ T3 @ S3 ) )
             => ( ( G @ X5 )
                = zero_zero_rat ) )
         => ( ( groups3906332499630173760nt_rat @ G @ T3 )
            = ( groups3906332499630173760nt_rat @ G @ S3 ) ) ) ) ) ).

% sum.mono_neutral_right
thf(fact_6271_sum_Omono__neutral__left,axiom,
    ! [T3: set_complex,S3: set_complex,G: complex > real] :
      ( ( finite3207457112153483333omplex @ T3 )
     => ( ( ord_le211207098394363844omplex @ S3 @ T3 )
       => ( ! [X5: complex] :
              ( ( member_complex @ X5 @ ( minus_811609699411566653omplex @ T3 @ S3 ) )
             => ( ( G @ X5 )
                = zero_zero_real ) )
         => ( ( groups5808333547571424918x_real @ G @ S3 )
            = ( groups5808333547571424918x_real @ G @ T3 ) ) ) ) ) ).

% sum.mono_neutral_left
thf(fact_6272_sum_Omono__neutral__left,axiom,
    ! [T3: set_complex,S3: set_complex,G: complex > rat] :
      ( ( finite3207457112153483333omplex @ T3 )
     => ( ( ord_le211207098394363844omplex @ S3 @ T3 )
       => ( ! [X5: complex] :
              ( ( member_complex @ X5 @ ( minus_811609699411566653omplex @ T3 @ S3 ) )
             => ( ( G @ X5 )
                = zero_zero_rat ) )
         => ( ( groups5058264527183730370ex_rat @ G @ S3 )
            = ( groups5058264527183730370ex_rat @ G @ T3 ) ) ) ) ) ).

% sum.mono_neutral_left
thf(fact_6273_sum_Omono__neutral__left,axiom,
    ! [T3: set_complex,S3: set_complex,G: complex > nat] :
      ( ( finite3207457112153483333omplex @ T3 )
     => ( ( ord_le211207098394363844omplex @ S3 @ T3 )
       => ( ! [X5: complex] :
              ( ( member_complex @ X5 @ ( minus_811609699411566653omplex @ T3 @ S3 ) )
             => ( ( G @ X5 )
                = zero_zero_nat ) )
         => ( ( groups5693394587270226106ex_nat @ G @ S3 )
            = ( groups5693394587270226106ex_nat @ G @ T3 ) ) ) ) ) ).

% sum.mono_neutral_left
thf(fact_6274_sum_Omono__neutral__left,axiom,
    ! [T3: set_complex,S3: set_complex,G: complex > int] :
      ( ( finite3207457112153483333omplex @ T3 )
     => ( ( ord_le211207098394363844omplex @ S3 @ T3 )
       => ( ! [X5: complex] :
              ( ( member_complex @ X5 @ ( minus_811609699411566653omplex @ T3 @ S3 ) )
             => ( ( G @ X5 )
                = zero_zero_int ) )
         => ( ( groups5690904116761175830ex_int @ G @ S3 )
            = ( groups5690904116761175830ex_int @ G @ T3 ) ) ) ) ) ).

% sum.mono_neutral_left
thf(fact_6275_sum_Omono__neutral__left,axiom,
    ! [T3: set_nat,S3: set_nat,G: nat > complex] :
      ( ( finite_finite_nat @ T3 )
     => ( ( ord_less_eq_set_nat @ S3 @ T3 )
       => ( ! [X5: nat] :
              ( ( member_nat @ X5 @ ( minus_minus_set_nat @ T3 @ S3 ) )
             => ( ( G @ X5 )
                = zero_zero_complex ) )
         => ( ( groups2073611262835488442omplex @ G @ S3 )
            = ( groups2073611262835488442omplex @ G @ T3 ) ) ) ) ) ).

% sum.mono_neutral_left
thf(fact_6276_sum_Omono__neutral__left,axiom,
    ! [T3: set_nat,S3: set_nat,G: nat > rat] :
      ( ( finite_finite_nat @ T3 )
     => ( ( ord_less_eq_set_nat @ S3 @ T3 )
       => ( ! [X5: nat] :
              ( ( member_nat @ X5 @ ( minus_minus_set_nat @ T3 @ S3 ) )
             => ( ( G @ X5 )
                = zero_zero_rat ) )
         => ( ( groups2906978787729119204at_rat @ G @ S3 )
            = ( groups2906978787729119204at_rat @ G @ T3 ) ) ) ) ) ).

% sum.mono_neutral_left
thf(fact_6277_sum_Omono__neutral__left,axiom,
    ! [T3: set_nat,S3: set_nat,G: nat > int] :
      ( ( finite_finite_nat @ T3 )
     => ( ( ord_less_eq_set_nat @ S3 @ T3 )
       => ( ! [X5: nat] :
              ( ( member_nat @ X5 @ ( minus_minus_set_nat @ T3 @ S3 ) )
             => ( ( G @ X5 )
                = zero_zero_int ) )
         => ( ( groups3539618377306564664at_int @ G @ S3 )
            = ( groups3539618377306564664at_int @ G @ T3 ) ) ) ) ) ).

% sum.mono_neutral_left
thf(fact_6278_sum_Omono__neutral__left,axiom,
    ! [T3: set_int,S3: set_int,G: int > complex] :
      ( ( finite_finite_int @ T3 )
     => ( ( ord_less_eq_set_int @ S3 @ T3 )
       => ( ! [X5: int] :
              ( ( member_int @ X5 @ ( minus_minus_set_int @ T3 @ S3 ) )
             => ( ( G @ X5 )
                = zero_zero_complex ) )
         => ( ( groups3049146728041665814omplex @ G @ S3 )
            = ( groups3049146728041665814omplex @ G @ T3 ) ) ) ) ) ).

% sum.mono_neutral_left
thf(fact_6279_sum_Omono__neutral__left,axiom,
    ! [T3: set_int,S3: set_int,G: int > real] :
      ( ( finite_finite_int @ T3 )
     => ( ( ord_less_eq_set_int @ S3 @ T3 )
       => ( ! [X5: int] :
              ( ( member_int @ X5 @ ( minus_minus_set_int @ T3 @ S3 ) )
             => ( ( G @ X5 )
                = zero_zero_real ) )
         => ( ( groups8778361861064173332t_real @ G @ S3 )
            = ( groups8778361861064173332t_real @ G @ T3 ) ) ) ) ) ).

% sum.mono_neutral_left
thf(fact_6280_sum_Omono__neutral__left,axiom,
    ! [T3: set_int,S3: set_int,G: int > rat] :
      ( ( finite_finite_int @ T3 )
     => ( ( ord_less_eq_set_int @ S3 @ T3 )
       => ( ! [X5: int] :
              ( ( member_int @ X5 @ ( minus_minus_set_int @ T3 @ S3 ) )
             => ( ( G @ X5 )
                = zero_zero_rat ) )
         => ( ( groups3906332499630173760nt_rat @ G @ S3 )
            = ( groups3906332499630173760nt_rat @ G @ T3 ) ) ) ) ) ).

% sum.mono_neutral_left
thf(fact_6281_sum_Osame__carrierI,axiom,
    ! [C2: set_real,A2: set_real,B3: set_real,G: real > complex,H2: real > complex] :
      ( ( finite_finite_real @ C2 )
     => ( ( ord_less_eq_set_real @ A2 @ C2 )
       => ( ( ord_less_eq_set_real @ B3 @ C2 )
         => ( ! [A3: real] :
                ( ( member_real @ A3 @ ( minus_minus_set_real @ C2 @ A2 ) )
               => ( ( G @ A3 )
                  = zero_zero_complex ) )
           => ( ! [B2: real] :
                  ( ( member_real @ B2 @ ( minus_minus_set_real @ C2 @ B3 ) )
                 => ( ( H2 @ B2 )
                    = zero_zero_complex ) )
             => ( ( ( groups5754745047067104278omplex @ G @ C2 )
                  = ( groups5754745047067104278omplex @ H2 @ C2 ) )
               => ( ( groups5754745047067104278omplex @ G @ A2 )
                  = ( groups5754745047067104278omplex @ H2 @ B3 ) ) ) ) ) ) ) ) ).

% sum.same_carrierI
thf(fact_6282_sum_Osame__carrierI,axiom,
    ! [C2: set_real,A2: set_real,B3: set_real,G: real > real,H2: real > real] :
      ( ( finite_finite_real @ C2 )
     => ( ( ord_less_eq_set_real @ A2 @ C2 )
       => ( ( ord_less_eq_set_real @ B3 @ C2 )
         => ( ! [A3: real] :
                ( ( member_real @ A3 @ ( minus_minus_set_real @ C2 @ A2 ) )
               => ( ( G @ A3 )
                  = zero_zero_real ) )
           => ( ! [B2: real] :
                  ( ( member_real @ B2 @ ( minus_minus_set_real @ C2 @ B3 ) )
                 => ( ( H2 @ B2 )
                    = zero_zero_real ) )
             => ( ( ( groups8097168146408367636l_real @ G @ C2 )
                  = ( groups8097168146408367636l_real @ H2 @ C2 ) )
               => ( ( groups8097168146408367636l_real @ G @ A2 )
                  = ( groups8097168146408367636l_real @ H2 @ B3 ) ) ) ) ) ) ) ) ).

% sum.same_carrierI
thf(fact_6283_sum_Osame__carrierI,axiom,
    ! [C2: set_complex,A2: set_complex,B3: set_complex,G: complex > real,H2: complex > real] :
      ( ( finite3207457112153483333omplex @ C2 )
     => ( ( ord_le211207098394363844omplex @ A2 @ C2 )
       => ( ( ord_le211207098394363844omplex @ B3 @ C2 )
         => ( ! [A3: complex] :
                ( ( member_complex @ A3 @ ( minus_811609699411566653omplex @ C2 @ A2 ) )
               => ( ( G @ A3 )
                  = zero_zero_real ) )
           => ( ! [B2: complex] :
                  ( ( member_complex @ B2 @ ( minus_811609699411566653omplex @ C2 @ B3 ) )
                 => ( ( H2 @ B2 )
                    = zero_zero_real ) )
             => ( ( ( groups5808333547571424918x_real @ G @ C2 )
                  = ( groups5808333547571424918x_real @ H2 @ C2 ) )
               => ( ( groups5808333547571424918x_real @ G @ A2 )
                  = ( groups5808333547571424918x_real @ H2 @ B3 ) ) ) ) ) ) ) ) ).

% sum.same_carrierI
thf(fact_6284_sum_Osame__carrierI,axiom,
    ! [C2: set_real,A2: set_real,B3: set_real,G: real > rat,H2: real > rat] :
      ( ( finite_finite_real @ C2 )
     => ( ( ord_less_eq_set_real @ A2 @ C2 )
       => ( ( ord_less_eq_set_real @ B3 @ C2 )
         => ( ! [A3: real] :
                ( ( member_real @ A3 @ ( minus_minus_set_real @ C2 @ A2 ) )
               => ( ( G @ A3 )
                  = zero_zero_rat ) )
           => ( ! [B2: real] :
                  ( ( member_real @ B2 @ ( minus_minus_set_real @ C2 @ B3 ) )
                 => ( ( H2 @ B2 )
                    = zero_zero_rat ) )
             => ( ( ( groups1300246762558778688al_rat @ G @ C2 )
                  = ( groups1300246762558778688al_rat @ H2 @ C2 ) )
               => ( ( groups1300246762558778688al_rat @ G @ A2 )
                  = ( groups1300246762558778688al_rat @ H2 @ B3 ) ) ) ) ) ) ) ) ).

% sum.same_carrierI
thf(fact_6285_sum_Osame__carrierI,axiom,
    ! [C2: set_complex,A2: set_complex,B3: set_complex,G: complex > rat,H2: complex > rat] :
      ( ( finite3207457112153483333omplex @ C2 )
     => ( ( ord_le211207098394363844omplex @ A2 @ C2 )
       => ( ( ord_le211207098394363844omplex @ B3 @ C2 )
         => ( ! [A3: complex] :
                ( ( member_complex @ A3 @ ( minus_811609699411566653omplex @ C2 @ A2 ) )
               => ( ( G @ A3 )
                  = zero_zero_rat ) )
           => ( ! [B2: complex] :
                  ( ( member_complex @ B2 @ ( minus_811609699411566653omplex @ C2 @ B3 ) )
                 => ( ( H2 @ B2 )
                    = zero_zero_rat ) )
             => ( ( ( groups5058264527183730370ex_rat @ G @ C2 )
                  = ( groups5058264527183730370ex_rat @ H2 @ C2 ) )
               => ( ( groups5058264527183730370ex_rat @ G @ A2 )
                  = ( groups5058264527183730370ex_rat @ H2 @ B3 ) ) ) ) ) ) ) ) ).

% sum.same_carrierI
thf(fact_6286_sum_Osame__carrierI,axiom,
    ! [C2: set_real,A2: set_real,B3: set_real,G: real > nat,H2: real > nat] :
      ( ( finite_finite_real @ C2 )
     => ( ( ord_less_eq_set_real @ A2 @ C2 )
       => ( ( ord_less_eq_set_real @ B3 @ C2 )
         => ( ! [A3: real] :
                ( ( member_real @ A3 @ ( minus_minus_set_real @ C2 @ A2 ) )
               => ( ( G @ A3 )
                  = zero_zero_nat ) )
           => ( ! [B2: real] :
                  ( ( member_real @ B2 @ ( minus_minus_set_real @ C2 @ B3 ) )
                 => ( ( H2 @ B2 )
                    = zero_zero_nat ) )
             => ( ( ( groups1935376822645274424al_nat @ G @ C2 )
                  = ( groups1935376822645274424al_nat @ H2 @ C2 ) )
               => ( ( groups1935376822645274424al_nat @ G @ A2 )
                  = ( groups1935376822645274424al_nat @ H2 @ B3 ) ) ) ) ) ) ) ) ).

% sum.same_carrierI
thf(fact_6287_sum_Osame__carrierI,axiom,
    ! [C2: set_complex,A2: set_complex,B3: set_complex,G: complex > nat,H2: complex > nat] :
      ( ( finite3207457112153483333omplex @ C2 )
     => ( ( ord_le211207098394363844omplex @ A2 @ C2 )
       => ( ( ord_le211207098394363844omplex @ B3 @ C2 )
         => ( ! [A3: complex] :
                ( ( member_complex @ A3 @ ( minus_811609699411566653omplex @ C2 @ A2 ) )
               => ( ( G @ A3 )
                  = zero_zero_nat ) )
           => ( ! [B2: complex] :
                  ( ( member_complex @ B2 @ ( minus_811609699411566653omplex @ C2 @ B3 ) )
                 => ( ( H2 @ B2 )
                    = zero_zero_nat ) )
             => ( ( ( groups5693394587270226106ex_nat @ G @ C2 )
                  = ( groups5693394587270226106ex_nat @ H2 @ C2 ) )
               => ( ( groups5693394587270226106ex_nat @ G @ A2 )
                  = ( groups5693394587270226106ex_nat @ H2 @ B3 ) ) ) ) ) ) ) ) ).

% sum.same_carrierI
thf(fact_6288_sum_Osame__carrierI,axiom,
    ! [C2: set_real,A2: set_real,B3: set_real,G: real > int,H2: real > int] :
      ( ( finite_finite_real @ C2 )
     => ( ( ord_less_eq_set_real @ A2 @ C2 )
       => ( ( ord_less_eq_set_real @ B3 @ C2 )
         => ( ! [A3: real] :
                ( ( member_real @ A3 @ ( minus_minus_set_real @ C2 @ A2 ) )
               => ( ( G @ A3 )
                  = zero_zero_int ) )
           => ( ! [B2: real] :
                  ( ( member_real @ B2 @ ( minus_minus_set_real @ C2 @ B3 ) )
                 => ( ( H2 @ B2 )
                    = zero_zero_int ) )
             => ( ( ( groups1932886352136224148al_int @ G @ C2 )
                  = ( groups1932886352136224148al_int @ H2 @ C2 ) )
               => ( ( groups1932886352136224148al_int @ G @ A2 )
                  = ( groups1932886352136224148al_int @ H2 @ B3 ) ) ) ) ) ) ) ) ).

% sum.same_carrierI
thf(fact_6289_sum_Osame__carrierI,axiom,
    ! [C2: set_complex,A2: set_complex,B3: set_complex,G: complex > int,H2: complex > int] :
      ( ( finite3207457112153483333omplex @ C2 )
     => ( ( ord_le211207098394363844omplex @ A2 @ C2 )
       => ( ( ord_le211207098394363844omplex @ B3 @ C2 )
         => ( ! [A3: complex] :
                ( ( member_complex @ A3 @ ( minus_811609699411566653omplex @ C2 @ A2 ) )
               => ( ( G @ A3 )
                  = zero_zero_int ) )
           => ( ! [B2: complex] :
                  ( ( member_complex @ B2 @ ( minus_811609699411566653omplex @ C2 @ B3 ) )
                 => ( ( H2 @ B2 )
                    = zero_zero_int ) )
             => ( ( ( groups5690904116761175830ex_int @ G @ C2 )
                  = ( groups5690904116761175830ex_int @ H2 @ C2 ) )
               => ( ( groups5690904116761175830ex_int @ G @ A2 )
                  = ( groups5690904116761175830ex_int @ H2 @ B3 ) ) ) ) ) ) ) ) ).

% sum.same_carrierI
thf(fact_6290_sum_Osame__carrierI,axiom,
    ! [C2: set_nat,A2: set_nat,B3: set_nat,G: nat > complex,H2: nat > complex] :
      ( ( finite_finite_nat @ C2 )
     => ( ( ord_less_eq_set_nat @ A2 @ C2 )
       => ( ( ord_less_eq_set_nat @ B3 @ C2 )
         => ( ! [A3: nat] :
                ( ( member_nat @ A3 @ ( minus_minus_set_nat @ C2 @ A2 ) )
               => ( ( G @ A3 )
                  = zero_zero_complex ) )
           => ( ! [B2: nat] :
                  ( ( member_nat @ B2 @ ( minus_minus_set_nat @ C2 @ B3 ) )
                 => ( ( H2 @ B2 )
                    = zero_zero_complex ) )
             => ( ( ( groups2073611262835488442omplex @ G @ C2 )
                  = ( groups2073611262835488442omplex @ H2 @ C2 ) )
               => ( ( groups2073611262835488442omplex @ G @ A2 )
                  = ( groups2073611262835488442omplex @ H2 @ B3 ) ) ) ) ) ) ) ) ).

% sum.same_carrierI
thf(fact_6291_sum_Osame__carrier,axiom,
    ! [C2: set_real,A2: set_real,B3: set_real,G: real > complex,H2: real > complex] :
      ( ( finite_finite_real @ C2 )
     => ( ( ord_less_eq_set_real @ A2 @ C2 )
       => ( ( ord_less_eq_set_real @ B3 @ C2 )
         => ( ! [A3: real] :
                ( ( member_real @ A3 @ ( minus_minus_set_real @ C2 @ A2 ) )
               => ( ( G @ A3 )
                  = zero_zero_complex ) )
           => ( ! [B2: real] :
                  ( ( member_real @ B2 @ ( minus_minus_set_real @ C2 @ B3 ) )
                 => ( ( H2 @ B2 )
                    = zero_zero_complex ) )
             => ( ( ( groups5754745047067104278omplex @ G @ A2 )
                  = ( groups5754745047067104278omplex @ H2 @ B3 ) )
                = ( ( groups5754745047067104278omplex @ G @ C2 )
                  = ( groups5754745047067104278omplex @ H2 @ C2 ) ) ) ) ) ) ) ) ).

% sum.same_carrier
thf(fact_6292_sum_Osame__carrier,axiom,
    ! [C2: set_real,A2: set_real,B3: set_real,G: real > real,H2: real > real] :
      ( ( finite_finite_real @ C2 )
     => ( ( ord_less_eq_set_real @ A2 @ C2 )
       => ( ( ord_less_eq_set_real @ B3 @ C2 )
         => ( ! [A3: real] :
                ( ( member_real @ A3 @ ( minus_minus_set_real @ C2 @ A2 ) )
               => ( ( G @ A3 )
                  = zero_zero_real ) )
           => ( ! [B2: real] :
                  ( ( member_real @ B2 @ ( minus_minus_set_real @ C2 @ B3 ) )
                 => ( ( H2 @ B2 )
                    = zero_zero_real ) )
             => ( ( ( groups8097168146408367636l_real @ G @ A2 )
                  = ( groups8097168146408367636l_real @ H2 @ B3 ) )
                = ( ( groups8097168146408367636l_real @ G @ C2 )
                  = ( groups8097168146408367636l_real @ H2 @ C2 ) ) ) ) ) ) ) ) ).

% sum.same_carrier
thf(fact_6293_sum_Osame__carrier,axiom,
    ! [C2: set_complex,A2: set_complex,B3: set_complex,G: complex > real,H2: complex > real] :
      ( ( finite3207457112153483333omplex @ C2 )
     => ( ( ord_le211207098394363844omplex @ A2 @ C2 )
       => ( ( ord_le211207098394363844omplex @ B3 @ C2 )
         => ( ! [A3: complex] :
                ( ( member_complex @ A3 @ ( minus_811609699411566653omplex @ C2 @ A2 ) )
               => ( ( G @ A3 )
                  = zero_zero_real ) )
           => ( ! [B2: complex] :
                  ( ( member_complex @ B2 @ ( minus_811609699411566653omplex @ C2 @ B3 ) )
                 => ( ( H2 @ B2 )
                    = zero_zero_real ) )
             => ( ( ( groups5808333547571424918x_real @ G @ A2 )
                  = ( groups5808333547571424918x_real @ H2 @ B3 ) )
                = ( ( groups5808333547571424918x_real @ G @ C2 )
                  = ( groups5808333547571424918x_real @ H2 @ C2 ) ) ) ) ) ) ) ) ).

% sum.same_carrier
thf(fact_6294_sum_Osame__carrier,axiom,
    ! [C2: set_real,A2: set_real,B3: set_real,G: real > rat,H2: real > rat] :
      ( ( finite_finite_real @ C2 )
     => ( ( ord_less_eq_set_real @ A2 @ C2 )
       => ( ( ord_less_eq_set_real @ B3 @ C2 )
         => ( ! [A3: real] :
                ( ( member_real @ A3 @ ( minus_minus_set_real @ C2 @ A2 ) )
               => ( ( G @ A3 )
                  = zero_zero_rat ) )
           => ( ! [B2: real] :
                  ( ( member_real @ B2 @ ( minus_minus_set_real @ C2 @ B3 ) )
                 => ( ( H2 @ B2 )
                    = zero_zero_rat ) )
             => ( ( ( groups1300246762558778688al_rat @ G @ A2 )
                  = ( groups1300246762558778688al_rat @ H2 @ B3 ) )
                = ( ( groups1300246762558778688al_rat @ G @ C2 )
                  = ( groups1300246762558778688al_rat @ H2 @ C2 ) ) ) ) ) ) ) ) ).

% sum.same_carrier
thf(fact_6295_sum_Osame__carrier,axiom,
    ! [C2: set_complex,A2: set_complex,B3: set_complex,G: complex > rat,H2: complex > rat] :
      ( ( finite3207457112153483333omplex @ C2 )
     => ( ( ord_le211207098394363844omplex @ A2 @ C2 )
       => ( ( ord_le211207098394363844omplex @ B3 @ C2 )
         => ( ! [A3: complex] :
                ( ( member_complex @ A3 @ ( minus_811609699411566653omplex @ C2 @ A2 ) )
               => ( ( G @ A3 )
                  = zero_zero_rat ) )
           => ( ! [B2: complex] :
                  ( ( member_complex @ B2 @ ( minus_811609699411566653omplex @ C2 @ B3 ) )
                 => ( ( H2 @ B2 )
                    = zero_zero_rat ) )
             => ( ( ( groups5058264527183730370ex_rat @ G @ A2 )
                  = ( groups5058264527183730370ex_rat @ H2 @ B3 ) )
                = ( ( groups5058264527183730370ex_rat @ G @ C2 )
                  = ( groups5058264527183730370ex_rat @ H2 @ C2 ) ) ) ) ) ) ) ) ).

% sum.same_carrier
thf(fact_6296_sum_Osame__carrier,axiom,
    ! [C2: set_real,A2: set_real,B3: set_real,G: real > nat,H2: real > nat] :
      ( ( finite_finite_real @ C2 )
     => ( ( ord_less_eq_set_real @ A2 @ C2 )
       => ( ( ord_less_eq_set_real @ B3 @ C2 )
         => ( ! [A3: real] :
                ( ( member_real @ A3 @ ( minus_minus_set_real @ C2 @ A2 ) )
               => ( ( G @ A3 )
                  = zero_zero_nat ) )
           => ( ! [B2: real] :
                  ( ( member_real @ B2 @ ( minus_minus_set_real @ C2 @ B3 ) )
                 => ( ( H2 @ B2 )
                    = zero_zero_nat ) )
             => ( ( ( groups1935376822645274424al_nat @ G @ A2 )
                  = ( groups1935376822645274424al_nat @ H2 @ B3 ) )
                = ( ( groups1935376822645274424al_nat @ G @ C2 )
                  = ( groups1935376822645274424al_nat @ H2 @ C2 ) ) ) ) ) ) ) ) ).

% sum.same_carrier
thf(fact_6297_sum_Osame__carrier,axiom,
    ! [C2: set_complex,A2: set_complex,B3: set_complex,G: complex > nat,H2: complex > nat] :
      ( ( finite3207457112153483333omplex @ C2 )
     => ( ( ord_le211207098394363844omplex @ A2 @ C2 )
       => ( ( ord_le211207098394363844omplex @ B3 @ C2 )
         => ( ! [A3: complex] :
                ( ( member_complex @ A3 @ ( minus_811609699411566653omplex @ C2 @ A2 ) )
               => ( ( G @ A3 )
                  = zero_zero_nat ) )
           => ( ! [B2: complex] :
                  ( ( member_complex @ B2 @ ( minus_811609699411566653omplex @ C2 @ B3 ) )
                 => ( ( H2 @ B2 )
                    = zero_zero_nat ) )
             => ( ( ( groups5693394587270226106ex_nat @ G @ A2 )
                  = ( groups5693394587270226106ex_nat @ H2 @ B3 ) )
                = ( ( groups5693394587270226106ex_nat @ G @ C2 )
                  = ( groups5693394587270226106ex_nat @ H2 @ C2 ) ) ) ) ) ) ) ) ).

% sum.same_carrier
thf(fact_6298_sum_Osame__carrier,axiom,
    ! [C2: set_real,A2: set_real,B3: set_real,G: real > int,H2: real > int] :
      ( ( finite_finite_real @ C2 )
     => ( ( ord_less_eq_set_real @ A2 @ C2 )
       => ( ( ord_less_eq_set_real @ B3 @ C2 )
         => ( ! [A3: real] :
                ( ( member_real @ A3 @ ( minus_minus_set_real @ C2 @ A2 ) )
               => ( ( G @ A3 )
                  = zero_zero_int ) )
           => ( ! [B2: real] :
                  ( ( member_real @ B2 @ ( minus_minus_set_real @ C2 @ B3 ) )
                 => ( ( H2 @ B2 )
                    = zero_zero_int ) )
             => ( ( ( groups1932886352136224148al_int @ G @ A2 )
                  = ( groups1932886352136224148al_int @ H2 @ B3 ) )
                = ( ( groups1932886352136224148al_int @ G @ C2 )
                  = ( groups1932886352136224148al_int @ H2 @ C2 ) ) ) ) ) ) ) ) ).

% sum.same_carrier
thf(fact_6299_sum_Osame__carrier,axiom,
    ! [C2: set_complex,A2: set_complex,B3: set_complex,G: complex > int,H2: complex > int] :
      ( ( finite3207457112153483333omplex @ C2 )
     => ( ( ord_le211207098394363844omplex @ A2 @ C2 )
       => ( ( ord_le211207098394363844omplex @ B3 @ C2 )
         => ( ! [A3: complex] :
                ( ( member_complex @ A3 @ ( minus_811609699411566653omplex @ C2 @ A2 ) )
               => ( ( G @ A3 )
                  = zero_zero_int ) )
           => ( ! [B2: complex] :
                  ( ( member_complex @ B2 @ ( minus_811609699411566653omplex @ C2 @ B3 ) )
                 => ( ( H2 @ B2 )
                    = zero_zero_int ) )
             => ( ( ( groups5690904116761175830ex_int @ G @ A2 )
                  = ( groups5690904116761175830ex_int @ H2 @ B3 ) )
                = ( ( groups5690904116761175830ex_int @ G @ C2 )
                  = ( groups5690904116761175830ex_int @ H2 @ C2 ) ) ) ) ) ) ) ) ).

% sum.same_carrier
thf(fact_6300_sum_Osame__carrier,axiom,
    ! [C2: set_nat,A2: set_nat,B3: set_nat,G: nat > complex,H2: nat > complex] :
      ( ( finite_finite_nat @ C2 )
     => ( ( ord_less_eq_set_nat @ A2 @ C2 )
       => ( ( ord_less_eq_set_nat @ B3 @ C2 )
         => ( ! [A3: nat] :
                ( ( member_nat @ A3 @ ( minus_minus_set_nat @ C2 @ A2 ) )
               => ( ( G @ A3 )
                  = zero_zero_complex ) )
           => ( ! [B2: nat] :
                  ( ( member_nat @ B2 @ ( minus_minus_set_nat @ C2 @ B3 ) )
                 => ( ( H2 @ B2 )
                    = zero_zero_complex ) )
             => ( ( ( groups2073611262835488442omplex @ G @ A2 )
                  = ( groups2073611262835488442omplex @ H2 @ B3 ) )
                = ( ( groups2073611262835488442omplex @ G @ C2 )
                  = ( groups2073611262835488442omplex @ H2 @ C2 ) ) ) ) ) ) ) ) ).

% sum.same_carrier
thf(fact_6301_sum_Osubset__diff,axiom,
    ! [B3: set_complex,A2: set_complex,G: complex > real] :
      ( ( ord_le211207098394363844omplex @ B3 @ A2 )
     => ( ( finite3207457112153483333omplex @ A2 )
       => ( ( groups5808333547571424918x_real @ G @ A2 )
          = ( plus_plus_real @ ( groups5808333547571424918x_real @ G @ ( minus_811609699411566653omplex @ A2 @ B3 ) ) @ ( groups5808333547571424918x_real @ G @ B3 ) ) ) ) ) ).

% sum.subset_diff
thf(fact_6302_sum_Osubset__diff,axiom,
    ! [B3: set_complex,A2: set_complex,G: complex > rat] :
      ( ( ord_le211207098394363844omplex @ B3 @ A2 )
     => ( ( finite3207457112153483333omplex @ A2 )
       => ( ( groups5058264527183730370ex_rat @ G @ A2 )
          = ( plus_plus_rat @ ( groups5058264527183730370ex_rat @ G @ ( minus_811609699411566653omplex @ A2 @ B3 ) ) @ ( groups5058264527183730370ex_rat @ G @ B3 ) ) ) ) ) ).

% sum.subset_diff
thf(fact_6303_sum_Osubset__diff,axiom,
    ! [B3: set_complex,A2: set_complex,G: complex > nat] :
      ( ( ord_le211207098394363844omplex @ B3 @ A2 )
     => ( ( finite3207457112153483333omplex @ A2 )
       => ( ( groups5693394587270226106ex_nat @ G @ A2 )
          = ( plus_plus_nat @ ( groups5693394587270226106ex_nat @ G @ ( minus_811609699411566653omplex @ A2 @ B3 ) ) @ ( groups5693394587270226106ex_nat @ G @ B3 ) ) ) ) ) ).

% sum.subset_diff
thf(fact_6304_sum_Osubset__diff,axiom,
    ! [B3: set_complex,A2: set_complex,G: complex > int] :
      ( ( ord_le211207098394363844omplex @ B3 @ A2 )
     => ( ( finite3207457112153483333omplex @ A2 )
       => ( ( groups5690904116761175830ex_int @ G @ A2 )
          = ( plus_plus_int @ ( groups5690904116761175830ex_int @ G @ ( minus_811609699411566653omplex @ A2 @ B3 ) ) @ ( groups5690904116761175830ex_int @ G @ B3 ) ) ) ) ) ).

% sum.subset_diff
thf(fact_6305_sum_Osubset__diff,axiom,
    ! [B3: set_nat,A2: set_nat,G: nat > rat] :
      ( ( ord_less_eq_set_nat @ B3 @ A2 )
     => ( ( finite_finite_nat @ A2 )
       => ( ( groups2906978787729119204at_rat @ G @ A2 )
          = ( plus_plus_rat @ ( groups2906978787729119204at_rat @ G @ ( minus_minus_set_nat @ A2 @ B3 ) ) @ ( groups2906978787729119204at_rat @ G @ B3 ) ) ) ) ) ).

% sum.subset_diff
thf(fact_6306_sum_Osubset__diff,axiom,
    ! [B3: set_nat,A2: set_nat,G: nat > int] :
      ( ( ord_less_eq_set_nat @ B3 @ A2 )
     => ( ( finite_finite_nat @ A2 )
       => ( ( groups3539618377306564664at_int @ G @ A2 )
          = ( plus_plus_int @ ( groups3539618377306564664at_int @ G @ ( minus_minus_set_nat @ A2 @ B3 ) ) @ ( groups3539618377306564664at_int @ G @ B3 ) ) ) ) ) ).

% sum.subset_diff
thf(fact_6307_sum_Osubset__diff,axiom,
    ! [B3: set_int,A2: set_int,G: int > real] :
      ( ( ord_less_eq_set_int @ B3 @ A2 )
     => ( ( finite_finite_int @ A2 )
       => ( ( groups8778361861064173332t_real @ G @ A2 )
          = ( plus_plus_real @ ( groups8778361861064173332t_real @ G @ ( minus_minus_set_int @ A2 @ B3 ) ) @ ( groups8778361861064173332t_real @ G @ B3 ) ) ) ) ) ).

% sum.subset_diff
thf(fact_6308_sum_Osubset__diff,axiom,
    ! [B3: set_int,A2: set_int,G: int > rat] :
      ( ( ord_less_eq_set_int @ B3 @ A2 )
     => ( ( finite_finite_int @ A2 )
       => ( ( groups3906332499630173760nt_rat @ G @ A2 )
          = ( plus_plus_rat @ ( groups3906332499630173760nt_rat @ G @ ( minus_minus_set_int @ A2 @ B3 ) ) @ ( groups3906332499630173760nt_rat @ G @ B3 ) ) ) ) ) ).

% sum.subset_diff
thf(fact_6309_sum_Osubset__diff,axiom,
    ! [B3: set_int,A2: set_int,G: int > nat] :
      ( ( ord_less_eq_set_int @ B3 @ A2 )
     => ( ( finite_finite_int @ A2 )
       => ( ( groups4541462559716669496nt_nat @ G @ A2 )
          = ( plus_plus_nat @ ( groups4541462559716669496nt_nat @ G @ ( minus_minus_set_int @ A2 @ B3 ) ) @ ( groups4541462559716669496nt_nat @ G @ B3 ) ) ) ) ) ).

% sum.subset_diff
thf(fact_6310_sum_Osubset__diff,axiom,
    ! [B3: set_int,A2: set_int,G: int > int] :
      ( ( ord_less_eq_set_int @ B3 @ A2 )
     => ( ( finite_finite_int @ A2 )
       => ( ( groups4538972089207619220nt_int @ G @ A2 )
          = ( plus_plus_int @ ( groups4538972089207619220nt_int @ G @ ( minus_minus_set_int @ A2 @ B3 ) ) @ ( groups4538972089207619220nt_int @ G @ B3 ) ) ) ) ) ).

% sum.subset_diff
thf(fact_6311_sum__diff,axiom,
    ! [A2: set_complex,B3: set_complex,F: complex > real] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( ( ord_le211207098394363844omplex @ B3 @ A2 )
       => ( ( groups5808333547571424918x_real @ F @ ( minus_811609699411566653omplex @ A2 @ B3 ) )
          = ( minus_minus_real @ ( groups5808333547571424918x_real @ F @ A2 ) @ ( groups5808333547571424918x_real @ F @ B3 ) ) ) ) ) ).

% sum_diff
thf(fact_6312_sum__diff,axiom,
    ! [A2: set_complex,B3: set_complex,F: complex > rat] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( ( ord_le211207098394363844omplex @ B3 @ A2 )
       => ( ( groups5058264527183730370ex_rat @ F @ ( minus_811609699411566653omplex @ A2 @ B3 ) )
          = ( minus_minus_rat @ ( groups5058264527183730370ex_rat @ F @ A2 ) @ ( groups5058264527183730370ex_rat @ F @ B3 ) ) ) ) ) ).

% sum_diff
thf(fact_6313_sum__diff,axiom,
    ! [A2: set_complex,B3: set_complex,F: complex > int] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( ( ord_le211207098394363844omplex @ B3 @ A2 )
       => ( ( groups5690904116761175830ex_int @ F @ ( minus_811609699411566653omplex @ A2 @ B3 ) )
          = ( minus_minus_int @ ( groups5690904116761175830ex_int @ F @ A2 ) @ ( groups5690904116761175830ex_int @ F @ B3 ) ) ) ) ) ).

% sum_diff
thf(fact_6314_sum__diff,axiom,
    ! [A2: set_nat,B3: set_nat,F: nat > rat] :
      ( ( finite_finite_nat @ A2 )
     => ( ( ord_less_eq_set_nat @ B3 @ A2 )
       => ( ( groups2906978787729119204at_rat @ F @ ( minus_minus_set_nat @ A2 @ B3 ) )
          = ( minus_minus_rat @ ( groups2906978787729119204at_rat @ F @ A2 ) @ ( groups2906978787729119204at_rat @ F @ B3 ) ) ) ) ) ).

% sum_diff
thf(fact_6315_sum__diff,axiom,
    ! [A2: set_nat,B3: set_nat,F: nat > int] :
      ( ( finite_finite_nat @ A2 )
     => ( ( ord_less_eq_set_nat @ B3 @ A2 )
       => ( ( groups3539618377306564664at_int @ F @ ( minus_minus_set_nat @ A2 @ B3 ) )
          = ( minus_minus_int @ ( groups3539618377306564664at_int @ F @ A2 ) @ ( groups3539618377306564664at_int @ F @ B3 ) ) ) ) ) ).

% sum_diff
thf(fact_6316_sum__diff,axiom,
    ! [A2: set_int,B3: set_int,F: int > real] :
      ( ( finite_finite_int @ A2 )
     => ( ( ord_less_eq_set_int @ B3 @ A2 )
       => ( ( groups8778361861064173332t_real @ F @ ( minus_minus_set_int @ A2 @ B3 ) )
          = ( minus_minus_real @ ( groups8778361861064173332t_real @ F @ A2 ) @ ( groups8778361861064173332t_real @ F @ B3 ) ) ) ) ) ).

% sum_diff
thf(fact_6317_sum__diff,axiom,
    ! [A2: set_int,B3: set_int,F: int > rat] :
      ( ( finite_finite_int @ A2 )
     => ( ( ord_less_eq_set_int @ B3 @ A2 )
       => ( ( groups3906332499630173760nt_rat @ F @ ( minus_minus_set_int @ A2 @ B3 ) )
          = ( minus_minus_rat @ ( groups3906332499630173760nt_rat @ F @ A2 ) @ ( groups3906332499630173760nt_rat @ F @ B3 ) ) ) ) ) ).

% sum_diff
thf(fact_6318_sum__diff,axiom,
    ! [A2: set_int,B3: set_int,F: int > int] :
      ( ( finite_finite_int @ A2 )
     => ( ( ord_less_eq_set_int @ B3 @ A2 )
       => ( ( groups4538972089207619220nt_int @ F @ ( minus_minus_set_int @ A2 @ B3 ) )
          = ( minus_minus_int @ ( groups4538972089207619220nt_int @ F @ A2 ) @ ( groups4538972089207619220nt_int @ F @ B3 ) ) ) ) ) ).

% sum_diff
thf(fact_6319_sum__diff,axiom,
    ! [A2: set_complex,B3: set_complex,F: complex > complex] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( ( ord_le211207098394363844omplex @ B3 @ A2 )
       => ( ( groups7754918857620584856omplex @ F @ ( minus_811609699411566653omplex @ A2 @ B3 ) )
          = ( minus_minus_complex @ ( groups7754918857620584856omplex @ F @ A2 ) @ ( groups7754918857620584856omplex @ F @ B3 ) ) ) ) ) ).

% sum_diff
thf(fact_6320_sum__diff,axiom,
    ! [A2: set_nat,B3: set_nat,F: nat > real] :
      ( ( finite_finite_nat @ A2 )
     => ( ( ord_less_eq_set_nat @ B3 @ A2 )
       => ( ( groups6591440286371151544t_real @ F @ ( minus_minus_set_nat @ A2 @ B3 ) )
          = ( minus_minus_real @ ( groups6591440286371151544t_real @ F @ A2 ) @ ( groups6591440286371151544t_real @ F @ B3 ) ) ) ) ) ).

% sum_diff
thf(fact_6321_ln__add__one__self__le__self,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ord_less_eq_real @ ( ln_ln_real @ ( plus_plus_real @ one_one_real @ X ) ) @ X ) ) ).

% ln_add_one_self_le_self
thf(fact_6322_ln__mult,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ zero_zero_real @ Y )
       => ( ( ln_ln_real @ ( times_times_real @ X @ Y ) )
          = ( plus_plus_real @ ( ln_ln_real @ X ) @ ( ln_ln_real @ Y ) ) ) ) ) ).

% ln_mult
thf(fact_6323_ln__eq__minus__one,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ( ln_ln_real @ X )
          = ( minus_minus_real @ X @ one_one_real ) )
       => ( X = one_one_real ) ) ) ).

% ln_eq_minus_one
thf(fact_6324_ln__div,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ zero_zero_real @ Y )
       => ( ( ln_ln_real @ ( divide_divide_real @ X @ Y ) )
          = ( minus_minus_real @ ( ln_ln_real @ X ) @ ( ln_ln_real @ Y ) ) ) ) ) ).

% ln_div
thf(fact_6325_pos__minus__divide__less__eq,axiom,
    ! [C: real,B: real,A: real] :
      ( ( ord_less_real @ zero_zero_real @ C )
     => ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) @ A )
        = ( ord_less_real @ ( uminus_uminus_real @ B ) @ ( times_times_real @ A @ C ) ) ) ) ).

% pos_minus_divide_less_eq
thf(fact_6326_pos__minus__divide__less__eq,axiom,
    ! [C: rat,B: rat,A: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ C )
     => ( ( ord_less_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) @ A )
        = ( ord_less_rat @ ( uminus_uminus_rat @ B ) @ ( times_times_rat @ A @ C ) ) ) ) ).

% pos_minus_divide_less_eq
thf(fact_6327_pos__less__minus__divide__eq,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ C )
     => ( ( ord_less_real @ A @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) )
        = ( ord_less_real @ ( times_times_real @ A @ C ) @ ( uminus_uminus_real @ B ) ) ) ) ).

% pos_less_minus_divide_eq
thf(fact_6328_pos__less__minus__divide__eq,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ C )
     => ( ( ord_less_rat @ A @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) )
        = ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( uminus_uminus_rat @ B ) ) ) ) ).

% pos_less_minus_divide_eq
thf(fact_6329_neg__minus__divide__less__eq,axiom,
    ! [C: real,B: real,A: real] :
      ( ( ord_less_real @ C @ zero_zero_real )
     => ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) @ A )
        = ( ord_less_real @ ( times_times_real @ A @ C ) @ ( uminus_uminus_real @ B ) ) ) ) ).

% neg_minus_divide_less_eq
thf(fact_6330_neg__minus__divide__less__eq,axiom,
    ! [C: rat,B: rat,A: rat] :
      ( ( ord_less_rat @ C @ zero_zero_rat )
     => ( ( ord_less_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) @ A )
        = ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( uminus_uminus_rat @ B ) ) ) ) ).

% neg_minus_divide_less_eq
thf(fact_6331_neg__less__minus__divide__eq,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ C @ zero_zero_real )
     => ( ( ord_less_real @ A @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) )
        = ( ord_less_real @ ( uminus_uminus_real @ B ) @ ( times_times_real @ A @ C ) ) ) ) ).

% neg_less_minus_divide_eq
thf(fact_6332_neg__less__minus__divide__eq,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ C @ zero_zero_rat )
     => ( ( ord_less_rat @ A @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) )
        = ( ord_less_rat @ ( uminus_uminus_rat @ B ) @ ( times_times_rat @ A @ C ) ) ) ) ).

% neg_less_minus_divide_eq
thf(fact_6333_minus__divide__less__eq,axiom,
    ! [B: real,C: real,A: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) @ A )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_real @ ( uminus_uminus_real @ B ) @ ( times_times_real @ A @ C ) ) )
        & ( ~ ( ord_less_real @ zero_zero_real @ C )
         => ( ( ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_real @ ( times_times_real @ A @ C ) @ ( uminus_uminus_real @ B ) ) )
            & ( ~ ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_real @ zero_zero_real @ A ) ) ) ) ) ) ).

% minus_divide_less_eq
thf(fact_6334_minus__divide__less__eq,axiom,
    ! [B: rat,C: rat,A: rat] :
      ( ( ord_less_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) @ A )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_rat @ ( uminus_uminus_rat @ B ) @ ( times_times_rat @ A @ C ) ) )
        & ( ~ ( ord_less_rat @ zero_zero_rat @ C )
         => ( ( ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( uminus_uminus_rat @ B ) ) )
            & ( ~ ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_rat @ zero_zero_rat @ A ) ) ) ) ) ) ).

% minus_divide_less_eq
thf(fact_6335_less__minus__divide__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_real @ ( times_times_real @ A @ C ) @ ( uminus_uminus_real @ B ) ) )
        & ( ~ ( ord_less_real @ zero_zero_real @ C )
         => ( ( ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_real @ ( uminus_uminus_real @ B ) @ ( times_times_real @ A @ C ) ) )
            & ( ~ ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_real @ A @ zero_zero_real ) ) ) ) ) ) ).

% less_minus_divide_eq
thf(fact_6336_less__minus__divide__eq,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_rat @ A @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( uminus_uminus_rat @ B ) ) )
        & ( ~ ( ord_less_rat @ zero_zero_rat @ C )
         => ( ( ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_rat @ ( uminus_uminus_rat @ B ) @ ( times_times_rat @ A @ C ) ) )
            & ( ~ ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_rat @ A @ zero_zero_rat ) ) ) ) ) ) ).

% less_minus_divide_eq
thf(fact_6337_eq__divide__eq__numeral_I2_J,axiom,
    ! [W: num,B: real,C: real] :
      ( ( ( uminus_uminus_real @ ( numeral_numeral_real @ W ) )
        = ( divide_divide_real @ B @ C ) )
      = ( ( ( C != zero_zero_real )
         => ( ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ C )
            = B ) )
        & ( ( C = zero_zero_real )
         => ( ( uminus_uminus_real @ ( numeral_numeral_real @ W ) )
            = zero_zero_real ) ) ) ) ).

% eq_divide_eq_numeral(2)
thf(fact_6338_eq__divide__eq__numeral_I2_J,axiom,
    ! [W: num,B: complex,C: complex] :
      ( ( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) )
        = ( divide1717551699836669952omplex @ B @ C ) )
      = ( ( ( C != zero_zero_complex )
         => ( ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) @ C )
            = B ) )
        & ( ( C = zero_zero_complex )
         => ( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) )
            = zero_zero_complex ) ) ) ) ).

% eq_divide_eq_numeral(2)
thf(fact_6339_eq__divide__eq__numeral_I2_J,axiom,
    ! [W: num,B: rat,C: rat] :
      ( ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) )
        = ( divide_divide_rat @ B @ C ) )
      = ( ( ( C != zero_zero_rat )
         => ( ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ C )
            = B ) )
        & ( ( C = zero_zero_rat )
         => ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) )
            = zero_zero_rat ) ) ) ) ).

% eq_divide_eq_numeral(2)
thf(fact_6340_divide__eq__eq__numeral_I2_J,axiom,
    ! [B: real,C: real,W: num] :
      ( ( ( divide_divide_real @ B @ C )
        = ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) )
      = ( ( ( C != zero_zero_real )
         => ( B
            = ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ C ) ) )
        & ( ( C = zero_zero_real )
         => ( ( uminus_uminus_real @ ( numeral_numeral_real @ W ) )
            = zero_zero_real ) ) ) ) ).

% divide_eq_eq_numeral(2)
thf(fact_6341_divide__eq__eq__numeral_I2_J,axiom,
    ! [B: complex,C: complex,W: num] :
      ( ( ( divide1717551699836669952omplex @ B @ C )
        = ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) )
      = ( ( ( C != zero_zero_complex )
         => ( B
            = ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) @ C ) ) )
        & ( ( C = zero_zero_complex )
         => ( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) )
            = zero_zero_complex ) ) ) ) ).

% divide_eq_eq_numeral(2)
thf(fact_6342_divide__eq__eq__numeral_I2_J,axiom,
    ! [B: rat,C: rat,W: num] :
      ( ( ( divide_divide_rat @ B @ C )
        = ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) )
      = ( ( ( C != zero_zero_rat )
         => ( B
            = ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ C ) ) )
        & ( ( C = zero_zero_rat )
         => ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) )
            = zero_zero_rat ) ) ) ) ).

% divide_eq_eq_numeral(2)
thf(fact_6343_minus__divide__add__eq__iff,axiom,
    ! [Z: real,X: real,Y: real] :
      ( ( Z != zero_zero_real )
     => ( ( plus_plus_real @ ( uminus_uminus_real @ ( divide_divide_real @ X @ Z ) ) @ Y )
        = ( divide_divide_real @ ( plus_plus_real @ ( uminus_uminus_real @ X ) @ ( times_times_real @ Y @ Z ) ) @ Z ) ) ) ).

% minus_divide_add_eq_iff
thf(fact_6344_minus__divide__add__eq__iff,axiom,
    ! [Z: complex,X: complex,Y: complex] :
      ( ( Z != zero_zero_complex )
     => ( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ X @ Z ) ) @ Y )
        = ( divide1717551699836669952omplex @ ( plus_plus_complex @ ( uminus1482373934393186551omplex @ X ) @ ( times_times_complex @ Y @ Z ) ) @ Z ) ) ) ).

% minus_divide_add_eq_iff
thf(fact_6345_minus__divide__add__eq__iff,axiom,
    ! [Z: rat,X: rat,Y: rat] :
      ( ( Z != zero_zero_rat )
     => ( ( plus_plus_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ X @ Z ) ) @ Y )
        = ( divide_divide_rat @ ( plus_plus_rat @ ( uminus_uminus_rat @ X ) @ ( times_times_rat @ Y @ Z ) ) @ Z ) ) ) ).

% minus_divide_add_eq_iff
thf(fact_6346_add__divide__eq__if__simps_I3_J,axiom,
    ! [Z: real,A: real,B: real] :
      ( ( ( Z = zero_zero_real )
       => ( ( plus_plus_real @ ( uminus_uminus_real @ ( divide_divide_real @ A @ Z ) ) @ B )
          = B ) )
      & ( ( Z != zero_zero_real )
       => ( ( plus_plus_real @ ( uminus_uminus_real @ ( divide_divide_real @ A @ Z ) ) @ B )
          = ( divide_divide_real @ ( plus_plus_real @ ( uminus_uminus_real @ A ) @ ( times_times_real @ B @ Z ) ) @ Z ) ) ) ) ).

% add_divide_eq_if_simps(3)
thf(fact_6347_add__divide__eq__if__simps_I3_J,axiom,
    ! [Z: complex,A: complex,B: complex] :
      ( ( ( Z = zero_zero_complex )
       => ( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ A @ Z ) ) @ B )
          = B ) )
      & ( ( Z != zero_zero_complex )
       => ( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ A @ Z ) ) @ B )
          = ( divide1717551699836669952omplex @ ( plus_plus_complex @ ( uminus1482373934393186551omplex @ A ) @ ( times_times_complex @ B @ Z ) ) @ Z ) ) ) ) ).

% add_divide_eq_if_simps(3)
thf(fact_6348_add__divide__eq__if__simps_I3_J,axiom,
    ! [Z: rat,A: rat,B: rat] :
      ( ( ( Z = zero_zero_rat )
       => ( ( plus_plus_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ A @ Z ) ) @ B )
          = B ) )
      & ( ( Z != zero_zero_rat )
       => ( ( plus_plus_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ A @ Z ) ) @ B )
          = ( divide_divide_rat @ ( plus_plus_rat @ ( uminus_uminus_rat @ A ) @ ( times_times_rat @ B @ Z ) ) @ Z ) ) ) ) ).

% add_divide_eq_if_simps(3)
thf(fact_6349_add__divide__eq__if__simps_I6_J,axiom,
    ! [Z: real,A: real,B: real] :
      ( ( ( Z = zero_zero_real )
       => ( ( minus_minus_real @ ( uminus_uminus_real @ ( divide_divide_real @ A @ Z ) ) @ B )
          = ( uminus_uminus_real @ B ) ) )
      & ( ( Z != zero_zero_real )
       => ( ( minus_minus_real @ ( uminus_uminus_real @ ( divide_divide_real @ A @ Z ) ) @ B )
          = ( divide_divide_real @ ( minus_minus_real @ ( uminus_uminus_real @ A ) @ ( times_times_real @ B @ Z ) ) @ Z ) ) ) ) ).

% add_divide_eq_if_simps(6)
thf(fact_6350_add__divide__eq__if__simps_I6_J,axiom,
    ! [Z: complex,A: complex,B: complex] :
      ( ( ( Z = zero_zero_complex )
       => ( ( minus_minus_complex @ ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ A @ Z ) ) @ B )
          = ( uminus1482373934393186551omplex @ B ) ) )
      & ( ( Z != zero_zero_complex )
       => ( ( minus_minus_complex @ ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ A @ Z ) ) @ B )
          = ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( uminus1482373934393186551omplex @ A ) @ ( times_times_complex @ B @ Z ) ) @ Z ) ) ) ) ).

% add_divide_eq_if_simps(6)
thf(fact_6351_add__divide__eq__if__simps_I6_J,axiom,
    ! [Z: rat,A: rat,B: rat] :
      ( ( ( Z = zero_zero_rat )
       => ( ( minus_minus_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ A @ Z ) ) @ B )
          = ( uminus_uminus_rat @ B ) ) )
      & ( ( Z != zero_zero_rat )
       => ( ( minus_minus_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ A @ Z ) ) @ B )
          = ( divide_divide_rat @ ( minus_minus_rat @ ( uminus_uminus_rat @ A ) @ ( times_times_rat @ B @ Z ) ) @ Z ) ) ) ) ).

% add_divide_eq_if_simps(6)
thf(fact_6352_add__divide__eq__if__simps_I5_J,axiom,
    ! [Z: real,A: real,B: real] :
      ( ( ( Z = zero_zero_real )
       => ( ( minus_minus_real @ ( divide_divide_real @ A @ Z ) @ B )
          = ( uminus_uminus_real @ B ) ) )
      & ( ( Z != zero_zero_real )
       => ( ( minus_minus_real @ ( divide_divide_real @ A @ Z ) @ B )
          = ( divide_divide_real @ ( minus_minus_real @ A @ ( times_times_real @ B @ Z ) ) @ Z ) ) ) ) ).

% add_divide_eq_if_simps(5)
thf(fact_6353_add__divide__eq__if__simps_I5_J,axiom,
    ! [Z: complex,A: complex,B: complex] :
      ( ( ( Z = zero_zero_complex )
       => ( ( minus_minus_complex @ ( divide1717551699836669952omplex @ A @ Z ) @ B )
          = ( uminus1482373934393186551omplex @ B ) ) )
      & ( ( Z != zero_zero_complex )
       => ( ( minus_minus_complex @ ( divide1717551699836669952omplex @ A @ Z ) @ B )
          = ( divide1717551699836669952omplex @ ( minus_minus_complex @ A @ ( times_times_complex @ B @ Z ) ) @ Z ) ) ) ) ).

% add_divide_eq_if_simps(5)
thf(fact_6354_add__divide__eq__if__simps_I5_J,axiom,
    ! [Z: rat,A: rat,B: rat] :
      ( ( ( Z = zero_zero_rat )
       => ( ( minus_minus_rat @ ( divide_divide_rat @ A @ Z ) @ B )
          = ( uminus_uminus_rat @ B ) ) )
      & ( ( Z != zero_zero_rat )
       => ( ( minus_minus_rat @ ( divide_divide_rat @ A @ Z ) @ B )
          = ( divide_divide_rat @ ( minus_minus_rat @ A @ ( times_times_rat @ B @ Z ) ) @ Z ) ) ) ) ).

% add_divide_eq_if_simps(5)
thf(fact_6355_minus__divide__diff__eq__iff,axiom,
    ! [Z: real,X: real,Y: real] :
      ( ( Z != zero_zero_real )
     => ( ( minus_minus_real @ ( uminus_uminus_real @ ( divide_divide_real @ X @ Z ) ) @ Y )
        = ( divide_divide_real @ ( minus_minus_real @ ( uminus_uminus_real @ X ) @ ( times_times_real @ Y @ Z ) ) @ Z ) ) ) ).

% minus_divide_diff_eq_iff
thf(fact_6356_minus__divide__diff__eq__iff,axiom,
    ! [Z: complex,X: complex,Y: complex] :
      ( ( Z != zero_zero_complex )
     => ( ( minus_minus_complex @ ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ X @ Z ) ) @ Y )
        = ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( uminus1482373934393186551omplex @ X ) @ ( times_times_complex @ Y @ Z ) ) @ Z ) ) ) ).

% minus_divide_diff_eq_iff
thf(fact_6357_minus__divide__diff__eq__iff,axiom,
    ! [Z: rat,X: rat,Y: rat] :
      ( ( Z != zero_zero_rat )
     => ( ( minus_minus_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ X @ Z ) ) @ Y )
        = ( divide_divide_rat @ ( minus_minus_rat @ ( uminus_uminus_rat @ X ) @ ( times_times_rat @ Y @ Z ) ) @ Z ) ) ) ).

% minus_divide_diff_eq_iff
thf(fact_6358_even__minus,axiom,
    ! [A: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( uminus_uminus_int @ A ) )
      = ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) ).

% even_minus
thf(fact_6359_even__minus,axiom,
    ! [A: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( uminus1351360451143612070nteger @ A ) )
      = ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) ) ).

% even_minus
thf(fact_6360_power2__eq__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( ( X = Y )
        | ( X
          = ( uminus_uminus_real @ Y ) ) ) ) ).

% power2_eq_iff
thf(fact_6361_power2__eq__iff,axiom,
    ! [X: int,Y: int] :
      ( ( ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( power_power_int @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( ( X = Y )
        | ( X
          = ( uminus_uminus_int @ Y ) ) ) ) ).

% power2_eq_iff
thf(fact_6362_power2__eq__iff,axiom,
    ! [X: complex,Y: complex] :
      ( ( ( power_power_complex @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( power_power_complex @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( ( X = Y )
        | ( X
          = ( uminus1482373934393186551omplex @ Y ) ) ) ) ).

% power2_eq_iff
thf(fact_6363_power2__eq__iff,axiom,
    ! [X: rat,Y: rat] :
      ( ( ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( power_power_rat @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( ( X = Y )
        | ( X
          = ( uminus_uminus_rat @ Y ) ) ) ) ).

% power2_eq_iff
thf(fact_6364_power2__eq__iff,axiom,
    ! [X: code_integer,Y: code_integer] :
      ( ( ( power_8256067586552552935nteger @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( power_8256067586552552935nteger @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( ( X = Y )
        | ( X
          = ( uminus1351360451143612070nteger @ Y ) ) ) ) ).

% power2_eq_iff
thf(fact_6365_verit__less__mono__div__int2,axiom,
    ! [A2: int,B3: int,N2: int] :
      ( ( ord_less_eq_int @ A2 @ B3 )
     => ( ( ord_less_int @ zero_zero_int @ ( uminus_uminus_int @ N2 ) )
       => ( ord_less_eq_int @ ( divide_divide_int @ B3 @ N2 ) @ ( divide_divide_int @ A2 @ N2 ) ) ) ) ).

% verit_less_mono_div_int2
thf(fact_6366_sum__mono2,axiom,
    ! [B3: set_real,A2: set_real,F: real > real] :
      ( ( finite_finite_real @ B3 )
     => ( ( ord_less_eq_set_real @ A2 @ B3 )
       => ( ! [B2: real] :
              ( ( member_real @ B2 @ ( minus_minus_set_real @ B3 @ A2 ) )
             => ( ord_less_eq_real @ zero_zero_real @ ( F @ B2 ) ) )
         => ( ord_less_eq_real @ ( groups8097168146408367636l_real @ F @ A2 ) @ ( groups8097168146408367636l_real @ F @ B3 ) ) ) ) ) ).

% sum_mono2
thf(fact_6367_sum__mono2,axiom,
    ! [B3: set_complex,A2: set_complex,F: complex > real] :
      ( ( finite3207457112153483333omplex @ B3 )
     => ( ( ord_le211207098394363844omplex @ A2 @ B3 )
       => ( ! [B2: complex] :
              ( ( member_complex @ B2 @ ( minus_811609699411566653omplex @ B3 @ A2 ) )
             => ( ord_less_eq_real @ zero_zero_real @ ( F @ B2 ) ) )
         => ( ord_less_eq_real @ ( groups5808333547571424918x_real @ F @ A2 ) @ ( groups5808333547571424918x_real @ F @ B3 ) ) ) ) ) ).

% sum_mono2
thf(fact_6368_sum__mono2,axiom,
    ! [B3: set_real,A2: set_real,F: real > rat] :
      ( ( finite_finite_real @ B3 )
     => ( ( ord_less_eq_set_real @ A2 @ B3 )
       => ( ! [B2: real] :
              ( ( member_real @ B2 @ ( minus_minus_set_real @ B3 @ A2 ) )
             => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ B2 ) ) )
         => ( ord_less_eq_rat @ ( groups1300246762558778688al_rat @ F @ A2 ) @ ( groups1300246762558778688al_rat @ F @ B3 ) ) ) ) ) ).

% sum_mono2
thf(fact_6369_sum__mono2,axiom,
    ! [B3: set_complex,A2: set_complex,F: complex > rat] :
      ( ( finite3207457112153483333omplex @ B3 )
     => ( ( ord_le211207098394363844omplex @ A2 @ B3 )
       => ( ! [B2: complex] :
              ( ( member_complex @ B2 @ ( minus_811609699411566653omplex @ B3 @ A2 ) )
             => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ B2 ) ) )
         => ( ord_less_eq_rat @ ( groups5058264527183730370ex_rat @ F @ A2 ) @ ( groups5058264527183730370ex_rat @ F @ B3 ) ) ) ) ) ).

% sum_mono2
thf(fact_6370_sum__mono2,axiom,
    ! [B3: set_nat,A2: set_nat,F: nat > rat] :
      ( ( finite_finite_nat @ B3 )
     => ( ( ord_less_eq_set_nat @ A2 @ B3 )
       => ( ! [B2: nat] :
              ( ( member_nat @ B2 @ ( minus_minus_set_nat @ B3 @ A2 ) )
             => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ B2 ) ) )
         => ( ord_less_eq_rat @ ( groups2906978787729119204at_rat @ F @ A2 ) @ ( groups2906978787729119204at_rat @ F @ B3 ) ) ) ) ) ).

% sum_mono2
thf(fact_6371_sum__mono2,axiom,
    ! [B3: set_real,A2: set_real,F: real > nat] :
      ( ( finite_finite_real @ B3 )
     => ( ( ord_less_eq_set_real @ A2 @ B3 )
       => ( ! [B2: real] :
              ( ( member_real @ B2 @ ( minus_minus_set_real @ B3 @ A2 ) )
             => ( ord_less_eq_nat @ zero_zero_nat @ ( F @ B2 ) ) )
         => ( ord_less_eq_nat @ ( groups1935376822645274424al_nat @ F @ A2 ) @ ( groups1935376822645274424al_nat @ F @ B3 ) ) ) ) ) ).

% sum_mono2
thf(fact_6372_sum__mono2,axiom,
    ! [B3: set_complex,A2: set_complex,F: complex > nat] :
      ( ( finite3207457112153483333omplex @ B3 )
     => ( ( ord_le211207098394363844omplex @ A2 @ B3 )
       => ( ! [B2: complex] :
              ( ( member_complex @ B2 @ ( minus_811609699411566653omplex @ B3 @ A2 ) )
             => ( ord_less_eq_nat @ zero_zero_nat @ ( F @ B2 ) ) )
         => ( ord_less_eq_nat @ ( groups5693394587270226106ex_nat @ F @ A2 ) @ ( groups5693394587270226106ex_nat @ F @ B3 ) ) ) ) ) ).

% sum_mono2
thf(fact_6373_sum__mono2,axiom,
    ! [B3: set_real,A2: set_real,F: real > int] :
      ( ( finite_finite_real @ B3 )
     => ( ( ord_less_eq_set_real @ A2 @ B3 )
       => ( ! [B2: real] :
              ( ( member_real @ B2 @ ( minus_minus_set_real @ B3 @ A2 ) )
             => ( ord_less_eq_int @ zero_zero_int @ ( F @ B2 ) ) )
         => ( ord_less_eq_int @ ( groups1932886352136224148al_int @ F @ A2 ) @ ( groups1932886352136224148al_int @ F @ B3 ) ) ) ) ) ).

% sum_mono2
thf(fact_6374_sum__mono2,axiom,
    ! [B3: set_complex,A2: set_complex,F: complex > int] :
      ( ( finite3207457112153483333omplex @ B3 )
     => ( ( ord_le211207098394363844omplex @ A2 @ B3 )
       => ( ! [B2: complex] :
              ( ( member_complex @ B2 @ ( minus_811609699411566653omplex @ B3 @ A2 ) )
             => ( ord_less_eq_int @ zero_zero_int @ ( F @ B2 ) ) )
         => ( ord_less_eq_int @ ( groups5690904116761175830ex_int @ F @ A2 ) @ ( groups5690904116761175830ex_int @ F @ B3 ) ) ) ) ) ).

% sum_mono2
thf(fact_6375_sum__mono2,axiom,
    ! [B3: set_nat,A2: set_nat,F: nat > int] :
      ( ( finite_finite_nat @ B3 )
     => ( ( ord_less_eq_set_nat @ A2 @ B3 )
       => ( ! [B2: nat] :
              ( ( member_nat @ B2 @ ( minus_minus_set_nat @ B3 @ A2 ) )
             => ( ord_less_eq_int @ zero_zero_int @ ( F @ B2 ) ) )
         => ( ord_less_eq_int @ ( groups3539618377306564664at_int @ F @ A2 ) @ ( groups3539618377306564664at_int @ F @ B3 ) ) ) ) ) ).

% sum_mono2
thf(fact_6376_ln__le__minus__one,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ord_less_eq_real @ ( ln_ln_real @ X ) @ ( minus_minus_real @ X @ one_one_real ) ) ) ).

% ln_le_minus_one
thf(fact_6377_ln__diff__le,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ zero_zero_real @ Y )
       => ( ord_less_eq_real @ ( minus_minus_real @ ( ln_ln_real @ X ) @ ( ln_ln_real @ Y ) ) @ ( divide_divide_real @ ( minus_minus_real @ X @ Y ) @ Y ) ) ) ) ).

% ln_diff_le
thf(fact_6378_pos__minus__divide__le__eq,axiom,
    ! [C: real,B: real,A: real] :
      ( ( ord_less_real @ zero_zero_real @ C )
     => ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) @ A )
        = ( ord_less_eq_real @ ( uminus_uminus_real @ B ) @ ( times_times_real @ A @ C ) ) ) ) ).

% pos_minus_divide_le_eq
thf(fact_6379_pos__minus__divide__le__eq,axiom,
    ! [C: rat,B: rat,A: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ C )
     => ( ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) @ A )
        = ( ord_less_eq_rat @ ( uminus_uminus_rat @ B ) @ ( times_times_rat @ A @ C ) ) ) ) ).

% pos_minus_divide_le_eq
thf(fact_6380_pos__le__minus__divide__eq,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ C )
     => ( ( ord_less_eq_real @ A @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) )
        = ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( uminus_uminus_real @ B ) ) ) ) ).

% pos_le_minus_divide_eq
thf(fact_6381_pos__le__minus__divide__eq,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ C )
     => ( ( ord_less_eq_rat @ A @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) )
        = ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( uminus_uminus_rat @ B ) ) ) ) ).

% pos_le_minus_divide_eq
thf(fact_6382_neg__minus__divide__le__eq,axiom,
    ! [C: real,B: real,A: real] :
      ( ( ord_less_real @ C @ zero_zero_real )
     => ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) @ A )
        = ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( uminus_uminus_real @ B ) ) ) ) ).

% neg_minus_divide_le_eq
thf(fact_6383_neg__minus__divide__le__eq,axiom,
    ! [C: rat,B: rat,A: rat] :
      ( ( ord_less_rat @ C @ zero_zero_rat )
     => ( ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) @ A )
        = ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( uminus_uminus_rat @ B ) ) ) ) ).

% neg_minus_divide_le_eq
thf(fact_6384_neg__le__minus__divide__eq,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ C @ zero_zero_real )
     => ( ( ord_less_eq_real @ A @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) )
        = ( ord_less_eq_real @ ( uminus_uminus_real @ B ) @ ( times_times_real @ A @ C ) ) ) ) ).

% neg_le_minus_divide_eq
thf(fact_6385_neg__le__minus__divide__eq,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ C @ zero_zero_rat )
     => ( ( ord_less_eq_rat @ A @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) )
        = ( ord_less_eq_rat @ ( uminus_uminus_rat @ B ) @ ( times_times_rat @ A @ C ) ) ) ) ).

% neg_le_minus_divide_eq
thf(fact_6386_minus__divide__le__eq,axiom,
    ! [B: real,C: real,A: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) @ A )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ ( uminus_uminus_real @ B ) @ ( times_times_real @ A @ C ) ) )
        & ( ~ ( ord_less_real @ zero_zero_real @ C )
         => ( ( ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( uminus_uminus_real @ B ) ) )
            & ( ~ ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_eq_real @ zero_zero_real @ A ) ) ) ) ) ) ).

% minus_divide_le_eq
thf(fact_6387_minus__divide__le__eq,axiom,
    ! [B: rat,C: rat,A: rat] :
      ( ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) @ A )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_eq_rat @ ( uminus_uminus_rat @ B ) @ ( times_times_rat @ A @ C ) ) )
        & ( ~ ( ord_less_rat @ zero_zero_rat @ C )
         => ( ( ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( uminus_uminus_rat @ B ) ) )
            & ( ~ ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ) ) ) ) ).

% minus_divide_le_eq
thf(fact_6388_le__minus__divide__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( uminus_uminus_real @ B ) ) )
        & ( ~ ( ord_less_real @ zero_zero_real @ C )
         => ( ( ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_eq_real @ ( uminus_uminus_real @ B ) @ ( times_times_real @ A @ C ) ) )
            & ( ~ ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_eq_real @ A @ zero_zero_real ) ) ) ) ) ) ).

% le_minus_divide_eq
thf(fact_6389_le__minus__divide__eq,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( uminus_uminus_rat @ B ) ) )
        & ( ~ ( ord_less_rat @ zero_zero_rat @ C )
         => ( ( ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_eq_rat @ ( uminus_uminus_rat @ B ) @ ( times_times_rat @ A @ C ) ) )
            & ( ~ ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_eq_rat @ A @ zero_zero_rat ) ) ) ) ) ) ).

% le_minus_divide_eq
thf(fact_6390_less__divide__eq__numeral_I2_J,axiom,
    ! [W: num,B: real,C: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ ( divide_divide_real @ B @ C ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_real @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ C ) @ B ) )
        & ( ~ ( ord_less_real @ zero_zero_real @ C )
         => ( ( ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_real @ B @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ C ) ) )
            & ( ~ ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ zero_zero_real ) ) ) ) ) ) ).

% less_divide_eq_numeral(2)
thf(fact_6391_less__divide__eq__numeral_I2_J,axiom,
    ! [W: num,B: rat,C: rat] :
      ( ( ord_less_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ ( divide_divide_rat @ B @ C ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_rat @ ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ C ) @ B ) )
        & ( ~ ( ord_less_rat @ zero_zero_rat @ C )
         => ( ( ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_rat @ B @ ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ C ) ) )
            & ( ~ ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ zero_zero_rat ) ) ) ) ) ) ).

% less_divide_eq_numeral(2)
thf(fact_6392_divide__less__eq__numeral_I2_J,axiom,
    ! [B: real,C: real,W: num] :
      ( ( ord_less_real @ ( divide_divide_real @ B @ C ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_real @ B @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ C ) ) )
        & ( ~ ( ord_less_real @ zero_zero_real @ C )
         => ( ( ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_real @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ C ) @ B ) )
            & ( ~ ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_real @ zero_zero_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) ) ) ) ) ) ).

% divide_less_eq_numeral(2)
thf(fact_6393_divide__less__eq__numeral_I2_J,axiom,
    ! [B: rat,C: rat,W: num] :
      ( ( ord_less_rat @ ( divide_divide_rat @ B @ C ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_rat @ B @ ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ C ) ) )
        & ( ~ ( ord_less_rat @ zero_zero_rat @ C )
         => ( ( ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_rat @ ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ C ) @ B ) )
            & ( ~ ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_rat @ zero_zero_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) ) ) ) ) ) ).

% divide_less_eq_numeral(2)
thf(fact_6394_power2__eq__1__iff,axiom,
    ! [A: real] :
      ( ( ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = one_one_real )
      = ( ( A = one_one_real )
        | ( A
          = ( uminus_uminus_real @ one_one_real ) ) ) ) ).

% power2_eq_1_iff
thf(fact_6395_power2__eq__1__iff,axiom,
    ! [A: int] :
      ( ( ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = one_one_int )
      = ( ( A = one_one_int )
        | ( A
          = ( uminus_uminus_int @ one_one_int ) ) ) ) ).

% power2_eq_1_iff
thf(fact_6396_power2__eq__1__iff,axiom,
    ! [A: complex] :
      ( ( ( power_power_complex @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = one_one_complex )
      = ( ( A = one_one_complex )
        | ( A
          = ( uminus1482373934393186551omplex @ one_one_complex ) ) ) ) ).

% power2_eq_1_iff
thf(fact_6397_power2__eq__1__iff,axiom,
    ! [A: rat] :
      ( ( ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = one_one_rat )
      = ( ( A = one_one_rat )
        | ( A
          = ( uminus_uminus_rat @ one_one_rat ) ) ) ) ).

% power2_eq_1_iff
thf(fact_6398_power2__eq__1__iff,axiom,
    ! [A: code_integer] :
      ( ( ( power_8256067586552552935nteger @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = one_one_Code_integer )
      = ( ( A = one_one_Code_integer )
        | ( A
          = ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ) ) ).

% power2_eq_1_iff
thf(fact_6399_uminus__power__if,axiom,
    ! [N2: nat,A: real] :
      ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
       => ( ( power_power_real @ ( uminus_uminus_real @ A ) @ N2 )
          = ( power_power_real @ A @ N2 ) ) )
      & ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
       => ( ( power_power_real @ ( uminus_uminus_real @ A ) @ N2 )
          = ( uminus_uminus_real @ ( power_power_real @ A @ N2 ) ) ) ) ) ).

% uminus_power_if
thf(fact_6400_uminus__power__if,axiom,
    ! [N2: nat,A: int] :
      ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
       => ( ( power_power_int @ ( uminus_uminus_int @ A ) @ N2 )
          = ( power_power_int @ A @ N2 ) ) )
      & ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
       => ( ( power_power_int @ ( uminus_uminus_int @ A ) @ N2 )
          = ( uminus_uminus_int @ ( power_power_int @ A @ N2 ) ) ) ) ) ).

% uminus_power_if
thf(fact_6401_uminus__power__if,axiom,
    ! [N2: nat,A: complex] :
      ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
       => ( ( power_power_complex @ ( uminus1482373934393186551omplex @ A ) @ N2 )
          = ( power_power_complex @ A @ N2 ) ) )
      & ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
       => ( ( power_power_complex @ ( uminus1482373934393186551omplex @ A ) @ N2 )
          = ( uminus1482373934393186551omplex @ ( power_power_complex @ A @ N2 ) ) ) ) ) ).

% uminus_power_if
thf(fact_6402_uminus__power__if,axiom,
    ! [N2: nat,A: rat] :
      ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
       => ( ( power_power_rat @ ( uminus_uminus_rat @ A ) @ N2 )
          = ( power_power_rat @ A @ N2 ) ) )
      & ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
       => ( ( power_power_rat @ ( uminus_uminus_rat @ A ) @ N2 )
          = ( uminus_uminus_rat @ ( power_power_rat @ A @ N2 ) ) ) ) ) ).

% uminus_power_if
thf(fact_6403_uminus__power__if,axiom,
    ! [N2: nat,A: code_integer] :
      ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
       => ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ A ) @ N2 )
          = ( power_8256067586552552935nteger @ A @ N2 ) ) )
      & ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
       => ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ A ) @ N2 )
          = ( uminus1351360451143612070nteger @ ( power_8256067586552552935nteger @ A @ N2 ) ) ) ) ) ).

% uminus_power_if
thf(fact_6404_neg__one__power__add__eq__neg__one__power__diff,axiom,
    ! [K: nat,N2: nat] :
      ( ( ord_less_eq_nat @ K @ N2 )
     => ( ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ ( plus_plus_nat @ N2 @ K ) )
        = ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ ( minus_minus_nat @ N2 @ K ) ) ) ) ).

% neg_one_power_add_eq_neg_one_power_diff
thf(fact_6405_neg__one__power__add__eq__neg__one__power__diff,axiom,
    ! [K: nat,N2: nat] :
      ( ( ord_less_eq_nat @ K @ N2 )
     => ( ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ ( plus_plus_nat @ N2 @ K ) )
        = ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ ( minus_minus_nat @ N2 @ K ) ) ) ) ).

% neg_one_power_add_eq_neg_one_power_diff
thf(fact_6406_neg__one__power__add__eq__neg__one__power__diff,axiom,
    ! [K: nat,N2: nat] :
      ( ( ord_less_eq_nat @ K @ N2 )
     => ( ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ ( plus_plus_nat @ N2 @ K ) )
        = ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ ( minus_minus_nat @ N2 @ K ) ) ) ) ).

% neg_one_power_add_eq_neg_one_power_diff
thf(fact_6407_neg__one__power__add__eq__neg__one__power__diff,axiom,
    ! [K: nat,N2: nat] :
      ( ( ord_less_eq_nat @ K @ N2 )
     => ( ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( plus_plus_nat @ N2 @ K ) )
        = ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( minus_minus_nat @ N2 @ K ) ) ) ) ).

% neg_one_power_add_eq_neg_one_power_diff
thf(fact_6408_neg__one__power__add__eq__neg__one__power__diff,axiom,
    ! [K: nat,N2: nat] :
      ( ( ord_less_eq_nat @ K @ N2 )
     => ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( plus_plus_nat @ N2 @ K ) )
        = ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( minus_minus_nat @ N2 @ K ) ) ) ) ).

% neg_one_power_add_eq_neg_one_power_diff
thf(fact_6409_realpow__square__minus__le,axiom,
    ! [U: real,X: real] : ( ord_less_eq_real @ ( uminus_uminus_real @ ( power_power_real @ U @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% realpow_square_minus_le
thf(fact_6410_ln__one__minus__pos__lower__bound,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ X @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ord_less_eq_real @ ( minus_minus_real @ ( uminus_uminus_real @ X ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( ln_ln_real @ ( minus_minus_real @ one_one_real @ X ) ) ) ) ) ).

% ln_one_minus_pos_lower_bound
thf(fact_6411_signed__take__bit__int__less__eq__self__iff,axiom,
    ! [N2: nat,K: int] :
      ( ( ord_less_eq_int @ ( bit_ri631733984087533419it_int @ N2 @ K ) @ K )
      = ( ord_less_eq_int @ ( uminus_uminus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) ) @ K ) ) ).

% signed_take_bit_int_less_eq_self_iff
thf(fact_6412_signed__take__bit__int__greater__eq__minus__exp,axiom,
    ! [N2: nat,K: int] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) ) @ ( bit_ri631733984087533419it_int @ N2 @ K ) ) ).

% signed_take_bit_int_greater_eq_minus_exp
thf(fact_6413_signed__take__bit__int__greater__self__iff,axiom,
    ! [K: int,N2: nat] :
      ( ( ord_less_int @ K @ ( bit_ri631733984087533419it_int @ N2 @ K ) )
      = ( ord_less_int @ K @ ( uminus_uminus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) ) ) ) ).

% signed_take_bit_int_greater_self_iff
thf(fact_6414_minus__mod__int__eq,axiom,
    ! [L2: int,K: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ L2 )
     => ( ( modulo_modulo_int @ ( uminus_uminus_int @ K ) @ L2 )
        = ( minus_minus_int @ ( minus_minus_int @ L2 @ one_one_int ) @ ( modulo_modulo_int @ ( minus_minus_int @ K @ one_one_int ) @ L2 ) ) ) ) ).

% minus_mod_int_eq
thf(fact_6415_zmod__minus1,axiom,
    ! [B: int] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ( modulo_modulo_int @ ( uminus_uminus_int @ one_one_int ) @ B )
        = ( minus_minus_int @ B @ one_one_int ) ) ) ).

% zmod_minus1
thf(fact_6416_sum__strict__mono2,axiom,
    ! [B3: set_real,A2: set_real,B: real,F: real > real] :
      ( ( finite_finite_real @ B3 )
     => ( ( ord_less_eq_set_real @ A2 @ B3 )
       => ( ( member_real @ B @ ( minus_minus_set_real @ B3 @ A2 ) )
         => ( ( ord_less_real @ zero_zero_real @ ( F @ B ) )
           => ( ! [X5: real] :
                  ( ( member_real @ X5 @ B3 )
                 => ( ord_less_eq_real @ zero_zero_real @ ( F @ X5 ) ) )
             => ( ord_less_real @ ( groups8097168146408367636l_real @ F @ A2 ) @ ( groups8097168146408367636l_real @ F @ B3 ) ) ) ) ) ) ) ).

% sum_strict_mono2
thf(fact_6417_sum__strict__mono2,axiom,
    ! [B3: set_complex,A2: set_complex,B: complex,F: complex > real] :
      ( ( finite3207457112153483333omplex @ B3 )
     => ( ( ord_le211207098394363844omplex @ A2 @ B3 )
       => ( ( member_complex @ B @ ( minus_811609699411566653omplex @ B3 @ A2 ) )
         => ( ( ord_less_real @ zero_zero_real @ ( F @ B ) )
           => ( ! [X5: complex] :
                  ( ( member_complex @ X5 @ B3 )
                 => ( ord_less_eq_real @ zero_zero_real @ ( F @ X5 ) ) )
             => ( ord_less_real @ ( groups5808333547571424918x_real @ F @ A2 ) @ ( groups5808333547571424918x_real @ F @ B3 ) ) ) ) ) ) ) ).

% sum_strict_mono2
thf(fact_6418_sum__strict__mono2,axiom,
    ! [B3: set_real,A2: set_real,B: real,F: real > rat] :
      ( ( finite_finite_real @ B3 )
     => ( ( ord_less_eq_set_real @ A2 @ B3 )
       => ( ( member_real @ B @ ( minus_minus_set_real @ B3 @ A2 ) )
         => ( ( ord_less_rat @ zero_zero_rat @ ( F @ B ) )
           => ( ! [X5: real] :
                  ( ( member_real @ X5 @ B3 )
                 => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X5 ) ) )
             => ( ord_less_rat @ ( groups1300246762558778688al_rat @ F @ A2 ) @ ( groups1300246762558778688al_rat @ F @ B3 ) ) ) ) ) ) ) ).

% sum_strict_mono2
thf(fact_6419_sum__strict__mono2,axiom,
    ! [B3: set_complex,A2: set_complex,B: complex,F: complex > rat] :
      ( ( finite3207457112153483333omplex @ B3 )
     => ( ( ord_le211207098394363844omplex @ A2 @ B3 )
       => ( ( member_complex @ B @ ( minus_811609699411566653omplex @ B3 @ A2 ) )
         => ( ( ord_less_rat @ zero_zero_rat @ ( F @ B ) )
           => ( ! [X5: complex] :
                  ( ( member_complex @ X5 @ B3 )
                 => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X5 ) ) )
             => ( ord_less_rat @ ( groups5058264527183730370ex_rat @ F @ A2 ) @ ( groups5058264527183730370ex_rat @ F @ B3 ) ) ) ) ) ) ) ).

% sum_strict_mono2
thf(fact_6420_sum__strict__mono2,axiom,
    ! [B3: set_nat,A2: set_nat,B: nat,F: nat > rat] :
      ( ( finite_finite_nat @ B3 )
     => ( ( ord_less_eq_set_nat @ A2 @ B3 )
       => ( ( member_nat @ B @ ( minus_minus_set_nat @ B3 @ A2 ) )
         => ( ( ord_less_rat @ zero_zero_rat @ ( F @ B ) )
           => ( ! [X5: nat] :
                  ( ( member_nat @ X5 @ B3 )
                 => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X5 ) ) )
             => ( ord_less_rat @ ( groups2906978787729119204at_rat @ F @ A2 ) @ ( groups2906978787729119204at_rat @ F @ B3 ) ) ) ) ) ) ) ).

% sum_strict_mono2
thf(fact_6421_sum__strict__mono2,axiom,
    ! [B3: set_real,A2: set_real,B: real,F: real > nat] :
      ( ( finite_finite_real @ B3 )
     => ( ( ord_less_eq_set_real @ A2 @ B3 )
       => ( ( member_real @ B @ ( minus_minus_set_real @ B3 @ A2 ) )
         => ( ( ord_less_nat @ zero_zero_nat @ ( F @ B ) )
           => ( ! [X5: real] :
                  ( ( member_real @ X5 @ B3 )
                 => ( ord_less_eq_nat @ zero_zero_nat @ ( F @ X5 ) ) )
             => ( ord_less_nat @ ( groups1935376822645274424al_nat @ F @ A2 ) @ ( groups1935376822645274424al_nat @ F @ B3 ) ) ) ) ) ) ) ).

% sum_strict_mono2
thf(fact_6422_sum__strict__mono2,axiom,
    ! [B3: set_complex,A2: set_complex,B: complex,F: complex > nat] :
      ( ( finite3207457112153483333omplex @ B3 )
     => ( ( ord_le211207098394363844omplex @ A2 @ B3 )
       => ( ( member_complex @ B @ ( minus_811609699411566653omplex @ B3 @ A2 ) )
         => ( ( ord_less_nat @ zero_zero_nat @ ( F @ B ) )
           => ( ! [X5: complex] :
                  ( ( member_complex @ X5 @ B3 )
                 => ( ord_less_eq_nat @ zero_zero_nat @ ( F @ X5 ) ) )
             => ( ord_less_nat @ ( groups5693394587270226106ex_nat @ F @ A2 ) @ ( groups5693394587270226106ex_nat @ F @ B3 ) ) ) ) ) ) ) ).

% sum_strict_mono2
thf(fact_6423_sum__strict__mono2,axiom,
    ! [B3: set_real,A2: set_real,B: real,F: real > int] :
      ( ( finite_finite_real @ B3 )
     => ( ( ord_less_eq_set_real @ A2 @ B3 )
       => ( ( member_real @ B @ ( minus_minus_set_real @ B3 @ A2 ) )
         => ( ( ord_less_int @ zero_zero_int @ ( F @ B ) )
           => ( ! [X5: real] :
                  ( ( member_real @ X5 @ B3 )
                 => ( ord_less_eq_int @ zero_zero_int @ ( F @ X5 ) ) )
             => ( ord_less_int @ ( groups1932886352136224148al_int @ F @ A2 ) @ ( groups1932886352136224148al_int @ F @ B3 ) ) ) ) ) ) ) ).

% sum_strict_mono2
thf(fact_6424_sum__strict__mono2,axiom,
    ! [B3: set_complex,A2: set_complex,B: complex,F: complex > int] :
      ( ( finite3207457112153483333omplex @ B3 )
     => ( ( ord_le211207098394363844omplex @ A2 @ B3 )
       => ( ( member_complex @ B @ ( minus_811609699411566653omplex @ B3 @ A2 ) )
         => ( ( ord_less_int @ zero_zero_int @ ( F @ B ) )
           => ( ! [X5: complex] :
                  ( ( member_complex @ X5 @ B3 )
                 => ( ord_less_eq_int @ zero_zero_int @ ( F @ X5 ) ) )
             => ( ord_less_int @ ( groups5690904116761175830ex_int @ F @ A2 ) @ ( groups5690904116761175830ex_int @ F @ B3 ) ) ) ) ) ) ) ).

% sum_strict_mono2
thf(fact_6425_sum__strict__mono2,axiom,
    ! [B3: set_nat,A2: set_nat,B: nat,F: nat > int] :
      ( ( finite_finite_nat @ B3 )
     => ( ( ord_less_eq_set_nat @ A2 @ B3 )
       => ( ( member_nat @ B @ ( minus_minus_set_nat @ B3 @ A2 ) )
         => ( ( ord_less_int @ zero_zero_int @ ( F @ B ) )
           => ( ! [X5: nat] :
                  ( ( member_nat @ X5 @ B3 )
                 => ( ord_less_eq_int @ zero_zero_int @ ( F @ X5 ) ) )
             => ( ord_less_int @ ( groups3539618377306564664at_int @ F @ A2 ) @ ( groups3539618377306564664at_int @ F @ B3 ) ) ) ) ) ) ) ).

% sum_strict_mono2
thf(fact_6426_zdiv__zminus1__eq__if,axiom,
    ! [B: int,A: int] :
      ( ( B != zero_zero_int )
     => ( ( ( ( modulo_modulo_int @ A @ B )
            = zero_zero_int )
         => ( ( divide_divide_int @ ( uminus_uminus_int @ A ) @ B )
            = ( uminus_uminus_int @ ( divide_divide_int @ A @ B ) ) ) )
        & ( ( ( modulo_modulo_int @ A @ B )
           != zero_zero_int )
         => ( ( divide_divide_int @ ( uminus_uminus_int @ A ) @ B )
            = ( minus_minus_int @ ( uminus_uminus_int @ ( divide_divide_int @ A @ B ) ) @ one_one_int ) ) ) ) ) ).

% zdiv_zminus1_eq_if
thf(fact_6427_zdiv__zminus2__eq__if,axiom,
    ! [B: int,A: int] :
      ( ( B != zero_zero_int )
     => ( ( ( ( modulo_modulo_int @ A @ B )
            = zero_zero_int )
         => ( ( divide_divide_int @ A @ ( uminus_uminus_int @ B ) )
            = ( uminus_uminus_int @ ( divide_divide_int @ A @ B ) ) ) )
        & ( ( ( modulo_modulo_int @ A @ B )
           != zero_zero_int )
         => ( ( divide_divide_int @ A @ ( uminus_uminus_int @ B ) )
            = ( minus_minus_int @ ( uminus_uminus_int @ ( divide_divide_int @ A @ B ) ) @ one_one_int ) ) ) ) ) ).

% zdiv_zminus2_eq_if
thf(fact_6428_zminus1__lemma,axiom,
    ! [A: int,B: int,Q2: int,R2: int] :
      ( ( eucl_rel_int @ A @ B @ ( product_Pair_int_int @ Q2 @ R2 ) )
     => ( ( B != zero_zero_int )
       => ( eucl_rel_int @ ( uminus_uminus_int @ A ) @ B @ ( product_Pair_int_int @ ( if_int @ ( R2 = zero_zero_int ) @ ( uminus_uminus_int @ Q2 ) @ ( minus_minus_int @ ( uminus_uminus_int @ Q2 ) @ one_one_int ) ) @ ( if_int @ ( R2 = zero_zero_int ) @ zero_zero_int @ ( minus_minus_int @ B @ R2 ) ) ) ) ) ) ).

% zminus1_lemma
thf(fact_6429_le__divide__eq__numeral_I2_J,axiom,
    ! [W: num,B: real,C: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ ( divide_divide_real @ B @ C ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ C ) @ B ) )
        & ( ~ ( ord_less_real @ zero_zero_real @ C )
         => ( ( ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_eq_real @ B @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ C ) ) )
            & ( ~ ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ zero_zero_real ) ) ) ) ) ) ).

% le_divide_eq_numeral(2)
thf(fact_6430_le__divide__eq__numeral_I2_J,axiom,
    ! [W: num,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ ( divide_divide_rat @ B @ C ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_eq_rat @ ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ C ) @ B ) )
        & ( ~ ( ord_less_rat @ zero_zero_rat @ C )
         => ( ( ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_eq_rat @ B @ ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ C ) ) )
            & ( ~ ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ zero_zero_rat ) ) ) ) ) ) ).

% le_divide_eq_numeral(2)
thf(fact_6431_divide__le__eq__numeral_I2_J,axiom,
    ! [B: real,C: real,W: num] :
      ( ( ord_less_eq_real @ ( divide_divide_real @ B @ C ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ B @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ C ) ) )
        & ( ~ ( ord_less_real @ zero_zero_real @ C )
         => ( ( ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_eq_real @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ C ) @ B ) )
            & ( ~ ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_eq_real @ zero_zero_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) ) ) ) ) ) ).

% divide_le_eq_numeral(2)
thf(fact_6432_divide__le__eq__numeral_I2_J,axiom,
    ! [B: rat,C: rat,W: num] :
      ( ( ord_less_eq_rat @ ( divide_divide_rat @ B @ C ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_eq_rat @ B @ ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ C ) ) )
        & ( ~ ( ord_less_rat @ zero_zero_rat @ C )
         => ( ( ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_eq_rat @ ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ C ) @ B ) )
            & ( ~ ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_eq_rat @ zero_zero_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) ) ) ) ) ) ).

% divide_le_eq_numeral(2)
thf(fact_6433_square__le__1,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X )
     => ( ( ord_less_eq_real @ X @ one_one_real )
       => ( ord_less_eq_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real ) ) ) ).

% square_le_1
thf(fact_6434_square__le__1,axiom,
    ! [X: code_integer] :
      ( ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ X )
     => ( ( ord_le3102999989581377725nteger @ X @ one_one_Code_integer )
       => ( ord_le3102999989581377725nteger @ ( power_8256067586552552935nteger @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_Code_integer ) ) ) ).

% square_le_1
thf(fact_6435_square__le__1,axiom,
    ! [X: rat] :
      ( ( ord_less_eq_rat @ ( uminus_uminus_rat @ one_one_rat ) @ X )
     => ( ( ord_less_eq_rat @ X @ one_one_rat )
       => ( ord_less_eq_rat @ ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_rat ) ) ) ).

% square_le_1
thf(fact_6436_square__le__1,axiom,
    ! [X: int] :
      ( ( ord_less_eq_int @ ( uminus_uminus_int @ one_one_int ) @ X )
     => ( ( ord_less_eq_int @ X @ one_one_int )
       => ( ord_less_eq_int @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_int ) ) ) ).

% square_le_1
thf(fact_6437_minus__power__mult__self,axiom,
    ! [A: real,N2: nat] :
      ( ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ A ) @ N2 ) @ ( power_power_real @ ( uminus_uminus_real @ A ) @ N2 ) )
      = ( power_power_real @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) ).

% minus_power_mult_self
thf(fact_6438_minus__power__mult__self,axiom,
    ! [A: int,N2: nat] :
      ( ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ A ) @ N2 ) @ ( power_power_int @ ( uminus_uminus_int @ A ) @ N2 ) )
      = ( power_power_int @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) ).

% minus_power_mult_self
thf(fact_6439_minus__power__mult__self,axiom,
    ! [A: complex,N2: nat] :
      ( ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ A ) @ N2 ) @ ( power_power_complex @ ( uminus1482373934393186551omplex @ A ) @ N2 ) )
      = ( power_power_complex @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) ).

% minus_power_mult_self
thf(fact_6440_minus__power__mult__self,axiom,
    ! [A: rat,N2: nat] :
      ( ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ A ) @ N2 ) @ ( power_power_rat @ ( uminus_uminus_rat @ A ) @ N2 ) )
      = ( power_power_rat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) ).

% minus_power_mult_self
thf(fact_6441_minus__power__mult__self,axiom,
    ! [A: code_integer,N2: nat] :
      ( ( times_3573771949741848930nteger @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ A ) @ N2 ) @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ A ) @ N2 ) )
      = ( power_8256067586552552935nteger @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) ).

% minus_power_mult_self
thf(fact_6442_minus__one__power__iff,axiom,
    ! [N2: nat] :
      ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
       => ( ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N2 )
          = one_one_real ) )
      & ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
       => ( ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N2 )
          = ( uminus_uminus_real @ one_one_real ) ) ) ) ).

% minus_one_power_iff
thf(fact_6443_minus__one__power__iff,axiom,
    ! [N2: nat] :
      ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
       => ( ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N2 )
          = one_one_int ) )
      & ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
       => ( ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N2 )
          = ( uminus_uminus_int @ one_one_int ) ) ) ) ).

% minus_one_power_iff
thf(fact_6444_minus__one__power__iff,axiom,
    ! [N2: nat] :
      ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
       => ( ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N2 )
          = one_one_complex ) )
      & ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
       => ( ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N2 )
          = ( uminus1482373934393186551omplex @ one_one_complex ) ) ) ) ).

% minus_one_power_iff
thf(fact_6445_minus__one__power__iff,axiom,
    ! [N2: nat] :
      ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
       => ( ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ N2 )
          = one_one_rat ) )
      & ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
       => ( ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ N2 )
          = ( uminus_uminus_rat @ one_one_rat ) ) ) ) ).

% minus_one_power_iff
thf(fact_6446_minus__one__power__iff,axiom,
    ! [N2: nat] :
      ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
       => ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ N2 )
          = one_one_Code_integer ) )
      & ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
       => ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ N2 )
          = ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ) ) ).

% minus_one_power_iff
thf(fact_6447_signed__take__bit__int__eq__self__iff,axiom,
    ! [N2: nat,K: int] :
      ( ( ( bit_ri631733984087533419it_int @ N2 @ K )
        = K )
      = ( ( ord_less_eq_int @ ( uminus_uminus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) ) @ K )
        & ( ord_less_int @ K @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) ) ) ) ).

% signed_take_bit_int_eq_self_iff
thf(fact_6448_signed__take__bit__int__eq__self,axiom,
    ! [N2: nat,K: int] :
      ( ( ord_less_eq_int @ ( uminus_uminus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) ) @ K )
     => ( ( ord_less_int @ K @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) )
       => ( ( bit_ri631733984087533419it_int @ N2 @ K )
          = K ) ) ) ).

% signed_take_bit_int_eq_self
thf(fact_6449_minus__1__div__exp__eq__int,axiom,
    ! [N2: nat] :
      ( ( divide_divide_int @ ( uminus_uminus_int @ one_one_int ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) )
      = ( uminus_uminus_int @ one_one_int ) ) ).

% minus_1_div_exp_eq_int
thf(fact_6450_div__pos__neg__trivial,axiom,
    ! [K: int,L2: int] :
      ( ( ord_less_int @ zero_zero_int @ K )
     => ( ( ord_less_eq_int @ ( plus_plus_int @ K @ L2 ) @ zero_zero_int )
       => ( ( divide_divide_int @ K @ L2 )
          = ( uminus_uminus_int @ one_one_int ) ) ) ) ).

% div_pos_neg_trivial
thf(fact_6451_add__0__iff,axiom,
    ! [B: complex,A: complex] :
      ( ( B
        = ( plus_plus_complex @ B @ A ) )
      = ( A = zero_zero_complex ) ) ).

% add_0_iff
thf(fact_6452_add__0__iff,axiom,
    ! [B: real,A: real] :
      ( ( B
        = ( plus_plus_real @ B @ A ) )
      = ( A = zero_zero_real ) ) ).

% add_0_iff
thf(fact_6453_add__0__iff,axiom,
    ! [B: rat,A: rat] :
      ( ( B
        = ( plus_plus_rat @ B @ A ) )
      = ( A = zero_zero_rat ) ) ).

% add_0_iff
thf(fact_6454_add__0__iff,axiom,
    ! [B: nat,A: nat] :
      ( ( B
        = ( plus_plus_nat @ B @ A ) )
      = ( A = zero_zero_nat ) ) ).

% add_0_iff
thf(fact_6455_add__0__iff,axiom,
    ! [B: int,A: int] :
      ( ( B
        = ( plus_plus_int @ B @ A ) )
      = ( A = zero_zero_int ) ) ).

% add_0_iff
thf(fact_6456_crossproduct__noteq,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( ( A != B )
        & ( C != D ) )
      = ( ( plus_plus_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D ) )
       != ( plus_plus_real @ ( times_times_real @ A @ D ) @ ( times_times_real @ B @ C ) ) ) ) ).

% crossproduct_noteq
thf(fact_6457_crossproduct__noteq,axiom,
    ! [A: rat,B: rat,C: rat,D: rat] :
      ( ( ( A != B )
        & ( C != D ) )
      = ( ( plus_plus_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ D ) )
       != ( plus_plus_rat @ ( times_times_rat @ A @ D ) @ ( times_times_rat @ B @ C ) ) ) ) ).

% crossproduct_noteq
thf(fact_6458_crossproduct__noteq,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ( A != B )
        & ( C != D ) )
      = ( ( plus_plus_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) )
       != ( plus_plus_nat @ ( times_times_nat @ A @ D ) @ ( times_times_nat @ B @ C ) ) ) ) ).

% crossproduct_noteq
thf(fact_6459_crossproduct__noteq,axiom,
    ! [A: int,B: int,C: int,D: int] :
      ( ( ( A != B )
        & ( C != D ) )
      = ( ( plus_plus_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D ) )
       != ( plus_plus_int @ ( times_times_int @ A @ D ) @ ( times_times_int @ B @ C ) ) ) ) ).

% crossproduct_noteq
thf(fact_6460_crossproduct__eq,axiom,
    ! [W: real,Y: real,X: real,Z: real] :
      ( ( ( plus_plus_real @ ( times_times_real @ W @ Y ) @ ( times_times_real @ X @ Z ) )
        = ( plus_plus_real @ ( times_times_real @ W @ Z ) @ ( times_times_real @ X @ Y ) ) )
      = ( ( W = X )
        | ( Y = Z ) ) ) ).

% crossproduct_eq
thf(fact_6461_crossproduct__eq,axiom,
    ! [W: rat,Y: rat,X: rat,Z: rat] :
      ( ( ( plus_plus_rat @ ( times_times_rat @ W @ Y ) @ ( times_times_rat @ X @ Z ) )
        = ( plus_plus_rat @ ( times_times_rat @ W @ Z ) @ ( times_times_rat @ X @ Y ) ) )
      = ( ( W = X )
        | ( Y = Z ) ) ) ).

% crossproduct_eq
thf(fact_6462_crossproduct__eq,axiom,
    ! [W: nat,Y: nat,X: nat,Z: nat] :
      ( ( ( plus_plus_nat @ ( times_times_nat @ W @ Y ) @ ( times_times_nat @ X @ Z ) )
        = ( plus_plus_nat @ ( times_times_nat @ W @ Z ) @ ( times_times_nat @ X @ Y ) ) )
      = ( ( W = X )
        | ( Y = Z ) ) ) ).

% crossproduct_eq
thf(fact_6463_crossproduct__eq,axiom,
    ! [W: int,Y: int,X: int,Z: int] :
      ( ( ( plus_plus_int @ ( times_times_int @ W @ Y ) @ ( times_times_int @ X @ Z ) )
        = ( plus_plus_int @ ( times_times_int @ W @ Z ) @ ( times_times_int @ X @ Y ) ) )
      = ( ( W = X )
        | ( Y = Z ) ) ) ).

% crossproduct_eq
thf(fact_6464_power__minus1__odd,axiom,
    ! [N2: nat] :
      ( ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) )
      = ( uminus_uminus_real @ one_one_real ) ) ).

% power_minus1_odd
thf(fact_6465_power__minus1__odd,axiom,
    ! [N2: nat] :
      ( ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) )
      = ( uminus_uminus_int @ one_one_int ) ) ).

% power_minus1_odd
thf(fact_6466_power__minus1__odd,axiom,
    ! [N2: nat] :
      ( ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) )
      = ( uminus1482373934393186551omplex @ one_one_complex ) ) ).

% power_minus1_odd
thf(fact_6467_power__minus1__odd,axiom,
    ! [N2: nat] :
      ( ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) )
      = ( uminus_uminus_rat @ one_one_rat ) ) ).

% power_minus1_odd
thf(fact_6468_power__minus1__odd,axiom,
    ! [N2: nat] :
      ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) )
      = ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% power_minus1_odd
thf(fact_6469_int__bit__induct,axiom,
    ! [P: int > $o,K: int] :
      ( ( P @ zero_zero_int )
     => ( ( P @ ( uminus_uminus_int @ one_one_int ) )
       => ( ! [K2: int] :
              ( ( P @ K2 )
             => ( ( K2 != zero_zero_int )
               => ( P @ ( times_times_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) )
         => ( ! [K2: int] :
                ( ( P @ K2 )
               => ( ( K2
                   != ( uminus_uminus_int @ one_one_int ) )
                 => ( P @ ( plus_plus_int @ one_one_int @ ( times_times_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) )
           => ( P @ K ) ) ) ) ) ).

% int_bit_induct
thf(fact_6470_divmod__step__nat__def,axiom,
    ( unique5026877609467782581ep_nat
    = ( ^ [L: num] :
          ( produc2626176000494625587at_nat
          @ ^ [Q4: nat,R5: nat] : ( if_Pro6206227464963214023at_nat @ ( ord_less_eq_nat @ ( numeral_numeral_nat @ L ) @ R5 ) @ ( product_Pair_nat_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Q4 ) @ one_one_nat ) @ ( minus_minus_nat @ R5 @ ( numeral_numeral_nat @ L ) ) ) @ ( product_Pair_nat_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Q4 ) @ R5 ) ) ) ) ) ).

% divmod_step_nat_def
thf(fact_6471_ln__one__plus__pos__lower__bound,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ X @ one_one_real )
       => ( ord_less_eq_real @ ( minus_minus_real @ X @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( ln_ln_real @ ( plus_plus_real @ one_one_real @ X ) ) ) ) ) ).

% ln_one_plus_pos_lower_bound
thf(fact_6472_signed__take__bit__int__greater__eq,axiom,
    ! [K: int,N2: nat] :
      ( ( ord_less_int @ K @ ( uminus_uminus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) ) )
     => ( ord_less_eq_int @ ( plus_plus_int @ K @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( suc @ N2 ) ) ) @ ( bit_ri631733984087533419it_int @ N2 @ K ) ) ) ).

% signed_take_bit_int_greater_eq
thf(fact_6473_divmod__step__int__def,axiom,
    ( unique5024387138958732305ep_int
    = ( ^ [L: num] :
          ( produc4245557441103728435nt_int
          @ ^ [Q4: int,R5: int] : ( if_Pro3027730157355071871nt_int @ ( ord_less_eq_int @ ( numeral_numeral_int @ L ) @ R5 ) @ ( product_Pair_int_int @ ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Q4 ) @ one_one_int ) @ ( minus_minus_int @ R5 @ ( numeral_numeral_int @ L ) ) ) @ ( product_Pair_int_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Q4 ) @ R5 ) ) ) ) ) ).

% divmod_step_int_def
thf(fact_6474_ln__2__less__1,axiom,
    ord_less_real @ ( ln_ln_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ one_one_real ).

% ln_2_less_1
thf(fact_6475_abs__ln__one__plus__x__minus__x__bound__nonpos,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X )
     => ( ( ord_less_eq_real @ X @ zero_zero_real )
       => ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( ln_ln_real @ ( plus_plus_real @ one_one_real @ X ) ) @ X ) ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% abs_ln_one_plus_x_minus_x_bound_nonpos
thf(fact_6476_tanh__ln__real,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( tanh_real @ ( ln_ln_real @ X ) )
        = ( divide_divide_real @ ( minus_minus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real ) @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real ) ) ) ) ).

% tanh_ln_real
thf(fact_6477_divmod__algorithm__code_I5_J,axiom,
    ! [M: num,N2: num] :
      ( ( unique5052692396658037445od_int @ ( bit0 @ M ) @ ( bit0 @ N2 ) )
      = ( produc4245557441103728435nt_int
        @ ^ [Q4: int,R5: int] : ( product_Pair_int_int @ Q4 @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ R5 ) )
        @ ( unique5052692396658037445od_int @ M @ N2 ) ) ) ).

% divmod_algorithm_code(5)
thf(fact_6478_divmod__algorithm__code_I5_J,axiom,
    ! [M: num,N2: num] :
      ( ( unique5055182867167087721od_nat @ ( bit0 @ M ) @ ( bit0 @ N2 ) )
      = ( produc2626176000494625587at_nat
        @ ^ [Q4: nat,R5: nat] : ( product_Pair_nat_nat @ Q4 @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ R5 ) )
        @ ( unique5055182867167087721od_nat @ M @ N2 ) ) ) ).

% divmod_algorithm_code(5)
thf(fact_6479_divmod__algorithm__code_I5_J,axiom,
    ! [M: num,N2: num] :
      ( ( unique3479559517661332726nteger @ ( bit0 @ M ) @ ( bit0 @ N2 ) )
      = ( produc6916734918728496179nteger
        @ ^ [Q4: code_integer,R5: code_integer] : ( produc1086072967326762835nteger @ Q4 @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ R5 ) )
        @ ( unique3479559517661332726nteger @ M @ N2 ) ) ) ).

% divmod_algorithm_code(5)
thf(fact_6480_divmod__nat__if,axiom,
    ( divmod_nat
    = ( ^ [M6: nat,N3: nat] :
          ( if_Pro6206227464963214023at_nat
          @ ( ( N3 = zero_zero_nat )
            | ( ord_less_nat @ M6 @ N3 ) )
          @ ( product_Pair_nat_nat @ zero_zero_nat @ M6 )
          @ ( produc2626176000494625587at_nat
            @ ^ [Q4: nat] : ( product_Pair_nat_nat @ ( suc @ Q4 ) )
            @ ( divmod_nat @ ( minus_minus_nat @ M6 @ N3 ) @ N3 ) ) ) ) ) ).

% divmod_nat_if
thf(fact_6481_signed__take__bit__Suc__minus__bit1,axiom,
    ! [N2: nat,K: num] :
      ( ( bit_ri631733984087533419it_int @ ( suc @ N2 ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ K ) ) ) )
      = ( plus_plus_int @ ( times_times_int @ ( bit_ri631733984087533419it_int @ N2 @ ( minus_minus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) @ one_one_int ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ one_one_int ) ) ).

% signed_take_bit_Suc_minus_bit1
thf(fact_6482_abs__ln__one__plus__x__minus__x__bound,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ X ) @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
     => ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( ln_ln_real @ ( plus_plus_real @ one_one_real @ X ) ) @ X ) ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% abs_ln_one_plus_x_minus_x_bound
thf(fact_6483_semiring__norm_I90_J,axiom,
    ! [M: num,N2: num] :
      ( ( ( bit1 @ M )
        = ( bit1 @ N2 ) )
      = ( M = N2 ) ) ).

% semiring_norm(90)
thf(fact_6484_abs__abs,axiom,
    ! [A: real] :
      ( ( abs_abs_real @ ( abs_abs_real @ A ) )
      = ( abs_abs_real @ A ) ) ).

% abs_abs
thf(fact_6485_abs__abs,axiom,
    ! [A: int] :
      ( ( abs_abs_int @ ( abs_abs_int @ A ) )
      = ( abs_abs_int @ A ) ) ).

% abs_abs
thf(fact_6486_abs__abs,axiom,
    ! [A: rat] :
      ( ( abs_abs_rat @ ( abs_abs_rat @ A ) )
      = ( abs_abs_rat @ A ) ) ).

% abs_abs
thf(fact_6487_abs__abs,axiom,
    ! [A: code_integer] :
      ( ( abs_abs_Code_integer @ ( abs_abs_Code_integer @ A ) )
      = ( abs_abs_Code_integer @ A ) ) ).

% abs_abs
thf(fact_6488_case__prodI,axiom,
    ! [F: code_integer > $o > $o,A: code_integer,B: $o] :
      ( ( F @ A @ B )
     => ( produc7828578312038201481er_o_o @ F @ ( produc6677183202524767010eger_o @ A @ B ) ) ) ).

% case_prodI
thf(fact_6489_case__prodI,axiom,
    ! [F: num > num > $o,A: num,B: num] :
      ( ( F @ A @ B )
     => ( produc5703948589228662326_num_o @ F @ ( product_Pair_num_num @ A @ B ) ) ) ).

% case_prodI
thf(fact_6490_case__prodI,axiom,
    ! [F: nat > num > $o,A: nat,B: num] :
      ( ( F @ A @ B )
     => ( produc4927758841916487424_num_o @ F @ ( product_Pair_nat_num @ A @ B ) ) ) ).

% case_prodI
thf(fact_6491_case__prodI,axiom,
    ! [F: nat > nat > $o,A: nat,B: nat] :
      ( ( F @ A @ B )
     => ( produc6081775807080527818_nat_o @ F @ ( product_Pair_nat_nat @ A @ B ) ) ) ).

% case_prodI
thf(fact_6492_case__prodI,axiom,
    ! [F: int > int > $o,A: int,B: int] :
      ( ( F @ A @ B )
     => ( produc4947309494688390418_int_o @ F @ ( product_Pair_int_int @ A @ B ) ) ) ).

% case_prodI
thf(fact_6493_case__prodI2,axiom,
    ! [P4: produc6271795597528267376eger_o,C: code_integer > $o > $o] :
      ( ! [A3: code_integer,B2: $o] :
          ( ( P4
            = ( produc6677183202524767010eger_o @ A3 @ B2 ) )
         => ( C @ A3 @ B2 ) )
     => ( produc7828578312038201481er_o_o @ C @ P4 ) ) ).

% case_prodI2
thf(fact_6494_case__prodI2,axiom,
    ! [P4: product_prod_num_num,C: num > num > $o] :
      ( ! [A3: num,B2: num] :
          ( ( P4
            = ( product_Pair_num_num @ A3 @ B2 ) )
         => ( C @ A3 @ B2 ) )
     => ( produc5703948589228662326_num_o @ C @ P4 ) ) ).

% case_prodI2
thf(fact_6495_case__prodI2,axiom,
    ! [P4: product_prod_nat_num,C: nat > num > $o] :
      ( ! [A3: nat,B2: num] :
          ( ( P4
            = ( product_Pair_nat_num @ A3 @ B2 ) )
         => ( C @ A3 @ B2 ) )
     => ( produc4927758841916487424_num_o @ C @ P4 ) ) ).

% case_prodI2
thf(fact_6496_case__prodI2,axiom,
    ! [P4: product_prod_nat_nat,C: nat > nat > $o] :
      ( ! [A3: nat,B2: nat] :
          ( ( P4
            = ( product_Pair_nat_nat @ A3 @ B2 ) )
         => ( C @ A3 @ B2 ) )
     => ( produc6081775807080527818_nat_o @ C @ P4 ) ) ).

% case_prodI2
thf(fact_6497_case__prodI2,axiom,
    ! [P4: product_prod_int_int,C: int > int > $o] :
      ( ! [A3: int,B2: int] :
          ( ( P4
            = ( product_Pair_int_int @ A3 @ B2 ) )
         => ( C @ A3 @ B2 ) )
     => ( produc4947309494688390418_int_o @ C @ P4 ) ) ).

% case_prodI2
thf(fact_6498_mem__case__prodI,axiom,
    ! [Z: complex,C: code_integer > $o > set_complex,A: code_integer,B: $o] :
      ( ( member_complex @ Z @ ( C @ A @ B ) )
     => ( member_complex @ Z @ ( produc1043322548047392435omplex @ C @ ( produc6677183202524767010eger_o @ A @ B ) ) ) ) ).

% mem_case_prodI
thf(fact_6499_mem__case__prodI,axiom,
    ! [Z: real,C: code_integer > $o > set_real,A: code_integer,B: $o] :
      ( ( member_real @ Z @ ( C @ A @ B ) )
     => ( member_real @ Z @ ( produc242741666403216561t_real @ C @ ( produc6677183202524767010eger_o @ A @ B ) ) ) ) ).

% mem_case_prodI
thf(fact_6500_mem__case__prodI,axiom,
    ! [Z: nat,C: code_integer > $o > set_nat,A: code_integer,B: $o] :
      ( ( member_nat @ Z @ ( C @ A @ B ) )
     => ( member_nat @ Z @ ( produc5431169771168744661et_nat @ C @ ( produc6677183202524767010eger_o @ A @ B ) ) ) ) ).

% mem_case_prodI
thf(fact_6501_mem__case__prodI,axiom,
    ! [Z: int,C: code_integer > $o > set_int,A: code_integer,B: $o] :
      ( ( member_int @ Z @ ( C @ A @ B ) )
     => ( member_int @ Z @ ( produc1253318751659547953et_int @ C @ ( produc6677183202524767010eger_o @ A @ B ) ) ) ) ).

% mem_case_prodI
thf(fact_6502_mem__case__prodI,axiom,
    ! [Z: complex,C: num > num > set_complex,A: num,B: num] :
      ( ( member_complex @ Z @ ( C @ A @ B ) )
     => ( member_complex @ Z @ ( produc2866383454006189126omplex @ C @ ( product_Pair_num_num @ A @ B ) ) ) ) ).

% mem_case_prodI
thf(fact_6503_mem__case__prodI,axiom,
    ! [Z: real,C: num > num > set_real,A: num,B: num] :
      ( ( member_real @ Z @ ( C @ A @ B ) )
     => ( member_real @ Z @ ( produc8296048397933160132t_real @ C @ ( product_Pair_num_num @ A @ B ) ) ) ) ).

% mem_case_prodI
thf(fact_6504_mem__case__prodI,axiom,
    ! [Z: nat,C: num > num > set_nat,A: num,B: num] :
      ( ( member_nat @ Z @ ( C @ A @ B ) )
     => ( member_nat @ Z @ ( produc1361121860356118632et_nat @ C @ ( product_Pair_num_num @ A @ B ) ) ) ) ).

% mem_case_prodI
thf(fact_6505_mem__case__prodI,axiom,
    ! [Z: int,C: num > num > set_int,A: num,B: num] :
      ( ( member_int @ Z @ ( C @ A @ B ) )
     => ( member_int @ Z @ ( produc6406642877701697732et_int @ C @ ( product_Pair_num_num @ A @ B ) ) ) ) ).

% mem_case_prodI
thf(fact_6506_mem__case__prodI,axiom,
    ! [Z: complex,C: nat > num > set_complex,A: nat,B: num] :
      ( ( member_complex @ Z @ ( C @ A @ B ) )
     => ( member_complex @ Z @ ( produc6231982587499038204omplex @ C @ ( product_Pair_nat_num @ A @ B ) ) ) ) ).

% mem_case_prodI
thf(fact_6507_mem__case__prodI,axiom,
    ! [Z: real,C: nat > num > set_real,A: nat,B: num] :
      ( ( member_real @ Z @ ( C @ A @ B ) )
     => ( member_real @ Z @ ( produc1435849484188172666t_real @ C @ ( product_Pair_nat_num @ A @ B ) ) ) ) ).

% mem_case_prodI
thf(fact_6508_mem__case__prodI2,axiom,
    ! [P4: produc6271795597528267376eger_o,Z: complex,C: code_integer > $o > set_complex] :
      ( ! [A3: code_integer,B2: $o] :
          ( ( P4
            = ( produc6677183202524767010eger_o @ A3 @ B2 ) )
         => ( member_complex @ Z @ ( C @ A3 @ B2 ) ) )
     => ( member_complex @ Z @ ( produc1043322548047392435omplex @ C @ P4 ) ) ) ).

% mem_case_prodI2
thf(fact_6509_mem__case__prodI2,axiom,
    ! [P4: produc6271795597528267376eger_o,Z: real,C: code_integer > $o > set_real] :
      ( ! [A3: code_integer,B2: $o] :
          ( ( P4
            = ( produc6677183202524767010eger_o @ A3 @ B2 ) )
         => ( member_real @ Z @ ( C @ A3 @ B2 ) ) )
     => ( member_real @ Z @ ( produc242741666403216561t_real @ C @ P4 ) ) ) ).

% mem_case_prodI2
thf(fact_6510_mem__case__prodI2,axiom,
    ! [P4: produc6271795597528267376eger_o,Z: nat,C: code_integer > $o > set_nat] :
      ( ! [A3: code_integer,B2: $o] :
          ( ( P4
            = ( produc6677183202524767010eger_o @ A3 @ B2 ) )
         => ( member_nat @ Z @ ( C @ A3 @ B2 ) ) )
     => ( member_nat @ Z @ ( produc5431169771168744661et_nat @ C @ P4 ) ) ) ).

% mem_case_prodI2
thf(fact_6511_mem__case__prodI2,axiom,
    ! [P4: produc6271795597528267376eger_o,Z: int,C: code_integer > $o > set_int] :
      ( ! [A3: code_integer,B2: $o] :
          ( ( P4
            = ( produc6677183202524767010eger_o @ A3 @ B2 ) )
         => ( member_int @ Z @ ( C @ A3 @ B2 ) ) )
     => ( member_int @ Z @ ( produc1253318751659547953et_int @ C @ P4 ) ) ) ).

% mem_case_prodI2
thf(fact_6512_mem__case__prodI2,axiom,
    ! [P4: product_prod_num_num,Z: complex,C: num > num > set_complex] :
      ( ! [A3: num,B2: num] :
          ( ( P4
            = ( product_Pair_num_num @ A3 @ B2 ) )
         => ( member_complex @ Z @ ( C @ A3 @ B2 ) ) )
     => ( member_complex @ Z @ ( produc2866383454006189126omplex @ C @ P4 ) ) ) ).

% mem_case_prodI2
thf(fact_6513_mem__case__prodI2,axiom,
    ! [P4: product_prod_num_num,Z: real,C: num > num > set_real] :
      ( ! [A3: num,B2: num] :
          ( ( P4
            = ( product_Pair_num_num @ A3 @ B2 ) )
         => ( member_real @ Z @ ( C @ A3 @ B2 ) ) )
     => ( member_real @ Z @ ( produc8296048397933160132t_real @ C @ P4 ) ) ) ).

% mem_case_prodI2
thf(fact_6514_mem__case__prodI2,axiom,
    ! [P4: product_prod_num_num,Z: nat,C: num > num > set_nat] :
      ( ! [A3: num,B2: num] :
          ( ( P4
            = ( product_Pair_num_num @ A3 @ B2 ) )
         => ( member_nat @ Z @ ( C @ A3 @ B2 ) ) )
     => ( member_nat @ Z @ ( produc1361121860356118632et_nat @ C @ P4 ) ) ) ).

% mem_case_prodI2
thf(fact_6515_mem__case__prodI2,axiom,
    ! [P4: product_prod_num_num,Z: int,C: num > num > set_int] :
      ( ! [A3: num,B2: num] :
          ( ( P4
            = ( product_Pair_num_num @ A3 @ B2 ) )
         => ( member_int @ Z @ ( C @ A3 @ B2 ) ) )
     => ( member_int @ Z @ ( produc6406642877701697732et_int @ C @ P4 ) ) ) ).

% mem_case_prodI2
thf(fact_6516_mem__case__prodI2,axiom,
    ! [P4: product_prod_nat_num,Z: complex,C: nat > num > set_complex] :
      ( ! [A3: nat,B2: num] :
          ( ( P4
            = ( product_Pair_nat_num @ A3 @ B2 ) )
         => ( member_complex @ Z @ ( C @ A3 @ B2 ) ) )
     => ( member_complex @ Z @ ( produc6231982587499038204omplex @ C @ P4 ) ) ) ).

% mem_case_prodI2
thf(fact_6517_mem__case__prodI2,axiom,
    ! [P4: product_prod_nat_num,Z: real,C: nat > num > set_real] :
      ( ! [A3: nat,B2: num] :
          ( ( P4
            = ( product_Pair_nat_num @ A3 @ B2 ) )
         => ( member_real @ Z @ ( C @ A3 @ B2 ) ) )
     => ( member_real @ Z @ ( produc1435849484188172666t_real @ C @ P4 ) ) ) ).

% mem_case_prodI2
thf(fact_6518_case__prodI2_H,axiom,
    ! [P4: product_prod_nat_nat,C: nat > nat > product_prod_nat_nat > $o,X: product_prod_nat_nat] :
      ( ! [A3: nat,B2: nat] :
          ( ( ( product_Pair_nat_nat @ A3 @ B2 )
            = P4 )
         => ( C @ A3 @ B2 @ X ) )
     => ( produc8739625826339149834_nat_o @ C @ P4 @ X ) ) ).

% case_prodI2'
thf(fact_6519_abs__0,axiom,
    ( ( abs_abs_Code_integer @ zero_z3403309356797280102nteger )
    = zero_z3403309356797280102nteger ) ).

% abs_0
thf(fact_6520_abs__0,axiom,
    ( ( abs_abs_complex @ zero_zero_complex )
    = zero_zero_complex ) ).

% abs_0
thf(fact_6521_abs__0,axiom,
    ( ( abs_abs_real @ zero_zero_real )
    = zero_zero_real ) ).

% abs_0
thf(fact_6522_abs__0,axiom,
    ( ( abs_abs_rat @ zero_zero_rat )
    = zero_zero_rat ) ).

% abs_0
thf(fact_6523_abs__0,axiom,
    ( ( abs_abs_int @ zero_zero_int )
    = zero_zero_int ) ).

% abs_0
thf(fact_6524_semiring__norm_I89_J,axiom,
    ! [M: num,N2: num] :
      ( ( bit1 @ M )
     != ( bit0 @ N2 ) ) ).

% semiring_norm(89)
thf(fact_6525_semiring__norm_I88_J,axiom,
    ! [M: num,N2: num] :
      ( ( bit0 @ M )
     != ( bit1 @ N2 ) ) ).

% semiring_norm(88)
thf(fact_6526_semiring__norm_I86_J,axiom,
    ! [M: num] :
      ( ( bit1 @ M )
     != one ) ).

% semiring_norm(86)
thf(fact_6527_semiring__norm_I84_J,axiom,
    ! [N2: num] :
      ( one
     != ( bit1 @ N2 ) ) ).

% semiring_norm(84)
thf(fact_6528_abs__numeral,axiom,
    ! [N2: num] :
      ( ( abs_abs_Code_integer @ ( numera6620942414471956472nteger @ N2 ) )
      = ( numera6620942414471956472nteger @ N2 ) ) ).

% abs_numeral
thf(fact_6529_abs__numeral,axiom,
    ! [N2: num] :
      ( ( abs_abs_real @ ( numeral_numeral_real @ N2 ) )
      = ( numeral_numeral_real @ N2 ) ) ).

% abs_numeral
thf(fact_6530_abs__numeral,axiom,
    ! [N2: num] :
      ( ( abs_abs_rat @ ( numeral_numeral_rat @ N2 ) )
      = ( numeral_numeral_rat @ N2 ) ) ).

% abs_numeral
thf(fact_6531_abs__numeral,axiom,
    ! [N2: num] :
      ( ( abs_abs_int @ ( numeral_numeral_int @ N2 ) )
      = ( numeral_numeral_int @ N2 ) ) ).

% abs_numeral
thf(fact_6532_abs__mult__self__eq,axiom,
    ! [A: code_integer] :
      ( ( times_3573771949741848930nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ A ) )
      = ( times_3573771949741848930nteger @ A @ A ) ) ).

% abs_mult_self_eq
thf(fact_6533_abs__mult__self__eq,axiom,
    ! [A: real] :
      ( ( times_times_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ A ) )
      = ( times_times_real @ A @ A ) ) ).

% abs_mult_self_eq
thf(fact_6534_abs__mult__self__eq,axiom,
    ! [A: rat] :
      ( ( times_times_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ A ) )
      = ( times_times_rat @ A @ A ) ) ).

% abs_mult_self_eq
thf(fact_6535_abs__mult__self__eq,axiom,
    ! [A: int] :
      ( ( times_times_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ A ) )
      = ( times_times_int @ A @ A ) ) ).

% abs_mult_self_eq
thf(fact_6536_abs__add__abs,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( abs_abs_Code_integer @ ( plus_p5714425477246183910nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) ) )
      = ( plus_p5714425477246183910nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) ) ) ).

% abs_add_abs
thf(fact_6537_abs__add__abs,axiom,
    ! [A: real,B: real] :
      ( ( abs_abs_real @ ( plus_plus_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) )
      = ( plus_plus_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) ) ).

% abs_add_abs
thf(fact_6538_abs__add__abs,axiom,
    ! [A: rat,B: rat] :
      ( ( abs_abs_rat @ ( plus_plus_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) )
      = ( plus_plus_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) ) ).

% abs_add_abs
thf(fact_6539_abs__add__abs,axiom,
    ! [A: int,B: int] :
      ( ( abs_abs_int @ ( plus_plus_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) )
      = ( plus_plus_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) ) ).

% abs_add_abs
thf(fact_6540_abs__1,axiom,
    ( ( abs_abs_Code_integer @ one_one_Code_integer )
    = one_one_Code_integer ) ).

% abs_1
thf(fact_6541_abs__1,axiom,
    ( ( abs_abs_complex @ one_one_complex )
    = one_one_complex ) ).

% abs_1
thf(fact_6542_abs__1,axiom,
    ( ( abs_abs_real @ one_one_real )
    = one_one_real ) ).

% abs_1
thf(fact_6543_abs__1,axiom,
    ( ( abs_abs_rat @ one_one_rat )
    = one_one_rat ) ).

% abs_1
thf(fact_6544_abs__1,axiom,
    ( ( abs_abs_int @ one_one_int )
    = one_one_int ) ).

% abs_1
thf(fact_6545_abs__divide,axiom,
    ! [A: complex,B: complex] :
      ( ( abs_abs_complex @ ( divide1717551699836669952omplex @ A @ B ) )
      = ( divide1717551699836669952omplex @ ( abs_abs_complex @ A ) @ ( abs_abs_complex @ B ) ) ) ).

% abs_divide
thf(fact_6546_abs__divide,axiom,
    ! [A: real,B: real] :
      ( ( abs_abs_real @ ( divide_divide_real @ A @ B ) )
      = ( divide_divide_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) ) ).

% abs_divide
thf(fact_6547_abs__divide,axiom,
    ! [A: rat,B: rat] :
      ( ( abs_abs_rat @ ( divide_divide_rat @ A @ B ) )
      = ( divide_divide_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) ) ).

% abs_divide
thf(fact_6548_abs__minus,axiom,
    ! [A: real] :
      ( ( abs_abs_real @ ( uminus_uminus_real @ A ) )
      = ( abs_abs_real @ A ) ) ).

% abs_minus
thf(fact_6549_abs__minus,axiom,
    ! [A: int] :
      ( ( abs_abs_int @ ( uminus_uminus_int @ A ) )
      = ( abs_abs_int @ A ) ) ).

% abs_minus
thf(fact_6550_abs__minus,axiom,
    ! [A: complex] :
      ( ( abs_abs_complex @ ( uminus1482373934393186551omplex @ A ) )
      = ( abs_abs_complex @ A ) ) ).

% abs_minus
thf(fact_6551_abs__minus,axiom,
    ! [A: rat] :
      ( ( abs_abs_rat @ ( uminus_uminus_rat @ A ) )
      = ( abs_abs_rat @ A ) ) ).

% abs_minus
thf(fact_6552_abs__minus,axiom,
    ! [A: code_integer] :
      ( ( abs_abs_Code_integer @ ( uminus1351360451143612070nteger @ A ) )
      = ( abs_abs_Code_integer @ A ) ) ).

% abs_minus
thf(fact_6553_abs__dvd__iff,axiom,
    ! [M: real,K: real] :
      ( ( dvd_dvd_real @ ( abs_abs_real @ M ) @ K )
      = ( dvd_dvd_real @ M @ K ) ) ).

% abs_dvd_iff
thf(fact_6554_abs__dvd__iff,axiom,
    ! [M: int,K: int] :
      ( ( dvd_dvd_int @ ( abs_abs_int @ M ) @ K )
      = ( dvd_dvd_int @ M @ K ) ) ).

% abs_dvd_iff
thf(fact_6555_abs__dvd__iff,axiom,
    ! [M: rat,K: rat] :
      ( ( dvd_dvd_rat @ ( abs_abs_rat @ M ) @ K )
      = ( dvd_dvd_rat @ M @ K ) ) ).

% abs_dvd_iff
thf(fact_6556_abs__dvd__iff,axiom,
    ! [M: code_integer,K: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( abs_abs_Code_integer @ M ) @ K )
      = ( dvd_dvd_Code_integer @ M @ K ) ) ).

% abs_dvd_iff
thf(fact_6557_dvd__abs__iff,axiom,
    ! [M: real,K: real] :
      ( ( dvd_dvd_real @ M @ ( abs_abs_real @ K ) )
      = ( dvd_dvd_real @ M @ K ) ) ).

% dvd_abs_iff
thf(fact_6558_dvd__abs__iff,axiom,
    ! [M: int,K: int] :
      ( ( dvd_dvd_int @ M @ ( abs_abs_int @ K ) )
      = ( dvd_dvd_int @ M @ K ) ) ).

% dvd_abs_iff
thf(fact_6559_dvd__abs__iff,axiom,
    ! [M: rat,K: rat] :
      ( ( dvd_dvd_rat @ M @ ( abs_abs_rat @ K ) )
      = ( dvd_dvd_rat @ M @ K ) ) ).

% dvd_abs_iff
thf(fact_6560_dvd__abs__iff,axiom,
    ! [M: code_integer,K: code_integer] :
      ( ( dvd_dvd_Code_integer @ M @ ( abs_abs_Code_integer @ K ) )
      = ( dvd_dvd_Code_integer @ M @ K ) ) ).

% dvd_abs_iff
thf(fact_6561_abs__bool__eq,axiom,
    ! [P: $o] :
      ( ( abs_abs_real @ ( zero_n3304061248610475627l_real @ P ) )
      = ( zero_n3304061248610475627l_real @ P ) ) ).

% abs_bool_eq
thf(fact_6562_abs__bool__eq,axiom,
    ! [P: $o] :
      ( ( abs_abs_rat @ ( zero_n2052037380579107095ol_rat @ P ) )
      = ( zero_n2052037380579107095ol_rat @ P ) ) ).

% abs_bool_eq
thf(fact_6563_abs__bool__eq,axiom,
    ! [P: $o] :
      ( ( abs_abs_int @ ( zero_n2684676970156552555ol_int @ P ) )
      = ( zero_n2684676970156552555ol_int @ P ) ) ).

% abs_bool_eq
thf(fact_6564_abs__bool__eq,axiom,
    ! [P: $o] :
      ( ( abs_abs_Code_integer @ ( zero_n356916108424825756nteger @ P ) )
      = ( zero_n356916108424825756nteger @ P ) ) ).

% abs_bool_eq
thf(fact_6565_tanh__real__le__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ ( tanh_real @ X ) @ ( tanh_real @ Y ) )
      = ( ord_less_eq_real @ X @ Y ) ) ).

% tanh_real_le_iff
thf(fact_6566_semiring__norm_I80_J,axiom,
    ! [M: num,N2: num] :
      ( ( ord_less_num @ ( bit1 @ M ) @ ( bit1 @ N2 ) )
      = ( ord_less_num @ M @ N2 ) ) ).

% semiring_norm(80)
thf(fact_6567_semiring__norm_I73_J,axiom,
    ! [M: num,N2: num] :
      ( ( ord_less_eq_num @ ( bit1 @ M ) @ ( bit1 @ N2 ) )
      = ( ord_less_eq_num @ M @ N2 ) ) ).

% semiring_norm(73)
thf(fact_6568_abs__sum__abs,axiom,
    ! [F: int > int,A2: set_int] :
      ( ( abs_abs_int
        @ ( groups4538972089207619220nt_int
          @ ^ [A4: int] : ( abs_abs_int @ ( F @ A4 ) )
          @ A2 ) )
      = ( groups4538972089207619220nt_int
        @ ^ [A4: int] : ( abs_abs_int @ ( F @ A4 ) )
        @ A2 ) ) ).

% abs_sum_abs
thf(fact_6569_abs__sum__abs,axiom,
    ! [F: nat > real,A2: set_nat] :
      ( ( abs_abs_real
        @ ( groups6591440286371151544t_real
          @ ^ [A4: nat] : ( abs_abs_real @ ( F @ A4 ) )
          @ A2 ) )
      = ( groups6591440286371151544t_real
        @ ^ [A4: nat] : ( abs_abs_real @ ( F @ A4 ) )
        @ A2 ) ) ).

% abs_sum_abs
thf(fact_6570_abs__le__zero__iff,axiom,
    ! [A: code_integer] :
      ( ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ A ) @ zero_z3403309356797280102nteger )
      = ( A = zero_z3403309356797280102nteger ) ) ).

% abs_le_zero_iff
thf(fact_6571_abs__le__zero__iff,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ A ) @ zero_zero_real )
      = ( A = zero_zero_real ) ) ).

% abs_le_zero_iff
thf(fact_6572_abs__le__zero__iff,axiom,
    ! [A: rat] :
      ( ( ord_less_eq_rat @ ( abs_abs_rat @ A ) @ zero_zero_rat )
      = ( A = zero_zero_rat ) ) ).

% abs_le_zero_iff
thf(fact_6573_abs__le__zero__iff,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ ( abs_abs_int @ A ) @ zero_zero_int )
      = ( A = zero_zero_int ) ) ).

% abs_le_zero_iff
thf(fact_6574_abs__le__self__iff,axiom,
    ! [A: code_integer] :
      ( ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ A ) @ A )
      = ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A ) ) ).

% abs_le_self_iff
thf(fact_6575_abs__le__self__iff,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ A ) @ A )
      = ( ord_less_eq_real @ zero_zero_real @ A ) ) ).

% abs_le_self_iff
thf(fact_6576_abs__le__self__iff,axiom,
    ! [A: rat] :
      ( ( ord_less_eq_rat @ ( abs_abs_rat @ A ) @ A )
      = ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ).

% abs_le_self_iff
thf(fact_6577_abs__le__self__iff,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ ( abs_abs_int @ A ) @ A )
      = ( ord_less_eq_int @ zero_zero_int @ A ) ) ).

% abs_le_self_iff
thf(fact_6578_abs__of__nonneg,axiom,
    ! [A: code_integer] :
      ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A )
     => ( ( abs_abs_Code_integer @ A )
        = A ) ) ).

% abs_of_nonneg
thf(fact_6579_abs__of__nonneg,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( abs_abs_real @ A )
        = A ) ) ).

% abs_of_nonneg
thf(fact_6580_abs__of__nonneg,axiom,
    ! [A: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ A )
     => ( ( abs_abs_rat @ A )
        = A ) ) ).

% abs_of_nonneg
thf(fact_6581_abs__of__nonneg,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( abs_abs_int @ A )
        = A ) ) ).

% abs_of_nonneg
thf(fact_6582_zero__less__abs__iff,axiom,
    ! [A: code_integer] :
      ( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ ( abs_abs_Code_integer @ A ) )
      = ( A != zero_z3403309356797280102nteger ) ) ).

% zero_less_abs_iff
thf(fact_6583_zero__less__abs__iff,axiom,
    ! [A: real] :
      ( ( ord_less_real @ zero_zero_real @ ( abs_abs_real @ A ) )
      = ( A != zero_zero_real ) ) ).

% zero_less_abs_iff
thf(fact_6584_zero__less__abs__iff,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( abs_abs_rat @ A ) )
      = ( A != zero_zero_rat ) ) ).

% zero_less_abs_iff
thf(fact_6585_zero__less__abs__iff,axiom,
    ! [A: int] :
      ( ( ord_less_int @ zero_zero_int @ ( abs_abs_int @ A ) )
      = ( A != zero_zero_int ) ) ).

% zero_less_abs_iff
thf(fact_6586_abs__neg__numeral,axiom,
    ! [N2: num] :
      ( ( abs_abs_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ N2 ) ) )
      = ( numeral_numeral_real @ N2 ) ) ).

% abs_neg_numeral
thf(fact_6587_abs__neg__numeral,axiom,
    ! [N2: num] :
      ( ( abs_abs_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) )
      = ( numeral_numeral_int @ N2 ) ) ).

% abs_neg_numeral
thf(fact_6588_abs__neg__numeral,axiom,
    ! [N2: num] :
      ( ( abs_abs_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N2 ) ) )
      = ( numeral_numeral_rat @ N2 ) ) ).

% abs_neg_numeral
thf(fact_6589_abs__neg__numeral,axiom,
    ! [N2: num] :
      ( ( abs_abs_Code_integer @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N2 ) ) )
      = ( numera6620942414471956472nteger @ N2 ) ) ).

% abs_neg_numeral
thf(fact_6590_abs__neg__one,axiom,
    ( ( abs_abs_real @ ( uminus_uminus_real @ one_one_real ) )
    = one_one_real ) ).

% abs_neg_one
thf(fact_6591_abs__neg__one,axiom,
    ( ( abs_abs_int @ ( uminus_uminus_int @ one_one_int ) )
    = one_one_int ) ).

% abs_neg_one
thf(fact_6592_abs__neg__one,axiom,
    ( ( abs_abs_rat @ ( uminus_uminus_rat @ one_one_rat ) )
    = one_one_rat ) ).

% abs_neg_one
thf(fact_6593_abs__neg__one,axiom,
    ( ( abs_abs_Code_integer @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
    = one_one_Code_integer ) ).

% abs_neg_one
thf(fact_6594_abs__power__minus,axiom,
    ! [A: real,N2: nat] :
      ( ( abs_abs_real @ ( power_power_real @ ( uminus_uminus_real @ A ) @ N2 ) )
      = ( abs_abs_real @ ( power_power_real @ A @ N2 ) ) ) ).

% abs_power_minus
thf(fact_6595_abs__power__minus,axiom,
    ! [A: int,N2: nat] :
      ( ( abs_abs_int @ ( power_power_int @ ( uminus_uminus_int @ A ) @ N2 ) )
      = ( abs_abs_int @ ( power_power_int @ A @ N2 ) ) ) ).

% abs_power_minus
thf(fact_6596_abs__power__minus,axiom,
    ! [A: rat,N2: nat] :
      ( ( abs_abs_rat @ ( power_power_rat @ ( uminus_uminus_rat @ A ) @ N2 ) )
      = ( abs_abs_rat @ ( power_power_rat @ A @ N2 ) ) ) ).

% abs_power_minus
thf(fact_6597_abs__power__minus,axiom,
    ! [A: code_integer,N2: nat] :
      ( ( abs_abs_Code_integer @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ A ) @ N2 ) )
      = ( abs_abs_Code_integer @ ( power_8256067586552552935nteger @ A @ N2 ) ) ) ).

% abs_power_minus
thf(fact_6598_semiring__norm_I7_J,axiom,
    ! [M: num,N2: num] :
      ( ( plus_plus_num @ ( bit0 @ M ) @ ( bit1 @ N2 ) )
      = ( bit1 @ ( plus_plus_num @ M @ N2 ) ) ) ).

% semiring_norm(7)
thf(fact_6599_semiring__norm_I9_J,axiom,
    ! [M: num,N2: num] :
      ( ( plus_plus_num @ ( bit1 @ M ) @ ( bit0 @ N2 ) )
      = ( bit1 @ ( plus_plus_num @ M @ N2 ) ) ) ).

% semiring_norm(9)
thf(fact_6600_semiring__norm_I14_J,axiom,
    ! [M: num,N2: num] :
      ( ( times_times_num @ ( bit0 @ M ) @ ( bit1 @ N2 ) )
      = ( bit0 @ ( times_times_num @ M @ ( bit1 @ N2 ) ) ) ) ).

% semiring_norm(14)
thf(fact_6601_semiring__norm_I15_J,axiom,
    ! [M: num,N2: num] :
      ( ( times_times_num @ ( bit1 @ M ) @ ( bit0 @ N2 ) )
      = ( bit0 @ ( times_times_num @ ( bit1 @ M ) @ N2 ) ) ) ).

% semiring_norm(15)
thf(fact_6602_semiring__norm_I81_J,axiom,
    ! [M: num,N2: num] :
      ( ( ord_less_num @ ( bit1 @ M ) @ ( bit0 @ N2 ) )
      = ( ord_less_num @ M @ N2 ) ) ).

% semiring_norm(81)
thf(fact_6603_semiring__norm_I72_J,axiom,
    ! [M: num,N2: num] :
      ( ( ord_less_eq_num @ ( bit0 @ M ) @ ( bit1 @ N2 ) )
      = ( ord_less_eq_num @ M @ N2 ) ) ).

% semiring_norm(72)
thf(fact_6604_semiring__norm_I77_J,axiom,
    ! [N2: num] : ( ord_less_num @ one @ ( bit1 @ N2 ) ) ).

% semiring_norm(77)
thf(fact_6605_semiring__norm_I70_J,axiom,
    ! [M: num] :
      ~ ( ord_less_eq_num @ ( bit1 @ M ) @ one ) ).

% semiring_norm(70)
thf(fact_6606_tanh__real__nonneg__iff,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( tanh_real @ X ) )
      = ( ord_less_eq_real @ zero_zero_real @ X ) ) ).

% tanh_real_nonneg_iff
thf(fact_6607_tanh__real__nonpos__iff,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ ( tanh_real @ X ) @ zero_zero_real )
      = ( ord_less_eq_real @ X @ zero_zero_real ) ) ).

% tanh_real_nonpos_iff
thf(fact_6608_sum__abs,axiom,
    ! [F: int > int,A2: set_int] :
      ( ord_less_eq_int @ ( abs_abs_int @ ( groups4538972089207619220nt_int @ F @ A2 ) )
      @ ( groups4538972089207619220nt_int
        @ ^ [I5: int] : ( abs_abs_int @ ( F @ I5 ) )
        @ A2 ) ) ).

% sum_abs
thf(fact_6609_sum__abs,axiom,
    ! [F: nat > real,A2: set_nat] :
      ( ord_less_eq_real @ ( abs_abs_real @ ( groups6591440286371151544t_real @ F @ A2 ) )
      @ ( groups6591440286371151544t_real
        @ ^ [I5: nat] : ( abs_abs_real @ ( F @ I5 ) )
        @ A2 ) ) ).

% sum_abs
thf(fact_6610_zero__le__divide__abs__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ A @ ( abs_abs_real @ B ) ) )
      = ( ( ord_less_eq_real @ zero_zero_real @ A )
        | ( B = zero_zero_real ) ) ) ).

% zero_le_divide_abs_iff
thf(fact_6611_zero__le__divide__abs__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ ( divide_divide_rat @ A @ ( abs_abs_rat @ B ) ) )
      = ( ( ord_less_eq_rat @ zero_zero_rat @ A )
        | ( B = zero_zero_rat ) ) ) ).

% zero_le_divide_abs_iff
thf(fact_6612_divide__le__0__abs__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ ( divide_divide_real @ A @ ( abs_abs_real @ B ) ) @ zero_zero_real )
      = ( ( ord_less_eq_real @ A @ zero_zero_real )
        | ( B = zero_zero_real ) ) ) ).

% divide_le_0_abs_iff
thf(fact_6613_divide__le__0__abs__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( divide_divide_rat @ A @ ( abs_abs_rat @ B ) ) @ zero_zero_rat )
      = ( ( ord_less_eq_rat @ A @ zero_zero_rat )
        | ( B = zero_zero_rat ) ) ) ).

% divide_le_0_abs_iff
thf(fact_6614_abs__of__nonpos,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ A @ zero_zero_real )
     => ( ( abs_abs_real @ A )
        = ( uminus_uminus_real @ A ) ) ) ).

% abs_of_nonpos
thf(fact_6615_abs__of__nonpos,axiom,
    ! [A: code_integer] :
      ( ( ord_le3102999989581377725nteger @ A @ zero_z3403309356797280102nteger )
     => ( ( abs_abs_Code_integer @ A )
        = ( uminus1351360451143612070nteger @ A ) ) ) ).

% abs_of_nonpos
thf(fact_6616_abs__of__nonpos,axiom,
    ! [A: rat] :
      ( ( ord_less_eq_rat @ A @ zero_zero_rat )
     => ( ( abs_abs_rat @ A )
        = ( uminus_uminus_rat @ A ) ) ) ).

% abs_of_nonpos
thf(fact_6617_abs__of__nonpos,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ A @ zero_zero_int )
     => ( ( abs_abs_int @ A )
        = ( uminus_uminus_int @ A ) ) ) ).

% abs_of_nonpos
thf(fact_6618_zdiv__numeral__Bit1,axiom,
    ! [V: num,W: num] :
      ( ( divide_divide_int @ ( numeral_numeral_int @ ( bit1 @ V ) ) @ ( numeral_numeral_int @ ( bit0 @ W ) ) )
      = ( divide_divide_int @ ( numeral_numeral_int @ V ) @ ( numeral_numeral_int @ W ) ) ) ).

% zdiv_numeral_Bit1
thf(fact_6619_semiring__norm_I10_J,axiom,
    ! [M: num,N2: num] :
      ( ( plus_plus_num @ ( bit1 @ M ) @ ( bit1 @ N2 ) )
      = ( bit0 @ ( plus_plus_num @ ( plus_plus_num @ M @ N2 ) @ one ) ) ) ).

% semiring_norm(10)
thf(fact_6620_semiring__norm_I8_J,axiom,
    ! [M: num] :
      ( ( plus_plus_num @ ( bit1 @ M ) @ one )
      = ( bit0 @ ( plus_plus_num @ M @ one ) ) ) ).

% semiring_norm(8)
thf(fact_6621_semiring__norm_I5_J,axiom,
    ! [M: num] :
      ( ( plus_plus_num @ ( bit0 @ M ) @ one )
      = ( bit1 @ M ) ) ).

% semiring_norm(5)
thf(fact_6622_semiring__norm_I4_J,axiom,
    ! [N2: num] :
      ( ( plus_plus_num @ one @ ( bit1 @ N2 ) )
      = ( bit0 @ ( plus_plus_num @ N2 @ one ) ) ) ).

% semiring_norm(4)
thf(fact_6623_semiring__norm_I3_J,axiom,
    ! [N2: num] :
      ( ( plus_plus_num @ one @ ( bit0 @ N2 ) )
      = ( bit1 @ N2 ) ) ).

% semiring_norm(3)
thf(fact_6624_sum__abs__ge__zero,axiom,
    ! [F: int > int,A2: set_int] :
      ( ord_less_eq_int @ zero_zero_int
      @ ( groups4538972089207619220nt_int
        @ ^ [I5: int] : ( abs_abs_int @ ( F @ I5 ) )
        @ A2 ) ) ).

% sum_abs_ge_zero
thf(fact_6625_sum__abs__ge__zero,axiom,
    ! [F: nat > real,A2: set_nat] :
      ( ord_less_eq_real @ zero_zero_real
      @ ( groups6591440286371151544t_real
        @ ^ [I5: nat] : ( abs_abs_real @ ( F @ I5 ) )
        @ A2 ) ) ).

% sum_abs_ge_zero
thf(fact_6626_semiring__norm_I16_J,axiom,
    ! [M: num,N2: num] :
      ( ( times_times_num @ ( bit1 @ M ) @ ( bit1 @ N2 ) )
      = ( bit1 @ ( plus_plus_num @ ( plus_plus_num @ M @ N2 ) @ ( bit0 @ ( times_times_num @ M @ N2 ) ) ) ) ) ).

% semiring_norm(16)
thf(fact_6627_semiring__norm_I79_J,axiom,
    ! [M: num,N2: num] :
      ( ( ord_less_num @ ( bit0 @ M ) @ ( bit1 @ N2 ) )
      = ( ord_less_eq_num @ M @ N2 ) ) ).

% semiring_norm(79)
thf(fact_6628_semiring__norm_I74_J,axiom,
    ! [M: num,N2: num] :
      ( ( ord_less_eq_num @ ( bit1 @ M ) @ ( bit0 @ N2 ) )
      = ( ord_less_num @ M @ N2 ) ) ).

% semiring_norm(74)
thf(fact_6629_numeral__div__minus__numeral,axiom,
    ! [M: num,N2: num] :
      ( ( divide_divide_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) )
      = ( uminus_uminus_int @ ( adjust_div @ ( unique5052692396658037445od_int @ M @ N2 ) ) ) ) ).

% numeral_div_minus_numeral
thf(fact_6630_minus__numeral__div__numeral,axiom,
    ! [M: num,N2: num] :
      ( ( divide_divide_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N2 ) )
      = ( uminus_uminus_int @ ( adjust_div @ ( unique5052692396658037445od_int @ M @ N2 ) ) ) ) ).

% minus_numeral_div_numeral
thf(fact_6631_zero__less__power__abs__iff,axiom,
    ! [A: code_integer,N2: nat] :
      ( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ ( power_8256067586552552935nteger @ ( abs_abs_Code_integer @ A ) @ N2 ) )
      = ( ( A != zero_z3403309356797280102nteger )
        | ( N2 = zero_zero_nat ) ) ) ).

% zero_less_power_abs_iff
thf(fact_6632_zero__less__power__abs__iff,axiom,
    ! [A: real,N2: nat] :
      ( ( ord_less_real @ zero_zero_real @ ( power_power_real @ ( abs_abs_real @ A ) @ N2 ) )
      = ( ( A != zero_zero_real )
        | ( N2 = zero_zero_nat ) ) ) ).

% zero_less_power_abs_iff
thf(fact_6633_zero__less__power__abs__iff,axiom,
    ! [A: rat,N2: nat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( power_power_rat @ ( abs_abs_rat @ A ) @ N2 ) )
      = ( ( A != zero_zero_rat )
        | ( N2 = zero_zero_nat ) ) ) ).

% zero_less_power_abs_iff
thf(fact_6634_zero__less__power__abs__iff,axiom,
    ! [A: int,N2: nat] :
      ( ( ord_less_int @ zero_zero_int @ ( power_power_int @ ( abs_abs_int @ A ) @ N2 ) )
      = ( ( A != zero_zero_int )
        | ( N2 = zero_zero_nat ) ) ) ).

% zero_less_power_abs_iff
thf(fact_6635_abs__power2,axiom,
    ! [A: rat] :
      ( ( abs_abs_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% abs_power2
thf(fact_6636_abs__power2,axiom,
    ! [A: code_integer] :
      ( ( abs_abs_Code_integer @ ( power_8256067586552552935nteger @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( power_8256067586552552935nteger @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% abs_power2
thf(fact_6637_abs__power2,axiom,
    ! [A: real] :
      ( ( abs_abs_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% abs_power2
thf(fact_6638_abs__power2,axiom,
    ! [A: int] :
      ( ( abs_abs_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% abs_power2
thf(fact_6639_power2__abs,axiom,
    ! [A: rat] :
      ( ( power_power_rat @ ( abs_abs_rat @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power2_abs
thf(fact_6640_power2__abs,axiom,
    ! [A: code_integer] :
      ( ( power_8256067586552552935nteger @ ( abs_abs_Code_integer @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( power_8256067586552552935nteger @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power2_abs
thf(fact_6641_power2__abs,axiom,
    ! [A: real] :
      ( ( power_power_real @ ( abs_abs_real @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power2_abs
thf(fact_6642_power2__abs,axiom,
    ! [A: int] :
      ( ( power_power_int @ ( abs_abs_int @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power2_abs
thf(fact_6643_sum_Ocl__ivl__Suc,axiom,
    ! [N2: nat,M: nat,G: nat > complex] :
      ( ( ( ord_less_nat @ ( suc @ N2 ) @ M )
       => ( ( groups2073611262835488442omplex @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N2 ) ) )
          = zero_zero_complex ) )
      & ( ~ ( ord_less_nat @ ( suc @ N2 ) @ M )
       => ( ( groups2073611262835488442omplex @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N2 ) ) )
          = ( plus_plus_complex @ ( groups2073611262835488442omplex @ G @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) @ ( G @ ( suc @ N2 ) ) ) ) ) ) ).

% sum.cl_ivl_Suc
thf(fact_6644_sum_Ocl__ivl__Suc,axiom,
    ! [N2: nat,M: nat,G: nat > rat] :
      ( ( ( ord_less_nat @ ( suc @ N2 ) @ M )
       => ( ( groups2906978787729119204at_rat @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N2 ) ) )
          = zero_zero_rat ) )
      & ( ~ ( ord_less_nat @ ( suc @ N2 ) @ M )
       => ( ( groups2906978787729119204at_rat @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N2 ) ) )
          = ( plus_plus_rat @ ( groups2906978787729119204at_rat @ G @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) @ ( G @ ( suc @ N2 ) ) ) ) ) ) ).

% sum.cl_ivl_Suc
thf(fact_6645_sum_Ocl__ivl__Suc,axiom,
    ! [N2: nat,M: nat,G: nat > int] :
      ( ( ( ord_less_nat @ ( suc @ N2 ) @ M )
       => ( ( groups3539618377306564664at_int @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N2 ) ) )
          = zero_zero_int ) )
      & ( ~ ( ord_less_nat @ ( suc @ N2 ) @ M )
       => ( ( groups3539618377306564664at_int @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N2 ) ) )
          = ( plus_plus_int @ ( groups3539618377306564664at_int @ G @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) @ ( G @ ( suc @ N2 ) ) ) ) ) ) ).

% sum.cl_ivl_Suc
thf(fact_6646_sum_Ocl__ivl__Suc,axiom,
    ! [N2: nat,M: nat,G: nat > nat] :
      ( ( ( ord_less_nat @ ( suc @ N2 ) @ M )
       => ( ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N2 ) ) )
          = zero_zero_nat ) )
      & ( ~ ( ord_less_nat @ ( suc @ N2 ) @ M )
       => ( ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N2 ) ) )
          = ( plus_plus_nat @ ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) @ ( G @ ( suc @ N2 ) ) ) ) ) ) ).

% sum.cl_ivl_Suc
thf(fact_6647_sum_Ocl__ivl__Suc,axiom,
    ! [N2: nat,M: nat,G: nat > real] :
      ( ( ( ord_less_nat @ ( suc @ N2 ) @ M )
       => ( ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N2 ) ) )
          = zero_zero_real ) )
      & ( ~ ( ord_less_nat @ ( suc @ N2 ) @ M )
       => ( ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N2 ) ) )
          = ( plus_plus_real @ ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) @ ( G @ ( suc @ N2 ) ) ) ) ) ) ).

% sum.cl_ivl_Suc
thf(fact_6648_dvd__numeral__simp,axiom,
    ! [M: num,N2: num] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N2 ) )
      = ( unique6319869463603278526ux_int @ ( unique5052692396658037445od_int @ N2 @ M ) ) ) ).

% dvd_numeral_simp
thf(fact_6649_dvd__numeral__simp,axiom,
    ! [M: num,N2: num] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N2 ) )
      = ( unique6322359934112328802ux_nat @ ( unique5055182867167087721od_nat @ N2 @ M ) ) ) ).

% dvd_numeral_simp
thf(fact_6650_dvd__numeral__simp,axiom,
    ! [M: num,N2: num] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ M ) @ ( numera6620942414471956472nteger @ N2 ) )
      = ( unique5706413561485394159nteger @ ( unique3479559517661332726nteger @ N2 @ M ) ) ) ).

% dvd_numeral_simp
thf(fact_6651_divmod__algorithm__code_I2_J,axiom,
    ! [M: num] :
      ( ( unique5052692396658037445od_int @ M @ one )
      = ( product_Pair_int_int @ ( numeral_numeral_int @ M ) @ zero_zero_int ) ) ).

% divmod_algorithm_code(2)
thf(fact_6652_divmod__algorithm__code_I2_J,axiom,
    ! [M: num] :
      ( ( unique5055182867167087721od_nat @ M @ one )
      = ( product_Pair_nat_nat @ ( numeral_numeral_nat @ M ) @ zero_zero_nat ) ) ).

% divmod_algorithm_code(2)
thf(fact_6653_divmod__algorithm__code_I2_J,axiom,
    ! [M: num] :
      ( ( unique3479559517661332726nteger @ M @ one )
      = ( produc1086072967326762835nteger @ ( numera6620942414471956472nteger @ M ) @ zero_z3403309356797280102nteger ) ) ).

% divmod_algorithm_code(2)
thf(fact_6654_sum__zero__power,axiom,
    ! [A2: set_nat,C: nat > complex] :
      ( ( ( ( finite_finite_nat @ A2 )
          & ( member_nat @ zero_zero_nat @ A2 ) )
       => ( ( groups2073611262835488442omplex
            @ ^ [I5: nat] : ( times_times_complex @ ( C @ I5 ) @ ( power_power_complex @ zero_zero_complex @ I5 ) )
            @ A2 )
          = ( C @ zero_zero_nat ) ) )
      & ( ~ ( ( finite_finite_nat @ A2 )
            & ( member_nat @ zero_zero_nat @ A2 ) )
       => ( ( groups2073611262835488442omplex
            @ ^ [I5: nat] : ( times_times_complex @ ( C @ I5 ) @ ( power_power_complex @ zero_zero_complex @ I5 ) )
            @ A2 )
          = zero_zero_complex ) ) ) ).

% sum_zero_power
thf(fact_6655_sum__zero__power,axiom,
    ! [A2: set_nat,C: nat > rat] :
      ( ( ( ( finite_finite_nat @ A2 )
          & ( member_nat @ zero_zero_nat @ A2 ) )
       => ( ( groups2906978787729119204at_rat
            @ ^ [I5: nat] : ( times_times_rat @ ( C @ I5 ) @ ( power_power_rat @ zero_zero_rat @ I5 ) )
            @ A2 )
          = ( C @ zero_zero_nat ) ) )
      & ( ~ ( ( finite_finite_nat @ A2 )
            & ( member_nat @ zero_zero_nat @ A2 ) )
       => ( ( groups2906978787729119204at_rat
            @ ^ [I5: nat] : ( times_times_rat @ ( C @ I5 ) @ ( power_power_rat @ zero_zero_rat @ I5 ) )
            @ A2 )
          = zero_zero_rat ) ) ) ).

% sum_zero_power
thf(fact_6656_sum__zero__power,axiom,
    ! [A2: set_nat,C: nat > real] :
      ( ( ( ( finite_finite_nat @ A2 )
          & ( member_nat @ zero_zero_nat @ A2 ) )
       => ( ( groups6591440286371151544t_real
            @ ^ [I5: nat] : ( times_times_real @ ( C @ I5 ) @ ( power_power_real @ zero_zero_real @ I5 ) )
            @ A2 )
          = ( C @ zero_zero_nat ) ) )
      & ( ~ ( ( finite_finite_nat @ A2 )
            & ( member_nat @ zero_zero_nat @ A2 ) )
       => ( ( groups6591440286371151544t_real
            @ ^ [I5: nat] : ( times_times_real @ ( C @ I5 ) @ ( power_power_real @ zero_zero_real @ I5 ) )
            @ A2 )
          = zero_zero_real ) ) ) ).

% sum_zero_power
thf(fact_6657_power__even__abs__numeral,axiom,
    ! [W: num,A: rat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
     => ( ( power_power_rat @ ( abs_abs_rat @ A ) @ ( numeral_numeral_nat @ W ) )
        = ( power_power_rat @ A @ ( numeral_numeral_nat @ W ) ) ) ) ).

% power_even_abs_numeral
thf(fact_6658_power__even__abs__numeral,axiom,
    ! [W: num,A: code_integer] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
     => ( ( power_8256067586552552935nteger @ ( abs_abs_Code_integer @ A ) @ ( numeral_numeral_nat @ W ) )
        = ( power_8256067586552552935nteger @ A @ ( numeral_numeral_nat @ W ) ) ) ) ).

% power_even_abs_numeral
thf(fact_6659_power__even__abs__numeral,axiom,
    ! [W: num,A: real] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
     => ( ( power_power_real @ ( abs_abs_real @ A ) @ ( numeral_numeral_nat @ W ) )
        = ( power_power_real @ A @ ( numeral_numeral_nat @ W ) ) ) ) ).

% power_even_abs_numeral
thf(fact_6660_power__even__abs__numeral,axiom,
    ! [W: num,A: int] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
     => ( ( power_power_int @ ( abs_abs_int @ A ) @ ( numeral_numeral_nat @ W ) )
        = ( power_power_int @ A @ ( numeral_numeral_nat @ W ) ) ) ) ).

% power_even_abs_numeral
thf(fact_6661_div__Suc__eq__div__add3,axiom,
    ! [M: nat,N2: nat] :
      ( ( divide_divide_nat @ M @ ( suc @ ( suc @ ( suc @ N2 ) ) ) )
      = ( divide_divide_nat @ M @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ one ) ) @ N2 ) ) ) ).

% div_Suc_eq_div_add3
thf(fact_6662_Suc__div__eq__add3__div__numeral,axiom,
    ! [M: nat,V: num] :
      ( ( divide_divide_nat @ ( suc @ ( suc @ ( suc @ M ) ) ) @ ( numeral_numeral_nat @ V ) )
      = ( divide_divide_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ one ) ) @ M ) @ ( numeral_numeral_nat @ V ) ) ) ).

% Suc_div_eq_add3_div_numeral
thf(fact_6663_divmod__algorithm__code_I3_J,axiom,
    ! [N2: num] :
      ( ( unique5052692396658037445od_int @ one @ ( bit0 @ N2 ) )
      = ( product_Pair_int_int @ zero_zero_int @ ( numeral_numeral_int @ one ) ) ) ).

% divmod_algorithm_code(3)
thf(fact_6664_divmod__algorithm__code_I3_J,axiom,
    ! [N2: num] :
      ( ( unique5055182867167087721od_nat @ one @ ( bit0 @ N2 ) )
      = ( product_Pair_nat_nat @ zero_zero_nat @ ( numeral_numeral_nat @ one ) ) ) ).

% divmod_algorithm_code(3)
thf(fact_6665_divmod__algorithm__code_I3_J,axiom,
    ! [N2: num] :
      ( ( unique3479559517661332726nteger @ one @ ( bit0 @ N2 ) )
      = ( produc1086072967326762835nteger @ zero_z3403309356797280102nteger @ ( numera6620942414471956472nteger @ one ) ) ) ).

% divmod_algorithm_code(3)
thf(fact_6666_mod__Suc__eq__mod__add3,axiom,
    ! [M: nat,N2: nat] :
      ( ( modulo_modulo_nat @ M @ ( suc @ ( suc @ ( suc @ N2 ) ) ) )
      = ( modulo_modulo_nat @ M @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ one ) ) @ N2 ) ) ) ).

% mod_Suc_eq_mod_add3
thf(fact_6667_Suc__mod__eq__add3__mod__numeral,axiom,
    ! [M: nat,V: num] :
      ( ( modulo_modulo_nat @ ( suc @ ( suc @ ( suc @ M ) ) ) @ ( numeral_numeral_nat @ V ) )
      = ( modulo_modulo_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ one ) ) @ M ) @ ( numeral_numeral_nat @ V ) ) ) ).

% Suc_mod_eq_add3_mod_numeral
thf(fact_6668_divmod__algorithm__code_I4_J,axiom,
    ! [N2: num] :
      ( ( unique5052692396658037445od_int @ one @ ( bit1 @ N2 ) )
      = ( product_Pair_int_int @ zero_zero_int @ ( numeral_numeral_int @ one ) ) ) ).

% divmod_algorithm_code(4)
thf(fact_6669_divmod__algorithm__code_I4_J,axiom,
    ! [N2: num] :
      ( ( unique5055182867167087721od_nat @ one @ ( bit1 @ N2 ) )
      = ( product_Pair_nat_nat @ zero_zero_nat @ ( numeral_numeral_nat @ one ) ) ) ).

% divmod_algorithm_code(4)
thf(fact_6670_divmod__algorithm__code_I4_J,axiom,
    ! [N2: num] :
      ( ( unique3479559517661332726nteger @ one @ ( bit1 @ N2 ) )
      = ( produc1086072967326762835nteger @ zero_z3403309356797280102nteger @ ( numera6620942414471956472nteger @ one ) ) ) ).

% divmod_algorithm_code(4)
thf(fact_6671_sum__zero__power_H,axiom,
    ! [A2: set_nat,C: nat > complex,D: nat > complex] :
      ( ( ( ( finite_finite_nat @ A2 )
          & ( member_nat @ zero_zero_nat @ A2 ) )
       => ( ( groups2073611262835488442omplex
            @ ^ [I5: nat] : ( divide1717551699836669952omplex @ ( times_times_complex @ ( C @ I5 ) @ ( power_power_complex @ zero_zero_complex @ I5 ) ) @ ( D @ I5 ) )
            @ A2 )
          = ( divide1717551699836669952omplex @ ( C @ zero_zero_nat ) @ ( D @ zero_zero_nat ) ) ) )
      & ( ~ ( ( finite_finite_nat @ A2 )
            & ( member_nat @ zero_zero_nat @ A2 ) )
       => ( ( groups2073611262835488442omplex
            @ ^ [I5: nat] : ( divide1717551699836669952omplex @ ( times_times_complex @ ( C @ I5 ) @ ( power_power_complex @ zero_zero_complex @ I5 ) ) @ ( D @ I5 ) )
            @ A2 )
          = zero_zero_complex ) ) ) ).

% sum_zero_power'
thf(fact_6672_sum__zero__power_H,axiom,
    ! [A2: set_nat,C: nat > rat,D: nat > rat] :
      ( ( ( ( finite_finite_nat @ A2 )
          & ( member_nat @ zero_zero_nat @ A2 ) )
       => ( ( groups2906978787729119204at_rat
            @ ^ [I5: nat] : ( divide_divide_rat @ ( times_times_rat @ ( C @ I5 ) @ ( power_power_rat @ zero_zero_rat @ I5 ) ) @ ( D @ I5 ) )
            @ A2 )
          = ( divide_divide_rat @ ( C @ zero_zero_nat ) @ ( D @ zero_zero_nat ) ) ) )
      & ( ~ ( ( finite_finite_nat @ A2 )
            & ( member_nat @ zero_zero_nat @ A2 ) )
       => ( ( groups2906978787729119204at_rat
            @ ^ [I5: nat] : ( divide_divide_rat @ ( times_times_rat @ ( C @ I5 ) @ ( power_power_rat @ zero_zero_rat @ I5 ) ) @ ( D @ I5 ) )
            @ A2 )
          = zero_zero_rat ) ) ) ).

% sum_zero_power'
thf(fact_6673_sum__zero__power_H,axiom,
    ! [A2: set_nat,C: nat > real,D: nat > real] :
      ( ( ( ( finite_finite_nat @ A2 )
          & ( member_nat @ zero_zero_nat @ A2 ) )
       => ( ( groups6591440286371151544t_real
            @ ^ [I5: nat] : ( divide_divide_real @ ( times_times_real @ ( C @ I5 ) @ ( power_power_real @ zero_zero_real @ I5 ) ) @ ( D @ I5 ) )
            @ A2 )
          = ( divide_divide_real @ ( C @ zero_zero_nat ) @ ( D @ zero_zero_nat ) ) ) )
      & ( ~ ( ( finite_finite_nat @ A2 )
            & ( member_nat @ zero_zero_nat @ A2 ) )
       => ( ( groups6591440286371151544t_real
            @ ^ [I5: nat] : ( divide_divide_real @ ( times_times_real @ ( C @ I5 ) @ ( power_power_real @ zero_zero_real @ I5 ) ) @ ( D @ I5 ) )
            @ A2 )
          = zero_zero_real ) ) ) ).

% sum_zero_power'
thf(fact_6674_one__div__minus__numeral,axiom,
    ! [N2: num] :
      ( ( divide_divide_int @ one_one_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) )
      = ( uminus_uminus_int @ ( adjust_div @ ( unique5052692396658037445od_int @ one @ N2 ) ) ) ) ).

% one_div_minus_numeral
thf(fact_6675_minus__one__div__numeral,axiom,
    ! [N2: num] :
      ( ( divide_divide_int @ ( uminus_uminus_int @ one_one_int ) @ ( numeral_numeral_int @ N2 ) )
      = ( uminus_uminus_int @ ( adjust_div @ ( unique5052692396658037445od_int @ one @ N2 ) ) ) ) ).

% minus_one_div_numeral
thf(fact_6676_zmod__numeral__Bit1,axiom,
    ! [V: num,W: num] :
      ( ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit1 @ V ) ) @ ( numeral_numeral_int @ ( bit0 @ W ) ) )
      = ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( modulo_modulo_int @ ( numeral_numeral_int @ V ) @ ( numeral_numeral_int @ W ) ) ) @ one_one_int ) ) ).

% zmod_numeral_Bit1
thf(fact_6677_divmod__algorithm__code_I8_J,axiom,
    ! [M: num,N2: num] :
      ( ( ( ord_less_num @ M @ N2 )
       => ( ( unique5055182867167087721od_nat @ ( bit1 @ M ) @ ( bit1 @ N2 ) )
          = ( product_Pair_nat_nat @ zero_zero_nat @ ( numeral_numeral_nat @ ( bit1 @ M ) ) ) ) )
      & ( ~ ( ord_less_num @ M @ N2 )
       => ( ( unique5055182867167087721od_nat @ ( bit1 @ M ) @ ( bit1 @ N2 ) )
          = ( unique5026877609467782581ep_nat @ ( bit1 @ N2 ) @ ( unique5055182867167087721od_nat @ ( bit1 @ M ) @ ( bit0 @ ( bit1 @ N2 ) ) ) ) ) ) ) ).

% divmod_algorithm_code(8)
thf(fact_6678_divmod__algorithm__code_I8_J,axiom,
    ! [M: num,N2: num] :
      ( ( ( ord_less_num @ M @ N2 )
       => ( ( unique5052692396658037445od_int @ ( bit1 @ M ) @ ( bit1 @ N2 ) )
          = ( product_Pair_int_int @ zero_zero_int @ ( numeral_numeral_int @ ( bit1 @ M ) ) ) ) )
      & ( ~ ( ord_less_num @ M @ N2 )
       => ( ( unique5052692396658037445od_int @ ( bit1 @ M ) @ ( bit1 @ N2 ) )
          = ( unique5024387138958732305ep_int @ ( bit1 @ N2 ) @ ( unique5052692396658037445od_int @ ( bit1 @ M ) @ ( bit0 @ ( bit1 @ N2 ) ) ) ) ) ) ) ).

% divmod_algorithm_code(8)
thf(fact_6679_divmod__algorithm__code_I8_J,axiom,
    ! [M: num,N2: num] :
      ( ( ( ord_less_num @ M @ N2 )
       => ( ( unique3479559517661332726nteger @ ( bit1 @ M ) @ ( bit1 @ N2 ) )
          = ( produc1086072967326762835nteger @ zero_z3403309356797280102nteger @ ( numera6620942414471956472nteger @ ( bit1 @ M ) ) ) ) )
      & ( ~ ( ord_less_num @ M @ N2 )
       => ( ( unique3479559517661332726nteger @ ( bit1 @ M ) @ ( bit1 @ N2 ) )
          = ( unique4921790084139445826nteger @ ( bit1 @ N2 ) @ ( unique3479559517661332726nteger @ ( bit1 @ M ) @ ( bit0 @ ( bit1 @ N2 ) ) ) ) ) ) ) ).

% divmod_algorithm_code(8)
thf(fact_6680_divmod__algorithm__code_I7_J,axiom,
    ! [M: num,N2: num] :
      ( ( ( ord_less_eq_num @ M @ N2 )
       => ( ( unique5055182867167087721od_nat @ ( bit0 @ M ) @ ( bit1 @ N2 ) )
          = ( product_Pair_nat_nat @ zero_zero_nat @ ( numeral_numeral_nat @ ( bit0 @ M ) ) ) ) )
      & ( ~ ( ord_less_eq_num @ M @ N2 )
       => ( ( unique5055182867167087721od_nat @ ( bit0 @ M ) @ ( bit1 @ N2 ) )
          = ( unique5026877609467782581ep_nat @ ( bit1 @ N2 ) @ ( unique5055182867167087721od_nat @ ( bit0 @ M ) @ ( bit0 @ ( bit1 @ N2 ) ) ) ) ) ) ) ).

% divmod_algorithm_code(7)
thf(fact_6681_divmod__algorithm__code_I7_J,axiom,
    ! [M: num,N2: num] :
      ( ( ( ord_less_eq_num @ M @ N2 )
       => ( ( unique5052692396658037445od_int @ ( bit0 @ M ) @ ( bit1 @ N2 ) )
          = ( product_Pair_int_int @ zero_zero_int @ ( numeral_numeral_int @ ( bit0 @ M ) ) ) ) )
      & ( ~ ( ord_less_eq_num @ M @ N2 )
       => ( ( unique5052692396658037445od_int @ ( bit0 @ M ) @ ( bit1 @ N2 ) )
          = ( unique5024387138958732305ep_int @ ( bit1 @ N2 ) @ ( unique5052692396658037445od_int @ ( bit0 @ M ) @ ( bit0 @ ( bit1 @ N2 ) ) ) ) ) ) ) ).

% divmod_algorithm_code(7)
thf(fact_6682_divmod__algorithm__code_I7_J,axiom,
    ! [M: num,N2: num] :
      ( ( ( ord_less_eq_num @ M @ N2 )
       => ( ( unique3479559517661332726nteger @ ( bit0 @ M ) @ ( bit1 @ N2 ) )
          = ( produc1086072967326762835nteger @ zero_z3403309356797280102nteger @ ( numera6620942414471956472nteger @ ( bit0 @ M ) ) ) ) )
      & ( ~ ( ord_less_eq_num @ M @ N2 )
       => ( ( unique3479559517661332726nteger @ ( bit0 @ M ) @ ( bit1 @ N2 ) )
          = ( unique4921790084139445826nteger @ ( bit1 @ N2 ) @ ( unique3479559517661332726nteger @ ( bit0 @ M ) @ ( bit0 @ ( bit1 @ N2 ) ) ) ) ) ) ) ).

% divmod_algorithm_code(7)
thf(fact_6683_signed__take__bit__Suc__bit1,axiom,
    ! [N2: nat,K: num] :
      ( ( bit_ri631733984087533419it_int @ ( suc @ N2 ) @ ( numeral_numeral_int @ ( bit1 @ K ) ) )
      = ( plus_plus_int @ ( times_times_int @ ( bit_ri631733984087533419it_int @ N2 @ ( numeral_numeral_int @ K ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ one_one_int ) ) ).

% signed_take_bit_Suc_bit1
thf(fact_6684_divmod__algorithm__code_I6_J,axiom,
    ! [M: num,N2: num] :
      ( ( unique5052692396658037445od_int @ ( bit1 @ M ) @ ( bit0 @ N2 ) )
      = ( produc4245557441103728435nt_int
        @ ^ [Q4: int,R5: int] : ( product_Pair_int_int @ Q4 @ ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ R5 ) @ one_one_int ) )
        @ ( unique5052692396658037445od_int @ M @ N2 ) ) ) ).

% divmod_algorithm_code(6)
thf(fact_6685_divmod__algorithm__code_I6_J,axiom,
    ! [M: num,N2: num] :
      ( ( unique5055182867167087721od_nat @ ( bit1 @ M ) @ ( bit0 @ N2 ) )
      = ( produc2626176000494625587at_nat
        @ ^ [Q4: nat,R5: nat] : ( product_Pair_nat_nat @ Q4 @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ R5 ) @ one_one_nat ) )
        @ ( unique5055182867167087721od_nat @ M @ N2 ) ) ) ).

% divmod_algorithm_code(6)
thf(fact_6686_divmod__algorithm__code_I6_J,axiom,
    ! [M: num,N2: num] :
      ( ( unique3479559517661332726nteger @ ( bit1 @ M ) @ ( bit0 @ N2 ) )
      = ( produc6916734918728496179nteger
        @ ^ [Q4: code_integer,R5: code_integer] : ( produc1086072967326762835nteger @ Q4 @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ R5 ) @ one_one_Code_integer ) )
        @ ( unique3479559517661332726nteger @ M @ N2 ) ) ) ).

% divmod_algorithm_code(6)
thf(fact_6687_Collect__neg__eq,axiom,
    ! [P: product_prod_int_int > $o] :
      ( ( collec213857154873943460nt_int
        @ ^ [X3: product_prod_int_int] :
            ~ ( P @ X3 ) )
      = ( uminus6221592323253981072nt_int @ ( collec213857154873943460nt_int @ P ) ) ) ).

% Collect_neg_eq
thf(fact_6688_Collect__neg__eq,axiom,
    ! [P: complex > $o] :
      ( ( collect_complex
        @ ^ [X3: complex] :
            ~ ( P @ X3 ) )
      = ( uminus8566677241136511917omplex @ ( collect_complex @ P ) ) ) ).

% Collect_neg_eq
thf(fact_6689_Collect__neg__eq,axiom,
    ! [P: set_nat > $o] :
      ( ( collect_set_nat
        @ ^ [X3: set_nat] :
            ~ ( P @ X3 ) )
      = ( uminus613421341184616069et_nat @ ( collect_set_nat @ P ) ) ) ).

% Collect_neg_eq
thf(fact_6690_Collect__neg__eq,axiom,
    ! [P: nat > $o] :
      ( ( collect_nat
        @ ^ [X3: nat] :
            ~ ( P @ X3 ) )
      = ( uminus5710092332889474511et_nat @ ( collect_nat @ P ) ) ) ).

% Collect_neg_eq
thf(fact_6691_Collect__neg__eq,axiom,
    ! [P: int > $o] :
      ( ( collect_int
        @ ^ [X3: int] :
            ~ ( P @ X3 ) )
      = ( uminus1532241313380277803et_int @ ( collect_int @ P ) ) ) ).

% Collect_neg_eq
thf(fact_6692_Compl__eq,axiom,
    ( uminus612125837232591019t_real
    = ( ^ [A5: set_real] :
          ( collect_real
          @ ^ [X3: real] :
              ~ ( member_real @ X3 @ A5 ) ) ) ) ).

% Compl_eq
thf(fact_6693_Compl__eq,axiom,
    ( uminus6221592323253981072nt_int
    = ( ^ [A5: set_Pr958786334691620121nt_int] :
          ( collec213857154873943460nt_int
          @ ^ [X3: product_prod_int_int] :
              ~ ( member5262025264175285858nt_int @ X3 @ A5 ) ) ) ) ).

% Compl_eq
thf(fact_6694_Compl__eq,axiom,
    ( uminus8566677241136511917omplex
    = ( ^ [A5: set_complex] :
          ( collect_complex
          @ ^ [X3: complex] :
              ~ ( member_complex @ X3 @ A5 ) ) ) ) ).

% Compl_eq
thf(fact_6695_Compl__eq,axiom,
    ( uminus613421341184616069et_nat
    = ( ^ [A5: set_set_nat] :
          ( collect_set_nat
          @ ^ [X3: set_nat] :
              ~ ( member_set_nat @ X3 @ A5 ) ) ) ) ).

% Compl_eq
thf(fact_6696_Compl__eq,axiom,
    ( uminus5710092332889474511et_nat
    = ( ^ [A5: set_nat] :
          ( collect_nat
          @ ^ [X3: nat] :
              ~ ( member_nat @ X3 @ A5 ) ) ) ) ).

% Compl_eq
thf(fact_6697_Compl__eq,axiom,
    ( uminus1532241313380277803et_int
    = ( ^ [A5: set_int] :
          ( collect_int
          @ ^ [X3: int] :
              ~ ( member_int @ X3 @ A5 ) ) ) ) ).

% Compl_eq
thf(fact_6698_uminus__set__def,axiom,
    ( uminus612125837232591019t_real
    = ( ^ [A5: set_real] :
          ( collect_real
          @ ( uminus_uminus_real_o
            @ ^ [X3: real] : ( member_real @ X3 @ A5 ) ) ) ) ) ).

% uminus_set_def
thf(fact_6699_uminus__set__def,axiom,
    ( uminus6221592323253981072nt_int
    = ( ^ [A5: set_Pr958786334691620121nt_int] :
          ( collec213857154873943460nt_int
          @ ( uminus7117520113953359693_int_o
            @ ^ [X3: product_prod_int_int] : ( member5262025264175285858nt_int @ X3 @ A5 ) ) ) ) ) ).

% uminus_set_def
thf(fact_6700_uminus__set__def,axiom,
    ( uminus8566677241136511917omplex
    = ( ^ [A5: set_complex] :
          ( collect_complex
          @ ( uminus1680532995456772888plex_o
            @ ^ [X3: complex] : ( member_complex @ X3 @ A5 ) ) ) ) ) ).

% uminus_set_def
thf(fact_6701_uminus__set__def,axiom,
    ( uminus613421341184616069et_nat
    = ( ^ [A5: set_set_nat] :
          ( collect_set_nat
          @ ( uminus6401447641752708672_nat_o
            @ ^ [X3: set_nat] : ( member_set_nat @ X3 @ A5 ) ) ) ) ) ).

% uminus_set_def
thf(fact_6702_uminus__set__def,axiom,
    ( uminus5710092332889474511et_nat
    = ( ^ [A5: set_nat] :
          ( collect_nat
          @ ( uminus_uminus_nat_o
            @ ^ [X3: nat] : ( member_nat @ X3 @ A5 ) ) ) ) ) ).

% uminus_set_def
thf(fact_6703_uminus__set__def,axiom,
    ( uminus1532241313380277803et_int
    = ( ^ [A5: set_int] :
          ( collect_int
          @ ( uminus_uminus_int_o
            @ ^ [X3: int] : ( member_int @ X3 @ A5 ) ) ) ) ) ).

% uminus_set_def
thf(fact_6704_abs__ge__self,axiom,
    ! [A: real] : ( ord_less_eq_real @ A @ ( abs_abs_real @ A ) ) ).

% abs_ge_self
thf(fact_6705_abs__ge__self,axiom,
    ! [A: code_integer] : ( ord_le3102999989581377725nteger @ A @ ( abs_abs_Code_integer @ A ) ) ).

% abs_ge_self
thf(fact_6706_abs__ge__self,axiom,
    ! [A: rat] : ( ord_less_eq_rat @ A @ ( abs_abs_rat @ A ) ) ).

% abs_ge_self
thf(fact_6707_abs__ge__self,axiom,
    ! [A: int] : ( ord_less_eq_int @ A @ ( abs_abs_int @ A ) ) ).

% abs_ge_self
thf(fact_6708_abs__le__D1,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ A ) @ B )
     => ( ord_less_eq_real @ A @ B ) ) ).

% abs_le_D1
thf(fact_6709_abs__le__D1,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ A ) @ B )
     => ( ord_le3102999989581377725nteger @ A @ B ) ) ).

% abs_le_D1
thf(fact_6710_abs__le__D1,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( abs_abs_rat @ A ) @ B )
     => ( ord_less_eq_rat @ A @ B ) ) ).

% abs_le_D1
thf(fact_6711_abs__le__D1,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ ( abs_abs_int @ A ) @ B )
     => ( ord_less_eq_int @ A @ B ) ) ).

% abs_le_D1
thf(fact_6712_abs__eq__0__iff,axiom,
    ! [A: code_integer] :
      ( ( ( abs_abs_Code_integer @ A )
        = zero_z3403309356797280102nteger )
      = ( A = zero_z3403309356797280102nteger ) ) ).

% abs_eq_0_iff
thf(fact_6713_abs__eq__0__iff,axiom,
    ! [A: complex] :
      ( ( ( abs_abs_complex @ A )
        = zero_zero_complex )
      = ( A = zero_zero_complex ) ) ).

% abs_eq_0_iff
thf(fact_6714_abs__eq__0__iff,axiom,
    ! [A: real] :
      ( ( ( abs_abs_real @ A )
        = zero_zero_real )
      = ( A = zero_zero_real ) ) ).

% abs_eq_0_iff
thf(fact_6715_abs__eq__0__iff,axiom,
    ! [A: rat] :
      ( ( ( abs_abs_rat @ A )
        = zero_zero_rat )
      = ( A = zero_zero_rat ) ) ).

% abs_eq_0_iff
thf(fact_6716_abs__eq__0__iff,axiom,
    ! [A: int] :
      ( ( ( abs_abs_int @ A )
        = zero_zero_int )
      = ( A = zero_zero_int ) ) ).

% abs_eq_0_iff
thf(fact_6717_abs__mult,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( abs_abs_Code_integer @ ( times_3573771949741848930nteger @ A @ B ) )
      = ( times_3573771949741848930nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) ) ) ).

% abs_mult
thf(fact_6718_abs__mult,axiom,
    ! [A: real,B: real] :
      ( ( abs_abs_real @ ( times_times_real @ A @ B ) )
      = ( times_times_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) ) ).

% abs_mult
thf(fact_6719_abs__mult,axiom,
    ! [A: rat,B: rat] :
      ( ( abs_abs_rat @ ( times_times_rat @ A @ B ) )
      = ( times_times_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) ) ).

% abs_mult
thf(fact_6720_abs__mult,axiom,
    ! [A: int,B: int] :
      ( ( abs_abs_int @ ( times_times_int @ A @ B ) )
      = ( times_times_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) ) ).

% abs_mult
thf(fact_6721_abs__one,axiom,
    ( ( abs_abs_Code_integer @ one_one_Code_integer )
    = one_one_Code_integer ) ).

% abs_one
thf(fact_6722_abs__one,axiom,
    ( ( abs_abs_real @ one_one_real )
    = one_one_real ) ).

% abs_one
thf(fact_6723_abs__one,axiom,
    ( ( abs_abs_rat @ one_one_rat )
    = one_one_rat ) ).

% abs_one
thf(fact_6724_abs__one,axiom,
    ( ( abs_abs_int @ one_one_int )
    = one_one_int ) ).

% abs_one
thf(fact_6725_abs__minus__commute,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ A @ B ) )
      = ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ B @ A ) ) ) ).

% abs_minus_commute
thf(fact_6726_abs__minus__commute,axiom,
    ! [A: real,B: real] :
      ( ( abs_abs_real @ ( minus_minus_real @ A @ B ) )
      = ( abs_abs_real @ ( minus_minus_real @ B @ A ) ) ) ).

% abs_minus_commute
thf(fact_6727_abs__minus__commute,axiom,
    ! [A: rat,B: rat] :
      ( ( abs_abs_rat @ ( minus_minus_rat @ A @ B ) )
      = ( abs_abs_rat @ ( minus_minus_rat @ B @ A ) ) ) ).

% abs_minus_commute
thf(fact_6728_abs__minus__commute,axiom,
    ! [A: int,B: int] :
      ( ( abs_abs_int @ ( minus_minus_int @ A @ B ) )
      = ( abs_abs_int @ ( minus_minus_int @ B @ A ) ) ) ).

% abs_minus_commute
thf(fact_6729_power__abs,axiom,
    ! [A: rat,N2: nat] :
      ( ( abs_abs_rat @ ( power_power_rat @ A @ N2 ) )
      = ( power_power_rat @ ( abs_abs_rat @ A ) @ N2 ) ) ).

% power_abs
thf(fact_6730_power__abs,axiom,
    ! [A: code_integer,N2: nat] :
      ( ( abs_abs_Code_integer @ ( power_8256067586552552935nteger @ A @ N2 ) )
      = ( power_8256067586552552935nteger @ ( abs_abs_Code_integer @ A ) @ N2 ) ) ).

% power_abs
thf(fact_6731_power__abs,axiom,
    ! [A: real,N2: nat] :
      ( ( abs_abs_real @ ( power_power_real @ A @ N2 ) )
      = ( power_power_real @ ( abs_abs_real @ A ) @ N2 ) ) ).

% power_abs
thf(fact_6732_power__abs,axiom,
    ! [A: int,N2: nat] :
      ( ( abs_abs_int @ ( power_power_int @ A @ N2 ) )
      = ( power_power_int @ ( abs_abs_int @ A ) @ N2 ) ) ).

% power_abs
thf(fact_6733_abs__eq__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ( abs_abs_real @ X )
        = ( abs_abs_real @ Y ) )
      = ( ( X = Y )
        | ( X
          = ( uminus_uminus_real @ Y ) ) ) ) ).

% abs_eq_iff
thf(fact_6734_abs__eq__iff,axiom,
    ! [X: int,Y: int] :
      ( ( ( abs_abs_int @ X )
        = ( abs_abs_int @ Y ) )
      = ( ( X = Y )
        | ( X
          = ( uminus_uminus_int @ Y ) ) ) ) ).

% abs_eq_iff
thf(fact_6735_abs__eq__iff,axiom,
    ! [X: rat,Y: rat] :
      ( ( ( abs_abs_rat @ X )
        = ( abs_abs_rat @ Y ) )
      = ( ( X = Y )
        | ( X
          = ( uminus_uminus_rat @ Y ) ) ) ) ).

% abs_eq_iff
thf(fact_6736_abs__eq__iff,axiom,
    ! [X: code_integer,Y: code_integer] :
      ( ( ( abs_abs_Code_integer @ X )
        = ( abs_abs_Code_integer @ Y ) )
      = ( ( X = Y )
        | ( X
          = ( uminus1351360451143612070nteger @ Y ) ) ) ) ).

% abs_eq_iff
thf(fact_6737_dvd__if__abs__eq,axiom,
    ! [L2: real,K: real] :
      ( ( ( abs_abs_real @ L2 )
        = ( abs_abs_real @ K ) )
     => ( dvd_dvd_real @ L2 @ K ) ) ).

% dvd_if_abs_eq
thf(fact_6738_dvd__if__abs__eq,axiom,
    ! [L2: int,K: int] :
      ( ( ( abs_abs_int @ L2 )
        = ( abs_abs_int @ K ) )
     => ( dvd_dvd_int @ L2 @ K ) ) ).

% dvd_if_abs_eq
thf(fact_6739_dvd__if__abs__eq,axiom,
    ! [L2: rat,K: rat] :
      ( ( ( abs_abs_rat @ L2 )
        = ( abs_abs_rat @ K ) )
     => ( dvd_dvd_rat @ L2 @ K ) ) ).

% dvd_if_abs_eq
thf(fact_6740_dvd__if__abs__eq,axiom,
    ! [L2: code_integer,K: code_integer] :
      ( ( ( abs_abs_Code_integer @ L2 )
        = ( abs_abs_Code_integer @ K ) )
     => ( dvd_dvd_Code_integer @ L2 @ K ) ) ).

% dvd_if_abs_eq
thf(fact_6741_mem__case__prodE,axiom,
    ! [Z: complex,C: code_integer > $o > set_complex,P4: produc6271795597528267376eger_o] :
      ( ( member_complex @ Z @ ( produc1043322548047392435omplex @ C @ P4 ) )
     => ~ ! [X5: code_integer,Y5: $o] :
            ( ( P4
              = ( produc6677183202524767010eger_o @ X5 @ Y5 ) )
           => ~ ( member_complex @ Z @ ( C @ X5 @ Y5 ) ) ) ) ).

% mem_case_prodE
thf(fact_6742_mem__case__prodE,axiom,
    ! [Z: real,C: code_integer > $o > set_real,P4: produc6271795597528267376eger_o] :
      ( ( member_real @ Z @ ( produc242741666403216561t_real @ C @ P4 ) )
     => ~ ! [X5: code_integer,Y5: $o] :
            ( ( P4
              = ( produc6677183202524767010eger_o @ X5 @ Y5 ) )
           => ~ ( member_real @ Z @ ( C @ X5 @ Y5 ) ) ) ) ).

% mem_case_prodE
thf(fact_6743_mem__case__prodE,axiom,
    ! [Z: nat,C: code_integer > $o > set_nat,P4: produc6271795597528267376eger_o] :
      ( ( member_nat @ Z @ ( produc5431169771168744661et_nat @ C @ P4 ) )
     => ~ ! [X5: code_integer,Y5: $o] :
            ( ( P4
              = ( produc6677183202524767010eger_o @ X5 @ Y5 ) )
           => ~ ( member_nat @ Z @ ( C @ X5 @ Y5 ) ) ) ) ).

% mem_case_prodE
thf(fact_6744_mem__case__prodE,axiom,
    ! [Z: int,C: code_integer > $o > set_int,P4: produc6271795597528267376eger_o] :
      ( ( member_int @ Z @ ( produc1253318751659547953et_int @ C @ P4 ) )
     => ~ ! [X5: code_integer,Y5: $o] :
            ( ( P4
              = ( produc6677183202524767010eger_o @ X5 @ Y5 ) )
           => ~ ( member_int @ Z @ ( C @ X5 @ Y5 ) ) ) ) ).

% mem_case_prodE
thf(fact_6745_mem__case__prodE,axiom,
    ! [Z: complex,C: num > num > set_complex,P4: product_prod_num_num] :
      ( ( member_complex @ Z @ ( produc2866383454006189126omplex @ C @ P4 ) )
     => ~ ! [X5: num,Y5: num] :
            ( ( P4
              = ( product_Pair_num_num @ X5 @ Y5 ) )
           => ~ ( member_complex @ Z @ ( C @ X5 @ Y5 ) ) ) ) ).

% mem_case_prodE
thf(fact_6746_mem__case__prodE,axiom,
    ! [Z: real,C: num > num > set_real,P4: product_prod_num_num] :
      ( ( member_real @ Z @ ( produc8296048397933160132t_real @ C @ P4 ) )
     => ~ ! [X5: num,Y5: num] :
            ( ( P4
              = ( product_Pair_num_num @ X5 @ Y5 ) )
           => ~ ( member_real @ Z @ ( C @ X5 @ Y5 ) ) ) ) ).

% mem_case_prodE
thf(fact_6747_mem__case__prodE,axiom,
    ! [Z: nat,C: num > num > set_nat,P4: product_prod_num_num] :
      ( ( member_nat @ Z @ ( produc1361121860356118632et_nat @ C @ P4 ) )
     => ~ ! [X5: num,Y5: num] :
            ( ( P4
              = ( product_Pair_num_num @ X5 @ Y5 ) )
           => ~ ( member_nat @ Z @ ( C @ X5 @ Y5 ) ) ) ) ).

% mem_case_prodE
thf(fact_6748_mem__case__prodE,axiom,
    ! [Z: int,C: num > num > set_int,P4: product_prod_num_num] :
      ( ( member_int @ Z @ ( produc6406642877701697732et_int @ C @ P4 ) )
     => ~ ! [X5: num,Y5: num] :
            ( ( P4
              = ( product_Pair_num_num @ X5 @ Y5 ) )
           => ~ ( member_int @ Z @ ( C @ X5 @ Y5 ) ) ) ) ).

% mem_case_prodE
thf(fact_6749_mem__case__prodE,axiom,
    ! [Z: complex,C: nat > num > set_complex,P4: product_prod_nat_num] :
      ( ( member_complex @ Z @ ( produc6231982587499038204omplex @ C @ P4 ) )
     => ~ ! [X5: nat,Y5: num] :
            ( ( P4
              = ( product_Pair_nat_num @ X5 @ Y5 ) )
           => ~ ( member_complex @ Z @ ( C @ X5 @ Y5 ) ) ) ) ).

% mem_case_prodE
thf(fact_6750_mem__case__prodE,axiom,
    ! [Z: real,C: nat > num > set_real,P4: product_prod_nat_num] :
      ( ( member_real @ Z @ ( produc1435849484188172666t_real @ C @ P4 ) )
     => ~ ! [X5: nat,Y5: num] :
            ( ( P4
              = ( product_Pair_nat_num @ X5 @ Y5 ) )
           => ~ ( member_real @ Z @ ( C @ X5 @ Y5 ) ) ) ) ).

% mem_case_prodE
thf(fact_6751_verit__eq__simplify_I14_J,axiom,
    ! [X22: num,X32: num] :
      ( ( bit0 @ X22 )
     != ( bit1 @ X32 ) ) ).

% verit_eq_simplify(14)
thf(fact_6752_verit__eq__simplify_I12_J,axiom,
    ! [X32: num] :
      ( one
     != ( bit1 @ X32 ) ) ).

% verit_eq_simplify(12)
thf(fact_6753_case__prodE,axiom,
    ! [C: code_integer > $o > $o,P4: produc6271795597528267376eger_o] :
      ( ( produc7828578312038201481er_o_o @ C @ P4 )
     => ~ ! [X5: code_integer,Y5: $o] :
            ( ( P4
              = ( produc6677183202524767010eger_o @ X5 @ Y5 ) )
           => ~ ( C @ X5 @ Y5 ) ) ) ).

% case_prodE
thf(fact_6754_case__prodE,axiom,
    ! [C: num > num > $o,P4: product_prod_num_num] :
      ( ( produc5703948589228662326_num_o @ C @ P4 )
     => ~ ! [X5: num,Y5: num] :
            ( ( P4
              = ( product_Pair_num_num @ X5 @ Y5 ) )
           => ~ ( C @ X5 @ Y5 ) ) ) ).

% case_prodE
thf(fact_6755_case__prodE,axiom,
    ! [C: nat > num > $o,P4: product_prod_nat_num] :
      ( ( produc4927758841916487424_num_o @ C @ P4 )
     => ~ ! [X5: nat,Y5: num] :
            ( ( P4
              = ( product_Pair_nat_num @ X5 @ Y5 ) )
           => ~ ( C @ X5 @ Y5 ) ) ) ).

% case_prodE
thf(fact_6756_case__prodE,axiom,
    ! [C: nat > nat > $o,P4: product_prod_nat_nat] :
      ( ( produc6081775807080527818_nat_o @ C @ P4 )
     => ~ ! [X5: nat,Y5: nat] :
            ( ( P4
              = ( product_Pair_nat_nat @ X5 @ Y5 ) )
           => ~ ( C @ X5 @ Y5 ) ) ) ).

% case_prodE
thf(fact_6757_case__prodE,axiom,
    ! [C: int > int > $o,P4: product_prod_int_int] :
      ( ( produc4947309494688390418_int_o @ C @ P4 )
     => ~ ! [X5: int,Y5: int] :
            ( ( P4
              = ( product_Pair_int_int @ X5 @ Y5 ) )
           => ~ ( C @ X5 @ Y5 ) ) ) ).

% case_prodE
thf(fact_6758_case__prodD,axiom,
    ! [F: code_integer > $o > $o,A: code_integer,B: $o] :
      ( ( produc7828578312038201481er_o_o @ F @ ( produc6677183202524767010eger_o @ A @ B ) )
     => ( F @ A @ B ) ) ).

% case_prodD
thf(fact_6759_case__prodD,axiom,
    ! [F: num > num > $o,A: num,B: num] :
      ( ( produc5703948589228662326_num_o @ F @ ( product_Pair_num_num @ A @ B ) )
     => ( F @ A @ B ) ) ).

% case_prodD
thf(fact_6760_case__prodD,axiom,
    ! [F: nat > num > $o,A: nat,B: num] :
      ( ( produc4927758841916487424_num_o @ F @ ( product_Pair_nat_num @ A @ B ) )
     => ( F @ A @ B ) ) ).

% case_prodD
thf(fact_6761_case__prodD,axiom,
    ! [F: nat > nat > $o,A: nat,B: nat] :
      ( ( produc6081775807080527818_nat_o @ F @ ( product_Pair_nat_nat @ A @ B ) )
     => ( F @ A @ B ) ) ).

% case_prodD
thf(fact_6762_case__prodD,axiom,
    ! [F: int > int > $o,A: int,B: int] :
      ( ( produc4947309494688390418_int_o @ F @ ( product_Pair_int_int @ A @ B ) )
     => ( F @ A @ B ) ) ).

% case_prodD
thf(fact_6763_case__prodD_H,axiom,
    ! [R: nat > nat > product_prod_nat_nat > $o,A: nat,B: nat,C: product_prod_nat_nat] :
      ( ( produc8739625826339149834_nat_o @ R @ ( product_Pair_nat_nat @ A @ B ) @ C )
     => ( R @ A @ B @ C ) ) ).

% case_prodD'
thf(fact_6764_case__prodE_H,axiom,
    ! [C: nat > nat > product_prod_nat_nat > $o,P4: product_prod_nat_nat,Z: product_prod_nat_nat] :
      ( ( produc8739625826339149834_nat_o @ C @ P4 @ Z )
     => ~ ! [X5: nat,Y5: nat] :
            ( ( P4
              = ( product_Pair_nat_nat @ X5 @ Y5 ) )
           => ~ ( C @ X5 @ Y5 @ Z ) ) ) ).

% case_prodE'
thf(fact_6765_abs__ge__zero,axiom,
    ! [A: code_integer] : ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( abs_abs_Code_integer @ A ) ) ).

% abs_ge_zero
thf(fact_6766_abs__ge__zero,axiom,
    ! [A: real] : ( ord_less_eq_real @ zero_zero_real @ ( abs_abs_real @ A ) ) ).

% abs_ge_zero
thf(fact_6767_abs__ge__zero,axiom,
    ! [A: rat] : ( ord_less_eq_rat @ zero_zero_rat @ ( abs_abs_rat @ A ) ) ).

% abs_ge_zero
thf(fact_6768_abs__ge__zero,axiom,
    ! [A: int] : ( ord_less_eq_int @ zero_zero_int @ ( abs_abs_int @ A ) ) ).

% abs_ge_zero
thf(fact_6769_abs__not__less__zero,axiom,
    ! [A: code_integer] :
      ~ ( ord_le6747313008572928689nteger @ ( abs_abs_Code_integer @ A ) @ zero_z3403309356797280102nteger ) ).

% abs_not_less_zero
thf(fact_6770_abs__not__less__zero,axiom,
    ! [A: real] :
      ~ ( ord_less_real @ ( abs_abs_real @ A ) @ zero_zero_real ) ).

% abs_not_less_zero
thf(fact_6771_abs__not__less__zero,axiom,
    ! [A: rat] :
      ~ ( ord_less_rat @ ( abs_abs_rat @ A ) @ zero_zero_rat ) ).

% abs_not_less_zero
thf(fact_6772_abs__not__less__zero,axiom,
    ! [A: int] :
      ~ ( ord_less_int @ ( abs_abs_int @ A ) @ zero_zero_int ) ).

% abs_not_less_zero
thf(fact_6773_abs__of__pos,axiom,
    ! [A: code_integer] :
      ( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ A )
     => ( ( abs_abs_Code_integer @ A )
        = A ) ) ).

% abs_of_pos
thf(fact_6774_abs__of__pos,axiom,
    ! [A: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( abs_abs_real @ A )
        = A ) ) ).

% abs_of_pos
thf(fact_6775_abs__of__pos,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ( abs_abs_rat @ A )
        = A ) ) ).

% abs_of_pos
thf(fact_6776_abs__of__pos,axiom,
    ! [A: int] :
      ( ( ord_less_int @ zero_zero_int @ A )
     => ( ( abs_abs_int @ A )
        = A ) ) ).

% abs_of_pos
thf(fact_6777_abs__triangle__ineq,axiom,
    ! [A: code_integer,B: code_integer] : ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ ( plus_p5714425477246183910nteger @ A @ B ) ) @ ( plus_p5714425477246183910nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) ) ) ).

% abs_triangle_ineq
thf(fact_6778_abs__triangle__ineq,axiom,
    ! [A: real,B: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( plus_plus_real @ A @ B ) ) @ ( plus_plus_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) ) ).

% abs_triangle_ineq
thf(fact_6779_abs__triangle__ineq,axiom,
    ! [A: rat,B: rat] : ( ord_less_eq_rat @ ( abs_abs_rat @ ( plus_plus_rat @ A @ B ) ) @ ( plus_plus_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) ) ).

% abs_triangle_ineq
thf(fact_6780_abs__triangle__ineq,axiom,
    ! [A: int,B: int] : ( ord_less_eq_int @ ( abs_abs_int @ ( plus_plus_int @ A @ B ) ) @ ( plus_plus_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) ) ).

% abs_triangle_ineq
thf(fact_6781_abs__mult__less,axiom,
    ! [A: code_integer,C: code_integer,B: code_integer,D: code_integer] :
      ( ( ord_le6747313008572928689nteger @ ( abs_abs_Code_integer @ A ) @ C )
     => ( ( ord_le6747313008572928689nteger @ ( abs_abs_Code_integer @ B ) @ D )
       => ( ord_le6747313008572928689nteger @ ( times_3573771949741848930nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) ) @ ( times_3573771949741848930nteger @ C @ D ) ) ) ) ).

% abs_mult_less
thf(fact_6782_abs__mult__less,axiom,
    ! [A: real,C: real,B: real,D: real] :
      ( ( ord_less_real @ ( abs_abs_real @ A ) @ C )
     => ( ( ord_less_real @ ( abs_abs_real @ B ) @ D )
       => ( ord_less_real @ ( times_times_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) @ ( times_times_real @ C @ D ) ) ) ) ).

% abs_mult_less
thf(fact_6783_abs__mult__less,axiom,
    ! [A: rat,C: rat,B: rat,D: rat] :
      ( ( ord_less_rat @ ( abs_abs_rat @ A ) @ C )
     => ( ( ord_less_rat @ ( abs_abs_rat @ B ) @ D )
       => ( ord_less_rat @ ( times_times_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) @ ( times_times_rat @ C @ D ) ) ) ) ).

% abs_mult_less
thf(fact_6784_abs__mult__less,axiom,
    ! [A: int,C: int,B: int,D: int] :
      ( ( ord_less_int @ ( abs_abs_int @ A ) @ C )
     => ( ( ord_less_int @ ( abs_abs_int @ B ) @ D )
       => ( ord_less_int @ ( times_times_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) @ ( times_times_int @ C @ D ) ) ) ) ).

% abs_mult_less
thf(fact_6785_abs__triangle__ineq2__sym,axiom,
    ! [A: code_integer,B: code_integer] : ( ord_le3102999989581377725nteger @ ( minus_8373710615458151222nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) ) @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ B @ A ) ) ) ).

% abs_triangle_ineq2_sym
thf(fact_6786_abs__triangle__ineq2__sym,axiom,
    ! [A: real,B: real] : ( ord_less_eq_real @ ( minus_minus_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) @ ( abs_abs_real @ ( minus_minus_real @ B @ A ) ) ) ).

% abs_triangle_ineq2_sym
thf(fact_6787_abs__triangle__ineq2__sym,axiom,
    ! [A: rat,B: rat] : ( ord_less_eq_rat @ ( minus_minus_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) @ ( abs_abs_rat @ ( minus_minus_rat @ B @ A ) ) ) ).

% abs_triangle_ineq2_sym
thf(fact_6788_abs__triangle__ineq2__sym,axiom,
    ! [A: int,B: int] : ( ord_less_eq_int @ ( minus_minus_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) @ ( abs_abs_int @ ( minus_minus_int @ B @ A ) ) ) ).

% abs_triangle_ineq2_sym
thf(fact_6789_abs__triangle__ineq3,axiom,
    ! [A: code_integer,B: code_integer] : ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) ) ) @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ A @ B ) ) ) ).

% abs_triangle_ineq3
thf(fact_6790_abs__triangle__ineq3,axiom,
    ! [A: real,B: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) ) @ ( abs_abs_real @ ( minus_minus_real @ A @ B ) ) ) ).

% abs_triangle_ineq3
thf(fact_6791_abs__triangle__ineq3,axiom,
    ! [A: rat,B: rat] : ( ord_less_eq_rat @ ( abs_abs_rat @ ( minus_minus_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) ) @ ( abs_abs_rat @ ( minus_minus_rat @ A @ B ) ) ) ).

% abs_triangle_ineq3
thf(fact_6792_abs__triangle__ineq3,axiom,
    ! [A: int,B: int] : ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) ) @ ( abs_abs_int @ ( minus_minus_int @ A @ B ) ) ) ).

% abs_triangle_ineq3
thf(fact_6793_abs__triangle__ineq2,axiom,
    ! [A: code_integer,B: code_integer] : ( ord_le3102999989581377725nteger @ ( minus_8373710615458151222nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) ) @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ A @ B ) ) ) ).

% abs_triangle_ineq2
thf(fact_6794_abs__triangle__ineq2,axiom,
    ! [A: real,B: real] : ( ord_less_eq_real @ ( minus_minus_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) @ ( abs_abs_real @ ( minus_minus_real @ A @ B ) ) ) ).

% abs_triangle_ineq2
thf(fact_6795_abs__triangle__ineq2,axiom,
    ! [A: rat,B: rat] : ( ord_less_eq_rat @ ( minus_minus_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) @ ( abs_abs_rat @ ( minus_minus_rat @ A @ B ) ) ) ).

% abs_triangle_ineq2
thf(fact_6796_abs__triangle__ineq2,axiom,
    ! [A: int,B: int] : ( ord_less_eq_int @ ( minus_minus_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) @ ( abs_abs_int @ ( minus_minus_int @ A @ B ) ) ) ).

% abs_triangle_ineq2
thf(fact_6797_nonzero__abs__divide,axiom,
    ! [B: real,A: real] :
      ( ( B != zero_zero_real )
     => ( ( abs_abs_real @ ( divide_divide_real @ A @ B ) )
        = ( divide_divide_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) ) ) ).

% nonzero_abs_divide
thf(fact_6798_nonzero__abs__divide,axiom,
    ! [B: rat,A: rat] :
      ( ( B != zero_zero_rat )
     => ( ( abs_abs_rat @ ( divide_divide_rat @ A @ B ) )
        = ( divide_divide_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) ) ) ).

% nonzero_abs_divide
thf(fact_6799_abs__ge__minus__self,axiom,
    ! [A: real] : ( ord_less_eq_real @ ( uminus_uminus_real @ A ) @ ( abs_abs_real @ A ) ) ).

% abs_ge_minus_self
thf(fact_6800_abs__ge__minus__self,axiom,
    ! [A: code_integer] : ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ A ) @ ( abs_abs_Code_integer @ A ) ) ).

% abs_ge_minus_self
thf(fact_6801_abs__ge__minus__self,axiom,
    ! [A: rat] : ( ord_less_eq_rat @ ( uminus_uminus_rat @ A ) @ ( abs_abs_rat @ A ) ) ).

% abs_ge_minus_self
thf(fact_6802_abs__ge__minus__self,axiom,
    ! [A: int] : ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ ( abs_abs_int @ A ) ) ).

% abs_ge_minus_self
thf(fact_6803_abs__le__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ A ) @ B )
      = ( ( ord_less_eq_real @ A @ B )
        & ( ord_less_eq_real @ ( uminus_uminus_real @ A ) @ B ) ) ) ).

% abs_le_iff
thf(fact_6804_abs__le__iff,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ A ) @ B )
      = ( ( ord_le3102999989581377725nteger @ A @ B )
        & ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ A ) @ B ) ) ) ).

% abs_le_iff
thf(fact_6805_abs__le__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( abs_abs_rat @ A ) @ B )
      = ( ( ord_less_eq_rat @ A @ B )
        & ( ord_less_eq_rat @ ( uminus_uminus_rat @ A ) @ B ) ) ) ).

% abs_le_iff
thf(fact_6806_abs__le__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ ( abs_abs_int @ A ) @ B )
      = ( ( ord_less_eq_int @ A @ B )
        & ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ B ) ) ) ).

% abs_le_iff
thf(fact_6807_abs__le__D2,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ A ) @ B )
     => ( ord_less_eq_real @ ( uminus_uminus_real @ A ) @ B ) ) ).

% abs_le_D2
thf(fact_6808_abs__le__D2,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ A ) @ B )
     => ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ A ) @ B ) ) ).

% abs_le_D2
thf(fact_6809_abs__le__D2,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( abs_abs_rat @ A ) @ B )
     => ( ord_less_eq_rat @ ( uminus_uminus_rat @ A ) @ B ) ) ).

% abs_le_D2
thf(fact_6810_abs__le__D2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ ( abs_abs_int @ A ) @ B )
     => ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ B ) ) ).

% abs_le_D2
thf(fact_6811_abs__leI,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ ( uminus_uminus_real @ A ) @ B )
       => ( ord_less_eq_real @ ( abs_abs_real @ A ) @ B ) ) ) ).

% abs_leI
thf(fact_6812_abs__leI,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ord_le3102999989581377725nteger @ A @ B )
     => ( ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ A ) @ B )
       => ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ A ) @ B ) ) ) ).

% abs_leI
thf(fact_6813_abs__leI,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_rat @ ( uminus_uminus_rat @ A ) @ B )
       => ( ord_less_eq_rat @ ( abs_abs_rat @ A ) @ B ) ) ) ).

% abs_leI
thf(fact_6814_abs__leI,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ B )
       => ( ord_less_eq_int @ ( abs_abs_int @ A ) @ B ) ) ) ).

% abs_leI
thf(fact_6815_abs__less__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ ( abs_abs_real @ A ) @ B )
      = ( ( ord_less_real @ A @ B )
        & ( ord_less_real @ ( uminus_uminus_real @ A ) @ B ) ) ) ).

% abs_less_iff
thf(fact_6816_abs__less__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ ( abs_abs_int @ A ) @ B )
      = ( ( ord_less_int @ A @ B )
        & ( ord_less_int @ ( uminus_uminus_int @ A ) @ B ) ) ) ).

% abs_less_iff
thf(fact_6817_abs__less__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ ( abs_abs_rat @ A ) @ B )
      = ( ( ord_less_rat @ A @ B )
        & ( ord_less_rat @ ( uminus_uminus_rat @ A ) @ B ) ) ) ).

% abs_less_iff
thf(fact_6818_abs__less__iff,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ord_le6747313008572928689nteger @ ( abs_abs_Code_integer @ A ) @ B )
      = ( ( ord_le6747313008572928689nteger @ A @ B )
        & ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ A ) @ B ) ) ) ).

% abs_less_iff
thf(fact_6819_sum__cong__Suc,axiom,
    ! [A2: set_nat,F: nat > nat,G: nat > nat] :
      ( ~ ( member_nat @ zero_zero_nat @ A2 )
     => ( ! [X5: nat] :
            ( ( member_nat @ ( suc @ X5 ) @ A2 )
           => ( ( F @ ( suc @ X5 ) )
              = ( G @ ( suc @ X5 ) ) ) )
       => ( ( groups3542108847815614940at_nat @ F @ A2 )
          = ( groups3542108847815614940at_nat @ G @ A2 ) ) ) ) ).

% sum_cong_Suc
thf(fact_6820_sum__cong__Suc,axiom,
    ! [A2: set_nat,F: nat > real,G: nat > real] :
      ( ~ ( member_nat @ zero_zero_nat @ A2 )
     => ( ! [X5: nat] :
            ( ( member_nat @ ( suc @ X5 ) @ A2 )
           => ( ( F @ ( suc @ X5 ) )
              = ( G @ ( suc @ X5 ) ) ) )
       => ( ( groups6591440286371151544t_real @ F @ A2 )
          = ( groups6591440286371151544t_real @ G @ A2 ) ) ) ) ).

% sum_cong_Suc
thf(fact_6821_num_Oexhaust,axiom,
    ! [Y: num] :
      ( ( Y != one )
     => ( ! [X23: num] :
            ( Y
           != ( bit0 @ X23 ) )
       => ~ ! [X33: num] :
              ( Y
             != ( bit1 @ X33 ) ) ) ) ).

% num.exhaust
thf(fact_6822_xor__num_Ocases,axiom,
    ! [X: product_prod_num_num] :
      ( ( X
       != ( product_Pair_num_num @ one @ one ) )
     => ( ! [N: num] :
            ( X
           != ( product_Pair_num_num @ one @ ( bit0 @ N ) ) )
       => ( ! [N: num] :
              ( X
             != ( product_Pair_num_num @ one @ ( bit1 @ N ) ) )
         => ( ! [M2: num] :
                ( X
               != ( product_Pair_num_num @ ( bit0 @ M2 ) @ one ) )
           => ( ! [M2: num,N: num] :
                  ( X
                 != ( product_Pair_num_num @ ( bit0 @ M2 ) @ ( bit0 @ N ) ) )
             => ( ! [M2: num,N: num] :
                    ( X
                   != ( product_Pair_num_num @ ( bit0 @ M2 ) @ ( bit1 @ N ) ) )
               => ( ! [M2: num] :
                      ( X
                     != ( product_Pair_num_num @ ( bit1 @ M2 ) @ one ) )
                 => ( ! [M2: num,N: num] :
                        ( X
                       != ( product_Pair_num_num @ ( bit1 @ M2 ) @ ( bit0 @ N ) ) )
                   => ~ ! [M2: num,N: num] :
                          ( X
                         != ( product_Pair_num_num @ ( bit1 @ M2 ) @ ( bit1 @ N ) ) ) ) ) ) ) ) ) ) ) ).

% xor_num.cases
thf(fact_6823_sin__bound__lemma,axiom,
    ! [X: real,Y: real,U: real,V: real] :
      ( ( X = Y )
     => ( ( ord_less_eq_real @ ( abs_abs_real @ U ) @ V )
       => ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( plus_plus_real @ X @ U ) @ Y ) ) @ V ) ) ) ).

% sin_bound_lemma
thf(fact_6824_sum__subtractf__nat,axiom,
    ! [A2: set_complex,G: complex > nat,F: complex > nat] :
      ( ! [X5: complex] :
          ( ( member_complex @ X5 @ A2 )
         => ( ord_less_eq_nat @ ( G @ X5 ) @ ( F @ X5 ) ) )
     => ( ( groups5693394587270226106ex_nat
          @ ^ [X3: complex] : ( minus_minus_nat @ ( F @ X3 ) @ ( G @ X3 ) )
          @ A2 )
        = ( minus_minus_nat @ ( groups5693394587270226106ex_nat @ F @ A2 ) @ ( groups5693394587270226106ex_nat @ G @ A2 ) ) ) ) ).

% sum_subtractf_nat
thf(fact_6825_sum__subtractf__nat,axiom,
    ! [A2: set_real,G: real > nat,F: real > nat] :
      ( ! [X5: real] :
          ( ( member_real @ X5 @ A2 )
         => ( ord_less_eq_nat @ ( G @ X5 ) @ ( F @ X5 ) ) )
     => ( ( groups1935376822645274424al_nat
          @ ^ [X3: real] : ( minus_minus_nat @ ( F @ X3 ) @ ( G @ X3 ) )
          @ A2 )
        = ( minus_minus_nat @ ( groups1935376822645274424al_nat @ F @ A2 ) @ ( groups1935376822645274424al_nat @ G @ A2 ) ) ) ) ).

% sum_subtractf_nat
thf(fact_6826_sum__subtractf__nat,axiom,
    ! [A2: set_set_nat,G: set_nat > nat,F: set_nat > nat] :
      ( ! [X5: set_nat] :
          ( ( member_set_nat @ X5 @ A2 )
         => ( ord_less_eq_nat @ ( G @ X5 ) @ ( F @ X5 ) ) )
     => ( ( groups8294997508430121362at_nat
          @ ^ [X3: set_nat] : ( minus_minus_nat @ ( F @ X3 ) @ ( G @ X3 ) )
          @ A2 )
        = ( minus_minus_nat @ ( groups8294997508430121362at_nat @ F @ A2 ) @ ( groups8294997508430121362at_nat @ G @ A2 ) ) ) ) ).

% sum_subtractf_nat
thf(fact_6827_sum__subtractf__nat,axiom,
    ! [A2: set_int,G: int > nat,F: int > nat] :
      ( ! [X5: int] :
          ( ( member_int @ X5 @ A2 )
         => ( ord_less_eq_nat @ ( G @ X5 ) @ ( F @ X5 ) ) )
     => ( ( groups4541462559716669496nt_nat
          @ ^ [X3: int] : ( minus_minus_nat @ ( F @ X3 ) @ ( G @ X3 ) )
          @ A2 )
        = ( minus_minus_nat @ ( groups4541462559716669496nt_nat @ F @ A2 ) @ ( groups4541462559716669496nt_nat @ G @ A2 ) ) ) ) ).

% sum_subtractf_nat
thf(fact_6828_sum__subtractf__nat,axiom,
    ! [A2: set_nat,G: nat > nat,F: nat > nat] :
      ( ! [X5: nat] :
          ( ( member_nat @ X5 @ A2 )
         => ( ord_less_eq_nat @ ( G @ X5 ) @ ( F @ X5 ) ) )
     => ( ( groups3542108847815614940at_nat
          @ ^ [X3: nat] : ( minus_minus_nat @ ( F @ X3 ) @ ( G @ X3 ) )
          @ A2 )
        = ( minus_minus_nat @ ( groups3542108847815614940at_nat @ F @ A2 ) @ ( groups3542108847815614940at_nat @ G @ A2 ) ) ) ) ).

% sum_subtractf_nat
thf(fact_6829_sum_Oshift__bounds__cl__Suc__ivl,axiom,
    ! [G: nat > nat,M: nat,N2: nat] :
      ( ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ ( suc @ M ) @ ( suc @ N2 ) ) )
      = ( groups3542108847815614940at_nat
        @ ^ [I5: nat] : ( G @ ( suc @ I5 ) )
        @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) ) ).

% sum.shift_bounds_cl_Suc_ivl
thf(fact_6830_sum_Oshift__bounds__cl__Suc__ivl,axiom,
    ! [G: nat > real,M: nat,N2: nat] :
      ( ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ ( suc @ M ) @ ( suc @ N2 ) ) )
      = ( groups6591440286371151544t_real
        @ ^ [I5: nat] : ( G @ ( suc @ I5 ) )
        @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) ) ).

% sum.shift_bounds_cl_Suc_ivl
thf(fact_6831_sum_Oshift__bounds__cl__nat__ivl,axiom,
    ! [G: nat > nat,M: nat,K: nat,N2: nat] :
      ( ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ ( plus_plus_nat @ M @ K ) @ ( plus_plus_nat @ N2 @ K ) ) )
      = ( groups3542108847815614940at_nat
        @ ^ [I5: nat] : ( G @ ( plus_plus_nat @ I5 @ K ) )
        @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) ) ).

% sum.shift_bounds_cl_nat_ivl
thf(fact_6832_sum_Oshift__bounds__cl__nat__ivl,axiom,
    ! [G: nat > real,M: nat,K: nat,N2: nat] :
      ( ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ ( plus_plus_nat @ M @ K ) @ ( plus_plus_nat @ N2 @ K ) ) )
      = ( groups6591440286371151544t_real
        @ ^ [I5: nat] : ( G @ ( plus_plus_nat @ I5 @ K ) )
        @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) ) ).

% sum.shift_bounds_cl_nat_ivl
thf(fact_6833_dense__eq0__I,axiom,
    ! [X: real] :
      ( ! [E2: real] :
          ( ( ord_less_real @ zero_zero_real @ E2 )
         => ( ord_less_eq_real @ ( abs_abs_real @ X ) @ E2 ) )
     => ( X = zero_zero_real ) ) ).

% dense_eq0_I
thf(fact_6834_dense__eq0__I,axiom,
    ! [X: rat] :
      ( ! [E2: rat] :
          ( ( ord_less_rat @ zero_zero_rat @ E2 )
         => ( ord_less_eq_rat @ ( abs_abs_rat @ X ) @ E2 ) )
     => ( X = zero_zero_rat ) ) ).

% dense_eq0_I
thf(fact_6835_abs__eq__mult,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A )
          | ( ord_le3102999989581377725nteger @ A @ zero_z3403309356797280102nteger ) )
        & ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ B )
          | ( ord_le3102999989581377725nteger @ B @ zero_z3403309356797280102nteger ) ) )
     => ( ( abs_abs_Code_integer @ ( times_3573771949741848930nteger @ A @ B ) )
        = ( times_3573771949741848930nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) ) ) ) ).

% abs_eq_mult
thf(fact_6836_abs__eq__mult,axiom,
    ! [A: real,B: real] :
      ( ( ( ( ord_less_eq_real @ zero_zero_real @ A )
          | ( ord_less_eq_real @ A @ zero_zero_real ) )
        & ( ( ord_less_eq_real @ zero_zero_real @ B )
          | ( ord_less_eq_real @ B @ zero_zero_real ) ) )
     => ( ( abs_abs_real @ ( times_times_real @ A @ B ) )
        = ( times_times_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) ) ) ).

% abs_eq_mult
thf(fact_6837_abs__eq__mult,axiom,
    ! [A: rat,B: rat] :
      ( ( ( ( ord_less_eq_rat @ zero_zero_rat @ A )
          | ( ord_less_eq_rat @ A @ zero_zero_rat ) )
        & ( ( ord_less_eq_rat @ zero_zero_rat @ B )
          | ( ord_less_eq_rat @ B @ zero_zero_rat ) ) )
     => ( ( abs_abs_rat @ ( times_times_rat @ A @ B ) )
        = ( times_times_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) ) ) ).

% abs_eq_mult
thf(fact_6838_abs__eq__mult,axiom,
    ! [A: int,B: int] :
      ( ( ( ( ord_less_eq_int @ zero_zero_int @ A )
          | ( ord_less_eq_int @ A @ zero_zero_int ) )
        & ( ( ord_less_eq_int @ zero_zero_int @ B )
          | ( ord_less_eq_int @ B @ zero_zero_int ) ) )
     => ( ( abs_abs_int @ ( times_times_int @ A @ B ) )
        = ( times_times_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) ) ) ).

% abs_eq_mult
thf(fact_6839_abs__mult__pos,axiom,
    ! [X: code_integer,Y: code_integer] :
      ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ X )
     => ( ( times_3573771949741848930nteger @ ( abs_abs_Code_integer @ Y ) @ X )
        = ( abs_abs_Code_integer @ ( times_3573771949741848930nteger @ Y @ X ) ) ) ) ).

% abs_mult_pos
thf(fact_6840_abs__mult__pos,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( times_times_real @ ( abs_abs_real @ Y ) @ X )
        = ( abs_abs_real @ ( times_times_real @ Y @ X ) ) ) ) ).

% abs_mult_pos
thf(fact_6841_abs__mult__pos,axiom,
    ! [X: rat,Y: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ X )
     => ( ( times_times_rat @ ( abs_abs_rat @ Y ) @ X )
        = ( abs_abs_rat @ ( times_times_rat @ Y @ X ) ) ) ) ).

% abs_mult_pos
thf(fact_6842_abs__mult__pos,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X )
     => ( ( times_times_int @ ( abs_abs_int @ Y ) @ X )
        = ( abs_abs_int @ ( times_times_int @ Y @ X ) ) ) ) ).

% abs_mult_pos
thf(fact_6843_zero__le__power__abs,axiom,
    ! [A: code_integer,N2: nat] : ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( power_8256067586552552935nteger @ ( abs_abs_Code_integer @ A ) @ N2 ) ) ).

% zero_le_power_abs
thf(fact_6844_zero__le__power__abs,axiom,
    ! [A: real,N2: nat] : ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ ( abs_abs_real @ A ) @ N2 ) ) ).

% zero_le_power_abs
thf(fact_6845_zero__le__power__abs,axiom,
    ! [A: rat,N2: nat] : ( ord_less_eq_rat @ zero_zero_rat @ ( power_power_rat @ ( abs_abs_rat @ A ) @ N2 ) ) ).

% zero_le_power_abs
thf(fact_6846_zero__le__power__abs,axiom,
    ! [A: int,N2: nat] : ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ ( abs_abs_int @ A ) @ N2 ) ) ).

% zero_le_power_abs
thf(fact_6847_abs__minus__le__zero,axiom,
    ! [A: real] : ( ord_less_eq_real @ ( uminus_uminus_real @ ( abs_abs_real @ A ) ) @ zero_zero_real ) ).

% abs_minus_le_zero
thf(fact_6848_abs__minus__le__zero,axiom,
    ! [A: code_integer] : ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ ( abs_abs_Code_integer @ A ) ) @ zero_z3403309356797280102nteger ) ).

% abs_minus_le_zero
thf(fact_6849_abs__minus__le__zero,axiom,
    ! [A: rat] : ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( abs_abs_rat @ A ) ) @ zero_zero_rat ) ).

% abs_minus_le_zero
thf(fact_6850_abs__minus__le__zero,axiom,
    ! [A: int] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( abs_abs_int @ A ) ) @ zero_zero_int ) ).

% abs_minus_le_zero
thf(fact_6851_eq__abs__iff_H,axiom,
    ! [A: real,B: real] :
      ( ( A
        = ( abs_abs_real @ B ) )
      = ( ( ord_less_eq_real @ zero_zero_real @ A )
        & ( ( B = A )
          | ( B
            = ( uminus_uminus_real @ A ) ) ) ) ) ).

% eq_abs_iff'
thf(fact_6852_eq__abs__iff_H,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( A
        = ( abs_abs_Code_integer @ B ) )
      = ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A )
        & ( ( B = A )
          | ( B
            = ( uminus1351360451143612070nteger @ A ) ) ) ) ) ).

% eq_abs_iff'
thf(fact_6853_eq__abs__iff_H,axiom,
    ! [A: rat,B: rat] :
      ( ( A
        = ( abs_abs_rat @ B ) )
      = ( ( ord_less_eq_rat @ zero_zero_rat @ A )
        & ( ( B = A )
          | ( B
            = ( uminus_uminus_rat @ A ) ) ) ) ) ).

% eq_abs_iff'
thf(fact_6854_eq__abs__iff_H,axiom,
    ! [A: int,B: int] :
      ( ( A
        = ( abs_abs_int @ B ) )
      = ( ( ord_less_eq_int @ zero_zero_int @ A )
        & ( ( B = A )
          | ( B
            = ( uminus_uminus_int @ A ) ) ) ) ) ).

% eq_abs_iff'
thf(fact_6855_abs__eq__iff_H,axiom,
    ! [A: real,B: real] :
      ( ( ( abs_abs_real @ A )
        = B )
      = ( ( ord_less_eq_real @ zero_zero_real @ B )
        & ( ( A = B )
          | ( A
            = ( uminus_uminus_real @ B ) ) ) ) ) ).

% abs_eq_iff'
thf(fact_6856_abs__eq__iff_H,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ( abs_abs_Code_integer @ A )
        = B )
      = ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ B )
        & ( ( A = B )
          | ( A
            = ( uminus1351360451143612070nteger @ B ) ) ) ) ) ).

% abs_eq_iff'
thf(fact_6857_abs__eq__iff_H,axiom,
    ! [A: rat,B: rat] :
      ( ( ( abs_abs_rat @ A )
        = B )
      = ( ( ord_less_eq_rat @ zero_zero_rat @ B )
        & ( ( A = B )
          | ( A
            = ( uminus_uminus_rat @ B ) ) ) ) ) ).

% abs_eq_iff'
thf(fact_6858_abs__eq__iff_H,axiom,
    ! [A: int,B: int] :
      ( ( ( abs_abs_int @ A )
        = B )
      = ( ( ord_less_eq_int @ zero_zero_int @ B )
        & ( ( A = B )
          | ( A
            = ( uminus_uminus_int @ B ) ) ) ) ) ).

% abs_eq_iff'
thf(fact_6859_abs__div__pos,axiom,
    ! [Y: real,X: real] :
      ( ( ord_less_real @ zero_zero_real @ Y )
     => ( ( divide_divide_real @ ( abs_abs_real @ X ) @ Y )
        = ( abs_abs_real @ ( divide_divide_real @ X @ Y ) ) ) ) ).

% abs_div_pos
thf(fact_6860_abs__div__pos,axiom,
    ! [Y: rat,X: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ Y )
     => ( ( divide_divide_rat @ ( abs_abs_rat @ X ) @ Y )
        = ( abs_abs_rat @ ( divide_divide_rat @ X @ Y ) ) ) ) ).

% abs_div_pos
thf(fact_6861_abs__if__raw,axiom,
    ( abs_abs_real
    = ( ^ [A4: real] : ( if_real @ ( ord_less_real @ A4 @ zero_zero_real ) @ ( uminus_uminus_real @ A4 ) @ A4 ) ) ) ).

% abs_if_raw
thf(fact_6862_abs__if__raw,axiom,
    ( abs_abs_int
    = ( ^ [A4: int] : ( if_int @ ( ord_less_int @ A4 @ zero_zero_int ) @ ( uminus_uminus_int @ A4 ) @ A4 ) ) ) ).

% abs_if_raw
thf(fact_6863_abs__if__raw,axiom,
    ( abs_abs_rat
    = ( ^ [A4: rat] : ( if_rat @ ( ord_less_rat @ A4 @ zero_zero_rat ) @ ( uminus_uminus_rat @ A4 ) @ A4 ) ) ) ).

% abs_if_raw
thf(fact_6864_abs__if__raw,axiom,
    ( abs_abs_Code_integer
    = ( ^ [A4: code_integer] : ( if_Code_integer @ ( ord_le6747313008572928689nteger @ A4 @ zero_z3403309356797280102nteger ) @ ( uminus1351360451143612070nteger @ A4 ) @ A4 ) ) ) ).

% abs_if_raw
thf(fact_6865_abs__if,axiom,
    ( abs_abs_real
    = ( ^ [A4: real] : ( if_real @ ( ord_less_real @ A4 @ zero_zero_real ) @ ( uminus_uminus_real @ A4 ) @ A4 ) ) ) ).

% abs_if
thf(fact_6866_abs__if,axiom,
    ( abs_abs_int
    = ( ^ [A4: int] : ( if_int @ ( ord_less_int @ A4 @ zero_zero_int ) @ ( uminus_uminus_int @ A4 ) @ A4 ) ) ) ).

% abs_if
thf(fact_6867_abs__if,axiom,
    ( abs_abs_rat
    = ( ^ [A4: rat] : ( if_rat @ ( ord_less_rat @ A4 @ zero_zero_rat ) @ ( uminus_uminus_rat @ A4 ) @ A4 ) ) ) ).

% abs_if
thf(fact_6868_abs__if,axiom,
    ( abs_abs_Code_integer
    = ( ^ [A4: code_integer] : ( if_Code_integer @ ( ord_le6747313008572928689nteger @ A4 @ zero_z3403309356797280102nteger ) @ ( uminus1351360451143612070nteger @ A4 ) @ A4 ) ) ) ).

% abs_if
thf(fact_6869_abs__of__neg,axiom,
    ! [A: real] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ( abs_abs_real @ A )
        = ( uminus_uminus_real @ A ) ) ) ).

% abs_of_neg
thf(fact_6870_abs__of__neg,axiom,
    ! [A: int] :
      ( ( ord_less_int @ A @ zero_zero_int )
     => ( ( abs_abs_int @ A )
        = ( uminus_uminus_int @ A ) ) ) ).

% abs_of_neg
thf(fact_6871_abs__of__neg,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ A @ zero_zero_rat )
     => ( ( abs_abs_rat @ A )
        = ( uminus_uminus_rat @ A ) ) ) ).

% abs_of_neg
thf(fact_6872_abs__of__neg,axiom,
    ! [A: code_integer] :
      ( ( ord_le6747313008572928689nteger @ A @ zero_z3403309356797280102nteger )
     => ( ( abs_abs_Code_integer @ A )
        = ( uminus1351360451143612070nteger @ A ) ) ) ).

% abs_of_neg
thf(fact_6873_abs__diff__triangle__ineq,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer,D: code_integer] : ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ ( plus_p5714425477246183910nteger @ A @ B ) @ ( plus_p5714425477246183910nteger @ C @ D ) ) ) @ ( plus_p5714425477246183910nteger @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ A @ C ) ) @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ B @ D ) ) ) ) ).

% abs_diff_triangle_ineq
thf(fact_6874_abs__diff__triangle__ineq,axiom,
    ! [A: real,B: real,C: real,D: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( plus_plus_real @ A @ B ) @ ( plus_plus_real @ C @ D ) ) ) @ ( plus_plus_real @ ( abs_abs_real @ ( minus_minus_real @ A @ C ) ) @ ( abs_abs_real @ ( minus_minus_real @ B @ D ) ) ) ) ).

% abs_diff_triangle_ineq
thf(fact_6875_abs__diff__triangle__ineq,axiom,
    ! [A: rat,B: rat,C: rat,D: rat] : ( ord_less_eq_rat @ ( abs_abs_rat @ ( minus_minus_rat @ ( plus_plus_rat @ A @ B ) @ ( plus_plus_rat @ C @ D ) ) ) @ ( plus_plus_rat @ ( abs_abs_rat @ ( minus_minus_rat @ A @ C ) ) @ ( abs_abs_rat @ ( minus_minus_rat @ B @ D ) ) ) ) ).

% abs_diff_triangle_ineq
thf(fact_6876_abs__diff__triangle__ineq,axiom,
    ! [A: int,B: int,C: int,D: int] : ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ ( plus_plus_int @ A @ B ) @ ( plus_plus_int @ C @ D ) ) ) @ ( plus_plus_int @ ( abs_abs_int @ ( minus_minus_int @ A @ C ) ) @ ( abs_abs_int @ ( minus_minus_int @ B @ D ) ) ) ) ).

% abs_diff_triangle_ineq
thf(fact_6877_abs__triangle__ineq4,axiom,
    ! [A: code_integer,B: code_integer] : ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ A @ B ) ) @ ( plus_p5714425477246183910nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) ) ) ).

% abs_triangle_ineq4
thf(fact_6878_abs__triangle__ineq4,axiom,
    ! [A: real,B: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ A @ B ) ) @ ( plus_plus_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) ) ).

% abs_triangle_ineq4
thf(fact_6879_abs__triangle__ineq4,axiom,
    ! [A: rat,B: rat] : ( ord_less_eq_rat @ ( abs_abs_rat @ ( minus_minus_rat @ A @ B ) ) @ ( plus_plus_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) ) ).

% abs_triangle_ineq4
thf(fact_6880_abs__triangle__ineq4,axiom,
    ! [A: int,B: int] : ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ A @ B ) ) @ ( plus_plus_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) ) ).

% abs_triangle_ineq4
thf(fact_6881_abs__diff__le__iff,axiom,
    ! [X: code_integer,A: code_integer,R2: code_integer] :
      ( ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ X @ A ) ) @ R2 )
      = ( ( ord_le3102999989581377725nteger @ ( minus_8373710615458151222nteger @ A @ R2 ) @ X )
        & ( ord_le3102999989581377725nteger @ X @ ( plus_p5714425477246183910nteger @ A @ R2 ) ) ) ) ).

% abs_diff_le_iff
thf(fact_6882_abs__diff__le__iff,axiom,
    ! [X: real,A: real,R2: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ X @ A ) ) @ R2 )
      = ( ( ord_less_eq_real @ ( minus_minus_real @ A @ R2 ) @ X )
        & ( ord_less_eq_real @ X @ ( plus_plus_real @ A @ R2 ) ) ) ) ).

% abs_diff_le_iff
thf(fact_6883_abs__diff__le__iff,axiom,
    ! [X: rat,A: rat,R2: rat] :
      ( ( ord_less_eq_rat @ ( abs_abs_rat @ ( minus_minus_rat @ X @ A ) ) @ R2 )
      = ( ( ord_less_eq_rat @ ( minus_minus_rat @ A @ R2 ) @ X )
        & ( ord_less_eq_rat @ X @ ( plus_plus_rat @ A @ R2 ) ) ) ) ).

% abs_diff_le_iff
thf(fact_6884_abs__diff__le__iff,axiom,
    ! [X: int,A: int,R2: int] :
      ( ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ X @ A ) ) @ R2 )
      = ( ( ord_less_eq_int @ ( minus_minus_int @ A @ R2 ) @ X )
        & ( ord_less_eq_int @ X @ ( plus_plus_int @ A @ R2 ) ) ) ) ).

% abs_diff_le_iff
thf(fact_6885_abs__diff__less__iff,axiom,
    ! [X: code_integer,A: code_integer,R2: code_integer] :
      ( ( ord_le6747313008572928689nteger @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ X @ A ) ) @ R2 )
      = ( ( ord_le6747313008572928689nteger @ ( minus_8373710615458151222nteger @ A @ R2 ) @ X )
        & ( ord_le6747313008572928689nteger @ X @ ( plus_p5714425477246183910nteger @ A @ R2 ) ) ) ) ).

% abs_diff_less_iff
thf(fact_6886_abs__diff__less__iff,axiom,
    ! [X: real,A: real,R2: real] :
      ( ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ X @ A ) ) @ R2 )
      = ( ( ord_less_real @ ( minus_minus_real @ A @ R2 ) @ X )
        & ( ord_less_real @ X @ ( plus_plus_real @ A @ R2 ) ) ) ) ).

% abs_diff_less_iff
thf(fact_6887_abs__diff__less__iff,axiom,
    ! [X: rat,A: rat,R2: rat] :
      ( ( ord_less_rat @ ( abs_abs_rat @ ( minus_minus_rat @ X @ A ) ) @ R2 )
      = ( ( ord_less_rat @ ( minus_minus_rat @ A @ R2 ) @ X )
        & ( ord_less_rat @ X @ ( plus_plus_rat @ A @ R2 ) ) ) ) ).

% abs_diff_less_iff
thf(fact_6888_abs__diff__less__iff,axiom,
    ! [X: int,A: int,R2: int] :
      ( ( ord_less_int @ ( abs_abs_int @ ( minus_minus_int @ X @ A ) ) @ R2 )
      = ( ( ord_less_int @ ( minus_minus_int @ A @ R2 ) @ X )
        & ( ord_less_int @ X @ ( plus_plus_int @ A @ R2 ) ) ) ) ).

% abs_diff_less_iff
thf(fact_6889_sum__eq__Suc0__iff,axiom,
    ! [A2: set_int,F: int > nat] :
      ( ( finite_finite_int @ A2 )
     => ( ( ( groups4541462559716669496nt_nat @ F @ A2 )
          = ( suc @ zero_zero_nat ) )
        = ( ? [X3: int] :
              ( ( member_int @ X3 @ A2 )
              & ( ( F @ X3 )
                = ( suc @ zero_zero_nat ) )
              & ! [Y3: int] :
                  ( ( member_int @ Y3 @ A2 )
                 => ( ( X3 != Y3 )
                   => ( ( F @ Y3 )
                      = zero_zero_nat ) ) ) ) ) ) ) ).

% sum_eq_Suc0_iff
thf(fact_6890_sum__eq__Suc0__iff,axiom,
    ! [A2: set_complex,F: complex > nat] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( ( ( groups5693394587270226106ex_nat @ F @ A2 )
          = ( suc @ zero_zero_nat ) )
        = ( ? [X3: complex] :
              ( ( member_complex @ X3 @ A2 )
              & ( ( F @ X3 )
                = ( suc @ zero_zero_nat ) )
              & ! [Y3: complex] :
                  ( ( member_complex @ Y3 @ A2 )
                 => ( ( X3 != Y3 )
                   => ( ( F @ Y3 )
                      = zero_zero_nat ) ) ) ) ) ) ) ).

% sum_eq_Suc0_iff
thf(fact_6891_sum__eq__Suc0__iff,axiom,
    ! [A2: set_nat,F: nat > nat] :
      ( ( finite_finite_nat @ A2 )
     => ( ( ( groups3542108847815614940at_nat @ F @ A2 )
          = ( suc @ zero_zero_nat ) )
        = ( ? [X3: nat] :
              ( ( member_nat @ X3 @ A2 )
              & ( ( F @ X3 )
                = ( suc @ zero_zero_nat ) )
              & ! [Y3: nat] :
                  ( ( member_nat @ Y3 @ A2 )
                 => ( ( X3 != Y3 )
                   => ( ( F @ Y3 )
                      = zero_zero_nat ) ) ) ) ) ) ) ).

% sum_eq_Suc0_iff
thf(fact_6892_sum__SucD,axiom,
    ! [F: nat > nat,A2: set_nat,N2: nat] :
      ( ( ( groups3542108847815614940at_nat @ F @ A2 )
        = ( suc @ N2 ) )
     => ? [X5: nat] :
          ( ( member_nat @ X5 @ A2 )
          & ( ord_less_nat @ zero_zero_nat @ ( F @ X5 ) ) ) ) ).

% sum_SucD
thf(fact_6893_sum__eq__1__iff,axiom,
    ! [A2: set_int,F: int > nat] :
      ( ( finite_finite_int @ A2 )
     => ( ( ( groups4541462559716669496nt_nat @ F @ A2 )
          = one_one_nat )
        = ( ? [X3: int] :
              ( ( member_int @ X3 @ A2 )
              & ( ( F @ X3 )
                = one_one_nat )
              & ! [Y3: int] :
                  ( ( member_int @ Y3 @ A2 )
                 => ( ( X3 != Y3 )
                   => ( ( F @ Y3 )
                      = zero_zero_nat ) ) ) ) ) ) ) ).

% sum_eq_1_iff
thf(fact_6894_sum__eq__1__iff,axiom,
    ! [A2: set_complex,F: complex > nat] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( ( ( groups5693394587270226106ex_nat @ F @ A2 )
          = one_one_nat )
        = ( ? [X3: complex] :
              ( ( member_complex @ X3 @ A2 )
              & ( ( F @ X3 )
                = one_one_nat )
              & ! [Y3: complex] :
                  ( ( member_complex @ Y3 @ A2 )
                 => ( ( X3 != Y3 )
                   => ( ( F @ Y3 )
                      = zero_zero_nat ) ) ) ) ) ) ) ).

% sum_eq_1_iff
thf(fact_6895_sum__eq__1__iff,axiom,
    ! [A2: set_nat,F: nat > nat] :
      ( ( finite_finite_nat @ A2 )
     => ( ( ( groups3542108847815614940at_nat @ F @ A2 )
          = one_one_nat )
        = ( ? [X3: nat] :
              ( ( member_nat @ X3 @ A2 )
              & ( ( F @ X3 )
                = one_one_nat )
              & ! [Y3: nat] :
                  ( ( member_nat @ Y3 @ A2 )
                 => ( ( X3 != Y3 )
                   => ( ( F @ Y3 )
                      = zero_zero_nat ) ) ) ) ) ) ) ).

% sum_eq_1_iff
thf(fact_6896_numeral__Bit1,axiom,
    ! [N2: num] :
      ( ( numera6690914467698888265omplex @ ( bit1 @ N2 ) )
      = ( plus_plus_complex @ ( plus_plus_complex @ ( numera6690914467698888265omplex @ N2 ) @ ( numera6690914467698888265omplex @ N2 ) ) @ one_one_complex ) ) ).

% numeral_Bit1
thf(fact_6897_numeral__Bit1,axiom,
    ! [N2: num] :
      ( ( numeral_numeral_real @ ( bit1 @ N2 ) )
      = ( plus_plus_real @ ( plus_plus_real @ ( numeral_numeral_real @ N2 ) @ ( numeral_numeral_real @ N2 ) ) @ one_one_real ) ) ).

% numeral_Bit1
thf(fact_6898_numeral__Bit1,axiom,
    ! [N2: num] :
      ( ( numeral_numeral_rat @ ( bit1 @ N2 ) )
      = ( plus_plus_rat @ ( plus_plus_rat @ ( numeral_numeral_rat @ N2 ) @ ( numeral_numeral_rat @ N2 ) ) @ one_one_rat ) ) ).

% numeral_Bit1
thf(fact_6899_numeral__Bit1,axiom,
    ! [N2: num] :
      ( ( numeral_numeral_nat @ ( bit1 @ N2 ) )
      = ( plus_plus_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ N2 ) @ ( numeral_numeral_nat @ N2 ) ) @ one_one_nat ) ) ).

% numeral_Bit1
thf(fact_6900_numeral__Bit1,axiom,
    ! [N2: num] :
      ( ( numeral_numeral_int @ ( bit1 @ N2 ) )
      = ( plus_plus_int @ ( plus_plus_int @ ( numeral_numeral_int @ N2 ) @ ( numeral_numeral_int @ N2 ) ) @ one_one_int ) ) ).

% numeral_Bit1
thf(fact_6901_eval__nat__numeral_I3_J,axiom,
    ! [N2: num] :
      ( ( numeral_numeral_nat @ ( bit1 @ N2 ) )
      = ( suc @ ( numeral_numeral_nat @ ( bit0 @ N2 ) ) ) ) ).

% eval_nat_numeral(3)
thf(fact_6902_power__minus__Bit1,axiom,
    ! [X: real,K: num] :
      ( ( power_power_real @ ( uminus_uminus_real @ X ) @ ( numeral_numeral_nat @ ( bit1 @ K ) ) )
      = ( uminus_uminus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit1 @ K ) ) ) ) ) ).

% power_minus_Bit1
thf(fact_6903_power__minus__Bit1,axiom,
    ! [X: int,K: num] :
      ( ( power_power_int @ ( uminus_uminus_int @ X ) @ ( numeral_numeral_nat @ ( bit1 @ K ) ) )
      = ( uminus_uminus_int @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit1 @ K ) ) ) ) ) ).

% power_minus_Bit1
thf(fact_6904_power__minus__Bit1,axiom,
    ! [X: complex,K: num] :
      ( ( power_power_complex @ ( uminus1482373934393186551omplex @ X ) @ ( numeral_numeral_nat @ ( bit1 @ K ) ) )
      = ( uminus1482373934393186551omplex @ ( power_power_complex @ X @ ( numeral_numeral_nat @ ( bit1 @ K ) ) ) ) ) ).

% power_minus_Bit1
thf(fact_6905_power__minus__Bit1,axiom,
    ! [X: rat,K: num] :
      ( ( power_power_rat @ ( uminus_uminus_rat @ X ) @ ( numeral_numeral_nat @ ( bit1 @ K ) ) )
      = ( uminus_uminus_rat @ ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit1 @ K ) ) ) ) ) ).

% power_minus_Bit1
thf(fact_6906_power__minus__Bit1,axiom,
    ! [X: code_integer,K: num] :
      ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ X ) @ ( numeral_numeral_nat @ ( bit1 @ K ) ) )
      = ( uminus1351360451143612070nteger @ ( power_8256067586552552935nteger @ X @ ( numeral_numeral_nat @ ( bit1 @ K ) ) ) ) ) ).

% power_minus_Bit1
thf(fact_6907_cong__exp__iff__simps_I13_J,axiom,
    ! [M: num,Q2: num,N2: num] :
      ( ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit1 @ M ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) )
        = ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit1 @ N2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) ) )
      = ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ Q2 ) )
        = ( modulo_modulo_nat @ ( numeral_numeral_nat @ N2 ) @ ( numeral_numeral_nat @ Q2 ) ) ) ) ).

% cong_exp_iff_simps(13)
thf(fact_6908_cong__exp__iff__simps_I13_J,axiom,
    ! [M: num,Q2: num,N2: num] :
      ( ( ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit1 @ M ) ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) )
        = ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit1 @ N2 ) ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) ) )
      = ( ( modulo_modulo_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ Q2 ) )
        = ( modulo_modulo_int @ ( numeral_numeral_int @ N2 ) @ ( numeral_numeral_int @ Q2 ) ) ) ) ).

% cong_exp_iff_simps(13)
thf(fact_6909_cong__exp__iff__simps_I13_J,axiom,
    ! [M: num,Q2: num,N2: num] :
      ( ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit1 @ M ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) )
        = ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit1 @ N2 ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) ) )
      = ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ M ) @ ( numera6620942414471956472nteger @ Q2 ) )
        = ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ N2 ) @ ( numera6620942414471956472nteger @ Q2 ) ) ) ) ).

% cong_exp_iff_simps(13)
thf(fact_6910_cong__exp__iff__simps_I12_J,axiom,
    ! [M: num,Q2: num,N2: num] :
      ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit1 @ M ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) )
     != ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit0 @ N2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) ) ) ).

% cong_exp_iff_simps(12)
thf(fact_6911_cong__exp__iff__simps_I12_J,axiom,
    ! [M: num,Q2: num,N2: num] :
      ( ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit1 @ M ) ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) )
     != ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit0 @ N2 ) ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) ) ) ).

% cong_exp_iff_simps(12)
thf(fact_6912_cong__exp__iff__simps_I12_J,axiom,
    ! [M: num,Q2: num,N2: num] :
      ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit1 @ M ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) )
     != ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit0 @ N2 ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) ) ) ).

% cong_exp_iff_simps(12)
thf(fact_6913_cong__exp__iff__simps_I10_J,axiom,
    ! [M: num,Q2: num,N2: num] :
      ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit0 @ M ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) )
     != ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit1 @ N2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) ) ) ).

% cong_exp_iff_simps(10)
thf(fact_6914_cong__exp__iff__simps_I10_J,axiom,
    ! [M: num,Q2: num,N2: num] :
      ( ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit0 @ M ) ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) )
     != ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit1 @ N2 ) ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) ) ) ).

% cong_exp_iff_simps(10)
thf(fact_6915_cong__exp__iff__simps_I10_J,axiom,
    ! [M: num,Q2: num,N2: num] :
      ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit0 @ M ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) )
     != ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit1 @ N2 ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) ) ) ).

% cong_exp_iff_simps(10)
thf(fact_6916_lemma__interval__lt,axiom,
    ! [A: real,X: real,B: real] :
      ( ( ord_less_real @ A @ X )
     => ( ( ord_less_real @ X @ B )
       => ? [D4: real] :
            ( ( ord_less_real @ zero_zero_real @ D4 )
            & ! [Y2: real] :
                ( ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ X @ Y2 ) ) @ D4 )
               => ( ( ord_less_real @ A @ Y2 )
                  & ( ord_less_real @ Y2 @ B ) ) ) ) ) ) ).

% lemma_interval_lt
thf(fact_6917_sum__power__add,axiom,
    ! [X: complex,M: nat,I6: set_nat] :
      ( ( groups2073611262835488442omplex
        @ ^ [I5: nat] : ( power_power_complex @ X @ ( plus_plus_nat @ M @ I5 ) )
        @ I6 )
      = ( times_times_complex @ ( power_power_complex @ X @ M ) @ ( groups2073611262835488442omplex @ ( power_power_complex @ X ) @ I6 ) ) ) ).

% sum_power_add
thf(fact_6918_sum__power__add,axiom,
    ! [X: rat,M: nat,I6: set_nat] :
      ( ( groups2906978787729119204at_rat
        @ ^ [I5: nat] : ( power_power_rat @ X @ ( plus_plus_nat @ M @ I5 ) )
        @ I6 )
      = ( times_times_rat @ ( power_power_rat @ X @ M ) @ ( groups2906978787729119204at_rat @ ( power_power_rat @ X ) @ I6 ) ) ) ).

% sum_power_add
thf(fact_6919_sum__power__add,axiom,
    ! [X: int,M: nat,I6: set_nat] :
      ( ( groups3539618377306564664at_int
        @ ^ [I5: nat] : ( power_power_int @ X @ ( plus_plus_nat @ M @ I5 ) )
        @ I6 )
      = ( times_times_int @ ( power_power_int @ X @ M ) @ ( groups3539618377306564664at_int @ ( power_power_int @ X ) @ I6 ) ) ) ).

% sum_power_add
thf(fact_6920_sum__power__add,axiom,
    ! [X: real,M: nat,I6: set_nat] :
      ( ( groups6591440286371151544t_real
        @ ^ [I5: nat] : ( power_power_real @ X @ ( plus_plus_nat @ M @ I5 ) )
        @ I6 )
      = ( times_times_real @ ( power_power_real @ X @ M ) @ ( groups6591440286371151544t_real @ ( power_power_real @ X ) @ I6 ) ) ) ).

% sum_power_add
thf(fact_6921_sum_OatLeastAtMost__rev,axiom,
    ! [G: nat > nat,N2: nat,M: nat] :
      ( ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ N2 @ M ) )
      = ( groups3542108847815614940at_nat
        @ ^ [I5: nat] : ( G @ ( minus_minus_nat @ ( plus_plus_nat @ M @ N2 ) @ I5 ) )
        @ ( set_or1269000886237332187st_nat @ N2 @ M ) ) ) ).

% sum.atLeastAtMost_rev
thf(fact_6922_sum_OatLeastAtMost__rev,axiom,
    ! [G: nat > real,N2: nat,M: nat] :
      ( ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ N2 @ M ) )
      = ( groups6591440286371151544t_real
        @ ^ [I5: nat] : ( G @ ( minus_minus_nat @ ( plus_plus_nat @ M @ N2 ) @ I5 ) )
        @ ( set_or1269000886237332187st_nat @ N2 @ M ) ) ) ).

% sum.atLeastAtMost_rev
thf(fact_6923_numeral__code_I3_J,axiom,
    ! [N2: num] :
      ( ( numera6690914467698888265omplex @ ( bit1 @ N2 ) )
      = ( plus_plus_complex @ ( plus_plus_complex @ ( numera6690914467698888265omplex @ N2 ) @ ( numera6690914467698888265omplex @ N2 ) ) @ one_one_complex ) ) ).

% numeral_code(3)
thf(fact_6924_numeral__code_I3_J,axiom,
    ! [N2: num] :
      ( ( numeral_numeral_real @ ( bit1 @ N2 ) )
      = ( plus_plus_real @ ( plus_plus_real @ ( numeral_numeral_real @ N2 ) @ ( numeral_numeral_real @ N2 ) ) @ one_one_real ) ) ).

% numeral_code(3)
thf(fact_6925_numeral__code_I3_J,axiom,
    ! [N2: num] :
      ( ( numeral_numeral_rat @ ( bit1 @ N2 ) )
      = ( plus_plus_rat @ ( plus_plus_rat @ ( numeral_numeral_rat @ N2 ) @ ( numeral_numeral_rat @ N2 ) ) @ one_one_rat ) ) ).

% numeral_code(3)
thf(fact_6926_numeral__code_I3_J,axiom,
    ! [N2: num] :
      ( ( numeral_numeral_nat @ ( bit1 @ N2 ) )
      = ( plus_plus_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ N2 ) @ ( numeral_numeral_nat @ N2 ) ) @ one_one_nat ) ) ).

% numeral_code(3)
thf(fact_6927_numeral__code_I3_J,axiom,
    ! [N2: num] :
      ( ( numeral_numeral_int @ ( bit1 @ N2 ) )
      = ( plus_plus_int @ ( plus_plus_int @ ( numeral_numeral_int @ N2 ) @ ( numeral_numeral_int @ N2 ) ) @ one_one_int ) ) ).

% numeral_code(3)
thf(fact_6928_power__numeral__odd,axiom,
    ! [Z: complex,W: num] :
      ( ( power_power_complex @ Z @ ( numeral_numeral_nat @ ( bit1 @ W ) ) )
      = ( times_times_complex @ ( times_times_complex @ Z @ ( power_power_complex @ Z @ ( numeral_numeral_nat @ W ) ) ) @ ( power_power_complex @ Z @ ( numeral_numeral_nat @ W ) ) ) ) ).

% power_numeral_odd
thf(fact_6929_power__numeral__odd,axiom,
    ! [Z: real,W: num] :
      ( ( power_power_real @ Z @ ( numeral_numeral_nat @ ( bit1 @ W ) ) )
      = ( times_times_real @ ( times_times_real @ Z @ ( power_power_real @ Z @ ( numeral_numeral_nat @ W ) ) ) @ ( power_power_real @ Z @ ( numeral_numeral_nat @ W ) ) ) ) ).

% power_numeral_odd
thf(fact_6930_power__numeral__odd,axiom,
    ! [Z: rat,W: num] :
      ( ( power_power_rat @ Z @ ( numeral_numeral_nat @ ( bit1 @ W ) ) )
      = ( times_times_rat @ ( times_times_rat @ Z @ ( power_power_rat @ Z @ ( numeral_numeral_nat @ W ) ) ) @ ( power_power_rat @ Z @ ( numeral_numeral_nat @ W ) ) ) ) ).

% power_numeral_odd
thf(fact_6931_power__numeral__odd,axiom,
    ! [Z: nat,W: num] :
      ( ( power_power_nat @ Z @ ( numeral_numeral_nat @ ( bit1 @ W ) ) )
      = ( times_times_nat @ ( times_times_nat @ Z @ ( power_power_nat @ Z @ ( numeral_numeral_nat @ W ) ) ) @ ( power_power_nat @ Z @ ( numeral_numeral_nat @ W ) ) ) ) ).

% power_numeral_odd
thf(fact_6932_power__numeral__odd,axiom,
    ! [Z: int,W: num] :
      ( ( power_power_int @ Z @ ( numeral_numeral_nat @ ( bit1 @ W ) ) )
      = ( times_times_int @ ( times_times_int @ Z @ ( power_power_int @ Z @ ( numeral_numeral_nat @ W ) ) ) @ ( power_power_int @ Z @ ( numeral_numeral_nat @ W ) ) ) ) ).

% power_numeral_odd
thf(fact_6933_sum__roots__unity,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ one_one_nat @ N2 )
     => ( ( groups7754918857620584856omplex
          @ ^ [X3: complex] : X3
          @ ( collect_complex
            @ ^ [Z2: complex] :
                ( ( power_power_complex @ Z2 @ N2 )
                = one_one_complex ) ) )
        = zero_zero_complex ) ) ).

% sum_roots_unity
thf(fact_6934_sum__nth__roots,axiom,
    ! [N2: nat,C: complex] :
      ( ( ord_less_nat @ one_one_nat @ N2 )
     => ( ( groups7754918857620584856omplex
          @ ^ [X3: complex] : X3
          @ ( collect_complex
            @ ^ [Z2: complex] :
                ( ( power_power_complex @ Z2 @ N2 )
                = C ) ) )
        = zero_zero_complex ) ) ).

% sum_nth_roots
thf(fact_6935_abs__add__one__gt__zero,axiom,
    ! [X: code_integer] : ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ ( plus_p5714425477246183910nteger @ one_one_Code_integer @ ( abs_abs_Code_integer @ X ) ) ) ).

% abs_add_one_gt_zero
thf(fact_6936_abs__add__one__gt__zero,axiom,
    ! [X: real] : ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ one_one_real @ ( abs_abs_real @ X ) ) ) ).

% abs_add_one_gt_zero
thf(fact_6937_abs__add__one__gt__zero,axiom,
    ! [X: rat] : ( ord_less_rat @ zero_zero_rat @ ( plus_plus_rat @ one_one_rat @ ( abs_abs_rat @ X ) ) ) ).

% abs_add_one_gt_zero
thf(fact_6938_abs__add__one__gt__zero,axiom,
    ! [X: int] : ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ one_one_int @ ( abs_abs_int @ X ) ) ) ).

% abs_add_one_gt_zero
thf(fact_6939_sum__diff__nat,axiom,
    ! [B3: set_complex,A2: set_complex,F: complex > nat] :
      ( ( finite3207457112153483333omplex @ B3 )
     => ( ( ord_le211207098394363844omplex @ B3 @ A2 )
       => ( ( groups5693394587270226106ex_nat @ F @ ( minus_811609699411566653omplex @ A2 @ B3 ) )
          = ( minus_minus_nat @ ( groups5693394587270226106ex_nat @ F @ A2 ) @ ( groups5693394587270226106ex_nat @ F @ B3 ) ) ) ) ) ).

% sum_diff_nat
thf(fact_6940_sum__diff__nat,axiom,
    ! [B3: set_int,A2: set_int,F: int > nat] :
      ( ( finite_finite_int @ B3 )
     => ( ( ord_less_eq_set_int @ B3 @ A2 )
       => ( ( groups4541462559716669496nt_nat @ F @ ( minus_minus_set_int @ A2 @ B3 ) )
          = ( minus_minus_nat @ ( groups4541462559716669496nt_nat @ F @ A2 ) @ ( groups4541462559716669496nt_nat @ F @ B3 ) ) ) ) ) ).

% sum_diff_nat
thf(fact_6941_sum__diff__nat,axiom,
    ! [B3: set_nat,A2: set_nat,F: nat > nat] :
      ( ( finite_finite_nat @ B3 )
     => ( ( ord_less_eq_set_nat @ B3 @ A2 )
       => ( ( groups3542108847815614940at_nat @ F @ ( minus_minus_set_nat @ A2 @ B3 ) )
          = ( minus_minus_nat @ ( groups3542108847815614940at_nat @ F @ A2 ) @ ( groups3542108847815614940at_nat @ F @ B3 ) ) ) ) ) ).

% sum_diff_nat
thf(fact_6942_sum__shift__lb__Suc0__0,axiom,
    ! [F: nat > complex,K: nat] :
      ( ( ( F @ zero_zero_nat )
        = zero_zero_complex )
     => ( ( groups2073611262835488442omplex @ F @ ( set_or1269000886237332187st_nat @ ( suc @ zero_zero_nat ) @ K ) )
        = ( groups2073611262835488442omplex @ F @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ K ) ) ) ) ).

% sum_shift_lb_Suc0_0
thf(fact_6943_sum__shift__lb__Suc0__0,axiom,
    ! [F: nat > rat,K: nat] :
      ( ( ( F @ zero_zero_nat )
        = zero_zero_rat )
     => ( ( groups2906978787729119204at_rat @ F @ ( set_or1269000886237332187st_nat @ ( suc @ zero_zero_nat ) @ K ) )
        = ( groups2906978787729119204at_rat @ F @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ K ) ) ) ) ).

% sum_shift_lb_Suc0_0
thf(fact_6944_sum__shift__lb__Suc0__0,axiom,
    ! [F: nat > int,K: nat] :
      ( ( ( F @ zero_zero_nat )
        = zero_zero_int )
     => ( ( groups3539618377306564664at_int @ F @ ( set_or1269000886237332187st_nat @ ( suc @ zero_zero_nat ) @ K ) )
        = ( groups3539618377306564664at_int @ F @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ K ) ) ) ) ).

% sum_shift_lb_Suc0_0
thf(fact_6945_sum__shift__lb__Suc0__0,axiom,
    ! [F: nat > nat,K: nat] :
      ( ( ( F @ zero_zero_nat )
        = zero_zero_nat )
     => ( ( groups3542108847815614940at_nat @ F @ ( set_or1269000886237332187st_nat @ ( suc @ zero_zero_nat ) @ K ) )
        = ( groups3542108847815614940at_nat @ F @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ K ) ) ) ) ).

% sum_shift_lb_Suc0_0
thf(fact_6946_sum__shift__lb__Suc0__0,axiom,
    ! [F: nat > real,K: nat] :
      ( ( ( F @ zero_zero_nat )
        = zero_zero_real )
     => ( ( groups6591440286371151544t_real @ F @ ( set_or1269000886237332187st_nat @ ( suc @ zero_zero_nat ) @ K ) )
        = ( groups6591440286371151544t_real @ F @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ K ) ) ) ) ).

% sum_shift_lb_Suc0_0
thf(fact_6947_sum_OatLeast0__atMost__Suc,axiom,
    ! [G: nat > rat,N2: nat] :
      ( ( groups2906978787729119204at_rat @ G @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ ( suc @ N2 ) ) )
      = ( plus_plus_rat @ ( groups2906978787729119204at_rat @ G @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N2 ) ) @ ( G @ ( suc @ N2 ) ) ) ) ).

% sum.atLeast0_atMost_Suc
thf(fact_6948_sum_OatLeast0__atMost__Suc,axiom,
    ! [G: nat > int,N2: nat] :
      ( ( groups3539618377306564664at_int @ G @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ ( suc @ N2 ) ) )
      = ( plus_plus_int @ ( groups3539618377306564664at_int @ G @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N2 ) ) @ ( G @ ( suc @ N2 ) ) ) ) ).

% sum.atLeast0_atMost_Suc
thf(fact_6949_sum_OatLeast0__atMost__Suc,axiom,
    ! [G: nat > nat,N2: nat] :
      ( ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ ( suc @ N2 ) ) )
      = ( plus_plus_nat @ ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N2 ) ) @ ( G @ ( suc @ N2 ) ) ) ) ).

% sum.atLeast0_atMost_Suc
thf(fact_6950_sum_OatLeast0__atMost__Suc,axiom,
    ! [G: nat > real,N2: nat] :
      ( ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ ( suc @ N2 ) ) )
      = ( plus_plus_real @ ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N2 ) ) @ ( G @ ( suc @ N2 ) ) ) ) ).

% sum.atLeast0_atMost_Suc
thf(fact_6951_sum_OatLeast__Suc__atMost,axiom,
    ! [M: nat,N2: nat,G: nat > rat] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ( groups2906978787729119204at_rat @ G @ ( set_or1269000886237332187st_nat @ M @ N2 ) )
        = ( plus_plus_rat @ ( G @ M ) @ ( groups2906978787729119204at_rat @ G @ ( set_or1269000886237332187st_nat @ ( suc @ M ) @ N2 ) ) ) ) ) ).

% sum.atLeast_Suc_atMost
thf(fact_6952_sum_OatLeast__Suc__atMost,axiom,
    ! [M: nat,N2: nat,G: nat > int] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ( groups3539618377306564664at_int @ G @ ( set_or1269000886237332187st_nat @ M @ N2 ) )
        = ( plus_plus_int @ ( G @ M ) @ ( groups3539618377306564664at_int @ G @ ( set_or1269000886237332187st_nat @ ( suc @ M ) @ N2 ) ) ) ) ) ).

% sum.atLeast_Suc_atMost
thf(fact_6953_sum_OatLeast__Suc__atMost,axiom,
    ! [M: nat,N2: nat,G: nat > nat] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ M @ N2 ) )
        = ( plus_plus_nat @ ( G @ M ) @ ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ ( suc @ M ) @ N2 ) ) ) ) ) ).

% sum.atLeast_Suc_atMost
thf(fact_6954_sum_OatLeast__Suc__atMost,axiom,
    ! [M: nat,N2: nat,G: nat > real] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ M @ N2 ) )
        = ( plus_plus_real @ ( G @ M ) @ ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ ( suc @ M ) @ N2 ) ) ) ) ) ).

% sum.atLeast_Suc_atMost
thf(fact_6955_sum_Onat__ivl__Suc_H,axiom,
    ! [M: nat,N2: nat,G: nat > rat] :
      ( ( ord_less_eq_nat @ M @ ( suc @ N2 ) )
     => ( ( groups2906978787729119204at_rat @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N2 ) ) )
        = ( plus_plus_rat @ ( G @ ( suc @ N2 ) ) @ ( groups2906978787729119204at_rat @ G @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) ) ) ) ).

% sum.nat_ivl_Suc'
thf(fact_6956_sum_Onat__ivl__Suc_H,axiom,
    ! [M: nat,N2: nat,G: nat > int] :
      ( ( ord_less_eq_nat @ M @ ( suc @ N2 ) )
     => ( ( groups3539618377306564664at_int @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N2 ) ) )
        = ( plus_plus_int @ ( G @ ( suc @ N2 ) ) @ ( groups3539618377306564664at_int @ G @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) ) ) ) ).

% sum.nat_ivl_Suc'
thf(fact_6957_sum_Onat__ivl__Suc_H,axiom,
    ! [M: nat,N2: nat,G: nat > nat] :
      ( ( ord_less_eq_nat @ M @ ( suc @ N2 ) )
     => ( ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N2 ) ) )
        = ( plus_plus_nat @ ( G @ ( suc @ N2 ) ) @ ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) ) ) ) ).

% sum.nat_ivl_Suc'
thf(fact_6958_sum_Onat__ivl__Suc_H,axiom,
    ! [M: nat,N2: nat,G: nat > real] :
      ( ( ord_less_eq_nat @ M @ ( suc @ N2 ) )
     => ( ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N2 ) ) )
        = ( plus_plus_real @ ( G @ ( suc @ N2 ) ) @ ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) ) ) ) ).

% sum.nat_ivl_Suc'
thf(fact_6959_numeral__Bit1__div__2,axiom,
    ! [N2: num] :
      ( ( divide_divide_nat @ ( numeral_numeral_nat @ ( bit1 @ N2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( numeral_numeral_nat @ N2 ) ) ).

% numeral_Bit1_div_2
thf(fact_6960_numeral__Bit1__div__2,axiom,
    ! [N2: num] :
      ( ( divide_divide_int @ ( numeral_numeral_int @ ( bit1 @ N2 ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
      = ( numeral_numeral_int @ N2 ) ) ).

% numeral_Bit1_div_2
thf(fact_6961_odd__numeral,axiom,
    ! [N2: num] :
      ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( numera6620942414471956472nteger @ ( bit1 @ N2 ) ) ) ).

% odd_numeral
thf(fact_6962_odd__numeral,axiom,
    ! [N2: num] :
      ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ ( bit1 @ N2 ) ) ) ).

% odd_numeral
thf(fact_6963_odd__numeral,axiom,
    ! [N2: num] :
      ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( numeral_numeral_int @ ( bit1 @ N2 ) ) ) ).

% odd_numeral
thf(fact_6964_power3__eq__cube,axiom,
    ! [A: complex] :
      ( ( power_power_complex @ A @ ( numeral_numeral_nat @ ( bit1 @ one ) ) )
      = ( times_times_complex @ ( times_times_complex @ A @ A ) @ A ) ) ).

% power3_eq_cube
thf(fact_6965_power3__eq__cube,axiom,
    ! [A: real] :
      ( ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit1 @ one ) ) )
      = ( times_times_real @ ( times_times_real @ A @ A ) @ A ) ) ).

% power3_eq_cube
thf(fact_6966_power3__eq__cube,axiom,
    ! [A: rat] :
      ( ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit1 @ one ) ) )
      = ( times_times_rat @ ( times_times_rat @ A @ A ) @ A ) ) ).

% power3_eq_cube
thf(fact_6967_power3__eq__cube,axiom,
    ! [A: nat] :
      ( ( power_power_nat @ A @ ( numeral_numeral_nat @ ( bit1 @ one ) ) )
      = ( times_times_nat @ ( times_times_nat @ A @ A ) @ A ) ) ).

% power3_eq_cube
thf(fact_6968_power3__eq__cube,axiom,
    ! [A: int] :
      ( ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit1 @ one ) ) )
      = ( times_times_int @ ( times_times_int @ A @ A ) @ A ) ) ).

% power3_eq_cube
thf(fact_6969_cong__exp__iff__simps_I3_J,axiom,
    ! [N2: num,Q2: num] :
      ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit1 @ N2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) )
     != zero_zero_nat ) ).

% cong_exp_iff_simps(3)
thf(fact_6970_cong__exp__iff__simps_I3_J,axiom,
    ! [N2: num,Q2: num] :
      ( ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit1 @ N2 ) ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) )
     != zero_zero_int ) ).

% cong_exp_iff_simps(3)
thf(fact_6971_cong__exp__iff__simps_I3_J,axiom,
    ! [N2: num,Q2: num] :
      ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit1 @ N2 ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) )
     != zero_z3403309356797280102nteger ) ).

% cong_exp_iff_simps(3)
thf(fact_6972_numeral__3__eq__3,axiom,
    ( ( numeral_numeral_nat @ ( bit1 @ one ) )
    = ( suc @ ( suc @ ( suc @ zero_zero_nat ) ) ) ) ).

% numeral_3_eq_3
thf(fact_6973_Suc3__eq__add__3,axiom,
    ! [N2: nat] :
      ( ( suc @ ( suc @ ( suc @ N2 ) ) )
      = ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ one ) ) @ N2 ) ) ).

% Suc3_eq_add_3
thf(fact_6974_lemma__interval,axiom,
    ! [A: real,X: real,B: real] :
      ( ( ord_less_real @ A @ X )
     => ( ( ord_less_real @ X @ B )
       => ? [D4: real] :
            ( ( ord_less_real @ zero_zero_real @ D4 )
            & ! [Y2: real] :
                ( ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ X @ Y2 ) ) @ D4 )
               => ( ( ord_less_eq_real @ A @ Y2 )
                  & ( ord_less_eq_real @ Y2 @ B ) ) ) ) ) ) ).

% lemma_interval
thf(fact_6975_sum_OSuc__reindex__ivl,axiom,
    ! [M: nat,N2: nat,G: nat > rat] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ( plus_plus_rat @ ( groups2906978787729119204at_rat @ G @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) @ ( G @ ( suc @ N2 ) ) )
        = ( plus_plus_rat @ ( G @ M )
          @ ( groups2906978787729119204at_rat
            @ ^ [I5: nat] : ( G @ ( suc @ I5 ) )
            @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) ) ) ) ).

% sum.Suc_reindex_ivl
thf(fact_6976_sum_OSuc__reindex__ivl,axiom,
    ! [M: nat,N2: nat,G: nat > int] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ( plus_plus_int @ ( groups3539618377306564664at_int @ G @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) @ ( G @ ( suc @ N2 ) ) )
        = ( plus_plus_int @ ( G @ M )
          @ ( groups3539618377306564664at_int
            @ ^ [I5: nat] : ( G @ ( suc @ I5 ) )
            @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) ) ) ) ).

% sum.Suc_reindex_ivl
thf(fact_6977_sum_OSuc__reindex__ivl,axiom,
    ! [M: nat,N2: nat,G: nat > nat] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ( plus_plus_nat @ ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) @ ( G @ ( suc @ N2 ) ) )
        = ( plus_plus_nat @ ( G @ M )
          @ ( groups3542108847815614940at_nat
            @ ^ [I5: nat] : ( G @ ( suc @ I5 ) )
            @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) ) ) ) ).

% sum.Suc_reindex_ivl
thf(fact_6978_sum_OSuc__reindex__ivl,axiom,
    ! [M: nat,N2: nat,G: nat > real] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ( plus_plus_real @ ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) @ ( G @ ( suc @ N2 ) ) )
        = ( plus_plus_real @ ( G @ M )
          @ ( groups6591440286371151544t_real
            @ ^ [I5: nat] : ( G @ ( suc @ I5 ) )
            @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) ) ) ) ).

% sum.Suc_reindex_ivl
thf(fact_6979_sum__Suc__diff,axiom,
    ! [M: nat,N2: nat,F: nat > rat] :
      ( ( ord_less_eq_nat @ M @ ( suc @ N2 ) )
     => ( ( groups2906978787729119204at_rat
          @ ^ [I5: nat] : ( minus_minus_rat @ ( F @ ( suc @ I5 ) ) @ ( F @ I5 ) )
          @ ( set_or1269000886237332187st_nat @ M @ N2 ) )
        = ( minus_minus_rat @ ( F @ ( suc @ N2 ) ) @ ( F @ M ) ) ) ) ).

% sum_Suc_diff
thf(fact_6980_sum__Suc__diff,axiom,
    ! [M: nat,N2: nat,F: nat > int] :
      ( ( ord_less_eq_nat @ M @ ( suc @ N2 ) )
     => ( ( groups3539618377306564664at_int
          @ ^ [I5: nat] : ( minus_minus_int @ ( F @ ( suc @ I5 ) ) @ ( F @ I5 ) )
          @ ( set_or1269000886237332187st_nat @ M @ N2 ) )
        = ( minus_minus_int @ ( F @ ( suc @ N2 ) ) @ ( F @ M ) ) ) ) ).

% sum_Suc_diff
thf(fact_6981_sum__Suc__diff,axiom,
    ! [M: nat,N2: nat,F: nat > real] :
      ( ( ord_less_eq_nat @ M @ ( suc @ N2 ) )
     => ( ( groups6591440286371151544t_real
          @ ^ [I5: nat] : ( minus_minus_real @ ( F @ ( suc @ I5 ) ) @ ( F @ I5 ) )
          @ ( set_or1269000886237332187st_nat @ M @ N2 ) )
        = ( minus_minus_real @ ( F @ ( suc @ N2 ) ) @ ( F @ M ) ) ) ) ).

% sum_Suc_diff
thf(fact_6982_mod__exhaust__less__4,axiom,
    ! [M: nat] :
      ( ( ( modulo_modulo_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
        = zero_zero_nat )
      | ( ( modulo_modulo_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
        = one_one_nat )
      | ( ( modulo_modulo_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
        = ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      | ( ( modulo_modulo_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
        = ( numeral_numeral_nat @ ( bit1 @ one ) ) ) ) ).

% mod_exhaust_less_4
thf(fact_6983_abs__le__square__iff,axiom,
    ! [X: code_integer,Y: code_integer] :
      ( ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ X ) @ ( abs_abs_Code_integer @ Y ) )
      = ( ord_le3102999989581377725nteger @ ( power_8256067586552552935nteger @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_8256067586552552935nteger @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% abs_le_square_iff
thf(fact_6984_abs__le__square__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ X ) @ ( abs_abs_real @ Y ) )
      = ( ord_less_eq_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% abs_le_square_iff
thf(fact_6985_abs__le__square__iff,axiom,
    ! [X: rat,Y: rat] :
      ( ( ord_less_eq_rat @ ( abs_abs_rat @ X ) @ ( abs_abs_rat @ Y ) )
      = ( ord_less_eq_rat @ ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% abs_le_square_iff
thf(fact_6986_abs__le__square__iff,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_eq_int @ ( abs_abs_int @ X ) @ ( abs_abs_int @ Y ) )
      = ( ord_less_eq_int @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% abs_le_square_iff
thf(fact_6987_abs__square__eq__1,axiom,
    ! [X: code_integer] :
      ( ( ( power_8256067586552552935nteger @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = one_one_Code_integer )
      = ( ( abs_abs_Code_integer @ X )
        = one_one_Code_integer ) ) ).

% abs_square_eq_1
thf(fact_6988_abs__square__eq__1,axiom,
    ! [X: rat] :
      ( ( ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = one_one_rat )
      = ( ( abs_abs_rat @ X )
        = one_one_rat ) ) ).

% abs_square_eq_1
thf(fact_6989_abs__square__eq__1,axiom,
    ! [X: real] :
      ( ( ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = one_one_real )
      = ( ( abs_abs_real @ X )
        = one_one_real ) ) ).

% abs_square_eq_1
thf(fact_6990_abs__square__eq__1,axiom,
    ! [X: int] :
      ( ( ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = one_one_int )
      = ( ( abs_abs_int @ X )
        = one_one_int ) ) ).

% abs_square_eq_1
thf(fact_6991_num_Osize_I6_J,axiom,
    ! [X32: num] :
      ( ( size_size_num @ ( bit1 @ X32 ) )
      = ( plus_plus_nat @ ( size_size_num @ X32 ) @ ( suc @ zero_zero_nat ) ) ) ).

% num.size(6)
thf(fact_6992_power__even__abs,axiom,
    ! [N2: nat,A: rat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ( power_power_rat @ ( abs_abs_rat @ A ) @ N2 )
        = ( power_power_rat @ A @ N2 ) ) ) ).

% power_even_abs
thf(fact_6993_power__even__abs,axiom,
    ! [N2: nat,A: code_integer] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ( power_8256067586552552935nteger @ ( abs_abs_Code_integer @ A ) @ N2 )
        = ( power_8256067586552552935nteger @ A @ N2 ) ) ) ).

% power_even_abs
thf(fact_6994_power__even__abs,axiom,
    ! [N2: nat,A: real] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ( power_power_real @ ( abs_abs_real @ A ) @ N2 )
        = ( power_power_real @ A @ N2 ) ) ) ).

% power_even_abs
thf(fact_6995_power__even__abs,axiom,
    ! [N2: nat,A: int] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ( power_power_int @ ( abs_abs_int @ A ) @ N2 )
        = ( power_power_int @ A @ N2 ) ) ) ).

% power_even_abs
thf(fact_6996_sum_Oub__add__nat,axiom,
    ! [M: nat,N2: nat,G: nat > rat,P4: nat] :
      ( ( ord_less_eq_nat @ M @ ( plus_plus_nat @ N2 @ one_one_nat ) )
     => ( ( groups2906978787729119204at_rat @ G @ ( set_or1269000886237332187st_nat @ M @ ( plus_plus_nat @ N2 @ P4 ) ) )
        = ( plus_plus_rat @ ( groups2906978787729119204at_rat @ G @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) @ ( groups2906978787729119204at_rat @ G @ ( set_or1269000886237332187st_nat @ ( plus_plus_nat @ N2 @ one_one_nat ) @ ( plus_plus_nat @ N2 @ P4 ) ) ) ) ) ) ).

% sum.ub_add_nat
thf(fact_6997_sum_Oub__add__nat,axiom,
    ! [M: nat,N2: nat,G: nat > int,P4: nat] :
      ( ( ord_less_eq_nat @ M @ ( plus_plus_nat @ N2 @ one_one_nat ) )
     => ( ( groups3539618377306564664at_int @ G @ ( set_or1269000886237332187st_nat @ M @ ( plus_plus_nat @ N2 @ P4 ) ) )
        = ( plus_plus_int @ ( groups3539618377306564664at_int @ G @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) @ ( groups3539618377306564664at_int @ G @ ( set_or1269000886237332187st_nat @ ( plus_plus_nat @ N2 @ one_one_nat ) @ ( plus_plus_nat @ N2 @ P4 ) ) ) ) ) ) ).

% sum.ub_add_nat
thf(fact_6998_sum_Oub__add__nat,axiom,
    ! [M: nat,N2: nat,G: nat > nat,P4: nat] :
      ( ( ord_less_eq_nat @ M @ ( plus_plus_nat @ N2 @ one_one_nat ) )
     => ( ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ M @ ( plus_plus_nat @ N2 @ P4 ) ) )
        = ( plus_plus_nat @ ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) @ ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ ( plus_plus_nat @ N2 @ one_one_nat ) @ ( plus_plus_nat @ N2 @ P4 ) ) ) ) ) ) ).

% sum.ub_add_nat
thf(fact_6999_sum_Oub__add__nat,axiom,
    ! [M: nat,N2: nat,G: nat > real,P4: nat] :
      ( ( ord_less_eq_nat @ M @ ( plus_plus_nat @ N2 @ one_one_nat ) )
     => ( ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ M @ ( plus_plus_nat @ N2 @ P4 ) ) )
        = ( plus_plus_real @ ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) @ ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ ( plus_plus_nat @ N2 @ one_one_nat ) @ ( plus_plus_nat @ N2 @ P4 ) ) ) ) ) ) ).

% sum.ub_add_nat
thf(fact_7000_cong__exp__iff__simps_I11_J,axiom,
    ! [M: num,Q2: num] :
      ( ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit1 @ M ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) )
        = ( modulo_modulo_nat @ ( numeral_numeral_nat @ one ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) ) )
      = ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ Q2 ) )
        = zero_zero_nat ) ) ).

% cong_exp_iff_simps(11)
thf(fact_7001_cong__exp__iff__simps_I11_J,axiom,
    ! [M: num,Q2: num] :
      ( ( ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit1 @ M ) ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) )
        = ( modulo_modulo_int @ ( numeral_numeral_int @ one ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) ) )
      = ( ( modulo_modulo_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ Q2 ) )
        = zero_zero_int ) ) ).

% cong_exp_iff_simps(11)
thf(fact_7002_cong__exp__iff__simps_I11_J,axiom,
    ! [M: num,Q2: num] :
      ( ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit1 @ M ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) )
        = ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ one ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) ) )
      = ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ M ) @ ( numera6620942414471956472nteger @ Q2 ) )
        = zero_z3403309356797280102nteger ) ) ).

% cong_exp_iff_simps(11)
thf(fact_7003_cong__exp__iff__simps_I7_J,axiom,
    ! [Q2: num,N2: num] :
      ( ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ one ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) )
        = ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit1 @ N2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) ) )
      = ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ N2 ) @ ( numeral_numeral_nat @ Q2 ) )
        = zero_zero_nat ) ) ).

% cong_exp_iff_simps(7)
thf(fact_7004_cong__exp__iff__simps_I7_J,axiom,
    ! [Q2: num,N2: num] :
      ( ( ( modulo_modulo_int @ ( numeral_numeral_int @ one ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) )
        = ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit1 @ N2 ) ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) ) )
      = ( ( modulo_modulo_int @ ( numeral_numeral_int @ N2 ) @ ( numeral_numeral_int @ Q2 ) )
        = zero_zero_int ) ) ).

% cong_exp_iff_simps(7)
thf(fact_7005_cong__exp__iff__simps_I7_J,axiom,
    ! [Q2: num,N2: num] :
      ( ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ one ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) )
        = ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit1 @ N2 ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) ) )
      = ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ N2 ) @ ( numera6620942414471956472nteger @ Q2 ) )
        = zero_z3403309356797280102nteger ) ) ).

% cong_exp_iff_simps(7)
thf(fact_7006_Suc__div__eq__add3__div,axiom,
    ! [M: nat,N2: nat] :
      ( ( divide_divide_nat @ ( suc @ ( suc @ ( suc @ M ) ) ) @ N2 )
      = ( divide_divide_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ one ) ) @ M ) @ N2 ) ) ).

% Suc_div_eq_add3_div
thf(fact_7007_Suc__mod__eq__add3__mod,axiom,
    ! [M: nat,N2: nat] :
      ( ( modulo_modulo_nat @ ( suc @ ( suc @ ( suc @ M ) ) ) @ N2 )
      = ( modulo_modulo_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ one ) ) @ M ) @ N2 ) ) ).

% Suc_mod_eq_add3_mod
thf(fact_7008_divmod__int__def,axiom,
    ( unique5052692396658037445od_int
    = ( ^ [M6: num,N3: num] : ( product_Pair_int_int @ ( divide_divide_int @ ( numeral_numeral_int @ M6 ) @ ( numeral_numeral_int @ N3 ) ) @ ( modulo_modulo_int @ ( numeral_numeral_int @ M6 ) @ ( numeral_numeral_int @ N3 ) ) ) ) ) ).

% divmod_int_def
thf(fact_7009_Divides_Oadjust__div__def,axiom,
    ( adjust_div
    = ( produc8211389475949308722nt_int
      @ ^ [Q4: int,R5: int] : ( plus_plus_int @ Q4 @ ( zero_n2684676970156552555ol_int @ ( R5 != zero_zero_int ) ) ) ) ) ).

% Divides.adjust_div_def
thf(fact_7010_abs__sqrt__wlog,axiom,
    ! [P: code_integer > code_integer > $o,X: code_integer] :
      ( ! [X5: code_integer] :
          ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ X5 )
         => ( P @ X5 @ ( power_8256067586552552935nteger @ X5 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
     => ( P @ ( abs_abs_Code_integer @ X ) @ ( power_8256067586552552935nteger @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% abs_sqrt_wlog
thf(fact_7011_abs__sqrt__wlog,axiom,
    ! [P: real > real > $o,X: real] :
      ( ! [X5: real] :
          ( ( ord_less_eq_real @ zero_zero_real @ X5 )
         => ( P @ X5 @ ( power_power_real @ X5 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
     => ( P @ ( abs_abs_real @ X ) @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% abs_sqrt_wlog
thf(fact_7012_abs__sqrt__wlog,axiom,
    ! [P: rat > rat > $o,X: rat] :
      ( ! [X5: rat] :
          ( ( ord_less_eq_rat @ zero_zero_rat @ X5 )
         => ( P @ X5 @ ( power_power_rat @ X5 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
     => ( P @ ( abs_abs_rat @ X ) @ ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% abs_sqrt_wlog
thf(fact_7013_abs__sqrt__wlog,axiom,
    ! [P: int > int > $o,X: int] :
      ( ! [X5: int] :
          ( ( ord_less_eq_int @ zero_zero_int @ X5 )
         => ( P @ X5 @ ( power_power_int @ X5 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
     => ( P @ ( abs_abs_int @ X ) @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% abs_sqrt_wlog
thf(fact_7014_power2__le__iff__abs__le,axiom,
    ! [Y: code_integer,X: code_integer] :
      ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ Y )
     => ( ( ord_le3102999989581377725nteger @ ( power_8256067586552552935nteger @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_8256067586552552935nteger @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
        = ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ X ) @ Y ) ) ) ).

% power2_le_iff_abs_le
thf(fact_7015_power2__le__iff__abs__le,axiom,
    ! [Y: real,X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ Y )
     => ( ( ord_less_eq_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
        = ( ord_less_eq_real @ ( abs_abs_real @ X ) @ Y ) ) ) ).

% power2_le_iff_abs_le
thf(fact_7016_power2__le__iff__abs__le,axiom,
    ! [Y: rat,X: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ Y )
     => ( ( ord_less_eq_rat @ ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
        = ( ord_less_eq_rat @ ( abs_abs_rat @ X ) @ Y ) ) ) ).

% power2_le_iff_abs_le
thf(fact_7017_power2__le__iff__abs__le,axiom,
    ! [Y: int,X: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Y )
     => ( ( ord_less_eq_int @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
        = ( ord_less_eq_int @ ( abs_abs_int @ X ) @ Y ) ) ) ).

% power2_le_iff_abs_le
thf(fact_7018_abs__square__le__1,axiom,
    ! [X: code_integer] :
      ( ( ord_le3102999989581377725nteger @ ( power_8256067586552552935nteger @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_Code_integer )
      = ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ X ) @ one_one_Code_integer ) ) ).

% abs_square_le_1
thf(fact_7019_abs__square__le__1,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real )
      = ( ord_less_eq_real @ ( abs_abs_real @ X ) @ one_one_real ) ) ).

% abs_square_le_1
thf(fact_7020_abs__square__le__1,axiom,
    ! [X: rat] :
      ( ( ord_less_eq_rat @ ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_rat )
      = ( ord_less_eq_rat @ ( abs_abs_rat @ X ) @ one_one_rat ) ) ).

% abs_square_le_1
thf(fact_7021_abs__square__le__1,axiom,
    ! [X: int] :
      ( ( ord_less_eq_int @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_int )
      = ( ord_less_eq_int @ ( abs_abs_int @ X ) @ one_one_int ) ) ).

% abs_square_le_1
thf(fact_7022_abs__square__less__1,axiom,
    ! [X: code_integer] :
      ( ( ord_le6747313008572928689nteger @ ( power_8256067586552552935nteger @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_Code_integer )
      = ( ord_le6747313008572928689nteger @ ( abs_abs_Code_integer @ X ) @ one_one_Code_integer ) ) ).

% abs_square_less_1
thf(fact_7023_abs__square__less__1,axiom,
    ! [X: real] :
      ( ( ord_less_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real )
      = ( ord_less_real @ ( abs_abs_real @ X ) @ one_one_real ) ) ).

% abs_square_less_1
thf(fact_7024_abs__square__less__1,axiom,
    ! [X: rat] :
      ( ( ord_less_rat @ ( power_power_rat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_rat )
      = ( ord_less_rat @ ( abs_abs_rat @ X ) @ one_one_rat ) ) ).

% abs_square_less_1
thf(fact_7025_abs__square__less__1,axiom,
    ! [X: int] :
      ( ( ord_less_int @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_int )
      = ( ord_less_int @ ( abs_abs_int @ X ) @ one_one_int ) ) ).

% abs_square_less_1
thf(fact_7026_divmod__def,axiom,
    ( unique5052692396658037445od_int
    = ( ^ [M6: num,N3: num] : ( product_Pair_int_int @ ( divide_divide_int @ ( numeral_numeral_int @ M6 ) @ ( numeral_numeral_int @ N3 ) ) @ ( modulo_modulo_int @ ( numeral_numeral_int @ M6 ) @ ( numeral_numeral_int @ N3 ) ) ) ) ) ).

% divmod_def
thf(fact_7027_divmod__def,axiom,
    ( unique5055182867167087721od_nat
    = ( ^ [M6: num,N3: num] : ( product_Pair_nat_nat @ ( divide_divide_nat @ ( numeral_numeral_nat @ M6 ) @ ( numeral_numeral_nat @ N3 ) ) @ ( modulo_modulo_nat @ ( numeral_numeral_nat @ M6 ) @ ( numeral_numeral_nat @ N3 ) ) ) ) ) ).

% divmod_def
thf(fact_7028_divmod__def,axiom,
    ( unique3479559517661332726nteger
    = ( ^ [M6: num,N3: num] : ( produc1086072967326762835nteger @ ( divide6298287555418463151nteger @ ( numera6620942414471956472nteger @ M6 ) @ ( numera6620942414471956472nteger @ N3 ) ) @ ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ M6 ) @ ( numera6620942414471956472nteger @ N3 ) ) ) ) ) ).

% divmod_def
thf(fact_7029_divmod_H__nat__def,axiom,
    ( unique5055182867167087721od_nat
    = ( ^ [M6: num,N3: num] : ( product_Pair_nat_nat @ ( divide_divide_nat @ ( numeral_numeral_nat @ M6 ) @ ( numeral_numeral_nat @ N3 ) ) @ ( modulo_modulo_nat @ ( numeral_numeral_nat @ M6 ) @ ( numeral_numeral_nat @ N3 ) ) ) ) ) ).

% divmod'_nat_def
thf(fact_7030_power__mono__even,axiom,
    ! [N2: nat,A: code_integer,B: code_integer] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) )
       => ( ord_le3102999989581377725nteger @ ( power_8256067586552552935nteger @ A @ N2 ) @ ( power_8256067586552552935nteger @ B @ N2 ) ) ) ) ).

% power_mono_even
thf(fact_7031_power__mono__even,axiom,
    ! [N2: nat,A: real,B: real] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ( ord_less_eq_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) )
       => ( ord_less_eq_real @ ( power_power_real @ A @ N2 ) @ ( power_power_real @ B @ N2 ) ) ) ) ).

% power_mono_even
thf(fact_7032_power__mono__even,axiom,
    ! [N2: nat,A: rat,B: rat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ( ord_less_eq_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) )
       => ( ord_less_eq_rat @ ( power_power_rat @ A @ N2 ) @ ( power_power_rat @ B @ N2 ) ) ) ) ).

% power_mono_even
thf(fact_7033_power__mono__even,axiom,
    ! [N2: nat,A: int,B: int] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ( ord_less_eq_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) )
       => ( ord_less_eq_int @ ( power_power_int @ A @ N2 ) @ ( power_power_int @ B @ N2 ) ) ) ) ).

% power_mono_even
thf(fact_7034_convex__sum__bound__le,axiom,
    ! [I6: set_complex,X: complex > code_integer,A: complex > code_integer,B: code_integer,Delta: code_integer] :
      ( ! [I3: complex] :
          ( ( member_complex @ I3 @ I6 )
         => ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( X @ I3 ) ) )
     => ( ( ( groups6621422865394947399nteger @ X @ I6 )
          = one_one_Code_integer )
       => ( ! [I3: complex] :
              ( ( member_complex @ I3 @ I6 )
             => ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ ( A @ I3 ) @ B ) ) @ Delta ) )
         => ( ord_le3102999989581377725nteger
            @ ( abs_abs_Code_integer
              @ ( minus_8373710615458151222nteger
                @ ( groups6621422865394947399nteger
                  @ ^ [I5: complex] : ( times_3573771949741848930nteger @ ( A @ I5 ) @ ( X @ I5 ) )
                  @ I6 )
                @ B ) )
            @ Delta ) ) ) ) ).

% convex_sum_bound_le
thf(fact_7035_convex__sum__bound__le,axiom,
    ! [I6: set_real,X: real > code_integer,A: real > code_integer,B: code_integer,Delta: code_integer] :
      ( ! [I3: real] :
          ( ( member_real @ I3 @ I6 )
         => ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( X @ I3 ) ) )
     => ( ( ( groups7713935264441627589nteger @ X @ I6 )
          = one_one_Code_integer )
       => ( ! [I3: real] :
              ( ( member_real @ I3 @ I6 )
             => ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ ( A @ I3 ) @ B ) ) @ Delta ) )
         => ( ord_le3102999989581377725nteger
            @ ( abs_abs_Code_integer
              @ ( minus_8373710615458151222nteger
                @ ( groups7713935264441627589nteger
                  @ ^ [I5: real] : ( times_3573771949741848930nteger @ ( A @ I5 ) @ ( X @ I5 ) )
                  @ I6 )
                @ B ) )
            @ Delta ) ) ) ) ).

% convex_sum_bound_le
thf(fact_7036_convex__sum__bound__le,axiom,
    ! [I6: set_nat,X: nat > code_integer,A: nat > code_integer,B: code_integer,Delta: code_integer] :
      ( ! [I3: nat] :
          ( ( member_nat @ I3 @ I6 )
         => ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( X @ I3 ) ) )
     => ( ( ( groups7501900531339628137nteger @ X @ I6 )
          = one_one_Code_integer )
       => ( ! [I3: nat] :
              ( ( member_nat @ I3 @ I6 )
             => ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ ( A @ I3 ) @ B ) ) @ Delta ) )
         => ( ord_le3102999989581377725nteger
            @ ( abs_abs_Code_integer
              @ ( minus_8373710615458151222nteger
                @ ( groups7501900531339628137nteger
                  @ ^ [I5: nat] : ( times_3573771949741848930nteger @ ( A @ I5 ) @ ( X @ I5 ) )
                  @ I6 )
                @ B ) )
            @ Delta ) ) ) ) ).

% convex_sum_bound_le
thf(fact_7037_convex__sum__bound__le,axiom,
    ! [I6: set_int,X: int > code_integer,A: int > code_integer,B: code_integer,Delta: code_integer] :
      ( ! [I3: int] :
          ( ( member_int @ I3 @ I6 )
         => ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( X @ I3 ) ) )
     => ( ( ( groups7873554091576472773nteger @ X @ I6 )
          = one_one_Code_integer )
       => ( ! [I3: int] :
              ( ( member_int @ I3 @ I6 )
             => ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ ( A @ I3 ) @ B ) ) @ Delta ) )
         => ( ord_le3102999989581377725nteger
            @ ( abs_abs_Code_integer
              @ ( minus_8373710615458151222nteger
                @ ( groups7873554091576472773nteger
                  @ ^ [I5: int] : ( times_3573771949741848930nteger @ ( A @ I5 ) @ ( X @ I5 ) )
                  @ I6 )
                @ B ) )
            @ Delta ) ) ) ) ).

% convex_sum_bound_le
thf(fact_7038_convex__sum__bound__le,axiom,
    ! [I6: set_complex,X: complex > real,A: complex > real,B: real,Delta: real] :
      ( ! [I3: complex] :
          ( ( member_complex @ I3 @ I6 )
         => ( ord_less_eq_real @ zero_zero_real @ ( X @ I3 ) ) )
     => ( ( ( groups5808333547571424918x_real @ X @ I6 )
          = one_one_real )
       => ( ! [I3: complex] :
              ( ( member_complex @ I3 @ I6 )
             => ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( A @ I3 ) @ B ) ) @ Delta ) )
         => ( ord_less_eq_real
            @ ( abs_abs_real
              @ ( minus_minus_real
                @ ( groups5808333547571424918x_real
                  @ ^ [I5: complex] : ( times_times_real @ ( A @ I5 ) @ ( X @ I5 ) )
                  @ I6 )
                @ B ) )
            @ Delta ) ) ) ) ).

% convex_sum_bound_le
thf(fact_7039_convex__sum__bound__le,axiom,
    ! [I6: set_real,X: real > real,A: real > real,B: real,Delta: real] :
      ( ! [I3: real] :
          ( ( member_real @ I3 @ I6 )
         => ( ord_less_eq_real @ zero_zero_real @ ( X @ I3 ) ) )
     => ( ( ( groups8097168146408367636l_real @ X @ I6 )
          = one_one_real )
       => ( ! [I3: real] :
              ( ( member_real @ I3 @ I6 )
             => ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( A @ I3 ) @ B ) ) @ Delta ) )
         => ( ord_less_eq_real
            @ ( abs_abs_real
              @ ( minus_minus_real
                @ ( groups8097168146408367636l_real
                  @ ^ [I5: real] : ( times_times_real @ ( A @ I5 ) @ ( X @ I5 ) )
                  @ I6 )
                @ B ) )
            @ Delta ) ) ) ) ).

% convex_sum_bound_le
thf(fact_7040_convex__sum__bound__le,axiom,
    ! [I6: set_int,X: int > real,A: int > real,B: real,Delta: real] :
      ( ! [I3: int] :
          ( ( member_int @ I3 @ I6 )
         => ( ord_less_eq_real @ zero_zero_real @ ( X @ I3 ) ) )
     => ( ( ( groups8778361861064173332t_real @ X @ I6 )
          = one_one_real )
       => ( ! [I3: int] :
              ( ( member_int @ I3 @ I6 )
             => ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( A @ I3 ) @ B ) ) @ Delta ) )
         => ( ord_less_eq_real
            @ ( abs_abs_real
              @ ( minus_minus_real
                @ ( groups8778361861064173332t_real
                  @ ^ [I5: int] : ( times_times_real @ ( A @ I5 ) @ ( X @ I5 ) )
                  @ I6 )
                @ B ) )
            @ Delta ) ) ) ) ).

% convex_sum_bound_le
thf(fact_7041_convex__sum__bound__le,axiom,
    ! [I6: set_complex,X: complex > rat,A: complex > rat,B: rat,Delta: rat] :
      ( ! [I3: complex] :
          ( ( member_complex @ I3 @ I6 )
         => ( ord_less_eq_rat @ zero_zero_rat @ ( X @ I3 ) ) )
     => ( ( ( groups5058264527183730370ex_rat @ X @ I6 )
          = one_one_rat )
       => ( ! [I3: complex] :
              ( ( member_complex @ I3 @ I6 )
             => ( ord_less_eq_rat @ ( abs_abs_rat @ ( minus_minus_rat @ ( A @ I3 ) @ B ) ) @ Delta ) )
         => ( ord_less_eq_rat
            @ ( abs_abs_rat
              @ ( minus_minus_rat
                @ ( groups5058264527183730370ex_rat
                  @ ^ [I5: complex] : ( times_times_rat @ ( A @ I5 ) @ ( X @ I5 ) )
                  @ I6 )
                @ B ) )
            @ Delta ) ) ) ) ).

% convex_sum_bound_le
thf(fact_7042_convex__sum__bound__le,axiom,
    ! [I6: set_real,X: real > rat,A: real > rat,B: rat,Delta: rat] :
      ( ! [I3: real] :
          ( ( member_real @ I3 @ I6 )
         => ( ord_less_eq_rat @ zero_zero_rat @ ( X @ I3 ) ) )
     => ( ( ( groups1300246762558778688al_rat @ X @ I6 )
          = one_one_rat )
       => ( ! [I3: real] :
              ( ( member_real @ I3 @ I6 )
             => ( ord_less_eq_rat @ ( abs_abs_rat @ ( minus_minus_rat @ ( A @ I3 ) @ B ) ) @ Delta ) )
         => ( ord_less_eq_rat
            @ ( abs_abs_rat
              @ ( minus_minus_rat
                @ ( groups1300246762558778688al_rat
                  @ ^ [I5: real] : ( times_times_rat @ ( A @ I5 ) @ ( X @ I5 ) )
                  @ I6 )
                @ B ) )
            @ Delta ) ) ) ) ).

% convex_sum_bound_le
thf(fact_7043_convex__sum__bound__le,axiom,
    ! [I6: set_nat,X: nat > rat,A: nat > rat,B: rat,Delta: rat] :
      ( ! [I3: nat] :
          ( ( member_nat @ I3 @ I6 )
         => ( ord_less_eq_rat @ zero_zero_rat @ ( X @ I3 ) ) )
     => ( ( ( groups2906978787729119204at_rat @ X @ I6 )
          = one_one_rat )
       => ( ! [I3: nat] :
              ( ( member_nat @ I3 @ I6 )
             => ( ord_less_eq_rat @ ( abs_abs_rat @ ( minus_minus_rat @ ( A @ I3 ) @ B ) ) @ Delta ) )
         => ( ord_less_eq_rat
            @ ( abs_abs_rat
              @ ( minus_minus_rat
                @ ( groups2906978787729119204at_rat
                  @ ^ [I5: nat] : ( times_times_rat @ ( A @ I5 ) @ ( X @ I5 ) )
                  @ I6 )
                @ B ) )
            @ Delta ) ) ) ) ).

% convex_sum_bound_le
thf(fact_7044_sum__natinterval__diff,axiom,
    ! [M: nat,N2: nat,F: nat > complex] :
      ( ( ( ord_less_eq_nat @ M @ N2 )
       => ( ( groups2073611262835488442omplex
            @ ^ [K3: nat] : ( minus_minus_complex @ ( F @ K3 ) @ ( F @ ( plus_plus_nat @ K3 @ one_one_nat ) ) )
            @ ( set_or1269000886237332187st_nat @ M @ N2 ) )
          = ( minus_minus_complex @ ( F @ M ) @ ( F @ ( plus_plus_nat @ N2 @ one_one_nat ) ) ) ) )
      & ( ~ ( ord_less_eq_nat @ M @ N2 )
       => ( ( groups2073611262835488442omplex
            @ ^ [K3: nat] : ( minus_minus_complex @ ( F @ K3 ) @ ( F @ ( plus_plus_nat @ K3 @ one_one_nat ) ) )
            @ ( set_or1269000886237332187st_nat @ M @ N2 ) )
          = zero_zero_complex ) ) ) ).

% sum_natinterval_diff
thf(fact_7045_sum__natinterval__diff,axiom,
    ! [M: nat,N2: nat,F: nat > rat] :
      ( ( ( ord_less_eq_nat @ M @ N2 )
       => ( ( groups2906978787729119204at_rat
            @ ^ [K3: nat] : ( minus_minus_rat @ ( F @ K3 ) @ ( F @ ( plus_plus_nat @ K3 @ one_one_nat ) ) )
            @ ( set_or1269000886237332187st_nat @ M @ N2 ) )
          = ( minus_minus_rat @ ( F @ M ) @ ( F @ ( plus_plus_nat @ N2 @ one_one_nat ) ) ) ) )
      & ( ~ ( ord_less_eq_nat @ M @ N2 )
       => ( ( groups2906978787729119204at_rat
            @ ^ [K3: nat] : ( minus_minus_rat @ ( F @ K3 ) @ ( F @ ( plus_plus_nat @ K3 @ one_one_nat ) ) )
            @ ( set_or1269000886237332187st_nat @ M @ N2 ) )
          = zero_zero_rat ) ) ) ).

% sum_natinterval_diff
thf(fact_7046_sum__natinterval__diff,axiom,
    ! [M: nat,N2: nat,F: nat > int] :
      ( ( ( ord_less_eq_nat @ M @ N2 )
       => ( ( groups3539618377306564664at_int
            @ ^ [K3: nat] : ( minus_minus_int @ ( F @ K3 ) @ ( F @ ( plus_plus_nat @ K3 @ one_one_nat ) ) )
            @ ( set_or1269000886237332187st_nat @ M @ N2 ) )
          = ( minus_minus_int @ ( F @ M ) @ ( F @ ( plus_plus_nat @ N2 @ one_one_nat ) ) ) ) )
      & ( ~ ( ord_less_eq_nat @ M @ N2 )
       => ( ( groups3539618377306564664at_int
            @ ^ [K3: nat] : ( minus_minus_int @ ( F @ K3 ) @ ( F @ ( plus_plus_nat @ K3 @ one_one_nat ) ) )
            @ ( set_or1269000886237332187st_nat @ M @ N2 ) )
          = zero_zero_int ) ) ) ).

% sum_natinterval_diff
thf(fact_7047_sum__natinterval__diff,axiom,
    ! [M: nat,N2: nat,F: nat > real] :
      ( ( ( ord_less_eq_nat @ M @ N2 )
       => ( ( groups6591440286371151544t_real
            @ ^ [K3: nat] : ( minus_minus_real @ ( F @ K3 ) @ ( F @ ( plus_plus_nat @ K3 @ one_one_nat ) ) )
            @ ( set_or1269000886237332187st_nat @ M @ N2 ) )
          = ( minus_minus_real @ ( F @ M ) @ ( F @ ( plus_plus_nat @ N2 @ one_one_nat ) ) ) ) )
      & ( ~ ( ord_less_eq_nat @ M @ N2 )
       => ( ( groups6591440286371151544t_real
            @ ^ [K3: nat] : ( minus_minus_real @ ( F @ K3 ) @ ( F @ ( plus_plus_nat @ K3 @ one_one_nat ) ) )
            @ ( set_or1269000886237332187st_nat @ M @ N2 ) )
          = zero_zero_real ) ) ) ).

% sum_natinterval_diff
thf(fact_7048_sum__telescope_H_H,axiom,
    ! [M: nat,N2: nat,F: nat > rat] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ( groups2906978787729119204at_rat
          @ ^ [K3: nat] : ( minus_minus_rat @ ( F @ K3 ) @ ( F @ ( minus_minus_nat @ K3 @ one_one_nat ) ) )
          @ ( set_or1269000886237332187st_nat @ ( suc @ M ) @ N2 ) )
        = ( minus_minus_rat @ ( F @ N2 ) @ ( F @ M ) ) ) ) ).

% sum_telescope''
thf(fact_7049_sum__telescope_H_H,axiom,
    ! [M: nat,N2: nat,F: nat > int] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ( groups3539618377306564664at_int
          @ ^ [K3: nat] : ( minus_minus_int @ ( F @ K3 ) @ ( F @ ( minus_minus_nat @ K3 @ one_one_nat ) ) )
          @ ( set_or1269000886237332187st_nat @ ( suc @ M ) @ N2 ) )
        = ( minus_minus_int @ ( F @ N2 ) @ ( F @ M ) ) ) ) ).

% sum_telescope''
thf(fact_7050_sum__telescope_H_H,axiom,
    ! [M: nat,N2: nat,F: nat > real] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ( groups6591440286371151544t_real
          @ ^ [K3: nat] : ( minus_minus_real @ ( F @ K3 ) @ ( F @ ( minus_minus_nat @ K3 @ one_one_nat ) ) )
          @ ( set_or1269000886237332187st_nat @ ( suc @ M ) @ N2 ) )
        = ( minus_minus_real @ ( F @ N2 ) @ ( F @ M ) ) ) ) ).

% sum_telescope''
thf(fact_7051_divmod__nat__def,axiom,
    ( divmod_nat
    = ( ^ [M6: nat,N3: nat] : ( product_Pair_nat_nat @ ( divide_divide_nat @ M6 @ N3 ) @ ( modulo_modulo_nat @ M6 @ N3 ) ) ) ) ).

% divmod_nat_def
thf(fact_7052_mask__eq__sum__exp,axiom,
    ! [N2: nat] :
      ( ( minus_minus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) @ one_one_int )
      = ( groups3539618377306564664at_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
        @ ( collect_nat
          @ ^ [Q4: nat] : ( ord_less_nat @ Q4 @ N2 ) ) ) ) ).

% mask_eq_sum_exp
thf(fact_7053_mask__eq__sum__exp,axiom,
    ! [N2: nat] :
      ( ( minus_minus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) @ one_one_nat )
      = ( groups3542108847815614940at_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        @ ( collect_nat
          @ ^ [Q4: nat] : ( ord_less_nat @ Q4 @ N2 ) ) ) ) ).

% mask_eq_sum_exp
thf(fact_7054_sum__gp__multiplied,axiom,
    ! [M: nat,N2: nat,X: complex] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ( times_times_complex @ ( minus_minus_complex @ one_one_complex @ X ) @ ( groups2073611262835488442omplex @ ( power_power_complex @ X ) @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) )
        = ( minus_minus_complex @ ( power_power_complex @ X @ M ) @ ( power_power_complex @ X @ ( suc @ N2 ) ) ) ) ) ).

% sum_gp_multiplied
thf(fact_7055_sum__gp__multiplied,axiom,
    ! [M: nat,N2: nat,X: rat] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ( times_times_rat @ ( minus_minus_rat @ one_one_rat @ X ) @ ( groups2906978787729119204at_rat @ ( power_power_rat @ X ) @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) )
        = ( minus_minus_rat @ ( power_power_rat @ X @ M ) @ ( power_power_rat @ X @ ( suc @ N2 ) ) ) ) ) ).

% sum_gp_multiplied
thf(fact_7056_sum__gp__multiplied,axiom,
    ! [M: nat,N2: nat,X: int] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ( times_times_int @ ( minus_minus_int @ one_one_int @ X ) @ ( groups3539618377306564664at_int @ ( power_power_int @ X ) @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) )
        = ( minus_minus_int @ ( power_power_int @ X @ M ) @ ( power_power_int @ X @ ( suc @ N2 ) ) ) ) ) ).

% sum_gp_multiplied
thf(fact_7057_sum__gp__multiplied,axiom,
    ! [M: nat,N2: nat,X: real] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ( times_times_real @ ( minus_minus_real @ one_one_real @ X ) @ ( groups6591440286371151544t_real @ ( power_power_real @ X ) @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) )
        = ( minus_minus_real @ ( power_power_real @ X @ M ) @ ( power_power_real @ X @ ( suc @ N2 ) ) ) ) ) ).

% sum_gp_multiplied
thf(fact_7058_sum_Oin__pairs,axiom,
    ! [G: nat > rat,M: nat,N2: nat] :
      ( ( groups2906978787729119204at_rat @ G @ ( set_or1269000886237332187st_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) )
      = ( groups2906978787729119204at_rat
        @ ^ [I5: nat] : ( plus_plus_rat @ ( G @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I5 ) ) @ ( G @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I5 ) ) ) )
        @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) ) ).

% sum.in_pairs
thf(fact_7059_sum_Oin__pairs,axiom,
    ! [G: nat > int,M: nat,N2: nat] :
      ( ( groups3539618377306564664at_int @ G @ ( set_or1269000886237332187st_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) )
      = ( groups3539618377306564664at_int
        @ ^ [I5: nat] : ( plus_plus_int @ ( G @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I5 ) ) @ ( G @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I5 ) ) ) )
        @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) ) ).

% sum.in_pairs
thf(fact_7060_sum_Oin__pairs,axiom,
    ! [G: nat > nat,M: nat,N2: nat] :
      ( ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) )
      = ( groups3542108847815614940at_nat
        @ ^ [I5: nat] : ( plus_plus_nat @ ( G @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I5 ) ) @ ( G @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I5 ) ) ) )
        @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) ) ).

% sum.in_pairs
thf(fact_7061_sum_Oin__pairs,axiom,
    ! [G: nat > real,M: nat,N2: nat] :
      ( ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) )
      = ( groups6591440286371151544t_real
        @ ^ [I5: nat] : ( plus_plus_real @ ( G @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I5 ) ) @ ( G @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I5 ) ) ) )
        @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) ) ).

% sum.in_pairs
thf(fact_7062_eq__diff__eq_H,axiom,
    ! [X: real,Y: real,Z: real] :
      ( ( X
        = ( minus_minus_real @ Y @ Z ) )
      = ( Y
        = ( plus_plus_real @ X @ Z ) ) ) ).

% eq_diff_eq'
thf(fact_7063_mask__eq__sum__exp__nat,axiom,
    ! [N2: nat] :
      ( ( minus_minus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) @ ( suc @ zero_zero_nat ) )
      = ( groups3542108847815614940at_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        @ ( collect_nat
          @ ^ [Q4: nat] : ( ord_less_nat @ Q4 @ N2 ) ) ) ) ).

% mask_eq_sum_exp_nat
thf(fact_7064_gauss__sum__nat,axiom,
    ! [N2: nat] :
      ( ( groups3542108847815614940at_nat
        @ ^ [X3: nat] : X3
        @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N2 ) )
      = ( divide_divide_nat @ ( times_times_nat @ N2 @ ( suc @ N2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% gauss_sum_nat
thf(fact_7065_abs__ln__one__plus__x__minus__x__bound__nonneg,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ X @ one_one_real )
       => ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( ln_ln_real @ ( plus_plus_real @ one_one_real @ X ) ) @ X ) ) @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% abs_ln_one_plus_x_minus_x_bound_nonneg
thf(fact_7066_arith__series__nat,axiom,
    ! [A: nat,D: nat,N2: nat] :
      ( ( groups3542108847815614940at_nat
        @ ^ [I5: nat] : ( plus_plus_nat @ A @ ( times_times_nat @ I5 @ D ) )
        @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N2 ) )
      = ( divide_divide_nat @ ( times_times_nat @ ( suc @ N2 ) @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) @ ( times_times_nat @ N2 @ D ) ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% arith_series_nat
thf(fact_7067_Sum__Icc__nat,axiom,
    ! [M: nat,N2: nat] :
      ( ( groups3542108847815614940at_nat
        @ ^ [X3: nat] : X3
        @ ( set_or1269000886237332187st_nat @ M @ N2 ) )
      = ( divide_divide_nat @ ( minus_minus_nat @ ( times_times_nat @ N2 @ ( plus_plus_nat @ N2 @ one_one_nat ) ) @ ( times_times_nat @ M @ ( minus_minus_nat @ M @ one_one_nat ) ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% Sum_Icc_nat
thf(fact_7068_odd__mod__4__div__2,axiom,
    ! [N2: nat] :
      ( ( ( modulo_modulo_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
        = ( numeral_numeral_nat @ ( bit1 @ one ) ) )
     => ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( minus_minus_nat @ N2 @ ( suc @ zero_zero_nat ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% odd_mod_4_div_2
thf(fact_7069_divmod__divmod__step,axiom,
    ( unique5055182867167087721od_nat
    = ( ^ [M6: num,N3: num] : ( if_Pro6206227464963214023at_nat @ ( ord_less_num @ M6 @ N3 ) @ ( product_Pair_nat_nat @ zero_zero_nat @ ( numeral_numeral_nat @ M6 ) ) @ ( unique5026877609467782581ep_nat @ N3 @ ( unique5055182867167087721od_nat @ M6 @ ( bit0 @ N3 ) ) ) ) ) ) ).

% divmod_divmod_step
thf(fact_7070_divmod__divmod__step,axiom,
    ( unique5052692396658037445od_int
    = ( ^ [M6: num,N3: num] : ( if_Pro3027730157355071871nt_int @ ( ord_less_num @ M6 @ N3 ) @ ( product_Pair_int_int @ zero_zero_int @ ( numeral_numeral_int @ M6 ) ) @ ( unique5024387138958732305ep_int @ N3 @ ( unique5052692396658037445od_int @ M6 @ ( bit0 @ N3 ) ) ) ) ) ) ).

% divmod_divmod_step
thf(fact_7071_divmod__divmod__step,axiom,
    ( unique3479559517661332726nteger
    = ( ^ [M6: num,N3: num] : ( if_Pro6119634080678213985nteger @ ( ord_less_num @ M6 @ N3 ) @ ( produc1086072967326762835nteger @ zero_z3403309356797280102nteger @ ( numera6620942414471956472nteger @ M6 ) ) @ ( unique4921790084139445826nteger @ N3 @ ( unique3479559517661332726nteger @ M6 @ ( bit0 @ N3 ) ) ) ) ) ) ).

% divmod_divmod_step
thf(fact_7072_signed__take__bit__numeral__minus__bit1,axiom,
    ! [L2: num,K: num] :
      ( ( bit_ri631733984087533419it_int @ ( numeral_numeral_nat @ L2 ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ K ) ) ) )
      = ( plus_plus_int @ ( times_times_int @ ( bit_ri631733984087533419it_int @ ( pred_numeral @ L2 ) @ ( minus_minus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) @ one_one_int ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ one_one_int ) ) ).

% signed_take_bit_numeral_minus_bit1
thf(fact_7073_dbl__dec__simps_I4_J,axiom,
    ( ( neg_nu6075765906172075777c_real @ ( uminus_uminus_real @ one_one_real ) )
    = ( uminus_uminus_real @ ( numeral_numeral_real @ ( bit1 @ one ) ) ) ) ).

% dbl_dec_simps(4)
thf(fact_7074_dbl__dec__simps_I4_J,axiom,
    ( ( neg_nu3811975205180677377ec_int @ ( uminus_uminus_int @ one_one_int ) )
    = ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ one ) ) ) ) ).

% dbl_dec_simps(4)
thf(fact_7075_dbl__dec__simps_I4_J,axiom,
    ( ( neg_nu6511756317524482435omplex @ ( uminus1482373934393186551omplex @ one_one_complex ) )
    = ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( bit1 @ one ) ) ) ) ).

% dbl_dec_simps(4)
thf(fact_7076_dbl__dec__simps_I4_J,axiom,
    ( ( neg_nu3179335615603231917ec_rat @ ( uminus_uminus_rat @ one_one_rat ) )
    = ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( bit1 @ one ) ) ) ) ).

% dbl_dec_simps(4)
thf(fact_7077_dbl__dec__simps_I4_J,axiom,
    ( ( neg_nu7757733837767384882nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
    = ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( bit1 @ one ) ) ) ) ).

% dbl_dec_simps(4)
thf(fact_7078_signed__take__bit__numeral__bit1,axiom,
    ! [L2: num,K: num] :
      ( ( bit_ri631733984087533419it_int @ ( numeral_numeral_nat @ L2 ) @ ( numeral_numeral_int @ ( bit1 @ K ) ) )
      = ( plus_plus_int @ ( times_times_int @ ( bit_ri631733984087533419it_int @ ( pred_numeral @ L2 ) @ ( numeral_numeral_int @ K ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ one_one_int ) ) ).

% signed_take_bit_numeral_bit1
thf(fact_7079_arctan__double,axiom,
    ! [X: real] :
      ( ( ord_less_real @ ( abs_abs_real @ X ) @ one_one_real )
     => ( ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( arctan @ X ) )
        = ( arctan @ ( divide_divide_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X ) @ ( minus_minus_real @ one_one_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% arctan_double
thf(fact_7080_dbl__inc__simps_I3_J,axiom,
    ( ( neg_nu8557863876264182079omplex @ one_one_complex )
    = ( numera6690914467698888265omplex @ ( bit1 @ one ) ) ) ).

% dbl_inc_simps(3)
thf(fact_7081_dbl__inc__simps_I3_J,axiom,
    ( ( neg_nu8295874005876285629c_real @ one_one_real )
    = ( numeral_numeral_real @ ( bit1 @ one ) ) ) ).

% dbl_inc_simps(3)
thf(fact_7082_dbl__inc__simps_I3_J,axiom,
    ( ( neg_nu5219082963157363817nc_rat @ one_one_rat )
    = ( numeral_numeral_rat @ ( bit1 @ one ) ) ) ).

% dbl_inc_simps(3)
thf(fact_7083_dbl__inc__simps_I3_J,axiom,
    ( ( neg_nu5851722552734809277nc_int @ one_one_int )
    = ( numeral_numeral_int @ ( bit1 @ one ) ) ) ).

% dbl_inc_simps(3)
thf(fact_7084_sum__gp,axiom,
    ! [N2: nat,M: nat,X: complex] :
      ( ( ( ord_less_nat @ N2 @ M )
       => ( ( groups2073611262835488442omplex @ ( power_power_complex @ X ) @ ( set_or1269000886237332187st_nat @ M @ N2 ) )
          = zero_zero_complex ) )
      & ( ~ ( ord_less_nat @ N2 @ M )
       => ( ( ( X = one_one_complex )
           => ( ( groups2073611262835488442omplex @ ( power_power_complex @ X ) @ ( set_or1269000886237332187st_nat @ M @ N2 ) )
              = ( semiri8010041392384452111omplex @ ( minus_minus_nat @ ( plus_plus_nat @ N2 @ one_one_nat ) @ M ) ) ) )
          & ( ( X != one_one_complex )
           => ( ( groups2073611262835488442omplex @ ( power_power_complex @ X ) @ ( set_or1269000886237332187st_nat @ M @ N2 ) )
              = ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( power_power_complex @ X @ M ) @ ( power_power_complex @ X @ ( suc @ N2 ) ) ) @ ( minus_minus_complex @ one_one_complex @ X ) ) ) ) ) ) ) ).

% sum_gp
thf(fact_7085_sum__gp,axiom,
    ! [N2: nat,M: nat,X: rat] :
      ( ( ( ord_less_nat @ N2 @ M )
       => ( ( groups2906978787729119204at_rat @ ( power_power_rat @ X ) @ ( set_or1269000886237332187st_nat @ M @ N2 ) )
          = zero_zero_rat ) )
      & ( ~ ( ord_less_nat @ N2 @ M )
       => ( ( ( X = one_one_rat )
           => ( ( groups2906978787729119204at_rat @ ( power_power_rat @ X ) @ ( set_or1269000886237332187st_nat @ M @ N2 ) )
              = ( semiri681578069525770553at_rat @ ( minus_minus_nat @ ( plus_plus_nat @ N2 @ one_one_nat ) @ M ) ) ) )
          & ( ( X != one_one_rat )
           => ( ( groups2906978787729119204at_rat @ ( power_power_rat @ X ) @ ( set_or1269000886237332187st_nat @ M @ N2 ) )
              = ( divide_divide_rat @ ( minus_minus_rat @ ( power_power_rat @ X @ M ) @ ( power_power_rat @ X @ ( suc @ N2 ) ) ) @ ( minus_minus_rat @ one_one_rat @ X ) ) ) ) ) ) ) ).

% sum_gp
thf(fact_7086_sum__gp,axiom,
    ! [N2: nat,M: nat,X: real] :
      ( ( ( ord_less_nat @ N2 @ M )
       => ( ( groups6591440286371151544t_real @ ( power_power_real @ X ) @ ( set_or1269000886237332187st_nat @ M @ N2 ) )
          = zero_zero_real ) )
      & ( ~ ( ord_less_nat @ N2 @ M )
       => ( ( ( X = one_one_real )
           => ( ( groups6591440286371151544t_real @ ( power_power_real @ X ) @ ( set_or1269000886237332187st_nat @ M @ N2 ) )
              = ( semiri5074537144036343181t_real @ ( minus_minus_nat @ ( plus_plus_nat @ N2 @ one_one_nat ) @ M ) ) ) )
          & ( ( X != one_one_real )
           => ( ( groups6591440286371151544t_real @ ( power_power_real @ X ) @ ( set_or1269000886237332187st_nat @ M @ N2 ) )
              = ( divide_divide_real @ ( minus_minus_real @ ( power_power_real @ X @ M ) @ ( power_power_real @ X @ ( suc @ N2 ) ) ) @ ( minus_minus_real @ one_one_real @ X ) ) ) ) ) ) ) ).

% sum_gp
thf(fact_7087_of__nat__eq__iff,axiom,
    ! [M: nat,N2: nat] :
      ( ( ( semiri1314217659103216013at_int @ M )
        = ( semiri1314217659103216013at_int @ N2 ) )
      = ( M = N2 ) ) ).

% of_nat_eq_iff
thf(fact_7088_of__nat__eq__iff,axiom,
    ! [M: nat,N2: nat] :
      ( ( ( semiri5074537144036343181t_real @ M )
        = ( semiri5074537144036343181t_real @ N2 ) )
      = ( M = N2 ) ) ).

% of_nat_eq_iff
thf(fact_7089_of__nat__eq__iff,axiom,
    ! [M: nat,N2: nat] :
      ( ( ( semiri1316708129612266289at_nat @ M )
        = ( semiri1316708129612266289at_nat @ N2 ) )
      = ( M = N2 ) ) ).

% of_nat_eq_iff
thf(fact_7090_of__nat__eq__iff,axiom,
    ! [M: nat,N2: nat] :
      ( ( ( semiri4939895301339042750nteger @ M )
        = ( semiri4939895301339042750nteger @ N2 ) )
      = ( M = N2 ) ) ).

% of_nat_eq_iff
thf(fact_7091_split__part,axiom,
    ! [P: $o,Q: int > int > $o] :
      ( ( produc4947309494688390418_int_o
        @ ^ [A4: int,B4: int] :
            ( P
            & ( Q @ A4 @ B4 ) ) )
      = ( ^ [Ab: product_prod_int_int] :
            ( P
            & ( produc4947309494688390418_int_o @ Q @ Ab ) ) ) ) ).

% split_part
thf(fact_7092_int__eq__iff__numeral,axiom,
    ! [M: nat,V: num] :
      ( ( ( semiri1314217659103216013at_int @ M )
        = ( numeral_numeral_int @ V ) )
      = ( M
        = ( numeral_numeral_nat @ V ) ) ) ).

% int_eq_iff_numeral
thf(fact_7093_abs__of__nat,axiom,
    ! [N2: nat] :
      ( ( abs_abs_rat @ ( semiri681578069525770553at_rat @ N2 ) )
      = ( semiri681578069525770553at_rat @ N2 ) ) ).

% abs_of_nat
thf(fact_7094_abs__of__nat,axiom,
    ! [N2: nat] :
      ( ( abs_abs_int @ ( semiri1314217659103216013at_int @ N2 ) )
      = ( semiri1314217659103216013at_int @ N2 ) ) ).

% abs_of_nat
thf(fact_7095_abs__of__nat,axiom,
    ! [N2: nat] :
      ( ( abs_abs_real @ ( semiri5074537144036343181t_real @ N2 ) )
      = ( semiri5074537144036343181t_real @ N2 ) ) ).

% abs_of_nat
thf(fact_7096_abs__of__nat,axiom,
    ! [N2: nat] :
      ( ( abs_abs_Code_integer @ ( semiri4939895301339042750nteger @ N2 ) )
      = ( semiri4939895301339042750nteger @ N2 ) ) ).

% abs_of_nat
thf(fact_7097_negative__zle,axiom,
    ! [N2: nat,M: nat] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N2 ) ) @ ( semiri1314217659103216013at_int @ M ) ) ).

% negative_zle
thf(fact_7098_dbl__dec__simps_I3_J,axiom,
    ( ( neg_nu6511756317524482435omplex @ one_one_complex )
    = one_one_complex ) ).

% dbl_dec_simps(3)
thf(fact_7099_dbl__dec__simps_I3_J,axiom,
    ( ( neg_nu6075765906172075777c_real @ one_one_real )
    = one_one_real ) ).

% dbl_dec_simps(3)
thf(fact_7100_dbl__dec__simps_I3_J,axiom,
    ( ( neg_nu3179335615603231917ec_rat @ one_one_rat )
    = one_one_rat ) ).

% dbl_dec_simps(3)
thf(fact_7101_dbl__dec__simps_I3_J,axiom,
    ( ( neg_nu3811975205180677377ec_int @ one_one_int )
    = one_one_int ) ).

% dbl_dec_simps(3)
thf(fact_7102_of__nat__eq__0__iff,axiom,
    ! [M: nat] :
      ( ( ( semiri8010041392384452111omplex @ M )
        = zero_zero_complex )
      = ( M = zero_zero_nat ) ) ).

% of_nat_eq_0_iff
thf(fact_7103_of__nat__eq__0__iff,axiom,
    ! [M: nat] :
      ( ( ( semiri681578069525770553at_rat @ M )
        = zero_zero_rat )
      = ( M = zero_zero_nat ) ) ).

% of_nat_eq_0_iff
thf(fact_7104_of__nat__eq__0__iff,axiom,
    ! [M: nat] :
      ( ( ( semiri1314217659103216013at_int @ M )
        = zero_zero_int )
      = ( M = zero_zero_nat ) ) ).

% of_nat_eq_0_iff
thf(fact_7105_of__nat__eq__0__iff,axiom,
    ! [M: nat] :
      ( ( ( semiri5074537144036343181t_real @ M )
        = zero_zero_real )
      = ( M = zero_zero_nat ) ) ).

% of_nat_eq_0_iff
thf(fact_7106_of__nat__eq__0__iff,axiom,
    ! [M: nat] :
      ( ( ( semiri1316708129612266289at_nat @ M )
        = zero_zero_nat )
      = ( M = zero_zero_nat ) ) ).

% of_nat_eq_0_iff
thf(fact_7107_of__nat__eq__0__iff,axiom,
    ! [M: nat] :
      ( ( ( semiri4939895301339042750nteger @ M )
        = zero_z3403309356797280102nteger )
      = ( M = zero_zero_nat ) ) ).

% of_nat_eq_0_iff
thf(fact_7108_of__nat__0__eq__iff,axiom,
    ! [N2: nat] :
      ( ( zero_zero_complex
        = ( semiri8010041392384452111omplex @ N2 ) )
      = ( zero_zero_nat = N2 ) ) ).

% of_nat_0_eq_iff
thf(fact_7109_of__nat__0__eq__iff,axiom,
    ! [N2: nat] :
      ( ( zero_zero_rat
        = ( semiri681578069525770553at_rat @ N2 ) )
      = ( zero_zero_nat = N2 ) ) ).

% of_nat_0_eq_iff
thf(fact_7110_of__nat__0__eq__iff,axiom,
    ! [N2: nat] :
      ( ( zero_zero_int
        = ( semiri1314217659103216013at_int @ N2 ) )
      = ( zero_zero_nat = N2 ) ) ).

% of_nat_0_eq_iff
thf(fact_7111_of__nat__0__eq__iff,axiom,
    ! [N2: nat] :
      ( ( zero_zero_real
        = ( semiri5074537144036343181t_real @ N2 ) )
      = ( zero_zero_nat = N2 ) ) ).

% of_nat_0_eq_iff
thf(fact_7112_of__nat__0__eq__iff,axiom,
    ! [N2: nat] :
      ( ( zero_zero_nat
        = ( semiri1316708129612266289at_nat @ N2 ) )
      = ( zero_zero_nat = N2 ) ) ).

% of_nat_0_eq_iff
thf(fact_7113_of__nat__0__eq__iff,axiom,
    ! [N2: nat] :
      ( ( zero_z3403309356797280102nteger
        = ( semiri4939895301339042750nteger @ N2 ) )
      = ( zero_zero_nat = N2 ) ) ).

% of_nat_0_eq_iff
thf(fact_7114_of__nat__0,axiom,
    ( ( semiri8010041392384452111omplex @ zero_zero_nat )
    = zero_zero_complex ) ).

% of_nat_0
thf(fact_7115_of__nat__0,axiom,
    ( ( semiri681578069525770553at_rat @ zero_zero_nat )
    = zero_zero_rat ) ).

% of_nat_0
thf(fact_7116_of__nat__0,axiom,
    ( ( semiri1314217659103216013at_int @ zero_zero_nat )
    = zero_zero_int ) ).

% of_nat_0
thf(fact_7117_of__nat__0,axiom,
    ( ( semiri5074537144036343181t_real @ zero_zero_nat )
    = zero_zero_real ) ).

% of_nat_0
thf(fact_7118_of__nat__0,axiom,
    ( ( semiri1316708129612266289at_nat @ zero_zero_nat )
    = zero_zero_nat ) ).

% of_nat_0
thf(fact_7119_of__nat__0,axiom,
    ( ( semiri4939895301339042750nteger @ zero_zero_nat )
    = zero_z3403309356797280102nteger ) ).

% of_nat_0
thf(fact_7120_of__nat__numeral,axiom,
    ! [N2: num] :
      ( ( semiri8010041392384452111omplex @ ( numeral_numeral_nat @ N2 ) )
      = ( numera6690914467698888265omplex @ N2 ) ) ).

% of_nat_numeral
thf(fact_7121_of__nat__numeral,axiom,
    ! [N2: num] :
      ( ( semiri681578069525770553at_rat @ ( numeral_numeral_nat @ N2 ) )
      = ( numeral_numeral_rat @ N2 ) ) ).

% of_nat_numeral
thf(fact_7122_of__nat__numeral,axiom,
    ! [N2: num] :
      ( ( semiri1314217659103216013at_int @ ( numeral_numeral_nat @ N2 ) )
      = ( numeral_numeral_int @ N2 ) ) ).

% of_nat_numeral
thf(fact_7123_of__nat__numeral,axiom,
    ! [N2: num] :
      ( ( semiri5074537144036343181t_real @ ( numeral_numeral_nat @ N2 ) )
      = ( numeral_numeral_real @ N2 ) ) ).

% of_nat_numeral
thf(fact_7124_of__nat__numeral,axiom,
    ! [N2: num] :
      ( ( semiri1316708129612266289at_nat @ ( numeral_numeral_nat @ N2 ) )
      = ( numeral_numeral_nat @ N2 ) ) ).

% of_nat_numeral
thf(fact_7125_of__nat__numeral,axiom,
    ! [N2: num] :
      ( ( semiri4939895301339042750nteger @ ( numeral_numeral_nat @ N2 ) )
      = ( numera6620942414471956472nteger @ N2 ) ) ).

% of_nat_numeral
thf(fact_7126_of__nat__less__iff,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_rat @ ( semiri681578069525770553at_rat @ M ) @ ( semiri681578069525770553at_rat @ N2 ) )
      = ( ord_less_nat @ M @ N2 ) ) ).

% of_nat_less_iff
thf(fact_7127_of__nat__less__iff,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N2 ) )
      = ( ord_less_nat @ M @ N2 ) ) ).

% of_nat_less_iff
thf(fact_7128_of__nat__less__iff,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N2 ) )
      = ( ord_less_nat @ M @ N2 ) ) ).

% of_nat_less_iff
thf(fact_7129_of__nat__less__iff,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N2 ) )
      = ( ord_less_nat @ M @ N2 ) ) ).

% of_nat_less_iff
thf(fact_7130_of__nat__less__iff,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_le6747313008572928689nteger @ ( semiri4939895301339042750nteger @ M ) @ ( semiri4939895301339042750nteger @ N2 ) )
      = ( ord_less_nat @ M @ N2 ) ) ).

% of_nat_less_iff
thf(fact_7131_of__nat__le__iff,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N2 ) )
      = ( ord_less_eq_nat @ M @ N2 ) ) ).

% of_nat_le_iff
thf(fact_7132_of__nat__le__iff,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_le3102999989581377725nteger @ ( semiri4939895301339042750nteger @ M ) @ ( semiri4939895301339042750nteger @ N2 ) )
      = ( ord_less_eq_nat @ M @ N2 ) ) ).

% of_nat_le_iff
thf(fact_7133_of__nat__le__iff,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_eq_rat @ ( semiri681578069525770553at_rat @ M ) @ ( semiri681578069525770553at_rat @ N2 ) )
      = ( ord_less_eq_nat @ M @ N2 ) ) ).

% of_nat_le_iff
thf(fact_7134_of__nat__le__iff,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N2 ) )
      = ( ord_less_eq_nat @ M @ N2 ) ) ).

% of_nat_le_iff
thf(fact_7135_of__nat__le__iff,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N2 ) )
      = ( ord_less_eq_nat @ M @ N2 ) ) ).

% of_nat_le_iff
thf(fact_7136_of__nat__add,axiom,
    ! [M: nat,N2: nat] :
      ( ( semiri681578069525770553at_rat @ ( plus_plus_nat @ M @ N2 ) )
      = ( plus_plus_rat @ ( semiri681578069525770553at_rat @ M ) @ ( semiri681578069525770553at_rat @ N2 ) ) ) ).

% of_nat_add
thf(fact_7137_of__nat__add,axiom,
    ! [M: nat,N2: nat] :
      ( ( semiri1314217659103216013at_int @ ( plus_plus_nat @ M @ N2 ) )
      = ( plus_plus_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N2 ) ) ) ).

% of_nat_add
thf(fact_7138_of__nat__add,axiom,
    ! [M: nat,N2: nat] :
      ( ( semiri5074537144036343181t_real @ ( plus_plus_nat @ M @ N2 ) )
      = ( plus_plus_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N2 ) ) ) ).

% of_nat_add
thf(fact_7139_of__nat__add,axiom,
    ! [M: nat,N2: nat] :
      ( ( semiri1316708129612266289at_nat @ ( plus_plus_nat @ M @ N2 ) )
      = ( plus_plus_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N2 ) ) ) ).

% of_nat_add
thf(fact_7140_of__nat__add,axiom,
    ! [M: nat,N2: nat] :
      ( ( semiri4939895301339042750nteger @ ( plus_plus_nat @ M @ N2 ) )
      = ( plus_p5714425477246183910nteger @ ( semiri4939895301339042750nteger @ M ) @ ( semiri4939895301339042750nteger @ N2 ) ) ) ).

% of_nat_add
thf(fact_7141_of__nat__mult,axiom,
    ! [M: nat,N2: nat] :
      ( ( semiri681578069525770553at_rat @ ( times_times_nat @ M @ N2 ) )
      = ( times_times_rat @ ( semiri681578069525770553at_rat @ M ) @ ( semiri681578069525770553at_rat @ N2 ) ) ) ).

% of_nat_mult
thf(fact_7142_of__nat__mult,axiom,
    ! [M: nat,N2: nat] :
      ( ( semiri1314217659103216013at_int @ ( times_times_nat @ M @ N2 ) )
      = ( times_times_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N2 ) ) ) ).

% of_nat_mult
thf(fact_7143_of__nat__mult,axiom,
    ! [M: nat,N2: nat] :
      ( ( semiri5074537144036343181t_real @ ( times_times_nat @ M @ N2 ) )
      = ( times_times_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N2 ) ) ) ).

% of_nat_mult
thf(fact_7144_of__nat__mult,axiom,
    ! [M: nat,N2: nat] :
      ( ( semiri1316708129612266289at_nat @ ( times_times_nat @ M @ N2 ) )
      = ( times_times_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N2 ) ) ) ).

% of_nat_mult
thf(fact_7145_of__nat__mult,axiom,
    ! [M: nat,N2: nat] :
      ( ( semiri4939895301339042750nteger @ ( times_times_nat @ M @ N2 ) )
      = ( times_3573771949741848930nteger @ ( semiri4939895301339042750nteger @ M ) @ ( semiri4939895301339042750nteger @ N2 ) ) ) ).

% of_nat_mult
thf(fact_7146_of__nat__power__eq__of__nat__cancel__iff,axiom,
    ! [X: nat,B: nat,W: nat] :
      ( ( ( semiri8010041392384452111omplex @ X )
        = ( power_power_complex @ ( semiri8010041392384452111omplex @ B ) @ W ) )
      = ( X
        = ( power_power_nat @ B @ W ) ) ) ).

% of_nat_power_eq_of_nat_cancel_iff
thf(fact_7147_of__nat__power__eq__of__nat__cancel__iff,axiom,
    ! [X: nat,B: nat,W: nat] :
      ( ( ( semiri1314217659103216013at_int @ X )
        = ( power_power_int @ ( semiri1314217659103216013at_int @ B ) @ W ) )
      = ( X
        = ( power_power_nat @ B @ W ) ) ) ).

% of_nat_power_eq_of_nat_cancel_iff
thf(fact_7148_of__nat__power__eq__of__nat__cancel__iff,axiom,
    ! [X: nat,B: nat,W: nat] :
      ( ( ( semiri5074537144036343181t_real @ X )
        = ( power_power_real @ ( semiri5074537144036343181t_real @ B ) @ W ) )
      = ( X
        = ( power_power_nat @ B @ W ) ) ) ).

% of_nat_power_eq_of_nat_cancel_iff
thf(fact_7149_of__nat__power__eq__of__nat__cancel__iff,axiom,
    ! [X: nat,B: nat,W: nat] :
      ( ( ( semiri1316708129612266289at_nat @ X )
        = ( power_power_nat @ ( semiri1316708129612266289at_nat @ B ) @ W ) )
      = ( X
        = ( power_power_nat @ B @ W ) ) ) ).

% of_nat_power_eq_of_nat_cancel_iff
thf(fact_7150_of__nat__power__eq__of__nat__cancel__iff,axiom,
    ! [X: nat,B: nat,W: nat] :
      ( ( ( semiri4939895301339042750nteger @ X )
        = ( power_8256067586552552935nteger @ ( semiri4939895301339042750nteger @ B ) @ W ) )
      = ( X
        = ( power_power_nat @ B @ W ) ) ) ).

% of_nat_power_eq_of_nat_cancel_iff
thf(fact_7151_of__nat__eq__of__nat__power__cancel__iff,axiom,
    ! [B: nat,W: nat,X: nat] :
      ( ( ( power_power_complex @ ( semiri8010041392384452111omplex @ B ) @ W )
        = ( semiri8010041392384452111omplex @ X ) )
      = ( ( power_power_nat @ B @ W )
        = X ) ) ).

% of_nat_eq_of_nat_power_cancel_iff
thf(fact_7152_of__nat__eq__of__nat__power__cancel__iff,axiom,
    ! [B: nat,W: nat,X: nat] :
      ( ( ( power_power_int @ ( semiri1314217659103216013at_int @ B ) @ W )
        = ( semiri1314217659103216013at_int @ X ) )
      = ( ( power_power_nat @ B @ W )
        = X ) ) ).

% of_nat_eq_of_nat_power_cancel_iff
thf(fact_7153_of__nat__eq__of__nat__power__cancel__iff,axiom,
    ! [B: nat,W: nat,X: nat] :
      ( ( ( power_power_real @ ( semiri5074537144036343181t_real @ B ) @ W )
        = ( semiri5074537144036343181t_real @ X ) )
      = ( ( power_power_nat @ B @ W )
        = X ) ) ).

% of_nat_eq_of_nat_power_cancel_iff
thf(fact_7154_of__nat__eq__of__nat__power__cancel__iff,axiom,
    ! [B: nat,W: nat,X: nat] :
      ( ( ( power_power_nat @ ( semiri1316708129612266289at_nat @ B ) @ W )
        = ( semiri1316708129612266289at_nat @ X ) )
      = ( ( power_power_nat @ B @ W )
        = X ) ) ).

% of_nat_eq_of_nat_power_cancel_iff
thf(fact_7155_of__nat__eq__of__nat__power__cancel__iff,axiom,
    ! [B: nat,W: nat,X: nat] :
      ( ( ( power_8256067586552552935nteger @ ( semiri4939895301339042750nteger @ B ) @ W )
        = ( semiri4939895301339042750nteger @ X ) )
      = ( ( power_power_nat @ B @ W )
        = X ) ) ).

% of_nat_eq_of_nat_power_cancel_iff
thf(fact_7156_of__nat__power,axiom,
    ! [M: nat,N2: nat] :
      ( ( semiri8010041392384452111omplex @ ( power_power_nat @ M @ N2 ) )
      = ( power_power_complex @ ( semiri8010041392384452111omplex @ M ) @ N2 ) ) ).

% of_nat_power
thf(fact_7157_of__nat__power,axiom,
    ! [M: nat,N2: nat] :
      ( ( semiri1314217659103216013at_int @ ( power_power_nat @ M @ N2 ) )
      = ( power_power_int @ ( semiri1314217659103216013at_int @ M ) @ N2 ) ) ).

% of_nat_power
thf(fact_7158_of__nat__power,axiom,
    ! [M: nat,N2: nat] :
      ( ( semiri5074537144036343181t_real @ ( power_power_nat @ M @ N2 ) )
      = ( power_power_real @ ( semiri5074537144036343181t_real @ M ) @ N2 ) ) ).

% of_nat_power
thf(fact_7159_of__nat__power,axiom,
    ! [M: nat,N2: nat] :
      ( ( semiri1316708129612266289at_nat @ ( power_power_nat @ M @ N2 ) )
      = ( power_power_nat @ ( semiri1316708129612266289at_nat @ M ) @ N2 ) ) ).

% of_nat_power
thf(fact_7160_of__nat__power,axiom,
    ! [M: nat,N2: nat] :
      ( ( semiri4939895301339042750nteger @ ( power_power_nat @ M @ N2 ) )
      = ( power_8256067586552552935nteger @ ( semiri4939895301339042750nteger @ M ) @ N2 ) ) ).

% of_nat_power
thf(fact_7161_of__nat__1,axiom,
    ( ( semiri8010041392384452111omplex @ one_one_nat )
    = one_one_complex ) ).

% of_nat_1
thf(fact_7162_of__nat__1,axiom,
    ( ( semiri681578069525770553at_rat @ one_one_nat )
    = one_one_rat ) ).

% of_nat_1
thf(fact_7163_of__nat__1,axiom,
    ( ( semiri1314217659103216013at_int @ one_one_nat )
    = one_one_int ) ).

% of_nat_1
thf(fact_7164_of__nat__1,axiom,
    ( ( semiri5074537144036343181t_real @ one_one_nat )
    = one_one_real ) ).

% of_nat_1
thf(fact_7165_of__nat__1,axiom,
    ( ( semiri1316708129612266289at_nat @ one_one_nat )
    = one_one_nat ) ).

% of_nat_1
thf(fact_7166_of__nat__1,axiom,
    ( ( semiri4939895301339042750nteger @ one_one_nat )
    = one_one_Code_integer ) ).

% of_nat_1
thf(fact_7167_of__nat__1__eq__iff,axiom,
    ! [N2: nat] :
      ( ( one_one_complex
        = ( semiri8010041392384452111omplex @ N2 ) )
      = ( N2 = one_one_nat ) ) ).

% of_nat_1_eq_iff
thf(fact_7168_of__nat__1__eq__iff,axiom,
    ! [N2: nat] :
      ( ( one_one_rat
        = ( semiri681578069525770553at_rat @ N2 ) )
      = ( N2 = one_one_nat ) ) ).

% of_nat_1_eq_iff
thf(fact_7169_of__nat__1__eq__iff,axiom,
    ! [N2: nat] :
      ( ( one_one_int
        = ( semiri1314217659103216013at_int @ N2 ) )
      = ( N2 = one_one_nat ) ) ).

% of_nat_1_eq_iff
thf(fact_7170_of__nat__1__eq__iff,axiom,
    ! [N2: nat] :
      ( ( one_one_real
        = ( semiri5074537144036343181t_real @ N2 ) )
      = ( N2 = one_one_nat ) ) ).

% of_nat_1_eq_iff
thf(fact_7171_of__nat__1__eq__iff,axiom,
    ! [N2: nat] :
      ( ( one_one_nat
        = ( semiri1316708129612266289at_nat @ N2 ) )
      = ( N2 = one_one_nat ) ) ).

% of_nat_1_eq_iff
thf(fact_7172_of__nat__1__eq__iff,axiom,
    ! [N2: nat] :
      ( ( one_one_Code_integer
        = ( semiri4939895301339042750nteger @ N2 ) )
      = ( N2 = one_one_nat ) ) ).

% of_nat_1_eq_iff
thf(fact_7173_of__nat__eq__1__iff,axiom,
    ! [N2: nat] :
      ( ( ( semiri8010041392384452111omplex @ N2 )
        = one_one_complex )
      = ( N2 = one_one_nat ) ) ).

% of_nat_eq_1_iff
thf(fact_7174_of__nat__eq__1__iff,axiom,
    ! [N2: nat] :
      ( ( ( semiri681578069525770553at_rat @ N2 )
        = one_one_rat )
      = ( N2 = one_one_nat ) ) ).

% of_nat_eq_1_iff
thf(fact_7175_of__nat__eq__1__iff,axiom,
    ! [N2: nat] :
      ( ( ( semiri1314217659103216013at_int @ N2 )
        = one_one_int )
      = ( N2 = one_one_nat ) ) ).

% of_nat_eq_1_iff
thf(fact_7176_of__nat__eq__1__iff,axiom,
    ! [N2: nat] :
      ( ( ( semiri5074537144036343181t_real @ N2 )
        = one_one_real )
      = ( N2 = one_one_nat ) ) ).

% of_nat_eq_1_iff
thf(fact_7177_of__nat__eq__1__iff,axiom,
    ! [N2: nat] :
      ( ( ( semiri1316708129612266289at_nat @ N2 )
        = one_one_nat )
      = ( N2 = one_one_nat ) ) ).

% of_nat_eq_1_iff
thf(fact_7178_of__nat__eq__1__iff,axiom,
    ! [N2: nat] :
      ( ( ( semiri4939895301339042750nteger @ N2 )
        = one_one_Code_integer )
      = ( N2 = one_one_nat ) ) ).

% of_nat_eq_1_iff
thf(fact_7179_negative__zless,axiom,
    ! [N2: nat,M: nat] : ( ord_less_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N2 ) ) ) @ ( semiri1314217659103216013at_int @ M ) ) ).

% negative_zless
thf(fact_7180_pred__numeral__simps_I1_J,axiom,
    ( ( pred_numeral @ one )
    = zero_zero_nat ) ).

% pred_numeral_simps(1)
thf(fact_7181_eq__numeral__Suc,axiom,
    ! [K: num,N2: nat] :
      ( ( ( numeral_numeral_nat @ K )
        = ( suc @ N2 ) )
      = ( ( pred_numeral @ K )
        = N2 ) ) ).

% eq_numeral_Suc
thf(fact_7182_Suc__eq__numeral,axiom,
    ! [N2: nat,K: num] :
      ( ( ( suc @ N2 )
        = ( numeral_numeral_nat @ K ) )
      = ( N2
        = ( pred_numeral @ K ) ) ) ).

% Suc_eq_numeral
thf(fact_7183_zero__le__arctan__iff,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( arctan @ X ) )
      = ( ord_less_eq_real @ zero_zero_real @ X ) ) ).

% zero_le_arctan_iff
thf(fact_7184_arctan__le__zero__iff,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ ( arctan @ X ) @ zero_zero_real )
      = ( ord_less_eq_real @ X @ zero_zero_real ) ) ).

% arctan_le_zero_iff
thf(fact_7185_dbl__inc__simps_I2_J,axiom,
    ( ( neg_nu8557863876264182079omplex @ zero_zero_complex )
    = one_one_complex ) ).

% dbl_inc_simps(2)
thf(fact_7186_dbl__inc__simps_I2_J,axiom,
    ( ( neg_nu8295874005876285629c_real @ zero_zero_real )
    = one_one_real ) ).

% dbl_inc_simps(2)
thf(fact_7187_dbl__inc__simps_I2_J,axiom,
    ( ( neg_nu5219082963157363817nc_rat @ zero_zero_rat )
    = one_one_rat ) ).

% dbl_inc_simps(2)
thf(fact_7188_dbl__inc__simps_I2_J,axiom,
    ( ( neg_nu5851722552734809277nc_int @ zero_zero_int )
    = one_one_int ) ).

% dbl_inc_simps(2)
thf(fact_7189_of__nat__of__bool,axiom,
    ! [P: $o] :
      ( ( semiri5074537144036343181t_real @ ( zero_n2687167440665602831ol_nat @ P ) )
      = ( zero_n3304061248610475627l_real @ P ) ) ).

% of_nat_of_bool
thf(fact_7190_of__nat__of__bool,axiom,
    ! [P: $o] :
      ( ( semiri1316708129612266289at_nat @ ( zero_n2687167440665602831ol_nat @ P ) )
      = ( zero_n2687167440665602831ol_nat @ P ) ) ).

% of_nat_of_bool
thf(fact_7191_of__nat__of__bool,axiom,
    ! [P: $o] :
      ( ( semiri1314217659103216013at_int @ ( zero_n2687167440665602831ol_nat @ P ) )
      = ( zero_n2684676970156552555ol_int @ P ) ) ).

% of_nat_of_bool
thf(fact_7192_of__nat__of__bool,axiom,
    ! [P: $o] :
      ( ( semiri4939895301339042750nteger @ ( zero_n2687167440665602831ol_nat @ P ) )
      = ( zero_n356916108424825756nteger @ P ) ) ).

% of_nat_of_bool
thf(fact_7193_dbl__inc__simps_I4_J,axiom,
    ( ( neg_nu8295874005876285629c_real @ ( uminus_uminus_real @ one_one_real ) )
    = ( uminus_uminus_real @ one_one_real ) ) ).

% dbl_inc_simps(4)
thf(fact_7194_dbl__inc__simps_I4_J,axiom,
    ( ( neg_nu5851722552734809277nc_int @ ( uminus_uminus_int @ one_one_int ) )
    = ( uminus_uminus_int @ one_one_int ) ) ).

% dbl_inc_simps(4)
thf(fact_7195_dbl__inc__simps_I4_J,axiom,
    ( ( neg_nu8557863876264182079omplex @ ( uminus1482373934393186551omplex @ one_one_complex ) )
    = ( uminus1482373934393186551omplex @ one_one_complex ) ) ).

% dbl_inc_simps(4)
thf(fact_7196_dbl__inc__simps_I4_J,axiom,
    ( ( neg_nu5219082963157363817nc_rat @ ( uminus_uminus_rat @ one_one_rat ) )
    = ( uminus_uminus_rat @ one_one_rat ) ) ).

% dbl_inc_simps(4)
thf(fact_7197_dbl__inc__simps_I4_J,axiom,
    ( ( neg_nu5831290666863070958nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
    = ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% dbl_inc_simps(4)
thf(fact_7198_dbl__inc__simps_I5_J,axiom,
    ! [K: num] :
      ( ( neg_nu8557863876264182079omplex @ ( numera6690914467698888265omplex @ K ) )
      = ( numera6690914467698888265omplex @ ( bit1 @ K ) ) ) ).

% dbl_inc_simps(5)
thf(fact_7199_dbl__inc__simps_I5_J,axiom,
    ! [K: num] :
      ( ( neg_nu8295874005876285629c_real @ ( numeral_numeral_real @ K ) )
      = ( numeral_numeral_real @ ( bit1 @ K ) ) ) ).

% dbl_inc_simps(5)
thf(fact_7200_dbl__inc__simps_I5_J,axiom,
    ! [K: num] :
      ( ( neg_nu5219082963157363817nc_rat @ ( numeral_numeral_rat @ K ) )
      = ( numeral_numeral_rat @ ( bit1 @ K ) ) ) ).

% dbl_inc_simps(5)
thf(fact_7201_dbl__inc__simps_I5_J,axiom,
    ! [K: num] :
      ( ( neg_nu5851722552734809277nc_int @ ( numeral_numeral_int @ K ) )
      = ( numeral_numeral_int @ ( bit1 @ K ) ) ) ).

% dbl_inc_simps(5)
thf(fact_7202_of__nat__sum,axiom,
    ! [F: int > nat,A2: set_int] :
      ( ( semiri1314217659103216013at_int @ ( groups4541462559716669496nt_nat @ F @ A2 ) )
      = ( groups4538972089207619220nt_int
        @ ^ [X3: int] : ( semiri1314217659103216013at_int @ ( F @ X3 ) )
        @ A2 ) ) ).

% of_nat_sum
thf(fact_7203_of__nat__sum,axiom,
    ! [F: complex > nat,A2: set_complex] :
      ( ( semiri8010041392384452111omplex @ ( groups5693394587270226106ex_nat @ F @ A2 ) )
      = ( groups7754918857620584856omplex
        @ ^ [X3: complex] : ( semiri8010041392384452111omplex @ ( F @ X3 ) )
        @ A2 ) ) ).

% of_nat_sum
thf(fact_7204_of__nat__sum,axiom,
    ! [F: nat > nat,A2: set_nat] :
      ( ( semiri1314217659103216013at_int @ ( groups3542108847815614940at_nat @ F @ A2 ) )
      = ( groups3539618377306564664at_int
        @ ^ [X3: nat] : ( semiri1314217659103216013at_int @ ( F @ X3 ) )
        @ A2 ) ) ).

% of_nat_sum
thf(fact_7205_of__nat__sum,axiom,
    ! [F: nat > nat,A2: set_nat] :
      ( ( semiri4939895301339042750nteger @ ( groups3542108847815614940at_nat @ F @ A2 ) )
      = ( groups7501900531339628137nteger
        @ ^ [X3: nat] : ( semiri4939895301339042750nteger @ ( F @ X3 ) )
        @ A2 ) ) ).

% of_nat_sum
thf(fact_7206_of__nat__sum,axiom,
    ! [F: nat > nat,A2: set_nat] :
      ( ( semiri1316708129612266289at_nat @ ( groups3542108847815614940at_nat @ F @ A2 ) )
      = ( groups3542108847815614940at_nat
        @ ^ [X3: nat] : ( semiri1316708129612266289at_nat @ ( F @ X3 ) )
        @ A2 ) ) ).

% of_nat_sum
thf(fact_7207_of__nat__sum,axiom,
    ! [F: nat > nat,A2: set_nat] :
      ( ( semiri5074537144036343181t_real @ ( groups3542108847815614940at_nat @ F @ A2 ) )
      = ( groups6591440286371151544t_real
        @ ^ [X3: nat] : ( semiri5074537144036343181t_real @ ( F @ X3 ) )
        @ A2 ) ) ).

% of_nat_sum
thf(fact_7208_of__nat__le__0__iff,axiom,
    ! [M: nat] :
      ( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ M ) @ zero_zero_real )
      = ( M = zero_zero_nat ) ) ).

% of_nat_le_0_iff
thf(fact_7209_of__nat__le__0__iff,axiom,
    ! [M: nat] :
      ( ( ord_le3102999989581377725nteger @ ( semiri4939895301339042750nteger @ M ) @ zero_z3403309356797280102nteger )
      = ( M = zero_zero_nat ) ) ).

% of_nat_le_0_iff
thf(fact_7210_of__nat__le__0__iff,axiom,
    ! [M: nat] :
      ( ( ord_less_eq_rat @ ( semiri681578069525770553at_rat @ M ) @ zero_zero_rat )
      = ( M = zero_zero_nat ) ) ).

% of_nat_le_0_iff
thf(fact_7211_of__nat__le__0__iff,axiom,
    ! [M: nat] :
      ( ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ M ) @ zero_zero_nat )
      = ( M = zero_zero_nat ) ) ).

% of_nat_le_0_iff
thf(fact_7212_of__nat__le__0__iff,axiom,
    ! [M: nat] :
      ( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ M ) @ zero_zero_int )
      = ( M = zero_zero_nat ) ) ).

% of_nat_le_0_iff
thf(fact_7213_of__nat__Suc,axiom,
    ! [M: nat] :
      ( ( semiri8010041392384452111omplex @ ( suc @ M ) )
      = ( plus_plus_complex @ one_one_complex @ ( semiri8010041392384452111omplex @ M ) ) ) ).

% of_nat_Suc
thf(fact_7214_of__nat__Suc,axiom,
    ! [M: nat] :
      ( ( semiri681578069525770553at_rat @ ( suc @ M ) )
      = ( plus_plus_rat @ one_one_rat @ ( semiri681578069525770553at_rat @ M ) ) ) ).

% of_nat_Suc
thf(fact_7215_of__nat__Suc,axiom,
    ! [M: nat] :
      ( ( semiri1314217659103216013at_int @ ( suc @ M ) )
      = ( plus_plus_int @ one_one_int @ ( semiri1314217659103216013at_int @ M ) ) ) ).

% of_nat_Suc
thf(fact_7216_of__nat__Suc,axiom,
    ! [M: nat] :
      ( ( semiri5074537144036343181t_real @ ( suc @ M ) )
      = ( plus_plus_real @ one_one_real @ ( semiri5074537144036343181t_real @ M ) ) ) ).

% of_nat_Suc
thf(fact_7217_of__nat__Suc,axiom,
    ! [M: nat] :
      ( ( semiri1316708129612266289at_nat @ ( suc @ M ) )
      = ( plus_plus_nat @ one_one_nat @ ( semiri1316708129612266289at_nat @ M ) ) ) ).

% of_nat_Suc
thf(fact_7218_of__nat__Suc,axiom,
    ! [M: nat] :
      ( ( semiri4939895301339042750nteger @ ( suc @ M ) )
      = ( plus_p5714425477246183910nteger @ one_one_Code_integer @ ( semiri4939895301339042750nteger @ M ) ) ) ).

% of_nat_Suc
thf(fact_7219_numeral__less__real__of__nat__iff,axiom,
    ! [W: num,N2: nat] :
      ( ( ord_less_real @ ( numeral_numeral_real @ W ) @ ( semiri5074537144036343181t_real @ N2 ) )
      = ( ord_less_nat @ ( numeral_numeral_nat @ W ) @ N2 ) ) ).

% numeral_less_real_of_nat_iff
thf(fact_7220_real__of__nat__less__numeral__iff,axiom,
    ! [N2: nat,W: num] :
      ( ( ord_less_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( numeral_numeral_real @ W ) )
      = ( ord_less_nat @ N2 @ ( numeral_numeral_nat @ W ) ) ) ).

% real_of_nat_less_numeral_iff
thf(fact_7221_numeral__le__real__of__nat__iff,axiom,
    ! [N2: num,M: nat] :
      ( ( ord_less_eq_real @ ( numeral_numeral_real @ N2 ) @ ( semiri5074537144036343181t_real @ M ) )
      = ( ord_less_eq_nat @ ( numeral_numeral_nat @ N2 ) @ M ) ) ).

% numeral_le_real_of_nat_iff
thf(fact_7222_less__numeral__Suc,axiom,
    ! [K: num,N2: nat] :
      ( ( ord_less_nat @ ( numeral_numeral_nat @ K ) @ ( suc @ N2 ) )
      = ( ord_less_nat @ ( pred_numeral @ K ) @ N2 ) ) ).

% less_numeral_Suc
thf(fact_7223_less__Suc__numeral,axiom,
    ! [N2: nat,K: num] :
      ( ( ord_less_nat @ ( suc @ N2 ) @ ( numeral_numeral_nat @ K ) )
      = ( ord_less_nat @ N2 @ ( pred_numeral @ K ) ) ) ).

% less_Suc_numeral
thf(fact_7224_pred__numeral__simps_I3_J,axiom,
    ! [K: num] :
      ( ( pred_numeral @ ( bit1 @ K ) )
      = ( numeral_numeral_nat @ ( bit0 @ K ) ) ) ).

% pred_numeral_simps(3)
thf(fact_7225_le__numeral__Suc,axiom,
    ! [K: num,N2: nat] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ K ) @ ( suc @ N2 ) )
      = ( ord_less_eq_nat @ ( pred_numeral @ K ) @ N2 ) ) ).

% le_numeral_Suc
thf(fact_7226_le__Suc__numeral,axiom,
    ! [N2: nat,K: num] :
      ( ( ord_less_eq_nat @ ( suc @ N2 ) @ ( numeral_numeral_nat @ K ) )
      = ( ord_less_eq_nat @ N2 @ ( pred_numeral @ K ) ) ) ).

% le_Suc_numeral
thf(fact_7227_diff__Suc__numeral,axiom,
    ! [N2: nat,K: num] :
      ( ( minus_minus_nat @ ( suc @ N2 ) @ ( numeral_numeral_nat @ K ) )
      = ( minus_minus_nat @ N2 @ ( pred_numeral @ K ) ) ) ).

% diff_Suc_numeral
thf(fact_7228_diff__numeral__Suc,axiom,
    ! [K: num,N2: nat] :
      ( ( minus_minus_nat @ ( numeral_numeral_nat @ K ) @ ( suc @ N2 ) )
      = ( minus_minus_nat @ ( pred_numeral @ K ) @ N2 ) ) ).

% diff_numeral_Suc
thf(fact_7229_max__Suc__numeral,axiom,
    ! [N2: nat,K: num] :
      ( ( ord_max_nat @ ( suc @ N2 ) @ ( numeral_numeral_nat @ K ) )
      = ( suc @ ( ord_max_nat @ N2 @ ( pred_numeral @ K ) ) ) ) ).

% max_Suc_numeral
thf(fact_7230_max__numeral__Suc,axiom,
    ! [K: num,N2: nat] :
      ( ( ord_max_nat @ ( numeral_numeral_nat @ K ) @ ( suc @ N2 ) )
      = ( suc @ ( ord_max_nat @ ( pred_numeral @ K ) @ N2 ) ) ) ).

% max_numeral_Suc
thf(fact_7231_dbl__dec__simps_I2_J,axiom,
    ( ( neg_nu6075765906172075777c_real @ zero_zero_real )
    = ( uminus_uminus_real @ one_one_real ) ) ).

% dbl_dec_simps(2)
thf(fact_7232_dbl__dec__simps_I2_J,axiom,
    ( ( neg_nu3811975205180677377ec_int @ zero_zero_int )
    = ( uminus_uminus_int @ one_one_int ) ) ).

% dbl_dec_simps(2)
thf(fact_7233_dbl__dec__simps_I2_J,axiom,
    ( ( neg_nu6511756317524482435omplex @ zero_zero_complex )
    = ( uminus1482373934393186551omplex @ one_one_complex ) ) ).

% dbl_dec_simps(2)
thf(fact_7234_dbl__dec__simps_I2_J,axiom,
    ( ( neg_nu3179335615603231917ec_rat @ zero_zero_rat )
    = ( uminus_uminus_rat @ one_one_rat ) ) ).

% dbl_dec_simps(2)
thf(fact_7235_dbl__dec__simps_I2_J,axiom,
    ( ( neg_nu7757733837767384882nteger @ zero_z3403309356797280102nteger )
    = ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% dbl_dec_simps(2)
thf(fact_7236_of__nat__0__less__iff,axiom,
    ! [N2: nat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( semiri681578069525770553at_rat @ N2 ) )
      = ( ord_less_nat @ zero_zero_nat @ N2 ) ) ).

% of_nat_0_less_iff
thf(fact_7237_of__nat__0__less__iff,axiom,
    ! [N2: nat] :
      ( ( ord_less_int @ zero_zero_int @ ( semiri1314217659103216013at_int @ N2 ) )
      = ( ord_less_nat @ zero_zero_nat @ N2 ) ) ).

% of_nat_0_less_iff
thf(fact_7238_of__nat__0__less__iff,axiom,
    ! [N2: nat] :
      ( ( ord_less_real @ zero_zero_real @ ( semiri5074537144036343181t_real @ N2 ) )
      = ( ord_less_nat @ zero_zero_nat @ N2 ) ) ).

% of_nat_0_less_iff
thf(fact_7239_of__nat__0__less__iff,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( semiri1316708129612266289at_nat @ N2 ) )
      = ( ord_less_nat @ zero_zero_nat @ N2 ) ) ).

% of_nat_0_less_iff
thf(fact_7240_of__nat__0__less__iff,axiom,
    ! [N2: nat] :
      ( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ ( semiri4939895301339042750nteger @ N2 ) )
      = ( ord_less_nat @ zero_zero_nat @ N2 ) ) ).

% of_nat_0_less_iff
thf(fact_7241_dbl__dec__simps_I1_J,axiom,
    ! [K: num] :
      ( ( neg_nu6075765906172075777c_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ K ) ) )
      = ( uminus_uminus_real @ ( neg_nu8295874005876285629c_real @ ( numeral_numeral_real @ K ) ) ) ) ).

% dbl_dec_simps(1)
thf(fact_7242_dbl__dec__simps_I1_J,axiom,
    ! [K: num] :
      ( ( neg_nu3811975205180677377ec_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) )
      = ( uminus_uminus_int @ ( neg_nu5851722552734809277nc_int @ ( numeral_numeral_int @ K ) ) ) ) ).

% dbl_dec_simps(1)
thf(fact_7243_dbl__dec__simps_I1_J,axiom,
    ! [K: num] :
      ( ( neg_nu6511756317524482435omplex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ K ) ) )
      = ( uminus1482373934393186551omplex @ ( neg_nu8557863876264182079omplex @ ( numera6690914467698888265omplex @ K ) ) ) ) ).

% dbl_dec_simps(1)
thf(fact_7244_dbl__dec__simps_I1_J,axiom,
    ! [K: num] :
      ( ( neg_nu3179335615603231917ec_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ K ) ) )
      = ( uminus_uminus_rat @ ( neg_nu5219082963157363817nc_rat @ ( numeral_numeral_rat @ K ) ) ) ) ).

% dbl_dec_simps(1)
thf(fact_7245_dbl__dec__simps_I1_J,axiom,
    ! [K: num] :
      ( ( neg_nu7757733837767384882nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ K ) ) )
      = ( uminus1351360451143612070nteger @ ( neg_nu5831290666863070958nteger @ ( numera6620942414471956472nteger @ K ) ) ) ) ).

% dbl_dec_simps(1)
thf(fact_7246_dbl__inc__simps_I1_J,axiom,
    ! [K: num] :
      ( ( neg_nu8295874005876285629c_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ K ) ) )
      = ( uminus_uminus_real @ ( neg_nu6075765906172075777c_real @ ( numeral_numeral_real @ K ) ) ) ) ).

% dbl_inc_simps(1)
thf(fact_7247_dbl__inc__simps_I1_J,axiom,
    ! [K: num] :
      ( ( neg_nu5851722552734809277nc_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) )
      = ( uminus_uminus_int @ ( neg_nu3811975205180677377ec_int @ ( numeral_numeral_int @ K ) ) ) ) ).

% dbl_inc_simps(1)
thf(fact_7248_dbl__inc__simps_I1_J,axiom,
    ! [K: num] :
      ( ( neg_nu8557863876264182079omplex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ K ) ) )
      = ( uminus1482373934393186551omplex @ ( neg_nu6511756317524482435omplex @ ( numera6690914467698888265omplex @ K ) ) ) ) ).

% dbl_inc_simps(1)
thf(fact_7249_dbl__inc__simps_I1_J,axiom,
    ! [K: num] :
      ( ( neg_nu5219082963157363817nc_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ K ) ) )
      = ( uminus_uminus_rat @ ( neg_nu3179335615603231917ec_rat @ ( numeral_numeral_rat @ K ) ) ) ) ).

% dbl_inc_simps(1)
thf(fact_7250_dbl__inc__simps_I1_J,axiom,
    ! [K: num] :
      ( ( neg_nu5831290666863070958nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ K ) ) )
      = ( uminus1351360451143612070nteger @ ( neg_nu7757733837767384882nteger @ ( numera6620942414471956472nteger @ K ) ) ) ) ).

% dbl_inc_simps(1)
thf(fact_7251_real__of__nat__eq__numeral__power__cancel__iff,axiom,
    ! [Y: nat,X: num,N2: nat] :
      ( ( ( semiri8010041392384452111omplex @ Y )
        = ( power_power_complex @ ( numera6690914467698888265omplex @ X ) @ N2 ) )
      = ( Y
        = ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N2 ) ) ) ).

% real_of_nat_eq_numeral_power_cancel_iff
thf(fact_7252_real__of__nat__eq__numeral__power__cancel__iff,axiom,
    ! [Y: nat,X: num,N2: nat] :
      ( ( ( semiri681578069525770553at_rat @ Y )
        = ( power_power_rat @ ( numeral_numeral_rat @ X ) @ N2 ) )
      = ( Y
        = ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N2 ) ) ) ).

% real_of_nat_eq_numeral_power_cancel_iff
thf(fact_7253_real__of__nat__eq__numeral__power__cancel__iff,axiom,
    ! [Y: nat,X: num,N2: nat] :
      ( ( ( semiri1314217659103216013at_int @ Y )
        = ( power_power_int @ ( numeral_numeral_int @ X ) @ N2 ) )
      = ( Y
        = ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N2 ) ) ) ).

% real_of_nat_eq_numeral_power_cancel_iff
thf(fact_7254_real__of__nat__eq__numeral__power__cancel__iff,axiom,
    ! [Y: nat,X: num,N2: nat] :
      ( ( ( semiri5074537144036343181t_real @ Y )
        = ( power_power_real @ ( numeral_numeral_real @ X ) @ N2 ) )
      = ( Y
        = ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N2 ) ) ) ).

% real_of_nat_eq_numeral_power_cancel_iff
thf(fact_7255_real__of__nat__eq__numeral__power__cancel__iff,axiom,
    ! [Y: nat,X: num,N2: nat] :
      ( ( ( semiri1316708129612266289at_nat @ Y )
        = ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N2 ) )
      = ( Y
        = ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N2 ) ) ) ).

% real_of_nat_eq_numeral_power_cancel_iff
thf(fact_7256_real__of__nat__eq__numeral__power__cancel__iff,axiom,
    ! [Y: nat,X: num,N2: nat] :
      ( ( ( semiri4939895301339042750nteger @ Y )
        = ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ X ) @ N2 ) )
      = ( Y
        = ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N2 ) ) ) ).

% real_of_nat_eq_numeral_power_cancel_iff
thf(fact_7257_numeral__power__eq__of__nat__cancel__iff,axiom,
    ! [X: num,N2: nat,Y: nat] :
      ( ( ( power_power_complex @ ( numera6690914467698888265omplex @ X ) @ N2 )
        = ( semiri8010041392384452111omplex @ Y ) )
      = ( ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N2 )
        = Y ) ) ).

% numeral_power_eq_of_nat_cancel_iff
thf(fact_7258_numeral__power__eq__of__nat__cancel__iff,axiom,
    ! [X: num,N2: nat,Y: nat] :
      ( ( ( power_power_rat @ ( numeral_numeral_rat @ X ) @ N2 )
        = ( semiri681578069525770553at_rat @ Y ) )
      = ( ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N2 )
        = Y ) ) ).

% numeral_power_eq_of_nat_cancel_iff
thf(fact_7259_numeral__power__eq__of__nat__cancel__iff,axiom,
    ! [X: num,N2: nat,Y: nat] :
      ( ( ( power_power_int @ ( numeral_numeral_int @ X ) @ N2 )
        = ( semiri1314217659103216013at_int @ Y ) )
      = ( ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N2 )
        = Y ) ) ).

% numeral_power_eq_of_nat_cancel_iff
thf(fact_7260_numeral__power__eq__of__nat__cancel__iff,axiom,
    ! [X: num,N2: nat,Y: nat] :
      ( ( ( power_power_real @ ( numeral_numeral_real @ X ) @ N2 )
        = ( semiri5074537144036343181t_real @ Y ) )
      = ( ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N2 )
        = Y ) ) ).

% numeral_power_eq_of_nat_cancel_iff
thf(fact_7261_numeral__power__eq__of__nat__cancel__iff,axiom,
    ! [X: num,N2: nat,Y: nat] :
      ( ( ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N2 )
        = ( semiri1316708129612266289at_nat @ Y ) )
      = ( ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N2 )
        = Y ) ) ).

% numeral_power_eq_of_nat_cancel_iff
thf(fact_7262_numeral__power__eq__of__nat__cancel__iff,axiom,
    ! [X: num,N2: nat,Y: nat] :
      ( ( ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ X ) @ N2 )
        = ( semiri4939895301339042750nteger @ Y ) )
      = ( ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N2 )
        = Y ) ) ).

% numeral_power_eq_of_nat_cancel_iff
thf(fact_7263_of__nat__power__less__of__nat__cancel__iff,axiom,
    ! [X: nat,B: nat,W: nat] :
      ( ( ord_less_rat @ ( semiri681578069525770553at_rat @ X ) @ ( power_power_rat @ ( semiri681578069525770553at_rat @ B ) @ W ) )
      = ( ord_less_nat @ X @ ( power_power_nat @ B @ W ) ) ) ).

% of_nat_power_less_of_nat_cancel_iff
thf(fact_7264_of__nat__power__less__of__nat__cancel__iff,axiom,
    ! [X: nat,B: nat,W: nat] :
      ( ( ord_less_int @ ( semiri1314217659103216013at_int @ X ) @ ( power_power_int @ ( semiri1314217659103216013at_int @ B ) @ W ) )
      = ( ord_less_nat @ X @ ( power_power_nat @ B @ W ) ) ) ).

% of_nat_power_less_of_nat_cancel_iff
thf(fact_7265_of__nat__power__less__of__nat__cancel__iff,axiom,
    ! [X: nat,B: nat,W: nat] :
      ( ( ord_less_real @ ( semiri5074537144036343181t_real @ X ) @ ( power_power_real @ ( semiri5074537144036343181t_real @ B ) @ W ) )
      = ( ord_less_nat @ X @ ( power_power_nat @ B @ W ) ) ) ).

% of_nat_power_less_of_nat_cancel_iff
thf(fact_7266_of__nat__power__less__of__nat__cancel__iff,axiom,
    ! [X: nat,B: nat,W: nat] :
      ( ( ord_less_nat @ ( semiri1316708129612266289at_nat @ X ) @ ( power_power_nat @ ( semiri1316708129612266289at_nat @ B ) @ W ) )
      = ( ord_less_nat @ X @ ( power_power_nat @ B @ W ) ) ) ).

% of_nat_power_less_of_nat_cancel_iff
thf(fact_7267_of__nat__power__less__of__nat__cancel__iff,axiom,
    ! [X: nat,B: nat,W: nat] :
      ( ( ord_le6747313008572928689nteger @ ( semiri4939895301339042750nteger @ X ) @ ( power_8256067586552552935nteger @ ( semiri4939895301339042750nteger @ B ) @ W ) )
      = ( ord_less_nat @ X @ ( power_power_nat @ B @ W ) ) ) ).

% of_nat_power_less_of_nat_cancel_iff
thf(fact_7268_of__nat__less__of__nat__power__cancel__iff,axiom,
    ! [B: nat,W: nat,X: nat] :
      ( ( ord_less_rat @ ( power_power_rat @ ( semiri681578069525770553at_rat @ B ) @ W ) @ ( semiri681578069525770553at_rat @ X ) )
      = ( ord_less_nat @ ( power_power_nat @ B @ W ) @ X ) ) ).

% of_nat_less_of_nat_power_cancel_iff
thf(fact_7269_of__nat__less__of__nat__power__cancel__iff,axiom,
    ! [B: nat,W: nat,X: nat] :
      ( ( ord_less_int @ ( power_power_int @ ( semiri1314217659103216013at_int @ B ) @ W ) @ ( semiri1314217659103216013at_int @ X ) )
      = ( ord_less_nat @ ( power_power_nat @ B @ W ) @ X ) ) ).

% of_nat_less_of_nat_power_cancel_iff
thf(fact_7270_of__nat__less__of__nat__power__cancel__iff,axiom,
    ! [B: nat,W: nat,X: nat] :
      ( ( ord_less_real @ ( power_power_real @ ( semiri5074537144036343181t_real @ B ) @ W ) @ ( semiri5074537144036343181t_real @ X ) )
      = ( ord_less_nat @ ( power_power_nat @ B @ W ) @ X ) ) ).

% of_nat_less_of_nat_power_cancel_iff
thf(fact_7271_of__nat__less__of__nat__power__cancel__iff,axiom,
    ! [B: nat,W: nat,X: nat] :
      ( ( ord_less_nat @ ( power_power_nat @ ( semiri1316708129612266289at_nat @ B ) @ W ) @ ( semiri1316708129612266289at_nat @ X ) )
      = ( ord_less_nat @ ( power_power_nat @ B @ W ) @ X ) ) ).

% of_nat_less_of_nat_power_cancel_iff
thf(fact_7272_of__nat__less__of__nat__power__cancel__iff,axiom,
    ! [B: nat,W: nat,X: nat] :
      ( ( ord_le6747313008572928689nteger @ ( power_8256067586552552935nteger @ ( semiri4939895301339042750nteger @ B ) @ W ) @ ( semiri4939895301339042750nteger @ X ) )
      = ( ord_less_nat @ ( power_power_nat @ B @ W ) @ X ) ) ).

% of_nat_less_of_nat_power_cancel_iff
thf(fact_7273_of__nat__power__le__of__nat__cancel__iff,axiom,
    ! [X: nat,B: nat,W: nat] :
      ( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ X ) @ ( power_power_real @ ( semiri5074537144036343181t_real @ B ) @ W ) )
      = ( ord_less_eq_nat @ X @ ( power_power_nat @ B @ W ) ) ) ).

% of_nat_power_le_of_nat_cancel_iff
thf(fact_7274_of__nat__power__le__of__nat__cancel__iff,axiom,
    ! [X: nat,B: nat,W: nat] :
      ( ( ord_le3102999989581377725nteger @ ( semiri4939895301339042750nteger @ X ) @ ( power_8256067586552552935nteger @ ( semiri4939895301339042750nteger @ B ) @ W ) )
      = ( ord_less_eq_nat @ X @ ( power_power_nat @ B @ W ) ) ) ).

% of_nat_power_le_of_nat_cancel_iff
thf(fact_7275_of__nat__power__le__of__nat__cancel__iff,axiom,
    ! [X: nat,B: nat,W: nat] :
      ( ( ord_less_eq_rat @ ( semiri681578069525770553at_rat @ X ) @ ( power_power_rat @ ( semiri681578069525770553at_rat @ B ) @ W ) )
      = ( ord_less_eq_nat @ X @ ( power_power_nat @ B @ W ) ) ) ).

% of_nat_power_le_of_nat_cancel_iff
thf(fact_7276_of__nat__power__le__of__nat__cancel__iff,axiom,
    ! [X: nat,B: nat,W: nat] :
      ( ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ X ) @ ( power_power_nat @ ( semiri1316708129612266289at_nat @ B ) @ W ) )
      = ( ord_less_eq_nat @ X @ ( power_power_nat @ B @ W ) ) ) ).

% of_nat_power_le_of_nat_cancel_iff
thf(fact_7277_of__nat__power__le__of__nat__cancel__iff,axiom,
    ! [X: nat,B: nat,W: nat] :
      ( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ X ) @ ( power_power_int @ ( semiri1314217659103216013at_int @ B ) @ W ) )
      = ( ord_less_eq_nat @ X @ ( power_power_nat @ B @ W ) ) ) ).

% of_nat_power_le_of_nat_cancel_iff
thf(fact_7278_of__nat__le__of__nat__power__cancel__iff,axiom,
    ! [B: nat,W: nat,X: nat] :
      ( ( ord_less_eq_real @ ( power_power_real @ ( semiri5074537144036343181t_real @ B ) @ W ) @ ( semiri5074537144036343181t_real @ X ) )
      = ( ord_less_eq_nat @ ( power_power_nat @ B @ W ) @ X ) ) ).

% of_nat_le_of_nat_power_cancel_iff
thf(fact_7279_of__nat__le__of__nat__power__cancel__iff,axiom,
    ! [B: nat,W: nat,X: nat] :
      ( ( ord_le3102999989581377725nteger @ ( power_8256067586552552935nteger @ ( semiri4939895301339042750nteger @ B ) @ W ) @ ( semiri4939895301339042750nteger @ X ) )
      = ( ord_less_eq_nat @ ( power_power_nat @ B @ W ) @ X ) ) ).

% of_nat_le_of_nat_power_cancel_iff
thf(fact_7280_of__nat__le__of__nat__power__cancel__iff,axiom,
    ! [B: nat,W: nat,X: nat] :
      ( ( ord_less_eq_rat @ ( power_power_rat @ ( semiri681578069525770553at_rat @ B ) @ W ) @ ( semiri681578069525770553at_rat @ X ) )
      = ( ord_less_eq_nat @ ( power_power_nat @ B @ W ) @ X ) ) ).

% of_nat_le_of_nat_power_cancel_iff
thf(fact_7281_of__nat__le__of__nat__power__cancel__iff,axiom,
    ! [B: nat,W: nat,X: nat] :
      ( ( ord_less_eq_nat @ ( power_power_nat @ ( semiri1316708129612266289at_nat @ B ) @ W ) @ ( semiri1316708129612266289at_nat @ X ) )
      = ( ord_less_eq_nat @ ( power_power_nat @ B @ W ) @ X ) ) ).

% of_nat_le_of_nat_power_cancel_iff
thf(fact_7282_of__nat__le__of__nat__power__cancel__iff,axiom,
    ! [B: nat,W: nat,X: nat] :
      ( ( ord_less_eq_int @ ( power_power_int @ ( semiri1314217659103216013at_int @ B ) @ W ) @ ( semiri1314217659103216013at_int @ X ) )
      = ( ord_less_eq_nat @ ( power_power_nat @ B @ W ) @ X ) ) ).

% of_nat_le_of_nat_power_cancel_iff
thf(fact_7283_of__nat__zero__less__power__iff,axiom,
    ! [X: nat,N2: nat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( power_power_rat @ ( semiri681578069525770553at_rat @ X ) @ N2 ) )
      = ( ( ord_less_nat @ zero_zero_nat @ X )
        | ( N2 = zero_zero_nat ) ) ) ).

% of_nat_zero_less_power_iff
thf(fact_7284_of__nat__zero__less__power__iff,axiom,
    ! [X: nat,N2: nat] :
      ( ( ord_less_int @ zero_zero_int @ ( power_power_int @ ( semiri1314217659103216013at_int @ X ) @ N2 ) )
      = ( ( ord_less_nat @ zero_zero_nat @ X )
        | ( N2 = zero_zero_nat ) ) ) ).

% of_nat_zero_less_power_iff
thf(fact_7285_of__nat__zero__less__power__iff,axiom,
    ! [X: nat,N2: nat] :
      ( ( ord_less_real @ zero_zero_real @ ( power_power_real @ ( semiri5074537144036343181t_real @ X ) @ N2 ) )
      = ( ( ord_less_nat @ zero_zero_nat @ X )
        | ( N2 = zero_zero_nat ) ) ) ).

% of_nat_zero_less_power_iff
thf(fact_7286_of__nat__zero__less__power__iff,axiom,
    ! [X: nat,N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( power_power_nat @ ( semiri1316708129612266289at_nat @ X ) @ N2 ) )
      = ( ( ord_less_nat @ zero_zero_nat @ X )
        | ( N2 = zero_zero_nat ) ) ) ).

% of_nat_zero_less_power_iff
thf(fact_7287_of__nat__zero__less__power__iff,axiom,
    ! [X: nat,N2: nat] :
      ( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ ( power_8256067586552552935nteger @ ( semiri4939895301339042750nteger @ X ) @ N2 ) )
      = ( ( ord_less_nat @ zero_zero_nat @ X )
        | ( N2 = zero_zero_nat ) ) ) ).

% of_nat_zero_less_power_iff
thf(fact_7288_of__nat__less__numeral__power__cancel__iff,axiom,
    ! [X: nat,I2: num,N2: nat] :
      ( ( ord_less_rat @ ( semiri681578069525770553at_rat @ X ) @ ( power_power_rat @ ( numeral_numeral_rat @ I2 ) @ N2 ) )
      = ( ord_less_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ I2 ) @ N2 ) ) ) ).

% of_nat_less_numeral_power_cancel_iff
thf(fact_7289_of__nat__less__numeral__power__cancel__iff,axiom,
    ! [X: nat,I2: num,N2: nat] :
      ( ( ord_less_int @ ( semiri1314217659103216013at_int @ X ) @ ( power_power_int @ ( numeral_numeral_int @ I2 ) @ N2 ) )
      = ( ord_less_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ I2 ) @ N2 ) ) ) ).

% of_nat_less_numeral_power_cancel_iff
thf(fact_7290_of__nat__less__numeral__power__cancel__iff,axiom,
    ! [X: nat,I2: num,N2: nat] :
      ( ( ord_less_real @ ( semiri5074537144036343181t_real @ X ) @ ( power_power_real @ ( numeral_numeral_real @ I2 ) @ N2 ) )
      = ( ord_less_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ I2 ) @ N2 ) ) ) ).

% of_nat_less_numeral_power_cancel_iff
thf(fact_7291_of__nat__less__numeral__power__cancel__iff,axiom,
    ! [X: nat,I2: num,N2: nat] :
      ( ( ord_less_nat @ ( semiri1316708129612266289at_nat @ X ) @ ( power_power_nat @ ( numeral_numeral_nat @ I2 ) @ N2 ) )
      = ( ord_less_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ I2 ) @ N2 ) ) ) ).

% of_nat_less_numeral_power_cancel_iff
thf(fact_7292_of__nat__less__numeral__power__cancel__iff,axiom,
    ! [X: nat,I2: num,N2: nat] :
      ( ( ord_le6747313008572928689nteger @ ( semiri4939895301339042750nteger @ X ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ I2 ) @ N2 ) )
      = ( ord_less_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ I2 ) @ N2 ) ) ) ).

% of_nat_less_numeral_power_cancel_iff
thf(fact_7293_numeral__power__less__of__nat__cancel__iff,axiom,
    ! [I2: num,N2: nat,X: nat] :
      ( ( ord_less_rat @ ( power_power_rat @ ( numeral_numeral_rat @ I2 ) @ N2 ) @ ( semiri681578069525770553at_rat @ X ) )
      = ( ord_less_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I2 ) @ N2 ) @ X ) ) ).

% numeral_power_less_of_nat_cancel_iff
thf(fact_7294_numeral__power__less__of__nat__cancel__iff,axiom,
    ! [I2: num,N2: nat,X: nat] :
      ( ( ord_less_int @ ( power_power_int @ ( numeral_numeral_int @ I2 ) @ N2 ) @ ( semiri1314217659103216013at_int @ X ) )
      = ( ord_less_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I2 ) @ N2 ) @ X ) ) ).

% numeral_power_less_of_nat_cancel_iff
thf(fact_7295_numeral__power__less__of__nat__cancel__iff,axiom,
    ! [I2: num,N2: nat,X: nat] :
      ( ( ord_less_real @ ( power_power_real @ ( numeral_numeral_real @ I2 ) @ N2 ) @ ( semiri5074537144036343181t_real @ X ) )
      = ( ord_less_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I2 ) @ N2 ) @ X ) ) ).

% numeral_power_less_of_nat_cancel_iff
thf(fact_7296_numeral__power__less__of__nat__cancel__iff,axiom,
    ! [I2: num,N2: nat,X: nat] :
      ( ( ord_less_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I2 ) @ N2 ) @ ( semiri1316708129612266289at_nat @ X ) )
      = ( ord_less_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I2 ) @ N2 ) @ X ) ) ).

% numeral_power_less_of_nat_cancel_iff
thf(fact_7297_numeral__power__less__of__nat__cancel__iff,axiom,
    ! [I2: num,N2: nat,X: nat] :
      ( ( ord_le6747313008572928689nteger @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ I2 ) @ N2 ) @ ( semiri4939895301339042750nteger @ X ) )
      = ( ord_less_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I2 ) @ N2 ) @ X ) ) ).

% numeral_power_less_of_nat_cancel_iff
thf(fact_7298_of__nat__le__numeral__power__cancel__iff,axiom,
    ! [X: nat,I2: num,N2: nat] :
      ( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ X ) @ ( power_power_real @ ( numeral_numeral_real @ I2 ) @ N2 ) )
      = ( ord_less_eq_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ I2 ) @ N2 ) ) ) ).

% of_nat_le_numeral_power_cancel_iff
thf(fact_7299_of__nat__le__numeral__power__cancel__iff,axiom,
    ! [X: nat,I2: num,N2: nat] :
      ( ( ord_le3102999989581377725nteger @ ( semiri4939895301339042750nteger @ X ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ I2 ) @ N2 ) )
      = ( ord_less_eq_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ I2 ) @ N2 ) ) ) ).

% of_nat_le_numeral_power_cancel_iff
thf(fact_7300_of__nat__le__numeral__power__cancel__iff,axiom,
    ! [X: nat,I2: num,N2: nat] :
      ( ( ord_less_eq_rat @ ( semiri681578069525770553at_rat @ X ) @ ( power_power_rat @ ( numeral_numeral_rat @ I2 ) @ N2 ) )
      = ( ord_less_eq_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ I2 ) @ N2 ) ) ) ).

% of_nat_le_numeral_power_cancel_iff
thf(fact_7301_of__nat__le__numeral__power__cancel__iff,axiom,
    ! [X: nat,I2: num,N2: nat] :
      ( ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ X ) @ ( power_power_nat @ ( numeral_numeral_nat @ I2 ) @ N2 ) )
      = ( ord_less_eq_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ I2 ) @ N2 ) ) ) ).

% of_nat_le_numeral_power_cancel_iff
thf(fact_7302_of__nat__le__numeral__power__cancel__iff,axiom,
    ! [X: nat,I2: num,N2: nat] :
      ( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ X ) @ ( power_power_int @ ( numeral_numeral_int @ I2 ) @ N2 ) )
      = ( ord_less_eq_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ I2 ) @ N2 ) ) ) ).

% of_nat_le_numeral_power_cancel_iff
thf(fact_7303_numeral__power__le__of__nat__cancel__iff,axiom,
    ! [I2: num,N2: nat,X: nat] :
      ( ( ord_less_eq_real @ ( power_power_real @ ( numeral_numeral_real @ I2 ) @ N2 ) @ ( semiri5074537144036343181t_real @ X ) )
      = ( ord_less_eq_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I2 ) @ N2 ) @ X ) ) ).

% numeral_power_le_of_nat_cancel_iff
thf(fact_7304_numeral__power__le__of__nat__cancel__iff,axiom,
    ! [I2: num,N2: nat,X: nat] :
      ( ( ord_le3102999989581377725nteger @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ I2 ) @ N2 ) @ ( semiri4939895301339042750nteger @ X ) )
      = ( ord_less_eq_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I2 ) @ N2 ) @ X ) ) ).

% numeral_power_le_of_nat_cancel_iff
thf(fact_7305_numeral__power__le__of__nat__cancel__iff,axiom,
    ! [I2: num,N2: nat,X: nat] :
      ( ( ord_less_eq_rat @ ( power_power_rat @ ( numeral_numeral_rat @ I2 ) @ N2 ) @ ( semiri681578069525770553at_rat @ X ) )
      = ( ord_less_eq_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I2 ) @ N2 ) @ X ) ) ).

% numeral_power_le_of_nat_cancel_iff
thf(fact_7306_numeral__power__le__of__nat__cancel__iff,axiom,
    ! [I2: num,N2: nat,X: nat] :
      ( ( ord_less_eq_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I2 ) @ N2 ) @ ( semiri1316708129612266289at_nat @ X ) )
      = ( ord_less_eq_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I2 ) @ N2 ) @ X ) ) ).

% numeral_power_le_of_nat_cancel_iff
thf(fact_7307_numeral__power__le__of__nat__cancel__iff,axiom,
    ! [I2: num,N2: nat,X: nat] :
      ( ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ I2 ) @ N2 ) @ ( semiri1314217659103216013at_int @ X ) )
      = ( ord_less_eq_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I2 ) @ N2 ) @ X ) ) ).

% numeral_power_le_of_nat_cancel_iff
thf(fact_7308_even__of__nat,axiom,
    ! [N2: nat] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( semiri1314217659103216013at_int @ N2 ) )
      = ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ).

% even_of_nat
thf(fact_7309_even__of__nat,axiom,
    ! [N2: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( semiri1316708129612266289at_nat @ N2 ) )
      = ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ).

% even_of_nat
thf(fact_7310_even__of__nat,axiom,
    ! [N2: nat] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( semiri4939895301339042750nteger @ N2 ) )
      = ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ).

% even_of_nat
thf(fact_7311_signed__take__bit__numeral__bit0,axiom,
    ! [L2: num,K: num] :
      ( ( bit_ri631733984087533419it_int @ ( numeral_numeral_nat @ L2 ) @ ( numeral_numeral_int @ ( bit0 @ K ) ) )
      = ( times_times_int @ ( bit_ri631733984087533419it_int @ ( pred_numeral @ L2 ) @ ( numeral_numeral_int @ K ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).

% signed_take_bit_numeral_bit0
thf(fact_7312_signed__take__bit__numeral__minus__bit0,axiom,
    ! [L2: num,K: num] :
      ( ( bit_ri631733984087533419it_int @ ( numeral_numeral_nat @ L2 ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ K ) ) ) )
      = ( times_times_int @ ( bit_ri631733984087533419it_int @ ( pred_numeral @ L2 ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).

% signed_take_bit_numeral_minus_bit0
thf(fact_7313_Collect__case__prod__mono,axiom,
    ! [A2: int > int > $o,B3: int > int > $o] :
      ( ( ord_le6741204236512500942_int_o @ A2 @ B3 )
     => ( ord_le2843351958646193337nt_int @ ( collec213857154873943460nt_int @ ( produc4947309494688390418_int_o @ A2 ) ) @ ( collec213857154873943460nt_int @ ( produc4947309494688390418_int_o @ B3 ) ) ) ) ).

% Collect_case_prod_mono
thf(fact_7314_prod_Odisc__eq__case,axiom,
    ! [Prod: product_prod_int_int] :
      ( produc4947309494688390418_int_o
      @ ^ [Uu3: int,Uv3: int] : $true
      @ Prod ) ).

% prod.disc_eq_case
thf(fact_7315_mult__of__nat__commute,axiom,
    ! [X: nat,Y: rat] :
      ( ( times_times_rat @ ( semiri681578069525770553at_rat @ X ) @ Y )
      = ( times_times_rat @ Y @ ( semiri681578069525770553at_rat @ X ) ) ) ).

% mult_of_nat_commute
thf(fact_7316_mult__of__nat__commute,axiom,
    ! [X: nat,Y: int] :
      ( ( times_times_int @ ( semiri1314217659103216013at_int @ X ) @ Y )
      = ( times_times_int @ Y @ ( semiri1314217659103216013at_int @ X ) ) ) ).

% mult_of_nat_commute
thf(fact_7317_mult__of__nat__commute,axiom,
    ! [X: nat,Y: real] :
      ( ( times_times_real @ ( semiri5074537144036343181t_real @ X ) @ Y )
      = ( times_times_real @ Y @ ( semiri5074537144036343181t_real @ X ) ) ) ).

% mult_of_nat_commute
thf(fact_7318_mult__of__nat__commute,axiom,
    ! [X: nat,Y: nat] :
      ( ( times_times_nat @ ( semiri1316708129612266289at_nat @ X ) @ Y )
      = ( times_times_nat @ Y @ ( semiri1316708129612266289at_nat @ X ) ) ) ).

% mult_of_nat_commute
thf(fact_7319_mult__of__nat__commute,axiom,
    ! [X: nat,Y: code_integer] :
      ( ( times_3573771949741848930nteger @ ( semiri4939895301339042750nteger @ X ) @ Y )
      = ( times_3573771949741848930nteger @ Y @ ( semiri4939895301339042750nteger @ X ) ) ) ).

% mult_of_nat_commute
thf(fact_7320_arctan__monotone_H,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ X @ Y )
     => ( ord_less_eq_real @ ( arctan @ X ) @ ( arctan @ Y ) ) ) ).

% arctan_monotone'
thf(fact_7321_arctan__le__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ ( arctan @ X ) @ ( arctan @ Y ) )
      = ( ord_less_eq_real @ X @ Y ) ) ).

% arctan_le_iff
thf(fact_7322_int__diff__cases,axiom,
    ! [Z: int] :
      ~ ! [M2: nat,N: nat] :
          ( Z
         != ( minus_minus_int @ ( semiri1314217659103216013at_int @ M2 ) @ ( semiri1314217659103216013at_int @ N ) ) ) ).

% int_diff_cases
thf(fact_7323_of__nat__0__le__iff,axiom,
    ! [N2: nat] : ( ord_less_eq_real @ zero_zero_real @ ( semiri5074537144036343181t_real @ N2 ) ) ).

% of_nat_0_le_iff
thf(fact_7324_of__nat__0__le__iff,axiom,
    ! [N2: nat] : ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( semiri4939895301339042750nteger @ N2 ) ) ).

% of_nat_0_le_iff
thf(fact_7325_of__nat__0__le__iff,axiom,
    ! [N2: nat] : ( ord_less_eq_rat @ zero_zero_rat @ ( semiri681578069525770553at_rat @ N2 ) ) ).

% of_nat_0_le_iff
thf(fact_7326_of__nat__0__le__iff,axiom,
    ! [N2: nat] : ( ord_less_eq_nat @ zero_zero_nat @ ( semiri1316708129612266289at_nat @ N2 ) ) ).

% of_nat_0_le_iff
thf(fact_7327_of__nat__0__le__iff,axiom,
    ! [N2: nat] : ( ord_less_eq_int @ zero_zero_int @ ( semiri1314217659103216013at_int @ N2 ) ) ).

% of_nat_0_le_iff
thf(fact_7328_of__nat__less__0__iff,axiom,
    ! [M: nat] :
      ~ ( ord_less_rat @ ( semiri681578069525770553at_rat @ M ) @ zero_zero_rat ) ).

% of_nat_less_0_iff
thf(fact_7329_of__nat__less__0__iff,axiom,
    ! [M: nat] :
      ~ ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ zero_zero_int ) ).

% of_nat_less_0_iff
thf(fact_7330_of__nat__less__0__iff,axiom,
    ! [M: nat] :
      ~ ( ord_less_real @ ( semiri5074537144036343181t_real @ M ) @ zero_zero_real ) ).

% of_nat_less_0_iff
thf(fact_7331_of__nat__less__0__iff,axiom,
    ! [M: nat] :
      ~ ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M ) @ zero_zero_nat ) ).

% of_nat_less_0_iff
thf(fact_7332_of__nat__less__0__iff,axiom,
    ! [M: nat] :
      ~ ( ord_le6747313008572928689nteger @ ( semiri4939895301339042750nteger @ M ) @ zero_z3403309356797280102nteger ) ).

% of_nat_less_0_iff
thf(fact_7333_of__nat__neq__0,axiom,
    ! [N2: nat] :
      ( ( semiri8010041392384452111omplex @ ( suc @ N2 ) )
     != zero_zero_complex ) ).

% of_nat_neq_0
thf(fact_7334_of__nat__neq__0,axiom,
    ! [N2: nat] :
      ( ( semiri681578069525770553at_rat @ ( suc @ N2 ) )
     != zero_zero_rat ) ).

% of_nat_neq_0
thf(fact_7335_of__nat__neq__0,axiom,
    ! [N2: nat] :
      ( ( semiri1314217659103216013at_int @ ( suc @ N2 ) )
     != zero_zero_int ) ).

% of_nat_neq_0
thf(fact_7336_of__nat__neq__0,axiom,
    ! [N2: nat] :
      ( ( semiri5074537144036343181t_real @ ( suc @ N2 ) )
     != zero_zero_real ) ).

% of_nat_neq_0
thf(fact_7337_of__nat__neq__0,axiom,
    ! [N2: nat] :
      ( ( semiri1316708129612266289at_nat @ ( suc @ N2 ) )
     != zero_zero_nat ) ).

% of_nat_neq_0
thf(fact_7338_of__nat__neq__0,axiom,
    ! [N2: nat] :
      ( ( semiri4939895301339042750nteger @ ( suc @ N2 ) )
     != zero_z3403309356797280102nteger ) ).

% of_nat_neq_0
thf(fact_7339_div__mult2__eq_H,axiom,
    ! [A: int,M: nat,N2: nat] :
      ( ( divide_divide_int @ A @ ( times_times_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N2 ) ) )
      = ( divide_divide_int @ ( divide_divide_int @ A @ ( semiri1314217659103216013at_int @ M ) ) @ ( semiri1314217659103216013at_int @ N2 ) ) ) ).

% div_mult2_eq'
thf(fact_7340_div__mult2__eq_H,axiom,
    ! [A: nat,M: nat,N2: nat] :
      ( ( divide_divide_nat @ A @ ( times_times_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N2 ) ) )
      = ( divide_divide_nat @ ( divide_divide_nat @ A @ ( semiri1316708129612266289at_nat @ M ) ) @ ( semiri1316708129612266289at_nat @ N2 ) ) ) ).

% div_mult2_eq'
thf(fact_7341_div__mult2__eq_H,axiom,
    ! [A: code_integer,M: nat,N2: nat] :
      ( ( divide6298287555418463151nteger @ A @ ( times_3573771949741848930nteger @ ( semiri4939895301339042750nteger @ M ) @ ( semiri4939895301339042750nteger @ N2 ) ) )
      = ( divide6298287555418463151nteger @ ( divide6298287555418463151nteger @ A @ ( semiri4939895301339042750nteger @ M ) ) @ ( semiri4939895301339042750nteger @ N2 ) ) ) ).

% div_mult2_eq'
thf(fact_7342_less__imp__of__nat__less,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ M @ N2 )
     => ( ord_less_rat @ ( semiri681578069525770553at_rat @ M ) @ ( semiri681578069525770553at_rat @ N2 ) ) ) ).

% less_imp_of_nat_less
thf(fact_7343_less__imp__of__nat__less,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ M @ N2 )
     => ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N2 ) ) ) ).

% less_imp_of_nat_less
thf(fact_7344_less__imp__of__nat__less,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ M @ N2 )
     => ( ord_less_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N2 ) ) ) ).

% less_imp_of_nat_less
thf(fact_7345_less__imp__of__nat__less,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ M @ N2 )
     => ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N2 ) ) ) ).

% less_imp_of_nat_less
thf(fact_7346_less__imp__of__nat__less,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ M @ N2 )
     => ( ord_le6747313008572928689nteger @ ( semiri4939895301339042750nteger @ M ) @ ( semiri4939895301339042750nteger @ N2 ) ) ) ).

% less_imp_of_nat_less
thf(fact_7347_of__nat__less__imp__less,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_rat @ ( semiri681578069525770553at_rat @ M ) @ ( semiri681578069525770553at_rat @ N2 ) )
     => ( ord_less_nat @ M @ N2 ) ) ).

% of_nat_less_imp_less
thf(fact_7348_of__nat__less__imp__less,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N2 ) )
     => ( ord_less_nat @ M @ N2 ) ) ).

% of_nat_less_imp_less
thf(fact_7349_of__nat__less__imp__less,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N2 ) )
     => ( ord_less_nat @ M @ N2 ) ) ).

% of_nat_less_imp_less
thf(fact_7350_of__nat__less__imp__less,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N2 ) )
     => ( ord_less_nat @ M @ N2 ) ) ).

% of_nat_less_imp_less
thf(fact_7351_of__nat__less__imp__less,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_le6747313008572928689nteger @ ( semiri4939895301339042750nteger @ M ) @ ( semiri4939895301339042750nteger @ N2 ) )
     => ( ord_less_nat @ M @ N2 ) ) ).

% of_nat_less_imp_less
thf(fact_7352_of__nat__mono,axiom,
    ! [I2: nat,J: nat] :
      ( ( ord_less_eq_nat @ I2 @ J )
     => ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ I2 ) @ ( semiri5074537144036343181t_real @ J ) ) ) ).

% of_nat_mono
thf(fact_7353_of__nat__mono,axiom,
    ! [I2: nat,J: nat] :
      ( ( ord_less_eq_nat @ I2 @ J )
     => ( ord_le3102999989581377725nteger @ ( semiri4939895301339042750nteger @ I2 ) @ ( semiri4939895301339042750nteger @ J ) ) ) ).

% of_nat_mono
thf(fact_7354_of__nat__mono,axiom,
    ! [I2: nat,J: nat] :
      ( ( ord_less_eq_nat @ I2 @ J )
     => ( ord_less_eq_rat @ ( semiri681578069525770553at_rat @ I2 ) @ ( semiri681578069525770553at_rat @ J ) ) ) ).

% of_nat_mono
thf(fact_7355_of__nat__mono,axiom,
    ! [I2: nat,J: nat] :
      ( ( ord_less_eq_nat @ I2 @ J )
     => ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ I2 ) @ ( semiri1316708129612266289at_nat @ J ) ) ) ).

% of_nat_mono
thf(fact_7356_of__nat__mono,axiom,
    ! [I2: nat,J: nat] :
      ( ( ord_less_eq_nat @ I2 @ J )
     => ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ I2 ) @ ( semiri1314217659103216013at_int @ J ) ) ) ).

% of_nat_mono
thf(fact_7357_unique__euclidean__semiring__with__nat__class_Oof__nat__div,axiom,
    ! [M: nat,N2: nat] :
      ( ( semiri1314217659103216013at_int @ ( divide_divide_nat @ M @ N2 ) )
      = ( divide_divide_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N2 ) ) ) ).

% unique_euclidean_semiring_with_nat_class.of_nat_div
thf(fact_7358_unique__euclidean__semiring__with__nat__class_Oof__nat__div,axiom,
    ! [M: nat,N2: nat] :
      ( ( semiri1316708129612266289at_nat @ ( divide_divide_nat @ M @ N2 ) )
      = ( divide_divide_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N2 ) ) ) ).

% unique_euclidean_semiring_with_nat_class.of_nat_div
thf(fact_7359_unique__euclidean__semiring__with__nat__class_Oof__nat__div,axiom,
    ! [M: nat,N2: nat] :
      ( ( semiri4939895301339042750nteger @ ( divide_divide_nat @ M @ N2 ) )
      = ( divide6298287555418463151nteger @ ( semiri4939895301339042750nteger @ M ) @ ( semiri4939895301339042750nteger @ N2 ) ) ) ).

% unique_euclidean_semiring_with_nat_class.of_nat_div
thf(fact_7360_of__nat__dvd__iff,axiom,
    ! [M: nat,N2: nat] :
      ( ( dvd_dvd_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N2 ) )
      = ( dvd_dvd_nat @ M @ N2 ) ) ).

% of_nat_dvd_iff
thf(fact_7361_of__nat__dvd__iff,axiom,
    ! [M: nat,N2: nat] :
      ( ( dvd_dvd_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N2 ) )
      = ( dvd_dvd_nat @ M @ N2 ) ) ).

% of_nat_dvd_iff
thf(fact_7362_of__nat__dvd__iff,axiom,
    ! [M: nat,N2: nat] :
      ( ( dvd_dvd_Code_integer @ ( semiri4939895301339042750nteger @ M ) @ ( semiri4939895301339042750nteger @ N2 ) )
      = ( dvd_dvd_nat @ M @ N2 ) ) ).

% of_nat_dvd_iff
thf(fact_7363_int__ops_I3_J,axiom,
    ! [N2: num] :
      ( ( semiri1314217659103216013at_int @ ( numeral_numeral_nat @ N2 ) )
      = ( numeral_numeral_int @ N2 ) ) ).

% int_ops(3)
thf(fact_7364_abs__zmult__eq__1,axiom,
    ! [M: int,N2: int] :
      ( ( ( abs_abs_int @ ( times_times_int @ M @ N2 ) )
        = one_one_int )
     => ( ( abs_abs_int @ M )
        = one_one_int ) ) ).

% abs_zmult_eq_1
thf(fact_7365_int__cases,axiom,
    ! [Z: int] :
      ( ! [N: nat] :
          ( Z
         != ( semiri1314217659103216013at_int @ N ) )
     => ~ ! [N: nat] :
            ( Z
           != ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N ) ) ) ) ) ).

% int_cases
thf(fact_7366_int__of__nat__induct,axiom,
    ! [P: int > $o,Z: int] :
      ( ! [N: nat] : ( P @ ( semiri1314217659103216013at_int @ N ) )
     => ( ! [N: nat] : ( P @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N ) ) ) )
       => ( P @ Z ) ) ) ).

% int_of_nat_induct
thf(fact_7367_nat__int__comparison_I2_J,axiom,
    ( ord_less_nat
    = ( ^ [A4: nat,B4: nat] : ( ord_less_int @ ( semiri1314217659103216013at_int @ A4 ) @ ( semiri1314217659103216013at_int @ B4 ) ) ) ) ).

% nat_int_comparison(2)
thf(fact_7368_zle__int,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N2 ) )
      = ( ord_less_eq_nat @ M @ N2 ) ) ).

% zle_int
thf(fact_7369_nat__int__comparison_I3_J,axiom,
    ( ord_less_eq_nat
    = ( ^ [A4: nat,B4: nat] : ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ A4 ) @ ( semiri1314217659103216013at_int @ B4 ) ) ) ) ).

% nat_int_comparison(3)
thf(fact_7370_nonneg__int__cases,axiom,
    ! [K: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ K )
     => ~ ! [N: nat] :
            ( K
           != ( semiri1314217659103216013at_int @ N ) ) ) ).

% nonneg_int_cases
thf(fact_7371_zero__le__imp__eq__int,axiom,
    ! [K: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ K )
     => ? [N: nat] :
          ( K
          = ( semiri1314217659103216013at_int @ N ) ) ) ).

% zero_le_imp_eq_int
thf(fact_7372_int__ops_I5_J,axiom,
    ! [A: nat,B: nat] :
      ( ( semiri1314217659103216013at_int @ ( plus_plus_nat @ A @ B ) )
      = ( plus_plus_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ).

% int_ops(5)
thf(fact_7373_int__plus,axiom,
    ! [N2: nat,M: nat] :
      ( ( semiri1314217659103216013at_int @ ( plus_plus_nat @ N2 @ M ) )
      = ( plus_plus_int @ ( semiri1314217659103216013at_int @ N2 ) @ ( semiri1314217659103216013at_int @ M ) ) ) ).

% int_plus
thf(fact_7374_zadd__int__left,axiom,
    ! [M: nat,N2: nat,Z: int] :
      ( ( plus_plus_int @ ( semiri1314217659103216013at_int @ M ) @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ N2 ) @ Z ) )
      = ( plus_plus_int @ ( semiri1314217659103216013at_int @ ( plus_plus_nat @ M @ N2 ) ) @ Z ) ) ).

% zadd_int_left
thf(fact_7375_of__nat__mod,axiom,
    ! [M: nat,N2: nat] :
      ( ( semiri1314217659103216013at_int @ ( modulo_modulo_nat @ M @ N2 ) )
      = ( modulo_modulo_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N2 ) ) ) ).

% of_nat_mod
thf(fact_7376_of__nat__mod,axiom,
    ! [M: nat,N2: nat] :
      ( ( semiri1316708129612266289at_nat @ ( modulo_modulo_nat @ M @ N2 ) )
      = ( modulo_modulo_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N2 ) ) ) ).

% of_nat_mod
thf(fact_7377_of__nat__mod,axiom,
    ! [M: nat,N2: nat] :
      ( ( semiri4939895301339042750nteger @ ( modulo_modulo_nat @ M @ N2 ) )
      = ( modulo364778990260209775nteger @ ( semiri4939895301339042750nteger @ M ) @ ( semiri4939895301339042750nteger @ N2 ) ) ) ).

% of_nat_mod
thf(fact_7378_int__ops_I7_J,axiom,
    ! [A: nat,B: nat] :
      ( ( semiri1314217659103216013at_int @ ( times_times_nat @ A @ B ) )
      = ( times_times_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ).

% int_ops(7)
thf(fact_7379_int__ops_I2_J,axiom,
    ( ( semiri1314217659103216013at_int @ one_one_nat )
    = one_one_int ) ).

% int_ops(2)
thf(fact_7380_zle__iff__zadd,axiom,
    ( ord_less_eq_int
    = ( ^ [W3: int,Z2: int] :
        ? [N3: nat] :
          ( Z2
          = ( plus_plus_int @ W3 @ ( semiri1314217659103216013at_int @ N3 ) ) ) ) ) ).

% zle_iff_zadd
thf(fact_7381_zdiv__int,axiom,
    ! [A: nat,B: nat] :
      ( ( semiri1314217659103216013at_int @ ( divide_divide_nat @ A @ B ) )
      = ( divide_divide_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ).

% zdiv_int
thf(fact_7382_int__sum,axiom,
    ! [F: int > nat,A2: set_int] :
      ( ( semiri1314217659103216013at_int @ ( groups4541462559716669496nt_nat @ F @ A2 ) )
      = ( groups4538972089207619220nt_int
        @ ^ [X3: int] : ( semiri1314217659103216013at_int @ ( F @ X3 ) )
        @ A2 ) ) ).

% int_sum
thf(fact_7383_int__sum,axiom,
    ! [F: nat > nat,A2: set_nat] :
      ( ( semiri1314217659103216013at_int @ ( groups3542108847815614940at_nat @ F @ A2 ) )
      = ( groups3539618377306564664at_int
        @ ^ [X3: nat] : ( semiri1314217659103216013at_int @ ( F @ X3 ) )
        @ A2 ) ) ).

% int_sum
thf(fact_7384_numeral__eq__Suc,axiom,
    ( numeral_numeral_nat
    = ( ^ [K3: num] : ( suc @ ( pred_numeral @ K3 ) ) ) ) ).

% numeral_eq_Suc
thf(fact_7385_of__nat__max,axiom,
    ! [X: nat,Y: nat] :
      ( ( semiri4216267220026989637d_enat @ ( ord_max_nat @ X @ Y ) )
      = ( ord_ma741700101516333627d_enat @ ( semiri4216267220026989637d_enat @ X ) @ ( semiri4216267220026989637d_enat @ Y ) ) ) ).

% of_nat_max
thf(fact_7386_of__nat__max,axiom,
    ! [X: nat,Y: nat] :
      ( ( semiri1314217659103216013at_int @ ( ord_max_nat @ X @ Y ) )
      = ( ord_max_int @ ( semiri1314217659103216013at_int @ X ) @ ( semiri1314217659103216013at_int @ Y ) ) ) ).

% of_nat_max
thf(fact_7387_of__nat__max,axiom,
    ! [X: nat,Y: nat] :
      ( ( semiri5074537144036343181t_real @ ( ord_max_nat @ X @ Y ) )
      = ( ord_max_real @ ( semiri5074537144036343181t_real @ X ) @ ( semiri5074537144036343181t_real @ Y ) ) ) ).

% of_nat_max
thf(fact_7388_of__nat__max,axiom,
    ! [X: nat,Y: nat] :
      ( ( semiri1316708129612266289at_nat @ ( ord_max_nat @ X @ Y ) )
      = ( ord_max_nat @ ( semiri1316708129612266289at_nat @ X ) @ ( semiri1316708129612266289at_nat @ Y ) ) ) ).

% of_nat_max
thf(fact_7389_of__nat__max,axiom,
    ! [X: nat,Y: nat] :
      ( ( semiri4939895301339042750nteger @ ( ord_max_nat @ X @ Y ) )
      = ( ord_max_Code_integer @ ( semiri4939895301339042750nteger @ X ) @ ( semiri4939895301339042750nteger @ Y ) ) ) ).

% of_nat_max
thf(fact_7390_nat__less__as__int,axiom,
    ( ord_less_nat
    = ( ^ [A4: nat,B4: nat] : ( ord_less_int @ ( semiri1314217659103216013at_int @ A4 ) @ ( semiri1314217659103216013at_int @ B4 ) ) ) ) ).

% nat_less_as_int
thf(fact_7391_nat__leq__as__int,axiom,
    ( ord_less_eq_nat
    = ( ^ [A4: nat,B4: nat] : ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ A4 ) @ ( semiri1314217659103216013at_int @ B4 ) ) ) ) ).

% nat_leq_as_int
thf(fact_7392_of__nat__diff,axiom,
    ! [N2: nat,M: nat] :
      ( ( ord_less_eq_nat @ N2 @ M )
     => ( ( semiri681578069525770553at_rat @ ( minus_minus_nat @ M @ N2 ) )
        = ( minus_minus_rat @ ( semiri681578069525770553at_rat @ M ) @ ( semiri681578069525770553at_rat @ N2 ) ) ) ) ).

% of_nat_diff
thf(fact_7393_of__nat__diff,axiom,
    ! [N2: nat,M: nat] :
      ( ( ord_less_eq_nat @ N2 @ M )
     => ( ( semiri1314217659103216013at_int @ ( minus_minus_nat @ M @ N2 ) )
        = ( minus_minus_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N2 ) ) ) ) ).

% of_nat_diff
thf(fact_7394_of__nat__diff,axiom,
    ! [N2: nat,M: nat] :
      ( ( ord_less_eq_nat @ N2 @ M )
     => ( ( semiri5074537144036343181t_real @ ( minus_minus_nat @ M @ N2 ) )
        = ( minus_minus_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N2 ) ) ) ) ).

% of_nat_diff
thf(fact_7395_of__nat__diff,axiom,
    ! [N2: nat,M: nat] :
      ( ( ord_less_eq_nat @ N2 @ M )
     => ( ( semiri1316708129612266289at_nat @ ( minus_minus_nat @ M @ N2 ) )
        = ( minus_minus_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N2 ) ) ) ) ).

% of_nat_diff
thf(fact_7396_of__nat__diff,axiom,
    ! [N2: nat,M: nat] :
      ( ( ord_less_eq_nat @ N2 @ M )
     => ( ( semiri4939895301339042750nteger @ ( minus_minus_nat @ M @ N2 ) )
        = ( minus_8373710615458151222nteger @ ( semiri4939895301339042750nteger @ M ) @ ( semiri4939895301339042750nteger @ N2 ) ) ) ) ).

% of_nat_diff
thf(fact_7397_reals__Archimedean3,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ! [Y2: real] :
        ? [N: nat] : ( ord_less_real @ Y2 @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ X ) ) ) ).

% reals_Archimedean3
thf(fact_7398_int__cases4,axiom,
    ! [M: int] :
      ( ! [N: nat] :
          ( M
         != ( semiri1314217659103216013at_int @ N ) )
     => ~ ! [N: nat] :
            ( ( ord_less_nat @ zero_zero_nat @ N )
           => ( M
             != ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N ) ) ) ) ) ).

% int_cases4
thf(fact_7399_real__of__nat__div4,axiom,
    ! [N2: nat,X: nat] : ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ ( divide_divide_nat @ N2 @ X ) ) @ ( divide_divide_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( semiri5074537144036343181t_real @ X ) ) ) ).

% real_of_nat_div4
thf(fact_7400_dvd__imp__le__int,axiom,
    ! [I2: int,D: int] :
      ( ( I2 != zero_zero_int )
     => ( ( dvd_dvd_int @ D @ I2 )
       => ( ord_less_eq_int @ ( abs_abs_int @ D ) @ ( abs_abs_int @ I2 ) ) ) ) ).

% dvd_imp_le_int
thf(fact_7401_int__Suc,axiom,
    ! [N2: nat] :
      ( ( semiri1314217659103216013at_int @ ( suc @ N2 ) )
      = ( plus_plus_int @ ( semiri1314217659103216013at_int @ N2 ) @ one_one_int ) ) ).

% int_Suc
thf(fact_7402_int__ops_I4_J,axiom,
    ! [A: nat] :
      ( ( semiri1314217659103216013at_int @ ( suc @ A ) )
      = ( plus_plus_int @ ( semiri1314217659103216013at_int @ A ) @ one_one_int ) ) ).

% int_ops(4)
thf(fact_7403_zless__iff__Suc__zadd,axiom,
    ( ord_less_int
    = ( ^ [W3: int,Z2: int] :
        ? [N3: nat] :
          ( Z2
          = ( plus_plus_int @ W3 @ ( semiri1314217659103216013at_int @ ( suc @ N3 ) ) ) ) ) ) ).

% zless_iff_Suc_zadd
thf(fact_7404_int__zle__neg,axiom,
    ! [N2: nat,M: nat] :
      ( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ N2 ) @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ M ) ) )
      = ( ( N2 = zero_zero_nat )
        & ( M = zero_zero_nat ) ) ) ).

% int_zle_neg
thf(fact_7405_abs__mod__less,axiom,
    ! [L2: int,K: int] :
      ( ( L2 != zero_zero_int )
     => ( ord_less_int @ ( abs_abs_int @ ( modulo_modulo_int @ K @ L2 ) ) @ ( abs_abs_int @ L2 ) ) ) ).

% abs_mod_less
thf(fact_7406_real__of__nat__div,axiom,
    ! [D: nat,N2: nat] :
      ( ( dvd_dvd_nat @ D @ N2 )
     => ( ( semiri5074537144036343181t_real @ ( divide_divide_nat @ N2 @ D ) )
        = ( divide_divide_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( semiri5074537144036343181t_real @ D ) ) ) ) ).

% real_of_nat_div
thf(fact_7407_negative__zle__0,axiom,
    ! [N2: nat] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N2 ) ) @ zero_zero_int ) ).

% negative_zle_0
thf(fact_7408_nonpos__int__cases,axiom,
    ! [K: int] :
      ( ( ord_less_eq_int @ K @ zero_zero_int )
     => ~ ! [N: nat] :
            ( K
           != ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N ) ) ) ) ).

% nonpos_int_cases
thf(fact_7409_pred__numeral__def,axiom,
    ( pred_numeral
    = ( ^ [K3: num] : ( minus_minus_nat @ ( numeral_numeral_nat @ K3 ) @ one_one_nat ) ) ) ).

% pred_numeral_def
thf(fact_7410_mod__mult2__eq_H,axiom,
    ! [A: int,M: nat,N2: nat] :
      ( ( modulo_modulo_int @ A @ ( times_times_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N2 ) ) )
      = ( plus_plus_int @ ( times_times_int @ ( semiri1314217659103216013at_int @ M ) @ ( modulo_modulo_int @ ( divide_divide_int @ A @ ( semiri1314217659103216013at_int @ M ) ) @ ( semiri1314217659103216013at_int @ N2 ) ) ) @ ( modulo_modulo_int @ A @ ( semiri1314217659103216013at_int @ M ) ) ) ) ).

% mod_mult2_eq'
thf(fact_7411_mod__mult2__eq_H,axiom,
    ! [A: nat,M: nat,N2: nat] :
      ( ( modulo_modulo_nat @ A @ ( times_times_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N2 ) ) )
      = ( plus_plus_nat @ ( times_times_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( modulo_modulo_nat @ ( divide_divide_nat @ A @ ( semiri1316708129612266289at_nat @ M ) ) @ ( semiri1316708129612266289at_nat @ N2 ) ) ) @ ( modulo_modulo_nat @ A @ ( semiri1316708129612266289at_nat @ M ) ) ) ) ).

% mod_mult2_eq'
thf(fact_7412_mod__mult2__eq_H,axiom,
    ! [A: code_integer,M: nat,N2: nat] :
      ( ( modulo364778990260209775nteger @ A @ ( times_3573771949741848930nteger @ ( semiri4939895301339042750nteger @ M ) @ ( semiri4939895301339042750nteger @ N2 ) ) )
      = ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( semiri4939895301339042750nteger @ M ) @ ( modulo364778990260209775nteger @ ( divide6298287555418463151nteger @ A @ ( semiri4939895301339042750nteger @ M ) ) @ ( semiri4939895301339042750nteger @ N2 ) ) ) @ ( modulo364778990260209775nteger @ A @ ( semiri4939895301339042750nteger @ M ) ) ) ) ).

% mod_mult2_eq'
thf(fact_7413_field__char__0__class_Oof__nat__div,axiom,
    ! [M: nat,N2: nat] :
      ( ( semiri8010041392384452111omplex @ ( divide_divide_nat @ M @ N2 ) )
      = ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( semiri8010041392384452111omplex @ M ) @ ( semiri8010041392384452111omplex @ ( modulo_modulo_nat @ M @ N2 ) ) ) @ ( semiri8010041392384452111omplex @ N2 ) ) ) ).

% field_char_0_class.of_nat_div
thf(fact_7414_field__char__0__class_Oof__nat__div,axiom,
    ! [M: nat,N2: nat] :
      ( ( semiri681578069525770553at_rat @ ( divide_divide_nat @ M @ N2 ) )
      = ( divide_divide_rat @ ( minus_minus_rat @ ( semiri681578069525770553at_rat @ M ) @ ( semiri681578069525770553at_rat @ ( modulo_modulo_nat @ M @ N2 ) ) ) @ ( semiri681578069525770553at_rat @ N2 ) ) ) ).

% field_char_0_class.of_nat_div
thf(fact_7415_field__char__0__class_Oof__nat__div,axiom,
    ! [M: nat,N2: nat] :
      ( ( semiri5074537144036343181t_real @ ( divide_divide_nat @ M @ N2 ) )
      = ( divide_divide_real @ ( minus_minus_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ ( modulo_modulo_nat @ M @ N2 ) ) ) @ ( semiri5074537144036343181t_real @ N2 ) ) ) ).

% field_char_0_class.of_nat_div
thf(fact_7416_pos__int__cases,axiom,
    ! [K: int] :
      ( ( ord_less_int @ zero_zero_int @ K )
     => ~ ! [N: nat] :
            ( ( K
              = ( semiri1314217659103216013at_int @ N ) )
           => ~ ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% pos_int_cases
thf(fact_7417_zero__less__imp__eq__int,axiom,
    ! [K: int] :
      ( ( ord_less_int @ zero_zero_int @ K )
     => ? [N: nat] :
          ( ( ord_less_nat @ zero_zero_nat @ N )
          & ( K
            = ( semiri1314217659103216013at_int @ N ) ) ) ) ).

% zero_less_imp_eq_int
thf(fact_7418_int__cases3,axiom,
    ! [K: int] :
      ( ( K != zero_zero_int )
     => ( ! [N: nat] :
            ( ( K
              = ( semiri1314217659103216013at_int @ N ) )
           => ~ ( ord_less_nat @ zero_zero_nat @ N ) )
       => ~ ! [N: nat] :
              ( ( K
                = ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N ) ) )
             => ~ ( ord_less_nat @ zero_zero_nat @ N ) ) ) ) ).

% int_cases3
thf(fact_7419_nat__less__real__le,axiom,
    ( ord_less_nat
    = ( ^ [N3: nat,M6: nat] : ( ord_less_eq_real @ ( plus_plus_real @ ( semiri5074537144036343181t_real @ N3 ) @ one_one_real ) @ ( semiri5074537144036343181t_real @ M6 ) ) ) ) ).

% nat_less_real_le
thf(fact_7420_nat__le__real__less,axiom,
    ( ord_less_eq_nat
    = ( ^ [N3: nat,M6: nat] : ( ord_less_real @ ( semiri5074537144036343181t_real @ N3 ) @ ( plus_plus_real @ ( semiri5074537144036343181t_real @ M6 ) @ one_one_real ) ) ) ) ).

% nat_le_real_less
thf(fact_7421_zmult__zless__mono2__lemma,axiom,
    ! [I2: int,J: int,K: nat] :
      ( ( ord_less_int @ I2 @ J )
     => ( ( ord_less_nat @ zero_zero_nat @ K )
       => ( ord_less_int @ ( times_times_int @ ( semiri1314217659103216013at_int @ K ) @ I2 ) @ ( times_times_int @ ( semiri1314217659103216013at_int @ K ) @ J ) ) ) ) ).

% zmult_zless_mono2_lemma
thf(fact_7422_zdvd__mult__cancel1,axiom,
    ! [M: int,N2: int] :
      ( ( M != zero_zero_int )
     => ( ( dvd_dvd_int @ ( times_times_int @ M @ N2 ) @ M )
        = ( ( abs_abs_int @ N2 )
          = one_one_int ) ) ) ).

% zdvd_mult_cancel1
thf(fact_7423_not__zle__0__negative,axiom,
    ! [N2: nat] :
      ~ ( ord_less_eq_int @ zero_zero_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N2 ) ) ) ) ).

% not_zle_0_negative
thf(fact_7424_negD,axiom,
    ! [X: int] :
      ( ( ord_less_int @ X @ zero_zero_int )
     => ? [N: nat] :
          ( X
          = ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N ) ) ) ) ) ).

% negD
thf(fact_7425_negative__zless__0,axiom,
    ! [N2: nat] : ( ord_less_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N2 ) ) ) @ zero_zero_int ) ).

% negative_zless_0
thf(fact_7426_dbl__inc__def,axiom,
    ( neg_nu8557863876264182079omplex
    = ( ^ [X3: complex] : ( plus_plus_complex @ ( plus_plus_complex @ X3 @ X3 ) @ one_one_complex ) ) ) ).

% dbl_inc_def
thf(fact_7427_dbl__inc__def,axiom,
    ( neg_nu8295874005876285629c_real
    = ( ^ [X3: real] : ( plus_plus_real @ ( plus_plus_real @ X3 @ X3 ) @ one_one_real ) ) ) ).

% dbl_inc_def
thf(fact_7428_dbl__inc__def,axiom,
    ( neg_nu5219082963157363817nc_rat
    = ( ^ [X3: rat] : ( plus_plus_rat @ ( plus_plus_rat @ X3 @ X3 ) @ one_one_rat ) ) ) ).

% dbl_inc_def
thf(fact_7429_dbl__inc__def,axiom,
    ( neg_nu5851722552734809277nc_int
    = ( ^ [X3: int] : ( plus_plus_int @ ( plus_plus_int @ X3 @ X3 ) @ one_one_int ) ) ) ).

% dbl_inc_def
thf(fact_7430_int__ops_I6_J,axiom,
    ! [A: nat,B: nat] :
      ( ( ( ord_less_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) )
       => ( ( semiri1314217659103216013at_int @ ( minus_minus_nat @ A @ B ) )
          = zero_zero_int ) )
      & ( ~ ( ord_less_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) )
       => ( ( semiri1314217659103216013at_int @ ( minus_minus_nat @ A @ B ) )
          = ( minus_minus_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ) ) ).

% int_ops(6)
thf(fact_7431_real__of__nat__div__aux,axiom,
    ! [X: nat,D: nat] :
      ( ( divide_divide_real @ ( semiri5074537144036343181t_real @ X ) @ ( semiri5074537144036343181t_real @ D ) )
      = ( plus_plus_real @ ( semiri5074537144036343181t_real @ ( divide_divide_nat @ X @ D ) ) @ ( divide_divide_real @ ( semiri5074537144036343181t_real @ ( modulo_modulo_nat @ X @ D ) ) @ ( semiri5074537144036343181t_real @ D ) ) ) ) ).

% real_of_nat_div_aux
thf(fact_7432_of__nat__less__two__power,axiom,
    ! [N2: nat] : ( ord_less_rat @ ( semiri681578069525770553at_rat @ N2 ) @ ( power_power_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ N2 ) ) ).

% of_nat_less_two_power
thf(fact_7433_of__nat__less__two__power,axiom,
    ! [N2: nat] : ( ord_less_int @ ( semiri1314217659103216013at_int @ N2 ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) ) ).

% of_nat_less_two_power
thf(fact_7434_of__nat__less__two__power,axiom,
    ! [N2: nat] : ( ord_less_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ N2 ) ) ).

% of_nat_less_two_power
thf(fact_7435_of__nat__less__two__power,axiom,
    ! [N2: nat] : ( ord_le6747313008572928689nteger @ ( semiri4939895301339042750nteger @ N2 ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N2 ) ) ).

% of_nat_less_two_power
thf(fact_7436_inverse__of__nat__le,axiom,
    ! [N2: nat,M: nat] :
      ( ( ord_less_eq_nat @ N2 @ M )
     => ( ( N2 != zero_zero_nat )
       => ( ord_less_eq_real @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ M ) ) @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ N2 ) ) ) ) ) ).

% inverse_of_nat_le
thf(fact_7437_inverse__of__nat__le,axiom,
    ! [N2: nat,M: nat] :
      ( ( ord_less_eq_nat @ N2 @ M )
     => ( ( N2 != zero_zero_nat )
       => ( ord_less_eq_rat @ ( divide_divide_rat @ one_one_rat @ ( semiri681578069525770553at_rat @ M ) ) @ ( divide_divide_rat @ one_one_rat @ ( semiri681578069525770553at_rat @ N2 ) ) ) ) ) ).

% inverse_of_nat_le
thf(fact_7438_even__abs__add__iff,axiom,
    ! [K: int,L2: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ ( abs_abs_int @ K ) @ L2 ) )
      = ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ K @ L2 ) ) ) ).

% even_abs_add_iff
thf(fact_7439_even__add__abs__iff,axiom,
    ! [K: int,L2: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ K @ ( abs_abs_int @ L2 ) ) )
      = ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ K @ L2 ) ) ) ).

% even_add_abs_iff
thf(fact_7440_real__archimedian__rdiv__eq__0,axiom,
    ! [X: real,C: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ zero_zero_real @ C )
       => ( ! [M2: nat] :
              ( ( ord_less_nat @ zero_zero_nat @ M2 )
             => ( ord_less_eq_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ M2 ) @ X ) @ C ) )
         => ( X = zero_zero_real ) ) ) ) ).

% real_archimedian_rdiv_eq_0
thf(fact_7441_neg__int__cases,axiom,
    ! [K: int] :
      ( ( ord_less_int @ K @ zero_zero_int )
     => ~ ! [N: nat] :
            ( ( K
              = ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N ) ) )
           => ~ ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% neg_int_cases
thf(fact_7442_zdiff__int__split,axiom,
    ! [P: int > $o,X: nat,Y: nat] :
      ( ( P @ ( semiri1314217659103216013at_int @ ( minus_minus_nat @ X @ Y ) ) )
      = ( ( ( ord_less_eq_nat @ Y @ X )
         => ( P @ ( minus_minus_int @ ( semiri1314217659103216013at_int @ X ) @ ( semiri1314217659103216013at_int @ Y ) ) ) )
        & ( ( ord_less_nat @ X @ Y )
         => ( P @ zero_zero_int ) ) ) ) ).

% zdiff_int_split
thf(fact_7443_real__of__nat__div2,axiom,
    ! [N2: nat,X: nat] : ( ord_less_eq_real @ zero_zero_real @ ( minus_minus_real @ ( divide_divide_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( semiri5074537144036343181t_real @ X ) ) @ ( semiri5074537144036343181t_real @ ( divide_divide_nat @ N2 @ X ) ) ) ) ).

% real_of_nat_div2
thf(fact_7444_real__of__nat__div3,axiom,
    ! [N2: nat,X: nat] : ( ord_less_eq_real @ ( minus_minus_real @ ( divide_divide_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( semiri5074537144036343181t_real @ X ) ) @ ( semiri5074537144036343181t_real @ ( divide_divide_nat @ N2 @ X ) ) ) @ one_one_real ) ).

% real_of_nat_div3
thf(fact_7445_ln__realpow,axiom,
    ! [X: real,N2: nat] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ln_ln_real @ ( power_power_real @ X @ N2 ) )
        = ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( ln_ln_real @ X ) ) ) ) ).

% ln_realpow
thf(fact_7446_nat__intermed__int__val,axiom,
    ! [M: nat,N2: nat,F: nat > int,K: int] :
      ( ! [I3: nat] :
          ( ( ( ord_less_eq_nat @ M @ I3 )
            & ( ord_less_nat @ I3 @ N2 ) )
         => ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ ( F @ ( suc @ I3 ) ) @ ( F @ I3 ) ) ) @ one_one_int ) )
     => ( ( ord_less_eq_nat @ M @ N2 )
       => ( ( ord_less_eq_int @ ( F @ M ) @ K )
         => ( ( ord_less_eq_int @ K @ ( F @ N2 ) )
           => ? [I3: nat] :
                ( ( ord_less_eq_nat @ M @ I3 )
                & ( ord_less_eq_nat @ I3 @ N2 )
                & ( ( F @ I3 )
                  = K ) ) ) ) ) ) ).

% nat_intermed_int_val
thf(fact_7447_dbl__dec__def,axiom,
    ( neg_nu6511756317524482435omplex
    = ( ^ [X3: complex] : ( minus_minus_complex @ ( plus_plus_complex @ X3 @ X3 ) @ one_one_complex ) ) ) ).

% dbl_dec_def
thf(fact_7448_dbl__dec__def,axiom,
    ( neg_nu6075765906172075777c_real
    = ( ^ [X3: real] : ( minus_minus_real @ ( plus_plus_real @ X3 @ X3 ) @ one_one_real ) ) ) ).

% dbl_dec_def
thf(fact_7449_dbl__dec__def,axiom,
    ( neg_nu3179335615603231917ec_rat
    = ( ^ [X3: rat] : ( minus_minus_rat @ ( plus_plus_rat @ X3 @ X3 ) @ one_one_rat ) ) ) ).

% dbl_dec_def
thf(fact_7450_dbl__dec__def,axiom,
    ( neg_nu3811975205180677377ec_int
    = ( ^ [X3: int] : ( minus_minus_int @ ( plus_plus_int @ X3 @ X3 ) @ one_one_int ) ) ) ).

% dbl_dec_def
thf(fact_7451_decr__lemma,axiom,
    ! [D: int,X: int,Z: int] :
      ( ( ord_less_int @ zero_zero_int @ D )
     => ( ord_less_int @ ( minus_minus_int @ X @ ( times_times_int @ ( plus_plus_int @ ( abs_abs_int @ ( minus_minus_int @ X @ Z ) ) @ one_one_int ) @ D ) ) @ Z ) ) ).

% decr_lemma
thf(fact_7452_incr__lemma,axiom,
    ! [D: int,Z: int,X: int] :
      ( ( ord_less_int @ zero_zero_int @ D )
     => ( ord_less_int @ Z @ ( plus_plus_int @ X @ ( times_times_int @ ( plus_plus_int @ ( abs_abs_int @ ( minus_minus_int @ X @ Z ) ) @ one_one_int ) @ D ) ) ) ) ).

% incr_lemma
thf(fact_7453_linear__plus__1__le__power,axiom,
    ! [X: real,N2: nat] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ord_less_eq_real @ ( plus_plus_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ X ) @ one_one_real ) @ ( power_power_real @ ( plus_plus_real @ X @ one_one_real ) @ N2 ) ) ) ).

% linear_plus_1_le_power
thf(fact_7454_Bernoulli__inequality,axiom,
    ! [X: real,N2: nat] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X )
     => ( ord_less_eq_real @ ( plus_plus_real @ one_one_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ X ) ) @ ( power_power_real @ ( plus_plus_real @ one_one_real @ X ) @ N2 ) ) ) ).

% Bernoulli_inequality
thf(fact_7455_nat__ivt__aux,axiom,
    ! [N2: nat,F: nat > int,K: int] :
      ( ! [I3: nat] :
          ( ( ord_less_nat @ I3 @ N2 )
         => ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ ( F @ ( suc @ I3 ) ) @ ( F @ I3 ) ) ) @ one_one_int ) )
     => ( ( ord_less_eq_int @ ( F @ zero_zero_nat ) @ K )
       => ( ( ord_less_eq_int @ K @ ( F @ N2 ) )
         => ? [I3: nat] :
              ( ( ord_less_eq_nat @ I3 @ N2 )
              & ( ( F @ I3 )
                = K ) ) ) ) ) ).

% nat_ivt_aux
thf(fact_7456_nat0__intermed__int__val,axiom,
    ! [N2: nat,F: nat > int,K: int] :
      ( ! [I3: nat] :
          ( ( ord_less_nat @ I3 @ N2 )
         => ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ ( F @ ( plus_plus_nat @ I3 @ one_one_nat ) ) @ ( F @ I3 ) ) ) @ one_one_int ) )
     => ( ( ord_less_eq_int @ ( F @ zero_zero_nat ) @ K )
       => ( ( ord_less_eq_int @ K @ ( F @ N2 ) )
         => ? [I3: nat] :
              ( ( ord_less_eq_nat @ I3 @ N2 )
              & ( ( F @ I3 )
                = K ) ) ) ) ) ).

% nat0_intermed_int_val
thf(fact_7457_double__arith__series,axiom,
    ! [A: complex,D: complex,N2: nat] :
      ( ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) )
        @ ( groups2073611262835488442omplex
          @ ^ [I5: nat] : ( plus_plus_complex @ A @ ( times_times_complex @ ( semiri8010041392384452111omplex @ I5 ) @ D ) )
          @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N2 ) ) )
      = ( times_times_complex @ ( plus_plus_complex @ ( semiri8010041392384452111omplex @ N2 ) @ one_one_complex ) @ ( plus_plus_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ A ) @ ( times_times_complex @ ( semiri8010041392384452111omplex @ N2 ) @ D ) ) ) ) ).

% double_arith_series
thf(fact_7458_double__arith__series,axiom,
    ! [A: rat,D: rat,N2: nat] :
      ( ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) )
        @ ( groups2906978787729119204at_rat
          @ ^ [I5: nat] : ( plus_plus_rat @ A @ ( times_times_rat @ ( semiri681578069525770553at_rat @ I5 ) @ D ) )
          @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N2 ) ) )
      = ( times_times_rat @ ( plus_plus_rat @ ( semiri681578069525770553at_rat @ N2 ) @ one_one_rat ) @ ( plus_plus_rat @ ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ A ) @ ( times_times_rat @ ( semiri681578069525770553at_rat @ N2 ) @ D ) ) ) ) ).

% double_arith_series
thf(fact_7459_double__arith__series,axiom,
    ! [A: int,D: int,N2: nat] :
      ( ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) )
        @ ( groups3539618377306564664at_int
          @ ^ [I5: nat] : ( plus_plus_int @ A @ ( times_times_int @ ( semiri1314217659103216013at_int @ I5 ) @ D ) )
          @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N2 ) ) )
      = ( times_times_int @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ N2 ) @ one_one_int ) @ ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) @ ( times_times_int @ ( semiri1314217659103216013at_int @ N2 ) @ D ) ) ) ) ).

% double_arith_series
thf(fact_7460_double__arith__series,axiom,
    ! [A: code_integer,D: code_integer,N2: nat] :
      ( ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) )
        @ ( groups7501900531339628137nteger
          @ ^ [I5: nat] : ( plus_p5714425477246183910nteger @ A @ ( times_3573771949741848930nteger @ ( semiri4939895301339042750nteger @ I5 ) @ D ) )
          @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N2 ) ) )
      = ( times_3573771949741848930nteger @ ( plus_p5714425477246183910nteger @ ( semiri4939895301339042750nteger @ N2 ) @ one_one_Code_integer ) @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) @ ( times_3573771949741848930nteger @ ( semiri4939895301339042750nteger @ N2 ) @ D ) ) ) ) ).

% double_arith_series
thf(fact_7461_double__arith__series,axiom,
    ! [A: nat,D: nat,N2: nat] :
      ( ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) )
        @ ( groups3542108847815614940at_nat
          @ ^ [I5: nat] : ( plus_plus_nat @ A @ ( times_times_nat @ ( semiri1316708129612266289at_nat @ I5 ) @ D ) )
          @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N2 ) ) )
      = ( times_times_nat @ ( plus_plus_nat @ ( semiri1316708129612266289at_nat @ N2 ) @ one_one_nat ) @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) @ ( times_times_nat @ ( semiri1316708129612266289at_nat @ N2 ) @ D ) ) ) ) ).

% double_arith_series
thf(fact_7462_double__arith__series,axiom,
    ! [A: real,D: real,N2: nat] :
      ( ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) )
        @ ( groups6591440286371151544t_real
          @ ^ [I5: nat] : ( plus_plus_real @ A @ ( times_times_real @ ( semiri5074537144036343181t_real @ I5 ) @ D ) )
          @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N2 ) ) )
      = ( times_times_real @ ( plus_plus_real @ ( semiri5074537144036343181t_real @ N2 ) @ one_one_real ) @ ( plus_plus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ A ) @ ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ D ) ) ) ) ).

% double_arith_series
thf(fact_7463_double__gauss__sum,axiom,
    ! [N2: nat] :
      ( ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( groups2073611262835488442omplex @ semiri8010041392384452111omplex @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N2 ) ) )
      = ( times_times_complex @ ( semiri8010041392384452111omplex @ N2 ) @ ( plus_plus_complex @ ( semiri8010041392384452111omplex @ N2 ) @ one_one_complex ) ) ) ).

% double_gauss_sum
thf(fact_7464_double__gauss__sum,axiom,
    ! [N2: nat] :
      ( ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ ( groups2906978787729119204at_rat @ semiri681578069525770553at_rat @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N2 ) ) )
      = ( times_times_rat @ ( semiri681578069525770553at_rat @ N2 ) @ ( plus_plus_rat @ ( semiri681578069525770553at_rat @ N2 ) @ one_one_rat ) ) ) ).

% double_gauss_sum
thf(fact_7465_double__gauss__sum,axiom,
    ! [N2: nat] :
      ( ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( groups3539618377306564664at_int @ semiri1314217659103216013at_int @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N2 ) ) )
      = ( times_times_int @ ( semiri1314217659103216013at_int @ N2 ) @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ N2 ) @ one_one_int ) ) ) ).

% double_gauss_sum
thf(fact_7466_double__gauss__sum,axiom,
    ! [N2: nat] :
      ( ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( groups7501900531339628137nteger @ semiri4939895301339042750nteger @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N2 ) ) )
      = ( times_3573771949741848930nteger @ ( semiri4939895301339042750nteger @ N2 ) @ ( plus_p5714425477246183910nteger @ ( semiri4939895301339042750nteger @ N2 ) @ one_one_Code_integer ) ) ) ).

% double_gauss_sum
thf(fact_7467_double__gauss__sum,axiom,
    ! [N2: nat] :
      ( ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( groups3542108847815614940at_nat @ semiri1316708129612266289at_nat @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N2 ) ) )
      = ( times_times_nat @ ( semiri1316708129612266289at_nat @ N2 ) @ ( plus_plus_nat @ ( semiri1316708129612266289at_nat @ N2 ) @ one_one_nat ) ) ) ).

% double_gauss_sum
thf(fact_7468_double__gauss__sum,axiom,
    ! [N2: nat] :
      ( ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( groups6591440286371151544t_real @ semiri5074537144036343181t_real @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N2 ) ) )
      = ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( plus_plus_real @ ( semiri5074537144036343181t_real @ N2 ) @ one_one_real ) ) ) ).

% double_gauss_sum
thf(fact_7469_arctan__add,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ X ) @ one_one_real )
     => ( ( ord_less_real @ ( abs_abs_real @ Y ) @ one_one_real )
       => ( ( plus_plus_real @ ( arctan @ X ) @ ( arctan @ Y ) )
          = ( arctan @ ( divide_divide_real @ ( plus_plus_real @ X @ Y ) @ ( minus_minus_real @ one_one_real @ ( times_times_real @ X @ Y ) ) ) ) ) ) ) ).

% arctan_add
thf(fact_7470_arith__series,axiom,
    ! [A: int,D: int,N2: nat] :
      ( ( groups3539618377306564664at_int
        @ ^ [I5: nat] : ( plus_plus_int @ A @ ( times_times_int @ ( semiri1314217659103216013at_int @ I5 ) @ D ) )
        @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N2 ) )
      = ( divide_divide_int @ ( times_times_int @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ N2 ) @ one_one_int ) @ ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) @ ( times_times_int @ ( semiri1314217659103216013at_int @ N2 ) @ D ) ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).

% arith_series
thf(fact_7471_arith__series,axiom,
    ! [A: code_integer,D: code_integer,N2: nat] :
      ( ( groups7501900531339628137nteger
        @ ^ [I5: nat] : ( plus_p5714425477246183910nteger @ A @ ( times_3573771949741848930nteger @ ( semiri4939895301339042750nteger @ I5 ) @ D ) )
        @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N2 ) )
      = ( divide6298287555418463151nteger @ ( times_3573771949741848930nteger @ ( plus_p5714425477246183910nteger @ ( semiri4939895301339042750nteger @ N2 ) @ one_one_Code_integer ) @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) @ ( times_3573771949741848930nteger @ ( semiri4939895301339042750nteger @ N2 ) @ D ) ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ).

% arith_series
thf(fact_7472_arith__series,axiom,
    ! [A: nat,D: nat,N2: nat] :
      ( ( groups3542108847815614940at_nat
        @ ^ [I5: nat] : ( plus_plus_nat @ A @ ( times_times_nat @ ( semiri1316708129612266289at_nat @ I5 ) @ D ) )
        @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N2 ) )
      = ( divide_divide_nat @ ( times_times_nat @ ( plus_plus_nat @ ( semiri1316708129612266289at_nat @ N2 ) @ one_one_nat ) @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) @ ( times_times_nat @ ( semiri1316708129612266289at_nat @ N2 ) @ D ) ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% arith_series
thf(fact_7473_gauss__sum,axiom,
    ! [N2: nat] :
      ( ( groups3539618377306564664at_int @ semiri1314217659103216013at_int @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N2 ) )
      = ( divide_divide_int @ ( times_times_int @ ( semiri1314217659103216013at_int @ N2 ) @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ N2 ) @ one_one_int ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).

% gauss_sum
thf(fact_7474_gauss__sum,axiom,
    ! [N2: nat] :
      ( ( groups7501900531339628137nteger @ semiri4939895301339042750nteger @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N2 ) )
      = ( divide6298287555418463151nteger @ ( times_3573771949741848930nteger @ ( semiri4939895301339042750nteger @ N2 ) @ ( plus_p5714425477246183910nteger @ ( semiri4939895301339042750nteger @ N2 ) @ one_one_Code_integer ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ).

% gauss_sum
thf(fact_7475_gauss__sum,axiom,
    ! [N2: nat] :
      ( ( groups3542108847815614940at_nat @ semiri1316708129612266289at_nat @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N2 ) )
      = ( divide_divide_nat @ ( times_times_nat @ ( semiri1316708129612266289at_nat @ N2 ) @ ( plus_plus_nat @ ( semiri1316708129612266289at_nat @ N2 ) @ one_one_nat ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% gauss_sum
thf(fact_7476_double__gauss__sum__from__Suc__0,axiom,
    ! [N2: nat] :
      ( ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( groups2073611262835488442omplex @ semiri8010041392384452111omplex @ ( set_or1269000886237332187st_nat @ ( suc @ zero_zero_nat ) @ N2 ) ) )
      = ( times_times_complex @ ( semiri8010041392384452111omplex @ N2 ) @ ( plus_plus_complex @ ( semiri8010041392384452111omplex @ N2 ) @ one_one_complex ) ) ) ).

% double_gauss_sum_from_Suc_0
thf(fact_7477_double__gauss__sum__from__Suc__0,axiom,
    ! [N2: nat] :
      ( ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ ( groups2906978787729119204at_rat @ semiri681578069525770553at_rat @ ( set_or1269000886237332187st_nat @ ( suc @ zero_zero_nat ) @ N2 ) ) )
      = ( times_times_rat @ ( semiri681578069525770553at_rat @ N2 ) @ ( plus_plus_rat @ ( semiri681578069525770553at_rat @ N2 ) @ one_one_rat ) ) ) ).

% double_gauss_sum_from_Suc_0
thf(fact_7478_double__gauss__sum__from__Suc__0,axiom,
    ! [N2: nat] :
      ( ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( groups3539618377306564664at_int @ semiri1314217659103216013at_int @ ( set_or1269000886237332187st_nat @ ( suc @ zero_zero_nat ) @ N2 ) ) )
      = ( times_times_int @ ( semiri1314217659103216013at_int @ N2 ) @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ N2 ) @ one_one_int ) ) ) ).

% double_gauss_sum_from_Suc_0
thf(fact_7479_double__gauss__sum__from__Suc__0,axiom,
    ! [N2: nat] :
      ( ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( groups7501900531339628137nteger @ semiri4939895301339042750nteger @ ( set_or1269000886237332187st_nat @ ( suc @ zero_zero_nat ) @ N2 ) ) )
      = ( times_3573771949741848930nteger @ ( semiri4939895301339042750nteger @ N2 ) @ ( plus_p5714425477246183910nteger @ ( semiri4939895301339042750nteger @ N2 ) @ one_one_Code_integer ) ) ) ).

% double_gauss_sum_from_Suc_0
thf(fact_7480_double__gauss__sum__from__Suc__0,axiom,
    ! [N2: nat] :
      ( ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( groups3542108847815614940at_nat @ semiri1316708129612266289at_nat @ ( set_or1269000886237332187st_nat @ ( suc @ zero_zero_nat ) @ N2 ) ) )
      = ( times_times_nat @ ( semiri1316708129612266289at_nat @ N2 ) @ ( plus_plus_nat @ ( semiri1316708129612266289at_nat @ N2 ) @ one_one_nat ) ) ) ).

% double_gauss_sum_from_Suc_0
thf(fact_7481_double__gauss__sum__from__Suc__0,axiom,
    ! [N2: nat] :
      ( ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( groups6591440286371151544t_real @ semiri5074537144036343181t_real @ ( set_or1269000886237332187st_nat @ ( suc @ zero_zero_nat ) @ N2 ) ) )
      = ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( plus_plus_real @ ( semiri5074537144036343181t_real @ N2 ) @ one_one_real ) ) ) ).

% double_gauss_sum_from_Suc_0
thf(fact_7482_sum__gp__offset,axiom,
    ! [X: complex,M: nat,N2: nat] :
      ( ( ( X = one_one_complex )
       => ( ( groups2073611262835488442omplex @ ( power_power_complex @ X ) @ ( set_or1269000886237332187st_nat @ M @ ( plus_plus_nat @ M @ N2 ) ) )
          = ( plus_plus_complex @ ( semiri8010041392384452111omplex @ N2 ) @ one_one_complex ) ) )
      & ( ( X != one_one_complex )
       => ( ( groups2073611262835488442omplex @ ( power_power_complex @ X ) @ ( set_or1269000886237332187st_nat @ M @ ( plus_plus_nat @ M @ N2 ) ) )
          = ( divide1717551699836669952omplex @ ( times_times_complex @ ( power_power_complex @ X @ M ) @ ( minus_minus_complex @ one_one_complex @ ( power_power_complex @ X @ ( suc @ N2 ) ) ) ) @ ( minus_minus_complex @ one_one_complex @ X ) ) ) ) ) ).

% sum_gp_offset
thf(fact_7483_sum__gp__offset,axiom,
    ! [X: rat,M: nat,N2: nat] :
      ( ( ( X = one_one_rat )
       => ( ( groups2906978787729119204at_rat @ ( power_power_rat @ X ) @ ( set_or1269000886237332187st_nat @ M @ ( plus_plus_nat @ M @ N2 ) ) )
          = ( plus_plus_rat @ ( semiri681578069525770553at_rat @ N2 ) @ one_one_rat ) ) )
      & ( ( X != one_one_rat )
       => ( ( groups2906978787729119204at_rat @ ( power_power_rat @ X ) @ ( set_or1269000886237332187st_nat @ M @ ( plus_plus_nat @ M @ N2 ) ) )
          = ( divide_divide_rat @ ( times_times_rat @ ( power_power_rat @ X @ M ) @ ( minus_minus_rat @ one_one_rat @ ( power_power_rat @ X @ ( suc @ N2 ) ) ) ) @ ( minus_minus_rat @ one_one_rat @ X ) ) ) ) ) ).

% sum_gp_offset
thf(fact_7484_sum__gp__offset,axiom,
    ! [X: real,M: nat,N2: nat] :
      ( ( ( X = one_one_real )
       => ( ( groups6591440286371151544t_real @ ( power_power_real @ X ) @ ( set_or1269000886237332187st_nat @ M @ ( plus_plus_nat @ M @ N2 ) ) )
          = ( plus_plus_real @ ( semiri5074537144036343181t_real @ N2 ) @ one_one_real ) ) )
      & ( ( X != one_one_real )
       => ( ( groups6591440286371151544t_real @ ( power_power_real @ X ) @ ( set_or1269000886237332187st_nat @ M @ ( plus_plus_nat @ M @ N2 ) ) )
          = ( divide_divide_real @ ( times_times_real @ ( power_power_real @ X @ M ) @ ( minus_minus_real @ one_one_real @ ( power_power_real @ X @ ( suc @ N2 ) ) ) ) @ ( minus_minus_real @ one_one_real @ X ) ) ) ) ) ).

% sum_gp_offset
thf(fact_7485_Bernoulli__inequality__even,axiom,
    ! [N2: nat,X: real] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ord_less_eq_real @ ( plus_plus_real @ one_one_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ X ) ) @ ( power_power_real @ ( plus_plus_real @ one_one_real @ X ) @ N2 ) ) ) ).

% Bernoulli_inequality_even
thf(fact_7486_gauss__sum__from__Suc__0,axiom,
    ! [N2: nat] :
      ( ( groups3539618377306564664at_int @ semiri1314217659103216013at_int @ ( set_or1269000886237332187st_nat @ ( suc @ zero_zero_nat ) @ N2 ) )
      = ( divide_divide_int @ ( times_times_int @ ( semiri1314217659103216013at_int @ N2 ) @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ N2 ) @ one_one_int ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).

% gauss_sum_from_Suc_0
thf(fact_7487_gauss__sum__from__Suc__0,axiom,
    ! [N2: nat] :
      ( ( groups7501900531339628137nteger @ semiri4939895301339042750nteger @ ( set_or1269000886237332187st_nat @ ( suc @ zero_zero_nat ) @ N2 ) )
      = ( divide6298287555418463151nteger @ ( times_3573771949741848930nteger @ ( semiri4939895301339042750nteger @ N2 ) @ ( plus_p5714425477246183910nteger @ ( semiri4939895301339042750nteger @ N2 ) @ one_one_Code_integer ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ).

% gauss_sum_from_Suc_0
thf(fact_7488_gauss__sum__from__Suc__0,axiom,
    ! [N2: nat] :
      ( ( groups3542108847815614940at_nat @ semiri1316708129612266289at_nat @ ( set_or1269000886237332187st_nat @ ( suc @ zero_zero_nat ) @ N2 ) )
      = ( divide_divide_nat @ ( times_times_nat @ ( semiri1316708129612266289at_nat @ N2 ) @ ( plus_plus_nat @ ( semiri1316708129612266289at_nat @ N2 ) @ one_one_nat ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% gauss_sum_from_Suc_0
thf(fact_7489_of__nat__code__if,axiom,
    ( semiri8010041392384452111omplex
    = ( ^ [N3: nat] :
          ( if_complex @ ( N3 = zero_zero_nat ) @ zero_zero_complex
          @ ( produc1917071388513777916omplex
            @ ^ [M6: nat,Q4: nat] : ( if_complex @ ( Q4 = zero_zero_nat ) @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( semiri8010041392384452111omplex @ M6 ) ) @ ( plus_plus_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( semiri8010041392384452111omplex @ M6 ) ) @ one_one_complex ) )
            @ ( divmod_nat @ N3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% of_nat_code_if
thf(fact_7490_of__nat__code__if,axiom,
    ( semiri681578069525770553at_rat
    = ( ^ [N3: nat] :
          ( if_rat @ ( N3 = zero_zero_nat ) @ zero_zero_rat
          @ ( produc6207742614233964070at_rat
            @ ^ [M6: nat,Q4: nat] : ( if_rat @ ( Q4 = zero_zero_nat ) @ ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ ( semiri681578069525770553at_rat @ M6 ) ) @ ( plus_plus_rat @ ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ ( semiri681578069525770553at_rat @ M6 ) ) @ one_one_rat ) )
            @ ( divmod_nat @ N3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% of_nat_code_if
thf(fact_7491_of__nat__code__if,axiom,
    ( semiri1314217659103216013at_int
    = ( ^ [N3: nat] :
          ( if_int @ ( N3 = zero_zero_nat ) @ zero_zero_int
          @ ( produc6840382203811409530at_int
            @ ^ [M6: nat,Q4: nat] : ( if_int @ ( Q4 = zero_zero_nat ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( semiri1314217659103216013at_int @ M6 ) ) @ ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( semiri1314217659103216013at_int @ M6 ) ) @ one_one_int ) )
            @ ( divmod_nat @ N3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% of_nat_code_if
thf(fact_7492_of__nat__code__if,axiom,
    ( semiri5074537144036343181t_real
    = ( ^ [N3: nat] :
          ( if_real @ ( N3 = zero_zero_nat ) @ zero_zero_real
          @ ( produc1703576794950452218t_real
            @ ^ [M6: nat,Q4: nat] : ( if_real @ ( Q4 = zero_zero_nat ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ M6 ) ) @ ( plus_plus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ M6 ) ) @ one_one_real ) )
            @ ( divmod_nat @ N3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% of_nat_code_if
thf(fact_7493_of__nat__code__if,axiom,
    ( semiri1316708129612266289at_nat
    = ( ^ [N3: nat] :
          ( if_nat @ ( N3 = zero_zero_nat ) @ zero_zero_nat
          @ ( produc6842872674320459806at_nat
            @ ^ [M6: nat,Q4: nat] : ( if_nat @ ( Q4 = zero_zero_nat ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( semiri1316708129612266289at_nat @ M6 ) ) @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( semiri1316708129612266289at_nat @ M6 ) ) @ one_one_nat ) )
            @ ( divmod_nat @ N3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% of_nat_code_if
thf(fact_7494_of__nat__code__if,axiom,
    ( semiri4939895301339042750nteger
    = ( ^ [N3: nat] :
          ( if_Code_integer @ ( N3 = zero_zero_nat ) @ zero_z3403309356797280102nteger
          @ ( produc1830744345554046123nteger
            @ ^ [M6: nat,Q4: nat] : ( if_Code_integer @ ( Q4 = zero_zero_nat ) @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( semiri4939895301339042750nteger @ M6 ) ) @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( semiri4939895301339042750nteger @ M6 ) ) @ one_one_Code_integer ) )
            @ ( divmod_nat @ N3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% of_nat_code_if
thf(fact_7495_nat__approx__posE,axiom,
    ! [E: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ E )
     => ~ ! [N: nat] :
            ~ ( ord_less_rat @ ( divide_divide_rat @ one_one_rat @ ( semiri681578069525770553at_rat @ ( suc @ N ) ) ) @ E ) ) ).

% nat_approx_posE
thf(fact_7496_nat__approx__posE,axiom,
    ! [E: real] :
      ( ( ord_less_real @ zero_zero_real @ E )
     => ~ ! [N: nat] :
            ~ ( ord_less_real @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ ( suc @ N ) ) ) @ E ) ) ).

% nat_approx_posE
thf(fact_7497_monoseq__arctan__series,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ X ) @ one_one_real )
     => ( topolo6980174941875973593q_real
        @ ^ [N3: nat] : ( times_times_real @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ ( plus_plus_nat @ ( times_times_nat @ N3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) @ ( power_power_real @ X @ ( plus_plus_nat @ ( times_times_nat @ N3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) ) ) ).

% monoseq_arctan_series
thf(fact_7498_lemma__termdiff3,axiom,
    ! [H2: real,Z: real,K5: real,N2: nat] :
      ( ( H2 != zero_zero_real )
     => ( ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ Z ) @ K5 )
       => ( ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( plus_plus_real @ Z @ H2 ) ) @ K5 )
         => ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ ( divide_divide_real @ ( minus_minus_real @ ( power_power_real @ ( plus_plus_real @ Z @ H2 ) @ N2 ) @ ( power_power_real @ Z @ N2 ) ) @ H2 ) @ ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( power_power_real @ Z @ ( minus_minus_nat @ N2 @ ( suc @ zero_zero_nat ) ) ) ) ) ) @ ( times_times_real @ ( times_times_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( semiri5074537144036343181t_real @ ( minus_minus_nat @ N2 @ ( suc @ zero_zero_nat ) ) ) ) @ ( power_power_real @ K5 @ ( minus_minus_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( real_V7735802525324610683m_real @ H2 ) ) ) ) ) ) ).

% lemma_termdiff3
thf(fact_7499_lemma__termdiff3,axiom,
    ! [H2: complex,Z: complex,K5: real,N2: nat] :
      ( ( H2 != zero_zero_complex )
     => ( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ Z ) @ K5 )
       => ( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( plus_plus_complex @ Z @ H2 ) ) @ K5 )
         => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( power_power_complex @ ( plus_plus_complex @ Z @ H2 ) @ N2 ) @ ( power_power_complex @ Z @ N2 ) ) @ H2 ) @ ( times_times_complex @ ( semiri8010041392384452111omplex @ N2 ) @ ( power_power_complex @ Z @ ( minus_minus_nat @ N2 @ ( suc @ zero_zero_nat ) ) ) ) ) ) @ ( times_times_real @ ( times_times_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( semiri5074537144036343181t_real @ ( minus_minus_nat @ N2 @ ( suc @ zero_zero_nat ) ) ) ) @ ( power_power_real @ K5 @ ( minus_minus_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( real_V1022390504157884413omplex @ H2 ) ) ) ) ) ) ).

% lemma_termdiff3
thf(fact_7500_ex__less__of__nat__mult,axiom,
    ! [X: rat,Y: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ X )
     => ? [N: nat] : ( ord_less_rat @ Y @ ( times_times_rat @ ( semiri681578069525770553at_rat @ N ) @ X ) ) ) ).

% ex_less_of_nat_mult
thf(fact_7501_ex__less__of__nat__mult,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ? [N: nat] : ( ord_less_real @ Y @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ X ) ) ) ).

% ex_less_of_nat_mult
thf(fact_7502_ln__series,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ X @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
       => ( ( ln_ln_real @ X )
          = ( suminf_real
            @ ^ [N3: nat] : ( times_times_real @ ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N3 ) @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ ( plus_plus_nat @ N3 @ one_one_nat ) ) ) ) @ ( power_power_real @ ( minus_minus_real @ X @ one_one_real ) @ ( suc @ N3 ) ) ) ) ) ) ) ).

% ln_series
thf(fact_7503_powser__zero,axiom,
    ! [F: nat > complex] :
      ( ( suminf_complex
        @ ^ [N3: nat] : ( times_times_complex @ ( F @ N3 ) @ ( power_power_complex @ zero_zero_complex @ N3 ) ) )
      = ( F @ zero_zero_nat ) ) ).

% powser_zero
thf(fact_7504_powser__zero,axiom,
    ! [F: nat > real] :
      ( ( suminf_real
        @ ^ [N3: nat] : ( times_times_real @ ( F @ N3 ) @ ( power_power_real @ zero_zero_real @ N3 ) ) )
      = ( F @ zero_zero_nat ) ) ).

% powser_zero
thf(fact_7505_complex__mod__minus__le__complex__mod,axiom,
    ! [X: complex] : ( ord_less_eq_real @ ( uminus_uminus_real @ ( real_V1022390504157884413omplex @ X ) ) @ ( real_V1022390504157884413omplex @ X ) ) ).

% complex_mod_minus_le_complex_mod
thf(fact_7506_complex__mod__triangle__ineq2,axiom,
    ! [B: complex,A: complex] : ( ord_less_eq_real @ ( minus_minus_real @ ( real_V1022390504157884413omplex @ ( plus_plus_complex @ B @ A ) ) @ ( real_V1022390504157884413omplex @ B ) ) @ ( real_V1022390504157884413omplex @ A ) ) ).

% complex_mod_triangle_ineq2
thf(fact_7507_monoseq__realpow,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ X @ one_one_real )
       => ( topolo6980174941875973593q_real @ ( power_power_real @ X ) ) ) ) ).

% monoseq_realpow
thf(fact_7508_real__arch__simple,axiom,
    ! [X: real] :
    ? [N: nat] : ( ord_less_eq_real @ X @ ( semiri5074537144036343181t_real @ N ) ) ).

% real_arch_simple
thf(fact_7509_real__arch__simple,axiom,
    ! [X: rat] :
    ? [N: nat] : ( ord_less_eq_rat @ X @ ( semiri681578069525770553at_rat @ N ) ) ).

% real_arch_simple
thf(fact_7510_reals__Archimedean2,axiom,
    ! [X: rat] :
    ? [N: nat] : ( ord_less_rat @ X @ ( semiri681578069525770553at_rat @ N ) ) ).

% reals_Archimedean2
thf(fact_7511_reals__Archimedean2,axiom,
    ! [X: real] :
    ? [N: nat] : ( ord_less_real @ X @ ( semiri5074537144036343181t_real @ N ) ) ).

% reals_Archimedean2
thf(fact_7512_exists__least__lemma,axiom,
    ! [P: nat > $o] :
      ( ~ ( P @ zero_zero_nat )
     => ( ? [X_12: nat] : ( P @ X_12 )
       => ? [N: nat] :
            ( ~ ( P @ N )
            & ( P @ ( suc @ N ) ) ) ) ) ).

% exists_least_lemma
thf(fact_7513_arctan__series,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ X ) @ one_one_real )
     => ( ( arctan @ X )
        = ( suminf_real
          @ ^ [K3: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ K3 ) @ ( times_times_real @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ ( plus_plus_nat @ ( times_times_nat @ K3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) @ ( power_power_real @ X @ ( plus_plus_nat @ ( times_times_nat @ K3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) ) ) ) ) ).

% arctan_series
thf(fact_7514_norm__divide__numeral,axiom,
    ! [A: real,W: num] :
      ( ( real_V7735802525324610683m_real @ ( divide_divide_real @ A @ ( numeral_numeral_real @ W ) ) )
      = ( divide_divide_real @ ( real_V7735802525324610683m_real @ A ) @ ( numeral_numeral_real @ W ) ) ) ).

% norm_divide_numeral
thf(fact_7515_norm__divide__numeral,axiom,
    ! [A: complex,W: num] :
      ( ( real_V1022390504157884413omplex @ ( divide1717551699836669952omplex @ A @ ( numera6690914467698888265omplex @ W ) ) )
      = ( divide_divide_real @ ( real_V1022390504157884413omplex @ A ) @ ( numeral_numeral_real @ W ) ) ) ).

% norm_divide_numeral
thf(fact_7516_norm__mult__numeral1,axiom,
    ! [W: num,A: real] :
      ( ( real_V7735802525324610683m_real @ ( times_times_real @ ( numeral_numeral_real @ W ) @ A ) )
      = ( times_times_real @ ( numeral_numeral_real @ W ) @ ( real_V7735802525324610683m_real @ A ) ) ) ).

% norm_mult_numeral1
thf(fact_7517_norm__mult__numeral1,axiom,
    ! [W: num,A: complex] :
      ( ( real_V1022390504157884413omplex @ ( times_times_complex @ ( numera6690914467698888265omplex @ W ) @ A ) )
      = ( times_times_real @ ( numeral_numeral_real @ W ) @ ( real_V1022390504157884413omplex @ A ) ) ) ).

% norm_mult_numeral1
thf(fact_7518_norm__mult__numeral2,axiom,
    ! [A: real,W: num] :
      ( ( real_V7735802525324610683m_real @ ( times_times_real @ A @ ( numeral_numeral_real @ W ) ) )
      = ( times_times_real @ ( real_V7735802525324610683m_real @ A ) @ ( numeral_numeral_real @ W ) ) ) ).

% norm_mult_numeral2
thf(fact_7519_norm__mult__numeral2,axiom,
    ! [A: complex,W: num] :
      ( ( real_V1022390504157884413omplex @ ( times_times_complex @ A @ ( numera6690914467698888265omplex @ W ) ) )
      = ( times_times_real @ ( real_V1022390504157884413omplex @ A ) @ ( numeral_numeral_real @ W ) ) ) ).

% norm_mult_numeral2
thf(fact_7520_norm__neg__numeral,axiom,
    ! [W: num] :
      ( ( real_V7735802525324610683m_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) )
      = ( numeral_numeral_real @ W ) ) ).

% norm_neg_numeral
thf(fact_7521_norm__neg__numeral,axiom,
    ! [W: num] :
      ( ( real_V1022390504157884413omplex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) )
      = ( numeral_numeral_real @ W ) ) ).

% norm_neg_numeral
thf(fact_7522_norm__le__zero__iff,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ X ) @ zero_zero_real )
      = ( X = zero_zero_real ) ) ).

% norm_le_zero_iff
thf(fact_7523_norm__le__zero__iff,axiom,
    ! [X: complex] :
      ( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ X ) @ zero_zero_real )
      = ( X = zero_zero_complex ) ) ).

% norm_le_zero_iff
thf(fact_7524_suminf__geometric,axiom,
    ! [C: real] :
      ( ( ord_less_real @ ( real_V7735802525324610683m_real @ C ) @ one_one_real )
     => ( ( suminf_real @ ( power_power_real @ C ) )
        = ( divide_divide_real @ one_one_real @ ( minus_minus_real @ one_one_real @ C ) ) ) ) ).

% suminf_geometric
thf(fact_7525_suminf__geometric,axiom,
    ! [C: complex] :
      ( ( ord_less_real @ ( real_V1022390504157884413omplex @ C ) @ one_one_real )
     => ( ( suminf_complex @ ( power_power_complex @ C ) )
        = ( divide1717551699836669952omplex @ one_one_complex @ ( minus_minus_complex @ one_one_complex @ C ) ) ) ) ).

% suminf_geometric
thf(fact_7526_suminf__zero,axiom,
    ( ( suminf_complex
      @ ^ [N3: nat] : zero_zero_complex )
    = zero_zero_complex ) ).

% suminf_zero
thf(fact_7527_suminf__zero,axiom,
    ( ( suminf_real
      @ ^ [N3: nat] : zero_zero_real )
    = zero_zero_real ) ).

% suminf_zero
thf(fact_7528_suminf__zero,axiom,
    ( ( suminf_nat
      @ ^ [N3: nat] : zero_zero_nat )
    = zero_zero_nat ) ).

% suminf_zero
thf(fact_7529_suminf__zero,axiom,
    ( ( suminf_int
      @ ^ [N3: nat] : zero_zero_int )
    = zero_zero_int ) ).

% suminf_zero
thf(fact_7530_norm__one,axiom,
    ( ( real_V7735802525324610683m_real @ one_one_real )
    = one_one_real ) ).

% norm_one
thf(fact_7531_norm__one,axiom,
    ( ( real_V1022390504157884413omplex @ one_one_complex )
    = one_one_real ) ).

% norm_one
thf(fact_7532_norm__numeral,axiom,
    ! [W: num] :
      ( ( real_V7735802525324610683m_real @ ( numeral_numeral_real @ W ) )
      = ( numeral_numeral_real @ W ) ) ).

% norm_numeral
thf(fact_7533_norm__numeral,axiom,
    ! [W: num] :
      ( ( real_V1022390504157884413omplex @ ( numera6690914467698888265omplex @ W ) )
      = ( numeral_numeral_real @ W ) ) ).

% norm_numeral
thf(fact_7534_norm__minus__commute,axiom,
    ! [A: real,B: real] :
      ( ( real_V7735802525324610683m_real @ ( minus_minus_real @ A @ B ) )
      = ( real_V7735802525324610683m_real @ ( minus_minus_real @ B @ A ) ) ) ).

% norm_minus_commute
thf(fact_7535_norm__minus__commute,axiom,
    ! [A: complex,B: complex] :
      ( ( real_V1022390504157884413omplex @ ( minus_minus_complex @ A @ B ) )
      = ( real_V1022390504157884413omplex @ ( minus_minus_complex @ B @ A ) ) ) ).

% norm_minus_commute
thf(fact_7536_norm__ge__zero,axiom,
    ! [X: complex] : ( ord_less_eq_real @ zero_zero_real @ ( real_V1022390504157884413omplex @ X ) ) ).

% norm_ge_zero
thf(fact_7537_norm__mult,axiom,
    ! [X: real,Y: real] :
      ( ( real_V7735802525324610683m_real @ ( times_times_real @ X @ Y ) )
      = ( times_times_real @ ( real_V7735802525324610683m_real @ X ) @ ( real_V7735802525324610683m_real @ Y ) ) ) ).

% norm_mult
thf(fact_7538_norm__mult,axiom,
    ! [X: complex,Y: complex] :
      ( ( real_V1022390504157884413omplex @ ( times_times_complex @ X @ Y ) )
      = ( times_times_real @ ( real_V1022390504157884413omplex @ X ) @ ( real_V1022390504157884413omplex @ Y ) ) ) ).

% norm_mult
thf(fact_7539_norm__divide,axiom,
    ! [A: real,B: real] :
      ( ( real_V7735802525324610683m_real @ ( divide_divide_real @ A @ B ) )
      = ( divide_divide_real @ ( real_V7735802525324610683m_real @ A ) @ ( real_V7735802525324610683m_real @ B ) ) ) ).

% norm_divide
thf(fact_7540_norm__divide,axiom,
    ! [A: complex,B: complex] :
      ( ( real_V1022390504157884413omplex @ ( divide1717551699836669952omplex @ A @ B ) )
      = ( divide_divide_real @ ( real_V1022390504157884413omplex @ A ) @ ( real_V1022390504157884413omplex @ B ) ) ) ).

% norm_divide
thf(fact_7541_sum__norm__le,axiom,
    ! [S3: set_real,F: real > complex,G: real > real] :
      ( ! [X5: real] :
          ( ( member_real @ X5 @ S3 )
         => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( F @ X5 ) ) @ ( G @ X5 ) ) )
     => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( groups5754745047067104278omplex @ F @ S3 ) ) @ ( groups8097168146408367636l_real @ G @ S3 ) ) ) ).

% sum_norm_le
thf(fact_7542_sum__norm__le,axiom,
    ! [S3: set_set_nat,F: set_nat > complex,G: set_nat > real] :
      ( ! [X5: set_nat] :
          ( ( member_set_nat @ X5 @ S3 )
         => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( F @ X5 ) ) @ ( G @ X5 ) ) )
     => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( groups8255218700646806128omplex @ F @ S3 ) ) @ ( groups5107569545109728110t_real @ G @ S3 ) ) ) ).

% sum_norm_le
thf(fact_7543_sum__norm__le,axiom,
    ! [S3: set_int,F: int > complex,G: int > real] :
      ( ! [X5: int] :
          ( ( member_int @ X5 @ S3 )
         => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( F @ X5 ) ) @ ( G @ X5 ) ) )
     => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( groups3049146728041665814omplex @ F @ S3 ) ) @ ( groups8778361861064173332t_real @ G @ S3 ) ) ) ).

% sum_norm_le
thf(fact_7544_sum__norm__le,axiom,
    ! [S3: set_nat,F: nat > complex,G: nat > real] :
      ( ! [X5: nat] :
          ( ( member_nat @ X5 @ S3 )
         => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( F @ X5 ) ) @ ( G @ X5 ) ) )
     => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( groups2073611262835488442omplex @ F @ S3 ) ) @ ( groups6591440286371151544t_real @ G @ S3 ) ) ) ).

% sum_norm_le
thf(fact_7545_sum__norm__le,axiom,
    ! [S3: set_complex,F: complex > complex,G: complex > real] :
      ( ! [X5: complex] :
          ( ( member_complex @ X5 @ S3 )
         => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( F @ X5 ) ) @ ( G @ X5 ) ) )
     => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( groups7754918857620584856omplex @ F @ S3 ) ) @ ( groups5808333547571424918x_real @ G @ S3 ) ) ) ).

% sum_norm_le
thf(fact_7546_sum__norm__le,axiom,
    ! [S3: set_nat,F: nat > real,G: nat > real] :
      ( ! [X5: nat] :
          ( ( member_nat @ X5 @ S3 )
         => ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( F @ X5 ) ) @ ( G @ X5 ) ) )
     => ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( groups6591440286371151544t_real @ F @ S3 ) ) @ ( groups6591440286371151544t_real @ G @ S3 ) ) ) ).

% sum_norm_le
thf(fact_7547_norm__power,axiom,
    ! [X: real,N2: nat] :
      ( ( real_V7735802525324610683m_real @ ( power_power_real @ X @ N2 ) )
      = ( power_power_real @ ( real_V7735802525324610683m_real @ X ) @ N2 ) ) ).

% norm_power
thf(fact_7548_norm__power,axiom,
    ! [X: complex,N2: nat] :
      ( ( real_V1022390504157884413omplex @ ( power_power_complex @ X @ N2 ) )
      = ( power_power_real @ ( real_V1022390504157884413omplex @ X ) @ N2 ) ) ).

% norm_power
thf(fact_7549_norm__sum,axiom,
    ! [F: nat > complex,A2: set_nat] :
      ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( groups2073611262835488442omplex @ F @ A2 ) )
      @ ( groups6591440286371151544t_real
        @ ^ [I5: nat] : ( real_V1022390504157884413omplex @ ( F @ I5 ) )
        @ A2 ) ) ).

% norm_sum
thf(fact_7550_norm__sum,axiom,
    ! [F: complex > complex,A2: set_complex] :
      ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( groups7754918857620584856omplex @ F @ A2 ) )
      @ ( groups5808333547571424918x_real
        @ ^ [I5: complex] : ( real_V1022390504157884413omplex @ ( F @ I5 ) )
        @ A2 ) ) ).

% norm_sum
thf(fact_7551_norm__sum,axiom,
    ! [F: nat > real,A2: set_nat] :
      ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( groups6591440286371151544t_real @ F @ A2 ) )
      @ ( groups6591440286371151544t_real
        @ ^ [I5: nat] : ( real_V7735802525324610683m_real @ ( F @ I5 ) )
        @ A2 ) ) ).

% norm_sum
thf(fact_7552_norm__uminus__minus,axiom,
    ! [X: real,Y: real] :
      ( ( real_V7735802525324610683m_real @ ( minus_minus_real @ ( uminus_uminus_real @ X ) @ Y ) )
      = ( real_V7735802525324610683m_real @ ( plus_plus_real @ X @ Y ) ) ) ).

% norm_uminus_minus
thf(fact_7553_norm__uminus__minus,axiom,
    ! [X: complex,Y: complex] :
      ( ( real_V1022390504157884413omplex @ ( minus_minus_complex @ ( uminus1482373934393186551omplex @ X ) @ Y ) )
      = ( real_V1022390504157884413omplex @ ( plus_plus_complex @ X @ Y ) ) ) ).

% norm_uminus_minus
thf(fact_7554_nonzero__norm__divide,axiom,
    ! [B: real,A: real] :
      ( ( B != zero_zero_real )
     => ( ( real_V7735802525324610683m_real @ ( divide_divide_real @ A @ B ) )
        = ( divide_divide_real @ ( real_V7735802525324610683m_real @ A ) @ ( real_V7735802525324610683m_real @ B ) ) ) ) ).

% nonzero_norm_divide
thf(fact_7555_nonzero__norm__divide,axiom,
    ! [B: complex,A: complex] :
      ( ( B != zero_zero_complex )
     => ( ( real_V1022390504157884413omplex @ ( divide1717551699836669952omplex @ A @ B ) )
        = ( divide_divide_real @ ( real_V1022390504157884413omplex @ A ) @ ( real_V1022390504157884413omplex @ B ) ) ) ) ).

% nonzero_norm_divide
thf(fact_7556_power__eq__imp__eq__norm,axiom,
    ! [W: real,N2: nat,Z: real] :
      ( ( ( power_power_real @ W @ N2 )
        = ( power_power_real @ Z @ N2 ) )
     => ( ( ord_less_nat @ zero_zero_nat @ N2 )
       => ( ( real_V7735802525324610683m_real @ W )
          = ( real_V7735802525324610683m_real @ Z ) ) ) ) ).

% power_eq_imp_eq_norm
thf(fact_7557_power__eq__imp__eq__norm,axiom,
    ! [W: complex,N2: nat,Z: complex] :
      ( ( ( power_power_complex @ W @ N2 )
        = ( power_power_complex @ Z @ N2 ) )
     => ( ( ord_less_nat @ zero_zero_nat @ N2 )
       => ( ( real_V1022390504157884413omplex @ W )
          = ( real_V1022390504157884413omplex @ Z ) ) ) ) ).

% power_eq_imp_eq_norm
thf(fact_7558_norm__mult__less,axiom,
    ! [X: real,R2: real,Y: real,S2: real] :
      ( ( ord_less_real @ ( real_V7735802525324610683m_real @ X ) @ R2 )
     => ( ( ord_less_real @ ( real_V7735802525324610683m_real @ Y ) @ S2 )
       => ( ord_less_real @ ( real_V7735802525324610683m_real @ ( times_times_real @ X @ Y ) ) @ ( times_times_real @ R2 @ S2 ) ) ) ) ).

% norm_mult_less
thf(fact_7559_norm__mult__less,axiom,
    ! [X: complex,R2: real,Y: complex,S2: real] :
      ( ( ord_less_real @ ( real_V1022390504157884413omplex @ X ) @ R2 )
     => ( ( ord_less_real @ ( real_V1022390504157884413omplex @ Y ) @ S2 )
       => ( ord_less_real @ ( real_V1022390504157884413omplex @ ( times_times_complex @ X @ Y ) ) @ ( times_times_real @ R2 @ S2 ) ) ) ) ).

% norm_mult_less
thf(fact_7560_norm__mult__ineq,axiom,
    ! [X: real,Y: real] : ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( times_times_real @ X @ Y ) ) @ ( times_times_real @ ( real_V7735802525324610683m_real @ X ) @ ( real_V7735802525324610683m_real @ Y ) ) ) ).

% norm_mult_ineq
thf(fact_7561_norm__mult__ineq,axiom,
    ! [X: complex,Y: complex] : ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( times_times_complex @ X @ Y ) ) @ ( times_times_real @ ( real_V1022390504157884413omplex @ X ) @ ( real_V1022390504157884413omplex @ Y ) ) ) ).

% norm_mult_ineq
thf(fact_7562_norm__triangle__lt,axiom,
    ! [X: real,Y: real,E: real] :
      ( ( ord_less_real @ ( plus_plus_real @ ( real_V7735802525324610683m_real @ X ) @ ( real_V7735802525324610683m_real @ Y ) ) @ E )
     => ( ord_less_real @ ( real_V7735802525324610683m_real @ ( plus_plus_real @ X @ Y ) ) @ E ) ) ).

% norm_triangle_lt
thf(fact_7563_norm__triangle__lt,axiom,
    ! [X: complex,Y: complex,E: real] :
      ( ( ord_less_real @ ( plus_plus_real @ ( real_V1022390504157884413omplex @ X ) @ ( real_V1022390504157884413omplex @ Y ) ) @ E )
     => ( ord_less_real @ ( real_V1022390504157884413omplex @ ( plus_plus_complex @ X @ Y ) ) @ E ) ) ).

% norm_triangle_lt
thf(fact_7564_norm__add__less,axiom,
    ! [X: real,R2: real,Y: real,S2: real] :
      ( ( ord_less_real @ ( real_V7735802525324610683m_real @ X ) @ R2 )
     => ( ( ord_less_real @ ( real_V7735802525324610683m_real @ Y ) @ S2 )
       => ( ord_less_real @ ( real_V7735802525324610683m_real @ ( plus_plus_real @ X @ Y ) ) @ ( plus_plus_real @ R2 @ S2 ) ) ) ) ).

% norm_add_less
thf(fact_7565_norm__add__less,axiom,
    ! [X: complex,R2: real,Y: complex,S2: real] :
      ( ( ord_less_real @ ( real_V1022390504157884413omplex @ X ) @ R2 )
     => ( ( ord_less_real @ ( real_V1022390504157884413omplex @ Y ) @ S2 )
       => ( ord_less_real @ ( real_V1022390504157884413omplex @ ( plus_plus_complex @ X @ Y ) ) @ ( plus_plus_real @ R2 @ S2 ) ) ) ) ).

% norm_add_less
thf(fact_7566_norm__power__ineq,axiom,
    ! [X: real,N2: nat] : ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( power_power_real @ X @ N2 ) ) @ ( power_power_real @ ( real_V7735802525324610683m_real @ X ) @ N2 ) ) ).

% norm_power_ineq
thf(fact_7567_norm__power__ineq,axiom,
    ! [X: complex,N2: nat] : ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( power_power_complex @ X @ N2 ) ) @ ( power_power_real @ ( real_V1022390504157884413omplex @ X ) @ N2 ) ) ).

% norm_power_ineq
thf(fact_7568_norm__triangle__mono,axiom,
    ! [A: real,R2: real,B: real,S2: real] :
      ( ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ A ) @ R2 )
     => ( ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ B ) @ S2 )
       => ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( plus_plus_real @ A @ B ) ) @ ( plus_plus_real @ R2 @ S2 ) ) ) ) ).

% norm_triangle_mono
thf(fact_7569_norm__triangle__mono,axiom,
    ! [A: complex,R2: real,B: complex,S2: real] :
      ( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ A ) @ R2 )
     => ( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ B ) @ S2 )
       => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( plus_plus_complex @ A @ B ) ) @ ( plus_plus_real @ R2 @ S2 ) ) ) ) ).

% norm_triangle_mono
thf(fact_7570_norm__triangle__ineq,axiom,
    ! [X: real,Y: real] : ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( plus_plus_real @ X @ Y ) ) @ ( plus_plus_real @ ( real_V7735802525324610683m_real @ X ) @ ( real_V7735802525324610683m_real @ Y ) ) ) ).

% norm_triangle_ineq
thf(fact_7571_norm__triangle__ineq,axiom,
    ! [X: complex,Y: complex] : ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( plus_plus_complex @ X @ Y ) ) @ ( plus_plus_real @ ( real_V1022390504157884413omplex @ X ) @ ( real_V1022390504157884413omplex @ Y ) ) ) ).

% norm_triangle_ineq
thf(fact_7572_norm__triangle__le,axiom,
    ! [X: real,Y: real,E: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ ( real_V7735802525324610683m_real @ X ) @ ( real_V7735802525324610683m_real @ Y ) ) @ E )
     => ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( plus_plus_real @ X @ Y ) ) @ E ) ) ).

% norm_triangle_le
thf(fact_7573_norm__triangle__le,axiom,
    ! [X: complex,Y: complex,E: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ ( real_V1022390504157884413omplex @ X ) @ ( real_V1022390504157884413omplex @ Y ) ) @ E )
     => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( plus_plus_complex @ X @ Y ) ) @ E ) ) ).

% norm_triangle_le
thf(fact_7574_norm__add__leD,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( plus_plus_real @ A @ B ) ) @ C )
     => ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ B ) @ ( plus_plus_real @ ( real_V7735802525324610683m_real @ A ) @ C ) ) ) ).

% norm_add_leD
thf(fact_7575_norm__add__leD,axiom,
    ! [A: complex,B: complex,C: real] :
      ( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( plus_plus_complex @ A @ B ) ) @ C )
     => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ B ) @ ( plus_plus_real @ ( real_V1022390504157884413omplex @ A ) @ C ) ) ) ).

% norm_add_leD
thf(fact_7576_norm__diff__triangle__less,axiom,
    ! [X: real,Y: real,E1: real,Z: real,E22: real] :
      ( ( ord_less_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ X @ Y ) ) @ E1 )
     => ( ( ord_less_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ Y @ Z ) ) @ E22 )
       => ( ord_less_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ X @ Z ) ) @ ( plus_plus_real @ E1 @ E22 ) ) ) ) ).

% norm_diff_triangle_less
thf(fact_7577_norm__diff__triangle__less,axiom,
    ! [X: complex,Y: complex,E1: real,Z: complex,E22: real] :
      ( ( ord_less_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ X @ Y ) ) @ E1 )
     => ( ( ord_less_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ Y @ Z ) ) @ E22 )
       => ( ord_less_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ X @ Z ) ) @ ( plus_plus_real @ E1 @ E22 ) ) ) ) ).

% norm_diff_triangle_less
thf(fact_7578_norm__triangle__sub,axiom,
    ! [X: real,Y: real] : ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ X ) @ ( plus_plus_real @ ( real_V7735802525324610683m_real @ Y ) @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ X @ Y ) ) ) ) ).

% norm_triangle_sub
thf(fact_7579_norm__triangle__sub,axiom,
    ! [X: complex,Y: complex] : ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ X ) @ ( plus_plus_real @ ( real_V1022390504157884413omplex @ Y ) @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ X @ Y ) ) ) ) ).

% norm_triangle_sub
thf(fact_7580_norm__triangle__ineq4,axiom,
    ! [A: real,B: real] : ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ A @ B ) ) @ ( plus_plus_real @ ( real_V7735802525324610683m_real @ A ) @ ( real_V7735802525324610683m_real @ B ) ) ) ).

% norm_triangle_ineq4
thf(fact_7581_norm__triangle__ineq4,axiom,
    ! [A: complex,B: complex] : ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ A @ B ) ) @ ( plus_plus_real @ ( real_V1022390504157884413omplex @ A ) @ ( real_V1022390504157884413omplex @ B ) ) ) ).

% norm_triangle_ineq4
thf(fact_7582_norm__diff__triangle__le,axiom,
    ! [X: real,Y: real,E1: real,Z: real,E22: real] :
      ( ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ X @ Y ) ) @ E1 )
     => ( ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ Y @ Z ) ) @ E22 )
       => ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ X @ Z ) ) @ ( plus_plus_real @ E1 @ E22 ) ) ) ) ).

% norm_diff_triangle_le
thf(fact_7583_norm__diff__triangle__le,axiom,
    ! [X: complex,Y: complex,E1: real,Z: complex,E22: real] :
      ( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ X @ Y ) ) @ E1 )
     => ( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ Y @ Z ) ) @ E22 )
       => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ X @ Z ) ) @ ( plus_plus_real @ E1 @ E22 ) ) ) ) ).

% norm_diff_triangle_le
thf(fact_7584_norm__triangle__le__diff,axiom,
    ! [X: real,Y: real,E: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ ( real_V7735802525324610683m_real @ X ) @ ( real_V7735802525324610683m_real @ Y ) ) @ E )
     => ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ X @ Y ) ) @ E ) ) ).

% norm_triangle_le_diff
thf(fact_7585_norm__triangle__le__diff,axiom,
    ! [X: complex,Y: complex,E: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ ( real_V1022390504157884413omplex @ X ) @ ( real_V1022390504157884413omplex @ Y ) ) @ E )
     => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ X @ Y ) ) @ E ) ) ).

% norm_triangle_le_diff
thf(fact_7586_norm__diff__ineq,axiom,
    ! [A: real,B: real] : ( ord_less_eq_real @ ( minus_minus_real @ ( real_V7735802525324610683m_real @ A ) @ ( real_V7735802525324610683m_real @ B ) ) @ ( real_V7735802525324610683m_real @ ( plus_plus_real @ A @ B ) ) ) ).

% norm_diff_ineq
thf(fact_7587_norm__diff__ineq,axiom,
    ! [A: complex,B: complex] : ( ord_less_eq_real @ ( minus_minus_real @ ( real_V1022390504157884413omplex @ A ) @ ( real_V1022390504157884413omplex @ B ) ) @ ( real_V1022390504157884413omplex @ ( plus_plus_complex @ A @ B ) ) ) ).

% norm_diff_ineq
thf(fact_7588_norm__triangle__ineq2,axiom,
    ! [A: real,B: real] : ( ord_less_eq_real @ ( minus_minus_real @ ( real_V7735802525324610683m_real @ A ) @ ( real_V7735802525324610683m_real @ B ) ) @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ A @ B ) ) ) ).

% norm_triangle_ineq2
thf(fact_7589_norm__triangle__ineq2,axiom,
    ! [A: complex,B: complex] : ( ord_less_eq_real @ ( minus_minus_real @ ( real_V1022390504157884413omplex @ A ) @ ( real_V1022390504157884413omplex @ B ) ) @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ A @ B ) ) ) ).

% norm_triangle_ineq2
thf(fact_7590_suminf__finite,axiom,
    ! [N4: set_nat,F: nat > complex] :
      ( ( finite_finite_nat @ N4 )
     => ( ! [N: nat] :
            ( ~ ( member_nat @ N @ N4 )
           => ( ( F @ N )
              = zero_zero_complex ) )
       => ( ( suminf_complex @ F )
          = ( groups2073611262835488442omplex @ F @ N4 ) ) ) ) ).

% suminf_finite
thf(fact_7591_suminf__finite,axiom,
    ! [N4: set_nat,F: nat > int] :
      ( ( finite_finite_nat @ N4 )
     => ( ! [N: nat] :
            ( ~ ( member_nat @ N @ N4 )
           => ( ( F @ N )
              = zero_zero_int ) )
       => ( ( suminf_int @ F )
          = ( groups3539618377306564664at_int @ F @ N4 ) ) ) ) ).

% suminf_finite
thf(fact_7592_suminf__finite,axiom,
    ! [N4: set_nat,F: nat > nat] :
      ( ( finite_finite_nat @ N4 )
     => ( ! [N: nat] :
            ( ~ ( member_nat @ N @ N4 )
           => ( ( F @ N )
              = zero_zero_nat ) )
       => ( ( suminf_nat @ F )
          = ( groups3542108847815614940at_nat @ F @ N4 ) ) ) ) ).

% suminf_finite
thf(fact_7593_suminf__finite,axiom,
    ! [N4: set_nat,F: nat > real] :
      ( ( finite_finite_nat @ N4 )
     => ( ! [N: nat] :
            ( ~ ( member_nat @ N @ N4 )
           => ( ( F @ N )
              = zero_zero_real ) )
       => ( ( suminf_real @ F )
          = ( groups6591440286371151544t_real @ F @ N4 ) ) ) ) ).

% suminf_finite
thf(fact_7594_power__eq__1__iff,axiom,
    ! [W: real,N2: nat] :
      ( ( ( power_power_real @ W @ N2 )
        = one_one_real )
     => ( ( ( real_V7735802525324610683m_real @ W )
          = one_one_real )
        | ( N2 = zero_zero_nat ) ) ) ).

% power_eq_1_iff
thf(fact_7595_power__eq__1__iff,axiom,
    ! [W: complex,N2: nat] :
      ( ( ( power_power_complex @ W @ N2 )
        = one_one_complex )
     => ( ( ( real_V1022390504157884413omplex @ W )
          = one_one_real )
        | ( N2 = zero_zero_nat ) ) ) ).

% power_eq_1_iff
thf(fact_7596_norm__diff__triangle__ineq,axiom,
    ! [A: real,B: real,C: real,D: real] : ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ ( plus_plus_real @ A @ B ) @ ( plus_plus_real @ C @ D ) ) ) @ ( plus_plus_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ A @ C ) ) @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ B @ D ) ) ) ) ).

% norm_diff_triangle_ineq
thf(fact_7597_norm__diff__triangle__ineq,axiom,
    ! [A: complex,B: complex,C: complex,D: complex] : ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ ( plus_plus_complex @ A @ B ) @ ( plus_plus_complex @ C @ D ) ) ) @ ( plus_plus_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ A @ C ) ) @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ B @ D ) ) ) ) ).

% norm_diff_triangle_ineq
thf(fact_7598_norm__triangle__ineq3,axiom,
    ! [A: real,B: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( real_V7735802525324610683m_real @ A ) @ ( real_V7735802525324610683m_real @ B ) ) ) @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ A @ B ) ) ) ).

% norm_triangle_ineq3
thf(fact_7599_norm__triangle__ineq3,axiom,
    ! [A: complex,B: complex] : ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( real_V1022390504157884413omplex @ A ) @ ( real_V1022390504157884413omplex @ B ) ) ) @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ A @ B ) ) ) ).

% norm_triangle_ineq3
thf(fact_7600_square__norm__one,axiom,
    ! [X: real] :
      ( ( ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = one_one_real )
     => ( ( real_V7735802525324610683m_real @ X )
        = one_one_real ) ) ).

% square_norm_one
thf(fact_7601_square__norm__one,axiom,
    ! [X: complex] :
      ( ( ( power_power_complex @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = one_one_complex )
     => ( ( real_V1022390504157884413omplex @ X )
        = one_one_real ) ) ).

% square_norm_one
thf(fact_7602_norm__power__diff,axiom,
    ! [Z: real,W: real,M: nat] :
      ( ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ Z ) @ one_one_real )
     => ( ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ W ) @ one_one_real )
       => ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ ( power_power_real @ Z @ M ) @ ( power_power_real @ W @ M ) ) ) @ ( times_times_real @ ( semiri5074537144036343181t_real @ M ) @ ( real_V7735802525324610683m_real @ ( minus_minus_real @ Z @ W ) ) ) ) ) ) ).

% norm_power_diff
thf(fact_7603_norm__power__diff,axiom,
    ! [Z: complex,W: complex,M: nat] :
      ( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ Z ) @ one_one_real )
     => ( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ W ) @ one_one_real )
       => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ ( power_power_complex @ Z @ M ) @ ( power_power_complex @ W @ M ) ) ) @ ( times_times_real @ ( semiri5074537144036343181t_real @ M ) @ ( real_V1022390504157884413omplex @ ( minus_minus_complex @ Z @ W ) ) ) ) ) ) ).

% norm_power_diff
thf(fact_7604_pi__series,axiom,
    ( ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) )
    = ( suminf_real
      @ ^ [K3: nat] : ( divide_divide_real @ ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ K3 ) @ one_one_real ) @ ( semiri5074537144036343181t_real @ ( plus_plus_nat @ ( times_times_nat @ K3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) ) ) ).

% pi_series
thf(fact_7605_lemma__termdiff2,axiom,
    ! [H2: complex,Z: complex,N2: nat] :
      ( ( H2 != zero_zero_complex )
     => ( ( minus_minus_complex @ ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( power_power_complex @ ( plus_plus_complex @ Z @ H2 ) @ N2 ) @ ( power_power_complex @ Z @ N2 ) ) @ H2 ) @ ( times_times_complex @ ( semiri8010041392384452111omplex @ N2 ) @ ( power_power_complex @ Z @ ( minus_minus_nat @ N2 @ ( suc @ zero_zero_nat ) ) ) ) )
        = ( times_times_complex @ H2
          @ ( groups2073611262835488442omplex
            @ ^ [P5: nat] :
                ( groups2073611262835488442omplex
                @ ^ [Q4: nat] : ( times_times_complex @ ( power_power_complex @ ( plus_plus_complex @ Z @ H2 ) @ Q4 ) @ ( power_power_complex @ Z @ ( minus_minus_nat @ ( minus_minus_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ Q4 ) ) )
                @ ( set_ord_lessThan_nat @ ( minus_minus_nat @ ( minus_minus_nat @ N2 @ ( suc @ zero_zero_nat ) ) @ P5 ) ) )
            @ ( set_ord_lessThan_nat @ ( minus_minus_nat @ N2 @ ( suc @ zero_zero_nat ) ) ) ) ) ) ) ).

% lemma_termdiff2
thf(fact_7606_lemma__termdiff2,axiom,
    ! [H2: rat,Z: rat,N2: nat] :
      ( ( H2 != zero_zero_rat )
     => ( ( minus_minus_rat @ ( divide_divide_rat @ ( minus_minus_rat @ ( power_power_rat @ ( plus_plus_rat @ Z @ H2 ) @ N2 ) @ ( power_power_rat @ Z @ N2 ) ) @ H2 ) @ ( times_times_rat @ ( semiri681578069525770553at_rat @ N2 ) @ ( power_power_rat @ Z @ ( minus_minus_nat @ N2 @ ( suc @ zero_zero_nat ) ) ) ) )
        = ( times_times_rat @ H2
          @ ( groups2906978787729119204at_rat
            @ ^ [P5: nat] :
                ( groups2906978787729119204at_rat
                @ ^ [Q4: nat] : ( times_times_rat @ ( power_power_rat @ ( plus_plus_rat @ Z @ H2 ) @ Q4 ) @ ( power_power_rat @ Z @ ( minus_minus_nat @ ( minus_minus_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ Q4 ) ) )
                @ ( set_ord_lessThan_nat @ ( minus_minus_nat @ ( minus_minus_nat @ N2 @ ( suc @ zero_zero_nat ) ) @ P5 ) ) )
            @ ( set_ord_lessThan_nat @ ( minus_minus_nat @ N2 @ ( suc @ zero_zero_nat ) ) ) ) ) ) ) ).

% lemma_termdiff2
thf(fact_7607_lemma__termdiff2,axiom,
    ! [H2: real,Z: real,N2: nat] :
      ( ( H2 != zero_zero_real )
     => ( ( minus_minus_real @ ( divide_divide_real @ ( minus_minus_real @ ( power_power_real @ ( plus_plus_real @ Z @ H2 ) @ N2 ) @ ( power_power_real @ Z @ N2 ) ) @ H2 ) @ ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( power_power_real @ Z @ ( minus_minus_nat @ N2 @ ( suc @ zero_zero_nat ) ) ) ) )
        = ( times_times_real @ H2
          @ ( groups6591440286371151544t_real
            @ ^ [P5: nat] :
                ( groups6591440286371151544t_real
                @ ^ [Q4: nat] : ( times_times_real @ ( power_power_real @ ( plus_plus_real @ Z @ H2 ) @ Q4 ) @ ( power_power_real @ Z @ ( minus_minus_nat @ ( minus_minus_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ Q4 ) ) )
                @ ( set_ord_lessThan_nat @ ( minus_minus_nat @ ( minus_minus_nat @ N2 @ ( suc @ zero_zero_nat ) ) @ P5 ) ) )
            @ ( set_ord_lessThan_nat @ ( minus_minus_nat @ N2 @ ( suc @ zero_zero_nat ) ) ) ) ) ) ) ).

% lemma_termdiff2
thf(fact_7608_summable__arctan__series,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ X ) @ one_one_real )
     => ( summable_real
        @ ^ [K3: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ K3 ) @ ( times_times_real @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ ( plus_plus_nat @ ( times_times_nat @ K3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) @ ( power_power_real @ X @ ( plus_plus_nat @ ( times_times_nat @ K3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) ) ) ) ).

% summable_arctan_series
thf(fact_7609_pred__subset__eq2,axiom,
    ! [R: set_Pr448751882837621926eger_o,S3: set_Pr448751882837621926eger_o] :
      ( ( ord_le2162486998276636481er_o_o
        @ ^ [X3: code_integer,Y3: $o] : ( member1379723562493234055eger_o @ ( produc6677183202524767010eger_o @ X3 @ Y3 ) @ R )
        @ ^ [X3: code_integer,Y3: $o] : ( member1379723562493234055eger_o @ ( produc6677183202524767010eger_o @ X3 @ Y3 ) @ S3 ) )
      = ( ord_le8980329558974975238eger_o @ R @ S3 ) ) ).

% pred_subset_eq2
thf(fact_7610_pred__subset__eq2,axiom,
    ! [R: set_Pr8218934625190621173um_num,S3: set_Pr8218934625190621173um_num] :
      ( ( ord_le6124364862034508274_num_o
        @ ^ [X3: num,Y3: num] : ( member7279096912039735102um_num @ ( product_Pair_num_num @ X3 @ Y3 ) @ R )
        @ ^ [X3: num,Y3: num] : ( member7279096912039735102um_num @ ( product_Pair_num_num @ X3 @ Y3 ) @ S3 ) )
      = ( ord_le880128212290418581um_num @ R @ S3 ) ) ).

% pred_subset_eq2
thf(fact_7611_pred__subset__eq2,axiom,
    ! [R: set_Pr6200539531224447659at_num,S3: set_Pr6200539531224447659at_num] :
      ( ( ord_le3404735783095501756_num_o
        @ ^ [X3: nat,Y3: num] : ( member9148766508732265716at_num @ ( product_Pair_nat_num @ X3 @ Y3 ) @ R )
        @ ^ [X3: nat,Y3: num] : ( member9148766508732265716at_num @ ( product_Pair_nat_num @ X3 @ Y3 ) @ S3 ) )
      = ( ord_le8085105155179020875at_num @ R @ S3 ) ) ).

% pred_subset_eq2
thf(fact_7612_pred__subset__eq2,axiom,
    ! [R: set_Pr1261947904930325089at_nat,S3: set_Pr1261947904930325089at_nat] :
      ( ( ord_le2646555220125990790_nat_o
        @ ^ [X3: nat,Y3: nat] : ( member8440522571783428010at_nat @ ( product_Pair_nat_nat @ X3 @ Y3 ) @ R )
        @ ^ [X3: nat,Y3: nat] : ( member8440522571783428010at_nat @ ( product_Pair_nat_nat @ X3 @ Y3 ) @ S3 ) )
      = ( ord_le3146513528884898305at_nat @ R @ S3 ) ) ).

% pred_subset_eq2
thf(fact_7613_pred__subset__eq2,axiom,
    ! [R: set_Pr958786334691620121nt_int,S3: set_Pr958786334691620121nt_int] :
      ( ( ord_le6741204236512500942_int_o
        @ ^ [X3: int,Y3: int] : ( member5262025264175285858nt_int @ ( product_Pair_int_int @ X3 @ Y3 ) @ R )
        @ ^ [X3: int,Y3: int] : ( member5262025264175285858nt_int @ ( product_Pair_int_int @ X3 @ Y3 ) @ S3 ) )
      = ( ord_le2843351958646193337nt_int @ R @ S3 ) ) ).

% pred_subset_eq2
thf(fact_7614_infinite__int__iff__unbounded__le,axiom,
    ! [S3: set_int] :
      ( ( ~ ( finite_finite_int @ S3 ) )
      = ( ! [M6: int] :
          ? [N3: int] :
            ( ( ord_less_eq_int @ M6 @ ( abs_abs_int @ N3 ) )
            & ( member_int @ N3 @ S3 ) ) ) ) ).

% infinite_int_iff_unbounded_le
thf(fact_7615_accp__subset,axiom,
    ! [R1: product_prod_num_num > product_prod_num_num > $o,R22: product_prod_num_num > product_prod_num_num > $o] :
      ( ( ord_le2556027599737686990_num_o @ R1 @ R22 )
     => ( ord_le2239182809043710856_num_o @ ( accp_P3113834385874906142um_num @ R22 ) @ ( accp_P3113834385874906142um_num @ R1 ) ) ) ).

% accp_subset
thf(fact_7616_accp__subset,axiom,
    ! [R1: product_prod_nat_nat > product_prod_nat_nat > $o,R22: product_prod_nat_nat > product_prod_nat_nat > $o] :
      ( ( ord_le5604493270027003598_nat_o @ R1 @ R22 )
     => ( ord_le704812498762024988_nat_o @ ( accp_P4275260045618599050at_nat @ R22 ) @ ( accp_P4275260045618599050at_nat @ R1 ) ) ) ).

% accp_subset
thf(fact_7617_accp__subset,axiom,
    ! [R1: product_prod_int_int > product_prod_int_int > $o,R22: product_prod_int_int > product_prod_int_int > $o] :
      ( ( ord_le1598226405681992910_int_o @ R1 @ R22 )
     => ( ord_le8369615600986905444_int_o @ ( accp_P1096762738010456898nt_int @ R22 ) @ ( accp_P1096762738010456898nt_int @ R1 ) ) ) ).

% accp_subset
thf(fact_7618_accp__subset,axiom,
    ! [R1: list_nat > list_nat > $o,R22: list_nat > list_nat > $o] :
      ( ( ord_le6558929396352911974_nat_o @ R1 @ R22 )
     => ( ord_le1520216061033275535_nat_o @ ( accp_list_nat @ R22 ) @ ( accp_list_nat @ R1 ) ) ) ).

% accp_subset
thf(fact_7619_accp__subset,axiom,
    ! [R1: nat > nat > $o,R22: nat > nat > $o] :
      ( ( ord_le2646555220125990790_nat_o @ R1 @ R22 )
     => ( ord_less_eq_nat_o @ ( accp_nat @ R22 ) @ ( accp_nat @ R1 ) ) ) ).

% accp_subset
thf(fact_7620_lessThan__iff,axiom,
    ! [I2: set_nat,K: set_nat] :
      ( ( member_set_nat @ I2 @ ( set_or890127255671739683et_nat @ K ) )
      = ( ord_less_set_nat @ I2 @ K ) ) ).

% lessThan_iff
thf(fact_7621_lessThan__iff,axiom,
    ! [I2: rat,K: rat] :
      ( ( member_rat @ I2 @ ( set_ord_lessThan_rat @ K ) )
      = ( ord_less_rat @ I2 @ K ) ) ).

% lessThan_iff
thf(fact_7622_lessThan__iff,axiom,
    ! [I2: num,K: num] :
      ( ( member_num @ I2 @ ( set_ord_lessThan_num @ K ) )
      = ( ord_less_num @ I2 @ K ) ) ).

% lessThan_iff
thf(fact_7623_lessThan__iff,axiom,
    ! [I2: nat,K: nat] :
      ( ( member_nat @ I2 @ ( set_ord_lessThan_nat @ K ) )
      = ( ord_less_nat @ I2 @ K ) ) ).

% lessThan_iff
thf(fact_7624_lessThan__iff,axiom,
    ! [I2: int,K: int] :
      ( ( member_int @ I2 @ ( set_ord_lessThan_int @ K ) )
      = ( ord_less_int @ I2 @ K ) ) ).

% lessThan_iff
thf(fact_7625_lessThan__iff,axiom,
    ! [I2: real,K: real] :
      ( ( member_real @ I2 @ ( set_or5984915006950818249n_real @ K ) )
      = ( ord_less_real @ I2 @ K ) ) ).

% lessThan_iff
thf(fact_7626_lessThan__iff,axiom,
    ! [I2: $o,K: $o] :
      ( ( member_o @ I2 @ ( set_ord_lessThan_o @ K ) )
      = ( ord_less_o @ I2 @ K ) ) ).

% lessThan_iff
thf(fact_7627_summable__single,axiom,
    ! [I2: nat,F: nat > complex] :
      ( summable_complex
      @ ^ [R5: nat] : ( if_complex @ ( R5 = I2 ) @ ( F @ R5 ) @ zero_zero_complex ) ) ).

% summable_single
thf(fact_7628_summable__single,axiom,
    ! [I2: nat,F: nat > real] :
      ( summable_real
      @ ^ [R5: nat] : ( if_real @ ( R5 = I2 ) @ ( F @ R5 ) @ zero_zero_real ) ) ).

% summable_single
thf(fact_7629_summable__single,axiom,
    ! [I2: nat,F: nat > nat] :
      ( summable_nat
      @ ^ [R5: nat] : ( if_nat @ ( R5 = I2 ) @ ( F @ R5 ) @ zero_zero_nat ) ) ).

% summable_single
thf(fact_7630_summable__single,axiom,
    ! [I2: nat,F: nat > int] :
      ( summable_int
      @ ^ [R5: nat] : ( if_int @ ( R5 = I2 ) @ ( F @ R5 ) @ zero_zero_int ) ) ).

% summable_single
thf(fact_7631_summable__zero,axiom,
    ( summable_complex
    @ ^ [N3: nat] : zero_zero_complex ) ).

% summable_zero
thf(fact_7632_summable__zero,axiom,
    ( summable_real
    @ ^ [N3: nat] : zero_zero_real ) ).

% summable_zero
thf(fact_7633_summable__zero,axiom,
    ( summable_nat
    @ ^ [N3: nat] : zero_zero_nat ) ).

% summable_zero
thf(fact_7634_summable__zero,axiom,
    ( summable_int
    @ ^ [N3: nat] : zero_zero_int ) ).

% summable_zero
thf(fact_7635_summable__iff__shift,axiom,
    ! [F: nat > real,K: nat] :
      ( ( summable_real
        @ ^ [N3: nat] : ( F @ ( plus_plus_nat @ N3 @ K ) ) )
      = ( summable_real @ F ) ) ).

% summable_iff_shift
thf(fact_7636_summable__iff__shift,axiom,
    ! [F: nat > complex,K: nat] :
      ( ( summable_complex
        @ ^ [N3: nat] : ( F @ ( plus_plus_nat @ N3 @ K ) ) )
      = ( summable_complex @ F ) ) ).

% summable_iff_shift
thf(fact_7637_lessThan__subset__iff,axiom,
    ! [X: rat,Y: rat] :
      ( ( ord_less_eq_set_rat @ ( set_ord_lessThan_rat @ X ) @ ( set_ord_lessThan_rat @ Y ) )
      = ( ord_less_eq_rat @ X @ Y ) ) ).

% lessThan_subset_iff
thf(fact_7638_lessThan__subset__iff,axiom,
    ! [X: num,Y: num] :
      ( ( ord_less_eq_set_num @ ( set_ord_lessThan_num @ X ) @ ( set_ord_lessThan_num @ Y ) )
      = ( ord_less_eq_num @ X @ Y ) ) ).

% lessThan_subset_iff
thf(fact_7639_lessThan__subset__iff,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_eq_set_nat @ ( set_ord_lessThan_nat @ X ) @ ( set_ord_lessThan_nat @ Y ) )
      = ( ord_less_eq_nat @ X @ Y ) ) ).

% lessThan_subset_iff
thf(fact_7640_lessThan__subset__iff,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_eq_set_int @ ( set_ord_lessThan_int @ X ) @ ( set_ord_lessThan_int @ Y ) )
      = ( ord_less_eq_int @ X @ Y ) ) ).

% lessThan_subset_iff
thf(fact_7641_lessThan__subset__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_set_real @ ( set_or5984915006950818249n_real @ X ) @ ( set_or5984915006950818249n_real @ Y ) )
      = ( ord_less_eq_real @ X @ Y ) ) ).

% lessThan_subset_iff
thf(fact_7642_lessThan__subset__iff,axiom,
    ! [X: $o,Y: $o] :
      ( ( ord_less_eq_set_o @ ( set_ord_lessThan_o @ X ) @ ( set_ord_lessThan_o @ Y ) )
      = ( ord_less_eq_o @ X @ Y ) ) ).

% lessThan_subset_iff
thf(fact_7643_summable__cmult__iff,axiom,
    ! [C: complex,F: nat > complex] :
      ( ( summable_complex
        @ ^ [N3: nat] : ( times_times_complex @ C @ ( F @ N3 ) ) )
      = ( ( C = zero_zero_complex )
        | ( summable_complex @ F ) ) ) ).

% summable_cmult_iff
thf(fact_7644_summable__cmult__iff,axiom,
    ! [C: real,F: nat > real] :
      ( ( summable_real
        @ ^ [N3: nat] : ( times_times_real @ C @ ( F @ N3 ) ) )
      = ( ( C = zero_zero_real )
        | ( summable_real @ F ) ) ) ).

% summable_cmult_iff
thf(fact_7645_summable__divide__iff,axiom,
    ! [F: nat > complex,C: complex] :
      ( ( summable_complex
        @ ^ [N3: nat] : ( divide1717551699836669952omplex @ ( F @ N3 ) @ C ) )
      = ( ( C = zero_zero_complex )
        | ( summable_complex @ F ) ) ) ).

% summable_divide_iff
thf(fact_7646_summable__divide__iff,axiom,
    ! [F: nat > real,C: real] :
      ( ( summable_real
        @ ^ [N3: nat] : ( divide_divide_real @ ( F @ N3 ) @ C ) )
      = ( ( C = zero_zero_real )
        | ( summable_real @ F ) ) ) ).

% summable_divide_iff
thf(fact_7647_summable__If__finite,axiom,
    ! [P: nat > $o,F: nat > complex] :
      ( ( finite_finite_nat @ ( collect_nat @ P ) )
     => ( summable_complex
        @ ^ [R5: nat] : ( if_complex @ ( P @ R5 ) @ ( F @ R5 ) @ zero_zero_complex ) ) ) ).

% summable_If_finite
thf(fact_7648_summable__If__finite,axiom,
    ! [P: nat > $o,F: nat > real] :
      ( ( finite_finite_nat @ ( collect_nat @ P ) )
     => ( summable_real
        @ ^ [R5: nat] : ( if_real @ ( P @ R5 ) @ ( F @ R5 ) @ zero_zero_real ) ) ) ).

% summable_If_finite
thf(fact_7649_summable__If__finite,axiom,
    ! [P: nat > $o,F: nat > nat] :
      ( ( finite_finite_nat @ ( collect_nat @ P ) )
     => ( summable_nat
        @ ^ [R5: nat] : ( if_nat @ ( P @ R5 ) @ ( F @ R5 ) @ zero_zero_nat ) ) ) ).

% summable_If_finite
thf(fact_7650_summable__If__finite,axiom,
    ! [P: nat > $o,F: nat > int] :
      ( ( finite_finite_nat @ ( collect_nat @ P ) )
     => ( summable_int
        @ ^ [R5: nat] : ( if_int @ ( P @ R5 ) @ ( F @ R5 ) @ zero_zero_int ) ) ) ).

% summable_If_finite
thf(fact_7651_summable__If__finite__set,axiom,
    ! [A2: set_nat,F: nat > complex] :
      ( ( finite_finite_nat @ A2 )
     => ( summable_complex
        @ ^ [R5: nat] : ( if_complex @ ( member_nat @ R5 @ A2 ) @ ( F @ R5 ) @ zero_zero_complex ) ) ) ).

% summable_If_finite_set
thf(fact_7652_summable__If__finite__set,axiom,
    ! [A2: set_nat,F: nat > real] :
      ( ( finite_finite_nat @ A2 )
     => ( summable_real
        @ ^ [R5: nat] : ( if_real @ ( member_nat @ R5 @ A2 ) @ ( F @ R5 ) @ zero_zero_real ) ) ) ).

% summable_If_finite_set
thf(fact_7653_summable__If__finite__set,axiom,
    ! [A2: set_nat,F: nat > nat] :
      ( ( finite_finite_nat @ A2 )
     => ( summable_nat
        @ ^ [R5: nat] : ( if_nat @ ( member_nat @ R5 @ A2 ) @ ( F @ R5 ) @ zero_zero_nat ) ) ) ).

% summable_If_finite_set
thf(fact_7654_summable__If__finite__set,axiom,
    ! [A2: set_nat,F: nat > int] :
      ( ( finite_finite_nat @ A2 )
     => ( summable_int
        @ ^ [R5: nat] : ( if_int @ ( member_nat @ R5 @ A2 ) @ ( F @ R5 ) @ zero_zero_int ) ) ) ).

% summable_If_finite_set
thf(fact_7655_sum_OlessThan__Suc,axiom,
    ! [G: nat > rat,N2: nat] :
      ( ( groups2906978787729119204at_rat @ G @ ( set_ord_lessThan_nat @ ( suc @ N2 ) ) )
      = ( plus_plus_rat @ ( groups2906978787729119204at_rat @ G @ ( set_ord_lessThan_nat @ N2 ) ) @ ( G @ N2 ) ) ) ).

% sum.lessThan_Suc
thf(fact_7656_sum_OlessThan__Suc,axiom,
    ! [G: nat > int,N2: nat] :
      ( ( groups3539618377306564664at_int @ G @ ( set_ord_lessThan_nat @ ( suc @ N2 ) ) )
      = ( plus_plus_int @ ( groups3539618377306564664at_int @ G @ ( set_ord_lessThan_nat @ N2 ) ) @ ( G @ N2 ) ) ) ).

% sum.lessThan_Suc
thf(fact_7657_sum_OlessThan__Suc,axiom,
    ! [G: nat > nat,N2: nat] :
      ( ( groups3542108847815614940at_nat @ G @ ( set_ord_lessThan_nat @ ( suc @ N2 ) ) )
      = ( plus_plus_nat @ ( groups3542108847815614940at_nat @ G @ ( set_ord_lessThan_nat @ N2 ) ) @ ( G @ N2 ) ) ) ).

% sum.lessThan_Suc
thf(fact_7658_sum_OlessThan__Suc,axiom,
    ! [G: nat > real,N2: nat] :
      ( ( groups6591440286371151544t_real @ G @ ( set_ord_lessThan_nat @ ( suc @ N2 ) ) )
      = ( plus_plus_real @ ( groups6591440286371151544t_real @ G @ ( set_ord_lessThan_nat @ N2 ) ) @ ( G @ N2 ) ) ) ).

% sum.lessThan_Suc
thf(fact_7659_summable__geometric__iff,axiom,
    ! [C: real] :
      ( ( summable_real @ ( power_power_real @ C ) )
      = ( ord_less_real @ ( real_V7735802525324610683m_real @ C ) @ one_one_real ) ) ).

% summable_geometric_iff
thf(fact_7660_summable__geometric__iff,axiom,
    ! [C: complex] :
      ( ( summable_complex @ ( power_power_complex @ C ) )
      = ( ord_less_real @ ( real_V1022390504157884413omplex @ C ) @ one_one_real ) ) ).

% summable_geometric_iff
thf(fact_7661_summable__norm__cancel,axiom,
    ! [F: nat > real] :
      ( ( summable_real
        @ ^ [N3: nat] : ( real_V7735802525324610683m_real @ ( F @ N3 ) ) )
     => ( summable_real @ F ) ) ).

% summable_norm_cancel
thf(fact_7662_summable__norm__cancel,axiom,
    ! [F: nat > complex] :
      ( ( summable_real
        @ ^ [N3: nat] : ( real_V1022390504157884413omplex @ ( F @ N3 ) ) )
     => ( summable_complex @ F ) ) ).

% summable_norm_cancel
thf(fact_7663_summable__comparison__test,axiom,
    ! [F: nat > real,G: nat > real] :
      ( ? [N7: nat] :
        ! [N: nat] :
          ( ( ord_less_eq_nat @ N7 @ N )
         => ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( F @ N ) ) @ ( G @ N ) ) )
     => ( ( summable_real @ G )
       => ( summable_real @ F ) ) ) ).

% summable_comparison_test
thf(fact_7664_summable__comparison__test,axiom,
    ! [F: nat > complex,G: nat > real] :
      ( ? [N7: nat] :
        ! [N: nat] :
          ( ( ord_less_eq_nat @ N7 @ N )
         => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( F @ N ) ) @ ( G @ N ) ) )
     => ( ( summable_real @ G )
       => ( summable_complex @ F ) ) ) ).

% summable_comparison_test
thf(fact_7665_summable__comparison__test_H,axiom,
    ! [G: nat > real,N4: nat,F: nat > real] :
      ( ( summable_real @ G )
     => ( ! [N: nat] :
            ( ( ord_less_eq_nat @ N4 @ N )
           => ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( F @ N ) ) @ ( G @ N ) ) )
       => ( summable_real @ F ) ) ) ).

% summable_comparison_test'
thf(fact_7666_summable__comparison__test_H,axiom,
    ! [G: nat > real,N4: nat,F: nat > complex] :
      ( ( summable_real @ G )
     => ( ! [N: nat] :
            ( ( ord_less_eq_nat @ N4 @ N )
           => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( F @ N ) ) @ ( G @ N ) ) )
       => ( summable_complex @ F ) ) ) ).

% summable_comparison_test'
thf(fact_7667_summable__const__iff,axiom,
    ! [C: complex] :
      ( ( summable_complex
        @ ^ [Uu3: nat] : C )
      = ( C = zero_zero_complex ) ) ).

% summable_const_iff
thf(fact_7668_summable__const__iff,axiom,
    ! [C: real] :
      ( ( summable_real
        @ ^ [Uu3: nat] : C )
      = ( C = zero_zero_real ) ) ).

% summable_const_iff
thf(fact_7669_summable__mult2,axiom,
    ! [F: nat > complex,C: complex] :
      ( ( summable_complex @ F )
     => ( summable_complex
        @ ^ [N3: nat] : ( times_times_complex @ ( F @ N3 ) @ C ) ) ) ).

% summable_mult2
thf(fact_7670_summable__mult2,axiom,
    ! [F: nat > real,C: real] :
      ( ( summable_real @ F )
     => ( summable_real
        @ ^ [N3: nat] : ( times_times_real @ ( F @ N3 ) @ C ) ) ) ).

% summable_mult2
thf(fact_7671_summable__mult,axiom,
    ! [F: nat > complex,C: complex] :
      ( ( summable_complex @ F )
     => ( summable_complex
        @ ^ [N3: nat] : ( times_times_complex @ C @ ( F @ N3 ) ) ) ) ).

% summable_mult
thf(fact_7672_summable__mult,axiom,
    ! [F: nat > real,C: real] :
      ( ( summable_real @ F )
     => ( summable_real
        @ ^ [N3: nat] : ( times_times_real @ C @ ( F @ N3 ) ) ) ) ).

% summable_mult
thf(fact_7673_summable__add,axiom,
    ! [F: nat > complex,G: nat > complex] :
      ( ( summable_complex @ F )
     => ( ( summable_complex @ G )
       => ( summable_complex
          @ ^ [N3: nat] : ( plus_plus_complex @ ( F @ N3 ) @ ( G @ N3 ) ) ) ) ) ).

% summable_add
thf(fact_7674_summable__add,axiom,
    ! [F: nat > real,G: nat > real] :
      ( ( summable_real @ F )
     => ( ( summable_real @ G )
       => ( summable_real
          @ ^ [N3: nat] : ( plus_plus_real @ ( F @ N3 ) @ ( G @ N3 ) ) ) ) ) ).

% summable_add
thf(fact_7675_summable__add,axiom,
    ! [F: nat > nat,G: nat > nat] :
      ( ( summable_nat @ F )
     => ( ( summable_nat @ G )
       => ( summable_nat
          @ ^ [N3: nat] : ( plus_plus_nat @ ( F @ N3 ) @ ( G @ N3 ) ) ) ) ) ).

% summable_add
thf(fact_7676_summable__add,axiom,
    ! [F: nat > int,G: nat > int] :
      ( ( summable_int @ F )
     => ( ( summable_int @ G )
       => ( summable_int
          @ ^ [N3: nat] : ( plus_plus_int @ ( F @ N3 ) @ ( G @ N3 ) ) ) ) ) ).

% summable_add
thf(fact_7677_summable__diff,axiom,
    ! [F: nat > complex,G: nat > complex] :
      ( ( summable_complex @ F )
     => ( ( summable_complex @ G )
       => ( summable_complex
          @ ^ [N3: nat] : ( minus_minus_complex @ ( F @ N3 ) @ ( G @ N3 ) ) ) ) ) ).

% summable_diff
thf(fact_7678_summable__diff,axiom,
    ! [F: nat > real,G: nat > real] :
      ( ( summable_real @ F )
     => ( ( summable_real @ G )
       => ( summable_real
          @ ^ [N3: nat] : ( minus_minus_real @ ( F @ N3 ) @ ( G @ N3 ) ) ) ) ) ).

% summable_diff
thf(fact_7679_summable__divide,axiom,
    ! [F: nat > complex,C: complex] :
      ( ( summable_complex @ F )
     => ( summable_complex
        @ ^ [N3: nat] : ( divide1717551699836669952omplex @ ( F @ N3 ) @ C ) ) ) ).

% summable_divide
thf(fact_7680_summable__divide,axiom,
    ! [F: nat > real,C: real] :
      ( ( summable_real @ F )
     => ( summable_real
        @ ^ [N3: nat] : ( divide_divide_real @ ( F @ N3 ) @ C ) ) ) ).

% summable_divide
thf(fact_7681_summable__Suc__iff,axiom,
    ! [F: nat > real] :
      ( ( summable_real
        @ ^ [N3: nat] : ( F @ ( suc @ N3 ) ) )
      = ( summable_real @ F ) ) ).

% summable_Suc_iff
thf(fact_7682_summable__Suc__iff,axiom,
    ! [F: nat > complex] :
      ( ( summable_complex
        @ ^ [N3: nat] : ( F @ ( suc @ N3 ) ) )
      = ( summable_complex @ F ) ) ).

% summable_Suc_iff
thf(fact_7683_summable__minus,axiom,
    ! [F: nat > real] :
      ( ( summable_real @ F )
     => ( summable_real
        @ ^ [N3: nat] : ( uminus_uminus_real @ ( F @ N3 ) ) ) ) ).

% summable_minus
thf(fact_7684_summable__minus,axiom,
    ! [F: nat > complex] :
      ( ( summable_complex @ F )
     => ( summable_complex
        @ ^ [N3: nat] : ( uminus1482373934393186551omplex @ ( F @ N3 ) ) ) ) ).

% summable_minus
thf(fact_7685_summable__minus__iff,axiom,
    ! [F: nat > real] :
      ( ( summable_real
        @ ^ [N3: nat] : ( uminus_uminus_real @ ( F @ N3 ) ) )
      = ( summable_real @ F ) ) ).

% summable_minus_iff
thf(fact_7686_summable__minus__iff,axiom,
    ! [F: nat > complex] :
      ( ( summable_complex
        @ ^ [N3: nat] : ( uminus1482373934393186551omplex @ ( F @ N3 ) ) )
      = ( summable_complex @ F ) ) ).

% summable_minus_iff
thf(fact_7687_summable__ignore__initial__segment,axiom,
    ! [F: nat > real,K: nat] :
      ( ( summable_real @ F )
     => ( summable_real
        @ ^ [N3: nat] : ( F @ ( plus_plus_nat @ N3 @ K ) ) ) ) ).

% summable_ignore_initial_segment
thf(fact_7688_summable__ignore__initial__segment,axiom,
    ! [F: nat > complex,K: nat] :
      ( ( summable_complex @ F )
     => ( summable_complex
        @ ^ [N3: nat] : ( F @ ( plus_plus_nat @ N3 @ K ) ) ) ) ).

% summable_ignore_initial_segment
thf(fact_7689_summable__sum,axiom,
    ! [I6: set_complex,F: complex > nat > real] :
      ( ! [I3: complex] :
          ( ( member_complex @ I3 @ I6 )
         => ( summable_real @ ( F @ I3 ) ) )
     => ( summable_real
        @ ^ [N3: nat] :
            ( groups5808333547571424918x_real
            @ ^ [I5: complex] : ( F @ I5 @ N3 )
            @ I6 ) ) ) ).

% summable_sum
thf(fact_7690_summable__sum,axiom,
    ! [I6: set_real,F: real > nat > real] :
      ( ! [I3: real] :
          ( ( member_real @ I3 @ I6 )
         => ( summable_real @ ( F @ I3 ) ) )
     => ( summable_real
        @ ^ [N3: nat] :
            ( groups8097168146408367636l_real
            @ ^ [I5: real] : ( F @ I5 @ N3 )
            @ I6 ) ) ) ).

% summable_sum
thf(fact_7691_summable__sum,axiom,
    ! [I6: set_int,F: int > nat > real] :
      ( ! [I3: int] :
          ( ( member_int @ I3 @ I6 )
         => ( summable_real @ ( F @ I3 ) ) )
     => ( summable_real
        @ ^ [N3: nat] :
            ( groups8778361861064173332t_real
            @ ^ [I5: int] : ( F @ I5 @ N3 )
            @ I6 ) ) ) ).

% summable_sum
thf(fact_7692_summable__sum,axiom,
    ! [I6: set_real,F: real > nat > complex] :
      ( ! [I3: real] :
          ( ( member_real @ I3 @ I6 )
         => ( summable_complex @ ( F @ I3 ) ) )
     => ( summable_complex
        @ ^ [N3: nat] :
            ( groups5754745047067104278omplex
            @ ^ [I5: real] : ( F @ I5 @ N3 )
            @ I6 ) ) ) ).

% summable_sum
thf(fact_7693_summable__sum,axiom,
    ! [I6: set_nat,F: nat > nat > complex] :
      ( ! [I3: nat] :
          ( ( member_nat @ I3 @ I6 )
         => ( summable_complex @ ( F @ I3 ) ) )
     => ( summable_complex
        @ ^ [N3: nat] :
            ( groups2073611262835488442omplex
            @ ^ [I5: nat] : ( F @ I5 @ N3 )
            @ I6 ) ) ) ).

% summable_sum
thf(fact_7694_summable__sum,axiom,
    ! [I6: set_int,F: int > nat > complex] :
      ( ! [I3: int] :
          ( ( member_int @ I3 @ I6 )
         => ( summable_complex @ ( F @ I3 ) ) )
     => ( summable_complex
        @ ^ [N3: nat] :
            ( groups3049146728041665814omplex
            @ ^ [I5: int] : ( F @ I5 @ N3 )
            @ I6 ) ) ) ).

% summable_sum
thf(fact_7695_summable__sum,axiom,
    ! [I6: set_int,F: int > nat > int] :
      ( ! [I3: int] :
          ( ( member_int @ I3 @ I6 )
         => ( summable_int @ ( F @ I3 ) ) )
     => ( summable_int
        @ ^ [N3: nat] :
            ( groups4538972089207619220nt_int
            @ ^ [I5: int] : ( F @ I5 @ N3 )
            @ I6 ) ) ) ).

% summable_sum
thf(fact_7696_summable__sum,axiom,
    ! [I6: set_complex,F: complex > nat > complex] :
      ( ! [I3: complex] :
          ( ( member_complex @ I3 @ I6 )
         => ( summable_complex @ ( F @ I3 ) ) )
     => ( summable_complex
        @ ^ [N3: nat] :
            ( groups7754918857620584856omplex
            @ ^ [I5: complex] : ( F @ I5 @ N3 )
            @ I6 ) ) ) ).

% summable_sum
thf(fact_7697_summable__sum,axiom,
    ! [I6: set_nat,F: nat > nat > nat] :
      ( ! [I3: nat] :
          ( ( member_nat @ I3 @ I6 )
         => ( summable_nat @ ( F @ I3 ) ) )
     => ( summable_nat
        @ ^ [N3: nat] :
            ( groups3542108847815614940at_nat
            @ ^ [I5: nat] : ( F @ I5 @ N3 )
            @ I6 ) ) ) ).

% summable_sum
thf(fact_7698_summable__sum,axiom,
    ! [I6: set_nat,F: nat > nat > real] :
      ( ! [I3: nat] :
          ( ( member_nat @ I3 @ I6 )
         => ( summable_real @ ( F @ I3 ) ) )
     => ( summable_real
        @ ^ [N3: nat] :
            ( groups6591440286371151544t_real
            @ ^ [I5: nat] : ( F @ I5 @ N3 )
            @ I6 ) ) ) ).

% summable_sum
thf(fact_7699_suminf__le__const,axiom,
    ! [F: nat > int,X: int] :
      ( ( summable_int @ F )
     => ( ! [N: nat] : ( ord_less_eq_int @ ( groups3539618377306564664at_int @ F @ ( set_ord_lessThan_nat @ N ) ) @ X )
       => ( ord_less_eq_int @ ( suminf_int @ F ) @ X ) ) ) ).

% suminf_le_const
thf(fact_7700_suminf__le__const,axiom,
    ! [F: nat > nat,X: nat] :
      ( ( summable_nat @ F )
     => ( ! [N: nat] : ( ord_less_eq_nat @ ( groups3542108847815614940at_nat @ F @ ( set_ord_lessThan_nat @ N ) ) @ X )
       => ( ord_less_eq_nat @ ( suminf_nat @ F ) @ X ) ) ) ).

% suminf_le_const
thf(fact_7701_suminf__le__const,axiom,
    ! [F: nat > real,X: real] :
      ( ( summable_real @ F )
     => ( ! [N: nat] : ( ord_less_eq_real @ ( groups6591440286371151544t_real @ F @ ( set_ord_lessThan_nat @ N ) ) @ X )
       => ( ord_less_eq_real @ ( suminf_real @ F ) @ X ) ) ) ).

% suminf_le_const
thf(fact_7702_summable__rabs__cancel,axiom,
    ! [F: nat > real] :
      ( ( summable_real
        @ ^ [N3: nat] : ( abs_abs_real @ ( F @ N3 ) ) )
     => ( summable_real @ F ) ) ).

% summable_rabs_cancel
thf(fact_7703_lessThan__def,axiom,
    ( set_or890127255671739683et_nat
    = ( ^ [U2: set_nat] :
          ( collect_set_nat
          @ ^ [X3: set_nat] : ( ord_less_set_nat @ X3 @ U2 ) ) ) ) ).

% lessThan_def
thf(fact_7704_lessThan__def,axiom,
    ( set_ord_lessThan_rat
    = ( ^ [U2: rat] :
          ( collect_rat
          @ ^ [X3: rat] : ( ord_less_rat @ X3 @ U2 ) ) ) ) ).

% lessThan_def
thf(fact_7705_lessThan__def,axiom,
    ( set_ord_lessThan_num
    = ( ^ [U2: num] :
          ( collect_num
          @ ^ [X3: num] : ( ord_less_num @ X3 @ U2 ) ) ) ) ).

% lessThan_def
thf(fact_7706_lessThan__def,axiom,
    ( set_ord_lessThan_nat
    = ( ^ [U2: nat] :
          ( collect_nat
          @ ^ [X3: nat] : ( ord_less_nat @ X3 @ U2 ) ) ) ) ).

% lessThan_def
thf(fact_7707_lessThan__def,axiom,
    ( set_ord_lessThan_int
    = ( ^ [U2: int] :
          ( collect_int
          @ ^ [X3: int] : ( ord_less_int @ X3 @ U2 ) ) ) ) ).

% lessThan_def
thf(fact_7708_lessThan__def,axiom,
    ( set_or5984915006950818249n_real
    = ( ^ [U2: real] :
          ( collect_real
          @ ^ [X3: real] : ( ord_less_real @ X3 @ U2 ) ) ) ) ).

% lessThan_def
thf(fact_7709_lessThan__def,axiom,
    ( set_ord_lessThan_o
    = ( ^ [U2: $o] :
          ( collect_o
          @ ^ [X3: $o] : ( ord_less_o @ X3 @ U2 ) ) ) ) ).

% lessThan_def
thf(fact_7710_summableI__nonneg__bounded,axiom,
    ! [F: nat > int,X: int] :
      ( ! [N: nat] : ( ord_less_eq_int @ zero_zero_int @ ( F @ N ) )
     => ( ! [N: nat] : ( ord_less_eq_int @ ( groups3539618377306564664at_int @ F @ ( set_ord_lessThan_nat @ N ) ) @ X )
       => ( summable_int @ F ) ) ) ).

% summableI_nonneg_bounded
thf(fact_7711_summableI__nonneg__bounded,axiom,
    ! [F: nat > nat,X: nat] :
      ( ! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ ( F @ N ) )
     => ( ! [N: nat] : ( ord_less_eq_nat @ ( groups3542108847815614940at_nat @ F @ ( set_ord_lessThan_nat @ N ) ) @ X )
       => ( summable_nat @ F ) ) ) ).

% summableI_nonneg_bounded
thf(fact_7712_summableI__nonneg__bounded,axiom,
    ! [F: nat > real,X: real] :
      ( ! [N: nat] : ( ord_less_eq_real @ zero_zero_real @ ( F @ N ) )
     => ( ! [N: nat] : ( ord_less_eq_real @ ( groups6591440286371151544t_real @ F @ ( set_ord_lessThan_nat @ N ) ) @ X )
       => ( summable_real @ F ) ) ) ).

% summableI_nonneg_bounded
thf(fact_7713_finite__nat__iff__bounded,axiom,
    ( finite_finite_nat
    = ( ^ [S5: set_nat] :
        ? [K3: nat] : ( ord_less_eq_set_nat @ S5 @ ( set_ord_lessThan_nat @ K3 ) ) ) ) ).

% finite_nat_iff_bounded
thf(fact_7714_finite__nat__bounded,axiom,
    ! [S3: set_nat] :
      ( ( finite_finite_nat @ S3 )
     => ? [K2: nat] : ( ord_less_eq_set_nat @ S3 @ ( set_ord_lessThan_nat @ K2 ) ) ) ).

% finite_nat_bounded
thf(fact_7715_powser__insidea,axiom,
    ! [F: nat > real,X: real,Z: real] :
      ( ( summable_real
        @ ^ [N3: nat] : ( times_times_real @ ( F @ N3 ) @ ( power_power_real @ X @ N3 ) ) )
     => ( ( ord_less_real @ ( real_V7735802525324610683m_real @ Z ) @ ( real_V7735802525324610683m_real @ X ) )
       => ( summable_real
          @ ^ [N3: nat] : ( real_V7735802525324610683m_real @ ( times_times_real @ ( F @ N3 ) @ ( power_power_real @ Z @ N3 ) ) ) ) ) ) ).

% powser_insidea
thf(fact_7716_powser__insidea,axiom,
    ! [F: nat > complex,X: complex,Z: complex] :
      ( ( summable_complex
        @ ^ [N3: nat] : ( times_times_complex @ ( F @ N3 ) @ ( power_power_complex @ X @ N3 ) ) )
     => ( ( ord_less_real @ ( real_V1022390504157884413omplex @ Z ) @ ( real_V1022390504157884413omplex @ X ) )
       => ( summable_real
          @ ^ [N3: nat] : ( real_V1022390504157884413omplex @ ( times_times_complex @ ( F @ N3 ) @ ( power_power_complex @ Z @ N3 ) ) ) ) ) ) ).

% powser_insidea
thf(fact_7717_suminf__le,axiom,
    ! [F: nat > real,G: nat > real] :
      ( ! [N: nat] : ( ord_less_eq_real @ ( F @ N ) @ ( G @ N ) )
     => ( ( summable_real @ F )
       => ( ( summable_real @ G )
         => ( ord_less_eq_real @ ( suminf_real @ F ) @ ( suminf_real @ G ) ) ) ) ) ).

% suminf_le
thf(fact_7718_suminf__le,axiom,
    ! [F: nat > nat,G: nat > nat] :
      ( ! [N: nat] : ( ord_less_eq_nat @ ( F @ N ) @ ( G @ N ) )
     => ( ( summable_nat @ F )
       => ( ( summable_nat @ G )
         => ( ord_less_eq_nat @ ( suminf_nat @ F ) @ ( suminf_nat @ G ) ) ) ) ) ).

% suminf_le
thf(fact_7719_suminf__le,axiom,
    ! [F: nat > int,G: nat > int] :
      ( ! [N: nat] : ( ord_less_eq_int @ ( F @ N ) @ ( G @ N ) )
     => ( ( summable_int @ F )
       => ( ( summable_int @ G )
         => ( ord_less_eq_int @ ( suminf_int @ F ) @ ( suminf_int @ G ) ) ) ) ) ).

% suminf_le
thf(fact_7720_suminf__split__initial__segment,axiom,
    ! [F: nat > complex,K: nat] :
      ( ( summable_complex @ F )
     => ( ( suminf_complex @ F )
        = ( plus_plus_complex
          @ ( suminf_complex
            @ ^ [N3: nat] : ( F @ ( plus_plus_nat @ N3 @ K ) ) )
          @ ( groups2073611262835488442omplex @ F @ ( set_ord_lessThan_nat @ K ) ) ) ) ) ).

% suminf_split_initial_segment
thf(fact_7721_suminf__split__initial__segment,axiom,
    ! [F: nat > real,K: nat] :
      ( ( summable_real @ F )
     => ( ( suminf_real @ F )
        = ( plus_plus_real
          @ ( suminf_real
            @ ^ [N3: nat] : ( F @ ( plus_plus_nat @ N3 @ K ) ) )
          @ ( groups6591440286371151544t_real @ F @ ( set_ord_lessThan_nat @ K ) ) ) ) ) ).

% suminf_split_initial_segment
thf(fact_7722_suminf__minus__initial__segment,axiom,
    ! [F: nat > complex,K: nat] :
      ( ( summable_complex @ F )
     => ( ( suminf_complex
          @ ^ [N3: nat] : ( F @ ( plus_plus_nat @ N3 @ K ) ) )
        = ( minus_minus_complex @ ( suminf_complex @ F ) @ ( groups2073611262835488442omplex @ F @ ( set_ord_lessThan_nat @ K ) ) ) ) ) ).

% suminf_minus_initial_segment
thf(fact_7723_suminf__minus__initial__segment,axiom,
    ! [F: nat > real,K: nat] :
      ( ( summable_real @ F )
     => ( ( suminf_real
          @ ^ [N3: nat] : ( F @ ( plus_plus_nat @ N3 @ K ) ) )
        = ( minus_minus_real @ ( suminf_real @ F ) @ ( groups6591440286371151544t_real @ F @ ( set_ord_lessThan_nat @ K ) ) ) ) ) ).

% suminf_minus_initial_segment
thf(fact_7724_lessThan__strict__subset__iff,axiom,
    ! [M: rat,N2: rat] :
      ( ( ord_less_set_rat @ ( set_ord_lessThan_rat @ M ) @ ( set_ord_lessThan_rat @ N2 ) )
      = ( ord_less_rat @ M @ N2 ) ) ).

% lessThan_strict_subset_iff
thf(fact_7725_lessThan__strict__subset__iff,axiom,
    ! [M: num,N2: num] :
      ( ( ord_less_set_num @ ( set_ord_lessThan_num @ M ) @ ( set_ord_lessThan_num @ N2 ) )
      = ( ord_less_num @ M @ N2 ) ) ).

% lessThan_strict_subset_iff
thf(fact_7726_lessThan__strict__subset__iff,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_set_nat @ ( set_ord_lessThan_nat @ M ) @ ( set_ord_lessThan_nat @ N2 ) )
      = ( ord_less_nat @ M @ N2 ) ) ).

% lessThan_strict_subset_iff
thf(fact_7727_lessThan__strict__subset__iff,axiom,
    ! [M: int,N2: int] :
      ( ( ord_less_set_int @ ( set_ord_lessThan_int @ M ) @ ( set_ord_lessThan_int @ N2 ) )
      = ( ord_less_int @ M @ N2 ) ) ).

% lessThan_strict_subset_iff
thf(fact_7728_lessThan__strict__subset__iff,axiom,
    ! [M: real,N2: real] :
      ( ( ord_less_set_real @ ( set_or5984915006950818249n_real @ M ) @ ( set_or5984915006950818249n_real @ N2 ) )
      = ( ord_less_real @ M @ N2 ) ) ).

% lessThan_strict_subset_iff
thf(fact_7729_lessThan__strict__subset__iff,axiom,
    ! [M: $o,N2: $o] :
      ( ( ord_less_set_o @ ( set_ord_lessThan_o @ M ) @ ( set_ord_lessThan_o @ N2 ) )
      = ( ord_less_o @ M @ N2 ) ) ).

% lessThan_strict_subset_iff
thf(fact_7730_summable__mult__D,axiom,
    ! [C: complex,F: nat > complex] :
      ( ( summable_complex
        @ ^ [N3: nat] : ( times_times_complex @ C @ ( F @ N3 ) ) )
     => ( ( C != zero_zero_complex )
       => ( summable_complex @ F ) ) ) ).

% summable_mult_D
thf(fact_7731_summable__mult__D,axiom,
    ! [C: real,F: nat > real] :
      ( ( summable_real
        @ ^ [N3: nat] : ( times_times_real @ C @ ( F @ N3 ) ) )
     => ( ( C != zero_zero_real )
       => ( summable_real @ F ) ) ) ).

% summable_mult_D
thf(fact_7732_summable__zero__power,axiom,
    summable_real @ ( power_power_real @ zero_zero_real ) ).

% summable_zero_power
thf(fact_7733_summable__zero__power,axiom,
    summable_int @ ( power_power_int @ zero_zero_int ) ).

% summable_zero_power
thf(fact_7734_summable__zero__power,axiom,
    summable_complex @ ( power_power_complex @ zero_zero_complex ) ).

% summable_zero_power
thf(fact_7735_pi__ge__zero,axiom,
    ord_less_eq_real @ zero_zero_real @ pi ).

% pi_ge_zero
thf(fact_7736_sum__less__suminf,axiom,
    ! [F: nat > int,N2: nat] :
      ( ( summable_int @ F )
     => ( ! [M2: nat] :
            ( ( ord_less_eq_nat @ N2 @ M2 )
           => ( ord_less_int @ zero_zero_int @ ( F @ M2 ) ) )
       => ( ord_less_int @ ( groups3539618377306564664at_int @ F @ ( set_ord_lessThan_nat @ N2 ) ) @ ( suminf_int @ F ) ) ) ) ).

% sum_less_suminf
thf(fact_7737_sum__less__suminf,axiom,
    ! [F: nat > nat,N2: nat] :
      ( ( summable_nat @ F )
     => ( ! [M2: nat] :
            ( ( ord_less_eq_nat @ N2 @ M2 )
           => ( ord_less_nat @ zero_zero_nat @ ( F @ M2 ) ) )
       => ( ord_less_nat @ ( groups3542108847815614940at_nat @ F @ ( set_ord_lessThan_nat @ N2 ) ) @ ( suminf_nat @ F ) ) ) ) ).

% sum_less_suminf
thf(fact_7738_sum__less__suminf,axiom,
    ! [F: nat > real,N2: nat] :
      ( ( summable_real @ F )
     => ( ! [M2: nat] :
            ( ( ord_less_eq_nat @ N2 @ M2 )
           => ( ord_less_real @ zero_zero_real @ ( F @ M2 ) ) )
       => ( ord_less_real @ ( groups6591440286371151544t_real @ F @ ( set_ord_lessThan_nat @ N2 ) ) @ ( suminf_real @ F ) ) ) ) ).

% sum_less_suminf
thf(fact_7739_suminf__mult2,axiom,
    ! [F: nat > complex,C: complex] :
      ( ( summable_complex @ F )
     => ( ( times_times_complex @ ( suminf_complex @ F ) @ C )
        = ( suminf_complex
          @ ^ [N3: nat] : ( times_times_complex @ ( F @ N3 ) @ C ) ) ) ) ).

% suminf_mult2
thf(fact_7740_suminf__mult2,axiom,
    ! [F: nat > real,C: real] :
      ( ( summable_real @ F )
     => ( ( times_times_real @ ( suminf_real @ F ) @ C )
        = ( suminf_real
          @ ^ [N3: nat] : ( times_times_real @ ( F @ N3 ) @ C ) ) ) ) ).

% suminf_mult2
thf(fact_7741_suminf__mult,axiom,
    ! [F: nat > complex,C: complex] :
      ( ( summable_complex @ F )
     => ( ( suminf_complex
          @ ^ [N3: nat] : ( times_times_complex @ C @ ( F @ N3 ) ) )
        = ( times_times_complex @ C @ ( suminf_complex @ F ) ) ) ) ).

% suminf_mult
thf(fact_7742_suminf__mult,axiom,
    ! [F: nat > real,C: real] :
      ( ( summable_real @ F )
     => ( ( suminf_real
          @ ^ [N3: nat] : ( times_times_real @ C @ ( F @ N3 ) ) )
        = ( times_times_real @ C @ ( suminf_real @ F ) ) ) ) ).

% suminf_mult
thf(fact_7743_suminf__add,axiom,
    ! [F: nat > complex,G: nat > complex] :
      ( ( summable_complex @ F )
     => ( ( summable_complex @ G )
       => ( ( plus_plus_complex @ ( suminf_complex @ F ) @ ( suminf_complex @ G ) )
          = ( suminf_complex
            @ ^ [N3: nat] : ( plus_plus_complex @ ( F @ N3 ) @ ( G @ N3 ) ) ) ) ) ) ).

% suminf_add
thf(fact_7744_suminf__add,axiom,
    ! [F: nat > real,G: nat > real] :
      ( ( summable_real @ F )
     => ( ( summable_real @ G )
       => ( ( plus_plus_real @ ( suminf_real @ F ) @ ( suminf_real @ G ) )
          = ( suminf_real
            @ ^ [N3: nat] : ( plus_plus_real @ ( F @ N3 ) @ ( G @ N3 ) ) ) ) ) ) ).

% suminf_add
thf(fact_7745_suminf__add,axiom,
    ! [F: nat > nat,G: nat > nat] :
      ( ( summable_nat @ F )
     => ( ( summable_nat @ G )
       => ( ( plus_plus_nat @ ( suminf_nat @ F ) @ ( suminf_nat @ G ) )
          = ( suminf_nat
            @ ^ [N3: nat] : ( plus_plus_nat @ ( F @ N3 ) @ ( G @ N3 ) ) ) ) ) ) ).

% suminf_add
thf(fact_7746_suminf__add,axiom,
    ! [F: nat > int,G: nat > int] :
      ( ( summable_int @ F )
     => ( ( summable_int @ G )
       => ( ( plus_plus_int @ ( suminf_int @ F ) @ ( suminf_int @ G ) )
          = ( suminf_int
            @ ^ [N3: nat] : ( plus_plus_int @ ( F @ N3 ) @ ( G @ N3 ) ) ) ) ) ) ).

% suminf_add
thf(fact_7747_suminf__diff,axiom,
    ! [F: nat > complex,G: nat > complex] :
      ( ( summable_complex @ F )
     => ( ( summable_complex @ G )
       => ( ( minus_minus_complex @ ( suminf_complex @ F ) @ ( suminf_complex @ G ) )
          = ( suminf_complex
            @ ^ [N3: nat] : ( minus_minus_complex @ ( F @ N3 ) @ ( G @ N3 ) ) ) ) ) ) ).

% suminf_diff
thf(fact_7748_suminf__diff,axiom,
    ! [F: nat > real,G: nat > real] :
      ( ( summable_real @ F )
     => ( ( summable_real @ G )
       => ( ( minus_minus_real @ ( suminf_real @ F ) @ ( suminf_real @ G ) )
          = ( suminf_real
            @ ^ [N3: nat] : ( minus_minus_real @ ( F @ N3 ) @ ( G @ N3 ) ) ) ) ) ) ).

% suminf_diff
thf(fact_7749_suminf__divide,axiom,
    ! [F: nat > complex,C: complex] :
      ( ( summable_complex @ F )
     => ( ( suminf_complex
          @ ^ [N3: nat] : ( divide1717551699836669952omplex @ ( F @ N3 ) @ C ) )
        = ( divide1717551699836669952omplex @ ( suminf_complex @ F ) @ C ) ) ) ).

% suminf_divide
thf(fact_7750_suminf__divide,axiom,
    ! [F: nat > real,C: real] :
      ( ( summable_real @ F )
     => ( ( suminf_real
          @ ^ [N3: nat] : ( divide_divide_real @ ( F @ N3 ) @ C ) )
        = ( divide_divide_real @ ( suminf_real @ F ) @ C ) ) ) ).

% suminf_divide
thf(fact_7751_suminf__minus,axiom,
    ! [F: nat > real] :
      ( ( summable_real @ F )
     => ( ( suminf_real
          @ ^ [N3: nat] : ( uminus_uminus_real @ ( F @ N3 ) ) )
        = ( uminus_uminus_real @ ( suminf_real @ F ) ) ) ) ).

% suminf_minus
thf(fact_7752_suminf__minus,axiom,
    ! [F: nat > complex] :
      ( ( summable_complex @ F )
     => ( ( suminf_complex
          @ ^ [N3: nat] : ( uminus1482373934393186551omplex @ ( F @ N3 ) ) )
        = ( uminus1482373934393186551omplex @ ( suminf_complex @ F ) ) ) ) ).

% suminf_minus
thf(fact_7753_suminf__sum,axiom,
    ! [I6: set_complex,F: complex > nat > real] :
      ( ! [I3: complex] :
          ( ( member_complex @ I3 @ I6 )
         => ( summable_real @ ( F @ I3 ) ) )
     => ( ( suminf_real
          @ ^ [N3: nat] :
              ( groups5808333547571424918x_real
              @ ^ [I5: complex] : ( F @ I5 @ N3 )
              @ I6 ) )
        = ( groups5808333547571424918x_real
          @ ^ [I5: complex] : ( suminf_real @ ( F @ I5 ) )
          @ I6 ) ) ) ).

% suminf_sum
thf(fact_7754_suminf__sum,axiom,
    ! [I6: set_real,F: real > nat > real] :
      ( ! [I3: real] :
          ( ( member_real @ I3 @ I6 )
         => ( summable_real @ ( F @ I3 ) ) )
     => ( ( suminf_real
          @ ^ [N3: nat] :
              ( groups8097168146408367636l_real
              @ ^ [I5: real] : ( F @ I5 @ N3 )
              @ I6 ) )
        = ( groups8097168146408367636l_real
          @ ^ [I5: real] : ( suminf_real @ ( F @ I5 ) )
          @ I6 ) ) ) ).

% suminf_sum
thf(fact_7755_suminf__sum,axiom,
    ! [I6: set_int,F: int > nat > real] :
      ( ! [I3: int] :
          ( ( member_int @ I3 @ I6 )
         => ( summable_real @ ( F @ I3 ) ) )
     => ( ( suminf_real
          @ ^ [N3: nat] :
              ( groups8778361861064173332t_real
              @ ^ [I5: int] : ( F @ I5 @ N3 )
              @ I6 ) )
        = ( groups8778361861064173332t_real
          @ ^ [I5: int] : ( suminf_real @ ( F @ I5 ) )
          @ I6 ) ) ) ).

% suminf_sum
thf(fact_7756_suminf__sum,axiom,
    ! [I6: set_real,F: real > nat > complex] :
      ( ! [I3: real] :
          ( ( member_real @ I3 @ I6 )
         => ( summable_complex @ ( F @ I3 ) ) )
     => ( ( suminf_complex
          @ ^ [N3: nat] :
              ( groups5754745047067104278omplex
              @ ^ [I5: real] : ( F @ I5 @ N3 )
              @ I6 ) )
        = ( groups5754745047067104278omplex
          @ ^ [I5: real] : ( suminf_complex @ ( F @ I5 ) )
          @ I6 ) ) ) ).

% suminf_sum
thf(fact_7757_suminf__sum,axiom,
    ! [I6: set_nat,F: nat > nat > complex] :
      ( ! [I3: nat] :
          ( ( member_nat @ I3 @ I6 )
         => ( summable_complex @ ( F @ I3 ) ) )
     => ( ( suminf_complex
          @ ^ [N3: nat] :
              ( groups2073611262835488442omplex
              @ ^ [I5: nat] : ( F @ I5 @ N3 )
              @ I6 ) )
        = ( groups2073611262835488442omplex
          @ ^ [I5: nat] : ( suminf_complex @ ( F @ I5 ) )
          @ I6 ) ) ) ).

% suminf_sum
thf(fact_7758_suminf__sum,axiom,
    ! [I6: set_int,F: int > nat > complex] :
      ( ! [I3: int] :
          ( ( member_int @ I3 @ I6 )
         => ( summable_complex @ ( F @ I3 ) ) )
     => ( ( suminf_complex
          @ ^ [N3: nat] :
              ( groups3049146728041665814omplex
              @ ^ [I5: int] : ( F @ I5 @ N3 )
              @ I6 ) )
        = ( groups3049146728041665814omplex
          @ ^ [I5: int] : ( suminf_complex @ ( F @ I5 ) )
          @ I6 ) ) ) ).

% suminf_sum
thf(fact_7759_suminf__sum,axiom,
    ! [I6: set_int,F: int > nat > int] :
      ( ! [I3: int] :
          ( ( member_int @ I3 @ I6 )
         => ( summable_int @ ( F @ I3 ) ) )
     => ( ( suminf_int
          @ ^ [N3: nat] :
              ( groups4538972089207619220nt_int
              @ ^ [I5: int] : ( F @ I5 @ N3 )
              @ I6 ) )
        = ( groups4538972089207619220nt_int
          @ ^ [I5: int] : ( suminf_int @ ( F @ I5 ) )
          @ I6 ) ) ) ).

% suminf_sum
thf(fact_7760_suminf__sum,axiom,
    ! [I6: set_complex,F: complex > nat > complex] :
      ( ! [I3: complex] :
          ( ( member_complex @ I3 @ I6 )
         => ( summable_complex @ ( F @ I3 ) ) )
     => ( ( suminf_complex
          @ ^ [N3: nat] :
              ( groups7754918857620584856omplex
              @ ^ [I5: complex] : ( F @ I5 @ N3 )
              @ I6 ) )
        = ( groups7754918857620584856omplex
          @ ^ [I5: complex] : ( suminf_complex @ ( F @ I5 ) )
          @ I6 ) ) ) ).

% suminf_sum
thf(fact_7761_suminf__sum,axiom,
    ! [I6: set_nat,F: nat > nat > nat] :
      ( ! [I3: nat] :
          ( ( member_nat @ I3 @ I6 )
         => ( summable_nat @ ( F @ I3 ) ) )
     => ( ( suminf_nat
          @ ^ [N3: nat] :
              ( groups3542108847815614940at_nat
              @ ^ [I5: nat] : ( F @ I5 @ N3 )
              @ I6 ) )
        = ( groups3542108847815614940at_nat
          @ ^ [I5: nat] : ( suminf_nat @ ( F @ I5 ) )
          @ I6 ) ) ) ).

% suminf_sum
thf(fact_7762_suminf__sum,axiom,
    ! [I6: set_nat,F: nat > nat > real] :
      ( ! [I3: nat] :
          ( ( member_nat @ I3 @ I6 )
         => ( summable_real @ ( F @ I3 ) ) )
     => ( ( suminf_real
          @ ^ [N3: nat] :
              ( groups6591440286371151544t_real
              @ ^ [I5: nat] : ( F @ I5 @ N3 )
              @ I6 ) )
        = ( groups6591440286371151544t_real
          @ ^ [I5: nat] : ( suminf_real @ ( F @ I5 ) )
          @ I6 ) ) ) ).

% suminf_sum
thf(fact_7763_sum__less__suminf2,axiom,
    ! [F: nat > int,N2: nat,I2: nat] :
      ( ( summable_int @ F )
     => ( ! [M2: nat] :
            ( ( ord_less_eq_nat @ N2 @ M2 )
           => ( ord_less_eq_int @ zero_zero_int @ ( F @ M2 ) ) )
       => ( ( ord_less_eq_nat @ N2 @ I2 )
         => ( ( ord_less_int @ zero_zero_int @ ( F @ I2 ) )
           => ( ord_less_int @ ( groups3539618377306564664at_int @ F @ ( set_ord_lessThan_nat @ N2 ) ) @ ( suminf_int @ F ) ) ) ) ) ) ).

% sum_less_suminf2
thf(fact_7764_sum__less__suminf2,axiom,
    ! [F: nat > nat,N2: nat,I2: nat] :
      ( ( summable_nat @ F )
     => ( ! [M2: nat] :
            ( ( ord_less_eq_nat @ N2 @ M2 )
           => ( ord_less_eq_nat @ zero_zero_nat @ ( F @ M2 ) ) )
       => ( ( ord_less_eq_nat @ N2 @ I2 )
         => ( ( ord_less_nat @ zero_zero_nat @ ( F @ I2 ) )
           => ( ord_less_nat @ ( groups3542108847815614940at_nat @ F @ ( set_ord_lessThan_nat @ N2 ) ) @ ( suminf_nat @ F ) ) ) ) ) ) ).

% sum_less_suminf2
thf(fact_7765_sum__less__suminf2,axiom,
    ! [F: nat > real,N2: nat,I2: nat] :
      ( ( summable_real @ F )
     => ( ! [M2: nat] :
            ( ( ord_less_eq_nat @ N2 @ M2 )
           => ( ord_less_eq_real @ zero_zero_real @ ( F @ M2 ) ) )
       => ( ( ord_less_eq_nat @ N2 @ I2 )
         => ( ( ord_less_real @ zero_zero_real @ ( F @ I2 ) )
           => ( ord_less_real @ ( groups6591440286371151544t_real @ F @ ( set_ord_lessThan_nat @ N2 ) ) @ ( suminf_real @ F ) ) ) ) ) ) ).

% sum_less_suminf2
thf(fact_7766_suminf__eq__zero__iff,axiom,
    ! [F: nat > real] :
      ( ( summable_real @ F )
     => ( ! [N: nat] : ( ord_less_eq_real @ zero_zero_real @ ( F @ N ) )
       => ( ( ( suminf_real @ F )
            = zero_zero_real )
          = ( ! [N3: nat] :
                ( ( F @ N3 )
                = zero_zero_real ) ) ) ) ) ).

% suminf_eq_zero_iff
thf(fact_7767_suminf__eq__zero__iff,axiom,
    ! [F: nat > nat] :
      ( ( summable_nat @ F )
     => ( ! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ ( F @ N ) )
       => ( ( ( suminf_nat @ F )
            = zero_zero_nat )
          = ( ! [N3: nat] :
                ( ( F @ N3 )
                = zero_zero_nat ) ) ) ) ) ).

% suminf_eq_zero_iff
thf(fact_7768_suminf__eq__zero__iff,axiom,
    ! [F: nat > int] :
      ( ( summable_int @ F )
     => ( ! [N: nat] : ( ord_less_eq_int @ zero_zero_int @ ( F @ N ) )
       => ( ( ( suminf_int @ F )
            = zero_zero_int )
          = ( ! [N3: nat] :
                ( ( F @ N3 )
                = zero_zero_int ) ) ) ) ) ).

% suminf_eq_zero_iff
thf(fact_7769_suminf__nonneg,axiom,
    ! [F: nat > real] :
      ( ( summable_real @ F )
     => ( ! [N: nat] : ( ord_less_eq_real @ zero_zero_real @ ( F @ N ) )
       => ( ord_less_eq_real @ zero_zero_real @ ( suminf_real @ F ) ) ) ) ).

% suminf_nonneg
thf(fact_7770_suminf__nonneg,axiom,
    ! [F: nat > nat] :
      ( ( summable_nat @ F )
     => ( ! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ ( F @ N ) )
       => ( ord_less_eq_nat @ zero_zero_nat @ ( suminf_nat @ F ) ) ) ) ).

% suminf_nonneg
thf(fact_7771_suminf__nonneg,axiom,
    ! [F: nat > int] :
      ( ( summable_int @ F )
     => ( ! [N: nat] : ( ord_less_eq_int @ zero_zero_int @ ( F @ N ) )
       => ( ord_less_eq_int @ zero_zero_int @ ( suminf_int @ F ) ) ) ) ).

% suminf_nonneg
thf(fact_7772_suminf__pos,axiom,
    ! [F: nat > real] :
      ( ( summable_real @ F )
     => ( ! [N: nat] : ( ord_less_real @ zero_zero_real @ ( F @ N ) )
       => ( ord_less_real @ zero_zero_real @ ( suminf_real @ F ) ) ) ) ).

% suminf_pos
thf(fact_7773_suminf__pos,axiom,
    ! [F: nat > nat] :
      ( ( summable_nat @ F )
     => ( ! [N: nat] : ( ord_less_nat @ zero_zero_nat @ ( F @ N ) )
       => ( ord_less_nat @ zero_zero_nat @ ( suminf_nat @ F ) ) ) ) ).

% suminf_pos
thf(fact_7774_suminf__pos,axiom,
    ! [F: nat > int] :
      ( ( summable_int @ F )
     => ( ! [N: nat] : ( ord_less_int @ zero_zero_int @ ( F @ N ) )
       => ( ord_less_int @ zero_zero_int @ ( suminf_int @ F ) ) ) ) ).

% suminf_pos
thf(fact_7775_summable__0__powser,axiom,
    ! [F: nat > complex] :
      ( summable_complex
      @ ^ [N3: nat] : ( times_times_complex @ ( F @ N3 ) @ ( power_power_complex @ zero_zero_complex @ N3 ) ) ) ).

% summable_0_powser
thf(fact_7776_summable__0__powser,axiom,
    ! [F: nat > real] :
      ( summable_real
      @ ^ [N3: nat] : ( times_times_real @ ( F @ N3 ) @ ( power_power_real @ zero_zero_real @ N3 ) ) ) ).

% summable_0_powser
thf(fact_7777_summable__zero__power_H,axiom,
    ! [F: nat > complex] :
      ( summable_complex
      @ ^ [N3: nat] : ( times_times_complex @ ( F @ N3 ) @ ( power_power_complex @ zero_zero_complex @ N3 ) ) ) ).

% summable_zero_power'
thf(fact_7778_summable__zero__power_H,axiom,
    ! [F: nat > real] :
      ( summable_real
      @ ^ [N3: nat] : ( times_times_real @ ( F @ N3 ) @ ( power_power_real @ zero_zero_real @ N3 ) ) ) ).

% summable_zero_power'
thf(fact_7779_summable__zero__power_H,axiom,
    ! [F: nat > int] :
      ( summable_int
      @ ^ [N3: nat] : ( times_times_int @ ( F @ N3 ) @ ( power_power_int @ zero_zero_int @ N3 ) ) ) ).

% summable_zero_power'
thf(fact_7780_powser__split__head_I3_J,axiom,
    ! [F: nat > complex,Z: complex] :
      ( ( summable_complex
        @ ^ [N3: nat] : ( times_times_complex @ ( F @ N3 ) @ ( power_power_complex @ Z @ N3 ) ) )
     => ( summable_complex
        @ ^ [N3: nat] : ( times_times_complex @ ( F @ ( suc @ N3 ) ) @ ( power_power_complex @ Z @ N3 ) ) ) ) ).

% powser_split_head(3)
thf(fact_7781_powser__split__head_I3_J,axiom,
    ! [F: nat > real,Z: real] :
      ( ( summable_real
        @ ^ [N3: nat] : ( times_times_real @ ( F @ N3 ) @ ( power_power_real @ Z @ N3 ) ) )
     => ( summable_real
        @ ^ [N3: nat] : ( times_times_real @ ( F @ ( suc @ N3 ) ) @ ( power_power_real @ Z @ N3 ) ) ) ) ).

% powser_split_head(3)
thf(fact_7782_summable__powser__split__head,axiom,
    ! [F: nat > complex,Z: complex] :
      ( ( summable_complex
        @ ^ [N3: nat] : ( times_times_complex @ ( F @ ( suc @ N3 ) ) @ ( power_power_complex @ Z @ N3 ) ) )
      = ( summable_complex
        @ ^ [N3: nat] : ( times_times_complex @ ( F @ N3 ) @ ( power_power_complex @ Z @ N3 ) ) ) ) ).

% summable_powser_split_head
thf(fact_7783_summable__powser__split__head,axiom,
    ! [F: nat > real,Z: real] :
      ( ( summable_real
        @ ^ [N3: nat] : ( times_times_real @ ( F @ ( suc @ N3 ) ) @ ( power_power_real @ Z @ N3 ) ) )
      = ( summable_real
        @ ^ [N3: nat] : ( times_times_real @ ( F @ N3 ) @ ( power_power_real @ Z @ N3 ) ) ) ) ).

% summable_powser_split_head
thf(fact_7784_summable__powser__ignore__initial__segment,axiom,
    ! [F: nat > complex,M: nat,Z: complex] :
      ( ( summable_complex
        @ ^ [N3: nat] : ( times_times_complex @ ( F @ ( plus_plus_nat @ N3 @ M ) ) @ ( power_power_complex @ Z @ N3 ) ) )
      = ( summable_complex
        @ ^ [N3: nat] : ( times_times_complex @ ( F @ N3 ) @ ( power_power_complex @ Z @ N3 ) ) ) ) ).

% summable_powser_ignore_initial_segment
thf(fact_7785_summable__powser__ignore__initial__segment,axiom,
    ! [F: nat > real,M: nat,Z: real] :
      ( ( summable_real
        @ ^ [N3: nat] : ( times_times_real @ ( F @ ( plus_plus_nat @ N3 @ M ) ) @ ( power_power_real @ Z @ N3 ) ) )
      = ( summable_real
        @ ^ [N3: nat] : ( times_times_real @ ( F @ N3 ) @ ( power_power_real @ Z @ N3 ) ) ) ) ).

% summable_powser_ignore_initial_segment
thf(fact_7786_summable__norm__comparison__test,axiom,
    ! [F: nat > complex,G: nat > real] :
      ( ? [N7: nat] :
        ! [N: nat] :
          ( ( ord_less_eq_nat @ N7 @ N )
         => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( F @ N ) ) @ ( G @ N ) ) )
     => ( ( summable_real @ G )
       => ( summable_real
          @ ^ [N3: nat] : ( real_V1022390504157884413omplex @ ( F @ N3 ) ) ) ) ) ).

% summable_norm_comparison_test
thf(fact_7787_summable__rabs__comparison__test,axiom,
    ! [F: nat > real,G: nat > real] :
      ( ? [N7: nat] :
        ! [N: nat] :
          ( ( ord_less_eq_nat @ N7 @ N )
         => ( ord_less_eq_real @ ( abs_abs_real @ ( F @ N ) ) @ ( G @ N ) ) )
     => ( ( summable_real @ G )
       => ( summable_real
          @ ^ [N3: nat] : ( abs_abs_real @ ( F @ N3 ) ) ) ) ) ).

% summable_rabs_comparison_test
thf(fact_7788_sum_Onat__diff__reindex,axiom,
    ! [G: nat > nat,N2: nat] :
      ( ( groups3542108847815614940at_nat
        @ ^ [I5: nat] : ( G @ ( minus_minus_nat @ N2 @ ( suc @ I5 ) ) )
        @ ( set_ord_lessThan_nat @ N2 ) )
      = ( groups3542108847815614940at_nat @ G @ ( set_ord_lessThan_nat @ N2 ) ) ) ).

% sum.nat_diff_reindex
thf(fact_7789_sum_Onat__diff__reindex,axiom,
    ! [G: nat > real,N2: nat] :
      ( ( groups6591440286371151544t_real
        @ ^ [I5: nat] : ( G @ ( minus_minus_nat @ N2 @ ( suc @ I5 ) ) )
        @ ( set_ord_lessThan_nat @ N2 ) )
      = ( groups6591440286371151544t_real @ G @ ( set_ord_lessThan_nat @ N2 ) ) ) ).

% sum.nat_diff_reindex
thf(fact_7790_summable__rabs,axiom,
    ! [F: nat > real] :
      ( ( summable_real
        @ ^ [N3: nat] : ( abs_abs_real @ ( F @ N3 ) ) )
     => ( ord_less_eq_real @ ( abs_abs_real @ ( suminf_real @ F ) )
        @ ( suminf_real
          @ ^ [N3: nat] : ( abs_abs_real @ ( F @ N3 ) ) ) ) ) ).

% summable_rabs
thf(fact_7791_sum__diff__distrib,axiom,
    ! [Q: int > nat,P: int > nat,N2: int] :
      ( ! [X5: int] : ( ord_less_eq_nat @ ( Q @ X5 ) @ ( P @ X5 ) )
     => ( ( minus_minus_nat @ ( groups4541462559716669496nt_nat @ P @ ( set_ord_lessThan_int @ N2 ) ) @ ( groups4541462559716669496nt_nat @ Q @ ( set_ord_lessThan_int @ N2 ) ) )
        = ( groups4541462559716669496nt_nat
          @ ^ [X3: int] : ( minus_minus_nat @ ( P @ X3 ) @ ( Q @ X3 ) )
          @ ( set_ord_lessThan_int @ N2 ) ) ) ) ).

% sum_diff_distrib
thf(fact_7792_sum__diff__distrib,axiom,
    ! [Q: real > nat,P: real > nat,N2: real] :
      ( ! [X5: real] : ( ord_less_eq_nat @ ( Q @ X5 ) @ ( P @ X5 ) )
     => ( ( minus_minus_nat @ ( groups1935376822645274424al_nat @ P @ ( set_or5984915006950818249n_real @ N2 ) ) @ ( groups1935376822645274424al_nat @ Q @ ( set_or5984915006950818249n_real @ N2 ) ) )
        = ( groups1935376822645274424al_nat
          @ ^ [X3: real] : ( minus_minus_nat @ ( P @ X3 ) @ ( Q @ X3 ) )
          @ ( set_or5984915006950818249n_real @ N2 ) ) ) ) ).

% sum_diff_distrib
thf(fact_7793_sum__diff__distrib,axiom,
    ! [Q: $o > nat,P: $o > nat,N2: $o] :
      ( ! [X5: $o] : ( ord_less_eq_nat @ ( Q @ X5 ) @ ( P @ X5 ) )
     => ( ( minus_minus_nat @ ( groups8507830703676809646_o_nat @ P @ ( set_ord_lessThan_o @ N2 ) ) @ ( groups8507830703676809646_o_nat @ Q @ ( set_ord_lessThan_o @ N2 ) ) )
        = ( groups8507830703676809646_o_nat
          @ ^ [X3: $o] : ( minus_minus_nat @ ( P @ X3 ) @ ( Q @ X3 ) )
          @ ( set_ord_lessThan_o @ N2 ) ) ) ) ).

% sum_diff_distrib
thf(fact_7794_sum__diff__distrib,axiom,
    ! [Q: nat > nat,P: nat > nat,N2: nat] :
      ( ! [X5: nat] : ( ord_less_eq_nat @ ( Q @ X5 ) @ ( P @ X5 ) )
     => ( ( minus_minus_nat @ ( groups3542108847815614940at_nat @ P @ ( set_ord_lessThan_nat @ N2 ) ) @ ( groups3542108847815614940at_nat @ Q @ ( set_ord_lessThan_nat @ N2 ) ) )
        = ( groups3542108847815614940at_nat
          @ ^ [X3: nat] : ( minus_minus_nat @ ( P @ X3 ) @ ( Q @ X3 ) )
          @ ( set_ord_lessThan_nat @ N2 ) ) ) ) ).

% sum_diff_distrib
thf(fact_7795_suminf__pos__iff,axiom,
    ! [F: nat > real] :
      ( ( summable_real @ F )
     => ( ! [N: nat] : ( ord_less_eq_real @ zero_zero_real @ ( F @ N ) )
       => ( ( ord_less_real @ zero_zero_real @ ( suminf_real @ F ) )
          = ( ? [I5: nat] : ( ord_less_real @ zero_zero_real @ ( F @ I5 ) ) ) ) ) ) ).

% suminf_pos_iff
thf(fact_7796_suminf__pos__iff,axiom,
    ! [F: nat > nat] :
      ( ( summable_nat @ F )
     => ( ! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ ( F @ N ) )
       => ( ( ord_less_nat @ zero_zero_nat @ ( suminf_nat @ F ) )
          = ( ? [I5: nat] : ( ord_less_nat @ zero_zero_nat @ ( F @ I5 ) ) ) ) ) ) ).

% suminf_pos_iff
thf(fact_7797_suminf__pos__iff,axiom,
    ! [F: nat > int] :
      ( ( summable_int @ F )
     => ( ! [N: nat] : ( ord_less_eq_int @ zero_zero_int @ ( F @ N ) )
       => ( ( ord_less_int @ zero_zero_int @ ( suminf_int @ F ) )
          = ( ? [I5: nat] : ( ord_less_int @ zero_zero_int @ ( F @ I5 ) ) ) ) ) ) ).

% suminf_pos_iff
thf(fact_7798_suminf__pos2,axiom,
    ! [F: nat > real,I2: nat] :
      ( ( summable_real @ F )
     => ( ! [N: nat] : ( ord_less_eq_real @ zero_zero_real @ ( F @ N ) )
       => ( ( ord_less_real @ zero_zero_real @ ( F @ I2 ) )
         => ( ord_less_real @ zero_zero_real @ ( suminf_real @ F ) ) ) ) ) ).

% suminf_pos2
thf(fact_7799_suminf__pos2,axiom,
    ! [F: nat > nat,I2: nat] :
      ( ( summable_nat @ F )
     => ( ! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ ( F @ N ) )
       => ( ( ord_less_nat @ zero_zero_nat @ ( F @ I2 ) )
         => ( ord_less_nat @ zero_zero_nat @ ( suminf_nat @ F ) ) ) ) ) ).

% suminf_pos2
thf(fact_7800_suminf__pos2,axiom,
    ! [F: nat > int,I2: nat] :
      ( ( summable_int @ F )
     => ( ! [N: nat] : ( ord_less_eq_int @ zero_zero_int @ ( F @ N ) )
       => ( ( ord_less_int @ zero_zero_int @ ( F @ I2 ) )
         => ( ord_less_int @ zero_zero_int @ ( suminf_int @ F ) ) ) ) ) ).

% suminf_pos2
thf(fact_7801_powser__inside,axiom,
    ! [F: nat > real,X: real,Z: real] :
      ( ( summable_real
        @ ^ [N3: nat] : ( times_times_real @ ( F @ N3 ) @ ( power_power_real @ X @ N3 ) ) )
     => ( ( ord_less_real @ ( real_V7735802525324610683m_real @ Z ) @ ( real_V7735802525324610683m_real @ X ) )
       => ( summable_real
          @ ^ [N3: nat] : ( times_times_real @ ( F @ N3 ) @ ( power_power_real @ Z @ N3 ) ) ) ) ) ).

% powser_inside
thf(fact_7802_powser__inside,axiom,
    ! [F: nat > complex,X: complex,Z: complex] :
      ( ( summable_complex
        @ ^ [N3: nat] : ( times_times_complex @ ( F @ N3 ) @ ( power_power_complex @ X @ N3 ) ) )
     => ( ( ord_less_real @ ( real_V1022390504157884413omplex @ Z ) @ ( real_V1022390504157884413omplex @ X ) )
       => ( summable_complex
          @ ^ [N3: nat] : ( times_times_complex @ ( F @ N3 ) @ ( power_power_complex @ Z @ N3 ) ) ) ) ) ).

% powser_inside
thf(fact_7803_summable__geometric,axiom,
    ! [C: real] :
      ( ( ord_less_real @ ( real_V7735802525324610683m_real @ C ) @ one_one_real )
     => ( summable_real @ ( power_power_real @ C ) ) ) ).

% summable_geometric
thf(fact_7804_summable__geometric,axiom,
    ! [C: complex] :
      ( ( ord_less_real @ ( real_V1022390504157884413omplex @ C ) @ one_one_real )
     => ( summable_complex @ ( power_power_complex @ C ) ) ) ).

% summable_geometric
thf(fact_7805_complete__algebra__summable__geometric,axiom,
    ! [X: real] :
      ( ( ord_less_real @ ( real_V7735802525324610683m_real @ X ) @ one_one_real )
     => ( summable_real @ ( power_power_real @ X ) ) ) ).

% complete_algebra_summable_geometric
thf(fact_7806_complete__algebra__summable__geometric,axiom,
    ! [X: complex] :
      ( ( ord_less_real @ ( real_V1022390504157884413omplex @ X ) @ one_one_real )
     => ( summable_complex @ ( power_power_complex @ X ) ) ) ).

% complete_algebra_summable_geometric
thf(fact_7807_suminf__split__head,axiom,
    ! [F: nat > complex] :
      ( ( summable_complex @ F )
     => ( ( suminf_complex
          @ ^ [N3: nat] : ( F @ ( suc @ N3 ) ) )
        = ( minus_minus_complex @ ( suminf_complex @ F ) @ ( F @ zero_zero_nat ) ) ) ) ).

% suminf_split_head
thf(fact_7808_suminf__split__head,axiom,
    ! [F: nat > real] :
      ( ( summable_real @ F )
     => ( ( suminf_real
          @ ^ [N3: nat] : ( F @ ( suc @ N3 ) ) )
        = ( minus_minus_real @ ( suminf_real @ F ) @ ( F @ zero_zero_nat ) ) ) ) ).

% suminf_split_head
thf(fact_7809_pi__less__4,axiom,
    ord_less_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) ).

% pi_less_4
thf(fact_7810_pi__ge__two,axiom,
    ord_less_eq_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ).

% pi_ge_two
thf(fact_7811_pi__half__neq__two,axiom,
    ( ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
   != ( numeral_numeral_real @ ( bit0 @ one ) ) ) ).

% pi_half_neq_two
thf(fact_7812_sum__pos__lt__pair,axiom,
    ! [F: nat > real,K: nat] :
      ( ( summable_real @ F )
     => ( ! [D4: nat] : ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ ( F @ ( plus_plus_nat @ K @ ( times_times_nat @ ( suc @ ( suc @ zero_zero_nat ) ) @ D4 ) ) ) @ ( F @ ( plus_plus_nat @ K @ ( plus_plus_nat @ ( times_times_nat @ ( suc @ ( suc @ zero_zero_nat ) ) @ D4 ) @ one_one_nat ) ) ) ) )
       => ( ord_less_real @ ( groups6591440286371151544t_real @ F @ ( set_ord_lessThan_nat @ K ) ) @ ( suminf_real @ F ) ) ) ) ).

% sum_pos_lt_pair
thf(fact_7813_sum_OlessThan__Suc__shift,axiom,
    ! [G: nat > rat,N2: nat] :
      ( ( groups2906978787729119204at_rat @ G @ ( set_ord_lessThan_nat @ ( suc @ N2 ) ) )
      = ( plus_plus_rat @ ( G @ zero_zero_nat )
        @ ( groups2906978787729119204at_rat
          @ ^ [I5: nat] : ( G @ ( suc @ I5 ) )
          @ ( set_ord_lessThan_nat @ N2 ) ) ) ) ).

% sum.lessThan_Suc_shift
thf(fact_7814_sum_OlessThan__Suc__shift,axiom,
    ! [G: nat > int,N2: nat] :
      ( ( groups3539618377306564664at_int @ G @ ( set_ord_lessThan_nat @ ( suc @ N2 ) ) )
      = ( plus_plus_int @ ( G @ zero_zero_nat )
        @ ( groups3539618377306564664at_int
          @ ^ [I5: nat] : ( G @ ( suc @ I5 ) )
          @ ( set_ord_lessThan_nat @ N2 ) ) ) ) ).

% sum.lessThan_Suc_shift
thf(fact_7815_sum_OlessThan__Suc__shift,axiom,
    ! [G: nat > nat,N2: nat] :
      ( ( groups3542108847815614940at_nat @ G @ ( set_ord_lessThan_nat @ ( suc @ N2 ) ) )
      = ( plus_plus_nat @ ( G @ zero_zero_nat )
        @ ( groups3542108847815614940at_nat
          @ ^ [I5: nat] : ( G @ ( suc @ I5 ) )
          @ ( set_ord_lessThan_nat @ N2 ) ) ) ) ).

% sum.lessThan_Suc_shift
thf(fact_7816_sum_OlessThan__Suc__shift,axiom,
    ! [G: nat > real,N2: nat] :
      ( ( groups6591440286371151544t_real @ G @ ( set_ord_lessThan_nat @ ( suc @ N2 ) ) )
      = ( plus_plus_real @ ( G @ zero_zero_nat )
        @ ( groups6591440286371151544t_real
          @ ^ [I5: nat] : ( G @ ( suc @ I5 ) )
          @ ( set_ord_lessThan_nat @ N2 ) ) ) ) ).

% sum.lessThan_Suc_shift
thf(fact_7817_sum__lessThan__telescope_H,axiom,
    ! [F: nat > rat,M: nat] :
      ( ( groups2906978787729119204at_rat
        @ ^ [N3: nat] : ( minus_minus_rat @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
        @ ( set_ord_lessThan_nat @ M ) )
      = ( minus_minus_rat @ ( F @ zero_zero_nat ) @ ( F @ M ) ) ) ).

% sum_lessThan_telescope'
thf(fact_7818_sum__lessThan__telescope_H,axiom,
    ! [F: nat > int,M: nat] :
      ( ( groups3539618377306564664at_int
        @ ^ [N3: nat] : ( minus_minus_int @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
        @ ( set_ord_lessThan_nat @ M ) )
      = ( minus_minus_int @ ( F @ zero_zero_nat ) @ ( F @ M ) ) ) ).

% sum_lessThan_telescope'
thf(fact_7819_sum__lessThan__telescope_H,axiom,
    ! [F: nat > real,M: nat] :
      ( ( groups6591440286371151544t_real
        @ ^ [N3: nat] : ( minus_minus_real @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
        @ ( set_ord_lessThan_nat @ M ) )
      = ( minus_minus_real @ ( F @ zero_zero_nat ) @ ( F @ M ) ) ) ).

% sum_lessThan_telescope'
thf(fact_7820_sum__lessThan__telescope,axiom,
    ! [F: nat > rat,M: nat] :
      ( ( groups2906978787729119204at_rat
        @ ^ [N3: nat] : ( minus_minus_rat @ ( F @ ( suc @ N3 ) ) @ ( F @ N3 ) )
        @ ( set_ord_lessThan_nat @ M ) )
      = ( minus_minus_rat @ ( F @ M ) @ ( F @ zero_zero_nat ) ) ) ).

% sum_lessThan_telescope
thf(fact_7821_sum__lessThan__telescope,axiom,
    ! [F: nat > int,M: nat] :
      ( ( groups3539618377306564664at_int
        @ ^ [N3: nat] : ( minus_minus_int @ ( F @ ( suc @ N3 ) ) @ ( F @ N3 ) )
        @ ( set_ord_lessThan_nat @ M ) )
      = ( minus_minus_int @ ( F @ M ) @ ( F @ zero_zero_nat ) ) ) ).

% sum_lessThan_telescope
thf(fact_7822_sum__lessThan__telescope,axiom,
    ! [F: nat > real,M: nat] :
      ( ( groups6591440286371151544t_real
        @ ^ [N3: nat] : ( minus_minus_real @ ( F @ ( suc @ N3 ) ) @ ( F @ N3 ) )
        @ ( set_ord_lessThan_nat @ M ) )
      = ( minus_minus_real @ ( F @ M ) @ ( F @ zero_zero_nat ) ) ) ).

% sum_lessThan_telescope
thf(fact_7823_sumr__diff__mult__const2,axiom,
    ! [F: nat > rat,N2: nat,R2: rat] :
      ( ( minus_minus_rat @ ( groups2906978787729119204at_rat @ F @ ( set_ord_lessThan_nat @ N2 ) ) @ ( times_times_rat @ ( semiri681578069525770553at_rat @ N2 ) @ R2 ) )
      = ( groups2906978787729119204at_rat
        @ ^ [I5: nat] : ( minus_minus_rat @ ( F @ I5 ) @ R2 )
        @ ( set_ord_lessThan_nat @ N2 ) ) ) ).

% sumr_diff_mult_const2
thf(fact_7824_sumr__diff__mult__const2,axiom,
    ! [F: nat > int,N2: nat,R2: int] :
      ( ( minus_minus_int @ ( groups3539618377306564664at_int @ F @ ( set_ord_lessThan_nat @ N2 ) ) @ ( times_times_int @ ( semiri1314217659103216013at_int @ N2 ) @ R2 ) )
      = ( groups3539618377306564664at_int
        @ ^ [I5: nat] : ( minus_minus_int @ ( F @ I5 ) @ R2 )
        @ ( set_ord_lessThan_nat @ N2 ) ) ) ).

% sumr_diff_mult_const2
thf(fact_7825_sumr__diff__mult__const2,axiom,
    ! [F: nat > code_integer,N2: nat,R2: code_integer] :
      ( ( minus_8373710615458151222nteger @ ( groups7501900531339628137nteger @ F @ ( set_ord_lessThan_nat @ N2 ) ) @ ( times_3573771949741848930nteger @ ( semiri4939895301339042750nteger @ N2 ) @ R2 ) )
      = ( groups7501900531339628137nteger
        @ ^ [I5: nat] : ( minus_8373710615458151222nteger @ ( F @ I5 ) @ R2 )
        @ ( set_ord_lessThan_nat @ N2 ) ) ) ).

% sumr_diff_mult_const2
thf(fact_7826_sumr__diff__mult__const2,axiom,
    ! [F: nat > real,N2: nat,R2: real] :
      ( ( minus_minus_real @ ( groups6591440286371151544t_real @ F @ ( set_ord_lessThan_nat @ N2 ) ) @ ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ R2 ) )
      = ( groups6591440286371151544t_real
        @ ^ [I5: nat] : ( minus_minus_real @ ( F @ I5 ) @ R2 )
        @ ( set_ord_lessThan_nat @ N2 ) ) ) ).

% sumr_diff_mult_const2
thf(fact_7827_summable__norm,axiom,
    ! [F: nat > real] :
      ( ( summable_real
        @ ^ [N3: nat] : ( real_V7735802525324610683m_real @ ( F @ N3 ) ) )
     => ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( suminf_real @ F ) )
        @ ( suminf_real
          @ ^ [N3: nat] : ( real_V7735802525324610683m_real @ ( F @ N3 ) ) ) ) ) ).

% summable_norm
thf(fact_7828_summable__norm,axiom,
    ! [F: nat > complex] :
      ( ( summable_real
        @ ^ [N3: nat] : ( real_V1022390504157884413omplex @ ( F @ N3 ) ) )
     => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( suminf_complex @ F ) )
        @ ( suminf_real
          @ ^ [N3: nat] : ( real_V1022390504157884413omplex @ ( F @ N3 ) ) ) ) ) ).

% summable_norm
thf(fact_7829_sum_OatLeast1__atMost__eq,axiom,
    ! [G: nat > nat,N2: nat] :
      ( ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ ( suc @ zero_zero_nat ) @ N2 ) )
      = ( groups3542108847815614940at_nat
        @ ^ [K3: nat] : ( G @ ( suc @ K3 ) )
        @ ( set_ord_lessThan_nat @ N2 ) ) ) ).

% sum.atLeast1_atMost_eq
thf(fact_7830_sum_OatLeast1__atMost__eq,axiom,
    ! [G: nat > real,N2: nat] :
      ( ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ ( suc @ zero_zero_nat ) @ N2 ) )
      = ( groups6591440286371151544t_real
        @ ^ [K3: nat] : ( G @ ( suc @ K3 ) )
        @ ( set_ord_lessThan_nat @ N2 ) ) ) ).

% sum.atLeast1_atMost_eq
thf(fact_7831_sum__le__suminf,axiom,
    ! [F: nat > int,I6: set_nat] :
      ( ( summable_int @ F )
     => ( ( finite_finite_nat @ I6 )
       => ( ! [N: nat] :
              ( ( member_nat @ N @ ( uminus5710092332889474511et_nat @ I6 ) )
             => ( ord_less_eq_int @ zero_zero_int @ ( F @ N ) ) )
         => ( ord_less_eq_int @ ( groups3539618377306564664at_int @ F @ I6 ) @ ( suminf_int @ F ) ) ) ) ) ).

% sum_le_suminf
thf(fact_7832_sum__le__suminf,axiom,
    ! [F: nat > nat,I6: set_nat] :
      ( ( summable_nat @ F )
     => ( ( finite_finite_nat @ I6 )
       => ( ! [N: nat] :
              ( ( member_nat @ N @ ( uminus5710092332889474511et_nat @ I6 ) )
             => ( ord_less_eq_nat @ zero_zero_nat @ ( F @ N ) ) )
         => ( ord_less_eq_nat @ ( groups3542108847815614940at_nat @ F @ I6 ) @ ( suminf_nat @ F ) ) ) ) ) ).

% sum_le_suminf
thf(fact_7833_sum__le__suminf,axiom,
    ! [F: nat > real,I6: set_nat] :
      ( ( summable_real @ F )
     => ( ( finite_finite_nat @ I6 )
       => ( ! [N: nat] :
              ( ( member_nat @ N @ ( uminus5710092332889474511et_nat @ I6 ) )
             => ( ord_less_eq_real @ zero_zero_real @ ( F @ N ) ) )
         => ( ord_less_eq_real @ ( groups6591440286371151544t_real @ F @ I6 ) @ ( suminf_real @ F ) ) ) ) ) ).

% sum_le_suminf
thf(fact_7834_pred__equals__eq2,axiom,
    ! [R: set_Pr448751882837621926eger_o,S3: set_Pr448751882837621926eger_o] :
      ( ( ( ^ [X3: code_integer,Y3: $o] : ( member1379723562493234055eger_o @ ( produc6677183202524767010eger_o @ X3 @ Y3 ) @ R ) )
        = ( ^ [X3: code_integer,Y3: $o] : ( member1379723562493234055eger_o @ ( produc6677183202524767010eger_o @ X3 @ Y3 ) @ S3 ) ) )
      = ( R = S3 ) ) ).

% pred_equals_eq2
thf(fact_7835_pred__equals__eq2,axiom,
    ! [R: set_Pr8218934625190621173um_num,S3: set_Pr8218934625190621173um_num] :
      ( ( ( ^ [X3: num,Y3: num] : ( member7279096912039735102um_num @ ( product_Pair_num_num @ X3 @ Y3 ) @ R ) )
        = ( ^ [X3: num,Y3: num] : ( member7279096912039735102um_num @ ( product_Pair_num_num @ X3 @ Y3 ) @ S3 ) ) )
      = ( R = S3 ) ) ).

% pred_equals_eq2
thf(fact_7836_pred__equals__eq2,axiom,
    ! [R: set_Pr6200539531224447659at_num,S3: set_Pr6200539531224447659at_num] :
      ( ( ( ^ [X3: nat,Y3: num] : ( member9148766508732265716at_num @ ( product_Pair_nat_num @ X3 @ Y3 ) @ R ) )
        = ( ^ [X3: nat,Y3: num] : ( member9148766508732265716at_num @ ( product_Pair_nat_num @ X3 @ Y3 ) @ S3 ) ) )
      = ( R = S3 ) ) ).

% pred_equals_eq2
thf(fact_7837_pred__equals__eq2,axiom,
    ! [R: set_Pr1261947904930325089at_nat,S3: set_Pr1261947904930325089at_nat] :
      ( ( ( ^ [X3: nat,Y3: nat] : ( member8440522571783428010at_nat @ ( product_Pair_nat_nat @ X3 @ Y3 ) @ R ) )
        = ( ^ [X3: nat,Y3: nat] : ( member8440522571783428010at_nat @ ( product_Pair_nat_nat @ X3 @ Y3 ) @ S3 ) ) )
      = ( R = S3 ) ) ).

% pred_equals_eq2
thf(fact_7838_pred__equals__eq2,axiom,
    ! [R: set_Pr958786334691620121nt_int,S3: set_Pr958786334691620121nt_int] :
      ( ( ( ^ [X3: int,Y3: int] : ( member5262025264175285858nt_int @ ( product_Pair_int_int @ X3 @ Y3 ) @ R ) )
        = ( ^ [X3: int,Y3: int] : ( member5262025264175285858nt_int @ ( product_Pair_int_int @ X3 @ Y3 ) @ S3 ) ) )
      = ( R = S3 ) ) ).

% pred_equals_eq2
thf(fact_7839_bot__empty__eq2,axiom,
    ( bot_bo4731626569425807221er_o_o
    = ( ^ [X3: code_integer,Y3: $o] : ( member1379723562493234055eger_o @ ( produc6677183202524767010eger_o @ X3 @ Y3 ) @ bot_bo5379713665208646970eger_o ) ) ) ).

% bot_empty_eq2
thf(fact_7840_bot__empty__eq2,axiom,
    ( bot_bot_num_num_o
    = ( ^ [X3: num,Y3: num] : ( member7279096912039735102um_num @ ( product_Pair_num_num @ X3 @ Y3 ) @ bot_bo9056780473022590049um_num ) ) ) ).

% bot_empty_eq2
thf(fact_7841_bot__empty__eq2,axiom,
    ( bot_bot_nat_num_o
    = ( ^ [X3: nat,Y3: num] : ( member9148766508732265716at_num @ ( product_Pair_nat_num @ X3 @ Y3 ) @ bot_bo7038385379056416535at_num ) ) ) ).

% bot_empty_eq2
thf(fact_7842_bot__empty__eq2,axiom,
    ( bot_bot_nat_nat_o
    = ( ^ [X3: nat,Y3: nat] : ( member8440522571783428010at_nat @ ( product_Pair_nat_nat @ X3 @ Y3 ) @ bot_bo2099793752762293965at_nat ) ) ) ).

% bot_empty_eq2
thf(fact_7843_bot__empty__eq2,axiom,
    ( bot_bot_int_int_o
    = ( ^ [X3: int,Y3: int] : ( member5262025264175285858nt_int @ ( product_Pair_int_int @ X3 @ Y3 ) @ bot_bo1796632182523588997nt_int ) ) ) ).

% bot_empty_eq2
thf(fact_7844_pi__half__neq__zero,axiom,
    ( ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
   != zero_zero_real ) ).

% pi_half_neq_zero
thf(fact_7845_pi__half__less__two,axiom,
    ord_less_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ).

% pi_half_less_two
thf(fact_7846_pi__half__le__two,axiom,
    ord_less_eq_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ).

% pi_half_le_two
thf(fact_7847_one__diff__power__eq,axiom,
    ! [X: complex,N2: nat] :
      ( ( minus_minus_complex @ one_one_complex @ ( power_power_complex @ X @ N2 ) )
      = ( times_times_complex @ ( minus_minus_complex @ one_one_complex @ X ) @ ( groups2073611262835488442omplex @ ( power_power_complex @ X ) @ ( set_ord_lessThan_nat @ N2 ) ) ) ) ).

% one_diff_power_eq
thf(fact_7848_one__diff__power__eq,axiom,
    ! [X: rat,N2: nat] :
      ( ( minus_minus_rat @ one_one_rat @ ( power_power_rat @ X @ N2 ) )
      = ( times_times_rat @ ( minus_minus_rat @ one_one_rat @ X ) @ ( groups2906978787729119204at_rat @ ( power_power_rat @ X ) @ ( set_ord_lessThan_nat @ N2 ) ) ) ) ).

% one_diff_power_eq
thf(fact_7849_one__diff__power__eq,axiom,
    ! [X: int,N2: nat] :
      ( ( minus_minus_int @ one_one_int @ ( power_power_int @ X @ N2 ) )
      = ( times_times_int @ ( minus_minus_int @ one_one_int @ X ) @ ( groups3539618377306564664at_int @ ( power_power_int @ X ) @ ( set_ord_lessThan_nat @ N2 ) ) ) ) ).

% one_diff_power_eq
thf(fact_7850_one__diff__power__eq,axiom,
    ! [X: real,N2: nat] :
      ( ( minus_minus_real @ one_one_real @ ( power_power_real @ X @ N2 ) )
      = ( times_times_real @ ( minus_minus_real @ one_one_real @ X ) @ ( groups6591440286371151544t_real @ ( power_power_real @ X ) @ ( set_ord_lessThan_nat @ N2 ) ) ) ) ).

% one_diff_power_eq
thf(fact_7851_power__diff__1__eq,axiom,
    ! [X: complex,N2: nat] :
      ( ( minus_minus_complex @ ( power_power_complex @ X @ N2 ) @ one_one_complex )
      = ( times_times_complex @ ( minus_minus_complex @ X @ one_one_complex ) @ ( groups2073611262835488442omplex @ ( power_power_complex @ X ) @ ( set_ord_lessThan_nat @ N2 ) ) ) ) ).

% power_diff_1_eq
thf(fact_7852_power__diff__1__eq,axiom,
    ! [X: rat,N2: nat] :
      ( ( minus_minus_rat @ ( power_power_rat @ X @ N2 ) @ one_one_rat )
      = ( times_times_rat @ ( minus_minus_rat @ X @ one_one_rat ) @ ( groups2906978787729119204at_rat @ ( power_power_rat @ X ) @ ( set_ord_lessThan_nat @ N2 ) ) ) ) ).

% power_diff_1_eq
thf(fact_7853_power__diff__1__eq,axiom,
    ! [X: int,N2: nat] :
      ( ( minus_minus_int @ ( power_power_int @ X @ N2 ) @ one_one_int )
      = ( times_times_int @ ( minus_minus_int @ X @ one_one_int ) @ ( groups3539618377306564664at_int @ ( power_power_int @ X ) @ ( set_ord_lessThan_nat @ N2 ) ) ) ) ).

% power_diff_1_eq
thf(fact_7854_power__diff__1__eq,axiom,
    ! [X: real,N2: nat] :
      ( ( minus_minus_real @ ( power_power_real @ X @ N2 ) @ one_one_real )
      = ( times_times_real @ ( minus_minus_real @ X @ one_one_real ) @ ( groups6591440286371151544t_real @ ( power_power_real @ X ) @ ( set_ord_lessThan_nat @ N2 ) ) ) ) ).

% power_diff_1_eq
thf(fact_7855_geometric__sum,axiom,
    ! [X: complex,N2: nat] :
      ( ( X != one_one_complex )
     => ( ( groups2073611262835488442omplex @ ( power_power_complex @ X ) @ ( set_ord_lessThan_nat @ N2 ) )
        = ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( power_power_complex @ X @ N2 ) @ one_one_complex ) @ ( minus_minus_complex @ X @ one_one_complex ) ) ) ) ).

% geometric_sum
thf(fact_7856_geometric__sum,axiom,
    ! [X: rat,N2: nat] :
      ( ( X != one_one_rat )
     => ( ( groups2906978787729119204at_rat @ ( power_power_rat @ X ) @ ( set_ord_lessThan_nat @ N2 ) )
        = ( divide_divide_rat @ ( minus_minus_rat @ ( power_power_rat @ X @ N2 ) @ one_one_rat ) @ ( minus_minus_rat @ X @ one_one_rat ) ) ) ) ).

% geometric_sum
thf(fact_7857_geometric__sum,axiom,
    ! [X: real,N2: nat] :
      ( ( X != one_one_real )
     => ( ( groups6591440286371151544t_real @ ( power_power_real @ X ) @ ( set_ord_lessThan_nat @ N2 ) )
        = ( divide_divide_real @ ( minus_minus_real @ ( power_power_real @ X @ N2 ) @ one_one_real ) @ ( minus_minus_real @ X @ one_one_real ) ) ) ) ).

% geometric_sum
thf(fact_7858_powser__split__head_I1_J,axiom,
    ! [F: nat > complex,Z: complex] :
      ( ( summable_complex
        @ ^ [N3: nat] : ( times_times_complex @ ( F @ N3 ) @ ( power_power_complex @ Z @ N3 ) ) )
     => ( ( suminf_complex
          @ ^ [N3: nat] : ( times_times_complex @ ( F @ N3 ) @ ( power_power_complex @ Z @ N3 ) ) )
        = ( plus_plus_complex @ ( F @ zero_zero_nat )
          @ ( times_times_complex
            @ ( suminf_complex
              @ ^ [N3: nat] : ( times_times_complex @ ( F @ ( suc @ N3 ) ) @ ( power_power_complex @ Z @ N3 ) ) )
            @ Z ) ) ) ) ).

% powser_split_head(1)
thf(fact_7859_powser__split__head_I1_J,axiom,
    ! [F: nat > real,Z: real] :
      ( ( summable_real
        @ ^ [N3: nat] : ( times_times_real @ ( F @ N3 ) @ ( power_power_real @ Z @ N3 ) ) )
     => ( ( suminf_real
          @ ^ [N3: nat] : ( times_times_real @ ( F @ N3 ) @ ( power_power_real @ Z @ N3 ) ) )
        = ( plus_plus_real @ ( F @ zero_zero_nat )
          @ ( times_times_real
            @ ( suminf_real
              @ ^ [N3: nat] : ( times_times_real @ ( F @ ( suc @ N3 ) ) @ ( power_power_real @ Z @ N3 ) ) )
            @ Z ) ) ) ) ).

% powser_split_head(1)
thf(fact_7860_powser__split__head_I2_J,axiom,
    ! [F: nat > complex,Z: complex] :
      ( ( summable_complex
        @ ^ [N3: nat] : ( times_times_complex @ ( F @ N3 ) @ ( power_power_complex @ Z @ N3 ) ) )
     => ( ( times_times_complex
          @ ( suminf_complex
            @ ^ [N3: nat] : ( times_times_complex @ ( F @ ( suc @ N3 ) ) @ ( power_power_complex @ Z @ N3 ) ) )
          @ Z )
        = ( minus_minus_complex
          @ ( suminf_complex
            @ ^ [N3: nat] : ( times_times_complex @ ( F @ N3 ) @ ( power_power_complex @ Z @ N3 ) ) )
          @ ( F @ zero_zero_nat ) ) ) ) ).

% powser_split_head(2)
thf(fact_7861_powser__split__head_I2_J,axiom,
    ! [F: nat > real,Z: real] :
      ( ( summable_real
        @ ^ [N3: nat] : ( times_times_real @ ( F @ N3 ) @ ( power_power_real @ Z @ N3 ) ) )
     => ( ( times_times_real
          @ ( suminf_real
            @ ^ [N3: nat] : ( times_times_real @ ( F @ ( suc @ N3 ) ) @ ( power_power_real @ Z @ N3 ) ) )
          @ Z )
        = ( minus_minus_real
          @ ( suminf_real
            @ ^ [N3: nat] : ( times_times_real @ ( F @ N3 ) @ ( power_power_real @ Z @ N3 ) ) )
          @ ( F @ zero_zero_nat ) ) ) ) ).

% powser_split_head(2)
thf(fact_7862_suminf__exist__split,axiom,
    ! [R2: real,F: nat > real] :
      ( ( ord_less_real @ zero_zero_real @ R2 )
     => ( ( summable_real @ F )
       => ? [N8: nat] :
          ! [N9: nat] :
            ( ( ord_less_eq_nat @ N8 @ N9 )
           => ( ord_less_real
              @ ( real_V7735802525324610683m_real
                @ ( suminf_real
                  @ ^ [I5: nat] : ( F @ ( plus_plus_nat @ I5 @ N9 ) ) ) )
              @ R2 ) ) ) ) ).

% suminf_exist_split
thf(fact_7863_suminf__exist__split,axiom,
    ! [R2: real,F: nat > complex] :
      ( ( ord_less_real @ zero_zero_real @ R2 )
     => ( ( summable_complex @ F )
       => ? [N8: nat] :
          ! [N9: nat] :
            ( ( ord_less_eq_nat @ N8 @ N9 )
           => ( ord_less_real
              @ ( real_V1022390504157884413omplex
                @ ( suminf_complex
                  @ ^ [I5: nat] : ( F @ ( plus_plus_nat @ I5 @ N9 ) ) ) )
              @ R2 ) ) ) ) ).

% suminf_exist_split
thf(fact_7864_summable__partial__sum__bound,axiom,
    ! [F: nat > complex,E: real] :
      ( ( summable_complex @ F )
     => ( ( ord_less_real @ zero_zero_real @ E )
       => ~ ! [N8: nat] :
              ~ ! [M3: nat] :
                  ( ( ord_less_eq_nat @ N8 @ M3 )
                 => ! [N9: nat] : ( ord_less_real @ ( real_V1022390504157884413omplex @ ( groups2073611262835488442omplex @ F @ ( set_or1269000886237332187st_nat @ M3 @ N9 ) ) ) @ E ) ) ) ) ).

% summable_partial_sum_bound
thf(fact_7865_summable__partial__sum__bound,axiom,
    ! [F: nat > real,E: real] :
      ( ( summable_real @ F )
     => ( ( ord_less_real @ zero_zero_real @ E )
       => ~ ! [N8: nat] :
              ~ ! [M3: nat] :
                  ( ( ord_less_eq_nat @ N8 @ M3 )
                 => ! [N9: nat] : ( ord_less_real @ ( real_V7735802525324610683m_real @ ( groups6591440286371151544t_real @ F @ ( set_or1269000886237332187st_nat @ M3 @ N9 ) ) ) @ E ) ) ) ) ).

% summable_partial_sum_bound
thf(fact_7866_summable__power__series,axiom,
    ! [F: nat > real,Z: real] :
      ( ! [I3: nat] : ( ord_less_eq_real @ ( F @ I3 ) @ one_one_real )
     => ( ! [I3: nat] : ( ord_less_eq_real @ zero_zero_real @ ( F @ I3 ) )
       => ( ( ord_less_eq_real @ zero_zero_real @ Z )
         => ( ( ord_less_real @ Z @ one_one_real )
           => ( summable_real
              @ ^ [I5: nat] : ( times_times_real @ ( F @ I5 ) @ ( power_power_real @ Z @ I5 ) ) ) ) ) ) ) ).

% summable_power_series
thf(fact_7867_Abel__lemma,axiom,
    ! [R2: real,R0: real,A: nat > complex,M7: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ R2 )
     => ( ( ord_less_real @ R2 @ R0 )
       => ( ! [N: nat] : ( ord_less_eq_real @ ( times_times_real @ ( real_V1022390504157884413omplex @ ( A @ N ) ) @ ( power_power_real @ R0 @ N ) ) @ M7 )
         => ( summable_real
            @ ^ [N3: nat] : ( times_times_real @ ( real_V1022390504157884413omplex @ ( A @ N3 ) ) @ ( power_power_real @ R2 @ N3 ) ) ) ) ) ) ).

% Abel_lemma
thf(fact_7868_sum__gp__strict,axiom,
    ! [X: complex,N2: nat] :
      ( ( ( X = one_one_complex )
       => ( ( groups2073611262835488442omplex @ ( power_power_complex @ X ) @ ( set_ord_lessThan_nat @ N2 ) )
          = ( semiri8010041392384452111omplex @ N2 ) ) )
      & ( ( X != one_one_complex )
       => ( ( groups2073611262835488442omplex @ ( power_power_complex @ X ) @ ( set_ord_lessThan_nat @ N2 ) )
          = ( divide1717551699836669952omplex @ ( minus_minus_complex @ one_one_complex @ ( power_power_complex @ X @ N2 ) ) @ ( minus_minus_complex @ one_one_complex @ X ) ) ) ) ) ).

% sum_gp_strict
thf(fact_7869_sum__gp__strict,axiom,
    ! [X: rat,N2: nat] :
      ( ( ( X = one_one_rat )
       => ( ( groups2906978787729119204at_rat @ ( power_power_rat @ X ) @ ( set_ord_lessThan_nat @ N2 ) )
          = ( semiri681578069525770553at_rat @ N2 ) ) )
      & ( ( X != one_one_rat )
       => ( ( groups2906978787729119204at_rat @ ( power_power_rat @ X ) @ ( set_ord_lessThan_nat @ N2 ) )
          = ( divide_divide_rat @ ( minus_minus_rat @ one_one_rat @ ( power_power_rat @ X @ N2 ) ) @ ( minus_minus_rat @ one_one_rat @ X ) ) ) ) ) ).

% sum_gp_strict
thf(fact_7870_sum__gp__strict,axiom,
    ! [X: real,N2: nat] :
      ( ( ( X = one_one_real )
       => ( ( groups6591440286371151544t_real @ ( power_power_real @ X ) @ ( set_ord_lessThan_nat @ N2 ) )
          = ( semiri5074537144036343181t_real @ N2 ) ) )
      & ( ( X != one_one_real )
       => ( ( groups6591440286371151544t_real @ ( power_power_real @ X ) @ ( set_ord_lessThan_nat @ N2 ) )
          = ( divide_divide_real @ ( minus_minus_real @ one_one_real @ ( power_power_real @ X @ N2 ) ) @ ( minus_minus_real @ one_one_real @ X ) ) ) ) ) ).

% sum_gp_strict
thf(fact_7871_lemma__termdiff1,axiom,
    ! [Z: complex,H2: complex,M: nat] :
      ( ( groups2073611262835488442omplex
        @ ^ [P5: nat] : ( minus_minus_complex @ ( times_times_complex @ ( power_power_complex @ ( plus_plus_complex @ Z @ H2 ) @ ( minus_minus_nat @ M @ P5 ) ) @ ( power_power_complex @ Z @ P5 ) ) @ ( power_power_complex @ Z @ M ) )
        @ ( set_ord_lessThan_nat @ M ) )
      = ( groups2073611262835488442omplex
        @ ^ [P5: nat] : ( times_times_complex @ ( power_power_complex @ Z @ P5 ) @ ( minus_minus_complex @ ( power_power_complex @ ( plus_plus_complex @ Z @ H2 ) @ ( minus_minus_nat @ M @ P5 ) ) @ ( power_power_complex @ Z @ ( minus_minus_nat @ M @ P5 ) ) ) )
        @ ( set_ord_lessThan_nat @ M ) ) ) ).

% lemma_termdiff1
thf(fact_7872_lemma__termdiff1,axiom,
    ! [Z: rat,H2: rat,M: nat] :
      ( ( groups2906978787729119204at_rat
        @ ^ [P5: nat] : ( minus_minus_rat @ ( times_times_rat @ ( power_power_rat @ ( plus_plus_rat @ Z @ H2 ) @ ( minus_minus_nat @ M @ P5 ) ) @ ( power_power_rat @ Z @ P5 ) ) @ ( power_power_rat @ Z @ M ) )
        @ ( set_ord_lessThan_nat @ M ) )
      = ( groups2906978787729119204at_rat
        @ ^ [P5: nat] : ( times_times_rat @ ( power_power_rat @ Z @ P5 ) @ ( minus_minus_rat @ ( power_power_rat @ ( plus_plus_rat @ Z @ H2 ) @ ( minus_minus_nat @ M @ P5 ) ) @ ( power_power_rat @ Z @ ( minus_minus_nat @ M @ P5 ) ) ) )
        @ ( set_ord_lessThan_nat @ M ) ) ) ).

% lemma_termdiff1
thf(fact_7873_lemma__termdiff1,axiom,
    ! [Z: int,H2: int,M: nat] :
      ( ( groups3539618377306564664at_int
        @ ^ [P5: nat] : ( minus_minus_int @ ( times_times_int @ ( power_power_int @ ( plus_plus_int @ Z @ H2 ) @ ( minus_minus_nat @ M @ P5 ) ) @ ( power_power_int @ Z @ P5 ) ) @ ( power_power_int @ Z @ M ) )
        @ ( set_ord_lessThan_nat @ M ) )
      = ( groups3539618377306564664at_int
        @ ^ [P5: nat] : ( times_times_int @ ( power_power_int @ Z @ P5 ) @ ( minus_minus_int @ ( power_power_int @ ( plus_plus_int @ Z @ H2 ) @ ( minus_minus_nat @ M @ P5 ) ) @ ( power_power_int @ Z @ ( minus_minus_nat @ M @ P5 ) ) ) )
        @ ( set_ord_lessThan_nat @ M ) ) ) ).

% lemma_termdiff1
thf(fact_7874_lemma__termdiff1,axiom,
    ! [Z: real,H2: real,M: nat] :
      ( ( groups6591440286371151544t_real
        @ ^ [P5: nat] : ( minus_minus_real @ ( times_times_real @ ( power_power_real @ ( plus_plus_real @ Z @ H2 ) @ ( minus_minus_nat @ M @ P5 ) ) @ ( power_power_real @ Z @ P5 ) ) @ ( power_power_real @ Z @ M ) )
        @ ( set_ord_lessThan_nat @ M ) )
      = ( groups6591440286371151544t_real
        @ ^ [P5: nat] : ( times_times_real @ ( power_power_real @ Z @ P5 ) @ ( minus_minus_real @ ( power_power_real @ ( plus_plus_real @ Z @ H2 ) @ ( minus_minus_nat @ M @ P5 ) ) @ ( power_power_real @ Z @ ( minus_minus_nat @ M @ P5 ) ) ) )
        @ ( set_ord_lessThan_nat @ M ) ) ) ).

% lemma_termdiff1
thf(fact_7875_pi__half__gt__zero,axiom,
    ord_less_real @ zero_zero_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ).

% pi_half_gt_zero
thf(fact_7876_diff__power__eq__sum,axiom,
    ! [X: complex,N2: nat,Y: complex] :
      ( ( minus_minus_complex @ ( power_power_complex @ X @ ( suc @ N2 ) ) @ ( power_power_complex @ Y @ ( suc @ N2 ) ) )
      = ( times_times_complex @ ( minus_minus_complex @ X @ Y )
        @ ( groups2073611262835488442omplex
          @ ^ [P5: nat] : ( times_times_complex @ ( power_power_complex @ X @ P5 ) @ ( power_power_complex @ Y @ ( minus_minus_nat @ N2 @ P5 ) ) )
          @ ( set_ord_lessThan_nat @ ( suc @ N2 ) ) ) ) ) ).

% diff_power_eq_sum
thf(fact_7877_diff__power__eq__sum,axiom,
    ! [X: rat,N2: nat,Y: rat] :
      ( ( minus_minus_rat @ ( power_power_rat @ X @ ( suc @ N2 ) ) @ ( power_power_rat @ Y @ ( suc @ N2 ) ) )
      = ( times_times_rat @ ( minus_minus_rat @ X @ Y )
        @ ( groups2906978787729119204at_rat
          @ ^ [P5: nat] : ( times_times_rat @ ( power_power_rat @ X @ P5 ) @ ( power_power_rat @ Y @ ( minus_minus_nat @ N2 @ P5 ) ) )
          @ ( set_ord_lessThan_nat @ ( suc @ N2 ) ) ) ) ) ).

% diff_power_eq_sum
thf(fact_7878_diff__power__eq__sum,axiom,
    ! [X: int,N2: nat,Y: int] :
      ( ( minus_minus_int @ ( power_power_int @ X @ ( suc @ N2 ) ) @ ( power_power_int @ Y @ ( suc @ N2 ) ) )
      = ( times_times_int @ ( minus_minus_int @ X @ Y )
        @ ( groups3539618377306564664at_int
          @ ^ [P5: nat] : ( times_times_int @ ( power_power_int @ X @ P5 ) @ ( power_power_int @ Y @ ( minus_minus_nat @ N2 @ P5 ) ) )
          @ ( set_ord_lessThan_nat @ ( suc @ N2 ) ) ) ) ) ).

% diff_power_eq_sum
thf(fact_7879_diff__power__eq__sum,axiom,
    ! [X: real,N2: nat,Y: real] :
      ( ( minus_minus_real @ ( power_power_real @ X @ ( suc @ N2 ) ) @ ( power_power_real @ Y @ ( suc @ N2 ) ) )
      = ( times_times_real @ ( minus_minus_real @ X @ Y )
        @ ( groups6591440286371151544t_real
          @ ^ [P5: nat] : ( times_times_real @ ( power_power_real @ X @ P5 ) @ ( power_power_real @ Y @ ( minus_minus_nat @ N2 @ P5 ) ) )
          @ ( set_ord_lessThan_nat @ ( suc @ N2 ) ) ) ) ) ).

% diff_power_eq_sum
thf(fact_7880_power__diff__sumr2,axiom,
    ! [X: complex,N2: nat,Y: complex] :
      ( ( minus_minus_complex @ ( power_power_complex @ X @ N2 ) @ ( power_power_complex @ Y @ N2 ) )
      = ( times_times_complex @ ( minus_minus_complex @ X @ Y )
        @ ( groups2073611262835488442omplex
          @ ^ [I5: nat] : ( times_times_complex @ ( power_power_complex @ Y @ ( minus_minus_nat @ N2 @ ( suc @ I5 ) ) ) @ ( power_power_complex @ X @ I5 ) )
          @ ( set_ord_lessThan_nat @ N2 ) ) ) ) ).

% power_diff_sumr2
thf(fact_7881_power__diff__sumr2,axiom,
    ! [X: rat,N2: nat,Y: rat] :
      ( ( minus_minus_rat @ ( power_power_rat @ X @ N2 ) @ ( power_power_rat @ Y @ N2 ) )
      = ( times_times_rat @ ( minus_minus_rat @ X @ Y )
        @ ( groups2906978787729119204at_rat
          @ ^ [I5: nat] : ( times_times_rat @ ( power_power_rat @ Y @ ( minus_minus_nat @ N2 @ ( suc @ I5 ) ) ) @ ( power_power_rat @ X @ I5 ) )
          @ ( set_ord_lessThan_nat @ N2 ) ) ) ) ).

% power_diff_sumr2
thf(fact_7882_power__diff__sumr2,axiom,
    ! [X: int,N2: nat,Y: int] :
      ( ( minus_minus_int @ ( power_power_int @ X @ N2 ) @ ( power_power_int @ Y @ N2 ) )
      = ( times_times_int @ ( minus_minus_int @ X @ Y )
        @ ( groups3539618377306564664at_int
          @ ^ [I5: nat] : ( times_times_int @ ( power_power_int @ Y @ ( minus_minus_nat @ N2 @ ( suc @ I5 ) ) ) @ ( power_power_int @ X @ I5 ) )
          @ ( set_ord_lessThan_nat @ N2 ) ) ) ) ).

% power_diff_sumr2
thf(fact_7883_power__diff__sumr2,axiom,
    ! [X: real,N2: nat,Y: real] :
      ( ( minus_minus_real @ ( power_power_real @ X @ N2 ) @ ( power_power_real @ Y @ N2 ) )
      = ( times_times_real @ ( minus_minus_real @ X @ Y )
        @ ( groups6591440286371151544t_real
          @ ^ [I5: nat] : ( times_times_real @ ( power_power_real @ Y @ ( minus_minus_nat @ N2 @ ( suc @ I5 ) ) ) @ ( power_power_real @ X @ I5 ) )
          @ ( set_ord_lessThan_nat @ N2 ) ) ) ) ).

% power_diff_sumr2
thf(fact_7884_pi__half__ge__zero,axiom,
    ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ).

% pi_half_ge_zero
thf(fact_7885_m2pi__less__pi,axiom,
    ord_less_real @ ( uminus_uminus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) ) @ pi ).

% m2pi_less_pi
thf(fact_7886_summable__ratio__test,axiom,
    ! [C: real,N4: nat,F: nat > real] :
      ( ( ord_less_real @ C @ one_one_real )
     => ( ! [N: nat] :
            ( ( ord_less_eq_nat @ N4 @ N )
           => ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( F @ ( suc @ N ) ) ) @ ( times_times_real @ C @ ( real_V7735802525324610683m_real @ ( F @ N ) ) ) ) )
       => ( summable_real @ F ) ) ) ).

% summable_ratio_test
thf(fact_7887_summable__ratio__test,axiom,
    ! [C: real,N4: nat,F: nat > complex] :
      ( ( ord_less_real @ C @ one_one_real )
     => ( ! [N: nat] :
            ( ( ord_less_eq_nat @ N4 @ N )
           => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( F @ ( suc @ N ) ) ) @ ( times_times_real @ C @ ( real_V1022390504157884413omplex @ ( F @ N ) ) ) ) )
       => ( summable_complex @ F ) ) ) ).

% summable_ratio_test
thf(fact_7888_arctan__ubound,axiom,
    ! [Y: real] : ( ord_less_real @ ( arctan @ Y ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% arctan_ubound
thf(fact_7889_arctan__one,axiom,
    ( ( arctan @ one_one_real )
    = ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ).

% arctan_one
thf(fact_7890_real__sum__nat__ivl__bounded2,axiom,
    ! [N2: nat,F: nat > code_integer,K5: code_integer,K: nat] :
      ( ! [P7: nat] :
          ( ( ord_less_nat @ P7 @ N2 )
         => ( ord_le3102999989581377725nteger @ ( F @ P7 ) @ K5 ) )
     => ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ K5 )
       => ( ord_le3102999989581377725nteger @ ( groups7501900531339628137nteger @ F @ ( set_ord_lessThan_nat @ ( minus_minus_nat @ N2 @ K ) ) ) @ ( times_3573771949741848930nteger @ ( semiri4939895301339042750nteger @ N2 ) @ K5 ) ) ) ) ).

% real_sum_nat_ivl_bounded2
thf(fact_7891_real__sum__nat__ivl__bounded2,axiom,
    ! [N2: nat,F: nat > rat,K5: rat,K: nat] :
      ( ! [P7: nat] :
          ( ( ord_less_nat @ P7 @ N2 )
         => ( ord_less_eq_rat @ ( F @ P7 ) @ K5 ) )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ K5 )
       => ( ord_less_eq_rat @ ( groups2906978787729119204at_rat @ F @ ( set_ord_lessThan_nat @ ( minus_minus_nat @ N2 @ K ) ) ) @ ( times_times_rat @ ( semiri681578069525770553at_rat @ N2 ) @ K5 ) ) ) ) ).

% real_sum_nat_ivl_bounded2
thf(fact_7892_real__sum__nat__ivl__bounded2,axiom,
    ! [N2: nat,F: nat > int,K5: int,K: nat] :
      ( ! [P7: nat] :
          ( ( ord_less_nat @ P7 @ N2 )
         => ( ord_less_eq_int @ ( F @ P7 ) @ K5 ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ K5 )
       => ( ord_less_eq_int @ ( groups3539618377306564664at_int @ F @ ( set_ord_lessThan_nat @ ( minus_minus_nat @ N2 @ K ) ) ) @ ( times_times_int @ ( semiri1314217659103216013at_int @ N2 ) @ K5 ) ) ) ) ).

% real_sum_nat_ivl_bounded2
thf(fact_7893_real__sum__nat__ivl__bounded2,axiom,
    ! [N2: nat,F: nat > nat,K5: nat,K: nat] :
      ( ! [P7: nat] :
          ( ( ord_less_nat @ P7 @ N2 )
         => ( ord_less_eq_nat @ ( F @ P7 ) @ K5 ) )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ K5 )
       => ( ord_less_eq_nat @ ( groups3542108847815614940at_nat @ F @ ( set_ord_lessThan_nat @ ( minus_minus_nat @ N2 @ K ) ) ) @ ( times_times_nat @ ( semiri1316708129612266289at_nat @ N2 ) @ K5 ) ) ) ) ).

% real_sum_nat_ivl_bounded2
thf(fact_7894_real__sum__nat__ivl__bounded2,axiom,
    ! [N2: nat,F: nat > real,K5: real,K: nat] :
      ( ! [P7: nat] :
          ( ( ord_less_nat @ P7 @ N2 )
         => ( ord_less_eq_real @ ( F @ P7 ) @ K5 ) )
     => ( ( ord_less_eq_real @ zero_zero_real @ K5 )
       => ( ord_less_eq_real @ ( groups6591440286371151544t_real @ F @ ( set_ord_lessThan_nat @ ( minus_minus_nat @ N2 @ K ) ) ) @ ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ K5 ) ) ) ) ).

% real_sum_nat_ivl_bounded2
thf(fact_7895_one__diff__power__eq_H,axiom,
    ! [X: complex,N2: nat] :
      ( ( minus_minus_complex @ one_one_complex @ ( power_power_complex @ X @ N2 ) )
      = ( times_times_complex @ ( minus_minus_complex @ one_one_complex @ X )
        @ ( groups2073611262835488442omplex
          @ ^ [I5: nat] : ( power_power_complex @ X @ ( minus_minus_nat @ N2 @ ( suc @ I5 ) ) )
          @ ( set_ord_lessThan_nat @ N2 ) ) ) ) ).

% one_diff_power_eq'
thf(fact_7896_one__diff__power__eq_H,axiom,
    ! [X: rat,N2: nat] :
      ( ( minus_minus_rat @ one_one_rat @ ( power_power_rat @ X @ N2 ) )
      = ( times_times_rat @ ( minus_minus_rat @ one_one_rat @ X )
        @ ( groups2906978787729119204at_rat
          @ ^ [I5: nat] : ( power_power_rat @ X @ ( minus_minus_nat @ N2 @ ( suc @ I5 ) ) )
          @ ( set_ord_lessThan_nat @ N2 ) ) ) ) ).

% one_diff_power_eq'
thf(fact_7897_one__diff__power__eq_H,axiom,
    ! [X: int,N2: nat] :
      ( ( minus_minus_int @ one_one_int @ ( power_power_int @ X @ N2 ) )
      = ( times_times_int @ ( minus_minus_int @ one_one_int @ X )
        @ ( groups3539618377306564664at_int
          @ ^ [I5: nat] : ( power_power_int @ X @ ( minus_minus_nat @ N2 @ ( suc @ I5 ) ) )
          @ ( set_ord_lessThan_nat @ N2 ) ) ) ) ).

% one_diff_power_eq'
thf(fact_7898_one__diff__power__eq_H,axiom,
    ! [X: real,N2: nat] :
      ( ( minus_minus_real @ one_one_real @ ( power_power_real @ X @ N2 ) )
      = ( times_times_real @ ( minus_minus_real @ one_one_real @ X )
        @ ( groups6591440286371151544t_real
          @ ^ [I5: nat] : ( power_power_real @ X @ ( minus_minus_nat @ N2 @ ( suc @ I5 ) ) )
          @ ( set_ord_lessThan_nat @ N2 ) ) ) ) ).

% one_diff_power_eq'
thf(fact_7899_subrelI,axiom,
    ! [R2: set_Pr448751882837621926eger_o,S2: set_Pr448751882837621926eger_o] :
      ( ! [X5: code_integer,Y5: $o] :
          ( ( member1379723562493234055eger_o @ ( produc6677183202524767010eger_o @ X5 @ Y5 ) @ R2 )
         => ( member1379723562493234055eger_o @ ( produc6677183202524767010eger_o @ X5 @ Y5 ) @ S2 ) )
     => ( ord_le8980329558974975238eger_o @ R2 @ S2 ) ) ).

% subrelI
thf(fact_7900_subrelI,axiom,
    ! [R2: set_Pr8218934625190621173um_num,S2: set_Pr8218934625190621173um_num] :
      ( ! [X5: num,Y5: num] :
          ( ( member7279096912039735102um_num @ ( product_Pair_num_num @ X5 @ Y5 ) @ R2 )
         => ( member7279096912039735102um_num @ ( product_Pair_num_num @ X5 @ Y5 ) @ S2 ) )
     => ( ord_le880128212290418581um_num @ R2 @ S2 ) ) ).

% subrelI
thf(fact_7901_subrelI,axiom,
    ! [R2: set_Pr6200539531224447659at_num,S2: set_Pr6200539531224447659at_num] :
      ( ! [X5: nat,Y5: num] :
          ( ( member9148766508732265716at_num @ ( product_Pair_nat_num @ X5 @ Y5 ) @ R2 )
         => ( member9148766508732265716at_num @ ( product_Pair_nat_num @ X5 @ Y5 ) @ S2 ) )
     => ( ord_le8085105155179020875at_num @ R2 @ S2 ) ) ).

% subrelI
thf(fact_7902_subrelI,axiom,
    ! [R2: set_Pr1261947904930325089at_nat,S2: set_Pr1261947904930325089at_nat] :
      ( ! [X5: nat,Y5: nat] :
          ( ( member8440522571783428010at_nat @ ( product_Pair_nat_nat @ X5 @ Y5 ) @ R2 )
         => ( member8440522571783428010at_nat @ ( product_Pair_nat_nat @ X5 @ Y5 ) @ S2 ) )
     => ( ord_le3146513528884898305at_nat @ R2 @ S2 ) ) ).

% subrelI
thf(fact_7903_subrelI,axiom,
    ! [R2: set_Pr958786334691620121nt_int,S2: set_Pr958786334691620121nt_int] :
      ( ! [X5: int,Y5: int] :
          ( ( member5262025264175285858nt_int @ ( product_Pair_int_int @ X5 @ Y5 ) @ R2 )
         => ( member5262025264175285858nt_int @ ( product_Pair_int_int @ X5 @ Y5 ) @ S2 ) )
     => ( ord_le2843351958646193337nt_int @ R2 @ S2 ) ) ).

% subrelI
thf(fact_7904_minus__pi__half__less__zero,axiom,
    ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ zero_zero_real ).

% minus_pi_half_less_zero
thf(fact_7905_arctan__bounded,axiom,
    ! [Y: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( arctan @ Y ) )
      & ( ord_less_real @ ( arctan @ Y ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).

% arctan_bounded
thf(fact_7906_arctan__lbound,axiom,
    ! [Y: real] : ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( arctan @ Y ) ) ).

% arctan_lbound
thf(fact_7907_infinite__nat__iff__unbounded,axiom,
    ! [S3: set_nat] :
      ( ( ~ ( finite_finite_nat @ S3 ) )
      = ( ! [M6: nat] :
          ? [N3: nat] :
            ( ( ord_less_nat @ M6 @ N3 )
            & ( member_nat @ N3 @ S3 ) ) ) ) ).

% infinite_nat_iff_unbounded
thf(fact_7908_unbounded__k__infinite,axiom,
    ! [K: nat,S3: set_nat] :
      ( ! [M2: nat] :
          ( ( ord_less_nat @ K @ M2 )
         => ? [N9: nat] :
              ( ( ord_less_nat @ M2 @ N9 )
              & ( member_nat @ N9 @ S3 ) ) )
     => ~ ( finite_finite_nat @ S3 ) ) ).

% unbounded_k_infinite
thf(fact_7909_infinite__nat__iff__unbounded__le,axiom,
    ! [S3: set_nat] :
      ( ( ~ ( finite_finite_nat @ S3 ) )
      = ( ! [M6: nat] :
          ? [N3: nat] :
            ( ( ord_less_eq_nat @ M6 @ N3 )
            & ( member_nat @ N3 @ S3 ) ) ) ) ).

% infinite_nat_iff_unbounded_le
thf(fact_7910_accp__subset__induct,axiom,
    ! [D3: product_prod_num_num > $o,R: product_prod_num_num > product_prod_num_num > $o,X: product_prod_num_num,P: product_prod_num_num > $o] :
      ( ( ord_le2239182809043710856_num_o @ D3 @ ( accp_P3113834385874906142um_num @ R ) )
     => ( ! [X5: product_prod_num_num,Z4: product_prod_num_num] :
            ( ( D3 @ X5 )
           => ( ( R @ Z4 @ X5 )
             => ( D3 @ Z4 ) ) )
       => ( ( D3 @ X )
         => ( ! [X5: product_prod_num_num] :
                ( ( D3 @ X5 )
               => ( ! [Z5: product_prod_num_num] :
                      ( ( R @ Z5 @ X5 )
                     => ( P @ Z5 ) )
                 => ( P @ X5 ) ) )
           => ( P @ X ) ) ) ) ) ).

% accp_subset_induct
thf(fact_7911_accp__subset__induct,axiom,
    ! [D3: product_prod_nat_nat > $o,R: product_prod_nat_nat > product_prod_nat_nat > $o,X: product_prod_nat_nat,P: product_prod_nat_nat > $o] :
      ( ( ord_le704812498762024988_nat_o @ D3 @ ( accp_P4275260045618599050at_nat @ R ) )
     => ( ! [X5: product_prod_nat_nat,Z4: product_prod_nat_nat] :
            ( ( D3 @ X5 )
           => ( ( R @ Z4 @ X5 )
             => ( D3 @ Z4 ) ) )
       => ( ( D3 @ X )
         => ( ! [X5: product_prod_nat_nat] :
                ( ( D3 @ X5 )
               => ( ! [Z5: product_prod_nat_nat] :
                      ( ( R @ Z5 @ X5 )
                     => ( P @ Z5 ) )
                 => ( P @ X5 ) ) )
           => ( P @ X ) ) ) ) ) ).

% accp_subset_induct
thf(fact_7912_accp__subset__induct,axiom,
    ! [D3: product_prod_int_int > $o,R: product_prod_int_int > product_prod_int_int > $o,X: product_prod_int_int,P: product_prod_int_int > $o] :
      ( ( ord_le8369615600986905444_int_o @ D3 @ ( accp_P1096762738010456898nt_int @ R ) )
     => ( ! [X5: product_prod_int_int,Z4: product_prod_int_int] :
            ( ( D3 @ X5 )
           => ( ( R @ Z4 @ X5 )
             => ( D3 @ Z4 ) ) )
       => ( ( D3 @ X )
         => ( ! [X5: product_prod_int_int] :
                ( ( D3 @ X5 )
               => ( ! [Z5: product_prod_int_int] :
                      ( ( R @ Z5 @ X5 )
                     => ( P @ Z5 ) )
                 => ( P @ X5 ) ) )
           => ( P @ X ) ) ) ) ) ).

% accp_subset_induct
thf(fact_7913_accp__subset__induct,axiom,
    ! [D3: list_nat > $o,R: list_nat > list_nat > $o,X: list_nat,P: list_nat > $o] :
      ( ( ord_le1520216061033275535_nat_o @ D3 @ ( accp_list_nat @ R ) )
     => ( ! [X5: list_nat,Z4: list_nat] :
            ( ( D3 @ X5 )
           => ( ( R @ Z4 @ X5 )
             => ( D3 @ Z4 ) ) )
       => ( ( D3 @ X )
         => ( ! [X5: list_nat] :
                ( ( D3 @ X5 )
               => ( ! [Z5: list_nat] :
                      ( ( R @ Z5 @ X5 )
                     => ( P @ Z5 ) )
                 => ( P @ X5 ) ) )
           => ( P @ X ) ) ) ) ) ).

% accp_subset_induct
thf(fact_7914_accp__subset__induct,axiom,
    ! [D3: nat > $o,R: nat > nat > $o,X: nat,P: nat > $o] :
      ( ( ord_less_eq_nat_o @ D3 @ ( accp_nat @ R ) )
     => ( ! [X5: nat,Z4: nat] :
            ( ( D3 @ X5 )
           => ( ( R @ Z4 @ X5 )
             => ( D3 @ Z4 ) ) )
       => ( ( D3 @ X )
         => ( ! [X5: nat] :
                ( ( D3 @ X5 )
               => ( ! [Z5: nat] :
                      ( ( R @ Z5 @ X5 )
                     => ( P @ Z5 ) )
                 => ( P @ X5 ) ) )
           => ( P @ X ) ) ) ) ) ).

% accp_subset_induct
thf(fact_7915_sum__split__even__odd,axiom,
    ! [F: nat > real,G: nat > real,N2: nat] :
      ( ( groups6591440286371151544t_real
        @ ^ [I5: nat] : ( if_real @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I5 ) @ ( F @ I5 ) @ ( G @ I5 ) )
        @ ( set_ord_lessThan_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) )
      = ( plus_plus_real
        @ ( groups6591440286371151544t_real
          @ ^ [I5: nat] : ( F @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I5 ) )
          @ ( set_ord_lessThan_nat @ N2 ) )
        @ ( groups6591440286371151544t_real
          @ ^ [I5: nat] : ( G @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I5 ) @ one_one_nat ) )
          @ ( set_ord_lessThan_nat @ N2 ) ) ) ) ).

% sum_split_even_odd
thf(fact_7916_pred__subset__eq,axiom,
    ! [R: set_complex,S3: set_complex] :
      ( ( ord_le4573692005234683329plex_o
        @ ^ [X3: complex] : ( member_complex @ X3 @ R )
        @ ^ [X3: complex] : ( member_complex @ X3 @ S3 ) )
      = ( ord_le211207098394363844omplex @ R @ S3 ) ) ).

% pred_subset_eq
thf(fact_7917_pred__subset__eq,axiom,
    ! [R: set_real,S3: set_real] :
      ( ( ord_less_eq_real_o
        @ ^ [X3: real] : ( member_real @ X3 @ R )
        @ ^ [X3: real] : ( member_real @ X3 @ S3 ) )
      = ( ord_less_eq_set_real @ R @ S3 ) ) ).

% pred_subset_eq
thf(fact_7918_pred__subset__eq,axiom,
    ! [R: set_set_nat,S3: set_set_nat] :
      ( ( ord_le3964352015994296041_nat_o
        @ ^ [X3: set_nat] : ( member_set_nat @ X3 @ R )
        @ ^ [X3: set_nat] : ( member_set_nat @ X3 @ S3 ) )
      = ( ord_le6893508408891458716et_nat @ R @ S3 ) ) ).

% pred_subset_eq
thf(fact_7919_pred__subset__eq,axiom,
    ! [R: set_nat,S3: set_nat] :
      ( ( ord_less_eq_nat_o
        @ ^ [X3: nat] : ( member_nat @ X3 @ R )
        @ ^ [X3: nat] : ( member_nat @ X3 @ S3 ) )
      = ( ord_less_eq_set_nat @ R @ S3 ) ) ).

% pred_subset_eq
thf(fact_7920_pred__subset__eq,axiom,
    ! [R: set_int,S3: set_int] :
      ( ( ord_less_eq_int_o
        @ ^ [X3: int] : ( member_int @ X3 @ R )
        @ ^ [X3: int] : ( member_int @ X3 @ S3 ) )
      = ( ord_less_eq_set_int @ R @ S3 ) ) ).

% pred_subset_eq
thf(fact_7921_machin__Euler,axiom,
    ( ( plus_plus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit1 @ ( bit0 @ one ) ) ) @ ( arctan @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit1 @ ( bit1 @ one ) ) ) ) ) ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( arctan @ ( divide_divide_real @ ( numeral_numeral_real @ ( bit1 @ one ) ) @ ( numeral_numeral_real @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) )
    = ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ).

% machin_Euler
thf(fact_7922_machin,axiom,
    ( ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) )
    = ( minus_minus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) @ ( arctan @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit1 @ ( bit0 @ one ) ) ) ) ) ) @ ( arctan @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit0 @ ( bit1 @ ( bit1 @ one ) ) ) ) ) ) ) ) ) ) ) ) ).

% machin
thf(fact_7923_vebt__mint_Opelims,axiom,
    ! [X: vEBT_VEBT,Y: option_nat] :
      ( ( ( vEBT_vebt_mint @ X )
        = Y )
     => ( ( accp_VEBT_VEBT @ vEBT_vebt_mint_rel @ X )
       => ( ! [A3: $o,B2: $o] :
              ( ( X
                = ( vEBT_Leaf @ A3 @ B2 ) )
             => ( ( ( A3
                   => ( Y
                      = ( some_nat @ zero_zero_nat ) ) )
                  & ( ~ A3
                   => ( ( B2
                       => ( Y
                          = ( some_nat @ one_one_nat ) ) )
                      & ( ~ B2
                       => ( Y = none_nat ) ) ) ) )
               => ~ ( accp_VEBT_VEBT @ vEBT_vebt_mint_rel @ ( vEBT_Leaf @ A3 @ B2 ) ) ) )
         => ( ! [Uu2: nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT] :
                ( ( X
                  = ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu2 @ Uv2 @ Uw2 ) )
               => ( ( Y = none_nat )
                 => ~ ( accp_VEBT_VEBT @ vEBT_vebt_mint_rel @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu2 @ Uv2 @ Uw2 ) ) ) )
           => ~ ! [Mi2: nat,Ma2: nat,Ux2: nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT] :
                  ( ( X
                    = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ Ux2 @ Uy2 @ Uz2 ) )
                 => ( ( Y
                      = ( some_nat @ Mi2 ) )
                   => ~ ( accp_VEBT_VEBT @ vEBT_vebt_mint_rel @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ Ux2 @ Uy2 @ Uz2 ) ) ) ) ) ) ) ) ).

% vebt_mint.pelims
thf(fact_7924_vebt__maxt_Opelims,axiom,
    ! [X: vEBT_VEBT,Y: option_nat] :
      ( ( ( vEBT_vebt_maxt @ X )
        = Y )
     => ( ( accp_VEBT_VEBT @ vEBT_vebt_maxt_rel @ X )
       => ( ! [A3: $o,B2: $o] :
              ( ( X
                = ( vEBT_Leaf @ A3 @ B2 ) )
             => ( ( ( B2
                   => ( Y
                      = ( some_nat @ one_one_nat ) ) )
                  & ( ~ B2
                   => ( ( A3
                       => ( Y
                          = ( some_nat @ zero_zero_nat ) ) )
                      & ( ~ A3
                       => ( Y = none_nat ) ) ) ) )
               => ~ ( accp_VEBT_VEBT @ vEBT_vebt_maxt_rel @ ( vEBT_Leaf @ A3 @ B2 ) ) ) )
         => ( ! [Uu2: nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT] :
                ( ( X
                  = ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu2 @ Uv2 @ Uw2 ) )
               => ( ( Y = none_nat )
                 => ~ ( accp_VEBT_VEBT @ vEBT_vebt_maxt_rel @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu2 @ Uv2 @ Uw2 ) ) ) )
           => ~ ! [Mi2: nat,Ma2: nat,Ux2: nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT] :
                  ( ( X
                    = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ Ux2 @ Uy2 @ Uz2 ) )
                 => ( ( Y
                      = ( some_nat @ Ma2 ) )
                   => ~ ( accp_VEBT_VEBT @ vEBT_vebt_maxt_rel @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ Ux2 @ Uy2 @ Uz2 ) ) ) ) ) ) ) ) ).

% vebt_maxt.pelims
thf(fact_7925_sum__bounds__lt__plus1,axiom,
    ! [F: nat > nat,Mm: nat] :
      ( ( groups3542108847815614940at_nat
        @ ^ [K3: nat] : ( F @ ( suc @ K3 ) )
        @ ( set_ord_lessThan_nat @ Mm ) )
      = ( groups3542108847815614940at_nat @ F @ ( set_or1269000886237332187st_nat @ one_one_nat @ Mm ) ) ) ).

% sum_bounds_lt_plus1
thf(fact_7926_sum__bounds__lt__plus1,axiom,
    ! [F: nat > real,Mm: nat] :
      ( ( groups6591440286371151544t_real
        @ ^ [K3: nat] : ( F @ ( suc @ K3 ) )
        @ ( set_ord_lessThan_nat @ Mm ) )
      = ( groups6591440286371151544t_real @ F @ ( set_or1269000886237332187st_nat @ one_one_nat @ Mm ) ) ) ).

% sum_bounds_lt_plus1
thf(fact_7927_fold__atLeastAtMost__nat_Opinduct,axiom,
    ! [A0: nat > num > num,A12: nat,A23: nat,A32: num,P: ( nat > num > num ) > nat > nat > num > $o] :
      ( ( accp_P4916641582247091100at_num @ set_fo256927282339908995el_num @ ( produc851828971589881931at_num @ A0 @ ( produc1195630363706982562at_num @ A12 @ ( product_Pair_nat_num @ A23 @ A32 ) ) ) )
     => ( ! [F2: nat > num > num,A3: nat,B2: nat,Acc: num] :
            ( ( accp_P4916641582247091100at_num @ set_fo256927282339908995el_num @ ( produc851828971589881931at_num @ F2 @ ( produc1195630363706982562at_num @ A3 @ ( product_Pair_nat_num @ B2 @ Acc ) ) ) )
           => ( ( ~ ( ord_less_nat @ B2 @ A3 )
               => ( P @ F2 @ ( plus_plus_nat @ A3 @ one_one_nat ) @ B2 @ ( F2 @ A3 @ Acc ) ) )
             => ( P @ F2 @ A3 @ B2 @ Acc ) ) )
       => ( P @ A0 @ A12 @ A23 @ A32 ) ) ) ).

% fold_atLeastAtMost_nat.pinduct
thf(fact_7928_fold__atLeastAtMost__nat_Opinduct,axiom,
    ! [A0: nat > nat > nat,A12: nat,A23: nat,A32: nat,P: ( nat > nat > nat ) > nat > nat > nat > $o] :
      ( ( accp_P6019419558468335806at_nat @ set_fo3699595496184130361el_nat @ ( produc3209952032786966637at_nat @ A0 @ ( produc487386426758144856at_nat @ A12 @ ( product_Pair_nat_nat @ A23 @ A32 ) ) ) )
     => ( ! [F2: nat > nat > nat,A3: nat,B2: nat,Acc: nat] :
            ( ( accp_P6019419558468335806at_nat @ set_fo3699595496184130361el_nat @ ( produc3209952032786966637at_nat @ F2 @ ( produc487386426758144856at_nat @ A3 @ ( product_Pair_nat_nat @ B2 @ Acc ) ) ) )
           => ( ( ~ ( ord_less_nat @ B2 @ A3 )
               => ( P @ F2 @ ( plus_plus_nat @ A3 @ one_one_nat ) @ B2 @ ( F2 @ A3 @ Acc ) ) )
             => ( P @ F2 @ A3 @ B2 @ Acc ) ) )
       => ( P @ A0 @ A12 @ A23 @ A32 ) ) ) ).

% fold_atLeastAtMost_nat.pinduct
thf(fact_7929_VEBT__internal_Ooption__shift_Opelims,axiom,
    ! [X: product_prod_nat_nat > product_prod_nat_nat > product_prod_nat_nat,Xa2: option4927543243414619207at_nat,Xb: option4927543243414619207at_nat,Y: option4927543243414619207at_nat] :
      ( ( ( vEBT_V1502963449132264192at_nat @ X @ Xa2 @ Xb )
        = Y )
     => ( ( accp_P3267385326087170368at_nat @ vEBT_V7235779383477046023at_nat @ ( produc2899441246263362727at_nat @ X @ ( produc488173922507101015at_nat @ Xa2 @ Xb ) ) )
       => ( ( ( Xa2 = none_P5556105721700978146at_nat )
           => ( ( Y = none_P5556105721700978146at_nat )
             => ~ ( accp_P3267385326087170368at_nat @ vEBT_V7235779383477046023at_nat @ ( produc2899441246263362727at_nat @ X @ ( produc488173922507101015at_nat @ none_P5556105721700978146at_nat @ Xb ) ) ) ) )
         => ( ! [V2: product_prod_nat_nat] :
                ( ( Xa2
                  = ( some_P7363390416028606310at_nat @ V2 ) )
               => ( ( Xb = none_P5556105721700978146at_nat )
                 => ( ( Y = none_P5556105721700978146at_nat )
                   => ~ ( accp_P3267385326087170368at_nat @ vEBT_V7235779383477046023at_nat @ ( produc2899441246263362727at_nat @ X @ ( produc488173922507101015at_nat @ ( some_P7363390416028606310at_nat @ V2 ) @ none_P5556105721700978146at_nat ) ) ) ) ) )
           => ~ ! [A3: product_prod_nat_nat] :
                  ( ( Xa2
                    = ( some_P7363390416028606310at_nat @ A3 ) )
                 => ! [B2: product_prod_nat_nat] :
                      ( ( Xb
                        = ( some_P7363390416028606310at_nat @ B2 ) )
                     => ( ( Y
                          = ( some_P7363390416028606310at_nat @ ( X @ A3 @ B2 ) ) )
                       => ~ ( accp_P3267385326087170368at_nat @ vEBT_V7235779383477046023at_nat @ ( produc2899441246263362727at_nat @ X @ ( produc488173922507101015at_nat @ ( some_P7363390416028606310at_nat @ A3 ) @ ( some_P7363390416028606310at_nat @ B2 ) ) ) ) ) ) ) ) ) ) ) ).

% VEBT_internal.option_shift.pelims
thf(fact_7930_VEBT__internal_Ooption__shift_Opelims,axiom,
    ! [X: num > num > num,Xa2: option_num,Xb: option_num,Y: option_num] :
      ( ( ( vEBT_V819420779217536731ft_num @ X @ Xa2 @ Xb )
        = Y )
     => ( ( accp_P7605991808943153877on_num @ vEBT_V452583751252753300el_num @ ( produc5778274026573060048on_num @ X @ ( produc8585076106096196333on_num @ Xa2 @ Xb ) ) )
       => ( ( ( Xa2 = none_num )
           => ( ( Y = none_num )
             => ~ ( accp_P7605991808943153877on_num @ vEBT_V452583751252753300el_num @ ( produc5778274026573060048on_num @ X @ ( produc8585076106096196333on_num @ none_num @ Xb ) ) ) ) )
         => ( ! [V2: num] :
                ( ( Xa2
                  = ( some_num @ V2 ) )
               => ( ( Xb = none_num )
                 => ( ( Y = none_num )
                   => ~ ( accp_P7605991808943153877on_num @ vEBT_V452583751252753300el_num @ ( produc5778274026573060048on_num @ X @ ( produc8585076106096196333on_num @ ( some_num @ V2 ) @ none_num ) ) ) ) ) )
           => ~ ! [A3: num] :
                  ( ( Xa2
                    = ( some_num @ A3 ) )
                 => ! [B2: num] :
                      ( ( Xb
                        = ( some_num @ B2 ) )
                     => ( ( Y
                          = ( some_num @ ( X @ A3 @ B2 ) ) )
                       => ~ ( accp_P7605991808943153877on_num @ vEBT_V452583751252753300el_num @ ( produc5778274026573060048on_num @ X @ ( produc8585076106096196333on_num @ ( some_num @ A3 ) @ ( some_num @ B2 ) ) ) ) ) ) ) ) ) ) ) ).

% VEBT_internal.option_shift.pelims
thf(fact_7931_VEBT__internal_Ooption__shift_Opelims,axiom,
    ! [X: nat > nat > nat,Xa2: option_nat,Xb: option_nat,Y: option_nat] :
      ( ( ( vEBT_V4262088993061758097ft_nat @ X @ Xa2 @ Xb )
        = Y )
     => ( ( accp_P5496254298877145759on_nat @ vEBT_V3895251965096974666el_nat @ ( produc8929957630744042906on_nat @ X @ ( produc5098337634421038937on_nat @ Xa2 @ Xb ) ) )
       => ( ( ( Xa2 = none_nat )
           => ( ( Y = none_nat )
             => ~ ( accp_P5496254298877145759on_nat @ vEBT_V3895251965096974666el_nat @ ( produc8929957630744042906on_nat @ X @ ( produc5098337634421038937on_nat @ none_nat @ Xb ) ) ) ) )
         => ( ! [V2: nat] :
                ( ( Xa2
                  = ( some_nat @ V2 ) )
               => ( ( Xb = none_nat )
                 => ( ( Y = none_nat )
                   => ~ ( accp_P5496254298877145759on_nat @ vEBT_V3895251965096974666el_nat @ ( produc8929957630744042906on_nat @ X @ ( produc5098337634421038937on_nat @ ( some_nat @ V2 ) @ none_nat ) ) ) ) ) )
           => ~ ! [A3: nat] :
                  ( ( Xa2
                    = ( some_nat @ A3 ) )
                 => ! [B2: nat] :
                      ( ( Xb
                        = ( some_nat @ B2 ) )
                     => ( ( Y
                          = ( some_nat @ ( X @ A3 @ B2 ) ) )
                       => ~ ( accp_P5496254298877145759on_nat @ vEBT_V3895251965096974666el_nat @ ( produc8929957630744042906on_nat @ X @ ( produc5098337634421038937on_nat @ ( some_nat @ A3 ) @ ( some_nat @ B2 ) ) ) ) ) ) ) ) ) ) ) ).

% VEBT_internal.option_shift.pelims
thf(fact_7932_sumr__cos__zero__one,axiom,
    ! [N2: nat] :
      ( ( groups6591440286371151544t_real
        @ ^ [M6: nat] : ( times_times_real @ ( cos_coeff @ M6 ) @ ( power_power_real @ zero_zero_real @ M6 ) )
        @ ( set_ord_lessThan_nat @ ( suc @ N2 ) ) )
      = one_one_real ) ).

% sumr_cos_zero_one
thf(fact_7933_fold__atLeastAtMost__nat_Opelims,axiom,
    ! [X: nat > num > num,Xa2: nat,Xb: nat,Xc: num,Y: num] :
      ( ( ( set_fo8365102181078989356at_num @ X @ Xa2 @ Xb @ Xc )
        = Y )
     => ( ( accp_P4916641582247091100at_num @ set_fo256927282339908995el_num @ ( produc851828971589881931at_num @ X @ ( produc1195630363706982562at_num @ Xa2 @ ( product_Pair_nat_num @ Xb @ Xc ) ) ) )
       => ~ ( ( ( ( ord_less_nat @ Xb @ Xa2 )
               => ( Y = Xc ) )
              & ( ~ ( ord_less_nat @ Xb @ Xa2 )
               => ( Y
                  = ( set_fo8365102181078989356at_num @ X @ ( plus_plus_nat @ Xa2 @ one_one_nat ) @ Xb @ ( X @ Xa2 @ Xc ) ) ) ) )
           => ~ ( accp_P4916641582247091100at_num @ set_fo256927282339908995el_num @ ( produc851828971589881931at_num @ X @ ( produc1195630363706982562at_num @ Xa2 @ ( product_Pair_nat_num @ Xb @ Xc ) ) ) ) ) ) ) ).

% fold_atLeastAtMost_nat.pelims
thf(fact_7934_fold__atLeastAtMost__nat_Opelims,axiom,
    ! [X: nat > nat > nat,Xa2: nat,Xb: nat,Xc: nat,Y: nat] :
      ( ( ( set_fo2584398358068434914at_nat @ X @ Xa2 @ Xb @ Xc )
        = Y )
     => ( ( accp_P6019419558468335806at_nat @ set_fo3699595496184130361el_nat @ ( produc3209952032786966637at_nat @ X @ ( produc487386426758144856at_nat @ Xa2 @ ( product_Pair_nat_nat @ Xb @ Xc ) ) ) )
       => ~ ( ( ( ( ord_less_nat @ Xb @ Xa2 )
               => ( Y = Xc ) )
              & ( ~ ( ord_less_nat @ Xb @ Xa2 )
               => ( Y
                  = ( set_fo2584398358068434914at_nat @ X @ ( plus_plus_nat @ Xa2 @ one_one_nat ) @ Xb @ ( X @ Xa2 @ Xc ) ) ) ) )
           => ~ ( accp_P6019419558468335806at_nat @ set_fo3699595496184130361el_nat @ ( produc3209952032786966637at_nat @ X @ ( produc487386426758144856at_nat @ Xa2 @ ( product_Pair_nat_nat @ Xb @ Xc ) ) ) ) ) ) ) ).

% fold_atLeastAtMost_nat.pelims
thf(fact_7935_fold__atLeastAtMost__nat_Opsimps,axiom,
    ! [F: nat > num > num,A: nat,B: nat,Acc2: num] :
      ( ( accp_P4916641582247091100at_num @ set_fo256927282339908995el_num @ ( produc851828971589881931at_num @ F @ ( produc1195630363706982562at_num @ A @ ( product_Pair_nat_num @ B @ Acc2 ) ) ) )
     => ( ( ( ord_less_nat @ B @ A )
         => ( ( set_fo8365102181078989356at_num @ F @ A @ B @ Acc2 )
            = Acc2 ) )
        & ( ~ ( ord_less_nat @ B @ A )
         => ( ( set_fo8365102181078989356at_num @ F @ A @ B @ Acc2 )
            = ( set_fo8365102181078989356at_num @ F @ ( plus_plus_nat @ A @ one_one_nat ) @ B @ ( F @ A @ Acc2 ) ) ) ) ) ) ).

% fold_atLeastAtMost_nat.psimps
thf(fact_7936_fold__atLeastAtMost__nat_Opsimps,axiom,
    ! [F: nat > nat > nat,A: nat,B: nat,Acc2: nat] :
      ( ( accp_P6019419558468335806at_nat @ set_fo3699595496184130361el_nat @ ( produc3209952032786966637at_nat @ F @ ( produc487386426758144856at_nat @ A @ ( product_Pair_nat_nat @ B @ Acc2 ) ) ) )
     => ( ( ( ord_less_nat @ B @ A )
         => ( ( set_fo2584398358068434914at_nat @ F @ A @ B @ Acc2 )
            = Acc2 ) )
        & ( ~ ( ord_less_nat @ B @ A )
         => ( ( set_fo2584398358068434914at_nat @ F @ A @ B @ Acc2 )
            = ( set_fo2584398358068434914at_nat @ F @ ( plus_plus_nat @ A @ one_one_nat ) @ B @ ( F @ A @ Acc2 ) ) ) ) ) ) ).

% fold_atLeastAtMost_nat.psimps
thf(fact_7937_sin__cos__npi,axiom,
    ! [N2: nat] :
      ( ( sin_real @ ( divide_divide_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
      = ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N2 ) ) ).

% sin_cos_npi
thf(fact_7938_cos__pi__eq__zero,axiom,
    ! [M: nat] :
      ( ( cos_real @ ( divide_divide_real @ ( times_times_real @ pi @ ( semiri5074537144036343181t_real @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
      = zero_zero_real ) ).

% cos_pi_eq_zero
thf(fact_7939_cos__zero,axiom,
    ( ( cos_complex @ zero_zero_complex )
    = one_one_complex ) ).

% cos_zero
thf(fact_7940_cos__zero,axiom,
    ( ( cos_real @ zero_zero_real )
    = one_one_real ) ).

% cos_zero
thf(fact_7941_sin__pi__minus,axiom,
    ! [X: real] :
      ( ( sin_real @ ( minus_minus_real @ pi @ X ) )
      = ( sin_real @ X ) ) ).

% sin_pi_minus
thf(fact_7942_cos__periodic__pi,axiom,
    ! [X: real] :
      ( ( cos_real @ ( plus_plus_real @ X @ pi ) )
      = ( uminus_uminus_real @ ( cos_real @ X ) ) ) ).

% cos_periodic_pi
thf(fact_7943_cos__periodic__pi2,axiom,
    ! [X: real] :
      ( ( cos_real @ ( plus_plus_real @ pi @ X ) )
      = ( uminus_uminus_real @ ( cos_real @ X ) ) ) ).

% cos_periodic_pi2
thf(fact_7944_sin__periodic__pi,axiom,
    ! [X: real] :
      ( ( sin_real @ ( plus_plus_real @ X @ pi ) )
      = ( uminus_uminus_real @ ( sin_real @ X ) ) ) ).

% sin_periodic_pi
thf(fact_7945_sin__periodic__pi2,axiom,
    ! [X: real] :
      ( ( sin_real @ ( plus_plus_real @ pi @ X ) )
      = ( uminus_uminus_real @ ( sin_real @ X ) ) ) ).

% sin_periodic_pi2
thf(fact_7946_cos__pi__minus,axiom,
    ! [X: real] :
      ( ( cos_real @ ( minus_minus_real @ pi @ X ) )
      = ( uminus_uminus_real @ ( cos_real @ X ) ) ) ).

% cos_pi_minus
thf(fact_7947_cos__minus__pi,axiom,
    ! [X: real] :
      ( ( cos_real @ ( minus_minus_real @ X @ pi ) )
      = ( uminus_uminus_real @ ( cos_real @ X ) ) ) ).

% cos_minus_pi
thf(fact_7948_sin__minus__pi,axiom,
    ! [X: real] :
      ( ( sin_real @ ( minus_minus_real @ X @ pi ) )
      = ( uminus_uminus_real @ ( sin_real @ X ) ) ) ).

% sin_minus_pi
thf(fact_7949_sin__cos__squared__add3,axiom,
    ! [X: complex] :
      ( ( plus_plus_complex @ ( times_times_complex @ ( cos_complex @ X ) @ ( cos_complex @ X ) ) @ ( times_times_complex @ ( sin_complex @ X ) @ ( sin_complex @ X ) ) )
      = one_one_complex ) ).

% sin_cos_squared_add3
thf(fact_7950_sin__cos__squared__add3,axiom,
    ! [X: real] :
      ( ( plus_plus_real @ ( times_times_real @ ( cos_real @ X ) @ ( cos_real @ X ) ) @ ( times_times_real @ ( sin_real @ X ) @ ( sin_real @ X ) ) )
      = one_one_real ) ).

% sin_cos_squared_add3
thf(fact_7951_sin__npi,axiom,
    ! [N2: nat] :
      ( ( sin_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ pi ) )
      = zero_zero_real ) ).

% sin_npi
thf(fact_7952_sin__npi2,axiom,
    ! [N2: nat] :
      ( ( sin_real @ ( times_times_real @ pi @ ( semiri5074537144036343181t_real @ N2 ) ) )
      = zero_zero_real ) ).

% sin_npi2
thf(fact_7953_cos__pi__half,axiom,
    ( ( cos_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
    = zero_zero_real ) ).

% cos_pi_half
thf(fact_7954_sin__two__pi,axiom,
    ( ( sin_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) )
    = zero_zero_real ) ).

% sin_two_pi
thf(fact_7955_sin__pi__half,axiom,
    ( ( sin_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
    = one_one_real ) ).

% sin_pi_half
thf(fact_7956_cos__two__pi,axiom,
    ( ( cos_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) )
    = one_one_real ) ).

% cos_two_pi
thf(fact_7957_cos__periodic,axiom,
    ! [X: real] :
      ( ( cos_real @ ( plus_plus_real @ X @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) ) )
      = ( cos_real @ X ) ) ).

% cos_periodic
thf(fact_7958_sin__periodic,axiom,
    ! [X: real] :
      ( ( sin_real @ ( plus_plus_real @ X @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) ) )
      = ( sin_real @ X ) ) ).

% sin_periodic
thf(fact_7959_cos__2pi__minus,axiom,
    ! [X: real] :
      ( ( cos_real @ ( minus_minus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) @ X ) )
      = ( cos_real @ X ) ) ).

% cos_2pi_minus
thf(fact_7960_cos__npi,axiom,
    ! [N2: nat] :
      ( ( cos_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ pi ) )
      = ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N2 ) ) ).

% cos_npi
thf(fact_7961_cos__npi2,axiom,
    ! [N2: nat] :
      ( ( cos_real @ ( times_times_real @ pi @ ( semiri5074537144036343181t_real @ N2 ) ) )
      = ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N2 ) ) ).

% cos_npi2
thf(fact_7962_sin__cos__squared__add,axiom,
    ! [X: real] :
      ( ( plus_plus_real @ ( power_power_real @ ( sin_real @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( cos_real @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = one_one_real ) ).

% sin_cos_squared_add
thf(fact_7963_sin__cos__squared__add,axiom,
    ! [X: complex] :
      ( ( plus_plus_complex @ ( power_power_complex @ ( sin_complex @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_complex @ ( cos_complex @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = one_one_complex ) ).

% sin_cos_squared_add
thf(fact_7964_sin__cos__squared__add2,axiom,
    ! [X: real] :
      ( ( plus_plus_real @ ( power_power_real @ ( cos_real @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( sin_real @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = one_one_real ) ).

% sin_cos_squared_add2
thf(fact_7965_sin__cos__squared__add2,axiom,
    ! [X: complex] :
      ( ( plus_plus_complex @ ( power_power_complex @ ( cos_complex @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_complex @ ( sin_complex @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = one_one_complex ) ).

% sin_cos_squared_add2
thf(fact_7966_sin__2npi,axiom,
    ! [N2: nat] :
      ( ( sin_real @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ N2 ) ) @ pi ) )
      = zero_zero_real ) ).

% sin_2npi
thf(fact_7967_cos__2npi,axiom,
    ! [N2: nat] :
      ( ( cos_real @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ N2 ) ) @ pi ) )
      = one_one_real ) ).

% cos_2npi
thf(fact_7968_sin__2pi__minus,axiom,
    ! [X: real] :
      ( ( sin_real @ ( minus_minus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) @ X ) )
      = ( uminus_uminus_real @ ( sin_real @ X ) ) ) ).

% sin_2pi_minus
thf(fact_7969_cos__3over2__pi,axiom,
    ( ( cos_real @ ( times_times_real @ ( divide_divide_real @ ( numeral_numeral_real @ ( bit1 @ one ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ pi ) )
    = zero_zero_real ) ).

% cos_3over2_pi
thf(fact_7970_sin__3over2__pi,axiom,
    ( ( sin_real @ ( times_times_real @ ( divide_divide_real @ ( numeral_numeral_real @ ( bit1 @ one ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ pi ) )
    = ( uminus_uminus_real @ one_one_real ) ) ).

% sin_3over2_pi
thf(fact_7971_sin__add,axiom,
    ! [X: real,Y: real] :
      ( ( sin_real @ ( plus_plus_real @ X @ Y ) )
      = ( plus_plus_real @ ( times_times_real @ ( sin_real @ X ) @ ( cos_real @ Y ) ) @ ( times_times_real @ ( cos_real @ X ) @ ( sin_real @ Y ) ) ) ) ).

% sin_add
thf(fact_7972_cos__one__sin__zero,axiom,
    ! [X: complex] :
      ( ( ( cos_complex @ X )
        = one_one_complex )
     => ( ( sin_complex @ X )
        = zero_zero_complex ) ) ).

% cos_one_sin_zero
thf(fact_7973_cos__one__sin__zero,axiom,
    ! [X: real] :
      ( ( ( cos_real @ X )
        = one_one_real )
     => ( ( sin_real @ X )
        = zero_zero_real ) ) ).

% cos_one_sin_zero
thf(fact_7974_polar__Ex,axiom,
    ! [X: real,Y: real] :
    ? [R3: real,A3: real] :
      ( ( X
        = ( times_times_real @ R3 @ ( cos_real @ A3 ) ) )
      & ( Y
        = ( times_times_real @ R3 @ ( sin_real @ A3 ) ) ) ) ).

% polar_Ex
thf(fact_7975_sin__diff,axiom,
    ! [X: real,Y: real] :
      ( ( sin_real @ ( minus_minus_real @ X @ Y ) )
      = ( minus_minus_real @ ( times_times_real @ ( sin_real @ X ) @ ( cos_real @ Y ) ) @ ( times_times_real @ ( cos_real @ X ) @ ( sin_real @ Y ) ) ) ) ).

% sin_diff
thf(fact_7976_cos__diff,axiom,
    ! [X: real,Y: real] :
      ( ( cos_real @ ( minus_minus_real @ X @ Y ) )
      = ( plus_plus_real @ ( times_times_real @ ( cos_real @ X ) @ ( cos_real @ Y ) ) @ ( times_times_real @ ( sin_real @ X ) @ ( sin_real @ Y ) ) ) ) ).

% cos_diff
thf(fact_7977_cos__add,axiom,
    ! [X: real,Y: real] :
      ( ( cos_real @ ( plus_plus_real @ X @ Y ) )
      = ( minus_minus_real @ ( times_times_real @ ( cos_real @ X ) @ ( cos_real @ Y ) ) @ ( times_times_real @ ( sin_real @ X ) @ ( sin_real @ Y ) ) ) ) ).

% cos_add
thf(fact_7978_sin__double,axiom,
    ! [X: complex] :
      ( ( sin_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ X ) )
      = ( times_times_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( sin_complex @ X ) ) @ ( cos_complex @ X ) ) ) ).

% sin_double
thf(fact_7979_sin__double,axiom,
    ! [X: real] :
      ( ( sin_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X ) )
      = ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( sin_real @ X ) ) @ ( cos_real @ X ) ) ) ).

% sin_double
thf(fact_7980_sincos__principal__value,axiom,
    ! [X: real] :
    ? [Y5: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ pi ) @ Y5 )
      & ( ord_less_eq_real @ Y5 @ pi )
      & ( ( sin_real @ Y5 )
        = ( sin_real @ X ) )
      & ( ( cos_real @ Y5 )
        = ( cos_real @ X ) ) ) ).

% sincos_principal_value
thf(fact_7981_sin__x__le__x,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ord_less_eq_real @ ( sin_real @ X ) @ X ) ) ).

% sin_x_le_x
thf(fact_7982_sin__le__one,axiom,
    ! [X: real] : ( ord_less_eq_real @ ( sin_real @ X ) @ one_one_real ) ).

% sin_le_one
thf(fact_7983_cos__le__one,axiom,
    ! [X: real] : ( ord_less_eq_real @ ( cos_real @ X ) @ one_one_real ) ).

% cos_le_one
thf(fact_7984_abs__sin__x__le__abs__x,axiom,
    ! [X: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( sin_real @ X ) ) @ ( abs_abs_real @ X ) ) ).

% abs_sin_x_le_abs_x
thf(fact_7985_sin__cos__le1,axiom,
    ! [X: real,Y: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( plus_plus_real @ ( times_times_real @ ( sin_real @ X ) @ ( sin_real @ Y ) ) @ ( times_times_real @ ( cos_real @ X ) @ ( cos_real @ Y ) ) ) ) @ one_one_real ) ).

% sin_cos_le1
thf(fact_7986_cos__squared__eq,axiom,
    ! [X: complex] :
      ( ( power_power_complex @ ( cos_complex @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( minus_minus_complex @ one_one_complex @ ( power_power_complex @ ( sin_complex @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% cos_squared_eq
thf(fact_7987_cos__squared__eq,axiom,
    ! [X: real] :
      ( ( power_power_real @ ( cos_real @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( minus_minus_real @ one_one_real @ ( power_power_real @ ( sin_real @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% cos_squared_eq
thf(fact_7988_sin__squared__eq,axiom,
    ! [X: complex] :
      ( ( power_power_complex @ ( sin_complex @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( minus_minus_complex @ one_one_complex @ ( power_power_complex @ ( cos_complex @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% sin_squared_eq
thf(fact_7989_sin__squared__eq,axiom,
    ! [X: real] :
      ( ( power_power_real @ ( sin_real @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( minus_minus_real @ one_one_real @ ( power_power_real @ ( cos_real @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% sin_squared_eq
thf(fact_7990_sin__x__ge__neg__x,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ord_less_eq_real @ ( uminus_uminus_real @ X ) @ ( sin_real @ X ) ) ) ).

% sin_x_ge_neg_x
thf(fact_7991_sin__ge__zero,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ X @ pi )
       => ( ord_less_eq_real @ zero_zero_real @ ( sin_real @ X ) ) ) ) ).

% sin_ge_zero
thf(fact_7992_sin__ge__minus__one,axiom,
    ! [X: real] : ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ ( sin_real @ X ) ) ).

% sin_ge_minus_one
thf(fact_7993_cos__inj__pi,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ X @ pi )
       => ( ( ord_less_eq_real @ zero_zero_real @ Y )
         => ( ( ord_less_eq_real @ Y @ pi )
           => ( ( ( cos_real @ X )
                = ( cos_real @ Y ) )
             => ( X = Y ) ) ) ) ) ) ).

% cos_inj_pi
thf(fact_7994_cos__mono__le__eq,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ X @ pi )
       => ( ( ord_less_eq_real @ zero_zero_real @ Y )
         => ( ( ord_less_eq_real @ Y @ pi )
           => ( ( ord_less_eq_real @ ( cos_real @ X ) @ ( cos_real @ Y ) )
              = ( ord_less_eq_real @ Y @ X ) ) ) ) ) ) ).

% cos_mono_le_eq
thf(fact_7995_cos__monotone__0__pi__le,axiom,
    ! [Y: real,X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ Y )
     => ( ( ord_less_eq_real @ Y @ X )
       => ( ( ord_less_eq_real @ X @ pi )
         => ( ord_less_eq_real @ ( cos_real @ X ) @ ( cos_real @ Y ) ) ) ) ) ).

% cos_monotone_0_pi_le
thf(fact_7996_cos__ge__minus__one,axiom,
    ! [X: real] : ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ ( cos_real @ X ) ) ).

% cos_ge_minus_one
thf(fact_7997_abs__sin__le__one,axiom,
    ! [X: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( sin_real @ X ) ) @ one_one_real ) ).

% abs_sin_le_one
thf(fact_7998_abs__cos__le__one,axiom,
    ! [X: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( cos_real @ X ) ) @ one_one_real ) ).

% abs_cos_le_one
thf(fact_7999_cos__diff__cos,axiom,
    ! [W: complex,Z: complex] :
      ( ( minus_minus_complex @ ( cos_complex @ W ) @ ( cos_complex @ Z ) )
      = ( times_times_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( sin_complex @ ( divide1717551699836669952omplex @ ( plus_plus_complex @ W @ Z ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ) @ ( sin_complex @ ( divide1717551699836669952omplex @ ( minus_minus_complex @ Z @ W ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ) ) ).

% cos_diff_cos
thf(fact_8000_cos__diff__cos,axiom,
    ! [W: real,Z: real] :
      ( ( minus_minus_real @ ( cos_real @ W ) @ ( cos_real @ Z ) )
      = ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( sin_real @ ( divide_divide_real @ ( plus_plus_real @ W @ Z ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) @ ( sin_real @ ( divide_divide_real @ ( minus_minus_real @ Z @ W ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).

% cos_diff_cos
thf(fact_8001_sin__diff__sin,axiom,
    ! [W: complex,Z: complex] :
      ( ( minus_minus_complex @ ( sin_complex @ W ) @ ( sin_complex @ Z ) )
      = ( times_times_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( sin_complex @ ( divide1717551699836669952omplex @ ( minus_minus_complex @ W @ Z ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ) @ ( cos_complex @ ( divide1717551699836669952omplex @ ( plus_plus_complex @ W @ Z ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ) ) ).

% sin_diff_sin
thf(fact_8002_sin__diff__sin,axiom,
    ! [W: real,Z: real] :
      ( ( minus_minus_real @ ( sin_real @ W ) @ ( sin_real @ Z ) )
      = ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( sin_real @ ( divide_divide_real @ ( minus_minus_real @ W @ Z ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) @ ( cos_real @ ( divide_divide_real @ ( plus_plus_real @ W @ Z ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).

% sin_diff_sin
thf(fact_8003_sin__plus__sin,axiom,
    ! [W: complex,Z: complex] :
      ( ( plus_plus_complex @ ( sin_complex @ W ) @ ( sin_complex @ Z ) )
      = ( times_times_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( sin_complex @ ( divide1717551699836669952omplex @ ( plus_plus_complex @ W @ Z ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ) @ ( cos_complex @ ( divide1717551699836669952omplex @ ( minus_minus_complex @ W @ Z ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ) ) ).

% sin_plus_sin
thf(fact_8004_sin__plus__sin,axiom,
    ! [W: real,Z: real] :
      ( ( plus_plus_real @ ( sin_real @ W ) @ ( sin_real @ Z ) )
      = ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( sin_real @ ( divide_divide_real @ ( plus_plus_real @ W @ Z ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) @ ( cos_real @ ( divide_divide_real @ ( minus_minus_real @ W @ Z ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).

% sin_plus_sin
thf(fact_8005_cos__times__sin,axiom,
    ! [W: complex,Z: complex] :
      ( ( times_times_complex @ ( cos_complex @ W ) @ ( sin_complex @ Z ) )
      = ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( sin_complex @ ( plus_plus_complex @ W @ Z ) ) @ ( sin_complex @ ( minus_minus_complex @ W @ Z ) ) ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ).

% cos_times_sin
thf(fact_8006_cos__times__sin,axiom,
    ! [W: real,Z: real] :
      ( ( times_times_real @ ( cos_real @ W ) @ ( sin_real @ Z ) )
      = ( divide_divide_real @ ( minus_minus_real @ ( sin_real @ ( plus_plus_real @ W @ Z ) ) @ ( sin_real @ ( minus_minus_real @ W @ Z ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% cos_times_sin
thf(fact_8007_sin__times__cos,axiom,
    ! [W: complex,Z: complex] :
      ( ( times_times_complex @ ( sin_complex @ W ) @ ( cos_complex @ Z ) )
      = ( divide1717551699836669952omplex @ ( plus_plus_complex @ ( sin_complex @ ( plus_plus_complex @ W @ Z ) ) @ ( sin_complex @ ( minus_minus_complex @ W @ Z ) ) ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ).

% sin_times_cos
thf(fact_8008_sin__times__cos,axiom,
    ! [W: real,Z: real] :
      ( ( times_times_real @ ( sin_real @ W ) @ ( cos_real @ Z ) )
      = ( divide_divide_real @ ( plus_plus_real @ ( sin_real @ ( plus_plus_real @ W @ Z ) ) @ ( sin_real @ ( minus_minus_real @ W @ Z ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% sin_times_cos
thf(fact_8009_sin__times__sin,axiom,
    ! [W: complex,Z: complex] :
      ( ( times_times_complex @ ( sin_complex @ W ) @ ( sin_complex @ Z ) )
      = ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( cos_complex @ ( minus_minus_complex @ W @ Z ) ) @ ( cos_complex @ ( plus_plus_complex @ W @ Z ) ) ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ).

% sin_times_sin
thf(fact_8010_sin__times__sin,axiom,
    ! [W: real,Z: real] :
      ( ( times_times_real @ ( sin_real @ W ) @ ( sin_real @ Z ) )
      = ( divide_divide_real @ ( minus_minus_real @ ( cos_real @ ( minus_minus_real @ W @ Z ) ) @ ( cos_real @ ( plus_plus_real @ W @ Z ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% sin_times_sin
thf(fact_8011_cos__double,axiom,
    ! [X: complex] :
      ( ( cos_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ X ) )
      = ( minus_minus_complex @ ( power_power_complex @ ( cos_complex @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_complex @ ( sin_complex @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% cos_double
thf(fact_8012_cos__double,axiom,
    ! [X: real] :
      ( ( cos_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X ) )
      = ( minus_minus_real @ ( power_power_real @ ( cos_real @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( sin_real @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% cos_double
thf(fact_8013_cos__double__sin,axiom,
    ! [W: complex] :
      ( ( cos_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ W ) )
      = ( minus_minus_complex @ one_one_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( power_power_complex @ ( sin_complex @ W ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% cos_double_sin
thf(fact_8014_cos__double__sin,axiom,
    ! [W: real] :
      ( ( cos_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ W ) )
      = ( minus_minus_real @ one_one_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( power_power_real @ ( sin_real @ W ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% cos_double_sin
thf(fact_8015_cos__two__neq__zero,axiom,
    ( ( cos_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
   != zero_zero_real ) ).

% cos_two_neq_zero
thf(fact_8016_cos__monotone__0__pi,axiom,
    ! [Y: real,X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ Y )
     => ( ( ord_less_real @ Y @ X )
       => ( ( ord_less_eq_real @ X @ pi )
         => ( ord_less_real @ ( cos_real @ X ) @ ( cos_real @ Y ) ) ) ) ) ).

% cos_monotone_0_pi
thf(fact_8017_cos__mono__less__eq,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ X @ pi )
       => ( ( ord_less_eq_real @ zero_zero_real @ Y )
         => ( ( ord_less_eq_real @ Y @ pi )
           => ( ( ord_less_real @ ( cos_real @ X ) @ ( cos_real @ Y ) )
              = ( ord_less_real @ Y @ X ) ) ) ) ) ) ).

% cos_mono_less_eq
thf(fact_8018_cos__monotone__minus__pi__0_H,axiom,
    ! [Y: real,X: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ pi ) @ Y )
     => ( ( ord_less_eq_real @ Y @ X )
       => ( ( ord_less_eq_real @ X @ zero_zero_real )
         => ( ord_less_eq_real @ ( cos_real @ Y ) @ ( cos_real @ X ) ) ) ) ) ).

% cos_monotone_minus_pi_0'
thf(fact_8019_sincos__total__pi,axiom,
    ! [Y: real,X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ Y )
     => ( ( ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
          = one_one_real )
       => ? [T5: real] :
            ( ( ord_less_eq_real @ zero_zero_real @ T5 )
            & ( ord_less_eq_real @ T5 @ pi )
            & ( X
              = ( cos_real @ T5 ) )
            & ( Y
              = ( sin_real @ T5 ) ) ) ) ) ).

% sincos_total_pi
thf(fact_8020_sin__expansion__lemma,axiom,
    ! [X: real,M: nat] :
      ( ( sin_real @ ( plus_plus_real @ X @ ( divide_divide_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ ( suc @ M ) ) @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) )
      = ( cos_real @ ( plus_plus_real @ X @ ( divide_divide_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ M ) @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).

% sin_expansion_lemma
thf(fact_8021_cos__expansion__lemma,axiom,
    ! [X: real,M: nat] :
      ( ( cos_real @ ( plus_plus_real @ X @ ( divide_divide_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ ( suc @ M ) ) @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) )
      = ( uminus_uminus_real @ ( sin_real @ ( plus_plus_real @ X @ ( divide_divide_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ M ) @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ).

% cos_expansion_lemma
thf(fact_8022_sin__gt__zero__02,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ X @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
       => ( ord_less_real @ zero_zero_real @ ( sin_real @ X ) ) ) ) ).

% sin_gt_zero_02
thf(fact_8023_cos__two__less__zero,axiom,
    ord_less_real @ ( cos_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ zero_zero_real ).

% cos_two_less_zero
thf(fact_8024_cos__two__le__zero,axiom,
    ord_less_eq_real @ ( cos_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ zero_zero_real ).

% cos_two_le_zero
thf(fact_8025_cos__is__zero,axiom,
    ? [X5: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X5 )
      & ( ord_less_eq_real @ X5 @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
      & ( ( cos_real @ X5 )
        = zero_zero_real )
      & ! [Y2: real] :
          ( ( ( ord_less_eq_real @ zero_zero_real @ Y2 )
            & ( ord_less_eq_real @ Y2 @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
            & ( ( cos_real @ Y2 )
              = zero_zero_real ) )
         => ( Y2 = X5 ) ) ) ).

% cos_is_zero
thf(fact_8026_fold__atLeastAtMost__nat_Osimps,axiom,
    ( set_fo2584398358068434914at_nat
    = ( ^ [F3: nat > nat > nat,A4: nat,B4: nat,Acc3: nat] : ( if_nat @ ( ord_less_nat @ B4 @ A4 ) @ Acc3 @ ( set_fo2584398358068434914at_nat @ F3 @ ( plus_plus_nat @ A4 @ one_one_nat ) @ B4 @ ( F3 @ A4 @ Acc3 ) ) ) ) ) ).

% fold_atLeastAtMost_nat.simps
thf(fact_8027_fold__atLeastAtMost__nat_Oelims,axiom,
    ! [X: nat > nat > nat,Xa2: nat,Xb: nat,Xc: nat,Y: nat] :
      ( ( ( set_fo2584398358068434914at_nat @ X @ Xa2 @ Xb @ Xc )
        = Y )
     => ( ( ( ord_less_nat @ Xb @ Xa2 )
         => ( Y = Xc ) )
        & ( ~ ( ord_less_nat @ Xb @ Xa2 )
         => ( Y
            = ( set_fo2584398358068434914at_nat @ X @ ( plus_plus_nat @ Xa2 @ one_one_nat ) @ Xb @ ( X @ Xa2 @ Xc ) ) ) ) ) ) ).

% fold_atLeastAtMost_nat.elims
thf(fact_8028_cos__monotone__minus__pi__0,axiom,
    ! [Y: real,X: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ pi ) @ Y )
     => ( ( ord_less_real @ Y @ X )
       => ( ( ord_less_eq_real @ X @ zero_zero_real )
         => ( ord_less_real @ ( cos_real @ Y ) @ ( cos_real @ X ) ) ) ) ) ).

% cos_monotone_minus_pi_0
thf(fact_8029_cos__total,axiom,
    ! [Y: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y )
     => ( ( ord_less_eq_real @ Y @ one_one_real )
       => ? [X5: real] :
            ( ( ord_less_eq_real @ zero_zero_real @ X5 )
            & ( ord_less_eq_real @ X5 @ pi )
            & ( ( cos_real @ X5 )
              = Y )
            & ! [Y2: real] :
                ( ( ( ord_less_eq_real @ zero_zero_real @ Y2 )
                  & ( ord_less_eq_real @ Y2 @ pi )
                  & ( ( cos_real @ Y2 )
                    = Y ) )
               => ( Y2 = X5 ) ) ) ) ) ).

% cos_total
thf(fact_8030_sincos__total__pi__half,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y )
       => ( ( ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
            = one_one_real )
         => ? [T5: real] :
              ( ( ord_less_eq_real @ zero_zero_real @ T5 )
              & ( ord_less_eq_real @ T5 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
              & ( X
                = ( cos_real @ T5 ) )
              & ( Y
                = ( sin_real @ T5 ) ) ) ) ) ) ).

% sincos_total_pi_half
thf(fact_8031_sincos__total__2pi__le,axiom,
    ! [X: real,Y: real] :
      ( ( ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
        = one_one_real )
     => ? [T5: real] :
          ( ( ord_less_eq_real @ zero_zero_real @ T5 )
          & ( ord_less_eq_real @ T5 @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) )
          & ( X
            = ( cos_real @ T5 ) )
          & ( Y
            = ( sin_real @ T5 ) ) ) ) ).

% sincos_total_2pi_le
thf(fact_8032_sincos__total__2pi,axiom,
    ! [X: real,Y: real] :
      ( ( ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
        = one_one_real )
     => ~ ! [T5: real] :
            ( ( ord_less_eq_real @ zero_zero_real @ T5 )
           => ( ( ord_less_real @ T5 @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) )
             => ( ( X
                  = ( cos_real @ T5 ) )
               => ( Y
                 != ( sin_real @ T5 ) ) ) ) ) ) ).

% sincos_total_2pi
thf(fact_8033_sin__pi__divide__n__ge__0,axiom,
    ! [N2: nat] :
      ( ( N2 != zero_zero_nat )
     => ( ord_less_eq_real @ zero_zero_real @ ( sin_real @ ( divide_divide_real @ pi @ ( semiri5074537144036343181t_real @ N2 ) ) ) ) ) ).

% sin_pi_divide_n_ge_0
thf(fact_8034_cos__plus__cos,axiom,
    ! [W: complex,Z: complex] :
      ( ( plus_plus_complex @ ( cos_complex @ W ) @ ( cos_complex @ Z ) )
      = ( times_times_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( cos_complex @ ( divide1717551699836669952omplex @ ( plus_plus_complex @ W @ Z ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ) @ ( cos_complex @ ( divide1717551699836669952omplex @ ( minus_minus_complex @ W @ Z ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ) ) ).

% cos_plus_cos
thf(fact_8035_cos__plus__cos,axiom,
    ! [W: real,Z: real] :
      ( ( plus_plus_real @ ( cos_real @ W ) @ ( cos_real @ Z ) )
      = ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( cos_real @ ( divide_divide_real @ ( plus_plus_real @ W @ Z ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) @ ( cos_real @ ( divide_divide_real @ ( minus_minus_real @ W @ Z ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).

% cos_plus_cos
thf(fact_8036_cos__times__cos,axiom,
    ! [W: complex,Z: complex] :
      ( ( times_times_complex @ ( cos_complex @ W ) @ ( cos_complex @ Z ) )
      = ( divide1717551699836669952omplex @ ( plus_plus_complex @ ( cos_complex @ ( minus_minus_complex @ W @ Z ) ) @ ( cos_complex @ ( plus_plus_complex @ W @ Z ) ) ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ).

% cos_times_cos
thf(fact_8037_cos__times__cos,axiom,
    ! [W: real,Z: real] :
      ( ( times_times_real @ ( cos_real @ W ) @ ( cos_real @ Z ) )
      = ( divide_divide_real @ ( plus_plus_real @ ( cos_real @ ( minus_minus_real @ W @ Z ) ) @ ( cos_real @ ( plus_plus_real @ W @ Z ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% cos_times_cos
thf(fact_8038_sin__gt__zero2,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ X @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ord_less_real @ zero_zero_real @ ( sin_real @ X ) ) ) ) ).

% sin_gt_zero2
thf(fact_8039_sin__lt__zero,axiom,
    ! [X: real] :
      ( ( ord_less_real @ pi @ X )
     => ( ( ord_less_real @ X @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) )
       => ( ord_less_real @ ( sin_real @ X ) @ zero_zero_real ) ) ) ).

% sin_lt_zero
thf(fact_8040_cos__double__less__one,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ X @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
       => ( ord_less_real @ ( cos_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X ) ) @ one_one_real ) ) ) ).

% cos_double_less_one
thf(fact_8041_sin__30,axiom,
    ( ( sin_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit1 @ one ) ) ) ) )
    = ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% sin_30
thf(fact_8042_cos__gt__zero,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ X @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ord_less_real @ zero_zero_real @ ( cos_real @ X ) ) ) ) ).

% cos_gt_zero
thf(fact_8043_sin__inj__pi,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X )
     => ( ( ord_less_eq_real @ X @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y )
         => ( ( ord_less_eq_real @ Y @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
           => ( ( ( sin_real @ X )
                = ( sin_real @ Y ) )
             => ( X = Y ) ) ) ) ) ) ).

% sin_inj_pi
thf(fact_8044_sin__mono__le__eq,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X )
     => ( ( ord_less_eq_real @ X @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y )
         => ( ( ord_less_eq_real @ Y @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
           => ( ( ord_less_eq_real @ ( sin_real @ X ) @ ( sin_real @ Y ) )
              = ( ord_less_eq_real @ X @ Y ) ) ) ) ) ) ).

% sin_mono_le_eq
thf(fact_8045_sin__monotone__2pi__le,axiom,
    ! [Y: real,X: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y )
     => ( ( ord_less_eq_real @ Y @ X )
       => ( ( ord_less_eq_real @ X @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
         => ( ord_less_eq_real @ ( sin_real @ Y ) @ ( sin_real @ X ) ) ) ) ) ).

% sin_monotone_2pi_le
thf(fact_8046_cos__60,axiom,
    ( ( cos_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit1 @ one ) ) ) )
    = ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% cos_60
thf(fact_8047_sum__atLeastAtMost__code,axiom,
    ! [F: nat > complex,A: nat,B: nat] :
      ( ( groups2073611262835488442omplex @ F @ ( set_or1269000886237332187st_nat @ A @ B ) )
      = ( set_fo1517530859248394432omplex
        @ ^ [A4: nat] : ( plus_plus_complex @ ( F @ A4 ) )
        @ A
        @ B
        @ zero_zero_complex ) ) ).

% sum_atLeastAtMost_code
thf(fact_8048_sum__atLeastAtMost__code,axiom,
    ! [F: nat > rat,A: nat,B: nat] :
      ( ( groups2906978787729119204at_rat @ F @ ( set_or1269000886237332187st_nat @ A @ B ) )
      = ( set_fo1949268297981939178at_rat
        @ ^ [A4: nat] : ( plus_plus_rat @ ( F @ A4 ) )
        @ A
        @ B
        @ zero_zero_rat ) ) ).

% sum_atLeastAtMost_code
thf(fact_8049_sum__atLeastAtMost__code,axiom,
    ! [F: nat > int,A: nat,B: nat] :
      ( ( groups3539618377306564664at_int @ F @ ( set_or1269000886237332187st_nat @ A @ B ) )
      = ( set_fo2581907887559384638at_int
        @ ^ [A4: nat] : ( plus_plus_int @ ( F @ A4 ) )
        @ A
        @ B
        @ zero_zero_int ) ) ).

% sum_atLeastAtMost_code
thf(fact_8050_sum__atLeastAtMost__code,axiom,
    ! [F: nat > nat,A: nat,B: nat] :
      ( ( groups3542108847815614940at_nat @ F @ ( set_or1269000886237332187st_nat @ A @ B ) )
      = ( set_fo2584398358068434914at_nat
        @ ^ [A4: nat] : ( plus_plus_nat @ ( F @ A4 ) )
        @ A
        @ B
        @ zero_zero_nat ) ) ).

% sum_atLeastAtMost_code
thf(fact_8051_sum__atLeastAtMost__code,axiom,
    ! [F: nat > real,A: nat,B: nat] :
      ( ( groups6591440286371151544t_real @ F @ ( set_or1269000886237332187st_nat @ A @ B ) )
      = ( set_fo3111899725591712190t_real
        @ ^ [A4: nat] : ( plus_plus_real @ ( F @ A4 ) )
        @ A
        @ B
        @ zero_zero_real ) ) ).

% sum_atLeastAtMost_code
thf(fact_8052_cos__double__cos,axiom,
    ! [W: complex] :
      ( ( cos_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ W ) )
      = ( minus_minus_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( power_power_complex @ ( cos_complex @ W ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ one_one_complex ) ) ).

% cos_double_cos
thf(fact_8053_cos__double__cos,axiom,
    ! [W: real] :
      ( ( cos_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ W ) )
      = ( minus_minus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( power_power_real @ ( cos_real @ W ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ one_one_real ) ) ).

% cos_double_cos
thf(fact_8054_cos__treble__cos,axiom,
    ! [X: complex] :
      ( ( cos_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit1 @ one ) ) @ X ) )
      = ( minus_minus_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ ( bit0 @ one ) ) ) @ ( power_power_complex @ ( cos_complex @ X ) @ ( numeral_numeral_nat @ ( bit1 @ one ) ) ) ) @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit1 @ one ) ) @ ( cos_complex @ X ) ) ) ) ).

% cos_treble_cos
thf(fact_8055_cos__treble__cos,axiom,
    ! [X: real] :
      ( ( cos_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit1 @ one ) ) @ X ) )
      = ( minus_minus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( cos_real @ X ) @ ( numeral_numeral_nat @ ( bit1 @ one ) ) ) ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit1 @ one ) ) @ ( cos_real @ X ) ) ) ) ).

% cos_treble_cos
thf(fact_8056_sin__le__zero,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ pi @ X )
     => ( ( ord_less_real @ X @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) )
       => ( ord_less_eq_real @ ( sin_real @ X ) @ zero_zero_real ) ) ) ).

% sin_le_zero
thf(fact_8057_sin__less__zero,axiom,
    ! [X: real] :
      ( ( ord_less_real @ ( divide_divide_real @ ( uminus_uminus_real @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ X )
     => ( ( ord_less_real @ X @ zero_zero_real )
       => ( ord_less_real @ ( sin_real @ X ) @ zero_zero_real ) ) ) ).

% sin_less_zero
thf(fact_8058_sin__mono__less__eq,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X )
     => ( ( ord_less_eq_real @ X @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y )
         => ( ( ord_less_eq_real @ Y @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
           => ( ( ord_less_real @ ( sin_real @ X ) @ ( sin_real @ Y ) )
              = ( ord_less_real @ X @ Y ) ) ) ) ) ) ).

% sin_mono_less_eq
thf(fact_8059_sin__monotone__2pi,axiom,
    ! [Y: real,X: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y )
     => ( ( ord_less_real @ Y @ X )
       => ( ( ord_less_eq_real @ X @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
         => ( ord_less_real @ ( sin_real @ Y ) @ ( sin_real @ X ) ) ) ) ) ).

% sin_monotone_2pi
thf(fact_8060_sin__total,axiom,
    ! [Y: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y )
     => ( ( ord_less_eq_real @ Y @ one_one_real )
       => ? [X5: real] :
            ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X5 )
            & ( ord_less_eq_real @ X5 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
            & ( ( sin_real @ X5 )
              = Y )
            & ! [Y2: real] :
                ( ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y2 )
                  & ( ord_less_eq_real @ Y2 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
                  & ( ( sin_real @ Y2 )
                    = Y ) )
               => ( Y2 = X5 ) ) ) ) ) ).

% sin_total
thf(fact_8061_cos__gt__zero__pi,axiom,
    ! [X: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X )
     => ( ( ord_less_real @ X @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ord_less_real @ zero_zero_real @ ( cos_real @ X ) ) ) ) ).

% cos_gt_zero_pi
thf(fact_8062_cos__ge__zero,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X )
     => ( ( ord_less_eq_real @ X @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ord_less_eq_real @ zero_zero_real @ ( cos_real @ X ) ) ) ) ).

% cos_ge_zero
thf(fact_8063_cos__one__2pi,axiom,
    ! [X: real] :
      ( ( ( cos_real @ X )
        = one_one_real )
      = ( ? [X3: nat] :
            ( X
            = ( times_times_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ X3 ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ pi ) )
        | ? [X3: nat] :
            ( X
            = ( uminus_uminus_real @ ( times_times_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ X3 ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ pi ) ) ) ) ) ).

% cos_one_2pi
thf(fact_8064_sin__pi__divide__n__gt__0,axiom,
    ! [N2: nat] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ord_less_real @ zero_zero_real @ ( sin_real @ ( divide_divide_real @ pi @ ( semiri5074537144036343181t_real @ N2 ) ) ) ) ) ).

% sin_pi_divide_n_gt_0
thf(fact_8065_sin__zero__lemma,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ( sin_real @ X )
          = zero_zero_real )
       => ? [N: nat] :
            ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
            & ( X
              = ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% sin_zero_lemma
thf(fact_8066_sin__zero__iff,axiom,
    ! [X: real] :
      ( ( ( sin_real @ X )
        = zero_zero_real )
      = ( ? [N3: nat] :
            ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 )
            & ( X
              = ( times_times_real @ ( semiri5074537144036343181t_real @ N3 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) )
        | ? [N3: nat] :
            ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 )
            & ( X
              = ( uminus_uminus_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N3 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ).

% sin_zero_iff
thf(fact_8067_cos__zero__lemma,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ( cos_real @ X )
          = zero_zero_real )
       => ? [N: nat] :
            ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
            & ( X
              = ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% cos_zero_lemma
thf(fact_8068_cos__zero__iff,axiom,
    ! [X: real] :
      ( ( ( cos_real @ X )
        = zero_zero_real )
      = ( ? [N3: nat] :
            ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 )
            & ( X
              = ( times_times_real @ ( semiri5074537144036343181t_real @ N3 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) )
        | ? [N3: nat] :
            ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 )
            & ( X
              = ( uminus_uminus_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N3 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ).

% cos_zero_iff
thf(fact_8069_Maclaurin__minus__cos__expansion,axiom,
    ! [N2: nat,X: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( ord_less_real @ X @ zero_zero_real )
       => ? [T5: real] :
            ( ( ord_less_real @ X @ T5 )
            & ( ord_less_real @ T5 @ zero_zero_real )
            & ( ( cos_real @ X )
              = ( plus_plus_real
                @ ( groups6591440286371151544t_real
                  @ ^ [M6: nat] : ( times_times_real @ ( cos_coeff @ M6 ) @ ( power_power_real @ X @ M6 ) )
                  @ ( set_ord_lessThan_nat @ N2 ) )
                @ ( times_times_real @ ( divide_divide_real @ ( cos_real @ ( plus_plus_real @ T5 @ ( times_times_real @ ( times_times_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( semiri5074537144036343181t_real @ N2 ) ) @ pi ) ) ) @ ( semiri2265585572941072030t_real @ N2 ) ) @ ( power_power_real @ X @ N2 ) ) ) ) ) ) ) ).

% Maclaurin_minus_cos_expansion
thf(fact_8070_Maclaurin__cos__expansion2,axiom,
    ! [X: real,N2: nat] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_nat @ zero_zero_nat @ N2 )
       => ? [T5: real] :
            ( ( ord_less_real @ zero_zero_real @ T5 )
            & ( ord_less_real @ T5 @ X )
            & ( ( cos_real @ X )
              = ( plus_plus_real
                @ ( groups6591440286371151544t_real
                  @ ^ [M6: nat] : ( times_times_real @ ( cos_coeff @ M6 ) @ ( power_power_real @ X @ M6 ) )
                  @ ( set_ord_lessThan_nat @ N2 ) )
                @ ( times_times_real @ ( divide_divide_real @ ( cos_real @ ( plus_plus_real @ T5 @ ( times_times_real @ ( times_times_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( semiri5074537144036343181t_real @ N2 ) ) @ pi ) ) ) @ ( semiri2265585572941072030t_real @ N2 ) ) @ ( power_power_real @ X @ N2 ) ) ) ) ) ) ) ).

% Maclaurin_cos_expansion2
thf(fact_8071_Maclaurin__cos__expansion,axiom,
    ! [X: real,N2: nat] :
    ? [T5: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ T5 ) @ ( abs_abs_real @ X ) )
      & ( ( cos_real @ X )
        = ( plus_plus_real
          @ ( groups6591440286371151544t_real
            @ ^ [M6: nat] : ( times_times_real @ ( cos_coeff @ M6 ) @ ( power_power_real @ X @ M6 ) )
            @ ( set_ord_lessThan_nat @ N2 ) )
          @ ( times_times_real @ ( divide_divide_real @ ( cos_real @ ( plus_plus_real @ T5 @ ( times_times_real @ ( times_times_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( semiri5074537144036343181t_real @ N2 ) ) @ pi ) ) ) @ ( semiri2265585572941072030t_real @ N2 ) ) @ ( power_power_real @ X @ N2 ) ) ) ) ) ).

% Maclaurin_cos_expansion
thf(fact_8072_tan__double,axiom,
    ! [X: complex] :
      ( ( ( cos_complex @ X )
       != zero_zero_complex )
     => ( ( ( cos_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ X ) )
         != zero_zero_complex )
       => ( ( tan_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ X ) )
          = ( divide1717551699836669952omplex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( tan_complex @ X ) ) @ ( minus_minus_complex @ one_one_complex @ ( power_power_complex @ ( tan_complex @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% tan_double
thf(fact_8073_tan__double,axiom,
    ! [X: real] :
      ( ( ( cos_real @ X )
       != zero_zero_real )
     => ( ( ( cos_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X ) )
         != zero_zero_real )
       => ( ( tan_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X ) )
          = ( divide_divide_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( tan_real @ X ) ) @ ( minus_minus_real @ one_one_real @ ( power_power_real @ ( tan_real @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% tan_double
thf(fact_8074_in__measure,axiom,
    ! [X: num,Y: num,F: num > nat] :
      ( ( member7279096912039735102um_num @ ( product_Pair_num_num @ X @ Y ) @ ( measure_num @ F ) )
      = ( ord_less_nat @ ( F @ X ) @ ( F @ Y ) ) ) ).

% in_measure
thf(fact_8075_in__measure,axiom,
    ! [X: nat,Y: nat,F: nat > nat] :
      ( ( member8440522571783428010at_nat @ ( product_Pair_nat_nat @ X @ Y ) @ ( measure_nat @ F ) )
      = ( ord_less_nat @ ( F @ X ) @ ( F @ Y ) ) ) ).

% in_measure
thf(fact_8076_in__measure,axiom,
    ! [X: int,Y: int,F: int > nat] :
      ( ( member5262025264175285858nt_int @ ( product_Pair_int_int @ X @ Y ) @ ( measure_int @ F ) )
      = ( ord_less_nat @ ( F @ X ) @ ( F @ Y ) ) ) ).

% in_measure
thf(fact_8077_tan__periodic__pi,axiom,
    ! [X: real] :
      ( ( tan_real @ ( plus_plus_real @ X @ pi ) )
      = ( tan_real @ X ) ) ).

% tan_periodic_pi
thf(fact_8078_fact__0,axiom,
    ( ( semiri5044797733671781792omplex @ zero_zero_nat )
    = one_one_complex ) ).

% fact_0
thf(fact_8079_fact__0,axiom,
    ( ( semiri773545260158071498ct_rat @ zero_zero_nat )
    = one_one_rat ) ).

% fact_0
thf(fact_8080_fact__0,axiom,
    ( ( semiri1406184849735516958ct_int @ zero_zero_nat )
    = one_one_int ) ).

% fact_0
thf(fact_8081_fact__0,axiom,
    ( ( semiri2265585572941072030t_real @ zero_zero_nat )
    = one_one_real ) ).

% fact_0
thf(fact_8082_fact__0,axiom,
    ( ( semiri1408675320244567234ct_nat @ zero_zero_nat )
    = one_one_nat ) ).

% fact_0
thf(fact_8083_fact__1,axiom,
    ( ( semiri5044797733671781792omplex @ one_one_nat )
    = one_one_complex ) ).

% fact_1
thf(fact_8084_fact__1,axiom,
    ( ( semiri773545260158071498ct_rat @ one_one_nat )
    = one_one_rat ) ).

% fact_1
thf(fact_8085_fact__1,axiom,
    ( ( semiri1406184849735516958ct_int @ one_one_nat )
    = one_one_int ) ).

% fact_1
thf(fact_8086_fact__1,axiom,
    ( ( semiri2265585572941072030t_real @ one_one_nat )
    = one_one_real ) ).

% fact_1
thf(fact_8087_fact__1,axiom,
    ( ( semiri1408675320244567234ct_nat @ one_one_nat )
    = one_one_nat ) ).

% fact_1
thf(fact_8088_fact__Suc__0,axiom,
    ( ( semiri5044797733671781792omplex @ ( suc @ zero_zero_nat ) )
    = one_one_complex ) ).

% fact_Suc_0
thf(fact_8089_fact__Suc__0,axiom,
    ( ( semiri773545260158071498ct_rat @ ( suc @ zero_zero_nat ) )
    = one_one_rat ) ).

% fact_Suc_0
thf(fact_8090_fact__Suc__0,axiom,
    ( ( semiri1406184849735516958ct_int @ ( suc @ zero_zero_nat ) )
    = one_one_int ) ).

% fact_Suc_0
thf(fact_8091_fact__Suc__0,axiom,
    ( ( semiri2265585572941072030t_real @ ( suc @ zero_zero_nat ) )
    = one_one_real ) ).

% fact_Suc_0
thf(fact_8092_fact__Suc__0,axiom,
    ( ( semiri1408675320244567234ct_nat @ ( suc @ zero_zero_nat ) )
    = one_one_nat ) ).

% fact_Suc_0
thf(fact_8093_fact__Suc,axiom,
    ! [N2: nat] :
      ( ( semiri773545260158071498ct_rat @ ( suc @ N2 ) )
      = ( times_times_rat @ ( semiri681578069525770553at_rat @ ( suc @ N2 ) ) @ ( semiri773545260158071498ct_rat @ N2 ) ) ) ).

% fact_Suc
thf(fact_8094_fact__Suc,axiom,
    ! [N2: nat] :
      ( ( semiri1406184849735516958ct_int @ ( suc @ N2 ) )
      = ( times_times_int @ ( semiri1314217659103216013at_int @ ( suc @ N2 ) ) @ ( semiri1406184849735516958ct_int @ N2 ) ) ) ).

% fact_Suc
thf(fact_8095_fact__Suc,axiom,
    ! [N2: nat] :
      ( ( semiri3624122377584611663nteger @ ( suc @ N2 ) )
      = ( times_3573771949741848930nteger @ ( semiri4939895301339042750nteger @ ( suc @ N2 ) ) @ ( semiri3624122377584611663nteger @ N2 ) ) ) ).

% fact_Suc
thf(fact_8096_fact__Suc,axiom,
    ! [N2: nat] :
      ( ( semiri2265585572941072030t_real @ ( suc @ N2 ) )
      = ( times_times_real @ ( semiri5074537144036343181t_real @ ( suc @ N2 ) ) @ ( semiri2265585572941072030t_real @ N2 ) ) ) ).

% fact_Suc
thf(fact_8097_fact__Suc,axiom,
    ! [N2: nat] :
      ( ( semiri1408675320244567234ct_nat @ ( suc @ N2 ) )
      = ( times_times_nat @ ( semiri1316708129612266289at_nat @ ( suc @ N2 ) ) @ ( semiri1408675320244567234ct_nat @ N2 ) ) ) ).

% fact_Suc
thf(fact_8098_tan__npi,axiom,
    ! [N2: nat] :
      ( ( tan_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ pi ) )
      = zero_zero_real ) ).

% tan_npi
thf(fact_8099_tan__periodic__n,axiom,
    ! [X: real,N2: num] :
      ( ( tan_real @ ( plus_plus_real @ X @ ( times_times_real @ ( numeral_numeral_real @ N2 ) @ pi ) ) )
      = ( tan_real @ X ) ) ).

% tan_periodic_n
thf(fact_8100_tan__periodic__nat,axiom,
    ! [X: real,N2: nat] :
      ( ( tan_real @ ( plus_plus_real @ X @ ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ pi ) ) )
      = ( tan_real @ X ) ) ).

% tan_periodic_nat
thf(fact_8101_fact__2,axiom,
    ( ( semiri5044797733671781792omplex @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ).

% fact_2
thf(fact_8102_fact__2,axiom,
    ( ( semiri773545260158071498ct_rat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ).

% fact_2
thf(fact_8103_fact__2,axiom,
    ( ( semiri1406184849735516958ct_int @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = ( numeral_numeral_int @ ( bit0 @ one ) ) ) ).

% fact_2
thf(fact_8104_fact__2,axiom,
    ( ( semiri2265585572941072030t_real @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = ( numeral_numeral_real @ ( bit0 @ one ) ) ) ).

% fact_2
thf(fact_8105_fact__2,axiom,
    ( ( semiri1408675320244567234ct_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ).

% fact_2
thf(fact_8106_tan__periodic,axiom,
    ! [X: real] :
      ( ( tan_real @ ( plus_plus_real @ X @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) ) )
      = ( tan_real @ X ) ) ).

% tan_periodic
thf(fact_8107_fact__ge__zero,axiom,
    ! [N2: nat] : ( ord_less_eq_rat @ zero_zero_rat @ ( semiri773545260158071498ct_rat @ N2 ) ) ).

% fact_ge_zero
thf(fact_8108_fact__ge__zero,axiom,
    ! [N2: nat] : ( ord_less_eq_int @ zero_zero_int @ ( semiri1406184849735516958ct_int @ N2 ) ) ).

% fact_ge_zero
thf(fact_8109_fact__ge__zero,axiom,
    ! [N2: nat] : ( ord_less_eq_real @ zero_zero_real @ ( semiri2265585572941072030t_real @ N2 ) ) ).

% fact_ge_zero
thf(fact_8110_fact__ge__zero,axiom,
    ! [N2: nat] : ( ord_less_eq_nat @ zero_zero_nat @ ( semiri1408675320244567234ct_nat @ N2 ) ) ).

% fact_ge_zero
thf(fact_8111_fact__gt__zero,axiom,
    ! [N2: nat] : ( ord_less_rat @ zero_zero_rat @ ( semiri773545260158071498ct_rat @ N2 ) ) ).

% fact_gt_zero
thf(fact_8112_fact__gt__zero,axiom,
    ! [N2: nat] : ( ord_less_int @ zero_zero_int @ ( semiri1406184849735516958ct_int @ N2 ) ) ).

% fact_gt_zero
thf(fact_8113_fact__gt__zero,axiom,
    ! [N2: nat] : ( ord_less_real @ zero_zero_real @ ( semiri2265585572941072030t_real @ N2 ) ) ).

% fact_gt_zero
thf(fact_8114_fact__gt__zero,axiom,
    ! [N2: nat] : ( ord_less_nat @ zero_zero_nat @ ( semiri1408675320244567234ct_nat @ N2 ) ) ).

% fact_gt_zero
thf(fact_8115_fact__not__neg,axiom,
    ! [N2: nat] :
      ~ ( ord_less_rat @ ( semiri773545260158071498ct_rat @ N2 ) @ zero_zero_rat ) ).

% fact_not_neg
thf(fact_8116_fact__not__neg,axiom,
    ! [N2: nat] :
      ~ ( ord_less_int @ ( semiri1406184849735516958ct_int @ N2 ) @ zero_zero_int ) ).

% fact_not_neg
thf(fact_8117_fact__not__neg,axiom,
    ! [N2: nat] :
      ~ ( ord_less_real @ ( semiri2265585572941072030t_real @ N2 ) @ zero_zero_real ) ).

% fact_not_neg
thf(fact_8118_fact__not__neg,axiom,
    ! [N2: nat] :
      ~ ( ord_less_nat @ ( semiri1408675320244567234ct_nat @ N2 ) @ zero_zero_nat ) ).

% fact_not_neg
thf(fact_8119_fact__ge__1,axiom,
    ! [N2: nat] : ( ord_less_eq_rat @ one_one_rat @ ( semiri773545260158071498ct_rat @ N2 ) ) ).

% fact_ge_1
thf(fact_8120_fact__ge__1,axiom,
    ! [N2: nat] : ( ord_less_eq_int @ one_one_int @ ( semiri1406184849735516958ct_int @ N2 ) ) ).

% fact_ge_1
thf(fact_8121_fact__ge__1,axiom,
    ! [N2: nat] : ( ord_less_eq_real @ one_one_real @ ( semiri2265585572941072030t_real @ N2 ) ) ).

% fact_ge_1
thf(fact_8122_fact__ge__1,axiom,
    ! [N2: nat] : ( ord_less_eq_nat @ one_one_nat @ ( semiri1408675320244567234ct_nat @ N2 ) ) ).

% fact_ge_1
thf(fact_8123_fact__mono,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ord_less_eq_rat @ ( semiri773545260158071498ct_rat @ M ) @ ( semiri773545260158071498ct_rat @ N2 ) ) ) ).

% fact_mono
thf(fact_8124_fact__mono,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ord_less_eq_int @ ( semiri1406184849735516958ct_int @ M ) @ ( semiri1406184849735516958ct_int @ N2 ) ) ) ).

% fact_mono
thf(fact_8125_fact__mono,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ord_less_eq_real @ ( semiri2265585572941072030t_real @ M ) @ ( semiri2265585572941072030t_real @ N2 ) ) ) ).

% fact_mono
thf(fact_8126_fact__mono,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ord_less_eq_nat @ ( semiri1408675320244567234ct_nat @ M ) @ ( semiri1408675320244567234ct_nat @ N2 ) ) ) ).

% fact_mono
thf(fact_8127_fact__dvd,axiom,
    ! [N2: nat,M: nat] :
      ( ( ord_less_eq_nat @ N2 @ M )
     => ( dvd_dvd_int @ ( semiri1406184849735516958ct_int @ N2 ) @ ( semiri1406184849735516958ct_int @ M ) ) ) ).

% fact_dvd
thf(fact_8128_fact__dvd,axiom,
    ! [N2: nat,M: nat] :
      ( ( ord_less_eq_nat @ N2 @ M )
     => ( dvd_dvd_Code_integer @ ( semiri3624122377584611663nteger @ N2 ) @ ( semiri3624122377584611663nteger @ M ) ) ) ).

% fact_dvd
thf(fact_8129_fact__dvd,axiom,
    ! [N2: nat,M: nat] :
      ( ( ord_less_eq_nat @ N2 @ M )
     => ( dvd_dvd_real @ ( semiri2265585572941072030t_real @ N2 ) @ ( semiri2265585572941072030t_real @ M ) ) ) ).

% fact_dvd
thf(fact_8130_fact__dvd,axiom,
    ! [N2: nat,M: nat] :
      ( ( ord_less_eq_nat @ N2 @ M )
     => ( dvd_dvd_nat @ ( semiri1408675320244567234ct_nat @ N2 ) @ ( semiri1408675320244567234ct_nat @ M ) ) ) ).

% fact_dvd
thf(fact_8131_fact__less__mono,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ M )
     => ( ( ord_less_nat @ M @ N2 )
       => ( ord_less_rat @ ( semiri773545260158071498ct_rat @ M ) @ ( semiri773545260158071498ct_rat @ N2 ) ) ) ) ).

% fact_less_mono
thf(fact_8132_fact__less__mono,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ M )
     => ( ( ord_less_nat @ M @ N2 )
       => ( ord_less_int @ ( semiri1406184849735516958ct_int @ M ) @ ( semiri1406184849735516958ct_int @ N2 ) ) ) ) ).

% fact_less_mono
thf(fact_8133_fact__less__mono,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ M )
     => ( ( ord_less_nat @ M @ N2 )
       => ( ord_less_real @ ( semiri2265585572941072030t_real @ M ) @ ( semiri2265585572941072030t_real @ N2 ) ) ) ) ).

% fact_less_mono
thf(fact_8134_fact__less__mono,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ M )
     => ( ( ord_less_nat @ M @ N2 )
       => ( ord_less_nat @ ( semiri1408675320244567234ct_nat @ M ) @ ( semiri1408675320244567234ct_nat @ N2 ) ) ) ) ).

% fact_less_mono
thf(fact_8135_fact__fact__dvd__fact,axiom,
    ! [K: nat,N2: nat] : ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ ( semiri3624122377584611663nteger @ K ) @ ( semiri3624122377584611663nteger @ N2 ) ) @ ( semiri3624122377584611663nteger @ ( plus_plus_nat @ K @ N2 ) ) ) ).

% fact_fact_dvd_fact
thf(fact_8136_fact__fact__dvd__fact,axiom,
    ! [K: nat,N2: nat] : ( dvd_dvd_rat @ ( times_times_rat @ ( semiri773545260158071498ct_rat @ K ) @ ( semiri773545260158071498ct_rat @ N2 ) ) @ ( semiri773545260158071498ct_rat @ ( plus_plus_nat @ K @ N2 ) ) ) ).

% fact_fact_dvd_fact
thf(fact_8137_fact__fact__dvd__fact,axiom,
    ! [K: nat,N2: nat] : ( dvd_dvd_int @ ( times_times_int @ ( semiri1406184849735516958ct_int @ K ) @ ( semiri1406184849735516958ct_int @ N2 ) ) @ ( semiri1406184849735516958ct_int @ ( plus_plus_nat @ K @ N2 ) ) ) ).

% fact_fact_dvd_fact
thf(fact_8138_fact__fact__dvd__fact,axiom,
    ! [K: nat,N2: nat] : ( dvd_dvd_real @ ( times_times_real @ ( semiri2265585572941072030t_real @ K ) @ ( semiri2265585572941072030t_real @ N2 ) ) @ ( semiri2265585572941072030t_real @ ( plus_plus_nat @ K @ N2 ) ) ) ).

% fact_fact_dvd_fact
thf(fact_8139_fact__fact__dvd__fact,axiom,
    ! [K: nat,N2: nat] : ( dvd_dvd_nat @ ( times_times_nat @ ( semiri1408675320244567234ct_nat @ K ) @ ( semiri1408675320244567234ct_nat @ N2 ) ) @ ( semiri1408675320244567234ct_nat @ ( plus_plus_nat @ K @ N2 ) ) ) ).

% fact_fact_dvd_fact
thf(fact_8140_fact__mod,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ( modulo_modulo_int @ ( semiri1406184849735516958ct_int @ N2 ) @ ( semiri1406184849735516958ct_int @ M ) )
        = zero_zero_int ) ) ).

% fact_mod
thf(fact_8141_fact__mod,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ( modulo364778990260209775nteger @ ( semiri3624122377584611663nteger @ N2 ) @ ( semiri3624122377584611663nteger @ M ) )
        = zero_z3403309356797280102nteger ) ) ).

% fact_mod
thf(fact_8142_fact__mod,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ( modulo_modulo_nat @ ( semiri1408675320244567234ct_nat @ N2 ) @ ( semiri1408675320244567234ct_nat @ M ) )
        = zero_zero_nat ) ) ).

% fact_mod
thf(fact_8143_fact__le__power,axiom,
    ! [N2: nat] : ( ord_le3102999989581377725nteger @ ( semiri3624122377584611663nteger @ N2 ) @ ( semiri4939895301339042750nteger @ ( power_power_nat @ N2 @ N2 ) ) ) ).

% fact_le_power
thf(fact_8144_fact__le__power,axiom,
    ! [N2: nat] : ( ord_less_eq_rat @ ( semiri773545260158071498ct_rat @ N2 ) @ ( semiri681578069525770553at_rat @ ( power_power_nat @ N2 @ N2 ) ) ) ).

% fact_le_power
thf(fact_8145_fact__le__power,axiom,
    ! [N2: nat] : ( ord_less_eq_int @ ( semiri1406184849735516958ct_int @ N2 ) @ ( semiri1314217659103216013at_int @ ( power_power_nat @ N2 @ N2 ) ) ) ).

% fact_le_power
thf(fact_8146_fact__le__power,axiom,
    ! [N2: nat] : ( ord_less_eq_real @ ( semiri2265585572941072030t_real @ N2 ) @ ( semiri5074537144036343181t_real @ ( power_power_nat @ N2 @ N2 ) ) ) ).

% fact_le_power
thf(fact_8147_fact__le__power,axiom,
    ! [N2: nat] : ( ord_less_eq_nat @ ( semiri1408675320244567234ct_nat @ N2 ) @ ( semiri1316708129612266289at_nat @ ( power_power_nat @ N2 @ N2 ) ) ) ).

% fact_le_power
thf(fact_8148_tan__def,axiom,
    ( tan_complex
    = ( ^ [X3: complex] : ( divide1717551699836669952omplex @ ( sin_complex @ X3 ) @ ( cos_complex @ X3 ) ) ) ) ).

% tan_def
thf(fact_8149_tan__def,axiom,
    ( tan_real
    = ( ^ [X3: real] : ( divide_divide_real @ ( sin_real @ X3 ) @ ( cos_real @ X3 ) ) ) ) ).

% tan_def
thf(fact_8150_choose__dvd,axiom,
    ! [K: nat,N2: nat] :
      ( ( ord_less_eq_nat @ K @ N2 )
     => ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ ( semiri3624122377584611663nteger @ K ) @ ( semiri3624122377584611663nteger @ ( minus_minus_nat @ N2 @ K ) ) ) @ ( semiri3624122377584611663nteger @ N2 ) ) ) ).

% choose_dvd
thf(fact_8151_choose__dvd,axiom,
    ! [K: nat,N2: nat] :
      ( ( ord_less_eq_nat @ K @ N2 )
     => ( dvd_dvd_rat @ ( times_times_rat @ ( semiri773545260158071498ct_rat @ K ) @ ( semiri773545260158071498ct_rat @ ( minus_minus_nat @ N2 @ K ) ) ) @ ( semiri773545260158071498ct_rat @ N2 ) ) ) ).

% choose_dvd
thf(fact_8152_choose__dvd,axiom,
    ! [K: nat,N2: nat] :
      ( ( ord_less_eq_nat @ K @ N2 )
     => ( dvd_dvd_int @ ( times_times_int @ ( semiri1406184849735516958ct_int @ K ) @ ( semiri1406184849735516958ct_int @ ( minus_minus_nat @ N2 @ K ) ) ) @ ( semiri1406184849735516958ct_int @ N2 ) ) ) ).

% choose_dvd
thf(fact_8153_choose__dvd,axiom,
    ! [K: nat,N2: nat] :
      ( ( ord_less_eq_nat @ K @ N2 )
     => ( dvd_dvd_real @ ( times_times_real @ ( semiri2265585572941072030t_real @ K ) @ ( semiri2265585572941072030t_real @ ( minus_minus_nat @ N2 @ K ) ) ) @ ( semiri2265585572941072030t_real @ N2 ) ) ) ).

% choose_dvd
thf(fact_8154_choose__dvd,axiom,
    ! [K: nat,N2: nat] :
      ( ( ord_less_eq_nat @ K @ N2 )
     => ( dvd_dvd_nat @ ( times_times_nat @ ( semiri1408675320244567234ct_nat @ K ) @ ( semiri1408675320244567234ct_nat @ ( minus_minus_nat @ N2 @ K ) ) ) @ ( semiri1408675320244567234ct_nat @ N2 ) ) ) ).

% choose_dvd
thf(fact_8155_fact__numeral,axiom,
    ! [K: num] :
      ( ( semiri5044797733671781792omplex @ ( numeral_numeral_nat @ K ) )
      = ( times_times_complex @ ( numera6690914467698888265omplex @ K ) @ ( semiri5044797733671781792omplex @ ( pred_numeral @ K ) ) ) ) ).

% fact_numeral
thf(fact_8156_fact__numeral,axiom,
    ! [K: num] :
      ( ( semiri773545260158071498ct_rat @ ( numeral_numeral_nat @ K ) )
      = ( times_times_rat @ ( numeral_numeral_rat @ K ) @ ( semiri773545260158071498ct_rat @ ( pred_numeral @ K ) ) ) ) ).

% fact_numeral
thf(fact_8157_fact__numeral,axiom,
    ! [K: num] :
      ( ( semiri1406184849735516958ct_int @ ( numeral_numeral_nat @ K ) )
      = ( times_times_int @ ( numeral_numeral_int @ K ) @ ( semiri1406184849735516958ct_int @ ( pred_numeral @ K ) ) ) ) ).

% fact_numeral
thf(fact_8158_fact__numeral,axiom,
    ! [K: num] :
      ( ( semiri2265585572941072030t_real @ ( numeral_numeral_nat @ K ) )
      = ( times_times_real @ ( numeral_numeral_real @ K ) @ ( semiri2265585572941072030t_real @ ( pred_numeral @ K ) ) ) ) ).

% fact_numeral
thf(fact_8159_fact__numeral,axiom,
    ! [K: num] :
      ( ( semiri1408675320244567234ct_nat @ ( numeral_numeral_nat @ K ) )
      = ( times_times_nat @ ( numeral_numeral_nat @ K ) @ ( semiri1408675320244567234ct_nat @ ( pred_numeral @ K ) ) ) ) ).

% fact_numeral
thf(fact_8160_square__fact__le__2__fact,axiom,
    ! [N2: nat] : ( ord_less_eq_real @ ( times_times_real @ ( semiri2265585572941072030t_real @ N2 ) @ ( semiri2265585572941072030t_real @ N2 ) ) @ ( semiri2265585572941072030t_real @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) ).

% square_fact_le_2_fact
thf(fact_8161_tan__45,axiom,
    ( ( tan_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) ) )
    = one_one_real ) ).

% tan_45
thf(fact_8162_fact__code,axiom,
    ( semiri1406184849735516958ct_int
    = ( ^ [N3: nat] : ( semiri1314217659103216013at_int @ ( set_fo2584398358068434914at_nat @ times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 @ one_one_nat ) ) ) ) ).

% fact_code
thf(fact_8163_fact__code,axiom,
    ( semiri3624122377584611663nteger
    = ( ^ [N3: nat] : ( semiri4939895301339042750nteger @ ( set_fo2584398358068434914at_nat @ times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 @ one_one_nat ) ) ) ) ).

% fact_code
thf(fact_8164_fact__code,axiom,
    ( semiri2265585572941072030t_real
    = ( ^ [N3: nat] : ( semiri5074537144036343181t_real @ ( set_fo2584398358068434914at_nat @ times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 @ one_one_nat ) ) ) ) ).

% fact_code
thf(fact_8165_fact__code,axiom,
    ( semiri1408675320244567234ct_nat
    = ( ^ [N3: nat] : ( semiri1316708129612266289at_nat @ ( set_fo2584398358068434914at_nat @ times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 @ one_one_nat ) ) ) ) ).

% fact_code
thf(fact_8166_fact__num__eq__if,axiom,
    ( semiri5044797733671781792omplex
    = ( ^ [M6: nat] : ( if_complex @ ( M6 = zero_zero_nat ) @ one_one_complex @ ( times_times_complex @ ( semiri8010041392384452111omplex @ M6 ) @ ( semiri5044797733671781792omplex @ ( minus_minus_nat @ M6 @ one_one_nat ) ) ) ) ) ) ).

% fact_num_eq_if
thf(fact_8167_fact__num__eq__if,axiom,
    ( semiri773545260158071498ct_rat
    = ( ^ [M6: nat] : ( if_rat @ ( M6 = zero_zero_nat ) @ one_one_rat @ ( times_times_rat @ ( semiri681578069525770553at_rat @ M6 ) @ ( semiri773545260158071498ct_rat @ ( minus_minus_nat @ M6 @ one_one_nat ) ) ) ) ) ) ).

% fact_num_eq_if
thf(fact_8168_fact__num__eq__if,axiom,
    ( semiri1406184849735516958ct_int
    = ( ^ [M6: nat] : ( if_int @ ( M6 = zero_zero_nat ) @ one_one_int @ ( times_times_int @ ( semiri1314217659103216013at_int @ M6 ) @ ( semiri1406184849735516958ct_int @ ( minus_minus_nat @ M6 @ one_one_nat ) ) ) ) ) ) ).

% fact_num_eq_if
thf(fact_8169_fact__num__eq__if,axiom,
    ( semiri3624122377584611663nteger
    = ( ^ [M6: nat] : ( if_Code_integer @ ( M6 = zero_zero_nat ) @ one_one_Code_integer @ ( times_3573771949741848930nteger @ ( semiri4939895301339042750nteger @ M6 ) @ ( semiri3624122377584611663nteger @ ( minus_minus_nat @ M6 @ one_one_nat ) ) ) ) ) ) ).

% fact_num_eq_if
thf(fact_8170_fact__num__eq__if,axiom,
    ( semiri2265585572941072030t_real
    = ( ^ [M6: nat] : ( if_real @ ( M6 = zero_zero_nat ) @ one_one_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ M6 ) @ ( semiri2265585572941072030t_real @ ( minus_minus_nat @ M6 @ one_one_nat ) ) ) ) ) ) ).

% fact_num_eq_if
thf(fact_8171_fact__num__eq__if,axiom,
    ( semiri1408675320244567234ct_nat
    = ( ^ [M6: nat] : ( if_nat @ ( M6 = zero_zero_nat ) @ one_one_nat @ ( times_times_nat @ ( semiri1316708129612266289at_nat @ M6 ) @ ( semiri1408675320244567234ct_nat @ ( minus_minus_nat @ M6 @ one_one_nat ) ) ) ) ) ) ).

% fact_num_eq_if
thf(fact_8172_fact__reduce,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( semiri773545260158071498ct_rat @ N2 )
        = ( times_times_rat @ ( semiri681578069525770553at_rat @ N2 ) @ ( semiri773545260158071498ct_rat @ ( minus_minus_nat @ N2 @ one_one_nat ) ) ) ) ) ).

% fact_reduce
thf(fact_8173_fact__reduce,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( semiri1406184849735516958ct_int @ N2 )
        = ( times_times_int @ ( semiri1314217659103216013at_int @ N2 ) @ ( semiri1406184849735516958ct_int @ ( minus_minus_nat @ N2 @ one_one_nat ) ) ) ) ) ).

% fact_reduce
thf(fact_8174_fact__reduce,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( semiri3624122377584611663nteger @ N2 )
        = ( times_3573771949741848930nteger @ ( semiri4939895301339042750nteger @ N2 ) @ ( semiri3624122377584611663nteger @ ( minus_minus_nat @ N2 @ one_one_nat ) ) ) ) ) ).

% fact_reduce
thf(fact_8175_fact__reduce,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( semiri2265585572941072030t_real @ N2 )
        = ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( semiri2265585572941072030t_real @ ( minus_minus_nat @ N2 @ one_one_nat ) ) ) ) ) ).

% fact_reduce
thf(fact_8176_fact__reduce,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( semiri1408675320244567234ct_nat @ N2 )
        = ( times_times_nat @ ( semiri1316708129612266289at_nat @ N2 ) @ ( semiri1408675320244567234ct_nat @ ( minus_minus_nat @ N2 @ one_one_nat ) ) ) ) ) ).

% fact_reduce
thf(fact_8177_tan__gt__zero,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ X @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ord_less_real @ zero_zero_real @ ( tan_real @ X ) ) ) ) ).

% tan_gt_zero
thf(fact_8178_lemma__tan__total,axiom,
    ! [Y: real] :
      ( ( ord_less_real @ zero_zero_real @ Y )
     => ? [X5: real] :
          ( ( ord_less_real @ zero_zero_real @ X5 )
          & ( ord_less_real @ X5 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
          & ( ord_less_real @ Y @ ( tan_real @ X5 ) ) ) ) ).

% lemma_tan_total
thf(fact_8179_tan__total,axiom,
    ! [Y: real] :
    ? [X5: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X5 )
      & ( ord_less_real @ X5 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
      & ( ( tan_real @ X5 )
        = Y )
      & ! [Y2: real] :
          ( ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y2 )
            & ( ord_less_real @ Y2 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
            & ( ( tan_real @ Y2 )
              = Y ) )
         => ( Y2 = X5 ) ) ) ).

% tan_total
thf(fact_8180_tan__monotone,axiom,
    ! [Y: real,X: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y )
     => ( ( ord_less_real @ Y @ X )
       => ( ( ord_less_real @ X @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
         => ( ord_less_real @ ( tan_real @ Y ) @ ( tan_real @ X ) ) ) ) ) ).

% tan_monotone
thf(fact_8181_tan__monotone_H,axiom,
    ! [Y: real,X: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y )
     => ( ( ord_less_real @ Y @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X )
         => ( ( ord_less_real @ X @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
           => ( ( ord_less_real @ Y @ X )
              = ( ord_less_real @ ( tan_real @ Y ) @ ( tan_real @ X ) ) ) ) ) ) ) ).

% tan_monotone'
thf(fact_8182_tan__mono__lt__eq,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X )
     => ( ( ord_less_real @ X @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y )
         => ( ( ord_less_real @ Y @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
           => ( ( ord_less_real @ ( tan_real @ X ) @ ( tan_real @ Y ) )
              = ( ord_less_real @ X @ Y ) ) ) ) ) ) ).

% tan_mono_lt_eq
thf(fact_8183_lemma__tan__total1,axiom,
    ! [Y: real] :
    ? [X5: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X5 )
      & ( ord_less_real @ X5 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
      & ( ( tan_real @ X5 )
        = Y ) ) ).

% lemma_tan_total1
thf(fact_8184_tan__minus__45,axiom,
    ( ( tan_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) ) ) )
    = ( uminus_uminus_real @ one_one_real ) ) ).

% tan_minus_45
thf(fact_8185_tan__inverse,axiom,
    ! [Y: real] :
      ( ( divide_divide_real @ one_one_real @ ( tan_real @ Y ) )
      = ( tan_real @ ( minus_minus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ Y ) ) ) ).

% tan_inverse
thf(fact_8186_add__tan__eq,axiom,
    ! [X: complex,Y: complex] :
      ( ( ( cos_complex @ X )
       != zero_zero_complex )
     => ( ( ( cos_complex @ Y )
         != zero_zero_complex )
       => ( ( plus_plus_complex @ ( tan_complex @ X ) @ ( tan_complex @ Y ) )
          = ( divide1717551699836669952omplex @ ( sin_complex @ ( plus_plus_complex @ X @ Y ) ) @ ( times_times_complex @ ( cos_complex @ X ) @ ( cos_complex @ Y ) ) ) ) ) ) ).

% add_tan_eq
thf(fact_8187_add__tan__eq,axiom,
    ! [X: real,Y: real] :
      ( ( ( cos_real @ X )
       != zero_zero_real )
     => ( ( ( cos_real @ Y )
         != zero_zero_real )
       => ( ( plus_plus_real @ ( tan_real @ X ) @ ( tan_real @ Y ) )
          = ( divide_divide_real @ ( sin_real @ ( plus_plus_real @ X @ Y ) ) @ ( times_times_real @ ( cos_real @ X ) @ ( cos_real @ Y ) ) ) ) ) ) ).

% add_tan_eq
thf(fact_8188_tan__pos__pi2__le,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ X @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ord_less_eq_real @ zero_zero_real @ ( tan_real @ X ) ) ) ) ).

% tan_pos_pi2_le
thf(fact_8189_tan__total__pos,axiom,
    ! [Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ Y )
     => ? [X5: real] :
          ( ( ord_less_eq_real @ zero_zero_real @ X5 )
          & ( ord_less_real @ X5 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
          & ( ( tan_real @ X5 )
            = Y ) ) ) ).

% tan_total_pos
thf(fact_8190_tan__less__zero,axiom,
    ! [X: real] :
      ( ( ord_less_real @ ( divide_divide_real @ ( uminus_uminus_real @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ X )
     => ( ( ord_less_real @ X @ zero_zero_real )
       => ( ord_less_real @ ( tan_real @ X ) @ zero_zero_real ) ) ) ).

% tan_less_zero
thf(fact_8191_tan__mono__le__eq,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X )
     => ( ( ord_less_real @ X @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y )
         => ( ( ord_less_real @ Y @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
           => ( ( ord_less_eq_real @ ( tan_real @ X ) @ ( tan_real @ Y ) )
              = ( ord_less_eq_real @ X @ Y ) ) ) ) ) ) ).

% tan_mono_le_eq
thf(fact_8192_tan__mono__le,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X )
     => ( ( ord_less_eq_real @ X @ Y )
       => ( ( ord_less_real @ Y @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
         => ( ord_less_eq_real @ ( tan_real @ X ) @ ( tan_real @ Y ) ) ) ) ) ).

% tan_mono_le
thf(fact_8193_tan__bound__pi2,axiom,
    ! [X: real] :
      ( ( ord_less_real @ ( abs_abs_real @ X ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) ) )
     => ( ord_less_real @ ( abs_abs_real @ ( tan_real @ X ) ) @ one_one_real ) ) ).

% tan_bound_pi2
thf(fact_8194_arctan,axiom,
    ! [Y: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( arctan @ Y ) )
      & ( ord_less_real @ ( arctan @ Y ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
      & ( ( tan_real @ ( arctan @ Y ) )
        = Y ) ) ).

% arctan
thf(fact_8195_arctan__tan,axiom,
    ! [X: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X )
     => ( ( ord_less_real @ X @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ( arctan @ ( tan_real @ X ) )
          = X ) ) ) ).

% arctan_tan
thf(fact_8196_arctan__unique,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X )
     => ( ( ord_less_real @ X @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ( ( tan_real @ X )
            = Y )
         => ( ( arctan @ Y )
            = X ) ) ) ) ).

% arctan_unique
thf(fact_8197_Maclaurin__zero,axiom,
    ! [X: real,N2: nat,Diff: nat > complex > real] :
      ( ( X = zero_zero_real )
     => ( ( N2 != zero_zero_nat )
       => ( ( groups6591440286371151544t_real
            @ ^ [M6: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M6 @ zero_zero_complex ) @ ( semiri2265585572941072030t_real @ M6 ) ) @ ( power_power_real @ X @ M6 ) )
            @ ( set_ord_lessThan_nat @ N2 ) )
          = ( Diff @ zero_zero_nat @ zero_zero_complex ) ) ) ) ).

% Maclaurin_zero
thf(fact_8198_Maclaurin__zero,axiom,
    ! [X: real,N2: nat,Diff: nat > real > real] :
      ( ( X = zero_zero_real )
     => ( ( N2 != zero_zero_nat )
       => ( ( groups6591440286371151544t_real
            @ ^ [M6: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M6 @ zero_zero_real ) @ ( semiri2265585572941072030t_real @ M6 ) ) @ ( power_power_real @ X @ M6 ) )
            @ ( set_ord_lessThan_nat @ N2 ) )
          = ( Diff @ zero_zero_nat @ zero_zero_real ) ) ) ) ).

% Maclaurin_zero
thf(fact_8199_Maclaurin__zero,axiom,
    ! [X: real,N2: nat,Diff: nat > rat > real] :
      ( ( X = zero_zero_real )
     => ( ( N2 != zero_zero_nat )
       => ( ( groups6591440286371151544t_real
            @ ^ [M6: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M6 @ zero_zero_rat ) @ ( semiri2265585572941072030t_real @ M6 ) ) @ ( power_power_real @ X @ M6 ) )
            @ ( set_ord_lessThan_nat @ N2 ) )
          = ( Diff @ zero_zero_nat @ zero_zero_rat ) ) ) ) ).

% Maclaurin_zero
thf(fact_8200_Maclaurin__zero,axiom,
    ! [X: real,N2: nat,Diff: nat > nat > real] :
      ( ( X = zero_zero_real )
     => ( ( N2 != zero_zero_nat )
       => ( ( groups6591440286371151544t_real
            @ ^ [M6: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M6 @ zero_zero_nat ) @ ( semiri2265585572941072030t_real @ M6 ) ) @ ( power_power_real @ X @ M6 ) )
            @ ( set_ord_lessThan_nat @ N2 ) )
          = ( Diff @ zero_zero_nat @ zero_zero_nat ) ) ) ) ).

% Maclaurin_zero
thf(fact_8201_Maclaurin__zero,axiom,
    ! [X: real,N2: nat,Diff: nat > int > real] :
      ( ( X = zero_zero_real )
     => ( ( N2 != zero_zero_nat )
       => ( ( groups6591440286371151544t_real
            @ ^ [M6: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M6 @ zero_zero_int ) @ ( semiri2265585572941072030t_real @ M6 ) ) @ ( power_power_real @ X @ M6 ) )
            @ ( set_ord_lessThan_nat @ N2 ) )
          = ( Diff @ zero_zero_nat @ zero_zero_int ) ) ) ) ).

% Maclaurin_zero
thf(fact_8202_Maclaurin__lemma,axiom,
    ! [H2: real,F: real > real,J: nat > real,N2: nat] :
      ( ( ord_less_real @ zero_zero_real @ H2 )
     => ? [B8: real] :
          ( ( F @ H2 )
          = ( plus_plus_real
            @ ( groups6591440286371151544t_real
              @ ^ [M6: nat] : ( times_times_real @ ( divide_divide_real @ ( J @ M6 ) @ ( semiri2265585572941072030t_real @ M6 ) ) @ ( power_power_real @ H2 @ M6 ) )
              @ ( set_ord_lessThan_nat @ N2 ) )
            @ ( times_times_real @ B8 @ ( divide_divide_real @ ( power_power_real @ H2 @ N2 ) @ ( semiri2265585572941072030t_real @ N2 ) ) ) ) ) ) ).

% Maclaurin_lemma
thf(fact_8203_tan__add,axiom,
    ! [X: complex,Y: complex] :
      ( ( ( cos_complex @ X )
       != zero_zero_complex )
     => ( ( ( cos_complex @ Y )
         != zero_zero_complex )
       => ( ( ( cos_complex @ ( plus_plus_complex @ X @ Y ) )
           != zero_zero_complex )
         => ( ( tan_complex @ ( plus_plus_complex @ X @ Y ) )
            = ( divide1717551699836669952omplex @ ( plus_plus_complex @ ( tan_complex @ X ) @ ( tan_complex @ Y ) ) @ ( minus_minus_complex @ one_one_complex @ ( times_times_complex @ ( tan_complex @ X ) @ ( tan_complex @ Y ) ) ) ) ) ) ) ) ).

% tan_add
thf(fact_8204_tan__add,axiom,
    ! [X: real,Y: real] :
      ( ( ( cos_real @ X )
       != zero_zero_real )
     => ( ( ( cos_real @ Y )
         != zero_zero_real )
       => ( ( ( cos_real @ ( plus_plus_real @ X @ Y ) )
           != zero_zero_real )
         => ( ( tan_real @ ( plus_plus_real @ X @ Y ) )
            = ( divide_divide_real @ ( plus_plus_real @ ( tan_real @ X ) @ ( tan_real @ Y ) ) @ ( minus_minus_real @ one_one_real @ ( times_times_real @ ( tan_real @ X ) @ ( tan_real @ Y ) ) ) ) ) ) ) ) ).

% tan_add
thf(fact_8205_tan__diff,axiom,
    ! [X: complex,Y: complex] :
      ( ( ( cos_complex @ X )
       != zero_zero_complex )
     => ( ( ( cos_complex @ Y )
         != zero_zero_complex )
       => ( ( ( cos_complex @ ( minus_minus_complex @ X @ Y ) )
           != zero_zero_complex )
         => ( ( tan_complex @ ( minus_minus_complex @ X @ Y ) )
            = ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( tan_complex @ X ) @ ( tan_complex @ Y ) ) @ ( plus_plus_complex @ one_one_complex @ ( times_times_complex @ ( tan_complex @ X ) @ ( tan_complex @ Y ) ) ) ) ) ) ) ) ).

% tan_diff
thf(fact_8206_tan__diff,axiom,
    ! [X: real,Y: real] :
      ( ( ( cos_real @ X )
       != zero_zero_real )
     => ( ( ( cos_real @ Y )
         != zero_zero_real )
       => ( ( ( cos_real @ ( minus_minus_real @ X @ Y ) )
           != zero_zero_real )
         => ( ( tan_real @ ( minus_minus_real @ X @ Y ) )
            = ( divide_divide_real @ ( minus_minus_real @ ( tan_real @ X ) @ ( tan_real @ Y ) ) @ ( plus_plus_real @ one_one_real @ ( times_times_real @ ( tan_real @ X ) @ ( tan_real @ Y ) ) ) ) ) ) ) ) ).

% tan_diff
thf(fact_8207_lemma__tan__add1,axiom,
    ! [X: complex,Y: complex] :
      ( ( ( cos_complex @ X )
       != zero_zero_complex )
     => ( ( ( cos_complex @ Y )
         != zero_zero_complex )
       => ( ( minus_minus_complex @ one_one_complex @ ( times_times_complex @ ( tan_complex @ X ) @ ( tan_complex @ Y ) ) )
          = ( divide1717551699836669952omplex @ ( cos_complex @ ( plus_plus_complex @ X @ Y ) ) @ ( times_times_complex @ ( cos_complex @ X ) @ ( cos_complex @ Y ) ) ) ) ) ) ).

% lemma_tan_add1
thf(fact_8208_lemma__tan__add1,axiom,
    ! [X: real,Y: real] :
      ( ( ( cos_real @ X )
       != zero_zero_real )
     => ( ( ( cos_real @ Y )
         != zero_zero_real )
       => ( ( minus_minus_real @ one_one_real @ ( times_times_real @ ( tan_real @ X ) @ ( tan_real @ Y ) ) )
          = ( divide_divide_real @ ( cos_real @ ( plus_plus_real @ X @ Y ) ) @ ( times_times_real @ ( cos_real @ X ) @ ( cos_real @ Y ) ) ) ) ) ) ).

% lemma_tan_add1
thf(fact_8209_tan__total__pi4,axiom,
    ! [X: real] :
      ( ( ord_less_real @ ( abs_abs_real @ X ) @ one_one_real )
     => ? [Z4: real] :
          ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) ) ) @ Z4 )
          & ( ord_less_real @ Z4 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) ) )
          & ( ( tan_real @ Z4 )
            = X ) ) ) ).

% tan_total_pi4
thf(fact_8210_tan__half,axiom,
    ( tan_complex
    = ( ^ [X3: complex] : ( divide1717551699836669952omplex @ ( sin_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ X3 ) ) @ ( plus_plus_complex @ ( cos_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ X3 ) ) @ one_one_complex ) ) ) ) ).

% tan_half
thf(fact_8211_tan__half,axiom,
    ( tan_real
    = ( ^ [X3: real] : ( divide_divide_real @ ( sin_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X3 ) ) @ ( plus_plus_real @ ( cos_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X3 ) ) @ one_one_real ) ) ) ) ).

% tan_half
thf(fact_8212_cos__coeff__def,axiom,
    ( cos_coeff
    = ( ^ [N3: nat] : ( if_real @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) @ ( divide_divide_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ ( divide_divide_nat @ N3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( semiri2265585572941072030t_real @ N3 ) ) @ zero_zero_real ) ) ) ).

% cos_coeff_def
thf(fact_8213_Maclaurin__sin__expansion3,axiom,
    ! [N2: nat,X: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ? [T5: real] :
            ( ( ord_less_real @ zero_zero_real @ T5 )
            & ( ord_less_real @ T5 @ X )
            & ( ( sin_real @ X )
              = ( plus_plus_real
                @ ( groups6591440286371151544t_real
                  @ ^ [M6: nat] : ( times_times_real @ ( sin_coeff @ M6 ) @ ( power_power_real @ X @ M6 ) )
                  @ ( set_ord_lessThan_nat @ N2 ) )
                @ ( times_times_real @ ( divide_divide_real @ ( sin_real @ ( plus_plus_real @ T5 @ ( times_times_real @ ( times_times_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( semiri5074537144036343181t_real @ N2 ) ) @ pi ) ) ) @ ( semiri2265585572941072030t_real @ N2 ) ) @ ( power_power_real @ X @ N2 ) ) ) ) ) ) ) ).

% Maclaurin_sin_expansion3
thf(fact_8214_Maclaurin__sin__expansion4,axiom,
    ! [X: real,N2: nat] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ? [T5: real] :
          ( ( ord_less_real @ zero_zero_real @ T5 )
          & ( ord_less_eq_real @ T5 @ X )
          & ( ( sin_real @ X )
            = ( plus_plus_real
              @ ( groups6591440286371151544t_real
                @ ^ [M6: nat] : ( times_times_real @ ( sin_coeff @ M6 ) @ ( power_power_real @ X @ M6 ) )
                @ ( set_ord_lessThan_nat @ N2 ) )
              @ ( times_times_real @ ( divide_divide_real @ ( sin_real @ ( plus_plus_real @ T5 @ ( times_times_real @ ( times_times_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( semiri5074537144036343181t_real @ N2 ) ) @ pi ) ) ) @ ( semiri2265585572941072030t_real @ N2 ) ) @ ( power_power_real @ X @ N2 ) ) ) ) ) ) ).

% Maclaurin_sin_expansion4
thf(fact_8215_Maclaurin__sin__expansion2,axiom,
    ! [X: real,N2: nat] :
    ? [T5: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ T5 ) @ ( abs_abs_real @ X ) )
      & ( ( sin_real @ X )
        = ( plus_plus_real
          @ ( groups6591440286371151544t_real
            @ ^ [M6: nat] : ( times_times_real @ ( sin_coeff @ M6 ) @ ( power_power_real @ X @ M6 ) )
            @ ( set_ord_lessThan_nat @ N2 ) )
          @ ( times_times_real @ ( divide_divide_real @ ( sin_real @ ( plus_plus_real @ T5 @ ( times_times_real @ ( times_times_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( semiri5074537144036343181t_real @ N2 ) ) @ pi ) ) ) @ ( semiri2265585572941072030t_real @ N2 ) ) @ ( power_power_real @ X @ N2 ) ) ) ) ) ).

% Maclaurin_sin_expansion2
thf(fact_8216_Maclaurin__sin__expansion,axiom,
    ! [X: real,N2: nat] :
    ? [T5: real] :
      ( ( sin_real @ X )
      = ( plus_plus_real
        @ ( groups6591440286371151544t_real
          @ ^ [M6: nat] : ( times_times_real @ ( sin_coeff @ M6 ) @ ( power_power_real @ X @ M6 ) )
          @ ( set_ord_lessThan_nat @ N2 ) )
        @ ( times_times_real @ ( divide_divide_real @ ( sin_real @ ( plus_plus_real @ T5 @ ( times_times_real @ ( times_times_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( semiri5074537144036343181t_real @ N2 ) ) @ pi ) ) ) @ ( semiri2265585572941072030t_real @ N2 ) ) @ ( power_power_real @ X @ N2 ) ) ) ) ).

% Maclaurin_sin_expansion
thf(fact_8217_sin__coeff__def,axiom,
    ( sin_coeff
    = ( ^ [N3: nat] : ( if_real @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) @ zero_zero_real @ ( divide_divide_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ ( divide_divide_nat @ ( minus_minus_nat @ N3 @ ( suc @ zero_zero_nat ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( semiri2265585572941072030t_real @ N3 ) ) ) ) ) ).

% sin_coeff_def
thf(fact_8218_fact__ge__self,axiom,
    ! [N2: nat] : ( ord_less_eq_nat @ N2 @ ( semiri1408675320244567234ct_nat @ N2 ) ) ).

% fact_ge_self
thf(fact_8219_fact__mono__nat,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ord_less_eq_nat @ ( semiri1408675320244567234ct_nat @ M ) @ ( semiri1408675320244567234ct_nat @ N2 ) ) ) ).

% fact_mono_nat
thf(fact_8220_fact__less__mono__nat,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ M )
     => ( ( ord_less_nat @ M @ N2 )
       => ( ord_less_nat @ ( semiri1408675320244567234ct_nat @ M ) @ ( semiri1408675320244567234ct_nat @ N2 ) ) ) ) ).

% fact_less_mono_nat
thf(fact_8221_fact__ge__Suc__0__nat,axiom,
    ! [N2: nat] : ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ ( semiri1408675320244567234ct_nat @ N2 ) ) ).

% fact_ge_Suc_0_nat
thf(fact_8222_dvd__fact,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ one_one_nat @ M )
     => ( ( ord_less_eq_nat @ M @ N2 )
       => ( dvd_dvd_nat @ M @ ( semiri1408675320244567234ct_nat @ N2 ) ) ) ) ).

% dvd_fact
thf(fact_8223_fact__diff__Suc,axiom,
    ! [N2: nat,M: nat] :
      ( ( ord_less_nat @ N2 @ ( suc @ M ) )
     => ( ( semiri1408675320244567234ct_nat @ ( minus_minus_nat @ ( suc @ M ) @ N2 ) )
        = ( times_times_nat @ ( minus_minus_nat @ ( suc @ M ) @ N2 ) @ ( semiri1408675320244567234ct_nat @ ( minus_minus_nat @ M @ N2 ) ) ) ) ) ).

% fact_diff_Suc
thf(fact_8224_fact__div__fact__le__pow,axiom,
    ! [R2: nat,N2: nat] :
      ( ( ord_less_eq_nat @ R2 @ N2 )
     => ( ord_less_eq_nat @ ( divide_divide_nat @ ( semiri1408675320244567234ct_nat @ N2 ) @ ( semiri1408675320244567234ct_nat @ ( minus_minus_nat @ N2 @ R2 ) ) ) @ ( power_power_nat @ N2 @ R2 ) ) ) ).

% fact_div_fact_le_pow
thf(fact_8225_sin__coeff__Suc,axiom,
    ! [N2: nat] :
      ( ( sin_coeff @ ( suc @ N2 ) )
      = ( divide_divide_real @ ( cos_coeff @ N2 ) @ ( semiri5074537144036343181t_real @ ( suc @ N2 ) ) ) ) ).

% sin_coeff_Suc
thf(fact_8226_cos__coeff__Suc,axiom,
    ! [N2: nat] :
      ( ( cos_coeff @ ( suc @ N2 ) )
      = ( divide_divide_real @ ( uminus_uminus_real @ ( sin_coeff @ N2 ) ) @ ( semiri5074537144036343181t_real @ ( suc @ N2 ) ) ) ) ).

% cos_coeff_Suc
thf(fact_8227_sin__tan,axiom,
    ! [X: real] :
      ( ( ord_less_real @ ( abs_abs_real @ X ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
     => ( ( sin_real @ X )
        = ( divide_divide_real @ ( tan_real @ X ) @ ( sqrt @ ( plus_plus_real @ one_one_real @ ( power_power_real @ ( tan_real @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% sin_tan
thf(fact_8228_cos__tan,axiom,
    ! [X: real] :
      ( ( ord_less_real @ ( abs_abs_real @ X ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
     => ( ( cos_real @ X )
        = ( divide_divide_real @ one_one_real @ ( sqrt @ ( plus_plus_real @ one_one_real @ ( power_power_real @ ( tan_real @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% cos_tan
thf(fact_8229_complex__unimodular__polar,axiom,
    ! [Z: complex] :
      ( ( ( real_V1022390504157884413omplex @ Z )
        = one_one_real )
     => ~ ! [T5: real] :
            ( ( ord_less_eq_real @ zero_zero_real @ T5 )
           => ( ( ord_less_real @ T5 @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) )
             => ( Z
               != ( complex2 @ ( cos_real @ T5 ) @ ( sin_real @ T5 ) ) ) ) ) ) ).

% complex_unimodular_polar
thf(fact_8230_Maclaurin__exp__lt,axiom,
    ! [X: real,N2: nat] :
      ( ( X != zero_zero_real )
     => ( ( ord_less_nat @ zero_zero_nat @ N2 )
       => ? [T5: real] :
            ( ( ord_less_real @ zero_zero_real @ ( abs_abs_real @ T5 ) )
            & ( ord_less_real @ ( abs_abs_real @ T5 ) @ ( abs_abs_real @ X ) )
            & ( ( exp_real @ X )
              = ( plus_plus_real
                @ ( groups6591440286371151544t_real
                  @ ^ [M6: nat] : ( divide_divide_real @ ( power_power_real @ X @ M6 ) @ ( semiri2265585572941072030t_real @ M6 ) )
                  @ ( set_ord_lessThan_nat @ N2 ) )
                @ ( times_times_real @ ( divide_divide_real @ ( exp_real @ T5 ) @ ( semiri2265585572941072030t_real @ N2 ) ) @ ( power_power_real @ X @ N2 ) ) ) ) ) ) ) ).

% Maclaurin_exp_lt
thf(fact_8231_sin__paired,axiom,
    ! [X: real] :
      ( sums_real
      @ ^ [N3: nat] : ( times_times_real @ ( divide_divide_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N3 ) @ ( semiri2265585572941072030t_real @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) @ one_one_nat ) ) ) @ ( power_power_real @ X @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) @ one_one_nat ) ) )
      @ ( sin_real @ X ) ) ).

% sin_paired
thf(fact_8232_real__sqrt__eq__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ( sqrt @ X )
        = ( sqrt @ Y ) )
      = ( X = Y ) ) ).

% real_sqrt_eq_iff
thf(fact_8233_real__sqrt__eq__zero__cancel__iff,axiom,
    ! [X: real] :
      ( ( ( sqrt @ X )
        = zero_zero_real )
      = ( X = zero_zero_real ) ) ).

% real_sqrt_eq_zero_cancel_iff
thf(fact_8234_real__sqrt__zero,axiom,
    ( ( sqrt @ zero_zero_real )
    = zero_zero_real ) ).

% real_sqrt_zero
thf(fact_8235_real__sqrt__less__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ ( sqrt @ X ) @ ( sqrt @ Y ) )
      = ( ord_less_real @ X @ Y ) ) ).

% real_sqrt_less_iff
thf(fact_8236_real__sqrt__le__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ ( sqrt @ X ) @ ( sqrt @ Y ) )
      = ( ord_less_eq_real @ X @ Y ) ) ).

% real_sqrt_le_iff
thf(fact_8237_real__sqrt__one,axiom,
    ( ( sqrt @ one_one_real )
    = one_one_real ) ).

% real_sqrt_one
thf(fact_8238_real__sqrt__eq__1__iff,axiom,
    ! [X: real] :
      ( ( ( sqrt @ X )
        = one_one_real )
      = ( X = one_one_real ) ) ).

% real_sqrt_eq_1_iff
thf(fact_8239_exp__le__cancel__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ ( exp_real @ X ) @ ( exp_real @ Y ) )
      = ( ord_less_eq_real @ X @ Y ) ) ).

% exp_le_cancel_iff
thf(fact_8240_sums__zero,axiom,
    ( sums_complex
    @ ^ [N3: nat] : zero_zero_complex
    @ zero_zero_complex ) ).

% sums_zero
thf(fact_8241_sums__zero,axiom,
    ( sums_real
    @ ^ [N3: nat] : zero_zero_real
    @ zero_zero_real ) ).

% sums_zero
thf(fact_8242_sums__zero,axiom,
    ( sums_nat
    @ ^ [N3: nat] : zero_zero_nat
    @ zero_zero_nat ) ).

% sums_zero
thf(fact_8243_sums__zero,axiom,
    ( sums_int
    @ ^ [N3: nat] : zero_zero_int
    @ zero_zero_int ) ).

% sums_zero
thf(fact_8244_exp__zero,axiom,
    ( ( exp_complex @ zero_zero_complex )
    = one_one_complex ) ).

% exp_zero
thf(fact_8245_exp__zero,axiom,
    ( ( exp_real @ zero_zero_real )
    = one_one_real ) ).

% exp_zero
thf(fact_8246_real__sqrt__gt__0__iff,axiom,
    ! [Y: real] :
      ( ( ord_less_real @ zero_zero_real @ ( sqrt @ Y ) )
      = ( ord_less_real @ zero_zero_real @ Y ) ) ).

% real_sqrt_gt_0_iff
thf(fact_8247_real__sqrt__lt__0__iff,axiom,
    ! [X: real] :
      ( ( ord_less_real @ ( sqrt @ X ) @ zero_zero_real )
      = ( ord_less_real @ X @ zero_zero_real ) ) ).

% real_sqrt_lt_0_iff
thf(fact_8248_real__sqrt__ge__0__iff,axiom,
    ! [Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( sqrt @ Y ) )
      = ( ord_less_eq_real @ zero_zero_real @ Y ) ) ).

% real_sqrt_ge_0_iff
thf(fact_8249_real__sqrt__le__0__iff,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ ( sqrt @ X ) @ zero_zero_real )
      = ( ord_less_eq_real @ X @ zero_zero_real ) ) ).

% real_sqrt_le_0_iff
thf(fact_8250_real__sqrt__gt__1__iff,axiom,
    ! [Y: real] :
      ( ( ord_less_real @ one_one_real @ ( sqrt @ Y ) )
      = ( ord_less_real @ one_one_real @ Y ) ) ).

% real_sqrt_gt_1_iff
thf(fact_8251_real__sqrt__lt__1__iff,axiom,
    ! [X: real] :
      ( ( ord_less_real @ ( sqrt @ X ) @ one_one_real )
      = ( ord_less_real @ X @ one_one_real ) ) ).

% real_sqrt_lt_1_iff
thf(fact_8252_real__sqrt__ge__1__iff,axiom,
    ! [Y: real] :
      ( ( ord_less_eq_real @ one_one_real @ ( sqrt @ Y ) )
      = ( ord_less_eq_real @ one_one_real @ Y ) ) ).

% real_sqrt_ge_1_iff
thf(fact_8253_real__sqrt__le__1__iff,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ ( sqrt @ X ) @ one_one_real )
      = ( ord_less_eq_real @ X @ one_one_real ) ) ).

% real_sqrt_le_1_iff
thf(fact_8254_real__sqrt__mult__self,axiom,
    ! [A: real] :
      ( ( times_times_real @ ( sqrt @ A ) @ ( sqrt @ A ) )
      = ( abs_abs_real @ A ) ) ).

% real_sqrt_mult_self
thf(fact_8255_real__sqrt__abs2,axiom,
    ! [X: real] :
      ( ( sqrt @ ( times_times_real @ X @ X ) )
      = ( abs_abs_real @ X ) ) ).

% real_sqrt_abs2
thf(fact_8256_real__sqrt__four,axiom,
    ( ( sqrt @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) )
    = ( numeral_numeral_real @ ( bit0 @ one ) ) ) ).

% real_sqrt_four
thf(fact_8257_one__le__exp__iff,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ one_one_real @ ( exp_real @ X ) )
      = ( ord_less_eq_real @ zero_zero_real @ X ) ) ).

% one_le_exp_iff
thf(fact_8258_exp__le__one__iff,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ ( exp_real @ X ) @ one_one_real )
      = ( ord_less_eq_real @ X @ zero_zero_real ) ) ).

% exp_le_one_iff
thf(fact_8259_powser__sums__zero__iff,axiom,
    ! [A: nat > complex,X: complex] :
      ( ( sums_complex
        @ ^ [N3: nat] : ( times_times_complex @ ( A @ N3 ) @ ( power_power_complex @ zero_zero_complex @ N3 ) )
        @ X )
      = ( ( A @ zero_zero_nat )
        = X ) ) ).

% powser_sums_zero_iff
thf(fact_8260_powser__sums__zero__iff,axiom,
    ! [A: nat > real,X: real] :
      ( ( sums_real
        @ ^ [N3: nat] : ( times_times_real @ ( A @ N3 ) @ ( power_power_real @ zero_zero_real @ N3 ) )
        @ X )
      = ( ( A @ zero_zero_nat )
        = X ) ) ).

% powser_sums_zero_iff
thf(fact_8261_real__sqrt__abs,axiom,
    ! [X: real] :
      ( ( sqrt @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( abs_abs_real @ X ) ) ).

% real_sqrt_abs
thf(fact_8262_real__sqrt__pow2__iff,axiom,
    ! [X: real] :
      ( ( ( power_power_real @ ( sqrt @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = X )
      = ( ord_less_eq_real @ zero_zero_real @ X ) ) ).

% real_sqrt_pow2_iff
thf(fact_8263_real__sqrt__pow2,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( power_power_real @ ( sqrt @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = X ) ) ).

% real_sqrt_pow2
thf(fact_8264_real__sqrt__sum__squares__mult__squared__eq,axiom,
    ! [X: real,Y: real,Xa2: real,Ya: real] :
      ( ( power_power_real @ ( sqrt @ ( times_times_real @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( plus_plus_real @ ( power_power_real @ Xa2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Ya @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( times_times_real @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( plus_plus_real @ ( power_power_real @ Xa2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Ya @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% real_sqrt_sum_squares_mult_squared_eq
thf(fact_8265_real__sqrt__less__mono,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ X @ Y )
     => ( ord_less_real @ ( sqrt @ X ) @ ( sqrt @ Y ) ) ) ).

% real_sqrt_less_mono
thf(fact_8266_real__sqrt__le__mono,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ X @ Y )
     => ( ord_less_eq_real @ ( sqrt @ X ) @ ( sqrt @ Y ) ) ) ).

% real_sqrt_le_mono
thf(fact_8267_sums__le,axiom,
    ! [F: nat > real,G: nat > real,S2: real,T: real] :
      ( ! [N: nat] : ( ord_less_eq_real @ ( F @ N ) @ ( G @ N ) )
     => ( ( sums_real @ F @ S2 )
       => ( ( sums_real @ G @ T )
         => ( ord_less_eq_real @ S2 @ T ) ) ) ) ).

% sums_le
thf(fact_8268_sums__le,axiom,
    ! [F: nat > nat,G: nat > nat,S2: nat,T: nat] :
      ( ! [N: nat] : ( ord_less_eq_nat @ ( F @ N ) @ ( G @ N ) )
     => ( ( sums_nat @ F @ S2 )
       => ( ( sums_nat @ G @ T )
         => ( ord_less_eq_nat @ S2 @ T ) ) ) ) ).

% sums_le
thf(fact_8269_sums__le,axiom,
    ! [F: nat > int,G: nat > int,S2: int,T: int] :
      ( ! [N: nat] : ( ord_less_eq_int @ ( F @ N ) @ ( G @ N ) )
     => ( ( sums_int @ F @ S2 )
       => ( ( sums_int @ G @ T )
         => ( ord_less_eq_int @ S2 @ T ) ) ) ) ).

% sums_le
thf(fact_8270_norm__exp,axiom,
    ! [X: real] : ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( exp_real @ X ) ) @ ( exp_real @ ( real_V7735802525324610683m_real @ X ) ) ) ).

% norm_exp
thf(fact_8271_norm__exp,axiom,
    ! [X: complex] : ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( exp_complex @ X ) ) @ ( exp_real @ ( real_V1022390504157884413omplex @ X ) ) ) ).

% norm_exp
thf(fact_8272_real__sqrt__minus,axiom,
    ! [X: real] :
      ( ( sqrt @ ( uminus_uminus_real @ X ) )
      = ( uminus_uminus_real @ ( sqrt @ X ) ) ) ).

% real_sqrt_minus
thf(fact_8273_real__sqrt__power,axiom,
    ! [X: real,K: nat] :
      ( ( sqrt @ ( power_power_real @ X @ K ) )
      = ( power_power_real @ ( sqrt @ X ) @ K ) ) ).

% real_sqrt_power
thf(fact_8274_real__sqrt__mult,axiom,
    ! [X: real,Y: real] :
      ( ( sqrt @ ( times_times_real @ X @ Y ) )
      = ( times_times_real @ ( sqrt @ X ) @ ( sqrt @ Y ) ) ) ).

% real_sqrt_mult
thf(fact_8275_real__sqrt__divide,axiom,
    ! [X: real,Y: real] :
      ( ( sqrt @ ( divide_divide_real @ X @ Y ) )
      = ( divide_divide_real @ ( sqrt @ X ) @ ( sqrt @ Y ) ) ) ).

% real_sqrt_divide
thf(fact_8276_exp__times__arg__commute,axiom,
    ! [A2: complex] :
      ( ( times_times_complex @ ( exp_complex @ A2 ) @ A2 )
      = ( times_times_complex @ A2 @ ( exp_complex @ A2 ) ) ) ).

% exp_times_arg_commute
thf(fact_8277_exp__times__arg__commute,axiom,
    ! [A2: real] :
      ( ( times_times_real @ ( exp_real @ A2 ) @ A2 )
      = ( times_times_real @ A2 @ ( exp_real @ A2 ) ) ) ).

% exp_times_arg_commute
thf(fact_8278_complex__diff,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( minus_minus_complex @ ( complex2 @ A @ B ) @ ( complex2 @ C @ D ) )
      = ( complex2 @ ( minus_minus_real @ A @ C ) @ ( minus_minus_real @ B @ D ) ) ) ).

% complex_diff
thf(fact_8279_sums__single,axiom,
    ! [I2: nat,F: nat > complex] :
      ( sums_complex
      @ ^ [R5: nat] : ( if_complex @ ( R5 = I2 ) @ ( F @ R5 ) @ zero_zero_complex )
      @ ( F @ I2 ) ) ).

% sums_single
thf(fact_8280_sums__single,axiom,
    ! [I2: nat,F: nat > real] :
      ( sums_real
      @ ^ [R5: nat] : ( if_real @ ( R5 = I2 ) @ ( F @ R5 ) @ zero_zero_real )
      @ ( F @ I2 ) ) ).

% sums_single
thf(fact_8281_sums__single,axiom,
    ! [I2: nat,F: nat > nat] :
      ( sums_nat
      @ ^ [R5: nat] : ( if_nat @ ( R5 = I2 ) @ ( F @ R5 ) @ zero_zero_nat )
      @ ( F @ I2 ) ) ).

% sums_single
thf(fact_8282_sums__single,axiom,
    ! [I2: nat,F: nat > int] :
      ( sums_int
      @ ^ [R5: nat] : ( if_int @ ( R5 = I2 ) @ ( F @ R5 ) @ zero_zero_int )
      @ ( F @ I2 ) ) ).

% sums_single
thf(fact_8283_sums__mult,axiom,
    ! [F: nat > complex,A: complex,C: complex] :
      ( ( sums_complex @ F @ A )
     => ( sums_complex
        @ ^ [N3: nat] : ( times_times_complex @ C @ ( F @ N3 ) )
        @ ( times_times_complex @ C @ A ) ) ) ).

% sums_mult
thf(fact_8284_sums__mult,axiom,
    ! [F: nat > real,A: real,C: real] :
      ( ( sums_real @ F @ A )
     => ( sums_real
        @ ^ [N3: nat] : ( times_times_real @ C @ ( F @ N3 ) )
        @ ( times_times_real @ C @ A ) ) ) ).

% sums_mult
thf(fact_8285_sums__mult2,axiom,
    ! [F: nat > complex,A: complex,C: complex] :
      ( ( sums_complex @ F @ A )
     => ( sums_complex
        @ ^ [N3: nat] : ( times_times_complex @ ( F @ N3 ) @ C )
        @ ( times_times_complex @ A @ C ) ) ) ).

% sums_mult2
thf(fact_8286_sums__mult2,axiom,
    ! [F: nat > real,A: real,C: real] :
      ( ( sums_real @ F @ A )
     => ( sums_real
        @ ^ [N3: nat] : ( times_times_real @ ( F @ N3 ) @ C )
        @ ( times_times_real @ A @ C ) ) ) ).

% sums_mult2
thf(fact_8287_sums__add,axiom,
    ! [F: nat > complex,A: complex,G: nat > complex,B: complex] :
      ( ( sums_complex @ F @ A )
     => ( ( sums_complex @ G @ B )
       => ( sums_complex
          @ ^ [N3: nat] : ( plus_plus_complex @ ( F @ N3 ) @ ( G @ N3 ) )
          @ ( plus_plus_complex @ A @ B ) ) ) ) ).

% sums_add
thf(fact_8288_sums__add,axiom,
    ! [F: nat > real,A: real,G: nat > real,B: real] :
      ( ( sums_real @ F @ A )
     => ( ( sums_real @ G @ B )
       => ( sums_real
          @ ^ [N3: nat] : ( plus_plus_real @ ( F @ N3 ) @ ( G @ N3 ) )
          @ ( plus_plus_real @ A @ B ) ) ) ) ).

% sums_add
thf(fact_8289_sums__add,axiom,
    ! [F: nat > nat,A: nat,G: nat > nat,B: nat] :
      ( ( sums_nat @ F @ A )
     => ( ( sums_nat @ G @ B )
       => ( sums_nat
          @ ^ [N3: nat] : ( plus_plus_nat @ ( F @ N3 ) @ ( G @ N3 ) )
          @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% sums_add
thf(fact_8290_sums__add,axiom,
    ! [F: nat > int,A: int,G: nat > int,B: int] :
      ( ( sums_int @ F @ A )
     => ( ( sums_int @ G @ B )
       => ( sums_int
          @ ^ [N3: nat] : ( plus_plus_int @ ( F @ N3 ) @ ( G @ N3 ) )
          @ ( plus_plus_int @ A @ B ) ) ) ) ).

% sums_add
thf(fact_8291_sums__diff,axiom,
    ! [F: nat > complex,A: complex,G: nat > complex,B: complex] :
      ( ( sums_complex @ F @ A )
     => ( ( sums_complex @ G @ B )
       => ( sums_complex
          @ ^ [N3: nat] : ( minus_minus_complex @ ( F @ N3 ) @ ( G @ N3 ) )
          @ ( minus_minus_complex @ A @ B ) ) ) ) ).

% sums_diff
thf(fact_8292_sums__diff,axiom,
    ! [F: nat > real,A: real,G: nat > real,B: real] :
      ( ( sums_real @ F @ A )
     => ( ( sums_real @ G @ B )
       => ( sums_real
          @ ^ [N3: nat] : ( minus_minus_real @ ( F @ N3 ) @ ( G @ N3 ) )
          @ ( minus_minus_real @ A @ B ) ) ) ) ).

% sums_diff
thf(fact_8293_sums__divide,axiom,
    ! [F: nat > complex,A: complex,C: complex] :
      ( ( sums_complex @ F @ A )
     => ( sums_complex
        @ ^ [N3: nat] : ( divide1717551699836669952omplex @ ( F @ N3 ) @ C )
        @ ( divide1717551699836669952omplex @ A @ C ) ) ) ).

% sums_divide
thf(fact_8294_sums__divide,axiom,
    ! [F: nat > real,A: real,C: real] :
      ( ( sums_real @ F @ A )
     => ( sums_real
        @ ^ [N3: nat] : ( divide_divide_real @ ( F @ N3 ) @ C )
        @ ( divide_divide_real @ A @ C ) ) ) ).

% sums_divide
thf(fact_8295_sums__minus,axiom,
    ! [F: nat > real,A: real] :
      ( ( sums_real @ F @ A )
     => ( sums_real
        @ ^ [N3: nat] : ( uminus_uminus_real @ ( F @ N3 ) )
        @ ( uminus_uminus_real @ A ) ) ) ).

% sums_minus
thf(fact_8296_sums__minus,axiom,
    ! [F: nat > complex,A: complex] :
      ( ( sums_complex @ F @ A )
     => ( sums_complex
        @ ^ [N3: nat] : ( uminus1482373934393186551omplex @ ( F @ N3 ) )
        @ ( uminus1482373934393186551omplex @ A ) ) ) ).

% sums_minus
thf(fact_8297_sums__sum,axiom,
    ! [I6: set_complex,F: complex > nat > real,X: complex > real] :
      ( ! [I3: complex] :
          ( ( member_complex @ I3 @ I6 )
         => ( sums_real @ ( F @ I3 ) @ ( X @ I3 ) ) )
     => ( sums_real
        @ ^ [N3: nat] :
            ( groups5808333547571424918x_real
            @ ^ [I5: complex] : ( F @ I5 @ N3 )
            @ I6 )
        @ ( groups5808333547571424918x_real @ X @ I6 ) ) ) ).

% sums_sum
thf(fact_8298_sums__sum,axiom,
    ! [I6: set_real,F: real > nat > real,X: real > real] :
      ( ! [I3: real] :
          ( ( member_real @ I3 @ I6 )
         => ( sums_real @ ( F @ I3 ) @ ( X @ I3 ) ) )
     => ( sums_real
        @ ^ [N3: nat] :
            ( groups8097168146408367636l_real
            @ ^ [I5: real] : ( F @ I5 @ N3 )
            @ I6 )
        @ ( groups8097168146408367636l_real @ X @ I6 ) ) ) ).

% sums_sum
thf(fact_8299_sums__sum,axiom,
    ! [I6: set_int,F: int > nat > real,X: int > real] :
      ( ! [I3: int] :
          ( ( member_int @ I3 @ I6 )
         => ( sums_real @ ( F @ I3 ) @ ( X @ I3 ) ) )
     => ( sums_real
        @ ^ [N3: nat] :
            ( groups8778361861064173332t_real
            @ ^ [I5: int] : ( F @ I5 @ N3 )
            @ I6 )
        @ ( groups8778361861064173332t_real @ X @ I6 ) ) ) ).

% sums_sum
thf(fact_8300_sums__sum,axiom,
    ! [I6: set_real,F: real > nat > complex,X: real > complex] :
      ( ! [I3: real] :
          ( ( member_real @ I3 @ I6 )
         => ( sums_complex @ ( F @ I3 ) @ ( X @ I3 ) ) )
     => ( sums_complex
        @ ^ [N3: nat] :
            ( groups5754745047067104278omplex
            @ ^ [I5: real] : ( F @ I5 @ N3 )
            @ I6 )
        @ ( groups5754745047067104278omplex @ X @ I6 ) ) ) ).

% sums_sum
thf(fact_8301_sums__sum,axiom,
    ! [I6: set_nat,F: nat > nat > complex,X: nat > complex] :
      ( ! [I3: nat] :
          ( ( member_nat @ I3 @ I6 )
         => ( sums_complex @ ( F @ I3 ) @ ( X @ I3 ) ) )
     => ( sums_complex
        @ ^ [N3: nat] :
            ( groups2073611262835488442omplex
            @ ^ [I5: nat] : ( F @ I5 @ N3 )
            @ I6 )
        @ ( groups2073611262835488442omplex @ X @ I6 ) ) ) ).

% sums_sum
thf(fact_8302_sums__sum,axiom,
    ! [I6: set_int,F: int > nat > complex,X: int > complex] :
      ( ! [I3: int] :
          ( ( member_int @ I3 @ I6 )
         => ( sums_complex @ ( F @ I3 ) @ ( X @ I3 ) ) )
     => ( sums_complex
        @ ^ [N3: nat] :
            ( groups3049146728041665814omplex
            @ ^ [I5: int] : ( F @ I5 @ N3 )
            @ I6 )
        @ ( groups3049146728041665814omplex @ X @ I6 ) ) ) ).

% sums_sum
thf(fact_8303_sums__sum,axiom,
    ! [I6: set_int,F: int > nat > int,X: int > int] :
      ( ! [I3: int] :
          ( ( member_int @ I3 @ I6 )
         => ( sums_int @ ( F @ I3 ) @ ( X @ I3 ) ) )
     => ( sums_int
        @ ^ [N3: nat] :
            ( groups4538972089207619220nt_int
            @ ^ [I5: int] : ( F @ I5 @ N3 )
            @ I6 )
        @ ( groups4538972089207619220nt_int @ X @ I6 ) ) ) ).

% sums_sum
thf(fact_8304_sums__sum,axiom,
    ! [I6: set_complex,F: complex > nat > complex,X: complex > complex] :
      ( ! [I3: complex] :
          ( ( member_complex @ I3 @ I6 )
         => ( sums_complex @ ( F @ I3 ) @ ( X @ I3 ) ) )
     => ( sums_complex
        @ ^ [N3: nat] :
            ( groups7754918857620584856omplex
            @ ^ [I5: complex] : ( F @ I5 @ N3 )
            @ I6 )
        @ ( groups7754918857620584856omplex @ X @ I6 ) ) ) ).

% sums_sum
thf(fact_8305_sums__sum,axiom,
    ! [I6: set_nat,F: nat > nat > nat,X: nat > nat] :
      ( ! [I3: nat] :
          ( ( member_nat @ I3 @ I6 )
         => ( sums_nat @ ( F @ I3 ) @ ( X @ I3 ) ) )
     => ( sums_nat
        @ ^ [N3: nat] :
            ( groups3542108847815614940at_nat
            @ ^ [I5: nat] : ( F @ I5 @ N3 )
            @ I6 )
        @ ( groups3542108847815614940at_nat @ X @ I6 ) ) ) ).

% sums_sum
thf(fact_8306_sums__sum,axiom,
    ! [I6: set_nat,F: nat > nat > real,X: nat > real] :
      ( ! [I3: nat] :
          ( ( member_nat @ I3 @ I6 )
         => ( sums_real @ ( F @ I3 ) @ ( X @ I3 ) ) )
     => ( sums_real
        @ ^ [N3: nat] :
            ( groups6591440286371151544t_real
            @ ^ [I5: nat] : ( F @ I5 @ N3 )
            @ I6 )
        @ ( groups6591440286371151544t_real @ X @ I6 ) ) ) ).

% sums_sum
thf(fact_8307_real__sqrt__gt__zero,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ord_less_real @ zero_zero_real @ ( sqrt @ X ) ) ) ).

% real_sqrt_gt_zero
thf(fact_8308_real__sqrt__ge__zero,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ord_less_eq_real @ zero_zero_real @ ( sqrt @ X ) ) ) ).

% real_sqrt_ge_zero
thf(fact_8309_real__sqrt__eq__zero__cancel,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ( sqrt @ X )
          = zero_zero_real )
       => ( X = zero_zero_real ) ) ) ).

% real_sqrt_eq_zero_cancel
thf(fact_8310_exp__ge__zero,axiom,
    ! [X: real] : ( ord_less_eq_real @ zero_zero_real @ ( exp_real @ X ) ) ).

% exp_ge_zero
thf(fact_8311_not__exp__le__zero,axiom,
    ! [X: real] :
      ~ ( ord_less_eq_real @ ( exp_real @ X ) @ zero_zero_real ) ).

% not_exp_le_zero
thf(fact_8312_real__sqrt__ge__one,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ one_one_real @ X )
     => ( ord_less_eq_real @ one_one_real @ ( sqrt @ X ) ) ) ).

% real_sqrt_ge_one
thf(fact_8313_exp__add__commuting,axiom,
    ! [X: complex,Y: complex] :
      ( ( ( times_times_complex @ X @ Y )
        = ( times_times_complex @ Y @ X ) )
     => ( ( exp_complex @ ( plus_plus_complex @ X @ Y ) )
        = ( times_times_complex @ ( exp_complex @ X ) @ ( exp_complex @ Y ) ) ) ) ).

% exp_add_commuting
thf(fact_8314_exp__add__commuting,axiom,
    ! [X: real,Y: real] :
      ( ( ( times_times_real @ X @ Y )
        = ( times_times_real @ Y @ X ) )
     => ( ( exp_real @ ( plus_plus_real @ X @ Y ) )
        = ( times_times_real @ ( exp_real @ X ) @ ( exp_real @ Y ) ) ) ) ).

% exp_add_commuting
thf(fact_8315_mult__exp__exp,axiom,
    ! [X: complex,Y: complex] :
      ( ( times_times_complex @ ( exp_complex @ X ) @ ( exp_complex @ Y ) )
      = ( exp_complex @ ( plus_plus_complex @ X @ Y ) ) ) ).

% mult_exp_exp
thf(fact_8316_mult__exp__exp,axiom,
    ! [X: real,Y: real] :
      ( ( times_times_real @ ( exp_real @ X ) @ ( exp_real @ Y ) )
      = ( exp_real @ ( plus_plus_real @ X @ Y ) ) ) ).

% mult_exp_exp
thf(fact_8317_exp__diff,axiom,
    ! [X: complex,Y: complex] :
      ( ( exp_complex @ ( minus_minus_complex @ X @ Y ) )
      = ( divide1717551699836669952omplex @ ( exp_complex @ X ) @ ( exp_complex @ Y ) ) ) ).

% exp_diff
thf(fact_8318_exp__diff,axiom,
    ! [X: real,Y: real] :
      ( ( exp_real @ ( minus_minus_real @ X @ Y ) )
      = ( divide_divide_real @ ( exp_real @ X ) @ ( exp_real @ Y ) ) ) ).

% exp_diff
thf(fact_8319_sums__mult__iff,axiom,
    ! [C: complex,F: nat > complex,D: complex] :
      ( ( C != zero_zero_complex )
     => ( ( sums_complex
          @ ^ [N3: nat] : ( times_times_complex @ C @ ( F @ N3 ) )
          @ ( times_times_complex @ C @ D ) )
        = ( sums_complex @ F @ D ) ) ) ).

% sums_mult_iff
thf(fact_8320_sums__mult__iff,axiom,
    ! [C: real,F: nat > real,D: real] :
      ( ( C != zero_zero_real )
     => ( ( sums_real
          @ ^ [N3: nat] : ( times_times_real @ C @ ( F @ N3 ) )
          @ ( times_times_real @ C @ D ) )
        = ( sums_real @ F @ D ) ) ) ).

% sums_mult_iff
thf(fact_8321_sums__mult2__iff,axiom,
    ! [C: complex,F: nat > complex,D: complex] :
      ( ( C != zero_zero_complex )
     => ( ( sums_complex
          @ ^ [N3: nat] : ( times_times_complex @ ( F @ N3 ) @ C )
          @ ( times_times_complex @ D @ C ) )
        = ( sums_complex @ F @ D ) ) ) ).

% sums_mult2_iff
thf(fact_8322_sums__mult2__iff,axiom,
    ! [C: real,F: nat > real,D: real] :
      ( ( C != zero_zero_real )
     => ( ( sums_real
          @ ^ [N3: nat] : ( times_times_real @ ( F @ N3 ) @ C )
          @ ( times_times_real @ D @ C ) )
        = ( sums_real @ F @ D ) ) ) ).

% sums_mult2_iff
thf(fact_8323_Complex__eq__numeral,axiom,
    ! [A: real,B: real,W: num] :
      ( ( ( complex2 @ A @ B )
        = ( numera6690914467698888265omplex @ W ) )
      = ( ( A
          = ( numeral_numeral_real @ W ) )
        & ( B = zero_zero_real ) ) ) ).

% Complex_eq_numeral
thf(fact_8324_complex__add,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( plus_plus_complex @ ( complex2 @ A @ B ) @ ( complex2 @ C @ D ) )
      = ( complex2 @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ D ) ) ) ).

% complex_add
thf(fact_8325_complex__norm,axiom,
    ! [X: real,Y: real] :
      ( ( real_V1022390504157884413omplex @ ( complex2 @ X @ Y ) )
      = ( sqrt @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% complex_norm
thf(fact_8326_real__div__sqrt,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( divide_divide_real @ X @ ( sqrt @ X ) )
        = ( sqrt @ X ) ) ) ).

% real_div_sqrt
thf(fact_8327_sqrt__add__le__add__sqrt,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y )
       => ( ord_less_eq_real @ ( sqrt @ ( plus_plus_real @ X @ Y ) ) @ ( plus_plus_real @ ( sqrt @ X ) @ ( sqrt @ Y ) ) ) ) ) ).

% sqrt_add_le_add_sqrt
thf(fact_8328_sums__mult__D,axiom,
    ! [C: complex,F: nat > complex,A: complex] :
      ( ( sums_complex
        @ ^ [N3: nat] : ( times_times_complex @ C @ ( F @ N3 ) )
        @ A )
     => ( ( C != zero_zero_complex )
       => ( sums_complex @ F @ ( divide1717551699836669952omplex @ A @ C ) ) ) ) ).

% sums_mult_D
thf(fact_8329_sums__mult__D,axiom,
    ! [C: real,F: nat > real,A: real] :
      ( ( sums_real
        @ ^ [N3: nat] : ( times_times_real @ C @ ( F @ N3 ) )
        @ A )
     => ( ( C != zero_zero_real )
       => ( sums_real @ F @ ( divide_divide_real @ A @ C ) ) ) ) ).

% sums_mult_D
thf(fact_8330_sums__Suc__imp,axiom,
    ! [F: nat > complex,S2: complex] :
      ( ( ( F @ zero_zero_nat )
        = zero_zero_complex )
     => ( ( sums_complex
          @ ^ [N3: nat] : ( F @ ( suc @ N3 ) )
          @ S2 )
       => ( sums_complex @ F @ S2 ) ) ) ).

% sums_Suc_imp
thf(fact_8331_sums__Suc__imp,axiom,
    ! [F: nat > real,S2: real] :
      ( ( ( F @ zero_zero_nat )
        = zero_zero_real )
     => ( ( sums_real
          @ ^ [N3: nat] : ( F @ ( suc @ N3 ) )
          @ S2 )
       => ( sums_real @ F @ S2 ) ) ) ).

% sums_Suc_imp
thf(fact_8332_exp__ge__add__one__self,axiom,
    ! [X: real] : ( ord_less_eq_real @ ( plus_plus_real @ one_one_real @ X ) @ ( exp_real @ X ) ) ).

% exp_ge_add_one_self
thf(fact_8333_le__real__sqrt__sumsq,axiom,
    ! [X: real,Y: real] : ( ord_less_eq_real @ X @ ( sqrt @ ( plus_plus_real @ ( times_times_real @ X @ X ) @ ( times_times_real @ Y @ Y ) ) ) ) ).

% le_real_sqrt_sumsq
thf(fact_8334_sums__Suc,axiom,
    ! [F: nat > complex,L2: complex] :
      ( ( sums_complex
        @ ^ [N3: nat] : ( F @ ( suc @ N3 ) )
        @ L2 )
     => ( sums_complex @ F @ ( plus_plus_complex @ L2 @ ( F @ zero_zero_nat ) ) ) ) ).

% sums_Suc
thf(fact_8335_sums__Suc,axiom,
    ! [F: nat > real,L2: real] :
      ( ( sums_real
        @ ^ [N3: nat] : ( F @ ( suc @ N3 ) )
        @ L2 )
     => ( sums_real @ F @ ( plus_plus_real @ L2 @ ( F @ zero_zero_nat ) ) ) ) ).

% sums_Suc
thf(fact_8336_sums__Suc,axiom,
    ! [F: nat > nat,L2: nat] :
      ( ( sums_nat
        @ ^ [N3: nat] : ( F @ ( suc @ N3 ) )
        @ L2 )
     => ( sums_nat @ F @ ( plus_plus_nat @ L2 @ ( F @ zero_zero_nat ) ) ) ) ).

% sums_Suc
thf(fact_8337_sums__Suc,axiom,
    ! [F: nat > int,L2: int] :
      ( ( sums_int
        @ ^ [N3: nat] : ( F @ ( suc @ N3 ) )
        @ L2 )
     => ( sums_int @ F @ ( plus_plus_int @ L2 @ ( F @ zero_zero_nat ) ) ) ) ).

% sums_Suc
thf(fact_8338_sums__Suc__iff,axiom,
    ! [F: nat > complex,S2: complex] :
      ( ( sums_complex
        @ ^ [N3: nat] : ( F @ ( suc @ N3 ) )
        @ S2 )
      = ( sums_complex @ F @ ( plus_plus_complex @ S2 @ ( F @ zero_zero_nat ) ) ) ) ).

% sums_Suc_iff
thf(fact_8339_sums__Suc__iff,axiom,
    ! [F: nat > real,S2: real] :
      ( ( sums_real
        @ ^ [N3: nat] : ( F @ ( suc @ N3 ) )
        @ S2 )
      = ( sums_real @ F @ ( plus_plus_real @ S2 @ ( F @ zero_zero_nat ) ) ) ) ).

% sums_Suc_iff
thf(fact_8340_sums__zero__iff__shift,axiom,
    ! [N2: nat,F: nat > complex,S2: complex] :
      ( ! [I3: nat] :
          ( ( ord_less_nat @ I3 @ N2 )
         => ( ( F @ I3 )
            = zero_zero_complex ) )
     => ( ( sums_complex
          @ ^ [I5: nat] : ( F @ ( plus_plus_nat @ I5 @ N2 ) )
          @ S2 )
        = ( sums_complex @ F @ S2 ) ) ) ).

% sums_zero_iff_shift
thf(fact_8341_sums__zero__iff__shift,axiom,
    ! [N2: nat,F: nat > real,S2: real] :
      ( ! [I3: nat] :
          ( ( ord_less_nat @ I3 @ N2 )
         => ( ( F @ I3 )
            = zero_zero_real ) )
     => ( ( sums_real
          @ ^ [I5: nat] : ( F @ ( plus_plus_nat @ I5 @ N2 ) )
          @ S2 )
        = ( sums_real @ F @ S2 ) ) ) ).

% sums_zero_iff_shift
thf(fact_8342_exp__minus__inverse,axiom,
    ! [X: real] :
      ( ( times_times_real @ ( exp_real @ X ) @ ( exp_real @ ( uminus_uminus_real @ X ) ) )
      = one_one_real ) ).

% exp_minus_inverse
thf(fact_8343_exp__minus__inverse,axiom,
    ! [X: complex] :
      ( ( times_times_complex @ ( exp_complex @ X ) @ ( exp_complex @ ( uminus1482373934393186551omplex @ X ) ) )
      = one_one_complex ) ).

% exp_minus_inverse
thf(fact_8344_exp__of__nat__mult,axiom,
    ! [N2: nat,X: complex] :
      ( ( exp_complex @ ( times_times_complex @ ( semiri8010041392384452111omplex @ N2 ) @ X ) )
      = ( power_power_complex @ ( exp_complex @ X ) @ N2 ) ) ).

% exp_of_nat_mult
thf(fact_8345_exp__of__nat__mult,axiom,
    ! [N2: nat,X: real] :
      ( ( exp_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ X ) )
      = ( power_power_real @ ( exp_real @ X ) @ N2 ) ) ).

% exp_of_nat_mult
thf(fact_8346_exp__of__nat2__mult,axiom,
    ! [X: complex,N2: nat] :
      ( ( exp_complex @ ( times_times_complex @ X @ ( semiri8010041392384452111omplex @ N2 ) ) )
      = ( power_power_complex @ ( exp_complex @ X ) @ N2 ) ) ).

% exp_of_nat2_mult
thf(fact_8347_exp__of__nat2__mult,axiom,
    ! [X: real,N2: nat] :
      ( ( exp_real @ ( times_times_real @ X @ ( semiri5074537144036343181t_real @ N2 ) ) )
      = ( power_power_real @ ( exp_real @ X ) @ N2 ) ) ).

% exp_of_nat2_mult
thf(fact_8348_Complex__eq__neg__numeral,axiom,
    ! [A: real,B: real,W: num] :
      ( ( ( complex2 @ A @ B )
        = ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) )
      = ( ( A
          = ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) )
        & ( B = zero_zero_real ) ) ) ).

% Complex_eq_neg_numeral
thf(fact_8349_sums__If__finite__set,axiom,
    ! [A2: set_nat,F: nat > complex] :
      ( ( finite_finite_nat @ A2 )
     => ( sums_complex
        @ ^ [R5: nat] : ( if_complex @ ( member_nat @ R5 @ A2 ) @ ( F @ R5 ) @ zero_zero_complex )
        @ ( groups2073611262835488442omplex @ F @ A2 ) ) ) ).

% sums_If_finite_set
thf(fact_8350_sums__If__finite__set,axiom,
    ! [A2: set_nat,F: nat > int] :
      ( ( finite_finite_nat @ A2 )
     => ( sums_int
        @ ^ [R5: nat] : ( if_int @ ( member_nat @ R5 @ A2 ) @ ( F @ R5 ) @ zero_zero_int )
        @ ( groups3539618377306564664at_int @ F @ A2 ) ) ) ).

% sums_If_finite_set
thf(fact_8351_sums__If__finite__set,axiom,
    ! [A2: set_nat,F: nat > nat] :
      ( ( finite_finite_nat @ A2 )
     => ( sums_nat
        @ ^ [R5: nat] : ( if_nat @ ( member_nat @ R5 @ A2 ) @ ( F @ R5 ) @ zero_zero_nat )
        @ ( groups3542108847815614940at_nat @ F @ A2 ) ) ) ).

% sums_If_finite_set
thf(fact_8352_sums__If__finite__set,axiom,
    ! [A2: set_nat,F: nat > real] :
      ( ( finite_finite_nat @ A2 )
     => ( sums_real
        @ ^ [R5: nat] : ( if_real @ ( member_nat @ R5 @ A2 ) @ ( F @ R5 ) @ zero_zero_real )
        @ ( groups6591440286371151544t_real @ F @ A2 ) ) ) ).

% sums_If_finite_set
thf(fact_8353_sums__If__finite,axiom,
    ! [P: nat > $o,F: nat > complex] :
      ( ( finite_finite_nat @ ( collect_nat @ P ) )
     => ( sums_complex
        @ ^ [R5: nat] : ( if_complex @ ( P @ R5 ) @ ( F @ R5 ) @ zero_zero_complex )
        @ ( groups2073611262835488442omplex @ F @ ( collect_nat @ P ) ) ) ) ).

% sums_If_finite
thf(fact_8354_sums__If__finite,axiom,
    ! [P: nat > $o,F: nat > int] :
      ( ( finite_finite_nat @ ( collect_nat @ P ) )
     => ( sums_int
        @ ^ [R5: nat] : ( if_int @ ( P @ R5 ) @ ( F @ R5 ) @ zero_zero_int )
        @ ( groups3539618377306564664at_int @ F @ ( collect_nat @ P ) ) ) ) ).

% sums_If_finite
thf(fact_8355_sums__If__finite,axiom,
    ! [P: nat > $o,F: nat > nat] :
      ( ( finite_finite_nat @ ( collect_nat @ P ) )
     => ( sums_nat
        @ ^ [R5: nat] : ( if_nat @ ( P @ R5 ) @ ( F @ R5 ) @ zero_zero_nat )
        @ ( groups3542108847815614940at_nat @ F @ ( collect_nat @ P ) ) ) ) ).

% sums_If_finite
thf(fact_8356_sums__If__finite,axiom,
    ! [P: nat > $o,F: nat > real] :
      ( ( finite_finite_nat @ ( collect_nat @ P ) )
     => ( sums_real
        @ ^ [R5: nat] : ( if_real @ ( P @ R5 ) @ ( F @ R5 ) @ zero_zero_real )
        @ ( groups6591440286371151544t_real @ F @ ( collect_nat @ P ) ) ) ) ).

% sums_If_finite
thf(fact_8357_sums__finite,axiom,
    ! [N4: set_nat,F: nat > complex] :
      ( ( finite_finite_nat @ N4 )
     => ( ! [N: nat] :
            ( ~ ( member_nat @ N @ N4 )
           => ( ( F @ N )
              = zero_zero_complex ) )
       => ( sums_complex @ F @ ( groups2073611262835488442omplex @ F @ N4 ) ) ) ) ).

% sums_finite
thf(fact_8358_sums__finite,axiom,
    ! [N4: set_nat,F: nat > int] :
      ( ( finite_finite_nat @ N4 )
     => ( ! [N: nat] :
            ( ~ ( member_nat @ N @ N4 )
           => ( ( F @ N )
              = zero_zero_int ) )
       => ( sums_int @ F @ ( groups3539618377306564664at_int @ F @ N4 ) ) ) ) ).

% sums_finite
thf(fact_8359_sums__finite,axiom,
    ! [N4: set_nat,F: nat > nat] :
      ( ( finite_finite_nat @ N4 )
     => ( ! [N: nat] :
            ( ~ ( member_nat @ N @ N4 )
           => ( ( F @ N )
              = zero_zero_nat ) )
       => ( sums_nat @ F @ ( groups3542108847815614940at_nat @ F @ N4 ) ) ) ) ).

% sums_finite
thf(fact_8360_sums__finite,axiom,
    ! [N4: set_nat,F: nat > real] :
      ( ( finite_finite_nat @ N4 )
     => ( ! [N: nat] :
            ( ~ ( member_nat @ N @ N4 )
           => ( ( F @ N )
              = zero_zero_real ) )
       => ( sums_real @ F @ ( groups6591440286371151544t_real @ F @ N4 ) ) ) ) ).

% sums_finite
thf(fact_8361_complex__mult,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( times_times_complex @ ( complex2 @ A @ B ) @ ( complex2 @ C @ D ) )
      = ( complex2 @ ( minus_minus_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D ) ) @ ( plus_plus_real @ ( times_times_real @ A @ D ) @ ( times_times_real @ B @ C ) ) ) ) ).

% complex_mult
thf(fact_8362_powser__sums__if,axiom,
    ! [M: nat,Z: complex] :
      ( sums_complex
      @ ^ [N3: nat] : ( times_times_complex @ ( if_complex @ ( N3 = M ) @ one_one_complex @ zero_zero_complex ) @ ( power_power_complex @ Z @ N3 ) )
      @ ( power_power_complex @ Z @ M ) ) ).

% powser_sums_if
thf(fact_8363_powser__sums__if,axiom,
    ! [M: nat,Z: real] :
      ( sums_real
      @ ^ [N3: nat] : ( times_times_real @ ( if_real @ ( N3 = M ) @ one_one_real @ zero_zero_real ) @ ( power_power_real @ Z @ N3 ) )
      @ ( power_power_real @ Z @ M ) ) ).

% powser_sums_if
thf(fact_8364_powser__sums__if,axiom,
    ! [M: nat,Z: int] :
      ( sums_int
      @ ^ [N3: nat] : ( times_times_int @ ( if_int @ ( N3 = M ) @ one_one_int @ zero_zero_int ) @ ( power_power_int @ Z @ N3 ) )
      @ ( power_power_int @ Z @ M ) ) ).

% powser_sums_if
thf(fact_8365_sqrt2__less__2,axiom,
    ord_less_real @ ( sqrt @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ).

% sqrt2_less_2
thf(fact_8366_powser__sums__zero,axiom,
    ! [A: nat > complex] :
      ( sums_complex
      @ ^ [N3: nat] : ( times_times_complex @ ( A @ N3 ) @ ( power_power_complex @ zero_zero_complex @ N3 ) )
      @ ( A @ zero_zero_nat ) ) ).

% powser_sums_zero
thf(fact_8367_powser__sums__zero,axiom,
    ! [A: nat > real] :
      ( sums_real
      @ ^ [N3: nat] : ( times_times_real @ ( A @ N3 ) @ ( power_power_real @ zero_zero_real @ N3 ) )
      @ ( A @ zero_zero_nat ) ) ).

% powser_sums_zero
thf(fact_8368_exp__ge__add__one__self__aux,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ord_less_eq_real @ ( plus_plus_real @ one_one_real @ X ) @ ( exp_real @ X ) ) ) ).

% exp_ge_add_one_self_aux
thf(fact_8369_lemma__exp__total,axiom,
    ! [Y: real] :
      ( ( ord_less_eq_real @ one_one_real @ Y )
     => ? [X5: real] :
          ( ( ord_less_eq_real @ zero_zero_real @ X5 )
          & ( ord_less_eq_real @ X5 @ ( minus_minus_real @ Y @ one_one_real ) )
          & ( ( exp_real @ X5 )
            = Y ) ) ) ).

% lemma_exp_total
thf(fact_8370_ln__ge__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ Y @ ( ln_ln_real @ X ) )
        = ( ord_less_eq_real @ ( exp_real @ Y ) @ X ) ) ) ).

% ln_ge_iff
thf(fact_8371_ln__x__over__x__mono,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ ( exp_real @ one_one_real ) @ X )
     => ( ( ord_less_eq_real @ X @ Y )
       => ( ord_less_eq_real @ ( divide_divide_real @ ( ln_ln_real @ Y ) @ Y ) @ ( divide_divide_real @ ( ln_ln_real @ X ) @ X ) ) ) ) ).

% ln_x_over_x_mono
thf(fact_8372_sums__iff__shift,axiom,
    ! [F: nat > complex,N2: nat,S2: complex] :
      ( ( sums_complex
        @ ^ [I5: nat] : ( F @ ( plus_plus_nat @ I5 @ N2 ) )
        @ S2 )
      = ( sums_complex @ F @ ( plus_plus_complex @ S2 @ ( groups2073611262835488442omplex @ F @ ( set_ord_lessThan_nat @ N2 ) ) ) ) ) ).

% sums_iff_shift
thf(fact_8373_sums__iff__shift,axiom,
    ! [F: nat > real,N2: nat,S2: real] :
      ( ( sums_real
        @ ^ [I5: nat] : ( F @ ( plus_plus_nat @ I5 @ N2 ) )
        @ S2 )
      = ( sums_real @ F @ ( plus_plus_real @ S2 @ ( groups6591440286371151544t_real @ F @ ( set_ord_lessThan_nat @ N2 ) ) ) ) ) ).

% sums_iff_shift
thf(fact_8374_sums__split__initial__segment,axiom,
    ! [F: nat > complex,S2: complex,N2: nat] :
      ( ( sums_complex @ F @ S2 )
     => ( sums_complex
        @ ^ [I5: nat] : ( F @ ( plus_plus_nat @ I5 @ N2 ) )
        @ ( minus_minus_complex @ S2 @ ( groups2073611262835488442omplex @ F @ ( set_ord_lessThan_nat @ N2 ) ) ) ) ) ).

% sums_split_initial_segment
thf(fact_8375_sums__split__initial__segment,axiom,
    ! [F: nat > real,S2: real,N2: nat] :
      ( ( sums_real @ F @ S2 )
     => ( sums_real
        @ ^ [I5: nat] : ( F @ ( plus_plus_nat @ I5 @ N2 ) )
        @ ( minus_minus_real @ S2 @ ( groups6591440286371151544t_real @ F @ ( set_ord_lessThan_nat @ N2 ) ) ) ) ) ).

% sums_split_initial_segment
thf(fact_8376_sums__iff__shift_H,axiom,
    ! [F: nat > complex,N2: nat,S2: complex] :
      ( ( sums_complex
        @ ^ [I5: nat] : ( F @ ( plus_plus_nat @ I5 @ N2 ) )
        @ ( minus_minus_complex @ S2 @ ( groups2073611262835488442omplex @ F @ ( set_ord_lessThan_nat @ N2 ) ) ) )
      = ( sums_complex @ F @ S2 ) ) ).

% sums_iff_shift'
thf(fact_8377_sums__iff__shift_H,axiom,
    ! [F: nat > real,N2: nat,S2: real] :
      ( ( sums_real
        @ ^ [I5: nat] : ( F @ ( plus_plus_nat @ I5 @ N2 ) )
        @ ( minus_minus_real @ S2 @ ( groups6591440286371151544t_real @ F @ ( set_ord_lessThan_nat @ N2 ) ) ) )
      = ( sums_real @ F @ S2 ) ) ).

% sums_iff_shift'
thf(fact_8378_sums__If__finite__set_H,axiom,
    ! [G: nat > complex,S3: complex,A2: set_nat,S4: complex,F: nat > complex] :
      ( ( sums_complex @ G @ S3 )
     => ( ( finite_finite_nat @ A2 )
       => ( ( S4
            = ( plus_plus_complex @ S3
              @ ( groups2073611262835488442omplex
                @ ^ [N3: nat] : ( minus_minus_complex @ ( F @ N3 ) @ ( G @ N3 ) )
                @ A2 ) ) )
         => ( sums_complex
            @ ^ [N3: nat] : ( if_complex @ ( member_nat @ N3 @ A2 ) @ ( F @ N3 ) @ ( G @ N3 ) )
            @ S4 ) ) ) ) ).

% sums_If_finite_set'
thf(fact_8379_sums__If__finite__set_H,axiom,
    ! [G: nat > real,S3: real,A2: set_nat,S4: real,F: nat > real] :
      ( ( sums_real @ G @ S3 )
     => ( ( finite_finite_nat @ A2 )
       => ( ( S4
            = ( plus_plus_real @ S3
              @ ( groups6591440286371151544t_real
                @ ^ [N3: nat] : ( minus_minus_real @ ( F @ N3 ) @ ( G @ N3 ) )
                @ A2 ) ) )
         => ( sums_real
            @ ^ [N3: nat] : ( if_real @ ( member_nat @ N3 @ A2 ) @ ( F @ N3 ) @ ( G @ N3 ) )
            @ S4 ) ) ) ) ).

% sums_If_finite_set'
thf(fact_8380_Complex__sum_H,axiom,
    ! [F: nat > real,S2: set_nat] :
      ( ( groups2073611262835488442omplex
        @ ^ [X3: nat] : ( complex2 @ ( F @ X3 ) @ zero_zero_real )
        @ S2 )
      = ( complex2 @ ( groups6591440286371151544t_real @ F @ S2 ) @ zero_zero_real ) ) ).

% Complex_sum'
thf(fact_8381_Complex__sum_H,axiom,
    ! [F: complex > real,S2: set_complex] :
      ( ( groups7754918857620584856omplex
        @ ^ [X3: complex] : ( complex2 @ ( F @ X3 ) @ zero_zero_real )
        @ S2 )
      = ( complex2 @ ( groups5808333547571424918x_real @ F @ S2 ) @ zero_zero_real ) ) ).

% Complex_sum'
thf(fact_8382_real__less__rsqrt,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ Y )
     => ( ord_less_real @ X @ ( sqrt @ Y ) ) ) ).

% real_less_rsqrt
thf(fact_8383_real__le__rsqrt,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ Y )
     => ( ord_less_eq_real @ X @ ( sqrt @ Y ) ) ) ).

% real_le_rsqrt
thf(fact_8384_sqrt__le__D,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ ( sqrt @ X ) @ Y )
     => ( ord_less_eq_real @ X @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% sqrt_le_D
thf(fact_8385_exp__le,axiom,
    ord_less_eq_real @ ( exp_real @ one_one_real ) @ ( numeral_numeral_real @ ( bit1 @ one ) ) ).

% exp_le
thf(fact_8386_exp__divide__power__eq,axiom,
    ! [N2: nat,X: complex] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( power_power_complex @ ( exp_complex @ ( divide1717551699836669952omplex @ X @ ( semiri8010041392384452111omplex @ N2 ) ) ) @ N2 )
        = ( exp_complex @ X ) ) ) ).

% exp_divide_power_eq
thf(fact_8387_exp__divide__power__eq,axiom,
    ! [N2: nat,X: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( power_power_real @ ( exp_real @ ( divide_divide_real @ X @ ( semiri5074537144036343181t_real @ N2 ) ) ) @ N2 )
        = ( exp_real @ X ) ) ) ).

% exp_divide_power_eq
thf(fact_8388_tanh__altdef,axiom,
    ( tanh_real
    = ( ^ [X3: real] : ( divide_divide_real @ ( minus_minus_real @ ( exp_real @ X3 ) @ ( exp_real @ ( uminus_uminus_real @ X3 ) ) ) @ ( plus_plus_real @ ( exp_real @ X3 ) @ ( exp_real @ ( uminus_uminus_real @ X3 ) ) ) ) ) ) ).

% tanh_altdef
thf(fact_8389_tanh__altdef,axiom,
    ( tanh_complex
    = ( ^ [X3: complex] : ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( exp_complex @ X3 ) @ ( exp_complex @ ( uminus1482373934393186551omplex @ X3 ) ) ) @ ( plus_plus_complex @ ( exp_complex @ X3 ) @ ( exp_complex @ ( uminus1482373934393186551omplex @ X3 ) ) ) ) ) ) ).

% tanh_altdef
thf(fact_8390_real__sqrt__unique,axiom,
    ! [Y: real,X: real] :
      ( ( ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = X )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y )
       => ( ( sqrt @ X )
          = Y ) ) ) ).

% real_sqrt_unique
thf(fact_8391_real__le__lsqrt,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y )
       => ( ( ord_less_eq_real @ X @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
         => ( ord_less_eq_real @ ( sqrt @ X ) @ Y ) ) ) ) ).

% real_le_lsqrt
thf(fact_8392_lemma__real__divide__sqrt__less,axiom,
    ! [U: real] :
      ( ( ord_less_real @ zero_zero_real @ U )
     => ( ord_less_real @ ( divide_divide_real @ U @ ( sqrt @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ U ) ) ).

% lemma_real_divide_sqrt_less
thf(fact_8393_real__sqrt__sum__squares__eq__cancel2,axiom,
    ! [X: real,Y: real] :
      ( ( ( sqrt @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
        = Y )
     => ( X = zero_zero_real ) ) ).

% real_sqrt_sum_squares_eq_cancel2
thf(fact_8394_real__sqrt__sum__squares__eq__cancel,axiom,
    ! [X: real,Y: real] :
      ( ( ( sqrt @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
        = X )
     => ( Y = zero_zero_real ) ) ).

% real_sqrt_sum_squares_eq_cancel
thf(fact_8395_real__sqrt__sum__squares__triangle__ineq,axiom,
    ! [A: real,C: real,B: real,D: real] : ( ord_less_eq_real @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ ( plus_plus_real @ A @ C ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( plus_plus_real @ B @ D ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( plus_plus_real @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ B @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ C @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ D @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% real_sqrt_sum_squares_triangle_ineq
thf(fact_8396_real__sqrt__sum__squares__ge2,axiom,
    ! [Y: real,X: real] : ( ord_less_eq_real @ Y @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% real_sqrt_sum_squares_ge2
thf(fact_8397_real__sqrt__sum__squares__ge1,axiom,
    ! [X: real,Y: real] : ( ord_less_eq_real @ X @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% real_sqrt_sum_squares_ge1
thf(fact_8398_exp__half__le2,axiom,
    ord_less_eq_real @ ( exp_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ).

% exp_half_le2
thf(fact_8399_sqrt__ge__absD,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ X ) @ ( sqrt @ Y ) )
     => ( ord_less_eq_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ Y ) ) ).

% sqrt_ge_absD
thf(fact_8400_cos__45,axiom,
    ( ( cos_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) ) )
    = ( divide_divide_real @ ( sqrt @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% cos_45
thf(fact_8401_sin__45,axiom,
    ( ( sin_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) ) )
    = ( divide_divide_real @ ( sqrt @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% sin_45
thf(fact_8402_tan__60,axiom,
    ( ( tan_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit1 @ one ) ) ) )
    = ( sqrt @ ( numeral_numeral_real @ ( bit1 @ one ) ) ) ) ).

% tan_60
thf(fact_8403_exp__double,axiom,
    ! [Z: complex] :
      ( ( exp_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ Z ) )
      = ( power_power_complex @ ( exp_complex @ Z ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% exp_double
thf(fact_8404_exp__double,axiom,
    ! [Z: real] :
      ( ( exp_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ Z ) )
      = ( power_power_real @ ( exp_real @ Z ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% exp_double
thf(fact_8405_geometric__sums,axiom,
    ! [C: real] :
      ( ( ord_less_real @ ( real_V7735802525324610683m_real @ C ) @ one_one_real )
     => ( sums_real @ ( power_power_real @ C ) @ ( divide_divide_real @ one_one_real @ ( minus_minus_real @ one_one_real @ C ) ) ) ) ).

% geometric_sums
thf(fact_8406_geometric__sums,axiom,
    ! [C: complex] :
      ( ( ord_less_real @ ( real_V1022390504157884413omplex @ C ) @ one_one_real )
     => ( sums_complex @ ( power_power_complex @ C ) @ ( divide1717551699836669952omplex @ one_one_complex @ ( minus_minus_complex @ one_one_complex @ C ) ) ) ) ).

% geometric_sums
thf(fact_8407_real__less__lsqrt,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y )
       => ( ( ord_less_real @ X @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
         => ( ord_less_real @ ( sqrt @ X ) @ Y ) ) ) ) ).

% real_less_lsqrt
thf(fact_8408_power__half__series,axiom,
    ( sums_real
    @ ^ [N3: nat] : ( power_power_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( suc @ N3 ) )
    @ one_one_real ) ).

% power_half_series
thf(fact_8409_sqrt__sum__squares__le__sum,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y )
       => ( ord_less_eq_real @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( plus_plus_real @ X @ Y ) ) ) ) ).

% sqrt_sum_squares_le_sum
thf(fact_8410_sqrt__even__pow2,axiom,
    ! [N2: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ( sqrt @ ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ N2 ) )
        = ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% sqrt_even_pow2
thf(fact_8411_real__sqrt__ge__abs1,axiom,
    ! [X: real,Y: real] : ( ord_less_eq_real @ ( abs_abs_real @ X ) @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% real_sqrt_ge_abs1
thf(fact_8412_real__sqrt__ge__abs2,axiom,
    ! [Y: real,X: real] : ( ord_less_eq_real @ ( abs_abs_real @ Y ) @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% real_sqrt_ge_abs2
thf(fact_8413_sqrt__sum__squares__le__sum__abs,axiom,
    ! [X: real,Y: real] : ( ord_less_eq_real @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( plus_plus_real @ ( abs_abs_real @ X ) @ ( abs_abs_real @ Y ) ) ) ).

% sqrt_sum_squares_le_sum_abs
thf(fact_8414_ln__sqrt,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ln_ln_real @ ( sqrt @ X ) )
        = ( divide_divide_real @ ( ln_ln_real @ X ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).

% ln_sqrt
thf(fact_8415_cos__30,axiom,
    ( ( cos_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit1 @ one ) ) ) ) )
    = ( divide_divide_real @ ( sqrt @ ( numeral_numeral_real @ ( bit1 @ one ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% cos_30
thf(fact_8416_sin__60,axiom,
    ( ( sin_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit1 @ one ) ) ) )
    = ( divide_divide_real @ ( sqrt @ ( numeral_numeral_real @ ( bit1 @ one ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% sin_60
thf(fact_8417_exp__bound__half,axiom,
    ! [Z: real] :
      ( ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ Z ) @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
     => ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( exp_real @ Z ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% exp_bound_half
thf(fact_8418_exp__bound__half,axiom,
    ! [Z: complex] :
      ( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ Z ) @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
     => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( exp_complex @ Z ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% exp_bound_half
thf(fact_8419_sums__if_H,axiom,
    ! [G: nat > real,X: real] :
      ( ( sums_real @ G @ X )
     => ( sums_real
        @ ^ [N3: nat] : ( if_real @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) @ zero_zero_real @ ( G @ ( divide_divide_nat @ ( minus_minus_nat @ N3 @ one_one_nat ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
        @ X ) ) ).

% sums_if'
thf(fact_8420_sums__if,axiom,
    ! [G: nat > real,X: real,F: nat > real,Y: real] :
      ( ( sums_real @ G @ X )
     => ( ( sums_real @ F @ Y )
       => ( sums_real
          @ ^ [N3: nat] : ( if_real @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) @ ( F @ ( divide_divide_nat @ N3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( G @ ( divide_divide_nat @ ( minus_minus_nat @ N3 @ one_one_nat ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
          @ ( plus_plus_real @ X @ Y ) ) ) ) ).

% sums_if
thf(fact_8421_arsinh__real__aux,axiom,
    ! [X: real] : ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ X @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real ) ) ) ) ).

% arsinh_real_aux
thf(fact_8422_real__sqrt__power__even,axiom,
    ! [N2: nat,X: real] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ( ord_less_eq_real @ zero_zero_real @ X )
       => ( ( power_power_real @ ( sqrt @ X ) @ N2 )
          = ( power_power_real @ X @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% real_sqrt_power_even
thf(fact_8423_exp__bound,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ X @ one_one_real )
       => ( ord_less_eq_real @ ( exp_real @ X ) @ ( plus_plus_real @ ( plus_plus_real @ one_one_real @ X ) @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% exp_bound
thf(fact_8424_real__sqrt__sum__squares__mult__ge__zero,axiom,
    ! [X: real,Y: real,Xa2: real,Ya: real] : ( ord_less_eq_real @ zero_zero_real @ ( sqrt @ ( times_times_real @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( plus_plus_real @ ( power_power_real @ Xa2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Ya @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% real_sqrt_sum_squares_mult_ge_zero
thf(fact_8425_arith__geo__mean__sqrt,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y )
       => ( ord_less_eq_real @ ( sqrt @ ( times_times_real @ X @ Y ) ) @ ( divide_divide_real @ ( plus_plus_real @ X @ Y ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).

% arith_geo_mean_sqrt
thf(fact_8426_tan__30,axiom,
    ( ( tan_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit1 @ one ) ) ) ) )
    = ( divide_divide_real @ one_one_real @ ( sqrt @ ( numeral_numeral_real @ ( bit1 @ one ) ) ) ) ) ).

% tan_30
thf(fact_8427_real__exp__bound__lemma,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ X @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ord_less_eq_real @ ( exp_real @ X ) @ ( plus_plus_real @ one_one_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X ) ) ) ) ) ).

% real_exp_bound_lemma
thf(fact_8428_cos__x__y__le__one,axiom,
    ! [X: real,Y: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( divide_divide_real @ X @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) @ one_one_real ) ).

% cos_x_y_le_one
thf(fact_8429_real__sqrt__sum__squares__less,axiom,
    ! [X: real,U: real,Y: real] :
      ( ( ord_less_real @ ( abs_abs_real @ X ) @ ( divide_divide_real @ U @ ( sqrt @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) )
     => ( ( ord_less_real @ ( abs_abs_real @ Y ) @ ( divide_divide_real @ U @ ( sqrt @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) )
       => ( ord_less_real @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ U ) ) ) ).

% real_sqrt_sum_squares_less
thf(fact_8430_arcosh__real__def,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ one_one_real @ X )
     => ( ( arcosh_real @ X )
        = ( ln_ln_real @ ( plus_plus_real @ X @ ( sqrt @ ( minus_minus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real ) ) ) ) ) ) ).

% arcosh_real_def
thf(fact_8431_exp__ge__one__plus__x__over__n__power__n,axiom,
    ! [N2: nat,X: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( semiri5074537144036343181t_real @ N2 ) ) @ X )
     => ( ( ord_less_nat @ zero_zero_nat @ N2 )
       => ( ord_less_eq_real @ ( power_power_real @ ( plus_plus_real @ one_one_real @ ( divide_divide_real @ X @ ( semiri5074537144036343181t_real @ N2 ) ) ) @ N2 ) @ ( exp_real @ X ) ) ) ) ).

% exp_ge_one_plus_x_over_n_power_n
thf(fact_8432_exp__ge__one__minus__x__over__n__power__n,axiom,
    ! [X: real,N2: nat] :
      ( ( ord_less_eq_real @ X @ ( semiri5074537144036343181t_real @ N2 ) )
     => ( ( ord_less_nat @ zero_zero_nat @ N2 )
       => ( ord_less_eq_real @ ( power_power_real @ ( minus_minus_real @ one_one_real @ ( divide_divide_real @ X @ ( semiri5074537144036343181t_real @ N2 ) ) ) @ N2 ) @ ( exp_real @ ( uminus_uminus_real @ X ) ) ) ) ) ).

% exp_ge_one_minus_x_over_n_power_n
thf(fact_8433_cos__arctan,axiom,
    ! [X: real] :
      ( ( cos_real @ ( arctan @ X ) )
      = ( divide_divide_real @ one_one_real @ ( sqrt @ ( plus_plus_real @ one_one_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% cos_arctan
thf(fact_8434_sin__arctan,axiom,
    ! [X: real] :
      ( ( sin_real @ ( arctan @ X ) )
      = ( divide_divide_real @ X @ ( sqrt @ ( plus_plus_real @ one_one_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% sin_arctan
thf(fact_8435_exp__bound__lemma,axiom,
    ! [Z: real] :
      ( ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ Z ) @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
     => ( ord_less_eq_real @ ( real_V7735802525324610683m_real @ ( exp_real @ Z ) ) @ ( plus_plus_real @ one_one_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( real_V7735802525324610683m_real @ Z ) ) ) ) ) ).

% exp_bound_lemma
thf(fact_8436_exp__bound__lemma,axiom,
    ! [Z: complex] :
      ( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ Z ) @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
     => ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ ( exp_complex @ Z ) ) @ ( plus_plus_real @ one_one_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( real_V1022390504157884413omplex @ Z ) ) ) ) ) ).

% exp_bound_lemma
thf(fact_8437_Maclaurin__exp__le,axiom,
    ! [X: real,N2: nat] :
    ? [T5: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ T5 ) @ ( abs_abs_real @ X ) )
      & ( ( exp_real @ X )
        = ( plus_plus_real
          @ ( groups6591440286371151544t_real
            @ ^ [M6: nat] : ( divide_divide_real @ ( power_power_real @ X @ M6 ) @ ( semiri2265585572941072030t_real @ M6 ) )
            @ ( set_ord_lessThan_nat @ N2 ) )
          @ ( times_times_real @ ( divide_divide_real @ ( exp_real @ T5 ) @ ( semiri2265585572941072030t_real @ N2 ) ) @ ( power_power_real @ X @ N2 ) ) ) ) ) ).

% Maclaurin_exp_le
thf(fact_8438_sqrt__sum__squares__half__less,axiom,
    ! [X: real,U: real,Y: real] :
      ( ( ord_less_real @ X @ ( divide_divide_real @ U @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
     => ( ( ord_less_real @ Y @ ( divide_divide_real @ U @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ( ord_less_eq_real @ zero_zero_real @ X )
         => ( ( ord_less_eq_real @ zero_zero_real @ Y )
           => ( ord_less_real @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ U ) ) ) ) ) ).

% sqrt_sum_squares_half_less
thf(fact_8439_exp__lower__Taylor__quadratic,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ord_less_eq_real @ ( plus_plus_real @ ( plus_plus_real @ one_one_real @ X ) @ ( divide_divide_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( exp_real @ X ) ) ) ).

% exp_lower_Taylor_quadratic
thf(fact_8440_sin__cos__sqrt,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( sin_real @ X ) )
     => ( ( sin_real @ X )
        = ( sqrt @ ( minus_minus_real @ one_one_real @ ( power_power_real @ ( cos_real @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% sin_cos_sqrt
thf(fact_8441_arctan__half,axiom,
    ( arctan
    = ( ^ [X3: real] : ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( arctan @ ( divide_divide_real @ X3 @ ( plus_plus_real @ one_one_real @ ( sqrt @ ( plus_plus_real @ one_one_real @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ).

% arctan_half
thf(fact_8442_tanh__real__altdef,axiom,
    ( tanh_real
    = ( ^ [X3: real] : ( divide_divide_real @ ( minus_minus_real @ one_one_real @ ( exp_real @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ X3 ) ) ) @ ( plus_plus_real @ one_one_real @ ( exp_real @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ X3 ) ) ) ) ) ) ).

% tanh_real_altdef
thf(fact_8443_cos__paired,axiom,
    ! [X: real] :
      ( sums_real
      @ ^ [N3: nat] : ( times_times_real @ ( divide_divide_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N3 ) @ ( semiri2265585572941072030t_real @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) ) ) @ ( power_power_real @ X @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) ) )
      @ ( cos_real @ X ) ) ).

% cos_paired
thf(fact_8444_geometric__deriv__sums,axiom,
    ! [Z: real] :
      ( ( ord_less_real @ ( real_V7735802525324610683m_real @ Z ) @ one_one_real )
     => ( sums_real
        @ ^ [N3: nat] : ( times_times_real @ ( semiri5074537144036343181t_real @ ( suc @ N3 ) ) @ ( power_power_real @ Z @ N3 ) )
        @ ( divide_divide_real @ one_one_real @ ( power_power_real @ ( minus_minus_real @ one_one_real @ Z ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% geometric_deriv_sums
thf(fact_8445_geometric__deriv__sums,axiom,
    ! [Z: complex] :
      ( ( ord_less_real @ ( real_V1022390504157884413omplex @ Z ) @ one_one_real )
     => ( sums_complex
        @ ^ [N3: nat] : ( times_times_complex @ ( semiri8010041392384452111omplex @ ( suc @ N3 ) ) @ ( power_power_complex @ Z @ N3 ) )
        @ ( divide1717551699836669952omplex @ one_one_complex @ ( power_power_complex @ ( minus_minus_complex @ one_one_complex @ Z ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% geometric_deriv_sums
thf(fact_8446_diffs__equiv,axiom,
    ! [C: nat > complex,X: complex] :
      ( ( summable_complex
        @ ^ [N3: nat] : ( times_times_complex @ ( diffs_complex @ C @ N3 ) @ ( power_power_complex @ X @ N3 ) ) )
     => ( sums_complex
        @ ^ [N3: nat] : ( times_times_complex @ ( times_times_complex @ ( semiri8010041392384452111omplex @ N3 ) @ ( C @ N3 ) ) @ ( power_power_complex @ X @ ( minus_minus_nat @ N3 @ ( suc @ zero_zero_nat ) ) ) )
        @ ( suminf_complex
          @ ^ [N3: nat] : ( times_times_complex @ ( diffs_complex @ C @ N3 ) @ ( power_power_complex @ X @ N3 ) ) ) ) ) ).

% diffs_equiv
thf(fact_8447_diffs__equiv,axiom,
    ! [C: nat > real,X: real] :
      ( ( summable_real
        @ ^ [N3: nat] : ( times_times_real @ ( diffs_real @ C @ N3 ) @ ( power_power_real @ X @ N3 ) ) )
     => ( sums_real
        @ ^ [N3: nat] : ( times_times_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N3 ) @ ( C @ N3 ) ) @ ( power_power_real @ X @ ( minus_minus_nat @ N3 @ ( suc @ zero_zero_nat ) ) ) )
        @ ( suminf_real
          @ ^ [N3: nat] : ( times_times_real @ ( diffs_real @ C @ N3 ) @ ( power_power_real @ X @ N3 ) ) ) ) ) ).

% diffs_equiv
thf(fact_8448_arsinh__real__def,axiom,
    ( arsinh_real
    = ( ^ [X3: real] : ( ln_ln_real @ ( plus_plus_real @ X3 @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real ) ) ) ) ) ) ).

% arsinh_real_def
thf(fact_8449_binomial__code,axiom,
    ( binomial
    = ( ^ [N3: nat,K3: nat] : ( if_nat @ ( ord_less_nat @ N3 @ K3 ) @ zero_zero_nat @ ( if_nat @ ( ord_less_nat @ N3 @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K3 ) ) @ ( binomial @ N3 @ ( minus_minus_nat @ N3 @ K3 ) ) @ ( divide_divide_nat @ ( set_fo2584398358068434914at_nat @ times_times_nat @ ( plus_plus_nat @ ( minus_minus_nat @ N3 @ K3 ) @ one_one_nat ) @ N3 @ one_one_nat ) @ ( semiri1408675320244567234ct_nat @ K3 ) ) ) ) ) ) ).

% binomial_code
thf(fact_8450_cos__arcsin,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X )
     => ( ( ord_less_eq_real @ X @ one_one_real )
       => ( ( cos_real @ ( arcsin @ X ) )
          = ( sqrt @ ( minus_minus_real @ one_one_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% cos_arcsin
thf(fact_8451_sin__arccos__abs,axiom,
    ! [Y: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ Y ) @ one_one_real )
     => ( ( sin_real @ ( arccos @ Y ) )
        = ( sqrt @ ( minus_minus_real @ one_one_real @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% sin_arccos_abs
thf(fact_8452_binomial__Suc__n,axiom,
    ! [N2: nat] :
      ( ( binomial @ ( suc @ N2 ) @ N2 )
      = ( suc @ N2 ) ) ).

% binomial_Suc_n
thf(fact_8453_binomial__n__n,axiom,
    ! [N2: nat] :
      ( ( binomial @ N2 @ N2 )
      = one_one_nat ) ).

% binomial_n_n
thf(fact_8454_binomial__1,axiom,
    ! [N2: nat] :
      ( ( binomial @ N2 @ ( suc @ zero_zero_nat ) )
      = N2 ) ).

% binomial_1
thf(fact_8455_binomial__0__Suc,axiom,
    ! [K: nat] :
      ( ( binomial @ zero_zero_nat @ ( suc @ K ) )
      = zero_zero_nat ) ).

% binomial_0_Suc
thf(fact_8456_binomial__eq__0__iff,axiom,
    ! [N2: nat,K: nat] :
      ( ( ( binomial @ N2 @ K )
        = zero_zero_nat )
      = ( ord_less_nat @ N2 @ K ) ) ).

% binomial_eq_0_iff
thf(fact_8457_binomial__Suc__Suc,axiom,
    ! [N2: nat,K: nat] :
      ( ( binomial @ ( suc @ N2 ) @ ( suc @ K ) )
      = ( plus_plus_nat @ ( binomial @ N2 @ K ) @ ( binomial @ N2 @ ( suc @ K ) ) ) ) ).

% binomial_Suc_Suc
thf(fact_8458_binomial__n__0,axiom,
    ! [N2: nat] :
      ( ( binomial @ N2 @ zero_zero_nat )
      = one_one_nat ) ).

% binomial_n_0
thf(fact_8459_zero__less__binomial__iff,axiom,
    ! [N2: nat,K: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( binomial @ N2 @ K ) )
      = ( ord_less_eq_nat @ K @ N2 ) ) ).

% zero_less_binomial_iff
thf(fact_8460_cos__arccos,axiom,
    ! [Y: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y )
     => ( ( ord_less_eq_real @ Y @ one_one_real )
       => ( ( cos_real @ ( arccos @ Y ) )
          = Y ) ) ) ).

% cos_arccos
thf(fact_8461_sin__arcsin,axiom,
    ! [Y: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y )
     => ( ( ord_less_eq_real @ Y @ one_one_real )
       => ( ( sin_real @ ( arcsin @ Y ) )
          = Y ) ) ) ).

% sin_arcsin
thf(fact_8462_arccos__0,axiom,
    ( ( arccos @ zero_zero_real )
    = ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% arccos_0
thf(fact_8463_arcsin__1,axiom,
    ( ( arcsin @ one_one_real )
    = ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% arcsin_1
thf(fact_8464_arcsin__minus__1,axiom,
    ( ( arcsin @ ( uminus_uminus_real @ one_one_real ) )
    = ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).

% arcsin_minus_1
thf(fact_8465_choose__one,axiom,
    ! [N2: nat] :
      ( ( binomial @ N2 @ one_one_nat )
      = N2 ) ).

% choose_one
thf(fact_8466_binomial__eq__0,axiom,
    ! [N2: nat,K: nat] :
      ( ( ord_less_nat @ N2 @ K )
     => ( ( binomial @ N2 @ K )
        = zero_zero_nat ) ) ).

% binomial_eq_0
thf(fact_8467_Suc__times__binomial,axiom,
    ! [K: nat,N2: nat] :
      ( ( times_times_nat @ ( suc @ K ) @ ( binomial @ ( suc @ N2 ) @ ( suc @ K ) ) )
      = ( times_times_nat @ ( suc @ N2 ) @ ( binomial @ N2 @ K ) ) ) ).

% Suc_times_binomial
thf(fact_8468_Suc__times__binomial__eq,axiom,
    ! [N2: nat,K: nat] :
      ( ( times_times_nat @ ( suc @ N2 ) @ ( binomial @ N2 @ K ) )
      = ( times_times_nat @ ( binomial @ ( suc @ N2 ) @ ( suc @ K ) ) @ ( suc @ K ) ) ) ).

% Suc_times_binomial_eq
thf(fact_8469_choose__mult__lemma,axiom,
    ! [M: nat,R2: nat,K: nat] :
      ( ( times_times_nat @ ( binomial @ ( plus_plus_nat @ ( plus_plus_nat @ M @ R2 ) @ K ) @ ( plus_plus_nat @ M @ K ) ) @ ( binomial @ ( plus_plus_nat @ M @ K ) @ K ) )
      = ( times_times_nat @ ( binomial @ ( plus_plus_nat @ ( plus_plus_nat @ M @ R2 ) @ K ) @ K ) @ ( binomial @ ( plus_plus_nat @ M @ R2 ) @ M ) ) ) ).

% choose_mult_lemma
thf(fact_8470_binomial__le__pow,axiom,
    ! [R2: nat,N2: nat] :
      ( ( ord_less_eq_nat @ R2 @ N2 )
     => ( ord_less_eq_nat @ ( binomial @ N2 @ R2 ) @ ( power_power_nat @ N2 @ R2 ) ) ) ).

% binomial_le_pow
thf(fact_8471_binomial__symmetric,axiom,
    ! [K: nat,N2: nat] :
      ( ( ord_less_eq_nat @ K @ N2 )
     => ( ( binomial @ N2 @ K )
        = ( binomial @ N2 @ ( minus_minus_nat @ N2 @ K ) ) ) ) ).

% binomial_symmetric
thf(fact_8472_diffs__minus,axiom,
    ! [C: nat > real] :
      ( ( diffs_real
        @ ^ [N3: nat] : ( uminus_uminus_real @ ( C @ N3 ) ) )
      = ( ^ [N3: nat] : ( uminus_uminus_real @ ( diffs_real @ C @ N3 ) ) ) ) ).

% diffs_minus
thf(fact_8473_diffs__minus,axiom,
    ! [C: nat > int] :
      ( ( diffs_int
        @ ^ [N3: nat] : ( uminus_uminus_int @ ( C @ N3 ) ) )
      = ( ^ [N3: nat] : ( uminus_uminus_int @ ( diffs_int @ C @ N3 ) ) ) ) ).

% diffs_minus
thf(fact_8474_diffs__minus,axiom,
    ! [C: nat > complex] :
      ( ( diffs_complex
        @ ^ [N3: nat] : ( uminus1482373934393186551omplex @ ( C @ N3 ) ) )
      = ( ^ [N3: nat] : ( uminus1482373934393186551omplex @ ( diffs_complex @ C @ N3 ) ) ) ) ).

% diffs_minus
thf(fact_8475_diffs__minus,axiom,
    ! [C: nat > rat] :
      ( ( diffs_rat
        @ ^ [N3: nat] : ( uminus_uminus_rat @ ( C @ N3 ) ) )
      = ( ^ [N3: nat] : ( uminus_uminus_rat @ ( diffs_rat @ C @ N3 ) ) ) ) ).

% diffs_minus
thf(fact_8476_diffs__minus,axiom,
    ! [C: nat > code_integer] :
      ( ( diffs_Code_integer
        @ ^ [N3: nat] : ( uminus1351360451143612070nteger @ ( C @ N3 ) ) )
      = ( ^ [N3: nat] : ( uminus1351360451143612070nteger @ ( diffs_Code_integer @ C @ N3 ) ) ) ) ).

% diffs_minus
thf(fact_8477_zero__less__binomial,axiom,
    ! [K: nat,N2: nat] :
      ( ( ord_less_eq_nat @ K @ N2 )
     => ( ord_less_nat @ zero_zero_nat @ ( binomial @ N2 @ K ) ) ) ).

% zero_less_binomial
thf(fact_8478_Suc__times__binomial__add,axiom,
    ! [A: nat,B: nat] :
      ( ( times_times_nat @ ( suc @ A ) @ ( binomial @ ( suc @ ( plus_plus_nat @ A @ B ) ) @ ( suc @ A ) ) )
      = ( times_times_nat @ ( suc @ B ) @ ( binomial @ ( suc @ ( plus_plus_nat @ A @ B ) ) @ A ) ) ) ).

% Suc_times_binomial_add
thf(fact_8479_binomial__Suc__Suc__eq__times,axiom,
    ! [N2: nat,K: nat] :
      ( ( binomial @ ( suc @ N2 ) @ ( suc @ K ) )
      = ( divide_divide_nat @ ( times_times_nat @ ( suc @ N2 ) @ ( binomial @ N2 @ K ) ) @ ( suc @ K ) ) ) ).

% binomial_Suc_Suc_eq_times
thf(fact_8480_choose__mult,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ K @ M )
     => ( ( ord_less_eq_nat @ M @ N2 )
       => ( ( times_times_nat @ ( binomial @ N2 @ M ) @ ( binomial @ M @ K ) )
          = ( times_times_nat @ ( binomial @ N2 @ K ) @ ( binomial @ ( minus_minus_nat @ N2 @ K ) @ ( minus_minus_nat @ M @ K ) ) ) ) ) ) ).

% choose_mult
thf(fact_8481_binomial__absorb__comp,axiom,
    ! [N2: nat,K: nat] :
      ( ( times_times_nat @ ( minus_minus_nat @ N2 @ K ) @ ( binomial @ N2 @ K ) )
      = ( times_times_nat @ N2 @ ( binomial @ ( minus_minus_nat @ N2 @ one_one_nat ) @ K ) ) ) ).

% binomial_absorb_comp
thf(fact_8482_arccos__le__arccos,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X )
     => ( ( ord_less_eq_real @ X @ Y )
       => ( ( ord_less_eq_real @ Y @ one_one_real )
         => ( ord_less_eq_real @ ( arccos @ Y ) @ ( arccos @ X ) ) ) ) ) ).

% arccos_le_arccos
thf(fact_8483_arccos__eq__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ( ord_less_eq_real @ ( abs_abs_real @ X ) @ one_one_real )
        & ( ord_less_eq_real @ ( abs_abs_real @ Y ) @ one_one_real ) )
     => ( ( ( arccos @ X )
          = ( arccos @ Y ) )
        = ( X = Y ) ) ) ).

% arccos_eq_iff
thf(fact_8484_arccos__le__mono,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ X ) @ one_one_real )
     => ( ( ord_less_eq_real @ ( abs_abs_real @ Y ) @ one_one_real )
       => ( ( ord_less_eq_real @ ( arccos @ X ) @ ( arccos @ Y ) )
          = ( ord_less_eq_real @ Y @ X ) ) ) ) ).

% arccos_le_mono
thf(fact_8485_arcsin__le__arcsin,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X )
     => ( ( ord_less_eq_real @ X @ Y )
       => ( ( ord_less_eq_real @ Y @ one_one_real )
         => ( ord_less_eq_real @ ( arcsin @ X ) @ ( arcsin @ Y ) ) ) ) ) ).

% arcsin_le_arcsin
thf(fact_8486_arcsin__minus,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X )
     => ( ( ord_less_eq_real @ X @ one_one_real )
       => ( ( arcsin @ ( uminus_uminus_real @ X ) )
          = ( uminus_uminus_real @ ( arcsin @ X ) ) ) ) ) ).

% arcsin_minus
thf(fact_8487_arcsin__eq__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ X ) @ one_one_real )
     => ( ( ord_less_eq_real @ ( abs_abs_real @ Y ) @ one_one_real )
       => ( ( ( arcsin @ X )
            = ( arcsin @ Y ) )
          = ( X = Y ) ) ) ) ).

% arcsin_eq_iff
thf(fact_8488_arcsin__le__mono,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ X ) @ one_one_real )
     => ( ( ord_less_eq_real @ ( abs_abs_real @ Y ) @ one_one_real )
       => ( ( ord_less_eq_real @ ( arcsin @ X ) @ ( arcsin @ Y ) )
          = ( ord_less_eq_real @ X @ Y ) ) ) ) ).

% arcsin_le_mono
thf(fact_8489_binomial__absorption,axiom,
    ! [K: nat,N2: nat] :
      ( ( times_times_nat @ ( suc @ K ) @ ( binomial @ N2 @ ( suc @ K ) ) )
      = ( times_times_nat @ N2 @ ( binomial @ ( minus_minus_nat @ N2 @ one_one_nat ) @ K ) ) ) ).

% binomial_absorption
thf(fact_8490_binomial__fact__lemma,axiom,
    ! [K: nat,N2: nat] :
      ( ( ord_less_eq_nat @ K @ N2 )
     => ( ( times_times_nat @ ( times_times_nat @ ( semiri1408675320244567234ct_nat @ K ) @ ( semiri1408675320244567234ct_nat @ ( minus_minus_nat @ N2 @ K ) ) ) @ ( binomial @ N2 @ K ) )
        = ( semiri1408675320244567234ct_nat @ N2 ) ) ) ).

% binomial_fact_lemma
thf(fact_8491_diffs__def,axiom,
    ( diffs_rat
    = ( ^ [C4: nat > rat,N3: nat] : ( times_times_rat @ ( semiri681578069525770553at_rat @ ( suc @ N3 ) ) @ ( C4 @ ( suc @ N3 ) ) ) ) ) ).

% diffs_def
thf(fact_8492_diffs__def,axiom,
    ( diffs_int
    = ( ^ [C4: nat > int,N3: nat] : ( times_times_int @ ( semiri1314217659103216013at_int @ ( suc @ N3 ) ) @ ( C4 @ ( suc @ N3 ) ) ) ) ) ).

% diffs_def
thf(fact_8493_diffs__def,axiom,
    ( diffs_real
    = ( ^ [C4: nat > real,N3: nat] : ( times_times_real @ ( semiri5074537144036343181t_real @ ( suc @ N3 ) ) @ ( C4 @ ( suc @ N3 ) ) ) ) ) ).

% diffs_def
thf(fact_8494_diffs__def,axiom,
    ( diffs_Code_integer
    = ( ^ [C4: nat > code_integer,N3: nat] : ( times_3573771949741848930nteger @ ( semiri4939895301339042750nteger @ ( suc @ N3 ) ) @ ( C4 @ ( suc @ N3 ) ) ) ) ) ).

% diffs_def
thf(fact_8495_binomial__ge__n__over__k__pow__k,axiom,
    ! [K: nat,N2: nat] :
      ( ( ord_less_eq_nat @ K @ N2 )
     => ( ord_less_eq_real @ ( power_power_real @ ( divide_divide_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( semiri5074537144036343181t_real @ K ) ) @ K ) @ ( semiri5074537144036343181t_real @ ( binomial @ N2 @ K ) ) ) ) ).

% binomial_ge_n_over_k_pow_k
thf(fact_8496_binomial__ge__n__over__k__pow__k,axiom,
    ! [K: nat,N2: nat] :
      ( ( ord_less_eq_nat @ K @ N2 )
     => ( ord_less_eq_rat @ ( power_power_rat @ ( divide_divide_rat @ ( semiri681578069525770553at_rat @ N2 ) @ ( semiri681578069525770553at_rat @ K ) ) @ K ) @ ( semiri681578069525770553at_rat @ ( binomial @ N2 @ K ) ) ) ) ).

% binomial_ge_n_over_k_pow_k
thf(fact_8497_binomial__mono,axiom,
    ! [K: nat,K6: nat,N2: nat] :
      ( ( ord_less_eq_nat @ K @ K6 )
     => ( ( ord_less_eq_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K6 ) @ N2 )
       => ( ord_less_eq_nat @ ( binomial @ N2 @ K ) @ ( binomial @ N2 @ K6 ) ) ) ) ).

% binomial_mono
thf(fact_8498_binomial__maximum_H,axiom,
    ! [N2: nat,K: nat] : ( ord_less_eq_nat @ ( binomial @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) @ K ) @ ( binomial @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) @ N2 ) ) ).

% binomial_maximum'
thf(fact_8499_binomial__le__pow2,axiom,
    ! [N2: nat,K: nat] : ( ord_less_eq_nat @ ( binomial @ N2 @ K ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ).

% binomial_le_pow2
thf(fact_8500_binomial__maximum,axiom,
    ! [N2: nat,K: nat] : ( ord_less_eq_nat @ ( binomial @ N2 @ K ) @ ( binomial @ N2 @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% binomial_maximum
thf(fact_8501_binomial__antimono,axiom,
    ! [K: nat,K6: nat,N2: nat] :
      ( ( ord_less_eq_nat @ K @ K6 )
     => ( ( ord_less_eq_nat @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ K )
       => ( ( ord_less_eq_nat @ K6 @ N2 )
         => ( ord_less_eq_nat @ ( binomial @ N2 @ K6 ) @ ( binomial @ N2 @ K ) ) ) ) ) ).

% binomial_antimono
thf(fact_8502_arccos__lbound,axiom,
    ! [Y: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y )
     => ( ( ord_less_eq_real @ Y @ one_one_real )
       => ( ord_less_eq_real @ zero_zero_real @ ( arccos @ Y ) ) ) ) ).

% arccos_lbound
thf(fact_8503_arccos__less__arccos,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X )
     => ( ( ord_less_real @ X @ Y )
       => ( ( ord_less_eq_real @ Y @ one_one_real )
         => ( ord_less_real @ ( arccos @ Y ) @ ( arccos @ X ) ) ) ) ) ).

% arccos_less_arccos
thf(fact_8504_choose__reduce__nat,axiom,
    ! [N2: nat,K: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( ord_less_nat @ zero_zero_nat @ K )
       => ( ( binomial @ N2 @ K )
          = ( plus_plus_nat @ ( binomial @ ( minus_minus_nat @ N2 @ one_one_nat ) @ ( minus_minus_nat @ K @ one_one_nat ) ) @ ( binomial @ ( minus_minus_nat @ N2 @ one_one_nat ) @ K ) ) ) ) ) ).

% choose_reduce_nat
thf(fact_8505_times__binomial__minus1__eq,axiom,
    ! [K: nat,N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ K )
     => ( ( times_times_nat @ K @ ( binomial @ N2 @ K ) )
        = ( times_times_nat @ N2 @ ( binomial @ ( minus_minus_nat @ N2 @ one_one_nat ) @ ( minus_minus_nat @ K @ one_one_nat ) ) ) ) ) ).

% times_binomial_minus1_eq
thf(fact_8506_arccos__less__mono,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ X ) @ one_one_real )
     => ( ( ord_less_eq_real @ ( abs_abs_real @ Y ) @ one_one_real )
       => ( ( ord_less_real @ ( arccos @ X ) @ ( arccos @ Y ) )
          = ( ord_less_real @ Y @ X ) ) ) ) ).

% arccos_less_mono
thf(fact_8507_arccos__ubound,axiom,
    ! [Y: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y )
     => ( ( ord_less_eq_real @ Y @ one_one_real )
       => ( ord_less_eq_real @ ( arccos @ Y ) @ pi ) ) ) ).

% arccos_ubound
thf(fact_8508_termdiff__converges__all,axiom,
    ! [C: nat > complex,X: complex] :
      ( ! [X5: complex] :
          ( summable_complex
          @ ^ [N3: nat] : ( times_times_complex @ ( C @ N3 ) @ ( power_power_complex @ X5 @ N3 ) ) )
     => ( summable_complex
        @ ^ [N3: nat] : ( times_times_complex @ ( diffs_complex @ C @ N3 ) @ ( power_power_complex @ X @ N3 ) ) ) ) ).

% termdiff_converges_all
thf(fact_8509_termdiff__converges__all,axiom,
    ! [C: nat > real,X: real] :
      ( ! [X5: real] :
          ( summable_real
          @ ^ [N3: nat] : ( times_times_real @ ( C @ N3 ) @ ( power_power_real @ X5 @ N3 ) ) )
     => ( summable_real
        @ ^ [N3: nat] : ( times_times_real @ ( diffs_real @ C @ N3 ) @ ( power_power_real @ X @ N3 ) ) ) ) ).

% termdiff_converges_all
thf(fact_8510_arccos__cos,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ X @ pi )
       => ( ( arccos @ ( cos_real @ X ) )
          = X ) ) ) ).

% arccos_cos
thf(fact_8511_arcsin__less__arcsin,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X )
     => ( ( ord_less_real @ X @ Y )
       => ( ( ord_less_eq_real @ Y @ one_one_real )
         => ( ord_less_real @ ( arcsin @ X ) @ ( arcsin @ Y ) ) ) ) ) ).

% arcsin_less_arcsin
thf(fact_8512_arcsin__less__mono,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ X ) @ one_one_real )
     => ( ( ord_less_eq_real @ ( abs_abs_real @ Y ) @ one_one_real )
       => ( ( ord_less_real @ ( arcsin @ X ) @ ( arcsin @ Y ) )
          = ( ord_less_real @ X @ Y ) ) ) ) ).

% arcsin_less_mono
thf(fact_8513_cos__arccos__abs,axiom,
    ! [Y: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ Y ) @ one_one_real )
     => ( ( cos_real @ ( arccos @ Y ) )
        = Y ) ) ).

% cos_arccos_abs
thf(fact_8514_arccos__cos__eq__abs,axiom,
    ! [Theta: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ Theta ) @ pi )
     => ( ( arccos @ ( cos_real @ Theta ) )
        = ( abs_abs_real @ Theta ) ) ) ).

% arccos_cos_eq_abs
thf(fact_8515_binomial__altdef__nat,axiom,
    ! [K: nat,N2: nat] :
      ( ( ord_less_eq_nat @ K @ N2 )
     => ( ( binomial @ N2 @ K )
        = ( divide_divide_nat @ ( semiri1408675320244567234ct_nat @ N2 ) @ ( times_times_nat @ ( semiri1408675320244567234ct_nat @ K ) @ ( semiri1408675320244567234ct_nat @ ( minus_minus_nat @ N2 @ K ) ) ) ) ) ) ).

% binomial_altdef_nat
thf(fact_8516_binomial__less__binomial__Suc,axiom,
    ! [K: nat,N2: nat] :
      ( ( ord_less_nat @ K @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
     => ( ord_less_nat @ ( binomial @ N2 @ K ) @ ( binomial @ N2 @ ( suc @ K ) ) ) ) ).

% binomial_less_binomial_Suc
thf(fact_8517_binomial__strict__mono,axiom,
    ! [K: nat,K6: nat,N2: nat] :
      ( ( ord_less_nat @ K @ K6 )
     => ( ( ord_less_eq_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K6 ) @ N2 )
       => ( ord_less_nat @ ( binomial @ N2 @ K ) @ ( binomial @ N2 @ K6 ) ) ) ) ).

% binomial_strict_mono
thf(fact_8518_binomial__strict__antimono,axiom,
    ! [K: nat,K6: nat,N2: nat] :
      ( ( ord_less_nat @ K @ K6 )
     => ( ( ord_less_eq_nat @ N2 @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K ) )
       => ( ( ord_less_eq_nat @ K6 @ N2 )
         => ( ord_less_nat @ ( binomial @ N2 @ K6 ) @ ( binomial @ N2 @ K ) ) ) ) ) ).

% binomial_strict_antimono
thf(fact_8519_central__binomial__odd,axiom,
    ! [N2: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ( binomial @ N2 @ ( suc @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
        = ( binomial @ N2 @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% central_binomial_odd
thf(fact_8520_binomial__addition__formula,axiom,
    ! [N2: nat,K: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( binomial @ N2 @ ( suc @ K ) )
        = ( plus_plus_nat @ ( binomial @ ( minus_minus_nat @ N2 @ one_one_nat ) @ ( suc @ K ) ) @ ( binomial @ ( minus_minus_nat @ N2 @ one_one_nat ) @ K ) ) ) ) ).

% binomial_addition_formula
thf(fact_8521_fact__binomial,axiom,
    ! [K: nat,N2: nat] :
      ( ( ord_less_eq_nat @ K @ N2 )
     => ( ( times_times_complex @ ( semiri5044797733671781792omplex @ K ) @ ( semiri8010041392384452111omplex @ ( binomial @ N2 @ K ) ) )
        = ( divide1717551699836669952omplex @ ( semiri5044797733671781792omplex @ N2 ) @ ( semiri5044797733671781792omplex @ ( minus_minus_nat @ N2 @ K ) ) ) ) ) ).

% fact_binomial
thf(fact_8522_fact__binomial,axiom,
    ! [K: nat,N2: nat] :
      ( ( ord_less_eq_nat @ K @ N2 )
     => ( ( times_times_rat @ ( semiri773545260158071498ct_rat @ K ) @ ( semiri681578069525770553at_rat @ ( binomial @ N2 @ K ) ) )
        = ( divide_divide_rat @ ( semiri773545260158071498ct_rat @ N2 ) @ ( semiri773545260158071498ct_rat @ ( minus_minus_nat @ N2 @ K ) ) ) ) ) ).

% fact_binomial
thf(fact_8523_fact__binomial,axiom,
    ! [K: nat,N2: nat] :
      ( ( ord_less_eq_nat @ K @ N2 )
     => ( ( times_times_real @ ( semiri2265585572941072030t_real @ K ) @ ( semiri5074537144036343181t_real @ ( binomial @ N2 @ K ) ) )
        = ( divide_divide_real @ ( semiri2265585572941072030t_real @ N2 ) @ ( semiri2265585572941072030t_real @ ( minus_minus_nat @ N2 @ K ) ) ) ) ) ).

% fact_binomial
thf(fact_8524_binomial__fact,axiom,
    ! [K: nat,N2: nat] :
      ( ( ord_less_eq_nat @ K @ N2 )
     => ( ( semiri8010041392384452111omplex @ ( binomial @ N2 @ K ) )
        = ( divide1717551699836669952omplex @ ( semiri5044797733671781792omplex @ N2 ) @ ( times_times_complex @ ( semiri5044797733671781792omplex @ K ) @ ( semiri5044797733671781792omplex @ ( minus_minus_nat @ N2 @ K ) ) ) ) ) ) ).

% binomial_fact
thf(fact_8525_binomial__fact,axiom,
    ! [K: nat,N2: nat] :
      ( ( ord_less_eq_nat @ K @ N2 )
     => ( ( semiri681578069525770553at_rat @ ( binomial @ N2 @ K ) )
        = ( divide_divide_rat @ ( semiri773545260158071498ct_rat @ N2 ) @ ( times_times_rat @ ( semiri773545260158071498ct_rat @ K ) @ ( semiri773545260158071498ct_rat @ ( minus_minus_nat @ N2 @ K ) ) ) ) ) ) ).

% binomial_fact
thf(fact_8526_binomial__fact,axiom,
    ! [K: nat,N2: nat] :
      ( ( ord_less_eq_nat @ K @ N2 )
     => ( ( semiri5074537144036343181t_real @ ( binomial @ N2 @ K ) )
        = ( divide_divide_real @ ( semiri2265585572941072030t_real @ N2 ) @ ( times_times_real @ ( semiri2265585572941072030t_real @ K ) @ ( semiri2265585572941072030t_real @ ( minus_minus_nat @ N2 @ K ) ) ) ) ) ) ).

% binomial_fact
thf(fact_8527_arccos__bounded,axiom,
    ! [Y: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y )
     => ( ( ord_less_eq_real @ Y @ one_one_real )
       => ( ( ord_less_eq_real @ zero_zero_real @ ( arccos @ Y ) )
          & ( ord_less_eq_real @ ( arccos @ Y ) @ pi ) ) ) ) ).

% arccos_bounded
thf(fact_8528_arccos__cos2,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ X @ zero_zero_real )
     => ( ( ord_less_eq_real @ ( uminus_uminus_real @ pi ) @ X )
       => ( ( arccos @ ( cos_real @ X ) )
          = ( uminus_uminus_real @ X ) ) ) ) ).

% arccos_cos2
thf(fact_8529_arccos__minus,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X )
     => ( ( ord_less_eq_real @ X @ one_one_real )
       => ( ( arccos @ ( uminus_uminus_real @ X ) )
          = ( minus_minus_real @ pi @ ( arccos @ X ) ) ) ) ) ).

% arccos_minus
thf(fact_8530_choose__two,axiom,
    ! [N2: nat] :
      ( ( binomial @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( divide_divide_nat @ ( times_times_nat @ N2 @ ( minus_minus_nat @ N2 @ one_one_nat ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% choose_two
thf(fact_8531_arccos,axiom,
    ! [Y: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y )
     => ( ( ord_less_eq_real @ Y @ one_one_real )
       => ( ( ord_less_eq_real @ zero_zero_real @ ( arccos @ Y ) )
          & ( ord_less_eq_real @ ( arccos @ Y ) @ pi )
          & ( ( cos_real @ ( arccos @ Y ) )
            = Y ) ) ) ) ).

% arccos
thf(fact_8532_arccos__minus__abs,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ X ) @ one_one_real )
     => ( ( arccos @ ( uminus_uminus_real @ X ) )
        = ( minus_minus_real @ pi @ ( arccos @ X ) ) ) ) ).

% arccos_minus_abs
thf(fact_8533_termdiff__converges,axiom,
    ! [X: real,K5: real,C: nat > real] :
      ( ( ord_less_real @ ( real_V7735802525324610683m_real @ X ) @ K5 )
     => ( ! [X5: real] :
            ( ( ord_less_real @ ( real_V7735802525324610683m_real @ X5 ) @ K5 )
           => ( summable_real
              @ ^ [N3: nat] : ( times_times_real @ ( C @ N3 ) @ ( power_power_real @ X5 @ N3 ) ) ) )
       => ( summable_real
          @ ^ [N3: nat] : ( times_times_real @ ( diffs_real @ C @ N3 ) @ ( power_power_real @ X @ N3 ) ) ) ) ) ).

% termdiff_converges
thf(fact_8534_termdiff__converges,axiom,
    ! [X: complex,K5: real,C: nat > complex] :
      ( ( ord_less_real @ ( real_V1022390504157884413omplex @ X ) @ K5 )
     => ( ! [X5: complex] :
            ( ( ord_less_real @ ( real_V1022390504157884413omplex @ X5 ) @ K5 )
           => ( summable_complex
              @ ^ [N3: nat] : ( times_times_complex @ ( C @ N3 ) @ ( power_power_complex @ X5 @ N3 ) ) ) )
       => ( summable_complex
          @ ^ [N3: nat] : ( times_times_complex @ ( diffs_complex @ C @ N3 ) @ ( power_power_complex @ X @ N3 ) ) ) ) ) ).

% termdiff_converges
thf(fact_8535_arccos__le__pi2,axiom,
    ! [Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ Y )
     => ( ( ord_less_eq_real @ Y @ one_one_real )
       => ( ord_less_eq_real @ ( arccos @ Y ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).

% arccos_le_pi2
thf(fact_8536_arcsin__lt__bounded,axiom,
    ! [Y: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ Y )
     => ( ( ord_less_real @ Y @ one_one_real )
       => ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( arcsin @ Y ) )
          & ( ord_less_real @ ( arcsin @ Y ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ).

% arcsin_lt_bounded
thf(fact_8537_arcsin__bounded,axiom,
    ! [Y: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y )
     => ( ( ord_less_eq_real @ Y @ one_one_real )
       => ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( arcsin @ Y ) )
          & ( ord_less_eq_real @ ( arcsin @ Y ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ).

% arcsin_bounded
thf(fact_8538_arcsin__ubound,axiom,
    ! [Y: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y )
     => ( ( ord_less_eq_real @ Y @ one_one_real )
       => ( ord_less_eq_real @ ( arcsin @ Y ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).

% arcsin_ubound
thf(fact_8539_arcsin__lbound,axiom,
    ! [Y: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y )
     => ( ( ord_less_eq_real @ Y @ one_one_real )
       => ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( arcsin @ Y ) ) ) ) ).

% arcsin_lbound
thf(fact_8540_arcsin__sin,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X )
     => ( ( ord_less_eq_real @ X @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ( arcsin @ ( sin_real @ X ) )
          = X ) ) ) ).

% arcsin_sin
thf(fact_8541_le__arcsin__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X )
     => ( ( ord_less_eq_real @ X @ one_one_real )
       => ( ( ord_less_eq_real @ ( divide_divide_real @ ( uminus_uminus_real @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ Y )
         => ( ( ord_less_eq_real @ Y @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
           => ( ( ord_less_eq_real @ Y @ ( arcsin @ X ) )
              = ( ord_less_eq_real @ ( sin_real @ Y ) @ X ) ) ) ) ) ) ).

% le_arcsin_iff
thf(fact_8542_arcsin__le__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X )
     => ( ( ord_less_eq_real @ X @ one_one_real )
       => ( ( ord_less_eq_real @ ( divide_divide_real @ ( uminus_uminus_real @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ Y )
         => ( ( ord_less_eq_real @ Y @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
           => ( ( ord_less_eq_real @ ( arcsin @ X ) @ Y )
              = ( ord_less_eq_real @ X @ ( sin_real @ Y ) ) ) ) ) ) ) ).

% arcsin_le_iff
thf(fact_8543_arcsin__pi,axiom,
    ! [Y: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y )
     => ( ( ord_less_eq_real @ Y @ one_one_real )
       => ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( arcsin @ Y ) )
          & ( ord_less_eq_real @ ( arcsin @ Y ) @ pi )
          & ( ( sin_real @ ( arcsin @ Y ) )
            = Y ) ) ) ) ).

% arcsin_pi
thf(fact_8544_arcsin,axiom,
    ! [Y: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y )
     => ( ( ord_less_eq_real @ Y @ one_one_real )
       => ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( arcsin @ Y ) )
          & ( ord_less_eq_real @ ( arcsin @ Y ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
          & ( ( sin_real @ ( arcsin @ Y ) )
            = Y ) ) ) ) ).

% arcsin
thf(fact_8545_central__binomial__lower__bound,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ord_less_eq_real @ ( divide_divide_real @ ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) @ N2 ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ N2 ) ) ) @ ( semiri5074537144036343181t_real @ ( binomial @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) @ N2 ) ) ) ) ).

% central_binomial_lower_bound
thf(fact_8546_sin__arccos,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X )
     => ( ( ord_less_eq_real @ X @ one_one_real )
       => ( ( sin_real @ ( arccos @ X ) )
          = ( sqrt @ ( minus_minus_real @ one_one_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% sin_arccos
thf(fact_8547_choose__odd__sum,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) )
          @ ( groups2073611262835488442omplex
            @ ^ [I5: nat] :
                ( if_complex
                @ ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I5 )
                @ ( semiri8010041392384452111omplex @ ( binomial @ N2 @ I5 ) )
                @ zero_zero_complex )
            @ ( set_ord_atMost_nat @ N2 ) ) )
        = ( power_power_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ N2 ) ) ) ).

% choose_odd_sum
thf(fact_8548_choose__odd__sum,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) )
          @ ( groups2906978787729119204at_rat
            @ ^ [I5: nat] :
                ( if_rat
                @ ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I5 )
                @ ( semiri681578069525770553at_rat @ ( binomial @ N2 @ I5 ) )
                @ zero_zero_rat )
            @ ( set_ord_atMost_nat @ N2 ) ) )
        = ( power_power_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ N2 ) ) ) ).

% choose_odd_sum
thf(fact_8549_choose__odd__sum,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) )
          @ ( groups3539618377306564664at_int
            @ ^ [I5: nat] :
                ( if_int
                @ ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I5 )
                @ ( semiri1314217659103216013at_int @ ( binomial @ N2 @ I5 ) )
                @ zero_zero_int )
            @ ( set_ord_atMost_nat @ N2 ) ) )
        = ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) ) ) ).

% choose_odd_sum
thf(fact_8550_choose__odd__sum,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) )
          @ ( groups7501900531339628137nteger
            @ ^ [I5: nat] :
                ( if_Code_integer
                @ ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I5 )
                @ ( semiri4939895301339042750nteger @ ( binomial @ N2 @ I5 ) )
                @ zero_z3403309356797280102nteger )
            @ ( set_ord_atMost_nat @ N2 ) ) )
        = ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N2 ) ) ) ).

% choose_odd_sum
thf(fact_8551_choose__odd__sum,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) )
          @ ( groups6591440286371151544t_real
            @ ^ [I5: nat] :
                ( if_real
                @ ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I5 )
                @ ( semiri5074537144036343181t_real @ ( binomial @ N2 @ I5 ) )
                @ zero_zero_real )
            @ ( set_ord_atMost_nat @ N2 ) ) )
        = ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ N2 ) ) ) ).

% choose_odd_sum
thf(fact_8552_choose__even__sum,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) )
          @ ( groups2073611262835488442omplex
            @ ^ [I5: nat] : ( if_complex @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I5 ) @ ( semiri8010041392384452111omplex @ ( binomial @ N2 @ I5 ) ) @ zero_zero_complex )
            @ ( set_ord_atMost_nat @ N2 ) ) )
        = ( power_power_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ N2 ) ) ) ).

% choose_even_sum
thf(fact_8553_choose__even__sum,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) )
          @ ( groups2906978787729119204at_rat
            @ ^ [I5: nat] : ( if_rat @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I5 ) @ ( semiri681578069525770553at_rat @ ( binomial @ N2 @ I5 ) ) @ zero_zero_rat )
            @ ( set_ord_atMost_nat @ N2 ) ) )
        = ( power_power_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ N2 ) ) ) ).

% choose_even_sum
thf(fact_8554_choose__even__sum,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) )
          @ ( groups3539618377306564664at_int
            @ ^ [I5: nat] : ( if_int @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I5 ) @ ( semiri1314217659103216013at_int @ ( binomial @ N2 @ I5 ) ) @ zero_zero_int )
            @ ( set_ord_atMost_nat @ N2 ) ) )
        = ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) ) ) ).

% choose_even_sum
thf(fact_8555_choose__even__sum,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) )
          @ ( groups7501900531339628137nteger
            @ ^ [I5: nat] : ( if_Code_integer @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I5 ) @ ( semiri4939895301339042750nteger @ ( binomial @ N2 @ I5 ) ) @ zero_z3403309356797280102nteger )
            @ ( set_ord_atMost_nat @ N2 ) ) )
        = ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N2 ) ) ) ).

% choose_even_sum
thf(fact_8556_choose__even__sum,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) )
          @ ( groups6591440286371151544t_real
            @ ^ [I5: nat] : ( if_real @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I5 ) @ ( semiri5074537144036343181t_real @ ( binomial @ N2 @ I5 ) ) @ zero_zero_real )
            @ ( set_ord_atMost_nat @ N2 ) ) )
        = ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ N2 ) ) ) ).

% choose_even_sum
thf(fact_8557_monoseq__def,axiom,
    ( topolo6980174941875973593q_real
    = ( ^ [X4: nat > real] :
          ( ! [M6: nat,N3: nat] :
              ( ( ord_less_eq_nat @ M6 @ N3 )
             => ( ord_less_eq_real @ ( X4 @ M6 ) @ ( X4 @ N3 ) ) )
          | ! [M6: nat,N3: nat] :
              ( ( ord_less_eq_nat @ M6 @ N3 )
             => ( ord_less_eq_real @ ( X4 @ N3 ) @ ( X4 @ M6 ) ) ) ) ) ) ).

% monoseq_def
thf(fact_8558_monoseq__def,axiom,
    ( topolo3100542954746470799et_int
    = ( ^ [X4: nat > set_int] :
          ( ! [M6: nat,N3: nat] :
              ( ( ord_less_eq_nat @ M6 @ N3 )
             => ( ord_less_eq_set_int @ ( X4 @ M6 ) @ ( X4 @ N3 ) ) )
          | ! [M6: nat,N3: nat] :
              ( ( ord_less_eq_nat @ M6 @ N3 )
             => ( ord_less_eq_set_int @ ( X4 @ N3 ) @ ( X4 @ M6 ) ) ) ) ) ) ).

% monoseq_def
thf(fact_8559_monoseq__def,axiom,
    ( topolo4267028734544971653eq_rat
    = ( ^ [X4: nat > rat] :
          ( ! [M6: nat,N3: nat] :
              ( ( ord_less_eq_nat @ M6 @ N3 )
             => ( ord_less_eq_rat @ ( X4 @ M6 ) @ ( X4 @ N3 ) ) )
          | ! [M6: nat,N3: nat] :
              ( ( ord_less_eq_nat @ M6 @ N3 )
             => ( ord_less_eq_rat @ ( X4 @ N3 ) @ ( X4 @ M6 ) ) ) ) ) ) ).

% monoseq_def
thf(fact_8560_monoseq__def,axiom,
    ( topolo1459490580787246023eq_num
    = ( ^ [X4: nat > num] :
          ( ! [M6: nat,N3: nat] :
              ( ( ord_less_eq_nat @ M6 @ N3 )
             => ( ord_less_eq_num @ ( X4 @ M6 ) @ ( X4 @ N3 ) ) )
          | ! [M6: nat,N3: nat] :
              ( ( ord_less_eq_nat @ M6 @ N3 )
             => ( ord_less_eq_num @ ( X4 @ N3 ) @ ( X4 @ M6 ) ) ) ) ) ) ).

% monoseq_def
thf(fact_8561_monoseq__def,axiom,
    ( topolo4902158794631467389eq_nat
    = ( ^ [X4: nat > nat] :
          ( ! [M6: nat,N3: nat] :
              ( ( ord_less_eq_nat @ M6 @ N3 )
             => ( ord_less_eq_nat @ ( X4 @ M6 ) @ ( X4 @ N3 ) ) )
          | ! [M6: nat,N3: nat] :
              ( ( ord_less_eq_nat @ M6 @ N3 )
             => ( ord_less_eq_nat @ ( X4 @ N3 ) @ ( X4 @ M6 ) ) ) ) ) ) ).

% monoseq_def
thf(fact_8562_monoseq__def,axiom,
    ( topolo4899668324122417113eq_int
    = ( ^ [X4: nat > int] :
          ( ! [M6: nat,N3: nat] :
              ( ( ord_less_eq_nat @ M6 @ N3 )
             => ( ord_less_eq_int @ ( X4 @ M6 ) @ ( X4 @ N3 ) ) )
          | ! [M6: nat,N3: nat] :
              ( ( ord_less_eq_nat @ M6 @ N3 )
             => ( ord_less_eq_int @ ( X4 @ N3 ) @ ( X4 @ M6 ) ) ) ) ) ) ).

% monoseq_def
thf(fact_8563_monoI2,axiom,
    ! [X8: nat > real] :
      ( ! [M2: nat,N: nat] :
          ( ( ord_less_eq_nat @ M2 @ N )
         => ( ord_less_eq_real @ ( X8 @ N ) @ ( X8 @ M2 ) ) )
     => ( topolo6980174941875973593q_real @ X8 ) ) ).

% monoI2
thf(fact_8564_monoI2,axiom,
    ! [X8: nat > set_int] :
      ( ! [M2: nat,N: nat] :
          ( ( ord_less_eq_nat @ M2 @ N )
         => ( ord_less_eq_set_int @ ( X8 @ N ) @ ( X8 @ M2 ) ) )
     => ( topolo3100542954746470799et_int @ X8 ) ) ).

% monoI2
thf(fact_8565_monoI2,axiom,
    ! [X8: nat > rat] :
      ( ! [M2: nat,N: nat] :
          ( ( ord_less_eq_nat @ M2 @ N )
         => ( ord_less_eq_rat @ ( X8 @ N ) @ ( X8 @ M2 ) ) )
     => ( topolo4267028734544971653eq_rat @ X8 ) ) ).

% monoI2
thf(fact_8566_monoI2,axiom,
    ! [X8: nat > num] :
      ( ! [M2: nat,N: nat] :
          ( ( ord_less_eq_nat @ M2 @ N )
         => ( ord_less_eq_num @ ( X8 @ N ) @ ( X8 @ M2 ) ) )
     => ( topolo1459490580787246023eq_num @ X8 ) ) ).

% monoI2
thf(fact_8567_monoI2,axiom,
    ! [X8: nat > nat] :
      ( ! [M2: nat,N: nat] :
          ( ( ord_less_eq_nat @ M2 @ N )
         => ( ord_less_eq_nat @ ( X8 @ N ) @ ( X8 @ M2 ) ) )
     => ( topolo4902158794631467389eq_nat @ X8 ) ) ).

% monoI2
thf(fact_8568_monoI2,axiom,
    ! [X8: nat > int] :
      ( ! [M2: nat,N: nat] :
          ( ( ord_less_eq_nat @ M2 @ N )
         => ( ord_less_eq_int @ ( X8 @ N ) @ ( X8 @ M2 ) ) )
     => ( topolo4899668324122417113eq_int @ X8 ) ) ).

% monoI2
thf(fact_8569_monoI1,axiom,
    ! [X8: nat > real] :
      ( ! [M2: nat,N: nat] :
          ( ( ord_less_eq_nat @ M2 @ N )
         => ( ord_less_eq_real @ ( X8 @ M2 ) @ ( X8 @ N ) ) )
     => ( topolo6980174941875973593q_real @ X8 ) ) ).

% monoI1
thf(fact_8570_monoI1,axiom,
    ! [X8: nat > set_int] :
      ( ! [M2: nat,N: nat] :
          ( ( ord_less_eq_nat @ M2 @ N )
         => ( ord_less_eq_set_int @ ( X8 @ M2 ) @ ( X8 @ N ) ) )
     => ( topolo3100542954746470799et_int @ X8 ) ) ).

% monoI1
thf(fact_8571_monoI1,axiom,
    ! [X8: nat > rat] :
      ( ! [M2: nat,N: nat] :
          ( ( ord_less_eq_nat @ M2 @ N )
         => ( ord_less_eq_rat @ ( X8 @ M2 ) @ ( X8 @ N ) ) )
     => ( topolo4267028734544971653eq_rat @ X8 ) ) ).

% monoI1
thf(fact_8572_monoI1,axiom,
    ! [X8: nat > num] :
      ( ! [M2: nat,N: nat] :
          ( ( ord_less_eq_nat @ M2 @ N )
         => ( ord_less_eq_num @ ( X8 @ M2 ) @ ( X8 @ N ) ) )
     => ( topolo1459490580787246023eq_num @ X8 ) ) ).

% monoI1
thf(fact_8573_monoI1,axiom,
    ! [X8: nat > nat] :
      ( ! [M2: nat,N: nat] :
          ( ( ord_less_eq_nat @ M2 @ N )
         => ( ord_less_eq_nat @ ( X8 @ M2 ) @ ( X8 @ N ) ) )
     => ( topolo4902158794631467389eq_nat @ X8 ) ) ).

% monoI1
thf(fact_8574_monoI1,axiom,
    ! [X8: nat > int] :
      ( ! [M2: nat,N: nat] :
          ( ( ord_less_eq_nat @ M2 @ N )
         => ( ord_less_eq_int @ ( X8 @ M2 ) @ ( X8 @ N ) ) )
     => ( topolo4899668324122417113eq_int @ X8 ) ) ).

% monoI1
thf(fact_8575_atMost__iff,axiom,
    ! [I2: real,K: real] :
      ( ( member_real @ I2 @ ( set_ord_atMost_real @ K ) )
      = ( ord_less_eq_real @ I2 @ K ) ) ).

% atMost_iff
thf(fact_8576_atMost__iff,axiom,
    ! [I2: set_nat,K: set_nat] :
      ( ( member_set_nat @ I2 @ ( set_or4236626031148496127et_nat @ K ) )
      = ( ord_less_eq_set_nat @ I2 @ K ) ) ).

% atMost_iff
thf(fact_8577_atMost__iff,axiom,
    ! [I2: set_int,K: set_int] :
      ( ( member_set_int @ I2 @ ( set_or58775011639299419et_int @ K ) )
      = ( ord_less_eq_set_int @ I2 @ K ) ) ).

% atMost_iff
thf(fact_8578_atMost__iff,axiom,
    ! [I2: rat,K: rat] :
      ( ( member_rat @ I2 @ ( set_ord_atMost_rat @ K ) )
      = ( ord_less_eq_rat @ I2 @ K ) ) ).

% atMost_iff
thf(fact_8579_atMost__iff,axiom,
    ! [I2: num,K: num] :
      ( ( member_num @ I2 @ ( set_ord_atMost_num @ K ) )
      = ( ord_less_eq_num @ I2 @ K ) ) ).

% atMost_iff
thf(fact_8580_atMost__iff,axiom,
    ! [I2: nat,K: nat] :
      ( ( member_nat @ I2 @ ( set_ord_atMost_nat @ K ) )
      = ( ord_less_eq_nat @ I2 @ K ) ) ).

% atMost_iff
thf(fact_8581_atMost__iff,axiom,
    ! [I2: int,K: int] :
      ( ( member_int @ I2 @ ( set_ord_atMost_int @ K ) )
      = ( ord_less_eq_int @ I2 @ K ) ) ).

% atMost_iff
thf(fact_8582_atMost__subset__iff,axiom,
    ! [X: set_int,Y: set_int] :
      ( ( ord_le4403425263959731960et_int @ ( set_or58775011639299419et_int @ X ) @ ( set_or58775011639299419et_int @ Y ) )
      = ( ord_less_eq_set_int @ X @ Y ) ) ).

% atMost_subset_iff
thf(fact_8583_atMost__subset__iff,axiom,
    ! [X: rat,Y: rat] :
      ( ( ord_less_eq_set_rat @ ( set_ord_atMost_rat @ X ) @ ( set_ord_atMost_rat @ Y ) )
      = ( ord_less_eq_rat @ X @ Y ) ) ).

% atMost_subset_iff
thf(fact_8584_atMost__subset__iff,axiom,
    ! [X: num,Y: num] :
      ( ( ord_less_eq_set_num @ ( set_ord_atMost_num @ X ) @ ( set_ord_atMost_num @ Y ) )
      = ( ord_less_eq_num @ X @ Y ) ) ).

% atMost_subset_iff
thf(fact_8585_atMost__subset__iff,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_eq_set_nat @ ( set_ord_atMost_nat @ X ) @ ( set_ord_atMost_nat @ Y ) )
      = ( ord_less_eq_nat @ X @ Y ) ) ).

% atMost_subset_iff
thf(fact_8586_atMost__subset__iff,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_eq_set_int @ ( set_ord_atMost_int @ X ) @ ( set_ord_atMost_int @ Y ) )
      = ( ord_less_eq_int @ X @ Y ) ) ).

% atMost_subset_iff
thf(fact_8587_Icc__subset__Iic__iff,axiom,
    ! [L2: set_int,H2: set_int,H3: set_int] :
      ( ( ord_le4403425263959731960et_int @ ( set_or370866239135849197et_int @ L2 @ H2 ) @ ( set_or58775011639299419et_int @ H3 ) )
      = ( ~ ( ord_less_eq_set_int @ L2 @ H2 )
        | ( ord_less_eq_set_int @ H2 @ H3 ) ) ) ).

% Icc_subset_Iic_iff
thf(fact_8588_Icc__subset__Iic__iff,axiom,
    ! [L2: rat,H2: rat,H3: rat] :
      ( ( ord_less_eq_set_rat @ ( set_or633870826150836451st_rat @ L2 @ H2 ) @ ( set_ord_atMost_rat @ H3 ) )
      = ( ~ ( ord_less_eq_rat @ L2 @ H2 )
        | ( ord_less_eq_rat @ H2 @ H3 ) ) ) ).

% Icc_subset_Iic_iff
thf(fact_8589_Icc__subset__Iic__iff,axiom,
    ! [L2: num,H2: num,H3: num] :
      ( ( ord_less_eq_set_num @ ( set_or7049704709247886629st_num @ L2 @ H2 ) @ ( set_ord_atMost_num @ H3 ) )
      = ( ~ ( ord_less_eq_num @ L2 @ H2 )
        | ( ord_less_eq_num @ H2 @ H3 ) ) ) ).

% Icc_subset_Iic_iff
thf(fact_8590_Icc__subset__Iic__iff,axiom,
    ! [L2: nat,H2: nat,H3: nat] :
      ( ( ord_less_eq_set_nat @ ( set_or1269000886237332187st_nat @ L2 @ H2 ) @ ( set_ord_atMost_nat @ H3 ) )
      = ( ~ ( ord_less_eq_nat @ L2 @ H2 )
        | ( ord_less_eq_nat @ H2 @ H3 ) ) ) ).

% Icc_subset_Iic_iff
thf(fact_8591_Icc__subset__Iic__iff,axiom,
    ! [L2: int,H2: int,H3: int] :
      ( ( ord_less_eq_set_int @ ( set_or1266510415728281911st_int @ L2 @ H2 ) @ ( set_ord_atMost_int @ H3 ) )
      = ( ~ ( ord_less_eq_int @ L2 @ H2 )
        | ( ord_less_eq_int @ H2 @ H3 ) ) ) ).

% Icc_subset_Iic_iff
thf(fact_8592_Icc__subset__Iic__iff,axiom,
    ! [L2: real,H2: real,H3: real] :
      ( ( ord_less_eq_set_real @ ( set_or1222579329274155063t_real @ L2 @ H2 ) @ ( set_ord_atMost_real @ H3 ) )
      = ( ~ ( ord_less_eq_real @ L2 @ H2 )
        | ( ord_less_eq_real @ H2 @ H3 ) ) ) ).

% Icc_subset_Iic_iff
thf(fact_8593_sum_OatMost__Suc,axiom,
    ! [G: nat > rat,N2: nat] :
      ( ( groups2906978787729119204at_rat @ G @ ( set_ord_atMost_nat @ ( suc @ N2 ) ) )
      = ( plus_plus_rat @ ( groups2906978787729119204at_rat @ G @ ( set_ord_atMost_nat @ N2 ) ) @ ( G @ ( suc @ N2 ) ) ) ) ).

% sum.atMost_Suc
thf(fact_8594_sum_OatMost__Suc,axiom,
    ! [G: nat > int,N2: nat] :
      ( ( groups3539618377306564664at_int @ G @ ( set_ord_atMost_nat @ ( suc @ N2 ) ) )
      = ( plus_plus_int @ ( groups3539618377306564664at_int @ G @ ( set_ord_atMost_nat @ N2 ) ) @ ( G @ ( suc @ N2 ) ) ) ) ).

% sum.atMost_Suc
thf(fact_8595_sum_OatMost__Suc,axiom,
    ! [G: nat > nat,N2: nat] :
      ( ( groups3542108847815614940at_nat @ G @ ( set_ord_atMost_nat @ ( suc @ N2 ) ) )
      = ( plus_plus_nat @ ( groups3542108847815614940at_nat @ G @ ( set_ord_atMost_nat @ N2 ) ) @ ( G @ ( suc @ N2 ) ) ) ) ).

% sum.atMost_Suc
thf(fact_8596_sum_OatMost__Suc,axiom,
    ! [G: nat > real,N2: nat] :
      ( ( groups6591440286371151544t_real @ G @ ( set_ord_atMost_nat @ ( suc @ N2 ) ) )
      = ( plus_plus_real @ ( groups6591440286371151544t_real @ G @ ( set_ord_atMost_nat @ N2 ) ) @ ( G @ ( suc @ N2 ) ) ) ) ).

% sum.atMost_Suc
thf(fact_8597_atMost__def,axiom,
    ( set_or4236626031148496127et_nat
    = ( ^ [U2: set_nat] :
          ( collect_set_nat
          @ ^ [X3: set_nat] : ( ord_less_eq_set_nat @ X3 @ U2 ) ) ) ) ).

% atMost_def
thf(fact_8598_atMost__def,axiom,
    ( set_or58775011639299419et_int
    = ( ^ [U2: set_int] :
          ( collect_set_int
          @ ^ [X3: set_int] : ( ord_less_eq_set_int @ X3 @ U2 ) ) ) ) ).

% atMost_def
thf(fact_8599_atMost__def,axiom,
    ( set_ord_atMost_rat
    = ( ^ [U2: rat] :
          ( collect_rat
          @ ^ [X3: rat] : ( ord_less_eq_rat @ X3 @ U2 ) ) ) ) ).

% atMost_def
thf(fact_8600_atMost__def,axiom,
    ( set_ord_atMost_num
    = ( ^ [U2: num] :
          ( collect_num
          @ ^ [X3: num] : ( ord_less_eq_num @ X3 @ U2 ) ) ) ) ).

% atMost_def
thf(fact_8601_atMost__def,axiom,
    ( set_ord_atMost_nat
    = ( ^ [U2: nat] :
          ( collect_nat
          @ ^ [X3: nat] : ( ord_less_eq_nat @ X3 @ U2 ) ) ) ) ).

% atMost_def
thf(fact_8602_atMost__def,axiom,
    ( set_ord_atMost_int
    = ( ^ [U2: int] :
          ( collect_int
          @ ^ [X3: int] : ( ord_less_eq_int @ X3 @ U2 ) ) ) ) ).

% atMost_def
thf(fact_8603_lessThan__Suc__atMost,axiom,
    ! [K: nat] :
      ( ( set_ord_lessThan_nat @ ( suc @ K ) )
      = ( set_ord_atMost_nat @ K ) ) ).

% lessThan_Suc_atMost
thf(fact_8604_not__Iic__le__Icc,axiom,
    ! [H2: int,L3: int,H3: int] :
      ~ ( ord_less_eq_set_int @ ( set_ord_atMost_int @ H2 ) @ ( set_or1266510415728281911st_int @ L3 @ H3 ) ) ).

% not_Iic_le_Icc
thf(fact_8605_not__Iic__le__Icc,axiom,
    ! [H2: real,L3: real,H3: real] :
      ~ ( ord_less_eq_set_real @ ( set_ord_atMost_real @ H2 ) @ ( set_or1222579329274155063t_real @ L3 @ H3 ) ) ).

% not_Iic_le_Icc
thf(fact_8606_finite__nat__iff__bounded__le,axiom,
    ( finite_finite_nat
    = ( ^ [S5: set_nat] :
        ? [K3: nat] : ( ord_less_eq_set_nat @ S5 @ ( set_ord_atMost_nat @ K3 ) ) ) ) ).

% finite_nat_iff_bounded_le
thf(fact_8607_Iic__subset__Iio__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_set_rat @ ( set_ord_atMost_rat @ A ) @ ( set_ord_lessThan_rat @ B ) )
      = ( ord_less_rat @ A @ B ) ) ).

% Iic_subset_Iio_iff
thf(fact_8608_Iic__subset__Iio__iff,axiom,
    ! [A: num,B: num] :
      ( ( ord_less_eq_set_num @ ( set_ord_atMost_num @ A ) @ ( set_ord_lessThan_num @ B ) )
      = ( ord_less_num @ A @ B ) ) ).

% Iic_subset_Iio_iff
thf(fact_8609_Iic__subset__Iio__iff,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_set_nat @ ( set_ord_atMost_nat @ A ) @ ( set_ord_lessThan_nat @ B ) )
      = ( ord_less_nat @ A @ B ) ) ).

% Iic_subset_Iio_iff
thf(fact_8610_Iic__subset__Iio__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_set_int @ ( set_ord_atMost_int @ A ) @ ( set_ord_lessThan_int @ B ) )
      = ( ord_less_int @ A @ B ) ) ).

% Iic_subset_Iio_iff
thf(fact_8611_Iic__subset__Iio__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_set_real @ ( set_ord_atMost_real @ A ) @ ( set_or5984915006950818249n_real @ B ) )
      = ( ord_less_real @ A @ B ) ) ).

% Iic_subset_Iio_iff
thf(fact_8612_Iic__subset__Iio__iff,axiom,
    ! [A: $o,B: $o] :
      ( ( ord_less_eq_set_o @ ( set_ord_atMost_o @ A ) @ ( set_ord_lessThan_o @ B ) )
      = ( ord_less_o @ A @ B ) ) ).

% Iic_subset_Iio_iff
thf(fact_8613_sum__choose__upper,axiom,
    ! [M: nat,N2: nat] :
      ( ( groups3542108847815614940at_nat
        @ ^ [K3: nat] : ( binomial @ K3 @ M )
        @ ( set_ord_atMost_nat @ N2 ) )
      = ( binomial @ ( suc @ N2 ) @ ( suc @ M ) ) ) ).

% sum_choose_upper
thf(fact_8614_sum_OatMost__Suc__shift,axiom,
    ! [G: nat > rat,N2: nat] :
      ( ( groups2906978787729119204at_rat @ G @ ( set_ord_atMost_nat @ ( suc @ N2 ) ) )
      = ( plus_plus_rat @ ( G @ zero_zero_nat )
        @ ( groups2906978787729119204at_rat
          @ ^ [I5: nat] : ( G @ ( suc @ I5 ) )
          @ ( set_ord_atMost_nat @ N2 ) ) ) ) ).

% sum.atMost_Suc_shift
thf(fact_8615_sum_OatMost__Suc__shift,axiom,
    ! [G: nat > int,N2: nat] :
      ( ( groups3539618377306564664at_int @ G @ ( set_ord_atMost_nat @ ( suc @ N2 ) ) )
      = ( plus_plus_int @ ( G @ zero_zero_nat )
        @ ( groups3539618377306564664at_int
          @ ^ [I5: nat] : ( G @ ( suc @ I5 ) )
          @ ( set_ord_atMost_nat @ N2 ) ) ) ) ).

% sum.atMost_Suc_shift
thf(fact_8616_sum_OatMost__Suc__shift,axiom,
    ! [G: nat > nat,N2: nat] :
      ( ( groups3542108847815614940at_nat @ G @ ( set_ord_atMost_nat @ ( suc @ N2 ) ) )
      = ( plus_plus_nat @ ( G @ zero_zero_nat )
        @ ( groups3542108847815614940at_nat
          @ ^ [I5: nat] : ( G @ ( suc @ I5 ) )
          @ ( set_ord_atMost_nat @ N2 ) ) ) ) ).

% sum.atMost_Suc_shift
thf(fact_8617_sum_OatMost__Suc__shift,axiom,
    ! [G: nat > real,N2: nat] :
      ( ( groups6591440286371151544t_real @ G @ ( set_ord_atMost_nat @ ( suc @ N2 ) ) )
      = ( plus_plus_real @ ( G @ zero_zero_nat )
        @ ( groups6591440286371151544t_real
          @ ^ [I5: nat] : ( G @ ( suc @ I5 ) )
          @ ( set_ord_atMost_nat @ N2 ) ) ) ) ).

% sum.atMost_Suc_shift
thf(fact_8618_sum__telescope,axiom,
    ! [F: nat > rat,I2: nat] :
      ( ( groups2906978787729119204at_rat
        @ ^ [I5: nat] : ( minus_minus_rat @ ( F @ I5 ) @ ( F @ ( suc @ I5 ) ) )
        @ ( set_ord_atMost_nat @ I2 ) )
      = ( minus_minus_rat @ ( F @ zero_zero_nat ) @ ( F @ ( suc @ I2 ) ) ) ) ).

% sum_telescope
thf(fact_8619_sum__telescope,axiom,
    ! [F: nat > int,I2: nat] :
      ( ( groups3539618377306564664at_int
        @ ^ [I5: nat] : ( minus_minus_int @ ( F @ I5 ) @ ( F @ ( suc @ I5 ) ) )
        @ ( set_ord_atMost_nat @ I2 ) )
      = ( minus_minus_int @ ( F @ zero_zero_nat ) @ ( F @ ( suc @ I2 ) ) ) ) ).

% sum_telescope
thf(fact_8620_sum__telescope,axiom,
    ! [F: nat > real,I2: nat] :
      ( ( groups6591440286371151544t_real
        @ ^ [I5: nat] : ( minus_minus_real @ ( F @ I5 ) @ ( F @ ( suc @ I5 ) ) )
        @ ( set_ord_atMost_nat @ I2 ) )
      = ( minus_minus_real @ ( F @ zero_zero_nat ) @ ( F @ ( suc @ I2 ) ) ) ) ).

% sum_telescope
thf(fact_8621_polyfun__eq__coeffs,axiom,
    ! [C: nat > complex,N2: nat,D: nat > complex] :
      ( ( ! [X3: complex] :
            ( ( groups2073611262835488442omplex
              @ ^ [I5: nat] : ( times_times_complex @ ( C @ I5 ) @ ( power_power_complex @ X3 @ I5 ) )
              @ ( set_ord_atMost_nat @ N2 ) )
            = ( groups2073611262835488442omplex
              @ ^ [I5: nat] : ( times_times_complex @ ( D @ I5 ) @ ( power_power_complex @ X3 @ I5 ) )
              @ ( set_ord_atMost_nat @ N2 ) ) ) )
      = ( ! [I5: nat] :
            ( ( ord_less_eq_nat @ I5 @ N2 )
           => ( ( C @ I5 )
              = ( D @ I5 ) ) ) ) ) ).

% polyfun_eq_coeffs
thf(fact_8622_polyfun__eq__coeffs,axiom,
    ! [C: nat > real,N2: nat,D: nat > real] :
      ( ( ! [X3: real] :
            ( ( groups6591440286371151544t_real
              @ ^ [I5: nat] : ( times_times_real @ ( C @ I5 ) @ ( power_power_real @ X3 @ I5 ) )
              @ ( set_ord_atMost_nat @ N2 ) )
            = ( groups6591440286371151544t_real
              @ ^ [I5: nat] : ( times_times_real @ ( D @ I5 ) @ ( power_power_real @ X3 @ I5 ) )
              @ ( set_ord_atMost_nat @ N2 ) ) ) )
      = ( ! [I5: nat] :
            ( ( ord_less_eq_nat @ I5 @ N2 )
           => ( ( C @ I5 )
              = ( D @ I5 ) ) ) ) ) ).

% polyfun_eq_coeffs
thf(fact_8623_bounded__imp__summable,axiom,
    ! [A: nat > int,B3: int] :
      ( ! [N: nat] : ( ord_less_eq_int @ zero_zero_int @ ( A @ N ) )
     => ( ! [N: nat] : ( ord_less_eq_int @ ( groups3539618377306564664at_int @ A @ ( set_ord_atMost_nat @ N ) ) @ B3 )
       => ( summable_int @ A ) ) ) ).

% bounded_imp_summable
thf(fact_8624_bounded__imp__summable,axiom,
    ! [A: nat > nat,B3: nat] :
      ( ! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ ( A @ N ) )
     => ( ! [N: nat] : ( ord_less_eq_nat @ ( groups3542108847815614940at_nat @ A @ ( set_ord_atMost_nat @ N ) ) @ B3 )
       => ( summable_nat @ A ) ) ) ).

% bounded_imp_summable
thf(fact_8625_bounded__imp__summable,axiom,
    ! [A: nat > real,B3: real] :
      ( ! [N: nat] : ( ord_less_eq_real @ zero_zero_real @ ( A @ N ) )
     => ( ! [N: nat] : ( ord_less_eq_real @ ( groups6591440286371151544t_real @ A @ ( set_ord_atMost_nat @ N ) ) @ B3 )
       => ( summable_real @ A ) ) ) ).

% bounded_imp_summable
thf(fact_8626_sum_Onested__swap_H,axiom,
    ! [A: nat > nat > nat,N2: nat] :
      ( ( groups3542108847815614940at_nat
        @ ^ [I5: nat] : ( groups3542108847815614940at_nat @ ( A @ I5 ) @ ( set_ord_lessThan_nat @ I5 ) )
        @ ( set_ord_atMost_nat @ N2 ) )
      = ( groups3542108847815614940at_nat
        @ ^ [J3: nat] :
            ( groups3542108847815614940at_nat
            @ ^ [I5: nat] : ( A @ I5 @ J3 )
            @ ( set_or1269000886237332187st_nat @ ( suc @ J3 ) @ N2 ) )
        @ ( set_ord_lessThan_nat @ N2 ) ) ) ).

% sum.nested_swap'
thf(fact_8627_sum_Onested__swap_H,axiom,
    ! [A: nat > nat > real,N2: nat] :
      ( ( groups6591440286371151544t_real
        @ ^ [I5: nat] : ( groups6591440286371151544t_real @ ( A @ I5 ) @ ( set_ord_lessThan_nat @ I5 ) )
        @ ( set_ord_atMost_nat @ N2 ) )
      = ( groups6591440286371151544t_real
        @ ^ [J3: nat] :
            ( groups6591440286371151544t_real
            @ ^ [I5: nat] : ( A @ I5 @ J3 )
            @ ( set_or1269000886237332187st_nat @ ( suc @ J3 ) @ N2 ) )
        @ ( set_ord_lessThan_nat @ N2 ) ) ) ).

% sum.nested_swap'
thf(fact_8628_sum__choose__lower,axiom,
    ! [R2: nat,N2: nat] :
      ( ( groups3542108847815614940at_nat
        @ ^ [K3: nat] : ( binomial @ ( plus_plus_nat @ R2 @ K3 ) @ K3 )
        @ ( set_ord_atMost_nat @ N2 ) )
      = ( binomial @ ( suc @ ( plus_plus_nat @ R2 @ N2 ) ) @ N2 ) ) ).

% sum_choose_lower
thf(fact_8629_choose__rising__sum_I1_J,axiom,
    ! [N2: nat,M: nat] :
      ( ( groups3542108847815614940at_nat
        @ ^ [J3: nat] : ( binomial @ ( plus_plus_nat @ N2 @ J3 ) @ N2 )
        @ ( set_ord_atMost_nat @ M ) )
      = ( binomial @ ( plus_plus_nat @ ( plus_plus_nat @ N2 @ M ) @ one_one_nat ) @ ( plus_plus_nat @ N2 @ one_one_nat ) ) ) ).

% choose_rising_sum(1)
thf(fact_8630_choose__rising__sum_I2_J,axiom,
    ! [N2: nat,M: nat] :
      ( ( groups3542108847815614940at_nat
        @ ^ [J3: nat] : ( binomial @ ( plus_plus_nat @ N2 @ J3 ) @ N2 )
        @ ( set_ord_atMost_nat @ M ) )
      = ( binomial @ ( plus_plus_nat @ ( plus_plus_nat @ N2 @ M ) @ one_one_nat ) @ M ) ) ).

% choose_rising_sum(2)
thf(fact_8631_zero__polynom__imp__zero__coeffs,axiom,
    ! [C: nat > complex,N2: nat,K: nat] :
      ( ! [W2: complex] :
          ( ( groups2073611262835488442omplex
            @ ^ [I5: nat] : ( times_times_complex @ ( C @ I5 ) @ ( power_power_complex @ W2 @ I5 ) )
            @ ( set_ord_atMost_nat @ N2 ) )
          = zero_zero_complex )
     => ( ( ord_less_eq_nat @ K @ N2 )
       => ( ( C @ K )
          = zero_zero_complex ) ) ) ).

% zero_polynom_imp_zero_coeffs
thf(fact_8632_zero__polynom__imp__zero__coeffs,axiom,
    ! [C: nat > real,N2: nat,K: nat] :
      ( ! [W2: real] :
          ( ( groups6591440286371151544t_real
            @ ^ [I5: nat] : ( times_times_real @ ( C @ I5 ) @ ( power_power_real @ W2 @ I5 ) )
            @ ( set_ord_atMost_nat @ N2 ) )
          = zero_zero_real )
     => ( ( ord_less_eq_nat @ K @ N2 )
       => ( ( C @ K )
          = zero_zero_real ) ) ) ).

% zero_polynom_imp_zero_coeffs
thf(fact_8633_polyfun__eq__0,axiom,
    ! [C: nat > complex,N2: nat] :
      ( ( ! [X3: complex] :
            ( ( groups2073611262835488442omplex
              @ ^ [I5: nat] : ( times_times_complex @ ( C @ I5 ) @ ( power_power_complex @ X3 @ I5 ) )
              @ ( set_ord_atMost_nat @ N2 ) )
            = zero_zero_complex ) )
      = ( ! [I5: nat] :
            ( ( ord_less_eq_nat @ I5 @ N2 )
           => ( ( C @ I5 )
              = zero_zero_complex ) ) ) ) ).

% polyfun_eq_0
thf(fact_8634_polyfun__eq__0,axiom,
    ! [C: nat > real,N2: nat] :
      ( ( ! [X3: real] :
            ( ( groups6591440286371151544t_real
              @ ^ [I5: nat] : ( times_times_real @ ( C @ I5 ) @ ( power_power_real @ X3 @ I5 ) )
              @ ( set_ord_atMost_nat @ N2 ) )
            = zero_zero_real ) )
      = ( ! [I5: nat] :
            ( ( ord_less_eq_nat @ I5 @ N2 )
           => ( ( C @ I5 )
              = zero_zero_real ) ) ) ) ).

% polyfun_eq_0
thf(fact_8635_sum_OatMost__shift,axiom,
    ! [G: nat > rat,N2: nat] :
      ( ( groups2906978787729119204at_rat @ G @ ( set_ord_atMost_nat @ N2 ) )
      = ( plus_plus_rat @ ( G @ zero_zero_nat )
        @ ( groups2906978787729119204at_rat
          @ ^ [I5: nat] : ( G @ ( suc @ I5 ) )
          @ ( set_ord_lessThan_nat @ N2 ) ) ) ) ).

% sum.atMost_shift
thf(fact_8636_sum_OatMost__shift,axiom,
    ! [G: nat > int,N2: nat] :
      ( ( groups3539618377306564664at_int @ G @ ( set_ord_atMost_nat @ N2 ) )
      = ( plus_plus_int @ ( G @ zero_zero_nat )
        @ ( groups3539618377306564664at_int
          @ ^ [I5: nat] : ( G @ ( suc @ I5 ) )
          @ ( set_ord_lessThan_nat @ N2 ) ) ) ) ).

% sum.atMost_shift
thf(fact_8637_sum_OatMost__shift,axiom,
    ! [G: nat > nat,N2: nat] :
      ( ( groups3542108847815614940at_nat @ G @ ( set_ord_atMost_nat @ N2 ) )
      = ( plus_plus_nat @ ( G @ zero_zero_nat )
        @ ( groups3542108847815614940at_nat
          @ ^ [I5: nat] : ( G @ ( suc @ I5 ) )
          @ ( set_ord_lessThan_nat @ N2 ) ) ) ) ).

% sum.atMost_shift
thf(fact_8638_sum_OatMost__shift,axiom,
    ! [G: nat > real,N2: nat] :
      ( ( groups6591440286371151544t_real @ G @ ( set_ord_atMost_nat @ N2 ) )
      = ( plus_plus_real @ ( G @ zero_zero_nat )
        @ ( groups6591440286371151544t_real
          @ ^ [I5: nat] : ( G @ ( suc @ I5 ) )
          @ ( set_ord_lessThan_nat @ N2 ) ) ) ) ).

% sum.atMost_shift
thf(fact_8639_sum__up__index__split,axiom,
    ! [F: nat > rat,M: nat,N2: nat] :
      ( ( groups2906978787729119204at_rat @ F @ ( set_ord_atMost_nat @ ( plus_plus_nat @ M @ N2 ) ) )
      = ( plus_plus_rat @ ( groups2906978787729119204at_rat @ F @ ( set_ord_atMost_nat @ M ) ) @ ( groups2906978787729119204at_rat @ F @ ( set_or1269000886237332187st_nat @ ( suc @ M ) @ ( plus_plus_nat @ M @ N2 ) ) ) ) ) ).

% sum_up_index_split
thf(fact_8640_sum__up__index__split,axiom,
    ! [F: nat > int,M: nat,N2: nat] :
      ( ( groups3539618377306564664at_int @ F @ ( set_ord_atMost_nat @ ( plus_plus_nat @ M @ N2 ) ) )
      = ( plus_plus_int @ ( groups3539618377306564664at_int @ F @ ( set_ord_atMost_nat @ M ) ) @ ( groups3539618377306564664at_int @ F @ ( set_or1269000886237332187st_nat @ ( suc @ M ) @ ( plus_plus_nat @ M @ N2 ) ) ) ) ) ).

% sum_up_index_split
thf(fact_8641_sum__up__index__split,axiom,
    ! [F: nat > nat,M: nat,N2: nat] :
      ( ( groups3542108847815614940at_nat @ F @ ( set_ord_atMost_nat @ ( plus_plus_nat @ M @ N2 ) ) )
      = ( plus_plus_nat @ ( groups3542108847815614940at_nat @ F @ ( set_ord_atMost_nat @ M ) ) @ ( groups3542108847815614940at_nat @ F @ ( set_or1269000886237332187st_nat @ ( suc @ M ) @ ( plus_plus_nat @ M @ N2 ) ) ) ) ) ).

% sum_up_index_split
thf(fact_8642_sum__up__index__split,axiom,
    ! [F: nat > real,M: nat,N2: nat] :
      ( ( groups6591440286371151544t_real @ F @ ( set_ord_atMost_nat @ ( plus_plus_nat @ M @ N2 ) ) )
      = ( plus_plus_real @ ( groups6591440286371151544t_real @ F @ ( set_ord_atMost_nat @ M ) ) @ ( groups6591440286371151544t_real @ F @ ( set_or1269000886237332187st_nat @ ( suc @ M ) @ ( plus_plus_nat @ M @ N2 ) ) ) ) ) ).

% sum_up_index_split
thf(fact_8643_sum_Otriangle__reindex__eq,axiom,
    ! [G: nat > nat > nat,N2: nat] :
      ( ( groups977919841031483927at_nat @ ( produc6842872674320459806at_nat @ G )
        @ ( collec3392354462482085612at_nat
          @ ( produc6081775807080527818_nat_o
            @ ^ [I5: nat,J3: nat] : ( ord_less_eq_nat @ ( plus_plus_nat @ I5 @ J3 ) @ N2 ) ) ) )
      = ( groups3542108847815614940at_nat
        @ ^ [K3: nat] :
            ( groups3542108847815614940at_nat
            @ ^ [I5: nat] : ( G @ I5 @ ( minus_minus_nat @ K3 @ I5 ) )
            @ ( set_ord_atMost_nat @ K3 ) )
        @ ( set_ord_atMost_nat @ N2 ) ) ) ).

% sum.triangle_reindex_eq
thf(fact_8644_sum_Otriangle__reindex__eq,axiom,
    ! [G: nat > nat > real,N2: nat] :
      ( ( groups4567486121110086003t_real @ ( produc1703576794950452218t_real @ G )
        @ ( collec3392354462482085612at_nat
          @ ( produc6081775807080527818_nat_o
            @ ^ [I5: nat,J3: nat] : ( ord_less_eq_nat @ ( plus_plus_nat @ I5 @ J3 ) @ N2 ) ) ) )
      = ( groups6591440286371151544t_real
        @ ^ [K3: nat] :
            ( groups6591440286371151544t_real
            @ ^ [I5: nat] : ( G @ I5 @ ( minus_minus_nat @ K3 @ I5 ) )
            @ ( set_ord_atMost_nat @ K3 ) )
        @ ( set_ord_atMost_nat @ N2 ) ) ) ).

% sum.triangle_reindex_eq
thf(fact_8645_sum__choose__diagonal,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ( groups3542108847815614940at_nat
          @ ^ [K3: nat] : ( binomial @ ( minus_minus_nat @ N2 @ K3 ) @ ( minus_minus_nat @ M @ K3 ) )
          @ ( set_ord_atMost_nat @ M ) )
        = ( binomial @ ( suc @ N2 ) @ M ) ) ) ).

% sum_choose_diagonal
thf(fact_8646_vandermonde,axiom,
    ! [M: nat,N2: nat,R2: nat] :
      ( ( groups3542108847815614940at_nat
        @ ^ [K3: nat] : ( times_times_nat @ ( binomial @ M @ K3 ) @ ( binomial @ N2 @ ( minus_minus_nat @ R2 @ K3 ) ) )
        @ ( set_ord_atMost_nat @ R2 ) )
      = ( binomial @ ( plus_plus_nat @ M @ N2 ) @ R2 ) ) ).

% vandermonde
thf(fact_8647_sum__gp__basic,axiom,
    ! [X: complex,N2: nat] :
      ( ( times_times_complex @ ( minus_minus_complex @ one_one_complex @ X ) @ ( groups2073611262835488442omplex @ ( power_power_complex @ X ) @ ( set_ord_atMost_nat @ N2 ) ) )
      = ( minus_minus_complex @ one_one_complex @ ( power_power_complex @ X @ ( suc @ N2 ) ) ) ) ).

% sum_gp_basic
thf(fact_8648_sum__gp__basic,axiom,
    ! [X: rat,N2: nat] :
      ( ( times_times_rat @ ( minus_minus_rat @ one_one_rat @ X ) @ ( groups2906978787729119204at_rat @ ( power_power_rat @ X ) @ ( set_ord_atMost_nat @ N2 ) ) )
      = ( minus_minus_rat @ one_one_rat @ ( power_power_rat @ X @ ( suc @ N2 ) ) ) ) ).

% sum_gp_basic
thf(fact_8649_sum__gp__basic,axiom,
    ! [X: int,N2: nat] :
      ( ( times_times_int @ ( minus_minus_int @ one_one_int @ X ) @ ( groups3539618377306564664at_int @ ( power_power_int @ X ) @ ( set_ord_atMost_nat @ N2 ) ) )
      = ( minus_minus_int @ one_one_int @ ( power_power_int @ X @ ( suc @ N2 ) ) ) ) ).

% sum_gp_basic
thf(fact_8650_sum__gp__basic,axiom,
    ! [X: real,N2: nat] :
      ( ( times_times_real @ ( minus_minus_real @ one_one_real @ X ) @ ( groups6591440286371151544t_real @ ( power_power_real @ X ) @ ( set_ord_atMost_nat @ N2 ) ) )
      = ( minus_minus_real @ one_one_real @ ( power_power_real @ X @ ( suc @ N2 ) ) ) ) ).

% sum_gp_basic
thf(fact_8651_polyfun__finite__roots,axiom,
    ! [C: nat > complex,N2: nat] :
      ( ( finite3207457112153483333omplex
        @ ( collect_complex
          @ ^ [X3: complex] :
              ( ( groups2073611262835488442omplex
                @ ^ [I5: nat] : ( times_times_complex @ ( C @ I5 ) @ ( power_power_complex @ X3 @ I5 ) )
                @ ( set_ord_atMost_nat @ N2 ) )
              = zero_zero_complex ) ) )
      = ( ? [I5: nat] :
            ( ( ord_less_eq_nat @ I5 @ N2 )
            & ( ( C @ I5 )
             != zero_zero_complex ) ) ) ) ).

% polyfun_finite_roots
thf(fact_8652_polyfun__finite__roots,axiom,
    ! [C: nat > real,N2: nat] :
      ( ( finite_finite_real
        @ ( collect_real
          @ ^ [X3: real] :
              ( ( groups6591440286371151544t_real
                @ ^ [I5: nat] : ( times_times_real @ ( C @ I5 ) @ ( power_power_real @ X3 @ I5 ) )
                @ ( set_ord_atMost_nat @ N2 ) )
              = zero_zero_real ) ) )
      = ( ? [I5: nat] :
            ( ( ord_less_eq_nat @ I5 @ N2 )
            & ( ( C @ I5 )
             != zero_zero_real ) ) ) ) ).

% polyfun_finite_roots
thf(fact_8653_polyfun__roots__finite,axiom,
    ! [C: nat > complex,K: nat,N2: nat] :
      ( ( ( C @ K )
       != zero_zero_complex )
     => ( ( ord_less_eq_nat @ K @ N2 )
       => ( finite3207457112153483333omplex
          @ ( collect_complex
            @ ^ [Z2: complex] :
                ( ( groups2073611262835488442omplex
                  @ ^ [I5: nat] : ( times_times_complex @ ( C @ I5 ) @ ( power_power_complex @ Z2 @ I5 ) )
                  @ ( set_ord_atMost_nat @ N2 ) )
                = zero_zero_complex ) ) ) ) ) ).

% polyfun_roots_finite
thf(fact_8654_polyfun__roots__finite,axiom,
    ! [C: nat > real,K: nat,N2: nat] :
      ( ( ( C @ K )
       != zero_zero_real )
     => ( ( ord_less_eq_nat @ K @ N2 )
       => ( finite_finite_real
          @ ( collect_real
            @ ^ [Z2: real] :
                ( ( groups6591440286371151544t_real
                  @ ^ [I5: nat] : ( times_times_real @ ( C @ I5 ) @ ( power_power_real @ Z2 @ I5 ) )
                  @ ( set_ord_atMost_nat @ N2 ) )
                = zero_zero_real ) ) ) ) ) ).

% polyfun_roots_finite
thf(fact_8655_polyfun__linear__factor__root,axiom,
    ! [C: nat > complex,A: complex,N2: nat] :
      ( ( ( groups2073611262835488442omplex
          @ ^ [I5: nat] : ( times_times_complex @ ( C @ I5 ) @ ( power_power_complex @ A @ I5 ) )
          @ ( set_ord_atMost_nat @ N2 ) )
        = zero_zero_complex )
     => ~ ! [B2: nat > complex] :
            ~ ! [Z5: complex] :
                ( ( groups2073611262835488442omplex
                  @ ^ [I5: nat] : ( times_times_complex @ ( C @ I5 ) @ ( power_power_complex @ Z5 @ I5 ) )
                  @ ( set_ord_atMost_nat @ N2 ) )
                = ( times_times_complex @ ( minus_minus_complex @ Z5 @ A )
                  @ ( groups2073611262835488442omplex
                    @ ^ [I5: nat] : ( times_times_complex @ ( B2 @ I5 ) @ ( power_power_complex @ Z5 @ I5 ) )
                    @ ( set_ord_lessThan_nat @ N2 ) ) ) ) ) ).

% polyfun_linear_factor_root
thf(fact_8656_polyfun__linear__factor__root,axiom,
    ! [C: nat > rat,A: rat,N2: nat] :
      ( ( ( groups2906978787729119204at_rat
          @ ^ [I5: nat] : ( times_times_rat @ ( C @ I5 ) @ ( power_power_rat @ A @ I5 ) )
          @ ( set_ord_atMost_nat @ N2 ) )
        = zero_zero_rat )
     => ~ ! [B2: nat > rat] :
            ~ ! [Z5: rat] :
                ( ( groups2906978787729119204at_rat
                  @ ^ [I5: nat] : ( times_times_rat @ ( C @ I5 ) @ ( power_power_rat @ Z5 @ I5 ) )
                  @ ( set_ord_atMost_nat @ N2 ) )
                = ( times_times_rat @ ( minus_minus_rat @ Z5 @ A )
                  @ ( groups2906978787729119204at_rat
                    @ ^ [I5: nat] : ( times_times_rat @ ( B2 @ I5 ) @ ( power_power_rat @ Z5 @ I5 ) )
                    @ ( set_ord_lessThan_nat @ N2 ) ) ) ) ) ).

% polyfun_linear_factor_root
thf(fact_8657_polyfun__linear__factor__root,axiom,
    ! [C: nat > int,A: int,N2: nat] :
      ( ( ( groups3539618377306564664at_int
          @ ^ [I5: nat] : ( times_times_int @ ( C @ I5 ) @ ( power_power_int @ A @ I5 ) )
          @ ( set_ord_atMost_nat @ N2 ) )
        = zero_zero_int )
     => ~ ! [B2: nat > int] :
            ~ ! [Z5: int] :
                ( ( groups3539618377306564664at_int
                  @ ^ [I5: nat] : ( times_times_int @ ( C @ I5 ) @ ( power_power_int @ Z5 @ I5 ) )
                  @ ( set_ord_atMost_nat @ N2 ) )
                = ( times_times_int @ ( minus_minus_int @ Z5 @ A )
                  @ ( groups3539618377306564664at_int
                    @ ^ [I5: nat] : ( times_times_int @ ( B2 @ I5 ) @ ( power_power_int @ Z5 @ I5 ) )
                    @ ( set_ord_lessThan_nat @ N2 ) ) ) ) ) ).

% polyfun_linear_factor_root
thf(fact_8658_polyfun__linear__factor__root,axiom,
    ! [C: nat > real,A: real,N2: nat] :
      ( ( ( groups6591440286371151544t_real
          @ ^ [I5: nat] : ( times_times_real @ ( C @ I5 ) @ ( power_power_real @ A @ I5 ) )
          @ ( set_ord_atMost_nat @ N2 ) )
        = zero_zero_real )
     => ~ ! [B2: nat > real] :
            ~ ! [Z5: real] :
                ( ( groups6591440286371151544t_real
                  @ ^ [I5: nat] : ( times_times_real @ ( C @ I5 ) @ ( power_power_real @ Z5 @ I5 ) )
                  @ ( set_ord_atMost_nat @ N2 ) )
                = ( times_times_real @ ( minus_minus_real @ Z5 @ A )
                  @ ( groups6591440286371151544t_real
                    @ ^ [I5: nat] : ( times_times_real @ ( B2 @ I5 ) @ ( power_power_real @ Z5 @ I5 ) )
                    @ ( set_ord_lessThan_nat @ N2 ) ) ) ) ) ).

% polyfun_linear_factor_root
thf(fact_8659_polyfun__linear__factor,axiom,
    ! [C: nat > complex,N2: nat,A: complex] :
    ? [B2: nat > complex] :
    ! [Z5: complex] :
      ( ( groups2073611262835488442omplex
        @ ^ [I5: nat] : ( times_times_complex @ ( C @ I5 ) @ ( power_power_complex @ Z5 @ I5 ) )
        @ ( set_ord_atMost_nat @ N2 ) )
      = ( plus_plus_complex
        @ ( times_times_complex @ ( minus_minus_complex @ Z5 @ A )
          @ ( groups2073611262835488442omplex
            @ ^ [I5: nat] : ( times_times_complex @ ( B2 @ I5 ) @ ( power_power_complex @ Z5 @ I5 ) )
            @ ( set_ord_lessThan_nat @ N2 ) ) )
        @ ( groups2073611262835488442omplex
          @ ^ [I5: nat] : ( times_times_complex @ ( C @ I5 ) @ ( power_power_complex @ A @ I5 ) )
          @ ( set_ord_atMost_nat @ N2 ) ) ) ) ).

% polyfun_linear_factor
thf(fact_8660_polyfun__linear__factor,axiom,
    ! [C: nat > rat,N2: nat,A: rat] :
    ? [B2: nat > rat] :
    ! [Z5: rat] :
      ( ( groups2906978787729119204at_rat
        @ ^ [I5: nat] : ( times_times_rat @ ( C @ I5 ) @ ( power_power_rat @ Z5 @ I5 ) )
        @ ( set_ord_atMost_nat @ N2 ) )
      = ( plus_plus_rat
        @ ( times_times_rat @ ( minus_minus_rat @ Z5 @ A )
          @ ( groups2906978787729119204at_rat
            @ ^ [I5: nat] : ( times_times_rat @ ( B2 @ I5 ) @ ( power_power_rat @ Z5 @ I5 ) )
            @ ( set_ord_lessThan_nat @ N2 ) ) )
        @ ( groups2906978787729119204at_rat
          @ ^ [I5: nat] : ( times_times_rat @ ( C @ I5 ) @ ( power_power_rat @ A @ I5 ) )
          @ ( set_ord_atMost_nat @ N2 ) ) ) ) ).

% polyfun_linear_factor
thf(fact_8661_polyfun__linear__factor,axiom,
    ! [C: nat > int,N2: nat,A: int] :
    ? [B2: nat > int] :
    ! [Z5: int] :
      ( ( groups3539618377306564664at_int
        @ ^ [I5: nat] : ( times_times_int @ ( C @ I5 ) @ ( power_power_int @ Z5 @ I5 ) )
        @ ( set_ord_atMost_nat @ N2 ) )
      = ( plus_plus_int
        @ ( times_times_int @ ( minus_minus_int @ Z5 @ A )
          @ ( groups3539618377306564664at_int
            @ ^ [I5: nat] : ( times_times_int @ ( B2 @ I5 ) @ ( power_power_int @ Z5 @ I5 ) )
            @ ( set_ord_lessThan_nat @ N2 ) ) )
        @ ( groups3539618377306564664at_int
          @ ^ [I5: nat] : ( times_times_int @ ( C @ I5 ) @ ( power_power_int @ A @ I5 ) )
          @ ( set_ord_atMost_nat @ N2 ) ) ) ) ).

% polyfun_linear_factor
thf(fact_8662_polyfun__linear__factor,axiom,
    ! [C: nat > real,N2: nat,A: real] :
    ? [B2: nat > real] :
    ! [Z5: real] :
      ( ( groups6591440286371151544t_real
        @ ^ [I5: nat] : ( times_times_real @ ( C @ I5 ) @ ( power_power_real @ Z5 @ I5 ) )
        @ ( set_ord_atMost_nat @ N2 ) )
      = ( plus_plus_real
        @ ( times_times_real @ ( minus_minus_real @ Z5 @ A )
          @ ( groups6591440286371151544t_real
            @ ^ [I5: nat] : ( times_times_real @ ( B2 @ I5 ) @ ( power_power_real @ Z5 @ I5 ) )
            @ ( set_ord_lessThan_nat @ N2 ) ) )
        @ ( groups6591440286371151544t_real
          @ ^ [I5: nat] : ( times_times_real @ ( C @ I5 ) @ ( power_power_real @ A @ I5 ) )
          @ ( set_ord_atMost_nat @ N2 ) ) ) ) ).

% polyfun_linear_factor
thf(fact_8663_sum__power__shift,axiom,
    ! [M: nat,N2: nat,X: complex] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ( groups2073611262835488442omplex @ ( power_power_complex @ X ) @ ( set_or1269000886237332187st_nat @ M @ N2 ) )
        = ( times_times_complex @ ( power_power_complex @ X @ M ) @ ( groups2073611262835488442omplex @ ( power_power_complex @ X ) @ ( set_ord_atMost_nat @ ( minus_minus_nat @ N2 @ M ) ) ) ) ) ) ).

% sum_power_shift
thf(fact_8664_sum__power__shift,axiom,
    ! [M: nat,N2: nat,X: rat] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ( groups2906978787729119204at_rat @ ( power_power_rat @ X ) @ ( set_or1269000886237332187st_nat @ M @ N2 ) )
        = ( times_times_rat @ ( power_power_rat @ X @ M ) @ ( groups2906978787729119204at_rat @ ( power_power_rat @ X ) @ ( set_ord_atMost_nat @ ( minus_minus_nat @ N2 @ M ) ) ) ) ) ) ).

% sum_power_shift
thf(fact_8665_sum__power__shift,axiom,
    ! [M: nat,N2: nat,X: int] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ( groups3539618377306564664at_int @ ( power_power_int @ X ) @ ( set_or1269000886237332187st_nat @ M @ N2 ) )
        = ( times_times_int @ ( power_power_int @ X @ M ) @ ( groups3539618377306564664at_int @ ( power_power_int @ X ) @ ( set_ord_atMost_nat @ ( minus_minus_nat @ N2 @ M ) ) ) ) ) ) ).

% sum_power_shift
thf(fact_8666_sum__power__shift,axiom,
    ! [M: nat,N2: nat,X: real] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ( groups6591440286371151544t_real @ ( power_power_real @ X ) @ ( set_or1269000886237332187st_nat @ M @ N2 ) )
        = ( times_times_real @ ( power_power_real @ X @ M ) @ ( groups6591440286371151544t_real @ ( power_power_real @ X ) @ ( set_ord_atMost_nat @ ( minus_minus_nat @ N2 @ M ) ) ) ) ) ) ).

% sum_power_shift
thf(fact_8667_sum_Otriangle__reindex,axiom,
    ! [G: nat > nat > nat,N2: nat] :
      ( ( groups977919841031483927at_nat @ ( produc6842872674320459806at_nat @ G )
        @ ( collec3392354462482085612at_nat
          @ ( produc6081775807080527818_nat_o
            @ ^ [I5: nat,J3: nat] : ( ord_less_nat @ ( plus_plus_nat @ I5 @ J3 ) @ N2 ) ) ) )
      = ( groups3542108847815614940at_nat
        @ ^ [K3: nat] :
            ( groups3542108847815614940at_nat
            @ ^ [I5: nat] : ( G @ I5 @ ( minus_minus_nat @ K3 @ I5 ) )
            @ ( set_ord_atMost_nat @ K3 ) )
        @ ( set_ord_lessThan_nat @ N2 ) ) ) ).

% sum.triangle_reindex
thf(fact_8668_sum_Otriangle__reindex,axiom,
    ! [G: nat > nat > real,N2: nat] :
      ( ( groups4567486121110086003t_real @ ( produc1703576794950452218t_real @ G )
        @ ( collec3392354462482085612at_nat
          @ ( produc6081775807080527818_nat_o
            @ ^ [I5: nat,J3: nat] : ( ord_less_nat @ ( plus_plus_nat @ I5 @ J3 ) @ N2 ) ) ) )
      = ( groups6591440286371151544t_real
        @ ^ [K3: nat] :
            ( groups6591440286371151544t_real
            @ ^ [I5: nat] : ( G @ I5 @ ( minus_minus_nat @ K3 @ I5 ) )
            @ ( set_ord_atMost_nat @ K3 ) )
        @ ( set_ord_lessThan_nat @ N2 ) ) ) ).

% sum.triangle_reindex
thf(fact_8669_choose__row__sum,axiom,
    ! [N2: nat] :
      ( ( groups3542108847815614940at_nat @ ( binomial @ N2 ) @ ( set_ord_atMost_nat @ N2 ) )
      = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ).

% choose_row_sum
thf(fact_8670_summable__Cauchy__product,axiom,
    ! [A: nat > complex,B: nat > complex] :
      ( ( summable_real
        @ ^ [K3: nat] : ( real_V1022390504157884413omplex @ ( A @ K3 ) ) )
     => ( ( summable_real
          @ ^ [K3: nat] : ( real_V1022390504157884413omplex @ ( B @ K3 ) ) )
       => ( summable_complex
          @ ^ [K3: nat] :
              ( groups2073611262835488442omplex
              @ ^ [I5: nat] : ( times_times_complex @ ( A @ I5 ) @ ( B @ ( minus_minus_nat @ K3 @ I5 ) ) )
              @ ( set_ord_atMost_nat @ K3 ) ) ) ) ) ).

% summable_Cauchy_product
thf(fact_8671_summable__Cauchy__product,axiom,
    ! [A: nat > real,B: nat > real] :
      ( ( summable_real
        @ ^ [K3: nat] : ( real_V7735802525324610683m_real @ ( A @ K3 ) ) )
     => ( ( summable_real
          @ ^ [K3: nat] : ( real_V7735802525324610683m_real @ ( B @ K3 ) ) )
       => ( summable_real
          @ ^ [K3: nat] :
              ( groups6591440286371151544t_real
              @ ^ [I5: nat] : ( times_times_real @ ( A @ I5 ) @ ( B @ ( minus_minus_nat @ K3 @ I5 ) ) )
              @ ( set_ord_atMost_nat @ K3 ) ) ) ) ) ).

% summable_Cauchy_product
thf(fact_8672_Cauchy__product,axiom,
    ! [A: nat > complex,B: nat > complex] :
      ( ( summable_real
        @ ^ [K3: nat] : ( real_V1022390504157884413omplex @ ( A @ K3 ) ) )
     => ( ( summable_real
          @ ^ [K3: nat] : ( real_V1022390504157884413omplex @ ( B @ K3 ) ) )
       => ( ( times_times_complex @ ( suminf_complex @ A ) @ ( suminf_complex @ B ) )
          = ( suminf_complex
            @ ^ [K3: nat] :
                ( groups2073611262835488442omplex
                @ ^ [I5: nat] : ( times_times_complex @ ( A @ I5 ) @ ( B @ ( minus_minus_nat @ K3 @ I5 ) ) )
                @ ( set_ord_atMost_nat @ K3 ) ) ) ) ) ) ).

% Cauchy_product
thf(fact_8673_Cauchy__product,axiom,
    ! [A: nat > real,B: nat > real] :
      ( ( summable_real
        @ ^ [K3: nat] : ( real_V7735802525324610683m_real @ ( A @ K3 ) ) )
     => ( ( summable_real
          @ ^ [K3: nat] : ( real_V7735802525324610683m_real @ ( B @ K3 ) ) )
       => ( ( times_times_real @ ( suminf_real @ A ) @ ( suminf_real @ B ) )
          = ( suminf_real
            @ ^ [K3: nat] :
                ( groups6591440286371151544t_real
                @ ^ [I5: nat] : ( times_times_real @ ( A @ I5 ) @ ( B @ ( minus_minus_nat @ K3 @ I5 ) ) )
                @ ( set_ord_atMost_nat @ K3 ) ) ) ) ) ) ).

% Cauchy_product
thf(fact_8674_binomial,axiom,
    ! [A: nat,B: nat,N2: nat] :
      ( ( power_power_nat @ ( plus_plus_nat @ A @ B ) @ N2 )
      = ( groups3542108847815614940at_nat
        @ ^ [K3: nat] : ( times_times_nat @ ( times_times_nat @ ( semiri1316708129612266289at_nat @ ( binomial @ N2 @ K3 ) ) @ ( power_power_nat @ A @ K3 ) ) @ ( power_power_nat @ B @ ( minus_minus_nat @ N2 @ K3 ) ) )
        @ ( set_ord_atMost_nat @ N2 ) ) ) ).

% binomial
thf(fact_8675_sum_Oin__pairs__0,axiom,
    ! [G: nat > rat,N2: nat] :
      ( ( groups2906978787729119204at_rat @ G @ ( set_ord_atMost_nat @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) )
      = ( groups2906978787729119204at_rat
        @ ^ [I5: nat] : ( plus_plus_rat @ ( G @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I5 ) ) @ ( G @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I5 ) ) ) )
        @ ( set_ord_atMost_nat @ N2 ) ) ) ).

% sum.in_pairs_0
thf(fact_8676_sum_Oin__pairs__0,axiom,
    ! [G: nat > int,N2: nat] :
      ( ( groups3539618377306564664at_int @ G @ ( set_ord_atMost_nat @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) )
      = ( groups3539618377306564664at_int
        @ ^ [I5: nat] : ( plus_plus_int @ ( G @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I5 ) ) @ ( G @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I5 ) ) ) )
        @ ( set_ord_atMost_nat @ N2 ) ) ) ).

% sum.in_pairs_0
thf(fact_8677_sum_Oin__pairs__0,axiom,
    ! [G: nat > nat,N2: nat] :
      ( ( groups3542108847815614940at_nat @ G @ ( set_ord_atMost_nat @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) )
      = ( groups3542108847815614940at_nat
        @ ^ [I5: nat] : ( plus_plus_nat @ ( G @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I5 ) ) @ ( G @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I5 ) ) ) )
        @ ( set_ord_atMost_nat @ N2 ) ) ) ).

% sum.in_pairs_0
thf(fact_8678_sum_Oin__pairs__0,axiom,
    ! [G: nat > real,N2: nat] :
      ( ( groups6591440286371151544t_real @ G @ ( set_ord_atMost_nat @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) )
      = ( groups6591440286371151544t_real
        @ ^ [I5: nat] : ( plus_plus_real @ ( G @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I5 ) ) @ ( G @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I5 ) ) ) )
        @ ( set_ord_atMost_nat @ N2 ) ) ) ).

% sum.in_pairs_0
thf(fact_8679_polynomial__product,axiom,
    ! [M: nat,A: nat > complex,N2: nat,B: nat > complex,X: complex] :
      ( ! [I3: nat] :
          ( ( ord_less_nat @ M @ I3 )
         => ( ( A @ I3 )
            = zero_zero_complex ) )
     => ( ! [J2: nat] :
            ( ( ord_less_nat @ N2 @ J2 )
           => ( ( B @ J2 )
              = zero_zero_complex ) )
       => ( ( times_times_complex
            @ ( groups2073611262835488442omplex
              @ ^ [I5: nat] : ( times_times_complex @ ( A @ I5 ) @ ( power_power_complex @ X @ I5 ) )
              @ ( set_ord_atMost_nat @ M ) )
            @ ( groups2073611262835488442omplex
              @ ^ [J3: nat] : ( times_times_complex @ ( B @ J3 ) @ ( power_power_complex @ X @ J3 ) )
              @ ( set_ord_atMost_nat @ N2 ) ) )
          = ( groups2073611262835488442omplex
            @ ^ [R5: nat] :
                ( times_times_complex
                @ ( groups2073611262835488442omplex
                  @ ^ [K3: nat] : ( times_times_complex @ ( A @ K3 ) @ ( B @ ( minus_minus_nat @ R5 @ K3 ) ) )
                  @ ( set_ord_atMost_nat @ R5 ) )
                @ ( power_power_complex @ X @ R5 ) )
            @ ( set_ord_atMost_nat @ ( plus_plus_nat @ M @ N2 ) ) ) ) ) ) ).

% polynomial_product
thf(fact_8680_polynomial__product,axiom,
    ! [M: nat,A: nat > rat,N2: nat,B: nat > rat,X: rat] :
      ( ! [I3: nat] :
          ( ( ord_less_nat @ M @ I3 )
         => ( ( A @ I3 )
            = zero_zero_rat ) )
     => ( ! [J2: nat] :
            ( ( ord_less_nat @ N2 @ J2 )
           => ( ( B @ J2 )
              = zero_zero_rat ) )
       => ( ( times_times_rat
            @ ( groups2906978787729119204at_rat
              @ ^ [I5: nat] : ( times_times_rat @ ( A @ I5 ) @ ( power_power_rat @ X @ I5 ) )
              @ ( set_ord_atMost_nat @ M ) )
            @ ( groups2906978787729119204at_rat
              @ ^ [J3: nat] : ( times_times_rat @ ( B @ J3 ) @ ( power_power_rat @ X @ J3 ) )
              @ ( set_ord_atMost_nat @ N2 ) ) )
          = ( groups2906978787729119204at_rat
            @ ^ [R5: nat] :
                ( times_times_rat
                @ ( groups2906978787729119204at_rat
                  @ ^ [K3: nat] : ( times_times_rat @ ( A @ K3 ) @ ( B @ ( minus_minus_nat @ R5 @ K3 ) ) )
                  @ ( set_ord_atMost_nat @ R5 ) )
                @ ( power_power_rat @ X @ R5 ) )
            @ ( set_ord_atMost_nat @ ( plus_plus_nat @ M @ N2 ) ) ) ) ) ) ).

% polynomial_product
thf(fact_8681_polynomial__product,axiom,
    ! [M: nat,A: nat > int,N2: nat,B: nat > int,X: int] :
      ( ! [I3: nat] :
          ( ( ord_less_nat @ M @ I3 )
         => ( ( A @ I3 )
            = zero_zero_int ) )
     => ( ! [J2: nat] :
            ( ( ord_less_nat @ N2 @ J2 )
           => ( ( B @ J2 )
              = zero_zero_int ) )
       => ( ( times_times_int
            @ ( groups3539618377306564664at_int
              @ ^ [I5: nat] : ( times_times_int @ ( A @ I5 ) @ ( power_power_int @ X @ I5 ) )
              @ ( set_ord_atMost_nat @ M ) )
            @ ( groups3539618377306564664at_int
              @ ^ [J3: nat] : ( times_times_int @ ( B @ J3 ) @ ( power_power_int @ X @ J3 ) )
              @ ( set_ord_atMost_nat @ N2 ) ) )
          = ( groups3539618377306564664at_int
            @ ^ [R5: nat] :
                ( times_times_int
                @ ( groups3539618377306564664at_int
                  @ ^ [K3: nat] : ( times_times_int @ ( A @ K3 ) @ ( B @ ( minus_minus_nat @ R5 @ K3 ) ) )
                  @ ( set_ord_atMost_nat @ R5 ) )
                @ ( power_power_int @ X @ R5 ) )
            @ ( set_ord_atMost_nat @ ( plus_plus_nat @ M @ N2 ) ) ) ) ) ) ).

% polynomial_product
thf(fact_8682_polynomial__product,axiom,
    ! [M: nat,A: nat > real,N2: nat,B: nat > real,X: real] :
      ( ! [I3: nat] :
          ( ( ord_less_nat @ M @ I3 )
         => ( ( A @ I3 )
            = zero_zero_real ) )
     => ( ! [J2: nat] :
            ( ( ord_less_nat @ N2 @ J2 )
           => ( ( B @ J2 )
              = zero_zero_real ) )
       => ( ( times_times_real
            @ ( groups6591440286371151544t_real
              @ ^ [I5: nat] : ( times_times_real @ ( A @ I5 ) @ ( power_power_real @ X @ I5 ) )
              @ ( set_ord_atMost_nat @ M ) )
            @ ( groups6591440286371151544t_real
              @ ^ [J3: nat] : ( times_times_real @ ( B @ J3 ) @ ( power_power_real @ X @ J3 ) )
              @ ( set_ord_atMost_nat @ N2 ) ) )
          = ( groups6591440286371151544t_real
            @ ^ [R5: nat] :
                ( times_times_real
                @ ( groups6591440286371151544t_real
                  @ ^ [K3: nat] : ( times_times_real @ ( A @ K3 ) @ ( B @ ( minus_minus_nat @ R5 @ K3 ) ) )
                  @ ( set_ord_atMost_nat @ R5 ) )
                @ ( power_power_real @ X @ R5 ) )
            @ ( set_ord_atMost_nat @ ( plus_plus_nat @ M @ N2 ) ) ) ) ) ) ).

% polynomial_product
thf(fact_8683_polyfun__eq__const,axiom,
    ! [C: nat > complex,N2: nat,K: complex] :
      ( ( ! [X3: complex] :
            ( ( groups2073611262835488442omplex
              @ ^ [I5: nat] : ( times_times_complex @ ( C @ I5 ) @ ( power_power_complex @ X3 @ I5 ) )
              @ ( set_ord_atMost_nat @ N2 ) )
            = K ) )
      = ( ( ( C @ zero_zero_nat )
          = K )
        & ! [X3: nat] :
            ( ( member_nat @ X3 @ ( set_or1269000886237332187st_nat @ one_one_nat @ N2 ) )
           => ( ( C @ X3 )
              = zero_zero_complex ) ) ) ) ).

% polyfun_eq_const
thf(fact_8684_polyfun__eq__const,axiom,
    ! [C: nat > real,N2: nat,K: real] :
      ( ( ! [X3: real] :
            ( ( groups6591440286371151544t_real
              @ ^ [I5: nat] : ( times_times_real @ ( C @ I5 ) @ ( power_power_real @ X3 @ I5 ) )
              @ ( set_ord_atMost_nat @ N2 ) )
            = K ) )
      = ( ( ( C @ zero_zero_nat )
          = K )
        & ! [X3: nat] :
            ( ( member_nat @ X3 @ ( set_or1269000886237332187st_nat @ one_one_nat @ N2 ) )
           => ( ( C @ X3 )
              = zero_zero_real ) ) ) ) ).

% polyfun_eq_const
thf(fact_8685_binomial__ring,axiom,
    ! [A: complex,B: complex,N2: nat] :
      ( ( power_power_complex @ ( plus_plus_complex @ A @ B ) @ N2 )
      = ( groups2073611262835488442omplex
        @ ^ [K3: nat] : ( times_times_complex @ ( times_times_complex @ ( semiri8010041392384452111omplex @ ( binomial @ N2 @ K3 ) ) @ ( power_power_complex @ A @ K3 ) ) @ ( power_power_complex @ B @ ( minus_minus_nat @ N2 @ K3 ) ) )
        @ ( set_ord_atMost_nat @ N2 ) ) ) ).

% binomial_ring
thf(fact_8686_binomial__ring,axiom,
    ! [A: rat,B: rat,N2: nat] :
      ( ( power_power_rat @ ( plus_plus_rat @ A @ B ) @ N2 )
      = ( groups2906978787729119204at_rat
        @ ^ [K3: nat] : ( times_times_rat @ ( times_times_rat @ ( semiri681578069525770553at_rat @ ( binomial @ N2 @ K3 ) ) @ ( power_power_rat @ A @ K3 ) ) @ ( power_power_rat @ B @ ( minus_minus_nat @ N2 @ K3 ) ) )
        @ ( set_ord_atMost_nat @ N2 ) ) ) ).

% binomial_ring
thf(fact_8687_binomial__ring,axiom,
    ! [A: int,B: int,N2: nat] :
      ( ( power_power_int @ ( plus_plus_int @ A @ B ) @ N2 )
      = ( groups3539618377306564664at_int
        @ ^ [K3: nat] : ( times_times_int @ ( times_times_int @ ( semiri1314217659103216013at_int @ ( binomial @ N2 @ K3 ) ) @ ( power_power_int @ A @ K3 ) ) @ ( power_power_int @ B @ ( minus_minus_nat @ N2 @ K3 ) ) )
        @ ( set_ord_atMost_nat @ N2 ) ) ) ).

% binomial_ring
thf(fact_8688_binomial__ring,axiom,
    ! [A: code_integer,B: code_integer,N2: nat] :
      ( ( power_8256067586552552935nteger @ ( plus_p5714425477246183910nteger @ A @ B ) @ N2 )
      = ( groups7501900531339628137nteger
        @ ^ [K3: nat] : ( times_3573771949741848930nteger @ ( times_3573771949741848930nteger @ ( semiri4939895301339042750nteger @ ( binomial @ N2 @ K3 ) ) @ ( power_8256067586552552935nteger @ A @ K3 ) ) @ ( power_8256067586552552935nteger @ B @ ( minus_minus_nat @ N2 @ K3 ) ) )
        @ ( set_ord_atMost_nat @ N2 ) ) ) ).

% binomial_ring
thf(fact_8689_binomial__ring,axiom,
    ! [A: nat,B: nat,N2: nat] :
      ( ( power_power_nat @ ( plus_plus_nat @ A @ B ) @ N2 )
      = ( groups3542108847815614940at_nat
        @ ^ [K3: nat] : ( times_times_nat @ ( times_times_nat @ ( semiri1316708129612266289at_nat @ ( binomial @ N2 @ K3 ) ) @ ( power_power_nat @ A @ K3 ) ) @ ( power_power_nat @ B @ ( minus_minus_nat @ N2 @ K3 ) ) )
        @ ( set_ord_atMost_nat @ N2 ) ) ) ).

% binomial_ring
thf(fact_8690_binomial__ring,axiom,
    ! [A: real,B: real,N2: nat] :
      ( ( power_power_real @ ( plus_plus_real @ A @ B ) @ N2 )
      = ( groups6591440286371151544t_real
        @ ^ [K3: nat] : ( times_times_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ ( binomial @ N2 @ K3 ) ) @ ( power_power_real @ A @ K3 ) ) @ ( power_power_real @ B @ ( minus_minus_nat @ N2 @ K3 ) ) )
        @ ( set_ord_atMost_nat @ N2 ) ) ) ).

% binomial_ring
thf(fact_8691_polynomial__product__nat,axiom,
    ! [M: nat,A: nat > nat,N2: nat,B: nat > nat,X: nat] :
      ( ! [I3: nat] :
          ( ( ord_less_nat @ M @ I3 )
         => ( ( A @ I3 )
            = zero_zero_nat ) )
     => ( ! [J2: nat] :
            ( ( ord_less_nat @ N2 @ J2 )
           => ( ( B @ J2 )
              = zero_zero_nat ) )
       => ( ( times_times_nat
            @ ( groups3542108847815614940at_nat
              @ ^ [I5: nat] : ( times_times_nat @ ( A @ I5 ) @ ( power_power_nat @ X @ I5 ) )
              @ ( set_ord_atMost_nat @ M ) )
            @ ( groups3542108847815614940at_nat
              @ ^ [J3: nat] : ( times_times_nat @ ( B @ J3 ) @ ( power_power_nat @ X @ J3 ) )
              @ ( set_ord_atMost_nat @ N2 ) ) )
          = ( groups3542108847815614940at_nat
            @ ^ [R5: nat] :
                ( times_times_nat
                @ ( groups3542108847815614940at_nat
                  @ ^ [K3: nat] : ( times_times_nat @ ( A @ K3 ) @ ( B @ ( minus_minus_nat @ R5 @ K3 ) ) )
                  @ ( set_ord_atMost_nat @ R5 ) )
                @ ( power_power_nat @ X @ R5 ) )
            @ ( set_ord_atMost_nat @ ( plus_plus_nat @ M @ N2 ) ) ) ) ) ) ).

% polynomial_product_nat
thf(fact_8692_choose__square__sum,axiom,
    ! [N2: nat] :
      ( ( groups3542108847815614940at_nat
        @ ^ [K3: nat] : ( power_power_nat @ ( binomial @ N2 @ K3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        @ ( set_ord_atMost_nat @ N2 ) )
      = ( binomial @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) @ N2 ) ) ).

% choose_square_sum
thf(fact_8693_Cauchy__product__sums,axiom,
    ! [A: nat > complex,B: nat > complex] :
      ( ( summable_real
        @ ^ [K3: nat] : ( real_V1022390504157884413omplex @ ( A @ K3 ) ) )
     => ( ( summable_real
          @ ^ [K3: nat] : ( real_V1022390504157884413omplex @ ( B @ K3 ) ) )
       => ( sums_complex
          @ ^ [K3: nat] :
              ( groups2073611262835488442omplex
              @ ^ [I5: nat] : ( times_times_complex @ ( A @ I5 ) @ ( B @ ( minus_minus_nat @ K3 @ I5 ) ) )
              @ ( set_ord_atMost_nat @ K3 ) )
          @ ( times_times_complex @ ( suminf_complex @ A ) @ ( suminf_complex @ B ) ) ) ) ) ).

% Cauchy_product_sums
thf(fact_8694_Cauchy__product__sums,axiom,
    ! [A: nat > real,B: nat > real] :
      ( ( summable_real
        @ ^ [K3: nat] : ( real_V7735802525324610683m_real @ ( A @ K3 ) ) )
     => ( ( summable_real
          @ ^ [K3: nat] : ( real_V7735802525324610683m_real @ ( B @ K3 ) ) )
       => ( sums_real
          @ ^ [K3: nat] :
              ( groups6591440286371151544t_real
              @ ^ [I5: nat] : ( times_times_real @ ( A @ I5 ) @ ( B @ ( minus_minus_nat @ K3 @ I5 ) ) )
              @ ( set_ord_atMost_nat @ K3 ) )
          @ ( times_times_real @ ( suminf_real @ A ) @ ( suminf_real @ B ) ) ) ) ) ).

% Cauchy_product_sums
thf(fact_8695_sum_Ozero__middle,axiom,
    ! [P4: nat,K: nat,G: nat > complex,H2: nat > complex] :
      ( ( ord_less_eq_nat @ one_one_nat @ P4 )
     => ( ( ord_less_eq_nat @ K @ P4 )
       => ( ( groups2073611262835488442omplex
            @ ^ [J3: nat] : ( if_complex @ ( ord_less_nat @ J3 @ K ) @ ( G @ J3 ) @ ( if_complex @ ( J3 = K ) @ zero_zero_complex @ ( H2 @ ( minus_minus_nat @ J3 @ ( suc @ zero_zero_nat ) ) ) ) )
            @ ( set_ord_atMost_nat @ P4 ) )
          = ( groups2073611262835488442omplex
            @ ^ [J3: nat] : ( if_complex @ ( ord_less_nat @ J3 @ K ) @ ( G @ J3 ) @ ( H2 @ J3 ) )
            @ ( set_ord_atMost_nat @ ( minus_minus_nat @ P4 @ ( suc @ zero_zero_nat ) ) ) ) ) ) ) ).

% sum.zero_middle
thf(fact_8696_sum_Ozero__middle,axiom,
    ! [P4: nat,K: nat,G: nat > rat,H2: nat > rat] :
      ( ( ord_less_eq_nat @ one_one_nat @ P4 )
     => ( ( ord_less_eq_nat @ K @ P4 )
       => ( ( groups2906978787729119204at_rat
            @ ^ [J3: nat] : ( if_rat @ ( ord_less_nat @ J3 @ K ) @ ( G @ J3 ) @ ( if_rat @ ( J3 = K ) @ zero_zero_rat @ ( H2 @ ( minus_minus_nat @ J3 @ ( suc @ zero_zero_nat ) ) ) ) )
            @ ( set_ord_atMost_nat @ P4 ) )
          = ( groups2906978787729119204at_rat
            @ ^ [J3: nat] : ( if_rat @ ( ord_less_nat @ J3 @ K ) @ ( G @ J3 ) @ ( H2 @ J3 ) )
            @ ( set_ord_atMost_nat @ ( minus_minus_nat @ P4 @ ( suc @ zero_zero_nat ) ) ) ) ) ) ) ).

% sum.zero_middle
thf(fact_8697_sum_Ozero__middle,axiom,
    ! [P4: nat,K: nat,G: nat > int,H2: nat > int] :
      ( ( ord_less_eq_nat @ one_one_nat @ P4 )
     => ( ( ord_less_eq_nat @ K @ P4 )
       => ( ( groups3539618377306564664at_int
            @ ^ [J3: nat] : ( if_int @ ( ord_less_nat @ J3 @ K ) @ ( G @ J3 ) @ ( if_int @ ( J3 = K ) @ zero_zero_int @ ( H2 @ ( minus_minus_nat @ J3 @ ( suc @ zero_zero_nat ) ) ) ) )
            @ ( set_ord_atMost_nat @ P4 ) )
          = ( groups3539618377306564664at_int
            @ ^ [J3: nat] : ( if_int @ ( ord_less_nat @ J3 @ K ) @ ( G @ J3 ) @ ( H2 @ J3 ) )
            @ ( set_ord_atMost_nat @ ( minus_minus_nat @ P4 @ ( suc @ zero_zero_nat ) ) ) ) ) ) ) ).

% sum.zero_middle
thf(fact_8698_sum_Ozero__middle,axiom,
    ! [P4: nat,K: nat,G: nat > nat,H2: nat > nat] :
      ( ( ord_less_eq_nat @ one_one_nat @ P4 )
     => ( ( ord_less_eq_nat @ K @ P4 )
       => ( ( groups3542108847815614940at_nat
            @ ^ [J3: nat] : ( if_nat @ ( ord_less_nat @ J3 @ K ) @ ( G @ J3 ) @ ( if_nat @ ( J3 = K ) @ zero_zero_nat @ ( H2 @ ( minus_minus_nat @ J3 @ ( suc @ zero_zero_nat ) ) ) ) )
            @ ( set_ord_atMost_nat @ P4 ) )
          = ( groups3542108847815614940at_nat
            @ ^ [J3: nat] : ( if_nat @ ( ord_less_nat @ J3 @ K ) @ ( G @ J3 ) @ ( H2 @ J3 ) )
            @ ( set_ord_atMost_nat @ ( minus_minus_nat @ P4 @ ( suc @ zero_zero_nat ) ) ) ) ) ) ) ).

% sum.zero_middle
thf(fact_8699_sum_Ozero__middle,axiom,
    ! [P4: nat,K: nat,G: nat > real,H2: nat > real] :
      ( ( ord_less_eq_nat @ one_one_nat @ P4 )
     => ( ( ord_less_eq_nat @ K @ P4 )
       => ( ( groups6591440286371151544t_real
            @ ^ [J3: nat] : ( if_real @ ( ord_less_nat @ J3 @ K ) @ ( G @ J3 ) @ ( if_real @ ( J3 = K ) @ zero_zero_real @ ( H2 @ ( minus_minus_nat @ J3 @ ( suc @ zero_zero_nat ) ) ) ) )
            @ ( set_ord_atMost_nat @ P4 ) )
          = ( groups6591440286371151544t_real
            @ ^ [J3: nat] : ( if_real @ ( ord_less_nat @ J3 @ K ) @ ( G @ J3 ) @ ( H2 @ J3 ) )
            @ ( set_ord_atMost_nat @ ( minus_minus_nat @ P4 @ ( suc @ zero_zero_nat ) ) ) ) ) ) ) ).

% sum.zero_middle
thf(fact_8700_root__polyfun,axiom,
    ! [N2: nat,Z: int,A: int] :
      ( ( ord_less_eq_nat @ one_one_nat @ N2 )
     => ( ( ( power_power_int @ Z @ N2 )
          = A )
        = ( ( groups3539618377306564664at_int
            @ ^ [I5: nat] : ( times_times_int @ ( if_int @ ( I5 = zero_zero_nat ) @ ( uminus_uminus_int @ A ) @ ( if_int @ ( I5 = N2 ) @ one_one_int @ zero_zero_int ) ) @ ( power_power_int @ Z @ I5 ) )
            @ ( set_ord_atMost_nat @ N2 ) )
          = zero_zero_int ) ) ) ).

% root_polyfun
thf(fact_8701_root__polyfun,axiom,
    ! [N2: nat,Z: complex,A: complex] :
      ( ( ord_less_eq_nat @ one_one_nat @ N2 )
     => ( ( ( power_power_complex @ Z @ N2 )
          = A )
        = ( ( groups2073611262835488442omplex
            @ ^ [I5: nat] : ( times_times_complex @ ( if_complex @ ( I5 = zero_zero_nat ) @ ( uminus1482373934393186551omplex @ A ) @ ( if_complex @ ( I5 = N2 ) @ one_one_complex @ zero_zero_complex ) ) @ ( power_power_complex @ Z @ I5 ) )
            @ ( set_ord_atMost_nat @ N2 ) )
          = zero_zero_complex ) ) ) ).

% root_polyfun
thf(fact_8702_root__polyfun,axiom,
    ! [N2: nat,Z: rat,A: rat] :
      ( ( ord_less_eq_nat @ one_one_nat @ N2 )
     => ( ( ( power_power_rat @ Z @ N2 )
          = A )
        = ( ( groups2906978787729119204at_rat
            @ ^ [I5: nat] : ( times_times_rat @ ( if_rat @ ( I5 = zero_zero_nat ) @ ( uminus_uminus_rat @ A ) @ ( if_rat @ ( I5 = N2 ) @ one_one_rat @ zero_zero_rat ) ) @ ( power_power_rat @ Z @ I5 ) )
            @ ( set_ord_atMost_nat @ N2 ) )
          = zero_zero_rat ) ) ) ).

% root_polyfun
thf(fact_8703_root__polyfun,axiom,
    ! [N2: nat,Z: code_integer,A: code_integer] :
      ( ( ord_less_eq_nat @ one_one_nat @ N2 )
     => ( ( ( power_8256067586552552935nteger @ Z @ N2 )
          = A )
        = ( ( groups7501900531339628137nteger
            @ ^ [I5: nat] : ( times_3573771949741848930nteger @ ( if_Code_integer @ ( I5 = zero_zero_nat ) @ ( uminus1351360451143612070nteger @ A ) @ ( if_Code_integer @ ( I5 = N2 ) @ one_one_Code_integer @ zero_z3403309356797280102nteger ) ) @ ( power_8256067586552552935nteger @ Z @ I5 ) )
            @ ( set_ord_atMost_nat @ N2 ) )
          = zero_z3403309356797280102nteger ) ) ) ).

% root_polyfun
thf(fact_8704_root__polyfun,axiom,
    ! [N2: nat,Z: real,A: real] :
      ( ( ord_less_eq_nat @ one_one_nat @ N2 )
     => ( ( ( power_power_real @ Z @ N2 )
          = A )
        = ( ( groups6591440286371151544t_real
            @ ^ [I5: nat] : ( times_times_real @ ( if_real @ ( I5 = zero_zero_nat ) @ ( uminus_uminus_real @ A ) @ ( if_real @ ( I5 = N2 ) @ one_one_real @ zero_zero_real ) ) @ ( power_power_real @ Z @ I5 ) )
            @ ( set_ord_atMost_nat @ N2 ) )
          = zero_zero_real ) ) ) ).

% root_polyfun
thf(fact_8705_sum__gp0,axiom,
    ! [X: complex,N2: nat] :
      ( ( ( X = one_one_complex )
       => ( ( groups2073611262835488442omplex @ ( power_power_complex @ X ) @ ( set_ord_atMost_nat @ N2 ) )
          = ( semiri8010041392384452111omplex @ ( plus_plus_nat @ N2 @ one_one_nat ) ) ) )
      & ( ( X != one_one_complex )
       => ( ( groups2073611262835488442omplex @ ( power_power_complex @ X ) @ ( set_ord_atMost_nat @ N2 ) )
          = ( divide1717551699836669952omplex @ ( minus_minus_complex @ one_one_complex @ ( power_power_complex @ X @ ( suc @ N2 ) ) ) @ ( minus_minus_complex @ one_one_complex @ X ) ) ) ) ) ).

% sum_gp0
thf(fact_8706_sum__gp0,axiom,
    ! [X: rat,N2: nat] :
      ( ( ( X = one_one_rat )
       => ( ( groups2906978787729119204at_rat @ ( power_power_rat @ X ) @ ( set_ord_atMost_nat @ N2 ) )
          = ( semiri681578069525770553at_rat @ ( plus_plus_nat @ N2 @ one_one_nat ) ) ) )
      & ( ( X != one_one_rat )
       => ( ( groups2906978787729119204at_rat @ ( power_power_rat @ X ) @ ( set_ord_atMost_nat @ N2 ) )
          = ( divide_divide_rat @ ( minus_minus_rat @ one_one_rat @ ( power_power_rat @ X @ ( suc @ N2 ) ) ) @ ( minus_minus_rat @ one_one_rat @ X ) ) ) ) ) ).

% sum_gp0
thf(fact_8707_sum__gp0,axiom,
    ! [X: real,N2: nat] :
      ( ( ( X = one_one_real )
       => ( ( groups6591440286371151544t_real @ ( power_power_real @ X ) @ ( set_ord_atMost_nat @ N2 ) )
          = ( semiri5074537144036343181t_real @ ( plus_plus_nat @ N2 @ one_one_nat ) ) ) )
      & ( ( X != one_one_real )
       => ( ( groups6591440286371151544t_real @ ( power_power_real @ X ) @ ( set_ord_atMost_nat @ N2 ) )
          = ( divide_divide_real @ ( minus_minus_real @ one_one_real @ ( power_power_real @ X @ ( suc @ N2 ) ) ) @ ( minus_minus_real @ one_one_real @ X ) ) ) ) ) ).

% sum_gp0
thf(fact_8708_choose__alternating__linear__sum,axiom,
    ! [N2: nat] :
      ( ( N2 != one_one_nat )
     => ( ( groups2073611262835488442omplex
          @ ^ [I5: nat] : ( times_times_complex @ ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ I5 ) @ ( semiri8010041392384452111omplex @ I5 ) ) @ ( semiri8010041392384452111omplex @ ( binomial @ N2 @ I5 ) ) )
          @ ( set_ord_atMost_nat @ N2 ) )
        = zero_zero_complex ) ) ).

% choose_alternating_linear_sum
thf(fact_8709_choose__alternating__linear__sum,axiom,
    ! [N2: nat] :
      ( ( N2 != one_one_nat )
     => ( ( groups2906978787729119204at_rat
          @ ^ [I5: nat] : ( times_times_rat @ ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ I5 ) @ ( semiri681578069525770553at_rat @ I5 ) ) @ ( semiri681578069525770553at_rat @ ( binomial @ N2 @ I5 ) ) )
          @ ( set_ord_atMost_nat @ N2 ) )
        = zero_zero_rat ) ) ).

% choose_alternating_linear_sum
thf(fact_8710_choose__alternating__linear__sum,axiom,
    ! [N2: nat] :
      ( ( N2 != one_one_nat )
     => ( ( groups3539618377306564664at_int
          @ ^ [I5: nat] : ( times_times_int @ ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ I5 ) @ ( semiri1314217659103216013at_int @ I5 ) ) @ ( semiri1314217659103216013at_int @ ( binomial @ N2 @ I5 ) ) )
          @ ( set_ord_atMost_nat @ N2 ) )
        = zero_zero_int ) ) ).

% choose_alternating_linear_sum
thf(fact_8711_choose__alternating__linear__sum,axiom,
    ! [N2: nat] :
      ( ( N2 != one_one_nat )
     => ( ( groups7501900531339628137nteger
          @ ^ [I5: nat] : ( times_3573771949741848930nteger @ ( times_3573771949741848930nteger @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ I5 ) @ ( semiri4939895301339042750nteger @ I5 ) ) @ ( semiri4939895301339042750nteger @ ( binomial @ N2 @ I5 ) ) )
          @ ( set_ord_atMost_nat @ N2 ) )
        = zero_z3403309356797280102nteger ) ) ).

% choose_alternating_linear_sum
thf(fact_8712_choose__alternating__linear__sum,axiom,
    ! [N2: nat] :
      ( ( N2 != one_one_nat )
     => ( ( groups6591440286371151544t_real
          @ ^ [I5: nat] : ( times_times_real @ ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I5 ) @ ( semiri5074537144036343181t_real @ I5 ) ) @ ( semiri5074537144036343181t_real @ ( binomial @ N2 @ I5 ) ) )
          @ ( set_ord_atMost_nat @ N2 ) )
        = zero_zero_real ) ) ).

% choose_alternating_linear_sum
thf(fact_8713_polyfun__diff__alt,axiom,
    ! [N2: nat,A: nat > complex,X: complex,Y: complex] :
      ( ( ord_less_eq_nat @ one_one_nat @ N2 )
     => ( ( minus_minus_complex
          @ ( groups2073611262835488442omplex
            @ ^ [I5: nat] : ( times_times_complex @ ( A @ I5 ) @ ( power_power_complex @ X @ I5 ) )
            @ ( set_ord_atMost_nat @ N2 ) )
          @ ( groups2073611262835488442omplex
            @ ^ [I5: nat] : ( times_times_complex @ ( A @ I5 ) @ ( power_power_complex @ Y @ I5 ) )
            @ ( set_ord_atMost_nat @ N2 ) ) )
        = ( times_times_complex @ ( minus_minus_complex @ X @ Y )
          @ ( groups2073611262835488442omplex
            @ ^ [J3: nat] :
                ( groups2073611262835488442omplex
                @ ^ [K3: nat] : ( times_times_complex @ ( times_times_complex @ ( A @ ( plus_plus_nat @ ( plus_plus_nat @ J3 @ K3 ) @ one_one_nat ) ) @ ( power_power_complex @ Y @ K3 ) ) @ ( power_power_complex @ X @ J3 ) )
                @ ( set_ord_lessThan_nat @ ( minus_minus_nat @ N2 @ J3 ) ) )
            @ ( set_ord_lessThan_nat @ N2 ) ) ) ) ) ).

% polyfun_diff_alt
thf(fact_8714_polyfun__diff__alt,axiom,
    ! [N2: nat,A: nat > rat,X: rat,Y: rat] :
      ( ( ord_less_eq_nat @ one_one_nat @ N2 )
     => ( ( minus_minus_rat
          @ ( groups2906978787729119204at_rat
            @ ^ [I5: nat] : ( times_times_rat @ ( A @ I5 ) @ ( power_power_rat @ X @ I5 ) )
            @ ( set_ord_atMost_nat @ N2 ) )
          @ ( groups2906978787729119204at_rat
            @ ^ [I5: nat] : ( times_times_rat @ ( A @ I5 ) @ ( power_power_rat @ Y @ I5 ) )
            @ ( set_ord_atMost_nat @ N2 ) ) )
        = ( times_times_rat @ ( minus_minus_rat @ X @ Y )
          @ ( groups2906978787729119204at_rat
            @ ^ [J3: nat] :
                ( groups2906978787729119204at_rat
                @ ^ [K3: nat] : ( times_times_rat @ ( times_times_rat @ ( A @ ( plus_plus_nat @ ( plus_plus_nat @ J3 @ K3 ) @ one_one_nat ) ) @ ( power_power_rat @ Y @ K3 ) ) @ ( power_power_rat @ X @ J3 ) )
                @ ( set_ord_lessThan_nat @ ( minus_minus_nat @ N2 @ J3 ) ) )
            @ ( set_ord_lessThan_nat @ N2 ) ) ) ) ) ).

% polyfun_diff_alt
thf(fact_8715_polyfun__diff__alt,axiom,
    ! [N2: nat,A: nat > int,X: int,Y: int] :
      ( ( ord_less_eq_nat @ one_one_nat @ N2 )
     => ( ( minus_minus_int
          @ ( groups3539618377306564664at_int
            @ ^ [I5: nat] : ( times_times_int @ ( A @ I5 ) @ ( power_power_int @ X @ I5 ) )
            @ ( set_ord_atMost_nat @ N2 ) )
          @ ( groups3539618377306564664at_int
            @ ^ [I5: nat] : ( times_times_int @ ( A @ I5 ) @ ( power_power_int @ Y @ I5 ) )
            @ ( set_ord_atMost_nat @ N2 ) ) )
        = ( times_times_int @ ( minus_minus_int @ X @ Y )
          @ ( groups3539618377306564664at_int
            @ ^ [J3: nat] :
                ( groups3539618377306564664at_int
                @ ^ [K3: nat] : ( times_times_int @ ( times_times_int @ ( A @ ( plus_plus_nat @ ( plus_plus_nat @ J3 @ K3 ) @ one_one_nat ) ) @ ( power_power_int @ Y @ K3 ) ) @ ( power_power_int @ X @ J3 ) )
                @ ( set_ord_lessThan_nat @ ( minus_minus_nat @ N2 @ J3 ) ) )
            @ ( set_ord_lessThan_nat @ N2 ) ) ) ) ) ).

% polyfun_diff_alt
thf(fact_8716_polyfun__diff__alt,axiom,
    ! [N2: nat,A: nat > real,X: real,Y: real] :
      ( ( ord_less_eq_nat @ one_one_nat @ N2 )
     => ( ( minus_minus_real
          @ ( groups6591440286371151544t_real
            @ ^ [I5: nat] : ( times_times_real @ ( A @ I5 ) @ ( power_power_real @ X @ I5 ) )
            @ ( set_ord_atMost_nat @ N2 ) )
          @ ( groups6591440286371151544t_real
            @ ^ [I5: nat] : ( times_times_real @ ( A @ I5 ) @ ( power_power_real @ Y @ I5 ) )
            @ ( set_ord_atMost_nat @ N2 ) ) )
        = ( times_times_real @ ( minus_minus_real @ X @ Y )
          @ ( groups6591440286371151544t_real
            @ ^ [J3: nat] :
                ( groups6591440286371151544t_real
                @ ^ [K3: nat] : ( times_times_real @ ( times_times_real @ ( A @ ( plus_plus_nat @ ( plus_plus_nat @ J3 @ K3 ) @ one_one_nat ) ) @ ( power_power_real @ Y @ K3 ) ) @ ( power_power_real @ X @ J3 ) )
                @ ( set_ord_lessThan_nat @ ( minus_minus_nat @ N2 @ J3 ) ) )
            @ ( set_ord_lessThan_nat @ N2 ) ) ) ) ) ).

% polyfun_diff_alt
thf(fact_8717_binomial__r__part__sum,axiom,
    ! [M: nat] :
      ( ( groups3542108847815614940at_nat @ ( binomial @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) @ one_one_nat ) ) @ ( set_ord_atMost_nat @ M ) )
      = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) ) ).

% binomial_r_part_sum
thf(fact_8718_choose__linear__sum,axiom,
    ! [N2: nat] :
      ( ( groups3542108847815614940at_nat
        @ ^ [I5: nat] : ( times_times_nat @ I5 @ ( binomial @ N2 @ I5 ) )
        @ ( set_ord_atMost_nat @ N2 ) )
      = ( times_times_nat @ N2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N2 @ one_one_nat ) ) ) ) ).

% choose_linear_sum
thf(fact_8719_monoseq__minus,axiom,
    ! [A: nat > int] :
      ( ( topolo4899668324122417113eq_int @ A )
     => ( topolo4899668324122417113eq_int
        @ ^ [N3: nat] : ( uminus_uminus_int @ ( A @ N3 ) ) ) ) ).

% monoseq_minus
thf(fact_8720_monoseq__minus,axiom,
    ! [A: nat > rat] :
      ( ( topolo4267028734544971653eq_rat @ A )
     => ( topolo4267028734544971653eq_rat
        @ ^ [N3: nat] : ( uminus_uminus_rat @ ( A @ N3 ) ) ) ) ).

% monoseq_minus
thf(fact_8721_monoseq__minus,axiom,
    ! [A: nat > code_integer] :
      ( ( topolo2919662092509805066nteger @ A )
     => ( topolo2919662092509805066nteger
        @ ^ [N3: nat] : ( uminus1351360451143612070nteger @ ( A @ N3 ) ) ) ) ).

% monoseq_minus
thf(fact_8722_monoseq__minus,axiom,
    ! [A: nat > real] :
      ( ( topolo6980174941875973593q_real @ A )
     => ( topolo6980174941875973593q_real
        @ ^ [N3: nat] : ( uminus_uminus_real @ ( A @ N3 ) ) ) ) ).

% monoseq_minus
thf(fact_8723_choose__alternating__sum,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( groups2073611262835488442omplex
          @ ^ [I5: nat] : ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ I5 ) @ ( semiri8010041392384452111omplex @ ( binomial @ N2 @ I5 ) ) )
          @ ( set_ord_atMost_nat @ N2 ) )
        = zero_zero_complex ) ) ).

% choose_alternating_sum
thf(fact_8724_choose__alternating__sum,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( groups2906978787729119204at_rat
          @ ^ [I5: nat] : ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ I5 ) @ ( semiri681578069525770553at_rat @ ( binomial @ N2 @ I5 ) ) )
          @ ( set_ord_atMost_nat @ N2 ) )
        = zero_zero_rat ) ) ).

% choose_alternating_sum
thf(fact_8725_choose__alternating__sum,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( groups3539618377306564664at_int
          @ ^ [I5: nat] : ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ I5 ) @ ( semiri1314217659103216013at_int @ ( binomial @ N2 @ I5 ) ) )
          @ ( set_ord_atMost_nat @ N2 ) )
        = zero_zero_int ) ) ).

% choose_alternating_sum
thf(fact_8726_choose__alternating__sum,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( groups7501900531339628137nteger
          @ ^ [I5: nat] : ( times_3573771949741848930nteger @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ I5 ) @ ( semiri4939895301339042750nteger @ ( binomial @ N2 @ I5 ) ) )
          @ ( set_ord_atMost_nat @ N2 ) )
        = zero_z3403309356797280102nteger ) ) ).

% choose_alternating_sum
thf(fact_8727_choose__alternating__sum,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( groups6591440286371151544t_real
          @ ^ [I5: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I5 ) @ ( semiri5074537144036343181t_real @ ( binomial @ N2 @ I5 ) ) )
          @ ( set_ord_atMost_nat @ N2 ) )
        = zero_zero_real ) ) ).

% choose_alternating_sum
thf(fact_8728_polyfun__extremal__lemma,axiom,
    ! [E: real,C: nat > complex,N2: nat] :
      ( ( ord_less_real @ zero_zero_real @ E )
     => ? [M8: real] :
        ! [Z5: complex] :
          ( ( ord_less_eq_real @ M8 @ ( real_V1022390504157884413omplex @ Z5 ) )
         => ( ord_less_eq_real
            @ ( real_V1022390504157884413omplex
              @ ( groups2073611262835488442omplex
                @ ^ [I5: nat] : ( times_times_complex @ ( C @ I5 ) @ ( power_power_complex @ Z5 @ I5 ) )
                @ ( set_ord_atMost_nat @ N2 ) ) )
            @ ( times_times_real @ E @ ( power_power_real @ ( real_V1022390504157884413omplex @ Z5 ) @ ( suc @ N2 ) ) ) ) ) ) ).

% polyfun_extremal_lemma
thf(fact_8729_polyfun__extremal__lemma,axiom,
    ! [E: real,C: nat > real,N2: nat] :
      ( ( ord_less_real @ zero_zero_real @ E )
     => ? [M8: real] :
        ! [Z5: real] :
          ( ( ord_less_eq_real @ M8 @ ( real_V7735802525324610683m_real @ Z5 ) )
         => ( ord_less_eq_real
            @ ( real_V7735802525324610683m_real
              @ ( groups6591440286371151544t_real
                @ ^ [I5: nat] : ( times_times_real @ ( C @ I5 ) @ ( power_power_real @ Z5 @ I5 ) )
                @ ( set_ord_atMost_nat @ N2 ) ) )
            @ ( times_times_real @ E @ ( power_power_real @ ( real_V7735802525324610683m_real @ Z5 ) @ ( suc @ N2 ) ) ) ) ) ) ).

% polyfun_extremal_lemma
thf(fact_8730_polyfun__diff,axiom,
    ! [N2: nat,A: nat > complex,X: complex,Y: complex] :
      ( ( ord_less_eq_nat @ one_one_nat @ N2 )
     => ( ( minus_minus_complex
          @ ( groups2073611262835488442omplex
            @ ^ [I5: nat] : ( times_times_complex @ ( A @ I5 ) @ ( power_power_complex @ X @ I5 ) )
            @ ( set_ord_atMost_nat @ N2 ) )
          @ ( groups2073611262835488442omplex
            @ ^ [I5: nat] : ( times_times_complex @ ( A @ I5 ) @ ( power_power_complex @ Y @ I5 ) )
            @ ( set_ord_atMost_nat @ N2 ) ) )
        = ( times_times_complex @ ( minus_minus_complex @ X @ Y )
          @ ( groups2073611262835488442omplex
            @ ^ [J3: nat] :
                ( times_times_complex
                @ ( groups2073611262835488442omplex
                  @ ^ [I5: nat] : ( times_times_complex @ ( A @ I5 ) @ ( power_power_complex @ Y @ ( minus_minus_nat @ ( minus_minus_nat @ I5 @ J3 ) @ one_one_nat ) ) )
                  @ ( set_or1269000886237332187st_nat @ ( suc @ J3 ) @ N2 ) )
                @ ( power_power_complex @ X @ J3 ) )
            @ ( set_ord_lessThan_nat @ N2 ) ) ) ) ) ).

% polyfun_diff
thf(fact_8731_polyfun__diff,axiom,
    ! [N2: nat,A: nat > rat,X: rat,Y: rat] :
      ( ( ord_less_eq_nat @ one_one_nat @ N2 )
     => ( ( minus_minus_rat
          @ ( groups2906978787729119204at_rat
            @ ^ [I5: nat] : ( times_times_rat @ ( A @ I5 ) @ ( power_power_rat @ X @ I5 ) )
            @ ( set_ord_atMost_nat @ N2 ) )
          @ ( groups2906978787729119204at_rat
            @ ^ [I5: nat] : ( times_times_rat @ ( A @ I5 ) @ ( power_power_rat @ Y @ I5 ) )
            @ ( set_ord_atMost_nat @ N2 ) ) )
        = ( times_times_rat @ ( minus_minus_rat @ X @ Y )
          @ ( groups2906978787729119204at_rat
            @ ^ [J3: nat] :
                ( times_times_rat
                @ ( groups2906978787729119204at_rat
                  @ ^ [I5: nat] : ( times_times_rat @ ( A @ I5 ) @ ( power_power_rat @ Y @ ( minus_minus_nat @ ( minus_minus_nat @ I5 @ J3 ) @ one_one_nat ) ) )
                  @ ( set_or1269000886237332187st_nat @ ( suc @ J3 ) @ N2 ) )
                @ ( power_power_rat @ X @ J3 ) )
            @ ( set_ord_lessThan_nat @ N2 ) ) ) ) ) ).

% polyfun_diff
thf(fact_8732_polyfun__diff,axiom,
    ! [N2: nat,A: nat > int,X: int,Y: int] :
      ( ( ord_less_eq_nat @ one_one_nat @ N2 )
     => ( ( minus_minus_int
          @ ( groups3539618377306564664at_int
            @ ^ [I5: nat] : ( times_times_int @ ( A @ I5 ) @ ( power_power_int @ X @ I5 ) )
            @ ( set_ord_atMost_nat @ N2 ) )
          @ ( groups3539618377306564664at_int
            @ ^ [I5: nat] : ( times_times_int @ ( A @ I5 ) @ ( power_power_int @ Y @ I5 ) )
            @ ( set_ord_atMost_nat @ N2 ) ) )
        = ( times_times_int @ ( minus_minus_int @ X @ Y )
          @ ( groups3539618377306564664at_int
            @ ^ [J3: nat] :
                ( times_times_int
                @ ( groups3539618377306564664at_int
                  @ ^ [I5: nat] : ( times_times_int @ ( A @ I5 ) @ ( power_power_int @ Y @ ( minus_minus_nat @ ( minus_minus_nat @ I5 @ J3 ) @ one_one_nat ) ) )
                  @ ( set_or1269000886237332187st_nat @ ( suc @ J3 ) @ N2 ) )
                @ ( power_power_int @ X @ J3 ) )
            @ ( set_ord_lessThan_nat @ N2 ) ) ) ) ) ).

% polyfun_diff
thf(fact_8733_polyfun__diff,axiom,
    ! [N2: nat,A: nat > real,X: real,Y: real] :
      ( ( ord_less_eq_nat @ one_one_nat @ N2 )
     => ( ( minus_minus_real
          @ ( groups6591440286371151544t_real
            @ ^ [I5: nat] : ( times_times_real @ ( A @ I5 ) @ ( power_power_real @ X @ I5 ) )
            @ ( set_ord_atMost_nat @ N2 ) )
          @ ( groups6591440286371151544t_real
            @ ^ [I5: nat] : ( times_times_real @ ( A @ I5 ) @ ( power_power_real @ Y @ I5 ) )
            @ ( set_ord_atMost_nat @ N2 ) ) )
        = ( times_times_real @ ( minus_minus_real @ X @ Y )
          @ ( groups6591440286371151544t_real
            @ ^ [J3: nat] :
                ( times_times_real
                @ ( groups6591440286371151544t_real
                  @ ^ [I5: nat] : ( times_times_real @ ( A @ I5 ) @ ( power_power_real @ Y @ ( minus_minus_nat @ ( minus_minus_nat @ I5 @ J3 ) @ one_one_nat ) ) )
                  @ ( set_or1269000886237332187st_nat @ ( suc @ J3 ) @ N2 ) )
                @ ( power_power_real @ X @ J3 ) )
            @ ( set_ord_lessThan_nat @ N2 ) ) ) ) ) ).

% polyfun_diff
thf(fact_8734_mono__SucI1,axiom,
    ! [X8: nat > real] :
      ( ! [N: nat] : ( ord_less_eq_real @ ( X8 @ N ) @ ( X8 @ ( suc @ N ) ) )
     => ( topolo6980174941875973593q_real @ X8 ) ) ).

% mono_SucI1
thf(fact_8735_mono__SucI1,axiom,
    ! [X8: nat > set_int] :
      ( ! [N: nat] : ( ord_less_eq_set_int @ ( X8 @ N ) @ ( X8 @ ( suc @ N ) ) )
     => ( topolo3100542954746470799et_int @ X8 ) ) ).

% mono_SucI1
thf(fact_8736_mono__SucI1,axiom,
    ! [X8: nat > rat] :
      ( ! [N: nat] : ( ord_less_eq_rat @ ( X8 @ N ) @ ( X8 @ ( suc @ N ) ) )
     => ( topolo4267028734544971653eq_rat @ X8 ) ) ).

% mono_SucI1
thf(fact_8737_mono__SucI1,axiom,
    ! [X8: nat > num] :
      ( ! [N: nat] : ( ord_less_eq_num @ ( X8 @ N ) @ ( X8 @ ( suc @ N ) ) )
     => ( topolo1459490580787246023eq_num @ X8 ) ) ).

% mono_SucI1
thf(fact_8738_mono__SucI1,axiom,
    ! [X8: nat > nat] :
      ( ! [N: nat] : ( ord_less_eq_nat @ ( X8 @ N ) @ ( X8 @ ( suc @ N ) ) )
     => ( topolo4902158794631467389eq_nat @ X8 ) ) ).

% mono_SucI1
thf(fact_8739_mono__SucI1,axiom,
    ! [X8: nat > int] :
      ( ! [N: nat] : ( ord_less_eq_int @ ( X8 @ N ) @ ( X8 @ ( suc @ N ) ) )
     => ( topolo4899668324122417113eq_int @ X8 ) ) ).

% mono_SucI1
thf(fact_8740_mono__SucI2,axiom,
    ! [X8: nat > real] :
      ( ! [N: nat] : ( ord_less_eq_real @ ( X8 @ ( suc @ N ) ) @ ( X8 @ N ) )
     => ( topolo6980174941875973593q_real @ X8 ) ) ).

% mono_SucI2
thf(fact_8741_mono__SucI2,axiom,
    ! [X8: nat > set_int] :
      ( ! [N: nat] : ( ord_less_eq_set_int @ ( X8 @ ( suc @ N ) ) @ ( X8 @ N ) )
     => ( topolo3100542954746470799et_int @ X8 ) ) ).

% mono_SucI2
thf(fact_8742_mono__SucI2,axiom,
    ! [X8: nat > rat] :
      ( ! [N: nat] : ( ord_less_eq_rat @ ( X8 @ ( suc @ N ) ) @ ( X8 @ N ) )
     => ( topolo4267028734544971653eq_rat @ X8 ) ) ).

% mono_SucI2
thf(fact_8743_mono__SucI2,axiom,
    ! [X8: nat > num] :
      ( ! [N: nat] : ( ord_less_eq_num @ ( X8 @ ( suc @ N ) ) @ ( X8 @ N ) )
     => ( topolo1459490580787246023eq_num @ X8 ) ) ).

% mono_SucI2
thf(fact_8744_mono__SucI2,axiom,
    ! [X8: nat > nat] :
      ( ! [N: nat] : ( ord_less_eq_nat @ ( X8 @ ( suc @ N ) ) @ ( X8 @ N ) )
     => ( topolo4902158794631467389eq_nat @ X8 ) ) ).

% mono_SucI2
thf(fact_8745_mono__SucI2,axiom,
    ! [X8: nat > int] :
      ( ! [N: nat] : ( ord_less_eq_int @ ( X8 @ ( suc @ N ) ) @ ( X8 @ N ) )
     => ( topolo4899668324122417113eq_int @ X8 ) ) ).

% mono_SucI2
thf(fact_8746_monoseq__Suc,axiom,
    ( topolo6980174941875973593q_real
    = ( ^ [X4: nat > real] :
          ( ! [N3: nat] : ( ord_less_eq_real @ ( X4 @ N3 ) @ ( X4 @ ( suc @ N3 ) ) )
          | ! [N3: nat] : ( ord_less_eq_real @ ( X4 @ ( suc @ N3 ) ) @ ( X4 @ N3 ) ) ) ) ) ).

% monoseq_Suc
thf(fact_8747_monoseq__Suc,axiom,
    ( topolo3100542954746470799et_int
    = ( ^ [X4: nat > set_int] :
          ( ! [N3: nat] : ( ord_less_eq_set_int @ ( X4 @ N3 ) @ ( X4 @ ( suc @ N3 ) ) )
          | ! [N3: nat] : ( ord_less_eq_set_int @ ( X4 @ ( suc @ N3 ) ) @ ( X4 @ N3 ) ) ) ) ) ).

% monoseq_Suc
thf(fact_8748_monoseq__Suc,axiom,
    ( topolo4267028734544971653eq_rat
    = ( ^ [X4: nat > rat] :
          ( ! [N3: nat] : ( ord_less_eq_rat @ ( X4 @ N3 ) @ ( X4 @ ( suc @ N3 ) ) )
          | ! [N3: nat] : ( ord_less_eq_rat @ ( X4 @ ( suc @ N3 ) ) @ ( X4 @ N3 ) ) ) ) ) ).

% monoseq_Suc
thf(fact_8749_monoseq__Suc,axiom,
    ( topolo1459490580787246023eq_num
    = ( ^ [X4: nat > num] :
          ( ! [N3: nat] : ( ord_less_eq_num @ ( X4 @ N3 ) @ ( X4 @ ( suc @ N3 ) ) )
          | ! [N3: nat] : ( ord_less_eq_num @ ( X4 @ ( suc @ N3 ) ) @ ( X4 @ N3 ) ) ) ) ) ).

% monoseq_Suc
thf(fact_8750_monoseq__Suc,axiom,
    ( topolo4902158794631467389eq_nat
    = ( ^ [X4: nat > nat] :
          ( ! [N3: nat] : ( ord_less_eq_nat @ ( X4 @ N3 ) @ ( X4 @ ( suc @ N3 ) ) )
          | ! [N3: nat] : ( ord_less_eq_nat @ ( X4 @ ( suc @ N3 ) ) @ ( X4 @ N3 ) ) ) ) ) ).

% monoseq_Suc
thf(fact_8751_monoseq__Suc,axiom,
    ( topolo4899668324122417113eq_int
    = ( ^ [X4: nat > int] :
          ( ! [N3: nat] : ( ord_less_eq_int @ ( X4 @ N3 ) @ ( X4 @ ( suc @ N3 ) ) )
          | ! [N3: nat] : ( ord_less_eq_int @ ( X4 @ ( suc @ N3 ) ) @ ( X4 @ N3 ) ) ) ) ) ).

% monoseq_Suc
thf(fact_8752_gbinomial__partial__row__sum,axiom,
    ! [A: complex,M: nat] :
      ( ( groups2073611262835488442omplex
        @ ^ [K3: nat] : ( times_times_complex @ ( gbinomial_complex @ A @ K3 ) @ ( minus_minus_complex @ ( divide1717551699836669952omplex @ A @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) @ ( semiri8010041392384452111omplex @ K3 ) ) )
        @ ( set_ord_atMost_nat @ M ) )
      = ( times_times_complex @ ( divide1717551699836669952omplex @ ( plus_plus_complex @ ( semiri8010041392384452111omplex @ M ) @ one_one_complex ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) @ ( gbinomial_complex @ A @ ( plus_plus_nat @ M @ one_one_nat ) ) ) ) ).

% gbinomial_partial_row_sum
thf(fact_8753_gbinomial__partial__row__sum,axiom,
    ! [A: rat,M: nat] :
      ( ( groups2906978787729119204at_rat
        @ ^ [K3: nat] : ( times_times_rat @ ( gbinomial_rat @ A @ K3 ) @ ( minus_minus_rat @ ( divide_divide_rat @ A @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) @ ( semiri681578069525770553at_rat @ K3 ) ) )
        @ ( set_ord_atMost_nat @ M ) )
      = ( times_times_rat @ ( divide_divide_rat @ ( plus_plus_rat @ ( semiri681578069525770553at_rat @ M ) @ one_one_rat ) @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) @ ( gbinomial_rat @ A @ ( plus_plus_nat @ M @ one_one_nat ) ) ) ) ).

% gbinomial_partial_row_sum
thf(fact_8754_gbinomial__partial__row__sum,axiom,
    ! [A: real,M: nat] :
      ( ( groups6591440286371151544t_real
        @ ^ [K3: nat] : ( times_times_real @ ( gbinomial_real @ A @ K3 ) @ ( minus_minus_real @ ( divide_divide_real @ A @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( semiri5074537144036343181t_real @ K3 ) ) )
        @ ( set_ord_atMost_nat @ M ) )
      = ( times_times_real @ ( divide_divide_real @ ( plus_plus_real @ ( semiri5074537144036343181t_real @ M ) @ one_one_real ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( gbinomial_real @ A @ ( plus_plus_nat @ M @ one_one_nat ) ) ) ) ).

% gbinomial_partial_row_sum
thf(fact_8755_gbinomial__r__part__sum,axiom,
    ! [M: nat] :
      ( ( groups2073611262835488442omplex @ ( gbinomial_complex @ ( plus_plus_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( semiri8010041392384452111omplex @ M ) ) @ one_one_complex ) ) @ ( set_ord_atMost_nat @ M ) )
      = ( power_power_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) ) ).

% gbinomial_r_part_sum
thf(fact_8756_gbinomial__r__part__sum,axiom,
    ! [M: nat] :
      ( ( groups2906978787729119204at_rat @ ( gbinomial_rat @ ( plus_plus_rat @ ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ ( semiri681578069525770553at_rat @ M ) ) @ one_one_rat ) ) @ ( set_ord_atMost_nat @ M ) )
      = ( power_power_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) ) ).

% gbinomial_r_part_sum
thf(fact_8757_gbinomial__r__part__sum,axiom,
    ! [M: nat] :
      ( ( groups6591440286371151544t_real @ ( gbinomial_real @ ( plus_plus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ M ) ) @ one_one_real ) ) @ ( set_ord_atMost_nat @ M ) )
      = ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) ) ).

% gbinomial_r_part_sum
thf(fact_8758_pochhammer__double,axiom,
    ! [Z: complex,N2: nat] :
      ( ( comm_s2602460028002588243omplex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ Z ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
      = ( times_times_complex @ ( times_times_complex @ ( semiri8010041392384452111omplex @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) @ ( comm_s2602460028002588243omplex @ Z @ N2 ) ) @ ( comm_s2602460028002588243omplex @ ( plus_plus_complex @ Z @ ( divide1717551699836669952omplex @ one_one_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) @ N2 ) ) ) ).

% pochhammer_double
thf(fact_8759_pochhammer__double,axiom,
    ! [Z: rat,N2: nat] :
      ( ( comm_s4028243227959126397er_rat @ ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ Z ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
      = ( times_times_rat @ ( times_times_rat @ ( semiri681578069525770553at_rat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) @ ( comm_s4028243227959126397er_rat @ Z @ N2 ) ) @ ( comm_s4028243227959126397er_rat @ ( plus_plus_rat @ Z @ ( divide_divide_rat @ one_one_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) @ N2 ) ) ) ).

% pochhammer_double
thf(fact_8760_pochhammer__double,axiom,
    ! [Z: real,N2: nat] :
      ( ( comm_s7457072308508201937r_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ Z ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
      = ( times_times_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) @ ( comm_s7457072308508201937r_real @ Z @ N2 ) ) @ ( comm_s7457072308508201937r_real @ ( plus_plus_real @ Z @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ N2 ) ) ) ).

% pochhammer_double
thf(fact_8761_of__nat__code,axiom,
    ( semiri8010041392384452111omplex
    = ( ^ [N3: nat] :
          ( semiri2816024913162550771omplex
          @ ^ [I5: complex] : ( plus_plus_complex @ I5 @ one_one_complex )
          @ N3
          @ zero_zero_complex ) ) ) ).

% of_nat_code
thf(fact_8762_of__nat__code,axiom,
    ( semiri681578069525770553at_rat
    = ( ^ [N3: nat] :
          ( semiri7787848453975740701ux_rat
          @ ^ [I5: rat] : ( plus_plus_rat @ I5 @ one_one_rat )
          @ N3
          @ zero_zero_rat ) ) ) ).

% of_nat_code
thf(fact_8763_of__nat__code,axiom,
    ( semiri1314217659103216013at_int
    = ( ^ [N3: nat] :
          ( semiri8420488043553186161ux_int
          @ ^ [I5: int] : ( plus_plus_int @ I5 @ one_one_int )
          @ N3
          @ zero_zero_int ) ) ) ).

% of_nat_code
thf(fact_8764_of__nat__code,axiom,
    ( semiri5074537144036343181t_real
    = ( ^ [N3: nat] :
          ( semiri7260567687927622513x_real
          @ ^ [I5: real] : ( plus_plus_real @ I5 @ one_one_real )
          @ N3
          @ zero_zero_real ) ) ) ).

% of_nat_code
thf(fact_8765_of__nat__code,axiom,
    ( semiri1316708129612266289at_nat
    = ( ^ [N3: nat] :
          ( semiri8422978514062236437ux_nat
          @ ^ [I5: nat] : ( plus_plus_nat @ I5 @ one_one_nat )
          @ N3
          @ zero_zero_nat ) ) ) ).

% of_nat_code
thf(fact_8766_of__nat__code,axiom,
    ( semiri4939895301339042750nteger
    = ( ^ [N3: nat] :
          ( semiri4055485073559036834nteger
          @ ^ [I5: code_integer] : ( plus_p5714425477246183910nteger @ I5 @ one_one_Code_integer )
          @ N3
          @ zero_z3403309356797280102nteger ) ) ) ).

% of_nat_code
thf(fact_8767_gchoose__row__sum__weighted,axiom,
    ! [R2: complex,M: nat] :
      ( ( groups2073611262835488442omplex
        @ ^ [K3: nat] : ( times_times_complex @ ( gbinomial_complex @ R2 @ K3 ) @ ( minus_minus_complex @ ( divide1717551699836669952omplex @ R2 @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) @ ( semiri8010041392384452111omplex @ K3 ) ) )
        @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ M ) )
      = ( times_times_complex @ ( divide1717551699836669952omplex @ ( semiri8010041392384452111omplex @ ( suc @ M ) ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) @ ( gbinomial_complex @ R2 @ ( suc @ M ) ) ) ) ).

% gchoose_row_sum_weighted
thf(fact_8768_gchoose__row__sum__weighted,axiom,
    ! [R2: rat,M: nat] :
      ( ( groups2906978787729119204at_rat
        @ ^ [K3: nat] : ( times_times_rat @ ( gbinomial_rat @ R2 @ K3 ) @ ( minus_minus_rat @ ( divide_divide_rat @ R2 @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) @ ( semiri681578069525770553at_rat @ K3 ) ) )
        @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ M ) )
      = ( times_times_rat @ ( divide_divide_rat @ ( semiri681578069525770553at_rat @ ( suc @ M ) ) @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) @ ( gbinomial_rat @ R2 @ ( suc @ M ) ) ) ) ).

% gchoose_row_sum_weighted
thf(fact_8769_gchoose__row__sum__weighted,axiom,
    ! [R2: real,M: nat] :
      ( ( groups6591440286371151544t_real
        @ ^ [K3: nat] : ( times_times_real @ ( gbinomial_real @ R2 @ K3 ) @ ( minus_minus_real @ ( divide_divide_real @ R2 @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( semiri5074537144036343181t_real @ K3 ) ) )
        @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ M ) )
      = ( times_times_real @ ( divide_divide_real @ ( semiri5074537144036343181t_real @ ( suc @ M ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( gbinomial_real @ R2 @ ( suc @ M ) ) ) ) ).

% gchoose_row_sum_weighted
thf(fact_8770_of__nat__id,axiom,
    ( semiri1316708129612266289at_nat
    = ( ^ [N3: nat] : N3 ) ) ).

% of_nat_id
thf(fact_8771_gbinomial__0_I2_J,axiom,
    ! [K: nat] :
      ( ( gbinomial_complex @ zero_zero_complex @ ( suc @ K ) )
      = zero_zero_complex ) ).

% gbinomial_0(2)
thf(fact_8772_gbinomial__0_I2_J,axiom,
    ! [K: nat] :
      ( ( gbinomial_real @ zero_zero_real @ ( suc @ K ) )
      = zero_zero_real ) ).

% gbinomial_0(2)
thf(fact_8773_gbinomial__0_I2_J,axiom,
    ! [K: nat] :
      ( ( gbinomial_rat @ zero_zero_rat @ ( suc @ K ) )
      = zero_zero_rat ) ).

% gbinomial_0(2)
thf(fact_8774_gbinomial__0_I2_J,axiom,
    ! [K: nat] :
      ( ( gbinomial_nat @ zero_zero_nat @ ( suc @ K ) )
      = zero_zero_nat ) ).

% gbinomial_0(2)
thf(fact_8775_gbinomial__0_I2_J,axiom,
    ! [K: nat] :
      ( ( gbinomial_int @ zero_zero_int @ ( suc @ K ) )
      = zero_zero_int ) ).

% gbinomial_0(2)
thf(fact_8776_gbinomial__0_I1_J,axiom,
    ! [A: complex] :
      ( ( gbinomial_complex @ A @ zero_zero_nat )
      = one_one_complex ) ).

% gbinomial_0(1)
thf(fact_8777_gbinomial__0_I1_J,axiom,
    ! [A: real] :
      ( ( gbinomial_real @ A @ zero_zero_nat )
      = one_one_real ) ).

% gbinomial_0(1)
thf(fact_8778_gbinomial__0_I1_J,axiom,
    ! [A: rat] :
      ( ( gbinomial_rat @ A @ zero_zero_nat )
      = one_one_rat ) ).

% gbinomial_0(1)
thf(fact_8779_gbinomial__0_I1_J,axiom,
    ! [A: nat] :
      ( ( gbinomial_nat @ A @ zero_zero_nat )
      = one_one_nat ) ).

% gbinomial_0(1)
thf(fact_8780_gbinomial__0_I1_J,axiom,
    ! [A: int] :
      ( ( gbinomial_int @ A @ zero_zero_nat )
      = one_one_int ) ).

% gbinomial_0(1)
thf(fact_8781_pochhammer__0,axiom,
    ! [A: complex] :
      ( ( comm_s2602460028002588243omplex @ A @ zero_zero_nat )
      = one_one_complex ) ).

% pochhammer_0
thf(fact_8782_pochhammer__0,axiom,
    ! [A: real] :
      ( ( comm_s7457072308508201937r_real @ A @ zero_zero_nat )
      = one_one_real ) ).

% pochhammer_0
thf(fact_8783_pochhammer__0,axiom,
    ! [A: rat] :
      ( ( comm_s4028243227959126397er_rat @ A @ zero_zero_nat )
      = one_one_rat ) ).

% pochhammer_0
thf(fact_8784_pochhammer__0,axiom,
    ! [A: nat] :
      ( ( comm_s4663373288045622133er_nat @ A @ zero_zero_nat )
      = one_one_nat ) ).

% pochhammer_0
thf(fact_8785_pochhammer__0,axiom,
    ! [A: int] :
      ( ( comm_s4660882817536571857er_int @ A @ zero_zero_nat )
      = one_one_int ) ).

% pochhammer_0
thf(fact_8786_pochhammer__pos,axiom,
    ! [X: real,N2: nat] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ord_less_real @ zero_zero_real @ ( comm_s7457072308508201937r_real @ X @ N2 ) ) ) ).

% pochhammer_pos
thf(fact_8787_pochhammer__pos,axiom,
    ! [X: rat,N2: nat] :
      ( ( ord_less_rat @ zero_zero_rat @ X )
     => ( ord_less_rat @ zero_zero_rat @ ( comm_s4028243227959126397er_rat @ X @ N2 ) ) ) ).

% pochhammer_pos
thf(fact_8788_pochhammer__pos,axiom,
    ! [X: nat,N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ X )
     => ( ord_less_nat @ zero_zero_nat @ ( comm_s4663373288045622133er_nat @ X @ N2 ) ) ) ).

% pochhammer_pos
thf(fact_8789_pochhammer__pos,axiom,
    ! [X: int,N2: nat] :
      ( ( ord_less_int @ zero_zero_int @ X )
     => ( ord_less_int @ zero_zero_int @ ( comm_s4660882817536571857er_int @ X @ N2 ) ) ) ).

% pochhammer_pos
thf(fact_8790_pochhammer__neq__0__mono,axiom,
    ! [A: complex,M: nat,N2: nat] :
      ( ( ( comm_s2602460028002588243omplex @ A @ M )
       != zero_zero_complex )
     => ( ( ord_less_eq_nat @ N2 @ M )
       => ( ( comm_s2602460028002588243omplex @ A @ N2 )
         != zero_zero_complex ) ) ) ).

% pochhammer_neq_0_mono
thf(fact_8791_pochhammer__neq__0__mono,axiom,
    ! [A: real,M: nat,N2: nat] :
      ( ( ( comm_s7457072308508201937r_real @ A @ M )
       != zero_zero_real )
     => ( ( ord_less_eq_nat @ N2 @ M )
       => ( ( comm_s7457072308508201937r_real @ A @ N2 )
         != zero_zero_real ) ) ) ).

% pochhammer_neq_0_mono
thf(fact_8792_pochhammer__neq__0__mono,axiom,
    ! [A: rat,M: nat,N2: nat] :
      ( ( ( comm_s4028243227959126397er_rat @ A @ M )
       != zero_zero_rat )
     => ( ( ord_less_eq_nat @ N2 @ M )
       => ( ( comm_s4028243227959126397er_rat @ A @ N2 )
         != zero_zero_rat ) ) ) ).

% pochhammer_neq_0_mono
thf(fact_8793_pochhammer__eq__0__mono,axiom,
    ! [A: complex,N2: nat,M: nat] :
      ( ( ( comm_s2602460028002588243omplex @ A @ N2 )
        = zero_zero_complex )
     => ( ( ord_less_eq_nat @ N2 @ M )
       => ( ( comm_s2602460028002588243omplex @ A @ M )
          = zero_zero_complex ) ) ) ).

% pochhammer_eq_0_mono
thf(fact_8794_pochhammer__eq__0__mono,axiom,
    ! [A: real,N2: nat,M: nat] :
      ( ( ( comm_s7457072308508201937r_real @ A @ N2 )
        = zero_zero_real )
     => ( ( ord_less_eq_nat @ N2 @ M )
       => ( ( comm_s7457072308508201937r_real @ A @ M )
          = zero_zero_real ) ) ) ).

% pochhammer_eq_0_mono
thf(fact_8795_pochhammer__eq__0__mono,axiom,
    ! [A: rat,N2: nat,M: nat] :
      ( ( ( comm_s4028243227959126397er_rat @ A @ N2 )
        = zero_zero_rat )
     => ( ( ord_less_eq_nat @ N2 @ M )
       => ( ( comm_s4028243227959126397er_rat @ A @ M )
          = zero_zero_rat ) ) ) ).

% pochhammer_eq_0_mono
thf(fact_8796_pochhammer__fact,axiom,
    ( semiri5044797733671781792omplex
    = ( comm_s2602460028002588243omplex @ one_one_complex ) ) ).

% pochhammer_fact
thf(fact_8797_pochhammer__fact,axiom,
    ( semiri773545260158071498ct_rat
    = ( comm_s4028243227959126397er_rat @ one_one_rat ) ) ).

% pochhammer_fact
thf(fact_8798_pochhammer__fact,axiom,
    ( semiri1406184849735516958ct_int
    = ( comm_s4660882817536571857er_int @ one_one_int ) ) ).

% pochhammer_fact
thf(fact_8799_pochhammer__fact,axiom,
    ( semiri2265585572941072030t_real
    = ( comm_s7457072308508201937r_real @ one_one_real ) ) ).

% pochhammer_fact
thf(fact_8800_pochhammer__fact,axiom,
    ( semiri1408675320244567234ct_nat
    = ( comm_s4663373288045622133er_nat @ one_one_nat ) ) ).

% pochhammer_fact
thf(fact_8801_gbinomial__pochhammer,axiom,
    ( gbinomial_complex
    = ( ^ [A4: complex,K3: nat] : ( divide1717551699836669952omplex @ ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ K3 ) @ ( comm_s2602460028002588243omplex @ ( uminus1482373934393186551omplex @ A4 ) @ K3 ) ) @ ( semiri5044797733671781792omplex @ K3 ) ) ) ) ).

% gbinomial_pochhammer
thf(fact_8802_gbinomial__pochhammer,axiom,
    ( gbinomial_rat
    = ( ^ [A4: rat,K3: nat] : ( divide_divide_rat @ ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ K3 ) @ ( comm_s4028243227959126397er_rat @ ( uminus_uminus_rat @ A4 ) @ K3 ) ) @ ( semiri773545260158071498ct_rat @ K3 ) ) ) ) ).

% gbinomial_pochhammer
thf(fact_8803_gbinomial__pochhammer,axiom,
    ( gbinomial_real
    = ( ^ [A4: real,K3: nat] : ( divide_divide_real @ ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ K3 ) @ ( comm_s7457072308508201937r_real @ ( uminus_uminus_real @ A4 ) @ K3 ) ) @ ( semiri2265585572941072030t_real @ K3 ) ) ) ) ).

% gbinomial_pochhammer
thf(fact_8804_gbinomial__pochhammer_H,axiom,
    ( gbinomial_complex
    = ( ^ [A4: complex,K3: nat] : ( divide1717551699836669952omplex @ ( comm_s2602460028002588243omplex @ ( plus_plus_complex @ ( minus_minus_complex @ A4 @ ( semiri8010041392384452111omplex @ K3 ) ) @ one_one_complex ) @ K3 ) @ ( semiri5044797733671781792omplex @ K3 ) ) ) ) ).

% gbinomial_pochhammer'
thf(fact_8805_gbinomial__pochhammer_H,axiom,
    ( gbinomial_rat
    = ( ^ [A4: rat,K3: nat] : ( divide_divide_rat @ ( comm_s4028243227959126397er_rat @ ( plus_plus_rat @ ( minus_minus_rat @ A4 @ ( semiri681578069525770553at_rat @ K3 ) ) @ one_one_rat ) @ K3 ) @ ( semiri773545260158071498ct_rat @ K3 ) ) ) ) ).

% gbinomial_pochhammer'
thf(fact_8806_gbinomial__pochhammer_H,axiom,
    ( gbinomial_real
    = ( ^ [A4: real,K3: nat] : ( divide_divide_real @ ( comm_s7457072308508201937r_real @ ( plus_plus_real @ ( minus_minus_real @ A4 @ ( semiri5074537144036343181t_real @ K3 ) ) @ one_one_real ) @ K3 ) @ ( semiri2265585572941072030t_real @ K3 ) ) ) ) ).

% gbinomial_pochhammer'
thf(fact_8807_gbinomial__Suc__Suc,axiom,
    ! [A: complex,K: nat] :
      ( ( gbinomial_complex @ ( plus_plus_complex @ A @ one_one_complex ) @ ( suc @ K ) )
      = ( plus_plus_complex @ ( gbinomial_complex @ A @ K ) @ ( gbinomial_complex @ A @ ( suc @ K ) ) ) ) ).

% gbinomial_Suc_Suc
thf(fact_8808_gbinomial__Suc__Suc,axiom,
    ! [A: real,K: nat] :
      ( ( gbinomial_real @ ( plus_plus_real @ A @ one_one_real ) @ ( suc @ K ) )
      = ( plus_plus_real @ ( gbinomial_real @ A @ K ) @ ( gbinomial_real @ A @ ( suc @ K ) ) ) ) ).

% gbinomial_Suc_Suc
thf(fact_8809_gbinomial__Suc__Suc,axiom,
    ! [A: rat,K: nat] :
      ( ( gbinomial_rat @ ( plus_plus_rat @ A @ one_one_rat ) @ ( suc @ K ) )
      = ( plus_plus_rat @ ( gbinomial_rat @ A @ K ) @ ( gbinomial_rat @ A @ ( suc @ K ) ) ) ) ).

% gbinomial_Suc_Suc
thf(fact_8810_gbinomial__of__nat__symmetric,axiom,
    ! [K: nat,N2: nat] :
      ( ( ord_less_eq_nat @ K @ N2 )
     => ( ( gbinomial_real @ ( semiri5074537144036343181t_real @ N2 ) @ K )
        = ( gbinomial_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( minus_minus_nat @ N2 @ K ) ) ) ) ).

% gbinomial_of_nat_symmetric
thf(fact_8811_pochhammer__nonneg,axiom,
    ! [X: real,N2: nat] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ord_less_eq_real @ zero_zero_real @ ( comm_s7457072308508201937r_real @ X @ N2 ) ) ) ).

% pochhammer_nonneg
thf(fact_8812_pochhammer__nonneg,axiom,
    ! [X: rat,N2: nat] :
      ( ( ord_less_rat @ zero_zero_rat @ X )
     => ( ord_less_eq_rat @ zero_zero_rat @ ( comm_s4028243227959126397er_rat @ X @ N2 ) ) ) ).

% pochhammer_nonneg
thf(fact_8813_pochhammer__nonneg,axiom,
    ! [X: nat,N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ X )
     => ( ord_less_eq_nat @ zero_zero_nat @ ( comm_s4663373288045622133er_nat @ X @ N2 ) ) ) ).

% pochhammer_nonneg
thf(fact_8814_pochhammer__nonneg,axiom,
    ! [X: int,N2: nat] :
      ( ( ord_less_int @ zero_zero_int @ X )
     => ( ord_less_eq_int @ zero_zero_int @ ( comm_s4660882817536571857er_int @ X @ N2 ) ) ) ).

% pochhammer_nonneg
thf(fact_8815_pochhammer__0__left,axiom,
    ! [N2: nat] :
      ( ( ( N2 = zero_zero_nat )
       => ( ( comm_s2602460028002588243omplex @ zero_zero_complex @ N2 )
          = one_one_complex ) )
      & ( ( N2 != zero_zero_nat )
       => ( ( comm_s2602460028002588243omplex @ zero_zero_complex @ N2 )
          = zero_zero_complex ) ) ) ).

% pochhammer_0_left
thf(fact_8816_pochhammer__0__left,axiom,
    ! [N2: nat] :
      ( ( ( N2 = zero_zero_nat )
       => ( ( comm_s7457072308508201937r_real @ zero_zero_real @ N2 )
          = one_one_real ) )
      & ( ( N2 != zero_zero_nat )
       => ( ( comm_s7457072308508201937r_real @ zero_zero_real @ N2 )
          = zero_zero_real ) ) ) ).

% pochhammer_0_left
thf(fact_8817_pochhammer__0__left,axiom,
    ! [N2: nat] :
      ( ( ( N2 = zero_zero_nat )
       => ( ( comm_s4028243227959126397er_rat @ zero_zero_rat @ N2 )
          = one_one_rat ) )
      & ( ( N2 != zero_zero_nat )
       => ( ( comm_s4028243227959126397er_rat @ zero_zero_rat @ N2 )
          = zero_zero_rat ) ) ) ).

% pochhammer_0_left
thf(fact_8818_pochhammer__0__left,axiom,
    ! [N2: nat] :
      ( ( ( N2 = zero_zero_nat )
       => ( ( comm_s4663373288045622133er_nat @ zero_zero_nat @ N2 )
          = one_one_nat ) )
      & ( ( N2 != zero_zero_nat )
       => ( ( comm_s4663373288045622133er_nat @ zero_zero_nat @ N2 )
          = zero_zero_nat ) ) ) ).

% pochhammer_0_left
thf(fact_8819_pochhammer__0__left,axiom,
    ! [N2: nat] :
      ( ( ( N2 = zero_zero_nat )
       => ( ( comm_s4660882817536571857er_int @ zero_zero_int @ N2 )
          = one_one_int ) )
      & ( ( N2 != zero_zero_nat )
       => ( ( comm_s4660882817536571857er_int @ zero_zero_int @ N2 )
          = zero_zero_int ) ) ) ).

% pochhammer_0_left
thf(fact_8820_gbinomial__addition__formula,axiom,
    ! [A: complex,K: nat] :
      ( ( gbinomial_complex @ A @ ( suc @ K ) )
      = ( plus_plus_complex @ ( gbinomial_complex @ ( minus_minus_complex @ A @ one_one_complex ) @ ( suc @ K ) ) @ ( gbinomial_complex @ ( minus_minus_complex @ A @ one_one_complex ) @ K ) ) ) ).

% gbinomial_addition_formula
thf(fact_8821_gbinomial__addition__formula,axiom,
    ! [A: real,K: nat] :
      ( ( gbinomial_real @ A @ ( suc @ K ) )
      = ( plus_plus_real @ ( gbinomial_real @ ( minus_minus_real @ A @ one_one_real ) @ ( suc @ K ) ) @ ( gbinomial_real @ ( minus_minus_real @ A @ one_one_real ) @ K ) ) ) ).

% gbinomial_addition_formula
thf(fact_8822_gbinomial__addition__formula,axiom,
    ! [A: rat,K: nat] :
      ( ( gbinomial_rat @ A @ ( suc @ K ) )
      = ( plus_plus_rat @ ( gbinomial_rat @ ( minus_minus_rat @ A @ one_one_rat ) @ ( suc @ K ) ) @ ( gbinomial_rat @ ( minus_minus_rat @ A @ one_one_rat ) @ K ) ) ) ).

% gbinomial_addition_formula
thf(fact_8823_gbinomial__ge__n__over__k__pow__k,axiom,
    ! [K: nat,A: real] :
      ( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ K ) @ A )
     => ( ord_less_eq_real @ ( power_power_real @ ( divide_divide_real @ A @ ( semiri5074537144036343181t_real @ K ) ) @ K ) @ ( gbinomial_real @ A @ K ) ) ) ).

% gbinomial_ge_n_over_k_pow_k
thf(fact_8824_gbinomial__ge__n__over__k__pow__k,axiom,
    ! [K: nat,A: rat] :
      ( ( ord_less_eq_rat @ ( semiri681578069525770553at_rat @ K ) @ A )
     => ( ord_less_eq_rat @ ( power_power_rat @ ( divide_divide_rat @ A @ ( semiri681578069525770553at_rat @ K ) ) @ K ) @ ( gbinomial_rat @ A @ K ) ) ) ).

% gbinomial_ge_n_over_k_pow_k
thf(fact_8825_gbinomial__absorb__comp,axiom,
    ! [A: complex,K: nat] :
      ( ( times_times_complex @ ( minus_minus_complex @ A @ ( semiri8010041392384452111omplex @ K ) ) @ ( gbinomial_complex @ A @ K ) )
      = ( times_times_complex @ A @ ( gbinomial_complex @ ( minus_minus_complex @ A @ one_one_complex ) @ K ) ) ) ).

% gbinomial_absorb_comp
thf(fact_8826_gbinomial__absorb__comp,axiom,
    ! [A: rat,K: nat] :
      ( ( times_times_rat @ ( minus_minus_rat @ A @ ( semiri681578069525770553at_rat @ K ) ) @ ( gbinomial_rat @ A @ K ) )
      = ( times_times_rat @ A @ ( gbinomial_rat @ ( minus_minus_rat @ A @ one_one_rat ) @ K ) ) ) ).

% gbinomial_absorb_comp
thf(fact_8827_gbinomial__absorb__comp,axiom,
    ! [A: real,K: nat] :
      ( ( times_times_real @ ( minus_minus_real @ A @ ( semiri5074537144036343181t_real @ K ) ) @ ( gbinomial_real @ A @ K ) )
      = ( times_times_real @ A @ ( gbinomial_real @ ( minus_minus_real @ A @ one_one_real ) @ K ) ) ) ).

% gbinomial_absorb_comp
thf(fact_8828_gbinomial__mult__1,axiom,
    ! [A: rat,K: nat] :
      ( ( times_times_rat @ A @ ( gbinomial_rat @ A @ K ) )
      = ( plus_plus_rat @ ( times_times_rat @ ( semiri681578069525770553at_rat @ K ) @ ( gbinomial_rat @ A @ K ) ) @ ( times_times_rat @ ( semiri681578069525770553at_rat @ ( suc @ K ) ) @ ( gbinomial_rat @ A @ ( suc @ K ) ) ) ) ) ).

% gbinomial_mult_1
thf(fact_8829_gbinomial__mult__1,axiom,
    ! [A: real,K: nat] :
      ( ( times_times_real @ A @ ( gbinomial_real @ A @ K ) )
      = ( plus_plus_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ K ) @ ( gbinomial_real @ A @ K ) ) @ ( times_times_real @ ( semiri5074537144036343181t_real @ ( suc @ K ) ) @ ( gbinomial_real @ A @ ( suc @ K ) ) ) ) ) ).

% gbinomial_mult_1
thf(fact_8830_gbinomial__mult__1_H,axiom,
    ! [A: rat,K: nat] :
      ( ( times_times_rat @ ( gbinomial_rat @ A @ K ) @ A )
      = ( plus_plus_rat @ ( times_times_rat @ ( semiri681578069525770553at_rat @ K ) @ ( gbinomial_rat @ A @ K ) ) @ ( times_times_rat @ ( semiri681578069525770553at_rat @ ( suc @ K ) ) @ ( gbinomial_rat @ A @ ( suc @ K ) ) ) ) ) ).

% gbinomial_mult_1'
thf(fact_8831_gbinomial__mult__1_H,axiom,
    ! [A: real,K: nat] :
      ( ( times_times_real @ ( gbinomial_real @ A @ K ) @ A )
      = ( plus_plus_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ K ) @ ( gbinomial_real @ A @ K ) ) @ ( times_times_real @ ( semiri5074537144036343181t_real @ ( suc @ K ) ) @ ( gbinomial_real @ A @ ( suc @ K ) ) ) ) ) ).

% gbinomial_mult_1'
thf(fact_8832_pochhammer__rec,axiom,
    ! [A: complex,N2: nat] :
      ( ( comm_s2602460028002588243omplex @ A @ ( suc @ N2 ) )
      = ( times_times_complex @ A @ ( comm_s2602460028002588243omplex @ ( plus_plus_complex @ A @ one_one_complex ) @ N2 ) ) ) ).

% pochhammer_rec
thf(fact_8833_pochhammer__rec,axiom,
    ! [A: real,N2: nat] :
      ( ( comm_s7457072308508201937r_real @ A @ ( suc @ N2 ) )
      = ( times_times_real @ A @ ( comm_s7457072308508201937r_real @ ( plus_plus_real @ A @ one_one_real ) @ N2 ) ) ) ).

% pochhammer_rec
thf(fact_8834_pochhammer__rec,axiom,
    ! [A: rat,N2: nat] :
      ( ( comm_s4028243227959126397er_rat @ A @ ( suc @ N2 ) )
      = ( times_times_rat @ A @ ( comm_s4028243227959126397er_rat @ ( plus_plus_rat @ A @ one_one_rat ) @ N2 ) ) ) ).

% pochhammer_rec
thf(fact_8835_pochhammer__rec,axiom,
    ! [A: nat,N2: nat] :
      ( ( comm_s4663373288045622133er_nat @ A @ ( suc @ N2 ) )
      = ( times_times_nat @ A @ ( comm_s4663373288045622133er_nat @ ( plus_plus_nat @ A @ one_one_nat ) @ N2 ) ) ) ).

% pochhammer_rec
thf(fact_8836_pochhammer__rec,axiom,
    ! [A: int,N2: nat] :
      ( ( comm_s4660882817536571857er_int @ A @ ( suc @ N2 ) )
      = ( times_times_int @ A @ ( comm_s4660882817536571857er_int @ ( plus_plus_int @ A @ one_one_int ) @ N2 ) ) ) ).

% pochhammer_rec
thf(fact_8837_pochhammer__Suc,axiom,
    ! [A: rat,N2: nat] :
      ( ( comm_s4028243227959126397er_rat @ A @ ( suc @ N2 ) )
      = ( times_times_rat @ ( comm_s4028243227959126397er_rat @ A @ N2 ) @ ( plus_plus_rat @ A @ ( semiri681578069525770553at_rat @ N2 ) ) ) ) ).

% pochhammer_Suc
thf(fact_8838_pochhammer__Suc,axiom,
    ! [A: int,N2: nat] :
      ( ( comm_s4660882817536571857er_int @ A @ ( suc @ N2 ) )
      = ( times_times_int @ ( comm_s4660882817536571857er_int @ A @ N2 ) @ ( plus_plus_int @ A @ ( semiri1314217659103216013at_int @ N2 ) ) ) ) ).

% pochhammer_Suc
thf(fact_8839_pochhammer__Suc,axiom,
    ! [A: real,N2: nat] :
      ( ( comm_s7457072308508201937r_real @ A @ ( suc @ N2 ) )
      = ( times_times_real @ ( comm_s7457072308508201937r_real @ A @ N2 ) @ ( plus_plus_real @ A @ ( semiri5074537144036343181t_real @ N2 ) ) ) ) ).

% pochhammer_Suc
thf(fact_8840_pochhammer__Suc,axiom,
    ! [A: nat,N2: nat] :
      ( ( comm_s4663373288045622133er_nat @ A @ ( suc @ N2 ) )
      = ( times_times_nat @ ( comm_s4663373288045622133er_nat @ A @ N2 ) @ ( plus_plus_nat @ A @ ( semiri1316708129612266289at_nat @ N2 ) ) ) ) ).

% pochhammer_Suc
thf(fact_8841_pochhammer__Suc,axiom,
    ! [A: code_integer,N2: nat] :
      ( ( comm_s8582702949713902594nteger @ A @ ( suc @ N2 ) )
      = ( times_3573771949741848930nteger @ ( comm_s8582702949713902594nteger @ A @ N2 ) @ ( plus_p5714425477246183910nteger @ A @ ( semiri4939895301339042750nteger @ N2 ) ) ) ) ).

% pochhammer_Suc
thf(fact_8842_pochhammer__rec_H,axiom,
    ! [Z: rat,N2: nat] :
      ( ( comm_s4028243227959126397er_rat @ Z @ ( suc @ N2 ) )
      = ( times_times_rat @ ( plus_plus_rat @ Z @ ( semiri681578069525770553at_rat @ N2 ) ) @ ( comm_s4028243227959126397er_rat @ Z @ N2 ) ) ) ).

% pochhammer_rec'
thf(fact_8843_pochhammer__rec_H,axiom,
    ! [Z: int,N2: nat] :
      ( ( comm_s4660882817536571857er_int @ Z @ ( suc @ N2 ) )
      = ( times_times_int @ ( plus_plus_int @ Z @ ( semiri1314217659103216013at_int @ N2 ) ) @ ( comm_s4660882817536571857er_int @ Z @ N2 ) ) ) ).

% pochhammer_rec'
thf(fact_8844_pochhammer__rec_H,axiom,
    ! [Z: real,N2: nat] :
      ( ( comm_s7457072308508201937r_real @ Z @ ( suc @ N2 ) )
      = ( times_times_real @ ( plus_plus_real @ Z @ ( semiri5074537144036343181t_real @ N2 ) ) @ ( comm_s7457072308508201937r_real @ Z @ N2 ) ) ) ).

% pochhammer_rec'
thf(fact_8845_pochhammer__rec_H,axiom,
    ! [Z: nat,N2: nat] :
      ( ( comm_s4663373288045622133er_nat @ Z @ ( suc @ N2 ) )
      = ( times_times_nat @ ( plus_plus_nat @ Z @ ( semiri1316708129612266289at_nat @ N2 ) ) @ ( comm_s4663373288045622133er_nat @ Z @ N2 ) ) ) ).

% pochhammer_rec'
thf(fact_8846_pochhammer__rec_H,axiom,
    ! [Z: code_integer,N2: nat] :
      ( ( comm_s8582702949713902594nteger @ Z @ ( suc @ N2 ) )
      = ( times_3573771949741848930nteger @ ( plus_p5714425477246183910nteger @ Z @ ( semiri4939895301339042750nteger @ N2 ) ) @ ( comm_s8582702949713902594nteger @ Z @ N2 ) ) ) ).

% pochhammer_rec'
thf(fact_8847_pochhammer__of__nat__eq__0__lemma,axiom,
    ! [N2: nat,K: nat] :
      ( ( ord_less_nat @ N2 @ K )
     => ( ( comm_s2602460028002588243omplex @ ( uminus1482373934393186551omplex @ ( semiri8010041392384452111omplex @ N2 ) ) @ K )
        = zero_zero_complex ) ) ).

% pochhammer_of_nat_eq_0_lemma
thf(fact_8848_pochhammer__of__nat__eq__0__lemma,axiom,
    ! [N2: nat,K: nat] :
      ( ( ord_less_nat @ N2 @ K )
     => ( ( comm_s4028243227959126397er_rat @ ( uminus_uminus_rat @ ( semiri681578069525770553at_rat @ N2 ) ) @ K )
        = zero_zero_rat ) ) ).

% pochhammer_of_nat_eq_0_lemma
thf(fact_8849_pochhammer__of__nat__eq__0__lemma,axiom,
    ! [N2: nat,K: nat] :
      ( ( ord_less_nat @ N2 @ K )
     => ( ( comm_s4660882817536571857er_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N2 ) ) @ K )
        = zero_zero_int ) ) ).

% pochhammer_of_nat_eq_0_lemma
thf(fact_8850_pochhammer__of__nat__eq__0__lemma,axiom,
    ! [N2: nat,K: nat] :
      ( ( ord_less_nat @ N2 @ K )
     => ( ( comm_s7457072308508201937r_real @ ( uminus_uminus_real @ ( semiri5074537144036343181t_real @ N2 ) ) @ K )
        = zero_zero_real ) ) ).

% pochhammer_of_nat_eq_0_lemma
thf(fact_8851_pochhammer__of__nat__eq__0__lemma,axiom,
    ! [N2: nat,K: nat] :
      ( ( ord_less_nat @ N2 @ K )
     => ( ( comm_s8582702949713902594nteger @ ( uminus1351360451143612070nteger @ ( semiri4939895301339042750nteger @ N2 ) ) @ K )
        = zero_z3403309356797280102nteger ) ) ).

% pochhammer_of_nat_eq_0_lemma
thf(fact_8852_pochhammer__of__nat__eq__0__iff,axiom,
    ! [N2: nat,K: nat] :
      ( ( ( comm_s2602460028002588243omplex @ ( uminus1482373934393186551omplex @ ( semiri8010041392384452111omplex @ N2 ) ) @ K )
        = zero_zero_complex )
      = ( ord_less_nat @ N2 @ K ) ) ).

% pochhammer_of_nat_eq_0_iff
thf(fact_8853_pochhammer__of__nat__eq__0__iff,axiom,
    ! [N2: nat,K: nat] :
      ( ( ( comm_s4028243227959126397er_rat @ ( uminus_uminus_rat @ ( semiri681578069525770553at_rat @ N2 ) ) @ K )
        = zero_zero_rat )
      = ( ord_less_nat @ N2 @ K ) ) ).

% pochhammer_of_nat_eq_0_iff
thf(fact_8854_pochhammer__of__nat__eq__0__iff,axiom,
    ! [N2: nat,K: nat] :
      ( ( ( comm_s4660882817536571857er_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N2 ) ) @ K )
        = zero_zero_int )
      = ( ord_less_nat @ N2 @ K ) ) ).

% pochhammer_of_nat_eq_0_iff
thf(fact_8855_pochhammer__of__nat__eq__0__iff,axiom,
    ! [N2: nat,K: nat] :
      ( ( ( comm_s7457072308508201937r_real @ ( uminus_uminus_real @ ( semiri5074537144036343181t_real @ N2 ) ) @ K )
        = zero_zero_real )
      = ( ord_less_nat @ N2 @ K ) ) ).

% pochhammer_of_nat_eq_0_iff
thf(fact_8856_pochhammer__of__nat__eq__0__iff,axiom,
    ! [N2: nat,K: nat] :
      ( ( ( comm_s8582702949713902594nteger @ ( uminus1351360451143612070nteger @ ( semiri4939895301339042750nteger @ N2 ) ) @ K )
        = zero_z3403309356797280102nteger )
      = ( ord_less_nat @ N2 @ K ) ) ).

% pochhammer_of_nat_eq_0_iff
thf(fact_8857_pochhammer__eq__0__iff,axiom,
    ! [A: complex,N2: nat] :
      ( ( ( comm_s2602460028002588243omplex @ A @ N2 )
        = zero_zero_complex )
      = ( ? [K3: nat] :
            ( ( ord_less_nat @ K3 @ N2 )
            & ( A
              = ( uminus1482373934393186551omplex @ ( semiri8010041392384452111omplex @ K3 ) ) ) ) ) ) ).

% pochhammer_eq_0_iff
thf(fact_8858_pochhammer__eq__0__iff,axiom,
    ! [A: rat,N2: nat] :
      ( ( ( comm_s4028243227959126397er_rat @ A @ N2 )
        = zero_zero_rat )
      = ( ? [K3: nat] :
            ( ( ord_less_nat @ K3 @ N2 )
            & ( A
              = ( uminus_uminus_rat @ ( semiri681578069525770553at_rat @ K3 ) ) ) ) ) ) ).

% pochhammer_eq_0_iff
thf(fact_8859_pochhammer__eq__0__iff,axiom,
    ! [A: real,N2: nat] :
      ( ( ( comm_s7457072308508201937r_real @ A @ N2 )
        = zero_zero_real )
      = ( ? [K3: nat] :
            ( ( ord_less_nat @ K3 @ N2 )
            & ( A
              = ( uminus_uminus_real @ ( semiri5074537144036343181t_real @ K3 ) ) ) ) ) ) ).

% pochhammer_eq_0_iff
thf(fact_8860_pochhammer__product_H,axiom,
    ! [Z: rat,N2: nat,M: nat] :
      ( ( comm_s4028243227959126397er_rat @ Z @ ( plus_plus_nat @ N2 @ M ) )
      = ( times_times_rat @ ( comm_s4028243227959126397er_rat @ Z @ N2 ) @ ( comm_s4028243227959126397er_rat @ ( plus_plus_rat @ Z @ ( semiri681578069525770553at_rat @ N2 ) ) @ M ) ) ) ).

% pochhammer_product'
thf(fact_8861_pochhammer__product_H,axiom,
    ! [Z: int,N2: nat,M: nat] :
      ( ( comm_s4660882817536571857er_int @ Z @ ( plus_plus_nat @ N2 @ M ) )
      = ( times_times_int @ ( comm_s4660882817536571857er_int @ Z @ N2 ) @ ( comm_s4660882817536571857er_int @ ( plus_plus_int @ Z @ ( semiri1314217659103216013at_int @ N2 ) ) @ M ) ) ) ).

% pochhammer_product'
thf(fact_8862_pochhammer__product_H,axiom,
    ! [Z: real,N2: nat,M: nat] :
      ( ( comm_s7457072308508201937r_real @ Z @ ( plus_plus_nat @ N2 @ M ) )
      = ( times_times_real @ ( comm_s7457072308508201937r_real @ Z @ N2 ) @ ( comm_s7457072308508201937r_real @ ( plus_plus_real @ Z @ ( semiri5074537144036343181t_real @ N2 ) ) @ M ) ) ) ).

% pochhammer_product'
thf(fact_8863_pochhammer__product_H,axiom,
    ! [Z: nat,N2: nat,M: nat] :
      ( ( comm_s4663373288045622133er_nat @ Z @ ( plus_plus_nat @ N2 @ M ) )
      = ( times_times_nat @ ( comm_s4663373288045622133er_nat @ Z @ N2 ) @ ( comm_s4663373288045622133er_nat @ ( plus_plus_nat @ Z @ ( semiri1316708129612266289at_nat @ N2 ) ) @ M ) ) ) ).

% pochhammer_product'
thf(fact_8864_pochhammer__product_H,axiom,
    ! [Z: code_integer,N2: nat,M: nat] :
      ( ( comm_s8582702949713902594nteger @ Z @ ( plus_plus_nat @ N2 @ M ) )
      = ( times_3573771949741848930nteger @ ( comm_s8582702949713902594nteger @ Z @ N2 ) @ ( comm_s8582702949713902594nteger @ ( plus_p5714425477246183910nteger @ Z @ ( semiri4939895301339042750nteger @ N2 ) ) @ M ) ) ) ).

% pochhammer_product'
thf(fact_8865_pochhammer__of__nat__eq__0__lemma_H,axiom,
    ! [K: nat,N2: nat] :
      ( ( ord_less_eq_nat @ K @ N2 )
     => ( ( comm_s2602460028002588243omplex @ ( uminus1482373934393186551omplex @ ( semiri8010041392384452111omplex @ N2 ) ) @ K )
       != zero_zero_complex ) ) ).

% pochhammer_of_nat_eq_0_lemma'
thf(fact_8866_pochhammer__of__nat__eq__0__lemma_H,axiom,
    ! [K: nat,N2: nat] :
      ( ( ord_less_eq_nat @ K @ N2 )
     => ( ( comm_s4028243227959126397er_rat @ ( uminus_uminus_rat @ ( semiri681578069525770553at_rat @ N2 ) ) @ K )
       != zero_zero_rat ) ) ).

% pochhammer_of_nat_eq_0_lemma'
thf(fact_8867_pochhammer__of__nat__eq__0__lemma_H,axiom,
    ! [K: nat,N2: nat] :
      ( ( ord_less_eq_nat @ K @ N2 )
     => ( ( comm_s4660882817536571857er_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N2 ) ) @ K )
       != zero_zero_int ) ) ).

% pochhammer_of_nat_eq_0_lemma'
thf(fact_8868_pochhammer__of__nat__eq__0__lemma_H,axiom,
    ! [K: nat,N2: nat] :
      ( ( ord_less_eq_nat @ K @ N2 )
     => ( ( comm_s7457072308508201937r_real @ ( uminus_uminus_real @ ( semiri5074537144036343181t_real @ N2 ) ) @ K )
       != zero_zero_real ) ) ).

% pochhammer_of_nat_eq_0_lemma'
thf(fact_8869_pochhammer__of__nat__eq__0__lemma_H,axiom,
    ! [K: nat,N2: nat] :
      ( ( ord_less_eq_nat @ K @ N2 )
     => ( ( comm_s8582702949713902594nteger @ ( uminus1351360451143612070nteger @ ( semiri4939895301339042750nteger @ N2 ) ) @ K )
       != zero_z3403309356797280102nteger ) ) ).

% pochhammer_of_nat_eq_0_lemma'
thf(fact_8870_Suc__times__gbinomial,axiom,
    ! [K: nat,A: complex] :
      ( ( times_times_complex @ ( semiri8010041392384452111omplex @ ( suc @ K ) ) @ ( gbinomial_complex @ ( plus_plus_complex @ A @ one_one_complex ) @ ( suc @ K ) ) )
      = ( times_times_complex @ ( plus_plus_complex @ A @ one_one_complex ) @ ( gbinomial_complex @ A @ K ) ) ) ).

% Suc_times_gbinomial
thf(fact_8871_Suc__times__gbinomial,axiom,
    ! [K: nat,A: rat] :
      ( ( times_times_rat @ ( semiri681578069525770553at_rat @ ( suc @ K ) ) @ ( gbinomial_rat @ ( plus_plus_rat @ A @ one_one_rat ) @ ( suc @ K ) ) )
      = ( times_times_rat @ ( plus_plus_rat @ A @ one_one_rat ) @ ( gbinomial_rat @ A @ K ) ) ) ).

% Suc_times_gbinomial
thf(fact_8872_Suc__times__gbinomial,axiom,
    ! [K: nat,A: real] :
      ( ( times_times_real @ ( semiri5074537144036343181t_real @ ( suc @ K ) ) @ ( gbinomial_real @ ( plus_plus_real @ A @ one_one_real ) @ ( suc @ K ) ) )
      = ( times_times_real @ ( plus_plus_real @ A @ one_one_real ) @ ( gbinomial_real @ A @ K ) ) ) ).

% Suc_times_gbinomial
thf(fact_8873_gbinomial__absorption,axiom,
    ! [K: nat,A: complex] :
      ( ( times_times_complex @ ( semiri8010041392384452111omplex @ ( suc @ K ) ) @ ( gbinomial_complex @ A @ ( suc @ K ) ) )
      = ( times_times_complex @ A @ ( gbinomial_complex @ ( minus_minus_complex @ A @ one_one_complex ) @ K ) ) ) ).

% gbinomial_absorption
thf(fact_8874_gbinomial__absorption,axiom,
    ! [K: nat,A: rat] :
      ( ( times_times_rat @ ( semiri681578069525770553at_rat @ ( suc @ K ) ) @ ( gbinomial_rat @ A @ ( suc @ K ) ) )
      = ( times_times_rat @ A @ ( gbinomial_rat @ ( minus_minus_rat @ A @ one_one_rat ) @ K ) ) ) ).

% gbinomial_absorption
thf(fact_8875_gbinomial__absorption,axiom,
    ! [K: nat,A: real] :
      ( ( times_times_real @ ( semiri5074537144036343181t_real @ ( suc @ K ) ) @ ( gbinomial_real @ A @ ( suc @ K ) ) )
      = ( times_times_real @ A @ ( gbinomial_real @ ( minus_minus_real @ A @ one_one_real ) @ K ) ) ) ).

% gbinomial_absorption
thf(fact_8876_gbinomial__trinomial__revision,axiom,
    ! [K: nat,M: nat,A: rat] :
      ( ( ord_less_eq_nat @ K @ M )
     => ( ( times_times_rat @ ( gbinomial_rat @ A @ M ) @ ( gbinomial_rat @ ( semiri681578069525770553at_rat @ M ) @ K ) )
        = ( times_times_rat @ ( gbinomial_rat @ A @ K ) @ ( gbinomial_rat @ ( minus_minus_rat @ A @ ( semiri681578069525770553at_rat @ K ) ) @ ( minus_minus_nat @ M @ K ) ) ) ) ) ).

% gbinomial_trinomial_revision
thf(fact_8877_gbinomial__trinomial__revision,axiom,
    ! [K: nat,M: nat,A: real] :
      ( ( ord_less_eq_nat @ K @ M )
     => ( ( times_times_real @ ( gbinomial_real @ A @ M ) @ ( gbinomial_real @ ( semiri5074537144036343181t_real @ M ) @ K ) )
        = ( times_times_real @ ( gbinomial_real @ A @ K ) @ ( gbinomial_real @ ( minus_minus_real @ A @ ( semiri5074537144036343181t_real @ K ) ) @ ( minus_minus_nat @ M @ K ) ) ) ) ) ).

% gbinomial_trinomial_revision
thf(fact_8878_pochhammer__product,axiom,
    ! [M: nat,N2: nat,Z: rat] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ( comm_s4028243227959126397er_rat @ Z @ N2 )
        = ( times_times_rat @ ( comm_s4028243227959126397er_rat @ Z @ M ) @ ( comm_s4028243227959126397er_rat @ ( plus_plus_rat @ Z @ ( semiri681578069525770553at_rat @ M ) ) @ ( minus_minus_nat @ N2 @ M ) ) ) ) ) ).

% pochhammer_product
thf(fact_8879_pochhammer__product,axiom,
    ! [M: nat,N2: nat,Z: int] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ( comm_s4660882817536571857er_int @ Z @ N2 )
        = ( times_times_int @ ( comm_s4660882817536571857er_int @ Z @ M ) @ ( comm_s4660882817536571857er_int @ ( plus_plus_int @ Z @ ( semiri1314217659103216013at_int @ M ) ) @ ( minus_minus_nat @ N2 @ M ) ) ) ) ) ).

% pochhammer_product
thf(fact_8880_pochhammer__product,axiom,
    ! [M: nat,N2: nat,Z: real] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ( comm_s7457072308508201937r_real @ Z @ N2 )
        = ( times_times_real @ ( comm_s7457072308508201937r_real @ Z @ M ) @ ( comm_s7457072308508201937r_real @ ( plus_plus_real @ Z @ ( semiri5074537144036343181t_real @ M ) ) @ ( minus_minus_nat @ N2 @ M ) ) ) ) ) ).

% pochhammer_product
thf(fact_8881_pochhammer__product,axiom,
    ! [M: nat,N2: nat,Z: nat] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ( comm_s4663373288045622133er_nat @ Z @ N2 )
        = ( times_times_nat @ ( comm_s4663373288045622133er_nat @ Z @ M ) @ ( comm_s4663373288045622133er_nat @ ( plus_plus_nat @ Z @ ( semiri1316708129612266289at_nat @ M ) ) @ ( minus_minus_nat @ N2 @ M ) ) ) ) ) ).

% pochhammer_product
thf(fact_8882_pochhammer__product,axiom,
    ! [M: nat,N2: nat,Z: code_integer] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ( comm_s8582702949713902594nteger @ Z @ N2 )
        = ( times_3573771949741848930nteger @ ( comm_s8582702949713902594nteger @ Z @ M ) @ ( comm_s8582702949713902594nteger @ ( plus_p5714425477246183910nteger @ Z @ ( semiri4939895301339042750nteger @ M ) ) @ ( minus_minus_nat @ N2 @ M ) ) ) ) ) ).

% pochhammer_product
thf(fact_8883_gbinomial__parallel__sum,axiom,
    ! [A: complex,N2: nat] :
      ( ( groups2073611262835488442omplex
        @ ^ [K3: nat] : ( gbinomial_complex @ ( plus_plus_complex @ A @ ( semiri8010041392384452111omplex @ K3 ) ) @ K3 )
        @ ( set_ord_atMost_nat @ N2 ) )
      = ( gbinomial_complex @ ( plus_plus_complex @ ( plus_plus_complex @ A @ ( semiri8010041392384452111omplex @ N2 ) ) @ one_one_complex ) @ N2 ) ) ).

% gbinomial_parallel_sum
thf(fact_8884_gbinomial__parallel__sum,axiom,
    ! [A: rat,N2: nat] :
      ( ( groups2906978787729119204at_rat
        @ ^ [K3: nat] : ( gbinomial_rat @ ( plus_plus_rat @ A @ ( semiri681578069525770553at_rat @ K3 ) ) @ K3 )
        @ ( set_ord_atMost_nat @ N2 ) )
      = ( gbinomial_rat @ ( plus_plus_rat @ ( plus_plus_rat @ A @ ( semiri681578069525770553at_rat @ N2 ) ) @ one_one_rat ) @ N2 ) ) ).

% gbinomial_parallel_sum
thf(fact_8885_gbinomial__parallel__sum,axiom,
    ! [A: real,N2: nat] :
      ( ( groups6591440286371151544t_real
        @ ^ [K3: nat] : ( gbinomial_real @ ( plus_plus_real @ A @ ( semiri5074537144036343181t_real @ K3 ) ) @ K3 )
        @ ( set_ord_atMost_nat @ N2 ) )
      = ( gbinomial_real @ ( plus_plus_real @ ( plus_plus_real @ A @ ( semiri5074537144036343181t_real @ N2 ) ) @ one_one_real ) @ N2 ) ) ).

% gbinomial_parallel_sum
thf(fact_8886_gbinomial__rec,axiom,
    ! [A: complex,K: nat] :
      ( ( gbinomial_complex @ ( plus_plus_complex @ A @ one_one_complex ) @ ( suc @ K ) )
      = ( times_times_complex @ ( gbinomial_complex @ A @ K ) @ ( divide1717551699836669952omplex @ ( plus_plus_complex @ A @ one_one_complex ) @ ( semiri8010041392384452111omplex @ ( suc @ K ) ) ) ) ) ).

% gbinomial_rec
thf(fact_8887_gbinomial__rec,axiom,
    ! [A: rat,K: nat] :
      ( ( gbinomial_rat @ ( plus_plus_rat @ A @ one_one_rat ) @ ( suc @ K ) )
      = ( times_times_rat @ ( gbinomial_rat @ A @ K ) @ ( divide_divide_rat @ ( plus_plus_rat @ A @ one_one_rat ) @ ( semiri681578069525770553at_rat @ ( suc @ K ) ) ) ) ) ).

% gbinomial_rec
thf(fact_8888_gbinomial__rec,axiom,
    ! [A: real,K: nat] :
      ( ( gbinomial_real @ ( plus_plus_real @ A @ one_one_real ) @ ( suc @ K ) )
      = ( times_times_real @ ( gbinomial_real @ A @ K ) @ ( divide_divide_real @ ( plus_plus_real @ A @ one_one_real ) @ ( semiri5074537144036343181t_real @ ( suc @ K ) ) ) ) ) ).

% gbinomial_rec
thf(fact_8889_gbinomial__factors,axiom,
    ! [A: complex,K: nat] :
      ( ( gbinomial_complex @ ( plus_plus_complex @ A @ one_one_complex ) @ ( suc @ K ) )
      = ( times_times_complex @ ( divide1717551699836669952omplex @ ( plus_plus_complex @ A @ one_one_complex ) @ ( semiri8010041392384452111omplex @ ( suc @ K ) ) ) @ ( gbinomial_complex @ A @ K ) ) ) ).

% gbinomial_factors
thf(fact_8890_gbinomial__factors,axiom,
    ! [A: rat,K: nat] :
      ( ( gbinomial_rat @ ( plus_plus_rat @ A @ one_one_rat ) @ ( suc @ K ) )
      = ( times_times_rat @ ( divide_divide_rat @ ( plus_plus_rat @ A @ one_one_rat ) @ ( semiri681578069525770553at_rat @ ( suc @ K ) ) ) @ ( gbinomial_rat @ A @ K ) ) ) ).

% gbinomial_factors
thf(fact_8891_gbinomial__factors,axiom,
    ! [A: real,K: nat] :
      ( ( gbinomial_real @ ( plus_plus_real @ A @ one_one_real ) @ ( suc @ K ) )
      = ( times_times_real @ ( divide_divide_real @ ( plus_plus_real @ A @ one_one_real ) @ ( semiri5074537144036343181t_real @ ( suc @ K ) ) ) @ ( gbinomial_real @ A @ K ) ) ) ).

% gbinomial_factors
thf(fact_8892_gbinomial__negated__upper,axiom,
    ( gbinomial_complex
    = ( ^ [A4: complex,K3: nat] : ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ K3 ) @ ( gbinomial_complex @ ( minus_minus_complex @ ( minus_minus_complex @ ( semiri8010041392384452111omplex @ K3 ) @ A4 ) @ one_one_complex ) @ K3 ) ) ) ) ).

% gbinomial_negated_upper
thf(fact_8893_gbinomial__negated__upper,axiom,
    ( gbinomial_rat
    = ( ^ [A4: rat,K3: nat] : ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ K3 ) @ ( gbinomial_rat @ ( minus_minus_rat @ ( minus_minus_rat @ ( semiri681578069525770553at_rat @ K3 ) @ A4 ) @ one_one_rat ) @ K3 ) ) ) ) ).

% gbinomial_negated_upper
thf(fact_8894_gbinomial__negated__upper,axiom,
    ( gbinomial_real
    = ( ^ [A4: real,K3: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ K3 ) @ ( gbinomial_real @ ( minus_minus_real @ ( minus_minus_real @ ( semiri5074537144036343181t_real @ K3 ) @ A4 ) @ one_one_real ) @ K3 ) ) ) ) ).

% gbinomial_negated_upper
thf(fact_8895_gbinomial__index__swap,axiom,
    ! [K: nat,N2: nat] :
      ( ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ K ) @ ( gbinomial_complex @ ( minus_minus_complex @ ( uminus1482373934393186551omplex @ ( semiri8010041392384452111omplex @ N2 ) ) @ one_one_complex ) @ K ) )
      = ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N2 ) @ ( gbinomial_complex @ ( minus_minus_complex @ ( uminus1482373934393186551omplex @ ( semiri8010041392384452111omplex @ K ) ) @ one_one_complex ) @ N2 ) ) ) ).

% gbinomial_index_swap
thf(fact_8896_gbinomial__index__swap,axiom,
    ! [K: nat,N2: nat] :
      ( ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ K ) @ ( gbinomial_rat @ ( minus_minus_rat @ ( uminus_uminus_rat @ ( semiri681578069525770553at_rat @ N2 ) ) @ one_one_rat ) @ K ) )
      = ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ N2 ) @ ( gbinomial_rat @ ( minus_minus_rat @ ( uminus_uminus_rat @ ( semiri681578069525770553at_rat @ K ) ) @ one_one_rat ) @ N2 ) ) ) ).

% gbinomial_index_swap
thf(fact_8897_gbinomial__index__swap,axiom,
    ! [K: nat,N2: nat] :
      ( ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ K ) @ ( gbinomial_real @ ( minus_minus_real @ ( uminus_uminus_real @ ( semiri5074537144036343181t_real @ N2 ) ) @ one_one_real ) @ K ) )
      = ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N2 ) @ ( gbinomial_real @ ( minus_minus_real @ ( uminus_uminus_real @ ( semiri5074537144036343181t_real @ K ) ) @ one_one_real ) @ N2 ) ) ) ).

% gbinomial_index_swap
thf(fact_8898_pochhammer__absorb__comp,axiom,
    ! [R2: complex,K: nat] :
      ( ( times_times_complex @ ( minus_minus_complex @ R2 @ ( semiri8010041392384452111omplex @ K ) ) @ ( comm_s2602460028002588243omplex @ ( uminus1482373934393186551omplex @ R2 ) @ K ) )
      = ( times_times_complex @ R2 @ ( comm_s2602460028002588243omplex @ ( plus_plus_complex @ ( uminus1482373934393186551omplex @ R2 ) @ one_one_complex ) @ K ) ) ) ).

% pochhammer_absorb_comp
thf(fact_8899_pochhammer__absorb__comp,axiom,
    ! [R2: rat,K: nat] :
      ( ( times_times_rat @ ( minus_minus_rat @ R2 @ ( semiri681578069525770553at_rat @ K ) ) @ ( comm_s4028243227959126397er_rat @ ( uminus_uminus_rat @ R2 ) @ K ) )
      = ( times_times_rat @ R2 @ ( comm_s4028243227959126397er_rat @ ( plus_plus_rat @ ( uminus_uminus_rat @ R2 ) @ one_one_rat ) @ K ) ) ) ).

% pochhammer_absorb_comp
thf(fact_8900_pochhammer__absorb__comp,axiom,
    ! [R2: int,K: nat] :
      ( ( times_times_int @ ( minus_minus_int @ R2 @ ( semiri1314217659103216013at_int @ K ) ) @ ( comm_s4660882817536571857er_int @ ( uminus_uminus_int @ R2 ) @ K ) )
      = ( times_times_int @ R2 @ ( comm_s4660882817536571857er_int @ ( plus_plus_int @ ( uminus_uminus_int @ R2 ) @ one_one_int ) @ K ) ) ) ).

% pochhammer_absorb_comp
thf(fact_8901_pochhammer__absorb__comp,axiom,
    ! [R2: real,K: nat] :
      ( ( times_times_real @ ( minus_minus_real @ R2 @ ( semiri5074537144036343181t_real @ K ) ) @ ( comm_s7457072308508201937r_real @ ( uminus_uminus_real @ R2 ) @ K ) )
      = ( times_times_real @ R2 @ ( comm_s7457072308508201937r_real @ ( plus_plus_real @ ( uminus_uminus_real @ R2 ) @ one_one_real ) @ K ) ) ) ).

% pochhammer_absorb_comp
thf(fact_8902_pochhammer__absorb__comp,axiom,
    ! [R2: code_integer,K: nat] :
      ( ( times_3573771949741848930nteger @ ( minus_8373710615458151222nteger @ R2 @ ( semiri4939895301339042750nteger @ K ) ) @ ( comm_s8582702949713902594nteger @ ( uminus1351360451143612070nteger @ R2 ) @ K ) )
      = ( times_3573771949741848930nteger @ R2 @ ( comm_s8582702949713902594nteger @ ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ R2 ) @ one_one_Code_integer ) @ K ) ) ) ).

% pochhammer_absorb_comp
thf(fact_8903_pochhammer__same,axiom,
    ! [N2: nat] :
      ( ( comm_s2602460028002588243omplex @ ( uminus1482373934393186551omplex @ ( semiri8010041392384452111omplex @ N2 ) ) @ N2 )
      = ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N2 ) @ ( semiri5044797733671781792omplex @ N2 ) ) ) ).

% pochhammer_same
thf(fact_8904_pochhammer__same,axiom,
    ! [N2: nat] :
      ( ( comm_s4028243227959126397er_rat @ ( uminus_uminus_rat @ ( semiri681578069525770553at_rat @ N2 ) ) @ N2 )
      = ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ N2 ) @ ( semiri773545260158071498ct_rat @ N2 ) ) ) ).

% pochhammer_same
thf(fact_8905_pochhammer__same,axiom,
    ! [N2: nat] :
      ( ( comm_s4660882817536571857er_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N2 ) ) @ N2 )
      = ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N2 ) @ ( semiri1406184849735516958ct_int @ N2 ) ) ) ).

% pochhammer_same
thf(fact_8906_pochhammer__same,axiom,
    ! [N2: nat] :
      ( ( comm_s8582702949713902594nteger @ ( uminus1351360451143612070nteger @ ( semiri4939895301339042750nteger @ N2 ) ) @ N2 )
      = ( times_3573771949741848930nteger @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ N2 ) @ ( semiri3624122377584611663nteger @ N2 ) ) ) ).

% pochhammer_same
thf(fact_8907_pochhammer__same,axiom,
    ! [N2: nat] :
      ( ( comm_s7457072308508201937r_real @ ( uminus_uminus_real @ ( semiri5074537144036343181t_real @ N2 ) ) @ N2 )
      = ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N2 ) @ ( semiri2265585572941072030t_real @ N2 ) ) ) ).

% pochhammer_same
thf(fact_8908_gbinomial__minus,axiom,
    ! [A: complex,K: nat] :
      ( ( gbinomial_complex @ ( uminus1482373934393186551omplex @ A ) @ K )
      = ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ K ) @ ( gbinomial_complex @ ( minus_minus_complex @ ( plus_plus_complex @ A @ ( semiri8010041392384452111omplex @ K ) ) @ one_one_complex ) @ K ) ) ) ).

% gbinomial_minus
thf(fact_8909_gbinomial__minus,axiom,
    ! [A: rat,K: nat] :
      ( ( gbinomial_rat @ ( uminus_uminus_rat @ A ) @ K )
      = ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ K ) @ ( gbinomial_rat @ ( minus_minus_rat @ ( plus_plus_rat @ A @ ( semiri681578069525770553at_rat @ K ) ) @ one_one_rat ) @ K ) ) ) ).

% gbinomial_minus
thf(fact_8910_gbinomial__minus,axiom,
    ! [A: real,K: nat] :
      ( ( gbinomial_real @ ( uminus_uminus_real @ A ) @ K )
      = ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ K ) @ ( gbinomial_real @ ( minus_minus_real @ ( plus_plus_real @ A @ ( semiri5074537144036343181t_real @ K ) ) @ one_one_real ) @ K ) ) ) ).

% gbinomial_minus
thf(fact_8911_gbinomial__reduce__nat,axiom,
    ! [K: nat,A: complex] :
      ( ( ord_less_nat @ zero_zero_nat @ K )
     => ( ( gbinomial_complex @ A @ K )
        = ( plus_plus_complex @ ( gbinomial_complex @ ( minus_minus_complex @ A @ one_one_complex ) @ ( minus_minus_nat @ K @ one_one_nat ) ) @ ( gbinomial_complex @ ( minus_minus_complex @ A @ one_one_complex ) @ K ) ) ) ) ).

% gbinomial_reduce_nat
thf(fact_8912_gbinomial__reduce__nat,axiom,
    ! [K: nat,A: real] :
      ( ( ord_less_nat @ zero_zero_nat @ K )
     => ( ( gbinomial_real @ A @ K )
        = ( plus_plus_real @ ( gbinomial_real @ ( minus_minus_real @ A @ one_one_real ) @ ( minus_minus_nat @ K @ one_one_nat ) ) @ ( gbinomial_real @ ( minus_minus_real @ A @ one_one_real ) @ K ) ) ) ) ).

% gbinomial_reduce_nat
thf(fact_8913_gbinomial__reduce__nat,axiom,
    ! [K: nat,A: rat] :
      ( ( ord_less_nat @ zero_zero_nat @ K )
     => ( ( gbinomial_rat @ A @ K )
        = ( plus_plus_rat @ ( gbinomial_rat @ ( minus_minus_rat @ A @ one_one_rat ) @ ( minus_minus_nat @ K @ one_one_nat ) ) @ ( gbinomial_rat @ ( minus_minus_rat @ A @ one_one_rat ) @ K ) ) ) ) ).

% gbinomial_reduce_nat
thf(fact_8914_pochhammer__minus_H,axiom,
    ! [B: complex,K: nat] :
      ( ( comm_s2602460028002588243omplex @ ( plus_plus_complex @ ( minus_minus_complex @ B @ ( semiri8010041392384452111omplex @ K ) ) @ one_one_complex ) @ K )
      = ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ K ) @ ( comm_s2602460028002588243omplex @ ( uminus1482373934393186551omplex @ B ) @ K ) ) ) ).

% pochhammer_minus'
thf(fact_8915_pochhammer__minus_H,axiom,
    ! [B: rat,K: nat] :
      ( ( comm_s4028243227959126397er_rat @ ( plus_plus_rat @ ( minus_minus_rat @ B @ ( semiri681578069525770553at_rat @ K ) ) @ one_one_rat ) @ K )
      = ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ K ) @ ( comm_s4028243227959126397er_rat @ ( uminus_uminus_rat @ B ) @ K ) ) ) ).

% pochhammer_minus'
thf(fact_8916_pochhammer__minus_H,axiom,
    ! [B: int,K: nat] :
      ( ( comm_s4660882817536571857er_int @ ( plus_plus_int @ ( minus_minus_int @ B @ ( semiri1314217659103216013at_int @ K ) ) @ one_one_int ) @ K )
      = ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ K ) @ ( comm_s4660882817536571857er_int @ ( uminus_uminus_int @ B ) @ K ) ) ) ).

% pochhammer_minus'
thf(fact_8917_pochhammer__minus_H,axiom,
    ! [B: real,K: nat] :
      ( ( comm_s7457072308508201937r_real @ ( plus_plus_real @ ( minus_minus_real @ B @ ( semiri5074537144036343181t_real @ K ) ) @ one_one_real ) @ K )
      = ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ K ) @ ( comm_s7457072308508201937r_real @ ( uminus_uminus_real @ B ) @ K ) ) ) ).

% pochhammer_minus'
thf(fact_8918_pochhammer__minus_H,axiom,
    ! [B: code_integer,K: nat] :
      ( ( comm_s8582702949713902594nteger @ ( plus_p5714425477246183910nteger @ ( minus_8373710615458151222nteger @ B @ ( semiri4939895301339042750nteger @ K ) ) @ one_one_Code_integer ) @ K )
      = ( times_3573771949741848930nteger @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ K ) @ ( comm_s8582702949713902594nteger @ ( uminus1351360451143612070nteger @ B ) @ K ) ) ) ).

% pochhammer_minus'
thf(fact_8919_pochhammer__minus,axiom,
    ! [B: complex,K: nat] :
      ( ( comm_s2602460028002588243omplex @ ( uminus1482373934393186551omplex @ B ) @ K )
      = ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ K ) @ ( comm_s2602460028002588243omplex @ ( plus_plus_complex @ ( minus_minus_complex @ B @ ( semiri8010041392384452111omplex @ K ) ) @ one_one_complex ) @ K ) ) ) ).

% pochhammer_minus
thf(fact_8920_pochhammer__minus,axiom,
    ! [B: rat,K: nat] :
      ( ( comm_s4028243227959126397er_rat @ ( uminus_uminus_rat @ B ) @ K )
      = ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ K ) @ ( comm_s4028243227959126397er_rat @ ( plus_plus_rat @ ( minus_minus_rat @ B @ ( semiri681578069525770553at_rat @ K ) ) @ one_one_rat ) @ K ) ) ) ).

% pochhammer_minus
thf(fact_8921_pochhammer__minus,axiom,
    ! [B: int,K: nat] :
      ( ( comm_s4660882817536571857er_int @ ( uminus_uminus_int @ B ) @ K )
      = ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ K ) @ ( comm_s4660882817536571857er_int @ ( plus_plus_int @ ( minus_minus_int @ B @ ( semiri1314217659103216013at_int @ K ) ) @ one_one_int ) @ K ) ) ) ).

% pochhammer_minus
thf(fact_8922_pochhammer__minus,axiom,
    ! [B: real,K: nat] :
      ( ( comm_s7457072308508201937r_real @ ( uminus_uminus_real @ B ) @ K )
      = ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ K ) @ ( comm_s7457072308508201937r_real @ ( plus_plus_real @ ( minus_minus_real @ B @ ( semiri5074537144036343181t_real @ K ) ) @ one_one_real ) @ K ) ) ) ).

% pochhammer_minus
thf(fact_8923_pochhammer__minus,axiom,
    ! [B: code_integer,K: nat] :
      ( ( comm_s8582702949713902594nteger @ ( uminus1351360451143612070nteger @ B ) @ K )
      = ( times_3573771949741848930nteger @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ K ) @ ( comm_s8582702949713902594nteger @ ( plus_p5714425477246183910nteger @ ( minus_8373710615458151222nteger @ B @ ( semiri4939895301339042750nteger @ K ) ) @ one_one_Code_integer ) @ K ) ) ) ).

% pochhammer_minus
thf(fact_8924_gbinomial__sum__lower__neg,axiom,
    ! [A: complex,M: nat] :
      ( ( groups2073611262835488442omplex
        @ ^ [K3: nat] : ( times_times_complex @ ( gbinomial_complex @ A @ K3 ) @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ K3 ) )
        @ ( set_ord_atMost_nat @ M ) )
      = ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ M ) @ ( gbinomial_complex @ ( minus_minus_complex @ A @ one_one_complex ) @ M ) ) ) ).

% gbinomial_sum_lower_neg
thf(fact_8925_gbinomial__sum__lower__neg,axiom,
    ! [A: rat,M: nat] :
      ( ( groups2906978787729119204at_rat
        @ ^ [K3: nat] : ( times_times_rat @ ( gbinomial_rat @ A @ K3 ) @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ K3 ) )
        @ ( set_ord_atMost_nat @ M ) )
      = ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ M ) @ ( gbinomial_rat @ ( minus_minus_rat @ A @ one_one_rat ) @ M ) ) ) ).

% gbinomial_sum_lower_neg
thf(fact_8926_gbinomial__sum__lower__neg,axiom,
    ! [A: real,M: nat] :
      ( ( groups6591440286371151544t_real
        @ ^ [K3: nat] : ( times_times_real @ ( gbinomial_real @ A @ K3 ) @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ K3 ) )
        @ ( set_ord_atMost_nat @ M ) )
      = ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ M ) @ ( gbinomial_real @ ( minus_minus_real @ A @ one_one_real ) @ M ) ) ) ).

% gbinomial_sum_lower_neg
thf(fact_8927_pochhammer__binomial__sum,axiom,
    ! [A: rat,B: rat,N2: nat] :
      ( ( comm_s4028243227959126397er_rat @ ( plus_plus_rat @ A @ B ) @ N2 )
      = ( groups2906978787729119204at_rat
        @ ^ [K3: nat] : ( times_times_rat @ ( times_times_rat @ ( semiri681578069525770553at_rat @ ( binomial @ N2 @ K3 ) ) @ ( comm_s4028243227959126397er_rat @ A @ K3 ) ) @ ( comm_s4028243227959126397er_rat @ B @ ( minus_minus_nat @ N2 @ K3 ) ) )
        @ ( set_ord_atMost_nat @ N2 ) ) ) ).

% pochhammer_binomial_sum
thf(fact_8928_pochhammer__binomial__sum,axiom,
    ! [A: int,B: int,N2: nat] :
      ( ( comm_s4660882817536571857er_int @ ( plus_plus_int @ A @ B ) @ N2 )
      = ( groups3539618377306564664at_int
        @ ^ [K3: nat] : ( times_times_int @ ( times_times_int @ ( semiri1314217659103216013at_int @ ( binomial @ N2 @ K3 ) ) @ ( comm_s4660882817536571857er_int @ A @ K3 ) ) @ ( comm_s4660882817536571857er_int @ B @ ( minus_minus_nat @ N2 @ K3 ) ) )
        @ ( set_ord_atMost_nat @ N2 ) ) ) ).

% pochhammer_binomial_sum
thf(fact_8929_pochhammer__binomial__sum,axiom,
    ! [A: code_integer,B: code_integer,N2: nat] :
      ( ( comm_s8582702949713902594nteger @ ( plus_p5714425477246183910nteger @ A @ B ) @ N2 )
      = ( groups7501900531339628137nteger
        @ ^ [K3: nat] : ( times_3573771949741848930nteger @ ( times_3573771949741848930nteger @ ( semiri4939895301339042750nteger @ ( binomial @ N2 @ K3 ) ) @ ( comm_s8582702949713902594nteger @ A @ K3 ) ) @ ( comm_s8582702949713902594nteger @ B @ ( minus_minus_nat @ N2 @ K3 ) ) )
        @ ( set_ord_atMost_nat @ N2 ) ) ) ).

% pochhammer_binomial_sum
thf(fact_8930_pochhammer__binomial__sum,axiom,
    ! [A: real,B: real,N2: nat] :
      ( ( comm_s7457072308508201937r_real @ ( plus_plus_real @ A @ B ) @ N2 )
      = ( groups6591440286371151544t_real
        @ ^ [K3: nat] : ( times_times_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ ( binomial @ N2 @ K3 ) ) @ ( comm_s7457072308508201937r_real @ A @ K3 ) ) @ ( comm_s7457072308508201937r_real @ B @ ( minus_minus_nat @ N2 @ K3 ) ) )
        @ ( set_ord_atMost_nat @ N2 ) ) ) ).

% pochhammer_binomial_sum
thf(fact_8931_gbinomial__partial__sum__poly,axiom,
    ! [M: nat,A: complex,X: complex,Y: complex] :
      ( ( groups2073611262835488442omplex
        @ ^ [K3: nat] : ( times_times_complex @ ( times_times_complex @ ( gbinomial_complex @ ( plus_plus_complex @ ( semiri8010041392384452111omplex @ M ) @ A ) @ K3 ) @ ( power_power_complex @ X @ K3 ) ) @ ( power_power_complex @ Y @ ( minus_minus_nat @ M @ K3 ) ) )
        @ ( set_ord_atMost_nat @ M ) )
      = ( groups2073611262835488442omplex
        @ ^ [K3: nat] : ( times_times_complex @ ( times_times_complex @ ( gbinomial_complex @ ( uminus1482373934393186551omplex @ A ) @ K3 ) @ ( power_power_complex @ ( uminus1482373934393186551omplex @ X ) @ K3 ) ) @ ( power_power_complex @ ( plus_plus_complex @ X @ Y ) @ ( minus_minus_nat @ M @ K3 ) ) )
        @ ( set_ord_atMost_nat @ M ) ) ) ).

% gbinomial_partial_sum_poly
thf(fact_8932_gbinomial__partial__sum__poly,axiom,
    ! [M: nat,A: rat,X: rat,Y: rat] :
      ( ( groups2906978787729119204at_rat
        @ ^ [K3: nat] : ( times_times_rat @ ( times_times_rat @ ( gbinomial_rat @ ( plus_plus_rat @ ( semiri681578069525770553at_rat @ M ) @ A ) @ K3 ) @ ( power_power_rat @ X @ K3 ) ) @ ( power_power_rat @ Y @ ( minus_minus_nat @ M @ K3 ) ) )
        @ ( set_ord_atMost_nat @ M ) )
      = ( groups2906978787729119204at_rat
        @ ^ [K3: nat] : ( times_times_rat @ ( times_times_rat @ ( gbinomial_rat @ ( uminus_uminus_rat @ A ) @ K3 ) @ ( power_power_rat @ ( uminus_uminus_rat @ X ) @ K3 ) ) @ ( power_power_rat @ ( plus_plus_rat @ X @ Y ) @ ( minus_minus_nat @ M @ K3 ) ) )
        @ ( set_ord_atMost_nat @ M ) ) ) ).

% gbinomial_partial_sum_poly
thf(fact_8933_gbinomial__partial__sum__poly,axiom,
    ! [M: nat,A: real,X: real,Y: real] :
      ( ( groups6591440286371151544t_real
        @ ^ [K3: nat] : ( times_times_real @ ( times_times_real @ ( gbinomial_real @ ( plus_plus_real @ ( semiri5074537144036343181t_real @ M ) @ A ) @ K3 ) @ ( power_power_real @ X @ K3 ) ) @ ( power_power_real @ Y @ ( minus_minus_nat @ M @ K3 ) ) )
        @ ( set_ord_atMost_nat @ M ) )
      = ( groups6591440286371151544t_real
        @ ^ [K3: nat] : ( times_times_real @ ( times_times_real @ ( gbinomial_real @ ( uminus_uminus_real @ A ) @ K3 ) @ ( power_power_real @ ( uminus_uminus_real @ X ) @ K3 ) ) @ ( power_power_real @ ( plus_plus_real @ X @ Y ) @ ( minus_minus_nat @ M @ K3 ) ) )
        @ ( set_ord_atMost_nat @ M ) ) ) ).

% gbinomial_partial_sum_poly
thf(fact_8934_gbinomial__sum__up__index,axiom,
    ! [K: nat,N2: nat] :
      ( ( groups2073611262835488442omplex
        @ ^ [J3: nat] : ( gbinomial_complex @ ( semiri8010041392384452111omplex @ J3 ) @ K )
        @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N2 ) )
      = ( gbinomial_complex @ ( plus_plus_complex @ ( semiri8010041392384452111omplex @ N2 ) @ one_one_complex ) @ ( plus_plus_nat @ K @ one_one_nat ) ) ) ).

% gbinomial_sum_up_index
thf(fact_8935_gbinomial__sum__up__index,axiom,
    ! [K: nat,N2: nat] :
      ( ( groups2906978787729119204at_rat
        @ ^ [J3: nat] : ( gbinomial_rat @ ( semiri681578069525770553at_rat @ J3 ) @ K )
        @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N2 ) )
      = ( gbinomial_rat @ ( plus_plus_rat @ ( semiri681578069525770553at_rat @ N2 ) @ one_one_rat ) @ ( plus_plus_nat @ K @ one_one_nat ) ) ) ).

% gbinomial_sum_up_index
thf(fact_8936_gbinomial__sum__up__index,axiom,
    ! [K: nat,N2: nat] :
      ( ( groups6591440286371151544t_real
        @ ^ [J3: nat] : ( gbinomial_real @ ( semiri5074537144036343181t_real @ J3 ) @ K )
        @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N2 ) )
      = ( gbinomial_real @ ( plus_plus_real @ ( semiri5074537144036343181t_real @ N2 ) @ one_one_real ) @ ( plus_plus_nat @ K @ one_one_nat ) ) ) ).

% gbinomial_sum_up_index
thf(fact_8937_gbinomial__absorption_H,axiom,
    ! [K: nat,A: complex] :
      ( ( ord_less_nat @ zero_zero_nat @ K )
     => ( ( gbinomial_complex @ A @ K )
        = ( times_times_complex @ ( divide1717551699836669952omplex @ A @ ( semiri8010041392384452111omplex @ K ) ) @ ( gbinomial_complex @ ( minus_minus_complex @ A @ one_one_complex ) @ ( minus_minus_nat @ K @ one_one_nat ) ) ) ) ) ).

% gbinomial_absorption'
thf(fact_8938_gbinomial__absorption_H,axiom,
    ! [K: nat,A: rat] :
      ( ( ord_less_nat @ zero_zero_nat @ K )
     => ( ( gbinomial_rat @ A @ K )
        = ( times_times_rat @ ( divide_divide_rat @ A @ ( semiri681578069525770553at_rat @ K ) ) @ ( gbinomial_rat @ ( minus_minus_rat @ A @ one_one_rat ) @ ( minus_minus_nat @ K @ one_one_nat ) ) ) ) ) ).

% gbinomial_absorption'
thf(fact_8939_gbinomial__absorption_H,axiom,
    ! [K: nat,A: real] :
      ( ( ord_less_nat @ zero_zero_nat @ K )
     => ( ( gbinomial_real @ A @ K )
        = ( times_times_real @ ( divide_divide_real @ A @ ( semiri5074537144036343181t_real @ K ) ) @ ( gbinomial_real @ ( minus_minus_real @ A @ one_one_real ) @ ( minus_minus_nat @ K @ one_one_nat ) ) ) ) ) ).

% gbinomial_absorption'
thf(fact_8940_pochhammer__code,axiom,
    ( comm_s2602460028002588243omplex
    = ( ^ [A4: complex,N3: nat] :
          ( if_complex @ ( N3 = zero_zero_nat ) @ one_one_complex
          @ ( set_fo1517530859248394432omplex
            @ ^ [O: nat] : ( times_times_complex @ ( plus_plus_complex @ A4 @ ( semiri8010041392384452111omplex @ O ) ) )
            @ zero_zero_nat
            @ ( minus_minus_nat @ N3 @ one_one_nat )
            @ one_one_complex ) ) ) ) ).

% pochhammer_code
thf(fact_8941_pochhammer__code,axiom,
    ( comm_s4028243227959126397er_rat
    = ( ^ [A4: rat,N3: nat] :
          ( if_rat @ ( N3 = zero_zero_nat ) @ one_one_rat
          @ ( set_fo1949268297981939178at_rat
            @ ^ [O: nat] : ( times_times_rat @ ( plus_plus_rat @ A4 @ ( semiri681578069525770553at_rat @ O ) ) )
            @ zero_zero_nat
            @ ( minus_minus_nat @ N3 @ one_one_nat )
            @ one_one_rat ) ) ) ) ).

% pochhammer_code
thf(fact_8942_pochhammer__code,axiom,
    ( comm_s4660882817536571857er_int
    = ( ^ [A4: int,N3: nat] :
          ( if_int @ ( N3 = zero_zero_nat ) @ one_one_int
          @ ( set_fo2581907887559384638at_int
            @ ^ [O: nat] : ( times_times_int @ ( plus_plus_int @ A4 @ ( semiri1314217659103216013at_int @ O ) ) )
            @ zero_zero_nat
            @ ( minus_minus_nat @ N3 @ one_one_nat )
            @ one_one_int ) ) ) ) ).

% pochhammer_code
thf(fact_8943_pochhammer__code,axiom,
    ( comm_s7457072308508201937r_real
    = ( ^ [A4: real,N3: nat] :
          ( if_real @ ( N3 = zero_zero_nat ) @ one_one_real
          @ ( set_fo3111899725591712190t_real
            @ ^ [O: nat] : ( times_times_real @ ( plus_plus_real @ A4 @ ( semiri5074537144036343181t_real @ O ) ) )
            @ zero_zero_nat
            @ ( minus_minus_nat @ N3 @ one_one_nat )
            @ one_one_real ) ) ) ) ).

% pochhammer_code
thf(fact_8944_pochhammer__code,axiom,
    ( comm_s8582702949713902594nteger
    = ( ^ [A4: code_integer,N3: nat] :
          ( if_Code_integer @ ( N3 = zero_zero_nat ) @ one_one_Code_integer
          @ ( set_fo1084959871951514735nteger
            @ ^ [O: nat] : ( times_3573771949741848930nteger @ ( plus_p5714425477246183910nteger @ A4 @ ( semiri4939895301339042750nteger @ O ) ) )
            @ zero_zero_nat
            @ ( minus_minus_nat @ N3 @ one_one_nat )
            @ one_one_Code_integer ) ) ) ) ).

% pochhammer_code
thf(fact_8945_pochhammer__code,axiom,
    ( comm_s4663373288045622133er_nat
    = ( ^ [A4: nat,N3: nat] :
          ( if_nat @ ( N3 = zero_zero_nat ) @ one_one_nat
          @ ( set_fo2584398358068434914at_nat
            @ ^ [O: nat] : ( times_times_nat @ ( plus_plus_nat @ A4 @ ( semiri1316708129612266289at_nat @ O ) ) )
            @ zero_zero_nat
            @ ( minus_minus_nat @ N3 @ one_one_nat )
            @ one_one_nat ) ) ) ) ).

% pochhammer_code
thf(fact_8946_gbinomial__sum__nat__pow2,axiom,
    ! [M: nat] :
      ( ( groups2073611262835488442omplex
        @ ^ [K3: nat] : ( divide1717551699836669952omplex @ ( gbinomial_complex @ ( semiri8010041392384452111omplex @ ( plus_plus_nat @ M @ K3 ) ) @ K3 ) @ ( power_power_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ K3 ) )
        @ ( set_ord_atMost_nat @ M ) )
      = ( power_power_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ M ) ) ).

% gbinomial_sum_nat_pow2
thf(fact_8947_gbinomial__sum__nat__pow2,axiom,
    ! [M: nat] :
      ( ( groups2906978787729119204at_rat
        @ ^ [K3: nat] : ( divide_divide_rat @ ( gbinomial_rat @ ( semiri681578069525770553at_rat @ ( plus_plus_nat @ M @ K3 ) ) @ K3 ) @ ( power_power_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ K3 ) )
        @ ( set_ord_atMost_nat @ M ) )
      = ( power_power_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ M ) ) ).

% gbinomial_sum_nat_pow2
thf(fact_8948_gbinomial__sum__nat__pow2,axiom,
    ! [M: nat] :
      ( ( groups6591440286371151544t_real
        @ ^ [K3: nat] : ( divide_divide_real @ ( gbinomial_real @ ( semiri5074537144036343181t_real @ ( plus_plus_nat @ M @ K3 ) ) @ K3 ) @ ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ K3 ) )
        @ ( set_ord_atMost_nat @ M ) )
      = ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ M ) ) ).

% gbinomial_sum_nat_pow2
thf(fact_8949_gbinomial__partial__sum__poly__xpos,axiom,
    ! [M: nat,A: complex,X: complex,Y: complex] :
      ( ( groups2073611262835488442omplex
        @ ^ [K3: nat] : ( times_times_complex @ ( times_times_complex @ ( gbinomial_complex @ ( plus_plus_complex @ ( semiri8010041392384452111omplex @ M ) @ A ) @ K3 ) @ ( power_power_complex @ X @ K3 ) ) @ ( power_power_complex @ Y @ ( minus_minus_nat @ M @ K3 ) ) )
        @ ( set_ord_atMost_nat @ M ) )
      = ( groups2073611262835488442omplex
        @ ^ [K3: nat] : ( times_times_complex @ ( times_times_complex @ ( gbinomial_complex @ ( minus_minus_complex @ ( plus_plus_complex @ ( semiri8010041392384452111omplex @ K3 ) @ A ) @ one_one_complex ) @ K3 ) @ ( power_power_complex @ X @ K3 ) ) @ ( power_power_complex @ ( plus_plus_complex @ X @ Y ) @ ( minus_minus_nat @ M @ K3 ) ) )
        @ ( set_ord_atMost_nat @ M ) ) ) ).

% gbinomial_partial_sum_poly_xpos
thf(fact_8950_gbinomial__partial__sum__poly__xpos,axiom,
    ! [M: nat,A: rat,X: rat,Y: rat] :
      ( ( groups2906978787729119204at_rat
        @ ^ [K3: nat] : ( times_times_rat @ ( times_times_rat @ ( gbinomial_rat @ ( plus_plus_rat @ ( semiri681578069525770553at_rat @ M ) @ A ) @ K3 ) @ ( power_power_rat @ X @ K3 ) ) @ ( power_power_rat @ Y @ ( minus_minus_nat @ M @ K3 ) ) )
        @ ( set_ord_atMost_nat @ M ) )
      = ( groups2906978787729119204at_rat
        @ ^ [K3: nat] : ( times_times_rat @ ( times_times_rat @ ( gbinomial_rat @ ( minus_minus_rat @ ( plus_plus_rat @ ( semiri681578069525770553at_rat @ K3 ) @ A ) @ one_one_rat ) @ K3 ) @ ( power_power_rat @ X @ K3 ) ) @ ( power_power_rat @ ( plus_plus_rat @ X @ Y ) @ ( minus_minus_nat @ M @ K3 ) ) )
        @ ( set_ord_atMost_nat @ M ) ) ) ).

% gbinomial_partial_sum_poly_xpos
thf(fact_8951_gbinomial__partial__sum__poly__xpos,axiom,
    ! [M: nat,A: real,X: real,Y: real] :
      ( ( groups6591440286371151544t_real
        @ ^ [K3: nat] : ( times_times_real @ ( times_times_real @ ( gbinomial_real @ ( plus_plus_real @ ( semiri5074537144036343181t_real @ M ) @ A ) @ K3 ) @ ( power_power_real @ X @ K3 ) ) @ ( power_power_real @ Y @ ( minus_minus_nat @ M @ K3 ) ) )
        @ ( set_ord_atMost_nat @ M ) )
      = ( groups6591440286371151544t_real
        @ ^ [K3: nat] : ( times_times_real @ ( times_times_real @ ( gbinomial_real @ ( minus_minus_real @ ( plus_plus_real @ ( semiri5074537144036343181t_real @ K3 ) @ A ) @ one_one_real ) @ K3 ) @ ( power_power_real @ X @ K3 ) ) @ ( power_power_real @ ( plus_plus_real @ X @ Y ) @ ( minus_minus_nat @ M @ K3 ) ) )
        @ ( set_ord_atMost_nat @ M ) ) ) ).

% gbinomial_partial_sum_poly_xpos
thf(fact_8952_fact__double,axiom,
    ! [N2: nat] :
      ( ( semiri5044797733671781792omplex @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
      = ( times_times_complex @ ( times_times_complex @ ( power_power_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) @ ( comm_s2602460028002588243omplex @ ( divide1717551699836669952omplex @ one_one_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) @ N2 ) ) @ ( semiri5044797733671781792omplex @ N2 ) ) ) ).

% fact_double
thf(fact_8953_fact__double,axiom,
    ! [N2: nat] :
      ( ( semiri773545260158071498ct_rat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
      = ( times_times_rat @ ( times_times_rat @ ( power_power_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) @ ( comm_s4028243227959126397er_rat @ ( divide_divide_rat @ one_one_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) @ N2 ) ) @ ( semiri773545260158071498ct_rat @ N2 ) ) ) ).

% fact_double
thf(fact_8954_fact__double,axiom,
    ! [N2: nat] :
      ( ( semiri2265585572941072030t_real @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
      = ( times_times_real @ ( times_times_real @ ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) @ ( comm_s7457072308508201937r_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ N2 ) ) @ ( semiri2265585572941072030t_real @ N2 ) ) ) ).

% fact_double
thf(fact_8955_gbinomial__code,axiom,
    ( gbinomial_complex
    = ( ^ [A4: complex,K3: nat] :
          ( if_complex @ ( K3 = zero_zero_nat ) @ one_one_complex
          @ ( divide1717551699836669952omplex
            @ ( set_fo1517530859248394432omplex
              @ ^ [L: nat] : ( times_times_complex @ ( minus_minus_complex @ A4 @ ( semiri8010041392384452111omplex @ L ) ) )
              @ zero_zero_nat
              @ ( minus_minus_nat @ K3 @ one_one_nat )
              @ one_one_complex )
            @ ( semiri5044797733671781792omplex @ K3 ) ) ) ) ) ).

% gbinomial_code
thf(fact_8956_gbinomial__code,axiom,
    ( gbinomial_rat
    = ( ^ [A4: rat,K3: nat] :
          ( if_rat @ ( K3 = zero_zero_nat ) @ one_one_rat
          @ ( divide_divide_rat
            @ ( set_fo1949268297981939178at_rat
              @ ^ [L: nat] : ( times_times_rat @ ( minus_minus_rat @ A4 @ ( semiri681578069525770553at_rat @ L ) ) )
              @ zero_zero_nat
              @ ( minus_minus_nat @ K3 @ one_one_nat )
              @ one_one_rat )
            @ ( semiri773545260158071498ct_rat @ K3 ) ) ) ) ) ).

% gbinomial_code
thf(fact_8957_gbinomial__code,axiom,
    ( gbinomial_real
    = ( ^ [A4: real,K3: nat] :
          ( if_real @ ( K3 = zero_zero_nat ) @ one_one_real
          @ ( divide_divide_real
            @ ( set_fo3111899725591712190t_real
              @ ^ [L: nat] : ( times_times_real @ ( minus_minus_real @ A4 @ ( semiri5074537144036343181t_real @ L ) ) )
              @ zero_zero_nat
              @ ( minus_minus_nat @ K3 @ one_one_nat )
              @ one_one_real )
            @ ( semiri2265585572941072030t_real @ K3 ) ) ) ) ) ).

% gbinomial_code
thf(fact_8958_pochhammer__times__pochhammer__half,axiom,
    ! [Z: complex,N2: nat] :
      ( ( times_times_complex @ ( comm_s2602460028002588243omplex @ Z @ ( suc @ N2 ) ) @ ( comm_s2602460028002588243omplex @ ( plus_plus_complex @ Z @ ( divide1717551699836669952omplex @ one_one_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) @ ( suc @ N2 ) ) )
      = ( groups6464643781859351333omplex
        @ ^ [K3: nat] : ( plus_plus_complex @ Z @ ( divide1717551699836669952omplex @ ( semiri8010041392384452111omplex @ K3 ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) )
        @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) @ one_one_nat ) ) ) ) ).

% pochhammer_times_pochhammer_half
thf(fact_8959_pochhammer__times__pochhammer__half,axiom,
    ! [Z: rat,N2: nat] :
      ( ( times_times_rat @ ( comm_s4028243227959126397er_rat @ Z @ ( suc @ N2 ) ) @ ( comm_s4028243227959126397er_rat @ ( plus_plus_rat @ Z @ ( divide_divide_rat @ one_one_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) @ ( suc @ N2 ) ) )
      = ( groups73079841787564623at_rat
        @ ^ [K3: nat] : ( plus_plus_rat @ Z @ ( divide_divide_rat @ ( semiri681578069525770553at_rat @ K3 ) @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) )
        @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) @ one_one_nat ) ) ) ) ).

% pochhammer_times_pochhammer_half
thf(fact_8960_pochhammer__times__pochhammer__half,axiom,
    ! [Z: real,N2: nat] :
      ( ( times_times_real @ ( comm_s7457072308508201937r_real @ Z @ ( suc @ N2 ) ) @ ( comm_s7457072308508201937r_real @ ( plus_plus_real @ Z @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( suc @ N2 ) ) )
      = ( groups129246275422532515t_real
        @ ^ [K3: nat] : ( plus_plus_real @ Z @ ( divide_divide_real @ ( semiri5074537144036343181t_real @ K3 ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
        @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) @ one_one_nat ) ) ) ) ).

% pochhammer_times_pochhammer_half
thf(fact_8961_sin__x__sin__y,axiom,
    ! [X: real,Y: real] :
      ( sums_real
      @ ^ [P5: nat] :
          ( groups6591440286371151544t_real
          @ ^ [N3: nat] :
              ( if_real
              @ ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ P5 )
                & ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) )
              @ ( times_times_real @ ( real_V1485227260804924795R_real @ ( uminus_uminus_real @ ( divide_divide_real @ ( ring_1_of_int_real @ ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ ( divide_divide_nat @ P5 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( semiri1314217659103216013at_int @ ( binomial @ P5 @ N3 ) ) ) ) @ ( semiri2265585572941072030t_real @ P5 ) ) ) @ ( power_power_real @ X @ N3 ) ) @ ( power_power_real @ Y @ ( minus_minus_nat @ P5 @ N3 ) ) )
              @ zero_zero_real )
          @ ( set_ord_atMost_nat @ P5 ) )
      @ ( times_times_real @ ( sin_real @ X ) @ ( sin_real @ Y ) ) ) ).

% sin_x_sin_y
thf(fact_8962_sin__x__sin__y,axiom,
    ! [X: complex,Y: complex] :
      ( sums_complex
      @ ^ [P5: nat] :
          ( groups2073611262835488442omplex
          @ ^ [N3: nat] :
              ( if_complex
              @ ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ P5 )
                & ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) )
              @ ( times_times_complex @ ( real_V2046097035970521341omplex @ ( uminus_uminus_real @ ( divide_divide_real @ ( ring_1_of_int_real @ ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ ( divide_divide_nat @ P5 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( semiri1314217659103216013at_int @ ( binomial @ P5 @ N3 ) ) ) ) @ ( semiri2265585572941072030t_real @ P5 ) ) ) @ ( power_power_complex @ X @ N3 ) ) @ ( power_power_complex @ Y @ ( minus_minus_nat @ P5 @ N3 ) ) )
              @ zero_zero_complex )
          @ ( set_ord_atMost_nat @ P5 ) )
      @ ( times_times_complex @ ( sin_complex @ X ) @ ( sin_complex @ Y ) ) ) ).

% sin_x_sin_y
thf(fact_8963_Maclaurin__sin__bound,axiom,
    ! [X: real,N2: nat] :
      ( ord_less_eq_real
      @ ( abs_abs_real
        @ ( minus_minus_real @ ( sin_real @ X )
          @ ( groups6591440286371151544t_real
            @ ^ [M6: nat] : ( times_times_real @ ( sin_coeff @ M6 ) @ ( power_power_real @ X @ M6 ) )
            @ ( set_ord_lessThan_nat @ N2 ) ) ) )
      @ ( times_times_real @ ( inverse_inverse_real @ ( semiri2265585572941072030t_real @ N2 ) ) @ ( power_power_real @ ( abs_abs_real @ X ) @ N2 ) ) ) ).

% Maclaurin_sin_bound
thf(fact_8964_sums__cos__x__plus__y,axiom,
    ! [X: real,Y: real] :
      ( sums_real
      @ ^ [P5: nat] :
          ( groups6591440286371151544t_real
          @ ^ [N3: nat] : ( if_real @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ P5 ) @ ( times_times_real @ ( real_V1485227260804924795R_real @ ( divide_divide_real @ ( ring_1_of_int_real @ ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ ( divide_divide_nat @ P5 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( semiri1314217659103216013at_int @ ( binomial @ P5 @ N3 ) ) ) ) @ ( semiri2265585572941072030t_real @ P5 ) ) @ ( power_power_real @ X @ N3 ) ) @ ( power_power_real @ Y @ ( minus_minus_nat @ P5 @ N3 ) ) ) @ zero_zero_real )
          @ ( set_ord_atMost_nat @ P5 ) )
      @ ( cos_real @ ( plus_plus_real @ X @ Y ) ) ) ).

% sums_cos_x_plus_y
thf(fact_8965_sums__cos__x__plus__y,axiom,
    ! [X: complex,Y: complex] :
      ( sums_complex
      @ ^ [P5: nat] :
          ( groups2073611262835488442omplex
          @ ^ [N3: nat] : ( if_complex @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ P5 ) @ ( times_times_complex @ ( real_V2046097035970521341omplex @ ( divide_divide_real @ ( ring_1_of_int_real @ ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ ( divide_divide_nat @ P5 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( semiri1314217659103216013at_int @ ( binomial @ P5 @ N3 ) ) ) ) @ ( semiri2265585572941072030t_real @ P5 ) ) @ ( power_power_complex @ X @ N3 ) ) @ ( power_power_complex @ Y @ ( minus_minus_nat @ P5 @ N3 ) ) ) @ zero_zero_complex )
          @ ( set_ord_atMost_nat @ P5 ) )
      @ ( cos_complex @ ( plus_plus_complex @ X @ Y ) ) ) ).

% sums_cos_x_plus_y
thf(fact_8966_VEBT__internal_OminNull_Opelims_I1_J,axiom,
    ! [X: vEBT_VEBT,Y: $o] :
      ( ( ( vEBT_VEBT_minNull @ X )
        = Y )
     => ( ( accp_VEBT_VEBT @ vEBT_V6963167321098673237ll_rel @ X )
       => ( ( ( X
              = ( vEBT_Leaf @ $false @ $false ) )
           => ( Y
             => ~ ( accp_VEBT_VEBT @ vEBT_V6963167321098673237ll_rel @ ( vEBT_Leaf @ $false @ $false ) ) ) )
         => ( ! [Uv2: $o] :
                ( ( X
                  = ( vEBT_Leaf @ $true @ Uv2 ) )
               => ( ~ Y
                 => ~ ( accp_VEBT_VEBT @ vEBT_V6963167321098673237ll_rel @ ( vEBT_Leaf @ $true @ Uv2 ) ) ) )
           => ( ! [Uu2: $o] :
                  ( ( X
                    = ( vEBT_Leaf @ Uu2 @ $true ) )
                 => ( ~ Y
                   => ~ ( accp_VEBT_VEBT @ vEBT_V6963167321098673237ll_rel @ ( vEBT_Leaf @ Uu2 @ $true ) ) ) )
             => ( ! [Uw2: nat,Ux2: list_VEBT_VEBT,Uy2: vEBT_VEBT] :
                    ( ( X
                      = ( vEBT_Node @ none_P5556105721700978146at_nat @ Uw2 @ Ux2 @ Uy2 ) )
                   => ( Y
                     => ~ ( accp_VEBT_VEBT @ vEBT_V6963167321098673237ll_rel @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Uw2 @ Ux2 @ Uy2 ) ) ) )
               => ~ ! [Uz2: product_prod_nat_nat,Va3: nat,Vb2: list_VEBT_VEBT,Vc2: vEBT_VEBT] :
                      ( ( X
                        = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ Uz2 ) @ Va3 @ Vb2 @ Vc2 ) )
                     => ( ~ Y
                       => ~ ( accp_VEBT_VEBT @ vEBT_V6963167321098673237ll_rel @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ Uz2 ) @ Va3 @ Vb2 @ Vc2 ) ) ) ) ) ) ) ) ) ) ).

% VEBT_internal.minNull.pelims(1)
thf(fact_8967_mult__scaleR__right,axiom,
    ! [X: real,A: real,Y: real] :
      ( ( times_times_real @ X @ ( real_V1485227260804924795R_real @ A @ Y ) )
      = ( real_V1485227260804924795R_real @ A @ ( times_times_real @ X @ Y ) ) ) ).

% mult_scaleR_right
thf(fact_8968_mult__scaleR__right,axiom,
    ! [X: complex,A: real,Y: complex] :
      ( ( times_times_complex @ X @ ( real_V2046097035970521341omplex @ A @ Y ) )
      = ( real_V2046097035970521341omplex @ A @ ( times_times_complex @ X @ Y ) ) ) ).

% mult_scaleR_right
thf(fact_8969_mult__scaleR__left,axiom,
    ! [A: real,X: real,Y: real] :
      ( ( times_times_real @ ( real_V1485227260804924795R_real @ A @ X ) @ Y )
      = ( real_V1485227260804924795R_real @ A @ ( times_times_real @ X @ Y ) ) ) ).

% mult_scaleR_left
thf(fact_8970_mult__scaleR__left,axiom,
    ! [A: real,X: complex,Y: complex] :
      ( ( times_times_complex @ ( real_V2046097035970521341omplex @ A @ X ) @ Y )
      = ( real_V2046097035970521341omplex @ A @ ( times_times_complex @ X @ Y ) ) ) ).

% mult_scaleR_left
thf(fact_8971_inverse__mult__distrib,axiom,
    ! [A: real,B: real] :
      ( ( inverse_inverse_real @ ( times_times_real @ A @ B ) )
      = ( times_times_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) ) ) ).

% inverse_mult_distrib
thf(fact_8972_inverse__mult__distrib,axiom,
    ! [A: complex,B: complex] :
      ( ( invers8013647133539491842omplex @ ( times_times_complex @ A @ B ) )
      = ( times_times_complex @ ( invers8013647133539491842omplex @ A ) @ ( invers8013647133539491842omplex @ B ) ) ) ).

% inverse_mult_distrib
thf(fact_8973_inverse__mult__distrib,axiom,
    ! [A: rat,B: rat] :
      ( ( inverse_inverse_rat @ ( times_times_rat @ A @ B ) )
      = ( times_times_rat @ ( inverse_inverse_rat @ A ) @ ( inverse_inverse_rat @ B ) ) ) ).

% inverse_mult_distrib
thf(fact_8974_inverse__eq__1__iff,axiom,
    ! [X: real] :
      ( ( ( inverse_inverse_real @ X )
        = one_one_real )
      = ( X = one_one_real ) ) ).

% inverse_eq_1_iff
thf(fact_8975_inverse__eq__1__iff,axiom,
    ! [X: complex] :
      ( ( ( invers8013647133539491842omplex @ X )
        = one_one_complex )
      = ( X = one_one_complex ) ) ).

% inverse_eq_1_iff
thf(fact_8976_inverse__eq__1__iff,axiom,
    ! [X: rat] :
      ( ( ( inverse_inverse_rat @ X )
        = one_one_rat )
      = ( X = one_one_rat ) ) ).

% inverse_eq_1_iff
thf(fact_8977_inverse__1,axiom,
    ( ( inverse_inverse_real @ one_one_real )
    = one_one_real ) ).

% inverse_1
thf(fact_8978_inverse__1,axiom,
    ( ( invers8013647133539491842omplex @ one_one_complex )
    = one_one_complex ) ).

% inverse_1
thf(fact_8979_inverse__1,axiom,
    ( ( inverse_inverse_rat @ one_one_rat )
    = one_one_rat ) ).

% inverse_1
thf(fact_8980_inverse__divide,axiom,
    ! [A: real,B: real] :
      ( ( inverse_inverse_real @ ( divide_divide_real @ A @ B ) )
      = ( divide_divide_real @ B @ A ) ) ).

% inverse_divide
thf(fact_8981_inverse__divide,axiom,
    ! [A: complex,B: complex] :
      ( ( invers8013647133539491842omplex @ ( divide1717551699836669952omplex @ A @ B ) )
      = ( divide1717551699836669952omplex @ B @ A ) ) ).

% inverse_divide
thf(fact_8982_inverse__divide,axiom,
    ! [A: rat,B: rat] :
      ( ( inverse_inverse_rat @ ( divide_divide_rat @ A @ B ) )
      = ( divide_divide_rat @ B @ A ) ) ).

% inverse_divide
thf(fact_8983_scaleR__scaleR,axiom,
    ! [A: real,B: real,X: real] :
      ( ( real_V1485227260804924795R_real @ A @ ( real_V1485227260804924795R_real @ B @ X ) )
      = ( real_V1485227260804924795R_real @ ( times_times_real @ A @ B ) @ X ) ) ).

% scaleR_scaleR
thf(fact_8984_scaleR__scaleR,axiom,
    ! [A: real,B: real,X: complex] :
      ( ( real_V2046097035970521341omplex @ A @ ( real_V2046097035970521341omplex @ B @ X ) )
      = ( real_V2046097035970521341omplex @ ( times_times_real @ A @ B ) @ X ) ) ).

% scaleR_scaleR
thf(fact_8985_prod_Oneutral__const,axiom,
    ! [A2: set_nat] :
      ( ( groups705719431365010083at_int
        @ ^ [Uu3: nat] : one_one_int
        @ A2 )
      = one_one_int ) ).

% prod.neutral_const
thf(fact_8986_prod_Oneutral__const,axiom,
    ! [A2: set_int] :
      ( ( groups1705073143266064639nt_int
        @ ^ [Uu3: int] : one_one_int
        @ A2 )
      = one_one_int ) ).

% prod.neutral_const
thf(fact_8987_sin__npi__int,axiom,
    ! [N2: int] :
      ( ( sin_real @ ( times_times_real @ pi @ ( ring_1_of_int_real @ N2 ) ) )
      = zero_zero_real ) ).

% sin_npi_int
thf(fact_8988_tan__periodic__int,axiom,
    ! [X: real,I2: int] :
      ( ( tan_real @ ( plus_plus_real @ X @ ( times_times_real @ ( ring_1_of_int_real @ I2 ) @ pi ) ) )
      = ( tan_real @ X ) ) ).

% tan_periodic_int
thf(fact_8989_sin__int__2pin,axiom,
    ! [N2: int] :
      ( ( sin_real @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) @ ( ring_1_of_int_real @ N2 ) ) )
      = zero_zero_real ) ).

% sin_int_2pin
thf(fact_8990_cos__int__2pin,axiom,
    ! [N2: int] :
      ( ( cos_real @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) @ ( ring_1_of_int_real @ N2 ) ) )
      = one_one_real ) ).

% cos_int_2pin
thf(fact_8991_cos__npi__int,axiom,
    ! [N2: int] :
      ( ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 )
       => ( ( cos_real @ ( times_times_real @ pi @ ( ring_1_of_int_real @ N2 ) ) )
          = one_one_real ) )
      & ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 )
       => ( ( cos_real @ ( times_times_real @ pi @ ( ring_1_of_int_real @ N2 ) ) )
          = ( uminus_uminus_real @ one_one_real ) ) ) ) ).

% cos_npi_int
thf(fact_8992_real__scaleR__def,axiom,
    real_V1485227260804924795R_real = times_times_real ).

% real_scaleR_def
thf(fact_8993_real__sqrt__inverse,axiom,
    ! [X: real] :
      ( ( sqrt @ ( inverse_inverse_real @ X ) )
      = ( inverse_inverse_real @ ( sqrt @ X ) ) ) ).

% real_sqrt_inverse
thf(fact_8994_divide__real__def,axiom,
    ( divide_divide_real
    = ( ^ [X3: real,Y3: real] : ( times_times_real @ X3 @ ( inverse_inverse_real @ Y3 ) ) ) ) ).

% divide_real_def
thf(fact_8995_complex__scaleR,axiom,
    ! [R2: real,A: real,B: real] :
      ( ( real_V2046097035970521341omplex @ R2 @ ( complex2 @ A @ B ) )
      = ( complex2 @ ( times_times_real @ R2 @ A ) @ ( times_times_real @ R2 @ B ) ) ) ).

% complex_scaleR
thf(fact_8996_real__of__int__div4,axiom,
    ! [N2: int,X: int] : ( ord_less_eq_real @ ( ring_1_of_int_real @ ( divide_divide_int @ N2 @ X ) ) @ ( divide_divide_real @ ( ring_1_of_int_real @ N2 ) @ ( ring_1_of_int_real @ X ) ) ) ).

% real_of_int_div4
thf(fact_8997_forall__pos__mono__1,axiom,
    ! [P: real > $o,E: real] :
      ( ! [D4: real,E2: real] :
          ( ( ord_less_real @ D4 @ E2 )
         => ( ( P @ D4 )
           => ( P @ E2 ) ) )
     => ( ! [N: nat] : ( P @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ ( suc @ N ) ) ) )
       => ( ( ord_less_real @ zero_zero_real @ E )
         => ( P @ E ) ) ) ) ).

% forall_pos_mono_1
thf(fact_8998_int__le__real__less,axiom,
    ( ord_less_eq_int
    = ( ^ [N3: int,M6: int] : ( ord_less_real @ ( ring_1_of_int_real @ N3 ) @ ( plus_plus_real @ ( ring_1_of_int_real @ M6 ) @ one_one_real ) ) ) ) ).

% int_le_real_less
thf(fact_8999_sqrt__divide__self__eq,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( divide_divide_real @ ( sqrt @ X ) @ X )
        = ( inverse_inverse_real @ ( sqrt @ X ) ) ) ) ).

% sqrt_divide_self_eq
thf(fact_9000_int__less__real__le,axiom,
    ( ord_less_int
    = ( ^ [N3: int,M6: int] : ( ord_less_eq_real @ ( plus_plus_real @ ( ring_1_of_int_real @ N3 ) @ one_one_real ) @ ( ring_1_of_int_real @ M6 ) ) ) ) ).

% int_less_real_le
thf(fact_9001_sin__zero__iff__int2,axiom,
    ! [X: real] :
      ( ( ( sin_real @ X )
        = zero_zero_real )
      = ( ? [I5: int] :
            ( X
            = ( times_times_real @ ( ring_1_of_int_real @ I5 ) @ pi ) ) ) ) ).

% sin_zero_iff_int2
thf(fact_9002_real__of__int__div__aux,axiom,
    ! [X: int,D: int] :
      ( ( divide_divide_real @ ( ring_1_of_int_real @ X ) @ ( ring_1_of_int_real @ D ) )
      = ( plus_plus_real @ ( ring_1_of_int_real @ ( divide_divide_int @ X @ D ) ) @ ( divide_divide_real @ ( ring_1_of_int_real @ ( modulo_modulo_int @ X @ D ) ) @ ( ring_1_of_int_real @ D ) ) ) ) ).

% real_of_int_div_aux
thf(fact_9003_real__of__int__div2,axiom,
    ! [N2: int,X: int] : ( ord_less_eq_real @ zero_zero_real @ ( minus_minus_real @ ( divide_divide_real @ ( ring_1_of_int_real @ N2 ) @ ( ring_1_of_int_real @ X ) ) @ ( ring_1_of_int_real @ ( divide_divide_int @ N2 @ X ) ) ) ) ).

% real_of_int_div2
thf(fact_9004_real__of__int__div3,axiom,
    ! [N2: int,X: int] : ( ord_less_eq_real @ ( minus_minus_real @ ( divide_divide_real @ ( ring_1_of_int_real @ N2 ) @ ( ring_1_of_int_real @ X ) ) @ ( ring_1_of_int_real @ ( divide_divide_int @ N2 @ X ) ) ) @ one_one_real ) ).

% real_of_int_div3
thf(fact_9005_fact__eq__fact__times,axiom,
    ! [N2: nat,M: nat] :
      ( ( ord_less_eq_nat @ N2 @ M )
     => ( ( semiri1408675320244567234ct_nat @ M )
        = ( times_times_nat @ ( semiri1408675320244567234ct_nat @ N2 )
          @ ( groups708209901874060359at_nat
            @ ^ [X3: nat] : X3
            @ ( set_or1269000886237332187st_nat @ ( suc @ N2 ) @ M ) ) ) ) ) ).

% fact_eq_fact_times
thf(fact_9006_exp__plus__inverse__exp,axiom,
    ! [X: real] : ( ord_less_eq_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( plus_plus_real @ ( exp_real @ X ) @ ( inverse_inverse_real @ ( exp_real @ X ) ) ) ) ).

% exp_plus_inverse_exp
thf(fact_9007_fact__div__fact,axiom,
    ! [N2: nat,M: nat] :
      ( ( ord_less_eq_nat @ N2 @ M )
     => ( ( divide_divide_nat @ ( semiri1408675320244567234ct_nat @ M ) @ ( semiri1408675320244567234ct_nat @ N2 ) )
        = ( groups708209901874060359at_nat
          @ ^ [X3: nat] : X3
          @ ( set_or1269000886237332187st_nat @ ( plus_plus_nat @ N2 @ one_one_nat ) @ M ) ) ) ) ).

% fact_div_fact
thf(fact_9008_plus__inverse__ge__2,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ord_less_eq_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( plus_plus_real @ X @ ( inverse_inverse_real @ X ) ) ) ) ).

% plus_inverse_ge_2
thf(fact_9009_real__inv__sqrt__pow2,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( power_power_real @ ( inverse_inverse_real @ ( sqrt @ X ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( inverse_inverse_real @ X ) ) ) ).

% real_inv_sqrt_pow2
thf(fact_9010_cos__one__2pi__int,axiom,
    ! [X: real] :
      ( ( ( cos_real @ X )
        = one_one_real )
      = ( ? [X3: int] :
            ( X
            = ( times_times_real @ ( times_times_real @ ( ring_1_of_int_real @ X3 ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ pi ) ) ) ) ).

% cos_one_2pi_int
thf(fact_9011_tan__cot,axiom,
    ! [X: real] :
      ( ( tan_real @ ( minus_minus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ X ) )
      = ( inverse_inverse_real @ ( tan_real @ X ) ) ) ).

% tan_cot
thf(fact_9012_real__le__x__sinh,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ord_less_eq_real @ X @ ( divide_divide_real @ ( minus_minus_real @ ( exp_real @ X ) @ ( inverse_inverse_real @ ( exp_real @ X ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).

% real_le_x_sinh
thf(fact_9013_real__le__abs__sinh,axiom,
    ! [X: real] : ( ord_less_eq_real @ ( abs_abs_real @ X ) @ ( abs_abs_real @ ( divide_divide_real @ ( minus_minus_real @ ( exp_real @ X ) @ ( inverse_inverse_real @ ( exp_real @ X ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).

% real_le_abs_sinh
thf(fact_9014_VEBT__internal_OminNull_Opelims_I3_J,axiom,
    ! [X: vEBT_VEBT] :
      ( ~ ( vEBT_VEBT_minNull @ X )
     => ( ( accp_VEBT_VEBT @ vEBT_V6963167321098673237ll_rel @ X )
       => ( ! [Uv2: $o] :
              ( ( X
                = ( vEBT_Leaf @ $true @ Uv2 ) )
             => ~ ( accp_VEBT_VEBT @ vEBT_V6963167321098673237ll_rel @ ( vEBT_Leaf @ $true @ Uv2 ) ) )
         => ( ! [Uu2: $o] :
                ( ( X
                  = ( vEBT_Leaf @ Uu2 @ $true ) )
               => ~ ( accp_VEBT_VEBT @ vEBT_V6963167321098673237ll_rel @ ( vEBT_Leaf @ Uu2 @ $true ) ) )
           => ~ ! [Uz2: product_prod_nat_nat,Va3: nat,Vb2: list_VEBT_VEBT,Vc2: vEBT_VEBT] :
                  ( ( X
                    = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ Uz2 ) @ Va3 @ Vb2 @ Vc2 ) )
                 => ~ ( accp_VEBT_VEBT @ vEBT_V6963167321098673237ll_rel @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ Uz2 ) @ Va3 @ Vb2 @ Vc2 ) ) ) ) ) ) ) ).

% VEBT_internal.minNull.pelims(3)
thf(fact_9015_arccos__cos__eq__abs__2pi,axiom,
    ! [Theta: real] :
      ~ ! [K2: int] :
          ( ( arccos @ ( cos_real @ Theta ) )
         != ( abs_abs_real @ ( minus_minus_real @ Theta @ ( times_times_real @ ( ring_1_of_int_real @ K2 ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) ) ) ) ) ).

% arccos_cos_eq_abs_2pi
thf(fact_9016_VEBT__internal_OminNull_Opelims_I2_J,axiom,
    ! [X: vEBT_VEBT] :
      ( ( vEBT_VEBT_minNull @ X )
     => ( ( accp_VEBT_VEBT @ vEBT_V6963167321098673237ll_rel @ X )
       => ( ( ( X
              = ( vEBT_Leaf @ $false @ $false ) )
           => ~ ( accp_VEBT_VEBT @ vEBT_V6963167321098673237ll_rel @ ( vEBT_Leaf @ $false @ $false ) ) )
         => ~ ! [Uw2: nat,Ux2: list_VEBT_VEBT,Uy2: vEBT_VEBT] :
                ( ( X
                  = ( vEBT_Node @ none_P5556105721700978146at_nat @ Uw2 @ Ux2 @ Uy2 ) )
               => ~ ( accp_VEBT_VEBT @ vEBT_V6963167321098673237ll_rel @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Uw2 @ Ux2 @ Uy2 ) ) ) ) ) ) ).

% VEBT_internal.minNull.pelims(2)
thf(fact_9017_cos__zero__iff__int,axiom,
    ! [X: real] :
      ( ( ( cos_real @ X )
        = zero_zero_real )
      = ( ? [I5: int] :
            ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ I5 )
            & ( X
              = ( times_times_real @ ( ring_1_of_int_real @ I5 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% cos_zero_iff_int
thf(fact_9018_sin__zero__iff__int,axiom,
    ! [X: real] :
      ( ( ( sin_real @ X )
        = zero_zero_real )
      = ( ? [I5: int] :
            ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ I5 )
            & ( X
              = ( times_times_real @ ( ring_1_of_int_real @ I5 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% sin_zero_iff_int
thf(fact_9019_sinh__real__le__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ ( sinh_real @ X ) @ ( sinh_real @ Y ) )
      = ( ord_less_eq_real @ X @ Y ) ) ).

% sinh_real_le_iff
thf(fact_9020_sinh__real__nonpos__iff,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ ( sinh_real @ X ) @ zero_zero_real )
      = ( ord_less_eq_real @ X @ zero_zero_real ) ) ).

% sinh_real_nonpos_iff
thf(fact_9021_sinh__real__nonneg__iff,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( sinh_real @ X ) )
      = ( ord_less_eq_real @ zero_zero_real @ X ) ) ).

% sinh_real_nonneg_iff
thf(fact_9022_divide__complex__def,axiom,
    ( divide1717551699836669952omplex
    = ( ^ [X3: complex,Y3: complex] : ( times_times_complex @ X3 @ ( invers8013647133539491842omplex @ Y3 ) ) ) ) ).

% divide_complex_def
thf(fact_9023_prod__int__eq,axiom,
    ! [I2: nat,J: nat] :
      ( ( groups705719431365010083at_int @ semiri1314217659103216013at_int @ ( set_or1269000886237332187st_nat @ I2 @ J ) )
      = ( groups1705073143266064639nt_int
        @ ^ [X3: int] : X3
        @ ( set_or1266510415728281911st_int @ ( semiri1314217659103216013at_int @ I2 ) @ ( semiri1314217659103216013at_int @ J ) ) ) ) ).

% prod_int_eq
thf(fact_9024_prod__int__plus__eq,axiom,
    ! [I2: nat,J: nat] :
      ( ( groups705719431365010083at_int @ semiri1314217659103216013at_int @ ( set_or1269000886237332187st_nat @ I2 @ ( plus_plus_nat @ I2 @ J ) ) )
      = ( groups1705073143266064639nt_int
        @ ^ [X3: int] : X3
        @ ( set_or1266510415728281911st_int @ ( semiri1314217659103216013at_int @ I2 ) @ ( semiri1314217659103216013at_int @ ( plus_plus_nat @ I2 @ J ) ) ) ) ) ).

% prod_int_plus_eq
thf(fact_9025_complex__inverse,axiom,
    ! [A: real,B: real] :
      ( ( invers8013647133539491842omplex @ ( complex2 @ A @ B ) )
      = ( complex2 @ ( divide_divide_real @ A @ ( plus_plus_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ B @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( divide_divide_real @ ( uminus_uminus_real @ B ) @ ( plus_plus_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ B @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% complex_inverse
thf(fact_9026_sinh__ln__real,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( sinh_real @ ( ln_ln_real @ X ) )
        = ( divide_divide_real @ ( minus_minus_real @ X @ ( inverse_inverse_real @ X ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).

% sinh_ln_real
thf(fact_9027_or__int__unfold,axiom,
    ( bit_se1409905431419307370or_int
    = ( ^ [K3: int,L: int] :
          ( if_int
          @ ( ( K3
              = ( uminus_uminus_int @ one_one_int ) )
            | ( L
              = ( uminus_uminus_int @ one_one_int ) ) )
          @ ( uminus_uminus_int @ one_one_int )
          @ ( if_int @ ( K3 = zero_zero_int ) @ L @ ( if_int @ ( L = zero_zero_int ) @ K3 @ ( plus_plus_int @ ( ord_max_int @ ( modulo_modulo_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( modulo_modulo_int @ L @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se1409905431419307370or_int @ ( divide_divide_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( divide_divide_int @ L @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ).

% or_int_unfold
thf(fact_9028_divmod__BitM__2__eq,axiom,
    ! [M: num] :
      ( ( unique5052692396658037445od_int @ ( bitM @ M ) @ ( bit0 @ one ) )
      = ( product_Pair_int_int @ ( minus_minus_int @ ( numeral_numeral_int @ M ) @ one_one_int ) @ one_one_int ) ) ).

% divmod_BitM_2_eq
thf(fact_9029_cot__less__zero,axiom,
    ! [X: real] :
      ( ( ord_less_real @ ( divide_divide_real @ ( uminus_uminus_real @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ X )
     => ( ( ord_less_real @ X @ zero_zero_real )
       => ( ord_less_real @ ( cot_real @ X ) @ zero_zero_real ) ) ) ).

% cot_less_zero
thf(fact_9030_or__nonnegative__int__iff,axiom,
    ! [K: int,L2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( bit_se1409905431419307370or_int @ K @ L2 ) )
      = ( ( ord_less_eq_int @ zero_zero_int @ K )
        & ( ord_less_eq_int @ zero_zero_int @ L2 ) ) ) ).

% or_nonnegative_int_iff
thf(fact_9031_or__negative__int__iff,axiom,
    ! [K: int,L2: int] :
      ( ( ord_less_int @ ( bit_se1409905431419307370or_int @ K @ L2 ) @ zero_zero_int )
      = ( ( ord_less_int @ K @ zero_zero_int )
        | ( ord_less_int @ L2 @ zero_zero_int ) ) ) ).

% or_negative_int_iff
thf(fact_9032_pred__numeral__simps_I2_J,axiom,
    ! [K: num] :
      ( ( pred_numeral @ ( bit0 @ K ) )
      = ( numeral_numeral_nat @ ( bitM @ K ) ) ) ).

% pred_numeral_simps(2)
thf(fact_9033_or__minus__numerals_I2_J,axiom,
    ! [N2: num] :
      ( ( bit_se1409905431419307370or_int @ one_one_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ N2 ) ) ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ N2 ) ) ) ) ).

% or_minus_numerals(2)
thf(fact_9034_or__minus__numerals_I6_J,axiom,
    ! [N2: num] :
      ( ( bit_se1409905431419307370or_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ N2 ) ) ) @ one_one_int )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ N2 ) ) ) ) ).

% or_minus_numerals(6)
thf(fact_9035_cot__npi,axiom,
    ! [N2: nat] :
      ( ( cot_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ pi ) )
      = zero_zero_real ) ).

% cot_npi
thf(fact_9036_cot__periodic,axiom,
    ! [X: real] :
      ( ( cot_real @ ( plus_plus_real @ X @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) ) )
      = ( cot_real @ X ) ) ).

% cot_periodic
thf(fact_9037_sinh__le__cosh__real,axiom,
    ! [X: real] : ( ord_less_eq_real @ ( sinh_real @ X ) @ ( cosh_real @ X ) ) ).

% sinh_le_cosh_real
thf(fact_9038_semiring__norm_I26_J,axiom,
    ( ( bitM @ one )
    = one ) ).

% semiring_norm(26)
thf(fact_9039_OR__lower,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X )
     => ( ( ord_less_eq_int @ zero_zero_int @ Y )
       => ( ord_less_eq_int @ zero_zero_int @ ( bit_se1409905431419307370or_int @ X @ Y ) ) ) ) ).

% OR_lower
thf(fact_9040_or__greater__eq,axiom,
    ! [L2: int,K: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ L2 )
     => ( ord_less_eq_int @ K @ ( bit_se1409905431419307370or_int @ K @ L2 ) ) ) ).

% or_greater_eq
thf(fact_9041_cosh__real__nonneg,axiom,
    ! [X: real] : ( ord_less_eq_real @ zero_zero_real @ ( cosh_real @ X ) ) ).

% cosh_real_nonneg
thf(fact_9042_cosh__real__nonneg__le__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y )
       => ( ( ord_less_eq_real @ ( cosh_real @ X ) @ ( cosh_real @ Y ) )
          = ( ord_less_eq_real @ X @ Y ) ) ) ) ).

% cosh_real_nonneg_le_iff
thf(fact_9043_cosh__real__nonpos__le__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ X @ zero_zero_real )
     => ( ( ord_less_eq_real @ Y @ zero_zero_real )
       => ( ( ord_less_eq_real @ ( cosh_real @ X ) @ ( cosh_real @ Y ) )
          = ( ord_less_eq_real @ Y @ X ) ) ) ) ).

% cosh_real_nonpos_le_iff
thf(fact_9044_cosh__real__ge__1,axiom,
    ! [X: real] : ( ord_less_eq_real @ one_one_real @ ( cosh_real @ X ) ) ).

% cosh_real_ge_1
thf(fact_9045_semiring__norm_I27_J,axiom,
    ! [N2: num] :
      ( ( bitM @ ( bit0 @ N2 ) )
      = ( bit1 @ ( bitM @ N2 ) ) ) ).

% semiring_norm(27)
thf(fact_9046_semiring__norm_I28_J,axiom,
    ! [N2: num] :
      ( ( bitM @ ( bit1 @ N2 ) )
      = ( bit1 @ ( bit0 @ N2 ) ) ) ).

% semiring_norm(28)
thf(fact_9047_cosh__real__strict__mono,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ X @ Y )
       => ( ord_less_real @ ( cosh_real @ X ) @ ( cosh_real @ Y ) ) ) ) ).

% cosh_real_strict_mono
thf(fact_9048_cosh__real__nonneg__less__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y )
       => ( ( ord_less_real @ ( cosh_real @ X ) @ ( cosh_real @ Y ) )
          = ( ord_less_real @ X @ Y ) ) ) ) ).

% cosh_real_nonneg_less_iff
thf(fact_9049_cosh__real__nonpos__less__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ X @ zero_zero_real )
     => ( ( ord_less_eq_real @ Y @ zero_zero_real )
       => ( ( ord_less_real @ ( cosh_real @ X ) @ ( cosh_real @ Y ) )
          = ( ord_less_real @ Y @ X ) ) ) ) ).

% cosh_real_nonpos_less_iff
thf(fact_9050_arcosh__cosh__real,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( arcosh_real @ ( cosh_real @ X ) )
        = X ) ) ).

% arcosh_cosh_real
thf(fact_9051_eval__nat__numeral_I2_J,axiom,
    ! [N2: num] :
      ( ( numeral_numeral_nat @ ( bit0 @ N2 ) )
      = ( suc @ ( numeral_numeral_nat @ ( bitM @ N2 ) ) ) ) ).

% eval_nat_numeral(2)
thf(fact_9052_one__plus__BitM,axiom,
    ! [N2: num] :
      ( ( plus_plus_num @ one @ ( bitM @ N2 ) )
      = ( bit0 @ N2 ) ) ).

% one_plus_BitM
thf(fact_9053_BitM__plus__one,axiom,
    ! [N2: num] :
      ( ( plus_plus_num @ ( bitM @ N2 ) @ one )
      = ( bit0 @ N2 ) ) ).

% BitM_plus_one
thf(fact_9054_OR__upper,axiom,
    ! [X: int,N2: nat,Y: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X )
     => ( ( ord_less_int @ X @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) )
       => ( ( ord_less_int @ Y @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) )
         => ( ord_less_int @ ( bit_se1409905431419307370or_int @ X @ Y ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) ) ) ) ) ).

% OR_upper
thf(fact_9055_or__int__rec,axiom,
    ( bit_se1409905431419307370or_int
    = ( ^ [K3: int,L: int] :
          ( plus_plus_int
          @ ( zero_n2684676970156552555ol_int
            @ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K3 )
              | ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ L ) ) )
          @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se1409905431419307370or_int @ ( divide_divide_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( divide_divide_int @ L @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% or_int_rec
thf(fact_9056_cosh__ln__real,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( cosh_real @ ( ln_ln_real @ X ) )
        = ( divide_divide_real @ ( plus_plus_real @ X @ ( inverse_inverse_real @ X ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).

% cosh_ln_real
thf(fact_9057_cot__gt__zero,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ X @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ord_less_real @ zero_zero_real @ ( cot_real @ X ) ) ) ) ).

% cot_gt_zero
thf(fact_9058_tan__cot_H,axiom,
    ! [X: real] :
      ( ( tan_real @ ( minus_minus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ X ) )
      = ( cot_real @ X ) ) ).

% tan_cot'
thf(fact_9059_or__minus__numerals_I5_J,axiom,
    ! [N2: num] :
      ( ( bit_se1409905431419307370or_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ N2 ) ) ) @ one_one_int )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit_or_not_num_neg @ one @ ( bitM @ N2 ) ) ) ) ) ).

% or_minus_numerals(5)
thf(fact_9060_or__minus__numerals_I1_J,axiom,
    ! [N2: num] :
      ( ( bit_se1409905431419307370or_int @ one_one_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ N2 ) ) ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit_or_not_num_neg @ one @ ( bitM @ N2 ) ) ) ) ) ).

% or_minus_numerals(1)
thf(fact_9061_i__even__power,axiom,
    ! [N2: nat] :
      ( ( power_power_complex @ imaginary_unit @ ( times_times_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N2 ) ) ).

% i_even_power
thf(fact_9062_log__base__10__eq1,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( log @ ( numeral_numeral_real @ ( bit0 @ ( bit1 @ ( bit0 @ one ) ) ) ) @ X )
        = ( times_times_real @ ( divide_divide_real @ ( ln_ln_real @ ( exp_real @ one_one_real ) ) @ ( ln_ln_real @ ( numeral_numeral_real @ ( bit0 @ ( bit1 @ ( bit0 @ one ) ) ) ) ) ) @ ( ln_ln_real @ X ) ) ) ) ).

% log_base_10_eq1
thf(fact_9063_complex__i__mult__minus,axiom,
    ! [X: complex] :
      ( ( times_times_complex @ imaginary_unit @ ( times_times_complex @ imaginary_unit @ X ) )
      = ( uminus1482373934393186551omplex @ X ) ) ).

% complex_i_mult_minus
thf(fact_9064_divide__i,axiom,
    ! [X: complex] :
      ( ( divide1717551699836669952omplex @ X @ imaginary_unit )
      = ( times_times_complex @ ( uminus1482373934393186551omplex @ imaginary_unit ) @ X ) ) ).

% divide_i
thf(fact_9065_i__squared,axiom,
    ( ( times_times_complex @ imaginary_unit @ imaginary_unit )
    = ( uminus1482373934393186551omplex @ one_one_complex ) ) ).

% i_squared
thf(fact_9066_log__le__cancel__iff,axiom,
    ! [A: real,X: real,Y: real] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ( ( ord_less_real @ zero_zero_real @ Y )
         => ( ( ord_less_eq_real @ ( log @ A @ X ) @ ( log @ A @ Y ) )
            = ( ord_less_eq_real @ X @ Y ) ) ) ) ) ).

% log_le_cancel_iff
thf(fact_9067_log__le__one__cancel__iff,axiom,
    ! [A: real,X: real] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ( ( ord_less_eq_real @ ( log @ A @ X ) @ one_one_real )
          = ( ord_less_eq_real @ X @ A ) ) ) ) ).

% log_le_one_cancel_iff
thf(fact_9068_one__le__log__cancel__iff,axiom,
    ! [A: real,X: real] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ( ( ord_less_eq_real @ one_one_real @ ( log @ A @ X ) )
          = ( ord_less_eq_real @ A @ X ) ) ) ) ).

% one_le_log_cancel_iff
thf(fact_9069_log__le__zero__cancel__iff,axiom,
    ! [A: real,X: real] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ( ( ord_less_eq_real @ ( log @ A @ X ) @ zero_zero_real )
          = ( ord_less_eq_real @ X @ one_one_real ) ) ) ) ).

% log_le_zero_cancel_iff
thf(fact_9070_zero__le__log__cancel__iff,axiom,
    ! [A: real,X: real] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ( ( ord_less_eq_real @ zero_zero_real @ ( log @ A @ X ) )
          = ( ord_less_eq_real @ one_one_real @ X ) ) ) ) ).

% zero_le_log_cancel_iff
thf(fact_9071_or__nat__numerals_I4_J,axiom,
    ! [X: num] :
      ( ( bit_se1412395901928357646or_nat @ ( numeral_numeral_nat @ ( bit1 @ X ) ) @ ( suc @ zero_zero_nat ) )
      = ( numeral_numeral_nat @ ( bit1 @ X ) ) ) ).

% or_nat_numerals(4)
thf(fact_9072_or__nat__numerals_I2_J,axiom,
    ! [Y: num] :
      ( ( bit_se1412395901928357646or_nat @ ( suc @ zero_zero_nat ) @ ( numeral_numeral_nat @ ( bit1 @ Y ) ) )
      = ( numeral_numeral_nat @ ( bit1 @ Y ) ) ) ).

% or_nat_numerals(2)
thf(fact_9073_divide__numeral__i,axiom,
    ! [Z: complex,N2: num] :
      ( ( divide1717551699836669952omplex @ Z @ ( times_times_complex @ ( numera6690914467698888265omplex @ N2 ) @ imaginary_unit ) )
      = ( divide1717551699836669952omplex @ ( uminus1482373934393186551omplex @ ( times_times_complex @ imaginary_unit @ Z ) ) @ ( numera6690914467698888265omplex @ N2 ) ) ) ).

% divide_numeral_i
thf(fact_9074_or__nat__numerals_I3_J,axiom,
    ! [X: num] :
      ( ( bit_se1412395901928357646or_nat @ ( numeral_numeral_nat @ ( bit0 @ X ) ) @ ( suc @ zero_zero_nat ) )
      = ( numeral_numeral_nat @ ( bit1 @ X ) ) ) ).

% or_nat_numerals(3)
thf(fact_9075_or__nat__numerals_I1_J,axiom,
    ! [Y: num] :
      ( ( bit_se1412395901928357646or_nat @ ( suc @ zero_zero_nat ) @ ( numeral_numeral_nat @ ( bit0 @ Y ) ) )
      = ( numeral_numeral_nat @ ( bit1 @ Y ) ) ) ).

% or_nat_numerals(1)
thf(fact_9076_log__pow__cancel,axiom,
    ! [A: real,B: nat] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( A != one_one_real )
       => ( ( log @ A @ ( power_power_real @ A @ B ) )
          = ( semiri5074537144036343181t_real @ B ) ) ) ) ).

% log_pow_cancel
thf(fact_9077_or__minus__numerals_I8_J,axiom,
    ! [N2: num,M: num] :
      ( ( bit_se1409905431419307370or_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ N2 ) ) ) @ ( numeral_numeral_int @ M ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit_or_not_num_neg @ M @ ( bit0 @ N2 ) ) ) ) ) ).

% or_minus_numerals(8)
thf(fact_9078_or__minus__numerals_I4_J,axiom,
    ! [M: num,N2: num] :
      ( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ N2 ) ) ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit_or_not_num_neg @ M @ ( bit0 @ N2 ) ) ) ) ) ).

% or_minus_numerals(4)
thf(fact_9079_or__minus__numerals_I7_J,axiom,
    ! [N2: num,M: num] :
      ( ( bit_se1409905431419307370or_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ N2 ) ) ) @ ( numeral_numeral_int @ M ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit_or_not_num_neg @ M @ ( bitM @ N2 ) ) ) ) ) ).

% or_minus_numerals(7)
thf(fact_9080_or__minus__numerals_I3_J,axiom,
    ! [M: num,N2: num] :
      ( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ N2 ) ) ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit_or_not_num_neg @ M @ ( bitM @ N2 ) ) ) ) ) ).

% or_minus_numerals(3)
thf(fact_9081_power2__i,axiom,
    ( ( power_power_complex @ imaginary_unit @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = ( uminus1482373934393186551omplex @ one_one_complex ) ) ).

% power2_i
thf(fact_9082_or__not__num__neg_Osimps_I1_J,axiom,
    ( ( bit_or_not_num_neg @ one @ one )
    = one ) ).

% or_not_num_neg.simps(1)
thf(fact_9083_complex__i__not__numeral,axiom,
    ! [W: num] :
      ( imaginary_unit
     != ( numera6690914467698888265omplex @ W ) ) ).

% complex_i_not_numeral
thf(fact_9084_or__not__num__neg_Osimps_I4_J,axiom,
    ! [N2: num] :
      ( ( bit_or_not_num_neg @ ( bit0 @ N2 ) @ one )
      = ( bit0 @ one ) ) ).

% or_not_num_neg.simps(4)
thf(fact_9085_or__not__num__neg_Osimps_I6_J,axiom,
    ! [N2: num,M: num] :
      ( ( bit_or_not_num_neg @ ( bit0 @ N2 ) @ ( bit1 @ M ) )
      = ( bit0 @ ( bit_or_not_num_neg @ N2 @ M ) ) ) ).

% or_not_num_neg.simps(6)
thf(fact_9086_or__not__num__neg_Osimps_I7_J,axiom,
    ! [N2: num] :
      ( ( bit_or_not_num_neg @ ( bit1 @ N2 ) @ one )
      = one ) ).

% or_not_num_neg.simps(7)
thf(fact_9087_or__not__num__neg_Osimps_I3_J,axiom,
    ! [M: num] :
      ( ( bit_or_not_num_neg @ one @ ( bit1 @ M ) )
      = ( bit1 @ M ) ) ).

% or_not_num_neg.simps(3)
thf(fact_9088_i__times__eq__iff,axiom,
    ! [W: complex,Z: complex] :
      ( ( ( times_times_complex @ imaginary_unit @ W )
        = Z )
      = ( W
        = ( uminus1482373934393186551omplex @ ( times_times_complex @ imaginary_unit @ Z ) ) ) ) ).

% i_times_eq_iff
thf(fact_9089_or__not__num__neg_Osimps_I5_J,axiom,
    ! [N2: num,M: num] :
      ( ( bit_or_not_num_neg @ ( bit0 @ N2 ) @ ( bit0 @ M ) )
      = ( bitM @ ( bit_or_not_num_neg @ N2 @ M ) ) ) ).

% or_not_num_neg.simps(5)
thf(fact_9090_or__not__num__neg_Osimps_I9_J,axiom,
    ! [N2: num,M: num] :
      ( ( bit_or_not_num_neg @ ( bit1 @ N2 ) @ ( bit1 @ M ) )
      = ( bitM @ ( bit_or_not_num_neg @ N2 @ M ) ) ) ).

% or_not_num_neg.simps(9)
thf(fact_9091_complex__i__not__neg__numeral,axiom,
    ! [W: num] :
      ( imaginary_unit
     != ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) ) ).

% complex_i_not_neg_numeral
thf(fact_9092_or__not__num__neg_Osimps_I2_J,axiom,
    ! [M: num] :
      ( ( bit_or_not_num_neg @ one @ ( bit0 @ M ) )
      = ( bit1 @ M ) ) ).

% or_not_num_neg.simps(2)
thf(fact_9093_Complex__mult__i,axiom,
    ! [A: real,B: real] :
      ( ( times_times_complex @ ( complex2 @ A @ B ) @ imaginary_unit )
      = ( complex2 @ ( uminus_uminus_real @ B ) @ A ) ) ).

% Complex_mult_i
thf(fact_9094_i__mult__Complex,axiom,
    ! [A: real,B: real] :
      ( ( times_times_complex @ imaginary_unit @ ( complex2 @ A @ B ) )
      = ( complex2 @ ( uminus_uminus_real @ B ) @ A ) ) ).

% i_mult_Complex
thf(fact_9095_log__of__power__eq,axiom,
    ! [M: nat,B: real,N2: nat] :
      ( ( ( semiri5074537144036343181t_real @ M )
        = ( power_power_real @ B @ N2 ) )
     => ( ( ord_less_real @ one_one_real @ B )
       => ( ( semiri5074537144036343181t_real @ N2 )
          = ( log @ B @ ( semiri5074537144036343181t_real @ M ) ) ) ) ) ).

% log_of_power_eq
thf(fact_9096_less__log__of__power,axiom,
    ! [B: real,N2: nat,M: real] :
      ( ( ord_less_real @ ( power_power_real @ B @ N2 ) @ M )
     => ( ( ord_less_real @ one_one_real @ B )
       => ( ord_less_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( log @ B @ M ) ) ) ) ).

% less_log_of_power
thf(fact_9097_or__not__num__neg_Osimps_I8_J,axiom,
    ! [N2: num,M: num] :
      ( ( bit_or_not_num_neg @ ( bit1 @ N2 ) @ ( bit0 @ M ) )
      = ( bitM @ ( bit_or_not_num_neg @ N2 @ M ) ) ) ).

% or_not_num_neg.simps(8)
thf(fact_9098_log__mult,axiom,
    ! [A: real,X: real,Y: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( A != one_one_real )
       => ( ( ord_less_real @ zero_zero_real @ X )
         => ( ( ord_less_real @ zero_zero_real @ Y )
           => ( ( log @ A @ ( times_times_real @ X @ Y ) )
              = ( plus_plus_real @ ( log @ A @ X ) @ ( log @ A @ Y ) ) ) ) ) ) ) ).

% log_mult
thf(fact_9099_log__divide,axiom,
    ! [A: real,X: real,Y: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( A != one_one_real )
       => ( ( ord_less_real @ zero_zero_real @ X )
         => ( ( ord_less_real @ zero_zero_real @ Y )
           => ( ( log @ A @ ( divide_divide_real @ X @ Y ) )
              = ( minus_minus_real @ ( log @ A @ X ) @ ( log @ A @ Y ) ) ) ) ) ) ) ).

% log_divide
thf(fact_9100_le__log__of__power,axiom,
    ! [B: real,N2: nat,M: real] :
      ( ( ord_less_eq_real @ ( power_power_real @ B @ N2 ) @ M )
     => ( ( ord_less_real @ one_one_real @ B )
       => ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( log @ B @ M ) ) ) ) ).

% le_log_of_power
thf(fact_9101_log__base__pow,axiom,
    ! [A: real,N2: nat,X: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( log @ ( power_power_real @ A @ N2 ) @ X )
        = ( divide_divide_real @ ( log @ A @ X ) @ ( semiri5074537144036343181t_real @ N2 ) ) ) ) ).

% log_base_pow
thf(fact_9102_log__nat__power,axiom,
    ! [X: real,B: real,N2: nat] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( log @ B @ ( power_power_real @ X @ N2 ) )
        = ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( log @ B @ X ) ) ) ) ).

% log_nat_power
thf(fact_9103_or__not__num__neg_Oelims,axiom,
    ! [X: num,Xa2: num,Y: num] :
      ( ( ( bit_or_not_num_neg @ X @ Xa2 )
        = Y )
     => ( ( ( X = one )
         => ( ( Xa2 = one )
           => ( Y != one ) ) )
       => ( ( ( X = one )
           => ! [M2: num] :
                ( ( Xa2
                  = ( bit0 @ M2 ) )
               => ( Y
                 != ( bit1 @ M2 ) ) ) )
         => ( ( ( X = one )
             => ! [M2: num] :
                  ( ( Xa2
                    = ( bit1 @ M2 ) )
                 => ( Y
                   != ( bit1 @ M2 ) ) ) )
           => ( ( ? [N: num] :
                    ( X
                    = ( bit0 @ N ) )
               => ( ( Xa2 = one )
                 => ( Y
                   != ( bit0 @ one ) ) ) )
             => ( ! [N: num] :
                    ( ( X
                      = ( bit0 @ N ) )
                   => ! [M2: num] :
                        ( ( Xa2
                          = ( bit0 @ M2 ) )
                       => ( Y
                         != ( bitM @ ( bit_or_not_num_neg @ N @ M2 ) ) ) ) )
               => ( ! [N: num] :
                      ( ( X
                        = ( bit0 @ N ) )
                     => ! [M2: num] :
                          ( ( Xa2
                            = ( bit1 @ M2 ) )
                         => ( Y
                           != ( bit0 @ ( bit_or_not_num_neg @ N @ M2 ) ) ) ) )
                 => ( ( ? [N: num] :
                          ( X
                          = ( bit1 @ N ) )
                     => ( ( Xa2 = one )
                       => ( Y != one ) ) )
                   => ( ! [N: num] :
                          ( ( X
                            = ( bit1 @ N ) )
                         => ! [M2: num] :
                              ( ( Xa2
                                = ( bit0 @ M2 ) )
                             => ( Y
                               != ( bitM @ ( bit_or_not_num_neg @ N @ M2 ) ) ) ) )
                     => ~ ! [N: num] :
                            ( ( X
                              = ( bit1 @ N ) )
                           => ! [M2: num] :
                                ( ( Xa2
                                  = ( bit1 @ M2 ) )
                               => ( Y
                                 != ( bitM @ ( bit_or_not_num_neg @ N @ M2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).

% or_not_num_neg.elims
thf(fact_9104_log2__of__power__eq,axiom,
    ! [M: nat,N2: nat] :
      ( ( M
        = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
     => ( ( semiri5074537144036343181t_real @ N2 )
        = ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ M ) ) ) ) ).

% log2_of_power_eq
thf(fact_9105_log__of__power__less,axiom,
    ! [M: nat,B: real,N2: nat] :
      ( ( ord_less_real @ ( semiri5074537144036343181t_real @ M ) @ ( power_power_real @ B @ N2 ) )
     => ( ( ord_less_real @ one_one_real @ B )
       => ( ( ord_less_nat @ zero_zero_nat @ M )
         => ( ord_less_real @ ( log @ B @ ( semiri5074537144036343181t_real @ M ) ) @ ( semiri5074537144036343181t_real @ N2 ) ) ) ) ) ).

% log_of_power_less
thf(fact_9106_log__eq__div__ln__mult__log,axiom,
    ! [A: real,B: real,X: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( A != one_one_real )
       => ( ( ord_less_real @ zero_zero_real @ B )
         => ( ( B != one_one_real )
           => ( ( ord_less_real @ zero_zero_real @ X )
             => ( ( log @ A @ X )
                = ( times_times_real @ ( divide_divide_real @ ( ln_ln_real @ B ) @ ( ln_ln_real @ A ) ) @ ( log @ B @ X ) ) ) ) ) ) ) ) ).

% log_eq_div_ln_mult_log
thf(fact_9107_log__of__power__le,axiom,
    ! [M: nat,B: real,N2: nat] :
      ( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ M ) @ ( power_power_real @ B @ N2 ) )
     => ( ( ord_less_real @ one_one_real @ B )
       => ( ( ord_less_nat @ zero_zero_nat @ M )
         => ( ord_less_eq_real @ ( log @ B @ ( semiri5074537144036343181t_real @ M ) ) @ ( semiri5074537144036343181t_real @ N2 ) ) ) ) ) ).

% log_of_power_le
thf(fact_9108_less__log2__of__power,axiom,
    ! [N2: nat,M: nat] :
      ( ( ord_less_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) @ M )
     => ( ord_less_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ M ) ) ) ) ).

% less_log2_of_power
thf(fact_9109_le__log2__of__power,axiom,
    ! [N2: nat,M: nat] :
      ( ( ord_less_eq_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) @ M )
     => ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ M ) ) ) ) ).

% le_log2_of_power
thf(fact_9110_Suc__0__or__eq,axiom,
    ! [N2: nat] :
      ( ( bit_se1412395901928357646or_nat @ ( suc @ zero_zero_nat ) @ N2 )
      = ( plus_plus_nat @ N2 @ ( zero_n2687167440665602831ol_nat @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) ) ).

% Suc_0_or_eq
thf(fact_9111_or__Suc__0__eq,axiom,
    ! [N2: nat] :
      ( ( bit_se1412395901928357646or_nat @ N2 @ ( suc @ zero_zero_nat ) )
      = ( plus_plus_nat @ N2 @ ( zero_n2687167440665602831ol_nat @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) ) ).

% or_Suc_0_eq
thf(fact_9112_or__nat__rec,axiom,
    ( bit_se1412395901928357646or_nat
    = ( ^ [M6: nat,N3: nat] :
          ( plus_plus_nat
          @ ( zero_n2687167440665602831ol_nat
            @ ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M6 )
              | ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) ) )
          @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se1412395901928357646or_nat @ ( divide_divide_nat @ M6 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( divide_divide_nat @ N3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% or_nat_rec
thf(fact_9113_log2__of__power__less,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ M @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
     => ( ( ord_less_nat @ zero_zero_nat @ M )
       => ( ord_less_real @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ M ) ) @ ( semiri5074537144036343181t_real @ N2 ) ) ) ) ).

% log2_of_power_less
thf(fact_9114_or__nat__unfold,axiom,
    ( bit_se1412395901928357646or_nat
    = ( ^ [M6: nat,N3: nat] : ( if_nat @ ( M6 = zero_zero_nat ) @ N3 @ ( if_nat @ ( N3 = zero_zero_nat ) @ M6 @ ( plus_plus_nat @ ( ord_max_nat @ ( modulo_modulo_nat @ M6 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( modulo_modulo_nat @ N3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se1412395901928357646or_nat @ ( divide_divide_nat @ M6 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( divide_divide_nat @ N3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ).

% or_nat_unfold
thf(fact_9115_log2__of__power__le,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ M @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
     => ( ( ord_less_nat @ zero_zero_nat @ M )
       => ( ord_less_eq_real @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ M ) ) @ ( semiri5074537144036343181t_real @ N2 ) ) ) ) ).

% log2_of_power_le
thf(fact_9116_log__base__10__eq2,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( log @ ( numeral_numeral_real @ ( bit0 @ ( bit1 @ ( bit0 @ one ) ) ) ) @ X )
        = ( times_times_real @ ( log @ ( numeral_numeral_real @ ( bit0 @ ( bit1 @ ( bit0 @ one ) ) ) ) @ ( exp_real @ one_one_real ) ) @ ( ln_ln_real @ X ) ) ) ) ).

% log_base_10_eq2
thf(fact_9117_Arg__minus__ii,axiom,
    ( ( arg @ ( uminus1482373934393186551omplex @ imaginary_unit ) )
    = ( divide_divide_real @ ( uminus_uminus_real @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% Arg_minus_ii
thf(fact_9118_ceiling__log__nat__eq__powr__iff,axiom,
    ! [B: nat,K: nat,N2: nat] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B )
     => ( ( ord_less_nat @ zero_zero_nat @ K )
       => ( ( ( archim7802044766580827645g_real @ ( log @ ( semiri5074537144036343181t_real @ B ) @ ( semiri5074537144036343181t_real @ K ) ) )
            = ( plus_plus_int @ ( semiri1314217659103216013at_int @ N2 ) @ one_one_int ) )
          = ( ( ord_less_nat @ ( power_power_nat @ B @ N2 ) @ K )
            & ( ord_less_eq_nat @ K @ ( power_power_nat @ B @ ( plus_plus_nat @ N2 @ one_one_nat ) ) ) ) ) ) ) ).

% ceiling_log_nat_eq_powr_iff
thf(fact_9119_Arg__ii,axiom,
    ( ( arg @ imaginary_unit )
    = ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% Arg_ii
thf(fact_9120_ceiling__log2__div2,axiom,
    ! [N2: nat] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ( archim7802044766580827645g_real @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ N2 ) ) )
        = ( plus_plus_int @ ( archim7802044766580827645g_real @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ ( plus_plus_nat @ ( divide_divide_nat @ ( minus_minus_nat @ N2 @ one_one_nat ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) ) @ one_one_int ) ) ) ).

% ceiling_log2_div2
thf(fact_9121_ceiling__divide__eq__div__numeral,axiom,
    ! [A: num,B: num] :
      ( ( archim7802044766580827645g_real @ ( divide_divide_real @ ( numeral_numeral_real @ A ) @ ( numeral_numeral_real @ B ) ) )
      = ( uminus_uminus_int @ ( divide_divide_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ A ) ) @ ( numeral_numeral_int @ B ) ) ) ) ).

% ceiling_divide_eq_div_numeral
thf(fact_9122_ceiling__minus__divide__eq__div__numeral,axiom,
    ! [A: num,B: num] :
      ( ( archim7802044766580827645g_real @ ( uminus_uminus_real @ ( divide_divide_real @ ( numeral_numeral_real @ A ) @ ( numeral_numeral_real @ B ) ) ) )
      = ( uminus_uminus_int @ ( divide_divide_int @ ( numeral_numeral_int @ A ) @ ( numeral_numeral_int @ B ) ) ) ) ).

% ceiling_minus_divide_eq_div_numeral
thf(fact_9123_Arg__bounded,axiom,
    ! [Z: complex] :
      ( ( ord_less_real @ ( uminus_uminus_real @ pi ) @ ( arg @ Z ) )
      & ( ord_less_eq_real @ ( arg @ Z ) @ pi ) ) ).

% Arg_bounded
thf(fact_9124_ceiling__log__nat__eq__if,axiom,
    ! [B: nat,N2: nat,K: nat] :
      ( ( ord_less_nat @ ( power_power_nat @ B @ N2 ) @ K )
     => ( ( ord_less_eq_nat @ K @ ( power_power_nat @ B @ ( plus_plus_nat @ N2 @ one_one_nat ) ) )
       => ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B )
         => ( ( archim7802044766580827645g_real @ ( log @ ( semiri5074537144036343181t_real @ B ) @ ( semiri5074537144036343181t_real @ K ) ) )
            = ( plus_plus_int @ ( semiri1314217659103216013at_int @ N2 ) @ one_one_int ) ) ) ) ) ).

% ceiling_log_nat_eq_if
thf(fact_9125_cis__minus__pi__half,axiom,
    ( ( cis @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) )
    = ( uminus1482373934393186551omplex @ imaginary_unit ) ) ).

% cis_minus_pi_half
thf(fact_9126_ceiling__log__eq__powr__iff,axiom,
    ! [X: real,B: real,K: nat] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ one_one_real @ B )
       => ( ( ( archim7802044766580827645g_real @ ( log @ B @ X ) )
            = ( plus_plus_int @ ( semiri1314217659103216013at_int @ K ) @ one_one_int ) )
          = ( ( ord_less_real @ ( powr_real @ B @ ( semiri5074537144036343181t_real @ K ) ) @ X )
            & ( ord_less_eq_real @ X @ ( powr_real @ B @ ( semiri5074537144036343181t_real @ ( plus_plus_nat @ K @ one_one_nat ) ) ) ) ) ) ) ) ).

% ceiling_log_eq_powr_iff
thf(fact_9127_or__not__num__neg_Opelims,axiom,
    ! [X: num,Xa2: num,Y: num] :
      ( ( ( bit_or_not_num_neg @ X @ Xa2 )
        = Y )
     => ( ( accp_P3113834385874906142um_num @ bit_or3848514188828904588eg_rel @ ( product_Pair_num_num @ X @ Xa2 ) )
       => ( ( ( X = one )
           => ( ( Xa2 = one )
             => ( ( Y = one )
               => ~ ( accp_P3113834385874906142um_num @ bit_or3848514188828904588eg_rel @ ( product_Pair_num_num @ one @ one ) ) ) ) )
         => ( ( ( X = one )
             => ! [M2: num] :
                  ( ( Xa2
                    = ( bit0 @ M2 ) )
                 => ( ( Y
                      = ( bit1 @ M2 ) )
                   => ~ ( accp_P3113834385874906142um_num @ bit_or3848514188828904588eg_rel @ ( product_Pair_num_num @ one @ ( bit0 @ M2 ) ) ) ) ) )
           => ( ( ( X = one )
               => ! [M2: num] :
                    ( ( Xa2
                      = ( bit1 @ M2 ) )
                   => ( ( Y
                        = ( bit1 @ M2 ) )
                     => ~ ( accp_P3113834385874906142um_num @ bit_or3848514188828904588eg_rel @ ( product_Pair_num_num @ one @ ( bit1 @ M2 ) ) ) ) ) )
             => ( ! [N: num] :
                    ( ( X
                      = ( bit0 @ N ) )
                   => ( ( Xa2 = one )
                     => ( ( Y
                          = ( bit0 @ one ) )
                       => ~ ( accp_P3113834385874906142um_num @ bit_or3848514188828904588eg_rel @ ( product_Pair_num_num @ ( bit0 @ N ) @ one ) ) ) ) )
               => ( ! [N: num] :
                      ( ( X
                        = ( bit0 @ N ) )
                     => ! [M2: num] :
                          ( ( Xa2
                            = ( bit0 @ M2 ) )
                         => ( ( Y
                              = ( bitM @ ( bit_or_not_num_neg @ N @ M2 ) ) )
                           => ~ ( accp_P3113834385874906142um_num @ bit_or3848514188828904588eg_rel @ ( product_Pair_num_num @ ( bit0 @ N ) @ ( bit0 @ M2 ) ) ) ) ) )
                 => ( ! [N: num] :
                        ( ( X
                          = ( bit0 @ N ) )
                       => ! [M2: num] :
                            ( ( Xa2
                              = ( bit1 @ M2 ) )
                           => ( ( Y
                                = ( bit0 @ ( bit_or_not_num_neg @ N @ M2 ) ) )
                             => ~ ( accp_P3113834385874906142um_num @ bit_or3848514188828904588eg_rel @ ( product_Pair_num_num @ ( bit0 @ N ) @ ( bit1 @ M2 ) ) ) ) ) )
                   => ( ! [N: num] :
                          ( ( X
                            = ( bit1 @ N ) )
                         => ( ( Xa2 = one )
                           => ( ( Y = one )
                             => ~ ( accp_P3113834385874906142um_num @ bit_or3848514188828904588eg_rel @ ( product_Pair_num_num @ ( bit1 @ N ) @ one ) ) ) ) )
                     => ( ! [N: num] :
                            ( ( X
                              = ( bit1 @ N ) )
                           => ! [M2: num] :
                                ( ( Xa2
                                  = ( bit0 @ M2 ) )
                               => ( ( Y
                                    = ( bitM @ ( bit_or_not_num_neg @ N @ M2 ) ) )
                                 => ~ ( accp_P3113834385874906142um_num @ bit_or3848514188828904588eg_rel @ ( product_Pair_num_num @ ( bit1 @ N ) @ ( bit0 @ M2 ) ) ) ) ) )
                       => ~ ! [N: num] :
                              ( ( X
                                = ( bit1 @ N ) )
                             => ! [M2: num] :
                                  ( ( Xa2
                                    = ( bit1 @ M2 ) )
                                 => ( ( Y
                                      = ( bitM @ ( bit_or_not_num_neg @ N @ M2 ) ) )
                                   => ~ ( accp_P3113834385874906142um_num @ bit_or3848514188828904588eg_rel @ ( product_Pair_num_num @ ( bit1 @ N ) @ ( bit1 @ M2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).

% or_not_num_neg.pelims
thf(fact_9128_floor__log__nat__eq__powr__iff,axiom,
    ! [B: nat,K: nat,N2: nat] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B )
     => ( ( ord_less_nat @ zero_zero_nat @ K )
       => ( ( ( archim6058952711729229775r_real @ ( log @ ( semiri5074537144036343181t_real @ B ) @ ( semiri5074537144036343181t_real @ K ) ) )
            = ( semiri1314217659103216013at_int @ N2 ) )
          = ( ( ord_less_eq_nat @ ( power_power_nat @ B @ N2 ) @ K )
            & ( ord_less_nat @ K @ ( power_power_nat @ B @ ( plus_plus_nat @ N2 @ one_one_nat ) ) ) ) ) ) ) ).

% floor_log_nat_eq_powr_iff
thf(fact_9129_powr__nonneg__iff,axiom,
    ! [A: real,X: real] :
      ( ( ord_less_eq_real @ ( powr_real @ A @ X ) @ zero_zero_real )
      = ( A = zero_zero_real ) ) ).

% powr_nonneg_iff
thf(fact_9130_powr__one,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( powr_real @ X @ one_one_real )
        = X ) ) ).

% powr_one
thf(fact_9131_powr__one__gt__zero__iff,axiom,
    ! [X: real] :
      ( ( ( powr_real @ X @ one_one_real )
        = X )
      = ( ord_less_eq_real @ zero_zero_real @ X ) ) ).

% powr_one_gt_zero_iff
thf(fact_9132_powr__le__cancel__iff,axiom,
    ! [X: real,A: real,B: real] :
      ( ( ord_less_real @ one_one_real @ X )
     => ( ( ord_less_eq_real @ ( powr_real @ X @ A ) @ ( powr_real @ X @ B ) )
        = ( ord_less_eq_real @ A @ B ) ) ) ).

% powr_le_cancel_iff
thf(fact_9133_numeral__powr__numeral__real,axiom,
    ! [M: num,N2: num] :
      ( ( powr_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N2 ) )
      = ( power_power_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_nat @ N2 ) ) ) ).

% numeral_powr_numeral_real
thf(fact_9134_floor__divide__eq__div__numeral,axiom,
    ! [A: num,B: num] :
      ( ( archim6058952711729229775r_real @ ( divide_divide_real @ ( numeral_numeral_real @ A ) @ ( numeral_numeral_real @ B ) ) )
      = ( divide_divide_int @ ( numeral_numeral_int @ A ) @ ( numeral_numeral_int @ B ) ) ) ).

% floor_divide_eq_div_numeral
thf(fact_9135_powr__numeral,axiom,
    ! [X: real,N2: num] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( powr_real @ X @ ( numeral_numeral_real @ N2 ) )
        = ( power_power_real @ X @ ( numeral_numeral_nat @ N2 ) ) ) ) ).

% powr_numeral
thf(fact_9136_cis__pi__half,axiom,
    ( ( cis @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
    = imaginary_unit ) ).

% cis_pi_half
thf(fact_9137_floor__one__divide__eq__div__numeral,axiom,
    ! [B: num] :
      ( ( archim6058952711729229775r_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ B ) ) )
      = ( divide_divide_int @ one_one_int @ ( numeral_numeral_int @ B ) ) ) ).

% floor_one_divide_eq_div_numeral
thf(fact_9138_cis__2pi,axiom,
    ( ( cis @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) )
    = one_one_complex ) ).

% cis_2pi
thf(fact_9139_floor__minus__divide__eq__div__numeral,axiom,
    ! [A: num,B: num] :
      ( ( archim6058952711729229775r_real @ ( uminus_uminus_real @ ( divide_divide_real @ ( numeral_numeral_real @ A ) @ ( numeral_numeral_real @ B ) ) ) )
      = ( divide_divide_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ A ) ) @ ( numeral_numeral_int @ B ) ) ) ).

% floor_minus_divide_eq_div_numeral
thf(fact_9140_square__powr__half,axiom,
    ! [X: real] :
      ( ( powr_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
      = ( abs_abs_real @ X ) ) ).

% square_powr_half
thf(fact_9141_floor__minus__one__divide__eq__div__numeral,axiom,
    ! [B: num] :
      ( ( archim6058952711729229775r_real @ ( uminus_uminus_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ B ) ) ) )
      = ( divide_divide_int @ ( uminus_uminus_int @ one_one_int ) @ ( numeral_numeral_int @ B ) ) ) ).

% floor_minus_one_divide_eq_div_numeral
thf(fact_9142_powr__powr,axiom,
    ! [X: real,A: real,B: real] :
      ( ( powr_real @ ( powr_real @ X @ A ) @ B )
      = ( powr_real @ X @ ( times_times_real @ A @ B ) ) ) ).

% powr_powr
thf(fact_9143_powr__ge__pzero,axiom,
    ! [X: real,Y: real] : ( ord_less_eq_real @ zero_zero_real @ ( powr_real @ X @ Y ) ) ).

% powr_ge_pzero
thf(fact_9144_powr__mono2,axiom,
    ! [A: real,X: real,Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ zero_zero_real @ X )
       => ( ( ord_less_eq_real @ X @ Y )
         => ( ord_less_eq_real @ ( powr_real @ X @ A ) @ ( powr_real @ Y @ A ) ) ) ) ) ).

% powr_mono2
thf(fact_9145_powr__mono,axiom,
    ! [A: real,B: real,X: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ one_one_real @ X )
       => ( ord_less_eq_real @ ( powr_real @ X @ A ) @ ( powr_real @ X @ B ) ) ) ) ).

% powr_mono
thf(fact_9146_cis__mult,axiom,
    ! [A: real,B: real] :
      ( ( times_times_complex @ ( cis @ A ) @ ( cis @ B ) )
      = ( cis @ ( plus_plus_real @ A @ B ) ) ) ).

% cis_mult
thf(fact_9147_cis__divide,axiom,
    ! [A: real,B: real] :
      ( ( divide1717551699836669952omplex @ ( cis @ A ) @ ( cis @ B ) )
      = ( cis @ ( minus_minus_real @ A @ B ) ) ) ).

% cis_divide
thf(fact_9148_powr__less__mono2,axiom,
    ! [A: real,X: real,Y: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ zero_zero_real @ X )
       => ( ( ord_less_real @ X @ Y )
         => ( ord_less_real @ ( powr_real @ X @ A ) @ ( powr_real @ Y @ A ) ) ) ) ) ).

% powr_less_mono2
thf(fact_9149_powr__mono2_H,axiom,
    ! [A: real,X: real,Y: real] :
      ( ( ord_less_eq_real @ A @ zero_zero_real )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ( ( ord_less_eq_real @ X @ Y )
         => ( ord_less_eq_real @ ( powr_real @ Y @ A ) @ ( powr_real @ X @ A ) ) ) ) ) ).

% powr_mono2'
thf(fact_9150_powr__le1,axiom,
    ! [A: real,X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ zero_zero_real @ X )
       => ( ( ord_less_eq_real @ X @ one_one_real )
         => ( ord_less_eq_real @ ( powr_real @ X @ A ) @ one_one_real ) ) ) ) ).

% powr_le1
thf(fact_9151_powr__mono__both,axiom,
    ! [A: real,B: real,X: real,Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ A @ B )
       => ( ( ord_less_eq_real @ one_one_real @ X )
         => ( ( ord_less_eq_real @ X @ Y )
           => ( ord_less_eq_real @ ( powr_real @ X @ A ) @ ( powr_real @ Y @ B ) ) ) ) ) ) ).

% powr_mono_both
thf(fact_9152_ge__one__powr__ge__zero,axiom,
    ! [X: real,A: real] :
      ( ( ord_less_eq_real @ one_one_real @ X )
     => ( ( ord_less_eq_real @ zero_zero_real @ A )
       => ( ord_less_eq_real @ one_one_real @ ( powr_real @ X @ A ) ) ) ) ).

% ge_one_powr_ge_zero
thf(fact_9153_powr__divide,axiom,
    ! [X: real,Y: real,A: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y )
       => ( ( powr_real @ ( divide_divide_real @ X @ Y ) @ A )
          = ( divide_divide_real @ ( powr_real @ X @ A ) @ ( powr_real @ Y @ A ) ) ) ) ) ).

% powr_divide
thf(fact_9154_powr__mult,axiom,
    ! [X: real,Y: real,A: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y )
       => ( ( powr_real @ ( times_times_real @ X @ Y ) @ A )
          = ( times_times_real @ ( powr_real @ X @ A ) @ ( powr_real @ Y @ A ) ) ) ) ) ).

% powr_mult
thf(fact_9155_inverse__powr,axiom,
    ! [Y: real,A: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ Y )
     => ( ( powr_real @ ( inverse_inverse_real @ Y ) @ A )
        = ( inverse_inverse_real @ ( powr_real @ Y @ A ) ) ) ) ).

% inverse_powr
thf(fact_9156_divide__powr__uminus,axiom,
    ! [A: real,B: real,C: real] :
      ( ( divide_divide_real @ A @ ( powr_real @ B @ C ) )
      = ( times_times_real @ A @ ( powr_real @ B @ ( uminus_uminus_real @ C ) ) ) ) ).

% divide_powr_uminus
thf(fact_9157_ln__powr,axiom,
    ! [X: real,Y: real] :
      ( ( X != zero_zero_real )
     => ( ( ln_ln_real @ ( powr_real @ X @ Y ) )
        = ( times_times_real @ Y @ ( ln_ln_real @ X ) ) ) ) ).

% ln_powr
thf(fact_9158_log__powr,axiom,
    ! [X: real,B: real,Y: real] :
      ( ( X != zero_zero_real )
     => ( ( log @ B @ ( powr_real @ X @ Y ) )
        = ( times_times_real @ Y @ ( log @ B @ X ) ) ) ) ).

% log_powr
thf(fact_9159_floor__log__eq__powr__iff,axiom,
    ! [X: real,B: real,K: int] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ one_one_real @ B )
       => ( ( ( archim6058952711729229775r_real @ ( log @ B @ X ) )
            = K )
          = ( ( ord_less_eq_real @ ( powr_real @ B @ ( ring_1_of_int_real @ K ) ) @ X )
            & ( ord_less_real @ X @ ( powr_real @ B @ ( ring_1_of_int_real @ ( plus_plus_int @ K @ one_one_int ) ) ) ) ) ) ) ) ).

% floor_log_eq_powr_iff
thf(fact_9160_powr__realpow,axiom,
    ! [X: real,N2: nat] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( powr_real @ X @ ( semiri5074537144036343181t_real @ N2 ) )
        = ( power_power_real @ X @ N2 ) ) ) ).

% powr_realpow
thf(fact_9161_real__of__int__floor__add__one__gt,axiom,
    ! [R2: real] : ( ord_less_real @ R2 @ ( plus_plus_real @ ( ring_1_of_int_real @ ( archim6058952711729229775r_real @ R2 ) ) @ one_one_real ) ) ).

% real_of_int_floor_add_one_gt
thf(fact_9162_floor__eq,axiom,
    ! [N2: int,X: real] :
      ( ( ord_less_real @ ( ring_1_of_int_real @ N2 ) @ X )
     => ( ( ord_less_real @ X @ ( plus_plus_real @ ( ring_1_of_int_real @ N2 ) @ one_one_real ) )
       => ( ( archim6058952711729229775r_real @ X )
          = N2 ) ) ) ).

% floor_eq
thf(fact_9163_real__of__int__floor__add__one__ge,axiom,
    ! [R2: real] : ( ord_less_eq_real @ R2 @ ( plus_plus_real @ ( ring_1_of_int_real @ ( archim6058952711729229775r_real @ R2 ) ) @ one_one_real ) ) ).

% real_of_int_floor_add_one_ge
thf(fact_9164_real__of__int__floor__gt__diff__one,axiom,
    ! [R2: real] : ( ord_less_real @ ( minus_minus_real @ R2 @ one_one_real ) @ ( ring_1_of_int_real @ ( archim6058952711729229775r_real @ R2 ) ) ) ).

% real_of_int_floor_gt_diff_one
thf(fact_9165_real__of__int__floor__ge__diff__one,axiom,
    ! [R2: real] : ( ord_less_eq_real @ ( minus_minus_real @ R2 @ one_one_real ) @ ( ring_1_of_int_real @ ( archim6058952711729229775r_real @ R2 ) ) ) ).

% real_of_int_floor_ge_diff_one
thf(fact_9166_DeMoivre,axiom,
    ! [A: real,N2: nat] :
      ( ( power_power_complex @ ( cis @ A ) @ N2 )
      = ( cis @ ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ A ) ) ) ).

% DeMoivre
thf(fact_9167_powr__mult__base,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( times_times_real @ X @ ( powr_real @ X @ Y ) )
        = ( powr_real @ X @ ( plus_plus_real @ one_one_real @ Y ) ) ) ) ).

% powr_mult_base
thf(fact_9168_le__log__iff,axiom,
    ! [B: real,X: real,Y: real] :
      ( ( ord_less_real @ one_one_real @ B )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ( ( ord_less_eq_real @ Y @ ( log @ B @ X ) )
          = ( ord_less_eq_real @ ( powr_real @ B @ Y ) @ X ) ) ) ) ).

% le_log_iff
thf(fact_9169_log__le__iff,axiom,
    ! [B: real,X: real,Y: real] :
      ( ( ord_less_real @ one_one_real @ B )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ( ( ord_less_eq_real @ ( log @ B @ X ) @ Y )
          = ( ord_less_eq_real @ X @ ( powr_real @ B @ Y ) ) ) ) ) ).

% log_le_iff
thf(fact_9170_le__powr__iff,axiom,
    ! [B: real,X: real,Y: real] :
      ( ( ord_less_real @ one_one_real @ B )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ( ( ord_less_eq_real @ X @ ( powr_real @ B @ Y ) )
          = ( ord_less_eq_real @ ( log @ B @ X ) @ Y ) ) ) ) ).

% le_powr_iff
thf(fact_9171_powr__le__iff,axiom,
    ! [B: real,X: real,Y: real] :
      ( ( ord_less_real @ one_one_real @ B )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ( ( ord_less_eq_real @ ( powr_real @ B @ Y ) @ X )
          = ( ord_less_eq_real @ Y @ ( log @ B @ X ) ) ) ) ) ).

% powr_le_iff
thf(fact_9172_floor__eq2,axiom,
    ! [N2: int,X: real] :
      ( ( ord_less_eq_real @ ( ring_1_of_int_real @ N2 ) @ X )
     => ( ( ord_less_real @ X @ ( plus_plus_real @ ( ring_1_of_int_real @ N2 ) @ one_one_real ) )
       => ( ( archim6058952711729229775r_real @ X )
          = N2 ) ) ) ).

% floor_eq2
thf(fact_9173_floor__divide__real__eq__div,axiom,
    ! [B: int,A: real] :
      ( ( ord_less_eq_int @ zero_zero_int @ B )
     => ( ( archim6058952711729229775r_real @ ( divide_divide_real @ A @ ( ring_1_of_int_real @ B ) ) )
        = ( divide_divide_int @ ( archim6058952711729229775r_real @ A ) @ B ) ) ) ).

% floor_divide_real_eq_div
thf(fact_9174_ln__powr__bound,axiom,
    ! [X: real,A: real] :
      ( ( ord_less_eq_real @ one_one_real @ X )
     => ( ( ord_less_real @ zero_zero_real @ A )
       => ( ord_less_eq_real @ ( ln_ln_real @ X ) @ ( divide_divide_real @ ( powr_real @ X @ A ) @ A ) ) ) ) ).

% ln_powr_bound
thf(fact_9175_ln__powr__bound2,axiom,
    ! [X: real,A: real] :
      ( ( ord_less_real @ one_one_real @ X )
     => ( ( ord_less_real @ zero_zero_real @ A )
       => ( ord_less_eq_real @ ( powr_real @ ( ln_ln_real @ X ) @ A ) @ ( times_times_real @ ( powr_real @ A @ A ) @ X ) ) ) ) ).

% ln_powr_bound2
thf(fact_9176_add__log__eq__powr,axiom,
    ! [B: real,X: real,Y: real] :
      ( ( ord_less_real @ zero_zero_real @ B )
     => ( ( B != one_one_real )
       => ( ( ord_less_real @ zero_zero_real @ X )
         => ( ( plus_plus_real @ Y @ ( log @ B @ X ) )
            = ( log @ B @ ( times_times_real @ ( powr_real @ B @ Y ) @ X ) ) ) ) ) ) ).

% add_log_eq_powr
thf(fact_9177_log__add__eq__powr,axiom,
    ! [B: real,X: real,Y: real] :
      ( ( ord_less_real @ zero_zero_real @ B )
     => ( ( B != one_one_real )
       => ( ( ord_less_real @ zero_zero_real @ X )
         => ( ( plus_plus_real @ ( log @ B @ X ) @ Y )
            = ( log @ B @ ( times_times_real @ X @ ( powr_real @ B @ Y ) ) ) ) ) ) ) ).

% log_add_eq_powr
thf(fact_9178_minus__log__eq__powr,axiom,
    ! [B: real,X: real,Y: real] :
      ( ( ord_less_real @ zero_zero_real @ B )
     => ( ( B != one_one_real )
       => ( ( ord_less_real @ zero_zero_real @ X )
         => ( ( minus_minus_real @ Y @ ( log @ B @ X ) )
            = ( log @ B @ ( divide_divide_real @ ( powr_real @ B @ Y ) @ X ) ) ) ) ) ) ).

% minus_log_eq_powr
thf(fact_9179_log__minus__eq__powr,axiom,
    ! [B: real,X: real,Y: real] :
      ( ( ord_less_real @ zero_zero_real @ B )
     => ( ( B != one_one_real )
       => ( ( ord_less_real @ zero_zero_real @ X )
         => ( ( minus_minus_real @ ( log @ B @ X ) @ Y )
            = ( log @ B @ ( times_times_real @ X @ ( powr_real @ B @ ( uminus_uminus_real @ Y ) ) ) ) ) ) ) ) ).

% log_minus_eq_powr
thf(fact_9180_powr__half__sqrt,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( powr_real @ X @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
        = ( sqrt @ X ) ) ) ).

% powr_half_sqrt
thf(fact_9181_powr__neg__numeral,axiom,
    ! [X: real,N2: num] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( powr_real @ X @ ( uminus_uminus_real @ ( numeral_numeral_real @ N2 ) ) )
        = ( divide_divide_real @ one_one_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ N2 ) ) ) ) ) ).

% powr_neg_numeral
thf(fact_9182_floor__log2__div2,axiom,
    ! [N2: nat] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ( archim6058952711729229775r_real @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ N2 ) ) )
        = ( plus_plus_int @ ( archim6058952711729229775r_real @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ one_one_int ) ) ) ).

% floor_log2_div2
thf(fact_9183_floor__log__nat__eq__if,axiom,
    ! [B: nat,N2: nat,K: nat] :
      ( ( ord_less_eq_nat @ ( power_power_nat @ B @ N2 ) @ K )
     => ( ( ord_less_nat @ K @ ( power_power_nat @ B @ ( plus_plus_nat @ N2 @ one_one_nat ) ) )
       => ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B )
         => ( ( archim6058952711729229775r_real @ ( log @ ( semiri5074537144036343181t_real @ B ) @ ( semiri5074537144036343181t_real @ K ) ) )
            = ( semiri1314217659103216013at_int @ N2 ) ) ) ) ) ).

% floor_log_nat_eq_if
thf(fact_9184_bij__betw__roots__unity,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( bij_betw_nat_complex
        @ ^ [K3: nat] : ( cis @ ( divide_divide_real @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) @ ( semiri5074537144036343181t_real @ K3 ) ) @ ( semiri5074537144036343181t_real @ N2 ) ) )
        @ ( set_ord_lessThan_nat @ N2 )
        @ ( collect_complex
          @ ^ [Z2: complex] :
              ( ( power_power_complex @ Z2 @ N2 )
              = one_one_complex ) ) ) ) ).

% bij_betw_roots_unity
thf(fact_9185_summable__complex__of__real,axiom,
    ! [F: nat > real] :
      ( ( summable_complex
        @ ^ [N3: nat] : ( real_V4546457046886955230omplex @ ( F @ N3 ) ) )
      = ( summable_real @ F ) ) ).

% summable_complex_of_real
thf(fact_9186_exp__pi__i,axiom,
    ( ( exp_complex @ ( times_times_complex @ ( real_V4546457046886955230omplex @ pi ) @ imaginary_unit ) )
    = ( uminus1482373934393186551omplex @ one_one_complex ) ) ).

% exp_pi_i
thf(fact_9187_exp__pi__i_H,axiom,
    ( ( exp_complex @ ( times_times_complex @ imaginary_unit @ ( real_V4546457046886955230omplex @ pi ) ) )
    = ( uminus1482373934393186551omplex @ one_one_complex ) ) ).

% exp_pi_i'
thf(fact_9188_exp__two__pi__i,axiom,
    ( ( exp_complex @ ( times_times_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( real_V4546457046886955230omplex @ pi ) ) @ imaginary_unit ) )
    = one_one_complex ) ).

% exp_two_pi_i
thf(fact_9189_exp__two__pi__i_H,axiom,
    ( ( exp_complex @ ( times_times_complex @ imaginary_unit @ ( times_times_complex @ ( real_V4546457046886955230omplex @ pi ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) )
    = one_one_complex ) ).

% exp_two_pi_i'
thf(fact_9190_complex__exp__exists,axiom,
    ! [Z: complex] :
    ? [A3: complex,R3: real] :
      ( Z
      = ( times_times_complex @ ( real_V4546457046886955230omplex @ R3 ) @ ( exp_complex @ A3 ) ) ) ).

% complex_exp_exists
thf(fact_9191_complex__of__real__mult__Complex,axiom,
    ! [R2: real,X: real,Y: real] :
      ( ( times_times_complex @ ( real_V4546457046886955230omplex @ R2 ) @ ( complex2 @ X @ Y ) )
      = ( complex2 @ ( times_times_real @ R2 @ X ) @ ( times_times_real @ R2 @ Y ) ) ) ).

% complex_of_real_mult_Complex
thf(fact_9192_Complex__mult__complex__of__real,axiom,
    ! [X: real,Y: real,R2: real] :
      ( ( times_times_complex @ ( complex2 @ X @ Y ) @ ( real_V4546457046886955230omplex @ R2 ) )
      = ( complex2 @ ( times_times_real @ X @ R2 ) @ ( times_times_real @ Y @ R2 ) ) ) ).

% Complex_mult_complex_of_real
thf(fact_9193_complex__of__real__add__Complex,axiom,
    ! [R2: real,X: real,Y: real] :
      ( ( plus_plus_complex @ ( real_V4546457046886955230omplex @ R2 ) @ ( complex2 @ X @ Y ) )
      = ( complex2 @ ( plus_plus_real @ R2 @ X ) @ Y ) ) ).

% complex_of_real_add_Complex
thf(fact_9194_Complex__add__complex__of__real,axiom,
    ! [X: real,Y: real,R2: real] :
      ( ( plus_plus_complex @ ( complex2 @ X @ Y ) @ ( real_V4546457046886955230omplex @ R2 ) )
      = ( complex2 @ ( plus_plus_real @ X @ R2 ) @ Y ) ) ).

% Complex_add_complex_of_real
thf(fact_9195_cis__conv__exp,axiom,
    ( cis
    = ( ^ [B4: real] : ( exp_complex @ ( times_times_complex @ imaginary_unit @ ( real_V4546457046886955230omplex @ B4 ) ) ) ) ) ).

% cis_conv_exp
thf(fact_9196_i__complex__of__real,axiom,
    ! [R2: real] :
      ( ( times_times_complex @ imaginary_unit @ ( real_V4546457046886955230omplex @ R2 ) )
      = ( complex2 @ zero_zero_real @ R2 ) ) ).

% i_complex_of_real
thf(fact_9197_complex__of__real__i,axiom,
    ! [R2: real] :
      ( ( times_times_complex @ ( real_V4546457046886955230omplex @ R2 ) @ imaginary_unit )
      = ( complex2 @ zero_zero_real @ R2 ) ) ).

% complex_of_real_i
thf(fact_9198_Complex__eq,axiom,
    ( complex2
    = ( ^ [A4: real,B4: real] : ( plus_plus_complex @ ( real_V4546457046886955230omplex @ A4 ) @ ( times_times_complex @ imaginary_unit @ ( real_V4546457046886955230omplex @ B4 ) ) ) ) ) ).

% Complex_eq
thf(fact_9199_complex__split__polar,axiom,
    ! [Z: complex] :
    ? [R3: real,A3: real] :
      ( Z
      = ( times_times_complex @ ( real_V4546457046886955230omplex @ R3 ) @ ( plus_plus_complex @ ( real_V4546457046886955230omplex @ ( cos_real @ A3 ) ) @ ( times_times_complex @ imaginary_unit @ ( real_V4546457046886955230omplex @ ( sin_real @ A3 ) ) ) ) ) ) ).

% complex_split_polar
thf(fact_9200_cmod__unit__one,axiom,
    ! [A: real] :
      ( ( real_V1022390504157884413omplex @ ( plus_plus_complex @ ( real_V4546457046886955230omplex @ ( cos_real @ A ) ) @ ( times_times_complex @ imaginary_unit @ ( real_V4546457046886955230omplex @ ( sin_real @ A ) ) ) ) )
      = one_one_real ) ).

% cmod_unit_one
thf(fact_9201_cmod__complex__polar,axiom,
    ! [R2: real,A: real] :
      ( ( real_V1022390504157884413omplex @ ( times_times_complex @ ( real_V4546457046886955230omplex @ R2 ) @ ( plus_plus_complex @ ( real_V4546457046886955230omplex @ ( cos_real @ A ) ) @ ( times_times_complex @ imaginary_unit @ ( real_V4546457046886955230omplex @ ( sin_real @ A ) ) ) ) ) )
      = ( abs_abs_real @ R2 ) ) ).

% cmod_complex_polar
thf(fact_9202_csqrt__ii,axiom,
    ( ( csqrt @ imaginary_unit )
    = ( divide1717551699836669952omplex @ ( plus_plus_complex @ one_one_complex @ imaginary_unit ) @ ( real_V4546457046886955230omplex @ ( sqrt @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).

% csqrt_ii
thf(fact_9203_int__ge__less__than__def,axiom,
    ( int_ge_less_than
    = ( ^ [D2: int] :
          ( collec213857154873943460nt_int
          @ ( produc4947309494688390418_int_o
            @ ^ [Z6: int,Z2: int] :
                ( ( ord_less_eq_int @ D2 @ Z6 )
                & ( ord_less_int @ Z6 @ Z2 ) ) ) ) ) ) ).

% int_ge_less_than_def
thf(fact_9204_int__ge__less__than2__def,axiom,
    ( int_ge_less_than2
    = ( ^ [D2: int] :
          ( collec213857154873943460nt_int
          @ ( produc4947309494688390418_int_o
            @ ^ [Z6: int,Z2: int] :
                ( ( ord_less_eq_int @ D2 @ Z2 )
                & ( ord_less_int @ Z6 @ Z2 ) ) ) ) ) ) ).

% int_ge_less_than2_def
thf(fact_9205_upto_Opinduct,axiom,
    ! [A0: int,A12: int,P: int > int > $o] :
      ( ( accp_P1096762738010456898nt_int @ upto_rel @ ( product_Pair_int_int @ A0 @ A12 ) )
     => ( ! [I3: int,J2: int] :
            ( ( accp_P1096762738010456898nt_int @ upto_rel @ ( product_Pair_int_int @ I3 @ J2 ) )
           => ( ( ( ord_less_eq_int @ I3 @ J2 )
               => ( P @ ( plus_plus_int @ I3 @ one_one_int ) @ J2 ) )
             => ( P @ I3 @ J2 ) ) )
       => ( P @ A0 @ A12 ) ) ) ).

% upto.pinduct
thf(fact_9206_power2__csqrt,axiom,
    ! [Z: complex] :
      ( ( power_power_complex @ ( csqrt @ Z ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = Z ) ).

% power2_csqrt
thf(fact_9207_of__real__sqrt,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( real_V4546457046886955230omplex @ ( sqrt @ X ) )
        = ( csqrt @ ( real_V4546457046886955230omplex @ X ) ) ) ) ).

% of_real_sqrt
thf(fact_9208_bij__betw__nth__root__unity,axiom,
    ! [C: complex,N2: nat] :
      ( ( C != zero_zero_complex )
     => ( ( ord_less_nat @ zero_zero_nat @ N2 )
       => ( bij_be1856998921033663316omplex @ ( times_times_complex @ ( times_times_complex @ ( real_V4546457046886955230omplex @ ( root @ N2 @ ( real_V1022390504157884413omplex @ C ) ) ) @ ( cis @ ( divide_divide_real @ ( arg @ C ) @ ( semiri5074537144036343181t_real @ N2 ) ) ) ) )
          @ ( collect_complex
            @ ^ [Z2: complex] :
                ( ( power_power_complex @ Z2 @ N2 )
                = one_one_complex ) )
          @ ( collect_complex
            @ ^ [Z2: complex] :
                ( ( power_power_complex @ Z2 @ N2 )
                = C ) ) ) ) ) ).

% bij_betw_nth_root_unity
thf(fact_9209_arctan__def,axiom,
    ( arctan
    = ( ^ [Y3: real] :
          ( the_real
          @ ^ [X3: real] :
              ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X3 )
              & ( ord_less_real @ X3 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
              & ( ( tan_real @ X3 )
                = Y3 ) ) ) ) ) ).

% arctan_def
thf(fact_9210_arcsin__def,axiom,
    ( arcsin
    = ( ^ [Y3: real] :
          ( the_real
          @ ^ [X3: real] :
              ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X3 )
              & ( ord_less_eq_real @ X3 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
              & ( ( sin_real @ X3 )
                = Y3 ) ) ) ) ) ).

% arcsin_def
thf(fact_9211_modulo__int__unfold,axiom,
    ! [L2: int,K: int,N2: nat,M: nat] :
      ( ( ( ( ( sgn_sgn_int @ L2 )
            = zero_zero_int )
          | ( ( sgn_sgn_int @ K )
            = zero_zero_int )
          | ( N2 = zero_zero_nat ) )
       => ( ( modulo_modulo_int @ ( times_times_int @ ( sgn_sgn_int @ K ) @ ( semiri1314217659103216013at_int @ M ) ) @ ( times_times_int @ ( sgn_sgn_int @ L2 ) @ ( semiri1314217659103216013at_int @ N2 ) ) )
          = ( times_times_int @ ( sgn_sgn_int @ K ) @ ( semiri1314217659103216013at_int @ M ) ) ) )
      & ( ~ ( ( ( sgn_sgn_int @ L2 )
              = zero_zero_int )
            | ( ( sgn_sgn_int @ K )
              = zero_zero_int )
            | ( N2 = zero_zero_nat ) )
       => ( ( ( ( sgn_sgn_int @ K )
              = ( sgn_sgn_int @ L2 ) )
           => ( ( modulo_modulo_int @ ( times_times_int @ ( sgn_sgn_int @ K ) @ ( semiri1314217659103216013at_int @ M ) ) @ ( times_times_int @ ( sgn_sgn_int @ L2 ) @ ( semiri1314217659103216013at_int @ N2 ) ) )
              = ( times_times_int @ ( sgn_sgn_int @ L2 ) @ ( semiri1314217659103216013at_int @ ( modulo_modulo_nat @ M @ N2 ) ) ) ) )
          & ( ( ( sgn_sgn_int @ K )
             != ( sgn_sgn_int @ L2 ) )
           => ( ( modulo_modulo_int @ ( times_times_int @ ( sgn_sgn_int @ K ) @ ( semiri1314217659103216013at_int @ M ) ) @ ( times_times_int @ ( sgn_sgn_int @ L2 ) @ ( semiri1314217659103216013at_int @ N2 ) ) )
              = ( times_times_int @ ( sgn_sgn_int @ L2 )
                @ ( minus_minus_int
                  @ ( semiri1314217659103216013at_int
                    @ ( times_times_nat @ N2
                      @ ( zero_n2687167440665602831ol_nat
                        @ ~ ( dvd_dvd_nat @ N2 @ M ) ) ) )
                  @ ( semiri1314217659103216013at_int @ ( modulo_modulo_nat @ M @ N2 ) ) ) ) ) ) ) ) ) ).

% modulo_int_unfold
thf(fact_9212_real__root__zero,axiom,
    ! [N2: nat] :
      ( ( root @ N2 @ zero_zero_real )
      = zero_zero_real ) ).

% real_root_zero
thf(fact_9213_real__root__Suc__0,axiom,
    ! [X: real] :
      ( ( root @ ( suc @ zero_zero_nat ) @ X )
      = X ) ).

% real_root_Suc_0
thf(fact_9214_real__root__eq__iff,axiom,
    ! [N2: nat,X: real,Y: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( ( root @ N2 @ X )
          = ( root @ N2 @ Y ) )
        = ( X = Y ) ) ) ).

% real_root_eq_iff
thf(fact_9215_root__0,axiom,
    ! [X: real] :
      ( ( root @ zero_zero_nat @ X )
      = zero_zero_real ) ).

% root_0
thf(fact_9216_real__root__eq__0__iff,axiom,
    ! [N2: nat,X: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( ( root @ N2 @ X )
          = zero_zero_real )
        = ( X = zero_zero_real ) ) ) ).

% real_root_eq_0_iff
thf(fact_9217_real__root__less__iff,axiom,
    ! [N2: nat,X: real,Y: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( ord_less_real @ ( root @ N2 @ X ) @ ( root @ N2 @ Y ) )
        = ( ord_less_real @ X @ Y ) ) ) ).

% real_root_less_iff
thf(fact_9218_real__root__le__iff,axiom,
    ! [N2: nat,X: real,Y: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( ord_less_eq_real @ ( root @ N2 @ X ) @ ( root @ N2 @ Y ) )
        = ( ord_less_eq_real @ X @ Y ) ) ) ).

% real_root_le_iff
thf(fact_9219_real__root__eq__1__iff,axiom,
    ! [N2: nat,X: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( ( root @ N2 @ X )
          = one_one_real )
        = ( X = one_one_real ) ) ) ).

% real_root_eq_1_iff
thf(fact_9220_real__root__one,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( root @ N2 @ one_one_real )
        = one_one_real ) ) ).

% real_root_one
thf(fact_9221_sgn__mult__dvd__iff,axiom,
    ! [R2: int,L2: int,K: int] :
      ( ( dvd_dvd_int @ ( times_times_int @ ( sgn_sgn_int @ R2 ) @ L2 ) @ K )
      = ( ( dvd_dvd_int @ L2 @ K )
        & ( ( R2 = zero_zero_int )
         => ( K = zero_zero_int ) ) ) ) ).

% sgn_mult_dvd_iff
thf(fact_9222_mult__sgn__dvd__iff,axiom,
    ! [L2: int,R2: int,K: int] :
      ( ( dvd_dvd_int @ ( times_times_int @ L2 @ ( sgn_sgn_int @ R2 ) ) @ K )
      = ( ( dvd_dvd_int @ L2 @ K )
        & ( ( R2 = zero_zero_int )
         => ( K = zero_zero_int ) ) ) ) ).

% mult_sgn_dvd_iff
thf(fact_9223_dvd__sgn__mult__iff,axiom,
    ! [L2: int,R2: int,K: int] :
      ( ( dvd_dvd_int @ L2 @ ( times_times_int @ ( sgn_sgn_int @ R2 ) @ K ) )
      = ( ( dvd_dvd_int @ L2 @ K )
        | ( R2 = zero_zero_int ) ) ) ).

% dvd_sgn_mult_iff
thf(fact_9224_dvd__mult__sgn__iff,axiom,
    ! [L2: int,K: int,R2: int] :
      ( ( dvd_dvd_int @ L2 @ ( times_times_int @ K @ ( sgn_sgn_int @ R2 ) ) )
      = ( ( dvd_dvd_int @ L2 @ K )
        | ( R2 = zero_zero_int ) ) ) ).

% dvd_mult_sgn_iff
thf(fact_9225_real__root__lt__0__iff,axiom,
    ! [N2: nat,X: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( ord_less_real @ ( root @ N2 @ X ) @ zero_zero_real )
        = ( ord_less_real @ X @ zero_zero_real ) ) ) ).

% real_root_lt_0_iff
thf(fact_9226_real__root__gt__0__iff,axiom,
    ! [N2: nat,Y: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( ord_less_real @ zero_zero_real @ ( root @ N2 @ Y ) )
        = ( ord_less_real @ zero_zero_real @ Y ) ) ) ).

% real_root_gt_0_iff
thf(fact_9227_real__root__le__0__iff,axiom,
    ! [N2: nat,X: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( ord_less_eq_real @ ( root @ N2 @ X ) @ zero_zero_real )
        = ( ord_less_eq_real @ X @ zero_zero_real ) ) ) ).

% real_root_le_0_iff
thf(fact_9228_real__root__ge__0__iff,axiom,
    ! [N2: nat,Y: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( ord_less_eq_real @ zero_zero_real @ ( root @ N2 @ Y ) )
        = ( ord_less_eq_real @ zero_zero_real @ Y ) ) ) ).

% real_root_ge_0_iff
thf(fact_9229_real__root__lt__1__iff,axiom,
    ! [N2: nat,X: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( ord_less_real @ ( root @ N2 @ X ) @ one_one_real )
        = ( ord_less_real @ X @ one_one_real ) ) ) ).

% real_root_lt_1_iff
thf(fact_9230_real__root__gt__1__iff,axiom,
    ! [N2: nat,Y: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( ord_less_real @ one_one_real @ ( root @ N2 @ Y ) )
        = ( ord_less_real @ one_one_real @ Y ) ) ) ).

% real_root_gt_1_iff
thf(fact_9231_real__root__le__1__iff,axiom,
    ! [N2: nat,X: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( ord_less_eq_real @ ( root @ N2 @ X ) @ one_one_real )
        = ( ord_less_eq_real @ X @ one_one_real ) ) ) ).

% real_root_le_1_iff
thf(fact_9232_real__root__ge__1__iff,axiom,
    ! [N2: nat,Y: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( ord_less_eq_real @ one_one_real @ ( root @ N2 @ Y ) )
        = ( ord_less_eq_real @ one_one_real @ Y ) ) ) ).

% real_root_ge_1_iff
thf(fact_9233_real__root__pow__pos2,axiom,
    ! [N2: nat,X: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( ord_less_eq_real @ zero_zero_real @ X )
       => ( ( power_power_real @ ( root @ N2 @ X ) @ N2 )
          = X ) ) ) ).

% real_root_pow_pos2
thf(fact_9234_real__root__mult,axiom,
    ! [N2: nat,X: real,Y: real] :
      ( ( root @ N2 @ ( times_times_real @ X @ Y ) )
      = ( times_times_real @ ( root @ N2 @ X ) @ ( root @ N2 @ Y ) ) ) ).

% real_root_mult
thf(fact_9235_real__root__minus,axiom,
    ! [N2: nat,X: real] :
      ( ( root @ N2 @ ( uminus_uminus_real @ X ) )
      = ( uminus_uminus_real @ ( root @ N2 @ X ) ) ) ).

% real_root_minus
thf(fact_9236_real__root__mult__exp,axiom,
    ! [M: nat,N2: nat,X: real] :
      ( ( root @ ( times_times_nat @ M @ N2 ) @ X )
      = ( root @ M @ ( root @ N2 @ X ) ) ) ).

% real_root_mult_exp
thf(fact_9237_real__root__commute,axiom,
    ! [M: nat,N2: nat,X: real] :
      ( ( root @ M @ ( root @ N2 @ X ) )
      = ( root @ N2 @ ( root @ M @ X ) ) ) ).

% real_root_commute
thf(fact_9238_real__root__divide,axiom,
    ! [N2: nat,X: real,Y: real] :
      ( ( root @ N2 @ ( divide_divide_real @ X @ Y ) )
      = ( divide_divide_real @ ( root @ N2 @ X ) @ ( root @ N2 @ Y ) ) ) ).

% real_root_divide
thf(fact_9239_real__root__inverse,axiom,
    ! [N2: nat,X: real] :
      ( ( root @ N2 @ ( inverse_inverse_real @ X ) )
      = ( inverse_inverse_real @ ( root @ N2 @ X ) ) ) ).

% real_root_inverse
thf(fact_9240_real__root__pos__pos__le,axiom,
    ! [X: real,N2: nat] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ord_less_eq_real @ zero_zero_real @ ( root @ N2 @ X ) ) ) ).

% real_root_pos_pos_le
thf(fact_9241_int__sgnE,axiom,
    ! [K: int] :
      ~ ! [N: nat,L4: int] :
          ( K
         != ( times_times_int @ ( sgn_sgn_int @ L4 ) @ ( semiri1314217659103216013at_int @ N ) ) ) ).

% int_sgnE
thf(fact_9242_real__root__less__mono,axiom,
    ! [N2: nat,X: real,Y: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( ord_less_real @ X @ Y )
       => ( ord_less_real @ ( root @ N2 @ X ) @ ( root @ N2 @ Y ) ) ) ) ).

% real_root_less_mono
thf(fact_9243_real__root__le__mono,axiom,
    ! [N2: nat,X: real,Y: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( ord_less_eq_real @ X @ Y )
       => ( ord_less_eq_real @ ( root @ N2 @ X ) @ ( root @ N2 @ Y ) ) ) ) ).

% real_root_le_mono
thf(fact_9244_ln__real__def,axiom,
    ( ln_ln_real
    = ( ^ [X3: real] :
          ( the_real
          @ ^ [U2: real] :
              ( ( exp_real @ U2 )
              = X3 ) ) ) ) ).

% ln_real_def
thf(fact_9245_real__root__power,axiom,
    ! [N2: nat,X: real,K: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( root @ N2 @ ( power_power_real @ X @ K ) )
        = ( power_power_real @ ( root @ N2 @ X ) @ K ) ) ) ).

% real_root_power
thf(fact_9246_real__root__abs,axiom,
    ! [N2: nat,X: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( root @ N2 @ ( abs_abs_real @ X ) )
        = ( abs_abs_real @ ( root @ N2 @ X ) ) ) ) ).

% real_root_abs
thf(fact_9247_sgn__mod,axiom,
    ! [L2: int,K: int] :
      ( ( L2 != zero_zero_int )
     => ( ~ ( dvd_dvd_int @ L2 @ K )
       => ( ( sgn_sgn_int @ ( modulo_modulo_int @ K @ L2 ) )
          = ( sgn_sgn_int @ L2 ) ) ) ) ).

% sgn_mod
thf(fact_9248_ln__neg__is__const,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ X @ zero_zero_real )
     => ( ( ln_ln_real @ X )
        = ( the_real
          @ ^ [X3: real] : $false ) ) ) ).

% ln_neg_is_const
thf(fact_9249_real__root__gt__zero,axiom,
    ! [N2: nat,X: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ( ord_less_real @ zero_zero_real @ ( root @ N2 @ X ) ) ) ) ).

% real_root_gt_zero
thf(fact_9250_real__root__strict__decreasing,axiom,
    ! [N2: nat,N4: nat,X: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( ord_less_nat @ N2 @ N4 )
       => ( ( ord_less_real @ one_one_real @ X )
         => ( ord_less_real @ ( root @ N4 @ X ) @ ( root @ N2 @ X ) ) ) ) ) ).

% real_root_strict_decreasing
thf(fact_9251_sqrt__def,axiom,
    ( sqrt
    = ( root @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% sqrt_def
thf(fact_9252_root__abs__power,axiom,
    ! [N2: nat,Y: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( abs_abs_real @ ( root @ N2 @ ( power_power_real @ Y @ N2 ) ) )
        = ( abs_abs_real @ Y ) ) ) ).

% root_abs_power
thf(fact_9253_div__sgn__abs__cancel,axiom,
    ! [V: int,K: int,L2: int] :
      ( ( V != zero_zero_int )
     => ( ( divide_divide_int @ ( times_times_int @ ( sgn_sgn_int @ V ) @ ( abs_abs_int @ K ) ) @ ( times_times_int @ ( sgn_sgn_int @ V ) @ ( abs_abs_int @ L2 ) ) )
        = ( divide_divide_int @ ( abs_abs_int @ K ) @ ( abs_abs_int @ L2 ) ) ) ) ).

% div_sgn_abs_cancel
thf(fact_9254_div__dvd__sgn__abs,axiom,
    ! [L2: int,K: int] :
      ( ( dvd_dvd_int @ L2 @ K )
     => ( ( divide_divide_int @ K @ L2 )
        = ( times_times_int @ ( times_times_int @ ( sgn_sgn_int @ K ) @ ( sgn_sgn_int @ L2 ) ) @ ( divide_divide_int @ ( abs_abs_int @ K ) @ ( abs_abs_int @ L2 ) ) ) ) ) ).

% div_dvd_sgn_abs
thf(fact_9255_real__root__pos__pos,axiom,
    ! [N2: nat,X: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ( ord_less_eq_real @ zero_zero_real @ ( root @ N2 @ X ) ) ) ) ).

% real_root_pos_pos
thf(fact_9256_real__root__strict__increasing,axiom,
    ! [N2: nat,N4: nat,X: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( ord_less_nat @ N2 @ N4 )
       => ( ( ord_less_real @ zero_zero_real @ X )
         => ( ( ord_less_real @ X @ one_one_real )
           => ( ord_less_real @ ( root @ N2 @ X ) @ ( root @ N4 @ X ) ) ) ) ) ) ).

% real_root_strict_increasing
thf(fact_9257_real__root__decreasing,axiom,
    ! [N2: nat,N4: nat,X: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( ord_less_eq_nat @ N2 @ N4 )
       => ( ( ord_less_eq_real @ one_one_real @ X )
         => ( ord_less_eq_real @ ( root @ N4 @ X ) @ ( root @ N2 @ X ) ) ) ) ) ).

% real_root_decreasing
thf(fact_9258_odd__real__root__power__cancel,axiom,
    ! [N2: nat,X: real] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ( root @ N2 @ ( power_power_real @ X @ N2 ) )
        = X ) ) ).

% odd_real_root_power_cancel
thf(fact_9259_odd__real__root__unique,axiom,
    ! [N2: nat,Y: real,X: real] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ( ( power_power_real @ Y @ N2 )
          = X )
       => ( ( root @ N2 @ X )
          = Y ) ) ) ).

% odd_real_root_unique
thf(fact_9260_odd__real__root__pow,axiom,
    ! [N2: nat,X: real] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ( power_power_real @ ( root @ N2 @ X ) @ N2 )
        = X ) ) ).

% odd_real_root_pow
thf(fact_9261_real__root__pow__pos,axiom,
    ! [N2: nat,X: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ( ( power_power_real @ ( root @ N2 @ X ) @ N2 )
          = X ) ) ) ).

% real_root_pow_pos
thf(fact_9262_real__root__power__cancel,axiom,
    ! [N2: nat,X: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( ord_less_eq_real @ zero_zero_real @ X )
       => ( ( root @ N2 @ ( power_power_real @ X @ N2 ) )
          = X ) ) ) ).

% real_root_power_cancel
thf(fact_9263_real__root__pos__unique,axiom,
    ! [N2: nat,Y: real,X: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y )
       => ( ( ( power_power_real @ Y @ N2 )
            = X )
         => ( ( root @ N2 @ X )
            = Y ) ) ) ) ).

% real_root_pos_unique
thf(fact_9264_real__root__increasing,axiom,
    ! [N2: nat,N4: nat,X: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( ord_less_eq_nat @ N2 @ N4 )
       => ( ( ord_less_eq_real @ zero_zero_real @ X )
         => ( ( ord_less_eq_real @ X @ one_one_real )
           => ( ord_less_eq_real @ ( root @ N2 @ X ) @ ( root @ N4 @ X ) ) ) ) ) ) ).

% real_root_increasing
thf(fact_9265_arccos__def,axiom,
    ( arccos
    = ( ^ [Y3: real] :
          ( the_real
          @ ^ [X3: real] :
              ( ( ord_less_eq_real @ zero_zero_real @ X3 )
              & ( ord_less_eq_real @ X3 @ pi )
              & ( ( cos_real @ X3 )
                = Y3 ) ) ) ) ) ).

% arccos_def
thf(fact_9266_eucl__rel__int__remainderI,axiom,
    ! [R2: int,L2: int,K: int,Q2: int] :
      ( ( ( sgn_sgn_int @ R2 )
        = ( sgn_sgn_int @ L2 ) )
     => ( ( ord_less_int @ ( abs_abs_int @ R2 ) @ ( abs_abs_int @ L2 ) )
       => ( ( K
            = ( plus_plus_int @ ( times_times_int @ Q2 @ L2 ) @ R2 ) )
         => ( eucl_rel_int @ K @ L2 @ ( product_Pair_int_int @ Q2 @ R2 ) ) ) ) ) ).

% eucl_rel_int_remainderI
thf(fact_9267_ln__root,axiom,
    ! [N2: nat,B: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( ord_less_real @ zero_zero_real @ B )
       => ( ( ln_ln_real @ ( root @ N2 @ B ) )
          = ( divide_divide_real @ ( ln_ln_real @ B ) @ ( semiri5074537144036343181t_real @ N2 ) ) ) ) ) ).

% ln_root
thf(fact_9268_log__root,axiom,
    ! [N2: nat,A: real,B: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( ord_less_real @ zero_zero_real @ A )
       => ( ( log @ B @ ( root @ N2 @ A ) )
          = ( divide_divide_real @ ( log @ B @ A ) @ ( semiri5074537144036343181t_real @ N2 ) ) ) ) ) ).

% log_root
thf(fact_9269_log__base__root,axiom,
    ! [N2: nat,B: real,X: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( ord_less_real @ zero_zero_real @ B )
       => ( ( log @ ( root @ N2 @ B ) @ X )
          = ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( log @ B @ X ) ) ) ) ) ).

% log_base_root
thf(fact_9270_eucl__rel__int_Osimps,axiom,
    ( eucl_rel_int
    = ( ^ [A1: int,A22: int,A33: product_prod_int_int] :
          ( ? [K3: int] :
              ( ( A1 = K3 )
              & ( A22 = zero_zero_int )
              & ( A33
                = ( product_Pair_int_int @ zero_zero_int @ K3 ) ) )
          | ? [L: int,K3: int,Q4: int] :
              ( ( A1 = K3 )
              & ( A22 = L )
              & ( A33
                = ( product_Pair_int_int @ Q4 @ zero_zero_int ) )
              & ( L != zero_zero_int )
              & ( K3
                = ( times_times_int @ Q4 @ L ) ) )
          | ? [R5: int,L: int,K3: int,Q4: int] :
              ( ( A1 = K3 )
              & ( A22 = L )
              & ( A33
                = ( product_Pair_int_int @ Q4 @ R5 ) )
              & ( ( sgn_sgn_int @ R5 )
                = ( sgn_sgn_int @ L ) )
              & ( ord_less_int @ ( abs_abs_int @ R5 ) @ ( abs_abs_int @ L ) )
              & ( K3
                = ( plus_plus_int @ ( times_times_int @ Q4 @ L ) @ R5 ) ) ) ) ) ) ).

% eucl_rel_int.simps
thf(fact_9271_eucl__rel__int_Ocases,axiom,
    ! [A12: int,A23: int,A32: product_prod_int_int] :
      ( ( eucl_rel_int @ A12 @ A23 @ A32 )
     => ( ( ( A23 = zero_zero_int )
         => ( A32
           != ( product_Pair_int_int @ zero_zero_int @ A12 ) ) )
       => ( ! [Q3: int] :
              ( ( A32
                = ( product_Pair_int_int @ Q3 @ zero_zero_int ) )
             => ( ( A23 != zero_zero_int )
               => ( A12
                 != ( times_times_int @ Q3 @ A23 ) ) ) )
         => ~ ! [R3: int,Q3: int] :
                ( ( A32
                  = ( product_Pair_int_int @ Q3 @ R3 ) )
               => ( ( ( sgn_sgn_int @ R3 )
                    = ( sgn_sgn_int @ A23 ) )
                 => ( ( ord_less_int @ ( abs_abs_int @ R3 ) @ ( abs_abs_int @ A23 ) )
                   => ( A12
                     != ( plus_plus_int @ ( times_times_int @ Q3 @ A23 ) @ R3 ) ) ) ) ) ) ) ) ).

% eucl_rel_int.cases
thf(fact_9272_div__noneq__sgn__abs,axiom,
    ! [L2: int,K: int] :
      ( ( L2 != zero_zero_int )
     => ( ( ( sgn_sgn_int @ K )
         != ( sgn_sgn_int @ L2 ) )
       => ( ( divide_divide_int @ K @ L2 )
          = ( minus_minus_int @ ( uminus_uminus_int @ ( divide_divide_int @ ( abs_abs_int @ K ) @ ( abs_abs_int @ L2 ) ) )
            @ ( zero_n2684676970156552555ol_int
              @ ~ ( dvd_dvd_int @ L2 @ K ) ) ) ) ) ) ).

% div_noneq_sgn_abs
thf(fact_9273_root__powr__inverse,axiom,
    ! [N2: nat,X: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ( ( root @ N2 @ X )
          = ( powr_real @ X @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ N2 ) ) ) ) ) ) ).

% root_powr_inverse
thf(fact_9274_pi__half,axiom,
    ( ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
    = ( the_real
      @ ^ [X3: real] :
          ( ( ord_less_eq_real @ zero_zero_real @ X3 )
          & ( ord_less_eq_real @ X3 @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
          & ( ( cos_real @ X3 )
            = zero_zero_real ) ) ) ) ).

% pi_half
thf(fact_9275_pi__def,axiom,
    ( pi
    = ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) )
      @ ( the_real
        @ ^ [X3: real] :
            ( ( ord_less_eq_real @ zero_zero_real @ X3 )
            & ( ord_less_eq_real @ X3 @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
            & ( ( cos_real @ X3 )
              = zero_zero_real ) ) ) ) ) ).

% pi_def
thf(fact_9276_divide__int__unfold,axiom,
    ! [L2: int,K: int,N2: nat,M: nat] :
      ( ( ( ( ( sgn_sgn_int @ L2 )
            = zero_zero_int )
          | ( ( sgn_sgn_int @ K )
            = zero_zero_int )
          | ( N2 = zero_zero_nat ) )
       => ( ( divide_divide_int @ ( times_times_int @ ( sgn_sgn_int @ K ) @ ( semiri1314217659103216013at_int @ M ) ) @ ( times_times_int @ ( sgn_sgn_int @ L2 ) @ ( semiri1314217659103216013at_int @ N2 ) ) )
          = zero_zero_int ) )
      & ( ~ ( ( ( sgn_sgn_int @ L2 )
              = zero_zero_int )
            | ( ( sgn_sgn_int @ K )
              = zero_zero_int )
            | ( N2 = zero_zero_nat ) )
       => ( ( ( ( sgn_sgn_int @ K )
              = ( sgn_sgn_int @ L2 ) )
           => ( ( divide_divide_int @ ( times_times_int @ ( sgn_sgn_int @ K ) @ ( semiri1314217659103216013at_int @ M ) ) @ ( times_times_int @ ( sgn_sgn_int @ L2 ) @ ( semiri1314217659103216013at_int @ N2 ) ) )
              = ( semiri1314217659103216013at_int @ ( divide_divide_nat @ M @ N2 ) ) ) )
          & ( ( ( sgn_sgn_int @ K )
             != ( sgn_sgn_int @ L2 ) )
           => ( ( divide_divide_int @ ( times_times_int @ ( sgn_sgn_int @ K ) @ ( semiri1314217659103216013at_int @ M ) ) @ ( times_times_int @ ( sgn_sgn_int @ L2 ) @ ( semiri1314217659103216013at_int @ N2 ) ) )
              = ( uminus_uminus_int
                @ ( semiri1314217659103216013at_int
                  @ ( plus_plus_nat @ ( divide_divide_nat @ M @ N2 )
                    @ ( zero_n2687167440665602831ol_nat
                      @ ~ ( dvd_dvd_nat @ N2 @ M ) ) ) ) ) ) ) ) ) ) ).

% divide_int_unfold
thf(fact_9277_zero__le__sgn__iff,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( sgn_sgn_real @ X ) )
      = ( ord_less_eq_real @ zero_zero_real @ X ) ) ).

% zero_le_sgn_iff
thf(fact_9278_sgn__le__0__iff,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ ( sgn_sgn_real @ X ) @ zero_zero_real )
      = ( ord_less_eq_real @ X @ zero_zero_real ) ) ).

% sgn_le_0_iff
thf(fact_9279_sgn__root,axiom,
    ! [N2: nat,X: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( sgn_sgn_real @ ( root @ N2 @ X ) )
        = ( sgn_sgn_real @ X ) ) ) ).

% sgn_root
thf(fact_9280_sgn__power__injE,axiom,
    ! [A: real,N2: nat,X: real,B: real] :
      ( ( ( times_times_real @ ( sgn_sgn_real @ A ) @ ( power_power_real @ ( abs_abs_real @ A ) @ N2 ) )
        = X )
     => ( ( X
          = ( times_times_real @ ( sgn_sgn_real @ B ) @ ( power_power_real @ ( abs_abs_real @ B ) @ N2 ) ) )
       => ( ( ord_less_nat @ zero_zero_nat @ N2 )
         => ( A = B ) ) ) ) ).

% sgn_power_injE
thf(fact_9281_root__sgn__power,axiom,
    ! [N2: nat,Y: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( root @ N2 @ ( times_times_real @ ( sgn_sgn_real @ Y ) @ ( power_power_real @ ( abs_abs_real @ Y ) @ N2 ) ) )
        = Y ) ) ).

% root_sgn_power
thf(fact_9282_sgn__power__root,axiom,
    ! [N2: nat,X: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( times_times_real @ ( sgn_sgn_real @ ( root @ N2 @ X ) ) @ ( power_power_real @ ( abs_abs_real @ ( root @ N2 @ X ) ) @ N2 ) )
        = X ) ) ).

% sgn_power_root
thf(fact_9283_cis__Arg__unique,axiom,
    ! [Z: complex,X: real] :
      ( ( ( sgn_sgn_complex @ Z )
        = ( cis @ X ) )
     => ( ( ord_less_real @ ( uminus_uminus_real @ pi ) @ X )
       => ( ( ord_less_eq_real @ X @ pi )
         => ( ( arg @ Z )
            = X ) ) ) ) ).

% cis_Arg_unique
thf(fact_9284_split__root,axiom,
    ! [P: real > $o,N2: nat,X: real] :
      ( ( P @ ( root @ N2 @ X ) )
      = ( ( ( N2 = zero_zero_nat )
         => ( P @ zero_zero_real ) )
        & ( ( ord_less_nat @ zero_zero_nat @ N2 )
         => ! [Y3: real] :
              ( ( ( times_times_real @ ( sgn_sgn_real @ Y3 ) @ ( power_power_real @ ( abs_abs_real @ Y3 ) @ N2 ) )
                = X )
             => ( P @ Y3 ) ) ) ) ) ).

% split_root
thf(fact_9285_floor__real__def,axiom,
    ( archim6058952711729229775r_real
    = ( ^ [X3: real] :
          ( the_int
          @ ^ [Z2: int] :
              ( ( ord_less_eq_real @ ( ring_1_of_int_real @ Z2 ) @ X3 )
              & ( ord_less_real @ X3 @ ( ring_1_of_int_real @ ( plus_plus_int @ Z2 @ one_one_int ) ) ) ) ) ) ) ).

% floor_real_def
thf(fact_9286_Arg__correct,axiom,
    ! [Z: complex] :
      ( ( Z != zero_zero_complex )
     => ( ( ( sgn_sgn_complex @ Z )
          = ( cis @ ( arg @ Z ) ) )
        & ( ord_less_real @ ( uminus_uminus_real @ pi ) @ ( arg @ Z ) )
        & ( ord_less_eq_real @ ( arg @ Z ) @ pi ) ) ) ).

% Arg_correct
thf(fact_9287_arctan__inverse,axiom,
    ! [X: real] :
      ( ( X != zero_zero_real )
     => ( ( arctan @ ( divide_divide_real @ one_one_real @ X ) )
        = ( minus_minus_real @ ( divide_divide_real @ ( times_times_real @ ( sgn_sgn_real @ X ) @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( arctan @ X ) ) ) ) ).

% arctan_inverse
thf(fact_9288_modulo__int__def,axiom,
    ( modulo_modulo_int
    = ( ^ [K3: int,L: int] :
          ( if_int @ ( L = zero_zero_int ) @ K3
          @ ( if_int
            @ ( ( sgn_sgn_int @ K3 )
              = ( sgn_sgn_int @ L ) )
            @ ( times_times_int @ ( sgn_sgn_int @ L ) @ ( semiri1314217659103216013at_int @ ( modulo_modulo_nat @ ( nat2 @ ( abs_abs_int @ K3 ) ) @ ( nat2 @ ( abs_abs_int @ L ) ) ) ) )
            @ ( times_times_int @ ( sgn_sgn_int @ L )
              @ ( minus_minus_int
                @ ( times_times_int @ ( abs_abs_int @ L )
                  @ ( zero_n2684676970156552555ol_int
                    @ ~ ( dvd_dvd_int @ L @ K3 ) ) )
                @ ( semiri1314217659103216013at_int @ ( modulo_modulo_nat @ ( nat2 @ ( abs_abs_int @ K3 ) ) @ ( nat2 @ ( abs_abs_int @ L ) ) ) ) ) ) ) ) ) ) ).

% modulo_int_def
thf(fact_9289_divide__int__def,axiom,
    ( divide_divide_int
    = ( ^ [K3: int,L: int] :
          ( if_int @ ( L = zero_zero_int ) @ zero_zero_int
          @ ( if_int
            @ ( ( sgn_sgn_int @ K3 )
              = ( sgn_sgn_int @ L ) )
            @ ( semiri1314217659103216013at_int @ ( divide_divide_nat @ ( nat2 @ ( abs_abs_int @ K3 ) ) @ ( nat2 @ ( abs_abs_int @ L ) ) ) )
            @ ( uminus_uminus_int
              @ ( semiri1314217659103216013at_int
                @ ( plus_plus_nat @ ( divide_divide_nat @ ( nat2 @ ( abs_abs_int @ K3 ) ) @ ( nat2 @ ( abs_abs_int @ L ) ) )
                  @ ( zero_n2687167440665602831ol_nat
                    @ ~ ( dvd_dvd_int @ L @ K3 ) ) ) ) ) ) ) ) ) ).

% divide_int_def
thf(fact_9290_even__set__encode__iff,axiom,
    ! [A2: set_nat] :
      ( ( finite_finite_nat @ A2 )
     => ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( nat_set_encode @ A2 ) )
        = ( ~ ( member_nat @ zero_zero_nat @ A2 ) ) ) ) ).

% even_set_encode_iff
thf(fact_9291_mask__nat__positive__iff,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( bit_se2002935070580805687sk_nat @ N2 ) )
      = ( ord_less_nat @ zero_zero_nat @ N2 ) ) ).

% mask_nat_positive_iff
thf(fact_9292_nat__numeral,axiom,
    ! [K: num] :
      ( ( nat2 @ ( numeral_numeral_int @ K ) )
      = ( numeral_numeral_nat @ K ) ) ).

% nat_numeral
thf(fact_9293_nat__1,axiom,
    ( ( nat2 @ one_one_int )
    = ( suc @ zero_zero_nat ) ) ).

% nat_1
thf(fact_9294_nat__0__iff,axiom,
    ! [I2: int] :
      ( ( ( nat2 @ I2 )
        = zero_zero_nat )
      = ( ord_less_eq_int @ I2 @ zero_zero_int ) ) ).

% nat_0_iff
thf(fact_9295_nat__le__0,axiom,
    ! [Z: int] :
      ( ( ord_less_eq_int @ Z @ zero_zero_int )
     => ( ( nat2 @ Z )
        = zero_zero_nat ) ) ).

% nat_le_0
thf(fact_9296_zless__nat__conj,axiom,
    ! [W: int,Z: int] :
      ( ( ord_less_nat @ ( nat2 @ W ) @ ( nat2 @ Z ) )
      = ( ( ord_less_int @ zero_zero_int @ Z )
        & ( ord_less_int @ W @ Z ) ) ) ).

% zless_nat_conj
thf(fact_9297_nat__neg__numeral,axiom,
    ! [K: num] :
      ( ( nat2 @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) )
      = zero_zero_nat ) ).

% nat_neg_numeral
thf(fact_9298_int__nat__eq,axiom,
    ! [Z: int] :
      ( ( ( ord_less_eq_int @ zero_zero_int @ Z )
       => ( ( semiri1314217659103216013at_int @ ( nat2 @ Z ) )
          = Z ) )
      & ( ~ ( ord_less_eq_int @ zero_zero_int @ Z )
       => ( ( semiri1314217659103216013at_int @ ( nat2 @ Z ) )
          = zero_zero_int ) ) ) ).

% int_nat_eq
thf(fact_9299_zero__less__nat__eq,axiom,
    ! [Z: int] :
      ( ( ord_less_nat @ zero_zero_nat @ ( nat2 @ Z ) )
      = ( ord_less_int @ zero_zero_int @ Z ) ) ).

% zero_less_nat_eq
thf(fact_9300_diff__nat__numeral,axiom,
    ! [V: num,V3: num] :
      ( ( minus_minus_nat @ ( numeral_numeral_nat @ V ) @ ( numeral_numeral_nat @ V3 ) )
      = ( nat2 @ ( minus_minus_int @ ( numeral_numeral_int @ V ) @ ( numeral_numeral_int @ V3 ) ) ) ) ).

% diff_nat_numeral
thf(fact_9301_numeral__power__eq__nat__cancel__iff,axiom,
    ! [X: num,N2: nat,Y: int] :
      ( ( ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N2 )
        = ( nat2 @ Y ) )
      = ( ( power_power_int @ ( numeral_numeral_int @ X ) @ N2 )
        = Y ) ) ).

% numeral_power_eq_nat_cancel_iff
thf(fact_9302_nat__eq__numeral__power__cancel__iff,axiom,
    ! [Y: int,X: num,N2: nat] :
      ( ( ( nat2 @ Y )
        = ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N2 ) )
      = ( Y
        = ( power_power_int @ ( numeral_numeral_int @ X ) @ N2 ) ) ) ).

% nat_eq_numeral_power_cancel_iff
thf(fact_9303_nat__ceiling__le__eq,axiom,
    ! [X: real,A: nat] :
      ( ( ord_less_eq_nat @ ( nat2 @ ( archim7802044766580827645g_real @ X ) ) @ A )
      = ( ord_less_eq_real @ X @ ( semiri5074537144036343181t_real @ A ) ) ) ).

% nat_ceiling_le_eq
thf(fact_9304_one__less__nat__eq,axiom,
    ! [Z: int] :
      ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ ( nat2 @ Z ) )
      = ( ord_less_int @ one_one_int @ Z ) ) ).

% one_less_nat_eq
thf(fact_9305_nat__numeral__diff__1,axiom,
    ! [V: num] :
      ( ( minus_minus_nat @ ( numeral_numeral_nat @ V ) @ one_one_nat )
      = ( nat2 @ ( minus_minus_int @ ( numeral_numeral_int @ V ) @ one_one_int ) ) ) ).

% nat_numeral_diff_1
thf(fact_9306_nat__less__numeral__power__cancel__iff,axiom,
    ! [A: int,X: num,N2: nat] :
      ( ( ord_less_nat @ ( nat2 @ A ) @ ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N2 ) )
      = ( ord_less_int @ A @ ( power_power_int @ ( numeral_numeral_int @ X ) @ N2 ) ) ) ).

% nat_less_numeral_power_cancel_iff
thf(fact_9307_numeral__power__less__nat__cancel__iff,axiom,
    ! [X: num,N2: nat,A: int] :
      ( ( ord_less_nat @ ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N2 ) @ ( nat2 @ A ) )
      = ( ord_less_int @ ( power_power_int @ ( numeral_numeral_int @ X ) @ N2 ) @ A ) ) ).

% numeral_power_less_nat_cancel_iff
thf(fact_9308_nat__le__numeral__power__cancel__iff,axiom,
    ! [A: int,X: num,N2: nat] :
      ( ( ord_less_eq_nat @ ( nat2 @ A ) @ ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N2 ) )
      = ( ord_less_eq_int @ A @ ( power_power_int @ ( numeral_numeral_int @ X ) @ N2 ) ) ) ).

% nat_le_numeral_power_cancel_iff
thf(fact_9309_numeral__power__le__nat__cancel__iff,axiom,
    ! [X: num,N2: nat,A: int] :
      ( ( ord_less_eq_nat @ ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N2 ) @ ( nat2 @ A ) )
      = ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ X ) @ N2 ) @ A ) ) ).

% numeral_power_le_nat_cancel_iff
thf(fact_9310_less__eq__mask,axiom,
    ! [N2: nat] : ( ord_less_eq_nat @ N2 @ ( bit_se2002935070580805687sk_nat @ N2 ) ) ).

% less_eq_mask
thf(fact_9311_nat__mask__eq,axiom,
    ! [N2: nat] :
      ( ( nat2 @ ( bit_se2000444600071755411sk_int @ N2 ) )
      = ( bit_se2002935070580805687sk_nat @ N2 ) ) ).

% nat_mask_eq
thf(fact_9312_nat__numeral__as__int,axiom,
    ( numeral_numeral_nat
    = ( ^ [I5: num] : ( nat2 @ ( numeral_numeral_int @ I5 ) ) ) ) ).

% nat_numeral_as_int
thf(fact_9313_nat__mono,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_eq_int @ X @ Y )
     => ( ord_less_eq_nat @ ( nat2 @ X ) @ ( nat2 @ Y ) ) ) ).

% nat_mono
thf(fact_9314_ex__nat,axiom,
    ( ( ^ [P2: nat > $o] :
        ? [X6: nat] : ( P2 @ X6 ) )
    = ( ^ [P3: nat > $o] :
        ? [X3: int] :
          ( ( ord_less_eq_int @ zero_zero_int @ X3 )
          & ( P3 @ ( nat2 @ X3 ) ) ) ) ) ).

% ex_nat
thf(fact_9315_all__nat,axiom,
    ( ( ^ [P2: nat > $o] :
        ! [X6: nat] : ( P2 @ X6 ) )
    = ( ^ [P3: nat > $o] :
        ! [X3: int] :
          ( ( ord_less_eq_int @ zero_zero_int @ X3 )
         => ( P3 @ ( nat2 @ X3 ) ) ) ) ) ).

% all_nat
thf(fact_9316_eq__nat__nat__iff,axiom,
    ! [Z: int,Z7: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z )
     => ( ( ord_less_eq_int @ zero_zero_int @ Z7 )
       => ( ( ( nat2 @ Z )
            = ( nat2 @ Z7 ) )
          = ( Z = Z7 ) ) ) ) ).

% eq_nat_nat_iff
thf(fact_9317_nat__one__as__int,axiom,
    ( one_one_nat
    = ( nat2 @ one_one_int ) ) ).

% nat_one_as_int
thf(fact_9318_unset__bit__nat__def,axiom,
    ( bit_se4205575877204974255it_nat
    = ( ^ [M6: nat,N3: nat] : ( nat2 @ ( bit_se4203085406695923979it_int @ M6 @ ( semiri1314217659103216013at_int @ N3 ) ) ) ) ) ).

% unset_bit_nat_def
thf(fact_9319_mask__nonnegative__int,axiom,
    ! [N2: nat] : ( ord_less_eq_int @ zero_zero_int @ ( bit_se2000444600071755411sk_int @ N2 ) ) ).

% mask_nonnegative_int
thf(fact_9320_not__mask__negative__int,axiom,
    ! [N2: nat] :
      ~ ( ord_less_int @ ( bit_se2000444600071755411sk_int @ N2 ) @ zero_zero_int ) ).

% not_mask_negative_int
thf(fact_9321_nat__mono__iff,axiom,
    ! [Z: int,W: int] :
      ( ( ord_less_int @ zero_zero_int @ Z )
     => ( ( ord_less_nat @ ( nat2 @ W ) @ ( nat2 @ Z ) )
        = ( ord_less_int @ W @ Z ) ) ) ).

% nat_mono_iff
thf(fact_9322_zless__nat__eq__int__zless,axiom,
    ! [M: nat,Z: int] :
      ( ( ord_less_nat @ M @ ( nat2 @ Z ) )
      = ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ Z ) ) ).

% zless_nat_eq_int_zless
thf(fact_9323_nat__le__iff,axiom,
    ! [X: int,N2: nat] :
      ( ( ord_less_eq_nat @ ( nat2 @ X ) @ N2 )
      = ( ord_less_eq_int @ X @ ( semiri1314217659103216013at_int @ N2 ) ) ) ).

% nat_le_iff
thf(fact_9324_nat__0__le,axiom,
    ! [Z: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z )
     => ( ( semiri1314217659103216013at_int @ ( nat2 @ Z ) )
        = Z ) ) ).

% nat_0_le
thf(fact_9325_int__eq__iff,axiom,
    ! [M: nat,Z: int] :
      ( ( ( semiri1314217659103216013at_int @ M )
        = Z )
      = ( ( M
          = ( nat2 @ Z ) )
        & ( ord_less_eq_int @ zero_zero_int @ Z ) ) ) ).

% int_eq_iff
thf(fact_9326_nat__int__add,axiom,
    ! [A: nat,B: nat] :
      ( ( nat2 @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) )
      = ( plus_plus_nat @ A @ B ) ) ).

% nat_int_add
thf(fact_9327_nat__abs__mult__distrib,axiom,
    ! [W: int,Z: int] :
      ( ( nat2 @ ( abs_abs_int @ ( times_times_int @ W @ Z ) ) )
      = ( times_times_nat @ ( nat2 @ ( abs_abs_int @ W ) ) @ ( nat2 @ ( abs_abs_int @ Z ) ) ) ) ).

% nat_abs_mult_distrib
thf(fact_9328_int__minus,axiom,
    ! [N2: nat,M: nat] :
      ( ( semiri1314217659103216013at_int @ ( minus_minus_nat @ N2 @ M ) )
      = ( semiri1314217659103216013at_int @ ( nat2 @ ( minus_minus_int @ ( semiri1314217659103216013at_int @ N2 ) @ ( semiri1314217659103216013at_int @ M ) ) ) ) ) ).

% int_minus
thf(fact_9329_nat__plus__as__int,axiom,
    ( plus_plus_nat
    = ( ^ [A4: nat,B4: nat] : ( nat2 @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ A4 ) @ ( semiri1314217659103216013at_int @ B4 ) ) ) ) ) ).

% nat_plus_as_int
thf(fact_9330_nat__times__as__int,axiom,
    ( times_times_nat
    = ( ^ [A4: nat,B4: nat] : ( nat2 @ ( times_times_int @ ( semiri1314217659103216013at_int @ A4 ) @ ( semiri1314217659103216013at_int @ B4 ) ) ) ) ) ).

% nat_times_as_int
thf(fact_9331_or__nat__def,axiom,
    ( bit_se1412395901928357646or_nat
    = ( ^ [M6: nat,N3: nat] : ( nat2 @ ( bit_se1409905431419307370or_int @ ( semiri1314217659103216013at_int @ M6 ) @ ( semiri1314217659103216013at_int @ N3 ) ) ) ) ) ).

% or_nat_def
thf(fact_9332_real__nat__ceiling__ge,axiom,
    ! [X: real] : ( ord_less_eq_real @ X @ ( semiri5074537144036343181t_real @ ( nat2 @ ( archim7802044766580827645g_real @ X ) ) ) ) ).

% real_nat_ceiling_ge
thf(fact_9333_less__mask,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ N2 )
     => ( ord_less_nat @ N2 @ ( bit_se2002935070580805687sk_nat @ N2 ) ) ) ).

% less_mask
thf(fact_9334_nat__minus__as__int,axiom,
    ( minus_minus_nat
    = ( ^ [A4: nat,B4: nat] : ( nat2 @ ( minus_minus_int @ ( semiri1314217659103216013at_int @ A4 ) @ ( semiri1314217659103216013at_int @ B4 ) ) ) ) ) ).

% nat_minus_as_int
thf(fact_9335_nat__div__as__int,axiom,
    ( divide_divide_nat
    = ( ^ [A4: nat,B4: nat] : ( nat2 @ ( divide_divide_int @ ( semiri1314217659103216013at_int @ A4 ) @ ( semiri1314217659103216013at_int @ B4 ) ) ) ) ) ).

% nat_div_as_int
thf(fact_9336_nat__mod__as__int,axiom,
    ( modulo_modulo_nat
    = ( ^ [A4: nat,B4: nat] : ( nat2 @ ( modulo_modulo_int @ ( semiri1314217659103216013at_int @ A4 ) @ ( semiri1314217659103216013at_int @ B4 ) ) ) ) ) ).

% nat_mod_as_int
thf(fact_9337_nat__less__eq__zless,axiom,
    ! [W: int,Z: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ W )
     => ( ( ord_less_nat @ ( nat2 @ W ) @ ( nat2 @ Z ) )
        = ( ord_less_int @ W @ Z ) ) ) ).

% nat_less_eq_zless
thf(fact_9338_nat__le__eq__zle,axiom,
    ! [W: int,Z: int] :
      ( ( ( ord_less_int @ zero_zero_int @ W )
        | ( ord_less_eq_int @ zero_zero_int @ Z ) )
     => ( ( ord_less_eq_nat @ ( nat2 @ W ) @ ( nat2 @ Z ) )
        = ( ord_less_eq_int @ W @ Z ) ) ) ).

% nat_le_eq_zle
thf(fact_9339_nat__eq__iff,axiom,
    ! [W: int,M: nat] :
      ( ( ( nat2 @ W )
        = M )
      = ( ( ( ord_less_eq_int @ zero_zero_int @ W )
         => ( W
            = ( semiri1314217659103216013at_int @ M ) ) )
        & ( ~ ( ord_less_eq_int @ zero_zero_int @ W )
         => ( M = zero_zero_nat ) ) ) ) ).

% nat_eq_iff
thf(fact_9340_nat__eq__iff2,axiom,
    ! [M: nat,W: int] :
      ( ( M
        = ( nat2 @ W ) )
      = ( ( ( ord_less_eq_int @ zero_zero_int @ W )
         => ( W
            = ( semiri1314217659103216013at_int @ M ) ) )
        & ( ~ ( ord_less_eq_int @ zero_zero_int @ W )
         => ( M = zero_zero_nat ) ) ) ) ).

% nat_eq_iff2
thf(fact_9341_nat__add__distrib,axiom,
    ! [Z: int,Z7: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z )
     => ( ( ord_less_eq_int @ zero_zero_int @ Z7 )
       => ( ( nat2 @ ( plus_plus_int @ Z @ Z7 ) )
          = ( plus_plus_nat @ ( nat2 @ Z ) @ ( nat2 @ Z7 ) ) ) ) ) ).

% nat_add_distrib
thf(fact_9342_le__nat__iff,axiom,
    ! [K: int,N2: nat] :
      ( ( ord_less_eq_int @ zero_zero_int @ K )
     => ( ( ord_less_eq_nat @ N2 @ ( nat2 @ K ) )
        = ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ N2 ) @ K ) ) ) ).

% le_nat_iff
thf(fact_9343_nat__mult__distrib,axiom,
    ! [Z: int,Z7: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z )
     => ( ( nat2 @ ( times_times_int @ Z @ Z7 ) )
        = ( times_times_nat @ ( nat2 @ Z ) @ ( nat2 @ Z7 ) ) ) ) ).

% nat_mult_distrib
thf(fact_9344_Suc__as__int,axiom,
    ( suc
    = ( ^ [A4: nat] : ( nat2 @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ A4 ) @ one_one_int ) ) ) ) ).

% Suc_as_int
thf(fact_9345_nat__abs__triangle__ineq,axiom,
    ! [K: int,L2: int] : ( ord_less_eq_nat @ ( nat2 @ ( abs_abs_int @ ( plus_plus_int @ K @ L2 ) ) ) @ ( plus_plus_nat @ ( nat2 @ ( abs_abs_int @ K ) ) @ ( nat2 @ ( abs_abs_int @ L2 ) ) ) ) ).

% nat_abs_triangle_ineq
thf(fact_9346_nat__diff__distrib,axiom,
    ! [Z7: int,Z: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z7 )
     => ( ( ord_less_eq_int @ Z7 @ Z )
       => ( ( nat2 @ ( minus_minus_int @ Z @ Z7 ) )
          = ( minus_minus_nat @ ( nat2 @ Z ) @ ( nat2 @ Z7 ) ) ) ) ) ).

% nat_diff_distrib
thf(fact_9347_nat__diff__distrib_H,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X )
     => ( ( ord_less_eq_int @ zero_zero_int @ Y )
       => ( ( nat2 @ ( minus_minus_int @ X @ Y ) )
          = ( minus_minus_nat @ ( nat2 @ X ) @ ( nat2 @ Y ) ) ) ) ) ).

% nat_diff_distrib'
thf(fact_9348_nat__div__distrib_H,axiom,
    ! [Y: int,X: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Y )
     => ( ( nat2 @ ( divide_divide_int @ X @ Y ) )
        = ( divide_divide_nat @ ( nat2 @ X ) @ ( nat2 @ Y ) ) ) ) ).

% nat_div_distrib'
thf(fact_9349_nat__div__distrib,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X )
     => ( ( nat2 @ ( divide_divide_int @ X @ Y ) )
        = ( divide_divide_nat @ ( nat2 @ X ) @ ( nat2 @ Y ) ) ) ) ).

% nat_div_distrib
thf(fact_9350_nat__power__eq,axiom,
    ! [Z: int,N2: nat] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z )
     => ( ( nat2 @ ( power_power_int @ Z @ N2 ) )
        = ( power_power_nat @ ( nat2 @ Z ) @ N2 ) ) ) ).

% nat_power_eq
thf(fact_9351_nat__floor__neg,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ X @ zero_zero_real )
     => ( ( nat2 @ ( archim6058952711729229775r_real @ X ) )
        = zero_zero_nat ) ) ).

% nat_floor_neg
thf(fact_9352_div__abs__eq__div__nat,axiom,
    ! [K: int,L2: int] :
      ( ( divide_divide_int @ ( abs_abs_int @ K ) @ ( abs_abs_int @ L2 ) )
      = ( semiri1314217659103216013at_int @ ( divide_divide_nat @ ( nat2 @ ( abs_abs_int @ K ) ) @ ( nat2 @ ( abs_abs_int @ L2 ) ) ) ) ) ).

% div_abs_eq_div_nat
thf(fact_9353_nat__mod__distrib,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X )
     => ( ( ord_less_eq_int @ zero_zero_int @ Y )
       => ( ( nat2 @ ( modulo_modulo_int @ X @ Y ) )
          = ( modulo_modulo_nat @ ( nat2 @ X ) @ ( nat2 @ Y ) ) ) ) ) ).

% nat_mod_distrib
thf(fact_9354_floor__eq3,axiom,
    ! [N2: nat,X: real] :
      ( ( ord_less_real @ ( semiri5074537144036343181t_real @ N2 ) @ X )
     => ( ( ord_less_real @ X @ ( semiri5074537144036343181t_real @ ( suc @ N2 ) ) )
       => ( ( nat2 @ ( archim6058952711729229775r_real @ X ) )
          = N2 ) ) ) ).

% floor_eq3
thf(fact_9355_le__nat__floor,axiom,
    ! [X: nat,A: real] :
      ( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ X ) @ A )
     => ( ord_less_eq_nat @ X @ ( nat2 @ ( archim6058952711729229775r_real @ A ) ) ) ) ).

% le_nat_floor
thf(fact_9356_nat__2,axiom,
    ( ( nat2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
    = ( suc @ ( suc @ zero_zero_nat ) ) ) ).

% nat_2
thf(fact_9357_Suc__nat__eq__nat__zadd1,axiom,
    ! [Z: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z )
     => ( ( suc @ ( nat2 @ Z ) )
        = ( nat2 @ ( plus_plus_int @ one_one_int @ Z ) ) ) ) ).

% Suc_nat_eq_nat_zadd1
thf(fact_9358_nat__less__iff,axiom,
    ! [W: int,M: nat] :
      ( ( ord_less_eq_int @ zero_zero_int @ W )
     => ( ( ord_less_nat @ ( nat2 @ W ) @ M )
        = ( ord_less_int @ W @ ( semiri1314217659103216013at_int @ M ) ) ) ) ).

% nat_less_iff
thf(fact_9359_nat__mult__distrib__neg,axiom,
    ! [Z: int,Z7: int] :
      ( ( ord_less_eq_int @ Z @ zero_zero_int )
     => ( ( nat2 @ ( times_times_int @ Z @ Z7 ) )
        = ( times_times_nat @ ( nat2 @ ( uminus_uminus_int @ Z ) ) @ ( nat2 @ ( uminus_uminus_int @ Z7 ) ) ) ) ) ).

% nat_mult_distrib_neg
thf(fact_9360_nat__abs__int__diff,axiom,
    ! [A: nat,B: nat] :
      ( ( ( ord_less_eq_nat @ A @ B )
       => ( ( nat2 @ ( abs_abs_int @ ( minus_minus_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) )
          = ( minus_minus_nat @ B @ A ) ) )
      & ( ~ ( ord_less_eq_nat @ A @ B )
       => ( ( nat2 @ ( abs_abs_int @ ( minus_minus_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) )
          = ( minus_minus_nat @ A @ B ) ) ) ) ).

% nat_abs_int_diff
thf(fact_9361_floor__eq4,axiom,
    ! [N2: nat,X: real] :
      ( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ N2 ) @ X )
     => ( ( ord_less_real @ X @ ( semiri5074537144036343181t_real @ ( suc @ N2 ) ) )
       => ( ( nat2 @ ( archim6058952711729229775r_real @ X ) )
          = N2 ) ) ) ).

% floor_eq4
thf(fact_9362_diff__nat__eq__if,axiom,
    ! [Z7: int,Z: int] :
      ( ( ( ord_less_int @ Z7 @ zero_zero_int )
       => ( ( minus_minus_nat @ ( nat2 @ Z ) @ ( nat2 @ Z7 ) )
          = ( nat2 @ Z ) ) )
      & ( ~ ( ord_less_int @ Z7 @ zero_zero_int )
       => ( ( minus_minus_nat @ ( nat2 @ Z ) @ ( nat2 @ Z7 ) )
          = ( if_nat @ ( ord_less_int @ ( minus_minus_int @ Z @ Z7 ) @ zero_zero_int ) @ zero_zero_nat @ ( nat2 @ ( minus_minus_int @ Z @ Z7 ) ) ) ) ) ) ).

% diff_nat_eq_if
thf(fact_9363_Suc__mask__eq__exp,axiom,
    ! [N2: nat] :
      ( ( suc @ ( bit_se2002935070580805687sk_nat @ N2 ) )
      = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ).

% Suc_mask_eq_exp
thf(fact_9364_mask__nat__less__exp,axiom,
    ! [N2: nat] : ( ord_less_nat @ ( bit_se2002935070580805687sk_nat @ N2 ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ).

% mask_nat_less_exp
thf(fact_9365_nat__dvd__iff,axiom,
    ! [Z: int,M: nat] :
      ( ( dvd_dvd_nat @ ( nat2 @ Z ) @ M )
      = ( ( ( ord_less_eq_int @ zero_zero_int @ Z )
         => ( dvd_dvd_int @ Z @ ( semiri1314217659103216013at_int @ M ) ) )
        & ( ~ ( ord_less_eq_int @ zero_zero_int @ Z )
         => ( M = zero_zero_nat ) ) ) ) ).

% nat_dvd_iff
thf(fact_9366_mask__nat__def,axiom,
    ( bit_se2002935070580805687sk_nat
    = ( ^ [N3: nat] : ( minus_minus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) @ one_one_nat ) ) ) ).

% mask_nat_def
thf(fact_9367_mask__half__int,axiom,
    ! [N2: nat] :
      ( ( divide_divide_int @ ( bit_se2000444600071755411sk_int @ N2 ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
      = ( bit_se2000444600071755411sk_int @ ( minus_minus_nat @ N2 @ one_one_nat ) ) ) ).

% mask_half_int
thf(fact_9368_mask__int__def,axiom,
    ( bit_se2000444600071755411sk_int
    = ( ^ [N3: nat] : ( minus_minus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N3 ) @ one_one_int ) ) ) ).

% mask_int_def
thf(fact_9369_even__nat__iff,axiom,
    ! [K: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ K )
     => ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( nat2 @ K ) )
        = ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K ) ) ) ).

% even_nat_iff
thf(fact_9370_set__encode__def,axiom,
    ( nat_set_encode
    = ( groups3542108847815614940at_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% set_encode_def
thf(fact_9371_powr__real__of__int,axiom,
    ! [X: real,N2: int] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ( ord_less_eq_int @ zero_zero_int @ N2 )
         => ( ( powr_real @ X @ ( ring_1_of_int_real @ N2 ) )
            = ( power_power_real @ X @ ( nat2 @ N2 ) ) ) )
        & ( ~ ( ord_less_eq_int @ zero_zero_int @ N2 )
         => ( ( powr_real @ X @ ( ring_1_of_int_real @ N2 ) )
            = ( inverse_inverse_real @ ( power_power_real @ X @ ( nat2 @ ( uminus_uminus_int @ N2 ) ) ) ) ) ) ) ) ).

% powr_real_of_int
thf(fact_9372_powr__int,axiom,
    ! [X: real,I2: int] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ( ord_less_eq_int @ zero_zero_int @ I2 )
         => ( ( powr_real @ X @ ( ring_1_of_int_real @ I2 ) )
            = ( power_power_real @ X @ ( nat2 @ I2 ) ) ) )
        & ( ~ ( ord_less_eq_int @ zero_zero_int @ I2 )
         => ( ( powr_real @ X @ ( ring_1_of_int_real @ I2 ) )
            = ( divide_divide_real @ one_one_real @ ( power_power_real @ X @ ( nat2 @ ( uminus_uminus_int @ I2 ) ) ) ) ) ) ) ) ).

% powr_int
thf(fact_9373_floor__rat__def,axiom,
    ( archim3151403230148437115or_rat
    = ( ^ [X3: rat] :
          ( the_int
          @ ^ [Z2: int] :
              ( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ Z2 ) @ X3 )
              & ( ord_less_rat @ X3 @ ( ring_1_of_int_rat @ ( plus_plus_int @ Z2 @ one_one_int ) ) ) ) ) ) ) ).

% floor_rat_def
thf(fact_9374_Arg__def,axiom,
    ( arg
    = ( ^ [Z2: complex] :
          ( if_real @ ( Z2 = zero_zero_complex ) @ zero_zero_real
          @ ( fChoice_real
            @ ^ [A4: real] :
                ( ( ( sgn_sgn_complex @ Z2 )
                  = ( cis @ A4 ) )
                & ( ord_less_real @ ( uminus_uminus_real @ pi ) @ A4 )
                & ( ord_less_eq_real @ A4 @ pi ) ) ) ) ) ) ).

% Arg_def
thf(fact_9375_num_Osize__gen_I3_J,axiom,
    ! [X32: num] :
      ( ( size_num @ ( bit1 @ X32 ) )
      = ( plus_plus_nat @ ( size_num @ X32 ) @ ( suc @ zero_zero_nat ) ) ) ).

% num.size_gen(3)
thf(fact_9376_concat__bit__of__zero__2,axiom,
    ! [N2: nat,K: int] :
      ( ( bit_concat_bit @ N2 @ K @ zero_zero_int )
      = ( bit_se2923211474154528505it_int @ N2 @ K ) ) ).

% concat_bit_of_zero_2
thf(fact_9377_take__bit__of__Suc__0,axiom,
    ! [N2: nat] :
      ( ( bit_se2925701944663578781it_nat @ N2 @ ( suc @ zero_zero_nat ) )
      = ( zero_n2687167440665602831ol_nat @ ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ).

% take_bit_of_Suc_0
thf(fact_9378_take__bit__nat__eq,axiom,
    ! [K: int,N2: nat] :
      ( ( ord_less_eq_int @ zero_zero_int @ K )
     => ( ( bit_se2925701944663578781it_nat @ N2 @ ( nat2 @ K ) )
        = ( nat2 @ ( bit_se2923211474154528505it_int @ N2 @ K ) ) ) ) ).

% take_bit_nat_eq
thf(fact_9379_nat__take__bit__eq,axiom,
    ! [K: int,N2: nat] :
      ( ( ord_less_eq_int @ zero_zero_int @ K )
     => ( ( nat2 @ ( bit_se2923211474154528505it_int @ N2 @ K ) )
        = ( bit_se2925701944663578781it_nat @ N2 @ ( nat2 @ K ) ) ) ) ).

% nat_take_bit_eq
thf(fact_9380_obtain__pos__sum,axiom,
    ! [R2: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ R2 )
     => ~ ! [S: rat] :
            ( ( ord_less_rat @ zero_zero_rat @ S )
           => ! [T5: rat] :
                ( ( ord_less_rat @ zero_zero_rat @ T5 )
               => ( R2
                 != ( plus_plus_rat @ S @ T5 ) ) ) ) ) ).

% obtain_pos_sum
thf(fact_9381_take__bit__nat__less__eq__self,axiom,
    ! [N2: nat,M: nat] : ( ord_less_eq_nat @ ( bit_se2925701944663578781it_nat @ N2 @ M ) @ M ) ).

% take_bit_nat_less_eq_self
thf(fact_9382_take__bit__tightened__less__eq__nat,axiom,
    ! [M: nat,N2: nat,Q2: nat] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ord_less_eq_nat @ ( bit_se2925701944663578781it_nat @ M @ Q2 ) @ ( bit_se2925701944663578781it_nat @ N2 @ Q2 ) ) ) ).

% take_bit_tightened_less_eq_nat
thf(fact_9383_less__eq__rat__def,axiom,
    ( ord_less_eq_rat
    = ( ^ [X3: rat,Y3: rat] :
          ( ( ord_less_rat @ X3 @ Y3 )
          | ( X3 = Y3 ) ) ) ) ).

% less_eq_rat_def
thf(fact_9384_take__bit__diff,axiom,
    ! [N2: nat,K: int,L2: int] :
      ( ( bit_se2923211474154528505it_int @ N2 @ ( minus_minus_int @ ( bit_se2923211474154528505it_int @ N2 @ K ) @ ( bit_se2923211474154528505it_int @ N2 @ L2 ) ) )
      = ( bit_se2923211474154528505it_int @ N2 @ ( minus_minus_int @ K @ L2 ) ) ) ).

% take_bit_diff
thf(fact_9385_take__bit__mult,axiom,
    ! [N2: nat,K: int,L2: int] :
      ( ( bit_se2923211474154528505it_int @ N2 @ ( times_times_int @ ( bit_se2923211474154528505it_int @ N2 @ K ) @ ( bit_se2923211474154528505it_int @ N2 @ L2 ) ) )
      = ( bit_se2923211474154528505it_int @ N2 @ ( times_times_int @ K @ L2 ) ) ) ).

% take_bit_mult
thf(fact_9386_take__bit__minus,axiom,
    ! [N2: nat,K: int] :
      ( ( bit_se2923211474154528505it_int @ N2 @ ( uminus_uminus_int @ ( bit_se2923211474154528505it_int @ N2 @ K ) ) )
      = ( bit_se2923211474154528505it_int @ N2 @ ( uminus_uminus_int @ K ) ) ) ).

% take_bit_minus
thf(fact_9387_concat__bit__take__bit__eq,axiom,
    ! [N2: nat,B: int] :
      ( ( bit_concat_bit @ N2 @ ( bit_se2923211474154528505it_int @ N2 @ B ) )
      = ( bit_concat_bit @ N2 @ B ) ) ).

% concat_bit_take_bit_eq
thf(fact_9388_concat__bit__eq__iff,axiom,
    ! [N2: nat,K: int,L2: int,R2: int,S2: int] :
      ( ( ( bit_concat_bit @ N2 @ K @ L2 )
        = ( bit_concat_bit @ N2 @ R2 @ S2 ) )
      = ( ( ( bit_se2923211474154528505it_int @ N2 @ K )
          = ( bit_se2923211474154528505it_int @ N2 @ R2 ) )
        & ( L2 = S2 ) ) ) ).

% concat_bit_eq_iff
thf(fact_9389_take__bit__tightened__less__eq__int,axiom,
    ! [M: nat,N2: nat,K: int] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ord_less_eq_int @ ( bit_se2923211474154528505it_int @ M @ K ) @ ( bit_se2923211474154528505it_int @ N2 @ K ) ) ) ).

% take_bit_tightened_less_eq_int
thf(fact_9390_take__bit__int__less__eq__self__iff,axiom,
    ! [N2: nat,K: int] :
      ( ( ord_less_eq_int @ ( bit_se2923211474154528505it_int @ N2 @ K ) @ K )
      = ( ord_less_eq_int @ zero_zero_int @ K ) ) ).

% take_bit_int_less_eq_self_iff
thf(fact_9391_take__bit__nonnegative,axiom,
    ! [N2: nat,K: int] : ( ord_less_eq_int @ zero_zero_int @ ( bit_se2923211474154528505it_int @ N2 @ K ) ) ).

% take_bit_nonnegative
thf(fact_9392_not__take__bit__negative,axiom,
    ! [N2: nat,K: int] :
      ~ ( ord_less_int @ ( bit_se2923211474154528505it_int @ N2 @ K ) @ zero_zero_int ) ).

% not_take_bit_negative
thf(fact_9393_take__bit__int__greater__self__iff,axiom,
    ! [K: int,N2: nat] :
      ( ( ord_less_int @ K @ ( bit_se2923211474154528505it_int @ N2 @ K ) )
      = ( ord_less_int @ K @ zero_zero_int ) ) ).

% take_bit_int_greater_self_iff
thf(fact_9394_take__bit__eq__mask__iff,axiom,
    ! [N2: nat,K: int] :
      ( ( ( bit_se2923211474154528505it_int @ N2 @ K )
        = ( bit_se2000444600071755411sk_int @ N2 ) )
      = ( ( bit_se2923211474154528505it_int @ N2 @ ( plus_plus_int @ K @ one_one_int ) )
        = zero_zero_int ) ) ).

% take_bit_eq_mask_iff
thf(fact_9395_take__bit__decr__eq,axiom,
    ! [N2: nat,K: int] :
      ( ( ( bit_se2923211474154528505it_int @ N2 @ K )
       != zero_zero_int )
     => ( ( bit_se2923211474154528505it_int @ N2 @ ( minus_minus_int @ K @ one_one_int ) )
        = ( minus_minus_int @ ( bit_se2923211474154528505it_int @ N2 @ K ) @ one_one_int ) ) ) ).

% take_bit_decr_eq
thf(fact_9396_take__bit__nat__eq__self,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ M @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
     => ( ( bit_se2925701944663578781it_nat @ N2 @ M )
        = M ) ) ).

% take_bit_nat_eq_self
thf(fact_9397_take__bit__nat__less__exp,axiom,
    ! [N2: nat,M: nat] : ( ord_less_nat @ ( bit_se2925701944663578781it_nat @ N2 @ M ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ).

% take_bit_nat_less_exp
thf(fact_9398_take__bit__nat__eq__self__iff,axiom,
    ! [N2: nat,M: nat] :
      ( ( ( bit_se2925701944663578781it_nat @ N2 @ M )
        = M )
      = ( ord_less_nat @ M @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) ).

% take_bit_nat_eq_self_iff
thf(fact_9399_take__bit__nat__def,axiom,
    ( bit_se2925701944663578781it_nat
    = ( ^ [N3: nat,M6: nat] : ( modulo_modulo_nat @ M6 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) ) ) ) ).

% take_bit_nat_def
thf(fact_9400_take__bit__int__less__exp,axiom,
    ! [N2: nat,K: int] : ( ord_less_int @ ( bit_se2923211474154528505it_int @ N2 @ K ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) ) ).

% take_bit_int_less_exp
thf(fact_9401_take__bit__int__def,axiom,
    ( bit_se2923211474154528505it_int
    = ( ^ [N3: nat,K3: int] : ( modulo_modulo_int @ K3 @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N3 ) ) ) ) ).

% take_bit_int_def
thf(fact_9402_num_Osize__gen_I1_J,axiom,
    ( ( size_num @ one )
    = zero_zero_nat ) ).

% num.size_gen(1)
thf(fact_9403_take__bit__nat__less__self__iff,axiom,
    ! [N2: nat,M: nat] :
      ( ( ord_less_nat @ ( bit_se2925701944663578781it_nat @ N2 @ M ) @ M )
      = ( ord_less_eq_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) @ M ) ) ).

% take_bit_nat_less_self_iff
thf(fact_9404_take__bit__Suc__minus__bit0,axiom,
    ! [N2: nat,K: num] :
      ( ( bit_se2923211474154528505it_int @ ( suc @ N2 ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ K ) ) ) )
      = ( times_times_int @ ( bit_se2923211474154528505it_int @ N2 @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).

% take_bit_Suc_minus_bit0
thf(fact_9405_take__bit__int__greater__eq__self__iff,axiom,
    ! [K: int,N2: nat] :
      ( ( ord_less_eq_int @ K @ ( bit_se2923211474154528505it_int @ N2 @ K ) )
      = ( ord_less_int @ K @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) ) ) ).

% take_bit_int_greater_eq_self_iff
thf(fact_9406_take__bit__int__less__self__iff,axiom,
    ! [N2: nat,K: int] :
      ( ( ord_less_int @ ( bit_se2923211474154528505it_int @ N2 @ K ) @ K )
      = ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) @ K ) ) ).

% take_bit_int_less_self_iff
thf(fact_9407_take__bit__int__eq__self,axiom,
    ! [K: int,N2: nat] :
      ( ( ord_less_eq_int @ zero_zero_int @ K )
     => ( ( ord_less_int @ K @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) )
       => ( ( bit_se2923211474154528505it_int @ N2 @ K )
          = K ) ) ) ).

% take_bit_int_eq_self
thf(fact_9408_take__bit__int__eq__self__iff,axiom,
    ! [N2: nat,K: int] :
      ( ( ( bit_se2923211474154528505it_int @ N2 @ K )
        = K )
      = ( ( ord_less_eq_int @ zero_zero_int @ K )
        & ( ord_less_int @ K @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) ) ) ) ).

% take_bit_int_eq_self_iff
thf(fact_9409_take__bit__numeral__minus__bit0,axiom,
    ! [L2: num,K: num] :
      ( ( bit_se2923211474154528505it_int @ ( numeral_numeral_nat @ L2 ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ K ) ) ) )
      = ( times_times_int @ ( bit_se2923211474154528505it_int @ ( pred_numeral @ L2 ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).

% take_bit_numeral_minus_bit0
thf(fact_9410_take__bit__incr__eq,axiom,
    ! [N2: nat,K: int] :
      ( ( ( bit_se2923211474154528505it_int @ N2 @ K )
       != ( minus_minus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) @ one_one_int ) )
     => ( ( bit_se2923211474154528505it_int @ N2 @ ( plus_plus_int @ K @ one_one_int ) )
        = ( plus_plus_int @ one_one_int @ ( bit_se2923211474154528505it_int @ N2 @ K ) ) ) ) ).

% take_bit_incr_eq
thf(fact_9411_take__bit__eq__mask__iff__exp__dvd,axiom,
    ! [N2: nat,K: int] :
      ( ( ( bit_se2923211474154528505it_int @ N2 @ K )
        = ( bit_se2000444600071755411sk_int @ N2 ) )
      = ( dvd_dvd_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) @ ( plus_plus_int @ K @ one_one_int ) ) ) ).

% take_bit_eq_mask_iff_exp_dvd
thf(fact_9412_take__bit__int__less__eq,axiom,
    ! [N2: nat,K: int] :
      ( ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) @ K )
     => ( ( ord_less_nat @ zero_zero_nat @ N2 )
       => ( ord_less_eq_int @ ( bit_se2923211474154528505it_int @ N2 @ K ) @ ( minus_minus_int @ K @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) ) ) ) ) ).

% take_bit_int_less_eq
thf(fact_9413_take__bit__int__greater__eq,axiom,
    ! [K: int,N2: nat] :
      ( ( ord_less_int @ K @ zero_zero_int )
     => ( ord_less_eq_int @ ( plus_plus_int @ K @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) ) @ ( bit_se2923211474154528505it_int @ N2 @ K ) ) ) ).

% take_bit_int_greater_eq
thf(fact_9414_signed__take__bit__eq__take__bit__shift,axiom,
    ( bit_ri631733984087533419it_int
    = ( ^ [N3: nat,K3: int] : ( minus_minus_int @ ( bit_se2923211474154528505it_int @ ( suc @ N3 ) @ ( plus_plus_int @ K3 @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N3 ) ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N3 ) ) ) ) ).

% signed_take_bit_eq_take_bit_shift
thf(fact_9415_take__bit__minus__small__eq,axiom,
    ! [K: int,N2: nat] :
      ( ( ord_less_int @ zero_zero_int @ K )
     => ( ( ord_less_eq_int @ K @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) )
       => ( ( bit_se2923211474154528505it_int @ N2 @ ( uminus_uminus_int @ K ) )
          = ( minus_minus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) @ K ) ) ) ) ).

% take_bit_minus_small_eq
thf(fact_9416_num_Osize__gen_I2_J,axiom,
    ! [X22: num] :
      ( ( size_num @ ( bit0 @ X22 ) )
      = ( plus_plus_nat @ ( size_num @ X22 ) @ ( suc @ zero_zero_nat ) ) ) ).

% num.size_gen(2)
thf(fact_9417_take__bit__numeral__minus__bit1,axiom,
    ! [L2: num,K: num] :
      ( ( bit_se2923211474154528505it_int @ ( numeral_numeral_nat @ L2 ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ K ) ) ) )
      = ( plus_plus_int @ ( times_times_int @ ( bit_se2923211474154528505it_int @ ( pred_numeral @ L2 ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( inc @ K ) ) ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ one_one_int ) ) ).

% take_bit_numeral_minus_bit1
thf(fact_9418_pred__numeral__inc,axiom,
    ! [K: num] :
      ( ( pred_numeral @ ( inc @ K ) )
      = ( numeral_numeral_nat @ K ) ) ).

% pred_numeral_inc
thf(fact_9419_diff__rat__def,axiom,
    ( minus_minus_rat
    = ( ^ [Q4: rat,R5: rat] : ( plus_plus_rat @ Q4 @ ( uminus_uminus_rat @ R5 ) ) ) ) ).

% diff_rat_def
thf(fact_9420_num__induct,axiom,
    ! [P: num > $o,X: num] :
      ( ( P @ one )
     => ( ! [X5: num] :
            ( ( P @ X5 )
           => ( P @ ( inc @ X5 ) ) )
       => ( P @ X ) ) ) ).

% num_induct
thf(fact_9421_add__inc,axiom,
    ! [X: num,Y: num] :
      ( ( plus_plus_num @ X @ ( inc @ Y ) )
      = ( inc @ ( plus_plus_num @ X @ Y ) ) ) ).

% add_inc
thf(fact_9422_inc_Osimps_I1_J,axiom,
    ( ( inc @ one )
    = ( bit0 @ one ) ) ).

% inc.simps(1)
thf(fact_9423_inc_Osimps_I2_J,axiom,
    ! [X: num] :
      ( ( inc @ ( bit0 @ X ) )
      = ( bit1 @ X ) ) ).

% inc.simps(2)
thf(fact_9424_inc_Osimps_I3_J,axiom,
    ! [X: num] :
      ( ( inc @ ( bit1 @ X ) )
      = ( bit0 @ ( inc @ X ) ) ) ).

% inc.simps(3)
thf(fact_9425_add__One,axiom,
    ! [X: num] :
      ( ( plus_plus_num @ X @ one )
      = ( inc @ X ) ) ).

% add_One
thf(fact_9426_inc__BitM__eq,axiom,
    ! [N2: num] :
      ( ( inc @ ( bitM @ N2 ) )
      = ( bit0 @ N2 ) ) ).

% inc_BitM_eq
thf(fact_9427_BitM__inc__eq,axiom,
    ! [N2: num] :
      ( ( bitM @ ( inc @ N2 ) )
      = ( bit1 @ N2 ) ) ).

% BitM_inc_eq
thf(fact_9428_mult__inc,axiom,
    ! [X: num,Y: num] :
      ( ( times_times_num @ X @ ( inc @ Y ) )
      = ( plus_plus_num @ ( times_times_num @ X @ Y ) @ X ) ) ).

% mult_inc
thf(fact_9429_take__bit__Suc__minus__bit1,axiom,
    ! [N2: nat,K: num] :
      ( ( bit_se2923211474154528505it_int @ ( suc @ N2 ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ K ) ) ) )
      = ( plus_plus_int @ ( times_times_int @ ( bit_se2923211474154528505it_int @ N2 @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( inc @ K ) ) ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ one_one_int ) ) ).

% take_bit_Suc_minus_bit1
thf(fact_9430_signed__take__bit__eq__take__bit__minus,axiom,
    ( bit_ri631733984087533419it_int
    = ( ^ [N3: nat,K3: int] : ( minus_minus_int @ ( bit_se2923211474154528505it_int @ ( suc @ N3 ) @ K3 ) @ ( times_times_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( suc @ N3 ) ) @ ( zero_n2684676970156552555ol_int @ ( bit_se1146084159140164899it_int @ K3 @ N3 ) ) ) ) ) ) ).

% signed_take_bit_eq_take_bit_minus
thf(fact_9431_and__int__unfold,axiom,
    ( bit_se725231765392027082nd_int
    = ( ^ [K3: int,L: int] :
          ( if_int
          @ ( ( K3 = zero_zero_int )
            | ( L = zero_zero_int ) )
          @ zero_zero_int
          @ ( if_int
            @ ( K3
              = ( uminus_uminus_int @ one_one_int ) )
            @ L
            @ ( if_int
              @ ( L
                = ( uminus_uminus_int @ one_one_int ) )
              @ K3
              @ ( plus_plus_int @ ( times_times_int @ ( modulo_modulo_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( modulo_modulo_int @ L @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( divide_divide_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( divide_divide_int @ L @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ).

% and_int_unfold
thf(fact_9432_and__nonnegative__int__iff,axiom,
    ! [K: int,L2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( bit_se725231765392027082nd_int @ K @ L2 ) )
      = ( ( ord_less_eq_int @ zero_zero_int @ K )
        | ( ord_less_eq_int @ zero_zero_int @ L2 ) ) ) ).

% and_nonnegative_int_iff
thf(fact_9433_and__negative__int__iff,axiom,
    ! [K: int,L2: int] :
      ( ( ord_less_int @ ( bit_se725231765392027082nd_int @ K @ L2 ) @ zero_zero_int )
      = ( ( ord_less_int @ K @ zero_zero_int )
        & ( ord_less_int @ L2 @ zero_zero_int ) ) ) ).

% and_negative_int_iff
thf(fact_9434_signed__take__bit__nonnegative__iff,axiom,
    ! [N2: nat,K: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( bit_ri631733984087533419it_int @ N2 @ K ) )
      = ( ~ ( bit_se1146084159140164899it_int @ K @ N2 ) ) ) ).

% signed_take_bit_nonnegative_iff
thf(fact_9435_signed__take__bit__negative__iff,axiom,
    ! [N2: nat,K: int] :
      ( ( ord_less_int @ ( bit_ri631733984087533419it_int @ N2 @ K ) @ zero_zero_int )
      = ( bit_se1146084159140164899it_int @ K @ N2 ) ) ).

% signed_take_bit_negative_iff
thf(fact_9436_bit__minus__numeral__Bit0__Suc__iff,axiom,
    ! [W: num,N2: nat] :
      ( ( bit_se1146084159140164899it_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ W ) ) ) @ ( suc @ N2 ) )
      = ( bit_se1146084159140164899it_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ W ) ) @ N2 ) ) ).

% bit_minus_numeral_Bit0_Suc_iff
thf(fact_9437_bit__minus__numeral__Bit1__Suc__iff,axiom,
    ! [W: num,N2: nat] :
      ( ( bit_se1146084159140164899it_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ W ) ) ) @ ( suc @ N2 ) )
      = ( ~ ( bit_se1146084159140164899it_int @ ( numeral_numeral_int @ W ) @ N2 ) ) ) ).

% bit_minus_numeral_Bit1_Suc_iff
thf(fact_9438_and__minus__numerals_I6_J,axiom,
    ! [N2: num] :
      ( ( bit_se725231765392027082nd_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ N2 ) ) ) @ one_one_int )
      = one_one_int ) ).

% and_minus_numerals(6)
thf(fact_9439_and__minus__numerals_I2_J,axiom,
    ! [N2: num] :
      ( ( bit_se725231765392027082nd_int @ one_one_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ N2 ) ) ) )
      = one_one_int ) ).

% and_minus_numerals(2)
thf(fact_9440_and__minus__numerals_I1_J,axiom,
    ! [N2: num] :
      ( ( bit_se725231765392027082nd_int @ one_one_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ N2 ) ) ) )
      = zero_zero_int ) ).

% and_minus_numerals(1)
thf(fact_9441_and__minus__numerals_I5_J,axiom,
    ! [N2: num] :
      ( ( bit_se725231765392027082nd_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ N2 ) ) ) @ one_one_int )
      = zero_zero_int ) ).

% and_minus_numerals(5)
thf(fact_9442_bit__minus__numeral__int_I1_J,axiom,
    ! [W: num,N2: num] :
      ( ( bit_se1146084159140164899it_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ W ) ) ) @ ( numeral_numeral_nat @ N2 ) )
      = ( bit_se1146084159140164899it_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ W ) ) @ ( pred_numeral @ N2 ) ) ) ).

% bit_minus_numeral_int(1)
thf(fact_9443_bit__minus__numeral__int_I2_J,axiom,
    ! [W: num,N2: num] :
      ( ( bit_se1146084159140164899it_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ W ) ) ) @ ( numeral_numeral_nat @ N2 ) )
      = ( ~ ( bit_se1146084159140164899it_int @ ( numeral_numeral_int @ W ) @ ( pred_numeral @ N2 ) ) ) ) ).

% bit_minus_numeral_int(2)
thf(fact_9444_bit__and__int__iff,axiom,
    ! [K: int,L2: int,N2: nat] :
      ( ( bit_se1146084159140164899it_int @ ( bit_se725231765392027082nd_int @ K @ L2 ) @ N2 )
      = ( ( bit_se1146084159140164899it_int @ K @ N2 )
        & ( bit_se1146084159140164899it_int @ L2 @ N2 ) ) ) ).

% bit_and_int_iff
thf(fact_9445_bit__or__int__iff,axiom,
    ! [K: int,L2: int,N2: nat] :
      ( ( bit_se1146084159140164899it_int @ ( bit_se1409905431419307370or_int @ K @ L2 ) @ N2 )
      = ( ( bit_se1146084159140164899it_int @ K @ N2 )
        | ( bit_se1146084159140164899it_int @ L2 @ N2 ) ) ) ).

% bit_or_int_iff
thf(fact_9446_AND__upper2_H,axiom,
    ! [Y: int,Z: int,X: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Y )
     => ( ( ord_less_eq_int @ Y @ Z )
       => ( ord_less_eq_int @ ( bit_se725231765392027082nd_int @ X @ Y ) @ Z ) ) ) ).

% AND_upper2'
thf(fact_9447_AND__upper1_H,axiom,
    ! [Y: int,Z: int,Ya: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Y )
     => ( ( ord_less_eq_int @ Y @ Z )
       => ( ord_less_eq_int @ ( bit_se725231765392027082nd_int @ Y @ Ya ) @ Z ) ) ) ).

% AND_upper1'
thf(fact_9448_AND__upper2,axiom,
    ! [Y: int,X: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Y )
     => ( ord_less_eq_int @ ( bit_se725231765392027082nd_int @ X @ Y ) @ Y ) ) ).

% AND_upper2
thf(fact_9449_AND__upper1,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X )
     => ( ord_less_eq_int @ ( bit_se725231765392027082nd_int @ X @ Y ) @ X ) ) ).

% AND_upper1
thf(fact_9450_AND__lower,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X )
     => ( ord_less_eq_int @ zero_zero_int @ ( bit_se725231765392027082nd_int @ X @ Y ) ) ) ).

% AND_lower
thf(fact_9451_plus__and__or,axiom,
    ! [X: int,Y: int] :
      ( ( plus_plus_int @ ( bit_se725231765392027082nd_int @ X @ Y ) @ ( bit_se1409905431419307370or_int @ X @ Y ) )
      = ( plus_plus_int @ X @ Y ) ) ).

% plus_and_or
thf(fact_9452_pow_Osimps_I1_J,axiom,
    ! [X: num] :
      ( ( pow @ X @ one )
      = X ) ).

% pow.simps(1)
thf(fact_9453_AND__upper2_H_H,axiom,
    ! [Y: int,Z: int,X: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Y )
     => ( ( ord_less_int @ Y @ Z )
       => ( ord_less_int @ ( bit_se725231765392027082nd_int @ X @ Y ) @ Z ) ) ) ).

% AND_upper2''
thf(fact_9454_AND__upper1_H_H,axiom,
    ! [Y: int,Z: int,Ya: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Y )
     => ( ( ord_less_int @ Y @ Z )
       => ( ord_less_int @ ( bit_se725231765392027082nd_int @ Y @ Ya ) @ Z ) ) ) ).

% AND_upper1''
thf(fact_9455_and__less__eq,axiom,
    ! [L2: int,K: int] :
      ( ( ord_less_int @ L2 @ zero_zero_int )
     => ( ord_less_eq_int @ ( bit_se725231765392027082nd_int @ K @ L2 ) @ K ) ) ).

% and_less_eq
thf(fact_9456_bit__not__int__iff_H,axiom,
    ! [K: int,N2: nat] :
      ( ( bit_se1146084159140164899it_int @ ( minus_minus_int @ ( uminus_uminus_int @ K ) @ one_one_int ) @ N2 )
      = ( ~ ( bit_se1146084159140164899it_int @ K @ N2 ) ) ) ).

% bit_not_int_iff'
thf(fact_9457_even__and__iff__int,axiom,
    ! [K: int,L2: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ K @ L2 ) )
      = ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K )
        | ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ L2 ) ) ) ).

% even_and_iff_int
thf(fact_9458_bit__imp__take__bit__positive,axiom,
    ! [N2: nat,M: nat,K: int] :
      ( ( ord_less_nat @ N2 @ M )
     => ( ( bit_se1146084159140164899it_int @ K @ N2 )
       => ( ord_less_int @ zero_zero_int @ ( bit_se2923211474154528505it_int @ M @ K ) ) ) ) ).

% bit_imp_take_bit_positive
thf(fact_9459_bit__concat__bit__iff,axiom,
    ! [M: nat,K: int,L2: int,N2: nat] :
      ( ( bit_se1146084159140164899it_int @ ( bit_concat_bit @ M @ K @ L2 ) @ N2 )
      = ( ( ( ord_less_nat @ N2 @ M )
          & ( bit_se1146084159140164899it_int @ K @ N2 ) )
        | ( ( ord_less_eq_nat @ M @ N2 )
          & ( bit_se1146084159140164899it_int @ L2 @ ( minus_minus_nat @ N2 @ M ) ) ) ) ) ).

% bit_concat_bit_iff
thf(fact_9460_signed__take__bit__eq__concat__bit,axiom,
    ( bit_ri631733984087533419it_int
    = ( ^ [N3: nat,K3: int] : ( bit_concat_bit @ N3 @ K3 @ ( uminus_uminus_int @ ( zero_n2684676970156552555ol_int @ ( bit_se1146084159140164899it_int @ K3 @ N3 ) ) ) ) ) ) ).

% signed_take_bit_eq_concat_bit
thf(fact_9461_int__bit__bound,axiom,
    ! [K: int] :
      ~ ! [N: nat] :
          ( ! [M3: nat] :
              ( ( ord_less_eq_nat @ N @ M3 )
             => ( ( bit_se1146084159140164899it_int @ K @ M3 )
                = ( bit_se1146084159140164899it_int @ K @ N ) ) )
         => ~ ( ( ord_less_nat @ zero_zero_nat @ N )
             => ( ( bit_se1146084159140164899it_int @ K @ ( minus_minus_nat @ N @ one_one_nat ) )
                = ( ~ ( bit_se1146084159140164899it_int @ K @ N ) ) ) ) ) ).

% int_bit_bound
thf(fact_9462_bit__int__def,axiom,
    ( bit_se1146084159140164899it_int
    = ( ^ [K3: int,N3: nat] :
          ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ K3 @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N3 ) ) ) ) ) ).

% bit_int_def
thf(fact_9463_and__int__rec,axiom,
    ( bit_se725231765392027082nd_int
    = ( ^ [K3: int,L: int] :
          ( plus_plus_int
          @ ( zero_n2684676970156552555ol_int
            @ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K3 )
              & ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ L ) ) )
          @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( divide_divide_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( divide_divide_int @ L @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% and_int_rec
thf(fact_9464_set__bit__eq,axiom,
    ( bit_se7879613467334960850it_int
    = ( ^ [N3: nat,K3: int] :
          ( plus_plus_int @ K3
          @ ( times_times_int
            @ ( zero_n2684676970156552555ol_int
              @ ~ ( bit_se1146084159140164899it_int @ K3 @ N3 ) )
            @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N3 ) ) ) ) ) ).

% set_bit_eq
thf(fact_9465_unset__bit__eq,axiom,
    ( bit_se4203085406695923979it_int
    = ( ^ [N3: nat,K3: int] : ( minus_minus_int @ K3 @ ( times_times_int @ ( zero_n2684676970156552555ol_int @ ( bit_se1146084159140164899it_int @ K3 @ N3 ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N3 ) ) ) ) ) ).

% unset_bit_eq
thf(fact_9466_take__bit__Suc__from__most,axiom,
    ! [N2: nat,K: int] :
      ( ( bit_se2923211474154528505it_int @ ( suc @ N2 ) @ K )
      = ( plus_plus_int @ ( times_times_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) @ ( zero_n2684676970156552555ol_int @ ( bit_se1146084159140164899it_int @ K @ N2 ) ) ) @ ( bit_se2923211474154528505it_int @ N2 @ K ) ) ) ).

% take_bit_Suc_from_most
thf(fact_9467_and__int_Osimps,axiom,
    ( bit_se725231765392027082nd_int
    = ( ^ [K3: int,L: int] :
          ( if_int
          @ ( ( member_int @ K3 @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) )
            & ( member_int @ L @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) ) )
          @ ( uminus_uminus_int
            @ ( zero_n2684676970156552555ol_int
              @ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K3 )
                & ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ L ) ) ) )
          @ ( plus_plus_int
            @ ( zero_n2684676970156552555ol_int
              @ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K3 )
                & ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ L ) ) )
            @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( divide_divide_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( divide_divide_int @ L @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ).

% and_int.simps
thf(fact_9468_and__int_Oelims,axiom,
    ! [X: int,Xa2: int,Y: int] :
      ( ( ( bit_se725231765392027082nd_int @ X @ Xa2 )
        = Y )
     => ( ( ( ( member_int @ X @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) )
            & ( member_int @ Xa2 @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) ) )
         => ( Y
            = ( uminus_uminus_int
              @ ( zero_n2684676970156552555ol_int
                @ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ X )
                  & ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Xa2 ) ) ) ) ) )
        & ( ~ ( ( member_int @ X @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) )
              & ( member_int @ Xa2 @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) ) )
         => ( Y
            = ( plus_plus_int
              @ ( zero_n2684676970156552555ol_int
                @ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ X )
                  & ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Xa2 ) ) )
              @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( divide_divide_int @ X @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( divide_divide_int @ Xa2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ).

% and_int.elims
thf(fact_9469_and__int_Opsimps,axiom,
    ! [K: int,L2: int] :
      ( ( accp_P1096762738010456898nt_int @ bit_and_int_rel @ ( product_Pair_int_int @ K @ L2 ) )
     => ( ( ( ( member_int @ K @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) )
            & ( member_int @ L2 @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) ) )
         => ( ( bit_se725231765392027082nd_int @ K @ L2 )
            = ( uminus_uminus_int
              @ ( zero_n2684676970156552555ol_int
                @ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K )
                  & ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ L2 ) ) ) ) ) )
        & ( ~ ( ( member_int @ K @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) )
              & ( member_int @ L2 @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) ) )
         => ( ( bit_se725231765392027082nd_int @ K @ L2 )
            = ( plus_plus_int
              @ ( zero_n2684676970156552555ol_int
                @ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K )
                  & ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ L2 ) ) )
              @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( divide_divide_int @ K @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( divide_divide_int @ L2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ).

% and_int.psimps
thf(fact_9470_and__nat__numerals_I1_J,axiom,
    ! [Y: num] :
      ( ( bit_se727722235901077358nd_nat @ ( suc @ zero_zero_nat ) @ ( numeral_numeral_nat @ ( bit0 @ Y ) ) )
      = zero_zero_nat ) ).

% and_nat_numerals(1)
thf(fact_9471_and__nat__numerals_I3_J,axiom,
    ! [X: num] :
      ( ( bit_se727722235901077358nd_nat @ ( numeral_numeral_nat @ ( bit0 @ X ) ) @ ( suc @ zero_zero_nat ) )
      = zero_zero_nat ) ).

% and_nat_numerals(3)
thf(fact_9472_and__nat__numerals_I2_J,axiom,
    ! [Y: num] :
      ( ( bit_se727722235901077358nd_nat @ ( suc @ zero_zero_nat ) @ ( numeral_numeral_nat @ ( bit1 @ Y ) ) )
      = one_one_nat ) ).

% and_nat_numerals(2)
thf(fact_9473_and__nat__numerals_I4_J,axiom,
    ! [X: num] :
      ( ( bit_se727722235901077358nd_nat @ ( numeral_numeral_nat @ ( bit1 @ X ) ) @ ( suc @ zero_zero_nat ) )
      = one_one_nat ) ).

% and_nat_numerals(4)
thf(fact_9474_and__Suc__0__eq,axiom,
    ! [N2: nat] :
      ( ( bit_se727722235901077358nd_nat @ N2 @ ( suc @ zero_zero_nat ) )
      = ( modulo_modulo_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% and_Suc_0_eq
thf(fact_9475_Suc__0__and__eq,axiom,
    ! [N2: nat] :
      ( ( bit_se727722235901077358nd_nat @ ( suc @ zero_zero_nat ) @ N2 )
      = ( modulo_modulo_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% Suc_0_and_eq
thf(fact_9476_bit__Suc__0__iff,axiom,
    ! [N2: nat] :
      ( ( bit_se1148574629649215175it_nat @ ( suc @ zero_zero_nat ) @ N2 )
      = ( N2 = zero_zero_nat ) ) ).

% bit_Suc_0_iff
thf(fact_9477_not__bit__Suc__0__Suc,axiom,
    ! [N2: nat] :
      ~ ( bit_se1148574629649215175it_nat @ ( suc @ zero_zero_nat ) @ ( suc @ N2 ) ) ).

% not_bit_Suc_0_Suc
thf(fact_9478_not__bit__Suc__0__numeral,axiom,
    ! [N2: num] :
      ~ ( bit_se1148574629649215175it_nat @ ( suc @ zero_zero_nat ) @ ( numeral_numeral_nat @ N2 ) ) ).

% not_bit_Suc_0_numeral
thf(fact_9479_and__nat__def,axiom,
    ( bit_se727722235901077358nd_nat
    = ( ^ [M6: nat,N3: nat] : ( nat2 @ ( bit_se725231765392027082nd_int @ ( semiri1314217659103216013at_int @ M6 ) @ ( semiri1314217659103216013at_int @ N3 ) ) ) ) ) ).

% and_nat_def
thf(fact_9480_bit__nat__iff,axiom,
    ! [K: int,N2: nat] :
      ( ( bit_se1148574629649215175it_nat @ ( nat2 @ K ) @ N2 )
      = ( ( ord_less_eq_int @ zero_zero_int @ K )
        & ( bit_se1146084159140164899it_int @ K @ N2 ) ) ) ).

% bit_nat_iff
thf(fact_9481_atLeastAtMostPlus1__int__conv,axiom,
    ! [M: int,N2: int] :
      ( ( ord_less_eq_int @ M @ ( plus_plus_int @ one_one_int @ N2 ) )
     => ( ( set_or1266510415728281911st_int @ M @ ( plus_plus_int @ one_one_int @ N2 ) )
        = ( insert_int @ ( plus_plus_int @ one_one_int @ N2 ) @ ( set_or1266510415728281911st_int @ M @ N2 ) ) ) ) ).

% atLeastAtMostPlus1_int_conv
thf(fact_9482_simp__from__to,axiom,
    ( set_or1266510415728281911st_int
    = ( ^ [I5: int,J3: int] : ( if_set_int @ ( ord_less_int @ J3 @ I5 ) @ bot_bot_set_int @ ( insert_int @ I5 @ ( set_or1266510415728281911st_int @ ( plus_plus_int @ I5 @ one_one_int ) @ J3 ) ) ) ) ) ).

% simp_from_to
thf(fact_9483_bit__nat__def,axiom,
    ( bit_se1148574629649215175it_nat
    = ( ^ [M6: nat,N3: nat] :
          ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ M6 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) ) ) ) ) ).

% bit_nat_def
thf(fact_9484_and__int_Opinduct,axiom,
    ! [A0: int,A12: int,P: int > int > $o] :
      ( ( accp_P1096762738010456898nt_int @ bit_and_int_rel @ ( product_Pair_int_int @ A0 @ A12 ) )
     => ( ! [K2: int,L4: int] :
            ( ( accp_P1096762738010456898nt_int @ bit_and_int_rel @ ( product_Pair_int_int @ K2 @ L4 ) )
           => ( ( ~ ( ( member_int @ K2 @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) )
                    & ( member_int @ L4 @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) ) )
               => ( P @ ( divide_divide_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( divide_divide_int @ L4 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) )
             => ( P @ K2 @ L4 ) ) )
       => ( P @ A0 @ A12 ) ) ) ).

% and_int.pinduct
thf(fact_9485_and__nat__unfold,axiom,
    ( bit_se727722235901077358nd_nat
    = ( ^ [M6: nat,N3: nat] :
          ( if_nat
          @ ( ( M6 = zero_zero_nat )
            | ( N3 = zero_zero_nat ) )
          @ zero_zero_nat
          @ ( plus_plus_nat @ ( times_times_nat @ ( modulo_modulo_nat @ M6 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( modulo_modulo_nat @ N3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se727722235901077358nd_nat @ ( divide_divide_nat @ M6 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( divide_divide_nat @ N3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ).

% and_nat_unfold
thf(fact_9486_and__nat__rec,axiom,
    ( bit_se727722235901077358nd_nat
    = ( ^ [M6: nat,N3: nat] :
          ( plus_plus_nat
          @ ( zero_n2687167440665602831ol_nat
            @ ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M6 )
              & ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) ) )
          @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se727722235901077358nd_nat @ ( divide_divide_nat @ M6 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( divide_divide_nat @ N3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% and_nat_rec
thf(fact_9487_and__int_Opelims,axiom,
    ! [X: int,Xa2: int,Y: int] :
      ( ( ( bit_se725231765392027082nd_int @ X @ Xa2 )
        = Y )
     => ( ( accp_P1096762738010456898nt_int @ bit_and_int_rel @ ( product_Pair_int_int @ X @ Xa2 ) )
       => ~ ( ( ( ( ( member_int @ X @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) )
                  & ( member_int @ Xa2 @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) ) )
               => ( Y
                  = ( uminus_uminus_int
                    @ ( zero_n2684676970156552555ol_int
                      @ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ X )
                        & ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Xa2 ) ) ) ) ) )
              & ( ~ ( ( member_int @ X @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) )
                    & ( member_int @ Xa2 @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) ) )
               => ( Y
                  = ( plus_plus_int
                    @ ( zero_n2684676970156552555ol_int
                      @ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ X )
                        & ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Xa2 ) ) )
                    @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( divide_divide_int @ X @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( divide_divide_int @ Xa2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) )
           => ~ ( accp_P1096762738010456898nt_int @ bit_and_int_rel @ ( product_Pair_int_int @ X @ Xa2 ) ) ) ) ) ).

% and_int.pelims
thf(fact_9488_cis__multiple__2pi,axiom,
    ! [N2: real] :
      ( ( member_real @ N2 @ ring_1_Ints_real )
     => ( ( cis @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) @ N2 ) )
        = one_one_complex ) ) ).

% cis_multiple_2pi
thf(fact_9489_rat__inverse__code,axiom,
    ! [P4: rat] :
      ( ( quotient_of @ ( inverse_inverse_rat @ P4 ) )
      = ( produc4245557441103728435nt_int
        @ ^ [A4: int,B4: int] : ( if_Pro3027730157355071871nt_int @ ( A4 = zero_zero_int ) @ ( product_Pair_int_int @ zero_zero_int @ one_one_int ) @ ( product_Pair_int_int @ ( times_times_int @ ( sgn_sgn_int @ A4 ) @ B4 ) @ ( abs_abs_int @ A4 ) ) )
        @ ( quotient_of @ P4 ) ) ) ).

% rat_inverse_code
thf(fact_9490_quotient__of__number_I3_J,axiom,
    ! [K: num] :
      ( ( quotient_of @ ( numeral_numeral_rat @ K ) )
      = ( product_Pair_int_int @ ( numeral_numeral_int @ K ) @ one_one_int ) ) ).

% quotient_of_number(3)
thf(fact_9491_quotient__of__number_I5_J,axiom,
    ! [K: num] :
      ( ( quotient_of @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ K ) ) )
      = ( product_Pair_int_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) @ one_one_int ) ) ).

% quotient_of_number(5)
thf(fact_9492_set__encode__insert,axiom,
    ! [A2: set_nat,N2: nat] :
      ( ( finite_finite_nat @ A2 )
     => ( ~ ( member_nat @ N2 @ A2 )
       => ( ( nat_set_encode @ ( insert_nat @ N2 @ A2 ) )
          = ( plus_plus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) @ ( nat_set_encode @ A2 ) ) ) ) ) ).

% set_encode_insert
thf(fact_9493_divide__rat__def,axiom,
    ( divide_divide_rat
    = ( ^ [Q4: rat,R5: rat] : ( times_times_rat @ Q4 @ ( inverse_inverse_rat @ R5 ) ) ) ) ).

% divide_rat_def
thf(fact_9494_lessThan__Suc,axiom,
    ! [K: nat] :
      ( ( set_ord_lessThan_nat @ ( suc @ K ) )
      = ( insert_nat @ K @ ( set_ord_lessThan_nat @ K ) ) ) ).

% lessThan_Suc
thf(fact_9495_atMost__Suc,axiom,
    ! [K: nat] :
      ( ( set_ord_atMost_nat @ ( suc @ K ) )
      = ( insert_nat @ ( suc @ K ) @ ( set_ord_atMost_nat @ K ) ) ) ).

% atMost_Suc
thf(fact_9496_atLeast0__atMost__Suc,axiom,
    ! [N2: nat] :
      ( ( set_or1269000886237332187st_nat @ zero_zero_nat @ ( suc @ N2 ) )
      = ( insert_nat @ ( suc @ N2 ) @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N2 ) ) ) ).

% atLeast0_atMost_Suc
thf(fact_9497_atLeastAtMost__insertL,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ( insert_nat @ M @ ( set_or1269000886237332187st_nat @ ( suc @ M ) @ N2 ) )
        = ( set_or1269000886237332187st_nat @ M @ N2 ) ) ) ).

% atLeastAtMost_insertL
thf(fact_9498_atLeastAtMostSuc__conv,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ M @ ( suc @ N2 ) )
     => ( ( set_or1269000886237332187st_nat @ M @ ( suc @ N2 ) )
        = ( insert_nat @ ( suc @ N2 ) @ ( set_or1269000886237332187st_nat @ M @ N2 ) ) ) ) ).

% atLeastAtMostSuc_conv
thf(fact_9499_Icc__eq__insert__lb__nat,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ( set_or1269000886237332187st_nat @ M @ N2 )
        = ( insert_nat @ M @ ( set_or1269000886237332187st_nat @ ( suc @ M ) @ N2 ) ) ) ) ).

% Icc_eq_insert_lb_nat
thf(fact_9500_lessThan__nat__numeral,axiom,
    ! [K: num] :
      ( ( set_ord_lessThan_nat @ ( numeral_numeral_nat @ K ) )
      = ( insert_nat @ ( pred_numeral @ K ) @ ( set_ord_lessThan_nat @ ( pred_numeral @ K ) ) ) ) ).

% lessThan_nat_numeral
thf(fact_9501_atMost__nat__numeral,axiom,
    ! [K: num] :
      ( ( set_ord_atMost_nat @ ( numeral_numeral_nat @ K ) )
      = ( insert_nat @ ( numeral_numeral_nat @ K ) @ ( set_ord_atMost_nat @ ( pred_numeral @ K ) ) ) ) ).

% atMost_nat_numeral
thf(fact_9502_sin__times__pi__eq__0,axiom,
    ! [X: real] :
      ( ( ( sin_real @ ( times_times_real @ X @ pi ) )
        = zero_zero_real )
      = ( member_real @ X @ ring_1_Ints_real ) ) ).

% sin_times_pi_eq_0
thf(fact_9503_rat__abs__code,axiom,
    ! [P4: rat] :
      ( ( quotient_of @ ( abs_abs_rat @ P4 ) )
      = ( produc4245557441103728435nt_int
        @ ^ [A4: int] : ( product_Pair_int_int @ ( abs_abs_int @ A4 ) )
        @ ( quotient_of @ P4 ) ) ) ).

% rat_abs_code
thf(fact_9504_atLeast1__atMost__eq__remove0,axiom,
    ! [N2: nat] :
      ( ( set_or1269000886237332187st_nat @ ( suc @ zero_zero_nat ) @ N2 )
      = ( minus_minus_set_nat @ ( set_ord_atMost_nat @ N2 ) @ ( insert_nat @ zero_zero_nat @ bot_bot_set_nat ) ) ) ).

% atLeast1_atMost_eq_remove0
thf(fact_9505_rat__uminus__code,axiom,
    ! [P4: rat] :
      ( ( quotient_of @ ( uminus_uminus_rat @ P4 ) )
      = ( produc4245557441103728435nt_int
        @ ^ [A4: int] : ( product_Pair_int_int @ ( uminus_uminus_int @ A4 ) )
        @ ( quotient_of @ P4 ) ) ) ).

% rat_uminus_code
thf(fact_9506_rat__less__code,axiom,
    ( ord_less_rat
    = ( ^ [P5: rat,Q4: rat] :
          ( produc4947309494688390418_int_o
          @ ^ [A4: int,C4: int] :
              ( produc4947309494688390418_int_o
              @ ^ [B4: int,D2: int] : ( ord_less_int @ ( times_times_int @ A4 @ D2 ) @ ( times_times_int @ C4 @ B4 ) )
              @ ( quotient_of @ Q4 ) )
          @ ( quotient_of @ P5 ) ) ) ) ).

% rat_less_code
thf(fact_9507_rat__floor__code,axiom,
    ( archim3151403230148437115or_rat
    = ( ^ [P5: rat] : ( produc8211389475949308722nt_int @ divide_divide_int @ ( quotient_of @ P5 ) ) ) ) ).

% rat_floor_code
thf(fact_9508_rat__less__eq__code,axiom,
    ( ord_less_eq_rat
    = ( ^ [P5: rat,Q4: rat] :
          ( produc4947309494688390418_int_o
          @ ^ [A4: int,C4: int] :
              ( produc4947309494688390418_int_o
              @ ^ [B4: int,D2: int] : ( ord_less_eq_int @ ( times_times_int @ A4 @ D2 ) @ ( times_times_int @ C4 @ B4 ) )
              @ ( quotient_of @ Q4 ) )
          @ ( quotient_of @ P5 ) ) ) ) ).

% rat_less_eq_code
thf(fact_9509_set__decode__plus__power__2,axiom,
    ! [N2: nat,Z: nat] :
      ( ~ ( member_nat @ N2 @ ( nat_set_decode @ Z ) )
     => ( ( nat_set_decode @ ( plus_plus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) @ Z ) )
        = ( insert_nat @ N2 @ ( nat_set_decode @ Z ) ) ) ) ).

% set_decode_plus_power_2
thf(fact_9510_sin__integer__2pi,axiom,
    ! [N2: real] :
      ( ( member_real @ N2 @ ring_1_Ints_real )
     => ( ( sin_real @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) @ N2 ) )
        = zero_zero_real ) ) ).

% sin_integer_2pi
thf(fact_9511_cos__integer__2pi,axiom,
    ! [N2: real] :
      ( ( member_real @ N2 @ ring_1_Ints_real )
     => ( ( cos_real @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) @ N2 ) )
        = one_one_real ) ) ).

% cos_integer_2pi
thf(fact_9512_rat__minus__code,axiom,
    ! [P4: rat,Q2: rat] :
      ( ( quotient_of @ ( minus_minus_rat @ P4 @ Q2 ) )
      = ( produc4245557441103728435nt_int
        @ ^ [A4: int,C4: int] :
            ( produc4245557441103728435nt_int
            @ ^ [B4: int,D2: int] : ( normalize @ ( product_Pair_int_int @ ( minus_minus_int @ ( times_times_int @ A4 @ D2 ) @ ( times_times_int @ B4 @ C4 ) ) @ ( times_times_int @ C4 @ D2 ) ) )
            @ ( quotient_of @ Q2 ) )
        @ ( quotient_of @ P4 ) ) ) ).

% rat_minus_code
thf(fact_9513_rat__plus__code,axiom,
    ! [P4: rat,Q2: rat] :
      ( ( quotient_of @ ( plus_plus_rat @ P4 @ Q2 ) )
      = ( produc4245557441103728435nt_int
        @ ^ [A4: int,C4: int] :
            ( produc4245557441103728435nt_int
            @ ^ [B4: int,D2: int] : ( normalize @ ( product_Pair_int_int @ ( plus_plus_int @ ( times_times_int @ A4 @ D2 ) @ ( times_times_int @ B4 @ C4 ) ) @ ( times_times_int @ C4 @ D2 ) ) )
            @ ( quotient_of @ Q2 ) )
        @ ( quotient_of @ P4 ) ) ) ).

% rat_plus_code
thf(fact_9514_normalize__crossproduct,axiom,
    ! [Q2: int,S2: int,P4: int,R2: int] :
      ( ( Q2 != zero_zero_int )
     => ( ( S2 != zero_zero_int )
       => ( ( ( normalize @ ( product_Pair_int_int @ P4 @ Q2 ) )
            = ( normalize @ ( product_Pair_int_int @ R2 @ S2 ) ) )
         => ( ( times_times_int @ P4 @ S2 )
            = ( times_times_int @ R2 @ Q2 ) ) ) ) ) ).

% normalize_crossproduct
thf(fact_9515_rat__times__code,axiom,
    ! [P4: rat,Q2: rat] :
      ( ( quotient_of @ ( times_times_rat @ P4 @ Q2 ) )
      = ( produc4245557441103728435nt_int
        @ ^ [A4: int,C4: int] :
            ( produc4245557441103728435nt_int
            @ ^ [B4: int,D2: int] : ( normalize @ ( product_Pair_int_int @ ( times_times_int @ A4 @ B4 ) @ ( times_times_int @ C4 @ D2 ) ) )
            @ ( quotient_of @ Q2 ) )
        @ ( quotient_of @ P4 ) ) ) ).

% rat_times_code
thf(fact_9516_rat__divide__code,axiom,
    ! [P4: rat,Q2: rat] :
      ( ( quotient_of @ ( divide_divide_rat @ P4 @ Q2 ) )
      = ( produc4245557441103728435nt_int
        @ ^ [A4: int,C4: int] :
            ( produc4245557441103728435nt_int
            @ ^ [B4: int,D2: int] : ( normalize @ ( product_Pair_int_int @ ( times_times_int @ A4 @ D2 ) @ ( times_times_int @ C4 @ B4 ) ) )
            @ ( quotient_of @ Q2 ) )
        @ ( quotient_of @ P4 ) ) ) ).

% rat_divide_code
thf(fact_9517_Frct__code__post_I5_J,axiom,
    ! [K: num] :
      ( ( frct @ ( product_Pair_int_int @ one_one_int @ ( numeral_numeral_int @ K ) ) )
      = ( divide_divide_rat @ one_one_rat @ ( numeral_numeral_rat @ K ) ) ) ).

% Frct_code_post(5)
thf(fact_9518_xor__Suc__0__eq,axiom,
    ! [N2: nat] :
      ( ( bit_se6528837805403552850or_nat @ N2 @ ( suc @ zero_zero_nat ) )
      = ( minus_minus_nat @ ( plus_plus_nat @ N2 @ ( zero_n2687167440665602831ol_nat @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) )
        @ ( zero_n2687167440665602831ol_nat
          @ ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) ) ).

% xor_Suc_0_eq
thf(fact_9519_Suc__0__xor__eq,axiom,
    ! [N2: nat] :
      ( ( bit_se6528837805403552850or_nat @ ( suc @ zero_zero_nat ) @ N2 )
      = ( minus_minus_nat @ ( plus_plus_nat @ N2 @ ( zero_n2687167440665602831ol_nat @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) )
        @ ( zero_n2687167440665602831ol_nat
          @ ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) ) ).

% Suc_0_xor_eq
thf(fact_9520_xor__nat__numerals_I4_J,axiom,
    ! [X: num] :
      ( ( bit_se6528837805403552850or_nat @ ( numeral_numeral_nat @ ( bit1 @ X ) ) @ ( suc @ zero_zero_nat ) )
      = ( numeral_numeral_nat @ ( bit0 @ X ) ) ) ).

% xor_nat_numerals(4)
thf(fact_9521_xor__nat__numerals_I3_J,axiom,
    ! [X: num] :
      ( ( bit_se6528837805403552850or_nat @ ( numeral_numeral_nat @ ( bit0 @ X ) ) @ ( suc @ zero_zero_nat ) )
      = ( numeral_numeral_nat @ ( bit1 @ X ) ) ) ).

% xor_nat_numerals(3)
thf(fact_9522_xor__nat__numerals_I2_J,axiom,
    ! [Y: num] :
      ( ( bit_se6528837805403552850or_nat @ ( suc @ zero_zero_nat ) @ ( numeral_numeral_nat @ ( bit1 @ Y ) ) )
      = ( numeral_numeral_nat @ ( bit0 @ Y ) ) ) ).

% xor_nat_numerals(2)
thf(fact_9523_xor__nat__numerals_I1_J,axiom,
    ! [Y: num] :
      ( ( bit_se6528837805403552850or_nat @ ( suc @ zero_zero_nat ) @ ( numeral_numeral_nat @ ( bit0 @ Y ) ) )
      = ( numeral_numeral_nat @ ( bit1 @ Y ) ) ) ).

% xor_nat_numerals(1)
thf(fact_9524_Frct__code__post_I4_J,axiom,
    ! [K: num] :
      ( ( frct @ ( product_Pair_int_int @ ( numeral_numeral_int @ K ) @ one_one_int ) )
      = ( numeral_numeral_rat @ K ) ) ).

% Frct_code_post(4)
thf(fact_9525_xor__nat__unfold,axiom,
    ( bit_se6528837805403552850or_nat
    = ( ^ [M6: nat,N3: nat] : ( if_nat @ ( M6 = zero_zero_nat ) @ N3 @ ( if_nat @ ( N3 = zero_zero_nat ) @ M6 @ ( plus_plus_nat @ ( modulo_modulo_nat @ ( plus_plus_nat @ ( modulo_modulo_nat @ M6 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( modulo_modulo_nat @ N3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se6528837805403552850or_nat @ ( divide_divide_nat @ M6 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( divide_divide_nat @ N3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ).

% xor_nat_unfold
thf(fact_9526_xor__nat__rec,axiom,
    ( bit_se6528837805403552850or_nat
    = ( ^ [M6: nat,N3: nat] :
          ( plus_plus_nat
          @ ( zero_n2687167440665602831ol_nat
            @ ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M6 ) )
             != ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) ) ) )
          @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se6528837805403552850or_nat @ ( divide_divide_nat @ M6 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( divide_divide_nat @ N3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% xor_nat_rec
thf(fact_9527_Frct__code__post_I6_J,axiom,
    ! [K: num,L2: num] :
      ( ( frct @ ( product_Pair_int_int @ ( numeral_numeral_int @ K ) @ ( numeral_numeral_int @ L2 ) ) )
      = ( divide_divide_rat @ ( numeral_numeral_rat @ K ) @ ( numeral_numeral_rat @ L2 ) ) ) ).

% Frct_code_post(6)
thf(fact_9528_horner__sum__of__bool__2__less,axiom,
    ! [Bs: list_o] : ( ord_less_int @ ( groups9116527308978886569_o_int @ zero_n2684676970156552555ol_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Bs ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( size_size_list_o @ Bs ) ) ) ).

% horner_sum_of_bool_2_less
thf(fact_9529_push__bit__nonnegative__int__iff,axiom,
    ! [N2: nat,K: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( bit_se545348938243370406it_int @ N2 @ K ) )
      = ( ord_less_eq_int @ zero_zero_int @ K ) ) ).

% push_bit_nonnegative_int_iff
thf(fact_9530_push__bit__negative__int__iff,axiom,
    ! [N2: nat,K: int] :
      ( ( ord_less_int @ ( bit_se545348938243370406it_int @ N2 @ K ) @ zero_zero_int )
      = ( ord_less_int @ K @ zero_zero_int ) ) ).

% push_bit_negative_int_iff
thf(fact_9531_concat__bit__of__zero__1,axiom,
    ! [N2: nat,L2: int] :
      ( ( bit_concat_bit @ N2 @ zero_zero_int @ L2 )
      = ( bit_se545348938243370406it_int @ N2 @ L2 ) ) ).

% concat_bit_of_zero_1
thf(fact_9532_xor__nonnegative__int__iff,axiom,
    ! [K: int,L2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( bit_se6526347334894502574or_int @ K @ L2 ) )
      = ( ( ord_less_eq_int @ zero_zero_int @ K )
        = ( ord_less_eq_int @ zero_zero_int @ L2 ) ) ) ).

% xor_nonnegative_int_iff
thf(fact_9533_xor__negative__int__iff,axiom,
    ! [K: int,L2: int] :
      ( ( ord_less_int @ ( bit_se6526347334894502574or_int @ K @ L2 ) @ zero_zero_int )
      = ( ( ord_less_int @ K @ zero_zero_int )
       != ( ord_less_int @ L2 @ zero_zero_int ) ) ) ).

% xor_negative_int_iff
thf(fact_9534_push__bit__of__Suc__0,axiom,
    ! [N2: nat] :
      ( ( bit_se547839408752420682it_nat @ N2 @ ( suc @ zero_zero_nat ) )
      = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ).

% push_bit_of_Suc_0
thf(fact_9535_bit__xor__int__iff,axiom,
    ! [K: int,L2: int,N2: nat] :
      ( ( bit_se1146084159140164899it_int @ ( bit_se6526347334894502574or_int @ K @ L2 ) @ N2 )
      = ( ( bit_se1146084159140164899it_int @ K @ N2 )
       != ( bit_se1146084159140164899it_int @ L2 @ N2 ) ) ) ).

% bit_xor_int_iff
thf(fact_9536_flip__bit__int__def,axiom,
    ( bit_se2159334234014336723it_int
    = ( ^ [N3: nat,K3: int] : ( bit_se6526347334894502574or_int @ K3 @ ( bit_se545348938243370406it_int @ N3 @ one_one_int ) ) ) ) ).

% flip_bit_int_def
thf(fact_9537_push__bit__nat__eq,axiom,
    ! [N2: nat,K: int] :
      ( ( bit_se547839408752420682it_nat @ N2 @ ( nat2 @ K ) )
      = ( nat2 @ ( bit_se545348938243370406it_int @ N2 @ K ) ) ) ).

% push_bit_nat_eq
thf(fact_9538_XOR__lower,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X )
     => ( ( ord_less_eq_int @ zero_zero_int @ Y )
       => ( ord_less_eq_int @ zero_zero_int @ ( bit_se6526347334894502574or_int @ X @ Y ) ) ) ) ).

% XOR_lower
thf(fact_9539_set__bit__nat__def,axiom,
    ( bit_se7882103937844011126it_nat
    = ( ^ [M6: nat,N3: nat] : ( bit_se1412395901928357646or_nat @ N3 @ ( bit_se547839408752420682it_nat @ M6 @ one_one_nat ) ) ) ) ).

% set_bit_nat_def
thf(fact_9540_flip__bit__nat__def,axiom,
    ( bit_se2161824704523386999it_nat
    = ( ^ [M6: nat,N3: nat] : ( bit_se6528837805403552850or_nat @ N3 @ ( bit_se547839408752420682it_nat @ M6 @ one_one_nat ) ) ) ) ).

% flip_bit_nat_def
thf(fact_9541_bit__push__bit__iff__int,axiom,
    ! [M: nat,K: int,N2: nat] :
      ( ( bit_se1146084159140164899it_int @ ( bit_se545348938243370406it_int @ M @ K ) @ N2 )
      = ( ( ord_less_eq_nat @ M @ N2 )
        & ( bit_se1146084159140164899it_int @ K @ ( minus_minus_nat @ N2 @ M ) ) ) ) ).

% bit_push_bit_iff_int
thf(fact_9542_xor__nat__def,axiom,
    ( bit_se6528837805403552850or_nat
    = ( ^ [M6: nat,N3: nat] : ( nat2 @ ( bit_se6526347334894502574or_int @ ( semiri1314217659103216013at_int @ M6 ) @ ( semiri1314217659103216013at_int @ N3 ) ) ) ) ) ).

% xor_nat_def
thf(fact_9543_bit__push__bit__iff__nat,axiom,
    ! [M: nat,Q2: nat,N2: nat] :
      ( ( bit_se1148574629649215175it_nat @ ( bit_se547839408752420682it_nat @ M @ Q2 ) @ N2 )
      = ( ( ord_less_eq_nat @ M @ N2 )
        & ( bit_se1148574629649215175it_nat @ Q2 @ ( minus_minus_nat @ N2 @ M ) ) ) ) ).

% bit_push_bit_iff_nat
thf(fact_9544_concat__bit__eq,axiom,
    ( bit_concat_bit
    = ( ^ [N3: nat,K3: int,L: int] : ( plus_plus_int @ ( bit_se2923211474154528505it_int @ N3 @ K3 ) @ ( bit_se545348938243370406it_int @ N3 @ L ) ) ) ) ).

% concat_bit_eq
thf(fact_9545_concat__bit__def,axiom,
    ( bit_concat_bit
    = ( ^ [N3: nat,K3: int,L: int] : ( bit_se1409905431419307370or_int @ ( bit_se2923211474154528505it_int @ N3 @ K3 ) @ ( bit_se545348938243370406it_int @ N3 @ L ) ) ) ) ).

% concat_bit_def
thf(fact_9546_set__bit__int__def,axiom,
    ( bit_se7879613467334960850it_int
    = ( ^ [N3: nat,K3: int] : ( bit_se1409905431419307370or_int @ K3 @ ( bit_se545348938243370406it_int @ N3 @ one_one_int ) ) ) ) ).

% set_bit_int_def
thf(fact_9547_push__bit__nat__def,axiom,
    ( bit_se547839408752420682it_nat
    = ( ^ [N3: nat,M6: nat] : ( times_times_nat @ M6 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) ) ) ) ).

% push_bit_nat_def
thf(fact_9548_push__bit__int__def,axiom,
    ( bit_se545348938243370406it_int
    = ( ^ [N3: nat,K3: int] : ( times_times_int @ K3 @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N3 ) ) ) ) ).

% push_bit_int_def
thf(fact_9549_push__bit__minus__one,axiom,
    ! [N2: nat] :
      ( ( bit_se545348938243370406it_int @ N2 @ ( uminus_uminus_int @ one_one_int ) )
      = ( uminus_uminus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) ) ) ).

% push_bit_minus_one
thf(fact_9550_XOR__upper,axiom,
    ! [X: int,N2: nat,Y: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X )
     => ( ( ord_less_int @ X @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) )
       => ( ( ord_less_int @ Y @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) )
         => ( ord_less_int @ ( bit_se6526347334894502574or_int @ X @ Y ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) ) ) ) ) ).

% XOR_upper
thf(fact_9551_xor__int__rec,axiom,
    ( bit_se6526347334894502574or_int
    = ( ^ [K3: int,L: int] :
          ( plus_plus_int
          @ ( zero_n2684676970156552555ol_int
            @ ( ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K3 ) )
             != ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ L ) ) ) )
          @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se6526347334894502574or_int @ ( divide_divide_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( divide_divide_int @ L @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% xor_int_rec
thf(fact_9552_xor__int__unfold,axiom,
    ( bit_se6526347334894502574or_int
    = ( ^ [K3: int,L: int] :
          ( if_int
          @ ( K3
            = ( uminus_uminus_int @ one_one_int ) )
          @ ( bit_ri7919022796975470100ot_int @ L )
          @ ( if_int
            @ ( L
              = ( uminus_uminus_int @ one_one_int ) )
            @ ( bit_ri7919022796975470100ot_int @ K3 )
            @ ( if_int @ ( K3 = zero_zero_int ) @ L @ ( if_int @ ( L = zero_zero_int ) @ K3 @ ( plus_plus_int @ ( abs_abs_int @ ( minus_minus_int @ ( modulo_modulo_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( modulo_modulo_int @ L @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se6526347334894502574or_int @ ( divide_divide_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( divide_divide_int @ L @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ) ).

% xor_int_unfold
thf(fact_9553_Cauchy__iff2,axiom,
    ( topolo4055970368930404560y_real
    = ( ^ [X4: nat > real] :
        ! [J3: nat] :
        ? [M9: nat] :
        ! [M6: nat] :
          ( ( ord_less_eq_nat @ M9 @ M6 )
         => ! [N3: nat] :
              ( ( ord_less_eq_nat @ M9 @ N3 )
             => ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ ( X4 @ M6 ) @ ( X4 @ N3 ) ) ) @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ ( suc @ J3 ) ) ) ) ) ) ) ) ).

% Cauchy_iff2
thf(fact_9554_not__nonnegative__int__iff,axiom,
    ! [K: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( bit_ri7919022796975470100ot_int @ K ) )
      = ( ord_less_int @ K @ zero_zero_int ) ) ).

% not_nonnegative_int_iff
thf(fact_9555_not__negative__int__iff,axiom,
    ! [K: int] :
      ( ( ord_less_int @ ( bit_ri7919022796975470100ot_int @ K ) @ zero_zero_int )
      = ( ord_less_eq_int @ zero_zero_int @ K ) ) ).

% not_negative_int_iff
thf(fact_9556_and__minus__minus__numerals,axiom,
    ! [M: num,N2: num] :
      ( ( bit_se725231765392027082nd_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) )
      = ( bit_ri7919022796975470100ot_int @ ( bit_se1409905431419307370or_int @ ( minus_minus_int @ ( numeral_numeral_int @ M ) @ one_one_int ) @ ( minus_minus_int @ ( numeral_numeral_int @ N2 ) @ one_one_int ) ) ) ) ).

% and_minus_minus_numerals
thf(fact_9557_or__minus__minus__numerals,axiom,
    ! [M: num,N2: num] :
      ( ( bit_se1409905431419307370or_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) )
      = ( bit_ri7919022796975470100ot_int @ ( bit_se725231765392027082nd_int @ ( minus_minus_int @ ( numeral_numeral_int @ M ) @ one_one_int ) @ ( minus_minus_int @ ( numeral_numeral_int @ N2 ) @ one_one_int ) ) ) ) ).

% or_minus_minus_numerals
thf(fact_9558_bit__not__int__iff,axiom,
    ! [K: int,N2: nat] :
      ( ( bit_se1146084159140164899it_int @ ( bit_ri7919022796975470100ot_int @ K ) @ N2 )
      = ( ~ ( bit_se1146084159140164899it_int @ K @ N2 ) ) ) ).

% bit_not_int_iff
thf(fact_9559_or__int__def,axiom,
    ( bit_se1409905431419307370or_int
    = ( ^ [K3: int,L: int] : ( bit_ri7919022796975470100ot_int @ ( bit_se725231765392027082nd_int @ ( bit_ri7919022796975470100ot_int @ K3 ) @ ( bit_ri7919022796975470100ot_int @ L ) ) ) ) ) ).

% or_int_def
thf(fact_9560_not__int__def,axiom,
    ( bit_ri7919022796975470100ot_int
    = ( ^ [K3: int] : ( minus_minus_int @ ( uminus_uminus_int @ K3 ) @ one_one_int ) ) ) ).

% not_int_def
thf(fact_9561_and__not__numerals_I1_J,axiom,
    ( ( bit_se725231765392027082nd_int @ one_one_int @ ( bit_ri7919022796975470100ot_int @ one_one_int ) )
    = zero_zero_int ) ).

% and_not_numerals(1)
thf(fact_9562_or__not__numerals_I1_J,axiom,
    ( ( bit_se1409905431419307370or_int @ one_one_int @ ( bit_ri7919022796975470100ot_int @ one_one_int ) )
    = ( bit_ri7919022796975470100ot_int @ zero_zero_int ) ) ).

% or_not_numerals(1)
thf(fact_9563_unset__bit__int__def,axiom,
    ( bit_se4203085406695923979it_int
    = ( ^ [N3: nat,K3: int] : ( bit_se725231765392027082nd_int @ K3 @ ( bit_ri7919022796975470100ot_int @ ( bit_se545348938243370406it_int @ N3 @ one_one_int ) ) ) ) ) ).

% unset_bit_int_def
thf(fact_9564_xor__int__def,axiom,
    ( bit_se6526347334894502574or_int
    = ( ^ [K3: int,L: int] : ( bit_se1409905431419307370or_int @ ( bit_se725231765392027082nd_int @ K3 @ ( bit_ri7919022796975470100ot_int @ L ) ) @ ( bit_se725231765392027082nd_int @ ( bit_ri7919022796975470100ot_int @ K3 ) @ L ) ) ) ) ).

% xor_int_def
thf(fact_9565_not__int__div__2,axiom,
    ! [K: int] :
      ( ( divide_divide_int @ ( bit_ri7919022796975470100ot_int @ K ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
      = ( bit_ri7919022796975470100ot_int @ ( divide_divide_int @ K @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ).

% not_int_div_2
thf(fact_9566_even__not__iff__int,axiom,
    ! [K: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_ri7919022796975470100ot_int @ K ) )
      = ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K ) ) ) ).

% even_not_iff_int
thf(fact_9567_and__not__numerals_I2_J,axiom,
    ! [N2: num] :
      ( ( bit_se725231765392027082nd_int @ one_one_int @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit0 @ N2 ) ) ) )
      = one_one_int ) ).

% and_not_numerals(2)
thf(fact_9568_and__not__numerals_I4_J,axiom,
    ! [M: num] :
      ( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ ( bit0 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ one_one_int ) )
      = ( numeral_numeral_int @ ( bit0 @ M ) ) ) ).

% and_not_numerals(4)
thf(fact_9569_or__not__numerals_I2_J,axiom,
    ! [N2: num] :
      ( ( bit_se1409905431419307370or_int @ one_one_int @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit0 @ N2 ) ) ) )
      = ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit0 @ N2 ) ) ) ) ).

% or_not_numerals(2)
thf(fact_9570_or__not__numerals_I4_J,axiom,
    ! [M: num] :
      ( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ ( bit0 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ one_one_int ) )
      = ( bit_ri7919022796975470100ot_int @ one_one_int ) ) ).

% or_not_numerals(4)
thf(fact_9571_bit__minus__int__iff,axiom,
    ! [K: int,N2: nat] :
      ( ( bit_se1146084159140164899it_int @ ( uminus_uminus_int @ K ) @ N2 )
      = ( bit_se1146084159140164899it_int @ ( bit_ri7919022796975470100ot_int @ ( minus_minus_int @ K @ one_one_int ) ) @ N2 ) ) ).

% bit_minus_int_iff
thf(fact_9572_numeral__or__not__num__eq,axiom,
    ! [M: num,N2: num] :
      ( ( numeral_numeral_int @ ( bit_or_not_num_neg @ M @ N2 ) )
      = ( uminus_uminus_int @ ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N2 ) ) ) ) ) ).

% numeral_or_not_num_eq
thf(fact_9573_int__numeral__not__or__num__neg,axiom,
    ! [M: num,N2: num] :
      ( ( bit_se1409905431419307370or_int @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N2 ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit_or_not_num_neg @ N2 @ M ) ) ) ) ).

% int_numeral_not_or_num_neg
thf(fact_9574_int__numeral__or__not__num__neg,axiom,
    ! [M: num,N2: num] :
      ( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N2 ) ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit_or_not_num_neg @ M @ N2 ) ) ) ) ).

% int_numeral_or_not_num_neg
thf(fact_9575_and__not__numerals_I5_J,axiom,
    ! [M: num,N2: num] :
      ( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ ( bit0 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit0 @ N2 ) ) ) )
      = ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N2 ) ) ) ) ) ).

% and_not_numerals(5)
thf(fact_9576_and__not__numerals_I7_J,axiom,
    ! [M: num] :
      ( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ ( bit1 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ one_one_int ) )
      = ( numeral_numeral_int @ ( bit0 @ M ) ) ) ).

% and_not_numerals(7)
thf(fact_9577_or__not__numerals_I3_J,axiom,
    ! [N2: num] :
      ( ( bit_se1409905431419307370or_int @ one_one_int @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit1 @ N2 ) ) ) )
      = ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit0 @ N2 ) ) ) ) ).

% or_not_numerals(3)
thf(fact_9578_and__not__numerals_I3_J,axiom,
    ! [N2: num] :
      ( ( bit_se725231765392027082nd_int @ one_one_int @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit1 @ N2 ) ) ) )
      = zero_zero_int ) ).

% and_not_numerals(3)
thf(fact_9579_or__not__numerals_I7_J,axiom,
    ! [M: num] :
      ( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ ( bit1 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ one_one_int ) )
      = ( bit_ri7919022796975470100ot_int @ zero_zero_int ) ) ).

% or_not_numerals(7)
thf(fact_9580_and__not__numerals_I9_J,axiom,
    ! [M: num,N2: num] :
      ( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ ( bit1 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit1 @ N2 ) ) ) )
      = ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N2 ) ) ) ) ) ).

% and_not_numerals(9)
thf(fact_9581_and__not__numerals_I6_J,axiom,
    ! [M: num,N2: num] :
      ( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ ( bit0 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit1 @ N2 ) ) ) )
      = ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N2 ) ) ) ) ) ).

% and_not_numerals(6)
thf(fact_9582_or__not__numerals_I6_J,axiom,
    ! [M: num,N2: num] :
      ( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ ( bit0 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit1 @ N2 ) ) ) )
      = ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N2 ) ) ) ) ) ).

% or_not_numerals(6)
thf(fact_9583_or__not__numerals_I5_J,axiom,
    ! [M: num,N2: num] :
      ( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ ( bit0 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit0 @ N2 ) ) ) )
      = ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N2 ) ) ) ) ) ) ).

% or_not_numerals(5)
thf(fact_9584_and__not__numerals_I8_J,axiom,
    ! [M: num,N2: num] :
      ( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ ( bit1 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit0 @ N2 ) ) ) )
      = ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N2 ) ) ) ) ) ) ).

% and_not_numerals(8)
thf(fact_9585_or__not__numerals_I9_J,axiom,
    ! [M: num,N2: num] :
      ( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ ( bit1 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit1 @ N2 ) ) ) )
      = ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N2 ) ) ) ) ) ) ).

% or_not_numerals(9)
thf(fact_9586_or__not__numerals_I8_J,axiom,
    ! [M: num,N2: num] :
      ( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ ( bit1 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit0 @ N2 ) ) ) )
      = ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N2 ) ) ) ) ) ) ).

% or_not_numerals(8)
thf(fact_9587_not__int__rec,axiom,
    ( bit_ri7919022796975470100ot_int
    = ( ^ [K3: int] : ( plus_plus_int @ ( zero_n2684676970156552555ol_int @ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K3 ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_ri7919022796975470100ot_int @ ( divide_divide_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% not_int_rec
thf(fact_9588_Sum__Ico__nat,axiom,
    ! [M: nat,N2: nat] :
      ( ( groups3542108847815614940at_nat
        @ ^ [X3: nat] : X3
        @ ( set_or4665077453230672383an_nat @ M @ N2 ) )
      = ( divide_divide_nat @ ( minus_minus_nat @ ( times_times_nat @ N2 @ ( minus_minus_nat @ N2 @ one_one_nat ) ) @ ( times_times_nat @ M @ ( minus_minus_nat @ M @ one_one_nat ) ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% Sum_Ico_nat
thf(fact_9589_VEBT_Osize_I3_J,axiom,
    ! [X11: option4927543243414619207at_nat,X12: nat,X13: list_VEBT_VEBT,X14: vEBT_VEBT] :
      ( ( size_size_VEBT_VEBT @ ( vEBT_Node @ X11 @ X12 @ X13 @ X14 ) )
      = ( plus_plus_nat @ ( plus_plus_nat @ ( size_list_VEBT_VEBT @ size_size_VEBT_VEBT @ X13 ) @ ( size_size_VEBT_VEBT @ X14 ) ) @ ( suc @ zero_zero_nat ) ) ) ).

% VEBT.size(3)
thf(fact_9590_atLeastLessThan__singleton,axiom,
    ! [M: nat] :
      ( ( set_or4665077453230672383an_nat @ M @ ( suc @ M ) )
      = ( insert_nat @ M @ bot_bot_set_nat ) ) ).

% atLeastLessThan_singleton
thf(fact_9591_all__nat__less__eq,axiom,
    ! [N2: nat,P: nat > $o] :
      ( ( ! [M6: nat] :
            ( ( ord_less_nat @ M6 @ N2 )
           => ( P @ M6 ) ) )
      = ( ! [X3: nat] :
            ( ( member_nat @ X3 @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N2 ) )
           => ( P @ X3 ) ) ) ) ).

% all_nat_less_eq
thf(fact_9592_ex__nat__less__eq,axiom,
    ! [N2: nat,P: nat > $o] :
      ( ( ? [M6: nat] :
            ( ( ord_less_nat @ M6 @ N2 )
            & ( P @ M6 ) ) )
      = ( ? [X3: nat] :
            ( ( member_nat @ X3 @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N2 ) )
            & ( P @ X3 ) ) ) ) ).

% ex_nat_less_eq
thf(fact_9593_atLeastLessThanSuc__atLeastAtMost,axiom,
    ! [L2: nat,U: nat] :
      ( ( set_or4665077453230672383an_nat @ L2 @ ( suc @ U ) )
      = ( set_or1269000886237332187st_nat @ L2 @ U ) ) ).

% atLeastLessThanSuc_atLeastAtMost
thf(fact_9594_atLeast0__lessThan__Suc,axiom,
    ! [N2: nat] :
      ( ( set_or4665077453230672383an_nat @ zero_zero_nat @ ( suc @ N2 ) )
      = ( insert_nat @ N2 @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N2 ) ) ) ).

% atLeast0_lessThan_Suc
thf(fact_9595_subset__eq__atLeast0__lessThan__finite,axiom,
    ! [N4: set_nat,N2: nat] :
      ( ( ord_less_eq_set_nat @ N4 @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N2 ) )
     => ( finite_finite_nat @ N4 ) ) ).

% subset_eq_atLeast0_lessThan_finite
thf(fact_9596_atLeastLessThanSuc,axiom,
    ! [M: nat,N2: nat] :
      ( ( ( ord_less_eq_nat @ M @ N2 )
       => ( ( set_or4665077453230672383an_nat @ M @ ( suc @ N2 ) )
          = ( insert_nat @ N2 @ ( set_or4665077453230672383an_nat @ M @ N2 ) ) ) )
      & ( ~ ( ord_less_eq_nat @ M @ N2 )
       => ( ( set_or4665077453230672383an_nat @ M @ ( suc @ N2 ) )
          = bot_bot_set_nat ) ) ) ).

% atLeastLessThanSuc
thf(fact_9597_prod__Suc__fact,axiom,
    ! [N2: nat] :
      ( ( groups708209901874060359at_nat @ suc @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N2 ) )
      = ( semiri1408675320244567234ct_nat @ N2 ) ) ).

% prod_Suc_fact
thf(fact_9598_prod__Suc__Suc__fact,axiom,
    ! [N2: nat] :
      ( ( groups708209901874060359at_nat @ suc @ ( set_or4665077453230672383an_nat @ ( suc @ zero_zero_nat ) @ N2 ) )
      = ( semiri1408675320244567234ct_nat @ N2 ) ) ).

% prod_Suc_Suc_fact
thf(fact_9599_atLeastLessThan__nat__numeral,axiom,
    ! [M: nat,K: num] :
      ( ( ( ord_less_eq_nat @ M @ ( pred_numeral @ K ) )
       => ( ( set_or4665077453230672383an_nat @ M @ ( numeral_numeral_nat @ K ) )
          = ( insert_nat @ ( pred_numeral @ K ) @ ( set_or4665077453230672383an_nat @ M @ ( pred_numeral @ K ) ) ) ) )
      & ( ~ ( ord_less_eq_nat @ M @ ( pred_numeral @ K ) )
       => ( ( set_or4665077453230672383an_nat @ M @ ( numeral_numeral_nat @ K ) )
          = bot_bot_set_nat ) ) ) ).

% atLeastLessThan_nat_numeral
thf(fact_9600_atLeast1__lessThan__eq__remove0,axiom,
    ! [N2: nat] :
      ( ( set_or4665077453230672383an_nat @ ( suc @ zero_zero_nat ) @ N2 )
      = ( minus_minus_set_nat @ ( set_ord_lessThan_nat @ N2 ) @ ( insert_nat @ zero_zero_nat @ bot_bot_set_nat ) ) ) ).

% atLeast1_lessThan_eq_remove0
thf(fact_9601_sum__power2,axiom,
    ! [K: nat] :
      ( ( groups3542108847815614940at_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ K ) )
      = ( minus_minus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K ) @ one_one_nat ) ) ).

% sum_power2
thf(fact_9602_Chebyshev__sum__upper__nat,axiom,
    ! [N2: nat,A: nat > nat,B: nat > nat] :
      ( ! [I3: nat,J2: nat] :
          ( ( ord_less_eq_nat @ I3 @ J2 )
         => ( ( ord_less_nat @ J2 @ N2 )
           => ( ord_less_eq_nat @ ( A @ I3 ) @ ( A @ J2 ) ) ) )
     => ( ! [I3: nat,J2: nat] :
            ( ( ord_less_eq_nat @ I3 @ J2 )
           => ( ( ord_less_nat @ J2 @ N2 )
             => ( ord_less_eq_nat @ ( B @ J2 ) @ ( B @ I3 ) ) ) )
       => ( ord_less_eq_nat
          @ ( times_times_nat @ N2
            @ ( groups3542108847815614940at_nat
              @ ^ [I5: nat] : ( times_times_nat @ ( A @ I5 ) @ ( B @ I5 ) )
              @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N2 ) ) )
          @ ( times_times_nat @ ( groups3542108847815614940at_nat @ A @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N2 ) ) @ ( groups3542108847815614940at_nat @ B @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N2 ) ) ) ) ) ) ).

% Chebyshev_sum_upper_nat
thf(fact_9603_atLeastLessThanPlusOne__atLeastAtMost__int,axiom,
    ! [L2: int,U: int] :
      ( ( set_or4662586982721622107an_int @ L2 @ ( plus_plus_int @ U @ one_one_int ) )
      = ( set_or1266510415728281911st_int @ L2 @ U ) ) ).

% atLeastLessThanPlusOne_atLeastAtMost_int
thf(fact_9604_VEBT_Osize__gen_I1_J,axiom,
    ! [X11: option4927543243414619207at_nat,X12: nat,X13: list_VEBT_VEBT,X14: vEBT_VEBT] :
      ( ( vEBT_size_VEBT @ ( vEBT_Node @ X11 @ X12 @ X13 @ X14 ) )
      = ( plus_plus_nat @ ( plus_plus_nat @ ( size_list_VEBT_VEBT @ vEBT_size_VEBT @ X13 ) @ ( vEBT_size_VEBT @ X14 ) ) @ ( suc @ zero_zero_nat ) ) ) ).

% VEBT.size_gen(1)
thf(fact_9605_valid__eq,axiom,
    vEBT_VEBT_valid = vEBT_invar_vebt ).

% valid_eq
thf(fact_9606_valid__eq1,axiom,
    ! [T: vEBT_VEBT,D: nat] :
      ( ( vEBT_invar_vebt @ T @ D )
     => ( vEBT_VEBT_valid @ T @ D ) ) ).

% valid_eq1
thf(fact_9607_valid__eq2,axiom,
    ! [T: vEBT_VEBT,D: nat] :
      ( ( vEBT_VEBT_valid @ T @ D )
     => ( vEBT_invar_vebt @ T @ D ) ) ).

% valid_eq2
thf(fact_9608_VEBT__internal_Ovalid_H_Osimps_I1_J,axiom,
    ! [Uu: $o,Uv: $o,D: nat] :
      ( ( vEBT_VEBT_valid @ ( vEBT_Leaf @ Uu @ Uv ) @ D )
      = ( D = one_one_nat ) ) ).

% VEBT_internal.valid'.simps(1)
thf(fact_9609_VEBT_Osize__gen_I2_J,axiom,
    ! [X21: $o,X222: $o] :
      ( ( vEBT_size_VEBT @ ( vEBT_Leaf @ X21 @ X222 ) )
      = zero_zero_nat ) ).

% VEBT.size_gen(2)
thf(fact_9610_Code__Target__Int_Opositive__def,axiom,
    code_Target_positive = numeral_numeral_int ).

% Code_Target_Int.positive_def
thf(fact_9611_csqrt_Osimps_I1_J,axiom,
    ! [Z: complex] :
      ( ( re @ ( csqrt @ Z ) )
      = ( sqrt @ ( divide_divide_real @ ( plus_plus_real @ ( real_V1022390504157884413omplex @ Z ) @ ( re @ Z ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).

% csqrt.simps(1)
thf(fact_9612_complex__Re__numeral,axiom,
    ! [V: num] :
      ( ( re @ ( numera6690914467698888265omplex @ V ) )
      = ( numeral_numeral_real @ V ) ) ).

% complex_Re_numeral
thf(fact_9613_Re__divide__numeral,axiom,
    ! [Z: complex,W: num] :
      ( ( re @ ( divide1717551699836669952omplex @ Z @ ( numera6690914467698888265omplex @ W ) ) )
      = ( divide_divide_real @ ( re @ Z ) @ ( numeral_numeral_real @ W ) ) ) ).

% Re_divide_numeral
thf(fact_9614_sums__Re,axiom,
    ! [X8: nat > complex,A: complex] :
      ( ( sums_complex @ X8 @ A )
     => ( sums_real
        @ ^ [N3: nat] : ( re @ ( X8 @ N3 ) )
        @ ( re @ A ) ) ) ).

% sums_Re
thf(fact_9615_Cauchy__Re,axiom,
    ! [X8: nat > complex] :
      ( ( topolo6517432010174082258omplex @ X8 )
     => ( topolo4055970368930404560y_real
        @ ^ [N3: nat] : ( re @ ( X8 @ N3 ) ) ) ) ).

% Cauchy_Re
thf(fact_9616_complex__Re__le__cmod,axiom,
    ! [X: complex] : ( ord_less_eq_real @ ( re @ X ) @ ( real_V1022390504157884413omplex @ X ) ) ).

% complex_Re_le_cmod
thf(fact_9617_plus__complex_Osimps_I1_J,axiom,
    ! [X: complex,Y: complex] :
      ( ( re @ ( plus_plus_complex @ X @ Y ) )
      = ( plus_plus_real @ ( re @ X ) @ ( re @ Y ) ) ) ).

% plus_complex.simps(1)
thf(fact_9618_scaleR__complex_Osimps_I1_J,axiom,
    ! [R2: real,X: complex] :
      ( ( re @ ( real_V2046097035970521341omplex @ R2 @ X ) )
      = ( times_times_real @ R2 @ ( re @ X ) ) ) ).

% scaleR_complex.simps(1)
thf(fact_9619_minus__complex_Osimps_I1_J,axiom,
    ! [X: complex,Y: complex] :
      ( ( re @ ( minus_minus_complex @ X @ Y ) )
      = ( minus_minus_real @ ( re @ X ) @ ( re @ Y ) ) ) ).

% minus_complex.simps(1)
thf(fact_9620_summable__Re,axiom,
    ! [F: nat > complex] :
      ( ( summable_complex @ F )
     => ( summable_real
        @ ^ [X3: nat] : ( re @ ( F @ X3 ) ) ) ) ).

% summable_Re
thf(fact_9621_abs__Re__le__cmod,axiom,
    ! [X: complex] : ( ord_less_eq_real @ ( abs_abs_real @ ( re @ X ) ) @ ( real_V1022390504157884413omplex @ X ) ) ).

% abs_Re_le_cmod
thf(fact_9622_Re__csqrt,axiom,
    ! [Z: complex] : ( ord_less_eq_real @ zero_zero_real @ ( re @ ( csqrt @ Z ) ) ) ).

% Re_csqrt
thf(fact_9623_cmod__plus__Re__le__0__iff,axiom,
    ! [Z: complex] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ ( real_V1022390504157884413omplex @ Z ) @ ( re @ Z ) ) @ zero_zero_real )
      = ( ( re @ Z )
        = ( uminus_uminus_real @ ( real_V1022390504157884413omplex @ Z ) ) ) ) ).

% cmod_plus_Re_le_0_iff
thf(fact_9624_cos__n__Re__cis__pow__n,axiom,
    ! [N2: nat,A: real] :
      ( ( cos_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ A ) )
      = ( re @ ( power_power_complex @ ( cis @ A ) @ N2 ) ) ) ).

% cos_n_Re_cis_pow_n
thf(fact_9625_csqrt_Ocode,axiom,
    ( csqrt
    = ( ^ [Z2: complex] :
          ( complex2 @ ( sqrt @ ( divide_divide_real @ ( plus_plus_real @ ( real_V1022390504157884413omplex @ Z2 ) @ ( re @ Z2 ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
          @ ( times_times_real
            @ ( if_real
              @ ( ( im @ Z2 )
                = zero_zero_real )
              @ one_one_real
              @ ( sgn_sgn_real @ ( im @ Z2 ) ) )
            @ ( sqrt @ ( divide_divide_real @ ( minus_minus_real @ ( real_V1022390504157884413omplex @ Z2 ) @ ( re @ Z2 ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% csqrt.code
thf(fact_9626_csqrt_Osimps_I2_J,axiom,
    ! [Z: complex] :
      ( ( im @ ( csqrt @ Z ) )
      = ( times_times_real
        @ ( if_real
          @ ( ( im @ Z )
            = zero_zero_real )
          @ one_one_real
          @ ( sgn_sgn_real @ ( im @ Z ) ) )
        @ ( sqrt @ ( divide_divide_real @ ( minus_minus_real @ ( real_V1022390504157884413omplex @ Z ) @ ( re @ Z ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).

% csqrt.simps(2)
thf(fact_9627_csqrt__of__real__nonpos,axiom,
    ! [X: complex] :
      ( ( ( im @ X )
        = zero_zero_real )
     => ( ( ord_less_eq_real @ ( re @ X ) @ zero_zero_real )
       => ( ( csqrt @ X )
          = ( times_times_complex @ imaginary_unit @ ( real_V4546457046886955230omplex @ ( sqrt @ ( abs_abs_real @ ( re @ X ) ) ) ) ) ) ) ) ).

% csqrt_of_real_nonpos
thf(fact_9628_Im__power__real,axiom,
    ! [X: complex,N2: nat] :
      ( ( ( im @ X )
        = zero_zero_real )
     => ( ( im @ ( power_power_complex @ X @ N2 ) )
        = zero_zero_real ) ) ).

% Im_power_real
thf(fact_9629_complex__Im__numeral,axiom,
    ! [V: num] :
      ( ( im @ ( numera6690914467698888265omplex @ V ) )
      = zero_zero_real ) ).

% complex_Im_numeral
thf(fact_9630_Im__i__times,axiom,
    ! [Z: complex] :
      ( ( im @ ( times_times_complex @ imaginary_unit @ Z ) )
      = ( re @ Z ) ) ).

% Im_i_times
thf(fact_9631_Re__power__real,axiom,
    ! [X: complex,N2: nat] :
      ( ( ( im @ X )
        = zero_zero_real )
     => ( ( re @ ( power_power_complex @ X @ N2 ) )
        = ( power_power_real @ ( re @ X ) @ N2 ) ) ) ).

% Re_power_real
thf(fact_9632_Re__i__times,axiom,
    ! [Z: complex] :
      ( ( re @ ( times_times_complex @ imaginary_unit @ Z ) )
      = ( uminus_uminus_real @ ( im @ Z ) ) ) ).

% Re_i_times
thf(fact_9633_Im__divide__numeral,axiom,
    ! [Z: complex,W: num] :
      ( ( im @ ( divide1717551699836669952omplex @ Z @ ( numera6690914467698888265omplex @ W ) ) )
      = ( divide_divide_real @ ( im @ Z ) @ ( numeral_numeral_real @ W ) ) ) ).

% Im_divide_numeral
thf(fact_9634_csqrt__of__real__nonneg,axiom,
    ! [X: complex] :
      ( ( ( im @ X )
        = zero_zero_real )
     => ( ( ord_less_eq_real @ zero_zero_real @ ( re @ X ) )
       => ( ( csqrt @ X )
          = ( real_V4546457046886955230omplex @ ( sqrt @ ( re @ X ) ) ) ) ) ) ).

% csqrt_of_real_nonneg
thf(fact_9635_csqrt__minus,axiom,
    ! [X: complex] :
      ( ( ( ord_less_real @ ( im @ X ) @ zero_zero_real )
        | ( ( ( im @ X )
            = zero_zero_real )
          & ( ord_less_eq_real @ zero_zero_real @ ( re @ X ) ) ) )
     => ( ( csqrt @ ( uminus1482373934393186551omplex @ X ) )
        = ( times_times_complex @ imaginary_unit @ ( csqrt @ X ) ) ) ) ).

% csqrt_minus
thf(fact_9636_sums__Im,axiom,
    ! [X8: nat > complex,A: complex] :
      ( ( sums_complex @ X8 @ A )
     => ( sums_real
        @ ^ [N3: nat] : ( im @ ( X8 @ N3 ) )
        @ ( im @ A ) ) ) ).

% sums_Im
thf(fact_9637_Cauchy__Im,axiom,
    ! [X8: nat > complex] :
      ( ( topolo6517432010174082258omplex @ X8 )
     => ( topolo4055970368930404560y_real
        @ ^ [N3: nat] : ( im @ ( X8 @ N3 ) ) ) ) ).

% Cauchy_Im
thf(fact_9638_plus__complex_Osimps_I2_J,axiom,
    ! [X: complex,Y: complex] :
      ( ( im @ ( plus_plus_complex @ X @ Y ) )
      = ( plus_plus_real @ ( im @ X ) @ ( im @ Y ) ) ) ).

% plus_complex.simps(2)
thf(fact_9639_scaleR__complex_Osimps_I2_J,axiom,
    ! [R2: real,X: complex] :
      ( ( im @ ( real_V2046097035970521341omplex @ R2 @ X ) )
      = ( times_times_real @ R2 @ ( im @ X ) ) ) ).

% scaleR_complex.simps(2)
thf(fact_9640_minus__complex_Osimps_I2_J,axiom,
    ! [X: complex,Y: complex] :
      ( ( im @ ( minus_minus_complex @ X @ Y ) )
      = ( minus_minus_real @ ( im @ X ) @ ( im @ Y ) ) ) ).

% minus_complex.simps(2)
thf(fact_9641_sums__complex__iff,axiom,
    ( sums_complex
    = ( ^ [F3: nat > complex,X3: complex] :
          ( ( sums_real
            @ ^ [Y3: nat] : ( re @ ( F3 @ Y3 ) )
            @ ( re @ X3 ) )
          & ( sums_real
            @ ^ [Y3: nat] : ( im @ ( F3 @ Y3 ) )
            @ ( im @ X3 ) ) ) ) ) ).

% sums_complex_iff
thf(fact_9642_summable__Im,axiom,
    ! [F: nat > complex] :
      ( ( summable_complex @ F )
     => ( summable_real
        @ ^ [X3: nat] : ( im @ ( F @ X3 ) ) ) ) ).

% summable_Im
thf(fact_9643_abs__Im__le__cmod,axiom,
    ! [X: complex] : ( ord_less_eq_real @ ( abs_abs_real @ ( im @ X ) ) @ ( real_V1022390504157884413omplex @ X ) ) ).

% abs_Im_le_cmod
thf(fact_9644_summable__complex__iff,axiom,
    ( summable_complex
    = ( ^ [F3: nat > complex] :
          ( ( summable_real
            @ ^ [X3: nat] : ( re @ ( F3 @ X3 ) ) )
          & ( summable_real
            @ ^ [X3: nat] : ( im @ ( F3 @ X3 ) ) ) ) ) ) ).

% summable_complex_iff
thf(fact_9645_times__complex_Osimps_I2_J,axiom,
    ! [X: complex,Y: complex] :
      ( ( im @ ( times_times_complex @ X @ Y ) )
      = ( plus_plus_real @ ( times_times_real @ ( re @ X ) @ ( im @ Y ) ) @ ( times_times_real @ ( im @ X ) @ ( re @ Y ) ) ) ) ).

% times_complex.simps(2)
thf(fact_9646_cmod__Re__le__iff,axiom,
    ! [X: complex,Y: complex] :
      ( ( ( im @ X )
        = ( im @ Y ) )
     => ( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ X ) @ ( real_V1022390504157884413omplex @ Y ) )
        = ( ord_less_eq_real @ ( abs_abs_real @ ( re @ X ) ) @ ( abs_abs_real @ ( re @ Y ) ) ) ) ) ).

% cmod_Re_le_iff
thf(fact_9647_cmod__Im__le__iff,axiom,
    ! [X: complex,Y: complex] :
      ( ( ( re @ X )
        = ( re @ Y ) )
     => ( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ X ) @ ( real_V1022390504157884413omplex @ Y ) )
        = ( ord_less_eq_real @ ( abs_abs_real @ ( im @ X ) ) @ ( abs_abs_real @ ( im @ Y ) ) ) ) ) ).

% cmod_Im_le_iff
thf(fact_9648_times__complex_Osimps_I1_J,axiom,
    ! [X: complex,Y: complex] :
      ( ( re @ ( times_times_complex @ X @ Y ) )
      = ( minus_minus_real @ ( times_times_real @ ( re @ X ) @ ( re @ Y ) ) @ ( times_times_real @ ( im @ X ) @ ( im @ Y ) ) ) ) ).

% times_complex.simps(1)
thf(fact_9649_plus__complex_Ocode,axiom,
    ( plus_plus_complex
    = ( ^ [X3: complex,Y3: complex] : ( complex2 @ ( plus_plus_real @ ( re @ X3 ) @ ( re @ Y3 ) ) @ ( plus_plus_real @ ( im @ X3 ) @ ( im @ Y3 ) ) ) ) ) ).

% plus_complex.code
thf(fact_9650_scaleR__complex_Ocode,axiom,
    ( real_V2046097035970521341omplex
    = ( ^ [R5: real,X3: complex] : ( complex2 @ ( times_times_real @ R5 @ ( re @ X3 ) ) @ ( times_times_real @ R5 @ ( im @ X3 ) ) ) ) ) ).

% scaleR_complex.code
thf(fact_9651_minus__complex_Ocode,axiom,
    ( minus_minus_complex
    = ( ^ [X3: complex,Y3: complex] : ( complex2 @ ( minus_minus_real @ ( re @ X3 ) @ ( re @ Y3 ) ) @ ( minus_minus_real @ ( im @ X3 ) @ ( im @ Y3 ) ) ) ) ) ).

% minus_complex.code
thf(fact_9652_csqrt__principal,axiom,
    ! [Z: complex] :
      ( ( ord_less_real @ zero_zero_real @ ( re @ ( csqrt @ Z ) ) )
      | ( ( ( re @ ( csqrt @ Z ) )
          = zero_zero_real )
        & ( ord_less_eq_real @ zero_zero_real @ ( im @ ( csqrt @ Z ) ) ) ) ) ).

% csqrt_principal
thf(fact_9653_cmod__le,axiom,
    ! [Z: complex] : ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ Z ) @ ( plus_plus_real @ ( abs_abs_real @ ( re @ Z ) ) @ ( abs_abs_real @ ( im @ Z ) ) ) ) ).

% cmod_le
thf(fact_9654_sin__n__Im__cis__pow__n,axiom,
    ! [N2: nat,A: real] :
      ( ( sin_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ A ) )
      = ( im @ ( power_power_complex @ ( cis @ A ) @ N2 ) ) ) ).

% sin_n_Im_cis_pow_n
thf(fact_9655_Re__exp,axiom,
    ! [Z: complex] :
      ( ( re @ ( exp_complex @ Z ) )
      = ( times_times_real @ ( exp_real @ ( re @ Z ) ) @ ( cos_real @ ( im @ Z ) ) ) ) ).

% Re_exp
thf(fact_9656_Im__exp,axiom,
    ! [Z: complex] :
      ( ( im @ ( exp_complex @ Z ) )
      = ( times_times_real @ ( exp_real @ ( re @ Z ) ) @ ( sin_real @ ( im @ Z ) ) ) ) ).

% Im_exp
thf(fact_9657_complex__eq,axiom,
    ! [A: complex] :
      ( A
      = ( plus_plus_complex @ ( real_V4546457046886955230omplex @ ( re @ A ) ) @ ( times_times_complex @ imaginary_unit @ ( real_V4546457046886955230omplex @ ( im @ A ) ) ) ) ) ).

% complex_eq
thf(fact_9658_times__complex_Ocode,axiom,
    ( times_times_complex
    = ( ^ [X3: complex,Y3: complex] : ( complex2 @ ( minus_minus_real @ ( times_times_real @ ( re @ X3 ) @ ( re @ Y3 ) ) @ ( times_times_real @ ( im @ X3 ) @ ( im @ Y3 ) ) ) @ ( plus_plus_real @ ( times_times_real @ ( re @ X3 ) @ ( im @ Y3 ) ) @ ( times_times_real @ ( im @ X3 ) @ ( re @ Y3 ) ) ) ) ) ) ).

% times_complex.code
thf(fact_9659_exp__eq__polar,axiom,
    ( exp_complex
    = ( ^ [Z2: complex] : ( times_times_complex @ ( real_V4546457046886955230omplex @ ( exp_real @ ( re @ Z2 ) ) ) @ ( cis @ ( im @ Z2 ) ) ) ) ) ).

% exp_eq_polar
thf(fact_9660_cmod__power2,axiom,
    ! [Z: complex] :
      ( ( power_power_real @ ( real_V1022390504157884413omplex @ Z ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( plus_plus_real @ ( power_power_real @ ( re @ Z ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ Z ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% cmod_power2
thf(fact_9661_Im__power2,axiom,
    ! [X: complex] :
      ( ( im @ ( power_power_complex @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( re @ X ) ) @ ( im @ X ) ) ) ).

% Im_power2
thf(fact_9662_Re__power2,axiom,
    ! [X: complex] :
      ( ( re @ ( power_power_complex @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( minus_minus_real @ ( power_power_real @ ( re @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% Re_power2
thf(fact_9663_complex__eq__0,axiom,
    ! [Z: complex] :
      ( ( Z = zero_zero_complex )
      = ( ( plus_plus_real @ ( power_power_real @ ( re @ Z ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ Z ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
        = zero_zero_real ) ) ).

% complex_eq_0
thf(fact_9664_norm__complex__def,axiom,
    ( real_V1022390504157884413omplex
    = ( ^ [Z2: complex] : ( sqrt @ ( plus_plus_real @ ( power_power_real @ ( re @ Z2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ Z2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% norm_complex_def
thf(fact_9665_inverse__complex_Osimps_I1_J,axiom,
    ! [X: complex] :
      ( ( re @ ( invers8013647133539491842omplex @ X ) )
      = ( divide_divide_real @ ( re @ X ) @ ( plus_plus_real @ ( power_power_real @ ( re @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% inverse_complex.simps(1)
thf(fact_9666_complex__neq__0,axiom,
    ! [Z: complex] :
      ( ( Z != zero_zero_complex )
      = ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ ( power_power_real @ ( re @ Z ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ Z ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% complex_neq_0
thf(fact_9667_Re__divide,axiom,
    ! [X: complex,Y: complex] :
      ( ( re @ ( divide1717551699836669952omplex @ X @ Y ) )
      = ( divide_divide_real @ ( plus_plus_real @ ( times_times_real @ ( re @ X ) @ ( re @ Y ) ) @ ( times_times_real @ ( im @ X ) @ ( im @ Y ) ) ) @ ( plus_plus_real @ ( power_power_real @ ( re @ Y ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ Y ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% Re_divide
thf(fact_9668_csqrt__unique,axiom,
    ! [W: complex,Z: complex] :
      ( ( ( power_power_complex @ W @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = Z )
     => ( ( ( ord_less_real @ zero_zero_real @ ( re @ W ) )
          | ( ( ( re @ W )
              = zero_zero_real )
            & ( ord_less_eq_real @ zero_zero_real @ ( im @ W ) ) ) )
       => ( ( csqrt @ Z )
          = W ) ) ) ).

% csqrt_unique
thf(fact_9669_csqrt__square,axiom,
    ! [B: complex] :
      ( ( ( ord_less_real @ zero_zero_real @ ( re @ B ) )
        | ( ( ( re @ B )
            = zero_zero_real )
          & ( ord_less_eq_real @ zero_zero_real @ ( im @ B ) ) ) )
     => ( ( csqrt @ ( power_power_complex @ B @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
        = B ) ) ).

% csqrt_square
thf(fact_9670_inverse__complex_Osimps_I2_J,axiom,
    ! [X: complex] :
      ( ( im @ ( invers8013647133539491842omplex @ X ) )
      = ( divide_divide_real @ ( uminus_uminus_real @ ( im @ X ) ) @ ( plus_plus_real @ ( power_power_real @ ( re @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% inverse_complex.simps(2)
thf(fact_9671_Im__divide,axiom,
    ! [X: complex,Y: complex] :
      ( ( im @ ( divide1717551699836669952omplex @ X @ Y ) )
      = ( divide_divide_real @ ( minus_minus_real @ ( times_times_real @ ( im @ X ) @ ( re @ Y ) ) @ ( times_times_real @ ( re @ X ) @ ( im @ Y ) ) ) @ ( plus_plus_real @ ( power_power_real @ ( re @ Y ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ Y ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% Im_divide
thf(fact_9672_complex__abs__le__norm,axiom,
    ! [Z: complex] : ( ord_less_eq_real @ ( plus_plus_real @ ( abs_abs_real @ ( re @ Z ) ) @ ( abs_abs_real @ ( im @ Z ) ) ) @ ( times_times_real @ ( sqrt @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( real_V1022390504157884413omplex @ Z ) ) ) ).

% complex_abs_le_norm
thf(fact_9673_complex__unit__circle,axiom,
    ! [Z: complex] :
      ( ( Z != zero_zero_complex )
     => ( ( plus_plus_real @ ( power_power_real @ ( divide_divide_real @ ( re @ Z ) @ ( real_V1022390504157884413omplex @ Z ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( divide_divide_real @ ( im @ Z ) @ ( real_V1022390504157884413omplex @ Z ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
        = one_one_real ) ) ).

% complex_unit_circle
thf(fact_9674_inverse__complex_Ocode,axiom,
    ( invers8013647133539491842omplex
    = ( ^ [X3: complex] : ( complex2 @ ( divide_divide_real @ ( re @ X3 ) @ ( plus_plus_real @ ( power_power_real @ ( re @ X3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ X3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( divide_divide_real @ ( uminus_uminus_real @ ( im @ X3 ) ) @ ( plus_plus_real @ ( power_power_real @ ( re @ X3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ X3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% inverse_complex.code
thf(fact_9675_Complex__divide,axiom,
    ( divide1717551699836669952omplex
    = ( ^ [X3: complex,Y3: complex] : ( complex2 @ ( divide_divide_real @ ( plus_plus_real @ ( times_times_real @ ( re @ X3 ) @ ( re @ Y3 ) ) @ ( times_times_real @ ( im @ X3 ) @ ( im @ Y3 ) ) ) @ ( plus_plus_real @ ( power_power_real @ ( re @ Y3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ Y3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( divide_divide_real @ ( minus_minus_real @ ( times_times_real @ ( im @ X3 ) @ ( re @ Y3 ) ) @ ( times_times_real @ ( re @ X3 ) @ ( im @ Y3 ) ) ) @ ( plus_plus_real @ ( power_power_real @ ( re @ Y3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ Y3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% Complex_divide
thf(fact_9676_Im__Reals__divide,axiom,
    ! [R2: complex,Z: complex] :
      ( ( member_complex @ R2 @ real_V2521375963428798218omplex )
     => ( ( im @ ( divide1717551699836669952omplex @ R2 @ Z ) )
        = ( divide_divide_real @ ( times_times_real @ ( uminus_uminus_real @ ( re @ R2 ) ) @ ( im @ Z ) ) @ ( power_power_real @ ( real_V1022390504157884413omplex @ Z ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% Im_Reals_divide
thf(fact_9677_Re__Reals__divide,axiom,
    ! [R2: complex,Z: complex] :
      ( ( member_complex @ R2 @ real_V2521375963428798218omplex )
     => ( ( re @ ( divide1717551699836669952omplex @ R2 @ Z ) )
        = ( divide_divide_real @ ( times_times_real @ ( re @ R2 ) @ ( re @ Z ) ) @ ( power_power_real @ ( real_V1022390504157884413omplex @ Z ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% Re_Reals_divide
thf(fact_9678_imaginary__eq__real__iff,axiom,
    ! [Y: complex,X: complex] :
      ( ( member_complex @ Y @ real_V2521375963428798218omplex )
     => ( ( member_complex @ X @ real_V2521375963428798218omplex )
       => ( ( ( times_times_complex @ imaginary_unit @ Y )
            = X )
          = ( ( X = zero_zero_complex )
            & ( Y = zero_zero_complex ) ) ) ) ) ).

% imaginary_eq_real_iff
thf(fact_9679_real__eq__imaginary__iff,axiom,
    ! [Y: complex,X: complex] :
      ( ( member_complex @ Y @ real_V2521375963428798218omplex )
     => ( ( member_complex @ X @ real_V2521375963428798218omplex )
       => ( ( X
            = ( times_times_complex @ imaginary_unit @ Y ) )
          = ( ( X = zero_zero_complex )
            & ( Y = zero_zero_complex ) ) ) ) ) ).

% real_eq_imaginary_iff
thf(fact_9680_complex__diff__cnj,axiom,
    ! [Z: complex] :
      ( ( minus_minus_complex @ Z @ ( cnj @ Z ) )
      = ( times_times_complex @ ( real_V4546457046886955230omplex @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( im @ Z ) ) ) @ imaginary_unit ) ) ).

% complex_diff_cnj
thf(fact_9681_complex__mult__cnj,axiom,
    ! [Z: complex] :
      ( ( times_times_complex @ Z @ ( cnj @ Z ) )
      = ( real_V4546457046886955230omplex @ ( plus_plus_real @ ( power_power_real @ ( re @ Z ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ Z ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% complex_mult_cnj
thf(fact_9682_complex__cnj__mult,axiom,
    ! [X: complex,Y: complex] :
      ( ( cnj @ ( times_times_complex @ X @ Y ) )
      = ( times_times_complex @ ( cnj @ X ) @ ( cnj @ Y ) ) ) ).

% complex_cnj_mult
thf(fact_9683_complex__cnj__power,axiom,
    ! [X: complex,N2: nat] :
      ( ( cnj @ ( power_power_complex @ X @ N2 ) )
      = ( power_power_complex @ ( cnj @ X ) @ N2 ) ) ).

% complex_cnj_power
thf(fact_9684_complex__cnj__add,axiom,
    ! [X: complex,Y: complex] :
      ( ( cnj @ ( plus_plus_complex @ X @ Y ) )
      = ( plus_plus_complex @ ( cnj @ X ) @ ( cnj @ Y ) ) ) ).

% complex_cnj_add
thf(fact_9685_complex__cnj__numeral,axiom,
    ! [W: num] :
      ( ( cnj @ ( numera6690914467698888265omplex @ W ) )
      = ( numera6690914467698888265omplex @ W ) ) ).

% complex_cnj_numeral
thf(fact_9686_complex__cnj__diff,axiom,
    ! [X: complex,Y: complex] :
      ( ( cnj @ ( minus_minus_complex @ X @ Y ) )
      = ( minus_minus_complex @ ( cnj @ X ) @ ( cnj @ Y ) ) ) ).

% complex_cnj_diff
thf(fact_9687_complex__cnj__neg__numeral,axiom,
    ! [W: num] :
      ( ( cnj @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) )
      = ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) ) ).

% complex_cnj_neg_numeral
thf(fact_9688_complex__In__mult__cnj__zero,axiom,
    ! [Z: complex] :
      ( ( im @ ( times_times_complex @ Z @ ( cnj @ Z ) ) )
      = zero_zero_real ) ).

% complex_In_mult_cnj_zero
thf(fact_9689_sums__cnj,axiom,
    ! [F: nat > complex,L2: complex] :
      ( ( sums_complex
        @ ^ [X3: nat] : ( cnj @ ( F @ X3 ) )
        @ ( cnj @ L2 ) )
      = ( sums_complex @ F @ L2 ) ) ).

% sums_cnj
thf(fact_9690_Re__complex__div__eq__0,axiom,
    ! [A: complex,B: complex] :
      ( ( ( re @ ( divide1717551699836669952omplex @ A @ B ) )
        = zero_zero_real )
      = ( ( re @ ( times_times_complex @ A @ ( cnj @ B ) ) )
        = zero_zero_real ) ) ).

% Re_complex_div_eq_0
thf(fact_9691_Im__complex__div__eq__0,axiom,
    ! [A: complex,B: complex] :
      ( ( ( im @ ( divide1717551699836669952omplex @ A @ B ) )
        = zero_zero_real )
      = ( ( im @ ( times_times_complex @ A @ ( cnj @ B ) ) )
        = zero_zero_real ) ) ).

% Im_complex_div_eq_0
thf(fact_9692_complex__mod__sqrt__Re__mult__cnj,axiom,
    ( real_V1022390504157884413omplex
    = ( ^ [Z2: complex] : ( sqrt @ ( re @ ( times_times_complex @ Z2 @ ( cnj @ Z2 ) ) ) ) ) ) ).

% complex_mod_sqrt_Re_mult_cnj
thf(fact_9693_Re__complex__div__lt__0,axiom,
    ! [A: complex,B: complex] :
      ( ( ord_less_real @ ( re @ ( divide1717551699836669952omplex @ A @ B ) ) @ zero_zero_real )
      = ( ord_less_real @ ( re @ ( times_times_complex @ A @ ( cnj @ B ) ) ) @ zero_zero_real ) ) ).

% Re_complex_div_lt_0
thf(fact_9694_Re__complex__div__gt__0,axiom,
    ! [A: complex,B: complex] :
      ( ( ord_less_real @ zero_zero_real @ ( re @ ( divide1717551699836669952omplex @ A @ B ) ) )
      = ( ord_less_real @ zero_zero_real @ ( re @ ( times_times_complex @ A @ ( cnj @ B ) ) ) ) ) ).

% Re_complex_div_gt_0
thf(fact_9695_Re__complex__div__le__0,axiom,
    ! [A: complex,B: complex] :
      ( ( ord_less_eq_real @ ( re @ ( divide1717551699836669952omplex @ A @ B ) ) @ zero_zero_real )
      = ( ord_less_eq_real @ ( re @ ( times_times_complex @ A @ ( cnj @ B ) ) ) @ zero_zero_real ) ) ).

% Re_complex_div_le_0
thf(fact_9696_Re__complex__div__ge__0,axiom,
    ! [A: complex,B: complex] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( re @ ( divide1717551699836669952omplex @ A @ B ) ) )
      = ( ord_less_eq_real @ zero_zero_real @ ( re @ ( times_times_complex @ A @ ( cnj @ B ) ) ) ) ) ).

% Re_complex_div_ge_0
thf(fact_9697_Im__complex__div__lt__0,axiom,
    ! [A: complex,B: complex] :
      ( ( ord_less_real @ ( im @ ( divide1717551699836669952omplex @ A @ B ) ) @ zero_zero_real )
      = ( ord_less_real @ ( im @ ( times_times_complex @ A @ ( cnj @ B ) ) ) @ zero_zero_real ) ) ).

% Im_complex_div_lt_0
thf(fact_9698_Im__complex__div__gt__0,axiom,
    ! [A: complex,B: complex] :
      ( ( ord_less_real @ zero_zero_real @ ( im @ ( divide1717551699836669952omplex @ A @ B ) ) )
      = ( ord_less_real @ zero_zero_real @ ( im @ ( times_times_complex @ A @ ( cnj @ B ) ) ) ) ) ).

% Im_complex_div_gt_0
thf(fact_9699_Im__complex__div__le__0,axiom,
    ! [A: complex,B: complex] :
      ( ( ord_less_eq_real @ ( im @ ( divide1717551699836669952omplex @ A @ B ) ) @ zero_zero_real )
      = ( ord_less_eq_real @ ( im @ ( times_times_complex @ A @ ( cnj @ B ) ) ) @ zero_zero_real ) ) ).

% Im_complex_div_le_0
thf(fact_9700_Im__complex__div__ge__0,axiom,
    ! [A: complex,B: complex] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( im @ ( divide1717551699836669952omplex @ A @ B ) ) )
      = ( ord_less_eq_real @ zero_zero_real @ ( im @ ( times_times_complex @ A @ ( cnj @ B ) ) ) ) ) ).

% Im_complex_div_ge_0
thf(fact_9701_complex__mod__mult__cnj,axiom,
    ! [Z: complex] :
      ( ( real_V1022390504157884413omplex @ ( times_times_complex @ Z @ ( cnj @ Z ) ) )
      = ( power_power_real @ ( real_V1022390504157884413omplex @ Z ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% complex_mod_mult_cnj
thf(fact_9702_complex__div__gt__0,axiom,
    ! [A: complex,B: complex] :
      ( ( ( ord_less_real @ zero_zero_real @ ( re @ ( divide1717551699836669952omplex @ A @ B ) ) )
        = ( ord_less_real @ zero_zero_real @ ( re @ ( times_times_complex @ A @ ( cnj @ B ) ) ) ) )
      & ( ( ord_less_real @ zero_zero_real @ ( im @ ( divide1717551699836669952omplex @ A @ B ) ) )
        = ( ord_less_real @ zero_zero_real @ ( im @ ( times_times_complex @ A @ ( cnj @ B ) ) ) ) ) ) ).

% complex_div_gt_0
thf(fact_9703_complex__norm__square,axiom,
    ! [Z: complex] :
      ( ( real_V4546457046886955230omplex @ ( power_power_real @ ( real_V1022390504157884413omplex @ Z ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( times_times_complex @ Z @ ( cnj @ Z ) ) ) ).

% complex_norm_square
thf(fact_9704_complex__add__cnj,axiom,
    ! [Z: complex] :
      ( ( plus_plus_complex @ Z @ ( cnj @ Z ) )
      = ( real_V4546457046886955230omplex @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( re @ Z ) ) ) ) ).

% complex_add_cnj
thf(fact_9705_complex__div__cnj,axiom,
    ( divide1717551699836669952omplex
    = ( ^ [A4: complex,B4: complex] : ( divide1717551699836669952omplex @ ( times_times_complex @ A4 @ ( cnj @ B4 ) ) @ ( real_V4546457046886955230omplex @ ( power_power_real @ ( real_V1022390504157884413omplex @ B4 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% complex_div_cnj
thf(fact_9706_cnj__add__mult__eq__Re,axiom,
    ! [Z: complex,W: complex] :
      ( ( plus_plus_complex @ ( times_times_complex @ Z @ ( cnj @ W ) ) @ ( times_times_complex @ ( cnj @ Z ) @ W ) )
      = ( real_V4546457046886955230omplex @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( re @ ( times_times_complex @ Z @ ( cnj @ W ) ) ) ) ) ) ).

% cnj_add_mult_eq_Re
thf(fact_9707_divmod__step__integer__def,axiom,
    ( unique4921790084139445826nteger
    = ( ^ [L: num] :
          ( produc6916734918728496179nteger
          @ ^ [Q4: code_integer,R5: code_integer] : ( if_Pro6119634080678213985nteger @ ( ord_le3102999989581377725nteger @ ( numera6620942414471956472nteger @ L ) @ R5 ) @ ( produc1086072967326762835nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ Q4 ) @ one_one_Code_integer ) @ ( minus_8373710615458151222nteger @ R5 @ ( numera6620942414471956472nteger @ L ) ) ) @ ( produc1086072967326762835nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ Q4 ) @ R5 ) ) ) ) ) ).

% divmod_step_integer_def
thf(fact_9708_card__Collect__less__nat,axiom,
    ! [N2: nat] :
      ( ( finite_card_nat
        @ ( collect_nat
          @ ^ [I5: nat] : ( ord_less_nat @ I5 @ N2 ) ) )
      = N2 ) ).

% card_Collect_less_nat
thf(fact_9709_card__atMost,axiom,
    ! [U: nat] :
      ( ( finite_card_nat @ ( set_ord_atMost_nat @ U ) )
      = ( suc @ U ) ) ).

% card_atMost
thf(fact_9710_card__atLeastLessThan,axiom,
    ! [L2: nat,U: nat] :
      ( ( finite_card_nat @ ( set_or4665077453230672383an_nat @ L2 @ U ) )
      = ( minus_minus_nat @ U @ L2 ) ) ).

% card_atLeastLessThan
thf(fact_9711_card__Collect__le__nat,axiom,
    ! [N2: nat] :
      ( ( finite_card_nat
        @ ( collect_nat
          @ ^ [I5: nat] : ( ord_less_eq_nat @ I5 @ N2 ) ) )
      = ( suc @ N2 ) ) ).

% card_Collect_le_nat
thf(fact_9712_card__atLeastAtMost,axiom,
    ! [L2: nat,U: nat] :
      ( ( finite_card_nat @ ( set_or1269000886237332187st_nat @ L2 @ U ) )
      = ( minus_minus_nat @ ( suc @ U ) @ L2 ) ) ).

% card_atLeastAtMost
thf(fact_9713_card__atLeastLessThan__int,axiom,
    ! [L2: int,U: int] :
      ( ( finite_card_int @ ( set_or4662586982721622107an_int @ L2 @ U ) )
      = ( nat2 @ ( minus_minus_int @ U @ L2 ) ) ) ).

% card_atLeastLessThan_int
thf(fact_9714_card__atLeastAtMost__int,axiom,
    ! [L2: int,U: int] :
      ( ( finite_card_int @ ( set_or1266510415728281911st_int @ L2 @ U ) )
      = ( nat2 @ ( plus_plus_int @ ( minus_minus_int @ U @ L2 ) @ one_one_int ) ) ) ).

% card_atLeastAtMost_int
thf(fact_9715_minus__integer__code_I2_J,axiom,
    ! [L2: code_integer] :
      ( ( minus_8373710615458151222nteger @ zero_z3403309356797280102nteger @ L2 )
      = ( uminus1351360451143612070nteger @ L2 ) ) ).

% minus_integer_code(2)
thf(fact_9716_minus__integer__code_I1_J,axiom,
    ! [K: code_integer] :
      ( ( minus_8373710615458151222nteger @ K @ zero_z3403309356797280102nteger )
      = K ) ).

% minus_integer_code(1)
thf(fact_9717_divmod__integer_H__def,axiom,
    ( unique3479559517661332726nteger
    = ( ^ [M6: num,N3: num] : ( produc1086072967326762835nteger @ ( divide6298287555418463151nteger @ ( numera6620942414471956472nteger @ M6 ) @ ( numera6620942414471956472nteger @ N3 ) ) @ ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ M6 ) @ ( numera6620942414471956472nteger @ N3 ) ) ) ) ) ).

% divmod_integer'_def
thf(fact_9718_times__integer__code_I1_J,axiom,
    ! [K: code_integer] :
      ( ( times_3573771949741848930nteger @ K @ zero_z3403309356797280102nteger )
      = zero_z3403309356797280102nteger ) ).

% times_integer_code(1)
thf(fact_9719_times__integer__code_I2_J,axiom,
    ! [L2: code_integer] :
      ( ( times_3573771949741848930nteger @ zero_z3403309356797280102nteger @ L2 )
      = zero_z3403309356797280102nteger ) ).

% times_integer_code(2)
thf(fact_9720_less__eq__integer__code_I1_J,axiom,
    ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ zero_z3403309356797280102nteger ).

% less_eq_integer_code(1)
thf(fact_9721_plus__integer__code_I1_J,axiom,
    ! [K: code_integer] :
      ( ( plus_p5714425477246183910nteger @ K @ zero_z3403309356797280102nteger )
      = K ) ).

% plus_integer_code(1)
thf(fact_9722_plus__integer__code_I2_J,axiom,
    ! [L2: code_integer] :
      ( ( plus_p5714425477246183910nteger @ zero_z3403309356797280102nteger @ L2 )
      = L2 ) ).

% plus_integer_code(2)
thf(fact_9723_nat_Odisc__eq__case_I2_J,axiom,
    ! [Nat: nat] :
      ( ( Nat != zero_zero_nat )
      = ( case_nat_o @ $false
        @ ^ [Uu3: nat] : $true
        @ Nat ) ) ).

% nat.disc_eq_case(2)
thf(fact_9724_nat_Odisc__eq__case_I1_J,axiom,
    ! [Nat: nat] :
      ( ( Nat = zero_zero_nat )
      = ( case_nat_o @ $true
        @ ^ [Uu3: nat] : $false
        @ Nat ) ) ).

% nat.disc_eq_case(1)
thf(fact_9725_card__less__Suc2,axiom,
    ! [M7: set_nat,I2: nat] :
      ( ~ ( member_nat @ zero_zero_nat @ M7 )
     => ( ( finite_card_nat
          @ ( collect_nat
            @ ^ [K3: nat] :
                ( ( member_nat @ ( suc @ K3 ) @ M7 )
                & ( ord_less_nat @ K3 @ I2 ) ) ) )
        = ( finite_card_nat
          @ ( collect_nat
            @ ^ [K3: nat] :
                ( ( member_nat @ K3 @ M7 )
                & ( ord_less_nat @ K3 @ ( suc @ I2 ) ) ) ) ) ) ) ).

% card_less_Suc2
thf(fact_9726_card__less__Suc,axiom,
    ! [M7: set_nat,I2: nat] :
      ( ( member_nat @ zero_zero_nat @ M7 )
     => ( ( suc
          @ ( finite_card_nat
            @ ( collect_nat
              @ ^ [K3: nat] :
                  ( ( member_nat @ ( suc @ K3 ) @ M7 )
                  & ( ord_less_nat @ K3 @ I2 ) ) ) ) )
        = ( finite_card_nat
          @ ( collect_nat
            @ ^ [K3: nat] :
                ( ( member_nat @ K3 @ M7 )
                & ( ord_less_nat @ K3 @ ( suc @ I2 ) ) ) ) ) ) ) ).

% card_less_Suc
thf(fact_9727_card__less,axiom,
    ! [M7: set_nat,I2: nat] :
      ( ( member_nat @ zero_zero_nat @ M7 )
     => ( ( finite_card_nat
          @ ( collect_nat
            @ ^ [K3: nat] :
                ( ( member_nat @ K3 @ M7 )
                & ( ord_less_nat @ K3 @ ( suc @ I2 ) ) ) ) )
       != zero_zero_nat ) ) ).

% card_less
thf(fact_9728_subset__card__intvl__is__intvl,axiom,
    ! [A2: set_nat,K: nat] :
      ( ( ord_less_eq_set_nat @ A2 @ ( set_or4665077453230672383an_nat @ K @ ( plus_plus_nat @ K @ ( finite_card_nat @ A2 ) ) ) )
     => ( A2
        = ( set_or4665077453230672383an_nat @ K @ ( plus_plus_nat @ K @ ( finite_card_nat @ A2 ) ) ) ) ) ).

% subset_card_intvl_is_intvl
thf(fact_9729_one__natural_Orsp,axiom,
    one_one_nat = one_one_nat ).

% one_natural.rsp
thf(fact_9730_less__eq__nat_Osimps_I2_J,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ ( suc @ M ) @ N2 )
      = ( case_nat_o @ $false @ ( ord_less_eq_nat @ M ) @ N2 ) ) ).

% less_eq_nat.simps(2)
thf(fact_9731_max__Suc2,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_max_nat @ M @ ( suc @ N2 ) )
      = ( case_nat_nat @ ( suc @ N2 )
        @ ^ [M4: nat] : ( suc @ ( ord_max_nat @ M4 @ N2 ) )
        @ M ) ) ).

% max_Suc2
thf(fact_9732_max__Suc1,axiom,
    ! [N2: nat,M: nat] :
      ( ( ord_max_nat @ ( suc @ N2 ) @ M )
      = ( case_nat_nat @ ( suc @ N2 )
        @ ^ [M4: nat] : ( suc @ ( ord_max_nat @ N2 @ M4 ) )
        @ M ) ) ).

% max_Suc1
thf(fact_9733_subset__eq__atLeast0__lessThan__card,axiom,
    ! [N4: set_nat,N2: nat] :
      ( ( ord_less_eq_set_nat @ N4 @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N2 ) )
     => ( ord_less_eq_nat @ ( finite_card_nat @ N4 ) @ N2 ) ) ).

% subset_eq_atLeast0_lessThan_card
thf(fact_9734_card__sum__le__nat__sum,axiom,
    ! [S3: set_nat] :
      ( ord_less_eq_nat
      @ ( groups3542108847815614940at_nat
        @ ^ [X3: nat] : X3
        @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ ( finite_card_nat @ S3 ) ) )
      @ ( groups3542108847815614940at_nat
        @ ^ [X3: nat] : X3
        @ S3 ) ) ).

% card_sum_le_nat_sum
thf(fact_9735_card__nth__roots,axiom,
    ! [C: complex,N2: nat] :
      ( ( C != zero_zero_complex )
     => ( ( ord_less_nat @ zero_zero_nat @ N2 )
       => ( ( finite_card_complex
            @ ( collect_complex
              @ ^ [Z2: complex] :
                  ( ( power_power_complex @ Z2 @ N2 )
                  = C ) ) )
          = N2 ) ) ) ).

% card_nth_roots
thf(fact_9736_card__roots__unity__eq,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( finite_card_complex
          @ ( collect_complex
            @ ^ [Z2: complex] :
                ( ( power_power_complex @ Z2 @ N2 )
                = one_one_complex ) ) )
        = N2 ) ) ).

% card_roots_unity_eq
thf(fact_9737_diff__Suc,axiom,
    ! [M: nat,N2: nat] :
      ( ( minus_minus_nat @ M @ ( suc @ N2 ) )
      = ( case_nat_nat @ zero_zero_nat
        @ ^ [K3: nat] : K3
        @ ( minus_minus_nat @ M @ N2 ) ) ) ).

% diff_Suc
thf(fact_9738_integer__of__int__code,axiom,
    ( code_integer_of_int
    = ( ^ [K3: int] :
          ( if_Code_integer @ ( ord_less_int @ K3 @ zero_zero_int ) @ ( uminus1351360451143612070nteger @ ( code_integer_of_int @ ( uminus_uminus_int @ K3 ) ) )
          @ ( if_Code_integer @ ( K3 = zero_zero_int ) @ zero_z3403309356797280102nteger
            @ ( if_Code_integer
              @ ( ( modulo_modulo_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
                = zero_zero_int )
              @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( code_integer_of_int @ ( divide_divide_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) )
              @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( code_integer_of_int @ ( divide_divide_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) @ one_one_Code_integer ) ) ) ) ) ) ).

% integer_of_int_code
thf(fact_9739_plus__integer_Oabs__eq,axiom,
    ! [Xa2: int,X: int] :
      ( ( plus_p5714425477246183910nteger @ ( code_integer_of_int @ Xa2 ) @ ( code_integer_of_int @ X ) )
      = ( code_integer_of_int @ ( plus_plus_int @ Xa2 @ X ) ) ) ).

% plus_integer.abs_eq
thf(fact_9740_times__integer_Oabs__eq,axiom,
    ! [Xa2: int,X: int] :
      ( ( times_3573771949741848930nteger @ ( code_integer_of_int @ Xa2 ) @ ( code_integer_of_int @ X ) )
      = ( code_integer_of_int @ ( times_times_int @ Xa2 @ X ) ) ) ).

% times_integer.abs_eq
thf(fact_9741_less__eq__integer_Oabs__eq,axiom,
    ! [Xa2: int,X: int] :
      ( ( ord_le3102999989581377725nteger @ ( code_integer_of_int @ Xa2 ) @ ( code_integer_of_int @ X ) )
      = ( ord_less_eq_int @ Xa2 @ X ) ) ).

% less_eq_integer.abs_eq
thf(fact_9742_minus__integer_Oabs__eq,axiom,
    ! [Xa2: int,X: int] :
      ( ( minus_8373710615458151222nteger @ ( code_integer_of_int @ Xa2 ) @ ( code_integer_of_int @ X ) )
      = ( code_integer_of_int @ ( minus_minus_int @ Xa2 @ X ) ) ) ).

% minus_integer.abs_eq
thf(fact_9743_Code__Numeral_Opositive__def,axiom,
    code_positive = numera6620942414471956472nteger ).

% Code_Numeral.positive_def
thf(fact_9744_integer__of__num_I3_J,axiom,
    ! [N2: num] :
      ( ( code_integer_of_num @ ( bit1 @ N2 ) )
      = ( plus_p5714425477246183910nteger @ ( plus_p5714425477246183910nteger @ ( code_integer_of_num @ N2 ) @ ( code_integer_of_num @ N2 ) ) @ one_one_Code_integer ) ) ).

% integer_of_num(3)
thf(fact_9745_integer__of__num__def,axiom,
    code_integer_of_num = numera6620942414471956472nteger ).

% integer_of_num_def
thf(fact_9746_integer__of__num__triv_I1_J,axiom,
    ( ( code_integer_of_num @ one )
    = one_one_Code_integer ) ).

% integer_of_num_triv(1)
thf(fact_9747_integer__of__num_I2_J,axiom,
    ! [N2: num] :
      ( ( code_integer_of_num @ ( bit0 @ N2 ) )
      = ( plus_p5714425477246183910nteger @ ( code_integer_of_num @ N2 ) @ ( code_integer_of_num @ N2 ) ) ) ).

% integer_of_num(2)
thf(fact_9748_integer__of__num__triv_I2_J,axiom,
    ( ( code_integer_of_num @ ( bit0 @ one ) )
    = ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ).

% integer_of_num_triv(2)
thf(fact_9749_int__of__integer__code,axiom,
    ( code_int_of_integer
    = ( ^ [K3: code_integer] :
          ( if_int @ ( ord_le6747313008572928689nteger @ K3 @ zero_z3403309356797280102nteger ) @ ( uminus_uminus_int @ ( code_int_of_integer @ ( uminus1351360451143612070nteger @ K3 ) ) )
          @ ( if_int @ ( K3 = zero_z3403309356797280102nteger ) @ zero_zero_int
            @ ( produc1553301316500091796er_int
              @ ^ [L: code_integer,J3: code_integer] : ( if_int @ ( J3 = zero_z3403309356797280102nteger ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( code_int_of_integer @ L ) ) @ ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( code_int_of_integer @ L ) ) @ one_one_int ) )
              @ ( code_divmod_integer @ K3 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% int_of_integer_code
thf(fact_9750_bit__cut__integer__def,axiom,
    ( code_bit_cut_integer
    = ( ^ [K3: code_integer] :
          ( produc6677183202524767010eger_o @ ( divide6298287555418463151nteger @ K3 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
          @ ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ K3 ) ) ) ) ).

% bit_cut_integer_def
thf(fact_9751_num__of__integer__code,axiom,
    ( code_num_of_integer
    = ( ^ [K3: code_integer] :
          ( if_num @ ( ord_le3102999989581377725nteger @ K3 @ one_one_Code_integer ) @ one
          @ ( produc7336495610019696514er_num
            @ ^ [L: code_integer,J3: code_integer] : ( if_num @ ( J3 = zero_z3403309356797280102nteger ) @ ( plus_plus_num @ ( code_num_of_integer @ L ) @ ( code_num_of_integer @ L ) ) @ ( plus_plus_num @ ( plus_plus_num @ ( code_num_of_integer @ L ) @ ( code_num_of_integer @ L ) ) @ one ) )
            @ ( code_divmod_integer @ K3 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ) ).

% num_of_integer_code
thf(fact_9752_int__of__integer__max,axiom,
    ! [K: code_integer,L2: code_integer] :
      ( ( code_int_of_integer @ ( ord_max_Code_integer @ K @ L2 ) )
      = ( ord_max_int @ ( code_int_of_integer @ K ) @ ( code_int_of_integer @ L2 ) ) ) ).

% int_of_integer_max
thf(fact_9753_int__of__integer__numeral,axiom,
    ! [K: num] :
      ( ( code_int_of_integer @ ( numera6620942414471956472nteger @ K ) )
      = ( numeral_numeral_int @ K ) ) ).

% int_of_integer_numeral
thf(fact_9754_plus__integer_Orep__eq,axiom,
    ! [X: code_integer,Xa2: code_integer] :
      ( ( code_int_of_integer @ ( plus_p5714425477246183910nteger @ X @ Xa2 ) )
      = ( plus_plus_int @ ( code_int_of_integer @ X ) @ ( code_int_of_integer @ Xa2 ) ) ) ).

% plus_integer.rep_eq
thf(fact_9755_times__integer_Orep__eq,axiom,
    ! [X: code_integer,Xa2: code_integer] :
      ( ( code_int_of_integer @ ( times_3573771949741848930nteger @ X @ Xa2 ) )
      = ( times_times_int @ ( code_int_of_integer @ X ) @ ( code_int_of_integer @ Xa2 ) ) ) ).

% times_integer.rep_eq
thf(fact_9756_minus__integer_Orep__eq,axiom,
    ! [X: code_integer,Xa2: code_integer] :
      ( ( code_int_of_integer @ ( minus_8373710615458151222nteger @ X @ Xa2 ) )
      = ( minus_minus_int @ ( code_int_of_integer @ X ) @ ( code_int_of_integer @ Xa2 ) ) ) ).

% minus_integer.rep_eq
thf(fact_9757_less__eq__integer_Orep__eq,axiom,
    ( ord_le3102999989581377725nteger
    = ( ^ [X3: code_integer,Xa4: code_integer] : ( ord_less_eq_int @ ( code_int_of_integer @ X3 ) @ ( code_int_of_integer @ Xa4 ) ) ) ) ).

% less_eq_integer.rep_eq
thf(fact_9758_integer__less__eq__iff,axiom,
    ( ord_le3102999989581377725nteger
    = ( ^ [K3: code_integer,L: code_integer] : ( ord_less_eq_int @ ( code_int_of_integer @ K3 ) @ ( code_int_of_integer @ L ) ) ) ) ).

% integer_less_eq_iff
thf(fact_9759_bit__cut__integer__code,axiom,
    ( code_bit_cut_integer
    = ( ^ [K3: code_integer] :
          ( if_Pro5737122678794959658eger_o @ ( K3 = zero_z3403309356797280102nteger ) @ ( produc6677183202524767010eger_o @ zero_z3403309356797280102nteger @ $false )
          @ ( produc9125791028180074456eger_o
            @ ^ [R5: code_integer,S6: code_integer] : ( produc6677183202524767010eger_o @ ( if_Code_integer @ ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ K3 ) @ R5 @ ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ R5 ) @ S6 ) ) @ ( S6 = one_one_Code_integer ) )
            @ ( code_divmod_abs @ K3 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ) ).

% bit_cut_integer_code
thf(fact_9760_nat__of__integer__code,axiom,
    ( code_nat_of_integer
    = ( ^ [K3: code_integer] :
          ( if_nat @ ( ord_le3102999989581377725nteger @ K3 @ zero_z3403309356797280102nteger ) @ zero_zero_nat
          @ ( produc1555791787009142072er_nat
            @ ^ [L: code_integer,J3: code_integer] : ( if_nat @ ( J3 = zero_z3403309356797280102nteger ) @ ( plus_plus_nat @ ( code_nat_of_integer @ L ) @ ( code_nat_of_integer @ L ) ) @ ( plus_plus_nat @ ( plus_plus_nat @ ( code_nat_of_integer @ L ) @ ( code_nat_of_integer @ L ) ) @ one_one_nat ) )
            @ ( code_divmod_integer @ K3 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ) ).

% nat_of_integer_code
thf(fact_9761_of__nat__of__integer,axiom,
    ! [K: code_integer] :
      ( ( semiri4939895301339042750nteger @ ( code_nat_of_integer @ K ) )
      = ( ord_max_Code_integer @ zero_z3403309356797280102nteger @ K ) ) ).

% of_nat_of_integer
thf(fact_9762_nat__of__integer__non__positive,axiom,
    ! [K: code_integer] :
      ( ( ord_le3102999989581377725nteger @ K @ zero_z3403309356797280102nteger )
     => ( ( code_nat_of_integer @ K )
        = zero_zero_nat ) ) ).

% nat_of_integer_non_positive
thf(fact_9763_nat__of__integer__code__post_I3_J,axiom,
    ! [K: num] :
      ( ( code_nat_of_integer @ ( numera6620942414471956472nteger @ K ) )
      = ( numeral_numeral_nat @ K ) ) ).

% nat_of_integer_code_post(3)
thf(fact_9764_nat__of__integer__code__post_I2_J,axiom,
    ( ( code_nat_of_integer @ one_one_Code_integer )
    = one_one_nat ) ).

% nat_of_integer_code_post(2)
thf(fact_9765_pred__def,axiom,
    ( pred
    = ( case_nat_nat @ zero_zero_nat
      @ ^ [X24: nat] : X24 ) ) ).

% pred_def
thf(fact_9766_divmod__integer__code,axiom,
    ( code_divmod_integer
    = ( ^ [K3: code_integer,L: code_integer] :
          ( if_Pro6119634080678213985nteger @ ( K3 = zero_z3403309356797280102nteger ) @ ( produc1086072967326762835nteger @ zero_z3403309356797280102nteger @ zero_z3403309356797280102nteger )
          @ ( if_Pro6119634080678213985nteger @ ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ L )
            @ ( if_Pro6119634080678213985nteger @ ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ K3 ) @ ( code_divmod_abs @ K3 @ L )
              @ ( produc6916734918728496179nteger
                @ ^ [R5: code_integer,S6: code_integer] : ( if_Pro6119634080678213985nteger @ ( S6 = zero_z3403309356797280102nteger ) @ ( produc1086072967326762835nteger @ ( uminus1351360451143612070nteger @ R5 ) @ zero_z3403309356797280102nteger ) @ ( produc1086072967326762835nteger @ ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ R5 ) @ one_one_Code_integer ) @ ( minus_8373710615458151222nteger @ L @ S6 ) ) )
                @ ( code_divmod_abs @ K3 @ L ) ) )
            @ ( if_Pro6119634080678213985nteger @ ( L = zero_z3403309356797280102nteger ) @ ( produc1086072967326762835nteger @ zero_z3403309356797280102nteger @ K3 )
              @ ( produc6499014454317279255nteger @ uminus1351360451143612070nteger
                @ ( if_Pro6119634080678213985nteger @ ( ord_le6747313008572928689nteger @ K3 @ zero_z3403309356797280102nteger ) @ ( code_divmod_abs @ K3 @ L )
                  @ ( produc6916734918728496179nteger
                    @ ^ [R5: code_integer,S6: code_integer] : ( if_Pro6119634080678213985nteger @ ( S6 = zero_z3403309356797280102nteger ) @ ( produc1086072967326762835nteger @ ( uminus1351360451143612070nteger @ R5 ) @ zero_z3403309356797280102nteger ) @ ( produc1086072967326762835nteger @ ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ R5 ) @ one_one_Code_integer ) @ ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ L ) @ S6 ) ) )
                    @ ( code_divmod_abs @ K3 @ L ) ) ) ) ) ) ) ) ) ).

% divmod_integer_code
thf(fact_9767_binomial__def,axiom,
    ( binomial
    = ( ^ [N3: nat,K3: nat] :
          ( finite_card_set_nat
          @ ( collect_set_nat
            @ ^ [K7: set_nat] :
                ( ( member_set_nat @ K7 @ ( pow_nat @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N3 ) ) )
                & ( ( finite_card_nat @ K7 )
                  = K3 ) ) ) ) ) ) ).

% binomial_def
thf(fact_9768_drop__bit__numeral__minus__bit1,axiom,
    ! [L2: num,K: num] :
      ( ( bit_se8568078237143864401it_int @ ( numeral_numeral_nat @ L2 ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ K ) ) ) )
      = ( bit_se8568078237143864401it_int @ ( pred_numeral @ L2 ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( inc @ K ) ) ) ) ) ).

% drop_bit_numeral_minus_bit1
thf(fact_9769_prod__decode__aux_Osimps,axiom,
    ( nat_prod_decode_aux
    = ( ^ [K3: nat,M6: nat] : ( if_Pro6206227464963214023at_nat @ ( ord_less_eq_nat @ M6 @ K3 ) @ ( product_Pair_nat_nat @ M6 @ ( minus_minus_nat @ K3 @ M6 ) ) @ ( nat_prod_decode_aux @ ( suc @ K3 ) @ ( minus_minus_nat @ M6 @ ( suc @ K3 ) ) ) ) ) ) ).

% prod_decode_aux.simps
thf(fact_9770_prod__decode__aux_Oelims,axiom,
    ! [X: nat,Xa2: nat,Y: product_prod_nat_nat] :
      ( ( ( nat_prod_decode_aux @ X @ Xa2 )
        = Y )
     => ( ( ( ord_less_eq_nat @ Xa2 @ X )
         => ( Y
            = ( product_Pair_nat_nat @ Xa2 @ ( minus_minus_nat @ X @ Xa2 ) ) ) )
        & ( ~ ( ord_less_eq_nat @ Xa2 @ X )
         => ( Y
            = ( nat_prod_decode_aux @ ( suc @ X ) @ ( minus_minus_nat @ Xa2 @ ( suc @ X ) ) ) ) ) ) ) ).

% prod_decode_aux.elims
thf(fact_9771_drop__bit__nonnegative__int__iff,axiom,
    ! [N2: nat,K: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( bit_se8568078237143864401it_int @ N2 @ K ) )
      = ( ord_less_eq_int @ zero_zero_int @ K ) ) ).

% drop_bit_nonnegative_int_iff
thf(fact_9772_drop__bit__negative__int__iff,axiom,
    ! [N2: nat,K: int] :
      ( ( ord_less_int @ ( bit_se8568078237143864401it_int @ N2 @ K ) @ zero_zero_int )
      = ( ord_less_int @ K @ zero_zero_int ) ) ).

% drop_bit_negative_int_iff
thf(fact_9773_drop__bit__minus__one,axiom,
    ! [N2: nat] :
      ( ( bit_se8568078237143864401it_int @ N2 @ ( uminus_uminus_int @ one_one_int ) )
      = ( uminus_uminus_int @ one_one_int ) ) ).

% drop_bit_minus_one
thf(fact_9774_drop__bit__Suc__minus__bit0,axiom,
    ! [N2: nat,K: num] :
      ( ( bit_se8568078237143864401it_int @ ( suc @ N2 ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ K ) ) ) )
      = ( bit_se8568078237143864401it_int @ N2 @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) ) ) ).

% drop_bit_Suc_minus_bit0
thf(fact_9775_drop__bit__numeral__minus__bit0,axiom,
    ! [L2: num,K: num] :
      ( ( bit_se8568078237143864401it_int @ ( numeral_numeral_nat @ L2 ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ K ) ) ) )
      = ( bit_se8568078237143864401it_int @ ( pred_numeral @ L2 ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) ) ) ).

% drop_bit_numeral_minus_bit0
thf(fact_9776_drop__bit__Suc__minus__bit1,axiom,
    ! [N2: nat,K: num] :
      ( ( bit_se8568078237143864401it_int @ ( suc @ N2 ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ K ) ) ) )
      = ( bit_se8568078237143864401it_int @ N2 @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( inc @ K ) ) ) ) ) ).

% drop_bit_Suc_minus_bit1
thf(fact_9777_drop__bit__push__bit__int,axiom,
    ! [M: nat,N2: nat,K: int] :
      ( ( bit_se8568078237143864401it_int @ M @ ( bit_se545348938243370406it_int @ N2 @ K ) )
      = ( bit_se8568078237143864401it_int @ ( minus_minus_nat @ M @ N2 ) @ ( bit_se545348938243370406it_int @ ( minus_minus_nat @ N2 @ M ) @ K ) ) ) ).

% drop_bit_push_bit_int
thf(fact_9778_drop__bit__int__def,axiom,
    ( bit_se8568078237143864401it_int
    = ( ^ [N3: nat,K3: int] : ( divide_divide_int @ K3 @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N3 ) ) ) ) ).

% drop_bit_int_def
thf(fact_9779_prod__decode__aux_Opelims,axiom,
    ! [X: nat,Xa2: nat,Y: product_prod_nat_nat] :
      ( ( ( nat_prod_decode_aux @ X @ Xa2 )
        = Y )
     => ( ( accp_P4275260045618599050at_nat @ nat_pr5047031295181774490ux_rel @ ( product_Pair_nat_nat @ X @ Xa2 ) )
       => ~ ( ( ( ( ord_less_eq_nat @ Xa2 @ X )
               => ( Y
                  = ( product_Pair_nat_nat @ Xa2 @ ( minus_minus_nat @ X @ Xa2 ) ) ) )
              & ( ~ ( ord_less_eq_nat @ Xa2 @ X )
               => ( Y
                  = ( nat_prod_decode_aux @ ( suc @ X ) @ ( minus_minus_nat @ Xa2 @ ( suc @ X ) ) ) ) ) )
           => ~ ( accp_P4275260045618599050at_nat @ nat_pr5047031295181774490ux_rel @ ( product_Pair_nat_nat @ X @ Xa2 ) ) ) ) ) ).

% prod_decode_aux.pelims
thf(fact_9780_Suc__0__mod__numeral,axiom,
    ! [K: num] :
      ( ( modulo_modulo_nat @ ( suc @ zero_zero_nat ) @ ( numeral_numeral_nat @ K ) )
      = ( product_snd_nat_nat @ ( unique5055182867167087721od_nat @ one @ K ) ) ) ).

% Suc_0_mod_numeral
thf(fact_9781_Suc__0__div__numeral,axiom,
    ! [K: num] :
      ( ( divide_divide_nat @ ( suc @ zero_zero_nat ) @ ( numeral_numeral_nat @ K ) )
      = ( product_fst_nat_nat @ ( unique5055182867167087721od_nat @ one @ K ) ) ) ).

% Suc_0_div_numeral
thf(fact_9782_drop__bit__of__Suc__0,axiom,
    ! [N2: nat] :
      ( ( bit_se8570568707652914677it_nat @ N2 @ ( suc @ zero_zero_nat ) )
      = ( zero_n2687167440665602831ol_nat @ ( N2 = zero_zero_nat ) ) ) ).

% drop_bit_of_Suc_0
thf(fact_9783_fst__divmod__nat,axiom,
    ! [M: nat,N2: nat] :
      ( ( product_fst_nat_nat @ ( divmod_nat @ M @ N2 ) )
      = ( divide_divide_nat @ M @ N2 ) ) ).

% fst_divmod_nat
thf(fact_9784_drop__bit__nat__eq,axiom,
    ! [N2: nat,K: int] :
      ( ( bit_se8570568707652914677it_nat @ N2 @ ( nat2 @ K ) )
      = ( nat2 @ ( bit_se8568078237143864401it_int @ N2 @ K ) ) ) ).

% drop_bit_nat_eq
thf(fact_9785_drop__bit__nat__def,axiom,
    ( bit_se8570568707652914677it_nat
    = ( ^ [N3: nat,M6: nat] : ( divide_divide_nat @ M6 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) ) ) ) ).

% drop_bit_nat_def
thf(fact_9786_one__mod__minus__numeral,axiom,
    ! [N2: num] :
      ( ( modulo_modulo_int @ one_one_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) )
      = ( uminus_uminus_int @ ( adjust_mod @ ( numeral_numeral_int @ N2 ) @ ( product_snd_int_int @ ( unique5052692396658037445od_int @ one @ N2 ) ) ) ) ) ).

% one_mod_minus_numeral
thf(fact_9787_minus__one__mod__numeral,axiom,
    ! [N2: num] :
      ( ( modulo_modulo_int @ ( uminus_uminus_int @ one_one_int ) @ ( numeral_numeral_int @ N2 ) )
      = ( adjust_mod @ ( numeral_numeral_int @ N2 ) @ ( product_snd_int_int @ ( unique5052692396658037445od_int @ one @ N2 ) ) ) ) ).

% minus_one_mod_numeral
thf(fact_9788_minus__numeral__mod__numeral,axiom,
    ! [M: num,N2: num] :
      ( ( modulo_modulo_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N2 ) )
      = ( adjust_mod @ ( numeral_numeral_int @ N2 ) @ ( product_snd_int_int @ ( unique5052692396658037445od_int @ M @ N2 ) ) ) ) ).

% minus_numeral_mod_numeral
thf(fact_9789_numeral__mod__minus__numeral,axiom,
    ! [M: num,N2: num] :
      ( ( modulo_modulo_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) )
      = ( uminus_uminus_int @ ( adjust_mod @ ( numeral_numeral_int @ N2 ) @ ( product_snd_int_int @ ( unique5052692396658037445od_int @ M @ N2 ) ) ) ) ) ).

% numeral_mod_minus_numeral
thf(fact_9790_Divides_Oadjust__mod__def,axiom,
    ( adjust_mod
    = ( ^ [L: int,R5: int] : ( if_int @ ( R5 = zero_zero_int ) @ zero_zero_int @ ( minus_minus_int @ L @ R5 ) ) ) ) ).

% Divides.adjust_mod_def
thf(fact_9791_bezw_Osimps,axiom,
    ( bezw
    = ( ^ [X3: nat,Y3: nat] : ( if_Pro3027730157355071871nt_int @ ( Y3 = zero_zero_nat ) @ ( product_Pair_int_int @ one_one_int @ zero_zero_int ) @ ( product_Pair_int_int @ ( product_snd_int_int @ ( bezw @ Y3 @ ( modulo_modulo_nat @ X3 @ Y3 ) ) ) @ ( minus_minus_int @ ( product_fst_int_int @ ( bezw @ Y3 @ ( modulo_modulo_nat @ X3 @ Y3 ) ) ) @ ( times_times_int @ ( product_snd_int_int @ ( bezw @ Y3 @ ( modulo_modulo_nat @ X3 @ Y3 ) ) ) @ ( semiri1314217659103216013at_int @ ( divide_divide_nat @ X3 @ Y3 ) ) ) ) ) ) ) ) ).

% bezw.simps
thf(fact_9792_bezw_Oelims,axiom,
    ! [X: nat,Xa2: nat,Y: product_prod_int_int] :
      ( ( ( bezw @ X @ Xa2 )
        = Y )
     => ( ( ( Xa2 = zero_zero_nat )
         => ( Y
            = ( product_Pair_int_int @ one_one_int @ zero_zero_int ) ) )
        & ( ( Xa2 != zero_zero_nat )
         => ( Y
            = ( product_Pair_int_int @ ( product_snd_int_int @ ( bezw @ Xa2 @ ( modulo_modulo_nat @ X @ Xa2 ) ) ) @ ( minus_minus_int @ ( product_fst_int_int @ ( bezw @ Xa2 @ ( modulo_modulo_nat @ X @ Xa2 ) ) ) @ ( times_times_int @ ( product_snd_int_int @ ( bezw @ Xa2 @ ( modulo_modulo_nat @ X @ Xa2 ) ) ) @ ( semiri1314217659103216013at_int @ ( divide_divide_nat @ X @ Xa2 ) ) ) ) ) ) ) ) ) ).

% bezw.elims
thf(fact_9793_bezw_Opelims,axiom,
    ! [X: nat,Xa2: nat,Y: product_prod_int_int] :
      ( ( ( bezw @ X @ Xa2 )
        = Y )
     => ( ( accp_P4275260045618599050at_nat @ bezw_rel @ ( product_Pair_nat_nat @ X @ Xa2 ) )
       => ~ ( ( ( ( Xa2 = zero_zero_nat )
               => ( Y
                  = ( product_Pair_int_int @ one_one_int @ zero_zero_int ) ) )
              & ( ( Xa2 != zero_zero_nat )
               => ( Y
                  = ( product_Pair_int_int @ ( product_snd_int_int @ ( bezw @ Xa2 @ ( modulo_modulo_nat @ X @ Xa2 ) ) ) @ ( minus_minus_int @ ( product_fst_int_int @ ( bezw @ Xa2 @ ( modulo_modulo_nat @ X @ Xa2 ) ) ) @ ( times_times_int @ ( product_snd_int_int @ ( bezw @ Xa2 @ ( modulo_modulo_nat @ X @ Xa2 ) ) ) @ ( semiri1314217659103216013at_int @ ( divide_divide_nat @ X @ Xa2 ) ) ) ) ) ) ) )
           => ~ ( accp_P4275260045618599050at_nat @ bezw_rel @ ( product_Pair_nat_nat @ X @ Xa2 ) ) ) ) ) ).

% bezw.pelims
thf(fact_9794_bezw__non__0,axiom,
    ! [Y: nat,X: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ Y )
     => ( ( bezw @ X @ Y )
        = ( product_Pair_int_int @ ( product_snd_int_int @ ( bezw @ Y @ ( modulo_modulo_nat @ X @ Y ) ) ) @ ( minus_minus_int @ ( product_fst_int_int @ ( bezw @ Y @ ( modulo_modulo_nat @ X @ Y ) ) ) @ ( times_times_int @ ( product_snd_int_int @ ( bezw @ Y @ ( modulo_modulo_nat @ X @ Y ) ) ) @ ( semiri1314217659103216013at_int @ ( divide_divide_nat @ X @ Y ) ) ) ) ) ) ) ).

% bezw_non_0
thf(fact_9795_normalize__def,axiom,
    ( normalize
    = ( ^ [P5: product_prod_int_int] :
          ( if_Pro3027730157355071871nt_int @ ( ord_less_int @ zero_zero_int @ ( product_snd_int_int @ P5 ) ) @ ( product_Pair_int_int @ ( divide_divide_int @ ( product_fst_int_int @ P5 ) @ ( gcd_gcd_int @ ( product_fst_int_int @ P5 ) @ ( product_snd_int_int @ P5 ) ) ) @ ( divide_divide_int @ ( product_snd_int_int @ P5 ) @ ( gcd_gcd_int @ ( product_fst_int_int @ P5 ) @ ( product_snd_int_int @ P5 ) ) ) )
          @ ( if_Pro3027730157355071871nt_int
            @ ( ( product_snd_int_int @ P5 )
              = zero_zero_int )
            @ ( product_Pair_int_int @ zero_zero_int @ one_one_int )
            @ ( product_Pair_int_int @ ( divide_divide_int @ ( product_fst_int_int @ P5 ) @ ( uminus_uminus_int @ ( gcd_gcd_int @ ( product_fst_int_int @ P5 ) @ ( product_snd_int_int @ P5 ) ) ) ) @ ( divide_divide_int @ ( product_snd_int_int @ P5 ) @ ( uminus_uminus_int @ ( gcd_gcd_int @ ( product_fst_int_int @ P5 ) @ ( product_snd_int_int @ P5 ) ) ) ) ) ) ) ) ) ).

% normalize_def
thf(fact_9796_finite__enumerate,axiom,
    ! [S3: set_nat] :
      ( ( finite_finite_nat @ S3 )
     => ? [R3: nat > nat] :
          ( ( strict1292158309912662752at_nat @ R3 @ ( set_ord_lessThan_nat @ ( finite_card_nat @ S3 ) ) )
          & ! [N9: nat] :
              ( ( ord_less_nat @ N9 @ ( finite_card_nat @ S3 ) )
             => ( member_nat @ ( R3 @ N9 ) @ S3 ) ) ) ) ).

% finite_enumerate
thf(fact_9797_gcd__neg__numeral__1__int,axiom,
    ! [N2: num,X: int] :
      ( ( gcd_gcd_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) @ X )
      = ( gcd_gcd_int @ ( numeral_numeral_int @ N2 ) @ X ) ) ).

% gcd_neg_numeral_1_int
thf(fact_9798_gcd__neg__numeral__2__int,axiom,
    ! [X: int,N2: num] :
      ( ( gcd_gcd_int @ X @ ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) )
      = ( gcd_gcd_int @ X @ ( numeral_numeral_int @ N2 ) ) ) ).

% gcd_neg_numeral_2_int
thf(fact_9799_gcd__ge__0__int,axiom,
    ! [X: int,Y: int] : ( ord_less_eq_int @ zero_zero_int @ ( gcd_gcd_int @ X @ Y ) ) ).

% gcd_ge_0_int
thf(fact_9800_bezout__int,axiom,
    ! [X: int,Y: int] :
    ? [U3: int,V2: int] :
      ( ( plus_plus_int @ ( times_times_int @ U3 @ X ) @ ( times_times_int @ V2 @ Y ) )
      = ( gcd_gcd_int @ X @ Y ) ) ).

% bezout_int
thf(fact_9801_gcd__mult__distrib__int,axiom,
    ! [K: int,M: int,N2: int] :
      ( ( times_times_int @ ( abs_abs_int @ K ) @ ( gcd_gcd_int @ M @ N2 ) )
      = ( gcd_gcd_int @ ( times_times_int @ K @ M ) @ ( times_times_int @ K @ N2 ) ) ) ).

% gcd_mult_distrib_int
thf(fact_9802_gcd__le2__int,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ord_less_eq_int @ ( gcd_gcd_int @ A @ B ) @ B ) ) ).

% gcd_le2_int
thf(fact_9803_gcd__le1__int,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ A )
     => ( ord_less_eq_int @ ( gcd_gcd_int @ A @ B ) @ A ) ) ).

% gcd_le1_int
thf(fact_9804_gcd__cases__int,axiom,
    ! [X: int,Y: int,P: int > $o] :
      ( ( ( ord_less_eq_int @ zero_zero_int @ X )
       => ( ( ord_less_eq_int @ zero_zero_int @ Y )
         => ( P @ ( gcd_gcd_int @ X @ Y ) ) ) )
     => ( ( ( ord_less_eq_int @ zero_zero_int @ X )
         => ( ( ord_less_eq_int @ Y @ zero_zero_int )
           => ( P @ ( gcd_gcd_int @ X @ ( uminus_uminus_int @ Y ) ) ) ) )
       => ( ( ( ord_less_eq_int @ X @ zero_zero_int )
           => ( ( ord_less_eq_int @ zero_zero_int @ Y )
             => ( P @ ( gcd_gcd_int @ ( uminus_uminus_int @ X ) @ Y ) ) ) )
         => ( ( ( ord_less_eq_int @ X @ zero_zero_int )
             => ( ( ord_less_eq_int @ Y @ zero_zero_int )
               => ( P @ ( gcd_gcd_int @ ( uminus_uminus_int @ X ) @ ( uminus_uminus_int @ Y ) ) ) ) )
           => ( P @ ( gcd_gcd_int @ X @ Y ) ) ) ) ) ) ).

% gcd_cases_int
thf(fact_9805_gcd__unique__int,axiom,
    ! [D: int,A: int,B: int] :
      ( ( ( ord_less_eq_int @ zero_zero_int @ D )
        & ( dvd_dvd_int @ D @ A )
        & ( dvd_dvd_int @ D @ B )
        & ! [E3: int] :
            ( ( ( dvd_dvd_int @ E3 @ A )
              & ( dvd_dvd_int @ E3 @ B ) )
           => ( dvd_dvd_int @ E3 @ D ) ) )
      = ( D
        = ( gcd_gcd_int @ A @ B ) ) ) ).

% gcd_unique_int
thf(fact_9806_nat__descend__induct,axiom,
    ! [N2: nat,P: nat > $o,M: nat] :
      ( ! [K2: nat] :
          ( ( ord_less_nat @ N2 @ K2 )
         => ( P @ K2 ) )
     => ( ! [K2: nat] :
            ( ( ord_less_eq_nat @ K2 @ N2 )
           => ( ! [I: nat] :
                  ( ( ord_less_nat @ K2 @ I )
                 => ( P @ I ) )
             => ( P @ K2 ) ) )
       => ( P @ M ) ) ) ).

% nat_descend_induct
thf(fact_9807_gcd__1__nat,axiom,
    ! [M: nat] :
      ( ( gcd_gcd_nat @ M @ one_one_nat )
      = one_one_nat ) ).

% gcd_1_nat
thf(fact_9808_gcd__Suc__0,axiom,
    ! [M: nat] :
      ( ( gcd_gcd_nat @ M @ ( suc @ zero_zero_nat ) )
      = ( suc @ zero_zero_nat ) ) ).

% gcd_Suc_0
thf(fact_9809_gcd__pos__nat,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( gcd_gcd_nat @ M @ N2 ) )
      = ( ( M != zero_zero_nat )
        | ( N2 != zero_zero_nat ) ) ) ).

% gcd_pos_nat
thf(fact_9810_gcd__mult__distrib__nat,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( times_times_nat @ K @ ( gcd_gcd_nat @ M @ N2 ) )
      = ( gcd_gcd_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N2 ) ) ) ).

% gcd_mult_distrib_nat
thf(fact_9811_gcd__le1__nat,axiom,
    ! [A: nat,B: nat] :
      ( ( A != zero_zero_nat )
     => ( ord_less_eq_nat @ ( gcd_gcd_nat @ A @ B ) @ A ) ) ).

% gcd_le1_nat
thf(fact_9812_gcd__le2__nat,axiom,
    ! [B: nat,A: nat] :
      ( ( B != zero_zero_nat )
     => ( ord_less_eq_nat @ ( gcd_gcd_nat @ A @ B ) @ B ) ) ).

% gcd_le2_nat
thf(fact_9813_gcd__diff2__nat,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ( gcd_gcd_nat @ ( minus_minus_nat @ N2 @ M ) @ N2 )
        = ( gcd_gcd_nat @ M @ N2 ) ) ) ).

% gcd_diff2_nat
thf(fact_9814_gcd__diff1__nat,axiom,
    ! [N2: nat,M: nat] :
      ( ( ord_less_eq_nat @ N2 @ M )
     => ( ( gcd_gcd_nat @ ( minus_minus_nat @ M @ N2 ) @ N2 )
        = ( gcd_gcd_nat @ M @ N2 ) ) ) ).

% gcd_diff1_nat
thf(fact_9815_bezout__nat,axiom,
    ! [A: nat,B: nat] :
      ( ( A != zero_zero_nat )
     => ? [X5: nat,Y5: nat] :
          ( ( times_times_nat @ A @ X5 )
          = ( plus_plus_nat @ ( times_times_nat @ B @ Y5 ) @ ( gcd_gcd_nat @ A @ B ) ) ) ) ).

% bezout_nat
thf(fact_9816_bezout__gcd__nat_H,axiom,
    ! [B: nat,A: nat] :
    ? [X5: nat,Y5: nat] :
      ( ( ( ord_less_eq_nat @ ( times_times_nat @ B @ Y5 ) @ ( times_times_nat @ A @ X5 ) )
        & ( ( minus_minus_nat @ ( times_times_nat @ A @ X5 ) @ ( times_times_nat @ B @ Y5 ) )
          = ( gcd_gcd_nat @ A @ B ) ) )
      | ( ( ord_less_eq_nat @ ( times_times_nat @ A @ Y5 ) @ ( times_times_nat @ B @ X5 ) )
        & ( ( minus_minus_nat @ ( times_times_nat @ B @ X5 ) @ ( times_times_nat @ A @ Y5 ) )
          = ( gcd_gcd_nat @ A @ B ) ) ) ) ).

% bezout_gcd_nat'
thf(fact_9817_bezw__aux,axiom,
    ! [X: nat,Y: nat] :
      ( ( semiri1314217659103216013at_int @ ( gcd_gcd_nat @ X @ Y ) )
      = ( plus_plus_int @ ( times_times_int @ ( product_fst_int_int @ ( bezw @ X @ Y ) ) @ ( semiri1314217659103216013at_int @ X ) ) @ ( times_times_int @ ( product_snd_int_int @ ( bezw @ X @ Y ) ) @ ( semiri1314217659103216013at_int @ Y ) ) ) ) ).

% bezw_aux
thf(fact_9818_gcd__nat_Opelims,axiom,
    ! [X: nat,Xa2: nat,Y: nat] :
      ( ( ( gcd_gcd_nat @ X @ Xa2 )
        = Y )
     => ( ( accp_P4275260045618599050at_nat @ gcd_nat_rel @ ( product_Pair_nat_nat @ X @ Xa2 ) )
       => ~ ( ( ( ( Xa2 = zero_zero_nat )
               => ( Y = X ) )
              & ( ( Xa2 != zero_zero_nat )
               => ( Y
                  = ( gcd_gcd_nat @ Xa2 @ ( modulo_modulo_nat @ X @ Xa2 ) ) ) ) )
           => ~ ( accp_P4275260045618599050at_nat @ gcd_nat_rel @ ( product_Pair_nat_nat @ X @ Xa2 ) ) ) ) ) ).

% gcd_nat.pelims
thf(fact_9819_card__greaterThanLessThan__int,axiom,
    ! [L2: int,U: int] :
      ( ( finite_card_int @ ( set_or5832277885323065728an_int @ L2 @ U ) )
      = ( nat2 @ ( minus_minus_int @ U @ ( plus_plus_int @ L2 @ one_one_int ) ) ) ) ).

% card_greaterThanLessThan_int
thf(fact_9820_xor__minus__numerals_I2_J,axiom,
    ! [K: int,N2: num] :
      ( ( bit_se6526347334894502574or_int @ K @ ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) )
      = ( bit_ri7919022796975470100ot_int @ ( bit_se6526347334894502574or_int @ K @ ( neg_numeral_sub_int @ N2 @ one ) ) ) ) ).

% xor_minus_numerals(2)
thf(fact_9821_xor__minus__numerals_I1_J,axiom,
    ! [N2: num,K: int] :
      ( ( bit_se6526347334894502574or_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) @ K )
      = ( bit_ri7919022796975470100ot_int @ ( bit_se6526347334894502574or_int @ ( neg_numeral_sub_int @ N2 @ one ) @ K ) ) ) ).

% xor_minus_numerals(1)
thf(fact_9822_atLeastPlusOneLessThan__greaterThanLessThan__int,axiom,
    ! [L2: int,U: int] :
      ( ( set_or4662586982721622107an_int @ ( plus_plus_int @ L2 @ one_one_int ) @ U )
      = ( set_or5832277885323065728an_int @ L2 @ U ) ) ).

% atLeastPlusOneLessThan_greaterThanLessThan_int
thf(fact_9823_sub__BitM__One__eq,axiom,
    ! [N2: num] :
      ( ( neg_numeral_sub_int @ ( bitM @ N2 ) @ one )
      = ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( neg_numeral_sub_int @ N2 @ one ) ) ) ).

% sub_BitM_One_eq
thf(fact_9824_card__greaterThanLessThan,axiom,
    ! [L2: nat,U: nat] :
      ( ( finite_card_nat @ ( set_or5834768355832116004an_nat @ L2 @ U ) )
      = ( minus_minus_nat @ U @ ( suc @ L2 ) ) ) ).

% card_greaterThanLessThan
thf(fact_9825_atLeastSucLessThan__greaterThanLessThan,axiom,
    ! [L2: nat,U: nat] :
      ( ( set_or4665077453230672383an_nat @ ( suc @ L2 ) @ U )
      = ( set_or5834768355832116004an_nat @ L2 @ U ) ) ).

% atLeastSucLessThan_greaterThanLessThan
thf(fact_9826_Suc__funpow,axiom,
    ! [N2: nat] :
      ( ( compow_nat_nat @ N2 @ suc )
      = ( plus_plus_nat @ N2 ) ) ).

% Suc_funpow
thf(fact_9827_max__nat_Osemilattice__neutr__order__axioms,axiom,
    ( semila1623282765462674594er_nat @ ord_max_nat @ zero_zero_nat
    @ ^ [X3: nat,Y3: nat] : ( ord_less_eq_nat @ Y3 @ X3 )
    @ ^ [X3: nat,Y3: nat] : ( ord_less_nat @ Y3 @ X3 ) ) ).

% max_nat.semilattice_neutr_order_axioms
thf(fact_9828_gcd__nat_Osemilattice__neutr__order__axioms,axiom,
    ( semila1623282765462674594er_nat @ gcd_gcd_nat @ zero_zero_nat @ dvd_dvd_nat
    @ ^ [M6: nat,N3: nat] :
        ( ( dvd_dvd_nat @ M6 @ N3 )
        & ( M6 != N3 ) ) ) ).

% gcd_nat.semilattice_neutr_order_axioms
thf(fact_9829_Gcd__remove0__nat,axiom,
    ! [M7: set_nat] :
      ( ( finite_finite_nat @ M7 )
     => ( ( gcd_Gcd_nat @ M7 )
        = ( gcd_Gcd_nat @ ( minus_minus_set_nat @ M7 @ ( insert_nat @ zero_zero_nat @ bot_bot_set_nat ) ) ) ) ) ).

% Gcd_remove0_nat
thf(fact_9830_times__int_Oabs__eq,axiom,
    ! [Xa2: product_prod_nat_nat,X: product_prod_nat_nat] :
      ( ( times_times_int @ ( abs_Integ @ Xa2 ) @ ( abs_Integ @ X ) )
      = ( abs_Integ
        @ ( produc27273713700761075at_nat
          @ ^ [X3: nat,Y3: nat] :
              ( produc2626176000494625587at_nat
              @ ^ [U2: nat,V4: nat] : ( product_Pair_nat_nat @ ( plus_plus_nat @ ( times_times_nat @ X3 @ U2 ) @ ( times_times_nat @ Y3 @ V4 ) ) @ ( plus_plus_nat @ ( times_times_nat @ X3 @ V4 ) @ ( times_times_nat @ Y3 @ U2 ) ) ) )
          @ Xa2
          @ X ) ) ) ).

% times_int.abs_eq
thf(fact_9831_eq__Abs__Integ,axiom,
    ! [Z: int] :
      ~ ! [X5: nat,Y5: nat] :
          ( Z
         != ( abs_Integ @ ( product_Pair_nat_nat @ X5 @ Y5 ) ) ) ).

% eq_Abs_Integ
thf(fact_9832_Gcd__nat__eq__one,axiom,
    ! [N4: set_nat] :
      ( ( member_nat @ one_one_nat @ N4 )
     => ( ( gcd_Gcd_nat @ N4 )
        = one_one_nat ) ) ).

% Gcd_nat_eq_one
thf(fact_9833_nat_Oabs__eq,axiom,
    ! [X: product_prod_nat_nat] :
      ( ( nat2 @ ( abs_Integ @ X ) )
      = ( produc6842872674320459806at_nat @ minus_minus_nat @ X ) ) ).

% nat.abs_eq
thf(fact_9834_zero__int__def,axiom,
    ( zero_zero_int
    = ( abs_Integ @ ( product_Pair_nat_nat @ zero_zero_nat @ zero_zero_nat ) ) ) ).

% zero_int_def
thf(fact_9835_int__def,axiom,
    ( semiri1314217659103216013at_int
    = ( ^ [N3: nat] : ( abs_Integ @ ( product_Pair_nat_nat @ N3 @ zero_zero_nat ) ) ) ) ).

% int_def
thf(fact_9836_uminus__int_Oabs__eq,axiom,
    ! [X: product_prod_nat_nat] :
      ( ( uminus_uminus_int @ ( abs_Integ @ X ) )
      = ( abs_Integ
        @ ( produc2626176000494625587at_nat
          @ ^ [X3: nat,Y3: nat] : ( product_Pair_nat_nat @ Y3 @ X3 )
          @ X ) ) ) ).

% uminus_int.abs_eq
thf(fact_9837_one__int__def,axiom,
    ( one_one_int
    = ( abs_Integ @ ( product_Pair_nat_nat @ one_one_nat @ zero_zero_nat ) ) ) ).

% one_int_def
thf(fact_9838_less__int_Oabs__eq,axiom,
    ! [Xa2: product_prod_nat_nat,X: product_prod_nat_nat] :
      ( ( ord_less_int @ ( abs_Integ @ Xa2 ) @ ( abs_Integ @ X ) )
      = ( produc8739625826339149834_nat_o
        @ ^ [X3: nat,Y3: nat] :
            ( produc6081775807080527818_nat_o
            @ ^ [U2: nat,V4: nat] : ( ord_less_nat @ ( plus_plus_nat @ X3 @ V4 ) @ ( plus_plus_nat @ U2 @ Y3 ) ) )
        @ Xa2
        @ X ) ) ).

% less_int.abs_eq
thf(fact_9839_less__eq__int_Oabs__eq,axiom,
    ! [Xa2: product_prod_nat_nat,X: product_prod_nat_nat] :
      ( ( ord_less_eq_int @ ( abs_Integ @ Xa2 ) @ ( abs_Integ @ X ) )
      = ( produc8739625826339149834_nat_o
        @ ^ [X3: nat,Y3: nat] :
            ( produc6081775807080527818_nat_o
            @ ^ [U2: nat,V4: nat] : ( ord_less_eq_nat @ ( plus_plus_nat @ X3 @ V4 ) @ ( plus_plus_nat @ U2 @ Y3 ) ) )
        @ Xa2
        @ X ) ) ).

% less_eq_int.abs_eq
thf(fact_9840_plus__int_Oabs__eq,axiom,
    ! [Xa2: product_prod_nat_nat,X: product_prod_nat_nat] :
      ( ( plus_plus_int @ ( abs_Integ @ Xa2 ) @ ( abs_Integ @ X ) )
      = ( abs_Integ
        @ ( produc27273713700761075at_nat
          @ ^ [X3: nat,Y3: nat] :
              ( produc2626176000494625587at_nat
              @ ^ [U2: nat,V4: nat] : ( product_Pair_nat_nat @ ( plus_plus_nat @ X3 @ U2 ) @ ( plus_plus_nat @ Y3 @ V4 ) ) )
          @ Xa2
          @ X ) ) ) ).

% plus_int.abs_eq
thf(fact_9841_minus__int_Oabs__eq,axiom,
    ! [Xa2: product_prod_nat_nat,X: product_prod_nat_nat] :
      ( ( minus_minus_int @ ( abs_Integ @ Xa2 ) @ ( abs_Integ @ X ) )
      = ( abs_Integ
        @ ( produc27273713700761075at_nat
          @ ^ [X3: nat,Y3: nat] :
              ( produc2626176000494625587at_nat
              @ ^ [U2: nat,V4: nat] : ( product_Pair_nat_nat @ ( plus_plus_nat @ X3 @ V4 ) @ ( plus_plus_nat @ Y3 @ U2 ) ) )
          @ Xa2
          @ X ) ) ) ).

% minus_int.abs_eq
thf(fact_9842_Gcd__int__greater__eq__0,axiom,
    ! [K5: set_int] : ( ord_less_eq_int @ zero_zero_int @ ( gcd_Gcd_int @ K5 ) ) ).

% Gcd_int_greater_eq_0
thf(fact_9843_less__eq__int_Orep__eq,axiom,
    ( ord_less_eq_int
    = ( ^ [X3: int,Xa4: int] :
          ( produc8739625826339149834_nat_o
          @ ^ [Y3: nat,Z2: nat] :
              ( produc6081775807080527818_nat_o
              @ ^ [U2: nat,V4: nat] : ( ord_less_eq_nat @ ( plus_plus_nat @ Y3 @ V4 ) @ ( plus_plus_nat @ U2 @ Z2 ) ) )
          @ ( rep_Integ @ X3 )
          @ ( rep_Integ @ Xa4 ) ) ) ) ).

% less_eq_int.rep_eq
thf(fact_9844_less__int_Orep__eq,axiom,
    ( ord_less_int
    = ( ^ [X3: int,Xa4: int] :
          ( produc8739625826339149834_nat_o
          @ ^ [Y3: nat,Z2: nat] :
              ( produc6081775807080527818_nat_o
              @ ^ [U2: nat,V4: nat] : ( ord_less_nat @ ( plus_plus_nat @ Y3 @ V4 ) @ ( plus_plus_nat @ U2 @ Z2 ) ) )
          @ ( rep_Integ @ X3 )
          @ ( rep_Integ @ Xa4 ) ) ) ) ).

% less_int.rep_eq
thf(fact_9845_nat_Orep__eq,axiom,
    ( nat2
    = ( ^ [X3: int] : ( produc6842872674320459806at_nat @ minus_minus_nat @ ( rep_Integ @ X3 ) ) ) ) ).

% nat.rep_eq
thf(fact_9846_prod__encode__def,axiom,
    ( nat_prod_encode
    = ( produc6842872674320459806at_nat
      @ ^ [M6: nat,N3: nat] : ( plus_plus_nat @ ( nat_triangle @ ( plus_plus_nat @ M6 @ N3 ) ) @ M6 ) ) ) ).

% prod_encode_def
thf(fact_9847_uminus__int__def,axiom,
    ( uminus_uminus_int
    = ( map_fu3667384564859982768at_int @ rep_Integ @ abs_Integ
      @ ( produc2626176000494625587at_nat
        @ ^ [X3: nat,Y3: nat] : ( product_Pair_nat_nat @ Y3 @ X3 ) ) ) ) ).

% uminus_int_def
thf(fact_9848_le__prod__encode__2,axiom,
    ! [B: nat,A: nat] : ( ord_less_eq_nat @ B @ ( nat_prod_encode @ ( product_Pair_nat_nat @ A @ B ) ) ) ).

% le_prod_encode_2
thf(fact_9849_le__prod__encode__1,axiom,
    ! [A: nat,B: nat] : ( ord_less_eq_nat @ A @ ( nat_prod_encode @ ( product_Pair_nat_nat @ A @ B ) ) ) ).

% le_prod_encode_1
thf(fact_9850_prod__encode__prod__decode__aux,axiom,
    ! [K: nat,M: nat] :
      ( ( nat_prod_encode @ ( nat_prod_decode_aux @ K @ M ) )
      = ( plus_plus_nat @ ( nat_triangle @ K ) @ M ) ) ).

% prod_encode_prod_decode_aux
thf(fact_9851_times__int__def,axiom,
    ( times_times_int
    = ( map_fu4960017516451851995nt_int @ rep_Integ @ ( map_fu3667384564859982768at_int @ rep_Integ @ abs_Integ )
      @ ( produc27273713700761075at_nat
        @ ^ [X3: nat,Y3: nat] :
            ( produc2626176000494625587at_nat
            @ ^ [U2: nat,V4: nat] : ( product_Pair_nat_nat @ ( plus_plus_nat @ ( times_times_nat @ X3 @ U2 ) @ ( times_times_nat @ Y3 @ V4 ) ) @ ( plus_plus_nat @ ( times_times_nat @ X3 @ V4 ) @ ( times_times_nat @ Y3 @ U2 ) ) ) ) ) ) ) ).

% times_int_def
thf(fact_9852_minus__int__def,axiom,
    ( minus_minus_int
    = ( map_fu4960017516451851995nt_int @ rep_Integ @ ( map_fu3667384564859982768at_int @ rep_Integ @ abs_Integ )
      @ ( produc27273713700761075at_nat
        @ ^ [X3: nat,Y3: nat] :
            ( produc2626176000494625587at_nat
            @ ^ [U2: nat,V4: nat] : ( product_Pair_nat_nat @ ( plus_plus_nat @ X3 @ V4 ) @ ( plus_plus_nat @ Y3 @ U2 ) ) ) ) ) ) ).

% minus_int_def
thf(fact_9853_plus__int__def,axiom,
    ( plus_plus_int
    = ( map_fu4960017516451851995nt_int @ rep_Integ @ ( map_fu3667384564859982768at_int @ rep_Integ @ abs_Integ )
      @ ( produc27273713700761075at_nat
        @ ^ [X3: nat,Y3: nat] :
            ( produc2626176000494625587at_nat
            @ ^ [U2: nat,V4: nat] : ( product_Pair_nat_nat @ ( plus_plus_nat @ X3 @ U2 ) @ ( plus_plus_nat @ Y3 @ V4 ) ) ) ) ) ) ).

% plus_int_def
thf(fact_9854_pred__nat__def,axiom,
    ( pred_nat
    = ( collec3392354462482085612at_nat
      @ ( produc6081775807080527818_nat_o
        @ ^ [M6: nat,N3: nat] :
            ( N3
            = ( suc @ M6 ) ) ) ) ) ).

% pred_nat_def
thf(fact_9855_num__of__nat_Osimps_I2_J,axiom,
    ! [N2: nat] :
      ( ( ( ord_less_nat @ zero_zero_nat @ N2 )
       => ( ( num_of_nat @ ( suc @ N2 ) )
          = ( inc @ ( num_of_nat @ N2 ) ) ) )
      & ( ~ ( ord_less_nat @ zero_zero_nat @ N2 )
       => ( ( num_of_nat @ ( suc @ N2 ) )
          = one ) ) ) ).

% num_of_nat.simps(2)
thf(fact_9856_num__of__nat__numeral__eq,axiom,
    ! [Q2: num] :
      ( ( num_of_nat @ ( numeral_numeral_nat @ Q2 ) )
      = Q2 ) ).

% num_of_nat_numeral_eq
thf(fact_9857_num__of__nat_Osimps_I1_J,axiom,
    ( ( num_of_nat @ zero_zero_nat )
    = one ) ).

% num_of_nat.simps(1)
thf(fact_9858_numeral__num__of__nat,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( numeral_numeral_nat @ ( num_of_nat @ N2 ) )
        = N2 ) ) ).

% numeral_num_of_nat
thf(fact_9859_num__of__nat__One,axiom,
    ! [N2: nat] :
      ( ( ord_less_eq_nat @ N2 @ one_one_nat )
     => ( ( num_of_nat @ N2 )
        = one ) ) ).

% num_of_nat_One
thf(fact_9860_num__of__nat__double,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( num_of_nat @ ( plus_plus_nat @ N2 @ N2 ) )
        = ( bit0 @ ( num_of_nat @ N2 ) ) ) ) ).

% num_of_nat_double
thf(fact_9861_num__of__nat__plus__distrib,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ M )
     => ( ( ord_less_nat @ zero_zero_nat @ N2 )
       => ( ( num_of_nat @ ( plus_plus_nat @ M @ N2 ) )
          = ( plus_plus_num @ ( num_of_nat @ M ) @ ( num_of_nat @ N2 ) ) ) ) ) ).

% num_of_nat_plus_distrib
thf(fact_9862_pow_Osimps_I3_J,axiom,
    ! [X: num,Y: num] :
      ( ( pow @ X @ ( bit1 @ Y ) )
      = ( times_times_num @ ( sqr @ ( pow @ X @ Y ) ) @ X ) ) ).

% pow.simps(3)
thf(fact_9863_sqr_Osimps_I1_J,axiom,
    ( ( sqr @ one )
    = one ) ).

% sqr.simps(1)
thf(fact_9864_sqr_Osimps_I2_J,axiom,
    ! [N2: num] :
      ( ( sqr @ ( bit0 @ N2 ) )
      = ( bit0 @ ( bit0 @ ( sqr @ N2 ) ) ) ) ).

% sqr.simps(2)
thf(fact_9865_sqr__conv__mult,axiom,
    ( sqr
    = ( ^ [X3: num] : ( times_times_num @ X3 @ X3 ) ) ) ).

% sqr_conv_mult
thf(fact_9866_pow_Osimps_I2_J,axiom,
    ! [X: num,Y: num] :
      ( ( pow @ X @ ( bit0 @ Y ) )
      = ( sqr @ ( pow @ X @ Y ) ) ) ).

% pow.simps(2)
thf(fact_9867_sqr_Osimps_I3_J,axiom,
    ! [N2: num] :
      ( ( sqr @ ( bit1 @ N2 ) )
      = ( bit1 @ ( bit0 @ ( plus_plus_num @ ( sqr @ N2 ) @ N2 ) ) ) ) ).

% sqr.simps(3)
thf(fact_9868_nth__sorted__list__of__set__greaterThanLessThan,axiom,
    ! [N2: nat,J: nat,I2: nat] :
      ( ( ord_less_nat @ N2 @ ( minus_minus_nat @ J @ ( suc @ I2 ) ) )
     => ( ( nth_nat @ ( linord2614967742042102400et_nat @ ( set_or5834768355832116004an_nat @ I2 @ J ) ) @ N2 )
        = ( suc @ ( plus_plus_nat @ I2 @ N2 ) ) ) ) ).

% nth_sorted_list_of_set_greaterThanLessThan
thf(fact_9869_nth__sorted__list__of__set__greaterThanAtMost,axiom,
    ! [N2: nat,J: nat,I2: nat] :
      ( ( ord_less_nat @ N2 @ ( minus_minus_nat @ J @ I2 ) )
     => ( ( nth_nat @ ( linord2614967742042102400et_nat @ ( set_or6659071591806873216st_nat @ I2 @ J ) ) @ N2 )
        = ( suc @ ( plus_plus_nat @ I2 @ N2 ) ) ) ) ).

% nth_sorted_list_of_set_greaterThanAtMost
thf(fact_9870_rat__floor__lemma,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ ( divide_divide_int @ A @ B ) ) @ ( fract @ A @ B ) )
      & ( ord_less_rat @ ( fract @ A @ B ) @ ( ring_1_of_int_rat @ ( plus_plus_int @ ( divide_divide_int @ A @ B ) @ one_one_int ) ) ) ) ).

% rat_floor_lemma
thf(fact_9871_image__minus__const__atLeastLessThan__nat,axiom,
    ! [C: nat,Y: nat,X: nat] :
      ( ( ( ord_less_nat @ C @ Y )
       => ( ( image_nat_nat
            @ ^ [I5: nat] : ( minus_minus_nat @ I5 @ C )
            @ ( set_or4665077453230672383an_nat @ X @ Y ) )
          = ( set_or4665077453230672383an_nat @ ( minus_minus_nat @ X @ C ) @ ( minus_minus_nat @ Y @ C ) ) ) )
      & ( ~ ( ord_less_nat @ C @ Y )
       => ( ( ( ord_less_nat @ X @ Y )
           => ( ( image_nat_nat
                @ ^ [I5: nat] : ( minus_minus_nat @ I5 @ C )
                @ ( set_or4665077453230672383an_nat @ X @ Y ) )
              = ( insert_nat @ zero_zero_nat @ bot_bot_set_nat ) ) )
          & ( ~ ( ord_less_nat @ X @ Y )
           => ( ( image_nat_nat
                @ ^ [I5: nat] : ( minus_minus_nat @ I5 @ C )
                @ ( set_or4665077453230672383an_nat @ X @ Y ) )
              = bot_bot_set_nat ) ) ) ) ) ).

% image_minus_const_atLeastLessThan_nat
thf(fact_9872_bij__betw__Suc,axiom,
    ! [M7: set_nat,N4: set_nat] :
      ( ( bij_betw_nat_nat @ suc @ M7 @ N4 )
      = ( ( image_nat_nat @ suc @ M7 )
        = N4 ) ) ).

% bij_betw_Suc
thf(fact_9873_image__Suc__atLeastAtMost,axiom,
    ! [I2: nat,J: nat] :
      ( ( image_nat_nat @ suc @ ( set_or1269000886237332187st_nat @ I2 @ J ) )
      = ( set_or1269000886237332187st_nat @ ( suc @ I2 ) @ ( suc @ J ) ) ) ).

% image_Suc_atLeastAtMost
thf(fact_9874_image__Suc__atLeastLessThan,axiom,
    ! [I2: nat,J: nat] :
      ( ( image_nat_nat @ suc @ ( set_or4665077453230672383an_nat @ I2 @ J ) )
      = ( set_or4665077453230672383an_nat @ ( suc @ I2 ) @ ( suc @ J ) ) ) ).

% image_Suc_atLeastLessThan
thf(fact_9875_mult__rat,axiom,
    ! [A: int,B: int,C: int,D: int] :
      ( ( times_times_rat @ ( fract @ A @ B ) @ ( fract @ C @ D ) )
      = ( fract @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D ) ) ) ).

% mult_rat
thf(fact_9876_divide__rat,axiom,
    ! [A: int,B: int,C: int,D: int] :
      ( ( divide_divide_rat @ ( fract @ A @ B ) @ ( fract @ C @ D ) )
      = ( fract @ ( times_times_int @ A @ D ) @ ( times_times_int @ B @ C ) ) ) ).

% divide_rat
thf(fact_9877_card__greaterThanAtMost,axiom,
    ! [L2: nat,U: nat] :
      ( ( finite_card_nat @ ( set_or6659071591806873216st_nat @ L2 @ U ) )
      = ( minus_minus_nat @ U @ L2 ) ) ).

% card_greaterThanAtMost
thf(fact_9878_sgn__rat,axiom,
    ! [A: int,B: int] :
      ( ( sgn_sgn_rat @ ( fract @ A @ B ) )
      = ( ring_1_of_int_rat @ ( times_times_int @ ( sgn_sgn_int @ A ) @ ( sgn_sgn_int @ B ) ) ) ) ).

% sgn_rat
thf(fact_9879_less__rat,axiom,
    ! [B: int,D: int,A: int,C: int] :
      ( ( B != zero_zero_int )
     => ( ( D != zero_zero_int )
       => ( ( ord_less_rat @ ( fract @ A @ B ) @ ( fract @ C @ D ) )
          = ( ord_less_int @ ( times_times_int @ ( times_times_int @ A @ D ) @ ( times_times_int @ B @ D ) ) @ ( times_times_int @ ( times_times_int @ C @ B ) @ ( times_times_int @ B @ D ) ) ) ) ) ) ).

% less_rat
thf(fact_9880_add__rat,axiom,
    ! [B: int,D: int,A: int,C: int] :
      ( ( B != zero_zero_int )
     => ( ( D != zero_zero_int )
       => ( ( plus_plus_rat @ ( fract @ A @ B ) @ ( fract @ C @ D ) )
          = ( fract @ ( plus_plus_int @ ( times_times_int @ A @ D ) @ ( times_times_int @ C @ B ) ) @ ( times_times_int @ B @ D ) ) ) ) ) ).

% add_rat
thf(fact_9881_le__rat,axiom,
    ! [B: int,D: int,A: int,C: int] :
      ( ( B != zero_zero_int )
     => ( ( D != zero_zero_int )
       => ( ( ord_less_eq_rat @ ( fract @ A @ B ) @ ( fract @ C @ D ) )
          = ( ord_less_eq_int @ ( times_times_int @ ( times_times_int @ A @ D ) @ ( times_times_int @ B @ D ) ) @ ( times_times_int @ ( times_times_int @ C @ B ) @ ( times_times_int @ B @ D ) ) ) ) ) ) ).

% le_rat
thf(fact_9882_diff__rat,axiom,
    ! [B: int,D: int,A: int,C: int] :
      ( ( B != zero_zero_int )
     => ( ( D != zero_zero_int )
       => ( ( minus_minus_rat @ ( fract @ A @ B ) @ ( fract @ C @ D ) )
          = ( fract @ ( minus_minus_int @ ( times_times_int @ A @ D ) @ ( times_times_int @ C @ B ) ) @ ( times_times_int @ B @ D ) ) ) ) ) ).

% diff_rat
thf(fact_9883_zero__notin__Suc__image,axiom,
    ! [A2: set_nat] :
      ~ ( member_nat @ zero_zero_nat @ ( image_nat_nat @ suc @ A2 ) ) ).

% zero_notin_Suc_image
thf(fact_9884_eq__rat_I1_J,axiom,
    ! [B: int,D: int,A: int,C: int] :
      ( ( B != zero_zero_int )
     => ( ( D != zero_zero_int )
       => ( ( ( fract @ A @ B )
            = ( fract @ C @ D ) )
          = ( ( times_times_int @ A @ D )
            = ( times_times_int @ C @ B ) ) ) ) ) ).

% eq_rat(1)
thf(fact_9885_mult__rat__cancel,axiom,
    ! [C: int,A: int,B: int] :
      ( ( C != zero_zero_int )
     => ( ( fract @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
        = ( fract @ A @ B ) ) ) ).

% mult_rat_cancel
thf(fact_9886_atLeastSucAtMost__greaterThanAtMost,axiom,
    ! [L2: nat,U: nat] :
      ( ( set_or1269000886237332187st_nat @ ( suc @ L2 ) @ U )
      = ( set_or6659071591806873216st_nat @ L2 @ U ) ) ).

% atLeastSucAtMost_greaterThanAtMost
thf(fact_9887_rat__number__expand_I3_J,axiom,
    ( numeral_numeral_rat
    = ( ^ [K3: num] : ( fract @ ( numeral_numeral_int @ K3 ) @ one_one_int ) ) ) ).

% rat_number_expand(3)
thf(fact_9888_rat__number__collapse_I3_J,axiom,
    ! [W: num] :
      ( ( fract @ ( numeral_numeral_int @ W ) @ one_one_int )
      = ( numeral_numeral_rat @ W ) ) ).

% rat_number_collapse(3)
thf(fact_9889_image__Suc__lessThan,axiom,
    ! [N2: nat] :
      ( ( image_nat_nat @ suc @ ( set_ord_lessThan_nat @ N2 ) )
      = ( set_or1269000886237332187st_nat @ one_one_nat @ N2 ) ) ).

% image_Suc_lessThan
thf(fact_9890_image__Suc__atMost,axiom,
    ! [N2: nat] :
      ( ( image_nat_nat @ suc @ ( set_ord_atMost_nat @ N2 ) )
      = ( set_or1269000886237332187st_nat @ one_one_nat @ ( suc @ N2 ) ) ) ).

% image_Suc_atMost
thf(fact_9891_atLeast0__atMost__Suc__eq__insert__0,axiom,
    ! [N2: nat] :
      ( ( set_or1269000886237332187st_nat @ zero_zero_nat @ ( suc @ N2 ) )
      = ( insert_nat @ zero_zero_nat @ ( image_nat_nat @ suc @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N2 ) ) ) ) ).

% atLeast0_atMost_Suc_eq_insert_0
thf(fact_9892_atLeast0__lessThan__Suc__eq__insert__0,axiom,
    ! [N2: nat] :
      ( ( set_or4665077453230672383an_nat @ zero_zero_nat @ ( suc @ N2 ) )
      = ( insert_nat @ zero_zero_nat @ ( image_nat_nat @ suc @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N2 ) ) ) ) ).

% atLeast0_lessThan_Suc_eq_insert_0
thf(fact_9893_lessThan__Suc__eq__insert__0,axiom,
    ! [N2: nat] :
      ( ( set_ord_lessThan_nat @ ( suc @ N2 ) )
      = ( insert_nat @ zero_zero_nat @ ( image_nat_nat @ suc @ ( set_ord_lessThan_nat @ N2 ) ) ) ) ).

% lessThan_Suc_eq_insert_0
thf(fact_9894_atMost__Suc__eq__insert__0,axiom,
    ! [N2: nat] :
      ( ( set_ord_atMost_nat @ ( suc @ N2 ) )
      = ( insert_nat @ zero_zero_nat @ ( image_nat_nat @ suc @ ( set_ord_atMost_nat @ N2 ) ) ) ) ).

% atMost_Suc_eq_insert_0
thf(fact_9895_Fract__add__one,axiom,
    ! [N2: int,M: int] :
      ( ( N2 != zero_zero_int )
     => ( ( fract @ ( plus_plus_int @ M @ N2 ) @ N2 )
        = ( plus_plus_rat @ ( fract @ M @ N2 ) @ one_one_rat ) ) ) ).

% Fract_add_one
thf(fact_9896_zero__le__Fract__iff,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ ( fract @ A @ B ) )
        = ( ord_less_eq_int @ zero_zero_int @ A ) ) ) ).

% zero_le_Fract_iff
thf(fact_9897_Fract__le__zero__iff,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ( ord_less_eq_rat @ ( fract @ A @ B ) @ zero_zero_rat )
        = ( ord_less_eq_int @ A @ zero_zero_int ) ) ) ).

% Fract_le_zero_iff
thf(fact_9898_Fract__le__one__iff,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ( ord_less_eq_rat @ ( fract @ A @ B ) @ one_one_rat )
        = ( ord_less_eq_int @ A @ B ) ) ) ).

% Fract_le_one_iff
thf(fact_9899_one__le__Fract__iff,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ( ord_less_eq_rat @ one_one_rat @ ( fract @ A @ B ) )
        = ( ord_less_eq_int @ B @ A ) ) ) ).

% one_le_Fract_iff
thf(fact_9900_rat__number__expand_I5_J,axiom,
    ! [K: num] :
      ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ K ) )
      = ( fract @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) @ one_one_int ) ) ).

% rat_number_expand(5)
thf(fact_9901_rat__number__collapse_I4_J,axiom,
    ! [W: num] :
      ( ( fract @ ( uminus_uminus_int @ ( numeral_numeral_int @ W ) ) @ one_one_int )
      = ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) ).

% rat_number_collapse(4)
thf(fact_9902_Gcd__abs__eq,axiom,
    ! [K5: set_int] :
      ( ( gcd_Gcd_int @ ( image_int_int @ abs_abs_int @ K5 ) )
      = ( gcd_Gcd_int @ K5 ) ) ).

% Gcd_abs_eq
thf(fact_9903_card__greaterThanAtMost__int,axiom,
    ! [L2: int,U: int] :
      ( ( finite_card_int @ ( set_or6656581121297822940st_int @ L2 @ U ) )
      = ( nat2 @ ( minus_minus_int @ U @ L2 ) ) ) ).

% card_greaterThanAtMost_int
thf(fact_9904_Gcd__int__eq,axiom,
    ! [N4: set_nat] :
      ( ( gcd_Gcd_int @ ( image_nat_int @ semiri1314217659103216013at_int @ N4 ) )
      = ( semiri1314217659103216013at_int @ ( gcd_Gcd_nat @ N4 ) ) ) ).

% Gcd_int_eq
thf(fact_9905_Gcd__nat__abs__eq,axiom,
    ! [K5: set_int] :
      ( ( gcd_Gcd_nat
        @ ( image_int_nat
          @ ^ [K3: int] : ( nat2 @ ( abs_abs_int @ K3 ) )
          @ K5 ) )
      = ( nat2 @ ( gcd_Gcd_int @ K5 ) ) ) ).

% Gcd_nat_abs_eq
thf(fact_9906_finite__int__iff__bounded,axiom,
    ( finite_finite_int
    = ( ^ [S5: set_int] :
        ? [K3: int] : ( ord_less_eq_set_int @ ( image_int_int @ abs_abs_int @ S5 ) @ ( set_ord_lessThan_int @ K3 ) ) ) ) ).

% finite_int_iff_bounded
thf(fact_9907_finite__int__iff__bounded__le,axiom,
    ( finite_finite_int
    = ( ^ [S5: set_int] :
        ? [K3: int] : ( ord_less_eq_set_int @ ( image_int_int @ abs_abs_int @ S5 ) @ ( set_ord_atMost_int @ K3 ) ) ) ) ).

% finite_int_iff_bounded_le
thf(fact_9908_atLeastPlusOneAtMost__greaterThanAtMost__int,axiom,
    ! [L2: int,U: int] :
      ( ( set_or1266510415728281911st_int @ ( plus_plus_int @ L2 @ one_one_int ) @ U )
      = ( set_or6656581121297822940st_int @ L2 @ U ) ) ).

% atLeastPlusOneAtMost_greaterThanAtMost_int
thf(fact_9909_image__add__int__atLeastLessThan,axiom,
    ! [L2: int,U: int] :
      ( ( image_int_int
        @ ^ [X3: int] : ( plus_plus_int @ X3 @ L2 )
        @ ( set_or4662586982721622107an_int @ zero_zero_int @ ( minus_minus_int @ U @ L2 ) ) )
      = ( set_or4662586982721622107an_int @ L2 @ U ) ) ).

% image_add_int_atLeastLessThan
thf(fact_9910_image__atLeastZeroLessThan__int,axiom,
    ! [U: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ U )
     => ( ( set_or4662586982721622107an_int @ zero_zero_int @ U )
        = ( image_nat_int @ semiri1314217659103216013at_int @ ( set_ord_lessThan_nat @ ( nat2 @ U ) ) ) ) ) ).

% image_atLeastZeroLessThan_int
thf(fact_9911_UN__atMost__UNIV,axiom,
    ( ( comple7399068483239264473et_nat @ ( image_nat_set_nat @ set_ord_atMost_nat @ top_top_set_nat ) )
    = top_top_set_nat ) ).

% UN_atMost_UNIV
thf(fact_9912_UN__lessThan__UNIV,axiom,
    ( ( comple7399068483239264473et_nat @ ( image_nat_set_nat @ set_ord_lessThan_nat @ top_top_set_nat ) )
    = top_top_set_nat ) ).

% UN_lessThan_UNIV
thf(fact_9913_UNIV__nat__eq,axiom,
    ( top_top_set_nat
    = ( insert_nat @ zero_zero_nat @ ( image_nat_nat @ suc @ top_top_set_nat ) ) ) ).

% UNIV_nat_eq
thf(fact_9914_range__mod,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( image_nat_nat
          @ ^ [M6: nat] : ( modulo_modulo_nat @ M6 @ N2 )
          @ top_top_set_nat )
        = ( set_or4665077453230672383an_nat @ zero_zero_nat @ N2 ) ) ) ).

% range_mod
thf(fact_9915_suminf__eq__SUP__real,axiom,
    ! [X8: nat > real] :
      ( ( summable_real @ X8 )
     => ( ! [I3: nat] : ( ord_less_eq_real @ zero_zero_real @ ( X8 @ I3 ) )
       => ( ( suminf_real @ X8 )
          = ( comple1385675409528146559p_real
            @ ( image_nat_real
              @ ^ [I5: nat] : ( groups6591440286371151544t_real @ X8 @ ( set_ord_lessThan_nat @ I5 ) )
              @ top_top_set_nat ) ) ) ) ) ).

% suminf_eq_SUP_real
thf(fact_9916_Gcd__int__def,axiom,
    ( gcd_Gcd_int
    = ( ^ [K7: set_int] : ( semiri1314217659103216013at_int @ ( gcd_Gcd_nat @ ( image_int_nat @ ( comp_int_nat_int @ nat2 @ abs_abs_int ) @ K7 ) ) ) ) ) ).

% Gcd_int_def
thf(fact_9917_card__UNIV__unit,axiom,
    ( ( finite410649719033368117t_unit @ top_to1996260823553986621t_unit )
    = one_one_nat ) ).

% card_UNIV_unit
thf(fact_9918_range__mult,axiom,
    ! [A: real] :
      ( ( ( A = zero_zero_real )
       => ( ( image_real_real @ ( times_times_real @ A ) @ top_top_set_real )
          = ( insert_real @ zero_zero_real @ bot_bot_set_real ) ) )
      & ( ( A != zero_zero_real )
       => ( ( image_real_real @ ( times_times_real @ A ) @ top_top_set_real )
          = top_top_set_real ) ) ) ).

% range_mult
thf(fact_9919_card__UNIV__bool,axiom,
    ( ( finite_card_o @ top_top_set_o )
    = ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ).

% card_UNIV_bool
thf(fact_9920_root__def,axiom,
    ( root
    = ( ^ [N3: nat,X3: real] :
          ( if_real @ ( N3 = zero_zero_nat ) @ zero_zero_real
          @ ( the_in5290026491893676941l_real @ top_top_set_real
            @ ^ [Y3: real] : ( times_times_real @ ( sgn_sgn_real @ Y3 ) @ ( power_power_real @ ( abs_abs_real @ Y3 ) @ N3 ) )
            @ X3 ) ) ) ) ).

% root_def
thf(fact_9921_card__UNIV__char,axiom,
    ( ( finite_card_char @ top_top_set_char )
    = ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ).

% card_UNIV_char
thf(fact_9922_card_Ocomp__fun__commute__on,axiom,
    ( ( comp_nat_nat_nat @ suc @ suc )
    = ( comp_nat_nat_nat @ suc @ suc ) ) ).

% card.comp_fun_commute_on
thf(fact_9923_divmod__integer__eq__cases,axiom,
    ( code_divmod_integer
    = ( ^ [K3: code_integer,L: code_integer] :
          ( if_Pro6119634080678213985nteger @ ( K3 = zero_z3403309356797280102nteger ) @ ( produc1086072967326762835nteger @ zero_z3403309356797280102nteger @ zero_z3403309356797280102nteger )
          @ ( if_Pro6119634080678213985nteger @ ( L = zero_z3403309356797280102nteger ) @ ( produc1086072967326762835nteger @ zero_z3403309356797280102nteger @ K3 )
            @ ( comp_C1593894019821074884nteger @ ( comp_C8797469213163452608nteger @ produc6499014454317279255nteger @ times_3573771949741848930nteger ) @ sgn_sgn_Code_integer @ L
              @ ( if_Pro6119634080678213985nteger
                @ ( ( sgn_sgn_Code_integer @ K3 )
                  = ( sgn_sgn_Code_integer @ L ) )
                @ ( code_divmod_abs @ K3 @ L )
                @ ( produc6916734918728496179nteger
                  @ ^ [R5: code_integer,S6: code_integer] : ( if_Pro6119634080678213985nteger @ ( S6 = zero_z3403309356797280102nteger ) @ ( produc1086072967326762835nteger @ ( uminus1351360451143612070nteger @ R5 ) @ zero_z3403309356797280102nteger ) @ ( produc1086072967326762835nteger @ ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ R5 ) @ one_one_Code_integer ) @ ( minus_8373710615458151222nteger @ ( abs_abs_Code_integer @ L ) @ S6 ) ) )
                  @ ( code_divmod_abs @ K3 @ L ) ) ) ) ) ) ) ) ).

% divmod_integer_eq_cases
thf(fact_9924_Code__Numeral_Onegative__def,axiom,
    ( code_negative
    = ( comp_C3531382070062128313er_num @ uminus1351360451143612070nteger @ numera6620942414471956472nteger ) ) ).

% Code_Numeral.negative_def
thf(fact_9925_Code__Target__Int_Onegative__def,axiom,
    ( code_Target_negative
    = ( comp_int_int_num @ uminus_uminus_int @ numeral_numeral_int ) ) ).

% Code_Target_Int.negative_def
thf(fact_9926_UNIV__char__of__nat,axiom,
    ( top_top_set_char
    = ( image_nat_char @ unique3096191561947761185of_nat @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ) ).

% UNIV_char_of_nat
thf(fact_9927_char_Osize_I2_J,axiom,
    ! [X1: $o,X22: $o,X32: $o,X42: $o,X52: $o,X62: $o,X72: $o,X82: $o] :
      ( ( size_size_char @ ( char2 @ X1 @ X22 @ X32 @ X42 @ X52 @ X62 @ X72 @ X82 ) )
      = zero_zero_nat ) ).

% char.size(2)
thf(fact_9928_nat__of__char__less__256,axiom,
    ! [C: char] : ( ord_less_nat @ ( comm_s629917340098488124ar_nat @ C ) @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ).

% nat_of_char_less_256
thf(fact_9929_range__nat__of__char,axiom,
    ( ( image_char_nat @ comm_s629917340098488124ar_nat @ top_top_set_char )
    = ( set_or4665077453230672383an_nat @ zero_zero_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ).

% range_nat_of_char
thf(fact_9930_integer__of__char__code,axiom,
    ! [B0: $o,B1: $o,B22: $o,B32: $o,B42: $o,B52: $o,B62: $o,B72: $o] :
      ( ( integer_of_char @ ( char2 @ B0 @ B1 @ B22 @ B32 @ B42 @ B52 @ B62 @ B72 ) )
      = ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( zero_n356916108424825756nteger @ B72 ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( zero_n356916108424825756nteger @ B62 ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( zero_n356916108424825756nteger @ B52 ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( zero_n356916108424825756nteger @ B42 ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( zero_n356916108424825756nteger @ B32 ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( zero_n356916108424825756nteger @ B22 ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( zero_n356916108424825756nteger @ B1 ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( zero_n356916108424825756nteger @ B0 ) ) ) ).

% integer_of_char_code
thf(fact_9931_char__of__integer__code,axiom,
    ( char_of_integer
    = ( ^ [K3: code_integer] :
          ( produc4188289175737317920o_char
          @ ^ [Q0: code_integer,B02: $o] :
              ( produc4188289175737317920o_char
              @ ^ [Q1: code_integer,B12: $o] :
                  ( produc4188289175737317920o_char
                  @ ^ [Q22: code_integer,B23: $o] :
                      ( produc4188289175737317920o_char
                      @ ^ [Q32: code_integer,B33: $o] :
                          ( produc4188289175737317920o_char
                          @ ^ [Q42: code_integer,B43: $o] :
                              ( produc4188289175737317920o_char
                              @ ^ [Q52: code_integer,B53: $o] :
                                  ( produc4188289175737317920o_char
                                  @ ^ [Q62: code_integer,B63: $o] :
                                      ( produc4188289175737317920o_char
                                      @ ^ [Uu3: code_integer] : ( char2 @ B02 @ B12 @ B23 @ B33 @ B43 @ B53 @ B63 )
                                      @ ( code_bit_cut_integer @ Q62 ) )
                                  @ ( code_bit_cut_integer @ Q52 ) )
                              @ ( code_bit_cut_integer @ Q42 ) )
                          @ ( code_bit_cut_integer @ Q32 ) )
                      @ ( code_bit_cut_integer @ Q22 ) )
                  @ ( code_bit_cut_integer @ Q1 ) )
              @ ( code_bit_cut_integer @ Q0 ) )
          @ ( code_bit_cut_integer @ K3 ) ) ) ) ).

% char_of_integer_code
thf(fact_9932_String_Ochar__of__ascii__of,axiom,
    ! [C: char] :
      ( ( comm_s629917340098488124ar_nat @ ( ascii_of @ C ) )
      = ( bit_se2925701944663578781it_nat @ ( numeral_numeral_nat @ ( bit1 @ ( bit1 @ one ) ) ) @ ( comm_s629917340098488124ar_nat @ C ) ) ) ).

% String.char_of_ascii_of
thf(fact_9933_sorted__list__of__set__lessThan__Suc,axiom,
    ! [K: nat] :
      ( ( linord2614967742042102400et_nat @ ( set_ord_lessThan_nat @ ( suc @ K ) ) )
      = ( append_nat @ ( linord2614967742042102400et_nat @ ( set_ord_lessThan_nat @ K ) ) @ ( cons_nat @ K @ nil_nat ) ) ) ).

% sorted_list_of_set_lessThan_Suc
thf(fact_9934_sorted__list__of__set__atMost__Suc,axiom,
    ! [K: nat] :
      ( ( linord2614967742042102400et_nat @ ( set_ord_atMost_nat @ ( suc @ K ) ) )
      = ( append_nat @ ( linord2614967742042102400et_nat @ ( set_ord_atMost_nat @ K ) ) @ ( cons_nat @ ( suc @ K ) @ nil_nat ) ) ) ).

% sorted_list_of_set_atMost_Suc
thf(fact_9935_sorted__list__of__set__greaterThanAtMost,axiom,
    ! [I2: nat,J: nat] :
      ( ( ord_less_eq_nat @ ( suc @ I2 ) @ J )
     => ( ( linord2614967742042102400et_nat @ ( set_or6659071591806873216st_nat @ I2 @ J ) )
        = ( cons_nat @ ( suc @ I2 ) @ ( linord2614967742042102400et_nat @ ( set_or6659071591806873216st_nat @ ( suc @ I2 ) @ J ) ) ) ) ) ).

% sorted_list_of_set_greaterThanAtMost
thf(fact_9936_sorted__list__of__set__greaterThanLessThan,axiom,
    ! [I2: nat,J: nat] :
      ( ( ord_less_nat @ ( suc @ I2 ) @ J )
     => ( ( linord2614967742042102400et_nat @ ( set_or5834768355832116004an_nat @ I2 @ J ) )
        = ( cons_nat @ ( suc @ I2 ) @ ( linord2614967742042102400et_nat @ ( set_or5834768355832116004an_nat @ ( suc @ I2 ) @ J ) ) ) ) ) ).

% sorted_list_of_set_greaterThanLessThan
thf(fact_9937_list__encode_Oelims,axiom,
    ! [X: list_nat,Y: nat] :
      ( ( ( nat_list_encode @ X )
        = Y )
     => ( ( ( X = nil_nat )
         => ( Y != zero_zero_nat ) )
       => ~ ! [X5: nat,Xs3: list_nat] :
              ( ( X
                = ( cons_nat @ X5 @ Xs3 ) )
             => ( Y
               != ( suc @ ( nat_prod_encode @ ( product_Pair_nat_nat @ X5 @ ( nat_list_encode @ Xs3 ) ) ) ) ) ) ) ) ).

% list_encode.elims
thf(fact_9938_upto__aux__rec,axiom,
    ( upto_aux
    = ( ^ [I5: int,J3: int,Js: list_int] : ( if_list_int @ ( ord_less_int @ J3 @ I5 ) @ Js @ ( upto_aux @ I5 @ ( minus_minus_int @ J3 @ one_one_int ) @ ( cons_int @ J3 @ Js ) ) ) ) ) ).

% upto_aux_rec
thf(fact_9939_sup__nat__def,axiom,
    sup_sup_nat = ord_max_nat ).

% sup_nat_def
thf(fact_9940_sup__enat__def,axiom,
    sup_su3973961784419623482d_enat = ord_ma741700101516333627d_enat ).

% sup_enat_def
thf(fact_9941_sup__int__def,axiom,
    sup_sup_int = ord_max_int ).

% sup_int_def
thf(fact_9942_atLeastLessThan__add__Un,axiom,
    ! [I2: nat,J: nat,K: nat] :
      ( ( ord_less_eq_nat @ I2 @ J )
     => ( ( set_or4665077453230672383an_nat @ I2 @ ( plus_plus_nat @ J @ K ) )
        = ( sup_sup_set_nat @ ( set_or4665077453230672383an_nat @ I2 @ J ) @ ( set_or4665077453230672383an_nat @ J @ ( plus_plus_nat @ J @ K ) ) ) ) ) ).

% atLeastLessThan_add_Un
thf(fact_9943_list__encode_Osimps_I2_J,axiom,
    ! [X: nat,Xs2: list_nat] :
      ( ( nat_list_encode @ ( cons_nat @ X @ Xs2 ) )
      = ( suc @ ( nat_prod_encode @ ( product_Pair_nat_nat @ X @ ( nat_list_encode @ Xs2 ) ) ) ) ) ).

% list_encode.simps(2)
thf(fact_9944_list__encode_Opelims,axiom,
    ! [X: list_nat,Y: nat] :
      ( ( ( nat_list_encode @ X )
        = Y )
     => ( ( accp_list_nat @ nat_list_encode_rel @ X )
       => ( ( ( X = nil_nat )
           => ( ( Y = zero_zero_nat )
             => ~ ( accp_list_nat @ nat_list_encode_rel @ nil_nat ) ) )
         => ~ ! [X5: nat,Xs3: list_nat] :
                ( ( X
                  = ( cons_nat @ X5 @ Xs3 ) )
               => ( ( Y
                    = ( suc @ ( nat_prod_encode @ ( product_Pair_nat_nat @ X5 @ ( nat_list_encode @ Xs3 ) ) ) ) )
                 => ~ ( accp_list_nat @ nat_list_encode_rel @ ( cons_nat @ X5 @ Xs3 ) ) ) ) ) ) ) ).

% list_encode.pelims
thf(fact_9945_upto_Opsimps,axiom,
    ! [I2: int,J: int] :
      ( ( accp_P1096762738010456898nt_int @ upto_rel @ ( product_Pair_int_int @ I2 @ J ) )
     => ( ( ( ord_less_eq_int @ I2 @ J )
         => ( ( upto @ I2 @ J )
            = ( cons_int @ I2 @ ( upto @ ( plus_plus_int @ I2 @ one_one_int ) @ J ) ) ) )
        & ( ~ ( ord_less_eq_int @ I2 @ J )
         => ( ( upto @ I2 @ J )
            = nil_int ) ) ) ) ).

% upto.psimps
thf(fact_9946_upto_Opelims,axiom,
    ! [X: int,Xa2: int,Y: list_int] :
      ( ( ( upto @ X @ Xa2 )
        = Y )
     => ( ( accp_P1096762738010456898nt_int @ upto_rel @ ( product_Pair_int_int @ X @ Xa2 ) )
       => ~ ( ( ( ( ord_less_eq_int @ X @ Xa2 )
               => ( Y
                  = ( cons_int @ X @ ( upto @ ( plus_plus_int @ X @ one_one_int ) @ Xa2 ) ) ) )
              & ( ~ ( ord_less_eq_int @ X @ Xa2 )
               => ( Y = nil_int ) ) )
           => ~ ( accp_P1096762738010456898nt_int @ upto_rel @ ( product_Pair_int_int @ X @ Xa2 ) ) ) ) ) ).

% upto.pelims
thf(fact_9947_upto__Nil,axiom,
    ! [I2: int,J: int] :
      ( ( ( upto @ I2 @ J )
        = nil_int )
      = ( ord_less_int @ J @ I2 ) ) ).

% upto_Nil
thf(fact_9948_upto__Nil2,axiom,
    ! [I2: int,J: int] :
      ( ( nil_int
        = ( upto @ I2 @ J ) )
      = ( ord_less_int @ J @ I2 ) ) ).

% upto_Nil2
thf(fact_9949_upto__empty,axiom,
    ! [J: int,I2: int] :
      ( ( ord_less_int @ J @ I2 )
     => ( ( upto @ I2 @ J )
        = nil_int ) ) ).

% upto_empty
thf(fact_9950_upto__single,axiom,
    ! [I2: int] :
      ( ( upto @ I2 @ I2 )
      = ( cons_int @ I2 @ nil_int ) ) ).

% upto_single
thf(fact_9951_nth__upto,axiom,
    ! [I2: int,K: nat,J: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ I2 @ ( semiri1314217659103216013at_int @ K ) ) @ J )
     => ( ( nth_int @ ( upto @ I2 @ J ) @ K )
        = ( plus_plus_int @ I2 @ ( semiri1314217659103216013at_int @ K ) ) ) ) ).

% nth_upto
thf(fact_9952_length__upto,axiom,
    ! [I2: int,J: int] :
      ( ( size_size_list_int @ ( upto @ I2 @ J ) )
      = ( nat2 @ ( plus_plus_int @ ( minus_minus_int @ J @ I2 ) @ one_one_int ) ) ) ).

% length_upto
thf(fact_9953_upto__rec__numeral_I1_J,axiom,
    ! [M: num,N2: num] :
      ( ( ( ord_less_eq_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N2 ) )
       => ( ( upto @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N2 ) )
          = ( cons_int @ ( numeral_numeral_int @ M ) @ ( upto @ ( plus_plus_int @ ( numeral_numeral_int @ M ) @ one_one_int ) @ ( numeral_numeral_int @ N2 ) ) ) ) )
      & ( ~ ( ord_less_eq_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N2 ) )
       => ( ( upto @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N2 ) )
          = nil_int ) ) ) ).

% upto_rec_numeral(1)
thf(fact_9954_upto__rec__numeral_I2_J,axiom,
    ! [M: num,N2: num] :
      ( ( ( ord_less_eq_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) )
       => ( ( upto @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) )
          = ( cons_int @ ( numeral_numeral_int @ M ) @ ( upto @ ( plus_plus_int @ ( numeral_numeral_int @ M ) @ one_one_int ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) ) ) ) )
      & ( ~ ( ord_less_eq_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) )
       => ( ( upto @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) )
          = nil_int ) ) ) ).

% upto_rec_numeral(2)
thf(fact_9955_upto__rec__numeral_I3_J,axiom,
    ! [M: num,N2: num] :
      ( ( ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N2 ) )
       => ( ( upto @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N2 ) )
          = ( cons_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( upto @ ( plus_plus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ one_one_int ) @ ( numeral_numeral_int @ N2 ) ) ) ) )
      & ( ~ ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N2 ) )
       => ( ( upto @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N2 ) )
          = nil_int ) ) ) ).

% upto_rec_numeral(3)
thf(fact_9956_upto__rec__numeral_I4_J,axiom,
    ! [M: num,N2: num] :
      ( ( ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) )
       => ( ( upto @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) )
          = ( cons_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( upto @ ( plus_plus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ one_one_int ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) ) ) ) )
      & ( ~ ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) )
       => ( ( upto @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) )
          = nil_int ) ) ) ).

% upto_rec_numeral(4)
thf(fact_9957_atLeastAtMost__upto,axiom,
    ( set_or1266510415728281911st_int
    = ( ^ [I5: int,J3: int] : ( set_int2 @ ( upto @ I5 @ J3 ) ) ) ) ).

% atLeastAtMost_upto
thf(fact_9958_distinct__upto,axiom,
    ! [I2: int,J: int] : ( distinct_int @ ( upto @ I2 @ J ) ) ).

% distinct_upto
thf(fact_9959_upto__code,axiom,
    ( upto
    = ( ^ [I5: int,J3: int] : ( upto_aux @ I5 @ J3 @ nil_int ) ) ) ).

% upto_code
thf(fact_9960_upto__aux__def,axiom,
    ( upto_aux
    = ( ^ [I5: int,J3: int] : ( append_int @ ( upto @ I5 @ J3 ) ) ) ) ).

% upto_aux_def
thf(fact_9961_upto__split2,axiom,
    ! [I2: int,J: int,K: int] :
      ( ( ord_less_eq_int @ I2 @ J )
     => ( ( ord_less_eq_int @ J @ K )
       => ( ( upto @ I2 @ K )
          = ( append_int @ ( upto @ I2 @ J ) @ ( upto @ ( plus_plus_int @ J @ one_one_int ) @ K ) ) ) ) ) ).

% upto_split2
thf(fact_9962_upto__split1,axiom,
    ! [I2: int,J: int,K: int] :
      ( ( ord_less_eq_int @ I2 @ J )
     => ( ( ord_less_eq_int @ J @ K )
       => ( ( upto @ I2 @ K )
          = ( append_int @ ( upto @ I2 @ ( minus_minus_int @ J @ one_one_int ) ) @ ( upto @ J @ K ) ) ) ) ) ).

% upto_split1
thf(fact_9963_atLeastLessThan__upto,axiom,
    ( set_or4662586982721622107an_int
    = ( ^ [I5: int,J3: int] : ( set_int2 @ ( upto @ I5 @ ( minus_minus_int @ J3 @ one_one_int ) ) ) ) ) ).

% atLeastLessThan_upto
thf(fact_9964_greaterThanAtMost__upto,axiom,
    ( set_or6656581121297822940st_int
    = ( ^ [I5: int,J3: int] : ( set_int2 @ ( upto @ ( plus_plus_int @ I5 @ one_one_int ) @ J3 ) ) ) ) ).

% greaterThanAtMost_upto
thf(fact_9965_upto_Oelims,axiom,
    ! [X: int,Xa2: int,Y: list_int] :
      ( ( ( upto @ X @ Xa2 )
        = Y )
     => ( ( ( ord_less_eq_int @ X @ Xa2 )
         => ( Y
            = ( cons_int @ X @ ( upto @ ( plus_plus_int @ X @ one_one_int ) @ Xa2 ) ) ) )
        & ( ~ ( ord_less_eq_int @ X @ Xa2 )
         => ( Y = nil_int ) ) ) ) ).

% upto.elims
thf(fact_9966_upto_Osimps,axiom,
    ( upto
    = ( ^ [I5: int,J3: int] : ( if_list_int @ ( ord_less_eq_int @ I5 @ J3 ) @ ( cons_int @ I5 @ ( upto @ ( plus_plus_int @ I5 @ one_one_int ) @ J3 ) ) @ nil_int ) ) ) ).

% upto.simps
thf(fact_9967_upto__rec1,axiom,
    ! [I2: int,J: int] :
      ( ( ord_less_eq_int @ I2 @ J )
     => ( ( upto @ I2 @ J )
        = ( cons_int @ I2 @ ( upto @ ( plus_plus_int @ I2 @ one_one_int ) @ J ) ) ) ) ).

% upto_rec1
thf(fact_9968_upto__rec2,axiom,
    ! [I2: int,J: int] :
      ( ( ord_less_eq_int @ I2 @ J )
     => ( ( upto @ I2 @ J )
        = ( append_int @ ( upto @ I2 @ ( minus_minus_int @ J @ one_one_int ) ) @ ( cons_int @ J @ nil_int ) ) ) ) ).

% upto_rec2
thf(fact_9969_greaterThanLessThan__upto,axiom,
    ( set_or5832277885323065728an_int
    = ( ^ [I5: int,J3: int] : ( set_int2 @ ( upto @ ( plus_plus_int @ I5 @ one_one_int ) @ ( minus_minus_int @ J3 @ one_one_int ) ) ) ) ) ).

% greaterThanLessThan_upto
thf(fact_9970_upto__split3,axiom,
    ! [I2: int,J: int,K: int] :
      ( ( ord_less_eq_int @ I2 @ J )
     => ( ( ord_less_eq_int @ J @ K )
       => ( ( upto @ I2 @ K )
          = ( append_int @ ( upto @ I2 @ ( minus_minus_int @ J @ one_one_int ) ) @ ( cons_int @ J @ ( upto @ ( plus_plus_int @ J @ one_one_int ) @ K ) ) ) ) ) ) ).

% upto_split3
thf(fact_9971_DERIV__real__root__generic,axiom,
    ! [N2: nat,X: real,D3: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( X != zero_zero_real )
       => ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
           => ( ( ord_less_real @ zero_zero_real @ X )
             => ( D3
                = ( inverse_inverse_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( power_power_real @ ( root @ N2 @ X ) @ ( minus_minus_nat @ N2 @ ( suc @ zero_zero_nat ) ) ) ) ) ) ) )
         => ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
             => ( ( ord_less_real @ X @ zero_zero_real )
               => ( D3
                  = ( uminus_uminus_real @ ( inverse_inverse_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( power_power_real @ ( root @ N2 @ X ) @ ( minus_minus_nat @ N2 @ ( suc @ zero_zero_nat ) ) ) ) ) ) ) ) )
           => ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
               => ( D3
                  = ( inverse_inverse_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( power_power_real @ ( root @ N2 @ X ) @ ( minus_minus_nat @ N2 @ ( suc @ zero_zero_nat ) ) ) ) ) ) )
             => ( has_fi5821293074295781190e_real @ ( root @ N2 ) @ D3 @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) ) ) ) ) ) ) ).

% DERIV_real_root_generic
thf(fact_9972_DERIV__local__const,axiom,
    ! [F: real > real,L2: real,X: real,D: real] :
      ( ( has_fi5821293074295781190e_real @ F @ L2 @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
     => ( ( ord_less_real @ zero_zero_real @ D )
       => ( ! [Y5: real] :
              ( ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ X @ Y5 ) ) @ D )
             => ( ( F @ X )
                = ( F @ Y5 ) ) )
         => ( L2 = zero_zero_real ) ) ) ) ).

% DERIV_local_const
thf(fact_9973_has__real__derivative__pos__inc__right,axiom,
    ! [F: real > real,L2: real,X: real,S3: set_real] :
      ( ( has_fi5821293074295781190e_real @ F @ L2 @ ( topolo2177554685111907308n_real @ X @ S3 ) )
     => ( ( ord_less_real @ zero_zero_real @ L2 )
       => ? [D4: real] :
            ( ( ord_less_real @ zero_zero_real @ D4 )
            & ! [H4: real] :
                ( ( ord_less_real @ zero_zero_real @ H4 )
               => ( ( member_real @ ( plus_plus_real @ X @ H4 ) @ S3 )
                 => ( ( ord_less_real @ H4 @ D4 )
                   => ( ord_less_real @ ( F @ X ) @ ( F @ ( plus_plus_real @ X @ H4 ) ) ) ) ) ) ) ) ) ).

% has_real_derivative_pos_inc_right
thf(fact_9974_has__real__derivative__neg__dec__right,axiom,
    ! [F: real > real,L2: real,X: real,S3: set_real] :
      ( ( has_fi5821293074295781190e_real @ F @ L2 @ ( topolo2177554685111907308n_real @ X @ S3 ) )
     => ( ( ord_less_real @ L2 @ zero_zero_real )
       => ? [D4: real] :
            ( ( ord_less_real @ zero_zero_real @ D4 )
            & ! [H4: real] :
                ( ( ord_less_real @ zero_zero_real @ H4 )
               => ( ( member_real @ ( plus_plus_real @ X @ H4 ) @ S3 )
                 => ( ( ord_less_real @ H4 @ D4 )
                   => ( ord_less_real @ ( F @ ( plus_plus_real @ X @ H4 ) ) @ ( F @ X ) ) ) ) ) ) ) ) ).

% has_real_derivative_neg_dec_right
thf(fact_9975_has__real__derivative__neg__dec__left,axiom,
    ! [F: real > real,L2: real,X: real,S3: set_real] :
      ( ( has_fi5821293074295781190e_real @ F @ L2 @ ( topolo2177554685111907308n_real @ X @ S3 ) )
     => ( ( ord_less_real @ L2 @ zero_zero_real )
       => ? [D4: real] :
            ( ( ord_less_real @ zero_zero_real @ D4 )
            & ! [H4: real] :
                ( ( ord_less_real @ zero_zero_real @ H4 )
               => ( ( member_real @ ( minus_minus_real @ X @ H4 ) @ S3 )
                 => ( ( ord_less_real @ H4 @ D4 )
                   => ( ord_less_real @ ( F @ X ) @ ( F @ ( minus_minus_real @ X @ H4 ) ) ) ) ) ) ) ) ) ).

% has_real_derivative_neg_dec_left
thf(fact_9976_has__real__derivative__pos__inc__left,axiom,
    ! [F: real > real,L2: real,X: real,S3: set_real] :
      ( ( has_fi5821293074295781190e_real @ F @ L2 @ ( topolo2177554685111907308n_real @ X @ S3 ) )
     => ( ( ord_less_real @ zero_zero_real @ L2 )
       => ? [D4: real] :
            ( ( ord_less_real @ zero_zero_real @ D4 )
            & ! [H4: real] :
                ( ( ord_less_real @ zero_zero_real @ H4 )
               => ( ( member_real @ ( minus_minus_real @ X @ H4 ) @ S3 )
                 => ( ( ord_less_real @ H4 @ D4 )
                   => ( ord_less_real @ ( F @ ( minus_minus_real @ X @ H4 ) ) @ ( F @ X ) ) ) ) ) ) ) ) ).

% has_real_derivative_pos_inc_left
thf(fact_9977_DERIV__mirror,axiom,
    ! [F: real > real,Y: real,X: real] :
      ( ( has_fi5821293074295781190e_real @ F @ Y @ ( topolo2177554685111907308n_real @ ( uminus_uminus_real @ X ) @ top_top_set_real ) )
      = ( has_fi5821293074295781190e_real
        @ ^ [X3: real] : ( F @ ( uminus_uminus_real @ X3 ) )
        @ ( uminus_uminus_real @ Y )
        @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) ) ) ).

% DERIV_mirror
thf(fact_9978_DERIV__const__ratio__const,axiom,
    ! [A: real,B: real,F: real > real,K: real] :
      ( ( A != B )
     => ( ! [X5: real] : ( has_fi5821293074295781190e_real @ F @ K @ ( topolo2177554685111907308n_real @ X5 @ top_top_set_real ) )
       => ( ( minus_minus_real @ ( F @ B ) @ ( F @ A ) )
          = ( times_times_real @ ( minus_minus_real @ B @ A ) @ K ) ) ) ) ).

% DERIV_const_ratio_const
thf(fact_9979_DERIV__pos__inc__right,axiom,
    ! [F: real > real,L2: real,X: real] :
      ( ( has_fi5821293074295781190e_real @ F @ L2 @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
     => ( ( ord_less_real @ zero_zero_real @ L2 )
       => ? [D4: real] :
            ( ( ord_less_real @ zero_zero_real @ D4 )
            & ! [H4: real] :
                ( ( ord_less_real @ zero_zero_real @ H4 )
               => ( ( ord_less_real @ H4 @ D4 )
                 => ( ord_less_real @ ( F @ X ) @ ( F @ ( plus_plus_real @ X @ H4 ) ) ) ) ) ) ) ) ).

% DERIV_pos_inc_right
thf(fact_9980_DERIV__neg__dec__right,axiom,
    ! [F: real > real,L2: real,X: real] :
      ( ( has_fi5821293074295781190e_real @ F @ L2 @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
     => ( ( ord_less_real @ L2 @ zero_zero_real )
       => ? [D4: real] :
            ( ( ord_less_real @ zero_zero_real @ D4 )
            & ! [H4: real] :
                ( ( ord_less_real @ zero_zero_real @ H4 )
               => ( ( ord_less_real @ H4 @ D4 )
                 => ( ord_less_real @ ( F @ ( plus_plus_real @ X @ H4 ) ) @ ( F @ X ) ) ) ) ) ) ) ).

% DERIV_neg_dec_right
thf(fact_9981_DERIV__const__ratio__const2,axiom,
    ! [A: real,B: real,F: real > real,K: real] :
      ( ( A != B )
     => ( ! [X5: real] : ( has_fi5821293074295781190e_real @ F @ K @ ( topolo2177554685111907308n_real @ X5 @ top_top_set_real ) )
       => ( ( divide_divide_real @ ( minus_minus_real @ ( F @ B ) @ ( F @ A ) ) @ ( minus_minus_real @ B @ A ) )
          = K ) ) ) ).

% DERIV_const_ratio_const2
thf(fact_9982_DERIV__neg__dec__left,axiom,
    ! [F: real > real,L2: real,X: real] :
      ( ( has_fi5821293074295781190e_real @ F @ L2 @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
     => ( ( ord_less_real @ L2 @ zero_zero_real )
       => ? [D4: real] :
            ( ( ord_less_real @ zero_zero_real @ D4 )
            & ! [H4: real] :
                ( ( ord_less_real @ zero_zero_real @ H4 )
               => ( ( ord_less_real @ H4 @ D4 )
                 => ( ord_less_real @ ( F @ X ) @ ( F @ ( minus_minus_real @ X @ H4 ) ) ) ) ) ) ) ) ).

% DERIV_neg_dec_left
thf(fact_9983_DERIV__pos__inc__left,axiom,
    ! [F: real > real,L2: real,X: real] :
      ( ( has_fi5821293074295781190e_real @ F @ L2 @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
     => ( ( ord_less_real @ zero_zero_real @ L2 )
       => ? [D4: real] :
            ( ( ord_less_real @ zero_zero_real @ D4 )
            & ! [H4: real] :
                ( ( ord_less_real @ zero_zero_real @ H4 )
               => ( ( ord_less_real @ H4 @ D4 )
                 => ( ord_less_real @ ( F @ ( minus_minus_real @ X @ H4 ) ) @ ( F @ X ) ) ) ) ) ) ) ).

% DERIV_pos_inc_left
thf(fact_9984_DERIV__neg__imp__decreasing,axiom,
    ! [A: real,B: real,F: real > real] :
      ( ( ord_less_real @ A @ B )
     => ( ! [X5: real] :
            ( ( ord_less_eq_real @ A @ X5 )
           => ( ( ord_less_eq_real @ X5 @ B )
             => ? [Y2: real] :
                  ( ( has_fi5821293074295781190e_real @ F @ Y2 @ ( topolo2177554685111907308n_real @ X5 @ top_top_set_real ) )
                  & ( ord_less_real @ Y2 @ zero_zero_real ) ) ) )
       => ( ord_less_real @ ( F @ B ) @ ( F @ A ) ) ) ) ).

% DERIV_neg_imp_decreasing
thf(fact_9985_DERIV__pos__imp__increasing,axiom,
    ! [A: real,B: real,F: real > real] :
      ( ( ord_less_real @ A @ B )
     => ( ! [X5: real] :
            ( ( ord_less_eq_real @ A @ X5 )
           => ( ( ord_less_eq_real @ X5 @ B )
             => ? [Y2: real] :
                  ( ( has_fi5821293074295781190e_real @ F @ Y2 @ ( topolo2177554685111907308n_real @ X5 @ top_top_set_real ) )
                  & ( ord_less_real @ zero_zero_real @ Y2 ) ) ) )
       => ( ord_less_real @ ( F @ A ) @ ( F @ B ) ) ) ) ).

% DERIV_pos_imp_increasing
thf(fact_9986_DERIV__nonneg__imp__nondecreasing,axiom,
    ! [A: real,B: real,F: real > real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ! [X5: real] :
            ( ( ord_less_eq_real @ A @ X5 )
           => ( ( ord_less_eq_real @ X5 @ B )
             => ? [Y2: real] :
                  ( ( has_fi5821293074295781190e_real @ F @ Y2 @ ( topolo2177554685111907308n_real @ X5 @ top_top_set_real ) )
                  & ( ord_less_eq_real @ zero_zero_real @ Y2 ) ) ) )
       => ( ord_less_eq_real @ ( F @ A ) @ ( F @ B ) ) ) ) ).

% DERIV_nonneg_imp_nondecreasing
thf(fact_9987_DERIV__nonpos__imp__nonincreasing,axiom,
    ! [A: real,B: real,F: real > real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ! [X5: real] :
            ( ( ord_less_eq_real @ A @ X5 )
           => ( ( ord_less_eq_real @ X5 @ B )
             => ? [Y2: real] :
                  ( ( has_fi5821293074295781190e_real @ F @ Y2 @ ( topolo2177554685111907308n_real @ X5 @ top_top_set_real ) )
                  & ( ord_less_eq_real @ Y2 @ zero_zero_real ) ) ) )
       => ( ord_less_eq_real @ ( F @ B ) @ ( F @ A ) ) ) ) ).

% DERIV_nonpos_imp_nonincreasing
thf(fact_9988_deriv__nonneg__imp__mono,axiom,
    ! [A: real,B: real,G: real > real,G2: real > real] :
      ( ! [X5: real] :
          ( ( member_real @ X5 @ ( set_or1222579329274155063t_real @ A @ B ) )
         => ( has_fi5821293074295781190e_real @ G @ ( G2 @ X5 ) @ ( topolo2177554685111907308n_real @ X5 @ top_top_set_real ) ) )
     => ( ! [X5: real] :
            ( ( member_real @ X5 @ ( set_or1222579329274155063t_real @ A @ B ) )
           => ( ord_less_eq_real @ zero_zero_real @ ( G2 @ X5 ) ) )
       => ( ( ord_less_eq_real @ A @ B )
         => ( ord_less_eq_real @ ( G @ A ) @ ( G @ B ) ) ) ) ) ).

% deriv_nonneg_imp_mono
thf(fact_9989_MVT2,axiom,
    ! [A: real,B: real,F: real > real,F4: real > real] :
      ( ( ord_less_real @ A @ B )
     => ( ! [X5: real] :
            ( ( ord_less_eq_real @ A @ X5 )
           => ( ( ord_less_eq_real @ X5 @ B )
             => ( has_fi5821293074295781190e_real @ F @ ( F4 @ X5 ) @ ( topolo2177554685111907308n_real @ X5 @ top_top_set_real ) ) ) )
       => ? [Z4: real] :
            ( ( ord_less_real @ A @ Z4 )
            & ( ord_less_real @ Z4 @ B )
            & ( ( minus_minus_real @ ( F @ B ) @ ( F @ A ) )
              = ( times_times_real @ ( minus_minus_real @ B @ A ) @ ( F4 @ Z4 ) ) ) ) ) ) ).

% MVT2
thf(fact_9990_DERIV__const__average,axiom,
    ! [A: real,B: real,V: real > real,K: real] :
      ( ( A != B )
     => ( ! [X5: real] : ( has_fi5821293074295781190e_real @ V @ K @ ( topolo2177554685111907308n_real @ X5 @ top_top_set_real ) )
       => ( ( V @ ( divide_divide_real @ ( plus_plus_real @ A @ B ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
          = ( divide_divide_real @ ( plus_plus_real @ ( V @ A ) @ ( V @ B ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).

% DERIV_const_average
thf(fact_9991_DERIV__local__min,axiom,
    ! [F: real > real,L2: real,X: real,D: real] :
      ( ( has_fi5821293074295781190e_real @ F @ L2 @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
     => ( ( ord_less_real @ zero_zero_real @ D )
       => ( ! [Y5: real] :
              ( ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ X @ Y5 ) ) @ D )
             => ( ord_less_eq_real @ ( F @ X ) @ ( F @ Y5 ) ) )
         => ( L2 = zero_zero_real ) ) ) ) ).

% DERIV_local_min
thf(fact_9992_DERIV__local__max,axiom,
    ! [F: real > real,L2: real,X: real,D: real] :
      ( ( has_fi5821293074295781190e_real @ F @ L2 @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
     => ( ( ord_less_real @ zero_zero_real @ D )
       => ( ! [Y5: real] :
              ( ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ X @ Y5 ) ) @ D )
             => ( ord_less_eq_real @ ( F @ Y5 ) @ ( F @ X ) ) )
         => ( L2 = zero_zero_real ) ) ) ) ).

% DERIV_local_max
thf(fact_9993_DERIV__pow,axiom,
    ! [N2: nat,X: real,S2: set_real] :
      ( has_fi5821293074295781190e_real
      @ ^ [X3: real] : ( power_power_real @ X3 @ N2 )
      @ ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( power_power_real @ X @ ( minus_minus_nat @ N2 @ ( suc @ zero_zero_nat ) ) ) )
      @ ( topolo2177554685111907308n_real @ X @ S2 ) ) ).

% DERIV_pow
thf(fact_9994_DERIV__fun__pow,axiom,
    ! [G: real > real,M: real,X: real,N2: nat] :
      ( ( has_fi5821293074295781190e_real @ G @ M @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
     => ( has_fi5821293074295781190e_real
        @ ^ [X3: real] : ( power_power_real @ ( G @ X3 ) @ N2 )
        @ ( times_times_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( power_power_real @ ( G @ X ) @ ( minus_minus_nat @ N2 @ one_one_nat ) ) ) @ M )
        @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) ) ) ).

% DERIV_fun_pow
thf(fact_9995_has__real__derivative__powr,axiom,
    ! [Z: real,R2: real] :
      ( ( ord_less_real @ zero_zero_real @ Z )
     => ( has_fi5821293074295781190e_real
        @ ^ [Z2: real] : ( powr_real @ Z2 @ R2 )
        @ ( times_times_real @ R2 @ ( powr_real @ Z @ ( minus_minus_real @ R2 @ one_one_real ) ) )
        @ ( topolo2177554685111907308n_real @ Z @ top_top_set_real ) ) ) ).

% has_real_derivative_powr
thf(fact_9996_DERIV__series_H,axiom,
    ! [F: real > nat > real,F4: real > nat > real,X0: real,A: real,B: real,L5: nat > real] :
      ( ! [N: nat] :
          ( has_fi5821293074295781190e_real
          @ ^ [X3: real] : ( F @ X3 @ N )
          @ ( F4 @ X0 @ N )
          @ ( topolo2177554685111907308n_real @ X0 @ top_top_set_real ) )
     => ( ! [X5: real] :
            ( ( member_real @ X5 @ ( set_or1633881224788618240n_real @ A @ B ) )
           => ( summable_real @ ( F @ X5 ) ) )
       => ( ( member_real @ X0 @ ( set_or1633881224788618240n_real @ A @ B ) )
         => ( ( summable_real @ ( F4 @ X0 ) )
           => ( ( summable_real @ L5 )
             => ( ! [N: nat,X5: real,Y5: real] :
                    ( ( member_real @ X5 @ ( set_or1633881224788618240n_real @ A @ B ) )
                   => ( ( member_real @ Y5 @ ( set_or1633881224788618240n_real @ A @ B ) )
                     => ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( F @ X5 @ N ) @ ( F @ Y5 @ N ) ) ) @ ( times_times_real @ ( L5 @ N ) @ ( abs_abs_real @ ( minus_minus_real @ X5 @ Y5 ) ) ) ) ) )
               => ( has_fi5821293074295781190e_real
                  @ ^ [X3: real] : ( suminf_real @ ( F @ X3 ) )
                  @ ( suminf_real @ ( F4 @ X0 ) )
                  @ ( topolo2177554685111907308n_real @ X0 @ top_top_set_real ) ) ) ) ) ) ) ) ).

% DERIV_series'
thf(fact_9997_DERIV__log,axiom,
    ! [X: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( has_fi5821293074295781190e_real @ ( log @ B ) @ ( divide_divide_real @ one_one_real @ ( times_times_real @ ( ln_ln_real @ B ) @ X ) ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) ) ) ).

% DERIV_log
thf(fact_9998_DERIV__fun__powr,axiom,
    ! [G: real > real,M: real,X: real,R2: real] :
      ( ( has_fi5821293074295781190e_real @ G @ M @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
     => ( ( ord_less_real @ zero_zero_real @ ( G @ X ) )
       => ( has_fi5821293074295781190e_real
          @ ^ [X3: real] : ( powr_real @ ( G @ X3 ) @ R2 )
          @ ( times_times_real @ ( times_times_real @ R2 @ ( powr_real @ ( G @ X ) @ ( minus_minus_real @ R2 @ ( semiri5074537144036343181t_real @ one_one_nat ) ) ) ) @ M )
          @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) ) ) ) ).

% DERIV_fun_powr
thf(fact_9999_DERIV__powr,axiom,
    ! [G: real > real,M: real,X: real,F: real > real,R2: real] :
      ( ( has_fi5821293074295781190e_real @ G @ M @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
     => ( ( ord_less_real @ zero_zero_real @ ( G @ X ) )
       => ( ( has_fi5821293074295781190e_real @ F @ R2 @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
         => ( has_fi5821293074295781190e_real
            @ ^ [X3: real] : ( powr_real @ ( G @ X3 ) @ ( F @ X3 ) )
            @ ( times_times_real @ ( powr_real @ ( G @ X ) @ ( F @ X ) ) @ ( plus_plus_real @ ( times_times_real @ R2 @ ( ln_ln_real @ ( G @ X ) ) ) @ ( divide_divide_real @ ( times_times_real @ M @ ( F @ X ) ) @ ( G @ X ) ) ) )
            @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) ) ) ) ) ).

% DERIV_powr
thf(fact_10000_artanh__real__has__field__derivative,axiom,
    ! [X: real,A2: set_real] :
      ( ( ord_less_real @ ( abs_abs_real @ X ) @ one_one_real )
     => ( has_fi5821293074295781190e_real @ artanh_real @ ( divide_divide_real @ one_one_real @ ( minus_minus_real @ one_one_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( topolo2177554685111907308n_real @ X @ A2 ) ) ) ).

% artanh_real_has_field_derivative
thf(fact_10001_DERIV__real__sqrt,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( has_fi5821293074295781190e_real @ sqrt @ ( divide_divide_real @ ( inverse_inverse_real @ ( sqrt @ X ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) ) ) ).

% DERIV_real_sqrt
thf(fact_10002_DERIV__arctan,axiom,
    ! [X: real] : ( has_fi5821293074295781190e_real @ arctan @ ( inverse_inverse_real @ ( plus_plus_real @ one_one_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) ) ).

% DERIV_arctan
thf(fact_10003_arsinh__real__has__field__derivative,axiom,
    ! [X: real,A2: set_real] : ( has_fi5821293074295781190e_real @ arsinh_real @ ( divide_divide_real @ one_one_real @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real ) ) ) @ ( topolo2177554685111907308n_real @ X @ A2 ) ) ).

% arsinh_real_has_field_derivative
thf(fact_10004_DERIV__real__sqrt__generic,axiom,
    ! [X: real,D3: real] :
      ( ( X != zero_zero_real )
     => ( ( ( ord_less_real @ zero_zero_real @ X )
         => ( D3
            = ( divide_divide_real @ ( inverse_inverse_real @ ( sqrt @ X ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) )
       => ( ( ( ord_less_real @ X @ zero_zero_real )
           => ( D3
              = ( divide_divide_real @ ( uminus_uminus_real @ ( inverse_inverse_real @ ( sqrt @ X ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) )
         => ( has_fi5821293074295781190e_real @ sqrt @ D3 @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) ) ) ) ) ).

% DERIV_real_sqrt_generic
thf(fact_10005_arcosh__real__has__field__derivative,axiom,
    ! [X: real,A2: set_real] :
      ( ( ord_less_real @ one_one_real @ X )
     => ( has_fi5821293074295781190e_real @ arcosh_real @ ( divide_divide_real @ one_one_real @ ( sqrt @ ( minus_minus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real ) ) ) @ ( topolo2177554685111907308n_real @ X @ A2 ) ) ) ).

% arcosh_real_has_field_derivative
thf(fact_10006_DERIV__power__series_H,axiom,
    ! [R: real,F: nat > real,X0: real] :
      ( ! [X5: real] :
          ( ( member_real @ X5 @ ( set_or1633881224788618240n_real @ ( uminus_uminus_real @ R ) @ R ) )
         => ( summable_real
            @ ^ [N3: nat] : ( times_times_real @ ( times_times_real @ ( F @ N3 ) @ ( semiri5074537144036343181t_real @ ( suc @ N3 ) ) ) @ ( power_power_real @ X5 @ N3 ) ) ) )
     => ( ( member_real @ X0 @ ( set_or1633881224788618240n_real @ ( uminus_uminus_real @ R ) @ R ) )
       => ( ( ord_less_real @ zero_zero_real @ R )
         => ( has_fi5821293074295781190e_real
            @ ^ [X3: real] :
                ( suminf_real
                @ ^ [N3: nat] : ( times_times_real @ ( F @ N3 ) @ ( power_power_real @ X3 @ ( suc @ N3 ) ) ) )
            @ ( suminf_real
              @ ^ [N3: nat] : ( times_times_real @ ( times_times_real @ ( F @ N3 ) @ ( semiri5074537144036343181t_real @ ( suc @ N3 ) ) ) @ ( power_power_real @ X0 @ N3 ) ) )
            @ ( topolo2177554685111907308n_real @ X0 @ top_top_set_real ) ) ) ) ) ).

% DERIV_power_series'
thf(fact_10007_DERIV__real__root,axiom,
    ! [N2: nat,X: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ( has_fi5821293074295781190e_real @ ( root @ N2 ) @ ( inverse_inverse_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( power_power_real @ ( root @ N2 @ X ) @ ( minus_minus_nat @ N2 @ ( suc @ zero_zero_nat ) ) ) ) ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) ) ) ) ).

% DERIV_real_root
thf(fact_10008_DERIV__arccos,axiom,
    ! [X: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ X )
     => ( ( ord_less_real @ X @ one_one_real )
       => ( has_fi5821293074295781190e_real @ arccos @ ( inverse_inverse_real @ ( uminus_uminus_real @ ( sqrt @ ( minus_minus_real @ one_one_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) ) ) ) ).

% DERIV_arccos
thf(fact_10009_DERIV__arcsin,axiom,
    ! [X: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ X )
     => ( ( ord_less_real @ X @ one_one_real )
       => ( has_fi5821293074295781190e_real @ arcsin @ ( inverse_inverse_real @ ( sqrt @ ( minus_minus_real @ one_one_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) ) ) ) ).

% DERIV_arcsin
thf(fact_10010_Maclaurin__all__le__objl,axiom,
    ! [Diff: nat > real > real,F: real > real,X: real,N2: nat] :
      ( ( ( ( Diff @ zero_zero_nat )
          = F )
        & ! [M2: nat,X5: real] : ( has_fi5821293074295781190e_real @ ( Diff @ M2 ) @ ( Diff @ ( suc @ M2 ) @ X5 ) @ ( topolo2177554685111907308n_real @ X5 @ top_top_set_real ) ) )
     => ? [T5: real] :
          ( ( ord_less_eq_real @ ( abs_abs_real @ T5 ) @ ( abs_abs_real @ X ) )
          & ( ( F @ X )
            = ( plus_plus_real
              @ ( groups6591440286371151544t_real
                @ ^ [M6: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M6 @ zero_zero_real ) @ ( semiri2265585572941072030t_real @ M6 ) ) @ ( power_power_real @ X @ M6 ) )
                @ ( set_ord_lessThan_nat @ N2 ) )
              @ ( times_times_real @ ( divide_divide_real @ ( Diff @ N2 @ T5 ) @ ( semiri2265585572941072030t_real @ N2 ) ) @ ( power_power_real @ X @ N2 ) ) ) ) ) ) ).

% Maclaurin_all_le_objl
thf(fact_10011_Maclaurin__all__le,axiom,
    ! [Diff: nat > real > real,F: real > real,X: real,N2: nat] :
      ( ( ( Diff @ zero_zero_nat )
        = F )
     => ( ! [M2: nat,X5: real] : ( has_fi5821293074295781190e_real @ ( Diff @ M2 ) @ ( Diff @ ( suc @ M2 ) @ X5 ) @ ( topolo2177554685111907308n_real @ X5 @ top_top_set_real ) )
       => ? [T5: real] :
            ( ( ord_less_eq_real @ ( abs_abs_real @ T5 ) @ ( abs_abs_real @ X ) )
            & ( ( F @ X )
              = ( plus_plus_real
                @ ( groups6591440286371151544t_real
                  @ ^ [M6: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M6 @ zero_zero_real ) @ ( semiri2265585572941072030t_real @ M6 ) ) @ ( power_power_real @ X @ M6 ) )
                  @ ( set_ord_lessThan_nat @ N2 ) )
                @ ( times_times_real @ ( divide_divide_real @ ( Diff @ N2 @ T5 ) @ ( semiri2265585572941072030t_real @ N2 ) ) @ ( power_power_real @ X @ N2 ) ) ) ) ) ) ) ).

% Maclaurin_all_le
thf(fact_10012_DERIV__odd__real__root,axiom,
    ! [N2: nat,X: real] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
     => ( ( X != zero_zero_real )
       => ( has_fi5821293074295781190e_real @ ( root @ N2 ) @ ( inverse_inverse_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( power_power_real @ ( root @ N2 @ X ) @ ( minus_minus_nat @ N2 @ ( suc @ zero_zero_nat ) ) ) ) ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) ) ) ) ).

% DERIV_odd_real_root
thf(fact_10013_Maclaurin,axiom,
    ! [H2: real,N2: nat,Diff: nat > real > real,F: real > real] :
      ( ( ord_less_real @ zero_zero_real @ H2 )
     => ( ( ord_less_nat @ zero_zero_nat @ N2 )
       => ( ( ( Diff @ zero_zero_nat )
            = F )
         => ( ! [M2: nat,T5: real] :
                ( ( ( ord_less_nat @ M2 @ N2 )
                  & ( ord_less_eq_real @ zero_zero_real @ T5 )
                  & ( ord_less_eq_real @ T5 @ H2 ) )
               => ( has_fi5821293074295781190e_real @ ( Diff @ M2 ) @ ( Diff @ ( suc @ M2 ) @ T5 ) @ ( topolo2177554685111907308n_real @ T5 @ top_top_set_real ) ) )
           => ? [T5: real] :
                ( ( ord_less_real @ zero_zero_real @ T5 )
                & ( ord_less_real @ T5 @ H2 )
                & ( ( F @ H2 )
                  = ( plus_plus_real
                    @ ( groups6591440286371151544t_real
                      @ ^ [M6: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M6 @ zero_zero_real ) @ ( semiri2265585572941072030t_real @ M6 ) ) @ ( power_power_real @ H2 @ M6 ) )
                      @ ( set_ord_lessThan_nat @ N2 ) )
                    @ ( times_times_real @ ( divide_divide_real @ ( Diff @ N2 @ T5 ) @ ( semiri2265585572941072030t_real @ N2 ) ) @ ( power_power_real @ H2 @ N2 ) ) ) ) ) ) ) ) ) ).

% Maclaurin
thf(fact_10014_Maclaurin2,axiom,
    ! [H2: real,Diff: nat > real > real,F: real > real,N2: nat] :
      ( ( ord_less_real @ zero_zero_real @ H2 )
     => ( ( ( Diff @ zero_zero_nat )
          = F )
       => ( ! [M2: nat,T5: real] :
              ( ( ( ord_less_nat @ M2 @ N2 )
                & ( ord_less_eq_real @ zero_zero_real @ T5 )
                & ( ord_less_eq_real @ T5 @ H2 ) )
             => ( has_fi5821293074295781190e_real @ ( Diff @ M2 ) @ ( Diff @ ( suc @ M2 ) @ T5 ) @ ( topolo2177554685111907308n_real @ T5 @ top_top_set_real ) ) )
         => ? [T5: real] :
              ( ( ord_less_real @ zero_zero_real @ T5 )
              & ( ord_less_eq_real @ T5 @ H2 )
              & ( ( F @ H2 )
                = ( plus_plus_real
                  @ ( groups6591440286371151544t_real
                    @ ^ [M6: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M6 @ zero_zero_real ) @ ( semiri2265585572941072030t_real @ M6 ) ) @ ( power_power_real @ H2 @ M6 ) )
                    @ ( set_ord_lessThan_nat @ N2 ) )
                  @ ( times_times_real @ ( divide_divide_real @ ( Diff @ N2 @ T5 ) @ ( semiri2265585572941072030t_real @ N2 ) ) @ ( power_power_real @ H2 @ N2 ) ) ) ) ) ) ) ) ).

% Maclaurin2
thf(fact_10015_Maclaurin__minus,axiom,
    ! [H2: real,N2: nat,Diff: nat > real > real,F: real > real] :
      ( ( ord_less_real @ H2 @ zero_zero_real )
     => ( ( ord_less_nat @ zero_zero_nat @ N2 )
       => ( ( ( Diff @ zero_zero_nat )
            = F )
         => ( ! [M2: nat,T5: real] :
                ( ( ( ord_less_nat @ M2 @ N2 )
                  & ( ord_less_eq_real @ H2 @ T5 )
                  & ( ord_less_eq_real @ T5 @ zero_zero_real ) )
               => ( has_fi5821293074295781190e_real @ ( Diff @ M2 ) @ ( Diff @ ( suc @ M2 ) @ T5 ) @ ( topolo2177554685111907308n_real @ T5 @ top_top_set_real ) ) )
           => ? [T5: real] :
                ( ( ord_less_real @ H2 @ T5 )
                & ( ord_less_real @ T5 @ zero_zero_real )
                & ( ( F @ H2 )
                  = ( plus_plus_real
                    @ ( groups6591440286371151544t_real
                      @ ^ [M6: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M6 @ zero_zero_real ) @ ( semiri2265585572941072030t_real @ M6 ) ) @ ( power_power_real @ H2 @ M6 ) )
                      @ ( set_ord_lessThan_nat @ N2 ) )
                    @ ( times_times_real @ ( divide_divide_real @ ( Diff @ N2 @ T5 ) @ ( semiri2265585572941072030t_real @ N2 ) ) @ ( power_power_real @ H2 @ N2 ) ) ) ) ) ) ) ) ) ).

% Maclaurin_minus
thf(fact_10016_Maclaurin__all__lt,axiom,
    ! [Diff: nat > real > real,F: real > real,N2: nat,X: real] :
      ( ( ( Diff @ zero_zero_nat )
        = F )
     => ( ( ord_less_nat @ zero_zero_nat @ N2 )
       => ( ( X != zero_zero_real )
         => ( ! [M2: nat,X5: real] : ( has_fi5821293074295781190e_real @ ( Diff @ M2 ) @ ( Diff @ ( suc @ M2 ) @ X5 ) @ ( topolo2177554685111907308n_real @ X5 @ top_top_set_real ) )
           => ? [T5: real] :
                ( ( ord_less_real @ zero_zero_real @ ( abs_abs_real @ T5 ) )
                & ( ord_less_real @ ( abs_abs_real @ T5 ) @ ( abs_abs_real @ X ) )
                & ( ( F @ X )
                  = ( plus_plus_real
                    @ ( groups6591440286371151544t_real
                      @ ^ [M6: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M6 @ zero_zero_real ) @ ( semiri2265585572941072030t_real @ M6 ) ) @ ( power_power_real @ X @ M6 ) )
                      @ ( set_ord_lessThan_nat @ N2 ) )
                    @ ( times_times_real @ ( divide_divide_real @ ( Diff @ N2 @ T5 ) @ ( semiri2265585572941072030t_real @ N2 ) ) @ ( power_power_real @ X @ N2 ) ) ) ) ) ) ) ) ) ).

% Maclaurin_all_lt
thf(fact_10017_Maclaurin__bi__le,axiom,
    ! [Diff: nat > real > real,F: real > real,N2: nat,X: real] :
      ( ( ( Diff @ zero_zero_nat )
        = F )
     => ( ! [M2: nat,T5: real] :
            ( ( ( ord_less_nat @ M2 @ N2 )
              & ( ord_less_eq_real @ ( abs_abs_real @ T5 ) @ ( abs_abs_real @ X ) ) )
           => ( has_fi5821293074295781190e_real @ ( Diff @ M2 ) @ ( Diff @ ( suc @ M2 ) @ T5 ) @ ( topolo2177554685111907308n_real @ T5 @ top_top_set_real ) ) )
       => ? [T5: real] :
            ( ( ord_less_eq_real @ ( abs_abs_real @ T5 ) @ ( abs_abs_real @ X ) )
            & ( ( F @ X )
              = ( plus_plus_real
                @ ( groups6591440286371151544t_real
                  @ ^ [M6: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M6 @ zero_zero_real ) @ ( semiri2265585572941072030t_real @ M6 ) ) @ ( power_power_real @ X @ M6 ) )
                  @ ( set_ord_lessThan_nat @ N2 ) )
                @ ( times_times_real @ ( divide_divide_real @ ( Diff @ N2 @ T5 ) @ ( semiri2265585572941072030t_real @ N2 ) ) @ ( power_power_real @ X @ N2 ) ) ) ) ) ) ) ).

% Maclaurin_bi_le
thf(fact_10018_Taylor,axiom,
    ! [N2: nat,Diff: nat > real > real,F: real > real,A: real,B: real,C: real,X: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( ( Diff @ zero_zero_nat )
          = F )
       => ( ! [M2: nat,T5: real] :
              ( ( ( ord_less_nat @ M2 @ N2 )
                & ( ord_less_eq_real @ A @ T5 )
                & ( ord_less_eq_real @ T5 @ B ) )
             => ( has_fi5821293074295781190e_real @ ( Diff @ M2 ) @ ( Diff @ ( suc @ M2 ) @ T5 ) @ ( topolo2177554685111907308n_real @ T5 @ top_top_set_real ) ) )
         => ( ( ord_less_eq_real @ A @ C )
           => ( ( ord_less_eq_real @ C @ B )
             => ( ( ord_less_eq_real @ A @ X )
               => ( ( ord_less_eq_real @ X @ B )
                 => ( ( X != C )
                   => ? [T5: real] :
                        ( ( ( ord_less_real @ X @ C )
                         => ( ( ord_less_real @ X @ T5 )
                            & ( ord_less_real @ T5 @ C ) ) )
                        & ( ~ ( ord_less_real @ X @ C )
                         => ( ( ord_less_real @ C @ T5 )
                            & ( ord_less_real @ T5 @ X ) ) )
                        & ( ( F @ X )
                          = ( plus_plus_real
                            @ ( groups6591440286371151544t_real
                              @ ^ [M6: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M6 @ C ) @ ( semiri2265585572941072030t_real @ M6 ) ) @ ( power_power_real @ ( minus_minus_real @ X @ C ) @ M6 ) )
                              @ ( set_ord_lessThan_nat @ N2 ) )
                            @ ( times_times_real @ ( divide_divide_real @ ( Diff @ N2 @ T5 ) @ ( semiri2265585572941072030t_real @ N2 ) ) @ ( power_power_real @ ( minus_minus_real @ X @ C ) @ N2 ) ) ) ) ) ) ) ) ) ) ) ) ) ).

% Taylor
thf(fact_10019_Taylor__up,axiom,
    ! [N2: nat,Diff: nat > real > real,F: real > real,A: real,B: real,C: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( ( Diff @ zero_zero_nat )
          = F )
       => ( ! [M2: nat,T5: real] :
              ( ( ( ord_less_nat @ M2 @ N2 )
                & ( ord_less_eq_real @ A @ T5 )
                & ( ord_less_eq_real @ T5 @ B ) )
             => ( has_fi5821293074295781190e_real @ ( Diff @ M2 ) @ ( Diff @ ( suc @ M2 ) @ T5 ) @ ( topolo2177554685111907308n_real @ T5 @ top_top_set_real ) ) )
         => ( ( ord_less_eq_real @ A @ C )
           => ( ( ord_less_real @ C @ B )
             => ? [T5: real] :
                  ( ( ord_less_real @ C @ T5 )
                  & ( ord_less_real @ T5 @ B )
                  & ( ( F @ B )
                    = ( plus_plus_real
                      @ ( groups6591440286371151544t_real
                        @ ^ [M6: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M6 @ C ) @ ( semiri2265585572941072030t_real @ M6 ) ) @ ( power_power_real @ ( minus_minus_real @ B @ C ) @ M6 ) )
                        @ ( set_ord_lessThan_nat @ N2 ) )
                      @ ( times_times_real @ ( divide_divide_real @ ( Diff @ N2 @ T5 ) @ ( semiri2265585572941072030t_real @ N2 ) ) @ ( power_power_real @ ( minus_minus_real @ B @ C ) @ N2 ) ) ) ) ) ) ) ) ) ) ).

% Taylor_up
thf(fact_10020_Taylor__down,axiom,
    ! [N2: nat,Diff: nat > real > real,F: real > real,A: real,B: real,C: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( ( Diff @ zero_zero_nat )
          = F )
       => ( ! [M2: nat,T5: real] :
              ( ( ( ord_less_nat @ M2 @ N2 )
                & ( ord_less_eq_real @ A @ T5 )
                & ( ord_less_eq_real @ T5 @ B ) )
             => ( has_fi5821293074295781190e_real @ ( Diff @ M2 ) @ ( Diff @ ( suc @ M2 ) @ T5 ) @ ( topolo2177554685111907308n_real @ T5 @ top_top_set_real ) ) )
         => ( ( ord_less_real @ A @ C )
           => ( ( ord_less_eq_real @ C @ B )
             => ? [T5: real] :
                  ( ( ord_less_real @ A @ T5 )
                  & ( ord_less_real @ T5 @ C )
                  & ( ( F @ A )
                    = ( plus_plus_real
                      @ ( groups6591440286371151544t_real
                        @ ^ [M6: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M6 @ C ) @ ( semiri2265585572941072030t_real @ M6 ) ) @ ( power_power_real @ ( minus_minus_real @ A @ C ) @ M6 ) )
                        @ ( set_ord_lessThan_nat @ N2 ) )
                      @ ( times_times_real @ ( divide_divide_real @ ( Diff @ N2 @ T5 ) @ ( semiri2265585572941072030t_real @ N2 ) ) @ ( power_power_real @ ( minus_minus_real @ A @ C ) @ N2 ) ) ) ) ) ) ) ) ) ) ).

% Taylor_down
thf(fact_10021_Maclaurin__lemma2,axiom,
    ! [N2: nat,H2: real,Diff: nat > real > real,K: nat,B3: real] :
      ( ! [M2: nat,T5: real] :
          ( ( ( ord_less_nat @ M2 @ N2 )
            & ( ord_less_eq_real @ zero_zero_real @ T5 )
            & ( ord_less_eq_real @ T5 @ H2 ) )
         => ( has_fi5821293074295781190e_real @ ( Diff @ M2 ) @ ( Diff @ ( suc @ M2 ) @ T5 ) @ ( topolo2177554685111907308n_real @ T5 @ top_top_set_real ) ) )
     => ( ( N2
          = ( suc @ K ) )
       => ! [M3: nat,T6: real] :
            ( ( ( ord_less_nat @ M3 @ N2 )
              & ( ord_less_eq_real @ zero_zero_real @ T6 )
              & ( ord_less_eq_real @ T6 @ H2 ) )
           => ( has_fi5821293074295781190e_real
              @ ^ [U2: real] :
                  ( minus_minus_real @ ( Diff @ M3 @ U2 )
                  @ ( plus_plus_real
                    @ ( groups6591440286371151544t_real
                      @ ^ [P5: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ ( plus_plus_nat @ M3 @ P5 ) @ zero_zero_real ) @ ( semiri2265585572941072030t_real @ P5 ) ) @ ( power_power_real @ U2 @ P5 ) )
                      @ ( set_ord_lessThan_nat @ ( minus_minus_nat @ N2 @ M3 ) ) )
                    @ ( times_times_real @ B3 @ ( divide_divide_real @ ( power_power_real @ U2 @ ( minus_minus_nat @ N2 @ M3 ) ) @ ( semiri2265585572941072030t_real @ ( minus_minus_nat @ N2 @ M3 ) ) ) ) ) )
              @ ( minus_minus_real @ ( Diff @ ( suc @ M3 ) @ T6 )
                @ ( plus_plus_real
                  @ ( groups6591440286371151544t_real
                    @ ^ [P5: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ ( plus_plus_nat @ ( suc @ M3 ) @ P5 ) @ zero_zero_real ) @ ( semiri2265585572941072030t_real @ P5 ) ) @ ( power_power_real @ T6 @ P5 ) )
                    @ ( set_ord_lessThan_nat @ ( minus_minus_nat @ N2 @ ( suc @ M3 ) ) ) )
                  @ ( times_times_real @ B3 @ ( divide_divide_real @ ( power_power_real @ T6 @ ( minus_minus_nat @ N2 @ ( suc @ M3 ) ) ) @ ( semiri2265585572941072030t_real @ ( minus_minus_nat @ N2 @ ( suc @ M3 ) ) ) ) ) ) )
              @ ( topolo2177554685111907308n_real @ T6 @ top_top_set_real ) ) ) ) ) ).

% Maclaurin_lemma2
thf(fact_10022_DERIV__arctan__series,axiom,
    ! [X: real] :
      ( ( ord_less_real @ ( abs_abs_real @ X ) @ one_one_real )
     => ( has_fi5821293074295781190e_real
        @ ^ [X9: real] :
            ( suminf_real
            @ ^ [K3: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ K3 ) @ ( times_times_real @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ ( plus_plus_nat @ ( times_times_nat @ K3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) @ ( power_power_real @ X9 @ ( plus_plus_nat @ ( times_times_nat @ K3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) ) )
        @ ( suminf_real
          @ ^ [K3: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ K3 ) @ ( power_power_real @ X @ ( times_times_nat @ K3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
        @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) ) ) ).

% DERIV_arctan_series
thf(fact_10023_DERIV__even__real__root,axiom,
    ! [N2: nat,X: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
       => ( ( ord_less_real @ X @ zero_zero_real )
         => ( has_fi5821293074295781190e_real @ ( root @ N2 ) @ ( inverse_inverse_real @ ( times_times_real @ ( uminus_uminus_real @ ( semiri5074537144036343181t_real @ N2 ) ) @ ( power_power_real @ ( root @ N2 @ X ) @ ( minus_minus_nat @ N2 @ ( suc @ zero_zero_nat ) ) ) ) ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) ) ) ) ) ).

% DERIV_even_real_root
thf(fact_10024_take__bit__numeral__minus__numeral__int,axiom,
    ! [M: num,N2: num] :
      ( ( bit_se2923211474154528505it_int @ ( numeral_numeral_nat @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N2 ) ) )
      = ( case_option_int_num @ zero_zero_int
        @ ^ [Q4: num] : ( bit_se2923211474154528505it_int @ ( numeral_numeral_nat @ M ) @ ( minus_minus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ M ) ) @ ( numeral_numeral_int @ Q4 ) ) )
        @ ( bit_take_bit_num @ ( numeral_numeral_nat @ M ) @ N2 ) ) ) ).

% take_bit_numeral_minus_numeral_int
thf(fact_10025_and__minus__numerals_I3_J,axiom,
    ! [M: num,N2: num] :
      ( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ N2 ) ) ) )
      = ( case_option_int_num @ zero_zero_int @ numeral_numeral_int @ ( bit_and_not_num @ M @ ( bitM @ N2 ) ) ) ) ).

% and_minus_numerals(3)
thf(fact_10026_take__bit__num__simps_I1_J,axiom,
    ! [M: num] :
      ( ( bit_take_bit_num @ zero_zero_nat @ M )
      = none_num ) ).

% take_bit_num_simps(1)
thf(fact_10027_take__bit__num__simps_I2_J,axiom,
    ! [N2: nat] :
      ( ( bit_take_bit_num @ ( suc @ N2 ) @ one )
      = ( some_num @ one ) ) ).

% take_bit_num_simps(2)
thf(fact_10028_take__bit__num__simps_I5_J,axiom,
    ! [R2: num] :
      ( ( bit_take_bit_num @ ( numeral_numeral_nat @ R2 ) @ one )
      = ( some_num @ one ) ) ).

% take_bit_num_simps(5)
thf(fact_10029_take__bit__num__simps_I3_J,axiom,
    ! [N2: nat,M: num] :
      ( ( bit_take_bit_num @ ( suc @ N2 ) @ ( bit0 @ M ) )
      = ( case_o6005452278849405969um_num @ none_num
        @ ^ [Q4: num] : ( some_num @ ( bit0 @ Q4 ) )
        @ ( bit_take_bit_num @ N2 @ M ) ) ) ).

% take_bit_num_simps(3)
thf(fact_10030_take__bit__num__simps_I4_J,axiom,
    ! [N2: nat,M: num] :
      ( ( bit_take_bit_num @ ( suc @ N2 ) @ ( bit1 @ M ) )
      = ( some_num @ ( case_option_num_num @ one @ bit1 @ ( bit_take_bit_num @ N2 @ M ) ) ) ) ).

% take_bit_num_simps(4)
thf(fact_10031_take__bit__num__simps_I6_J,axiom,
    ! [R2: num,M: num] :
      ( ( bit_take_bit_num @ ( numeral_numeral_nat @ R2 ) @ ( bit0 @ M ) )
      = ( case_o6005452278849405969um_num @ none_num
        @ ^ [Q4: num] : ( some_num @ ( bit0 @ Q4 ) )
        @ ( bit_take_bit_num @ ( pred_numeral @ R2 ) @ M ) ) ) ).

% take_bit_num_simps(6)
thf(fact_10032_take__bit__num__simps_I7_J,axiom,
    ! [R2: num,M: num] :
      ( ( bit_take_bit_num @ ( numeral_numeral_nat @ R2 ) @ ( bit1 @ M ) )
      = ( some_num @ ( case_option_num_num @ one @ bit1 @ ( bit_take_bit_num @ ( pred_numeral @ R2 ) @ M ) ) ) ) ).

% take_bit_num_simps(7)
thf(fact_10033_and__minus__numerals_I8_J,axiom,
    ! [N2: num,M: num] :
      ( ( bit_se725231765392027082nd_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ N2 ) ) ) @ ( numeral_numeral_int @ M ) )
      = ( case_option_int_num @ zero_zero_int @ numeral_numeral_int @ ( bit_and_not_num @ M @ ( bit0 @ N2 ) ) ) ) ).

% and_minus_numerals(8)
thf(fact_10034_and__minus__numerals_I4_J,axiom,
    ! [M: num,N2: num] :
      ( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ N2 ) ) ) )
      = ( case_option_int_num @ zero_zero_int @ numeral_numeral_int @ ( bit_and_not_num @ M @ ( bit0 @ N2 ) ) ) ) ).

% and_minus_numerals(4)
thf(fact_10035_and__minus__numerals_I7_J,axiom,
    ! [N2: num,M: num] :
      ( ( bit_se725231765392027082nd_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ N2 ) ) ) @ ( numeral_numeral_int @ M ) )
      = ( case_option_int_num @ zero_zero_int @ numeral_numeral_int @ ( bit_and_not_num @ M @ ( bitM @ N2 ) ) ) ) ).

% and_minus_numerals(7)
thf(fact_10036_Code__Abstract__Nat_Otake__bit__num__code_I2_J,axiom,
    ! [N2: nat,M: num] :
      ( ( bit_take_bit_num @ N2 @ ( bit0 @ M ) )
      = ( case_nat_option_num @ none_num
        @ ^ [N3: nat] :
            ( case_o6005452278849405969um_num @ none_num
            @ ^ [Q4: num] : ( some_num @ ( bit0 @ Q4 ) )
            @ ( bit_take_bit_num @ N3 @ M ) )
        @ N2 ) ) ).

% Code_Abstract_Nat.take_bit_num_code(2)
thf(fact_10037_and__not__num_Osimps_I4_J,axiom,
    ! [M: num] :
      ( ( bit_and_not_num @ ( bit0 @ M ) @ one )
      = ( some_num @ ( bit0 @ M ) ) ) ).

% and_not_num.simps(4)
thf(fact_10038_and__not__num_Osimps_I2_J,axiom,
    ! [N2: num] :
      ( ( bit_and_not_num @ one @ ( bit0 @ N2 ) )
      = ( some_num @ one ) ) ).

% and_not_num.simps(2)
thf(fact_10039_and__not__num_Osimps_I3_J,axiom,
    ! [N2: num] :
      ( ( bit_and_not_num @ one @ ( bit1 @ N2 ) )
      = none_num ) ).

% and_not_num.simps(3)
thf(fact_10040_and__not__num_Osimps_I1_J,axiom,
    ( ( bit_and_not_num @ one @ one )
    = none_num ) ).

% and_not_num.simps(1)
thf(fact_10041_Code__Abstract__Nat_Otake__bit__num__code_I1_J,axiom,
    ! [N2: nat] :
      ( ( bit_take_bit_num @ N2 @ one )
      = ( case_nat_option_num @ none_num
        @ ^ [N3: nat] : ( some_num @ one )
        @ N2 ) ) ).

% Code_Abstract_Nat.take_bit_num_code(1)
thf(fact_10042_Code__Abstract__Nat_Otake__bit__num__code_I3_J,axiom,
    ! [N2: nat,M: num] :
      ( ( bit_take_bit_num @ N2 @ ( bit1 @ M ) )
      = ( case_nat_option_num @ none_num
        @ ^ [N3: nat] : ( some_num @ ( case_option_num_num @ one @ bit1 @ ( bit_take_bit_num @ N3 @ M ) ) )
        @ N2 ) ) ).

% Code_Abstract_Nat.take_bit_num_code(3)
thf(fact_10043_and__not__num_Osimps_I7_J,axiom,
    ! [M: num] :
      ( ( bit_and_not_num @ ( bit1 @ M ) @ one )
      = ( some_num @ ( bit0 @ M ) ) ) ).

% and_not_num.simps(7)
thf(fact_10044_and__not__num__eq__Some__iff,axiom,
    ! [M: num,N2: num,Q2: num] :
      ( ( ( bit_and_not_num @ M @ N2 )
        = ( some_num @ Q2 ) )
      = ( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N2 ) ) )
        = ( numeral_numeral_int @ Q2 ) ) ) ).

% and_not_num_eq_Some_iff
thf(fact_10045_and__not__num_Osimps_I8_J,axiom,
    ! [M: num,N2: num] :
      ( ( bit_and_not_num @ ( bit1 @ M ) @ ( bit0 @ N2 ) )
      = ( case_o6005452278849405969um_num @ ( some_num @ one )
        @ ^ [N10: num] : ( some_num @ ( bit1 @ N10 ) )
        @ ( bit_and_not_num @ M @ N2 ) ) ) ).

% and_not_num.simps(8)
thf(fact_10046_and__not__num__eq__None__iff,axiom,
    ! [M: num,N2: num] :
      ( ( ( bit_and_not_num @ M @ N2 )
        = none_num )
      = ( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N2 ) ) )
        = zero_zero_int ) ) ).

% and_not_num_eq_None_iff
thf(fact_10047_int__numeral__not__and__num,axiom,
    ! [M: num,N2: num] :
      ( ( bit_se725231765392027082nd_int @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N2 ) )
      = ( case_option_int_num @ zero_zero_int @ numeral_numeral_int @ ( bit_and_not_num @ N2 @ M ) ) ) ).

% int_numeral_not_and_num
thf(fact_10048_int__numeral__and__not__num,axiom,
    ! [M: num,N2: num] :
      ( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N2 ) ) )
      = ( case_option_int_num @ zero_zero_int @ numeral_numeral_int @ ( bit_and_not_num @ M @ N2 ) ) ) ).

% int_numeral_and_not_num
thf(fact_10049_take__bit__num__def,axiom,
    ( bit_take_bit_num
    = ( ^ [N3: nat,M6: num] :
          ( if_option_num
          @ ( ( bit_se2925701944663578781it_nat @ N3 @ ( numeral_numeral_nat @ M6 ) )
            = zero_zero_nat )
          @ none_num
          @ ( some_num @ ( num_of_nat @ ( bit_se2925701944663578781it_nat @ N3 @ ( numeral_numeral_nat @ M6 ) ) ) ) ) ) ) ).

% take_bit_num_def
thf(fact_10050_Bit__Operations_Otake__bit__num__code,axiom,
    ( bit_take_bit_num
    = ( ^ [N3: nat,M6: num] :
          ( produc478579273971653890on_num
          @ ^ [A4: nat,X3: num] :
              ( case_nat_option_num @ none_num
              @ ^ [O: nat] :
                  ( case_num_option_num @ ( some_num @ one )
                  @ ^ [P5: num] :
                      ( case_o6005452278849405969um_num @ none_num
                      @ ^ [Q4: num] : ( some_num @ ( bit0 @ Q4 ) )
                      @ ( bit_take_bit_num @ O @ P5 ) )
                  @ ^ [P5: num] : ( some_num @ ( case_option_num_num @ one @ bit1 @ ( bit_take_bit_num @ O @ P5 ) ) )
                  @ X3 )
              @ A4 )
          @ ( product_Pair_nat_num @ N3 @ M6 ) ) ) ) ).

% Bit_Operations.take_bit_num_code
thf(fact_10051_isCont__Lb__Ub,axiom,
    ! [A: real,B: real,F: real > real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ! [X5: real] :
            ( ( ( ord_less_eq_real @ A @ X5 )
              & ( ord_less_eq_real @ X5 @ B ) )
           => ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ X5 @ top_top_set_real ) @ F ) )
       => ? [L6: real,M8: real] :
            ( ! [X2: real] :
                ( ( ( ord_less_eq_real @ A @ X2 )
                  & ( ord_less_eq_real @ X2 @ B ) )
               => ( ( ord_less_eq_real @ L6 @ ( F @ X2 ) )
                  & ( ord_less_eq_real @ ( F @ X2 ) @ M8 ) ) )
            & ! [Y2: real] :
                ( ( ( ord_less_eq_real @ L6 @ Y2 )
                  & ( ord_less_eq_real @ Y2 @ M8 ) )
               => ? [X5: real] :
                    ( ( ord_less_eq_real @ A @ X5 )
                    & ( ord_less_eq_real @ X5 @ B )
                    & ( ( F @ X5 )
                      = Y2 ) ) ) ) ) ) ).

% isCont_Lb_Ub
thf(fact_10052_isCont__real__sqrt,axiom,
    ! [X: real] : ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) @ sqrt ) ).

% isCont_real_sqrt
thf(fact_10053_isCont__real__root,axiom,
    ! [X: real,N2: nat] : ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) @ ( root @ N2 ) ) ).

% isCont_real_root
thf(fact_10054_isCont__inverse__function2,axiom,
    ! [A: real,X: real,B: real,G: real > real,F: real > real] :
      ( ( ord_less_real @ A @ X )
     => ( ( ord_less_real @ X @ B )
       => ( ! [Z4: real] :
              ( ( ord_less_eq_real @ A @ Z4 )
             => ( ( ord_less_eq_real @ Z4 @ B )
               => ( ( G @ ( F @ Z4 ) )
                  = Z4 ) ) )
         => ( ! [Z4: real] :
                ( ( ord_less_eq_real @ A @ Z4 )
               => ( ( ord_less_eq_real @ Z4 @ B )
                 => ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ Z4 @ top_top_set_real ) @ F ) ) )
           => ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ ( F @ X ) @ top_top_set_real ) @ G ) ) ) ) ) ).

% isCont_inverse_function2
thf(fact_10055_LIM__less__bound,axiom,
    ! [B: real,X: real,F: real > real] :
      ( ( ord_less_real @ B @ X )
     => ( ! [X5: real] :
            ( ( member_real @ X5 @ ( set_or1633881224788618240n_real @ B @ X ) )
           => ( ord_less_eq_real @ zero_zero_real @ ( F @ X5 ) ) )
       => ( ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) @ F )
         => ( ord_less_eq_real @ zero_zero_real @ ( F @ X ) ) ) ) ) ).

% LIM_less_bound
thf(fact_10056_isCont__inverse__function,axiom,
    ! [D: real,X: real,G: real > real,F: real > real] :
      ( ( ord_less_real @ zero_zero_real @ D )
     => ( ! [Z4: real] :
            ( ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ Z4 @ X ) ) @ D )
           => ( ( G @ ( F @ Z4 ) )
              = Z4 ) )
       => ( ! [Z4: real] :
              ( ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ Z4 @ X ) ) @ D )
             => ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ Z4 @ top_top_set_real ) @ F ) )
         => ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ ( F @ X ) @ top_top_set_real ) @ G ) ) ) ) ).

% isCont_inverse_function
thf(fact_10057_GMVT_H,axiom,
    ! [A: real,B: real,F: real > real,G: real > real,G2: real > real,F4: real > real] :
      ( ( ord_less_real @ A @ B )
     => ( ! [Z4: real] :
            ( ( ord_less_eq_real @ A @ Z4 )
           => ( ( ord_less_eq_real @ Z4 @ B )
             => ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ Z4 @ top_top_set_real ) @ F ) ) )
       => ( ! [Z4: real] :
              ( ( ord_less_eq_real @ A @ Z4 )
             => ( ( ord_less_eq_real @ Z4 @ B )
               => ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ Z4 @ top_top_set_real ) @ G ) ) )
         => ( ! [Z4: real] :
                ( ( ord_less_real @ A @ Z4 )
               => ( ( ord_less_real @ Z4 @ B )
                 => ( has_fi5821293074295781190e_real @ G @ ( G2 @ Z4 ) @ ( topolo2177554685111907308n_real @ Z4 @ top_top_set_real ) ) ) )
           => ( ! [Z4: real] :
                  ( ( ord_less_real @ A @ Z4 )
                 => ( ( ord_less_real @ Z4 @ B )
                   => ( has_fi5821293074295781190e_real @ F @ ( F4 @ Z4 ) @ ( topolo2177554685111907308n_real @ Z4 @ top_top_set_real ) ) ) )
             => ? [C3: real] :
                  ( ( ord_less_real @ A @ C3 )
                  & ( ord_less_real @ C3 @ B )
                  & ( ( times_times_real @ ( minus_minus_real @ ( F @ B ) @ ( F @ A ) ) @ ( G2 @ C3 ) )
                    = ( times_times_real @ ( minus_minus_real @ ( G @ B ) @ ( G @ A ) ) @ ( F4 @ C3 ) ) ) ) ) ) ) ) ) ).

% GMVT'
thf(fact_10058_LIM__fun__gt__zero,axiom,
    ! [F: real > real,L2: real,C: real] :
      ( ( filterlim_real_real @ F @ ( topolo2815343760600316023s_real @ L2 ) @ ( topolo2177554685111907308n_real @ C @ top_top_set_real ) )
     => ( ( ord_less_real @ zero_zero_real @ L2 )
       => ? [R3: real] :
            ( ( ord_less_real @ zero_zero_real @ R3 )
            & ! [X2: real] :
                ( ( ( X2 != C )
                  & ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ C @ X2 ) ) @ R3 ) )
               => ( ord_less_real @ zero_zero_real @ ( F @ X2 ) ) ) ) ) ) ).

% LIM_fun_gt_zero
thf(fact_10059_LIM__fun__not__zero,axiom,
    ! [F: real > real,L2: real,C: real] :
      ( ( filterlim_real_real @ F @ ( topolo2815343760600316023s_real @ L2 ) @ ( topolo2177554685111907308n_real @ C @ top_top_set_real ) )
     => ( ( L2 != zero_zero_real )
       => ? [R3: real] :
            ( ( ord_less_real @ zero_zero_real @ R3 )
            & ! [X2: real] :
                ( ( ( X2 != C )
                  & ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ C @ X2 ) ) @ R3 ) )
               => ( ( F @ X2 )
                 != zero_zero_real ) ) ) ) ) ).

% LIM_fun_not_zero
thf(fact_10060_LIM__fun__less__zero,axiom,
    ! [F: real > real,L2: real,C: real] :
      ( ( filterlim_real_real @ F @ ( topolo2815343760600316023s_real @ L2 ) @ ( topolo2177554685111907308n_real @ C @ top_top_set_real ) )
     => ( ( ord_less_real @ L2 @ zero_zero_real )
       => ? [R3: real] :
            ( ( ord_less_real @ zero_zero_real @ R3 )
            & ! [X2: real] :
                ( ( ( X2 != C )
                  & ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ C @ X2 ) ) @ R3 ) )
               => ( ord_less_real @ ( F @ X2 ) @ zero_zero_real ) ) ) ) ) ).

% LIM_fun_less_zero
thf(fact_10061_LIM__cos__div__sin,axiom,
    ( filterlim_real_real
    @ ^ [X3: real] : ( divide_divide_real @ ( cos_real @ X3 ) @ ( sin_real @ X3 ) )
    @ ( topolo2815343760600316023s_real @ zero_zero_real )
    @ ( topolo2177554685111907308n_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ top_top_set_real ) ) ).

% LIM_cos_div_sin
thf(fact_10062_summable__Leibniz_I2_J,axiom,
    ! [A: nat > real] :
      ( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat )
     => ( ( topolo6980174941875973593q_real @ A )
       => ( ( ord_less_real @ zero_zero_real @ ( A @ zero_zero_nat ) )
         => ! [N9: nat] :
              ( member_real
              @ ( suminf_real
                @ ^ [I5: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I5 ) @ ( A @ I5 ) ) )
              @ ( set_or1222579329274155063t_real
                @ ( groups6591440286371151544t_real
                  @ ^ [I5: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I5 ) @ ( A @ I5 ) )
                  @ ( set_ord_lessThan_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N9 ) ) )
                @ ( groups6591440286371151544t_real
                  @ ^ [I5: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I5 ) @ ( A @ I5 ) )
                  @ ( set_ord_lessThan_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N9 ) @ one_one_nat ) ) ) ) ) ) ) ) ).

% summable_Leibniz(2)
thf(fact_10063_summable__Leibniz_I3_J,axiom,
    ! [A: nat > real] :
      ( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat )
     => ( ( topolo6980174941875973593q_real @ A )
       => ( ( ord_less_real @ ( A @ zero_zero_nat ) @ zero_zero_real )
         => ! [N9: nat] :
              ( member_real
              @ ( suminf_real
                @ ^ [I5: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I5 ) @ ( A @ I5 ) ) )
              @ ( set_or1222579329274155063t_real
                @ ( groups6591440286371151544t_real
                  @ ^ [I5: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I5 ) @ ( A @ I5 ) )
                  @ ( set_ord_lessThan_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N9 ) @ one_one_nat ) ) )
                @ ( groups6591440286371151544t_real
                  @ ^ [I5: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I5 ) @ ( A @ I5 ) )
                  @ ( set_ord_lessThan_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N9 ) ) ) ) ) ) ) ) ).

% summable_Leibniz(3)
thf(fact_10064_filterlim__Suc,axiom,
    filterlim_nat_nat @ suc @ at_top_nat @ at_top_nat ).

% filterlim_Suc
thf(fact_10065_mult__nat__right__at__top,axiom,
    ! [C: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ C )
     => ( filterlim_nat_nat
        @ ^ [X3: nat] : ( times_times_nat @ X3 @ C )
        @ at_top_nat
        @ at_top_nat ) ) ).

% mult_nat_right_at_top
thf(fact_10066_mult__nat__left__at__top,axiom,
    ! [C: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ C )
     => ( filterlim_nat_nat @ ( times_times_nat @ C ) @ at_top_nat @ at_top_nat ) ) ).

% mult_nat_left_at_top
thf(fact_10067_monoseq__convergent,axiom,
    ! [X8: nat > real,B3: real] :
      ( ( topolo6980174941875973593q_real @ X8 )
     => ( ! [I3: nat] : ( ord_less_eq_real @ ( abs_abs_real @ ( X8 @ I3 ) ) @ B3 )
       => ~ ! [L6: real] :
              ~ ( filterlim_nat_real @ X8 @ ( topolo2815343760600316023s_real @ L6 ) @ at_top_nat ) ) ) ).

% monoseq_convergent
thf(fact_10068_LIMSEQ__root,axiom,
    ( filterlim_nat_real
    @ ^ [N3: nat] : ( root @ N3 @ ( semiri5074537144036343181t_real @ N3 ) )
    @ ( topolo2815343760600316023s_real @ one_one_real )
    @ at_top_nat ) ).

% LIMSEQ_root
thf(fact_10069_nested__sequence__unique,axiom,
    ! [F: nat > real,G: nat > real] :
      ( ! [N: nat] : ( ord_less_eq_real @ ( F @ N ) @ ( F @ ( suc @ N ) ) )
     => ( ! [N: nat] : ( ord_less_eq_real @ ( G @ ( suc @ N ) ) @ ( G @ N ) )
       => ( ! [N: nat] : ( ord_less_eq_real @ ( F @ N ) @ ( G @ N ) )
         => ( ( filterlim_nat_real
              @ ^ [N3: nat] : ( minus_minus_real @ ( F @ N3 ) @ ( G @ N3 ) )
              @ ( topolo2815343760600316023s_real @ zero_zero_real )
              @ at_top_nat )
           => ? [L4: real] :
                ( ! [N9: nat] : ( ord_less_eq_real @ ( F @ N9 ) @ L4 )
                & ( filterlim_nat_real @ F @ ( topolo2815343760600316023s_real @ L4 ) @ at_top_nat )
                & ! [N9: nat] : ( ord_less_eq_real @ L4 @ ( G @ N9 ) )
                & ( filterlim_nat_real @ G @ ( topolo2815343760600316023s_real @ L4 ) @ at_top_nat ) ) ) ) ) ) ).

% nested_sequence_unique
thf(fact_10070_LIMSEQ__inverse__zero,axiom,
    ! [X8: nat > real] :
      ( ! [R3: real] :
        ? [N7: nat] :
        ! [N: nat] :
          ( ( ord_less_eq_nat @ N7 @ N )
         => ( ord_less_real @ R3 @ ( X8 @ N ) ) )
     => ( filterlim_nat_real
        @ ^ [N3: nat] : ( inverse_inverse_real @ ( X8 @ N3 ) )
        @ ( topolo2815343760600316023s_real @ zero_zero_real )
        @ at_top_nat ) ) ).

% LIMSEQ_inverse_zero
thf(fact_10071_lim__inverse__n_H,axiom,
    ( filterlim_nat_real
    @ ^ [N3: nat] : ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ N3 ) )
    @ ( topolo2815343760600316023s_real @ zero_zero_real )
    @ at_top_nat ) ).

% lim_inverse_n'
thf(fact_10072_LIMSEQ__root__const,axiom,
    ! [C: real] :
      ( ( ord_less_real @ zero_zero_real @ C )
     => ( filterlim_nat_real
        @ ^ [N3: nat] : ( root @ N3 @ C )
        @ ( topolo2815343760600316023s_real @ one_one_real )
        @ at_top_nat ) ) ).

% LIMSEQ_root_const
thf(fact_10073_LIMSEQ__inverse__real__of__nat,axiom,
    ( filterlim_nat_real
    @ ^ [N3: nat] : ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ ( suc @ N3 ) ) )
    @ ( topolo2815343760600316023s_real @ zero_zero_real )
    @ at_top_nat ) ).

% LIMSEQ_inverse_real_of_nat
thf(fact_10074_LIMSEQ__inverse__real__of__nat__add,axiom,
    ! [R2: real] :
      ( filterlim_nat_real
      @ ^ [N3: nat] : ( plus_plus_real @ R2 @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ ( suc @ N3 ) ) ) )
      @ ( topolo2815343760600316023s_real @ R2 )
      @ at_top_nat ) ).

% LIMSEQ_inverse_real_of_nat_add
thf(fact_10075_increasing__LIMSEQ,axiom,
    ! [F: nat > real,L2: real] :
      ( ! [N: nat] : ( ord_less_eq_real @ ( F @ N ) @ ( F @ ( suc @ N ) ) )
     => ( ! [N: nat] : ( ord_less_eq_real @ ( F @ N ) @ L2 )
       => ( ! [E2: real] :
              ( ( ord_less_real @ zero_zero_real @ E2 )
             => ? [N9: nat] : ( ord_less_eq_real @ L2 @ ( plus_plus_real @ ( F @ N9 ) @ E2 ) ) )
         => ( filterlim_nat_real @ F @ ( topolo2815343760600316023s_real @ L2 ) @ at_top_nat ) ) ) ) ).

% increasing_LIMSEQ
thf(fact_10076_LIMSEQ__realpow__zero,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ X @ one_one_real )
       => ( filterlim_nat_real @ ( power_power_real @ X ) @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat ) ) ) ).

% LIMSEQ_realpow_zero
thf(fact_10077_LIMSEQ__divide__realpow__zero,axiom,
    ! [X: real,A: real] :
      ( ( ord_less_real @ one_one_real @ X )
     => ( filterlim_nat_real
        @ ^ [N3: nat] : ( divide_divide_real @ A @ ( power_power_real @ X @ N3 ) )
        @ ( topolo2815343760600316023s_real @ zero_zero_real )
        @ at_top_nat ) ) ).

% LIMSEQ_divide_realpow_zero
thf(fact_10078_LIMSEQ__abs__realpow__zero2,axiom,
    ! [C: real] :
      ( ( ord_less_real @ ( abs_abs_real @ C ) @ one_one_real )
     => ( filterlim_nat_real @ ( power_power_real @ C ) @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat ) ) ).

% LIMSEQ_abs_realpow_zero2
thf(fact_10079_LIMSEQ__abs__realpow__zero,axiom,
    ! [C: real] :
      ( ( ord_less_real @ ( abs_abs_real @ C ) @ one_one_real )
     => ( filterlim_nat_real @ ( power_power_real @ ( abs_abs_real @ C ) ) @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat ) ) ).

% LIMSEQ_abs_realpow_zero
thf(fact_10080_LIMSEQ__inverse__realpow__zero,axiom,
    ! [X: real] :
      ( ( ord_less_real @ one_one_real @ X )
     => ( filterlim_nat_real
        @ ^ [N3: nat] : ( inverse_inverse_real @ ( power_power_real @ X @ N3 ) )
        @ ( topolo2815343760600316023s_real @ zero_zero_real )
        @ at_top_nat ) ) ).

% LIMSEQ_inverse_realpow_zero
thf(fact_10081_LIMSEQ__inverse__real__of__nat__add__minus,axiom,
    ! [R2: real] :
      ( filterlim_nat_real
      @ ^ [N3: nat] : ( plus_plus_real @ R2 @ ( uminus_uminus_real @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ ( suc @ N3 ) ) ) ) )
      @ ( topolo2815343760600316023s_real @ R2 )
      @ at_top_nat ) ).

% LIMSEQ_inverse_real_of_nat_add_minus
thf(fact_10082_tendsto__exp__limit__sequentially,axiom,
    ! [X: real] :
      ( filterlim_nat_real
      @ ^ [N3: nat] : ( power_power_real @ ( plus_plus_real @ one_one_real @ ( divide_divide_real @ X @ ( semiri5074537144036343181t_real @ N3 ) ) ) @ N3 )
      @ ( topolo2815343760600316023s_real @ ( exp_real @ X ) )
      @ at_top_nat ) ).

% tendsto_exp_limit_sequentially
thf(fact_10083_LIMSEQ__inverse__real__of__nat__add__minus__mult,axiom,
    ! [R2: real] :
      ( filterlim_nat_real
      @ ^ [N3: nat] : ( times_times_real @ R2 @ ( plus_plus_real @ one_one_real @ ( uminus_uminus_real @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ ( suc @ N3 ) ) ) ) ) )
      @ ( topolo2815343760600316023s_real @ R2 )
      @ at_top_nat ) ).

% LIMSEQ_inverse_real_of_nat_add_minus_mult
thf(fact_10084_summable__Leibniz_I1_J,axiom,
    ! [A: nat > real] :
      ( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat )
     => ( ( topolo6980174941875973593q_real @ A )
       => ( summable_real
          @ ^ [N3: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N3 ) @ ( A @ N3 ) ) ) ) ) ).

% summable_Leibniz(1)
thf(fact_10085_summable,axiom,
    ! [A: nat > real] :
      ( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat )
     => ( ! [N: nat] : ( ord_less_eq_real @ zero_zero_real @ ( A @ N ) )
       => ( ! [N: nat] : ( ord_less_eq_real @ ( A @ ( suc @ N ) ) @ ( A @ N ) )
         => ( summable_real
            @ ^ [N3: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N3 ) @ ( A @ N3 ) ) ) ) ) ) ).

% summable
thf(fact_10086_cos__diff__limit__1,axiom,
    ! [Theta: nat > real,Theta2: real] :
      ( ( filterlim_nat_real
        @ ^ [J3: nat] : ( cos_real @ ( minus_minus_real @ ( Theta @ J3 ) @ Theta2 ) )
        @ ( topolo2815343760600316023s_real @ one_one_real )
        @ at_top_nat )
     => ~ ! [K2: nat > int] :
            ~ ( filterlim_nat_real
              @ ^ [J3: nat] : ( minus_minus_real @ ( Theta @ J3 ) @ ( times_times_real @ ( ring_1_of_int_real @ ( K2 @ J3 ) ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) ) )
              @ ( topolo2815343760600316023s_real @ Theta2 )
              @ at_top_nat ) ) ).

% cos_diff_limit_1
thf(fact_10087_cos__limit__1,axiom,
    ! [Theta: nat > real] :
      ( ( filterlim_nat_real
        @ ^ [J3: nat] : ( cos_real @ ( Theta @ J3 ) )
        @ ( topolo2815343760600316023s_real @ one_one_real )
        @ at_top_nat )
     => ? [K2: nat > int] :
          ( filterlim_nat_real
          @ ^ [J3: nat] : ( minus_minus_real @ ( Theta @ J3 ) @ ( times_times_real @ ( ring_1_of_int_real @ ( K2 @ J3 ) ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) ) )
          @ ( topolo2815343760600316023s_real @ zero_zero_real )
          @ at_top_nat ) ) ).

% cos_limit_1
thf(fact_10088_summable__Leibniz_I4_J,axiom,
    ! [A: nat > real] :
      ( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat )
     => ( ( topolo6980174941875973593q_real @ A )
       => ( filterlim_nat_real
          @ ^ [N3: nat] :
              ( groups6591440286371151544t_real
              @ ^ [I5: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I5 ) @ ( A @ I5 ) )
              @ ( set_ord_lessThan_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) ) )
          @ ( topolo2815343760600316023s_real
            @ ( suminf_real
              @ ^ [I5: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I5 ) @ ( A @ I5 ) ) ) )
          @ at_top_nat ) ) ) ).

% summable_Leibniz(4)
thf(fact_10089_zeroseq__arctan__series,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ X ) @ one_one_real )
     => ( filterlim_nat_real
        @ ^ [N3: nat] : ( times_times_real @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ ( plus_plus_nat @ ( times_times_nat @ N3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) @ ( power_power_real @ X @ ( plus_plus_nat @ ( times_times_nat @ N3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) )
        @ ( topolo2815343760600316023s_real @ zero_zero_real )
        @ at_top_nat ) ) ).

% zeroseq_arctan_series
thf(fact_10090_summable__Leibniz_H_I3_J,axiom,
    ! [A: nat > real] :
      ( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat )
     => ( ! [N: nat] : ( ord_less_eq_real @ zero_zero_real @ ( A @ N ) )
       => ( ! [N: nat] : ( ord_less_eq_real @ ( A @ ( suc @ N ) ) @ ( A @ N ) )
         => ( filterlim_nat_real
            @ ^ [N3: nat] :
                ( groups6591440286371151544t_real
                @ ^ [I5: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I5 ) @ ( A @ I5 ) )
                @ ( set_ord_lessThan_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) ) )
            @ ( topolo2815343760600316023s_real
              @ ( suminf_real
                @ ^ [I5: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I5 ) @ ( A @ I5 ) ) ) )
            @ at_top_nat ) ) ) ) ).

% summable_Leibniz'(3)
thf(fact_10091_summable__Leibniz_H_I2_J,axiom,
    ! [A: nat > real,N2: nat] :
      ( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat )
     => ( ! [N: nat] : ( ord_less_eq_real @ zero_zero_real @ ( A @ N ) )
       => ( ! [N: nat] : ( ord_less_eq_real @ ( A @ ( suc @ N ) ) @ ( A @ N ) )
         => ( ord_less_eq_real
            @ ( groups6591440286371151544t_real
              @ ^ [I5: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I5 ) @ ( A @ I5 ) )
              @ ( set_ord_lessThan_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) )
            @ ( suminf_real
              @ ^ [I5: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I5 ) @ ( A @ I5 ) ) ) ) ) ) ) ).

% summable_Leibniz'(2)
thf(fact_10092_sums__alternating__upper__lower,axiom,
    ! [A: nat > real] :
      ( ! [N: nat] : ( ord_less_eq_real @ ( A @ ( suc @ N ) ) @ ( A @ N ) )
     => ( ! [N: nat] : ( ord_less_eq_real @ zero_zero_real @ ( A @ N ) )
       => ( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat )
         => ? [L4: real] :
              ( ! [N9: nat] :
                  ( ord_less_eq_real
                  @ ( groups6591440286371151544t_real
                    @ ^ [I5: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I5 ) @ ( A @ I5 ) )
                    @ ( set_ord_lessThan_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N9 ) ) )
                  @ L4 )
              & ( filterlim_nat_real
                @ ^ [N3: nat] :
                    ( groups6591440286371151544t_real
                    @ ^ [I5: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I5 ) @ ( A @ I5 ) )
                    @ ( set_ord_lessThan_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) ) )
                @ ( topolo2815343760600316023s_real @ L4 )
                @ at_top_nat )
              & ! [N9: nat] :
                  ( ord_less_eq_real @ L4
                  @ ( groups6591440286371151544t_real
                    @ ^ [I5: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I5 ) @ ( A @ I5 ) )
                    @ ( set_ord_lessThan_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N9 ) @ one_one_nat ) ) ) )
              & ( filterlim_nat_real
                @ ^ [N3: nat] :
                    ( groups6591440286371151544t_real
                    @ ^ [I5: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I5 ) @ ( A @ I5 ) )
                    @ ( set_ord_lessThan_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) @ one_one_nat ) ) )
                @ ( topolo2815343760600316023s_real @ L4 )
                @ at_top_nat ) ) ) ) ) ).

% sums_alternating_upper_lower
thf(fact_10093_summable__Leibniz_I5_J,axiom,
    ! [A: nat > real] :
      ( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat )
     => ( ( topolo6980174941875973593q_real @ A )
       => ( filterlim_nat_real
          @ ^ [N3: nat] :
              ( groups6591440286371151544t_real
              @ ^ [I5: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I5 ) @ ( A @ I5 ) )
              @ ( set_ord_lessThan_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) @ one_one_nat ) ) )
          @ ( topolo2815343760600316023s_real
            @ ( suminf_real
              @ ^ [I5: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I5 ) @ ( A @ I5 ) ) ) )
          @ at_top_nat ) ) ) ).

% summable_Leibniz(5)
thf(fact_10094_summable__Leibniz_H_I4_J,axiom,
    ! [A: nat > real,N2: nat] :
      ( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat )
     => ( ! [N: nat] : ( ord_less_eq_real @ zero_zero_real @ ( A @ N ) )
       => ( ! [N: nat] : ( ord_less_eq_real @ ( A @ ( suc @ N ) ) @ ( A @ N ) )
         => ( ord_less_eq_real
            @ ( suminf_real
              @ ^ [I5: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I5 ) @ ( A @ I5 ) ) )
            @ ( groups6591440286371151544t_real
              @ ^ [I5: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I5 ) @ ( A @ I5 ) )
              @ ( set_ord_lessThan_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) @ one_one_nat ) ) ) ) ) ) ) ).

% summable_Leibniz'(4)
thf(fact_10095_summable__Leibniz_H_I5_J,axiom,
    ! [A: nat > real] :
      ( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat )
     => ( ! [N: nat] : ( ord_less_eq_real @ zero_zero_real @ ( A @ N ) )
       => ( ! [N: nat] : ( ord_less_eq_real @ ( A @ ( suc @ N ) ) @ ( A @ N ) )
         => ( filterlim_nat_real
            @ ^ [N3: nat] :
                ( groups6591440286371151544t_real
                @ ^ [I5: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I5 ) @ ( A @ I5 ) )
                @ ( set_ord_lessThan_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) @ one_one_nat ) ) )
            @ ( topolo2815343760600316023s_real
              @ ( suminf_real
                @ ^ [I5: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I5 ) @ ( A @ I5 ) ) ) )
            @ at_top_nat ) ) ) ) ).

% summable_Leibniz'(5)
thf(fact_10096_real__bounded__linear,axiom,
    ( real_V5970128139526366754l_real
    = ( ^ [F3: real > real] :
        ? [C4: real] :
          ( F3
          = ( ^ [X3: real] : ( times_times_real @ X3 @ C4 ) ) ) ) ) ).

% real_bounded_linear
thf(fact_10097_tendsto__exp__limit__at__right,axiom,
    ! [X: real] :
      ( filterlim_real_real
      @ ^ [Y3: real] : ( powr_real @ ( plus_plus_real @ one_one_real @ ( times_times_real @ X @ Y3 ) ) @ ( divide_divide_real @ one_one_real @ Y3 ) )
      @ ( topolo2815343760600316023s_real @ ( exp_real @ X ) )
      @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) ) ).

% tendsto_exp_limit_at_right
thf(fact_10098_dist__real__def,axiom,
    ( real_V975177566351809787t_real
    = ( ^ [X3: real,Y3: real] : ( abs_abs_real @ ( minus_minus_real @ X3 @ Y3 ) ) ) ) ).

% dist_real_def
thf(fact_10099_dist__complex__def,axiom,
    ( real_V3694042436643373181omplex
    = ( ^ [X3: complex,Y3: complex] : ( real_V1022390504157884413omplex @ ( minus_minus_complex @ X3 @ Y3 ) ) ) ) ).

% dist_complex_def
thf(fact_10100_INT__greaterThan__UNIV,axiom,
    ( ( comple7806235888213564991et_nat @ ( image_nat_set_nat @ set_or1210151606488870762an_nat @ top_top_set_nat ) )
    = bot_bot_set_nat ) ).

% INT_greaterThan_UNIV
thf(fact_10101_greaterThan__0,axiom,
    ( ( set_or1210151606488870762an_nat @ zero_zero_nat )
    = ( image_nat_nat @ suc @ top_top_set_nat ) ) ).

% greaterThan_0
thf(fact_10102_greaterThan__Suc,axiom,
    ! [K: nat] :
      ( ( set_or1210151606488870762an_nat @ ( suc @ K ) )
      = ( minus_minus_set_nat @ ( set_or1210151606488870762an_nat @ K ) @ ( insert_nat @ ( suc @ K ) @ bot_bot_set_nat ) ) ) ).

% greaterThan_Suc
thf(fact_10103_filterlim__tan__at__right,axiom,
    filterlim_real_real @ tan_real @ at_bot_real @ ( topolo2177554685111907308n_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( set_or5849166863359141190n_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).

% filterlim_tan_at_right
thf(fact_10104_atLeast__Suc__greaterThan,axiom,
    ! [K: nat] :
      ( ( set_ord_atLeast_nat @ ( suc @ K ) )
      = ( set_or1210151606488870762an_nat @ K ) ) ).

% atLeast_Suc_greaterThan
thf(fact_10105_UN__atLeast__UNIV,axiom,
    ( ( comple7399068483239264473et_nat @ ( image_nat_set_nat @ set_ord_atLeast_nat @ top_top_set_nat ) )
    = top_top_set_nat ) ).

% UN_atLeast_UNIV
thf(fact_10106_atLeast__Suc,axiom,
    ! [K: nat] :
      ( ( set_ord_atLeast_nat @ ( suc @ K ) )
      = ( minus_minus_set_nat @ ( set_ord_atLeast_nat @ K ) @ ( insert_nat @ K @ bot_bot_set_nat ) ) ) ).

% atLeast_Suc
thf(fact_10107_ln__at__0,axiom,
    filterlim_real_real @ ln_ln_real @ at_bot_real @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) ).

% ln_at_0
thf(fact_10108_filterlim__inverse__at__bot__neg,axiom,
    filterlim_real_real @ inverse_inverse_real @ at_bot_real @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5984915006950818249n_real @ zero_zero_real ) ) ).

% filterlim_inverse_at_bot_neg
thf(fact_10109_DERIV__pos__imp__increasing__at__bot,axiom,
    ! [B: real,F: real > real,Flim: real] :
      ( ! [X5: real] :
          ( ( ord_less_eq_real @ X5 @ B )
         => ? [Y2: real] :
              ( ( has_fi5821293074295781190e_real @ F @ Y2 @ ( topolo2177554685111907308n_real @ X5 @ top_top_set_real ) )
              & ( ord_less_real @ zero_zero_real @ Y2 ) ) )
     => ( ( filterlim_real_real @ F @ ( topolo2815343760600316023s_real @ Flim ) @ at_bot_real )
       => ( ord_less_real @ Flim @ ( F @ B ) ) ) ) ).

% DERIV_pos_imp_increasing_at_bot
thf(fact_10110_filterlim__pow__at__bot__odd,axiom,
    ! [N2: nat,F: real > real,F5: filter_real] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( filterlim_real_real @ F @ at_bot_real @ F5 )
       => ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
         => ( filterlim_real_real
            @ ^ [X3: real] : ( power_power_real @ ( F @ X3 ) @ N2 )
            @ at_bot_real
            @ F5 ) ) ) ) ).

% filterlim_pow_at_bot_odd
thf(fact_10111_tendsto__arctan__at__bot,axiom,
    filterlim_real_real @ arctan @ ( topolo2815343760600316023s_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) @ at_bot_real ).

% tendsto_arctan_at_bot
thf(fact_10112_Gcd__eq__Max,axiom,
    ! [M7: set_nat] :
      ( ( finite_finite_nat @ M7 )
     => ( ( M7 != bot_bot_set_nat )
       => ( ~ ( member_nat @ zero_zero_nat @ M7 )
         => ( ( gcd_Gcd_nat @ M7 )
            = ( lattic8265883725875713057ax_nat
              @ ( comple7806235888213564991et_nat
                @ ( image_nat_set_nat
                  @ ^ [M6: nat] :
                      ( collect_nat
                      @ ^ [D2: nat] : ( dvd_dvd_nat @ D2 @ M6 ) )
                  @ M7 ) ) ) ) ) ) ) ).

% Gcd_eq_Max
thf(fact_10113_Max__divisors__self__nat,axiom,
    ! [N2: nat] :
      ( ( N2 != zero_zero_nat )
     => ( ( lattic8265883725875713057ax_nat
          @ ( collect_nat
            @ ^ [D2: nat] : ( dvd_dvd_nat @ D2 @ N2 ) ) )
        = N2 ) ) ).

% Max_divisors_self_nat
thf(fact_10114_at__bot__le__at__infinity,axiom,
    ord_le4104064031414453916r_real @ at_bot_real @ at_infinity_real ).

% at_bot_le_at_infinity
thf(fact_10115_sqrt__at__top,axiom,
    filterlim_real_real @ sqrt @ at_top_real @ at_top_real ).

% sqrt_at_top
thf(fact_10116_ln__at__top,axiom,
    filterlim_real_real @ ln_ln_real @ at_top_real @ at_top_real ).

% ln_at_top
thf(fact_10117_exp__at__top,axiom,
    filterlim_real_real @ exp_real @ at_top_real @ at_top_real ).

% exp_at_top
thf(fact_10118_filterlim__real__sequentially,axiom,
    filterlim_nat_real @ semiri5074537144036343181t_real @ at_top_real @ at_top_nat ).

% filterlim_real_sequentially
thf(fact_10119_filterlim__uminus__at__top__at__bot,axiom,
    filterlim_real_real @ uminus_uminus_real @ at_top_real @ at_bot_real ).

% filterlim_uminus_at_top_at_bot
thf(fact_10120_filterlim__uminus__at__bot__at__top,axiom,
    filterlim_real_real @ uminus_uminus_real @ at_bot_real @ at_top_real ).

% filterlim_uminus_at_bot_at_top
thf(fact_10121_card__le__Suc__Max,axiom,
    ! [S3: set_nat] :
      ( ( finite_finite_nat @ S3 )
     => ( ord_less_eq_nat @ ( finite_card_nat @ S3 ) @ ( suc @ ( lattic8265883725875713057ax_nat @ S3 ) ) ) ) ).

% card_le_Suc_Max
thf(fact_10122_divide__nat__def,axiom,
    ( divide_divide_nat
    = ( ^ [M6: nat,N3: nat] :
          ( if_nat @ ( N3 = zero_zero_nat ) @ zero_zero_nat
          @ ( lattic8265883725875713057ax_nat
            @ ( collect_nat
              @ ^ [K3: nat] : ( ord_less_eq_nat @ ( times_times_nat @ K3 @ N3 ) @ M6 ) ) ) ) ) ) ).

% divide_nat_def
thf(fact_10123_gcd__is__Max__divisors__nat,axiom,
    ! [N2: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( gcd_gcd_nat @ M @ N2 )
        = ( lattic8265883725875713057ax_nat
          @ ( collect_nat
            @ ^ [D2: nat] :
                ( ( dvd_dvd_nat @ D2 @ M )
                & ( dvd_dvd_nat @ D2 @ N2 ) ) ) ) ) ) ).

% gcd_is_Max_divisors_nat
thf(fact_10124_ln__x__over__x__tendsto__0,axiom,
    ( filterlim_real_real
    @ ^ [X3: real] : ( divide_divide_real @ ( ln_ln_real @ X3 ) @ X3 )
    @ ( topolo2815343760600316023s_real @ zero_zero_real )
    @ at_top_real ) ).

% ln_x_over_x_tendsto_0
thf(fact_10125_filterlim__inverse__at__top__right,axiom,
    filterlim_real_real @ inverse_inverse_real @ at_top_real @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) ).

% filterlim_inverse_at_top_right
thf(fact_10126_filterlim__inverse__at__right__top,axiom,
    filterlim_real_real @ inverse_inverse_real @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) @ at_top_real ).

% filterlim_inverse_at_right_top
thf(fact_10127_tendsto__power__div__exp__0,axiom,
    ! [K: nat] :
      ( filterlim_real_real
      @ ^ [X3: real] : ( divide_divide_real @ ( power_power_real @ X3 @ K ) @ ( exp_real @ X3 ) )
      @ ( topolo2815343760600316023s_real @ zero_zero_real )
      @ at_top_real ) ).

% tendsto_power_div_exp_0
thf(fact_10128_tendsto__exp__limit__at__top,axiom,
    ! [X: real] :
      ( filterlim_real_real
      @ ^ [Y3: real] : ( powr_real @ ( plus_plus_real @ one_one_real @ ( divide_divide_real @ X @ Y3 ) ) @ Y3 )
      @ ( topolo2815343760600316023s_real @ ( exp_real @ X ) )
      @ at_top_real ) ).

% tendsto_exp_limit_at_top
thf(fact_10129_DERIV__neg__imp__decreasing__at__top,axiom,
    ! [B: real,F: real > real,Flim: real] :
      ( ! [X5: real] :
          ( ( ord_less_eq_real @ B @ X5 )
         => ? [Y2: real] :
              ( ( has_fi5821293074295781190e_real @ F @ Y2 @ ( topolo2177554685111907308n_real @ X5 @ top_top_set_real ) )
              & ( ord_less_real @ Y2 @ zero_zero_real ) ) )
     => ( ( filterlim_real_real @ F @ ( topolo2815343760600316023s_real @ Flim ) @ at_top_real )
       => ( ord_less_real @ Flim @ ( F @ B ) ) ) ) ).

% DERIV_neg_imp_decreasing_at_top
thf(fact_10130_tendsto__arctan__at__top,axiom,
    filterlim_real_real @ arctan @ ( topolo2815343760600316023s_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ at_top_real ).

% tendsto_arctan_at_top
thf(fact_10131_filterlim__tan__at__left,axiom,
    filterlim_real_real @ tan_real @ at_top_real @ ( topolo2177554685111907308n_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( set_or5984915006950818249n_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).

% filterlim_tan_at_left
thf(fact_10132_filterlim__pow__at__bot__even,axiom,
    ! [N2: nat,F: real > real,F5: filter_real] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( filterlim_real_real @ F @ at_bot_real @ F5 )
       => ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
         => ( filterlim_real_real
            @ ^ [X3: real] : ( power_power_real @ ( F @ X3 ) @ N2 )
            @ at_top_real
            @ F5 ) ) ) ) ).

% filterlim_pow_at_bot_even
thf(fact_10133_eventually__sequentially__Suc,axiom,
    ! [P: nat > $o] :
      ( ( eventually_nat
        @ ^ [I5: nat] : ( P @ ( suc @ I5 ) )
        @ at_top_nat )
      = ( eventually_nat @ P @ at_top_nat ) ) ).

% eventually_sequentially_Suc
thf(fact_10134_eventually__sequentially__seg,axiom,
    ! [P: nat > $o,K: nat] :
      ( ( eventually_nat
        @ ^ [N3: nat] : ( P @ ( plus_plus_nat @ N3 @ K ) )
        @ at_top_nat )
      = ( eventually_nat @ P @ at_top_nat ) ) ).

% eventually_sequentially_seg
thf(fact_10135_Max__divisors__self__int,axiom,
    ! [N2: int] :
      ( ( N2 != zero_zero_int )
     => ( ( lattic8263393255366662781ax_int
          @ ( collect_int
            @ ^ [D2: int] : ( dvd_dvd_int @ D2 @ N2 ) ) )
        = ( abs_abs_int @ N2 ) ) ) ).

% Max_divisors_self_int
thf(fact_10136_sequentially__offset,axiom,
    ! [P: nat > $o,K: nat] :
      ( ( eventually_nat @ P @ at_top_nat )
     => ( eventually_nat
        @ ^ [I5: nat] : ( P @ ( plus_plus_nat @ I5 @ K ) )
        @ at_top_nat ) ) ).

% sequentially_offset
thf(fact_10137_eventually__False__sequentially,axiom,
    ~ ( eventually_nat
      @ ^ [N3: nat] : $false
      @ at_top_nat ) ).

% eventually_False_sequentially
thf(fact_10138_at__top__le__at__infinity,axiom,
    ord_le4104064031414453916r_real @ at_top_real @ at_infinity_real ).

% at_top_le_at_infinity
thf(fact_10139_le__sequentially,axiom,
    ! [F5: filter_nat] :
      ( ( ord_le2510731241096832064er_nat @ F5 @ at_top_nat )
      = ( ! [N6: nat] : ( eventually_nat @ ( ord_less_eq_nat @ N6 ) @ F5 ) ) ) ).

% le_sequentially
thf(fact_10140_eventually__sequentially,axiom,
    ! [P: nat > $o] :
      ( ( eventually_nat @ P @ at_top_nat )
      = ( ? [N6: nat] :
          ! [N3: nat] :
            ( ( ord_less_eq_nat @ N6 @ N3 )
           => ( P @ N3 ) ) ) ) ).

% eventually_sequentially
thf(fact_10141_eventually__sequentiallyI,axiom,
    ! [C: nat,P: nat > $o] :
      ( ! [X5: nat] :
          ( ( ord_less_eq_nat @ C @ X5 )
         => ( P @ X5 ) )
     => ( eventually_nat @ P @ at_top_nat ) ) ).

% eventually_sequentiallyI
thf(fact_10142_open__bool__def,axiom,
    ( topolo9180104560040979295open_o
    = ( topolo4667128019001906403logy_o @ ( sup_sup_set_set_o @ ( image_o_set_o @ set_ord_lessThan_o @ top_top_set_o ) @ ( image_o_set_o @ set_or6416164934427428222Than_o @ top_top_set_o ) ) ) ) ).

% open_bool_def
thf(fact_10143_open__int__def,axiom,
    ( topolo4325760605701065253en_int
    = ( topolo1611008123915946401gy_int @ ( sup_sup_set_set_int @ ( image_int_set_int @ set_ord_lessThan_int @ top_top_set_int ) @ ( image_int_set_int @ set_or1207661135979820486an_int @ top_top_set_int ) ) ) ) ).

% open_int_def
thf(fact_10144_gcd__is__Max__divisors__int,axiom,
    ! [N2: int,M: int] :
      ( ( N2 != zero_zero_int )
     => ( ( gcd_gcd_int @ M @ N2 )
        = ( lattic8263393255366662781ax_int
          @ ( collect_int
            @ ^ [D2: int] :
                ( ( dvd_dvd_int @ D2 @ M )
                & ( dvd_dvd_int @ D2 @ N2 ) ) ) ) ) ) ).

% gcd_is_Max_divisors_int
thf(fact_10145_eventually__at__right__to__0,axiom,
    ! [P: real > $o,A: real] :
      ( ( eventually_real @ P @ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) )
      = ( eventually_real
        @ ^ [X3: real] : ( P @ ( plus_plus_real @ X3 @ A ) )
        @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) ) ) ).

% eventually_at_right_to_0
thf(fact_10146_eventually__at__top__to__right,axiom,
    ! [P: real > $o] :
      ( ( eventually_real @ P @ at_top_real )
      = ( eventually_real
        @ ^ [X3: real] : ( P @ ( inverse_inverse_real @ X3 ) )
        @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) ) ) ).

% eventually_at_top_to_right
thf(fact_10147_eventually__at__right__to__top,axiom,
    ! [P: real > $o] :
      ( ( eventually_real @ P @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
      = ( eventually_real
        @ ^ [X3: real] : ( P @ ( inverse_inverse_real @ X3 ) )
        @ at_top_real ) ) ).

% eventually_at_right_to_top
thf(fact_10148_eventually__at__left__to__right,axiom,
    ! [P: real > $o,A: real] :
      ( ( eventually_real @ P @ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) )
      = ( eventually_real
        @ ^ [X3: real] : ( P @ ( uminus_uminus_real @ X3 ) )
        @ ( topolo2177554685111907308n_real @ ( uminus_uminus_real @ A ) @ ( set_or5849166863359141190n_real @ ( uminus_uminus_real @ A ) ) ) ) ) ).

% eventually_at_left_to_right
thf(fact_10149_eventually__at__right__real,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ( eventually_real
        @ ^ [X3: real] : ( member_real @ X3 @ ( set_or1633881224788618240n_real @ A @ B ) )
        @ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) ) ) ).

% eventually_at_right_real
thf(fact_10150_eventually__at__left__real,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_real @ B @ A )
     => ( eventually_real
        @ ^ [X3: real] : ( member_real @ X3 @ ( set_or1633881224788618240n_real @ B @ A ) )
        @ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) ) ) ).

% eventually_at_left_real
thf(fact_10151_lhopital__at__top__at__top,axiom,
    ! [F: real > real,A: real,G: real > real,F4: real > real,G2: real > real] :
      ( ( filterlim_real_real @ F @ at_top_real @ ( topolo2177554685111907308n_real @ A @ top_top_set_real ) )
     => ( ( filterlim_real_real @ G @ at_top_real @ ( topolo2177554685111907308n_real @ A @ top_top_set_real ) )
       => ( ( eventually_real
            @ ^ [X3: real] : ( has_fi5821293074295781190e_real @ F @ ( F4 @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
            @ ( topolo2177554685111907308n_real @ A @ top_top_set_real ) )
         => ( ( eventually_real
              @ ^ [X3: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
              @ ( topolo2177554685111907308n_real @ A @ top_top_set_real ) )
           => ( ( filterlim_real_real
                @ ^ [X3: real] : ( divide_divide_real @ ( F4 @ X3 ) @ ( G2 @ X3 ) )
                @ at_top_real
                @ ( topolo2177554685111907308n_real @ A @ top_top_set_real ) )
             => ( filterlim_real_real
                @ ^ [X3: real] : ( divide_divide_real @ ( F @ X3 ) @ ( G @ X3 ) )
                @ at_top_real
                @ ( topolo2177554685111907308n_real @ A @ top_top_set_real ) ) ) ) ) ) ) ).

% lhopital_at_top_at_top
thf(fact_10152_lhopital__right__at__top__at__top,axiom,
    ! [F: real > real,A: real,G: real > real,F4: real > real,G2: real > real] :
      ( ( filterlim_real_real @ F @ at_top_real @ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) )
     => ( ( filterlim_real_real @ G @ at_top_real @ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) )
       => ( ( eventually_real
            @ ^ [X3: real] : ( has_fi5821293074295781190e_real @ F @ ( F4 @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
            @ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) )
         => ( ( eventually_real
              @ ^ [X3: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
              @ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) )
           => ( ( filterlim_real_real
                @ ^ [X3: real] : ( divide_divide_real @ ( F4 @ X3 ) @ ( G2 @ X3 ) )
                @ at_top_real
                @ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) )
             => ( filterlim_real_real
                @ ^ [X3: real] : ( divide_divide_real @ ( F @ X3 ) @ ( G @ X3 ) )
                @ at_top_real
                @ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) ) ) ) ) ) ) ).

% lhopital_right_at_top_at_top
thf(fact_10153_lhopital__at__top__at__bot,axiom,
    ! [F: real > real,A: real,G: real > real,F4: real > real,G2: real > real] :
      ( ( filterlim_real_real @ F @ at_top_real @ ( topolo2177554685111907308n_real @ A @ top_top_set_real ) )
     => ( ( filterlim_real_real @ G @ at_bot_real @ ( topolo2177554685111907308n_real @ A @ top_top_set_real ) )
       => ( ( eventually_real
            @ ^ [X3: real] : ( has_fi5821293074295781190e_real @ F @ ( F4 @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
            @ ( topolo2177554685111907308n_real @ A @ top_top_set_real ) )
         => ( ( eventually_real
              @ ^ [X3: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
              @ ( topolo2177554685111907308n_real @ A @ top_top_set_real ) )
           => ( ( filterlim_real_real
                @ ^ [X3: real] : ( divide_divide_real @ ( F4 @ X3 ) @ ( G2 @ X3 ) )
                @ at_bot_real
                @ ( topolo2177554685111907308n_real @ A @ top_top_set_real ) )
             => ( filterlim_real_real
                @ ^ [X3: real] : ( divide_divide_real @ ( F @ X3 ) @ ( G @ X3 ) )
                @ at_bot_real
                @ ( topolo2177554685111907308n_real @ A @ top_top_set_real ) ) ) ) ) ) ) ).

% lhopital_at_top_at_bot
thf(fact_10154_lhopital__left__at__top__at__top,axiom,
    ! [F: real > real,A: real,G: real > real,F4: real > real,G2: real > real] :
      ( ( filterlim_real_real @ F @ at_top_real @ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) )
     => ( ( filterlim_real_real @ G @ at_top_real @ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) )
       => ( ( eventually_real
            @ ^ [X3: real] : ( has_fi5821293074295781190e_real @ F @ ( F4 @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
            @ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) )
         => ( ( eventually_real
              @ ^ [X3: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
              @ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) )
           => ( ( filterlim_real_real
                @ ^ [X3: real] : ( divide_divide_real @ ( F4 @ X3 ) @ ( G2 @ X3 ) )
                @ at_top_real
                @ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) )
             => ( filterlim_real_real
                @ ^ [X3: real] : ( divide_divide_real @ ( F @ X3 ) @ ( G @ X3 ) )
                @ at_top_real
                @ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) ) ) ) ) ) ) ).

% lhopital_left_at_top_at_top
thf(fact_10155_lhopital,axiom,
    ! [F: real > real,X: real,G: real > real,G2: real > real,F4: real > real,F5: filter_real] :
      ( ( filterlim_real_real @ F @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
     => ( ( filterlim_real_real @ G @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
       => ( ( eventually_real
            @ ^ [X3: real] :
                ( ( G @ X3 )
               != zero_zero_real )
            @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
         => ( ( eventually_real
              @ ^ [X3: real] :
                  ( ( G2 @ X3 )
                 != zero_zero_real )
              @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
           => ( ( eventually_real
                @ ^ [X3: real] : ( has_fi5821293074295781190e_real @ F @ ( F4 @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
                @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
             => ( ( eventually_real
                  @ ^ [X3: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
                  @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
               => ( ( filterlim_real_real
                    @ ^ [X3: real] : ( divide_divide_real @ ( F4 @ X3 ) @ ( G2 @ X3 ) )
                    @ F5
                    @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
                 => ( filterlim_real_real
                    @ ^ [X3: real] : ( divide_divide_real @ ( F @ X3 ) @ ( G @ X3 ) )
                    @ F5
                    @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) ) ) ) ) ) ) ) ) ).

% lhopital
thf(fact_10156_lhopital__at__top,axiom,
    ! [G: real > real,X: real,G2: real > real,F: real > real,F4: real > real,Y: real] :
      ( ( filterlim_real_real @ G @ at_top_real @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
     => ( ( eventually_real
          @ ^ [X3: real] :
              ( ( G2 @ X3 )
             != zero_zero_real )
          @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
       => ( ( eventually_real
            @ ^ [X3: real] : ( has_fi5821293074295781190e_real @ F @ ( F4 @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
            @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
         => ( ( eventually_real
              @ ^ [X3: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
              @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
           => ( ( filterlim_real_real
                @ ^ [X3: real] : ( divide_divide_real @ ( F4 @ X3 ) @ ( G2 @ X3 ) )
                @ ( topolo2815343760600316023s_real @ Y )
                @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
             => ( filterlim_real_real
                @ ^ [X3: real] : ( divide_divide_real @ ( F @ X3 ) @ ( G @ X3 ) )
                @ ( topolo2815343760600316023s_real @ Y )
                @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) ) ) ) ) ) ) ).

% lhopital_at_top
thf(fact_10157_lhospital__at__top__at__top,axiom,
    ! [G: real > real,G2: real > real,F: real > real,F4: real > real,X: real] :
      ( ( filterlim_real_real @ G @ at_top_real @ at_top_real )
     => ( ( eventually_real
          @ ^ [X3: real] :
              ( ( G2 @ X3 )
             != zero_zero_real )
          @ at_top_real )
       => ( ( eventually_real
            @ ^ [X3: real] : ( has_fi5821293074295781190e_real @ F @ ( F4 @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
            @ at_top_real )
         => ( ( eventually_real
              @ ^ [X3: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
              @ at_top_real )
           => ( ( filterlim_real_real
                @ ^ [X3: real] : ( divide_divide_real @ ( F4 @ X3 ) @ ( G2 @ X3 ) )
                @ ( topolo2815343760600316023s_real @ X )
                @ at_top_real )
             => ( filterlim_real_real
                @ ^ [X3: real] : ( divide_divide_real @ ( F @ X3 ) @ ( G @ X3 ) )
                @ ( topolo2815343760600316023s_real @ X )
                @ at_top_real ) ) ) ) ) ) ).

% lhospital_at_top_at_top
thf(fact_10158_open__nat__def,axiom,
    ( topolo4328251076210115529en_nat
    = ( topolo1613498594424996677gy_nat @ ( sup_sup_set_set_nat @ ( image_nat_set_nat @ set_ord_lessThan_nat @ top_top_set_nat ) @ ( image_nat_set_nat @ set_or1210151606488870762an_nat @ top_top_set_nat ) ) ) ) ).

% open_nat_def
thf(fact_10159_lhopital__right__at__top__at__bot,axiom,
    ! [F: real > real,A: real,G: real > real,F4: real > real,G2: real > real] :
      ( ( filterlim_real_real @ F @ at_top_real @ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) )
     => ( ( filterlim_real_real @ G @ at_bot_real @ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) )
       => ( ( eventually_real
            @ ^ [X3: real] : ( has_fi5821293074295781190e_real @ F @ ( F4 @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
            @ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) )
         => ( ( eventually_real
              @ ^ [X3: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
              @ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) )
           => ( ( filterlim_real_real
                @ ^ [X3: real] : ( divide_divide_real @ ( F4 @ X3 ) @ ( G2 @ X3 ) )
                @ at_bot_real
                @ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) )
             => ( filterlim_real_real
                @ ^ [X3: real] : ( divide_divide_real @ ( F @ X3 ) @ ( G @ X3 ) )
                @ at_bot_real
                @ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) ) ) ) ) ) ) ).

% lhopital_right_at_top_at_bot
thf(fact_10160_lhopital__left__at__top__at__bot,axiom,
    ! [F: real > real,A: real,G: real > real,F4: real > real,G2: real > real] :
      ( ( filterlim_real_real @ F @ at_top_real @ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) )
     => ( ( filterlim_real_real @ G @ at_bot_real @ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) )
       => ( ( eventually_real
            @ ^ [X3: real] : ( has_fi5821293074295781190e_real @ F @ ( F4 @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
            @ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) )
         => ( ( eventually_real
              @ ^ [X3: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
              @ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) )
           => ( ( filterlim_real_real
                @ ^ [X3: real] : ( divide_divide_real @ ( F4 @ X3 ) @ ( G2 @ X3 ) )
                @ at_bot_real
                @ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) )
             => ( filterlim_real_real
                @ ^ [X3: real] : ( divide_divide_real @ ( F @ X3 ) @ ( G @ X3 ) )
                @ at_bot_real
                @ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) ) ) ) ) ) ) ).

% lhopital_left_at_top_at_bot
thf(fact_10161_lhopital__right,axiom,
    ! [F: real > real,X: real,G: real > real,G2: real > real,F4: real > real,F5: filter_real] :
      ( ( filterlim_real_real @ F @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ ( topolo2177554685111907308n_real @ X @ ( set_or5849166863359141190n_real @ X ) ) )
     => ( ( filterlim_real_real @ G @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ ( topolo2177554685111907308n_real @ X @ ( set_or5849166863359141190n_real @ X ) ) )
       => ( ( eventually_real
            @ ^ [X3: real] :
                ( ( G @ X3 )
               != zero_zero_real )
            @ ( topolo2177554685111907308n_real @ X @ ( set_or5849166863359141190n_real @ X ) ) )
         => ( ( eventually_real
              @ ^ [X3: real] :
                  ( ( G2 @ X3 )
                 != zero_zero_real )
              @ ( topolo2177554685111907308n_real @ X @ ( set_or5849166863359141190n_real @ X ) ) )
           => ( ( eventually_real
                @ ^ [X3: real] : ( has_fi5821293074295781190e_real @ F @ ( F4 @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
                @ ( topolo2177554685111907308n_real @ X @ ( set_or5849166863359141190n_real @ X ) ) )
             => ( ( eventually_real
                  @ ^ [X3: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
                  @ ( topolo2177554685111907308n_real @ X @ ( set_or5849166863359141190n_real @ X ) ) )
               => ( ( filterlim_real_real
                    @ ^ [X3: real] : ( divide_divide_real @ ( F4 @ X3 ) @ ( G2 @ X3 ) )
                    @ F5
                    @ ( topolo2177554685111907308n_real @ X @ ( set_or5849166863359141190n_real @ X ) ) )
                 => ( filterlim_real_real
                    @ ^ [X3: real] : ( divide_divide_real @ ( F @ X3 ) @ ( G @ X3 ) )
                    @ F5
                    @ ( topolo2177554685111907308n_real @ X @ ( set_or5849166863359141190n_real @ X ) ) ) ) ) ) ) ) ) ) ).

% lhopital_right
thf(fact_10162_lhopital__right__0,axiom,
    ! [F0: real > real,G0: real > real,G2: real > real,F4: real > real,F5: filter_real] :
      ( ( filterlim_real_real @ F0 @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
     => ( ( filterlim_real_real @ G0 @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
       => ( ( eventually_real
            @ ^ [X3: real] :
                ( ( G0 @ X3 )
               != zero_zero_real )
            @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
         => ( ( eventually_real
              @ ^ [X3: real] :
                  ( ( G2 @ X3 )
                 != zero_zero_real )
              @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
           => ( ( eventually_real
                @ ^ [X3: real] : ( has_fi5821293074295781190e_real @ F0 @ ( F4 @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
                @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
             => ( ( eventually_real
                  @ ^ [X3: real] : ( has_fi5821293074295781190e_real @ G0 @ ( G2 @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
                  @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
               => ( ( filterlim_real_real
                    @ ^ [X3: real] : ( divide_divide_real @ ( F4 @ X3 ) @ ( G2 @ X3 ) )
                    @ F5
                    @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
                 => ( filterlim_real_real
                    @ ^ [X3: real] : ( divide_divide_real @ ( F0 @ X3 ) @ ( G0 @ X3 ) )
                    @ F5
                    @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) ) ) ) ) ) ) ) ) ).

% lhopital_right_0
thf(fact_10163_lhopital__right__at__top,axiom,
    ! [G: real > real,X: real,G2: real > real,F: real > real,F4: real > real,Y: real] :
      ( ( filterlim_real_real @ G @ at_top_real @ ( topolo2177554685111907308n_real @ X @ ( set_or5849166863359141190n_real @ X ) ) )
     => ( ( eventually_real
          @ ^ [X3: real] :
              ( ( G2 @ X3 )
             != zero_zero_real )
          @ ( topolo2177554685111907308n_real @ X @ ( set_or5849166863359141190n_real @ X ) ) )
       => ( ( eventually_real
            @ ^ [X3: real] : ( has_fi5821293074295781190e_real @ F @ ( F4 @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
            @ ( topolo2177554685111907308n_real @ X @ ( set_or5849166863359141190n_real @ X ) ) )
         => ( ( eventually_real
              @ ^ [X3: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
              @ ( topolo2177554685111907308n_real @ X @ ( set_or5849166863359141190n_real @ X ) ) )
           => ( ( filterlim_real_real
                @ ^ [X3: real] : ( divide_divide_real @ ( F4 @ X3 ) @ ( G2 @ X3 ) )
                @ ( topolo2815343760600316023s_real @ Y )
                @ ( topolo2177554685111907308n_real @ X @ ( set_or5849166863359141190n_real @ X ) ) )
             => ( filterlim_real_real
                @ ^ [X3: real] : ( divide_divide_real @ ( F @ X3 ) @ ( G @ X3 ) )
                @ ( topolo2815343760600316023s_real @ Y )
                @ ( topolo2177554685111907308n_real @ X @ ( set_or5849166863359141190n_real @ X ) ) ) ) ) ) ) ) ).

% lhopital_right_at_top
thf(fact_10164_lhopital__right__0__at__top,axiom,
    ! [G: real > real,G2: real > real,F: real > real,F4: real > real,X: real] :
      ( ( filterlim_real_real @ G @ at_top_real @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
     => ( ( eventually_real
          @ ^ [X3: real] :
              ( ( G2 @ X3 )
             != zero_zero_real )
          @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
       => ( ( eventually_real
            @ ^ [X3: real] : ( has_fi5821293074295781190e_real @ F @ ( F4 @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
            @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
         => ( ( eventually_real
              @ ^ [X3: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
              @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
           => ( ( filterlim_real_real
                @ ^ [X3: real] : ( divide_divide_real @ ( F4 @ X3 ) @ ( G2 @ X3 ) )
                @ ( topolo2815343760600316023s_real @ X )
                @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
             => ( filterlim_real_real
                @ ^ [X3: real] : ( divide_divide_real @ ( F @ X3 ) @ ( G @ X3 ) )
                @ ( topolo2815343760600316023s_real @ X )
                @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) ) ) ) ) ) ) ).

% lhopital_right_0_at_top
thf(fact_10165_lhopital__left,axiom,
    ! [F: real > real,X: real,G: real > real,G2: real > real,F4: real > real,F5: filter_real] :
      ( ( filterlim_real_real @ F @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ ( topolo2177554685111907308n_real @ X @ ( set_or5984915006950818249n_real @ X ) ) )
     => ( ( filterlim_real_real @ G @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ ( topolo2177554685111907308n_real @ X @ ( set_or5984915006950818249n_real @ X ) ) )
       => ( ( eventually_real
            @ ^ [X3: real] :
                ( ( G @ X3 )
               != zero_zero_real )
            @ ( topolo2177554685111907308n_real @ X @ ( set_or5984915006950818249n_real @ X ) ) )
         => ( ( eventually_real
              @ ^ [X3: real] :
                  ( ( G2 @ X3 )
                 != zero_zero_real )
              @ ( topolo2177554685111907308n_real @ X @ ( set_or5984915006950818249n_real @ X ) ) )
           => ( ( eventually_real
                @ ^ [X3: real] : ( has_fi5821293074295781190e_real @ F @ ( F4 @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
                @ ( topolo2177554685111907308n_real @ X @ ( set_or5984915006950818249n_real @ X ) ) )
             => ( ( eventually_real
                  @ ^ [X3: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
                  @ ( topolo2177554685111907308n_real @ X @ ( set_or5984915006950818249n_real @ X ) ) )
               => ( ( filterlim_real_real
                    @ ^ [X3: real] : ( divide_divide_real @ ( F4 @ X3 ) @ ( G2 @ X3 ) )
                    @ F5
                    @ ( topolo2177554685111907308n_real @ X @ ( set_or5984915006950818249n_real @ X ) ) )
                 => ( filterlim_real_real
                    @ ^ [X3: real] : ( divide_divide_real @ ( F @ X3 ) @ ( G @ X3 ) )
                    @ F5
                    @ ( topolo2177554685111907308n_real @ X @ ( set_or5984915006950818249n_real @ X ) ) ) ) ) ) ) ) ) ) ).

% lhopital_left
thf(fact_10166_lhopital__left__at__top,axiom,
    ! [G: real > real,X: real,G2: real > real,F: real > real,F4: real > real,Y: real] :
      ( ( filterlim_real_real @ G @ at_top_real @ ( topolo2177554685111907308n_real @ X @ ( set_or5984915006950818249n_real @ X ) ) )
     => ( ( eventually_real
          @ ^ [X3: real] :
              ( ( G2 @ X3 )
             != zero_zero_real )
          @ ( topolo2177554685111907308n_real @ X @ ( set_or5984915006950818249n_real @ X ) ) )
       => ( ( eventually_real
            @ ^ [X3: real] : ( has_fi5821293074295781190e_real @ F @ ( F4 @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
            @ ( topolo2177554685111907308n_real @ X @ ( set_or5984915006950818249n_real @ X ) ) )
         => ( ( eventually_real
              @ ^ [X3: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X3 ) @ ( topolo2177554685111907308n_real @ X3 @ top_top_set_real ) )
              @ ( topolo2177554685111907308n_real @ X @ ( set_or5984915006950818249n_real @ X ) ) )
           => ( ( filterlim_real_real
                @ ^ [X3: real] : ( divide_divide_real @ ( F4 @ X3 ) @ ( G2 @ X3 ) )
                @ ( topolo2815343760600316023s_real @ Y )
                @ ( topolo2177554685111907308n_real @ X @ ( set_or5984915006950818249n_real @ X ) ) )
             => ( filterlim_real_real
                @ ^ [X3: real] : ( divide_divide_real @ ( F @ X3 ) @ ( G @ X3 ) )
                @ ( topolo2815343760600316023s_real @ Y )
                @ ( topolo2177554685111907308n_real @ X @ ( set_or5984915006950818249n_real @ X ) ) ) ) ) ) ) ) ).

% lhopital_left_at_top
thf(fact_10167_GreatestI__nat,axiom,
    ! [P: nat > $o,K: nat,B: nat] :
      ( ( P @ K )
     => ( ! [Y5: nat] :
            ( ( P @ Y5 )
           => ( ord_less_eq_nat @ Y5 @ B ) )
       => ( P @ ( order_Greatest_nat @ P ) ) ) ) ).

% GreatestI_nat
thf(fact_10168_Greatest__le__nat,axiom,
    ! [P: nat > $o,K: nat,B: nat] :
      ( ( P @ K )
     => ( ! [Y5: nat] :
            ( ( P @ Y5 )
           => ( ord_less_eq_nat @ Y5 @ B ) )
       => ( ord_less_eq_nat @ K @ ( order_Greatest_nat @ P ) ) ) ) ).

% Greatest_le_nat
thf(fact_10169_GreatestI__ex__nat,axiom,
    ! [P: nat > $o,B: nat] :
      ( ? [X_12: nat] : ( P @ X_12 )
     => ( ! [Y5: nat] :
            ( ( P @ Y5 )
           => ( ord_less_eq_nat @ Y5 @ B ) )
       => ( P @ ( order_Greatest_nat @ P ) ) ) ) ).

% GreatestI_ex_nat
thf(fact_10170_Bseq__eq__bounded,axiom,
    ! [F: nat > real,A: real,B: real] :
      ( ( ord_less_eq_set_real @ ( image_nat_real @ F @ top_top_set_nat ) @ ( set_or1222579329274155063t_real @ A @ B ) )
     => ( bfun_nat_real @ F @ at_top_nat ) ) ).

% Bseq_eq_bounded
thf(fact_10171_Bseq__realpow,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ X @ one_one_real )
       => ( bfun_nat_real @ ( power_power_real @ X ) @ at_top_nat ) ) ) ).

% Bseq_realpow
thf(fact_10172_VEBT__internal_Ovalid_H_Oelims_I3_J,axiom,
    ! [X: vEBT_VEBT,Xa2: nat] :
      ( ~ ( vEBT_VEBT_valid @ X @ Xa2 )
     => ( ( ? [Uu2: $o,Uv2: $o] :
              ( X
              = ( vEBT_Leaf @ Uu2 @ Uv2 ) )
         => ( Xa2 = one_one_nat ) )
       => ~ ! [Mima: option4927543243414619207at_nat,Deg2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
              ( ( X
                = ( vEBT_Node @ Mima @ Deg2 @ TreeList2 @ Summary2 ) )
             => ( ( Deg2 = Xa2 )
                & ! [X5: vEBT_VEBT] :
                    ( ( member_VEBT_VEBT @ X5 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
                   => ( vEBT_VEBT_valid @ X5 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
                & ( vEBT_VEBT_valid @ Summary2 @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
                & ( ( size_s6755466524823107622T_VEBT @ TreeList2 )
                  = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                & ( case_o184042715313410164at_nat
                  @ ( ~ ? [X4: nat] : ( vEBT_V8194947554948674370ptions @ Summary2 @ X4 )
                    & ! [X3: vEBT_VEBT] :
                        ( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
                       => ~ ? [X4: nat] : ( vEBT_V8194947554948674370ptions @ X3 @ X4 ) ) )
                  @ ( produc6081775807080527818_nat_o
                    @ ^ [Mi3: nat,Ma3: nat] :
                        ( ( ord_less_eq_nat @ Mi3 @ Ma3 )
                        & ( ord_less_nat @ Ma3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
                        & ! [I5: nat] :
                            ( ( ord_less_nat @ I5 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                           => ( ( ? [X4: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList2 @ I5 ) @ X4 ) )
                              = ( vEBT_V8194947554948674370ptions @ Summary2 @ I5 ) ) )
                        & ( ( Mi3 = Ma3 )
                         => ! [X3: vEBT_VEBT] :
                              ( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
                             => ~ ? [X4: nat] : ( vEBT_V8194947554948674370ptions @ X3 @ X4 ) ) )
                        & ( ( Mi3 != Ma3 )
                         => ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList2 @ Ma3 )
                            & ! [X3: nat] :
                                ( ( ord_less_nat @ X3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
                               => ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList2 @ X3 )
                                 => ( ( ord_less_nat @ Mi3 @ X3 )
                                    & ( ord_less_eq_nat @ X3 @ Ma3 ) ) ) ) ) ) ) )
                  @ Mima ) ) ) ) ) ).

% VEBT_internal.valid'.elims(3)
thf(fact_10173_decseq__bounded,axiom,
    ! [X8: nat > real,B3: real] :
      ( ( order_9091379641038594480t_real @ X8 )
     => ( ! [I3: nat] : ( ord_less_eq_real @ B3 @ ( X8 @ I3 ) )
       => ( bfun_nat_real @ X8 @ at_top_nat ) ) ) ).

% decseq_bounded
thf(fact_10174_decseq__convergent,axiom,
    ! [X8: nat > real,B3: real] :
      ( ( order_9091379641038594480t_real @ X8 )
     => ( ! [I3: nat] : ( ord_less_eq_real @ B3 @ ( X8 @ I3 ) )
       => ~ ! [L6: real] :
              ( ( filterlim_nat_real @ X8 @ ( topolo2815343760600316023s_real @ L6 ) @ at_top_nat )
             => ~ ! [I: nat] : ( ord_less_eq_real @ L6 @ ( X8 @ I ) ) ) ) ) ).

% decseq_convergent
thf(fact_10175_VEBT__internal_Ovalid_H_Osimps_I2_J,axiom,
    ! [Mima2: option4927543243414619207at_nat,Deg: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT,Deg4: nat] :
      ( ( vEBT_VEBT_valid @ ( vEBT_Node @ Mima2 @ Deg @ TreeList @ Summary ) @ Deg4 )
      = ( ( Deg = Deg4 )
        & ! [X3: vEBT_VEBT] :
            ( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList ) )
           => ( vEBT_VEBT_valid @ X3 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
        & ( vEBT_VEBT_valid @ Summary @ ( minus_minus_nat @ Deg @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
        & ( ( size_s6755466524823107622T_VEBT @ TreeList )
          = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
        & ( case_o184042715313410164at_nat
          @ ( ~ ? [X4: nat] : ( vEBT_V8194947554948674370ptions @ Summary @ X4 )
            & ! [X3: vEBT_VEBT] :
                ( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList ) )
               => ~ ? [X4: nat] : ( vEBT_V8194947554948674370ptions @ X3 @ X4 ) ) )
          @ ( produc6081775807080527818_nat_o
            @ ^ [Mi3: nat,Ma3: nat] :
                ( ( ord_less_eq_nat @ Mi3 @ Ma3 )
                & ( ord_less_nat @ Ma3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg ) )
                & ! [I5: nat] :
                    ( ( ord_less_nat @ I5 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                   => ( ( ? [X4: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList @ I5 ) @ X4 ) )
                      = ( vEBT_V8194947554948674370ptions @ Summary @ I5 ) ) )
                & ( ( Mi3 = Ma3 )
                 => ! [X3: vEBT_VEBT] :
                      ( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList ) )
                     => ~ ? [X4: nat] : ( vEBT_V8194947554948674370ptions @ X3 @ X4 ) ) )
                & ( ( Mi3 != Ma3 )
                 => ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList @ Ma3 )
                    & ! [X3: nat] :
                        ( ( ord_less_nat @ X3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg ) )
                       => ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList @ X3 )
                         => ( ( ord_less_nat @ Mi3 @ X3 )
                            & ( ord_less_eq_nat @ X3 @ Ma3 ) ) ) ) ) ) ) )
          @ Mima2 ) ) ) ).

% VEBT_internal.valid'.simps(2)
thf(fact_10176_VEBT__internal_Ovalid_H_Oelims_I1_J,axiom,
    ! [X: vEBT_VEBT,Xa2: nat,Y: $o] :
      ( ( ( vEBT_VEBT_valid @ X @ Xa2 )
        = Y )
     => ( ( ? [Uu2: $o,Uv2: $o] :
              ( X
              = ( vEBT_Leaf @ Uu2 @ Uv2 ) )
         => ( Y
            = ( Xa2 != one_one_nat ) ) )
       => ~ ! [Mima: option4927543243414619207at_nat,Deg2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
              ( ( X
                = ( vEBT_Node @ Mima @ Deg2 @ TreeList2 @ Summary2 ) )
             => ( Y
                = ( ~ ( ( Deg2 = Xa2 )
                      & ! [X3: vEBT_VEBT] :
                          ( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
                         => ( vEBT_VEBT_valid @ X3 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
                      & ( vEBT_VEBT_valid @ Summary2 @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
                      & ( ( size_s6755466524823107622T_VEBT @ TreeList2 )
                        = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                      & ( case_o184042715313410164at_nat
                        @ ( ~ ? [X4: nat] : ( vEBT_V8194947554948674370ptions @ Summary2 @ X4 )
                          & ! [X3: vEBT_VEBT] :
                              ( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
                             => ~ ? [X4: nat] : ( vEBT_V8194947554948674370ptions @ X3 @ X4 ) ) )
                        @ ( produc6081775807080527818_nat_o
                          @ ^ [Mi3: nat,Ma3: nat] :
                              ( ( ord_less_eq_nat @ Mi3 @ Ma3 )
                              & ( ord_less_nat @ Ma3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
                              & ! [I5: nat] :
                                  ( ( ord_less_nat @ I5 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                 => ( ( ? [X4: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList2 @ I5 ) @ X4 ) )
                                    = ( vEBT_V8194947554948674370ptions @ Summary2 @ I5 ) ) )
                              & ( ( Mi3 = Ma3 )
                               => ! [X3: vEBT_VEBT] :
                                    ( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
                                   => ~ ? [X4: nat] : ( vEBT_V8194947554948674370ptions @ X3 @ X4 ) ) )
                              & ( ( Mi3 != Ma3 )
                               => ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList2 @ Ma3 )
                                  & ! [X3: nat] :
                                      ( ( ord_less_nat @ X3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
                                     => ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList2 @ X3 )
                                       => ( ( ord_less_nat @ Mi3 @ X3 )
                                          & ( ord_less_eq_nat @ X3 @ Ma3 ) ) ) ) ) ) ) )
                        @ Mima ) ) ) ) ) ) ) ).

% VEBT_internal.valid'.elims(1)
thf(fact_10177_VEBT__internal_Ovalid_H_Oelims_I2_J,axiom,
    ! [X: vEBT_VEBT,Xa2: nat] :
      ( ( vEBT_VEBT_valid @ X @ Xa2 )
     => ( ( ? [Uu2: $o,Uv2: $o] :
              ( X
              = ( vEBT_Leaf @ Uu2 @ Uv2 ) )
         => ( Xa2 != one_one_nat ) )
       => ~ ! [Mima: option4927543243414619207at_nat,Deg2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
              ( ( X
                = ( vEBT_Node @ Mima @ Deg2 @ TreeList2 @ Summary2 ) )
             => ~ ( ( Deg2 = Xa2 )
                  & ! [X2: vEBT_VEBT] :
                      ( ( member_VEBT_VEBT @ X2 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
                     => ( vEBT_VEBT_valid @ X2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
                  & ( vEBT_VEBT_valid @ Summary2 @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
                  & ( ( size_s6755466524823107622T_VEBT @ TreeList2 )
                    = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                  & ( case_o184042715313410164at_nat
                    @ ( ~ ? [X4: nat] : ( vEBT_V8194947554948674370ptions @ Summary2 @ X4 )
                      & ! [X3: vEBT_VEBT] :
                          ( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
                         => ~ ? [X4: nat] : ( vEBT_V8194947554948674370ptions @ X3 @ X4 ) ) )
                    @ ( produc6081775807080527818_nat_o
                      @ ^ [Mi3: nat,Ma3: nat] :
                          ( ( ord_less_eq_nat @ Mi3 @ Ma3 )
                          & ( ord_less_nat @ Ma3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
                          & ! [I5: nat] :
                              ( ( ord_less_nat @ I5 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                             => ( ( ? [X4: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList2 @ I5 ) @ X4 ) )
                                = ( vEBT_V8194947554948674370ptions @ Summary2 @ I5 ) ) )
                          & ( ( Mi3 = Ma3 )
                           => ! [X3: vEBT_VEBT] :
                                ( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
                               => ~ ? [X4: nat] : ( vEBT_V8194947554948674370ptions @ X3 @ X4 ) ) )
                          & ( ( Mi3 != Ma3 )
                           => ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList2 @ Ma3 )
                              & ! [X3: nat] :
                                  ( ( ord_less_nat @ X3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
                                 => ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList2 @ X3 )
                                   => ( ( ord_less_nat @ Mi3 @ X3 )
                                      & ( ord_less_eq_nat @ X3 @ Ma3 ) ) ) ) ) ) ) )
                    @ Mima ) ) ) ) ) ).

% VEBT_internal.valid'.elims(2)
thf(fact_10178_VEBT__internal_Ovalid_H_Opelims_I3_J,axiom,
    ! [X: vEBT_VEBT,Xa2: nat] :
      ( ~ ( vEBT_VEBT_valid @ X @ Xa2 )
     => ( ( accp_P2887432264394892906BT_nat @ vEBT_VEBT_valid_rel @ ( produc738532404422230701BT_nat @ X @ Xa2 ) )
       => ( ! [Uu2: $o,Uv2: $o] :
              ( ( X
                = ( vEBT_Leaf @ Uu2 @ Uv2 ) )
             => ( ( accp_P2887432264394892906BT_nat @ vEBT_VEBT_valid_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uu2 @ Uv2 ) @ Xa2 ) )
               => ( Xa2 = one_one_nat ) ) )
         => ~ ! [Mima: option4927543243414619207at_nat,Deg2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
                ( ( X
                  = ( vEBT_Node @ Mima @ Deg2 @ TreeList2 @ Summary2 ) )
               => ( ( accp_P2887432264394892906BT_nat @ vEBT_VEBT_valid_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ Mima @ Deg2 @ TreeList2 @ Summary2 ) @ Xa2 ) )
                 => ( ( Deg2 = Xa2 )
                    & ! [X5: vEBT_VEBT] :
                        ( ( member_VEBT_VEBT @ X5 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
                       => ( vEBT_VEBT_valid @ X5 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
                    & ( vEBT_VEBT_valid @ Summary2 @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
                    & ( ( size_s6755466524823107622T_VEBT @ TreeList2 )
                      = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                    & ( case_o184042715313410164at_nat
                      @ ( ~ ? [X4: nat] : ( vEBT_V8194947554948674370ptions @ Summary2 @ X4 )
                        & ! [X3: vEBT_VEBT] :
                            ( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
                           => ~ ? [X4: nat] : ( vEBT_V8194947554948674370ptions @ X3 @ X4 ) ) )
                      @ ( produc6081775807080527818_nat_o
                        @ ^ [Mi3: nat,Ma3: nat] :
                            ( ( ord_less_eq_nat @ Mi3 @ Ma3 )
                            & ( ord_less_nat @ Ma3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
                            & ! [I5: nat] :
                                ( ( ord_less_nat @ I5 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                               => ( ( ? [X4: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList2 @ I5 ) @ X4 ) )
                                  = ( vEBT_V8194947554948674370ptions @ Summary2 @ I5 ) ) )
                            & ( ( Mi3 = Ma3 )
                             => ! [X3: vEBT_VEBT] :
                                  ( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
                                 => ~ ? [X4: nat] : ( vEBT_V8194947554948674370ptions @ X3 @ X4 ) ) )
                            & ( ( Mi3 != Ma3 )
                             => ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList2 @ Ma3 )
                                & ! [X3: nat] :
                                    ( ( ord_less_nat @ X3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
                                   => ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList2 @ X3 )
                                     => ( ( ord_less_nat @ Mi3 @ X3 )
                                        & ( ord_less_eq_nat @ X3 @ Ma3 ) ) ) ) ) ) ) )
                      @ Mima ) ) ) ) ) ) ) ).

% VEBT_internal.valid'.pelims(3)
thf(fact_10179_VEBT__internal_Ovalid_H_Opelims_I2_J,axiom,
    ! [X: vEBT_VEBT,Xa2: nat] :
      ( ( vEBT_VEBT_valid @ X @ Xa2 )
     => ( ( accp_P2887432264394892906BT_nat @ vEBT_VEBT_valid_rel @ ( produc738532404422230701BT_nat @ X @ Xa2 ) )
       => ( ! [Uu2: $o,Uv2: $o] :
              ( ( X
                = ( vEBT_Leaf @ Uu2 @ Uv2 ) )
             => ( ( accp_P2887432264394892906BT_nat @ vEBT_VEBT_valid_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uu2 @ Uv2 ) @ Xa2 ) )
               => ( Xa2 != one_one_nat ) ) )
         => ~ ! [Mima: option4927543243414619207at_nat,Deg2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
                ( ( X
                  = ( vEBT_Node @ Mima @ Deg2 @ TreeList2 @ Summary2 ) )
               => ( ( accp_P2887432264394892906BT_nat @ vEBT_VEBT_valid_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ Mima @ Deg2 @ TreeList2 @ Summary2 ) @ Xa2 ) )
                 => ~ ( ( Deg2 = Xa2 )
                      & ! [X2: vEBT_VEBT] :
                          ( ( member_VEBT_VEBT @ X2 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
                         => ( vEBT_VEBT_valid @ X2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
                      & ( vEBT_VEBT_valid @ Summary2 @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
                      & ( ( size_s6755466524823107622T_VEBT @ TreeList2 )
                        = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                      & ( case_o184042715313410164at_nat
                        @ ( ~ ? [X4: nat] : ( vEBT_V8194947554948674370ptions @ Summary2 @ X4 )
                          & ! [X3: vEBT_VEBT] :
                              ( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
                             => ~ ? [X4: nat] : ( vEBT_V8194947554948674370ptions @ X3 @ X4 ) ) )
                        @ ( produc6081775807080527818_nat_o
                          @ ^ [Mi3: nat,Ma3: nat] :
                              ( ( ord_less_eq_nat @ Mi3 @ Ma3 )
                              & ( ord_less_nat @ Ma3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
                              & ! [I5: nat] :
                                  ( ( ord_less_nat @ I5 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                 => ( ( ? [X4: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList2 @ I5 ) @ X4 ) )
                                    = ( vEBT_V8194947554948674370ptions @ Summary2 @ I5 ) ) )
                              & ( ( Mi3 = Ma3 )
                               => ! [X3: vEBT_VEBT] :
                                    ( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
                                   => ~ ? [X4: nat] : ( vEBT_V8194947554948674370ptions @ X3 @ X4 ) ) )
                              & ( ( Mi3 != Ma3 )
                               => ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList2 @ Ma3 )
                                  & ! [X3: nat] :
                                      ( ( ord_less_nat @ X3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
                                     => ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList2 @ X3 )
                                       => ( ( ord_less_nat @ Mi3 @ X3 )
                                          & ( ord_less_eq_nat @ X3 @ Ma3 ) ) ) ) ) ) ) )
                        @ Mima ) ) ) ) ) ) ) ).

% VEBT_internal.valid'.pelims(2)
thf(fact_10180_Sup__int__def,axiom,
    ( complete_Sup_Sup_int
    = ( ^ [X4: set_int] :
          ( the_int
          @ ^ [X3: int] :
              ( ( member_int @ X3 @ X4 )
              & ! [Y3: int] :
                  ( ( member_int @ Y3 @ X4 )
                 => ( ord_less_eq_int @ Y3 @ X3 ) ) ) ) ) ) ).

% Sup_int_def
thf(fact_10181_VEBT__internal_Ovalid_H_Opelims_I1_J,axiom,
    ! [X: vEBT_VEBT,Xa2: nat,Y: $o] :
      ( ( ( vEBT_VEBT_valid @ X @ Xa2 )
        = Y )
     => ( ( accp_P2887432264394892906BT_nat @ vEBT_VEBT_valid_rel @ ( produc738532404422230701BT_nat @ X @ Xa2 ) )
       => ( ! [Uu2: $o,Uv2: $o] :
              ( ( X
                = ( vEBT_Leaf @ Uu2 @ Uv2 ) )
             => ( ( Y
                  = ( Xa2 = one_one_nat ) )
               => ~ ( accp_P2887432264394892906BT_nat @ vEBT_VEBT_valid_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uu2 @ Uv2 ) @ Xa2 ) ) ) )
         => ~ ! [Mima: option4927543243414619207at_nat,Deg2: nat,TreeList2: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
                ( ( X
                  = ( vEBT_Node @ Mima @ Deg2 @ TreeList2 @ Summary2 ) )
               => ( ( Y
                    = ( ( Deg2 = Xa2 )
                      & ! [X3: vEBT_VEBT] :
                          ( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
                         => ( vEBT_VEBT_valid @ X3 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
                      & ( vEBT_VEBT_valid @ Summary2 @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
                      & ( ( size_s6755466524823107622T_VEBT @ TreeList2 )
                        = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                      & ( case_o184042715313410164at_nat
                        @ ( ~ ? [X4: nat] : ( vEBT_V8194947554948674370ptions @ Summary2 @ X4 )
                          & ! [X3: vEBT_VEBT] :
                              ( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
                             => ~ ? [X4: nat] : ( vEBT_V8194947554948674370ptions @ X3 @ X4 ) ) )
                        @ ( produc6081775807080527818_nat_o
                          @ ^ [Mi3: nat,Ma3: nat] :
                              ( ( ord_less_eq_nat @ Mi3 @ Ma3 )
                              & ( ord_less_nat @ Ma3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
                              & ! [I5: nat] :
                                  ( ( ord_less_nat @ I5 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ Deg2 @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                 => ( ( ? [X4: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList2 @ I5 ) @ X4 ) )
                                    = ( vEBT_V8194947554948674370ptions @ Summary2 @ I5 ) ) )
                              & ( ( Mi3 = Ma3 )
                               => ! [X3: vEBT_VEBT] :
                                    ( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList2 ) )
                                   => ~ ? [X4: nat] : ( vEBT_V8194947554948674370ptions @ X3 @ X4 ) ) )
                              & ( ( Mi3 != Ma3 )
                               => ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList2 @ Ma3 )
                                  & ! [X3: nat] :
                                      ( ( ord_less_nat @ X3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
                                     => ( ( vEBT_V5917875025757280293ildren @ ( divide_divide_nat @ Deg2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ TreeList2 @ X3 )
                                       => ( ( ord_less_nat @ Mi3 @ X3 )
                                          & ( ord_less_eq_nat @ X3 @ Ma3 ) ) ) ) ) ) ) )
                        @ Mima ) ) )
                 => ~ ( accp_P2887432264394892906BT_nat @ vEBT_VEBT_valid_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ Mima @ Deg2 @ TreeList2 @ Summary2 ) @ Xa2 ) ) ) ) ) ) ) ).

% VEBT_internal.valid'.pelims(1)
thf(fact_10182_GMVT,axiom,
    ! [A: real,B: real,F: real > real,G: real > real] :
      ( ( ord_less_real @ A @ B )
     => ( ! [X5: real] :
            ( ( ( ord_less_eq_real @ A @ X5 )
              & ( ord_less_eq_real @ X5 @ B ) )
           => ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ X5 @ top_top_set_real ) @ F ) )
       => ( ! [X5: real] :
              ( ( ( ord_less_real @ A @ X5 )
                & ( ord_less_real @ X5 @ B ) )
             => ( differ6690327859849518006l_real @ F @ ( topolo2177554685111907308n_real @ X5 @ top_top_set_real ) ) )
         => ( ! [X5: real] :
                ( ( ( ord_less_eq_real @ A @ X5 )
                  & ( ord_less_eq_real @ X5 @ B ) )
               => ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ X5 @ top_top_set_real ) @ G ) )
           => ( ! [X5: real] :
                  ( ( ( ord_less_real @ A @ X5 )
                    & ( ord_less_real @ X5 @ B ) )
                 => ( differ6690327859849518006l_real @ G @ ( topolo2177554685111907308n_real @ X5 @ top_top_set_real ) ) )
             => ? [G_c: real,F_c: real,C3: real] :
                  ( ( has_fi5821293074295781190e_real @ G @ G_c @ ( topolo2177554685111907308n_real @ C3 @ top_top_set_real ) )
                  & ( has_fi5821293074295781190e_real @ F @ F_c @ ( topolo2177554685111907308n_real @ C3 @ top_top_set_real ) )
                  & ( ord_less_real @ A @ C3 )
                  & ( ord_less_real @ C3 @ B )
                  & ( ( times_times_real @ ( minus_minus_real @ ( F @ B ) @ ( F @ A ) ) @ G_c )
                    = ( times_times_real @ ( minus_minus_real @ ( G @ B ) @ ( G @ A ) ) @ F_c ) ) ) ) ) ) ) ) ).

% GMVT
thf(fact_10183_MVT,axiom,
    ! [A: real,B: real,F: real > real] :
      ( ( ord_less_real @ A @ B )
     => ( ( topolo5044208981011980120l_real @ ( set_or1222579329274155063t_real @ A @ B ) @ F )
       => ( ! [X5: real] :
              ( ( ord_less_real @ A @ X5 )
             => ( ( ord_less_real @ X5 @ B )
               => ( differ6690327859849518006l_real @ F @ ( topolo2177554685111907308n_real @ X5 @ top_top_set_real ) ) ) )
         => ? [L4: real,Z4: real] :
              ( ( ord_less_real @ A @ Z4 )
              & ( ord_less_real @ Z4 @ B )
              & ( has_fi5821293074295781190e_real @ F @ L4 @ ( topolo2177554685111907308n_real @ Z4 @ top_top_set_real ) )
              & ( ( minus_minus_real @ ( F @ B ) @ ( F @ A ) )
                = ( times_times_real @ ( minus_minus_real @ B @ A ) @ L4 ) ) ) ) ) ) ).

% MVT
thf(fact_10184_continuous__on__arsinh_H,axiom,
    ! [A2: set_real,F: real > real] :
      ( ( topolo5044208981011980120l_real @ A2 @ F )
     => ( topolo5044208981011980120l_real @ A2
        @ ^ [X3: real] : ( arsinh_real @ ( F @ X3 ) ) ) ) ).

% continuous_on_arsinh'
thf(fact_10185_continuous__on__arcosh_H,axiom,
    ! [A2: set_real,F: real > real] :
      ( ( topolo5044208981011980120l_real @ A2 @ F )
     => ( ! [X5: real] :
            ( ( member_real @ X5 @ A2 )
           => ( ord_less_eq_real @ one_one_real @ ( F @ X5 ) ) )
       => ( topolo5044208981011980120l_real @ A2
          @ ^ [X3: real] : ( arcosh_real @ ( F @ X3 ) ) ) ) ) ).

% continuous_on_arcosh'
thf(fact_10186_continuous__image__closed__interval,axiom,
    ! [A: real,B: real,F: real > real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( topolo5044208981011980120l_real @ ( set_or1222579329274155063t_real @ A @ B ) @ F )
       => ? [C3: real,D4: real] :
            ( ( ( image_real_real @ F @ ( set_or1222579329274155063t_real @ A @ B ) )
              = ( set_or1222579329274155063t_real @ C3 @ D4 ) )
            & ( ord_less_eq_real @ C3 @ D4 ) ) ) ) ).

% continuous_image_closed_interval
thf(fact_10187_continuous__on__arcosh,axiom,
    ! [A2: set_real] :
      ( ( ord_less_eq_set_real @ A2 @ ( set_ord_atLeast_real @ one_one_real ) )
     => ( topolo5044208981011980120l_real @ A2 @ arcosh_real ) ) ).

% continuous_on_arcosh
thf(fact_10188_continuous__on__artanh_H,axiom,
    ! [A2: set_real,F: real > real] :
      ( ( topolo5044208981011980120l_real @ A2 @ F )
     => ( ! [X5: real] :
            ( ( member_real @ X5 @ A2 )
           => ( member_real @ ( F @ X5 ) @ ( set_or1633881224788618240n_real @ ( uminus_uminus_real @ one_one_real ) @ one_one_real ) ) )
       => ( topolo5044208981011980120l_real @ A2
          @ ^ [X3: real] : ( artanh_real @ ( F @ X3 ) ) ) ) ) ).

% continuous_on_artanh'
thf(fact_10189_mvt,axiom,
    ! [A: real,B: real,F: real > real,F4: real > real > real] :
      ( ( ord_less_real @ A @ B )
     => ( ( topolo5044208981011980120l_real @ ( set_or1222579329274155063t_real @ A @ B ) @ F )
       => ( ! [X5: real] :
              ( ( ord_less_real @ A @ X5 )
             => ( ( ord_less_real @ X5 @ B )
               => ( has_de1759254742604945161l_real @ F @ ( F4 @ X5 ) @ ( topolo2177554685111907308n_real @ X5 @ top_top_set_real ) ) ) )
         => ~ ! [Xi: real] :
                ( ( ord_less_real @ A @ Xi )
               => ( ( ord_less_real @ Xi @ B )
                 => ( ( minus_minus_real @ ( F @ B ) @ ( F @ A ) )
                   != ( F4 @ Xi @ ( minus_minus_real @ B @ A ) ) ) ) ) ) ) ) ).

% mvt
thf(fact_10190_continuous__on__artanh,axiom,
    ! [A2: set_real] :
      ( ( ord_less_eq_set_real @ A2 @ ( set_or1633881224788618240n_real @ ( uminus_uminus_real @ one_one_real ) @ one_one_real ) )
     => ( topolo5044208981011980120l_real @ A2 @ artanh_real ) ) ).

% continuous_on_artanh
thf(fact_10191_DERIV__isconst2,axiom,
    ! [A: real,B: real,F: real > real,X: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( topolo5044208981011980120l_real @ ( set_or1222579329274155063t_real @ A @ B ) @ F )
       => ( ! [X5: real] :
              ( ( ord_less_real @ A @ X5 )
             => ( ( ord_less_real @ X5 @ B )
               => ( has_fi5821293074295781190e_real @ F @ zero_zero_real @ ( topolo2177554685111907308n_real @ X5 @ top_top_set_real ) ) ) )
         => ( ( ord_less_eq_real @ A @ X )
           => ( ( ord_less_eq_real @ X @ B )
             => ( ( F @ X )
                = ( F @ A ) ) ) ) ) ) ) ).

% DERIV_isconst2
thf(fact_10192_uniformity__real__def,axiom,
    ( topolo1511823702728130853y_real
    = ( comple2936214249959783750l_real
      @ ( image_2178119161166701260l_real
        @ ^ [E3: real] :
            ( princi6114159922880469582l_real
            @ ( collec3799799289383736868l_real
              @ ( produc5414030515140494994real_o
                @ ^ [X3: real,Y3: real] : ( ord_less_real @ ( real_V975177566351809787t_real @ X3 @ Y3 ) @ E3 ) ) ) )
        @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) ) ) ).

% uniformity_real_def
thf(fact_10193_uniformity__complex__def,axiom,
    ( topolo896644834953643431omplex
    = ( comple8358262395181532106omplex
      @ ( image_5971271580939081552omplex
        @ ^ [E3: real] :
            ( princi3496590319149328850omplex
            @ ( collec8663557070575231912omplex
              @ ( produc6771430404735790350plex_o
                @ ^ [X3: complex,Y3: complex] : ( ord_less_real @ ( real_V3694042436643373181omplex @ X3 @ Y3 ) @ E3 ) ) ) )
        @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) ) ) ).

% uniformity_complex_def
thf(fact_10194_open__complex__def,axiom,
    ( topolo4110288021797289639omplex
    = ( ^ [U4: set_complex] :
        ! [X3: complex] :
          ( ( member_complex @ X3 @ U4 )
         => ( eventu5826381225784669381omplex
            @ ( produc6771430404735790350plex_o
              @ ^ [X9: complex,Y3: complex] :
                  ( ( X9 = X3 )
                 => ( member_complex @ Y3 @ U4 ) ) )
            @ topolo896644834953643431omplex ) ) ) ) ).

% open_complex_def
thf(fact_10195_open__real__def,axiom,
    ( topolo4860482606490270245n_real
    = ( ^ [U4: set_real] :
        ! [X3: real] :
          ( ( member_real @ X3 @ U4 )
         => ( eventu3244425730907250241l_real
            @ ( produc5414030515140494994real_o
              @ ^ [X9: real,Y3: real] :
                  ( ( X9 = X3 )
                 => ( member_real @ Y3 @ U4 ) ) )
            @ topolo1511823702728130853y_real ) ) ) ) ).

% open_real_def
thf(fact_10196_less__eq,axiom,
    ! [M: nat,N2: nat] :
      ( ( member8440522571783428010at_nat @ ( product_Pair_nat_nat @ M @ N2 ) @ ( transi6264000038957366511cl_nat @ pred_nat ) )
      = ( ord_less_nat @ M @ N2 ) ) ).

% less_eq
thf(fact_10197_eventually__prod__sequentially,axiom,
    ! [P: product_prod_nat_nat > $o] :
      ( ( eventu1038000079068216329at_nat @ P @ ( prod_filter_nat_nat @ at_top_nat @ at_top_nat ) )
      = ( ? [N6: nat] :
          ! [M6: nat] :
            ( ( ord_less_eq_nat @ N6 @ M6 )
           => ! [N3: nat] :
                ( ( ord_less_eq_nat @ N6 @ N3 )
               => ( P @ ( product_Pair_nat_nat @ N3 @ M6 ) ) ) ) ) ) ).

% eventually_prod_sequentially
thf(fact_10198_mono__times__nat,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( order_mono_nat_nat @ ( times_times_nat @ N2 ) ) ) ).

% mono_times_nat
thf(fact_10199_mono__Suc,axiom,
    order_mono_nat_nat @ suc ).

% mono_Suc
thf(fact_10200_incseq__bounded,axiom,
    ! [X8: nat > real,B3: real] :
      ( ( order_mono_nat_real @ X8 )
     => ( ! [I3: nat] : ( ord_less_eq_real @ ( X8 @ I3 ) @ B3 )
       => ( bfun_nat_real @ X8 @ at_top_nat ) ) ) ).

% incseq_bounded
thf(fact_10201_incseq__convergent,axiom,
    ! [X8: nat > real,B3: real] :
      ( ( order_mono_nat_real @ X8 )
     => ( ! [I3: nat] : ( ord_less_eq_real @ ( X8 @ I3 ) @ B3 )
       => ~ ! [L6: real] :
              ( ( filterlim_nat_real @ X8 @ ( topolo2815343760600316023s_real @ L6 ) @ at_top_nat )
             => ~ ! [I: nat] : ( ord_less_eq_real @ ( X8 @ I ) @ L6 ) ) ) ) ).

% incseq_convergent

% Helper facts (36)
thf(help_If_2_1_If_001t__Int__Oint_T,axiom,
    ! [X: int,Y: int] :
      ( ( if_int @ $false @ X @ Y )
      = Y ) ).

thf(help_If_1_1_If_001t__Int__Oint_T,axiom,
    ! [X: int,Y: int] :
      ( ( if_int @ $true @ X @ Y )
      = X ) ).

thf(help_If_2_1_If_001t__Nat__Onat_T,axiom,
    ! [X: nat,Y: nat] :
      ( ( if_nat @ $false @ X @ Y )
      = Y ) ).

thf(help_If_1_1_If_001t__Nat__Onat_T,axiom,
    ! [X: nat,Y: nat] :
      ( ( if_nat @ $true @ X @ Y )
      = X ) ).

thf(help_If_2_1_If_001t__Num__Onum_T,axiom,
    ! [X: num,Y: num] :
      ( ( if_num @ $false @ X @ Y )
      = Y ) ).

thf(help_If_1_1_If_001t__Num__Onum_T,axiom,
    ! [X: num,Y: num] :
      ( ( if_num @ $true @ X @ Y )
      = X ) ).

thf(help_If_2_1_If_001t__Rat__Orat_T,axiom,
    ! [X: rat,Y: rat] :
      ( ( if_rat @ $false @ X @ Y )
      = Y ) ).

thf(help_If_1_1_If_001t__Rat__Orat_T,axiom,
    ! [X: rat,Y: rat] :
      ( ( if_rat @ $true @ X @ Y )
      = X ) ).

thf(help_If_2_1_If_001t__Real__Oreal_T,axiom,
    ! [X: real,Y: real] :
      ( ( if_real @ $false @ X @ Y )
      = Y ) ).

thf(help_If_1_1_If_001t__Real__Oreal_T,axiom,
    ! [X: real,Y: real] :
      ( ( if_real @ $true @ X @ Y )
      = X ) ).

thf(help_fChoice_1_1_fChoice_001t__Real__Oreal_T,axiom,
    ! [P: real > $o] :
      ( ( P @ ( fChoice_real @ P ) )
      = ( ? [X4: real] : ( P @ X4 ) ) ) ).

thf(help_If_2_1_If_001t__Complex__Ocomplex_T,axiom,
    ! [X: complex,Y: complex] :
      ( ( if_complex @ $false @ X @ Y )
      = Y ) ).

thf(help_If_1_1_If_001t__Complex__Ocomplex_T,axiom,
    ! [X: complex,Y: complex] :
      ( ( if_complex @ $true @ X @ Y )
      = X ) ).

thf(help_If_2_1_If_001t__Extended____Nat__Oenat_T,axiom,
    ! [X: extended_enat,Y: extended_enat] :
      ( ( if_Extended_enat @ $false @ X @ Y )
      = Y ) ).

thf(help_If_1_1_If_001t__Extended____Nat__Oenat_T,axiom,
    ! [X: extended_enat,Y: extended_enat] :
      ( ( if_Extended_enat @ $true @ X @ Y )
      = X ) ).

thf(help_If_2_1_If_001t__Code____Numeral__Ointeger_T,axiom,
    ! [X: code_integer,Y: code_integer] :
      ( ( if_Code_integer @ $false @ X @ Y )
      = Y ) ).

thf(help_If_1_1_If_001t__Code____Numeral__Ointeger_T,axiom,
    ! [X: code_integer,Y: code_integer] :
      ( ( if_Code_integer @ $true @ X @ Y )
      = X ) ).

thf(help_If_2_1_If_001t__Set__Oset_It__Int__Oint_J_T,axiom,
    ! [X: set_int,Y: set_int] :
      ( ( if_set_int @ $false @ X @ Y )
      = Y ) ).

thf(help_If_1_1_If_001t__Set__Oset_It__Int__Oint_J_T,axiom,
    ! [X: set_int,Y: set_int] :
      ( ( if_set_int @ $true @ X @ Y )
      = X ) ).

thf(help_If_2_1_If_001t__VEBT____Definitions__OVEBT_T,axiom,
    ! [X: vEBT_VEBT,Y: vEBT_VEBT] :
      ( ( if_VEBT_VEBT @ $false @ X @ Y )
      = Y ) ).

thf(help_If_1_1_If_001t__VEBT____Definitions__OVEBT_T,axiom,
    ! [X: vEBT_VEBT,Y: vEBT_VEBT] :
      ( ( if_VEBT_VEBT @ $true @ X @ Y )
      = X ) ).

thf(help_If_2_1_If_001t__List__Olist_It__Int__Oint_J_T,axiom,
    ! [X: list_int,Y: list_int] :
      ( ( if_list_int @ $false @ X @ Y )
      = Y ) ).

thf(help_If_1_1_If_001t__List__Olist_It__Int__Oint_J_T,axiom,
    ! [X: list_int,Y: list_int] :
      ( ( if_list_int @ $true @ X @ Y )
      = X ) ).

thf(help_If_2_1_If_001t__Option__Ooption_It__Nat__Onat_J_T,axiom,
    ! [X: option_nat,Y: option_nat] :
      ( ( if_option_nat @ $false @ X @ Y )
      = Y ) ).

thf(help_If_1_1_If_001t__Option__Ooption_It__Nat__Onat_J_T,axiom,
    ! [X: option_nat,Y: option_nat] :
      ( ( if_option_nat @ $true @ X @ Y )
      = X ) ).

thf(help_If_2_1_If_001t__Option__Ooption_It__Num__Onum_J_T,axiom,
    ! [X: option_num,Y: option_num] :
      ( ( if_option_num @ $false @ X @ Y )
      = Y ) ).

thf(help_If_1_1_If_001t__Option__Ooption_It__Num__Onum_J_T,axiom,
    ! [X: option_num,Y: option_num] :
      ( ( if_option_num @ $true @ X @ Y )
      = X ) ).

thf(help_If_2_1_If_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_T,axiom,
    ! [X: product_prod_int_int,Y: product_prod_int_int] :
      ( ( if_Pro3027730157355071871nt_int @ $false @ X @ Y )
      = Y ) ).

thf(help_If_1_1_If_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_T,axiom,
    ! [X: product_prod_int_int,Y: product_prod_int_int] :
      ( ( if_Pro3027730157355071871nt_int @ $true @ X @ Y )
      = X ) ).

thf(help_If_2_1_If_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_T,axiom,
    ! [X: product_prod_nat_nat,Y: product_prod_nat_nat] :
      ( ( if_Pro6206227464963214023at_nat @ $false @ X @ Y )
      = Y ) ).

thf(help_If_1_1_If_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_T,axiom,
    ! [X: product_prod_nat_nat,Y: product_prod_nat_nat] :
      ( ( if_Pro6206227464963214023at_nat @ $true @ X @ Y )
      = X ) ).

thf(help_If_2_1_If_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_M_Eo_J_T,axiom,
    ! [X: produc6271795597528267376eger_o,Y: produc6271795597528267376eger_o] :
      ( ( if_Pro5737122678794959658eger_o @ $false @ X @ Y )
      = Y ) ).

thf(help_If_1_1_If_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_M_Eo_J_T,axiom,
    ! [X: produc6271795597528267376eger_o,Y: produc6271795597528267376eger_o] :
      ( ( if_Pro5737122678794959658eger_o @ $true @ X @ Y )
      = X ) ).

thf(help_If_3_1_If_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J_T,axiom,
    ! [P: $o] :
      ( ( P = $true )
      | ( P = $false ) ) ).

thf(help_If_2_1_If_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J_T,axiom,
    ! [X: produc8923325533196201883nteger,Y: produc8923325533196201883nteger] :
      ( ( if_Pro6119634080678213985nteger @ $false @ X @ Y )
      = Y ) ).

thf(help_If_1_1_If_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J_T,axiom,
    ! [X: produc8923325533196201883nteger,Y: produc8923325533196201883nteger] :
      ( ( if_Pro6119634080678213985nteger @ $true @ X @ Y )
      = X ) ).

% Conjectures (1)
thf(conj_0,conjecture,
    ( vEBT_invar_vebt
    @ ( vEBT_Node
      @ ( some_P7363390416028606310at_nat
        @ ( product_Pair_nat_nat @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx )
          @ ( if_nat
            @ ( ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx )
              = ma )
            @ ( if_nat
              @ ( ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ summary @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) )
                = none_nat )
              @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx )
              @ ( plus_plus_nat @ ( times_times_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ summary @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ ( list_u1324408373059187874T_VEBT @ treeList @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ treeList @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) @ ( vEBT_VEBT_low @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) ) @ ( the_nat @ ( vEBT_vebt_maxt @ ( vEBT_vebt_delete @ summary @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) ) ) ) ) ) ) )
            @ ma ) ) )
      @ deg
      @ ( list_u1324408373059187874T_VEBT @ treeList @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) @ ( vEBT_vebt_delete @ ( nth_VEBT_VEBT @ treeList @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) @ ( vEBT_VEBT_low @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) )
      @ ( vEBT_vebt_delete @ summary @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ summin @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ na ) ) @ lx ) @ na ) ) )
    @ deg ) ).

%------------------------------------------------------------------------------