TPTP Problem File: ITP247^1.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : ITP247^1 : TPTP v9.0.0. Released v8.1.0.
% Domain   : Interactive Theorem Proving
% Problem  : Sledgehammer problem VEBT_Bounds 00157_006467
% Version  : [Des22] axioms.
% English  :

% Refs     : [BH+15] Blanchette et al. (2015), Mining the Archive of Formal
%          : [Des22] Desharnais (2022), Email to Geoff Sutcliffe
% Source   : [Des22]
% Names    : 0071_VEBT_Bounds_00157_006467 [Des22]

% Status   : Theorem
% Rating   : 0.75 v9.0.0, 0.70 v8.2.0, 0.85 v8.1.0
% Syntax   : Number of formulae    : 11305 (5487 unt;1060 typ;   0 def)
%            Number of atoms       : 29206 (12160 equ;   0 cnn)
%            Maximal formula atoms :   71 (   2 avg)
%            Number of connectives : 112604 (3206   ~; 553   |;2132   &;95183   @)
%                                         (   0 <=>;11530  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   39 (   6 avg)
%            Number of types       :  104 ( 103 usr)
%            Number of type conns  : 4260 (4260   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :  960 ( 957 usr;  65 con; 0-8 aty)
%            Number of variables   : 26515 (2103   ^;23560   !; 852   ?;26515   :)
% SPC      : TH0_THM_EQU_NAR

% Comments : This file was generated by Isabelle (most likely Sledgehammer)
%            from the van Emde Boas Trees session in the Archive of Formal
%            proofs - 
%            www.isa-afp.org/browser_info/current/AFP/Van_Emde_Boas_Trees
%            2022-02-18 01:47:09.676
%------------------------------------------------------------------------------
% Could-be-implicit typings (103)
thf(ty_n_t__Product____Type__Oprod_I_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_M_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_J_Mt__Product____Type__Oprod_It__Option__Ooption_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_Mt__Option__Ooption_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_J_J,type,
    produc5542196010084753463at_nat: $tType ).

thf(ty_n_t__Product____Type__Oprod_I_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_M_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_M_Eo_J_J_Mt__Product____Type__Oprod_It__Option__Ooption_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_Mt__Option__Ooption_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_J_J,type,
    produc5491161045314408544at_nat: $tType ).

thf(ty_n_t__Product____Type__Oprod_I_062_It__Nat__Onat_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_Mt__Product____Type__Oprod_It__Option__Ooption_It__Nat__Onat_J_Mt__Option__Ooption_It__Nat__Onat_J_J_J,type,
    produc8306885398267862888on_nat: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__Option__Ooption_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_Mt__Option__Ooption_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_J,type,
    produc6121120109295599847at_nat: $tType ).

thf(ty_n_t__Product____Type__Oprod_I_062_It__Nat__Onat_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_J,type,
    produc4471711990508489141at_nat: $tType ).

thf(ty_n_t__Product____Type__Oprod_I_062_It__Nat__Onat_M_062_It__Nat__Onat_M_Eo_J_J_Mt__Product____Type__Oprod_It__Option__Ooption_It__Nat__Onat_J_Mt__Option__Ooption_It__Nat__Onat_J_J_J,type,
    produc2233624965454879586on_nat: $tType ).

thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_It__Set__Oset_It__Complex__Ocomplex_J_Mt__Set__Oset_It__Complex__Ocomplex_J_J_J,type,
    set_Pr6308028481084910985omplex: $tType ).

thf(ty_n_t__Set__Oset_It__Filter__Ofilter_It__Product____Type__Oprod_It__Complex__Ocomplex_Mt__Complex__Ocomplex_J_J_J,type,
    set_fi4554929511873752355omplex: $tType ).

thf(ty_n_t__List__Olist_It__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_Mt__VEBT____Definitions__OVEBT_J_J,type,
    list_P7413028617227757229T_VEBT: $tType ).

thf(ty_n_t__List__Olist_It__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J_J,type,
    list_P5578671422887162913nteger: $tType ).

thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_It__Set__Oset_It__Nat__Onat_J_Mt__Set__Oset_It__Nat__Onat_J_J_J,type,
    set_Pr5488025237498180813et_nat: $tType ).

thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_It__Set__Oset_It__Int__Oint_J_Mt__Set__Oset_It__Int__Oint_J_J_J,type,
    set_Pr2522554150109002629et_int: $tType ).

thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J_J,type,
    set_Pr4811707699266497531nteger: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__Set__Oset_It__Complex__Ocomplex_J_Mt__Set__Oset_It__Complex__Ocomplex_J_J,type,
    produc8064648209034914857omplex: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__Option__Ooption_It__Nat__Onat_J_Mt__Option__Ooption_It__Nat__Onat_J_J,type,
    produc4953844613479565601on_nat: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__Nat__Onat_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    produc7248412053542808358at_nat: $tType ).

thf(ty_n_t__Set__Oset_It__Filter__Ofilter_It__Product____Type__Oprod_It__Real__Oreal_Mt__Real__Oreal_J_J_J,type,
    set_fi7789364187291644575l_real: $tType ).

thf(ty_n_t__Set__Oset_It__Option__Ooption_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_J,type,
    set_op4508134149509766951at_nat: $tType ).

thf(ty_n_t__Filter__Ofilter_It__Product____Type__Oprod_It__Complex__Ocomplex_Mt__Complex__Ocomplex_J_J,type,
    filter6041513312241820739omplex: $tType ).

thf(ty_n_t__List__Olist_It__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_Mt__Int__Oint_J_J,type,
    list_P4547456442757143711BT_int: $tType ).

thf(ty_n_t__List__Olist_It__Product____Type__Oprod_It__Int__Oint_Mt__VEBT____Definitions__OVEBT_J_J,type,
    list_P7524865323317820941T_VEBT: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_Mt__VEBT____Definitions__OVEBT_J,type,
    produc8243902056947475879T_VEBT: $tType ).

thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_It__Complex__Ocomplex_Mt__Complex__Ocomplex_J_J,type,
    set_Pr5085853215250843933omplex: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__Set__Oset_It__Nat__Onat_J_Mt__Set__Oset_It__Nat__Onat_J_J,type,
    produc7819656566062154093et_nat: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__Set__Oset_It__Int__Oint_J_Mt__Set__Oset_It__Int__Oint_J_J,type,
    produc2115011035271226405et_int: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J,type,
    produc8923325533196201883nteger: $tType ).

thf(ty_n_t__List__Olist_It__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_M_Eo_J_J,type,
    list_P3126845725202233233VEBT_o: $tType ).

thf(ty_n_t__List__Olist_It__Product____Type__Oprod_I_Eo_Mt__VEBT____Definitions__OVEBT_J_J,type,
    list_P7495141550334521929T_VEBT: $tType ).

thf(ty_n_t__Filter__Ofilter_It__Product____Type__Oprod_It__Real__Oreal_Mt__Real__Oreal_J_J,type,
    filter2146258269922977983l_real: $tType ).

thf(ty_n_t__List__Olist_It__Product____Type__Oprod_It__Code____Numeral__Ointeger_M_Eo_J_J,type,
    list_P8526636022914148096eger_o: $tType ).

thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_It__Code____Numeral__Ointeger_M_Eo_J_J,type,
    set_Pr448751882837621926eger_o: $tType ).

thf(ty_n_t__Option__Ooption_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    option4927543243414619207at_nat: $tType ).

thf(ty_n_t__Filter__Ofilter_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    filter1242075044329608583at_nat: $tType ).

thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_It__Real__Oreal_Mt__Real__Oreal_J_J,type,
    set_Pr6218003697084177305l_real: $tType ).

thf(ty_n_t__List__Olist_It__Product____Type__Oprod_It__Num__Onum_Mt__Num__Onum_J_J,type,
    list_P3744719386663036955um_num: $tType ).

thf(ty_n_t__List__Olist_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    list_P6011104703257516679at_nat: $tType ).

thf(ty_n_t__List__Olist_It__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_J,type,
    list_P5707943133018811711nt_int: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_Mt__Nat__Onat_J,type,
    produc9072475918466114483BT_nat: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_Mt__Int__Oint_J,type,
    produc4894624898956917775BT_int: $tType ).

thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_It__Num__Onum_Mt__Num__Onum_J_J,type,
    set_Pr8218934625190621173um_num: $tType ).

thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    set_Pr1261947904930325089at_nat: $tType ).

thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_J,type,
    set_Pr958786334691620121nt_int: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__Complex__Ocomplex_Mt__Complex__Ocomplex_J,type,
    produc4411394909380815293omplex: $tType ).

thf(ty_n_t__List__Olist_It__Product____Type__Oprod_It__Int__Oint_M_Eo_J_J,type,
    list_P5087981734274514673_int_o: $tType ).

thf(ty_n_t__List__Olist_It__Product____Type__Oprod_I_Eo_Mt__Int__Oint_J_J,type,
    list_P3795440434834930179_o_int: $tType ).

thf(ty_n_t__Set__Oset_It__List__Olist_It__VEBT____Definitions__OVEBT_J_J,type,
    set_list_VEBT_VEBT: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_M_Eo_J,type,
    produc334124729049499915VEBT_o: $tType ).

thf(ty_n_t__Product____Type__Oprod_I_Eo_Mt__VEBT____Definitions__OVEBT_J,type,
    produc2504756804600209347T_VEBT: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__Code____Numeral__Ointeger_M_Eo_J,type,
    produc6271795597528267376eger_o: $tType ).

thf(ty_n_t__Set__Oset_It__Set__Oset_It__VEBT____Definitions__OVEBT_J_J,type,
    set_set_VEBT_VEBT: $tType ).

thf(ty_n_t__Set__Oset_It__Set__Oset_It__Set__Oset_It__Nat__Onat_J_J_J,type,
    set_set_set_nat: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__Real__Oreal_Mt__Real__Oreal_J,type,
    produc2422161461964618553l_real: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__Num__Onum_Mt__Num__Onum_J,type,
    product_prod_num_num: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    product_prod_nat_nat: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J,type,
    product_prod_int_int: $tType ).

thf(ty_n_t__List__Olist_It__Product____Type__Oprod_I_Eo_M_Eo_J_J,type,
    list_P4002435161011370285od_o_o: $tType ).

thf(ty_n_t__Set__Oset_It__List__Olist_It__Complex__Ocomplex_J_J,type,
    set_list_complex: $tType ).

thf(ty_n_t__Set__Oset_It__Set__Oset_It__Complex__Ocomplex_J_J,type,
    set_set_complex: $tType ).

thf(ty_n_t__Set__Oset_It__Option__Ooption_It__Nat__Onat_J_J,type,
    set_option_nat: $tType ).

thf(ty_n_t__List__Olist_It__VEBT____Definitions__OVEBT_J,type,
    list_VEBT_VEBT: $tType ).

thf(ty_n_t__Set__Oset_It__Set__Oset_It__Real__Oreal_J_J,type,
    set_set_real: $tType ).

thf(ty_n_t__Set__Oset_It__List__Olist_It__Nat__Onat_J_J,type,
    set_list_nat: $tType ).

thf(ty_n_t__Set__Oset_It__List__Olist_It__Int__Oint_J_J,type,
    set_list_int: $tType ).

thf(ty_n_t__Product____Type__Oprod_I_Eo_Mt__Int__Oint_J,type,
    product_prod_o_int: $tType ).

thf(ty_n_t__List__Olist_It__Set__Oset_It__Nat__Onat_J_J,type,
    list_set_nat: $tType ).

thf(ty_n_t__List__Olist_It__Code____Numeral__Ointeger_J,type,
    list_Code_integer: $tType ).

thf(ty_n_t__Set__Oset_It__VEBT____Definitions__OVEBT_J,type,
    set_VEBT_VEBT: $tType ).

thf(ty_n_t__Set__Oset_It__Set__Oset_It__Nat__Onat_J_J,type,
    set_set_nat: $tType ).

thf(ty_n_t__Set__Oset_It__Set__Oset_It__Int__Oint_J_J,type,
    set_set_int: $tType ).

thf(ty_n_t__Set__Oset_It__Code____Numeral__Ointeger_J,type,
    set_Code_integer: $tType ).

thf(ty_n_t__Set__Oset_It__Product____Type__Ounit_J,type,
    set_Product_unit: $tType ).

thf(ty_n_t__Set__Oset_It__Extended____Nat__Oenat_J,type,
    set_Extended_enat: $tType ).

thf(ty_n_t__List__Olist_It__Complex__Ocomplex_J,type,
    list_complex: $tType ).

thf(ty_n_t__Set__Oset_It__List__Olist_I_Eo_J_J,type,
    set_list_o: $tType ).

thf(ty_n_t__Product____Type__Oprod_I_Eo_M_Eo_J,type,
    product_prod_o_o: $tType ).

thf(ty_n_t__Set__Oset_It__Complex__Ocomplex_J,type,
    set_complex: $tType ).

thf(ty_n_t__Filter__Ofilter_It__Real__Oreal_J,type,
    filter_real: $tType ).

thf(ty_n_t__Set__Oset_It__Set__Oset_I_Eo_J_J,type,
    set_set_o: $tType ).

thf(ty_n_t__Option__Ooption_It__Nat__Onat_J,type,
    option_nat: $tType ).

thf(ty_n_t__Option__Ooption_It__Int__Oint_J,type,
    option_int: $tType ).

thf(ty_n_t__Filter__Ofilter_It__Nat__Onat_J,type,
    filter_nat: $tType ).

thf(ty_n_t__Set__Oset_It__String__Ochar_J,type,
    set_char: $tType ).

thf(ty_n_t__List__Olist_It__Real__Oreal_J,type,
    list_real: $tType ).

thf(ty_n_t__Set__Oset_It__Real__Oreal_J,type,
    set_real: $tType ).

thf(ty_n_t__List__Olist_It__Num__Onum_J,type,
    list_num: $tType ).

thf(ty_n_t__List__Olist_It__Nat__Onat_J,type,
    list_nat: $tType ).

thf(ty_n_t__List__Olist_It__Int__Oint_J,type,
    list_int: $tType ).

thf(ty_n_t__VEBT____Definitions__OVEBT,type,
    vEBT_VEBT: $tType ).

thf(ty_n_t__Set__Oset_It__Rat__Orat_J,type,
    set_rat: $tType ).

thf(ty_n_t__Set__Oset_It__Num__Onum_J,type,
    set_num: $tType ).

thf(ty_n_t__Set__Oset_It__Nat__Onat_J,type,
    set_nat: $tType ).

thf(ty_n_t__Set__Oset_It__Int__Oint_J,type,
    set_int: $tType ).

thf(ty_n_t__Code____Numeral__Ointeger,type,
    code_integer: $tType ).

thf(ty_n_t__Extended____Nat__Oenat,type,
    extended_enat: $tType ).

thf(ty_n_t__List__Olist_I_Eo_J,type,
    list_o: $tType ).

thf(ty_n_t__Complex__Ocomplex,type,
    complex: $tType ).

thf(ty_n_t__Set__Oset_I_Eo_J,type,
    set_o: $tType ).

thf(ty_n_t__String__Ochar,type,
    char: $tType ).

thf(ty_n_t__Real__Oreal,type,
    real: $tType ).

thf(ty_n_t__Rat__Orat,type,
    rat: $tType ).

thf(ty_n_t__Num__Onum,type,
    num: $tType ).

thf(ty_n_t__Nat__Onat,type,
    nat: $tType ).

thf(ty_n_t__Int__Oint,type,
    int: $tType ).

% Explicit typings (957)
thf(sy_c_Archimedean__Field_Oceiling_001t__Real__Oreal,type,
    archim7802044766580827645g_real: real > int ).

thf(sy_c_Archimedean__Field_Ofloor__ceiling__class_Ofloor_001t__Rat__Orat,type,
    archim3151403230148437115or_rat: rat > int ).

thf(sy_c_Archimedean__Field_Ofloor__ceiling__class_Ofloor_001t__Real__Oreal,type,
    archim6058952711729229775r_real: real > int ).

thf(sy_c_Archimedean__Field_Oround_001t__Rat__Orat,type,
    archim7778729529865785530nd_rat: rat > int ).

thf(sy_c_Archimedean__Field_Oround_001t__Real__Oreal,type,
    archim8280529875227126926d_real: real > int ).

thf(sy_c_Binomial_Obinomial,type,
    binomial: nat > nat > nat ).

thf(sy_c_Bit__Operations_Oand__int__rel,type,
    bit_and_int_rel: product_prod_int_int > product_prod_int_int > $o ).

thf(sy_c_Bit__Operations_Oconcat__bit,type,
    bit_concat_bit: nat > int > int > int ).

thf(sy_c_Bit__Operations_Oor__not__num__neg,type,
    bit_or_not_num_neg: num > num > num ).

thf(sy_c_Bit__Operations_Oor__not__num__neg__rel,type,
    bit_or3848514188828904588eg_rel: product_prod_num_num > product_prod_num_num > $o ).

thf(sy_c_Bit__Operations_Oring__bit__operations__class_Onot_001t__Int__Oint,type,
    bit_ri7919022796975470100ot_int: int > int ).

thf(sy_c_Bit__Operations_Oring__bit__operations__class_Osigned__take__bit_001t__Code____Numeral__Ointeger,type,
    bit_ri6519982836138164636nteger: nat > code_integer > code_integer ).

thf(sy_c_Bit__Operations_Oring__bit__operations__class_Osigned__take__bit_001t__Int__Oint,type,
    bit_ri631733984087533419it_int: nat > int > int ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oand_001t__Code____Numeral__Ointeger,type,
    bit_se3949692690581998587nteger: code_integer > code_integer > code_integer ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oand_001t__Int__Oint,type,
    bit_se725231765392027082nd_int: int > int > int ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oand_001t__Nat__Onat,type,
    bit_se727722235901077358nd_nat: nat > nat > nat ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Odrop__bit_001t__Int__Oint,type,
    bit_se8568078237143864401it_int: nat > int > int ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Odrop__bit_001t__Nat__Onat,type,
    bit_se8570568707652914677it_nat: nat > nat > nat ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oflip__bit_001t__Code____Numeral__Ointeger,type,
    bit_se1345352211410354436nteger: nat > code_integer > code_integer ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oflip__bit_001t__Int__Oint,type,
    bit_se2159334234014336723it_int: nat > int > int ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oflip__bit_001t__Nat__Onat,type,
    bit_se2161824704523386999it_nat: nat > nat > nat ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Omask_001t__Code____Numeral__Ointeger,type,
    bit_se2119862282449309892nteger: nat > code_integer ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Omask_001t__Int__Oint,type,
    bit_se2000444600071755411sk_int: nat > int ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Omask_001t__Nat__Onat,type,
    bit_se2002935070580805687sk_nat: nat > nat ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oor_001t__Code____Numeral__Ointeger,type,
    bit_se1080825931792720795nteger: code_integer > code_integer > code_integer ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oor_001t__Int__Oint,type,
    bit_se1409905431419307370or_int: int > int > int ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oor_001t__Nat__Onat,type,
    bit_se1412395901928357646or_nat: nat > nat > nat ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Opush__bit_001t__Int__Oint,type,
    bit_se545348938243370406it_int: nat > int > int ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Opush__bit_001t__Nat__Onat,type,
    bit_se547839408752420682it_nat: nat > nat > nat ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oset__bit_001t__Code____Numeral__Ointeger,type,
    bit_se2793503036327961859nteger: nat > code_integer > code_integer ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oset__bit_001t__Int__Oint,type,
    bit_se7879613467334960850it_int: nat > int > int ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oset__bit_001t__Nat__Onat,type,
    bit_se7882103937844011126it_nat: nat > nat > nat ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Otake__bit_001t__Code____Numeral__Ointeger,type,
    bit_se1745604003318907178nteger: nat > code_integer > code_integer ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Otake__bit_001t__Int__Oint,type,
    bit_se2923211474154528505it_int: nat > int > int ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Otake__bit_001t__Nat__Onat,type,
    bit_se2925701944663578781it_nat: nat > nat > nat ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Ounset__bit_001t__Code____Numeral__Ointeger,type,
    bit_se8260200283734997820nteger: nat > code_integer > code_integer ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Ounset__bit_001t__Int__Oint,type,
    bit_se4203085406695923979it_int: nat > int > int ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Ounset__bit_001t__Nat__Onat,type,
    bit_se4205575877204974255it_nat: nat > nat > nat ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oxor_001t__Int__Oint,type,
    bit_se6526347334894502574or_int: int > int > int ).

thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oxor_001t__Nat__Onat,type,
    bit_se6528837805403552850or_nat: nat > nat > nat ).

thf(sy_c_Bit__Operations_Osemiring__bits__class_Obit_001t__Int__Oint,type,
    bit_se1146084159140164899it_int: int > nat > $o ).

thf(sy_c_Bit__Operations_Osemiring__bits__class_Obit_001t__Nat__Onat,type,
    bit_se1148574629649215175it_nat: nat > nat > $o ).

thf(sy_c_Code__Numeral_Obit__cut__integer,type,
    code_bit_cut_integer: code_integer > produc6271795597528267376eger_o ).

thf(sy_c_Code__Numeral_Odivmod__abs,type,
    code_divmod_abs: code_integer > code_integer > produc8923325533196201883nteger ).

thf(sy_c_Code__Numeral_Odivmod__integer,type,
    code_divmod_integer: code_integer > code_integer > produc8923325533196201883nteger ).

thf(sy_c_Code__Numeral_Ointeger_Oint__of__integer,type,
    code_int_of_integer: code_integer > int ).

thf(sy_c_Code__Numeral_Ointeger_Ointeger__of__int,type,
    code_integer_of_int: int > code_integer ).

thf(sy_c_Code__Numeral_Ointeger__of__num,type,
    code_integer_of_num: num > code_integer ).

thf(sy_c_Code__Numeral_Onat__of__integer,type,
    code_nat_of_integer: code_integer > nat ).

thf(sy_c_Code__Numeral_Onegative,type,
    code_negative: num > code_integer ).

thf(sy_c_Code__Numeral_Onum__of__integer,type,
    code_num_of_integer: code_integer > num ).

thf(sy_c_Code__Numeral_Opositive,type,
    code_positive: num > code_integer ).

thf(sy_c_Code__Target__Int_Onegative,type,
    code_Target_negative: num > int ).

thf(sy_c_Code__Target__Int_Opositive,type,
    code_Target_positive: num > int ).

thf(sy_c_Complete__Lattices_OInf__class_OInf_001t__Filter__Ofilter_It__Product____Type__Oprod_It__Complex__Ocomplex_Mt__Complex__Ocomplex_J_J,type,
    comple8358262395181532106omplex: set_fi4554929511873752355omplex > filter6041513312241820739omplex ).

thf(sy_c_Complete__Lattices_OInf__class_OInf_001t__Filter__Ofilter_It__Product____Type__Oprod_It__Real__Oreal_Mt__Real__Oreal_J_J,type,
    comple2936214249959783750l_real: set_fi7789364187291644575l_real > filter2146258269922977983l_real ).

thf(sy_c_Complete__Lattices_OInf__class_OInf_001t__Real__Oreal,type,
    comple4887499456419720421f_real: set_real > real ).

thf(sy_c_Complete__Lattices_OInf__class_OInf_001t__Set__Oset_It__Nat__Onat_J,type,
    comple7806235888213564991et_nat: set_set_nat > set_nat ).

thf(sy_c_Complete__Lattices_OSup__class_OSup_001t__Nat__Onat,type,
    complete_Sup_Sup_nat: set_nat > nat ).

thf(sy_c_Complete__Lattices_OSup__class_OSup_001t__Real__Oreal,type,
    comple1385675409528146559p_real: set_real > real ).

thf(sy_c_Complete__Lattices_OSup__class_OSup_001t__Set__Oset_It__Nat__Onat_J,type,
    comple7399068483239264473et_nat: set_set_nat > set_nat ).

thf(sy_c_Complex_OArg,type,
    arg: complex > real ).

thf(sy_c_Complex_Ocis,type,
    cis: real > complex ).

thf(sy_c_Complex_Ocnj,type,
    cnj: complex > complex ).

thf(sy_c_Complex_Ocomplex_OComplex,type,
    complex2: real > real > complex ).

thf(sy_c_Complex_Ocomplex_OIm,type,
    im: complex > real ).

thf(sy_c_Complex_Ocomplex_ORe,type,
    re: complex > real ).

thf(sy_c_Complex_Ocsqrt,type,
    csqrt: complex > complex ).

thf(sy_c_Complex_Oimaginary__unit,type,
    imaginary_unit: complex ).

thf(sy_c_Deriv_Odifferentiable_001t__Real__Oreal_001t__Real__Oreal,type,
    differ6690327859849518006l_real: ( real > real ) > filter_real > $o ).

thf(sy_c_Deriv_Ohas__derivative_001t__Real__Oreal_001t__Real__Oreal,type,
    has_de1759254742604945161l_real: ( real > real ) > ( real > real ) > filter_real > $o ).

thf(sy_c_Deriv_Ohas__field__derivative_001t__Real__Oreal,type,
    has_fi5821293074295781190e_real: ( real > real ) > real > filter_real > $o ).

thf(sy_c_Divides_Oadjust__div,type,
    adjust_div: product_prod_int_int > int ).

thf(sy_c_Divides_Oadjust__mod,type,
    adjust_mod: int > int > int ).

thf(sy_c_Divides_Odivmod__nat,type,
    divmod_nat: nat > nat > product_prod_nat_nat ).

thf(sy_c_Divides_Oeucl__rel__int,type,
    eucl_rel_int: int > int > product_prod_int_int > $o ).

thf(sy_c_Divides_Ounique__euclidean__semiring__numeral__class_Odivides__aux_001t__Code____Numeral__Ointeger,type,
    unique5706413561485394159nteger: produc8923325533196201883nteger > $o ).

thf(sy_c_Divides_Ounique__euclidean__semiring__numeral__class_Odivides__aux_001t__Int__Oint,type,
    unique6319869463603278526ux_int: product_prod_int_int > $o ).

thf(sy_c_Divides_Ounique__euclidean__semiring__numeral__class_Odivides__aux_001t__Nat__Onat,type,
    unique6322359934112328802ux_nat: product_prod_nat_nat > $o ).

thf(sy_c_Divides_Ounique__euclidean__semiring__numeral__class_Odivmod_001t__Code____Numeral__Ointeger,type,
    unique3479559517661332726nteger: num > num > produc8923325533196201883nteger ).

thf(sy_c_Divides_Ounique__euclidean__semiring__numeral__class_Odivmod_001t__Int__Oint,type,
    unique5052692396658037445od_int: num > num > product_prod_int_int ).

thf(sy_c_Divides_Ounique__euclidean__semiring__numeral__class_Odivmod_001t__Nat__Onat,type,
    unique5055182867167087721od_nat: num > num > product_prod_nat_nat ).

thf(sy_c_Divides_Ounique__euclidean__semiring__numeral__class_Odivmod__step_001t__Code____Numeral__Ointeger,type,
    unique4921790084139445826nteger: num > produc8923325533196201883nteger > produc8923325533196201883nteger ).

thf(sy_c_Divides_Ounique__euclidean__semiring__numeral__class_Odivmod__step_001t__Int__Oint,type,
    unique5024387138958732305ep_int: num > product_prod_int_int > product_prod_int_int ).

thf(sy_c_Divides_Ounique__euclidean__semiring__numeral__class_Odivmod__step_001t__Nat__Onat,type,
    unique5026877609467782581ep_nat: num > product_prod_nat_nat > product_prod_nat_nat ).

thf(sy_c_Factorial_Osemiring__char__0__class_Ofact_001t__Nat__Onat,type,
    semiri1408675320244567234ct_nat: nat > nat ).

thf(sy_c_Factorial_Osemiring__char__0__class_Ofact_001t__Real__Oreal,type,
    semiri2265585572941072030t_real: nat > real ).

thf(sy_c_Fields_Oinverse__class_Oinverse_001t__Complex__Ocomplex,type,
    invers8013647133539491842omplex: complex > complex ).

thf(sy_c_Fields_Oinverse__class_Oinverse_001t__Rat__Orat,type,
    inverse_inverse_rat: rat > rat ).

thf(sy_c_Fields_Oinverse__class_Oinverse_001t__Real__Oreal,type,
    inverse_inverse_real: real > real ).

thf(sy_c_Filter_Oat__bot_001t__Real__Oreal,type,
    at_bot_real: filter_real ).

thf(sy_c_Filter_Oat__top_001t__Nat__Onat,type,
    at_top_nat: filter_nat ).

thf(sy_c_Filter_Oat__top_001t__Real__Oreal,type,
    at_top_real: filter_real ).

thf(sy_c_Filter_Oeventually_001t__Nat__Onat,type,
    eventually_nat: ( nat > $o ) > filter_nat > $o ).

thf(sy_c_Filter_Oeventually_001t__Product____Type__Oprod_It__Complex__Ocomplex_Mt__Complex__Ocomplex_J,type,
    eventu5826381225784669381omplex: ( produc4411394909380815293omplex > $o ) > filter6041513312241820739omplex > $o ).

thf(sy_c_Filter_Oeventually_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    eventu1038000079068216329at_nat: ( product_prod_nat_nat > $o ) > filter1242075044329608583at_nat > $o ).

thf(sy_c_Filter_Oeventually_001t__Product____Type__Oprod_It__Real__Oreal_Mt__Real__Oreal_J,type,
    eventu3244425730907250241l_real: ( produc2422161461964618553l_real > $o ) > filter2146258269922977983l_real > $o ).

thf(sy_c_Filter_Oeventually_001t__Real__Oreal,type,
    eventually_real: ( real > $o ) > filter_real > $o ).

thf(sy_c_Filter_Ofilterlim_001t__Nat__Onat_001t__Nat__Onat,type,
    filterlim_nat_nat: ( nat > nat ) > filter_nat > filter_nat > $o ).

thf(sy_c_Filter_Ofilterlim_001t__Nat__Onat_001t__Real__Oreal,type,
    filterlim_nat_real: ( nat > real ) > filter_real > filter_nat > $o ).

thf(sy_c_Filter_Ofilterlim_001t__Real__Oreal_001t__Real__Oreal,type,
    filterlim_real_real: ( real > real ) > filter_real > filter_real > $o ).

thf(sy_c_Filter_Ofiltermap_001t__Real__Oreal_001t__Real__Oreal,type,
    filtermap_real_real: ( real > real ) > filter_real > filter_real ).

thf(sy_c_Filter_Oprincipal_001t__Product____Type__Oprod_It__Complex__Ocomplex_Mt__Complex__Ocomplex_J,type,
    princi3496590319149328850omplex: set_Pr5085853215250843933omplex > filter6041513312241820739omplex ).

thf(sy_c_Filter_Oprincipal_001t__Product____Type__Oprod_It__Real__Oreal_Mt__Real__Oreal_J,type,
    princi6114159922880469582l_real: set_Pr6218003697084177305l_real > filter2146258269922977983l_real ).

thf(sy_c_Filter_Oprod__filter_001t__Nat__Onat_001t__Nat__Onat,type,
    prod_filter_nat_nat: filter_nat > filter_nat > filter1242075044329608583at_nat ).

thf(sy_c_Finite__Set_Ocard_001_Eo,type,
    finite_card_o: set_o > nat ).

thf(sy_c_Finite__Set_Ocard_001t__Complex__Ocomplex,type,
    finite_card_complex: set_complex > nat ).

thf(sy_c_Finite__Set_Ocard_001t__Int__Oint,type,
    finite_card_int: set_int > nat ).

thf(sy_c_Finite__Set_Ocard_001t__Nat__Onat,type,
    finite_card_nat: set_nat > nat ).

thf(sy_c_Finite__Set_Ocard_001t__Product____Type__Ounit,type,
    finite410649719033368117t_unit: set_Product_unit > nat ).

thf(sy_c_Finite__Set_Ocard_001t__Set__Oset_It__Nat__Onat_J,type,
    finite_card_set_nat: set_set_nat > nat ).

thf(sy_c_Finite__Set_Ocard_001t__String__Ochar,type,
    finite_card_char: set_char > nat ).

thf(sy_c_Finite__Set_Ofinite_001_Eo,type,
    finite_finite_o: set_o > $o ).

thf(sy_c_Finite__Set_Ofinite_001t__Code____Numeral__Ointeger,type,
    finite6017078050557962740nteger: set_Code_integer > $o ).

thf(sy_c_Finite__Set_Ofinite_001t__Complex__Ocomplex,type,
    finite3207457112153483333omplex: set_complex > $o ).

thf(sy_c_Finite__Set_Ofinite_001t__Extended____Nat__Oenat,type,
    finite4001608067531595151d_enat: set_Extended_enat > $o ).

thf(sy_c_Finite__Set_Ofinite_001t__Int__Oint,type,
    finite_finite_int: set_int > $o ).

thf(sy_c_Finite__Set_Ofinite_001t__List__Olist_I_Eo_J,type,
    finite_finite_list_o: set_list_o > $o ).

thf(sy_c_Finite__Set_Ofinite_001t__List__Olist_It__Complex__Ocomplex_J,type,
    finite8712137658972009173omplex: set_list_complex > $o ).

thf(sy_c_Finite__Set_Ofinite_001t__List__Olist_It__Int__Oint_J,type,
    finite3922522038869484883st_int: set_list_int > $o ).

thf(sy_c_Finite__Set_Ofinite_001t__List__Olist_It__Nat__Onat_J,type,
    finite8100373058378681591st_nat: set_list_nat > $o ).

thf(sy_c_Finite__Set_Ofinite_001t__List__Olist_It__VEBT____Definitions__OVEBT_J,type,
    finite3004134309566078307T_VEBT: set_list_VEBT_VEBT > $o ).

thf(sy_c_Finite__Set_Ofinite_001t__Nat__Onat,type,
    finite_finite_nat: set_nat > $o ).

thf(sy_c_Finite__Set_Ofinite_001t__Num__Onum,type,
    finite_finite_num: set_num > $o ).

thf(sy_c_Finite__Set_Ofinite_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J,type,
    finite2998713641127702882nt_int: set_Pr958786334691620121nt_int > $o ).

thf(sy_c_Finite__Set_Ofinite_001t__Rat__Orat,type,
    finite_finite_rat: set_rat > $o ).

thf(sy_c_Finite__Set_Ofinite_001t__Real__Oreal,type,
    finite_finite_real: set_real > $o ).

thf(sy_c_Finite__Set_Ofinite_001t__Set__Oset_It__Complex__Ocomplex_J,type,
    finite6551019134538273531omplex: set_set_complex > $o ).

thf(sy_c_Finite__Set_Ofinite_001t__Set__Oset_It__Int__Oint_J,type,
    finite6197958912794628473et_int: set_set_int > $o ).

thf(sy_c_Finite__Set_Ofinite_001t__Set__Oset_It__Nat__Onat_J,type,
    finite1152437895449049373et_nat: set_set_nat > $o ).

thf(sy_c_Finite__Set_Ofinite_001t__VEBT____Definitions__OVEBT,type,
    finite5795047828879050333T_VEBT: set_VEBT_VEBT > $o ).

thf(sy_c_Fun_Obij__betw_001t__Complex__Ocomplex_001t__Complex__Ocomplex,type,
    bij_be1856998921033663316omplex: ( complex > complex ) > set_complex > set_complex > $o ).

thf(sy_c_Fun_Obij__betw_001t__Nat__Onat_001t__Complex__Ocomplex,type,
    bij_betw_nat_complex: ( nat > complex ) > set_nat > set_complex > $o ).

thf(sy_c_Fun_Obij__betw_001t__Nat__Onat_001t__Nat__Onat,type,
    bij_betw_nat_nat: ( nat > nat ) > set_nat > set_nat > $o ).

thf(sy_c_Fun_Ocomp_001_062_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J_001_062_It__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J_Mt__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J_J_001t__Code____Numeral__Ointeger,type,
    comp_C8797469213163452608nteger: ( ( code_integer > code_integer ) > produc8923325533196201883nteger > produc8923325533196201883nteger ) > ( code_integer > code_integer > code_integer ) > code_integer > produc8923325533196201883nteger > produc8923325533196201883nteger ).

thf(sy_c_Fun_Ocomp_001t__Code____Numeral__Ointeger_001_062_It__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J_Mt__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J_J_001t__Code____Numeral__Ointeger,type,
    comp_C1593894019821074884nteger: ( code_integer > produc8923325533196201883nteger > produc8923325533196201883nteger ) > ( code_integer > code_integer ) > code_integer > produc8923325533196201883nteger > produc8923325533196201883nteger ).

thf(sy_c_Fun_Ocomp_001t__Code____Numeral__Ointeger_001t__Code____Numeral__Ointeger_001t__Num__Onum,type,
    comp_C3531382070062128313er_num: ( code_integer > code_integer ) > ( num > code_integer ) > num > code_integer ).

thf(sy_c_Fun_Ocomp_001t__Int__Oint_001t__Int__Oint_001t__Num__Onum,type,
    comp_int_int_num: ( int > int ) > ( num > int ) > num > int ).

thf(sy_c_Fun_Ocomp_001t__Int__Oint_001t__Nat__Onat_001t__Int__Oint,type,
    comp_int_nat_int: ( int > nat ) > ( int > int ) > int > nat ).

thf(sy_c_Fun_Ocomp_001t__Nat__Onat_001t__Nat__Onat_001t__Nat__Onat,type,
    comp_nat_nat_nat: ( nat > nat ) > ( nat > nat ) > nat > nat ).

thf(sy_c_Fun_Ocomp_001t__Nat__Onat_001t__Real__Oreal_001t__Nat__Onat,type,
    comp_nat_real_nat: ( nat > real ) > ( nat > nat ) > nat > real ).

thf(sy_c_Fun_Oinj__on_001t__Nat__Onat_001t__Nat__Onat,type,
    inj_on_nat_nat: ( nat > nat ) > set_nat > $o ).

thf(sy_c_Fun_Oinj__on_001t__Nat__Onat_001t__String__Ochar,type,
    inj_on_nat_char: ( nat > char ) > set_nat > $o ).

thf(sy_c_Fun_Oinj__on_001t__Real__Oreal_001t__Real__Oreal,type,
    inj_on_real_real: ( real > real ) > set_real > $o ).

thf(sy_c_Fun_Omap__fun_001t__Int__Oint_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001t__Int__Oint,type,
    map_fu3667384564859982768at_int: ( int > product_prod_nat_nat ) > ( product_prod_nat_nat > int ) > ( product_prod_nat_nat > product_prod_nat_nat ) > int > int ).

thf(sy_c_Fun_Ostrict__mono__on_001t__Nat__Onat_001t__Nat__Onat,type,
    strict1292158309912662752at_nat: ( nat > nat ) > set_nat > $o ).

thf(sy_c_Fun_Othe__inv__into_001t__Real__Oreal_001t__Real__Oreal,type,
    the_in5290026491893676941l_real: set_real > ( real > real ) > real > real ).

thf(sy_c_GCD_OGcd__class_OGcd_001t__Int__Oint,type,
    gcd_Gcd_int: set_int > int ).

thf(sy_c_GCD_OGcd__class_OGcd_001t__Nat__Onat,type,
    gcd_Gcd_nat: set_nat > nat ).

thf(sy_c_GCD_Obezw,type,
    bezw: nat > nat > product_prod_int_int ).

thf(sy_c_GCD_Obezw__rel,type,
    bezw_rel: product_prod_nat_nat > product_prod_nat_nat > $o ).

thf(sy_c_GCD_Ogcd__class_Ogcd_001t__Int__Oint,type,
    gcd_gcd_int: int > int > int ).

thf(sy_c_GCD_Ogcd__class_Ogcd_001t__Nat__Onat,type,
    gcd_gcd_nat: nat > nat > nat ).

thf(sy_c_GCD_Ogcd__nat__rel,type,
    gcd_nat_rel: product_prod_nat_nat > product_prod_nat_nat > $o ).

thf(sy_c_Groups_Oabs__class_Oabs_001t__Code____Numeral__Ointeger,type,
    abs_abs_Code_integer: code_integer > code_integer ).

thf(sy_c_Groups_Oabs__class_Oabs_001t__Complex__Ocomplex,type,
    abs_abs_complex: complex > complex ).

thf(sy_c_Groups_Oabs__class_Oabs_001t__Int__Oint,type,
    abs_abs_int: int > int ).

thf(sy_c_Groups_Oabs__class_Oabs_001t__Rat__Orat,type,
    abs_abs_rat: rat > rat ).

thf(sy_c_Groups_Oabs__class_Oabs_001t__Real__Oreal,type,
    abs_abs_real: real > real ).

thf(sy_c_Groups_Ominus__class_Ominus_001_062_It__Complex__Ocomplex_M_Eo_J,type,
    minus_8727706125548526216plex_o: ( complex > $o ) > ( complex > $o ) > complex > $o ).

thf(sy_c_Groups_Ominus__class_Ominus_001_062_It__Int__Oint_M_Eo_J,type,
    minus_minus_int_o: ( int > $o ) > ( int > $o ) > int > $o ).

thf(sy_c_Groups_Ominus__class_Ominus_001_062_It__Nat__Onat_M_Eo_J,type,
    minus_minus_nat_o: ( nat > $o ) > ( nat > $o ) > nat > $o ).

thf(sy_c_Groups_Ominus__class_Ominus_001_062_It__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_M_Eo_J,type,
    minus_711738161318947805_int_o: ( product_prod_int_int > $o ) > ( product_prod_int_int > $o ) > product_prod_int_int > $o ).

thf(sy_c_Groups_Ominus__class_Ominus_001_062_It__Real__Oreal_M_Eo_J,type,
    minus_minus_real_o: ( real > $o ) > ( real > $o ) > real > $o ).

thf(sy_c_Groups_Ominus__class_Ominus_001_062_It__Set__Oset_It__Nat__Onat_J_M_Eo_J,type,
    minus_6910147592129066416_nat_o: ( set_nat > $o ) > ( set_nat > $o ) > set_nat > $o ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Code____Numeral__Ointeger,type,
    minus_8373710615458151222nteger: code_integer > code_integer > code_integer ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Complex__Ocomplex,type,
    minus_minus_complex: complex > complex > complex ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Extended____Nat__Oenat,type,
    minus_3235023915231533773d_enat: extended_enat > extended_enat > extended_enat ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Int__Oint,type,
    minus_minus_int: int > int > int ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Nat__Onat,type,
    minus_minus_nat: nat > nat > nat ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Rat__Orat,type,
    minus_minus_rat: rat > rat > rat ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Real__Oreal,type,
    minus_minus_real: real > real > real ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_I_Eo_J,type,
    minus_minus_set_o: set_o > set_o > set_o ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__Complex__Ocomplex_J,type,
    minus_811609699411566653omplex: set_complex > set_complex > set_complex ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__Extended____Nat__Oenat_J,type,
    minus_925952699566721837d_enat: set_Extended_enat > set_Extended_enat > set_Extended_enat ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__Int__Oint_J,type,
    minus_minus_set_int: set_int > set_int > set_int ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__Nat__Onat_J,type,
    minus_minus_set_nat: set_nat > set_nat > set_nat ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_J,type,
    minus_1052850069191792384nt_int: set_Pr958786334691620121nt_int > set_Pr958786334691620121nt_int > set_Pr958786334691620121nt_int ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__Rat__Orat_J,type,
    minus_minus_set_rat: set_rat > set_rat > set_rat ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__Real__Oreal_J,type,
    minus_minus_set_real: set_real > set_real > set_real ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__Set__Oset_It__Nat__Onat_J_J,type,
    minus_2163939370556025621et_nat: set_set_nat > set_set_nat > set_set_nat ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__VEBT____Definitions__OVEBT_J,type,
    minus_5127226145743854075T_VEBT: set_VEBT_VEBT > set_VEBT_VEBT > set_VEBT_VEBT ).

thf(sy_c_Groups_Oone__class_Oone_001t__Code____Numeral__Ointeger,type,
    one_one_Code_integer: code_integer ).

thf(sy_c_Groups_Oone__class_Oone_001t__Complex__Ocomplex,type,
    one_one_complex: complex ).

thf(sy_c_Groups_Oone__class_Oone_001t__Extended____Nat__Oenat,type,
    one_on7984719198319812577d_enat: extended_enat ).

thf(sy_c_Groups_Oone__class_Oone_001t__Int__Oint,type,
    one_one_int: int ).

thf(sy_c_Groups_Oone__class_Oone_001t__Nat__Onat,type,
    one_one_nat: nat ).

thf(sy_c_Groups_Oone__class_Oone_001t__Rat__Orat,type,
    one_one_rat: rat ).

thf(sy_c_Groups_Oone__class_Oone_001t__Real__Oreal,type,
    one_one_real: real ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Code____Numeral__Ointeger,type,
    plus_p5714425477246183910nteger: code_integer > code_integer > code_integer ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Complex__Ocomplex,type,
    plus_plus_complex: complex > complex > complex ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Extended____Nat__Oenat,type,
    plus_p3455044024723400733d_enat: extended_enat > extended_enat > extended_enat ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Int__Oint,type,
    plus_plus_int: int > int > int ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Nat__Onat,type,
    plus_plus_nat: nat > nat > nat ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Num__Onum,type,
    plus_plus_num: num > num > num ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Rat__Orat,type,
    plus_plus_rat: rat > rat > rat ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Real__Oreal,type,
    plus_plus_real: real > real > real ).

thf(sy_c_Groups_Osgn__class_Osgn_001t__Code____Numeral__Ointeger,type,
    sgn_sgn_Code_integer: code_integer > code_integer ).

thf(sy_c_Groups_Osgn__class_Osgn_001t__Complex__Ocomplex,type,
    sgn_sgn_complex: complex > complex ).

thf(sy_c_Groups_Osgn__class_Osgn_001t__Int__Oint,type,
    sgn_sgn_int: int > int ).

thf(sy_c_Groups_Osgn__class_Osgn_001t__Rat__Orat,type,
    sgn_sgn_rat: rat > rat ).

thf(sy_c_Groups_Osgn__class_Osgn_001t__Real__Oreal,type,
    sgn_sgn_real: real > real ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Code____Numeral__Ointeger,type,
    times_3573771949741848930nteger: code_integer > code_integer > code_integer ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Complex__Ocomplex,type,
    times_times_complex: complex > complex > complex ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Extended____Nat__Oenat,type,
    times_7803423173614009249d_enat: extended_enat > extended_enat > extended_enat ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Int__Oint,type,
    times_times_int: int > int > int ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Nat__Onat,type,
    times_times_nat: nat > nat > nat ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Num__Onum,type,
    times_times_num: num > num > num ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Rat__Orat,type,
    times_times_rat: rat > rat > rat ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Real__Oreal,type,
    times_times_real: real > real > real ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001_062_It__Complex__Ocomplex_M_Eo_J,type,
    uminus1680532995456772888plex_o: ( complex > $o ) > complex > $o ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001_062_It__Int__Oint_M_Eo_J,type,
    uminus_uminus_int_o: ( int > $o ) > int > $o ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001_062_It__Nat__Onat_M_Eo_J,type,
    uminus_uminus_nat_o: ( nat > $o ) > nat > $o ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001_062_It__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_M_Eo_J,type,
    uminus7117520113953359693_int_o: ( product_prod_int_int > $o ) > product_prod_int_int > $o ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001_062_It__Real__Oreal_M_Eo_J,type,
    uminus_uminus_real_o: ( real > $o ) > real > $o ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001_062_It__Set__Oset_It__Nat__Onat_J_M_Eo_J,type,
    uminus6401447641752708672_nat_o: ( set_nat > $o ) > set_nat > $o ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Code____Numeral__Ointeger,type,
    uminus1351360451143612070nteger: code_integer > code_integer ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Complex__Ocomplex,type,
    uminus1482373934393186551omplex: complex > complex ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Int__Oint,type,
    uminus_uminus_int: int > int ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Rat__Orat,type,
    uminus_uminus_rat: rat > rat ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Real__Oreal,type,
    uminus_uminus_real: real > real ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Set__Oset_I_Eo_J,type,
    uminus_uminus_set_o: set_o > set_o ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Set__Oset_It__Complex__Ocomplex_J,type,
    uminus8566677241136511917omplex: set_complex > set_complex ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Set__Oset_It__Int__Oint_J,type,
    uminus1532241313380277803et_int: set_int > set_int ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Set__Oset_It__Nat__Onat_J,type,
    uminus5710092332889474511et_nat: set_nat > set_nat ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Set__Oset_It__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_J,type,
    uminus6221592323253981072nt_int: set_Pr958786334691620121nt_int > set_Pr958786334691620121nt_int ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Set__Oset_It__Rat__Orat_J,type,
    uminus2201863774496077783et_rat: set_rat > set_rat ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Set__Oset_It__Real__Oreal_J,type,
    uminus612125837232591019t_real: set_real > set_real ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Set__Oset_It__Set__Oset_It__Nat__Onat_J_J,type,
    uminus613421341184616069et_nat: set_set_nat > set_set_nat ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Set__Oset_It__VEBT____Definitions__OVEBT_J,type,
    uminus8041839845116263051T_VEBT: set_VEBT_VEBT > set_VEBT_VEBT ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Code____Numeral__Ointeger,type,
    zero_z3403309356797280102nteger: code_integer ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Complex__Ocomplex,type,
    zero_zero_complex: complex ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Extended____Nat__Oenat,type,
    zero_z5237406670263579293d_enat: extended_enat ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Int__Oint,type,
    zero_zero_int: int ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Nat__Onat,type,
    zero_zero_nat: nat ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Rat__Orat,type,
    zero_zero_rat: rat ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Real__Oreal,type,
    zero_zero_real: real ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001_Eo_001t__Rat__Orat,type,
    groups7872700643590313910_o_rat: ( $o > rat ) > set_o > rat ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001_Eo_001t__Real__Oreal,type,
    groups8691415230153176458o_real: ( $o > real ) > set_o > real ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Complex__Ocomplex_001t__Code____Numeral__Ointeger,type,
    groups6621422865394947399nteger: ( complex > code_integer ) > set_complex > code_integer ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Complex__Ocomplex_001t__Complex__Ocomplex,type,
    groups7754918857620584856omplex: ( complex > complex ) > set_complex > complex ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Complex__Ocomplex_001t__Int__Oint,type,
    groups5690904116761175830ex_int: ( complex > int ) > set_complex > int ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Complex__Ocomplex_001t__Nat__Onat,type,
    groups5693394587270226106ex_nat: ( complex > nat ) > set_complex > nat ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Complex__Ocomplex_001t__Rat__Orat,type,
    groups5058264527183730370ex_rat: ( complex > rat ) > set_complex > rat ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Complex__Ocomplex_001t__Real__Oreal,type,
    groups5808333547571424918x_real: ( complex > real ) > set_complex > real ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Int__Oint_001t__Code____Numeral__Ointeger,type,
    groups7873554091576472773nteger: ( int > code_integer ) > set_int > code_integer ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Int__Oint_001t__Complex__Ocomplex,type,
    groups3049146728041665814omplex: ( int > complex ) > set_int > complex ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Int__Oint_001t__Int__Oint,type,
    groups4538972089207619220nt_int: ( int > int ) > set_int > int ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Int__Oint_001t__Nat__Onat,type,
    groups4541462559716669496nt_nat: ( int > nat ) > set_int > nat ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Int__Oint_001t__Rat__Orat,type,
    groups3906332499630173760nt_rat: ( int > rat ) > set_int > rat ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Int__Oint_001t__Real__Oreal,type,
    groups8778361861064173332t_real: ( int > real ) > set_int > real ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Nat__Onat_001t__Code____Numeral__Ointeger,type,
    groups7501900531339628137nteger: ( nat > code_integer ) > set_nat > code_integer ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Nat__Onat_001t__Complex__Ocomplex,type,
    groups2073611262835488442omplex: ( nat > complex ) > set_nat > complex ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Nat__Onat_001t__Int__Oint,type,
    groups3539618377306564664at_int: ( nat > int ) > set_nat > int ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Nat__Onat_001t__Nat__Onat,type,
    groups3542108847815614940at_nat: ( nat > nat ) > set_nat > nat ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Nat__Onat_001t__Rat__Orat,type,
    groups2906978787729119204at_rat: ( nat > rat ) > set_nat > rat ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Nat__Onat_001t__Real__Oreal,type,
    groups6591440286371151544t_real: ( nat > real ) > set_nat > real ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Real__Oreal_001t__Code____Numeral__Ointeger,type,
    groups7713935264441627589nteger: ( real > code_integer ) > set_real > code_integer ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Real__Oreal_001t__Complex__Ocomplex,type,
    groups5754745047067104278omplex: ( real > complex ) > set_real > complex ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Real__Oreal_001t__Int__Oint,type,
    groups1932886352136224148al_int: ( real > int ) > set_real > int ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Real__Oreal_001t__Nat__Onat,type,
    groups1935376822645274424al_nat: ( real > nat ) > set_real > nat ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Real__Oreal_001t__Rat__Orat,type,
    groups1300246762558778688al_rat: ( real > rat ) > set_real > rat ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Real__Oreal_001t__Real__Oreal,type,
    groups8097168146408367636l_real: ( real > real ) > set_real > real ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__VEBT____Definitions__OVEBT_001t__Int__Oint,type,
    groups769130701875090982BT_int: ( vEBT_VEBT > int ) > set_VEBT_VEBT > int ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__VEBT____Definitions__OVEBT_001t__Nat__Onat,type,
    groups771621172384141258BT_nat: ( vEBT_VEBT > nat ) > set_VEBT_VEBT > nat ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__VEBT____Definitions__OVEBT_001t__Rat__Orat,type,
    groups136491112297645522BT_rat: ( vEBT_VEBT > rat ) > set_VEBT_VEBT > rat ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__VEBT____Definitions__OVEBT_001t__Real__Oreal,type,
    groups2240296850493347238T_real: ( vEBT_VEBT > real ) > set_VEBT_VEBT > real ).

thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Int__Oint_001t__Int__Oint,type,
    groups1705073143266064639nt_int: ( int > int ) > set_int > int ).

thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Nat__Onat_001t__Int__Oint,type,
    groups705719431365010083at_int: ( nat > int ) > set_nat > int ).

thf(sy_c_Groups__Big_Ocomm__monoid__mult__class_Oprod_001t__Nat__Onat_001t__Nat__Onat,type,
    groups708209901874060359at_nat: ( nat > nat ) > set_nat > nat ).

thf(sy_c_Groups__List_Ocomm__semiring__0__class_Ohorner__sum_001_Eo_001t__Int__Oint,type,
    groups9116527308978886569_o_int: ( $o > int ) > int > list_o > int ).

thf(sy_c_HOL_OThe_001t__Int__Oint,type,
    the_int: ( int > $o ) > int ).

thf(sy_c_HOL_OThe_001t__Real__Oreal,type,
    the_real: ( real > $o ) > real ).

thf(sy_c_If_001_062_It__Int__Oint_Mt__Int__Oint_J,type,
    if_int_int: $o > ( int > int ) > ( int > int ) > int > int ).

thf(sy_c_If_001t__Code____Numeral__Ointeger,type,
    if_Code_integer: $o > code_integer > code_integer > code_integer ).

thf(sy_c_If_001t__Complex__Ocomplex,type,
    if_complex: $o > complex > complex > complex ).

thf(sy_c_If_001t__Extended____Nat__Oenat,type,
    if_Extended_enat: $o > extended_enat > extended_enat > extended_enat ).

thf(sy_c_If_001t__Int__Oint,type,
    if_int: $o > int > int > int ).

thf(sy_c_If_001t__List__Olist_It__Int__Oint_J,type,
    if_list_int: $o > list_int > list_int > list_int ).

thf(sy_c_If_001t__Nat__Onat,type,
    if_nat: $o > nat > nat > nat ).

thf(sy_c_If_001t__Num__Onum,type,
    if_num: $o > num > num > num ).

thf(sy_c_If_001t__Option__Ooption_It__Nat__Onat_J,type,
    if_option_nat: $o > option_nat > option_nat > option_nat ).

thf(sy_c_If_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_M_Eo_J,type,
    if_Pro5737122678794959658eger_o: $o > produc6271795597528267376eger_o > produc6271795597528267376eger_o > produc6271795597528267376eger_o ).

thf(sy_c_If_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J,type,
    if_Pro6119634080678213985nteger: $o > produc8923325533196201883nteger > produc8923325533196201883nteger > produc8923325533196201883nteger ).

thf(sy_c_If_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J,type,
    if_Pro3027730157355071871nt_int: $o > product_prod_int_int > product_prod_int_int > product_prod_int_int ).

thf(sy_c_If_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    if_Pro6206227464963214023at_nat: $o > product_prod_nat_nat > product_prod_nat_nat > product_prod_nat_nat ).

thf(sy_c_If_001t__Rat__Orat,type,
    if_rat: $o > rat > rat > rat ).

thf(sy_c_If_001t__Real__Oreal,type,
    if_real: $o > real > real > real ).

thf(sy_c_If_001t__Set__Oset_It__Int__Oint_J,type,
    if_set_int: $o > set_int > set_int > set_int ).

thf(sy_c_If_001t__VEBT____Definitions__OVEBT,type,
    if_VEBT_VEBT: $o > vEBT_VEBT > vEBT_VEBT > vEBT_VEBT ).

thf(sy_c_Int_OAbs__Integ,type,
    abs_Integ: product_prod_nat_nat > int ).

thf(sy_c_Int_ORep__Integ,type,
    rep_Integ: int > product_prod_nat_nat ).

thf(sy_c_Int_Oint__ge__less__than,type,
    int_ge_less_than: int > set_Pr958786334691620121nt_int ).

thf(sy_c_Int_Oint__ge__less__than2,type,
    int_ge_less_than2: int > set_Pr958786334691620121nt_int ).

thf(sy_c_Int_Onat,type,
    nat2: int > nat ).

thf(sy_c_Int_Opower__int_001t__Real__Oreal,type,
    power_int_real: real > int > real ).

thf(sy_c_Int_Oring__1__class_OInts_001t__Real__Oreal,type,
    ring_1_Ints_real: set_real ).

thf(sy_c_Int_Oring__1__class_Oof__int_001t__Code____Numeral__Ointeger,type,
    ring_18347121197199848620nteger: int > code_integer ).

thf(sy_c_Int_Oring__1__class_Oof__int_001t__Complex__Ocomplex,type,
    ring_17405671764205052669omplex: int > complex ).

thf(sy_c_Int_Oring__1__class_Oof__int_001t__Int__Oint,type,
    ring_1_of_int_int: int > int ).

thf(sy_c_Int_Oring__1__class_Oof__int_001t__Rat__Orat,type,
    ring_1_of_int_rat: int > rat ).

thf(sy_c_Int_Oring__1__class_Oof__int_001t__Real__Oreal,type,
    ring_1_of_int_real: int > real ).

thf(sy_c_Lattices_Osemilattice__neutr__order_001t__Nat__Onat,type,
    semila1623282765462674594er_nat: ( nat > nat > nat ) > nat > ( nat > nat > $o ) > ( nat > nat > $o ) > $o ).

thf(sy_c_Lattices__Big_Olinorder__class_OMax_001_Eo,type,
    lattic1921953407002678535_Max_o: set_o > $o ).

thf(sy_c_Lattices__Big_Olinorder__class_OMax_001t__Extended____Nat__Oenat,type,
    lattic921264341876707157d_enat: set_Extended_enat > extended_enat ).

thf(sy_c_Lattices__Big_Olinorder__class_OMax_001t__Int__Oint,type,
    lattic8263393255366662781ax_int: set_int > int ).

thf(sy_c_Lattices__Big_Olinorder__class_OMax_001t__Nat__Onat,type,
    lattic8265883725875713057ax_nat: set_nat > nat ).

thf(sy_c_Lattices__Big_Olinorder__class_OMax_001t__Num__Onum,type,
    lattic4823215512031491691ax_num: set_num > num ).

thf(sy_c_Lattices__Big_Olinorder__class_OMax_001t__Rat__Orat,type,
    lattic7630753665789217321ax_rat: set_rat > rat ).

thf(sy_c_Lattices__Big_Olinorder__class_OMax_001t__Real__Oreal,type,
    lattic4275903605611617917x_real: set_real > real ).

thf(sy_c_Limits_OBfun_001t__Nat__Onat_001t__Real__Oreal,type,
    bfun_nat_real: ( nat > real ) > filter_nat > $o ).

thf(sy_c_Limits_Oat__infinity_001t__Real__Oreal,type,
    at_infinity_real: filter_real ).

thf(sy_c_List_Oappend_001t__Int__Oint,type,
    append_int: list_int > list_int > list_int ).

thf(sy_c_List_Olist_OCons_001t__Int__Oint,type,
    cons_int: int > list_int > list_int ).

thf(sy_c_List_Olist_ONil_001t__Int__Oint,type,
    nil_int: list_int ).

thf(sy_c_List_Olist_Oset_001_Eo,type,
    set_o2: list_o > set_o ).

thf(sy_c_List_Olist_Oset_001t__Complex__Ocomplex,type,
    set_complex2: list_complex > set_complex ).

thf(sy_c_List_Olist_Oset_001t__Int__Oint,type,
    set_int2: list_int > set_int ).

thf(sy_c_List_Olist_Oset_001t__Nat__Onat,type,
    set_nat2: list_nat > set_nat ).

thf(sy_c_List_Olist_Oset_001t__Real__Oreal,type,
    set_real2: list_real > set_real ).

thf(sy_c_List_Olist_Oset_001t__Set__Oset_It__Nat__Onat_J,type,
    set_set_nat2: list_set_nat > set_set_nat ).

thf(sy_c_List_Olist_Oset_001t__VEBT____Definitions__OVEBT,type,
    set_VEBT_VEBT2: list_VEBT_VEBT > set_VEBT_VEBT ).

thf(sy_c_List_Olist_Osize__list_001t__VEBT____Definitions__OVEBT,type,
    size_list_VEBT_VEBT: ( vEBT_VEBT > nat ) > list_VEBT_VEBT > nat ).

thf(sy_c_List_Olist__update_001_Eo,type,
    list_update_o: list_o > nat > $o > list_o ).

thf(sy_c_List_Olist__update_001t__Complex__Ocomplex,type,
    list_update_complex: list_complex > nat > complex > list_complex ).

thf(sy_c_List_Olist__update_001t__Int__Oint,type,
    list_update_int: list_int > nat > int > list_int ).

thf(sy_c_List_Olist__update_001t__Nat__Onat,type,
    list_update_nat: list_nat > nat > nat > list_nat ).

thf(sy_c_List_Olist__update_001t__Real__Oreal,type,
    list_update_real: list_real > nat > real > list_real ).

thf(sy_c_List_Olist__update_001t__Set__Oset_It__Nat__Onat_J,type,
    list_update_set_nat: list_set_nat > nat > set_nat > list_set_nat ).

thf(sy_c_List_Olist__update_001t__VEBT____Definitions__OVEBT,type,
    list_u1324408373059187874T_VEBT: list_VEBT_VEBT > nat > vEBT_VEBT > list_VEBT_VEBT ).

thf(sy_c_List_Onth_001_Eo,type,
    nth_o: list_o > nat > $o ).

thf(sy_c_List_Onth_001t__Code____Numeral__Ointeger,type,
    nth_Code_integer: list_Code_integer > nat > code_integer ).

thf(sy_c_List_Onth_001t__Complex__Ocomplex,type,
    nth_complex: list_complex > nat > complex ).

thf(sy_c_List_Onth_001t__Int__Oint,type,
    nth_int: list_int > nat > int ).

thf(sy_c_List_Onth_001t__Nat__Onat,type,
    nth_nat: list_nat > nat > nat ).

thf(sy_c_List_Onth_001t__Num__Onum,type,
    nth_num: list_num > nat > num ).

thf(sy_c_List_Onth_001t__Product____Type__Oprod_I_Eo_M_Eo_J,type,
    nth_Product_prod_o_o: list_P4002435161011370285od_o_o > nat > product_prod_o_o ).

thf(sy_c_List_Onth_001t__Product____Type__Oprod_I_Eo_Mt__Int__Oint_J,type,
    nth_Pr1649062631805364268_o_int: list_P3795440434834930179_o_int > nat > product_prod_o_int ).

thf(sy_c_List_Onth_001t__Product____Type__Oprod_I_Eo_Mt__VEBT____Definitions__OVEBT_J,type,
    nth_Pr6777367263587873994T_VEBT: list_P7495141550334521929T_VEBT > nat > produc2504756804600209347T_VEBT ).

thf(sy_c_List_Onth_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_M_Eo_J,type,
    nth_Pr8522763379788166057eger_o: list_P8526636022914148096eger_o > nat > produc6271795597528267376eger_o ).

thf(sy_c_List_Onth_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J,type,
    nth_Pr2304437835452373666nteger: list_P5578671422887162913nteger > nat > produc8923325533196201883nteger ).

thf(sy_c_List_Onth_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    nth_Pr7617993195940197384at_nat: list_P6011104703257516679at_nat > nat > product_prod_nat_nat ).

thf(sy_c_List_Onth_001t__Product____Type__Oprod_It__Num__Onum_Mt__Num__Onum_J,type,
    nth_Pr6456567536196504476um_num: list_P3744719386663036955um_num > nat > product_prod_num_num ).

thf(sy_c_List_Onth_001t__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_M_Eo_J,type,
    nth_Pr4606735188037164562VEBT_o: list_P3126845725202233233VEBT_o > nat > produc334124729049499915VEBT_o ).

thf(sy_c_List_Onth_001t__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_Mt__Int__Oint_J,type,
    nth_Pr6837108013167703752BT_int: list_P4547456442757143711BT_int > nat > produc4894624898956917775BT_int ).

thf(sy_c_List_Onth_001t__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_Mt__VEBT____Definitions__OVEBT_J,type,
    nth_Pr4953567300277697838T_VEBT: list_P7413028617227757229T_VEBT > nat > produc8243902056947475879T_VEBT ).

thf(sy_c_List_Onth_001t__Real__Oreal,type,
    nth_real: list_real > nat > real ).

thf(sy_c_List_Onth_001t__Set__Oset_It__Nat__Onat_J,type,
    nth_set_nat: list_set_nat > nat > set_nat ).

thf(sy_c_List_Onth_001t__VEBT____Definitions__OVEBT,type,
    nth_VEBT_VEBT: list_VEBT_VEBT > nat > vEBT_VEBT ).

thf(sy_c_List_Oproduct_001_Eo_001_Eo,type,
    product_o_o: list_o > list_o > list_P4002435161011370285od_o_o ).

thf(sy_c_List_Oproduct_001_Eo_001t__Int__Oint,type,
    product_o_int: list_o > list_int > list_P3795440434834930179_o_int ).

thf(sy_c_List_Oproduct_001_Eo_001t__VEBT____Definitions__OVEBT,type,
    product_o_VEBT_VEBT: list_o > list_VEBT_VEBT > list_P7495141550334521929T_VEBT ).

thf(sy_c_List_Oproduct_001t__Code____Numeral__Ointeger_001_Eo,type,
    produc3607205314601156340eger_o: list_Code_integer > list_o > list_P8526636022914148096eger_o ).

thf(sy_c_List_Oproduct_001t__Code____Numeral__Ointeger_001t__Code____Numeral__Ointeger,type,
    produc8792966785426426881nteger: list_Code_integer > list_Code_integer > list_P5578671422887162913nteger ).

thf(sy_c_List_Oproduct_001t__Int__Oint_001_Eo,type,
    product_int_o: list_int > list_o > list_P5087981734274514673_int_o ).

thf(sy_c_List_Oproduct_001t__Int__Oint_001t__Int__Oint,type,
    product_int_int: list_int > list_int > list_P5707943133018811711nt_int ).

thf(sy_c_List_Oproduct_001t__Int__Oint_001t__VEBT____Definitions__OVEBT,type,
    produc662631939642741121T_VEBT: list_int > list_VEBT_VEBT > list_P7524865323317820941T_VEBT ).

thf(sy_c_List_Oproduct_001t__Nat__Onat_001t__Nat__Onat,type,
    product_nat_nat: list_nat > list_nat > list_P6011104703257516679at_nat ).

thf(sy_c_List_Oproduct_001t__Num__Onum_001t__Num__Onum,type,
    product_num_num: list_num > list_num > list_P3744719386663036955um_num ).

thf(sy_c_List_Oproduct_001t__VEBT____Definitions__OVEBT_001_Eo,type,
    product_VEBT_VEBT_o: list_VEBT_VEBT > list_o > list_P3126845725202233233VEBT_o ).

thf(sy_c_List_Oproduct_001t__VEBT____Definitions__OVEBT_001t__Int__Oint,type,
    produc7292646706713671643BT_int: list_VEBT_VEBT > list_int > list_P4547456442757143711BT_int ).

thf(sy_c_List_Oproduct_001t__VEBT____Definitions__OVEBT_001t__VEBT____Definitions__OVEBT,type,
    produc4743750530478302277T_VEBT: list_VEBT_VEBT > list_VEBT_VEBT > list_P7413028617227757229T_VEBT ).

thf(sy_c_List_Oreplicate_001_Eo,type,
    replicate_o: nat > $o > list_o ).

thf(sy_c_List_Oreplicate_001t__Complex__Ocomplex,type,
    replicate_complex: nat > complex > list_complex ).

thf(sy_c_List_Oreplicate_001t__Int__Oint,type,
    replicate_int: nat > int > list_int ).

thf(sy_c_List_Oreplicate_001t__Nat__Onat,type,
    replicate_nat: nat > nat > list_nat ).

thf(sy_c_List_Oreplicate_001t__Real__Oreal,type,
    replicate_real: nat > real > list_real ).

thf(sy_c_List_Oreplicate_001t__Set__Oset_It__Nat__Onat_J,type,
    replicate_set_nat: nat > set_nat > list_set_nat ).

thf(sy_c_List_Oreplicate_001t__VEBT____Definitions__OVEBT,type,
    replicate_VEBT_VEBT: nat > vEBT_VEBT > list_VEBT_VEBT ).

thf(sy_c_List_Oupto,type,
    upto: int > int > list_int ).

thf(sy_c_List_Oupto__aux,type,
    upto_aux: int > int > list_int > list_int ).

thf(sy_c_List_Oupto__rel,type,
    upto_rel: product_prod_int_int > product_prod_int_int > $o ).

thf(sy_c_Nat_OSuc,type,
    suc: nat > nat ).

thf(sy_c_Nat_Ocompow_001_062_It__Nat__Onat_Mt__Nat__Onat_J,type,
    compow_nat_nat: nat > ( nat > nat ) > nat > nat ).

thf(sy_c_Nat_Onat_Ocase__nat_001_Eo,type,
    case_nat_o: $o > ( nat > $o ) > nat > $o ).

thf(sy_c_Nat_Onat_Ocase__nat_001t__Nat__Onat,type,
    case_nat_nat: nat > ( nat > nat ) > nat > nat ).

thf(sy_c_Nat_Onat_Opred,type,
    pred: nat > nat ).

thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Complex__Ocomplex,type,
    semiri8010041392384452111omplex: nat > complex ).

thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Int__Oint,type,
    semiri1314217659103216013at_int: nat > int ).

thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Nat__Onat,type,
    semiri1316708129612266289at_nat: nat > nat ).

thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Real__Oreal,type,
    semiri5074537144036343181t_real: nat > real ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_I_Eo_J,type,
    size_size_list_o: list_o > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Code____Numeral__Ointeger_J,type,
    size_s3445333598471063425nteger: list_Code_integer > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Complex__Ocomplex_J,type,
    size_s3451745648224563538omplex: list_complex > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Int__Oint_J,type,
    size_size_list_int: list_int > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Nat__Onat_J,type,
    size_size_list_nat: list_nat > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Num__Onum_J,type,
    size_size_list_num: list_num > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Product____Type__Oprod_I_Eo_M_Eo_J_J,type,
    size_s1515746228057227161od_o_o: list_P4002435161011370285od_o_o > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Product____Type__Oprod_I_Eo_Mt__Int__Oint_J_J,type,
    size_s2953683556165314199_o_int: list_P3795440434834930179_o_int > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Product____Type__Oprod_I_Eo_Mt__VEBT____Definitions__OVEBT_J_J,type,
    size_s4313452262239582901T_VEBT: list_P7495141550334521929T_VEBT > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Product____Type__Oprod_It__Int__Oint_M_Eo_J_J,type,
    size_s4246224855604898693_int_o: list_P5087981734274514673_int_o > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_J,type,
    size_s5157815400016825771nt_int: list_P5707943133018811711nt_int > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Product____Type__Oprod_It__Int__Oint_Mt__VEBT____Definitions__OVEBT_J_J,type,
    size_s6639371672096860321T_VEBT: list_P7524865323317820941T_VEBT > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_M_Eo_J_J,type,
    size_s9168528473962070013VEBT_o: list_P3126845725202233233VEBT_o > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_Mt__Int__Oint_J_J,type,
    size_s3661962791536183091BT_int: list_P4547456442757143711BT_int > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_Mt__VEBT____Definitions__OVEBT_J_J,type,
    size_s7466405169056248089T_VEBT: list_P7413028617227757229T_VEBT > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Real__Oreal_J,type,
    size_size_list_real: list_real > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Set__Oset_It__Nat__Onat_J_J,type,
    size_s3254054031482475050et_nat: list_set_nat > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__VEBT____Definitions__OVEBT_J,type,
    size_s6755466524823107622T_VEBT: list_VEBT_VEBT > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__Num__Onum,type,
    size_size_num: num > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__Option__Ooption_It__Nat__Onat_J,type,
    size_size_option_nat: option_nat > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__Option__Ooption_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    size_s170228958280169651at_nat: option4927543243414619207at_nat > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__VEBT____Definitions__OVEBT,type,
    size_size_VEBT_VEBT: vEBT_VEBT > nat ).

thf(sy_c_Nat__Bijection_Oprod__decode__aux,type,
    nat_prod_decode_aux: nat > nat > product_prod_nat_nat ).

thf(sy_c_Nat__Bijection_Oprod__decode__aux__rel,type,
    nat_pr5047031295181774490ux_rel: product_prod_nat_nat > product_prod_nat_nat > $o ).

thf(sy_c_Nat__Bijection_Oset__decode,type,
    nat_set_decode: nat > set_nat ).

thf(sy_c_Nat__Bijection_Oset__encode,type,
    nat_set_encode: set_nat > nat ).

thf(sy_c_Nat__Bijection_Otriangle,type,
    nat_triangle: nat > nat ).

thf(sy_c_NthRoot_Oroot,type,
    root: nat > real > real ).

thf(sy_c_NthRoot_Osqrt,type,
    sqrt: real > real ).

thf(sy_c_Num_OBitM,type,
    bitM: num > num ).

thf(sy_c_Num_Oinc,type,
    inc: num > num ).

thf(sy_c_Num_Oneg__numeral__class_Odbl_001t__Code____Numeral__Ointeger,type,
    neg_nu8804712462038260780nteger: code_integer > code_integer ).

thf(sy_c_Num_Oneg__numeral__class_Odbl_001t__Complex__Ocomplex,type,
    neg_nu7009210354673126013omplex: complex > complex ).

thf(sy_c_Num_Oneg__numeral__class_Odbl_001t__Int__Oint,type,
    neg_numeral_dbl_int: int > int ).

thf(sy_c_Num_Oneg__numeral__class_Odbl_001t__Rat__Orat,type,
    neg_numeral_dbl_rat: rat > rat ).

thf(sy_c_Num_Oneg__numeral__class_Odbl_001t__Real__Oreal,type,
    neg_numeral_dbl_real: real > real ).

thf(sy_c_Num_Oneg__numeral__class_Odbl__dec_001t__Code____Numeral__Ointeger,type,
    neg_nu7757733837767384882nteger: code_integer > code_integer ).

thf(sy_c_Num_Oneg__numeral__class_Odbl__dec_001t__Complex__Ocomplex,type,
    neg_nu6511756317524482435omplex: complex > complex ).

thf(sy_c_Num_Oneg__numeral__class_Odbl__dec_001t__Int__Oint,type,
    neg_nu3811975205180677377ec_int: int > int ).

thf(sy_c_Num_Oneg__numeral__class_Odbl__dec_001t__Rat__Orat,type,
    neg_nu3179335615603231917ec_rat: rat > rat ).

thf(sy_c_Num_Oneg__numeral__class_Odbl__dec_001t__Real__Oreal,type,
    neg_nu6075765906172075777c_real: real > real ).

thf(sy_c_Num_Oneg__numeral__class_Odbl__inc_001t__Code____Numeral__Ointeger,type,
    neg_nu5831290666863070958nteger: code_integer > code_integer ).

thf(sy_c_Num_Oneg__numeral__class_Odbl__inc_001t__Complex__Ocomplex,type,
    neg_nu8557863876264182079omplex: complex > complex ).

thf(sy_c_Num_Oneg__numeral__class_Odbl__inc_001t__Int__Oint,type,
    neg_nu5851722552734809277nc_int: int > int ).

thf(sy_c_Num_Oneg__numeral__class_Odbl__inc_001t__Rat__Orat,type,
    neg_nu5219082963157363817nc_rat: rat > rat ).

thf(sy_c_Num_Oneg__numeral__class_Odbl__inc_001t__Real__Oreal,type,
    neg_nu8295874005876285629c_real: real > real ).

thf(sy_c_Num_Oneg__numeral__class_Osub_001t__Int__Oint,type,
    neg_numeral_sub_int: num > num > int ).

thf(sy_c_Num_Onum_OBit0,type,
    bit0: num > num ).

thf(sy_c_Num_Onum_OBit1,type,
    bit1: num > num ).

thf(sy_c_Num_Onum_OOne,type,
    one: num ).

thf(sy_c_Num_Onum_Osize__num,type,
    size_num: num > nat ).

thf(sy_c_Num_Onumeral__class_Onumeral_001t__Code____Numeral__Ointeger,type,
    numera6620942414471956472nteger: num > code_integer ).

thf(sy_c_Num_Onumeral__class_Onumeral_001t__Complex__Ocomplex,type,
    numera6690914467698888265omplex: num > complex ).

thf(sy_c_Num_Onumeral__class_Onumeral_001t__Extended____Nat__Oenat,type,
    numera1916890842035813515d_enat: num > extended_enat ).

thf(sy_c_Num_Onumeral__class_Onumeral_001t__Int__Oint,type,
    numeral_numeral_int: num > int ).

thf(sy_c_Num_Onumeral__class_Onumeral_001t__Nat__Onat,type,
    numeral_numeral_nat: num > nat ).

thf(sy_c_Num_Onumeral__class_Onumeral_001t__Rat__Orat,type,
    numeral_numeral_rat: num > rat ).

thf(sy_c_Num_Onumeral__class_Onumeral_001t__Real__Oreal,type,
    numeral_numeral_real: num > real ).

thf(sy_c_Num_Opow,type,
    pow: num > num > num ).

thf(sy_c_Num_Opred__numeral,type,
    pred_numeral: num > nat ).

thf(sy_c_Option_Ooption_ONone_001t__Int__Oint,type,
    none_int: option_int ).

thf(sy_c_Option_Ooption_ONone_001t__Nat__Onat,type,
    none_nat: option_nat ).

thf(sy_c_Option_Ooption_ONone_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    none_P5556105721700978146at_nat: option4927543243414619207at_nat ).

thf(sy_c_Option_Ooption_OSome_001t__Nat__Onat,type,
    some_nat: nat > option_nat ).

thf(sy_c_Option_Ooption_OSome_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    some_P7363390416028606310at_nat: product_prod_nat_nat > option4927543243414619207at_nat ).

thf(sy_c_Option_Ooption_Osize__option_001t__Nat__Onat,type,
    size_option_nat: ( nat > nat ) > option_nat > nat ).

thf(sy_c_Option_Ooption_Osize__option_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    size_o8335143837870341156at_nat: ( product_prod_nat_nat > nat ) > option4927543243414619207at_nat > nat ).

thf(sy_c_Option_Ooption_Othe_001t__Int__Oint,type,
    the_int2: option_int > int ).

thf(sy_c_Option_Ooption_Othe_001t__Nat__Onat,type,
    the_nat: option_nat > nat ).

thf(sy_c_Option_Ooption_Othe_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    the_Pr8591224930841456533at_nat: option4927543243414619207at_nat > product_prod_nat_nat ).

thf(sy_c_Orderings_Obot__class_Obot_001_062_I_Eo_M_Eo_J,type,
    bot_bot_o_o: $o > $o ).

thf(sy_c_Orderings_Obot__class_Obot_001_062_It__Code____Numeral__Ointeger_M_062_I_Eo_M_Eo_J_J,type,
    bot_bo4731626569425807221er_o_o: code_integer > $o > $o ).

thf(sy_c_Orderings_Obot__class_Obot_001_062_It__Code____Numeral__Ointeger_M_062_It__Code____Numeral__Ointeger_M_Eo_J_J,type,
    bot_bo8134993004553108152eger_o: code_integer > code_integer > $o ).

thf(sy_c_Orderings_Obot__class_Obot_001_062_It__Complex__Ocomplex_M_Eo_J,type,
    bot_bot_complex_o: complex > $o ).

thf(sy_c_Orderings_Obot__class_Obot_001_062_It__Int__Oint_M_062_It__Int__Oint_M_Eo_J_J,type,
    bot_bot_int_int_o: int > int > $o ).

thf(sy_c_Orderings_Obot__class_Obot_001_062_It__Int__Oint_M_Eo_J,type,
    bot_bot_int_o: int > $o ).

thf(sy_c_Orderings_Obot__class_Obot_001_062_It__Nat__Onat_M_062_It__Nat__Onat_M_Eo_J_J,type,
    bot_bot_nat_nat_o: nat > nat > $o ).

thf(sy_c_Orderings_Obot__class_Obot_001_062_It__Nat__Onat_M_Eo_J,type,
    bot_bot_nat_o: nat > $o ).

thf(sy_c_Orderings_Obot__class_Obot_001_062_It__Num__Onum_M_062_It__Num__Onum_M_Eo_J_J,type,
    bot_bot_num_num_o: num > num > $o ).

thf(sy_c_Orderings_Obot__class_Obot_001_062_It__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_M_Eo_J,type,
    bot_bo8147686125503663512_int_o: product_prod_int_int > $o ).

thf(sy_c_Orderings_Obot__class_Obot_001_062_It__Real__Oreal_M_Eo_J,type,
    bot_bot_real_o: real > $o ).

thf(sy_c_Orderings_Obot__class_Obot_001_062_It__Set__Oset_It__Nat__Onat_J_M_Eo_J,type,
    bot_bot_set_nat_o: set_nat > $o ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Extended____Nat__Oenat,type,
    bot_bo4199563552545308370d_enat: extended_enat ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Nat__Onat,type,
    bot_bot_nat: nat ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_I_Eo_J,type,
    bot_bot_set_o: set_o ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Complex__Ocomplex_J,type,
    bot_bot_set_complex: set_complex ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Extended____Nat__Oenat_J,type,
    bot_bo7653980558646680370d_enat: set_Extended_enat ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Int__Oint_J,type,
    bot_bot_set_int: set_int ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Nat__Onat_J,type,
    bot_bot_set_nat: set_nat ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Num__Onum_J,type,
    bot_bot_set_num: set_num ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Product____Type__Oprod_It__Code____Numeral__Ointeger_M_Eo_J_J,type,
    bot_bo5379713665208646970eger_o: set_Pr448751882837621926eger_o ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J_J,type,
    bot_bo4276436098303576167nteger: set_Pr4811707699266497531nteger ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_J,type,
    bot_bo1796632182523588997nt_int: set_Pr958786334691620121nt_int ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    bot_bo2099793752762293965at_nat: set_Pr1261947904930325089at_nat ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Product____Type__Oprod_It__Num__Onum_Mt__Num__Onum_J_J,type,
    bot_bo9056780473022590049um_num: set_Pr8218934625190621173um_num ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Rat__Orat_J,type,
    bot_bot_set_rat: set_rat ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Real__Oreal_J,type,
    bot_bot_set_real: set_real ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Set__Oset_It__Int__Oint_J_J,type,
    bot_bot_set_set_int: set_set_int ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Set__Oset_It__Nat__Onat_J_J,type,
    bot_bot_set_set_nat: set_set_nat ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__VEBT____Definitions__OVEBT_J,type,
    bot_bo8194388402131092736T_VEBT: set_VEBT_VEBT ).

thf(sy_c_Orderings_Oord__class_Oless_001_062_It__Complex__Ocomplex_M_Eo_J,type,
    ord_less_complex_o: ( complex > $o ) > ( complex > $o ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001_062_It__Int__Oint_M_Eo_J,type,
    ord_less_int_o: ( int > $o ) > ( int > $o ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001_062_It__Nat__Onat_M_Eo_J,type,
    ord_less_nat_o: ( nat > $o ) > ( nat > $o ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001_062_It__Real__Oreal_M_Eo_J,type,
    ord_less_real_o: ( real > $o ) > ( real > $o ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001_062_It__Set__Oset_It__Nat__Onat_J_M_Eo_J,type,
    ord_less_set_nat_o: ( set_nat > $o ) > ( set_nat > $o ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001_Eo,type,
    ord_less_o: $o > $o > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Code____Numeral__Ointeger,type,
    ord_le6747313008572928689nteger: code_integer > code_integer > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Extended____Nat__Oenat,type,
    ord_le72135733267957522d_enat: extended_enat > extended_enat > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Int__Oint,type,
    ord_less_int: int > int > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Nat__Onat,type,
    ord_less_nat: nat > nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Num__Onum,type,
    ord_less_num: num > num > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Rat__Orat,type,
    ord_less_rat: rat > rat > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Real__Oreal,type,
    ord_less_real: real > real > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_I_Eo_J,type,
    ord_less_set_o: set_o > set_o > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Code____Numeral__Ointeger_J,type,
    ord_le1307284697595431911nteger: set_Code_integer > set_Code_integer > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Complex__Ocomplex_J,type,
    ord_less_set_complex: set_complex > set_complex > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Int__Oint_J,type,
    ord_less_set_int: set_int > set_int > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Nat__Onat_J,type,
    ord_less_set_nat: set_nat > set_nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Num__Onum_J,type,
    ord_less_set_num: set_num > set_num > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Rat__Orat_J,type,
    ord_less_set_rat: set_rat > set_rat > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Real__Oreal_J,type,
    ord_less_set_real: set_real > set_real > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Set__Oset_It__Int__Oint_J_J,type,
    ord_less_set_set_int: set_set_int > set_set_int > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Set__Oset_It__Nat__Onat_J_J,type,
    ord_less_set_set_nat: set_set_nat > set_set_nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__VEBT____Definitions__OVEBT_J,type,
    ord_le3480810397992357184T_VEBT: set_VEBT_VEBT > set_VEBT_VEBT > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_It__Code____Numeral__Ointeger_M_062_I_Eo_M_Eo_J_J,type,
    ord_le2162486998276636481er_o_o: ( code_integer > $o > $o ) > ( code_integer > $o > $o ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_It__Code____Numeral__Ointeger_M_062_It__Code____Numeral__Ointeger_M_Eo_J_J,type,
    ord_le3602516367967493612eger_o: ( code_integer > code_integer > $o ) > ( code_integer > code_integer > $o ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_It__Complex__Ocomplex_M_Eo_J,type,
    ord_le4573692005234683329plex_o: ( complex > $o ) > ( complex > $o ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_It__Int__Oint_M_062_It__Int__Oint_M_Eo_J_J,type,
    ord_le6741204236512500942_int_o: ( int > int > $o ) > ( int > int > $o ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_It__Int__Oint_M_Eo_J,type,
    ord_less_eq_int_o: ( int > $o ) > ( int > $o ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_It__Nat__Onat_M_062_It__Nat__Onat_M_Eo_J_J,type,
    ord_le2646555220125990790_nat_o: ( nat > nat > $o ) > ( nat > nat > $o ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_It__Nat__Onat_M_Eo_J,type,
    ord_less_eq_nat_o: ( nat > $o ) > ( nat > $o ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_It__Num__Onum_M_062_It__Num__Onum_M_Eo_J_J,type,
    ord_le6124364862034508274_num_o: ( num > num > $o ) > ( num > num > $o ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_It__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_M_062_It__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_M_Eo_J_J,type,
    ord_le1598226405681992910_int_o: ( product_prod_int_int > product_prod_int_int > $o ) > ( product_prod_int_int > product_prod_int_int > $o ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_It__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_M_Eo_J,type,
    ord_le8369615600986905444_int_o: ( product_prod_int_int > $o ) > ( product_prod_int_int > $o ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_M_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_M_Eo_J_J,type,
    ord_le5604493270027003598_nat_o: ( product_prod_nat_nat > product_prod_nat_nat > $o ) > ( product_prod_nat_nat > product_prod_nat_nat > $o ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_M_Eo_J,type,
    ord_le704812498762024988_nat_o: ( product_prod_nat_nat > $o ) > ( product_prod_nat_nat > $o ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_It__Product____Type__Oprod_It__Num__Onum_Mt__Num__Onum_J_M_062_It__Product____Type__Oprod_It__Num__Onum_Mt__Num__Onum_J_M_Eo_J_J,type,
    ord_le2556027599737686990_num_o: ( product_prod_num_num > product_prod_num_num > $o ) > ( product_prod_num_num > product_prod_num_num > $o ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_It__Product____Type__Oprod_It__Num__Onum_Mt__Num__Onum_J_M_Eo_J,type,
    ord_le2239182809043710856_num_o: ( product_prod_num_num > $o ) > ( product_prod_num_num > $o ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_It__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_Mt__Nat__Onat_J_M_062_It__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_Mt__Nat__Onat_J_M_Eo_J_J,type,
    ord_le1077754993875142464_nat_o: ( produc9072475918466114483BT_nat > produc9072475918466114483BT_nat > $o ) > ( produc9072475918466114483BT_nat > produc9072475918466114483BT_nat > $o ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_It__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_Mt__Nat__Onat_J_M_Eo_J,type,
    ord_le7812727212727832188_nat_o: ( produc9072475918466114483BT_nat > $o ) > ( produc9072475918466114483BT_nat > $o ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_It__Real__Oreal_M_Eo_J,type,
    ord_less_eq_real_o: ( real > $o ) > ( real > $o ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_It__Set__Oset_It__Nat__Onat_J_M_Eo_J,type,
    ord_le3964352015994296041_nat_o: ( set_nat > $o ) > ( set_nat > $o ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001_Eo,type,
    ord_less_eq_o: $o > $o > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Code____Numeral__Ointeger,type,
    ord_le3102999989581377725nteger: code_integer > code_integer > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Extended____Nat__Oenat,type,
    ord_le2932123472753598470d_enat: extended_enat > extended_enat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Filter__Ofilter_It__Nat__Onat_J,type,
    ord_le2510731241096832064er_nat: filter_nat > filter_nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Filter__Ofilter_It__Real__Oreal_J,type,
    ord_le4104064031414453916r_real: filter_real > filter_real > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Int__Oint,type,
    ord_less_eq_int: int > int > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Nat__Onat,type,
    ord_less_eq_nat: nat > nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Num__Onum,type,
    ord_less_eq_num: num > num > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Rat__Orat,type,
    ord_less_eq_rat: rat > rat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Real__Oreal,type,
    ord_less_eq_real: real > real > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_I_Eo_J,type,
    ord_less_eq_set_o: set_o > set_o > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Code____Numeral__Ointeger_J,type,
    ord_le7084787975880047091nteger: set_Code_integer > set_Code_integer > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Complex__Ocomplex_J,type,
    ord_le211207098394363844omplex: set_complex > set_complex > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Extended____Nat__Oenat_J,type,
    ord_le7203529160286727270d_enat: set_Extended_enat > set_Extended_enat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Int__Oint_J,type,
    ord_less_eq_set_int: set_int > set_int > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Nat__Onat_J,type,
    ord_less_eq_set_nat: set_nat > set_nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Num__Onum_J,type,
    ord_less_eq_set_num: set_num > set_num > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Product____Type__Oprod_It__Code____Numeral__Ointeger_M_Eo_J_J,type,
    ord_le8980329558974975238eger_o: set_Pr448751882837621926eger_o > set_Pr448751882837621926eger_o > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J_J,type,
    ord_le3725938330318615451nteger: set_Pr4811707699266497531nteger > set_Pr4811707699266497531nteger > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_J,type,
    ord_le2843351958646193337nt_int: set_Pr958786334691620121nt_int > set_Pr958786334691620121nt_int > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    ord_le3146513528884898305at_nat: set_Pr1261947904930325089at_nat > set_Pr1261947904930325089at_nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Product____Type__Oprod_It__Num__Onum_Mt__Num__Onum_J_J,type,
    ord_le880128212290418581um_num: set_Pr8218934625190621173um_num > set_Pr8218934625190621173um_num > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Rat__Orat_J,type,
    ord_less_eq_set_rat: set_rat > set_rat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Real__Oreal_J,type,
    ord_less_eq_set_real: set_real > set_real > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Set__Oset_It__Int__Oint_J_J,type,
    ord_le4403425263959731960et_int: set_set_int > set_set_int > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Set__Oset_It__Nat__Onat_J_J,type,
    ord_le6893508408891458716et_nat: set_set_nat > set_set_nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__VEBT____Definitions__OVEBT_J,type,
    ord_le4337996190870823476T_VEBT: set_VEBT_VEBT > set_VEBT_VEBT > $o ).

thf(sy_c_Orderings_Oord__class_Omax_001_Eo,type,
    ord_max_o: $o > $o > $o ).

thf(sy_c_Orderings_Oord__class_Omax_001t__Code____Numeral__Ointeger,type,
    ord_max_Code_integer: code_integer > code_integer > code_integer ).

thf(sy_c_Orderings_Oord__class_Omax_001t__Extended____Nat__Oenat,type,
    ord_ma741700101516333627d_enat: extended_enat > extended_enat > extended_enat ).

thf(sy_c_Orderings_Oord__class_Omax_001t__Int__Oint,type,
    ord_max_int: int > int > int ).

thf(sy_c_Orderings_Oord__class_Omax_001t__Nat__Onat,type,
    ord_max_nat: nat > nat > nat ).

thf(sy_c_Orderings_Oord__class_Omax_001t__Num__Onum,type,
    ord_max_num: num > num > num ).

thf(sy_c_Orderings_Oord__class_Omax_001t__Rat__Orat,type,
    ord_max_rat: rat > rat > rat ).

thf(sy_c_Orderings_Oord__class_Omax_001t__Real__Oreal,type,
    ord_max_real: real > real > real ).

thf(sy_c_Orderings_Oord__class_Omax_001t__Set__Oset_I_Eo_J,type,
    ord_max_set_o: set_o > set_o > set_o ).

thf(sy_c_Orderings_Oord__class_Omax_001t__Set__Oset_It__Int__Oint_J,type,
    ord_max_set_int: set_int > set_int > set_int ).

thf(sy_c_Orderings_Oord__class_Omax_001t__Set__Oset_It__Nat__Onat_J,type,
    ord_max_set_nat: set_nat > set_nat > set_nat ).

thf(sy_c_Orderings_Oord__class_Omax_001t__Set__Oset_It__Real__Oreal_J,type,
    ord_max_set_real: set_real > set_real > set_real ).

thf(sy_c_Orderings_Oorder__class_OGreatest_001t__Nat__Onat,type,
    order_Greatest_nat: ( nat > $o ) > nat ).

thf(sy_c_Orderings_Oorder__class_Oantimono_001t__Nat__Onat_001t__Real__Oreal,type,
    order_9091379641038594480t_real: ( nat > real ) > $o ).

thf(sy_c_Orderings_Oorder__class_Omono_001t__Nat__Onat_001t__Nat__Onat,type,
    order_mono_nat_nat: ( nat > nat ) > $o ).

thf(sy_c_Orderings_Oorder__class_Omono_001t__Nat__Onat_001t__Real__Oreal,type,
    order_mono_nat_real: ( nat > real ) > $o ).

thf(sy_c_Orderings_Oorder__class_Omono_001t__Real__Oreal_001t__Real__Oreal,type,
    order_mono_real_real: ( real > real ) > $o ).

thf(sy_c_Orderings_Oorder__class_Ostrict__mono_001t__Nat__Onat_001t__Nat__Onat,type,
    order_5726023648592871131at_nat: ( nat > nat ) > $o ).

thf(sy_c_Orderings_Oorder__class_Ostrict__mono_001t__Real__Oreal_001t__Real__Oreal,type,
    order_7092887310737990675l_real: ( real > real ) > $o ).

thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_I_Eo_J,type,
    top_top_set_o: set_o ).

thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_It__Nat__Onat_J,type,
    top_top_set_nat: set_nat ).

thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_It__Product____Type__Ounit_J,type,
    top_to1996260823553986621t_unit: set_Product_unit ).

thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_It__Real__Oreal_J,type,
    top_top_set_real: set_real ).

thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_It__String__Ochar_J,type,
    top_top_set_char: set_char ).

thf(sy_c_Power_Opower__class_Opower_001t__Code____Numeral__Ointeger,type,
    power_8256067586552552935nteger: code_integer > nat > code_integer ).

thf(sy_c_Power_Opower__class_Opower_001t__Complex__Ocomplex,type,
    power_power_complex: complex > nat > complex ).

thf(sy_c_Power_Opower__class_Opower_001t__Int__Oint,type,
    power_power_int: int > nat > int ).

thf(sy_c_Power_Opower__class_Opower_001t__Nat__Onat,type,
    power_power_nat: nat > nat > nat ).

thf(sy_c_Power_Opower__class_Opower_001t__Rat__Orat,type,
    power_power_rat: rat > nat > rat ).

thf(sy_c_Power_Opower__class_Opower_001t__Real__Oreal,type,
    power_power_real: real > nat > real ).

thf(sy_c_Product__Type_OPair_001_062_It__Nat__Onat_M_062_It__Nat__Onat_M_Eo_J_J_001t__Product____Type__Oprod_It__Option__Ooption_It__Nat__Onat_J_Mt__Option__Ooption_It__Nat__Onat_J_J,type,
    produc4035269172776083154on_nat: ( nat > nat > $o ) > produc4953844613479565601on_nat > produc2233624965454879586on_nat ).

thf(sy_c_Product__Type_OPair_001_062_It__Nat__Onat_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    produc3209952032786966637at_nat: ( nat > nat > nat ) > produc7248412053542808358at_nat > produc4471711990508489141at_nat ).

thf(sy_c_Product__Type_OPair_001_062_It__Nat__Onat_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_001t__Product____Type__Oprod_It__Option__Ooption_It__Nat__Onat_J_Mt__Option__Ooption_It__Nat__Onat_J_J,type,
    produc8929957630744042906on_nat: ( nat > nat > nat ) > produc4953844613479565601on_nat > produc8306885398267862888on_nat ).

thf(sy_c_Product__Type_OPair_001_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_M_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_M_Eo_J_J_001t__Product____Type__Oprod_It__Option__Ooption_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_Mt__Option__Ooption_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_J,type,
    produc3994169339658061776at_nat: ( product_prod_nat_nat > product_prod_nat_nat > $o ) > produc6121120109295599847at_nat > produc5491161045314408544at_nat ).

thf(sy_c_Product__Type_OPair_001_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_M_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_J_001t__Product____Type__Oprod_It__Option__Ooption_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_Mt__Option__Ooption_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_J,type,
    produc2899441246263362727at_nat: ( product_prod_nat_nat > product_prod_nat_nat > product_prod_nat_nat ) > produc6121120109295599847at_nat > produc5542196010084753463at_nat ).

thf(sy_c_Product__Type_OPair_001_Eo_001_Eo,type,
    product_Pair_o_o: $o > $o > product_prod_o_o ).

thf(sy_c_Product__Type_OPair_001_Eo_001t__Int__Oint,type,
    product_Pair_o_int: $o > int > product_prod_o_int ).

thf(sy_c_Product__Type_OPair_001_Eo_001t__VEBT____Definitions__OVEBT,type,
    produc2982872950893828659T_VEBT: $o > vEBT_VEBT > produc2504756804600209347T_VEBT ).

thf(sy_c_Product__Type_OPair_001t__Code____Numeral__Ointeger_001_Eo,type,
    produc6677183202524767010eger_o: code_integer > $o > produc6271795597528267376eger_o ).

thf(sy_c_Product__Type_OPair_001t__Code____Numeral__Ointeger_001t__Code____Numeral__Ointeger,type,
    produc1086072967326762835nteger: code_integer > code_integer > produc8923325533196201883nteger ).

thf(sy_c_Product__Type_OPair_001t__Int__Oint_001t__Int__Oint,type,
    product_Pair_int_int: int > int > product_prod_int_int ).

thf(sy_c_Product__Type_OPair_001t__Nat__Onat_001t__Nat__Onat,type,
    product_Pair_nat_nat: nat > nat > product_prod_nat_nat ).

thf(sy_c_Product__Type_OPair_001t__Nat__Onat_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    produc487386426758144856at_nat: nat > product_prod_nat_nat > produc7248412053542808358at_nat ).

thf(sy_c_Product__Type_OPair_001t__Num__Onum_001t__Num__Onum,type,
    product_Pair_num_num: num > num > product_prod_num_num ).

thf(sy_c_Product__Type_OPair_001t__Option__Ooption_It__Nat__Onat_J_001t__Option__Ooption_It__Nat__Onat_J,type,
    produc5098337634421038937on_nat: option_nat > option_nat > produc4953844613479565601on_nat ).

thf(sy_c_Product__Type_OPair_001t__Option__Ooption_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_001t__Option__Ooption_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    produc488173922507101015at_nat: option4927543243414619207at_nat > option4927543243414619207at_nat > produc6121120109295599847at_nat ).

thf(sy_c_Product__Type_OPair_001t__Set__Oset_It__Complex__Ocomplex_J_001t__Set__Oset_It__Complex__Ocomplex_J,type,
    produc3790773574474814305omplex: set_complex > set_complex > produc8064648209034914857omplex ).

thf(sy_c_Product__Type_OPair_001t__Set__Oset_It__Int__Oint_J_001t__Set__Oset_It__Int__Oint_J,type,
    produc6363374080413544029et_int: set_int > set_int > produc2115011035271226405et_int ).

thf(sy_c_Product__Type_OPair_001t__Set__Oset_It__Nat__Onat_J_001t__Set__Oset_It__Nat__Onat_J,type,
    produc4532415448927165861et_nat: set_nat > set_nat > produc7819656566062154093et_nat ).

thf(sy_c_Product__Type_OPair_001t__VEBT____Definitions__OVEBT_001_Eo,type,
    produc8721562602347293563VEBT_o: vEBT_VEBT > $o > produc334124729049499915VEBT_o ).

thf(sy_c_Product__Type_OPair_001t__VEBT____Definitions__OVEBT_001t__Int__Oint,type,
    produc736041933913180425BT_int: vEBT_VEBT > int > produc4894624898956917775BT_int ).

thf(sy_c_Product__Type_OPair_001t__VEBT____Definitions__OVEBT_001t__Nat__Onat,type,
    produc738532404422230701BT_nat: vEBT_VEBT > nat > produc9072475918466114483BT_nat ).

thf(sy_c_Product__Type_OPair_001t__VEBT____Definitions__OVEBT_001t__VEBT____Definitions__OVEBT,type,
    produc537772716801021591T_VEBT: vEBT_VEBT > vEBT_VEBT > produc8243902056947475879T_VEBT ).

thf(sy_c_Product__Type_Oapsnd_001t__Code____Numeral__Ointeger_001t__Code____Numeral__Ointeger_001t__Code____Numeral__Ointeger,type,
    produc6499014454317279255nteger: ( code_integer > code_integer ) > produc8923325533196201883nteger > produc8923325533196201883nteger ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Code____Numeral__Ointeger_001_Eo_001_Eo,type,
    produc7828578312038201481er_o_o: ( code_integer > $o > $o ) > produc6271795597528267376eger_o > $o ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Code____Numeral__Ointeger_001_Eo_001t__Complex__Ocomplex,type,
    produc3098450326686311421omplex: ( code_integer > $o > complex ) > produc6271795597528267376eger_o > complex ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Code____Numeral__Ointeger_001_Eo_001t__Int__Oint,type,
    produc6624879667574496123_o_int: ( code_integer > $o > int ) > produc6271795597528267376eger_o > int ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Code____Numeral__Ointeger_001_Eo_001t__Nat__Onat,type,
    produc6627370138083546399_o_nat: ( code_integer > $o > nat ) > produc6271795597528267376eger_o > nat ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Code____Numeral__Ointeger_001_Eo_001t__Real__Oreal,type,
    produc625603438930919547o_real: ( code_integer > $o > real ) > produc6271795597528267376eger_o > real ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Code____Numeral__Ointeger_001_Eo_001t__Set__Oset_It__Complex__Ocomplex_J,type,
    produc1043322548047392435omplex: ( code_integer > $o > set_complex ) > produc6271795597528267376eger_o > set_complex ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Code____Numeral__Ointeger_001_Eo_001t__Set__Oset_It__Int__Oint_J,type,
    produc1253318751659547953et_int: ( code_integer > $o > set_int ) > produc6271795597528267376eger_o > set_int ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Code____Numeral__Ointeger_001_Eo_001t__Set__Oset_It__Nat__Onat_J,type,
    produc5431169771168744661et_nat: ( code_integer > $o > set_nat ) > produc6271795597528267376eger_o > set_nat ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Code____Numeral__Ointeger_001_Eo_001t__Set__Oset_It__Real__Oreal_J,type,
    produc242741666403216561t_real: ( code_integer > $o > set_real ) > produc6271795597528267376eger_o > set_real ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Code____Numeral__Ointeger_001_Eo_001t__String__Ochar,type,
    produc4188289175737317920o_char: ( code_integer > $o > char ) > produc6271795597528267376eger_o > char ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Code____Numeral__Ointeger_001t__Code____Numeral__Ointeger_001_Eo,type,
    produc2066375834425727024eger_o: ( code_integer > code_integer > $o ) > produc8923325533196201883nteger > $o ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Code____Numeral__Ointeger_001t__Code____Numeral__Ointeger_001t__Complex__Ocomplex,type,
    produc1350339802218514966omplex: ( code_integer > code_integer > complex ) > produc8923325533196201883nteger > complex ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Code____Numeral__Ointeger_001t__Code____Numeral__Ointeger_001t__Int__Oint,type,
    produc1553301316500091796er_int: ( code_integer > code_integer > int ) > produc8923325533196201883nteger > int ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Code____Numeral__Ointeger_001t__Code____Numeral__Ointeger_001t__Nat__Onat,type,
    produc1555791787009142072er_nat: ( code_integer > code_integer > nat ) > produc8923325533196201883nteger > nat ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Code____Numeral__Ointeger_001t__Code____Numeral__Ointeger_001t__Num__Onum,type,
    produc7336495610019696514er_num: ( code_integer > code_integer > num ) > produc8923325533196201883nteger > num ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Code____Numeral__Ointeger_001t__Code____Numeral__Ointeger_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_M_Eo_J,type,
    produc9125791028180074456eger_o: ( code_integer > code_integer > produc6271795597528267376eger_o ) > produc8923325533196201883nteger > produc6271795597528267376eger_o ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Code____Numeral__Ointeger_001t__Code____Numeral__Ointeger_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J,type,
    produc6916734918728496179nteger: ( code_integer > code_integer > produc8923325533196201883nteger ) > produc8923325533196201883nteger > produc8923325533196201883nteger ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Code____Numeral__Ointeger_001t__Code____Numeral__Ointeger_001t__Real__Oreal,type,
    produc7810893202946726932r_real: ( code_integer > code_integer > real ) > produc8923325533196201883nteger > real ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Code____Numeral__Ointeger_001t__Code____Numeral__Ointeger_001t__Set__Oset_It__Complex__Ocomplex_J,type,
    produc1861562869612671180omplex: ( code_integer > code_integer > set_complex ) > produc8923325533196201883nteger > set_complex ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Code____Numeral__Ointeger_001t__Code____Numeral__Ointeger_001t__Set__Oset_It__Int__Oint_J,type,
    produc7650128252974010698et_int: ( code_integer > code_integer > set_int ) > produc8923325533196201883nteger > set_int ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Code____Numeral__Ointeger_001t__Code____Numeral__Ointeger_001t__Set__Oset_It__Nat__Onat_J,type,
    produc2604607235628431598et_nat: ( code_integer > code_integer > set_nat ) > produc8923325533196201883nteger > set_nat ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Code____Numeral__Ointeger_001t__Code____Numeral__Ointeger_001t__Set__Oset_It__Real__Oreal_J,type,
    produc8892033678785193034t_real: ( code_integer > code_integer > set_real ) > produc8923325533196201883nteger > set_real ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Complex__Ocomplex_001t__Complex__Ocomplex_001_Eo,type,
    produc6771430404735790350plex_o: ( complex > complex > $o ) > produc4411394909380815293omplex > $o ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Int__Oint_001t__Int__Oint_001_Eo,type,
    produc4947309494688390418_int_o: ( int > int > $o ) > product_prod_int_int > $o ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Int__Oint_001t__Int__Oint_001t__Int__Oint,type,
    produc8211389475949308722nt_int: ( int > int > int ) > product_prod_int_int > int ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Int__Oint_001t__Int__Oint_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J,type,
    produc4245557441103728435nt_int: ( int > int > product_prod_int_int ) > product_prod_int_int > product_prod_int_int ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Nat__Onat_001t__Nat__Onat_001_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_M_Eo_J,type,
    produc8739625826339149834_nat_o: ( nat > nat > product_prod_nat_nat > $o ) > product_prod_nat_nat > product_prod_nat_nat > $o ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Nat__Onat_001t__Nat__Onat_001_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    produc27273713700761075at_nat: ( nat > nat > product_prod_nat_nat > product_prod_nat_nat ) > product_prod_nat_nat > product_prod_nat_nat > product_prod_nat_nat ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Nat__Onat_001t__Nat__Onat_001_Eo,type,
    produc6081775807080527818_nat_o: ( nat > nat > $o ) > product_prod_nat_nat > $o ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Nat__Onat_001t__Nat__Onat_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    produc2626176000494625587at_nat: ( nat > nat > product_prod_nat_nat ) > product_prod_nat_nat > product_prod_nat_nat ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Num__Onum_001t__Num__Onum_001_Eo,type,
    produc5703948589228662326_num_o: ( num > num > $o ) > product_prod_num_num > $o ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Num__Onum_001t__Num__Onum_001t__Complex__Ocomplex,type,
    produc8953156416239033744omplex: ( num > num > complex ) > product_prod_num_num > complex ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Num__Onum_001t__Num__Onum_001t__Real__Oreal,type,
    produc1489372718088455822m_real: ( num > num > real ) > product_prod_num_num > real ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Num__Onum_001t__Num__Onum_001t__Set__Oset_It__Complex__Ocomplex_J,type,
    produc2866383454006189126omplex: ( num > num > set_complex ) > product_prod_num_num > set_complex ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Num__Onum_001t__Num__Onum_001t__Set__Oset_It__Real__Oreal_J,type,
    produc8296048397933160132t_real: ( num > num > set_real ) > product_prod_num_num > set_real ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Real__Oreal_001t__Real__Oreal_001_Eo,type,
    produc5414030515140494994real_o: ( real > real > $o ) > produc2422161461964618553l_real > $o ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Set__Oset_It__Complex__Ocomplex_J_001t__Set__Oset_It__Complex__Ocomplex_J_001_Eo,type,
    produc3914248068834153634plex_o: ( set_complex > set_complex > $o ) > produc8064648209034914857omplex > $o ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Set__Oset_It__Int__Oint_J_001t__Set__Oset_It__Int__Oint_J_001_Eo,type,
    produc4109468873575309990_int_o: ( set_int > set_int > $o ) > produc2115011035271226405et_int > $o ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Set__Oset_It__Nat__Onat_J_001t__Set__Oset_It__Nat__Onat_J_001_Eo,type,
    produc6247414631856714078_nat_o: ( set_nat > set_nat > $o ) > produc7819656566062154093et_nat > $o ).

thf(sy_c_Product__Type_Oprod_Ofst_001t__Code____Numeral__Ointeger_001t__Code____Numeral__Ointeger,type,
    produc8508995932063986495nteger: produc8923325533196201883nteger > code_integer ).

thf(sy_c_Product__Type_Oprod_Ofst_001t__Int__Oint_001t__Int__Oint,type,
    product_fst_int_int: product_prod_int_int > int ).

thf(sy_c_Product__Type_Oprod_Ofst_001t__Nat__Onat_001t__Nat__Onat,type,
    product_fst_nat_nat: product_prod_nat_nat > nat ).

thf(sy_c_Product__Type_Oprod_Osnd_001t__Int__Oint_001t__Int__Oint,type,
    product_snd_int_int: product_prod_int_int > int ).

thf(sy_c_Product__Type_Oprod_Osnd_001t__Nat__Onat_001t__Nat__Onat,type,
    product_snd_nat_nat: product_prod_nat_nat > nat ).

thf(sy_c_Rat_OFrct,type,
    frct: product_prod_int_int > rat ).

thf(sy_c_Rat_Onormalize,type,
    normalize: product_prod_int_int > product_prod_int_int ).

thf(sy_c_Rat_Oquotient__of,type,
    quotient_of: rat > product_prod_int_int ).

thf(sy_c_Real__Vector__Spaces_OReals_001t__Complex__Ocomplex,type,
    real_V2521375963428798218omplex: set_complex ).

thf(sy_c_Real__Vector__Spaces_Obounded__linear_001t__Real__Oreal_001t__Real__Oreal,type,
    real_V5970128139526366754l_real: ( real > real ) > $o ).

thf(sy_c_Real__Vector__Spaces_Odist__class_Odist_001t__Complex__Ocomplex,type,
    real_V3694042436643373181omplex: complex > complex > real ).

thf(sy_c_Real__Vector__Spaces_Odist__class_Odist_001t__Real__Oreal,type,
    real_V975177566351809787t_real: real > real > real ).

thf(sy_c_Real__Vector__Spaces_Onorm__class_Onorm_001t__Complex__Ocomplex,type,
    real_V1022390504157884413omplex: complex > real ).

thf(sy_c_Real__Vector__Spaces_Oof__real_001t__Complex__Ocomplex,type,
    real_V4546457046886955230omplex: real > complex ).

thf(sy_c_Real__Vector__Spaces_OscaleR__class_OscaleR_001t__Complex__Ocomplex,type,
    real_V2046097035970521341omplex: real > complex > complex ).

thf(sy_c_Real__Vector__Spaces_OscaleR__class_OscaleR_001t__Real__Oreal,type,
    real_V1485227260804924795R_real: real > real > real ).

thf(sy_c_Rings_Odivide__class_Odivide_001t__Code____Numeral__Ointeger,type,
    divide6298287555418463151nteger: code_integer > code_integer > code_integer ).

thf(sy_c_Rings_Odivide__class_Odivide_001t__Complex__Ocomplex,type,
    divide1717551699836669952omplex: complex > complex > complex ).

thf(sy_c_Rings_Odivide__class_Odivide_001t__Int__Oint,type,
    divide_divide_int: int > int > int ).

thf(sy_c_Rings_Odivide__class_Odivide_001t__Nat__Onat,type,
    divide_divide_nat: nat > nat > nat ).

thf(sy_c_Rings_Odivide__class_Odivide_001t__Rat__Orat,type,
    divide_divide_rat: rat > rat > rat ).

thf(sy_c_Rings_Odivide__class_Odivide_001t__Real__Oreal,type,
    divide_divide_real: real > real > real ).

thf(sy_c_Rings_Odvd__class_Odvd_001t__Code____Numeral__Ointeger,type,
    dvd_dvd_Code_integer: code_integer > code_integer > $o ).

thf(sy_c_Rings_Odvd__class_Odvd_001t__Complex__Ocomplex,type,
    dvd_dvd_complex: complex > complex > $o ).

thf(sy_c_Rings_Odvd__class_Odvd_001t__Int__Oint,type,
    dvd_dvd_int: int > int > $o ).

thf(sy_c_Rings_Odvd__class_Odvd_001t__Nat__Onat,type,
    dvd_dvd_nat: nat > nat > $o ).

thf(sy_c_Rings_Odvd__class_Odvd_001t__Rat__Orat,type,
    dvd_dvd_rat: rat > rat > $o ).

thf(sy_c_Rings_Odvd__class_Odvd_001t__Real__Oreal,type,
    dvd_dvd_real: real > real > $o ).

thf(sy_c_Rings_Omodulo__class_Omodulo_001t__Code____Numeral__Ointeger,type,
    modulo364778990260209775nteger: code_integer > code_integer > code_integer ).

thf(sy_c_Rings_Omodulo__class_Omodulo_001t__Int__Oint,type,
    modulo_modulo_int: int > int > int ).

thf(sy_c_Rings_Omodulo__class_Omodulo_001t__Nat__Onat,type,
    modulo_modulo_nat: nat > nat > nat ).

thf(sy_c_Rings_Ozero__neq__one__class_Oof__bool_001t__Code____Numeral__Ointeger,type,
    zero_n356916108424825756nteger: $o > code_integer ).

thf(sy_c_Rings_Ozero__neq__one__class_Oof__bool_001t__Complex__Ocomplex,type,
    zero_n1201886186963655149omplex: $o > complex ).

thf(sy_c_Rings_Ozero__neq__one__class_Oof__bool_001t__Int__Oint,type,
    zero_n2684676970156552555ol_int: $o > int ).

thf(sy_c_Rings_Ozero__neq__one__class_Oof__bool_001t__Nat__Onat,type,
    zero_n2687167440665602831ol_nat: $o > nat ).

thf(sy_c_Rings_Ozero__neq__one__class_Oof__bool_001t__Rat__Orat,type,
    zero_n2052037380579107095ol_rat: $o > rat ).

thf(sy_c_Rings_Ozero__neq__one__class_Oof__bool_001t__Real__Oreal,type,
    zero_n3304061248610475627l_real: $o > real ).

thf(sy_c_Series_Osuminf_001t__Real__Oreal,type,
    suminf_real: ( nat > real ) > real ).

thf(sy_c_Series_Osummable_001t__Complex__Ocomplex,type,
    summable_complex: ( nat > complex ) > $o ).

thf(sy_c_Series_Osummable_001t__Real__Oreal,type,
    summable_real: ( nat > real ) > $o ).

thf(sy_c_Series_Osums_001t__Complex__Ocomplex,type,
    sums_complex: ( nat > complex ) > complex > $o ).

thf(sy_c_Series_Osums_001t__Real__Oreal,type,
    sums_real: ( nat > real ) > real > $o ).

thf(sy_c_Set_OCollect_001_Eo,type,
    collect_o: ( $o > $o ) > set_o ).

thf(sy_c_Set_OCollect_001t__Code____Numeral__Ointeger,type,
    collect_Code_integer: ( code_integer > $o ) > set_Code_integer ).

thf(sy_c_Set_OCollect_001t__Complex__Ocomplex,type,
    collect_complex: ( complex > $o ) > set_complex ).

thf(sy_c_Set_OCollect_001t__Int__Oint,type,
    collect_int: ( int > $o ) > set_int ).

thf(sy_c_Set_OCollect_001t__List__Olist_I_Eo_J,type,
    collect_list_o: ( list_o > $o ) > set_list_o ).

thf(sy_c_Set_OCollect_001t__List__Olist_It__Complex__Ocomplex_J,type,
    collect_list_complex: ( list_complex > $o ) > set_list_complex ).

thf(sy_c_Set_OCollect_001t__List__Olist_It__Int__Oint_J,type,
    collect_list_int: ( list_int > $o ) > set_list_int ).

thf(sy_c_Set_OCollect_001t__List__Olist_It__Nat__Onat_J,type,
    collect_list_nat: ( list_nat > $o ) > set_list_nat ).

thf(sy_c_Set_OCollect_001t__List__Olist_It__VEBT____Definitions__OVEBT_J,type,
    collec5608196760682091941T_VEBT: ( list_VEBT_VEBT > $o ) > set_list_VEBT_VEBT ).

thf(sy_c_Set_OCollect_001t__Nat__Onat,type,
    collect_nat: ( nat > $o ) > set_nat ).

thf(sy_c_Set_OCollect_001t__Product____Type__Oprod_It__Complex__Ocomplex_Mt__Complex__Ocomplex_J,type,
    collec8663557070575231912omplex: ( produc4411394909380815293omplex > $o ) > set_Pr5085853215250843933omplex ).

thf(sy_c_Set_OCollect_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J,type,
    collec213857154873943460nt_int: ( product_prod_int_int > $o ) > set_Pr958786334691620121nt_int ).

thf(sy_c_Set_OCollect_001t__Product____Type__Oprod_It__Real__Oreal_Mt__Real__Oreal_J,type,
    collec3799799289383736868l_real: ( produc2422161461964618553l_real > $o ) > set_Pr6218003697084177305l_real ).

thf(sy_c_Set_OCollect_001t__Product____Type__Oprod_It__Set__Oset_It__Complex__Ocomplex_J_Mt__Set__Oset_It__Complex__Ocomplex_J_J,type,
    collec5108298041176329748omplex: ( produc8064648209034914857omplex > $o ) > set_Pr6308028481084910985omplex ).

thf(sy_c_Set_OCollect_001t__Product____Type__Oprod_It__Set__Oset_It__Int__Oint_J_Mt__Set__Oset_It__Int__Oint_J_J,type,
    collec957716948307931664et_int: ( produc2115011035271226405et_int > $o ) > set_Pr2522554150109002629et_int ).

thf(sy_c_Set_OCollect_001t__Product____Type__Oprod_It__Set__Oset_It__Nat__Onat_J_Mt__Set__Oset_It__Nat__Onat_J_J,type,
    collec6662362479098859352et_nat: ( produc7819656566062154093et_nat > $o ) > set_Pr5488025237498180813et_nat ).

thf(sy_c_Set_OCollect_001t__Real__Oreal,type,
    collect_real: ( real > $o ) > set_real ).

thf(sy_c_Set_OCollect_001t__Set__Oset_It__Complex__Ocomplex_J,type,
    collect_set_complex: ( set_complex > $o ) > set_set_complex ).

thf(sy_c_Set_OCollect_001t__Set__Oset_It__Int__Oint_J,type,
    collect_set_int: ( set_int > $o ) > set_set_int ).

thf(sy_c_Set_OCollect_001t__Set__Oset_It__Nat__Onat_J,type,
    collect_set_nat: ( set_nat > $o ) > set_set_nat ).

thf(sy_c_Set_OCollect_001t__VEBT____Definitions__OVEBT,type,
    collect_VEBT_VEBT: ( vEBT_VEBT > $o ) > set_VEBT_VEBT ).

thf(sy_c_Set_OPow_001t__Nat__Onat,type,
    pow_nat: set_nat > set_set_nat ).

thf(sy_c_Set_Oimage_001_Eo_001_Eo,type,
    image_o_o: ( $o > $o ) > set_o > set_o ).

thf(sy_c_Set_Oimage_001_Eo_001t__Int__Oint,type,
    image_o_int: ( $o > int ) > set_o > set_int ).

thf(sy_c_Set_Oimage_001_Eo_001t__Nat__Onat,type,
    image_o_nat: ( $o > nat ) > set_o > set_nat ).

thf(sy_c_Set_Oimage_001_Eo_001t__Rat__Orat,type,
    image_o_rat: ( $o > rat ) > set_o > set_rat ).

thf(sy_c_Set_Oimage_001_Eo_001t__Real__Oreal,type,
    image_o_real: ( $o > real ) > set_o > set_real ).

thf(sy_c_Set_Oimage_001_Eo_001t__VEBT____Definitions__OVEBT,type,
    image_o_VEBT_VEBT: ( $o > vEBT_VEBT ) > set_o > set_VEBT_VEBT ).

thf(sy_c_Set_Oimage_001t__Code____Numeral__Ointeger_001t__Code____Numeral__Ointeger,type,
    image_4470545334726330049nteger: ( code_integer > code_integer ) > set_Code_integer > set_Code_integer ).

thf(sy_c_Set_Oimage_001t__Complex__Ocomplex_001_Eo,type,
    image_complex_o: ( complex > $o ) > set_complex > set_o ).

thf(sy_c_Set_Oimage_001t__Complex__Ocomplex_001t__Complex__Ocomplex,type,
    image_1468599708987790691omplex: ( complex > complex ) > set_complex > set_complex ).

thf(sy_c_Set_Oimage_001t__Complex__Ocomplex_001t__Int__Oint,type,
    image_complex_int: ( complex > int ) > set_complex > set_int ).

thf(sy_c_Set_Oimage_001t__Complex__Ocomplex_001t__Nat__Onat,type,
    image_complex_nat: ( complex > nat ) > set_complex > set_nat ).

thf(sy_c_Set_Oimage_001t__Complex__Ocomplex_001t__Rat__Orat,type,
    image_complex_rat: ( complex > rat ) > set_complex > set_rat ).

thf(sy_c_Set_Oimage_001t__Complex__Ocomplex_001t__Real__Oreal,type,
    image_complex_real: ( complex > real ) > set_complex > set_real ).

thf(sy_c_Set_Oimage_001t__Complex__Ocomplex_001t__VEBT____Definitions__OVEBT,type,
    image_932796090930683071T_VEBT: ( complex > vEBT_VEBT ) > set_complex > set_VEBT_VEBT ).

thf(sy_c_Set_Oimage_001t__Extended____Nat__Oenat_001t__Extended____Nat__Oenat,type,
    image_80655429650038917d_enat: ( extended_enat > extended_enat ) > set_Extended_enat > set_Extended_enat ).

thf(sy_c_Set_Oimage_001t__Int__Oint_001_Eo,type,
    image_int_o: ( int > $o ) > set_int > set_o ).

thf(sy_c_Set_Oimage_001t__Int__Oint_001t__Complex__Ocomplex,type,
    image_int_complex: ( int > complex ) > set_int > set_complex ).

thf(sy_c_Set_Oimage_001t__Int__Oint_001t__Int__Oint,type,
    image_int_int: ( int > int ) > set_int > set_int ).

thf(sy_c_Set_Oimage_001t__Int__Oint_001t__Nat__Onat,type,
    image_int_nat: ( int > nat ) > set_int > set_nat ).

thf(sy_c_Set_Oimage_001t__Int__Oint_001t__Rat__Orat,type,
    image_int_rat: ( int > rat ) > set_int > set_rat ).

thf(sy_c_Set_Oimage_001t__Int__Oint_001t__Real__Oreal,type,
    image_int_real: ( int > real ) > set_int > set_real ).

thf(sy_c_Set_Oimage_001t__Int__Oint_001t__VEBT____Definitions__OVEBT,type,
    image_int_VEBT_VEBT: ( int > vEBT_VEBT ) > set_int > set_VEBT_VEBT ).

thf(sy_c_Set_Oimage_001t__Nat__Onat_001_Eo,type,
    image_nat_o: ( nat > $o ) > set_nat > set_o ).

thf(sy_c_Set_Oimage_001t__Nat__Onat_001t__Complex__Ocomplex,type,
    image_nat_complex: ( nat > complex ) > set_nat > set_complex ).

thf(sy_c_Set_Oimage_001t__Nat__Onat_001t__Int__Oint,type,
    image_nat_int: ( nat > int ) > set_nat > set_int ).

thf(sy_c_Set_Oimage_001t__Nat__Onat_001t__Nat__Onat,type,
    image_nat_nat: ( nat > nat ) > set_nat > set_nat ).

thf(sy_c_Set_Oimage_001t__Nat__Onat_001t__Option__Ooption_It__Nat__Onat_J,type,
    image_nat_option_nat: ( nat > option_nat ) > set_nat > set_option_nat ).

thf(sy_c_Set_Oimage_001t__Nat__Onat_001t__Rat__Orat,type,
    image_nat_rat: ( nat > rat ) > set_nat > set_rat ).

thf(sy_c_Set_Oimage_001t__Nat__Onat_001t__Real__Oreal,type,
    image_nat_real: ( nat > real ) > set_nat > set_real ).

thf(sy_c_Set_Oimage_001t__Nat__Onat_001t__Set__Oset_It__Nat__Onat_J,type,
    image_nat_set_nat: ( nat > set_nat ) > set_nat > set_set_nat ).

thf(sy_c_Set_Oimage_001t__Nat__Onat_001t__String__Ochar,type,
    image_nat_char: ( nat > char ) > set_nat > set_char ).

thf(sy_c_Set_Oimage_001t__Nat__Onat_001t__VEBT____Definitions__OVEBT,type,
    image_nat_VEBT_VEBT: ( nat > vEBT_VEBT ) > set_nat > set_VEBT_VEBT ).

thf(sy_c_Set_Oimage_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_M_Eo_J_001t__Complex__Ocomplex,type,
    image_5588970041277445157omplex: ( produc6271795597528267376eger_o > complex ) > set_Pr448751882837621926eger_o > set_complex ).

thf(sy_c_Set_Oimage_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_M_Eo_J_001t__Int__Oint,type,
    image_6071813479969749923_o_int: ( produc6271795597528267376eger_o > int ) > set_Pr448751882837621926eger_o > set_int ).

thf(sy_c_Set_Oimage_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_M_Eo_J_001t__Nat__Onat,type,
    image_6074303950478800199_o_nat: ( produc6271795597528267376eger_o > nat ) > set_Pr448751882837621926eger_o > set_nat ).

thf(sy_c_Set_Oimage_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_M_Eo_J_001t__Real__Oreal,type,
    image_8872398597051255971o_real: ( produc6271795597528267376eger_o > real ) > set_Pr448751882837621926eger_o > set_real ).

thf(sy_c_Set_Oimage_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J_001t__Complex__Ocomplex,type,
    image_7699685524432242692omplex: ( produc8923325533196201883nteger > complex ) > set_Pr4811707699266497531nteger > set_complex ).

thf(sy_c_Set_Oimage_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J_001t__Int__Oint,type,
    image_7939007701228965250er_int: ( produc8923325533196201883nteger > int ) > set_Pr4811707699266497531nteger > set_int ).

thf(sy_c_Set_Oimage_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J_001t__Nat__Onat,type,
    image_7941498171738015526er_nat: ( produc8923325533196201883nteger > nat ) > set_Pr4811707699266497531nteger > set_nat ).

thf(sy_c_Set_Oimage_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J_001t__Real__Oreal,type,
    image_31552996298088194r_real: ( produc8923325533196201883nteger > real ) > set_Pr4811707699266497531nteger > set_real ).

thf(sy_c_Set_Oimage_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_001t__Option__Ooption_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    image_4198897800814241419at_nat: ( product_prod_nat_nat > option4927543243414619207at_nat ) > set_Pr1261947904930325089at_nat > set_op4508134149509766951at_nat ).

thf(sy_c_Set_Oimage_001t__Product____Type__Oprod_It__Num__Onum_Mt__Num__Onum_J_001t__Complex__Ocomplex,type,
    image_1449772967326807294omplex: ( product_prod_num_num > complex ) > set_Pr8218934625190621173um_num > set_complex ).

thf(sy_c_Set_Oimage_001t__Product____Type__Oprod_It__Num__Onum_Mt__Num__Onum_J_001t__Real__Oreal,type,
    image_8174023053409526524m_real: ( product_prod_num_num > real ) > set_Pr8218934625190621173um_num > set_real ).

thf(sy_c_Set_Oimage_001t__Rat__Orat_001t__Rat__Orat,type,
    image_rat_rat: ( rat > rat ) > set_rat > set_rat ).

thf(sy_c_Set_Oimage_001t__Real__Oreal_001_Eo,type,
    image_real_o: ( real > $o ) > set_real > set_o ).

thf(sy_c_Set_Oimage_001t__Real__Oreal_001t__Complex__Ocomplex,type,
    image_real_complex: ( real > complex ) > set_real > set_complex ).

thf(sy_c_Set_Oimage_001t__Real__Oreal_001t__Filter__Ofilter_It__Product____Type__Oprod_It__Complex__Ocomplex_Mt__Complex__Ocomplex_J_J,type,
    image_5971271580939081552omplex: ( real > filter6041513312241820739omplex ) > set_real > set_fi4554929511873752355omplex ).

thf(sy_c_Set_Oimage_001t__Real__Oreal_001t__Filter__Ofilter_It__Product____Type__Oprod_It__Real__Oreal_Mt__Real__Oreal_J_J,type,
    image_2178119161166701260l_real: ( real > filter2146258269922977983l_real ) > set_real > set_fi7789364187291644575l_real ).

thf(sy_c_Set_Oimage_001t__Real__Oreal_001t__Int__Oint,type,
    image_real_int: ( real > int ) > set_real > set_int ).

thf(sy_c_Set_Oimage_001t__Real__Oreal_001t__Nat__Onat,type,
    image_real_nat: ( real > nat ) > set_real > set_nat ).

thf(sy_c_Set_Oimage_001t__Real__Oreal_001t__Rat__Orat,type,
    image_real_rat: ( real > rat ) > set_real > set_rat ).

thf(sy_c_Set_Oimage_001t__Real__Oreal_001t__Real__Oreal,type,
    image_real_real: ( real > real ) > set_real > set_real ).

thf(sy_c_Set_Oimage_001t__Real__Oreal_001t__VEBT____Definitions__OVEBT,type,
    image_real_VEBT_VEBT: ( real > vEBT_VEBT ) > set_real > set_VEBT_VEBT ).

thf(sy_c_Set_Oimage_001t__Set__Oset_I_Eo_J_001t__Set__Oset_I_Eo_J,type,
    image_set_o_set_o: ( set_o > set_o ) > set_set_o > set_set_o ).

thf(sy_c_Set_Oimage_001t__Set__Oset_It__Complex__Ocomplex_J_001t__Set__Oset_It__Complex__Ocomplex_J,type,
    image_7998606247489673935omplex: ( set_complex > set_complex ) > set_set_complex > set_set_complex ).

thf(sy_c_Set_Oimage_001t__Set__Oset_It__Int__Oint_J_001t__Set__Oset_It__Int__Oint_J,type,
    image_524474410958335435et_int: ( set_int > set_int ) > set_set_int > set_set_int ).

thf(sy_c_Set_Oimage_001t__Set__Oset_It__Nat__Onat_J_001t__Int__Oint,type,
    image_set_nat_int: ( set_nat > int ) > set_set_nat > set_int ).

thf(sy_c_Set_Oimage_001t__Set__Oset_It__Nat__Onat_J_001t__Nat__Onat,type,
    image_set_nat_nat: ( set_nat > nat ) > set_set_nat > set_nat ).

thf(sy_c_Set_Oimage_001t__Set__Oset_It__Nat__Onat_J_001t__Set__Oset_It__Nat__Onat_J,type,
    image_7916887816326733075et_nat: ( set_nat > set_nat ) > set_set_nat > set_set_nat ).

thf(sy_c_Set_Oimage_001t__Set__Oset_It__Real__Oreal_J_001t__Set__Oset_It__Real__Oreal_J,type,
    image_2436557299294012491t_real: ( set_real > set_real ) > set_set_real > set_set_real ).

thf(sy_c_Set_Oimage_001t__Set__Oset_It__Set__Oset_It__Nat__Onat_J_J_001t__Set__Oset_It__Set__Oset_It__Nat__Onat_J_J,type,
    image_7884819252390400639et_nat: ( set_set_nat > set_set_nat ) > set_set_set_nat > set_set_set_nat ).

thf(sy_c_Set_Oimage_001t__Set__Oset_It__VEBT____Definitions__OVEBT_J_001t__Set__Oset_It__VEBT____Definitions__OVEBT_J,type,
    image_1661326939266726661T_VEBT: ( set_VEBT_VEBT > set_VEBT_VEBT ) > set_set_VEBT_VEBT > set_set_VEBT_VEBT ).

thf(sy_c_Set_Oimage_001t__String__Ochar_001t__Nat__Onat,type,
    image_char_nat: ( char > nat ) > set_char > set_nat ).

thf(sy_c_Set_Oimage_001t__VEBT____Definitions__OVEBT_001_Eo,type,
    image_VEBT_VEBT_o: ( vEBT_VEBT > $o ) > set_VEBT_VEBT > set_o ).

thf(sy_c_Set_Oimage_001t__VEBT____Definitions__OVEBT_001t__Int__Oint,type,
    image_VEBT_VEBT_int: ( vEBT_VEBT > int ) > set_VEBT_VEBT > set_int ).

thf(sy_c_Set_Oimage_001t__VEBT____Definitions__OVEBT_001t__Nat__Onat,type,
    image_VEBT_VEBT_nat: ( vEBT_VEBT > nat ) > set_VEBT_VEBT > set_nat ).

thf(sy_c_Set_Oimage_001t__VEBT____Definitions__OVEBT_001t__Real__Oreal,type,
    image_VEBT_VEBT_real: ( vEBT_VEBT > real ) > set_VEBT_VEBT > set_real ).

thf(sy_c_Set_Oimage_001t__VEBT____Definitions__OVEBT_001t__VEBT____Definitions__OVEBT,type,
    image_3375948659692109573T_VEBT: ( vEBT_VEBT > vEBT_VEBT ) > set_VEBT_VEBT > set_VEBT_VEBT ).

thf(sy_c_Set_Oinsert_001_Eo,type,
    insert_o: $o > set_o > set_o ).

thf(sy_c_Set_Oinsert_001t__Complex__Ocomplex,type,
    insert_complex: complex > set_complex > set_complex ).

thf(sy_c_Set_Oinsert_001t__Extended____Nat__Oenat,type,
    insert_Extended_enat: extended_enat > set_Extended_enat > set_Extended_enat ).

thf(sy_c_Set_Oinsert_001t__Int__Oint,type,
    insert_int: int > set_int > set_int ).

thf(sy_c_Set_Oinsert_001t__Nat__Onat,type,
    insert_nat: nat > set_nat > set_nat ).

thf(sy_c_Set_Oinsert_001t__Num__Onum,type,
    insert_num: num > set_num > set_num ).

thf(sy_c_Set_Oinsert_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J,type,
    insert5033312907999012233nt_int: product_prod_int_int > set_Pr958786334691620121nt_int > set_Pr958786334691620121nt_int ).

thf(sy_c_Set_Oinsert_001t__Rat__Orat,type,
    insert_rat: rat > set_rat > set_rat ).

thf(sy_c_Set_Oinsert_001t__Real__Oreal,type,
    insert_real: real > set_real > set_real ).

thf(sy_c_Set_Oinsert_001t__Set__Oset_It__Nat__Onat_J,type,
    insert_set_nat: set_nat > set_set_nat > set_set_nat ).

thf(sy_c_Set_Oinsert_001t__VEBT____Definitions__OVEBT,type,
    insert_VEBT_VEBT: vEBT_VEBT > set_VEBT_VEBT > set_VEBT_VEBT ).

thf(sy_c_Set__Interval_Ofold__atLeastAtMost__nat_001t__Nat__Onat,type,
    set_fo2584398358068434914at_nat: ( nat > nat > nat ) > nat > nat > nat > nat ).

thf(sy_c_Set__Interval_Ofold__atLeastAtMost__nat__rel_001t__Nat__Onat,type,
    set_fo3699595496184130361el_nat: produc4471711990508489141at_nat > produc4471711990508489141at_nat > $o ).

thf(sy_c_Set__Interval_Oord__class_OatLeastAtMost_001_Eo,type,
    set_or8904488021354931149Most_o: $o > $o > set_o ).

thf(sy_c_Set__Interval_Oord__class_OatLeastAtMost_001t__Code____Numeral__Ointeger,type,
    set_or189985376899183464nteger: code_integer > code_integer > set_Code_integer ).

thf(sy_c_Set__Interval_Oord__class_OatLeastAtMost_001t__Int__Oint,type,
    set_or1266510415728281911st_int: int > int > set_int ).

thf(sy_c_Set__Interval_Oord__class_OatLeastAtMost_001t__Nat__Onat,type,
    set_or1269000886237332187st_nat: nat > nat > set_nat ).

thf(sy_c_Set__Interval_Oord__class_OatLeastAtMost_001t__Num__Onum,type,
    set_or7049704709247886629st_num: num > num > set_num ).

thf(sy_c_Set__Interval_Oord__class_OatLeastAtMost_001t__Rat__Orat,type,
    set_or633870826150836451st_rat: rat > rat > set_rat ).

thf(sy_c_Set__Interval_Oord__class_OatLeastAtMost_001t__Real__Oreal,type,
    set_or1222579329274155063t_real: real > real > set_real ).

thf(sy_c_Set__Interval_Oord__class_OatLeastAtMost_001t__Set__Oset_It__Int__Oint_J,type,
    set_or370866239135849197et_int: set_int > set_int > set_set_int ).

thf(sy_c_Set__Interval_Oord__class_OatLeastAtMost_001t__Set__Oset_It__Nat__Onat_J,type,
    set_or4548717258645045905et_nat: set_nat > set_nat > set_set_nat ).

thf(sy_c_Set__Interval_Oord__class_OatLeastLessThan_001t__Int__Oint,type,
    set_or4662586982721622107an_int: int > int > set_int ).

thf(sy_c_Set__Interval_Oord__class_OatLeastLessThan_001t__Nat__Onat,type,
    set_or4665077453230672383an_nat: nat > nat > set_nat ).

thf(sy_c_Set__Interval_Oord__class_OatLeast_001t__Nat__Onat,type,
    set_ord_atLeast_nat: nat > set_nat ).

thf(sy_c_Set__Interval_Oord__class_OatLeast_001t__Real__Oreal,type,
    set_ord_atLeast_real: real > set_real ).

thf(sy_c_Set__Interval_Oord__class_OatMost_001t__Int__Oint,type,
    set_ord_atMost_int: int > set_int ).

thf(sy_c_Set__Interval_Oord__class_OatMost_001t__Nat__Onat,type,
    set_ord_atMost_nat: nat > set_nat ).

thf(sy_c_Set__Interval_Oord__class_OgreaterThanAtMost_001t__Int__Oint,type,
    set_or6656581121297822940st_int: int > int > set_int ).

thf(sy_c_Set__Interval_Oord__class_OgreaterThanAtMost_001t__Nat__Onat,type,
    set_or6659071591806873216st_nat: nat > nat > set_nat ).

thf(sy_c_Set__Interval_Oord__class_OgreaterThanLessThan_001t__Int__Oint,type,
    set_or5832277885323065728an_int: int > int > set_int ).

thf(sy_c_Set__Interval_Oord__class_OgreaterThanLessThan_001t__Nat__Onat,type,
    set_or5834768355832116004an_nat: nat > nat > set_nat ).

thf(sy_c_Set__Interval_Oord__class_OgreaterThanLessThan_001t__Real__Oreal,type,
    set_or1633881224788618240n_real: real > real > set_real ).

thf(sy_c_Set__Interval_Oord__class_OgreaterThan_001t__Nat__Onat,type,
    set_or1210151606488870762an_nat: nat > set_nat ).

thf(sy_c_Set__Interval_Oord__class_OgreaterThan_001t__Real__Oreal,type,
    set_or5849166863359141190n_real: real > set_real ).

thf(sy_c_Set__Interval_Oord__class_OlessThan_001t__Int__Oint,type,
    set_ord_lessThan_int: int > set_int ).

thf(sy_c_Set__Interval_Oord__class_OlessThan_001t__Nat__Onat,type,
    set_ord_lessThan_nat: nat > set_nat ).

thf(sy_c_Set__Interval_Oord__class_OlessThan_001t__Real__Oreal,type,
    set_or5984915006950818249n_real: real > set_real ).

thf(sy_c_String_Oascii__of,type,
    ascii_of: char > char ).

thf(sy_c_String_Ochar_OChar,type,
    char2: $o > $o > $o > $o > $o > $o > $o > $o > char ).

thf(sy_c_String_Ochar__of__integer,type,
    char_of_integer: code_integer > char ).

thf(sy_c_String_Ocomm__semiring__1__class_Oof__char_001t__Nat__Onat,type,
    comm_s629917340098488124ar_nat: char > nat ).

thf(sy_c_String_Ointeger__of__char,type,
    integer_of_char: char > code_integer ).

thf(sy_c_String_Ounique__euclidean__semiring__with__bit__operations__class_Ochar__of_001t__Nat__Onat,type,
    unique3096191561947761185of_nat: nat > char ).

thf(sy_c_Topological__Spaces_Ocontinuous_001t__Real__Oreal_001t__Real__Oreal,type,
    topolo4422821103128117721l_real: filter_real > ( real > real ) > $o ).

thf(sy_c_Topological__Spaces_Ocontinuous__on_001t__Real__Oreal_001t__Real__Oreal,type,
    topolo5044208981011980120l_real: set_real > ( real > real ) > $o ).

thf(sy_c_Topological__Spaces_Omonoseq_001t__Real__Oreal,type,
    topolo6980174941875973593q_real: ( nat > real ) > $o ).

thf(sy_c_Topological__Spaces_Oopen__class_Oopen_001t__Complex__Ocomplex,type,
    topolo4110288021797289639omplex: set_complex > $o ).

thf(sy_c_Topological__Spaces_Oopen__class_Oopen_001t__Real__Oreal,type,
    topolo4860482606490270245n_real: set_real > $o ).

thf(sy_c_Topological__Spaces_Otopological__space__class_Oat__within_001t__Real__Oreal,type,
    topolo2177554685111907308n_real: real > set_real > filter_real ).

thf(sy_c_Topological__Spaces_Otopological__space__class_Onhds_001t__Real__Oreal,type,
    topolo2815343760600316023s_real: real > filter_real ).

thf(sy_c_Topological__Spaces_Ouniform__space__class_OCauchy_001t__Complex__Ocomplex,type,
    topolo6517432010174082258omplex: ( nat > complex ) > $o ).

thf(sy_c_Topological__Spaces_Ouniform__space__class_OCauchy_001t__Real__Oreal,type,
    topolo4055970368930404560y_real: ( nat > real ) > $o ).

thf(sy_c_Topological__Spaces_Ouniformity__class_Ouniformity_001t__Complex__Ocomplex,type,
    topolo896644834953643431omplex: filter6041513312241820739omplex ).

thf(sy_c_Topological__Spaces_Ouniformity__class_Ouniformity_001t__Real__Oreal,type,
    topolo1511823702728130853y_real: filter2146258269922977983l_real ).

thf(sy_c_Transcendental_Oarccos,type,
    arccos: real > real ).

thf(sy_c_Transcendental_Oarcosh_001t__Real__Oreal,type,
    arcosh_real: real > real ).

thf(sy_c_Transcendental_Oarcsin,type,
    arcsin: real > real ).

thf(sy_c_Transcendental_Oarctan,type,
    arctan: real > real ).

thf(sy_c_Transcendental_Oarsinh_001t__Real__Oreal,type,
    arsinh_real: real > real ).

thf(sy_c_Transcendental_Oartanh_001t__Real__Oreal,type,
    artanh_real: real > real ).

thf(sy_c_Transcendental_Ocos_001t__Real__Oreal,type,
    cos_real: real > real ).

thf(sy_c_Transcendental_Ocos__coeff,type,
    cos_coeff: nat > real ).

thf(sy_c_Transcendental_Ocosh_001t__Real__Oreal,type,
    cosh_real: real > real ).

thf(sy_c_Transcendental_Ocot_001t__Real__Oreal,type,
    cot_real: real > real ).

thf(sy_c_Transcendental_Oexp_001t__Complex__Ocomplex,type,
    exp_complex: complex > complex ).

thf(sy_c_Transcendental_Oexp_001t__Real__Oreal,type,
    exp_real: real > real ).

thf(sy_c_Transcendental_Oln__class_Oln_001t__Real__Oreal,type,
    ln_ln_real: real > real ).

thf(sy_c_Transcendental_Olog,type,
    log: real > real > real ).

thf(sy_c_Transcendental_Opi,type,
    pi: real ).

thf(sy_c_Transcendental_Opowr_001t__Real__Oreal,type,
    powr_real: real > real > real ).

thf(sy_c_Transcendental_Osin_001t__Real__Oreal,type,
    sin_real: real > real ).

thf(sy_c_Transcendental_Osin__coeff,type,
    sin_coeff: nat > real ).

thf(sy_c_Transcendental_Osinh_001t__Real__Oreal,type,
    sinh_real: real > real ).

thf(sy_c_Transcendental_Otan_001t__Real__Oreal,type,
    tan_real: real > real ).

thf(sy_c_Transcendental_Otanh_001t__Real__Oreal,type,
    tanh_real: real > real ).

thf(sy_c_VEBT__Bounds_OT_092_060_094sub_062m_092_060_094sub_062e_092_060_094sub_062m_092_060_094sub_062b_092_060_094sub_062e_092_060_094sub_062r,type,
    vEBT_T_m_e_m_b_e_r: vEBT_VEBT > nat > nat ).

thf(sy_c_VEBT__Bounds_OT_092_060_094sub_062m_092_060_094sub_062e_092_060_094sub_062m_092_060_094sub_062b_092_060_094sub_062e_092_060_094sub_062r_H,type,
    vEBT_T_m_e_m_b_e_r2: vEBT_VEBT > nat > nat ).

thf(sy_c_VEBT__Bounds_OT_092_060_094sub_062m_092_060_094sub_062e_092_060_094sub_062m_092_060_094sub_062b_092_060_094sub_062e_092_060_094sub_062r_H__rel,type,
    vEBT_T8099345112685741742_r_rel: produc9072475918466114483BT_nat > produc9072475918466114483BT_nat > $o ).

thf(sy_c_VEBT__Bounds_OT_092_060_094sub_062m_092_060_094sub_062e_092_060_094sub_062m_092_060_094sub_062b_092_060_094sub_062e_092_060_094sub_062r__rel,type,
    vEBT_T5837161174952499735_r_rel: produc9072475918466114483BT_nat > produc9072475918466114483BT_nat > $o ).

thf(sy_c_VEBT__Definitions_OVEBT_OLeaf,type,
    vEBT_Leaf: $o > $o > vEBT_VEBT ).

thf(sy_c_VEBT__Definitions_OVEBT_ONode,type,
    vEBT_Node: option4927543243414619207at_nat > nat > list_VEBT_VEBT > vEBT_VEBT > vEBT_VEBT ).

thf(sy_c_VEBT__Definitions_OVEBT_Osize__VEBT,type,
    vEBT_size_VEBT: vEBT_VEBT > nat ).

thf(sy_c_VEBT__Definitions_OVEBT__internal_Oboth__member__options,type,
    vEBT_V8194947554948674370ptions: vEBT_VEBT > nat > $o ).

thf(sy_c_VEBT__Definitions_OVEBT__internal_Ohigh,type,
    vEBT_VEBT_high: nat > nat > nat ).

thf(sy_c_VEBT__Definitions_OVEBT__internal_Oin__children,type,
    vEBT_V5917875025757280293ildren: nat > list_VEBT_VEBT > nat > $o ).

thf(sy_c_VEBT__Definitions_OVEBT__internal_Olow,type,
    vEBT_VEBT_low: nat > nat > nat ).

thf(sy_c_VEBT__Definitions_OVEBT__internal_Omembermima,type,
    vEBT_VEBT_membermima: vEBT_VEBT > nat > $o ).

thf(sy_c_VEBT__Definitions_OVEBT__internal_Omembermima__rel,type,
    vEBT_V4351362008482014158ma_rel: produc9072475918466114483BT_nat > produc9072475918466114483BT_nat > $o ).

thf(sy_c_VEBT__Definitions_OVEBT__internal_Onaive__member,type,
    vEBT_V5719532721284313246member: vEBT_VEBT > nat > $o ).

thf(sy_c_VEBT__Definitions_OVEBT__internal_Onaive__member__rel,type,
    vEBT_V5765760719290551771er_rel: produc9072475918466114483BT_nat > produc9072475918466114483BT_nat > $o ).

thf(sy_c_VEBT__Definitions_OVEBT__internal_Ovalid_H,type,
    vEBT_VEBT_valid: vEBT_VEBT > nat > $o ).

thf(sy_c_VEBT__Definitions_Oinvar__vebt,type,
    vEBT_invar_vebt: vEBT_VEBT > nat > $o ).

thf(sy_c_VEBT__Definitions_Oset__vebt,type,
    vEBT_set_vebt: vEBT_VEBT > set_nat ).

thf(sy_c_VEBT__Definitions_Ovebt__buildup,type,
    vEBT_vebt_buildup: nat > vEBT_VEBT ).

thf(sy_c_VEBT__Definitions_Ovebt__buildup__rel,type,
    vEBT_v4011308405150292612up_rel: nat > nat > $o ).

thf(sy_c_VEBT__Height_OVEBT__internal_Oheight,type,
    vEBT_VEBT_height: vEBT_VEBT > nat ).

thf(sy_c_VEBT__Height_OVEBT__internal_Oheight__rel,type,
    vEBT_VEBT_height_rel: vEBT_VEBT > vEBT_VEBT > $o ).

thf(sy_c_VEBT__Insert_Ovebt__insert,type,
    vEBT_vebt_insert: vEBT_VEBT > nat > vEBT_VEBT ).

thf(sy_c_VEBT__Insert_Ovebt__insert__rel,type,
    vEBT_vebt_insert_rel: produc9072475918466114483BT_nat > produc9072475918466114483BT_nat > $o ).

thf(sy_c_VEBT__Member_OVEBT__internal_Obit__concat,type,
    vEBT_VEBT_bit_concat: nat > nat > nat > nat ).

thf(sy_c_VEBT__Member_OVEBT__internal_OminNull,type,
    vEBT_VEBT_minNull: vEBT_VEBT > $o ).

thf(sy_c_VEBT__Member_OVEBT__internal_OminNull__rel,type,
    vEBT_V6963167321098673237ll_rel: vEBT_VEBT > vEBT_VEBT > $o ).

thf(sy_c_VEBT__Member_OVEBT__internal_Oset__vebt_H,type,
    vEBT_VEBT_set_vebt: vEBT_VEBT > set_nat ).

thf(sy_c_VEBT__Member_Ovebt__member,type,
    vEBT_vebt_member: vEBT_VEBT > nat > $o ).

thf(sy_c_VEBT__Member_Ovebt__member__rel,type,
    vEBT_vebt_member_rel: produc9072475918466114483BT_nat > produc9072475918466114483BT_nat > $o ).

thf(sy_c_VEBT__MinMax_OVEBT__internal_Oadd,type,
    vEBT_VEBT_add: option_nat > option_nat > option_nat ).

thf(sy_c_VEBT__MinMax_OVEBT__internal_Ogreater,type,
    vEBT_VEBT_greater: option_nat > option_nat > $o ).

thf(sy_c_VEBT__MinMax_OVEBT__internal_Oless,type,
    vEBT_VEBT_less: option_nat > option_nat > $o ).

thf(sy_c_VEBT__MinMax_OVEBT__internal_Olesseq,type,
    vEBT_VEBT_lesseq: option_nat > option_nat > $o ).

thf(sy_c_VEBT__MinMax_OVEBT__internal_Omax__in__set,type,
    vEBT_VEBT_max_in_set: set_nat > nat > $o ).

thf(sy_c_VEBT__MinMax_OVEBT__internal_Omin__in__set,type,
    vEBT_VEBT_min_in_set: set_nat > nat > $o ).

thf(sy_c_VEBT__MinMax_OVEBT__internal_Omul,type,
    vEBT_VEBT_mul: option_nat > option_nat > option_nat ).

thf(sy_c_VEBT__MinMax_OVEBT__internal_Ooption__shift_001t__Nat__Onat,type,
    vEBT_V4262088993061758097ft_nat: ( nat > nat > nat ) > option_nat > option_nat > option_nat ).

thf(sy_c_VEBT__MinMax_OVEBT__internal_Ooption__shift_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    vEBT_V1502963449132264192at_nat: ( product_prod_nat_nat > product_prod_nat_nat > product_prod_nat_nat ) > option4927543243414619207at_nat > option4927543243414619207at_nat > option4927543243414619207at_nat ).

thf(sy_c_VEBT__MinMax_OVEBT__internal_Ooption__shift__rel_001t__Nat__Onat,type,
    vEBT_V3895251965096974666el_nat: produc8306885398267862888on_nat > produc8306885398267862888on_nat > $o ).

thf(sy_c_VEBT__MinMax_OVEBT__internal_Ooption__shift__rel_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    vEBT_V7235779383477046023at_nat: produc5542196010084753463at_nat > produc5542196010084753463at_nat > $o ).

thf(sy_c_VEBT__MinMax_OVEBT__internal_Opower,type,
    vEBT_VEBT_power: option_nat > option_nat > option_nat ).

thf(sy_c_VEBT__MinMax_Ovebt__maxt,type,
    vEBT_vebt_maxt: vEBT_VEBT > option_nat ).

thf(sy_c_VEBT__MinMax_Ovebt__maxt__rel,type,
    vEBT_vebt_maxt_rel: vEBT_VEBT > vEBT_VEBT > $o ).

thf(sy_c_VEBT__MinMax_Ovebt__mint,type,
    vEBT_vebt_mint: vEBT_VEBT > option_nat ).

thf(sy_c_VEBT__MinMax_Ovebt__mint__rel,type,
    vEBT_vebt_mint_rel: vEBT_VEBT > vEBT_VEBT > $o ).

thf(sy_c_VEBT__Pred_Ois__pred__in__set,type,
    vEBT_is_pred_in_set: set_nat > nat > nat > $o ).

thf(sy_c_VEBT__Pred_Ovebt__pred,type,
    vEBT_vebt_pred: vEBT_VEBT > nat > option_nat ).

thf(sy_c_VEBT__Pred_Ovebt__pred__rel,type,
    vEBT_vebt_pred_rel: produc9072475918466114483BT_nat > produc9072475918466114483BT_nat > $o ).

thf(sy_c_VEBT__Succ_Ois__succ__in__set,type,
    vEBT_is_succ_in_set: set_nat > nat > nat > $o ).

thf(sy_c_VEBT__Succ_Ovebt__succ,type,
    vEBT_vebt_succ: vEBT_VEBT > nat > option_nat ).

thf(sy_c_VEBT__Succ_Ovebt__succ__rel,type,
    vEBT_vebt_succ_rel: produc9072475918466114483BT_nat > produc9072475918466114483BT_nat > $o ).

thf(sy_c_Wellfounded_Oaccp_001t__Nat__Onat,type,
    accp_nat: ( nat > nat > $o ) > nat > $o ).

thf(sy_c_Wellfounded_Oaccp_001t__Product____Type__Oprod_I_062_It__Nat__Onat_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_J,type,
    accp_P6019419558468335806at_nat: ( produc4471711990508489141at_nat > produc4471711990508489141at_nat > $o ) > produc4471711990508489141at_nat > $o ).

thf(sy_c_Wellfounded_Oaccp_001t__Product____Type__Oprod_I_062_It__Nat__Onat_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_Mt__Product____Type__Oprod_It__Option__Ooption_It__Nat__Onat_J_Mt__Option__Ooption_It__Nat__Onat_J_J_J,type,
    accp_P5496254298877145759on_nat: ( produc8306885398267862888on_nat > produc8306885398267862888on_nat > $o ) > produc8306885398267862888on_nat > $o ).

thf(sy_c_Wellfounded_Oaccp_001t__Product____Type__Oprod_I_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_M_062_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_J_Mt__Product____Type__Oprod_It__Option__Ooption_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_Mt__Option__Ooption_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_J_J,type,
    accp_P3267385326087170368at_nat: ( produc5542196010084753463at_nat > produc5542196010084753463at_nat > $o ) > produc5542196010084753463at_nat > $o ).

thf(sy_c_Wellfounded_Oaccp_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J,type,
    accp_P1096762738010456898nt_int: ( product_prod_int_int > product_prod_int_int > $o ) > product_prod_int_int > $o ).

thf(sy_c_Wellfounded_Oaccp_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    accp_P4275260045618599050at_nat: ( product_prod_nat_nat > product_prod_nat_nat > $o ) > product_prod_nat_nat > $o ).

thf(sy_c_Wellfounded_Oaccp_001t__Product____Type__Oprod_It__Num__Onum_Mt__Num__Onum_J,type,
    accp_P3113834385874906142um_num: ( product_prod_num_num > product_prod_num_num > $o ) > product_prod_num_num > $o ).

thf(sy_c_Wellfounded_Oaccp_001t__Product____Type__Oprod_It__VEBT____Definitions__OVEBT_Mt__Nat__Onat_J,type,
    accp_P2887432264394892906BT_nat: ( produc9072475918466114483BT_nat > produc9072475918466114483BT_nat > $o ) > produc9072475918466114483BT_nat > $o ).

thf(sy_c_Wellfounded_Oaccp_001t__VEBT____Definitions__OVEBT,type,
    accp_VEBT_VEBT: ( vEBT_VEBT > vEBT_VEBT > $o ) > vEBT_VEBT > $o ).

thf(sy_c_Wellfounded_Ofinite__psubset_001t__Complex__Ocomplex,type,
    finite8643634255014194347omplex: set_Pr6308028481084910985omplex ).

thf(sy_c_Wellfounded_Ofinite__psubset_001t__Int__Oint,type,
    finite_psubset_int: set_Pr2522554150109002629et_int ).

thf(sy_c_Wellfounded_Ofinite__psubset_001t__Nat__Onat,type,
    finite_psubset_nat: set_Pr5488025237498180813et_nat ).

thf(sy_c_Wellfounded_Omeasure_001t__Code____Numeral__Ointeger,type,
    measure_Code_integer: ( code_integer > nat ) > set_Pr4811707699266497531nteger ).

thf(sy_c_Wellfounded_Omeasure_001t__Int__Oint,type,
    measure_int: ( int > nat ) > set_Pr958786334691620121nt_int ).

thf(sy_c_Wellfounded_Omeasure_001t__Nat__Onat,type,
    measure_nat: ( nat > nat ) > set_Pr1261947904930325089at_nat ).

thf(sy_c_Wellfounded_Omeasure_001t__Num__Onum,type,
    measure_num: ( num > nat ) > set_Pr8218934625190621173um_num ).

thf(sy_c_fChoice_001t__Real__Oreal,type,
    fChoice_real: ( real > $o ) > real ).

thf(sy_c_member_001_Eo,type,
    member_o: $o > set_o > $o ).

thf(sy_c_member_001t__Complex__Ocomplex,type,
    member_complex: complex > set_complex > $o ).

thf(sy_c_member_001t__Extended____Nat__Oenat,type,
    member_Extended_enat: extended_enat > set_Extended_enat > $o ).

thf(sy_c_member_001t__Int__Oint,type,
    member_int: int > set_int > $o ).

thf(sy_c_member_001t__List__Olist_I_Eo_J,type,
    member_list_o: list_o > set_list_o > $o ).

thf(sy_c_member_001t__List__Olist_It__Int__Oint_J,type,
    member_list_int: list_int > set_list_int > $o ).

thf(sy_c_member_001t__List__Olist_It__VEBT____Definitions__OVEBT_J,type,
    member2936631157270082147T_VEBT: list_VEBT_VEBT > set_list_VEBT_VEBT > $o ).

thf(sy_c_member_001t__Nat__Onat,type,
    member_nat: nat > set_nat > $o ).

thf(sy_c_member_001t__Num__Onum,type,
    member_num: num > set_num > $o ).

thf(sy_c_member_001t__Option__Ooption_It__Nat__Onat_J,type,
    member_option_nat: option_nat > set_option_nat > $o ).

thf(sy_c_member_001t__Option__Ooption_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    member3954567711264315760at_nat: option4927543243414619207at_nat > set_op4508134149509766951at_nat > $o ).

thf(sy_c_member_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_M_Eo_J,type,
    member1379723562493234055eger_o: produc6271795597528267376eger_o > set_Pr448751882837621926eger_o > $o ).

thf(sy_c_member_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J,type,
    member157494554546826820nteger: produc8923325533196201883nteger > set_Pr4811707699266497531nteger > $o ).

thf(sy_c_member_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J,type,
    member5262025264175285858nt_int: product_prod_int_int > set_Pr958786334691620121nt_int > $o ).

thf(sy_c_member_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    member8440522571783428010at_nat: product_prod_nat_nat > set_Pr1261947904930325089at_nat > $o ).

thf(sy_c_member_001t__Product____Type__Oprod_It__Num__Onum_Mt__Num__Onum_J,type,
    member7279096912039735102um_num: product_prod_num_num > set_Pr8218934625190621173um_num > $o ).

thf(sy_c_member_001t__Product____Type__Oprod_It__Set__Oset_It__Complex__Ocomplex_J_Mt__Set__Oset_It__Complex__Ocomplex_J_J,type,
    member351165363924911826omplex: produc8064648209034914857omplex > set_Pr6308028481084910985omplex > $o ).

thf(sy_c_member_001t__Product____Type__Oprod_It__Set__Oset_It__Int__Oint_J_Mt__Set__Oset_It__Int__Oint_J_J,type,
    member2572552093476627150et_int: produc2115011035271226405et_int > set_Pr2522554150109002629et_int > $o ).

thf(sy_c_member_001t__Product____Type__Oprod_It__Set__Oset_It__Nat__Onat_J_Mt__Set__Oset_It__Nat__Onat_J_J,type,
    member8277197624267554838et_nat: produc7819656566062154093et_nat > set_Pr5488025237498180813et_nat > $o ).

thf(sy_c_member_001t__Rat__Orat,type,
    member_rat: rat > set_rat > $o ).

thf(sy_c_member_001t__Real__Oreal,type,
    member_real: real > set_real > $o ).

thf(sy_c_member_001t__Set__Oset_I_Eo_J,type,
    member_set_o: set_o > set_set_o > $o ).

thf(sy_c_member_001t__Set__Oset_It__Complex__Ocomplex_J,type,
    member_set_complex: set_complex > set_set_complex > $o ).

thf(sy_c_member_001t__Set__Oset_It__Int__Oint_J,type,
    member_set_int: set_int > set_set_int > $o ).

thf(sy_c_member_001t__Set__Oset_It__Nat__Onat_J,type,
    member_set_nat: set_nat > set_set_nat > $o ).

thf(sy_c_member_001t__Set__Oset_It__Real__Oreal_J,type,
    member_set_real: set_real > set_set_real > $o ).

thf(sy_c_member_001t__Set__Oset_It__Set__Oset_It__Nat__Onat_J_J,type,
    member_set_set_nat: set_set_nat > set_set_set_nat > $o ).

thf(sy_c_member_001t__Set__Oset_It__VEBT____Definitions__OVEBT_J,type,
    member_set_VEBT_VEBT: set_VEBT_VEBT > set_set_VEBT_VEBT > $o ).

thf(sy_c_member_001t__VEBT____Definitions__OVEBT,type,
    member_VEBT_VEBT: vEBT_VEBT > set_VEBT_VEBT > $o ).

thf(sy_v_deg____,type,
    deg: nat ).

thf(sy_v_m____,type,
    m: nat ).

thf(sy_v_ma____,type,
    ma: nat ).

thf(sy_v_mi____,type,
    mi: nat ).

thf(sy_v_na____,type,
    na: nat ).

thf(sy_v_summary____,type,
    summary: vEBT_VEBT ).

thf(sy_v_treeList____,type,
    treeList: list_VEBT_VEBT ).

thf(sy_v_xa____,type,
    xa: nat ).

% Relevant facts (10208)
thf(fact_0__092_060open_062x_A_092_060noteq_062_Ama_092_060close_062,axiom,
    xa != ma ).

% \<open>x \<noteq> ma\<close>
thf(fact_1__092_060open_062x_A_092_060noteq_062_Ami_092_060close_062,axiom,
    xa != mi ).

% \<open>x \<noteq> mi\<close>
thf(fact_2_False,axiom,
    ~ ( ord_less_nat @ ma @ xa ) ).

% False
thf(fact_3__C4_Ohyps_C_I7_J,axiom,
    ord_less_eq_nat @ mi @ ma ).

% "4.hyps"(7)
thf(fact_4_max__in__set__def,axiom,
    ( vEBT_VEBT_max_in_set
    = ( ^ [Xs: set_nat,X: nat] :
          ( ( member_nat @ X @ Xs )
          & ! [Y: nat] :
              ( ( member_nat @ Y @ Xs )
             => ( ord_less_eq_nat @ Y @ X ) ) ) ) ) ).

% max_in_set_def
thf(fact_5_min__in__set__def,axiom,
    ( vEBT_VEBT_min_in_set
    = ( ^ [Xs: set_nat,X: nat] :
          ( ( member_nat @ X @ Xs )
          & ! [Y: nat] :
              ( ( member_nat @ Y @ Xs )
             => ( ord_less_eq_nat @ X @ Y ) ) ) ) ) ).

% min_in_set_def
thf(fact_6_height__compose__summary,axiom,
    ! [Summary: vEBT_VEBT,Info: option4927543243414619207at_nat,Deg: nat,TreeList: list_VEBT_VEBT] : ( ord_less_eq_nat @ ( plus_plus_nat @ one_one_nat @ ( vEBT_VEBT_height @ Summary ) ) @ ( vEBT_VEBT_height @ ( vEBT_Node @ Info @ Deg @ TreeList @ Summary ) ) ) ).

% height_compose_summary
thf(fact_7__092_060open_0622_A_092_060le_062_Adeg_092_060close_062,axiom,
    ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ deg ).

% \<open>2 \<le> deg\<close>
thf(fact_8__092_060open_062x_A_060_Ama_092_060close_062,axiom,
    ord_less_nat @ xa @ ma ).

% \<open>x < ma\<close>
thf(fact_9__092_060open_062mi_A_060_Ax_092_060close_062,axiom,
    ord_less_nat @ mi @ xa ).

% \<open>mi < x\<close>
thf(fact_10_height__compose__child,axiom,
    ! [T: vEBT_VEBT,TreeList: list_VEBT_VEBT,Info: option4927543243414619207at_nat,Deg: nat,Summary: vEBT_VEBT] :
      ( ( member_VEBT_VEBT @ T @ ( set_VEBT_VEBT2 @ TreeList ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ one_one_nat @ ( vEBT_VEBT_height @ T ) ) @ ( vEBT_VEBT_height @ ( vEBT_Node @ Info @ Deg @ TreeList @ Summary ) ) ) ) ).

% height_compose_child
thf(fact_11_calculation_I2_J,axiom,
    ! [I: nat] :
      ( ( ord_less_nat @ I @ ( size_s6755466524823107622T_VEBT @ treeList ) )
     => ( ord_less_eq_nat @ ( vEBT_VEBT_height @ ( nth_VEBT_VEBT @ treeList @ I ) ) @ ( lattic8265883725875713057ax_nat @ ( image_VEBT_VEBT_nat @ vEBT_VEBT_height @ ( insert_VEBT_VEBT @ summary @ ( set_VEBT_VEBT2 @ treeList ) ) ) ) ) ) ).

% calculation(2)
thf(fact_12__092_060open_062high_Ax_A_Ideg_Adiv_A2_J_A_060_Alength_AtreeList_092_060close_062,axiom,
    ord_less_nat @ ( vEBT_VEBT_high @ xa @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ treeList ) ).

% \<open>high x (deg div 2) < length treeList\<close>
thf(fact_13__C4_Ohyps_C_I8_J,axiom,
    ord_less_nat @ ma @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ deg ) ).

% "4.hyps"(8)
thf(fact_14_insert__simp__mima,axiom,
    ! [X2: nat,Mi: nat,Ma: nat,Deg: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT] :
      ( ( ( X2 = Mi )
        | ( X2 = Ma ) )
     => ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
       => ( ( vEBT_vebt_insert @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X2 )
          = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) ) ) ) ).

% insert_simp_mima
thf(fact_15_add__self__div__2,axiom,
    ! [M: nat] :
      ( ( divide_divide_nat @ ( plus_plus_nat @ M @ M ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = M ) ).

% add_self_div_2
thf(fact_16_one__add__one,axiom,
    ( ( plus_plus_complex @ one_one_complex @ one_one_complex )
    = ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ).

% one_add_one
thf(fact_17_one__add__one,axiom,
    ( ( plus_plus_real @ one_one_real @ one_one_real )
    = ( numeral_numeral_real @ ( bit0 @ one ) ) ) ).

% one_add_one
thf(fact_18_one__add__one,axiom,
    ( ( plus_plus_rat @ one_one_rat @ one_one_rat )
    = ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ).

% one_add_one
thf(fact_19_one__add__one,axiom,
    ( ( plus_plus_nat @ one_one_nat @ one_one_nat )
    = ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ).

% one_add_one
thf(fact_20_one__add__one,axiom,
    ( ( plus_plus_int @ one_one_int @ one_one_int )
    = ( numeral_numeral_int @ ( bit0 @ one ) ) ) ).

% one_add_one
thf(fact_21_numeral__plus__one,axiom,
    ! [N: num] :
      ( ( plus_plus_complex @ ( numera6690914467698888265omplex @ N ) @ one_one_complex )
      = ( numera6690914467698888265omplex @ ( plus_plus_num @ N @ one ) ) ) ).

% numeral_plus_one
thf(fact_22_numeral__plus__one,axiom,
    ! [N: num] :
      ( ( plus_plus_real @ ( numeral_numeral_real @ N ) @ one_one_real )
      = ( numeral_numeral_real @ ( plus_plus_num @ N @ one ) ) ) ).

% numeral_plus_one
thf(fact_23_numeral__plus__one,axiom,
    ! [N: num] :
      ( ( plus_plus_rat @ ( numeral_numeral_rat @ N ) @ one_one_rat )
      = ( numeral_numeral_rat @ ( plus_plus_num @ N @ one ) ) ) ).

% numeral_plus_one
thf(fact_24_numeral__plus__one,axiom,
    ! [N: num] :
      ( ( plus_plus_nat @ ( numeral_numeral_nat @ N ) @ one_one_nat )
      = ( numeral_numeral_nat @ ( plus_plus_num @ N @ one ) ) ) ).

% numeral_plus_one
thf(fact_25_numeral__plus__one,axiom,
    ! [N: num] :
      ( ( plus_plus_int @ ( numeral_numeral_int @ N ) @ one_one_int )
      = ( numeral_numeral_int @ ( plus_plus_num @ N @ one ) ) ) ).

% numeral_plus_one
thf(fact_26_one__plus__numeral,axiom,
    ! [N: num] :
      ( ( plus_plus_complex @ one_one_complex @ ( numera6690914467698888265omplex @ N ) )
      = ( numera6690914467698888265omplex @ ( plus_plus_num @ one @ N ) ) ) ).

% one_plus_numeral
thf(fact_27_one__plus__numeral,axiom,
    ! [N: num] :
      ( ( plus_plus_real @ one_one_real @ ( numeral_numeral_real @ N ) )
      = ( numeral_numeral_real @ ( plus_plus_num @ one @ N ) ) ) ).

% one_plus_numeral
thf(fact_28_one__plus__numeral,axiom,
    ! [N: num] :
      ( ( plus_plus_rat @ one_one_rat @ ( numeral_numeral_rat @ N ) )
      = ( numeral_numeral_rat @ ( plus_plus_num @ one @ N ) ) ) ).

% one_plus_numeral
thf(fact_29_one__plus__numeral,axiom,
    ! [N: num] :
      ( ( plus_plus_nat @ one_one_nat @ ( numeral_numeral_nat @ N ) )
      = ( numeral_numeral_nat @ ( plus_plus_num @ one @ N ) ) ) ).

% one_plus_numeral
thf(fact_30_one__plus__numeral,axiom,
    ! [N: num] :
      ( ( plus_plus_int @ one_one_int @ ( numeral_numeral_int @ N ) )
      = ( numeral_numeral_int @ ( plus_plus_num @ one @ N ) ) ) ).

% one_plus_numeral
thf(fact_31_numeral__le__one__iff,axiom,
    ! [N: num] :
      ( ( ord_less_eq_real @ ( numeral_numeral_real @ N ) @ one_one_real )
      = ( ord_less_eq_num @ N @ one ) ) ).

% numeral_le_one_iff
thf(fact_32_numeral__le__one__iff,axiom,
    ! [N: num] :
      ( ( ord_less_eq_rat @ ( numeral_numeral_rat @ N ) @ one_one_rat )
      = ( ord_less_eq_num @ N @ one ) ) ).

% numeral_le_one_iff
thf(fact_33_numeral__le__one__iff,axiom,
    ! [N: num] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ N ) @ one_one_nat )
      = ( ord_less_eq_num @ N @ one ) ) ).

% numeral_le_one_iff
thf(fact_34_numeral__le__one__iff,axiom,
    ! [N: num] :
      ( ( ord_less_eq_int @ ( numeral_numeral_int @ N ) @ one_one_int )
      = ( ord_less_eq_num @ N @ one ) ) ).

% numeral_le_one_iff
thf(fact_35__C4_Ohyps_C_I6_J,axiom,
    ( ( mi = ma )
   => ! [X3: vEBT_VEBT] :
        ( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ treeList ) )
       => ~ ? [X_1: nat] : ( vEBT_V8194947554948674370ptions @ X3 @ X_1 ) ) ) ).

% "4.hyps"(6)
thf(fact_36_numeral__eq__one__iff,axiom,
    ! [N: num] :
      ( ( ( numera6690914467698888265omplex @ N )
        = one_one_complex )
      = ( N = one ) ) ).

% numeral_eq_one_iff
thf(fact_37_numeral__eq__one__iff,axiom,
    ! [N: num] :
      ( ( ( numeral_numeral_real @ N )
        = one_one_real )
      = ( N = one ) ) ).

% numeral_eq_one_iff
thf(fact_38_numeral__eq__one__iff,axiom,
    ! [N: num] :
      ( ( ( numeral_numeral_rat @ N )
        = one_one_rat )
      = ( N = one ) ) ).

% numeral_eq_one_iff
thf(fact_39_numeral__eq__one__iff,axiom,
    ! [N: num] :
      ( ( ( numeral_numeral_nat @ N )
        = one_one_nat )
      = ( N = one ) ) ).

% numeral_eq_one_iff
thf(fact_40_numeral__eq__one__iff,axiom,
    ! [N: num] :
      ( ( ( numeral_numeral_int @ N )
        = one_one_int )
      = ( N = one ) ) ).

% numeral_eq_one_iff
thf(fact_41_one__eq__numeral__iff,axiom,
    ! [N: num] :
      ( ( one_one_complex
        = ( numera6690914467698888265omplex @ N ) )
      = ( one = N ) ) ).

% one_eq_numeral_iff
thf(fact_42_one__eq__numeral__iff,axiom,
    ! [N: num] :
      ( ( one_one_real
        = ( numeral_numeral_real @ N ) )
      = ( one = N ) ) ).

% one_eq_numeral_iff
thf(fact_43_one__eq__numeral__iff,axiom,
    ! [N: num] :
      ( ( one_one_rat
        = ( numeral_numeral_rat @ N ) )
      = ( one = N ) ) ).

% one_eq_numeral_iff
thf(fact_44_one__eq__numeral__iff,axiom,
    ! [N: num] :
      ( ( one_one_nat
        = ( numeral_numeral_nat @ N ) )
      = ( one = N ) ) ).

% one_eq_numeral_iff
thf(fact_45_one__eq__numeral__iff,axiom,
    ! [N: num] :
      ( ( one_one_int
        = ( numeral_numeral_int @ N ) )
      = ( one = N ) ) ).

% one_eq_numeral_iff
thf(fact_46_nat__add__left__cancel__le,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% nat_add_left_cancel_le
thf(fact_47_nat__1__add__1,axiom,
    ( ( plus_plus_nat @ one_one_nat @ one_one_nat )
    = ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ).

% nat_1_add_1
thf(fact_48_inthall,axiom,
    ! [Xs2: list_complex,P: complex > $o,N: nat] :
      ( ! [X4: complex] :
          ( ( member_complex @ X4 @ ( set_complex2 @ Xs2 ) )
         => ( P @ X4 ) )
     => ( ( ord_less_nat @ N @ ( size_s3451745648224563538omplex @ Xs2 ) )
       => ( P @ ( nth_complex @ Xs2 @ N ) ) ) ) ).

% inthall
thf(fact_49_inthall,axiom,
    ! [Xs2: list_real,P: real > $o,N: nat] :
      ( ! [X4: real] :
          ( ( member_real @ X4 @ ( set_real2 @ Xs2 ) )
         => ( P @ X4 ) )
     => ( ( ord_less_nat @ N @ ( size_size_list_real @ Xs2 ) )
       => ( P @ ( nth_real @ Xs2 @ N ) ) ) ) ).

% inthall
thf(fact_50_inthall,axiom,
    ! [Xs2: list_set_nat,P: set_nat > $o,N: nat] :
      ( ! [X4: set_nat] :
          ( ( member_set_nat @ X4 @ ( set_set_nat2 @ Xs2 ) )
         => ( P @ X4 ) )
     => ( ( ord_less_nat @ N @ ( size_s3254054031482475050et_nat @ Xs2 ) )
       => ( P @ ( nth_set_nat @ Xs2 @ N ) ) ) ) ).

% inthall
thf(fact_51_inthall,axiom,
    ! [Xs2: list_nat,P: nat > $o,N: nat] :
      ( ! [X4: nat] :
          ( ( member_nat @ X4 @ ( set_nat2 @ Xs2 ) )
         => ( P @ X4 ) )
     => ( ( ord_less_nat @ N @ ( size_size_list_nat @ Xs2 ) )
       => ( P @ ( nth_nat @ Xs2 @ N ) ) ) ) ).

% inthall
thf(fact_52_inthall,axiom,
    ! [Xs2: list_VEBT_VEBT,P: vEBT_VEBT > $o,N: nat] :
      ( ! [X4: vEBT_VEBT] :
          ( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ Xs2 ) )
         => ( P @ X4 ) )
     => ( ( ord_less_nat @ N @ ( size_s6755466524823107622T_VEBT @ Xs2 ) )
       => ( P @ ( nth_VEBT_VEBT @ Xs2 @ N ) ) ) ) ).

% inthall
thf(fact_53_inthall,axiom,
    ! [Xs2: list_o,P: $o > $o,N: nat] :
      ( ! [X4: $o] :
          ( ( member_o @ X4 @ ( set_o2 @ Xs2 ) )
         => ( P @ X4 ) )
     => ( ( ord_less_nat @ N @ ( size_size_list_o @ Xs2 ) )
       => ( P @ ( nth_o @ Xs2 @ N ) ) ) ) ).

% inthall
thf(fact_54_inthall,axiom,
    ! [Xs2: list_int,P: int > $o,N: nat] :
      ( ! [X4: int] :
          ( ( member_int @ X4 @ ( set_int2 @ Xs2 ) )
         => ( P @ X4 ) )
     => ( ( ord_less_nat @ N @ ( size_size_list_int @ Xs2 ) )
       => ( P @ ( nth_int @ Xs2 @ N ) ) ) ) ).

% inthall
thf(fact_55_numeral__eq__iff,axiom,
    ! [M: num,N: num] :
      ( ( ( numera6690914467698888265omplex @ M )
        = ( numera6690914467698888265omplex @ N ) )
      = ( M = N ) ) ).

% numeral_eq_iff
thf(fact_56_numeral__eq__iff,axiom,
    ! [M: num,N: num] :
      ( ( ( numeral_numeral_real @ M )
        = ( numeral_numeral_real @ N ) )
      = ( M = N ) ) ).

% numeral_eq_iff
thf(fact_57_numeral__eq__iff,axiom,
    ! [M: num,N: num] :
      ( ( ( numeral_numeral_rat @ M )
        = ( numeral_numeral_rat @ N ) )
      = ( M = N ) ) ).

% numeral_eq_iff
thf(fact_58_numeral__eq__iff,axiom,
    ! [M: num,N: num] :
      ( ( ( numeral_numeral_nat @ M )
        = ( numeral_numeral_nat @ N ) )
      = ( M = N ) ) ).

% numeral_eq_iff
thf(fact_59_numeral__eq__iff,axiom,
    ! [M: num,N: num] :
      ( ( ( numeral_numeral_int @ M )
        = ( numeral_numeral_int @ N ) )
      = ( M = N ) ) ).

% numeral_eq_iff
thf(fact_60_pow__sum,axiom,
    ! [A: nat,B: nat] :
      ( ( divide_divide_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ A @ B ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) )
      = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) ).

% pow_sum
thf(fact_61_high__def,axiom,
    ( vEBT_VEBT_high
    = ( ^ [X: nat,N2: nat] : ( divide_divide_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) ) ).

% high_def
thf(fact_62_high__bound__aux,axiom,
    ! [Ma: nat,N: nat,M: nat] :
      ( ( ord_less_nat @ Ma @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ N @ M ) ) )
     => ( ord_less_nat @ ( vEBT_VEBT_high @ Ma @ N ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) ) ).

% high_bound_aux
thf(fact_63_height__compose__list,axiom,
    ! [T: vEBT_VEBT,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT] :
      ( ( member_VEBT_VEBT @ T @ ( set_VEBT_VEBT2 @ TreeList ) )
     => ( ord_less_eq_nat @ ( vEBT_VEBT_height @ T ) @ ( lattic8265883725875713057ax_nat @ ( image_VEBT_VEBT_nat @ vEBT_VEBT_height @ ( insert_VEBT_VEBT @ Summary @ ( set_VEBT_VEBT2 @ TreeList ) ) ) ) ) ) ).

% height_compose_list
thf(fact_64_numeral__less__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N ) )
      = ( ord_less_num @ M @ N ) ) ).

% numeral_less_iff
thf(fact_65_numeral__less__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_rat @ ( numeral_numeral_rat @ M ) @ ( numeral_numeral_rat @ N ) )
      = ( ord_less_num @ M @ N ) ) ).

% numeral_less_iff
thf(fact_66_numeral__less__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) )
      = ( ord_less_num @ M @ N ) ) ).

% numeral_less_iff
thf(fact_67_numeral__less__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) )
      = ( ord_less_num @ M @ N ) ) ).

% numeral_less_iff
thf(fact_68_nat__add__left__cancel__less,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N ) )
      = ( ord_less_nat @ M @ N ) ) ).

% nat_add_left_cancel_less
thf(fact_69__C4_Ohyps_C_I2_J,axiom,
    ( ( size_s6755466524823107622T_VEBT @ treeList )
    = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ m ) ) ).

% "4.hyps"(2)
thf(fact_70_add__numeral__left,axiom,
    ! [V: num,W: num,Z: complex] :
      ( ( plus_plus_complex @ ( numera6690914467698888265omplex @ V ) @ ( plus_plus_complex @ ( numera6690914467698888265omplex @ W ) @ Z ) )
      = ( plus_plus_complex @ ( numera6690914467698888265omplex @ ( plus_plus_num @ V @ W ) ) @ Z ) ) ).

% add_numeral_left
thf(fact_71_add__numeral__left,axiom,
    ! [V: num,W: num,Z: real] :
      ( ( plus_plus_real @ ( numeral_numeral_real @ V ) @ ( plus_plus_real @ ( numeral_numeral_real @ W ) @ Z ) )
      = ( plus_plus_real @ ( numeral_numeral_real @ ( plus_plus_num @ V @ W ) ) @ Z ) ) ).

% add_numeral_left
thf(fact_72_add__numeral__left,axiom,
    ! [V: num,W: num,Z: rat] :
      ( ( plus_plus_rat @ ( numeral_numeral_rat @ V ) @ ( plus_plus_rat @ ( numeral_numeral_rat @ W ) @ Z ) )
      = ( plus_plus_rat @ ( numeral_numeral_rat @ ( plus_plus_num @ V @ W ) ) @ Z ) ) ).

% add_numeral_left
thf(fact_73_add__numeral__left,axiom,
    ! [V: num,W: num,Z: nat] :
      ( ( plus_plus_nat @ ( numeral_numeral_nat @ V ) @ ( plus_plus_nat @ ( numeral_numeral_nat @ W ) @ Z ) )
      = ( plus_plus_nat @ ( numeral_numeral_nat @ ( plus_plus_num @ V @ W ) ) @ Z ) ) ).

% add_numeral_left
thf(fact_74_add__numeral__left,axiom,
    ! [V: num,W: num,Z: int] :
      ( ( plus_plus_int @ ( numeral_numeral_int @ V ) @ ( plus_plus_int @ ( numeral_numeral_int @ W ) @ Z ) )
      = ( plus_plus_int @ ( numeral_numeral_int @ ( plus_plus_num @ V @ W ) ) @ Z ) ) ).

% add_numeral_left
thf(fact_75_numeral__plus__numeral,axiom,
    ! [M: num,N: num] :
      ( ( plus_plus_complex @ ( numera6690914467698888265omplex @ M ) @ ( numera6690914467698888265omplex @ N ) )
      = ( numera6690914467698888265omplex @ ( plus_plus_num @ M @ N ) ) ) ).

% numeral_plus_numeral
thf(fact_76_numeral__plus__numeral,axiom,
    ! [M: num,N: num] :
      ( ( plus_plus_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N ) )
      = ( numeral_numeral_real @ ( plus_plus_num @ M @ N ) ) ) ).

% numeral_plus_numeral
thf(fact_77_numeral__plus__numeral,axiom,
    ! [M: num,N: num] :
      ( ( plus_plus_rat @ ( numeral_numeral_rat @ M ) @ ( numeral_numeral_rat @ N ) )
      = ( numeral_numeral_rat @ ( plus_plus_num @ M @ N ) ) ) ).

% numeral_plus_numeral
thf(fact_78_numeral__plus__numeral,axiom,
    ! [M: num,N: num] :
      ( ( plus_plus_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) )
      = ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) ).

% numeral_plus_numeral
thf(fact_79_numeral__plus__numeral,axiom,
    ! [M: num,N: num] :
      ( ( plus_plus_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) )
      = ( numeral_numeral_int @ ( plus_plus_num @ M @ N ) ) ) ).

% numeral_plus_numeral
thf(fact_80_numeral__le__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_eq_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N ) )
      = ( ord_less_eq_num @ M @ N ) ) ).

% numeral_le_iff
thf(fact_81_numeral__le__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_eq_rat @ ( numeral_numeral_rat @ M ) @ ( numeral_numeral_rat @ N ) )
      = ( ord_less_eq_num @ M @ N ) ) ).

% numeral_le_iff
thf(fact_82_numeral__le__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) )
      = ( ord_less_eq_num @ M @ N ) ) ).

% numeral_le_iff
thf(fact_83_numeral__le__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_eq_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) )
      = ( ord_less_eq_num @ M @ N ) ) ).

% numeral_le_iff
thf(fact_84__C4_Ohyps_C_I5_J,axiom,
    ! [I2: nat] :
      ( ( ord_less_nat @ I2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ m ) )
     => ( ( ? [X5: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ treeList @ I2 ) @ X5 ) )
        = ( vEBT_V8194947554948674370ptions @ summary @ I2 ) ) ) ).

% "4.hyps"(5)
thf(fact_85_one__less__numeral__iff,axiom,
    ! [N: num] :
      ( ( ord_less_real @ one_one_real @ ( numeral_numeral_real @ N ) )
      = ( ord_less_num @ one @ N ) ) ).

% one_less_numeral_iff
thf(fact_86_one__less__numeral__iff,axiom,
    ! [N: num] :
      ( ( ord_less_rat @ one_one_rat @ ( numeral_numeral_rat @ N ) )
      = ( ord_less_num @ one @ N ) ) ).

% one_less_numeral_iff
thf(fact_87_one__less__numeral__iff,axiom,
    ! [N: num] :
      ( ( ord_less_nat @ one_one_nat @ ( numeral_numeral_nat @ N ) )
      = ( ord_less_num @ one @ N ) ) ).

% one_less_numeral_iff
thf(fact_88_one__less__numeral__iff,axiom,
    ! [N: num] :
      ( ( ord_less_int @ one_one_int @ ( numeral_numeral_int @ N ) )
      = ( ord_less_num @ one @ N ) ) ).

% one_less_numeral_iff
thf(fact_89_nat__neq__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( M != N )
      = ( ( ord_less_nat @ M @ N )
        | ( ord_less_nat @ N @ M ) ) ) ).

% nat_neq_iff
thf(fact_90_less__not__refl,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ N ) ).

% less_not_refl
thf(fact_91_less__not__refl2,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ N @ M )
     => ( M != N ) ) ).

% less_not_refl2
thf(fact_92_less__not__refl3,axiom,
    ! [S: nat,T: nat] :
      ( ( ord_less_nat @ S @ T )
     => ( S != T ) ) ).

% less_not_refl3
thf(fact_93_mem__Collect__eq,axiom,
    ! [A: real,P: real > $o] :
      ( ( member_real @ A @ ( collect_real @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_94_mem__Collect__eq,axiom,
    ! [A: product_prod_int_int,P: product_prod_int_int > $o] :
      ( ( member5262025264175285858nt_int @ A @ ( collec213857154873943460nt_int @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_95_mem__Collect__eq,axiom,
    ! [A: complex,P: complex > $o] :
      ( ( member_complex @ A @ ( collect_complex @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_96_mem__Collect__eq,axiom,
    ! [A: set_nat,P: set_nat > $o] :
      ( ( member_set_nat @ A @ ( collect_set_nat @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_97_mem__Collect__eq,axiom,
    ! [A: nat,P: nat > $o] :
      ( ( member_nat @ A @ ( collect_nat @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_98_mem__Collect__eq,axiom,
    ! [A: int,P: int > $o] :
      ( ( member_int @ A @ ( collect_int @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_99_Collect__mem__eq,axiom,
    ! [A2: set_real] :
      ( ( collect_real
        @ ^ [X: real] : ( member_real @ X @ A2 ) )
      = A2 ) ).

% Collect_mem_eq
thf(fact_100_Collect__mem__eq,axiom,
    ! [A2: set_Pr958786334691620121nt_int] :
      ( ( collec213857154873943460nt_int
        @ ^ [X: product_prod_int_int] : ( member5262025264175285858nt_int @ X @ A2 ) )
      = A2 ) ).

% Collect_mem_eq
thf(fact_101_Collect__mem__eq,axiom,
    ! [A2: set_complex] :
      ( ( collect_complex
        @ ^ [X: complex] : ( member_complex @ X @ A2 ) )
      = A2 ) ).

% Collect_mem_eq
thf(fact_102_Collect__mem__eq,axiom,
    ! [A2: set_set_nat] :
      ( ( collect_set_nat
        @ ^ [X: set_nat] : ( member_set_nat @ X @ A2 ) )
      = A2 ) ).

% Collect_mem_eq
thf(fact_103_Collect__mem__eq,axiom,
    ! [A2: set_nat] :
      ( ( collect_nat
        @ ^ [X: nat] : ( member_nat @ X @ A2 ) )
      = A2 ) ).

% Collect_mem_eq
thf(fact_104_Collect__mem__eq,axiom,
    ! [A2: set_int] :
      ( ( collect_int
        @ ^ [X: int] : ( member_int @ X @ A2 ) )
      = A2 ) ).

% Collect_mem_eq
thf(fact_105_Collect__cong,axiom,
    ! [P: product_prod_int_int > $o,Q: product_prod_int_int > $o] :
      ( ! [X4: product_prod_int_int] :
          ( ( P @ X4 )
          = ( Q @ X4 ) )
     => ( ( collec213857154873943460nt_int @ P )
        = ( collec213857154873943460nt_int @ Q ) ) ) ).

% Collect_cong
thf(fact_106_Collect__cong,axiom,
    ! [P: complex > $o,Q: complex > $o] :
      ( ! [X4: complex] :
          ( ( P @ X4 )
          = ( Q @ X4 ) )
     => ( ( collect_complex @ P )
        = ( collect_complex @ Q ) ) ) ).

% Collect_cong
thf(fact_107_Collect__cong,axiom,
    ! [P: set_nat > $o,Q: set_nat > $o] :
      ( ! [X4: set_nat] :
          ( ( P @ X4 )
          = ( Q @ X4 ) )
     => ( ( collect_set_nat @ P )
        = ( collect_set_nat @ Q ) ) ) ).

% Collect_cong
thf(fact_108_Collect__cong,axiom,
    ! [P: nat > $o,Q: nat > $o] :
      ( ! [X4: nat] :
          ( ( P @ X4 )
          = ( Q @ X4 ) )
     => ( ( collect_nat @ P )
        = ( collect_nat @ Q ) ) ) ).

% Collect_cong
thf(fact_109_Collect__cong,axiom,
    ! [P: int > $o,Q: int > $o] :
      ( ! [X4: int] :
          ( ( P @ X4 )
          = ( Q @ X4 ) )
     => ( ( collect_int @ P )
        = ( collect_int @ Q ) ) ) ).

% Collect_cong
thf(fact_110_less__irrefl__nat,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ N ) ).

% less_irrefl_nat
thf(fact_111_nat__less__induct,axiom,
    ! [P: nat > $o,N: nat] :
      ( ! [N3: nat] :
          ( ! [M2: nat] :
              ( ( ord_less_nat @ M2 @ N3 )
             => ( P @ M2 ) )
         => ( P @ N3 ) )
     => ( P @ N ) ) ).

% nat_less_induct
thf(fact_112_infinite__descent,axiom,
    ! [P: nat > $o,N: nat] :
      ( ! [N3: nat] :
          ( ~ ( P @ N3 )
         => ? [M2: nat] :
              ( ( ord_less_nat @ M2 @ N3 )
              & ~ ( P @ M2 ) ) )
     => ( P @ N ) ) ).

% infinite_descent
thf(fact_113_linorder__neqE__nat,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( X2 != Y2 )
     => ( ~ ( ord_less_nat @ X2 @ Y2 )
       => ( ord_less_nat @ Y2 @ X2 ) ) ) ).

% linorder_neqE_nat
thf(fact_114_size__neq__size__imp__neq,axiom,
    ! [X2: list_VEBT_VEBT,Y2: list_VEBT_VEBT] :
      ( ( ( size_s6755466524823107622T_VEBT @ X2 )
       != ( size_s6755466524823107622T_VEBT @ Y2 ) )
     => ( X2 != Y2 ) ) ).

% size_neq_size_imp_neq
thf(fact_115_size__neq__size__imp__neq,axiom,
    ! [X2: vEBT_VEBT,Y2: vEBT_VEBT] :
      ( ( ( size_size_VEBT_VEBT @ X2 )
       != ( size_size_VEBT_VEBT @ Y2 ) )
     => ( X2 != Y2 ) ) ).

% size_neq_size_imp_neq
thf(fact_116_size__neq__size__imp__neq,axiom,
    ! [X2: num,Y2: num] :
      ( ( ( size_size_num @ X2 )
       != ( size_size_num @ Y2 ) )
     => ( X2 != Y2 ) ) ).

% size_neq_size_imp_neq
thf(fact_117_size__neq__size__imp__neq,axiom,
    ! [X2: list_o,Y2: list_o] :
      ( ( ( size_size_list_o @ X2 )
       != ( size_size_list_o @ Y2 ) )
     => ( X2 != Y2 ) ) ).

% size_neq_size_imp_neq
thf(fact_118_size__neq__size__imp__neq,axiom,
    ! [X2: list_int,Y2: list_int] :
      ( ( ( size_size_list_int @ X2 )
       != ( size_size_list_int @ Y2 ) )
     => ( X2 != Y2 ) ) ).

% size_neq_size_imp_neq
thf(fact_119_add__One__commute,axiom,
    ! [N: num] :
      ( ( plus_plus_num @ one @ N )
      = ( plus_plus_num @ N @ one ) ) ).

% add_One_commute
thf(fact_120_le__num__One__iff,axiom,
    ! [X2: num] :
      ( ( ord_less_eq_num @ X2 @ one )
      = ( X2 = one ) ) ).

% le_num_One_iff
thf(fact_121_less__numeral__extra_I4_J,axiom,
    ~ ( ord_less_real @ one_one_real @ one_one_real ) ).

% less_numeral_extra(4)
thf(fact_122_less__numeral__extra_I4_J,axiom,
    ~ ( ord_less_rat @ one_one_rat @ one_one_rat ) ).

% less_numeral_extra(4)
thf(fact_123_less__numeral__extra_I4_J,axiom,
    ~ ( ord_less_nat @ one_one_nat @ one_one_nat ) ).

% less_numeral_extra(4)
thf(fact_124_less__numeral__extra_I4_J,axiom,
    ~ ( ord_less_int @ one_one_int @ one_one_int ) ).

% less_numeral_extra(4)
thf(fact_125_less__mono__imp__le__mono,axiom,
    ! [F: nat > nat,I: nat,J: nat] :
      ( ! [I3: nat,J2: nat] :
          ( ( ord_less_nat @ I3 @ J2 )
         => ( ord_less_nat @ ( F @ I3 ) @ ( F @ J2 ) ) )
     => ( ( ord_less_eq_nat @ I @ J )
       => ( ord_less_eq_nat @ ( F @ I ) @ ( F @ J ) ) ) ) ).

% less_mono_imp_le_mono
thf(fact_126_le__neq__implies__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( M != N )
       => ( ord_less_nat @ M @ N ) ) ) ).

% le_neq_implies_less
thf(fact_127_less__or__eq__imp__le,axiom,
    ! [M: nat,N: nat] :
      ( ( ( ord_less_nat @ M @ N )
        | ( M = N ) )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% less_or_eq_imp_le
thf(fact_128_le__eq__less__or__eq,axiom,
    ( ord_less_eq_nat
    = ( ^ [M3: nat,N2: nat] :
          ( ( ord_less_nat @ M3 @ N2 )
          | ( M3 = N2 ) ) ) ) ).

% le_eq_less_or_eq
thf(fact_129_less__imp__le__nat,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% less_imp_le_nat
thf(fact_130_nat__less__le,axiom,
    ( ord_less_nat
    = ( ^ [M3: nat,N2: nat] :
          ( ( ord_less_eq_nat @ M3 @ N2 )
          & ( M3 != N2 ) ) ) ) ).

% nat_less_le
thf(fact_131_less__add__eq__less,axiom,
    ! [K: nat,L: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ K @ L )
     => ( ( ( plus_plus_nat @ M @ L )
          = ( plus_plus_nat @ K @ N ) )
       => ( ord_less_nat @ M @ N ) ) ) ).

% less_add_eq_less
thf(fact_132_trans__less__add2,axiom,
    ! [I: nat,J: nat,M: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ord_less_nat @ I @ ( plus_plus_nat @ M @ J ) ) ) ).

% trans_less_add2
thf(fact_133_trans__less__add1,axiom,
    ! [I: nat,J: nat,M: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ord_less_nat @ I @ ( plus_plus_nat @ J @ M ) ) ) ).

% trans_less_add1
thf(fact_134_add__less__mono1,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ K ) ) ) ).

% add_less_mono1
thf(fact_135_not__add__less2,axiom,
    ! [J: nat,I: nat] :
      ~ ( ord_less_nat @ ( plus_plus_nat @ J @ I ) @ I ) ).

% not_add_less2
thf(fact_136_not__add__less1,axiom,
    ! [I: nat,J: nat] :
      ~ ( ord_less_nat @ ( plus_plus_nat @ I @ J ) @ I ) ).

% not_add_less1
thf(fact_137_add__less__mono,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ( ord_less_nat @ K @ L )
       => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ) ).

% add_less_mono
thf(fact_138_add__lessD1,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ I @ J ) @ K )
     => ( ord_less_nat @ I @ K ) ) ).

% add_lessD1
thf(fact_139_is__num__normalize_I1_J,axiom,
    ! [A: real,B: real,C: real] :
      ( ( plus_plus_real @ ( plus_plus_real @ A @ B ) @ C )
      = ( plus_plus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).

% is_num_normalize(1)
thf(fact_140_is__num__normalize_I1_J,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( plus_plus_rat @ ( plus_plus_rat @ A @ B ) @ C )
      = ( plus_plus_rat @ A @ ( plus_plus_rat @ B @ C ) ) ) ).

% is_num_normalize(1)
thf(fact_141_is__num__normalize_I1_J,axiom,
    ! [A: int,B: int,C: int] :
      ( ( plus_plus_int @ ( plus_plus_int @ A @ B ) @ C )
      = ( plus_plus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).

% is_num_normalize(1)
thf(fact_142_Nat_Oex__has__greatest__nat,axiom,
    ! [P: nat > $o,K: nat,B: nat] :
      ( ( P @ K )
     => ( ! [Y3: nat] :
            ( ( P @ Y3 )
           => ( ord_less_eq_nat @ Y3 @ B ) )
       => ? [X4: nat] :
            ( ( P @ X4 )
            & ! [Y4: nat] :
                ( ( P @ Y4 )
               => ( ord_less_eq_nat @ Y4 @ X4 ) ) ) ) ) ).

% Nat.ex_has_greatest_nat
thf(fact_143_nat__le__linear,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
      | ( ord_less_eq_nat @ N @ M ) ) ).

% nat_le_linear
thf(fact_144_le__antisym,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( ord_less_eq_nat @ N @ M )
       => ( M = N ) ) ) ).

% le_antisym
thf(fact_145_eq__imp__le,axiom,
    ! [M: nat,N: nat] :
      ( ( M = N )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% eq_imp_le
thf(fact_146_le__trans,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( ord_less_eq_nat @ J @ K )
       => ( ord_less_eq_nat @ I @ K ) ) ) ).

% le_trans
thf(fact_147_le__refl,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ N @ N ) ).

% le_refl
thf(fact_148_not__numeral__less__one,axiom,
    ! [N: num] :
      ~ ( ord_less_real @ ( numeral_numeral_real @ N ) @ one_one_real ) ).

% not_numeral_less_one
thf(fact_149_not__numeral__less__one,axiom,
    ! [N: num] :
      ~ ( ord_less_rat @ ( numeral_numeral_rat @ N ) @ one_one_rat ) ).

% not_numeral_less_one
thf(fact_150_not__numeral__less__one,axiom,
    ! [N: num] :
      ~ ( ord_less_nat @ ( numeral_numeral_nat @ N ) @ one_one_nat ) ).

% not_numeral_less_one
thf(fact_151_not__numeral__less__one,axiom,
    ! [N: num] :
      ~ ( ord_less_int @ ( numeral_numeral_int @ N ) @ one_one_int ) ).

% not_numeral_less_one
thf(fact_152_mono__nat__linear__lb,axiom,
    ! [F: nat > nat,M: nat,K: nat] :
      ( ! [M4: nat,N3: nat] :
          ( ( ord_less_nat @ M4 @ N3 )
         => ( ord_less_nat @ ( F @ M4 ) @ ( F @ N3 ) ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ ( F @ M ) @ K ) @ ( F @ ( plus_plus_nat @ M @ K ) ) ) ) ).

% mono_nat_linear_lb
thf(fact_153_le__numeral__extra_I4_J,axiom,
    ord_less_eq_real @ one_one_real @ one_one_real ).

% le_numeral_extra(4)
thf(fact_154_le__numeral__extra_I4_J,axiom,
    ord_less_eq_rat @ one_one_rat @ one_one_rat ).

% le_numeral_extra(4)
thf(fact_155_le__numeral__extra_I4_J,axiom,
    ord_less_eq_nat @ one_one_nat @ one_one_nat ).

% le_numeral_extra(4)
thf(fact_156_le__numeral__extra_I4_J,axiom,
    ord_less_eq_int @ one_one_int @ one_one_int ).

% le_numeral_extra(4)
thf(fact_157_nat__le__iff__add,axiom,
    ( ord_less_eq_nat
    = ( ^ [M3: nat,N2: nat] :
        ? [K2: nat] :
          ( N2
          = ( plus_plus_nat @ M3 @ K2 ) ) ) ) ).

% nat_le_iff_add
thf(fact_158_trans__le__add2,axiom,
    ! [I: nat,J: nat,M: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_nat @ I @ ( plus_plus_nat @ M @ J ) ) ) ).

% trans_le_add2
thf(fact_159_trans__le__add1,axiom,
    ! [I: nat,J: nat,M: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_nat @ I @ ( plus_plus_nat @ J @ M ) ) ) ).

% trans_le_add1
thf(fact_160_add__le__mono1,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ K ) ) ) ).

% add_le_mono1
thf(fact_161_add__le__mono,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( ord_less_eq_nat @ K @ L )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ) ).

% add_le_mono
thf(fact_162_le__Suc__ex,axiom,
    ! [K: nat,L: nat] :
      ( ( ord_less_eq_nat @ K @ L )
     => ? [N3: nat] :
          ( L
          = ( plus_plus_nat @ K @ N3 ) ) ) ).

% le_Suc_ex
thf(fact_163_add__leD2,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N )
     => ( ord_less_eq_nat @ K @ N ) ) ).

% add_leD2
thf(fact_164_add__leD1,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% add_leD1
thf(fact_165_le__add2,axiom,
    ! [N: nat,M: nat] : ( ord_less_eq_nat @ N @ ( plus_plus_nat @ M @ N ) ) ).

% le_add2
thf(fact_166_le__add1,axiom,
    ! [N: nat,M: nat] : ( ord_less_eq_nat @ N @ ( plus_plus_nat @ N @ M ) ) ).

% le_add1
thf(fact_167_add__leE,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N )
     => ~ ( ( ord_less_eq_nat @ M @ N )
         => ~ ( ord_less_eq_nat @ K @ N ) ) ) ).

% add_leE
thf(fact_168_div__le__dividend,axiom,
    ! [M: nat,N: nat] : ( ord_less_eq_nat @ ( divide_divide_nat @ M @ N ) @ M ) ).

% div_le_dividend
thf(fact_169_div__le__mono,axiom,
    ! [M: nat,N: nat,K: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ord_less_eq_nat @ ( divide_divide_nat @ M @ K ) @ ( divide_divide_nat @ N @ K ) ) ) ).

% div_le_mono
thf(fact_170_one__le__numeral,axiom,
    ! [N: num] : ( ord_less_eq_real @ one_one_real @ ( numeral_numeral_real @ N ) ) ).

% one_le_numeral
thf(fact_171_one__le__numeral,axiom,
    ! [N: num] : ( ord_less_eq_rat @ one_one_rat @ ( numeral_numeral_rat @ N ) ) ).

% one_le_numeral
thf(fact_172_one__le__numeral,axiom,
    ! [N: num] : ( ord_less_eq_nat @ one_one_nat @ ( numeral_numeral_nat @ N ) ) ).

% one_le_numeral
thf(fact_173_one__le__numeral,axiom,
    ! [N: num] : ( ord_less_eq_int @ one_one_int @ ( numeral_numeral_int @ N ) ) ).

% one_le_numeral
thf(fact_174_numeral__Bit0,axiom,
    ! [N: num] :
      ( ( numera6690914467698888265omplex @ ( bit0 @ N ) )
      = ( plus_plus_complex @ ( numera6690914467698888265omplex @ N ) @ ( numera6690914467698888265omplex @ N ) ) ) ).

% numeral_Bit0
thf(fact_175_numeral__Bit0,axiom,
    ! [N: num] :
      ( ( numeral_numeral_real @ ( bit0 @ N ) )
      = ( plus_plus_real @ ( numeral_numeral_real @ N ) @ ( numeral_numeral_real @ N ) ) ) ).

% numeral_Bit0
thf(fact_176_numeral__Bit0,axiom,
    ! [N: num] :
      ( ( numeral_numeral_rat @ ( bit0 @ N ) )
      = ( plus_plus_rat @ ( numeral_numeral_rat @ N ) @ ( numeral_numeral_rat @ N ) ) ) ).

% numeral_Bit0
thf(fact_177_numeral__Bit0,axiom,
    ! [N: num] :
      ( ( numeral_numeral_nat @ ( bit0 @ N ) )
      = ( plus_plus_nat @ ( numeral_numeral_nat @ N ) @ ( numeral_numeral_nat @ N ) ) ) ).

% numeral_Bit0
thf(fact_178_numeral__Bit0,axiom,
    ! [N: num] :
      ( ( numeral_numeral_int @ ( bit0 @ N ) )
      = ( plus_plus_int @ ( numeral_numeral_int @ N ) @ ( numeral_numeral_int @ N ) ) ) ).

% numeral_Bit0
thf(fact_179_one__plus__numeral__commute,axiom,
    ! [X2: num] :
      ( ( plus_plus_complex @ one_one_complex @ ( numera6690914467698888265omplex @ X2 ) )
      = ( plus_plus_complex @ ( numera6690914467698888265omplex @ X2 ) @ one_one_complex ) ) ).

% one_plus_numeral_commute
thf(fact_180_one__plus__numeral__commute,axiom,
    ! [X2: num] :
      ( ( plus_plus_real @ one_one_real @ ( numeral_numeral_real @ X2 ) )
      = ( plus_plus_real @ ( numeral_numeral_real @ X2 ) @ one_one_real ) ) ).

% one_plus_numeral_commute
thf(fact_181_one__plus__numeral__commute,axiom,
    ! [X2: num] :
      ( ( plus_plus_rat @ one_one_rat @ ( numeral_numeral_rat @ X2 ) )
      = ( plus_plus_rat @ ( numeral_numeral_rat @ X2 ) @ one_one_rat ) ) ).

% one_plus_numeral_commute
thf(fact_182_one__plus__numeral__commute,axiom,
    ! [X2: num] :
      ( ( plus_plus_nat @ one_one_nat @ ( numeral_numeral_nat @ X2 ) )
      = ( plus_plus_nat @ ( numeral_numeral_nat @ X2 ) @ one_one_nat ) ) ).

% one_plus_numeral_commute
thf(fact_183_one__plus__numeral__commute,axiom,
    ! [X2: num] :
      ( ( plus_plus_int @ one_one_int @ ( numeral_numeral_int @ X2 ) )
      = ( plus_plus_int @ ( numeral_numeral_int @ X2 ) @ one_one_int ) ) ).

% one_plus_numeral_commute
thf(fact_184_numeral__One,axiom,
    ( ( numera6690914467698888265omplex @ one )
    = one_one_complex ) ).

% numeral_One
thf(fact_185_numeral__One,axiom,
    ( ( numeral_numeral_real @ one )
    = one_one_real ) ).

% numeral_One
thf(fact_186_numeral__One,axiom,
    ( ( numeral_numeral_rat @ one )
    = one_one_rat ) ).

% numeral_One
thf(fact_187_numeral__One,axiom,
    ( ( numeral_numeral_nat @ one )
    = one_one_nat ) ).

% numeral_One
thf(fact_188_numeral__One,axiom,
    ( ( numeral_numeral_int @ one )
    = one_one_int ) ).

% numeral_One
thf(fact_189_divide__numeral__1,axiom,
    ! [A: complex] :
      ( ( divide1717551699836669952omplex @ A @ ( numera6690914467698888265omplex @ one ) )
      = A ) ).

% divide_numeral_1
thf(fact_190_divide__numeral__1,axiom,
    ! [A: real] :
      ( ( divide_divide_real @ A @ ( numeral_numeral_real @ one ) )
      = A ) ).

% divide_numeral_1
thf(fact_191_divide__numeral__1,axiom,
    ! [A: rat] :
      ( ( divide_divide_rat @ A @ ( numeral_numeral_rat @ one ) )
      = A ) ).

% divide_numeral_1
thf(fact_192_numerals_I1_J,axiom,
    ( ( numeral_numeral_nat @ one )
    = one_one_nat ) ).

% numerals(1)
thf(fact_193_numeral__Bit0__div__2,axiom,
    ! [N: num] :
      ( ( divide_divide_nat @ ( numeral_numeral_nat @ ( bit0 @ N ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( numeral_numeral_nat @ N ) ) ).

% numeral_Bit0_div_2
thf(fact_194_numeral__Bit0__div__2,axiom,
    ! [N: num] :
      ( ( divide_divide_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
      = ( numeral_numeral_int @ N ) ) ).

% numeral_Bit0_div_2
thf(fact_195_power__increasing__iff,axiom,
    ! [B: real,X2: nat,Y2: nat] :
      ( ( ord_less_real @ one_one_real @ B )
     => ( ( ord_less_eq_real @ ( power_power_real @ B @ X2 ) @ ( power_power_real @ B @ Y2 ) )
        = ( ord_less_eq_nat @ X2 @ Y2 ) ) ) ).

% power_increasing_iff
thf(fact_196_power__increasing__iff,axiom,
    ! [B: rat,X2: nat,Y2: nat] :
      ( ( ord_less_rat @ one_one_rat @ B )
     => ( ( ord_less_eq_rat @ ( power_power_rat @ B @ X2 ) @ ( power_power_rat @ B @ Y2 ) )
        = ( ord_less_eq_nat @ X2 @ Y2 ) ) ) ).

% power_increasing_iff
thf(fact_197_power__increasing__iff,axiom,
    ! [B: nat,X2: nat,Y2: nat] :
      ( ( ord_less_nat @ one_one_nat @ B )
     => ( ( ord_less_eq_nat @ ( power_power_nat @ B @ X2 ) @ ( power_power_nat @ B @ Y2 ) )
        = ( ord_less_eq_nat @ X2 @ Y2 ) ) ) ).

% power_increasing_iff
thf(fact_198_power__increasing__iff,axiom,
    ! [B: int,X2: nat,Y2: nat] :
      ( ( ord_less_int @ one_one_int @ B )
     => ( ( ord_less_eq_int @ ( power_power_int @ B @ X2 ) @ ( power_power_int @ B @ Y2 ) )
        = ( ord_less_eq_nat @ X2 @ Y2 ) ) ) ).

% power_increasing_iff
thf(fact_199_power__strict__increasing__iff,axiom,
    ! [B: real,X2: nat,Y2: nat] :
      ( ( ord_less_real @ one_one_real @ B )
     => ( ( ord_less_real @ ( power_power_real @ B @ X2 ) @ ( power_power_real @ B @ Y2 ) )
        = ( ord_less_nat @ X2 @ Y2 ) ) ) ).

% power_strict_increasing_iff
thf(fact_200_power__strict__increasing__iff,axiom,
    ! [B: rat,X2: nat,Y2: nat] :
      ( ( ord_less_rat @ one_one_rat @ B )
     => ( ( ord_less_rat @ ( power_power_rat @ B @ X2 ) @ ( power_power_rat @ B @ Y2 ) )
        = ( ord_less_nat @ X2 @ Y2 ) ) ) ).

% power_strict_increasing_iff
thf(fact_201_power__strict__increasing__iff,axiom,
    ! [B: nat,X2: nat,Y2: nat] :
      ( ( ord_less_nat @ one_one_nat @ B )
     => ( ( ord_less_nat @ ( power_power_nat @ B @ X2 ) @ ( power_power_nat @ B @ Y2 ) )
        = ( ord_less_nat @ X2 @ Y2 ) ) ) ).

% power_strict_increasing_iff
thf(fact_202_power__strict__increasing__iff,axiom,
    ! [B: int,X2: nat,Y2: nat] :
      ( ( ord_less_int @ one_one_int @ B )
     => ( ( ord_less_int @ ( power_power_int @ B @ X2 ) @ ( power_power_int @ B @ Y2 ) )
        = ( ord_less_nat @ X2 @ Y2 ) ) ) ).

% power_strict_increasing_iff
thf(fact_203_VEBT__internal_Oheight_Osimps_I2_J,axiom,
    ! [Uu: option4927543243414619207at_nat,Deg: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT] :
      ( ( vEBT_VEBT_height @ ( vEBT_Node @ Uu @ Deg @ TreeList @ Summary ) )
      = ( plus_plus_nat @ one_one_nat @ ( lattic8265883725875713057ax_nat @ ( image_VEBT_VEBT_nat @ vEBT_VEBT_height @ ( insert_VEBT_VEBT @ Summary @ ( set_VEBT_VEBT2 @ TreeList ) ) ) ) ) ) ).

% VEBT_internal.height.simps(2)
thf(fact_204_both__member__options__from__chilf__to__complete__tree,axiom,
    ! [X2: nat,Deg: nat,TreeList: list_VEBT_VEBT,Mi: nat,Ma: nat,Summary: vEBT_VEBT] :
      ( ( ord_less_nat @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) )
     => ( ( ord_less_eq_nat @ one_one_nat @ Deg )
       => ( ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
         => ( vEBT_V8194947554948674370ptions @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X2 ) ) ) ) ).

% both_member_options_from_chilf_to_complete_tree
thf(fact_205_ex__power__ivl2,axiom,
    ! [B: nat,K: nat] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B )
     => ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K )
       => ? [N3: nat] :
            ( ( ord_less_nat @ ( power_power_nat @ B @ N3 ) @ K )
            & ( ord_less_eq_nat @ K @ ( power_power_nat @ B @ ( plus_plus_nat @ N3 @ one_one_nat ) ) ) ) ) ) ).

% ex_power_ivl2
thf(fact_206_ex__power__ivl1,axiom,
    ! [B: nat,K: nat] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B )
     => ( ( ord_less_eq_nat @ one_one_nat @ K )
       => ? [N3: nat] :
            ( ( ord_less_eq_nat @ ( power_power_nat @ B @ N3 ) @ K )
            & ( ord_less_nat @ K @ ( power_power_nat @ B @ ( plus_plus_nat @ N3 @ one_one_nat ) ) ) ) ) ) ).

% ex_power_ivl1
thf(fact_207_semiring__norm_I69_J,axiom,
    ! [M: num] :
      ~ ( ord_less_eq_num @ ( bit0 @ M ) @ one ) ).

% semiring_norm(69)
thf(fact_208_semiring__norm_I2_J,axiom,
    ( ( plus_plus_num @ one @ one )
    = ( bit0 @ one ) ) ).

% semiring_norm(2)
thf(fact_209_both__member__options__from__complete__tree__to__child,axiom,
    ! [Deg: nat,Mi: nat,Ma: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT,X2: nat] :
      ( ( ord_less_eq_nat @ one_one_nat @ Deg )
     => ( ( vEBT_V8194947554948674370ptions @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X2 )
       => ( ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
          | ( X2 = Mi )
          | ( X2 = Ma ) ) ) ) ).

% both_member_options_from_complete_tree_to_child
thf(fact_210_power__inject__exp,axiom,
    ! [A: real,M: nat,N: nat] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ( power_power_real @ A @ M )
          = ( power_power_real @ A @ N ) )
        = ( M = N ) ) ) ).

% power_inject_exp
thf(fact_211_power__inject__exp,axiom,
    ! [A: rat,M: nat,N: nat] :
      ( ( ord_less_rat @ one_one_rat @ A )
     => ( ( ( power_power_rat @ A @ M )
          = ( power_power_rat @ A @ N ) )
        = ( M = N ) ) ) ).

% power_inject_exp
thf(fact_212_power__inject__exp,axiom,
    ! [A: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ one_one_nat @ A )
     => ( ( ( power_power_nat @ A @ M )
          = ( power_power_nat @ A @ N ) )
        = ( M = N ) ) ) ).

% power_inject_exp
thf(fact_213_power__inject__exp,axiom,
    ! [A: int,M: nat,N: nat] :
      ( ( ord_less_int @ one_one_int @ A )
     => ( ( ( power_power_int @ A @ M )
          = ( power_power_int @ A @ N ) )
        = ( M = N ) ) ) ).

% power_inject_exp
thf(fact_214_div__exp__eq,axiom,
    ! [A: nat,M: nat,N: nat] :
      ( ( divide_divide_nat @ ( divide_divide_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = ( divide_divide_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N ) ) ) ) ).

% div_exp_eq
thf(fact_215_div__exp__eq,axiom,
    ! [A: int,M: nat,N: nat] :
      ( ( divide_divide_int @ ( divide_divide_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
      = ( divide_divide_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N ) ) ) ) ).

% div_exp_eq
thf(fact_216_height__i__max,axiom,
    ! [I: nat,X13: list_VEBT_VEBT,Foo: nat] :
      ( ( ord_less_nat @ I @ ( size_s6755466524823107622T_VEBT @ X13 ) )
     => ( ord_less_eq_nat @ ( vEBT_VEBT_height @ ( nth_VEBT_VEBT @ X13 @ I ) ) @ ( ord_max_nat @ Foo @ ( lattic8265883725875713057ax_nat @ ( image_VEBT_VEBT_nat @ vEBT_VEBT_height @ ( set_VEBT_VEBT2 @ X13 ) ) ) ) ) ) ).

% height_i_max
thf(fact_217__C4_Ohyps_C_I3_J,axiom,
    m = na ).

% "4.hyps"(3)
thf(fact_218_bit__split__inv,axiom,
    ! [X2: nat,D: nat] :
      ( ( vEBT_VEBT_bit_concat @ ( vEBT_VEBT_high @ X2 @ D ) @ ( vEBT_VEBT_low @ X2 @ D ) @ D )
      = X2 ) ).

% bit_split_inv
thf(fact_219_semiring__norm_I87_J,axiom,
    ! [M: num,N: num] :
      ( ( ( bit0 @ M )
        = ( bit0 @ N ) )
      = ( M = N ) ) ).

% semiring_norm(87)
thf(fact_220_semiring__norm_I85_J,axiom,
    ! [M: num] :
      ( ( bit0 @ M )
     != one ) ).

% semiring_norm(85)
thf(fact_221_semiring__norm_I83_J,axiom,
    ! [N: num] :
      ( one
     != ( bit0 @ N ) ) ).

% semiring_norm(83)
thf(fact_222_bits__div__by__1,axiom,
    ! [A: nat] :
      ( ( divide_divide_nat @ A @ one_one_nat )
      = A ) ).

% bits_div_by_1
thf(fact_223_bits__div__by__1,axiom,
    ! [A: int] :
      ( ( divide_divide_int @ A @ one_one_int )
      = A ) ).

% bits_div_by_1
thf(fact_224_power__one,axiom,
    ! [N: nat] :
      ( ( power_power_rat @ one_one_rat @ N )
      = one_one_rat ) ).

% power_one
thf(fact_225_power__one,axiom,
    ! [N: nat] :
      ( ( power_power_nat @ one_one_nat @ N )
      = one_one_nat ) ).

% power_one
thf(fact_226_power__one,axiom,
    ! [N: nat] :
      ( ( power_power_real @ one_one_real @ N )
      = one_one_real ) ).

% power_one
thf(fact_227_power__one,axiom,
    ! [N: nat] :
      ( ( power_power_complex @ one_one_complex @ N )
      = one_one_complex ) ).

% power_one
thf(fact_228_power__one,axiom,
    ! [N: nat] :
      ( ( power_power_int @ one_one_int @ N )
      = one_one_int ) ).

% power_one
thf(fact_229_power__one__right,axiom,
    ! [A: nat] :
      ( ( power_power_nat @ A @ one_one_nat )
      = A ) ).

% power_one_right
thf(fact_230_power__one__right,axiom,
    ! [A: real] :
      ( ( power_power_real @ A @ one_one_nat )
      = A ) ).

% power_one_right
thf(fact_231_power__one__right,axiom,
    ! [A: complex] :
      ( ( power_power_complex @ A @ one_one_nat )
      = A ) ).

% power_one_right
thf(fact_232_power__one__right,axiom,
    ! [A: int] :
      ( ( power_power_int @ A @ one_one_nat )
      = A ) ).

% power_one_right
thf(fact_233__C4_Ohyps_C_I4_J,axiom,
    ( deg
    = ( plus_plus_nat @ na @ m ) ) ).

% "4.hyps"(4)
thf(fact_234_semiring__norm_I6_J,axiom,
    ! [M: num,N: num] :
      ( ( plus_plus_num @ ( bit0 @ M ) @ ( bit0 @ N ) )
      = ( bit0 @ ( plus_plus_num @ M @ N ) ) ) ).

% semiring_norm(6)
thf(fact_235_semiring__norm_I78_J,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_num @ ( bit0 @ M ) @ ( bit0 @ N ) )
      = ( ord_less_num @ M @ N ) ) ).

% semiring_norm(78)
thf(fact_236_semiring__norm_I71_J,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_eq_num @ ( bit0 @ M ) @ ( bit0 @ N ) )
      = ( ord_less_eq_num @ M @ N ) ) ).

% semiring_norm(71)
thf(fact_237_semiring__norm_I75_J,axiom,
    ! [M: num] :
      ~ ( ord_less_num @ M @ one ) ).

% semiring_norm(75)
thf(fact_238_semiring__norm_I68_J,axiom,
    ! [N: num] : ( ord_less_eq_num @ one @ N ) ).

% semiring_norm(68)
thf(fact_239_max__number__of_I1_J,axiom,
    ! [U: num,V: num] :
      ( ( ( ord_le2932123472753598470d_enat @ ( numera1916890842035813515d_enat @ U ) @ ( numera1916890842035813515d_enat @ V ) )
       => ( ( ord_ma741700101516333627d_enat @ ( numera1916890842035813515d_enat @ U ) @ ( numera1916890842035813515d_enat @ V ) )
          = ( numera1916890842035813515d_enat @ V ) ) )
      & ( ~ ( ord_le2932123472753598470d_enat @ ( numera1916890842035813515d_enat @ U ) @ ( numera1916890842035813515d_enat @ V ) )
       => ( ( ord_ma741700101516333627d_enat @ ( numera1916890842035813515d_enat @ U ) @ ( numera1916890842035813515d_enat @ V ) )
          = ( numera1916890842035813515d_enat @ U ) ) ) ) ).

% max_number_of(1)
thf(fact_240_max__number__of_I1_J,axiom,
    ! [U: num,V: num] :
      ( ( ( ord_less_eq_real @ ( numeral_numeral_real @ U ) @ ( numeral_numeral_real @ V ) )
       => ( ( ord_max_real @ ( numeral_numeral_real @ U ) @ ( numeral_numeral_real @ V ) )
          = ( numeral_numeral_real @ V ) ) )
      & ( ~ ( ord_less_eq_real @ ( numeral_numeral_real @ U ) @ ( numeral_numeral_real @ V ) )
       => ( ( ord_max_real @ ( numeral_numeral_real @ U ) @ ( numeral_numeral_real @ V ) )
          = ( numeral_numeral_real @ U ) ) ) ) ).

% max_number_of(1)
thf(fact_241_max__number__of_I1_J,axiom,
    ! [U: num,V: num] :
      ( ( ( ord_less_eq_rat @ ( numeral_numeral_rat @ U ) @ ( numeral_numeral_rat @ V ) )
       => ( ( ord_max_rat @ ( numeral_numeral_rat @ U ) @ ( numeral_numeral_rat @ V ) )
          = ( numeral_numeral_rat @ V ) ) )
      & ( ~ ( ord_less_eq_rat @ ( numeral_numeral_rat @ U ) @ ( numeral_numeral_rat @ V ) )
       => ( ( ord_max_rat @ ( numeral_numeral_rat @ U ) @ ( numeral_numeral_rat @ V ) )
          = ( numeral_numeral_rat @ U ) ) ) ) ).

% max_number_of(1)
thf(fact_242_max__number__of_I1_J,axiom,
    ! [U: num,V: num] :
      ( ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ U ) @ ( numeral_numeral_nat @ V ) )
       => ( ( ord_max_nat @ ( numeral_numeral_nat @ U ) @ ( numeral_numeral_nat @ V ) )
          = ( numeral_numeral_nat @ V ) ) )
      & ( ~ ( ord_less_eq_nat @ ( numeral_numeral_nat @ U ) @ ( numeral_numeral_nat @ V ) )
       => ( ( ord_max_nat @ ( numeral_numeral_nat @ U ) @ ( numeral_numeral_nat @ V ) )
          = ( numeral_numeral_nat @ U ) ) ) ) ).

% max_number_of(1)
thf(fact_243_max__number__of_I1_J,axiom,
    ! [U: num,V: num] :
      ( ( ( ord_less_eq_int @ ( numeral_numeral_int @ U ) @ ( numeral_numeral_int @ V ) )
       => ( ( ord_max_int @ ( numeral_numeral_int @ U ) @ ( numeral_numeral_int @ V ) )
          = ( numeral_numeral_int @ V ) ) )
      & ( ~ ( ord_less_eq_int @ ( numeral_numeral_int @ U ) @ ( numeral_numeral_int @ V ) )
       => ( ( ord_max_int @ ( numeral_numeral_int @ U ) @ ( numeral_numeral_int @ V ) )
          = ( numeral_numeral_int @ U ) ) ) ) ).

% max_number_of(1)
thf(fact_244_max__0__1_I6_J,axiom,
    ! [X2: num] :
      ( ( ord_ma741700101516333627d_enat @ ( numera1916890842035813515d_enat @ X2 ) @ one_on7984719198319812577d_enat )
      = ( numera1916890842035813515d_enat @ X2 ) ) ).

% max_0_1(6)
thf(fact_245_max__0__1_I6_J,axiom,
    ! [X2: num] :
      ( ( ord_max_real @ ( numeral_numeral_real @ X2 ) @ one_one_real )
      = ( numeral_numeral_real @ X2 ) ) ).

% max_0_1(6)
thf(fact_246_max__0__1_I6_J,axiom,
    ! [X2: num] :
      ( ( ord_max_rat @ ( numeral_numeral_rat @ X2 ) @ one_one_rat )
      = ( numeral_numeral_rat @ X2 ) ) ).

% max_0_1(6)
thf(fact_247_max__0__1_I6_J,axiom,
    ! [X2: num] :
      ( ( ord_max_nat @ ( numeral_numeral_nat @ X2 ) @ one_one_nat )
      = ( numeral_numeral_nat @ X2 ) ) ).

% max_0_1(6)
thf(fact_248_max__0__1_I6_J,axiom,
    ! [X2: num] :
      ( ( ord_max_int @ ( numeral_numeral_int @ X2 ) @ one_one_int )
      = ( numeral_numeral_int @ X2 ) ) ).

% max_0_1(6)
thf(fact_249_max__0__1_I5_J,axiom,
    ! [X2: num] :
      ( ( ord_ma741700101516333627d_enat @ one_on7984719198319812577d_enat @ ( numera1916890842035813515d_enat @ X2 ) )
      = ( numera1916890842035813515d_enat @ X2 ) ) ).

% max_0_1(5)
thf(fact_250_max__0__1_I5_J,axiom,
    ! [X2: num] :
      ( ( ord_max_real @ one_one_real @ ( numeral_numeral_real @ X2 ) )
      = ( numeral_numeral_real @ X2 ) ) ).

% max_0_1(5)
thf(fact_251_max__0__1_I5_J,axiom,
    ! [X2: num] :
      ( ( ord_max_rat @ one_one_rat @ ( numeral_numeral_rat @ X2 ) )
      = ( numeral_numeral_rat @ X2 ) ) ).

% max_0_1(5)
thf(fact_252_max__0__1_I5_J,axiom,
    ! [X2: num] :
      ( ( ord_max_nat @ one_one_nat @ ( numeral_numeral_nat @ X2 ) )
      = ( numeral_numeral_nat @ X2 ) ) ).

% max_0_1(5)
thf(fact_253_max__0__1_I5_J,axiom,
    ! [X2: num] :
      ( ( ord_max_int @ one_one_int @ ( numeral_numeral_int @ X2 ) )
      = ( numeral_numeral_int @ X2 ) ) ).

% max_0_1(5)
thf(fact_254_semiring__norm_I76_J,axiom,
    ! [N: num] : ( ord_less_num @ one @ ( bit0 @ N ) ) ).

% semiring_norm(76)
thf(fact_255__C4_Ohyps_C_I9_J,axiom,
    ( ( mi != ma )
   => ! [I2: nat] :
        ( ( ord_less_nat @ I2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ m ) )
       => ( ( ( ( vEBT_VEBT_high @ ma @ na )
              = I2 )
           => ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ treeList @ I2 ) @ ( vEBT_VEBT_low @ ma @ na ) ) )
          & ! [X3: nat] :
              ( ( ( ( vEBT_VEBT_high @ X3 @ na )
                  = I2 )
                & ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ treeList @ I2 ) @ ( vEBT_VEBT_low @ X3 @ na ) ) )
             => ( ( ord_less_nat @ mi @ X3 )
                & ( ord_less_eq_nat @ X3 @ ma ) ) ) ) ) ) ).

% "4.hyps"(9)
thf(fact_256__C4_Ohyps_C_I1_J,axiom,
    vEBT_invar_vebt @ summary @ m ).

% "4.hyps"(1)
thf(fact_257_nat__add__max__left,axiom,
    ! [M: nat,N: nat,Q2: nat] :
      ( ( plus_plus_nat @ ( ord_max_nat @ M @ N ) @ Q2 )
      = ( ord_max_nat @ ( plus_plus_nat @ M @ Q2 ) @ ( plus_plus_nat @ N @ Q2 ) ) ) ).

% nat_add_max_left
thf(fact_258_nat__add__max__right,axiom,
    ! [M: nat,N: nat,Q2: nat] :
      ( ( plus_plus_nat @ M @ ( ord_max_nat @ N @ Q2 ) )
      = ( ord_max_nat @ ( plus_plus_nat @ M @ N ) @ ( plus_plus_nat @ M @ Q2 ) ) ) ).

% nat_add_max_right
thf(fact_259_power__divide,axiom,
    ! [A: complex,B: complex,N: nat] :
      ( ( power_power_complex @ ( divide1717551699836669952omplex @ A @ B ) @ N )
      = ( divide1717551699836669952omplex @ ( power_power_complex @ A @ N ) @ ( power_power_complex @ B @ N ) ) ) ).

% power_divide
thf(fact_260_power__divide,axiom,
    ! [A: real,B: real,N: nat] :
      ( ( power_power_real @ ( divide_divide_real @ A @ B ) @ N )
      = ( divide_divide_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ B @ N ) ) ) ).

% power_divide
thf(fact_261_power__divide,axiom,
    ! [A: rat,B: rat,N: nat] :
      ( ( power_power_rat @ ( divide_divide_rat @ A @ B ) @ N )
      = ( divide_divide_rat @ ( power_power_rat @ A @ N ) @ ( power_power_rat @ B @ N ) ) ) ).

% power_divide
thf(fact_262_one__le__power,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_eq_real @ one_one_real @ A )
     => ( ord_less_eq_real @ one_one_real @ ( power_power_real @ A @ N ) ) ) ).

% one_le_power
thf(fact_263_one__le__power,axiom,
    ! [A: rat,N: nat] :
      ( ( ord_less_eq_rat @ one_one_rat @ A )
     => ( ord_less_eq_rat @ one_one_rat @ ( power_power_rat @ A @ N ) ) ) ).

% one_le_power
thf(fact_264_one__le__power,axiom,
    ! [A: nat,N: nat] :
      ( ( ord_less_eq_nat @ one_one_nat @ A )
     => ( ord_less_eq_nat @ one_one_nat @ ( power_power_nat @ A @ N ) ) ) ).

% one_le_power
thf(fact_265_one__le__power,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_eq_int @ one_one_int @ A )
     => ( ord_less_eq_int @ one_one_int @ ( power_power_int @ A @ N ) ) ) ).

% one_le_power
thf(fact_266_power__one__over,axiom,
    ! [A: complex,N: nat] :
      ( ( power_power_complex @ ( divide1717551699836669952omplex @ one_one_complex @ A ) @ N )
      = ( divide1717551699836669952omplex @ one_one_complex @ ( power_power_complex @ A @ N ) ) ) ).

% power_one_over
thf(fact_267_power__one__over,axiom,
    ! [A: real,N: nat] :
      ( ( power_power_real @ ( divide_divide_real @ one_one_real @ A ) @ N )
      = ( divide_divide_real @ one_one_real @ ( power_power_real @ A @ N ) ) ) ).

% power_one_over
thf(fact_268_power__one__over,axiom,
    ! [A: rat,N: nat] :
      ( ( power_power_rat @ ( divide_divide_rat @ one_one_rat @ A ) @ N )
      = ( divide_divide_rat @ one_one_rat @ ( power_power_rat @ A @ N ) ) ) ).

% power_one_over
thf(fact_269_power__strict__increasing,axiom,
    ! [N: nat,N4: nat,A: real] :
      ( ( ord_less_nat @ N @ N4 )
     => ( ( ord_less_real @ one_one_real @ A )
       => ( ord_less_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ A @ N4 ) ) ) ) ).

% power_strict_increasing
thf(fact_270_power__strict__increasing,axiom,
    ! [N: nat,N4: nat,A: rat] :
      ( ( ord_less_nat @ N @ N4 )
     => ( ( ord_less_rat @ one_one_rat @ A )
       => ( ord_less_rat @ ( power_power_rat @ A @ N ) @ ( power_power_rat @ A @ N4 ) ) ) ) ).

% power_strict_increasing
thf(fact_271_power__strict__increasing,axiom,
    ! [N: nat,N4: nat,A: nat] :
      ( ( ord_less_nat @ N @ N4 )
     => ( ( ord_less_nat @ one_one_nat @ A )
       => ( ord_less_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ A @ N4 ) ) ) ) ).

% power_strict_increasing
thf(fact_272_power__strict__increasing,axiom,
    ! [N: nat,N4: nat,A: int] :
      ( ( ord_less_nat @ N @ N4 )
     => ( ( ord_less_int @ one_one_int @ A )
       => ( ord_less_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ A @ N4 ) ) ) ) ).

% power_strict_increasing
thf(fact_273_power__less__imp__less__exp,axiom,
    ! [A: real,M: nat,N: nat] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ord_less_real @ ( power_power_real @ A @ M ) @ ( power_power_real @ A @ N ) )
       => ( ord_less_nat @ M @ N ) ) ) ).

% power_less_imp_less_exp
thf(fact_274_power__less__imp__less__exp,axiom,
    ! [A: rat,M: nat,N: nat] :
      ( ( ord_less_rat @ one_one_rat @ A )
     => ( ( ord_less_rat @ ( power_power_rat @ A @ M ) @ ( power_power_rat @ A @ N ) )
       => ( ord_less_nat @ M @ N ) ) ) ).

% power_less_imp_less_exp
thf(fact_275_power__less__imp__less__exp,axiom,
    ! [A: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ one_one_nat @ A )
     => ( ( ord_less_nat @ ( power_power_nat @ A @ M ) @ ( power_power_nat @ A @ N ) )
       => ( ord_less_nat @ M @ N ) ) ) ).

% power_less_imp_less_exp
thf(fact_276_power__less__imp__less__exp,axiom,
    ! [A: int,M: nat,N: nat] :
      ( ( ord_less_int @ one_one_int @ A )
     => ( ( ord_less_int @ ( power_power_int @ A @ M ) @ ( power_power_int @ A @ N ) )
       => ( ord_less_nat @ M @ N ) ) ) ).

% power_less_imp_less_exp
thf(fact_277_power__increasing,axiom,
    ! [N: nat,N4: nat,A: real] :
      ( ( ord_less_eq_nat @ N @ N4 )
     => ( ( ord_less_eq_real @ one_one_real @ A )
       => ( ord_less_eq_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ A @ N4 ) ) ) ) ).

% power_increasing
thf(fact_278_power__increasing,axiom,
    ! [N: nat,N4: nat,A: rat] :
      ( ( ord_less_eq_nat @ N @ N4 )
     => ( ( ord_less_eq_rat @ one_one_rat @ A )
       => ( ord_less_eq_rat @ ( power_power_rat @ A @ N ) @ ( power_power_rat @ A @ N4 ) ) ) ) ).

% power_increasing
thf(fact_279_power__increasing,axiom,
    ! [N: nat,N4: nat,A: nat] :
      ( ( ord_less_eq_nat @ N @ N4 )
     => ( ( ord_less_eq_nat @ one_one_nat @ A )
       => ( ord_less_eq_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ A @ N4 ) ) ) ) ).

% power_increasing
thf(fact_280_power__increasing,axiom,
    ! [N: nat,N4: nat,A: int] :
      ( ( ord_less_eq_nat @ N @ N4 )
     => ( ( ord_less_eq_int @ one_one_int @ A )
       => ( ord_less_eq_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ A @ N4 ) ) ) ) ).

% power_increasing
thf(fact_281_power__le__imp__le__exp,axiom,
    ! [A: real,M: nat,N: nat] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ord_less_eq_real @ ( power_power_real @ A @ M ) @ ( power_power_real @ A @ N ) )
       => ( ord_less_eq_nat @ M @ N ) ) ) ).

% power_le_imp_le_exp
thf(fact_282_power__le__imp__le__exp,axiom,
    ! [A: rat,M: nat,N: nat] :
      ( ( ord_less_rat @ one_one_rat @ A )
     => ( ( ord_less_eq_rat @ ( power_power_rat @ A @ M ) @ ( power_power_rat @ A @ N ) )
       => ( ord_less_eq_nat @ M @ N ) ) ) ).

% power_le_imp_le_exp
thf(fact_283_power__le__imp__le__exp,axiom,
    ! [A: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ one_one_nat @ A )
     => ( ( ord_less_eq_nat @ ( power_power_nat @ A @ M ) @ ( power_power_nat @ A @ N ) )
       => ( ord_less_eq_nat @ M @ N ) ) ) ).

% power_le_imp_le_exp
thf(fact_284_power__le__imp__le__exp,axiom,
    ! [A: int,M: nat,N: nat] :
      ( ( ord_less_int @ one_one_int @ A )
     => ( ( ord_less_eq_int @ ( power_power_int @ A @ M ) @ ( power_power_int @ A @ N ) )
       => ( ord_less_eq_nat @ M @ N ) ) ) ).

% power_le_imp_le_exp
thf(fact_285_one__power2,axiom,
    ( ( power_power_rat @ one_one_rat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = one_one_rat ) ).

% one_power2
thf(fact_286_one__power2,axiom,
    ( ( power_power_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = one_one_nat ) ).

% one_power2
thf(fact_287_one__power2,axiom,
    ( ( power_power_real @ one_one_real @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = one_one_real ) ).

% one_power2
thf(fact_288_one__power2,axiom,
    ( ( power_power_complex @ one_one_complex @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = one_one_complex ) ).

% one_power2
thf(fact_289_one__power2,axiom,
    ( ( power_power_int @ one_one_int @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = one_one_int ) ).

% one_power2
thf(fact_290_less__exp,axiom,
    ! [N: nat] : ( ord_less_nat @ N @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).

% less_exp
thf(fact_291_self__le__ge2__pow,axiom,
    ! [K: nat,M: nat] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K )
     => ( ord_less_eq_nat @ M @ ( power_power_nat @ K @ M ) ) ) ).

% self_le_ge2_pow
thf(fact_292_power2__nat__le__eq__le,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( power_power_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% power2_nat_le_eq_le
thf(fact_293_power2__nat__le__imp__le,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( power_power_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ N )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% power2_nat_le_imp_le
thf(fact_294_in__children__def,axiom,
    ( vEBT_V5917875025757280293ildren
    = ( ^ [N2: nat,TreeList2: list_VEBT_VEBT,X: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList2 @ ( vEBT_VEBT_high @ X @ N2 ) ) @ ( vEBT_VEBT_low @ X @ N2 ) ) ) ) ).

% in_children_def
thf(fact_295_member__inv,axiom,
    ! [Mi: nat,Ma: nat,Deg: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT,X2: nat] :
      ( ( vEBT_vebt_member @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X2 )
     => ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
        & ( ( X2 = Mi )
          | ( X2 = Ma )
          | ( ( ord_less_nat @ X2 @ Ma )
            & ( ord_less_nat @ Mi @ X2 )
            & ( ord_less_nat @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) )
            & ( vEBT_vebt_member @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ).

% member_inv
thf(fact_296__092_060open_0621_A_092_060le_062_An_A_092_060and_062_A1_A_092_060le_062_Am_092_060close_062,axiom,
    ( ( ord_less_eq_nat @ one_one_nat @ na )
    & ( ord_less_eq_nat @ one_one_nat @ m ) ) ).

% \<open>1 \<le> n \<and> 1 \<le> m\<close>
thf(fact_297_both__member__options__ding,axiom,
    ! [Info: option4927543243414619207at_nat,Deg: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT,N: nat,X2: nat] :
      ( ( vEBT_invar_vebt @ ( vEBT_Node @ Info @ Deg @ TreeList @ Summary ) @ N )
     => ( ( ord_less_nat @ X2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg ) )
       => ( ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
         => ( vEBT_V8194947554948674370ptions @ ( vEBT_Node @ Info @ Deg @ TreeList @ Summary ) @ X2 ) ) ) ) ).

% both_member_options_ding
thf(fact_298_field__less__half__sum,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_real @ X2 @ Y2 )
     => ( ord_less_real @ X2 @ ( divide_divide_real @ ( plus_plus_real @ X2 @ Y2 ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).

% field_less_half_sum
thf(fact_299_field__less__half__sum,axiom,
    ! [X2: rat,Y2: rat] :
      ( ( ord_less_rat @ X2 @ Y2 )
     => ( ord_less_rat @ X2 @ ( divide_divide_rat @ ( plus_plus_rat @ X2 @ Y2 ) @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) ) ).

% field_less_half_sum
thf(fact_300_low__inv,axiom,
    ! [X2: nat,N: nat,Y2: nat] :
      ( ( ord_less_nat @ X2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
     => ( ( vEBT_VEBT_low @ ( plus_plus_nat @ ( times_times_nat @ Y2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) @ X2 ) @ N )
        = X2 ) ) ).

% low_inv
thf(fact_301_high__inv,axiom,
    ! [X2: nat,N: nat,Y2: nat] :
      ( ( ord_less_nat @ X2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
     => ( ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ Y2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) @ X2 ) @ N )
        = Y2 ) ) ).

% high_inv
thf(fact_302__C5_C,axiom,
    ( ( vEBT_T_m_e_m_b_e_r @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ mi @ ma ) ) @ deg @ treeList @ summary ) @ xa )
    = ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ ( bit1 @ ( bit1 @ one ) ) ) ) @ ( vEBT_T_m_e_m_b_e_r @ ( nth_VEBT_VEBT @ treeList @ ( vEBT_VEBT_high @ xa @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ xa @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% "5"
thf(fact_303_mi__ma__2__deg,axiom,
    ! [Mi: nat,Ma: nat,Deg: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT,N: nat] :
      ( ( vEBT_invar_vebt @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ N )
     => ( ( ord_less_eq_nat @ Mi @ Ma )
        & ( ord_less_nat @ Ma @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg ) ) ) ) ).

% mi_ma_2_deg
thf(fact_304_max__less__iff__conj,axiom,
    ! [X2: extended_enat,Y2: extended_enat,Z: extended_enat] :
      ( ( ord_le72135733267957522d_enat @ ( ord_ma741700101516333627d_enat @ X2 @ Y2 ) @ Z )
      = ( ( ord_le72135733267957522d_enat @ X2 @ Z )
        & ( ord_le72135733267957522d_enat @ Y2 @ Z ) ) ) ).

% max_less_iff_conj
thf(fact_305_max__less__iff__conj,axiom,
    ! [X2: real,Y2: real,Z: real] :
      ( ( ord_less_real @ ( ord_max_real @ X2 @ Y2 ) @ Z )
      = ( ( ord_less_real @ X2 @ Z )
        & ( ord_less_real @ Y2 @ Z ) ) ) ).

% max_less_iff_conj
thf(fact_306_max__less__iff__conj,axiom,
    ! [X2: rat,Y2: rat,Z: rat] :
      ( ( ord_less_rat @ ( ord_max_rat @ X2 @ Y2 ) @ Z )
      = ( ( ord_less_rat @ X2 @ Z )
        & ( ord_less_rat @ Y2 @ Z ) ) ) ).

% max_less_iff_conj
thf(fact_307_max__less__iff__conj,axiom,
    ! [X2: num,Y2: num,Z: num] :
      ( ( ord_less_num @ ( ord_max_num @ X2 @ Y2 ) @ Z )
      = ( ( ord_less_num @ X2 @ Z )
        & ( ord_less_num @ Y2 @ Z ) ) ) ).

% max_less_iff_conj
thf(fact_308_max__less__iff__conj,axiom,
    ! [X2: nat,Y2: nat,Z: nat] :
      ( ( ord_less_nat @ ( ord_max_nat @ X2 @ Y2 ) @ Z )
      = ( ( ord_less_nat @ X2 @ Z )
        & ( ord_less_nat @ Y2 @ Z ) ) ) ).

% max_less_iff_conj
thf(fact_309_max__less__iff__conj,axiom,
    ! [X2: int,Y2: int,Z: int] :
      ( ( ord_less_int @ ( ord_max_int @ X2 @ Y2 ) @ Z )
      = ( ( ord_less_int @ X2 @ Z )
        & ( ord_less_int @ Y2 @ Z ) ) ) ).

% max_less_iff_conj
thf(fact_310_max_Oabsorb4,axiom,
    ! [A: extended_enat,B: extended_enat] :
      ( ( ord_le72135733267957522d_enat @ A @ B )
     => ( ( ord_ma741700101516333627d_enat @ A @ B )
        = B ) ) ).

% max.absorb4
thf(fact_311_max_Oabsorb4,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_max_real @ A @ B )
        = B ) ) ).

% max.absorb4
thf(fact_312_max_Oabsorb4,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_max_rat @ A @ B )
        = B ) ) ).

% max.absorb4
thf(fact_313_max_Oabsorb4,axiom,
    ! [A: num,B: num] :
      ( ( ord_less_num @ A @ B )
     => ( ( ord_max_num @ A @ B )
        = B ) ) ).

% max.absorb4
thf(fact_314_max_Oabsorb4,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_max_nat @ A @ B )
        = B ) ) ).

% max.absorb4
thf(fact_315_max_Oabsorb4,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_max_int @ A @ B )
        = B ) ) ).

% max.absorb4
thf(fact_316_max_Oabsorb3,axiom,
    ! [B: extended_enat,A: extended_enat] :
      ( ( ord_le72135733267957522d_enat @ B @ A )
     => ( ( ord_ma741700101516333627d_enat @ A @ B )
        = A ) ) ).

% max.absorb3
thf(fact_317_max_Oabsorb3,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_real @ B @ A )
     => ( ( ord_max_real @ A @ B )
        = A ) ) ).

% max.absorb3
thf(fact_318_max_Oabsorb3,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_rat @ B @ A )
     => ( ( ord_max_rat @ A @ B )
        = A ) ) ).

% max.absorb3
thf(fact_319_max_Oabsorb3,axiom,
    ! [B: num,A: num] :
      ( ( ord_less_num @ B @ A )
     => ( ( ord_max_num @ A @ B )
        = A ) ) ).

% max.absorb3
thf(fact_320_max_Oabsorb3,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ B @ A )
     => ( ( ord_max_nat @ A @ B )
        = A ) ) ).

% max.absorb3
thf(fact_321_max_Oabsorb3,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ B @ A )
     => ( ( ord_max_int @ A @ B )
        = A ) ) ).

% max.absorb3
thf(fact_322_deg__deg__n,axiom,
    ! [Info: option4927543243414619207at_nat,Deg: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT,N: nat] :
      ( ( vEBT_invar_vebt @ ( vEBT_Node @ Info @ Deg @ TreeList @ Summary ) @ N )
     => ( Deg = N ) ) ).

% deg_deg_n
thf(fact_323_both__member__options__equiv__member,axiom,
    ! [T: vEBT_VEBT,N: nat,X2: nat] :
      ( ( vEBT_invar_vebt @ T @ N )
     => ( ( vEBT_V8194947554948674370ptions @ T @ X2 )
        = ( vEBT_vebt_member @ T @ X2 ) ) ) ).

% both_member_options_equiv_member
thf(fact_324_valid__member__both__member__options,axiom,
    ! [T: vEBT_VEBT,N: nat,X2: nat] :
      ( ( vEBT_invar_vebt @ T @ N )
     => ( ( vEBT_V8194947554948674370ptions @ T @ X2 )
       => ( vEBT_vebt_member @ T @ X2 ) ) ) ).

% valid_member_both_member_options
thf(fact_325_semiring__norm_I90_J,axiom,
    ! [M: num,N: num] :
      ( ( ( bit1 @ M )
        = ( bit1 @ N ) )
      = ( M = N ) ) ).

% semiring_norm(90)
thf(fact_326_max_Oidem,axiom,
    ! [A: nat] :
      ( ( ord_max_nat @ A @ A )
      = A ) ).

% max.idem
thf(fact_327_max_Oidem,axiom,
    ! [A: extended_enat] :
      ( ( ord_ma741700101516333627d_enat @ A @ A )
      = A ) ).

% max.idem
thf(fact_328_max_Oidem,axiom,
    ! [A: int] :
      ( ( ord_max_int @ A @ A )
      = A ) ).

% max.idem
thf(fact_329_max_Oleft__idem,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_max_nat @ A @ ( ord_max_nat @ A @ B ) )
      = ( ord_max_nat @ A @ B ) ) ).

% max.left_idem
thf(fact_330_max_Oleft__idem,axiom,
    ! [A: extended_enat,B: extended_enat] :
      ( ( ord_ma741700101516333627d_enat @ A @ ( ord_ma741700101516333627d_enat @ A @ B ) )
      = ( ord_ma741700101516333627d_enat @ A @ B ) ) ).

% max.left_idem
thf(fact_331_max_Oleft__idem,axiom,
    ! [A: int,B: int] :
      ( ( ord_max_int @ A @ ( ord_max_int @ A @ B ) )
      = ( ord_max_int @ A @ B ) ) ).

% max.left_idem
thf(fact_332_max_Oright__idem,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_max_nat @ ( ord_max_nat @ A @ B ) @ B )
      = ( ord_max_nat @ A @ B ) ) ).

% max.right_idem
thf(fact_333_max_Oright__idem,axiom,
    ! [A: extended_enat,B: extended_enat] :
      ( ( ord_ma741700101516333627d_enat @ ( ord_ma741700101516333627d_enat @ A @ B ) @ B )
      = ( ord_ma741700101516333627d_enat @ A @ B ) ) ).

% max.right_idem
thf(fact_334_max_Oright__idem,axiom,
    ! [A: int,B: int] :
      ( ( ord_max_int @ ( ord_max_int @ A @ B ) @ B )
      = ( ord_max_int @ A @ B ) ) ).

% max.right_idem
thf(fact_335_mi__eq__ma__no__ch,axiom,
    ! [Mi: nat,Ma: nat,Deg: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT] :
      ( ( vEBT_invar_vebt @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ Deg )
     => ( ( Mi = Ma )
       => ( ! [X3: vEBT_VEBT] :
              ( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList ) )
             => ~ ? [X_1: nat] : ( vEBT_V8194947554948674370ptions @ X3 @ X_1 ) )
          & ~ ? [X_1: nat] : ( vEBT_V8194947554948674370ptions @ Summary @ X_1 ) ) ) ) ).

% mi_eq_ma_no_ch
thf(fact_336_member__bound,axiom,
    ! [Tree: vEBT_VEBT,X2: nat,N: nat] :
      ( ( vEBT_vebt_member @ Tree @ X2 )
     => ( ( vEBT_invar_vebt @ Tree @ N )
       => ( ord_less_nat @ X2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ) ).

% member_bound
thf(fact_337__C4_OIH_C_I1_J,axiom,
    ! [X3: vEBT_VEBT] :
      ( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ treeList ) )
     => ( ( vEBT_invar_vebt @ X3 @ na )
        & ! [Xa: nat] : ( ord_less_eq_nat @ ( vEBT_T_m_e_m_b_e_r @ X3 @ Xa ) @ ( times_times_nat @ ( plus_plus_nat @ one_one_nat @ ( vEBT_VEBT_height @ X3 ) ) @ ( numeral_numeral_nat @ ( bit1 @ ( bit1 @ ( bit1 @ one ) ) ) ) ) ) ) ) ).

% "4.IH"(1)
thf(fact_338_numeral__times__numeral,axiom,
    ! [M: num,N: num] :
      ( ( times_times_complex @ ( numera6690914467698888265omplex @ M ) @ ( numera6690914467698888265omplex @ N ) )
      = ( numera6690914467698888265omplex @ ( times_times_num @ M @ N ) ) ) ).

% numeral_times_numeral
thf(fact_339_numeral__times__numeral,axiom,
    ! [M: num,N: num] :
      ( ( times_times_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N ) )
      = ( numeral_numeral_real @ ( times_times_num @ M @ N ) ) ) ).

% numeral_times_numeral
thf(fact_340_numeral__times__numeral,axiom,
    ! [M: num,N: num] :
      ( ( times_times_rat @ ( numeral_numeral_rat @ M ) @ ( numeral_numeral_rat @ N ) )
      = ( numeral_numeral_rat @ ( times_times_num @ M @ N ) ) ) ).

% numeral_times_numeral
thf(fact_341_numeral__times__numeral,axiom,
    ! [M: num,N: num] :
      ( ( times_times_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) )
      = ( numeral_numeral_nat @ ( times_times_num @ M @ N ) ) ) ).

% numeral_times_numeral
thf(fact_342_numeral__times__numeral,axiom,
    ! [M: num,N: num] :
      ( ( times_times_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) )
      = ( numeral_numeral_int @ ( times_times_num @ M @ N ) ) ) ).

% numeral_times_numeral
thf(fact_343_mult__numeral__left__semiring__numeral,axiom,
    ! [V: num,W: num,Z: complex] :
      ( ( times_times_complex @ ( numera6690914467698888265omplex @ V ) @ ( times_times_complex @ ( numera6690914467698888265omplex @ W ) @ Z ) )
      = ( times_times_complex @ ( numera6690914467698888265omplex @ ( times_times_num @ V @ W ) ) @ Z ) ) ).

% mult_numeral_left_semiring_numeral
thf(fact_344_mult__numeral__left__semiring__numeral,axiom,
    ! [V: num,W: num,Z: real] :
      ( ( times_times_real @ ( numeral_numeral_real @ V ) @ ( times_times_real @ ( numeral_numeral_real @ W ) @ Z ) )
      = ( times_times_real @ ( numeral_numeral_real @ ( times_times_num @ V @ W ) ) @ Z ) ) ).

% mult_numeral_left_semiring_numeral
thf(fact_345_mult__numeral__left__semiring__numeral,axiom,
    ! [V: num,W: num,Z: rat] :
      ( ( times_times_rat @ ( numeral_numeral_rat @ V ) @ ( times_times_rat @ ( numeral_numeral_rat @ W ) @ Z ) )
      = ( times_times_rat @ ( numeral_numeral_rat @ ( times_times_num @ V @ W ) ) @ Z ) ) ).

% mult_numeral_left_semiring_numeral
thf(fact_346_mult__numeral__left__semiring__numeral,axiom,
    ! [V: num,W: num,Z: nat] :
      ( ( times_times_nat @ ( numeral_numeral_nat @ V ) @ ( times_times_nat @ ( numeral_numeral_nat @ W ) @ Z ) )
      = ( times_times_nat @ ( numeral_numeral_nat @ ( times_times_num @ V @ W ) ) @ Z ) ) ).

% mult_numeral_left_semiring_numeral
thf(fact_347_mult__numeral__left__semiring__numeral,axiom,
    ! [V: num,W: num,Z: int] :
      ( ( times_times_int @ ( numeral_numeral_int @ V ) @ ( times_times_int @ ( numeral_numeral_int @ W ) @ Z ) )
      = ( times_times_int @ ( numeral_numeral_int @ ( times_times_num @ V @ W ) ) @ Z ) ) ).

% mult_numeral_left_semiring_numeral
thf(fact_348_bit__concat__def,axiom,
    ( vEBT_VEBT_bit_concat
    = ( ^ [H: nat,L2: nat,D2: nat] : ( plus_plus_nat @ ( times_times_nat @ H @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ D2 ) ) @ L2 ) ) ) ).

% bit_concat_def
thf(fact_349_semiring__norm_I88_J,axiom,
    ! [M: num,N: num] :
      ( ( bit0 @ M )
     != ( bit1 @ N ) ) ).

% semiring_norm(88)
thf(fact_350_semiring__norm_I89_J,axiom,
    ! [M: num,N: num] :
      ( ( bit1 @ M )
     != ( bit0 @ N ) ) ).

% semiring_norm(89)
thf(fact_351_semiring__norm_I84_J,axiom,
    ! [N: num] :
      ( one
     != ( bit1 @ N ) ) ).

% semiring_norm(84)
thf(fact_352_semiring__norm_I86_J,axiom,
    ! [M: num] :
      ( ( bit1 @ M )
     != one ) ).

% semiring_norm(86)
thf(fact_353_two__powr__height__bound__deg,axiom,
    ! [T: vEBT_VEBT,N: nat] :
      ( ( vEBT_invar_vebt @ T @ N )
     => ( ord_less_eq_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( vEBT_VEBT_height @ T ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).

% two_powr_height_bound_deg
thf(fact_354_max_Obounded__iff,axiom,
    ! [B: extended_enat,C: extended_enat,A: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ ( ord_ma741700101516333627d_enat @ B @ C ) @ A )
      = ( ( ord_le2932123472753598470d_enat @ B @ A )
        & ( ord_le2932123472753598470d_enat @ C @ A ) ) ) ).

% max.bounded_iff
thf(fact_355_max_Obounded__iff,axiom,
    ! [B: rat,C: rat,A: rat] :
      ( ( ord_less_eq_rat @ ( ord_max_rat @ B @ C ) @ A )
      = ( ( ord_less_eq_rat @ B @ A )
        & ( ord_less_eq_rat @ C @ A ) ) ) ).

% max.bounded_iff
thf(fact_356_max_Obounded__iff,axiom,
    ! [B: num,C: num,A: num] :
      ( ( ord_less_eq_num @ ( ord_max_num @ B @ C ) @ A )
      = ( ( ord_less_eq_num @ B @ A )
        & ( ord_less_eq_num @ C @ A ) ) ) ).

% max.bounded_iff
thf(fact_357_max_Obounded__iff,axiom,
    ! [B: nat,C: nat,A: nat] :
      ( ( ord_less_eq_nat @ ( ord_max_nat @ B @ C ) @ A )
      = ( ( ord_less_eq_nat @ B @ A )
        & ( ord_less_eq_nat @ C @ A ) ) ) ).

% max.bounded_iff
thf(fact_358_max_Obounded__iff,axiom,
    ! [B: int,C: int,A: int] :
      ( ( ord_less_eq_int @ ( ord_max_int @ B @ C ) @ A )
      = ( ( ord_less_eq_int @ B @ A )
        & ( ord_less_eq_int @ C @ A ) ) ) ).

% max.bounded_iff
thf(fact_359_max_Oabsorb2,axiom,
    ! [A: extended_enat,B: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ A @ B )
     => ( ( ord_ma741700101516333627d_enat @ A @ B )
        = B ) ) ).

% max.absorb2
thf(fact_360_max_Oabsorb2,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_max_rat @ A @ B )
        = B ) ) ).

% max.absorb2
thf(fact_361_max_Oabsorb2,axiom,
    ! [A: num,B: num] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( ord_max_num @ A @ B )
        = B ) ) ).

% max.absorb2
thf(fact_362_max_Oabsorb2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_max_nat @ A @ B )
        = B ) ) ).

% max.absorb2
thf(fact_363_max_Oabsorb2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_max_int @ A @ B )
        = B ) ) ).

% max.absorb2
thf(fact_364_max_Oabsorb1,axiom,
    ! [B: extended_enat,A: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ B @ A )
     => ( ( ord_ma741700101516333627d_enat @ A @ B )
        = A ) ) ).

% max.absorb1
thf(fact_365_max_Oabsorb1,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_eq_rat @ B @ A )
     => ( ( ord_max_rat @ A @ B )
        = A ) ) ).

% max.absorb1
thf(fact_366_max_Oabsorb1,axiom,
    ! [B: num,A: num] :
      ( ( ord_less_eq_num @ B @ A )
     => ( ( ord_max_num @ A @ B )
        = A ) ) ).

% max.absorb1
thf(fact_367_max_Oabsorb1,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( ord_max_nat @ A @ B )
        = A ) ) ).

% max.absorb1
thf(fact_368_max_Oabsorb1,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_eq_int @ B @ A )
     => ( ( ord_max_int @ A @ B )
        = A ) ) ).

% max.absorb1
thf(fact_369_valid__insert__both__member__options__pres,axiom,
    ! [T: vEBT_VEBT,N: nat,X2: nat,Y2: nat] :
      ( ( vEBT_invar_vebt @ T @ N )
     => ( ( ord_less_nat @ X2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
       => ( ( ord_less_nat @ Y2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
         => ( ( vEBT_V8194947554948674370ptions @ T @ X2 )
           => ( vEBT_V8194947554948674370ptions @ ( vEBT_vebt_insert @ T @ Y2 ) @ X2 ) ) ) ) ) ).

% valid_insert_both_member_options_pres
thf(fact_370_valid__insert__both__member__options__add,axiom,
    ! [T: vEBT_VEBT,N: nat,X2: nat] :
      ( ( vEBT_invar_vebt @ T @ N )
     => ( ( ord_less_nat @ X2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
       => ( vEBT_V8194947554948674370ptions @ ( vEBT_vebt_insert @ T @ X2 ) @ X2 ) ) ) ).

% valid_insert_both_member_options_add
thf(fact_371_post__member__pre__member,axiom,
    ! [T: vEBT_VEBT,N: nat,X2: nat,Y2: nat] :
      ( ( vEBT_invar_vebt @ T @ N )
     => ( ( ord_less_nat @ X2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
       => ( ( ord_less_nat @ Y2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
         => ( ( vEBT_vebt_member @ ( vEBT_vebt_insert @ T @ X2 ) @ Y2 )
           => ( ( vEBT_vebt_member @ T @ Y2 )
              | ( X2 = Y2 ) ) ) ) ) ) ).

% post_member_pre_member
thf(fact_372_nat__mult__eq__1__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ( times_times_nat @ M @ N )
        = one_one_nat )
      = ( ( M = one_one_nat )
        & ( N = one_one_nat ) ) ) ).

% nat_mult_eq_1_iff
thf(fact_373_nat__1__eq__mult__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( one_one_nat
        = ( times_times_nat @ M @ N ) )
      = ( ( M = one_one_nat )
        & ( N = one_one_nat ) ) ) ).

% nat_1_eq_mult_iff
thf(fact_374_member__correct,axiom,
    ! [T: vEBT_VEBT,N: nat,X2: nat] :
      ( ( vEBT_invar_vebt @ T @ N )
     => ( ( vEBT_vebt_member @ T @ X2 )
        = ( member_nat @ X2 @ ( vEBT_set_vebt @ T ) ) ) ) ).

% member_correct
thf(fact_375_semiring__norm_I73_J,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_eq_num @ ( bit1 @ M ) @ ( bit1 @ N ) )
      = ( ord_less_eq_num @ M @ N ) ) ).

% semiring_norm(73)
thf(fact_376_semiring__norm_I80_J,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_num @ ( bit1 @ M ) @ ( bit1 @ N ) )
      = ( ord_less_num @ M @ N ) ) ).

% semiring_norm(80)
thf(fact_377_set__n__deg__not__0,axiom,
    ! [TreeList: list_VEBT_VEBT,N: nat,M: nat] :
      ( ! [X4: vEBT_VEBT] :
          ( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList ) )
         => ( vEBT_invar_vebt @ X4 @ N ) )
     => ( ( ( size_s6755466524823107622T_VEBT @ TreeList )
          = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
       => ( ord_less_eq_nat @ one_one_nat @ N ) ) ) ).

% set_n_deg_not_0
thf(fact_378__C4_OIH_C_I2_J,axiom,
    ! [X2: nat] : ( ord_less_eq_nat @ ( vEBT_T_m_e_m_b_e_r @ summary @ X2 ) @ ( times_times_nat @ ( plus_plus_nat @ one_one_nat @ ( vEBT_VEBT_height @ summary ) ) @ ( numeral_numeral_nat @ ( bit1 @ ( bit1 @ ( bit1 @ one ) ) ) ) ) ) ).

% "4.IH"(2)
thf(fact_379_distrib__right__numeral,axiom,
    ! [A: complex,B: complex,V: num] :
      ( ( times_times_complex @ ( plus_plus_complex @ A @ B ) @ ( numera6690914467698888265omplex @ V ) )
      = ( plus_plus_complex @ ( times_times_complex @ A @ ( numera6690914467698888265omplex @ V ) ) @ ( times_times_complex @ B @ ( numera6690914467698888265omplex @ V ) ) ) ) ).

% distrib_right_numeral
thf(fact_380_distrib__right__numeral,axiom,
    ! [A: real,B: real,V: num] :
      ( ( times_times_real @ ( plus_plus_real @ A @ B ) @ ( numeral_numeral_real @ V ) )
      = ( plus_plus_real @ ( times_times_real @ A @ ( numeral_numeral_real @ V ) ) @ ( times_times_real @ B @ ( numeral_numeral_real @ V ) ) ) ) ).

% distrib_right_numeral
thf(fact_381_distrib__right__numeral,axiom,
    ! [A: rat,B: rat,V: num] :
      ( ( times_times_rat @ ( plus_plus_rat @ A @ B ) @ ( numeral_numeral_rat @ V ) )
      = ( plus_plus_rat @ ( times_times_rat @ A @ ( numeral_numeral_rat @ V ) ) @ ( times_times_rat @ B @ ( numeral_numeral_rat @ V ) ) ) ) ).

% distrib_right_numeral
thf(fact_382_distrib__right__numeral,axiom,
    ! [A: nat,B: nat,V: num] :
      ( ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ ( numeral_numeral_nat @ V ) )
      = ( plus_plus_nat @ ( times_times_nat @ A @ ( numeral_numeral_nat @ V ) ) @ ( times_times_nat @ B @ ( numeral_numeral_nat @ V ) ) ) ) ).

% distrib_right_numeral
thf(fact_383_distrib__right__numeral,axiom,
    ! [A: int,B: int,V: num] :
      ( ( times_times_int @ ( plus_plus_int @ A @ B ) @ ( numeral_numeral_int @ V ) )
      = ( plus_plus_int @ ( times_times_int @ A @ ( numeral_numeral_int @ V ) ) @ ( times_times_int @ B @ ( numeral_numeral_int @ V ) ) ) ) ).

% distrib_right_numeral
thf(fact_384_distrib__left__numeral,axiom,
    ! [V: num,B: complex,C: complex] :
      ( ( times_times_complex @ ( numera6690914467698888265omplex @ V ) @ ( plus_plus_complex @ B @ C ) )
      = ( plus_plus_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ V ) @ B ) @ ( times_times_complex @ ( numera6690914467698888265omplex @ V ) @ C ) ) ) ).

% distrib_left_numeral
thf(fact_385_distrib__left__numeral,axiom,
    ! [V: num,B: real,C: real] :
      ( ( times_times_real @ ( numeral_numeral_real @ V ) @ ( plus_plus_real @ B @ C ) )
      = ( plus_plus_real @ ( times_times_real @ ( numeral_numeral_real @ V ) @ B ) @ ( times_times_real @ ( numeral_numeral_real @ V ) @ C ) ) ) ).

% distrib_left_numeral
thf(fact_386_distrib__left__numeral,axiom,
    ! [V: num,B: rat,C: rat] :
      ( ( times_times_rat @ ( numeral_numeral_rat @ V ) @ ( plus_plus_rat @ B @ C ) )
      = ( plus_plus_rat @ ( times_times_rat @ ( numeral_numeral_rat @ V ) @ B ) @ ( times_times_rat @ ( numeral_numeral_rat @ V ) @ C ) ) ) ).

% distrib_left_numeral
thf(fact_387_distrib__left__numeral,axiom,
    ! [V: num,B: nat,C: nat] :
      ( ( times_times_nat @ ( numeral_numeral_nat @ V ) @ ( plus_plus_nat @ B @ C ) )
      = ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ V ) @ B ) @ ( times_times_nat @ ( numeral_numeral_nat @ V ) @ C ) ) ) ).

% distrib_left_numeral
thf(fact_388_distrib__left__numeral,axiom,
    ! [V: num,B: int,C: int] :
      ( ( times_times_int @ ( numeral_numeral_int @ V ) @ ( plus_plus_int @ B @ C ) )
      = ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ V ) @ B ) @ ( times_times_int @ ( numeral_numeral_int @ V ) @ C ) ) ) ).

% distrib_left_numeral
thf(fact_389_semiring__norm_I9_J,axiom,
    ! [M: num,N: num] :
      ( ( plus_plus_num @ ( bit1 @ M ) @ ( bit0 @ N ) )
      = ( bit1 @ ( plus_plus_num @ M @ N ) ) ) ).

% semiring_norm(9)
thf(fact_390_semiring__norm_I7_J,axiom,
    ! [M: num,N: num] :
      ( ( plus_plus_num @ ( bit0 @ M ) @ ( bit1 @ N ) )
      = ( bit1 @ ( plus_plus_num @ M @ N ) ) ) ).

% semiring_norm(7)
thf(fact_391_semiring__norm_I72_J,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_eq_num @ ( bit0 @ M ) @ ( bit1 @ N ) )
      = ( ord_less_eq_num @ M @ N ) ) ).

% semiring_norm(72)
thf(fact_392_semiring__norm_I81_J,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_num @ ( bit1 @ M ) @ ( bit0 @ N ) )
      = ( ord_less_num @ M @ N ) ) ).

% semiring_norm(81)
thf(fact_393_semiring__norm_I70_J,axiom,
    ! [M: num] :
      ~ ( ord_less_eq_num @ ( bit1 @ M ) @ one ) ).

% semiring_norm(70)
thf(fact_394_semiring__norm_I77_J,axiom,
    ! [N: num] : ( ord_less_num @ one @ ( bit1 @ N ) ) ).

% semiring_norm(77)
thf(fact_395_le__divide__eq__numeral1_I1_J,axiom,
    ! [A: real,B: real,W: num] :
      ( ( ord_less_eq_real @ A @ ( divide_divide_real @ B @ ( numeral_numeral_real @ W ) ) )
      = ( ord_less_eq_real @ ( times_times_real @ A @ ( numeral_numeral_real @ W ) ) @ B ) ) ).

% le_divide_eq_numeral1(1)
thf(fact_396_le__divide__eq__numeral1_I1_J,axiom,
    ! [A: rat,B: rat,W: num] :
      ( ( ord_less_eq_rat @ A @ ( divide_divide_rat @ B @ ( numeral_numeral_rat @ W ) ) )
      = ( ord_less_eq_rat @ ( times_times_rat @ A @ ( numeral_numeral_rat @ W ) ) @ B ) ) ).

% le_divide_eq_numeral1(1)
thf(fact_397_divide__le__eq__numeral1_I1_J,axiom,
    ! [B: real,W: num,A: real] :
      ( ( ord_less_eq_real @ ( divide_divide_real @ B @ ( numeral_numeral_real @ W ) ) @ A )
      = ( ord_less_eq_real @ B @ ( times_times_real @ A @ ( numeral_numeral_real @ W ) ) ) ) ).

% divide_le_eq_numeral1(1)
thf(fact_398_divide__le__eq__numeral1_I1_J,axiom,
    ! [B: rat,W: num,A: rat] :
      ( ( ord_less_eq_rat @ ( divide_divide_rat @ B @ ( numeral_numeral_rat @ W ) ) @ A )
      = ( ord_less_eq_rat @ B @ ( times_times_rat @ A @ ( numeral_numeral_rat @ W ) ) ) ) ).

% divide_le_eq_numeral1(1)
thf(fact_399_less__divide__eq__numeral1_I1_J,axiom,
    ! [A: real,B: real,W: num] :
      ( ( ord_less_real @ A @ ( divide_divide_real @ B @ ( numeral_numeral_real @ W ) ) )
      = ( ord_less_real @ ( times_times_real @ A @ ( numeral_numeral_real @ W ) ) @ B ) ) ).

% less_divide_eq_numeral1(1)
thf(fact_400_less__divide__eq__numeral1_I1_J,axiom,
    ! [A: rat,B: rat,W: num] :
      ( ( ord_less_rat @ A @ ( divide_divide_rat @ B @ ( numeral_numeral_rat @ W ) ) )
      = ( ord_less_rat @ ( times_times_rat @ A @ ( numeral_numeral_rat @ W ) ) @ B ) ) ).

% less_divide_eq_numeral1(1)
thf(fact_401_divide__less__eq__numeral1_I1_J,axiom,
    ! [B: real,W: num,A: real] :
      ( ( ord_less_real @ ( divide_divide_real @ B @ ( numeral_numeral_real @ W ) ) @ A )
      = ( ord_less_real @ B @ ( times_times_real @ A @ ( numeral_numeral_real @ W ) ) ) ) ).

% divide_less_eq_numeral1(1)
thf(fact_402_divide__less__eq__numeral1_I1_J,axiom,
    ! [B: rat,W: num,A: rat] :
      ( ( ord_less_rat @ ( divide_divide_rat @ B @ ( numeral_numeral_rat @ W ) ) @ A )
      = ( ord_less_rat @ B @ ( times_times_rat @ A @ ( numeral_numeral_rat @ W ) ) ) ) ).

% divide_less_eq_numeral1(1)
thf(fact_403_power__add__numeral,axiom,
    ! [A: complex,M: num,N: num] :
      ( ( times_times_complex @ ( power_power_complex @ A @ ( numeral_numeral_nat @ M ) ) @ ( power_power_complex @ A @ ( numeral_numeral_nat @ N ) ) )
      = ( power_power_complex @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) ) ).

% power_add_numeral
thf(fact_404_power__add__numeral,axiom,
    ! [A: real,M: num,N: num] :
      ( ( times_times_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ M ) ) @ ( power_power_real @ A @ ( numeral_numeral_nat @ N ) ) )
      = ( power_power_real @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) ) ).

% power_add_numeral
thf(fact_405_power__add__numeral,axiom,
    ! [A: rat,M: num,N: num] :
      ( ( times_times_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ M ) ) @ ( power_power_rat @ A @ ( numeral_numeral_nat @ N ) ) )
      = ( power_power_rat @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) ) ).

% power_add_numeral
thf(fact_406_power__add__numeral,axiom,
    ! [A: nat,M: num,N: num] :
      ( ( times_times_nat @ ( power_power_nat @ A @ ( numeral_numeral_nat @ M ) ) @ ( power_power_nat @ A @ ( numeral_numeral_nat @ N ) ) )
      = ( power_power_nat @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) ) ).

% power_add_numeral
thf(fact_407_power__add__numeral,axiom,
    ! [A: int,M: num,N: num] :
      ( ( times_times_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ M ) ) @ ( power_power_int @ A @ ( numeral_numeral_nat @ N ) ) )
      = ( power_power_int @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) ) ).

% power_add_numeral
thf(fact_408_power__add__numeral2,axiom,
    ! [A: complex,M: num,N: num,B: complex] :
      ( ( times_times_complex @ ( power_power_complex @ A @ ( numeral_numeral_nat @ M ) ) @ ( times_times_complex @ ( power_power_complex @ A @ ( numeral_numeral_nat @ N ) ) @ B ) )
      = ( times_times_complex @ ( power_power_complex @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) @ B ) ) ).

% power_add_numeral2
thf(fact_409_power__add__numeral2,axiom,
    ! [A: real,M: num,N: num,B: real] :
      ( ( times_times_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ M ) ) @ ( times_times_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ N ) ) @ B ) )
      = ( times_times_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) @ B ) ) ).

% power_add_numeral2
thf(fact_410_power__add__numeral2,axiom,
    ! [A: rat,M: num,N: num,B: rat] :
      ( ( times_times_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ M ) ) @ ( times_times_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ N ) ) @ B ) )
      = ( times_times_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) @ B ) ) ).

% power_add_numeral2
thf(fact_411_power__add__numeral2,axiom,
    ! [A: nat,M: num,N: num,B: nat] :
      ( ( times_times_nat @ ( power_power_nat @ A @ ( numeral_numeral_nat @ M ) ) @ ( times_times_nat @ ( power_power_nat @ A @ ( numeral_numeral_nat @ N ) ) @ B ) )
      = ( times_times_nat @ ( power_power_nat @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) @ B ) ) ).

% power_add_numeral2
thf(fact_412_power__add__numeral2,axiom,
    ! [A: int,M: num,N: num,B: int] :
      ( ( times_times_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ M ) ) @ ( times_times_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ N ) ) @ B ) )
      = ( times_times_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) @ B ) ) ).

% power_add_numeral2
thf(fact_413__092_060open_062invar__vebt_A_ItreeList_A_B_Ahigh_Ax_A_Ideg_Adiv_A2_J_J_An_A_092_060and_062_AtreeList_A_B_Ahigh_Ax_A_Ideg_Adiv_A2_J_A_092_060in_062_Aset_AtreeList_092_060close_062,axiom,
    ( ( vEBT_invar_vebt @ ( nth_VEBT_VEBT @ treeList @ ( vEBT_VEBT_high @ xa @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ na )
    & ( member_VEBT_VEBT @ ( nth_VEBT_VEBT @ treeList @ ( vEBT_VEBT_high @ xa @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( set_VEBT_VEBT2 @ treeList ) ) ) ).

% \<open>invar_vebt (treeList ! high x (deg div 2)) n \<and> treeList ! high x (deg div 2) \<in> set treeList\<close>
thf(fact_414_semiring__norm_I3_J,axiom,
    ! [N: num] :
      ( ( plus_plus_num @ one @ ( bit0 @ N ) )
      = ( bit1 @ N ) ) ).

% semiring_norm(3)
thf(fact_415_semiring__norm_I4_J,axiom,
    ! [N: num] :
      ( ( plus_plus_num @ one @ ( bit1 @ N ) )
      = ( bit0 @ ( plus_plus_num @ N @ one ) ) ) ).

% semiring_norm(4)
thf(fact_416_semiring__norm_I5_J,axiom,
    ! [M: num] :
      ( ( plus_plus_num @ ( bit0 @ M ) @ one )
      = ( bit1 @ M ) ) ).

% semiring_norm(5)
thf(fact_417_semiring__norm_I8_J,axiom,
    ! [M: num] :
      ( ( plus_plus_num @ ( bit1 @ M ) @ one )
      = ( bit0 @ ( plus_plus_num @ M @ one ) ) ) ).

% semiring_norm(8)
thf(fact_418_semiring__norm_I10_J,axiom,
    ! [M: num,N: num] :
      ( ( plus_plus_num @ ( bit1 @ M ) @ ( bit1 @ N ) )
      = ( bit0 @ ( plus_plus_num @ ( plus_plus_num @ M @ N ) @ one ) ) ) ).

% semiring_norm(10)
thf(fact_419_semiring__norm_I79_J,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_num @ ( bit0 @ M ) @ ( bit1 @ N ) )
      = ( ord_less_eq_num @ M @ N ) ) ).

% semiring_norm(79)
thf(fact_420_semiring__norm_I74_J,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_eq_num @ ( bit1 @ M ) @ ( bit0 @ N ) )
      = ( ord_less_num @ M @ N ) ) ).

% semiring_norm(74)
thf(fact_421__092_060open_062T_092_060_094sub_062m_092_060_094sub_062e_092_060_094sub_062m_092_060_094sub_062b_092_060_094sub_062e_092_060_094sub_062r_A_ItreeList_A_B_Ahigh_Ax_A_Ideg_Adiv_A2_J_J_A_Ilow_Ax_A_Ideg_Adiv_A2_J_J_A_092_060le_062_A_I1_A_L_Aheight_A_ItreeList_A_B_Ahigh_Ax_A_Ideg_Adiv_A2_J_J_J_A_K_A15_092_060close_062,axiom,
    ord_less_eq_nat @ ( vEBT_T_m_e_m_b_e_r @ ( nth_VEBT_VEBT @ treeList @ ( vEBT_VEBT_high @ xa @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ xa @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( times_times_nat @ ( plus_plus_nat @ one_one_nat @ ( vEBT_VEBT_height @ ( nth_VEBT_VEBT @ treeList @ ( vEBT_VEBT_high @ xa @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) @ ( numeral_numeral_nat @ ( bit1 @ ( bit1 @ ( bit1 @ one ) ) ) ) ) ).

% \<open>T\<^sub>m\<^sub>e\<^sub>m\<^sub>b\<^sub>e\<^sub>r (treeList ! high x (deg div 2)) (low x (deg div 2)) \<le> (1 + height (treeList ! high x (deg div 2))) * 15\<close>
thf(fact_422__C6_C,axiom,
    ord_less_eq_nat @ ( vEBT_T_m_e_m_b_e_r @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ mi @ ma ) ) @ deg @ treeList @ summary ) @ xa ) @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ ( bit1 @ ( bit1 @ one ) ) ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit1 @ ( bit1 @ ( bit1 @ one ) ) ) ) @ ( plus_plus_nat @ one_one_nat @ ( vEBT_VEBT_height @ ( nth_VEBT_VEBT @ treeList @ ( vEBT_VEBT_high @ xa @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ).

% "6"
thf(fact_423_power__commutes,axiom,
    ! [A: complex,N: nat] :
      ( ( times_times_complex @ ( power_power_complex @ A @ N ) @ A )
      = ( times_times_complex @ A @ ( power_power_complex @ A @ N ) ) ) ).

% power_commutes
thf(fact_424_power__commutes,axiom,
    ! [A: real,N: nat] :
      ( ( times_times_real @ ( power_power_real @ A @ N ) @ A )
      = ( times_times_real @ A @ ( power_power_real @ A @ N ) ) ) ).

% power_commutes
thf(fact_425_power__commutes,axiom,
    ! [A: rat,N: nat] :
      ( ( times_times_rat @ ( power_power_rat @ A @ N ) @ A )
      = ( times_times_rat @ A @ ( power_power_rat @ A @ N ) ) ) ).

% power_commutes
thf(fact_426_power__commutes,axiom,
    ! [A: nat,N: nat] :
      ( ( times_times_nat @ ( power_power_nat @ A @ N ) @ A )
      = ( times_times_nat @ A @ ( power_power_nat @ A @ N ) ) ) ).

% power_commutes
thf(fact_427_power__commutes,axiom,
    ! [A: int,N: nat] :
      ( ( times_times_int @ ( power_power_int @ A @ N ) @ A )
      = ( times_times_int @ A @ ( power_power_int @ A @ N ) ) ) ).

% power_commutes
thf(fact_428_power__mult__distrib,axiom,
    ! [A: complex,B: complex,N: nat] :
      ( ( power_power_complex @ ( times_times_complex @ A @ B ) @ N )
      = ( times_times_complex @ ( power_power_complex @ A @ N ) @ ( power_power_complex @ B @ N ) ) ) ).

% power_mult_distrib
thf(fact_429_power__mult__distrib,axiom,
    ! [A: real,B: real,N: nat] :
      ( ( power_power_real @ ( times_times_real @ A @ B ) @ N )
      = ( times_times_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ B @ N ) ) ) ).

% power_mult_distrib
thf(fact_430_power__mult__distrib,axiom,
    ! [A: rat,B: rat,N: nat] :
      ( ( power_power_rat @ ( times_times_rat @ A @ B ) @ N )
      = ( times_times_rat @ ( power_power_rat @ A @ N ) @ ( power_power_rat @ B @ N ) ) ) ).

% power_mult_distrib
thf(fact_431_power__mult__distrib,axiom,
    ! [A: nat,B: nat,N: nat] :
      ( ( power_power_nat @ ( times_times_nat @ A @ B ) @ N )
      = ( times_times_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ B @ N ) ) ) ).

% power_mult_distrib
thf(fact_432_power__mult__distrib,axiom,
    ! [A: int,B: int,N: nat] :
      ( ( power_power_int @ ( times_times_int @ A @ B ) @ N )
      = ( times_times_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ B @ N ) ) ) ).

% power_mult_distrib
thf(fact_433_power__commuting__commutes,axiom,
    ! [X2: complex,Y2: complex,N: nat] :
      ( ( ( times_times_complex @ X2 @ Y2 )
        = ( times_times_complex @ Y2 @ X2 ) )
     => ( ( times_times_complex @ ( power_power_complex @ X2 @ N ) @ Y2 )
        = ( times_times_complex @ Y2 @ ( power_power_complex @ X2 @ N ) ) ) ) ).

% power_commuting_commutes
thf(fact_434_power__commuting__commutes,axiom,
    ! [X2: real,Y2: real,N: nat] :
      ( ( ( times_times_real @ X2 @ Y2 )
        = ( times_times_real @ Y2 @ X2 ) )
     => ( ( times_times_real @ ( power_power_real @ X2 @ N ) @ Y2 )
        = ( times_times_real @ Y2 @ ( power_power_real @ X2 @ N ) ) ) ) ).

% power_commuting_commutes
thf(fact_435_power__commuting__commutes,axiom,
    ! [X2: rat,Y2: rat,N: nat] :
      ( ( ( times_times_rat @ X2 @ Y2 )
        = ( times_times_rat @ Y2 @ X2 ) )
     => ( ( times_times_rat @ ( power_power_rat @ X2 @ N ) @ Y2 )
        = ( times_times_rat @ Y2 @ ( power_power_rat @ X2 @ N ) ) ) ) ).

% power_commuting_commutes
thf(fact_436_power__commuting__commutes,axiom,
    ! [X2: nat,Y2: nat,N: nat] :
      ( ( ( times_times_nat @ X2 @ Y2 )
        = ( times_times_nat @ Y2 @ X2 ) )
     => ( ( times_times_nat @ ( power_power_nat @ X2 @ N ) @ Y2 )
        = ( times_times_nat @ Y2 @ ( power_power_nat @ X2 @ N ) ) ) ) ).

% power_commuting_commutes
thf(fact_437_power__commuting__commutes,axiom,
    ! [X2: int,Y2: int,N: nat] :
      ( ( ( times_times_int @ X2 @ Y2 )
        = ( times_times_int @ Y2 @ X2 ) )
     => ( ( times_times_int @ ( power_power_int @ X2 @ N ) @ Y2 )
        = ( times_times_int @ Y2 @ ( power_power_int @ X2 @ N ) ) ) ) ).

% power_commuting_commutes
thf(fact_438_power__mult,axiom,
    ! [A: nat,M: nat,N: nat] :
      ( ( power_power_nat @ A @ ( times_times_nat @ M @ N ) )
      = ( power_power_nat @ ( power_power_nat @ A @ M ) @ N ) ) ).

% power_mult
thf(fact_439_power__mult,axiom,
    ! [A: real,M: nat,N: nat] :
      ( ( power_power_real @ A @ ( times_times_nat @ M @ N ) )
      = ( power_power_real @ ( power_power_real @ A @ M ) @ N ) ) ).

% power_mult
thf(fact_440_power__mult,axiom,
    ! [A: complex,M: nat,N: nat] :
      ( ( power_power_complex @ A @ ( times_times_nat @ M @ N ) )
      = ( power_power_complex @ ( power_power_complex @ A @ M ) @ N ) ) ).

% power_mult
thf(fact_441_power__mult,axiom,
    ! [A: int,M: nat,N: nat] :
      ( ( power_power_int @ A @ ( times_times_nat @ M @ N ) )
      = ( power_power_int @ ( power_power_int @ A @ M ) @ N ) ) ).

% power_mult
thf(fact_442_mult__le__mono2,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_nat @ ( times_times_nat @ K @ I ) @ ( times_times_nat @ K @ J ) ) ) ).

% mult_le_mono2
thf(fact_443_mult__le__mono1,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_nat @ ( times_times_nat @ I @ K ) @ ( times_times_nat @ J @ K ) ) ) ).

% mult_le_mono1
thf(fact_444_mult__le__mono,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( ord_less_eq_nat @ K @ L )
       => ( ord_less_eq_nat @ ( times_times_nat @ I @ K ) @ ( times_times_nat @ J @ L ) ) ) ) ).

% mult_le_mono
thf(fact_445_le__square,axiom,
    ! [M: nat] : ( ord_less_eq_nat @ M @ ( times_times_nat @ M @ M ) ) ).

% le_square
thf(fact_446_le__cube,axiom,
    ! [M: nat] : ( ord_less_eq_nat @ M @ ( times_times_nat @ M @ ( times_times_nat @ M @ M ) ) ) ).

% le_cube
thf(fact_447_add__mult__distrib2,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( times_times_nat @ K @ ( plus_plus_nat @ M @ N ) )
      = ( plus_plus_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) ) ) ).

% add_mult_distrib2
thf(fact_448_add__mult__distrib,axiom,
    ! [M: nat,N: nat,K: nat] :
      ( ( times_times_nat @ ( plus_plus_nat @ M @ N ) @ K )
      = ( plus_plus_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N @ K ) ) ) ).

% add_mult_distrib
thf(fact_449_left__add__mult__distrib,axiom,
    ! [I: nat,U: nat,J: nat,K: nat] :
      ( ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ K ) )
      = ( plus_plus_nat @ ( times_times_nat @ ( plus_plus_nat @ I @ J ) @ U ) @ K ) ) ).

% left_add_mult_distrib
thf(fact_450_nat__mult__1__right,axiom,
    ! [N: nat] :
      ( ( times_times_nat @ N @ one_one_nat )
      = N ) ).

% nat_mult_1_right
thf(fact_451_nat__mult__1,axiom,
    ! [N: nat] :
      ( ( times_times_nat @ one_one_nat @ N )
      = N ) ).

% nat_mult_1
thf(fact_452_div__mult2__eq,axiom,
    ! [M: nat,N: nat,Q2: nat] :
      ( ( divide_divide_nat @ M @ ( times_times_nat @ N @ Q2 ) )
      = ( divide_divide_nat @ ( divide_divide_nat @ M @ N ) @ Q2 ) ) ).

% div_mult2_eq
thf(fact_453_nat__mult__max__right,axiom,
    ! [M: nat,N: nat,Q2: nat] :
      ( ( times_times_nat @ M @ ( ord_max_nat @ N @ Q2 ) )
      = ( ord_max_nat @ ( times_times_nat @ M @ N ) @ ( times_times_nat @ M @ Q2 ) ) ) ).

% nat_mult_max_right
thf(fact_454_nat__mult__max__left,axiom,
    ! [M: nat,N: nat,Q2: nat] :
      ( ( times_times_nat @ ( ord_max_nat @ M @ N ) @ Q2 )
      = ( ord_max_nat @ ( times_times_nat @ M @ Q2 ) @ ( times_times_nat @ N @ Q2 ) ) ) ).

% nat_mult_max_left
thf(fact_455_power3__eq__cube,axiom,
    ! [A: complex] :
      ( ( power_power_complex @ A @ ( numeral_numeral_nat @ ( bit1 @ one ) ) )
      = ( times_times_complex @ ( times_times_complex @ A @ A ) @ A ) ) ).

% power3_eq_cube
thf(fact_456_power3__eq__cube,axiom,
    ! [A: real] :
      ( ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit1 @ one ) ) )
      = ( times_times_real @ ( times_times_real @ A @ A ) @ A ) ) ).

% power3_eq_cube
thf(fact_457_power3__eq__cube,axiom,
    ! [A: rat] :
      ( ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit1 @ one ) ) )
      = ( times_times_rat @ ( times_times_rat @ A @ A ) @ A ) ) ).

% power3_eq_cube
thf(fact_458_power3__eq__cube,axiom,
    ! [A: nat] :
      ( ( power_power_nat @ A @ ( numeral_numeral_nat @ ( bit1 @ one ) ) )
      = ( times_times_nat @ ( times_times_nat @ A @ A ) @ A ) ) ).

% power3_eq_cube
thf(fact_459_power3__eq__cube,axiom,
    ! [A: int] :
      ( ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit1 @ one ) ) )
      = ( times_times_int @ ( times_times_int @ A @ A ) @ A ) ) ).

% power3_eq_cube
thf(fact_460_num_Oexhaust,axiom,
    ! [Y2: num] :
      ( ( Y2 != one )
     => ( ! [X22: num] :
            ( Y2
           != ( bit0 @ X22 ) )
       => ~ ! [X32: num] :
              ( Y2
             != ( bit1 @ X32 ) ) ) ) ).

% num.exhaust
thf(fact_461_mult__numeral__1__right,axiom,
    ! [A: complex] :
      ( ( times_times_complex @ A @ ( numera6690914467698888265omplex @ one ) )
      = A ) ).

% mult_numeral_1_right
thf(fact_462_mult__numeral__1__right,axiom,
    ! [A: real] :
      ( ( times_times_real @ A @ ( numeral_numeral_real @ one ) )
      = A ) ).

% mult_numeral_1_right
thf(fact_463_mult__numeral__1__right,axiom,
    ! [A: rat] :
      ( ( times_times_rat @ A @ ( numeral_numeral_rat @ one ) )
      = A ) ).

% mult_numeral_1_right
thf(fact_464_mult__numeral__1__right,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ A @ ( numeral_numeral_nat @ one ) )
      = A ) ).

% mult_numeral_1_right
thf(fact_465_mult__numeral__1__right,axiom,
    ! [A: int] :
      ( ( times_times_int @ A @ ( numeral_numeral_int @ one ) )
      = A ) ).

% mult_numeral_1_right
thf(fact_466_mult__numeral__1,axiom,
    ! [A: complex] :
      ( ( times_times_complex @ ( numera6690914467698888265omplex @ one ) @ A )
      = A ) ).

% mult_numeral_1
thf(fact_467_mult__numeral__1,axiom,
    ! [A: real] :
      ( ( times_times_real @ ( numeral_numeral_real @ one ) @ A )
      = A ) ).

% mult_numeral_1
thf(fact_468_mult__numeral__1,axiom,
    ! [A: rat] :
      ( ( times_times_rat @ ( numeral_numeral_rat @ one ) @ A )
      = A ) ).

% mult_numeral_1
thf(fact_469_mult__numeral__1,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ ( numeral_numeral_nat @ one ) @ A )
      = A ) ).

% mult_numeral_1
thf(fact_470_mult__numeral__1,axiom,
    ! [A: int] :
      ( ( times_times_int @ ( numeral_numeral_int @ one ) @ A )
      = A ) ).

% mult_numeral_1
thf(fact_471_left__right__inverse__power,axiom,
    ! [X2: complex,Y2: complex,N: nat] :
      ( ( ( times_times_complex @ X2 @ Y2 )
        = one_one_complex )
     => ( ( times_times_complex @ ( power_power_complex @ X2 @ N ) @ ( power_power_complex @ Y2 @ N ) )
        = one_one_complex ) ) ).

% left_right_inverse_power
thf(fact_472_left__right__inverse__power,axiom,
    ! [X2: real,Y2: real,N: nat] :
      ( ( ( times_times_real @ X2 @ Y2 )
        = one_one_real )
     => ( ( times_times_real @ ( power_power_real @ X2 @ N ) @ ( power_power_real @ Y2 @ N ) )
        = one_one_real ) ) ).

% left_right_inverse_power
thf(fact_473_left__right__inverse__power,axiom,
    ! [X2: rat,Y2: rat,N: nat] :
      ( ( ( times_times_rat @ X2 @ Y2 )
        = one_one_rat )
     => ( ( times_times_rat @ ( power_power_rat @ X2 @ N ) @ ( power_power_rat @ Y2 @ N ) )
        = one_one_rat ) ) ).

% left_right_inverse_power
thf(fact_474_left__right__inverse__power,axiom,
    ! [X2: nat,Y2: nat,N: nat] :
      ( ( ( times_times_nat @ X2 @ Y2 )
        = one_one_nat )
     => ( ( times_times_nat @ ( power_power_nat @ X2 @ N ) @ ( power_power_nat @ Y2 @ N ) )
        = one_one_nat ) ) ).

% left_right_inverse_power
thf(fact_475_left__right__inverse__power,axiom,
    ! [X2: int,Y2: int,N: nat] :
      ( ( ( times_times_int @ X2 @ Y2 )
        = one_one_int )
     => ( ( times_times_int @ ( power_power_int @ X2 @ N ) @ ( power_power_int @ Y2 @ N ) )
        = one_one_int ) ) ).

% left_right_inverse_power
thf(fact_476_power__add,axiom,
    ! [A: complex,M: nat,N: nat] :
      ( ( power_power_complex @ A @ ( plus_plus_nat @ M @ N ) )
      = ( times_times_complex @ ( power_power_complex @ A @ M ) @ ( power_power_complex @ A @ N ) ) ) ).

% power_add
thf(fact_477_power__add,axiom,
    ! [A: real,M: nat,N: nat] :
      ( ( power_power_real @ A @ ( plus_plus_nat @ M @ N ) )
      = ( times_times_real @ ( power_power_real @ A @ M ) @ ( power_power_real @ A @ N ) ) ) ).

% power_add
thf(fact_478_power__add,axiom,
    ! [A: rat,M: nat,N: nat] :
      ( ( power_power_rat @ A @ ( plus_plus_nat @ M @ N ) )
      = ( times_times_rat @ ( power_power_rat @ A @ M ) @ ( power_power_rat @ A @ N ) ) ) ).

% power_add
thf(fact_479_power__add,axiom,
    ! [A: nat,M: nat,N: nat] :
      ( ( power_power_nat @ A @ ( plus_plus_nat @ M @ N ) )
      = ( times_times_nat @ ( power_power_nat @ A @ M ) @ ( power_power_nat @ A @ N ) ) ) ).

% power_add
thf(fact_480_power__add,axiom,
    ! [A: int,M: nat,N: nat] :
      ( ( power_power_int @ A @ ( plus_plus_nat @ M @ N ) )
      = ( times_times_int @ ( power_power_int @ A @ M ) @ ( power_power_int @ A @ N ) ) ) ).

% power_add
thf(fact_481_less__mult__imp__div__less,axiom,
    ! [M: nat,I: nat,N: nat] :
      ( ( ord_less_nat @ M @ ( times_times_nat @ I @ N ) )
     => ( ord_less_nat @ ( divide_divide_nat @ M @ N ) @ I ) ) ).

% less_mult_imp_div_less
thf(fact_482_times__div__less__eq__dividend,axiom,
    ! [N: nat,M: nat] : ( ord_less_eq_nat @ ( times_times_nat @ N @ ( divide_divide_nat @ M @ N ) ) @ M ) ).

% times_div_less_eq_dividend
thf(fact_483_div__times__less__eq__dividend,axiom,
    ! [M: nat,N: nat] : ( ord_less_eq_nat @ ( times_times_nat @ ( divide_divide_nat @ M @ N ) @ N ) @ M ) ).

% div_times_less_eq_dividend
thf(fact_484_numeral__Bit1,axiom,
    ! [N: num] :
      ( ( numera6690914467698888265omplex @ ( bit1 @ N ) )
      = ( plus_plus_complex @ ( plus_plus_complex @ ( numera6690914467698888265omplex @ N ) @ ( numera6690914467698888265omplex @ N ) ) @ one_one_complex ) ) ).

% numeral_Bit1
thf(fact_485_numeral__Bit1,axiom,
    ! [N: num] :
      ( ( numeral_numeral_real @ ( bit1 @ N ) )
      = ( plus_plus_real @ ( plus_plus_real @ ( numeral_numeral_real @ N ) @ ( numeral_numeral_real @ N ) ) @ one_one_real ) ) ).

% numeral_Bit1
thf(fact_486_numeral__Bit1,axiom,
    ! [N: num] :
      ( ( numeral_numeral_rat @ ( bit1 @ N ) )
      = ( plus_plus_rat @ ( plus_plus_rat @ ( numeral_numeral_rat @ N ) @ ( numeral_numeral_rat @ N ) ) @ one_one_rat ) ) ).

% numeral_Bit1
thf(fact_487_numeral__Bit1,axiom,
    ! [N: num] :
      ( ( numeral_numeral_nat @ ( bit1 @ N ) )
      = ( plus_plus_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ N ) @ ( numeral_numeral_nat @ N ) ) @ one_one_nat ) ) ).

% numeral_Bit1
thf(fact_488_numeral__Bit1,axiom,
    ! [N: num] :
      ( ( numeral_numeral_int @ ( bit1 @ N ) )
      = ( plus_plus_int @ ( plus_plus_int @ ( numeral_numeral_int @ N ) @ ( numeral_numeral_int @ N ) ) @ one_one_int ) ) ).

% numeral_Bit1
thf(fact_489_power__gt1__lemma,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ord_less_real @ one_one_real @ ( times_times_real @ A @ ( power_power_real @ A @ N ) ) ) ) ).

% power_gt1_lemma
thf(fact_490_power__gt1__lemma,axiom,
    ! [A: rat,N: nat] :
      ( ( ord_less_rat @ one_one_rat @ A )
     => ( ord_less_rat @ one_one_rat @ ( times_times_rat @ A @ ( power_power_rat @ A @ N ) ) ) ) ).

% power_gt1_lemma
thf(fact_491_power__gt1__lemma,axiom,
    ! [A: nat,N: nat] :
      ( ( ord_less_nat @ one_one_nat @ A )
     => ( ord_less_nat @ one_one_nat @ ( times_times_nat @ A @ ( power_power_nat @ A @ N ) ) ) ) ).

% power_gt1_lemma
thf(fact_492_power__gt1__lemma,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_int @ one_one_int @ A )
     => ( ord_less_int @ one_one_int @ ( times_times_int @ A @ ( power_power_int @ A @ N ) ) ) ) ).

% power_gt1_lemma
thf(fact_493_power__less__power__Suc,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ord_less_real @ ( power_power_real @ A @ N ) @ ( times_times_real @ A @ ( power_power_real @ A @ N ) ) ) ) ).

% power_less_power_Suc
thf(fact_494_power__less__power__Suc,axiom,
    ! [A: rat,N: nat] :
      ( ( ord_less_rat @ one_one_rat @ A )
     => ( ord_less_rat @ ( power_power_rat @ A @ N ) @ ( times_times_rat @ A @ ( power_power_rat @ A @ N ) ) ) ) ).

% power_less_power_Suc
thf(fact_495_power__less__power__Suc,axiom,
    ! [A: nat,N: nat] :
      ( ( ord_less_nat @ one_one_nat @ A )
     => ( ord_less_nat @ ( power_power_nat @ A @ N ) @ ( times_times_nat @ A @ ( power_power_nat @ A @ N ) ) ) ) ).

% power_less_power_Suc
thf(fact_496_power__less__power__Suc,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_int @ one_one_int @ A )
     => ( ord_less_int @ ( power_power_int @ A @ N ) @ ( times_times_int @ A @ ( power_power_int @ A @ N ) ) ) ) ).

% power_less_power_Suc
thf(fact_497_max_Oassoc,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_max_nat @ ( ord_max_nat @ A @ B ) @ C )
      = ( ord_max_nat @ A @ ( ord_max_nat @ B @ C ) ) ) ).

% max.assoc
thf(fact_498_max_Oassoc,axiom,
    ! [A: extended_enat,B: extended_enat,C: extended_enat] :
      ( ( ord_ma741700101516333627d_enat @ ( ord_ma741700101516333627d_enat @ A @ B ) @ C )
      = ( ord_ma741700101516333627d_enat @ A @ ( ord_ma741700101516333627d_enat @ B @ C ) ) ) ).

% max.assoc
thf(fact_499_max_Oassoc,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_max_int @ ( ord_max_int @ A @ B ) @ C )
      = ( ord_max_int @ A @ ( ord_max_int @ B @ C ) ) ) ).

% max.assoc
thf(fact_500_max_Ocommute,axiom,
    ( ord_max_nat
    = ( ^ [A3: nat,B2: nat] : ( ord_max_nat @ B2 @ A3 ) ) ) ).

% max.commute
thf(fact_501_max_Ocommute,axiom,
    ( ord_ma741700101516333627d_enat
    = ( ^ [A3: extended_enat,B2: extended_enat] : ( ord_ma741700101516333627d_enat @ B2 @ A3 ) ) ) ).

% max.commute
thf(fact_502_max_Ocommute,axiom,
    ( ord_max_int
    = ( ^ [A3: int,B2: int] : ( ord_max_int @ B2 @ A3 ) ) ) ).

% max.commute
thf(fact_503_max_Oleft__commute,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ord_max_nat @ B @ ( ord_max_nat @ A @ C ) )
      = ( ord_max_nat @ A @ ( ord_max_nat @ B @ C ) ) ) ).

% max.left_commute
thf(fact_504_max_Oleft__commute,axiom,
    ! [B: extended_enat,A: extended_enat,C: extended_enat] :
      ( ( ord_ma741700101516333627d_enat @ B @ ( ord_ma741700101516333627d_enat @ A @ C ) )
      = ( ord_ma741700101516333627d_enat @ A @ ( ord_ma741700101516333627d_enat @ B @ C ) ) ) ).

% max.left_commute
thf(fact_505_max_Oleft__commute,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_max_int @ B @ ( ord_max_int @ A @ C ) )
      = ( ord_max_int @ A @ ( ord_max_int @ B @ C ) ) ) ).

% max.left_commute
thf(fact_506_numeral__Bit1__div__2,axiom,
    ! [N: num] :
      ( ( divide_divide_nat @ ( numeral_numeral_nat @ ( bit1 @ N ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( numeral_numeral_nat @ N ) ) ).

% numeral_Bit1_div_2
thf(fact_507_numeral__Bit1__div__2,axiom,
    ! [N: num] :
      ( ( divide_divide_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
      = ( numeral_numeral_int @ N ) ) ).

% numeral_Bit1_div_2
thf(fact_508_left__add__twice,axiom,
    ! [A: complex,B: complex] :
      ( ( plus_plus_complex @ A @ ( plus_plus_complex @ A @ B ) )
      = ( plus_plus_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ A ) @ B ) ) ).

% left_add_twice
thf(fact_509_left__add__twice,axiom,
    ! [A: real,B: real] :
      ( ( plus_plus_real @ A @ ( plus_plus_real @ A @ B ) )
      = ( plus_plus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ A ) @ B ) ) ).

% left_add_twice
thf(fact_510_left__add__twice,axiom,
    ! [A: rat,B: rat] :
      ( ( plus_plus_rat @ A @ ( plus_plus_rat @ A @ B ) )
      = ( plus_plus_rat @ ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ A ) @ B ) ) ).

% left_add_twice
thf(fact_511_left__add__twice,axiom,
    ! [A: nat,B: nat] :
      ( ( plus_plus_nat @ A @ ( plus_plus_nat @ A @ B ) )
      = ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) @ B ) ) ).

% left_add_twice
thf(fact_512_left__add__twice,axiom,
    ! [A: int,B: int] :
      ( ( plus_plus_int @ A @ ( plus_plus_int @ A @ B ) )
      = ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) @ B ) ) ).

% left_add_twice
thf(fact_513_mult__2__right,axiom,
    ! [Z: complex] :
      ( ( times_times_complex @ Z @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) )
      = ( plus_plus_complex @ Z @ Z ) ) ).

% mult_2_right
thf(fact_514_mult__2__right,axiom,
    ! [Z: real] :
      ( ( times_times_real @ Z @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
      = ( plus_plus_real @ Z @ Z ) ) ).

% mult_2_right
thf(fact_515_mult__2__right,axiom,
    ! [Z: rat] :
      ( ( times_times_rat @ Z @ ( numeral_numeral_rat @ ( bit0 @ one ) ) )
      = ( plus_plus_rat @ Z @ Z ) ) ).

% mult_2_right
thf(fact_516_mult__2__right,axiom,
    ! [Z: nat] :
      ( ( times_times_nat @ Z @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( plus_plus_nat @ Z @ Z ) ) ).

% mult_2_right
thf(fact_517_mult__2__right,axiom,
    ! [Z: int] :
      ( ( times_times_int @ Z @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
      = ( plus_plus_int @ Z @ Z ) ) ).

% mult_2_right
thf(fact_518_mult__2,axiom,
    ! [Z: complex] :
      ( ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ Z )
      = ( plus_plus_complex @ Z @ Z ) ) ).

% mult_2
thf(fact_519_mult__2,axiom,
    ! [Z: real] :
      ( ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ Z )
      = ( plus_plus_real @ Z @ Z ) ) ).

% mult_2
thf(fact_520_mult__2,axiom,
    ! [Z: rat] :
      ( ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ Z )
      = ( plus_plus_rat @ Z @ Z ) ) ).

% mult_2
thf(fact_521_mult__2,axiom,
    ! [Z: nat] :
      ( ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Z )
      = ( plus_plus_nat @ Z @ Z ) ) ).

% mult_2
thf(fact_522_mult__2,axiom,
    ! [Z: int] :
      ( ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Z )
      = ( plus_plus_int @ Z @ Z ) ) ).

% mult_2
thf(fact_523_power2__eq__square,axiom,
    ! [A: complex] :
      ( ( power_power_complex @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( times_times_complex @ A @ A ) ) ).

% power2_eq_square
thf(fact_524_power2__eq__square,axiom,
    ! [A: real] :
      ( ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( times_times_real @ A @ A ) ) ).

% power2_eq_square
thf(fact_525_power2__eq__square,axiom,
    ! [A: rat] :
      ( ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( times_times_rat @ A @ A ) ) ).

% power2_eq_square
thf(fact_526_power2__eq__square,axiom,
    ! [A: nat] :
      ( ( power_power_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( times_times_nat @ A @ A ) ) ).

% power2_eq_square
thf(fact_527_power2__eq__square,axiom,
    ! [A: int] :
      ( ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( times_times_int @ A @ A ) ) ).

% power2_eq_square
thf(fact_528_power4__eq__xxxx,axiom,
    ! [X2: complex] :
      ( ( power_power_complex @ X2 @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
      = ( times_times_complex @ ( times_times_complex @ ( times_times_complex @ X2 @ X2 ) @ X2 ) @ X2 ) ) ).

% power4_eq_xxxx
thf(fact_529_power4__eq__xxxx,axiom,
    ! [X2: real] :
      ( ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
      = ( times_times_real @ ( times_times_real @ ( times_times_real @ X2 @ X2 ) @ X2 ) @ X2 ) ) ).

% power4_eq_xxxx
thf(fact_530_power4__eq__xxxx,axiom,
    ! [X2: rat] :
      ( ( power_power_rat @ X2 @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
      = ( times_times_rat @ ( times_times_rat @ ( times_times_rat @ X2 @ X2 ) @ X2 ) @ X2 ) ) ).

% power4_eq_xxxx
thf(fact_531_power4__eq__xxxx,axiom,
    ! [X2: nat] :
      ( ( power_power_nat @ X2 @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
      = ( times_times_nat @ ( times_times_nat @ ( times_times_nat @ X2 @ X2 ) @ X2 ) @ X2 ) ) ).

% power4_eq_xxxx
thf(fact_532_power4__eq__xxxx,axiom,
    ! [X2: int] :
      ( ( power_power_int @ X2 @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
      = ( times_times_int @ ( times_times_int @ ( times_times_int @ X2 @ X2 ) @ X2 ) @ X2 ) ) ).

% power4_eq_xxxx
thf(fact_533_power__even__eq,axiom,
    ! [A: nat,N: nat] :
      ( ( power_power_nat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = ( power_power_nat @ ( power_power_nat @ A @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power_even_eq
thf(fact_534_power__even__eq,axiom,
    ! [A: real,N: nat] :
      ( ( power_power_real @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = ( power_power_real @ ( power_power_real @ A @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power_even_eq
thf(fact_535_power__even__eq,axiom,
    ! [A: complex,N: nat] :
      ( ( power_power_complex @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = ( power_power_complex @ ( power_power_complex @ A @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power_even_eq
thf(fact_536_power__even__eq,axiom,
    ! [A: int,N: nat] :
      ( ( power_power_int @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = ( power_power_int @ ( power_power_int @ A @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power_even_eq
thf(fact_537_height__node,axiom,
    ! [Mi: nat,Ma: nat,Deg: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT,N: nat] :
      ( ( vEBT_invar_vebt @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ N )
     => ( ord_less_eq_nat @ one_one_nat @ ( vEBT_VEBT_height @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) ) ) ) ).

% height_node
thf(fact_538_power2__sum,axiom,
    ! [X2: complex,Y2: complex] :
      ( ( power_power_complex @ ( plus_plus_complex @ X2 @ Y2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( plus_plus_complex @ ( plus_plus_complex @ ( power_power_complex @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_complex @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ X2 ) @ Y2 ) ) ) ).

% power2_sum
thf(fact_539_power2__sum,axiom,
    ! [X2: real,Y2: real] :
      ( ( power_power_real @ ( plus_plus_real @ X2 @ Y2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( plus_plus_real @ ( plus_plus_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X2 ) @ Y2 ) ) ) ).

% power2_sum
thf(fact_540_power2__sum,axiom,
    ! [X2: rat,Y2: rat] :
      ( ( power_power_rat @ ( plus_plus_rat @ X2 @ Y2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( plus_plus_rat @ ( plus_plus_rat @ ( power_power_rat @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_rat @ ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ X2 ) @ Y2 ) ) ) ).

% power2_sum
thf(fact_541_power2__sum,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( power_power_nat @ ( plus_plus_nat @ X2 @ Y2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( plus_plus_nat @ ( plus_plus_nat @ ( power_power_nat @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_nat @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ X2 ) @ Y2 ) ) ) ).

% power2_sum
thf(fact_542_power2__sum,axiom,
    ! [X2: int,Y2: int] :
      ( ( power_power_int @ ( plus_plus_int @ X2 @ Y2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( plus_plus_int @ ( plus_plus_int @ ( power_power_int @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ X2 ) @ Y2 ) ) ) ).

% power2_sum
thf(fact_543_two__realpow__ge__one,axiom,
    ! [N: nat] : ( ord_less_eq_real @ one_one_real @ ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ N ) ) ).

% two_realpow_ge_one
thf(fact_544_max_OcoboundedI2,axiom,
    ! [C: extended_enat,B: extended_enat,A: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ C @ B )
     => ( ord_le2932123472753598470d_enat @ C @ ( ord_ma741700101516333627d_enat @ A @ B ) ) ) ).

% max.coboundedI2
thf(fact_545_max_OcoboundedI2,axiom,
    ! [C: rat,B: rat,A: rat] :
      ( ( ord_less_eq_rat @ C @ B )
     => ( ord_less_eq_rat @ C @ ( ord_max_rat @ A @ B ) ) ) ).

% max.coboundedI2
thf(fact_546_max_OcoboundedI2,axiom,
    ! [C: num,B: num,A: num] :
      ( ( ord_less_eq_num @ C @ B )
     => ( ord_less_eq_num @ C @ ( ord_max_num @ A @ B ) ) ) ).

% max.coboundedI2
thf(fact_547_max_OcoboundedI2,axiom,
    ! [C: nat,B: nat,A: nat] :
      ( ( ord_less_eq_nat @ C @ B )
     => ( ord_less_eq_nat @ C @ ( ord_max_nat @ A @ B ) ) ) ).

% max.coboundedI2
thf(fact_548_max_OcoboundedI2,axiom,
    ! [C: int,B: int,A: int] :
      ( ( ord_less_eq_int @ C @ B )
     => ( ord_less_eq_int @ C @ ( ord_max_int @ A @ B ) ) ) ).

% max.coboundedI2
thf(fact_549_max_OcoboundedI1,axiom,
    ! [C: extended_enat,A: extended_enat,B: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ C @ A )
     => ( ord_le2932123472753598470d_enat @ C @ ( ord_ma741700101516333627d_enat @ A @ B ) ) ) ).

% max.coboundedI1
thf(fact_550_max_OcoboundedI1,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_eq_rat @ C @ A )
     => ( ord_less_eq_rat @ C @ ( ord_max_rat @ A @ B ) ) ) ).

% max.coboundedI1
thf(fact_551_max_OcoboundedI1,axiom,
    ! [C: num,A: num,B: num] :
      ( ( ord_less_eq_num @ C @ A )
     => ( ord_less_eq_num @ C @ ( ord_max_num @ A @ B ) ) ) ).

% max.coboundedI1
thf(fact_552_max_OcoboundedI1,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_eq_nat @ C @ A )
     => ( ord_less_eq_nat @ C @ ( ord_max_nat @ A @ B ) ) ) ).

% max.coboundedI1
thf(fact_553_max_OcoboundedI1,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_eq_int @ C @ A )
     => ( ord_less_eq_int @ C @ ( ord_max_int @ A @ B ) ) ) ).

% max.coboundedI1
thf(fact_554_max_Oabsorb__iff2,axiom,
    ( ord_le2932123472753598470d_enat
    = ( ^ [A3: extended_enat,B2: extended_enat] :
          ( ( ord_ma741700101516333627d_enat @ A3 @ B2 )
          = B2 ) ) ) ).

% max.absorb_iff2
thf(fact_555_max_Oabsorb__iff2,axiom,
    ( ord_less_eq_rat
    = ( ^ [A3: rat,B2: rat] :
          ( ( ord_max_rat @ A3 @ B2 )
          = B2 ) ) ) ).

% max.absorb_iff2
thf(fact_556_max_Oabsorb__iff2,axiom,
    ( ord_less_eq_num
    = ( ^ [A3: num,B2: num] :
          ( ( ord_max_num @ A3 @ B2 )
          = B2 ) ) ) ).

% max.absorb_iff2
thf(fact_557_max_Oabsorb__iff2,axiom,
    ( ord_less_eq_nat
    = ( ^ [A3: nat,B2: nat] :
          ( ( ord_max_nat @ A3 @ B2 )
          = B2 ) ) ) ).

% max.absorb_iff2
thf(fact_558_max_Oabsorb__iff2,axiom,
    ( ord_less_eq_int
    = ( ^ [A3: int,B2: int] :
          ( ( ord_max_int @ A3 @ B2 )
          = B2 ) ) ) ).

% max.absorb_iff2
thf(fact_559_max_Oabsorb__iff1,axiom,
    ( ord_le2932123472753598470d_enat
    = ( ^ [B2: extended_enat,A3: extended_enat] :
          ( ( ord_ma741700101516333627d_enat @ A3 @ B2 )
          = A3 ) ) ) ).

% max.absorb_iff1
thf(fact_560_max_Oabsorb__iff1,axiom,
    ( ord_less_eq_rat
    = ( ^ [B2: rat,A3: rat] :
          ( ( ord_max_rat @ A3 @ B2 )
          = A3 ) ) ) ).

% max.absorb_iff1
thf(fact_561_max_Oabsorb__iff1,axiom,
    ( ord_less_eq_num
    = ( ^ [B2: num,A3: num] :
          ( ( ord_max_num @ A3 @ B2 )
          = A3 ) ) ) ).

% max.absorb_iff1
thf(fact_562_max_Oabsorb__iff1,axiom,
    ( ord_less_eq_nat
    = ( ^ [B2: nat,A3: nat] :
          ( ( ord_max_nat @ A3 @ B2 )
          = A3 ) ) ) ).

% max.absorb_iff1
thf(fact_563_max_Oabsorb__iff1,axiom,
    ( ord_less_eq_int
    = ( ^ [B2: int,A3: int] :
          ( ( ord_max_int @ A3 @ B2 )
          = A3 ) ) ) ).

% max.absorb_iff1
thf(fact_564_le__max__iff__disj,axiom,
    ! [Z: extended_enat,X2: extended_enat,Y2: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ Z @ ( ord_ma741700101516333627d_enat @ X2 @ Y2 ) )
      = ( ( ord_le2932123472753598470d_enat @ Z @ X2 )
        | ( ord_le2932123472753598470d_enat @ Z @ Y2 ) ) ) ).

% le_max_iff_disj
thf(fact_565_le__max__iff__disj,axiom,
    ! [Z: rat,X2: rat,Y2: rat] :
      ( ( ord_less_eq_rat @ Z @ ( ord_max_rat @ X2 @ Y2 ) )
      = ( ( ord_less_eq_rat @ Z @ X2 )
        | ( ord_less_eq_rat @ Z @ Y2 ) ) ) ).

% le_max_iff_disj
thf(fact_566_le__max__iff__disj,axiom,
    ! [Z: num,X2: num,Y2: num] :
      ( ( ord_less_eq_num @ Z @ ( ord_max_num @ X2 @ Y2 ) )
      = ( ( ord_less_eq_num @ Z @ X2 )
        | ( ord_less_eq_num @ Z @ Y2 ) ) ) ).

% le_max_iff_disj
thf(fact_567_le__max__iff__disj,axiom,
    ! [Z: nat,X2: nat,Y2: nat] :
      ( ( ord_less_eq_nat @ Z @ ( ord_max_nat @ X2 @ Y2 ) )
      = ( ( ord_less_eq_nat @ Z @ X2 )
        | ( ord_less_eq_nat @ Z @ Y2 ) ) ) ).

% le_max_iff_disj
thf(fact_568_le__max__iff__disj,axiom,
    ! [Z: int,X2: int,Y2: int] :
      ( ( ord_less_eq_int @ Z @ ( ord_max_int @ X2 @ Y2 ) )
      = ( ( ord_less_eq_int @ Z @ X2 )
        | ( ord_less_eq_int @ Z @ Y2 ) ) ) ).

% le_max_iff_disj
thf(fact_569_max_Ocobounded2,axiom,
    ! [B: extended_enat,A: extended_enat] : ( ord_le2932123472753598470d_enat @ B @ ( ord_ma741700101516333627d_enat @ A @ B ) ) ).

% max.cobounded2
thf(fact_570_max_Ocobounded2,axiom,
    ! [B: rat,A: rat] : ( ord_less_eq_rat @ B @ ( ord_max_rat @ A @ B ) ) ).

% max.cobounded2
thf(fact_571_max_Ocobounded2,axiom,
    ! [B: num,A: num] : ( ord_less_eq_num @ B @ ( ord_max_num @ A @ B ) ) ).

% max.cobounded2
thf(fact_572_max_Ocobounded2,axiom,
    ! [B: nat,A: nat] : ( ord_less_eq_nat @ B @ ( ord_max_nat @ A @ B ) ) ).

% max.cobounded2
thf(fact_573_max_Ocobounded2,axiom,
    ! [B: int,A: int] : ( ord_less_eq_int @ B @ ( ord_max_int @ A @ B ) ) ).

% max.cobounded2
thf(fact_574_max_Ocobounded1,axiom,
    ! [A: extended_enat,B: extended_enat] : ( ord_le2932123472753598470d_enat @ A @ ( ord_ma741700101516333627d_enat @ A @ B ) ) ).

% max.cobounded1
thf(fact_575_max_Ocobounded1,axiom,
    ! [A: rat,B: rat] : ( ord_less_eq_rat @ A @ ( ord_max_rat @ A @ B ) ) ).

% max.cobounded1
thf(fact_576_max_Ocobounded1,axiom,
    ! [A: num,B: num] : ( ord_less_eq_num @ A @ ( ord_max_num @ A @ B ) ) ).

% max.cobounded1
thf(fact_577_max_Ocobounded1,axiom,
    ! [A: nat,B: nat] : ( ord_less_eq_nat @ A @ ( ord_max_nat @ A @ B ) ) ).

% max.cobounded1
thf(fact_578_max_Ocobounded1,axiom,
    ! [A: int,B: int] : ( ord_less_eq_int @ A @ ( ord_max_int @ A @ B ) ) ).

% max.cobounded1
thf(fact_579_max_Oorder__iff,axiom,
    ( ord_le2932123472753598470d_enat
    = ( ^ [B2: extended_enat,A3: extended_enat] :
          ( A3
          = ( ord_ma741700101516333627d_enat @ A3 @ B2 ) ) ) ) ).

% max.order_iff
thf(fact_580_max_Oorder__iff,axiom,
    ( ord_less_eq_rat
    = ( ^ [B2: rat,A3: rat] :
          ( A3
          = ( ord_max_rat @ A3 @ B2 ) ) ) ) ).

% max.order_iff
thf(fact_581_max_Oorder__iff,axiom,
    ( ord_less_eq_num
    = ( ^ [B2: num,A3: num] :
          ( A3
          = ( ord_max_num @ A3 @ B2 ) ) ) ) ).

% max.order_iff
thf(fact_582_max_Oorder__iff,axiom,
    ( ord_less_eq_nat
    = ( ^ [B2: nat,A3: nat] :
          ( A3
          = ( ord_max_nat @ A3 @ B2 ) ) ) ) ).

% max.order_iff
thf(fact_583_max_Oorder__iff,axiom,
    ( ord_less_eq_int
    = ( ^ [B2: int,A3: int] :
          ( A3
          = ( ord_max_int @ A3 @ B2 ) ) ) ) ).

% max.order_iff
thf(fact_584_max_OboundedI,axiom,
    ! [B: extended_enat,A: extended_enat,C: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ B @ A )
     => ( ( ord_le2932123472753598470d_enat @ C @ A )
       => ( ord_le2932123472753598470d_enat @ ( ord_ma741700101516333627d_enat @ B @ C ) @ A ) ) ) ).

% max.boundedI
thf(fact_585_max_OboundedI,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( ord_less_eq_rat @ B @ A )
     => ( ( ord_less_eq_rat @ C @ A )
       => ( ord_less_eq_rat @ ( ord_max_rat @ B @ C ) @ A ) ) ) ).

% max.boundedI
thf(fact_586_max_OboundedI,axiom,
    ! [B: num,A: num,C: num] :
      ( ( ord_less_eq_num @ B @ A )
     => ( ( ord_less_eq_num @ C @ A )
       => ( ord_less_eq_num @ ( ord_max_num @ B @ C ) @ A ) ) ) ).

% max.boundedI
thf(fact_587_max_OboundedI,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( ord_less_eq_nat @ C @ A )
       => ( ord_less_eq_nat @ ( ord_max_nat @ B @ C ) @ A ) ) ) ).

% max.boundedI
thf(fact_588_max_OboundedI,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_less_eq_int @ B @ A )
     => ( ( ord_less_eq_int @ C @ A )
       => ( ord_less_eq_int @ ( ord_max_int @ B @ C ) @ A ) ) ) ).

% max.boundedI
thf(fact_589_max_OboundedE,axiom,
    ! [B: extended_enat,C: extended_enat,A: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ ( ord_ma741700101516333627d_enat @ B @ C ) @ A )
     => ~ ( ( ord_le2932123472753598470d_enat @ B @ A )
         => ~ ( ord_le2932123472753598470d_enat @ C @ A ) ) ) ).

% max.boundedE
thf(fact_590_max_OboundedE,axiom,
    ! [B: rat,C: rat,A: rat] :
      ( ( ord_less_eq_rat @ ( ord_max_rat @ B @ C ) @ A )
     => ~ ( ( ord_less_eq_rat @ B @ A )
         => ~ ( ord_less_eq_rat @ C @ A ) ) ) ).

% max.boundedE
thf(fact_591_max_OboundedE,axiom,
    ! [B: num,C: num,A: num] :
      ( ( ord_less_eq_num @ ( ord_max_num @ B @ C ) @ A )
     => ~ ( ( ord_less_eq_num @ B @ A )
         => ~ ( ord_less_eq_num @ C @ A ) ) ) ).

% max.boundedE
thf(fact_592_max_OboundedE,axiom,
    ! [B: nat,C: nat,A: nat] :
      ( ( ord_less_eq_nat @ ( ord_max_nat @ B @ C ) @ A )
     => ~ ( ( ord_less_eq_nat @ B @ A )
         => ~ ( ord_less_eq_nat @ C @ A ) ) ) ).

% max.boundedE
thf(fact_593_max_OboundedE,axiom,
    ! [B: int,C: int,A: int] :
      ( ( ord_less_eq_int @ ( ord_max_int @ B @ C ) @ A )
     => ~ ( ( ord_less_eq_int @ B @ A )
         => ~ ( ord_less_eq_int @ C @ A ) ) ) ).

% max.boundedE
thf(fact_594_max_OorderI,axiom,
    ! [A: extended_enat,B: extended_enat] :
      ( ( A
        = ( ord_ma741700101516333627d_enat @ A @ B ) )
     => ( ord_le2932123472753598470d_enat @ B @ A ) ) ).

% max.orderI
thf(fact_595_max_OorderI,axiom,
    ! [A: rat,B: rat] :
      ( ( A
        = ( ord_max_rat @ A @ B ) )
     => ( ord_less_eq_rat @ B @ A ) ) ).

% max.orderI
thf(fact_596_max_OorderI,axiom,
    ! [A: num,B: num] :
      ( ( A
        = ( ord_max_num @ A @ B ) )
     => ( ord_less_eq_num @ B @ A ) ) ).

% max.orderI
thf(fact_597_max_OorderI,axiom,
    ! [A: nat,B: nat] :
      ( ( A
        = ( ord_max_nat @ A @ B ) )
     => ( ord_less_eq_nat @ B @ A ) ) ).

% max.orderI
thf(fact_598_max_OorderI,axiom,
    ! [A: int,B: int] :
      ( ( A
        = ( ord_max_int @ A @ B ) )
     => ( ord_less_eq_int @ B @ A ) ) ).

% max.orderI
thf(fact_599_max_OorderE,axiom,
    ! [B: extended_enat,A: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ B @ A )
     => ( A
        = ( ord_ma741700101516333627d_enat @ A @ B ) ) ) ).

% max.orderE
thf(fact_600_max_OorderE,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_eq_rat @ B @ A )
     => ( A
        = ( ord_max_rat @ A @ B ) ) ) ).

% max.orderE
thf(fact_601_max_OorderE,axiom,
    ! [B: num,A: num] :
      ( ( ord_less_eq_num @ B @ A )
     => ( A
        = ( ord_max_num @ A @ B ) ) ) ).

% max.orderE
thf(fact_602_max_OorderE,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( A
        = ( ord_max_nat @ A @ B ) ) ) ).

% max.orderE
thf(fact_603_max_OorderE,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_eq_int @ B @ A )
     => ( A
        = ( ord_max_int @ A @ B ) ) ) ).

% max.orderE
thf(fact_604_max_Omono,axiom,
    ! [C: extended_enat,A: extended_enat,D: extended_enat,B: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ C @ A )
     => ( ( ord_le2932123472753598470d_enat @ D @ B )
       => ( ord_le2932123472753598470d_enat @ ( ord_ma741700101516333627d_enat @ C @ D ) @ ( ord_ma741700101516333627d_enat @ A @ B ) ) ) ) ).

% max.mono
thf(fact_605_max_Omono,axiom,
    ! [C: rat,A: rat,D: rat,B: rat] :
      ( ( ord_less_eq_rat @ C @ A )
     => ( ( ord_less_eq_rat @ D @ B )
       => ( ord_less_eq_rat @ ( ord_max_rat @ C @ D ) @ ( ord_max_rat @ A @ B ) ) ) ) ).

% max.mono
thf(fact_606_max_Omono,axiom,
    ! [C: num,A: num,D: num,B: num] :
      ( ( ord_less_eq_num @ C @ A )
     => ( ( ord_less_eq_num @ D @ B )
       => ( ord_less_eq_num @ ( ord_max_num @ C @ D ) @ ( ord_max_num @ A @ B ) ) ) ) ).

% max.mono
thf(fact_607_max_Omono,axiom,
    ! [C: nat,A: nat,D: nat,B: nat] :
      ( ( ord_less_eq_nat @ C @ A )
     => ( ( ord_less_eq_nat @ D @ B )
       => ( ord_less_eq_nat @ ( ord_max_nat @ C @ D ) @ ( ord_max_nat @ A @ B ) ) ) ) ).

% max.mono
thf(fact_608_max_Omono,axiom,
    ! [C: int,A: int,D: int,B: int] :
      ( ( ord_less_eq_int @ C @ A )
     => ( ( ord_less_eq_int @ D @ B )
       => ( ord_less_eq_int @ ( ord_max_int @ C @ D ) @ ( ord_max_int @ A @ B ) ) ) ) ).

% max.mono
thf(fact_609_less__max__iff__disj,axiom,
    ! [Z: extended_enat,X2: extended_enat,Y2: extended_enat] :
      ( ( ord_le72135733267957522d_enat @ Z @ ( ord_ma741700101516333627d_enat @ X2 @ Y2 ) )
      = ( ( ord_le72135733267957522d_enat @ Z @ X2 )
        | ( ord_le72135733267957522d_enat @ Z @ Y2 ) ) ) ).

% less_max_iff_disj
thf(fact_610_less__max__iff__disj,axiom,
    ! [Z: real,X2: real,Y2: real] :
      ( ( ord_less_real @ Z @ ( ord_max_real @ X2 @ Y2 ) )
      = ( ( ord_less_real @ Z @ X2 )
        | ( ord_less_real @ Z @ Y2 ) ) ) ).

% less_max_iff_disj
thf(fact_611_less__max__iff__disj,axiom,
    ! [Z: rat,X2: rat,Y2: rat] :
      ( ( ord_less_rat @ Z @ ( ord_max_rat @ X2 @ Y2 ) )
      = ( ( ord_less_rat @ Z @ X2 )
        | ( ord_less_rat @ Z @ Y2 ) ) ) ).

% less_max_iff_disj
thf(fact_612_less__max__iff__disj,axiom,
    ! [Z: num,X2: num,Y2: num] :
      ( ( ord_less_num @ Z @ ( ord_max_num @ X2 @ Y2 ) )
      = ( ( ord_less_num @ Z @ X2 )
        | ( ord_less_num @ Z @ Y2 ) ) ) ).

% less_max_iff_disj
thf(fact_613_less__max__iff__disj,axiom,
    ! [Z: nat,X2: nat,Y2: nat] :
      ( ( ord_less_nat @ Z @ ( ord_max_nat @ X2 @ Y2 ) )
      = ( ( ord_less_nat @ Z @ X2 )
        | ( ord_less_nat @ Z @ Y2 ) ) ) ).

% less_max_iff_disj
thf(fact_614_less__max__iff__disj,axiom,
    ! [Z: int,X2: int,Y2: int] :
      ( ( ord_less_int @ Z @ ( ord_max_int @ X2 @ Y2 ) )
      = ( ( ord_less_int @ Z @ X2 )
        | ( ord_less_int @ Z @ Y2 ) ) ) ).

% less_max_iff_disj
thf(fact_615_max_Ostrict__boundedE,axiom,
    ! [B: extended_enat,C: extended_enat,A: extended_enat] :
      ( ( ord_le72135733267957522d_enat @ ( ord_ma741700101516333627d_enat @ B @ C ) @ A )
     => ~ ( ( ord_le72135733267957522d_enat @ B @ A )
         => ~ ( ord_le72135733267957522d_enat @ C @ A ) ) ) ).

% max.strict_boundedE
thf(fact_616_max_Ostrict__boundedE,axiom,
    ! [B: real,C: real,A: real] :
      ( ( ord_less_real @ ( ord_max_real @ B @ C ) @ A )
     => ~ ( ( ord_less_real @ B @ A )
         => ~ ( ord_less_real @ C @ A ) ) ) ).

% max.strict_boundedE
thf(fact_617_max_Ostrict__boundedE,axiom,
    ! [B: rat,C: rat,A: rat] :
      ( ( ord_less_rat @ ( ord_max_rat @ B @ C ) @ A )
     => ~ ( ( ord_less_rat @ B @ A )
         => ~ ( ord_less_rat @ C @ A ) ) ) ).

% max.strict_boundedE
thf(fact_618_max_Ostrict__boundedE,axiom,
    ! [B: num,C: num,A: num] :
      ( ( ord_less_num @ ( ord_max_num @ B @ C ) @ A )
     => ~ ( ( ord_less_num @ B @ A )
         => ~ ( ord_less_num @ C @ A ) ) ) ).

% max.strict_boundedE
thf(fact_619_max_Ostrict__boundedE,axiom,
    ! [B: nat,C: nat,A: nat] :
      ( ( ord_less_nat @ ( ord_max_nat @ B @ C ) @ A )
     => ~ ( ( ord_less_nat @ B @ A )
         => ~ ( ord_less_nat @ C @ A ) ) ) ).

% max.strict_boundedE
thf(fact_620_max_Ostrict__boundedE,axiom,
    ! [B: int,C: int,A: int] :
      ( ( ord_less_int @ ( ord_max_int @ B @ C ) @ A )
     => ~ ( ( ord_less_int @ B @ A )
         => ~ ( ord_less_int @ C @ A ) ) ) ).

% max.strict_boundedE
thf(fact_621_max_Ostrict__order__iff,axiom,
    ( ord_le72135733267957522d_enat
    = ( ^ [B2: extended_enat,A3: extended_enat] :
          ( ( A3
            = ( ord_ma741700101516333627d_enat @ A3 @ B2 ) )
          & ( A3 != B2 ) ) ) ) ).

% max.strict_order_iff
thf(fact_622_max_Ostrict__order__iff,axiom,
    ( ord_less_real
    = ( ^ [B2: real,A3: real] :
          ( ( A3
            = ( ord_max_real @ A3 @ B2 ) )
          & ( A3 != B2 ) ) ) ) ).

% max.strict_order_iff
thf(fact_623_max_Ostrict__order__iff,axiom,
    ( ord_less_rat
    = ( ^ [B2: rat,A3: rat] :
          ( ( A3
            = ( ord_max_rat @ A3 @ B2 ) )
          & ( A3 != B2 ) ) ) ) ).

% max.strict_order_iff
thf(fact_624_max_Ostrict__order__iff,axiom,
    ( ord_less_num
    = ( ^ [B2: num,A3: num] :
          ( ( A3
            = ( ord_max_num @ A3 @ B2 ) )
          & ( A3 != B2 ) ) ) ) ).

% max.strict_order_iff
thf(fact_625_max_Ostrict__order__iff,axiom,
    ( ord_less_nat
    = ( ^ [B2: nat,A3: nat] :
          ( ( A3
            = ( ord_max_nat @ A3 @ B2 ) )
          & ( A3 != B2 ) ) ) ) ).

% max.strict_order_iff
thf(fact_626_max_Ostrict__order__iff,axiom,
    ( ord_less_int
    = ( ^ [B2: int,A3: int] :
          ( ( A3
            = ( ord_max_int @ A3 @ B2 ) )
          & ( A3 != B2 ) ) ) ) ).

% max.strict_order_iff
thf(fact_627_max_Ostrict__coboundedI1,axiom,
    ! [C: extended_enat,A: extended_enat,B: extended_enat] :
      ( ( ord_le72135733267957522d_enat @ C @ A )
     => ( ord_le72135733267957522d_enat @ C @ ( ord_ma741700101516333627d_enat @ A @ B ) ) ) ).

% max.strict_coboundedI1
thf(fact_628_max_Ostrict__coboundedI1,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ C @ A )
     => ( ord_less_real @ C @ ( ord_max_real @ A @ B ) ) ) ).

% max.strict_coboundedI1
thf(fact_629_max_Ostrict__coboundedI1,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ C @ A )
     => ( ord_less_rat @ C @ ( ord_max_rat @ A @ B ) ) ) ).

% max.strict_coboundedI1
thf(fact_630_max_Ostrict__coboundedI1,axiom,
    ! [C: num,A: num,B: num] :
      ( ( ord_less_num @ C @ A )
     => ( ord_less_num @ C @ ( ord_max_num @ A @ B ) ) ) ).

% max.strict_coboundedI1
thf(fact_631_max_Ostrict__coboundedI1,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_nat @ C @ A )
     => ( ord_less_nat @ C @ ( ord_max_nat @ A @ B ) ) ) ).

% max.strict_coboundedI1
thf(fact_632_max_Ostrict__coboundedI1,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_int @ C @ A )
     => ( ord_less_int @ C @ ( ord_max_int @ A @ B ) ) ) ).

% max.strict_coboundedI1
thf(fact_633_max_Ostrict__coboundedI2,axiom,
    ! [C: extended_enat,B: extended_enat,A: extended_enat] :
      ( ( ord_le72135733267957522d_enat @ C @ B )
     => ( ord_le72135733267957522d_enat @ C @ ( ord_ma741700101516333627d_enat @ A @ B ) ) ) ).

% max.strict_coboundedI2
thf(fact_634_max_Ostrict__coboundedI2,axiom,
    ! [C: real,B: real,A: real] :
      ( ( ord_less_real @ C @ B )
     => ( ord_less_real @ C @ ( ord_max_real @ A @ B ) ) ) ).

% max.strict_coboundedI2
thf(fact_635_max_Ostrict__coboundedI2,axiom,
    ! [C: rat,B: rat,A: rat] :
      ( ( ord_less_rat @ C @ B )
     => ( ord_less_rat @ C @ ( ord_max_rat @ A @ B ) ) ) ).

% max.strict_coboundedI2
thf(fact_636_max_Ostrict__coboundedI2,axiom,
    ! [C: num,B: num,A: num] :
      ( ( ord_less_num @ C @ B )
     => ( ord_less_num @ C @ ( ord_max_num @ A @ B ) ) ) ).

% max.strict_coboundedI2
thf(fact_637_max_Ostrict__coboundedI2,axiom,
    ! [C: nat,B: nat,A: nat] :
      ( ( ord_less_nat @ C @ B )
     => ( ord_less_nat @ C @ ( ord_max_nat @ A @ B ) ) ) ).

% max.strict_coboundedI2
thf(fact_638_max_Ostrict__coboundedI2,axiom,
    ! [C: int,B: int,A: int] :
      ( ( ord_less_int @ C @ B )
     => ( ord_less_int @ C @ ( ord_max_int @ A @ B ) ) ) ).

% max.strict_coboundedI2
thf(fact_639_field__sum__of__halves,axiom,
    ! [X2: real] :
      ( ( plus_plus_real @ ( divide_divide_real @ X2 @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( divide_divide_real @ X2 @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
      = X2 ) ).

% field_sum_of_halves
thf(fact_640_field__sum__of__halves,axiom,
    ! [X2: rat] :
      ( ( plus_plus_rat @ ( divide_divide_rat @ X2 @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) @ ( divide_divide_rat @ X2 @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) )
      = X2 ) ).

% field_sum_of_halves
thf(fact_641_invar__vebt_Ointros_I4_J,axiom,
    ! [TreeList: list_VEBT_VEBT,N: nat,Summary: vEBT_VEBT,M: nat,Deg: nat,Mi: nat,Ma: nat] :
      ( ! [X4: vEBT_VEBT] :
          ( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList ) )
         => ( vEBT_invar_vebt @ X4 @ N ) )
     => ( ( vEBT_invar_vebt @ Summary @ M )
       => ( ( ( size_s6755466524823107622T_VEBT @ TreeList )
            = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
         => ( ( M = N )
           => ( ( Deg
                = ( plus_plus_nat @ N @ M ) )
             => ( ! [I3: nat] :
                    ( ( ord_less_nat @ I3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
                   => ( ( ? [X5: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList @ I3 ) @ X5 ) )
                      = ( vEBT_V8194947554948674370ptions @ Summary @ I3 ) ) )
               => ( ( ( Mi = Ma )
                   => ! [X4: vEBT_VEBT] :
                        ( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList ) )
                       => ~ ? [X_12: nat] : ( vEBT_V8194947554948674370ptions @ X4 @ X_12 ) ) )
                 => ( ( ord_less_eq_nat @ Mi @ Ma )
                   => ( ( ord_less_nat @ Ma @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg ) )
                     => ( ( ( Mi != Ma )
                         => ! [I3: nat] :
                              ( ( ord_less_nat @ I3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
                             => ( ( ( ( vEBT_VEBT_high @ Ma @ N )
                                    = I3 )
                                 => ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList @ I3 ) @ ( vEBT_VEBT_low @ Ma @ N ) ) )
                                & ! [X4: nat] :
                                    ( ( ( ( vEBT_VEBT_high @ X4 @ N )
                                        = I3 )
                                      & ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList @ I3 ) @ ( vEBT_VEBT_low @ X4 @ N ) ) )
                                   => ( ( ord_less_nat @ Mi @ X4 )
                                      & ( ord_less_eq_nat @ X4 @ Ma ) ) ) ) ) )
                       => ( vEBT_invar_vebt @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ Deg ) ) ) ) ) ) ) ) ) ) ) ).

% invar_vebt.intros(4)
thf(fact_642_max__idx__list,axiom,
    ! [I: nat,X13: list_VEBT_VEBT,N: nat,X14: vEBT_VEBT] :
      ( ( ord_less_nat @ I @ ( size_s6755466524823107622T_VEBT @ X13 ) )
     => ( ord_less_eq_nat @ ( times_times_nat @ N @ ( vEBT_VEBT_height @ ( nth_VEBT_VEBT @ X13 @ I ) ) ) @ ( suc @ ( suc @ ( times_times_nat @ N @ ( ord_max_nat @ ( vEBT_VEBT_height @ X14 ) @ ( lattic8265883725875713057ax_nat @ ( image_VEBT_VEBT_nat @ vEBT_VEBT_height @ ( set_VEBT_VEBT2 @ X13 ) ) ) ) ) ) ) ) ) ).

% max_idx_list
thf(fact_643_sum__squares__bound,axiom,
    ! [X2: real,Y2: real] : ( ord_less_eq_real @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X2 ) @ Y2 ) @ ( plus_plus_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% sum_squares_bound
thf(fact_644_sum__squares__bound,axiom,
    ! [X2: rat,Y2: rat] : ( ord_less_eq_rat @ ( times_times_rat @ ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ X2 ) @ Y2 ) @ ( plus_plus_rat @ ( power_power_rat @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% sum_squares_bound
thf(fact_645_max__ins__scaled,axiom,
    ! [N: nat,X14: vEBT_VEBT,M: nat,X13: list_VEBT_VEBT] : ( ord_less_eq_nat @ ( times_times_nat @ N @ ( vEBT_VEBT_height @ X14 ) ) @ ( plus_plus_nat @ M @ ( times_times_nat @ N @ ( lattic8265883725875713057ax_nat @ ( insert_nat @ ( vEBT_VEBT_height @ X14 ) @ ( image_VEBT_VEBT_nat @ vEBT_VEBT_height @ ( set_VEBT_VEBT2 @ X13 ) ) ) ) ) ) ) ).

% max_ins_scaled
thf(fact_646_enat__ord__number_I1_J,axiom,
    ! [M: num,N: num] :
      ( ( ord_le2932123472753598470d_enat @ ( numera1916890842035813515d_enat @ M ) @ ( numera1916890842035813515d_enat @ N ) )
      = ( ord_less_eq_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) ) ) ).

% enat_ord_number(1)
thf(fact_647_image__insert,axiom,
    ! [F: vEBT_VEBT > vEBT_VEBT,A: vEBT_VEBT,B3: set_VEBT_VEBT] :
      ( ( image_3375948659692109573T_VEBT @ F @ ( insert_VEBT_VEBT @ A @ B3 ) )
      = ( insert_VEBT_VEBT @ ( F @ A ) @ ( image_3375948659692109573T_VEBT @ F @ B3 ) ) ) ).

% image_insert
thf(fact_648_image__insert,axiom,
    ! [F: vEBT_VEBT > nat,A: vEBT_VEBT,B3: set_VEBT_VEBT] :
      ( ( image_VEBT_VEBT_nat @ F @ ( insert_VEBT_VEBT @ A @ B3 ) )
      = ( insert_nat @ ( F @ A ) @ ( image_VEBT_VEBT_nat @ F @ B3 ) ) ) ).

% image_insert
thf(fact_649_image__insert,axiom,
    ! [F: vEBT_VEBT > int,A: vEBT_VEBT,B3: set_VEBT_VEBT] :
      ( ( image_VEBT_VEBT_int @ F @ ( insert_VEBT_VEBT @ A @ B3 ) )
      = ( insert_int @ ( F @ A ) @ ( image_VEBT_VEBT_int @ F @ B3 ) ) ) ).

% image_insert
thf(fact_650_image__insert,axiom,
    ! [F: vEBT_VEBT > real,A: vEBT_VEBT,B3: set_VEBT_VEBT] :
      ( ( image_VEBT_VEBT_real @ F @ ( insert_VEBT_VEBT @ A @ B3 ) )
      = ( insert_real @ ( F @ A ) @ ( image_VEBT_VEBT_real @ F @ B3 ) ) ) ).

% image_insert
thf(fact_651_image__insert,axiom,
    ! [F: vEBT_VEBT > $o,A: vEBT_VEBT,B3: set_VEBT_VEBT] :
      ( ( image_VEBT_VEBT_o @ F @ ( insert_VEBT_VEBT @ A @ B3 ) )
      = ( insert_o @ ( F @ A ) @ ( image_VEBT_VEBT_o @ F @ B3 ) ) ) ).

% image_insert
thf(fact_652_image__insert,axiom,
    ! [F: nat > vEBT_VEBT,A: nat,B3: set_nat] :
      ( ( image_nat_VEBT_VEBT @ F @ ( insert_nat @ A @ B3 ) )
      = ( insert_VEBT_VEBT @ ( F @ A ) @ ( image_nat_VEBT_VEBT @ F @ B3 ) ) ) ).

% image_insert
thf(fact_653_image__insert,axiom,
    ! [F: nat > nat,A: nat,B3: set_nat] :
      ( ( image_nat_nat @ F @ ( insert_nat @ A @ B3 ) )
      = ( insert_nat @ ( F @ A ) @ ( image_nat_nat @ F @ B3 ) ) ) ).

% image_insert
thf(fact_654_image__insert,axiom,
    ! [F: nat > int,A: nat,B3: set_nat] :
      ( ( image_nat_int @ F @ ( insert_nat @ A @ B3 ) )
      = ( insert_int @ ( F @ A ) @ ( image_nat_int @ F @ B3 ) ) ) ).

% image_insert
thf(fact_655_image__insert,axiom,
    ! [F: nat > real,A: nat,B3: set_nat] :
      ( ( image_nat_real @ F @ ( insert_nat @ A @ B3 ) )
      = ( insert_real @ ( F @ A ) @ ( image_nat_real @ F @ B3 ) ) ) ).

% image_insert
thf(fact_656_image__insert,axiom,
    ! [F: nat > $o,A: nat,B3: set_nat] :
      ( ( image_nat_o @ F @ ( insert_nat @ A @ B3 ) )
      = ( insert_o @ ( F @ A ) @ ( image_nat_o @ F @ B3 ) ) ) ).

% image_insert
thf(fact_657_insert__image,axiom,
    ! [X2: complex,A2: set_complex,F: complex > vEBT_VEBT] :
      ( ( member_complex @ X2 @ A2 )
     => ( ( insert_VEBT_VEBT @ ( F @ X2 ) @ ( image_932796090930683071T_VEBT @ F @ A2 ) )
        = ( image_932796090930683071T_VEBT @ F @ A2 ) ) ) ).

% insert_image
thf(fact_658_insert__image,axiom,
    ! [X2: complex,A2: set_complex,F: complex > nat] :
      ( ( member_complex @ X2 @ A2 )
     => ( ( insert_nat @ ( F @ X2 ) @ ( image_complex_nat @ F @ A2 ) )
        = ( image_complex_nat @ F @ A2 ) ) ) ).

% insert_image
thf(fact_659_insert__image,axiom,
    ! [X2: complex,A2: set_complex,F: complex > int] :
      ( ( member_complex @ X2 @ A2 )
     => ( ( insert_int @ ( F @ X2 ) @ ( image_complex_int @ F @ A2 ) )
        = ( image_complex_int @ F @ A2 ) ) ) ).

% insert_image
thf(fact_660_insert__image,axiom,
    ! [X2: complex,A2: set_complex,F: complex > real] :
      ( ( member_complex @ X2 @ A2 )
     => ( ( insert_real @ ( F @ X2 ) @ ( image_complex_real @ F @ A2 ) )
        = ( image_complex_real @ F @ A2 ) ) ) ).

% insert_image
thf(fact_661_insert__image,axiom,
    ! [X2: complex,A2: set_complex,F: complex > $o] :
      ( ( member_complex @ X2 @ A2 )
     => ( ( insert_o @ ( F @ X2 ) @ ( image_complex_o @ F @ A2 ) )
        = ( image_complex_o @ F @ A2 ) ) ) ).

% insert_image
thf(fact_662_insert__image,axiom,
    ! [X2: real,A2: set_real,F: real > vEBT_VEBT] :
      ( ( member_real @ X2 @ A2 )
     => ( ( insert_VEBT_VEBT @ ( F @ X2 ) @ ( image_real_VEBT_VEBT @ F @ A2 ) )
        = ( image_real_VEBT_VEBT @ F @ A2 ) ) ) ).

% insert_image
thf(fact_663_insert__image,axiom,
    ! [X2: real,A2: set_real,F: real > nat] :
      ( ( member_real @ X2 @ A2 )
     => ( ( insert_nat @ ( F @ X2 ) @ ( image_real_nat @ F @ A2 ) )
        = ( image_real_nat @ F @ A2 ) ) ) ).

% insert_image
thf(fact_664_insert__image,axiom,
    ! [X2: real,A2: set_real,F: real > int] :
      ( ( member_real @ X2 @ A2 )
     => ( ( insert_int @ ( F @ X2 ) @ ( image_real_int @ F @ A2 ) )
        = ( image_real_int @ F @ A2 ) ) ) ).

% insert_image
thf(fact_665_insert__image,axiom,
    ! [X2: real,A2: set_real,F: real > real] :
      ( ( member_real @ X2 @ A2 )
     => ( ( insert_real @ ( F @ X2 ) @ ( image_real_real @ F @ A2 ) )
        = ( image_real_real @ F @ A2 ) ) ) ).

% insert_image
thf(fact_666_insert__image,axiom,
    ! [X2: real,A2: set_real,F: real > $o] :
      ( ( member_real @ X2 @ A2 )
     => ( ( insert_o @ ( F @ X2 ) @ ( image_real_o @ F @ A2 ) )
        = ( image_real_o @ F @ A2 ) ) ) ).

% insert_image
thf(fact_667__C4_C,axiom,
    ( ( vEBT_T_m_e_m_b_e_r @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ mi @ ma ) ) @ deg @ treeList @ summary ) @ xa )
    = ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit1 @ ( bit1 @ one ) ) ) ) @ ( if_nat @ ( ord_less_nat @ ( vEBT_VEBT_high @ xa @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ treeList ) ) @ ( plus_plus_nat @ one_one_nat @ ( vEBT_T_m_e_m_b_e_r @ ( nth_VEBT_VEBT @ treeList @ ( vEBT_VEBT_high @ xa @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ xa @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ one_one_nat ) ) ) ).

% "4"
thf(fact_668__C3_C,axiom,
    ( ( vEBT_T_m_e_m_b_e_r @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ mi @ ma ) ) @ deg @ treeList @ summary ) @ xa )
    = ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ ( bit0 @ one ) ) ) @ ( if_nat @ ( ord_less_nat @ ma @ xa ) @ one_one_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ ( bit0 @ ( bit0 @ one ) ) ) ) @ ( if_nat @ ( ord_less_nat @ ( vEBT_VEBT_high @ xa @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ treeList ) ) @ ( plus_plus_nat @ one_one_nat @ ( vEBT_T_m_e_m_b_e_r @ ( nth_VEBT_VEBT @ treeList @ ( vEBT_VEBT_high @ xa @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ xa @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ one_one_nat ) ) ) ) ) ).

% "3"
thf(fact_669__C2_C,axiom,
    ( ( vEBT_T_m_e_m_b_e_r @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ mi @ ma ) ) @ deg @ treeList @ summary ) @ xa )
    = ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) @ ( if_nat @ ( ord_less_nat @ xa @ mi ) @ one_one_nat @ ( plus_plus_nat @ one_one_nat @ ( if_nat @ ( ord_less_nat @ ma @ xa ) @ one_one_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ ( bit0 @ ( bit0 @ one ) ) ) ) @ ( if_nat @ ( ord_less_nat @ ( vEBT_VEBT_high @ xa @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ treeList ) ) @ ( plus_plus_nat @ one_one_nat @ ( vEBT_T_m_e_m_b_e_r @ ( nth_VEBT_VEBT @ treeList @ ( vEBT_VEBT_high @ xa @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ xa @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ one_one_nat ) ) ) ) ) ) ) ).

% "2"
thf(fact_670__C1_C,axiom,
    ( ( vEBT_T_m_e_m_b_e_r @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ mi @ ma ) ) @ deg @ treeList @ summary ) @ xa )
    = ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ one ) ) @ ( if_nat @ ( xa = ma ) @ one_one_nat @ ( plus_plus_nat @ one_one_nat @ ( if_nat @ ( ord_less_nat @ xa @ mi ) @ one_one_nat @ ( plus_plus_nat @ one_one_nat @ ( if_nat @ ( ord_less_nat @ ma @ xa ) @ one_one_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ ( bit0 @ ( bit0 @ one ) ) ) ) @ ( if_nat @ ( ord_less_nat @ ( vEBT_VEBT_high @ xa @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ treeList ) ) @ ( plus_plus_nat @ one_one_nat @ ( vEBT_T_m_e_m_b_e_r @ ( nth_VEBT_VEBT @ treeList @ ( vEBT_VEBT_high @ xa @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ xa @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ one_one_nat ) ) ) ) ) ) ) ) ) ).

% "1"
thf(fact_671_even__odd__cases,axiom,
    ! [X2: nat] :
      ( ! [N3: nat] :
          ( X2
         != ( plus_plus_nat @ N3 @ N3 ) )
     => ~ ! [N3: nat] :
            ( X2
           != ( plus_plus_nat @ N3 @ ( suc @ N3 ) ) ) ) ).

% even_odd_cases
thf(fact_672_deg__SUcn__Node,axiom,
    ! [Tree: vEBT_VEBT,N: nat] :
      ( ( vEBT_invar_vebt @ Tree @ ( suc @ ( suc @ N ) ) )
     => ? [Info2: option4927543243414619207at_nat,TreeList3: list_VEBT_VEBT,S2: vEBT_VEBT] :
          ( Tree
          = ( vEBT_Node @ Info2 @ ( suc @ ( suc @ N ) ) @ TreeList3 @ S2 ) ) ) ).

% deg_SUcn_Node
thf(fact_673_image__eqI,axiom,
    ! [B: complex,F: complex > complex,X2: complex,A2: set_complex] :
      ( ( B
        = ( F @ X2 ) )
     => ( ( member_complex @ X2 @ A2 )
       => ( member_complex @ B @ ( image_1468599708987790691omplex @ F @ A2 ) ) ) ) ).

% image_eqI
thf(fact_674_image__eqI,axiom,
    ! [B: real,F: complex > real,X2: complex,A2: set_complex] :
      ( ( B
        = ( F @ X2 ) )
     => ( ( member_complex @ X2 @ A2 )
       => ( member_real @ B @ ( image_complex_real @ F @ A2 ) ) ) ) ).

% image_eqI
thf(fact_675_image__eqI,axiom,
    ! [B: nat,F: complex > nat,X2: complex,A2: set_complex] :
      ( ( B
        = ( F @ X2 ) )
     => ( ( member_complex @ X2 @ A2 )
       => ( member_nat @ B @ ( image_complex_nat @ F @ A2 ) ) ) ) ).

% image_eqI
thf(fact_676_image__eqI,axiom,
    ! [B: int,F: complex > int,X2: complex,A2: set_complex] :
      ( ( B
        = ( F @ X2 ) )
     => ( ( member_complex @ X2 @ A2 )
       => ( member_int @ B @ ( image_complex_int @ F @ A2 ) ) ) ) ).

% image_eqI
thf(fact_677_image__eqI,axiom,
    ! [B: complex,F: real > complex,X2: real,A2: set_real] :
      ( ( B
        = ( F @ X2 ) )
     => ( ( member_real @ X2 @ A2 )
       => ( member_complex @ B @ ( image_real_complex @ F @ A2 ) ) ) ) ).

% image_eqI
thf(fact_678_image__eqI,axiom,
    ! [B: real,F: real > real,X2: real,A2: set_real] :
      ( ( B
        = ( F @ X2 ) )
     => ( ( member_real @ X2 @ A2 )
       => ( member_real @ B @ ( image_real_real @ F @ A2 ) ) ) ) ).

% image_eqI
thf(fact_679_image__eqI,axiom,
    ! [B: nat,F: real > nat,X2: real,A2: set_real] :
      ( ( B
        = ( F @ X2 ) )
     => ( ( member_real @ X2 @ A2 )
       => ( member_nat @ B @ ( image_real_nat @ F @ A2 ) ) ) ) ).

% image_eqI
thf(fact_680_image__eqI,axiom,
    ! [B: int,F: real > int,X2: real,A2: set_real] :
      ( ( B
        = ( F @ X2 ) )
     => ( ( member_real @ X2 @ A2 )
       => ( member_int @ B @ ( image_real_int @ F @ A2 ) ) ) ) ).

% image_eqI
thf(fact_681_image__eqI,axiom,
    ! [B: complex,F: nat > complex,X2: nat,A2: set_nat] :
      ( ( B
        = ( F @ X2 ) )
     => ( ( member_nat @ X2 @ A2 )
       => ( member_complex @ B @ ( image_nat_complex @ F @ A2 ) ) ) ) ).

% image_eqI
thf(fact_682_image__eqI,axiom,
    ! [B: real,F: nat > real,X2: nat,A2: set_nat] :
      ( ( B
        = ( F @ X2 ) )
     => ( ( member_nat @ X2 @ A2 )
       => ( member_real @ B @ ( image_nat_real @ F @ A2 ) ) ) ) ).

% image_eqI
thf(fact_683_nat_Oinject,axiom,
    ! [X23: nat,Y22: nat] :
      ( ( ( suc @ X23 )
        = ( suc @ Y22 ) )
      = ( X23 = Y22 ) ) ).

% nat.inject
thf(fact_684_old_Onat_Oinject,axiom,
    ! [Nat: nat,Nat2: nat] :
      ( ( ( suc @ Nat )
        = ( suc @ Nat2 ) )
      = ( Nat = Nat2 ) ) ).

% old.nat.inject
thf(fact_685_insert__absorb2,axiom,
    ! [X2: vEBT_VEBT,A2: set_VEBT_VEBT] :
      ( ( insert_VEBT_VEBT @ X2 @ ( insert_VEBT_VEBT @ X2 @ A2 ) )
      = ( insert_VEBT_VEBT @ X2 @ A2 ) ) ).

% insert_absorb2
thf(fact_686_insert__absorb2,axiom,
    ! [X2: nat,A2: set_nat] :
      ( ( insert_nat @ X2 @ ( insert_nat @ X2 @ A2 ) )
      = ( insert_nat @ X2 @ A2 ) ) ).

% insert_absorb2
thf(fact_687_insert__absorb2,axiom,
    ! [X2: int,A2: set_int] :
      ( ( insert_int @ X2 @ ( insert_int @ X2 @ A2 ) )
      = ( insert_int @ X2 @ A2 ) ) ).

% insert_absorb2
thf(fact_688_insert__absorb2,axiom,
    ! [X2: real,A2: set_real] :
      ( ( insert_real @ X2 @ ( insert_real @ X2 @ A2 ) )
      = ( insert_real @ X2 @ A2 ) ) ).

% insert_absorb2
thf(fact_689_insert__absorb2,axiom,
    ! [X2: $o,A2: set_o] :
      ( ( insert_o @ X2 @ ( insert_o @ X2 @ A2 ) )
      = ( insert_o @ X2 @ A2 ) ) ).

% insert_absorb2
thf(fact_690_insert__subset,axiom,
    ! [X2: vEBT_VEBT,A2: set_VEBT_VEBT,B3: set_VEBT_VEBT] :
      ( ( ord_le4337996190870823476T_VEBT @ ( insert_VEBT_VEBT @ X2 @ A2 ) @ B3 )
      = ( ( member_VEBT_VEBT @ X2 @ B3 )
        & ( ord_le4337996190870823476T_VEBT @ A2 @ B3 ) ) ) ).

% insert_subset
thf(fact_691_insert__subset,axiom,
    ! [X2: $o,A2: set_o,B3: set_o] :
      ( ( ord_less_eq_set_o @ ( insert_o @ X2 @ A2 ) @ B3 )
      = ( ( member_o @ X2 @ B3 )
        & ( ord_less_eq_set_o @ A2 @ B3 ) ) ) ).

% insert_subset
thf(fact_692_insert__subset,axiom,
    ! [X2: complex,A2: set_complex,B3: set_complex] :
      ( ( ord_le211207098394363844omplex @ ( insert_complex @ X2 @ A2 ) @ B3 )
      = ( ( member_complex @ X2 @ B3 )
        & ( ord_le211207098394363844omplex @ A2 @ B3 ) ) ) ).

% insert_subset
thf(fact_693_insert__subset,axiom,
    ! [X2: real,A2: set_real,B3: set_real] :
      ( ( ord_less_eq_set_real @ ( insert_real @ X2 @ A2 ) @ B3 )
      = ( ( member_real @ X2 @ B3 )
        & ( ord_less_eq_set_real @ A2 @ B3 ) ) ) ).

% insert_subset
thf(fact_694_insert__subset,axiom,
    ! [X2: set_nat,A2: set_set_nat,B3: set_set_nat] :
      ( ( ord_le6893508408891458716et_nat @ ( insert_set_nat @ X2 @ A2 ) @ B3 )
      = ( ( member_set_nat @ X2 @ B3 )
        & ( ord_le6893508408891458716et_nat @ A2 @ B3 ) ) ) ).

% insert_subset
thf(fact_695_insert__subset,axiom,
    ! [X2: nat,A2: set_nat,B3: set_nat] :
      ( ( ord_less_eq_set_nat @ ( insert_nat @ X2 @ A2 ) @ B3 )
      = ( ( member_nat @ X2 @ B3 )
        & ( ord_less_eq_set_nat @ A2 @ B3 ) ) ) ).

% insert_subset
thf(fact_696_insert__subset,axiom,
    ! [X2: int,A2: set_int,B3: set_int] :
      ( ( ord_less_eq_set_int @ ( insert_int @ X2 @ A2 ) @ B3 )
      = ( ( member_int @ X2 @ B3 )
        & ( ord_less_eq_set_int @ A2 @ B3 ) ) ) ).

% insert_subset
thf(fact_697_insert__iff,axiom,
    ! [A: vEBT_VEBT,B: vEBT_VEBT,A2: set_VEBT_VEBT] :
      ( ( member_VEBT_VEBT @ A @ ( insert_VEBT_VEBT @ B @ A2 ) )
      = ( ( A = B )
        | ( member_VEBT_VEBT @ A @ A2 ) ) ) ).

% insert_iff
thf(fact_698_insert__iff,axiom,
    ! [A: $o,B: $o,A2: set_o] :
      ( ( member_o @ A @ ( insert_o @ B @ A2 ) )
      = ( ( A = B )
        | ( member_o @ A @ A2 ) ) ) ).

% insert_iff
thf(fact_699_insert__iff,axiom,
    ! [A: complex,B: complex,A2: set_complex] :
      ( ( member_complex @ A @ ( insert_complex @ B @ A2 ) )
      = ( ( A = B )
        | ( member_complex @ A @ A2 ) ) ) ).

% insert_iff
thf(fact_700_insert__iff,axiom,
    ! [A: real,B: real,A2: set_real] :
      ( ( member_real @ A @ ( insert_real @ B @ A2 ) )
      = ( ( A = B )
        | ( member_real @ A @ A2 ) ) ) ).

% insert_iff
thf(fact_701_insert__iff,axiom,
    ! [A: set_nat,B: set_nat,A2: set_set_nat] :
      ( ( member_set_nat @ A @ ( insert_set_nat @ B @ A2 ) )
      = ( ( A = B )
        | ( member_set_nat @ A @ A2 ) ) ) ).

% insert_iff
thf(fact_702_insert__iff,axiom,
    ! [A: nat,B: nat,A2: set_nat] :
      ( ( member_nat @ A @ ( insert_nat @ B @ A2 ) )
      = ( ( A = B )
        | ( member_nat @ A @ A2 ) ) ) ).

% insert_iff
thf(fact_703_insert__iff,axiom,
    ! [A: int,B: int,A2: set_int] :
      ( ( member_int @ A @ ( insert_int @ B @ A2 ) )
      = ( ( A = B )
        | ( member_int @ A @ A2 ) ) ) ).

% insert_iff
thf(fact_704_insertCI,axiom,
    ! [A: vEBT_VEBT,B3: set_VEBT_VEBT,B: vEBT_VEBT] :
      ( ( ~ ( member_VEBT_VEBT @ A @ B3 )
       => ( A = B ) )
     => ( member_VEBT_VEBT @ A @ ( insert_VEBT_VEBT @ B @ B3 ) ) ) ).

% insertCI
thf(fact_705_insertCI,axiom,
    ! [A: $o,B3: set_o,B: $o] :
      ( ( ~ ( member_o @ A @ B3 )
       => ( A = B ) )
     => ( member_o @ A @ ( insert_o @ B @ B3 ) ) ) ).

% insertCI
thf(fact_706_insertCI,axiom,
    ! [A: complex,B3: set_complex,B: complex] :
      ( ( ~ ( member_complex @ A @ B3 )
       => ( A = B ) )
     => ( member_complex @ A @ ( insert_complex @ B @ B3 ) ) ) ).

% insertCI
thf(fact_707_insertCI,axiom,
    ! [A: real,B3: set_real,B: real] :
      ( ( ~ ( member_real @ A @ B3 )
       => ( A = B ) )
     => ( member_real @ A @ ( insert_real @ B @ B3 ) ) ) ).

% insertCI
thf(fact_708_insertCI,axiom,
    ! [A: set_nat,B3: set_set_nat,B: set_nat] :
      ( ( ~ ( member_set_nat @ A @ B3 )
       => ( A = B ) )
     => ( member_set_nat @ A @ ( insert_set_nat @ B @ B3 ) ) ) ).

% insertCI
thf(fact_709_insertCI,axiom,
    ! [A: nat,B3: set_nat,B: nat] :
      ( ( ~ ( member_nat @ A @ B3 )
       => ( A = B ) )
     => ( member_nat @ A @ ( insert_nat @ B @ B3 ) ) ) ).

% insertCI
thf(fact_710_insertCI,axiom,
    ! [A: int,B3: set_int,B: int] :
      ( ( ~ ( member_int @ A @ B3 )
       => ( A = B ) )
     => ( member_int @ A @ ( insert_int @ B @ B3 ) ) ) ).

% insertCI
thf(fact_711_VEBT_Oinject_I1_J,axiom,
    ! [X11: option4927543243414619207at_nat,X12: nat,X13: list_VEBT_VEBT,X14: vEBT_VEBT,Y11: option4927543243414619207at_nat,Y12: nat,Y13: list_VEBT_VEBT,Y14: vEBT_VEBT] :
      ( ( ( vEBT_Node @ X11 @ X12 @ X13 @ X14 )
        = ( vEBT_Node @ Y11 @ Y12 @ Y13 @ Y14 ) )
      = ( ( X11 = Y11 )
        & ( X12 = Y12 )
        & ( X13 = Y13 )
        & ( X14 = Y14 ) ) ) ).

% VEBT.inject(1)
thf(fact_712_image__ident,axiom,
    ! [Y5: set_nat] :
      ( ( image_nat_nat
        @ ^ [X: nat] : X
        @ Y5 )
      = Y5 ) ).

% image_ident
thf(fact_713_image__ident,axiom,
    ! [Y5: set_int] :
      ( ( image_int_int
        @ ^ [X: int] : X
        @ Y5 )
      = Y5 ) ).

% image_ident
thf(fact_714_Suc__less__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ ( suc @ M ) @ ( suc @ N ) )
      = ( ord_less_nat @ M @ N ) ) ).

% Suc_less_eq
thf(fact_715_Suc__mono,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_nat @ ( suc @ M ) @ ( suc @ N ) ) ) ).

% Suc_mono
thf(fact_716_lessI,axiom,
    ! [N: nat] : ( ord_less_nat @ N @ ( suc @ N ) ) ).

% lessI
thf(fact_717_Suc__le__mono,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq_nat @ ( suc @ N ) @ ( suc @ M ) )
      = ( ord_less_eq_nat @ N @ M ) ) ).

% Suc_le_mono
thf(fact_718_add__Suc__right,axiom,
    ! [M: nat,N: nat] :
      ( ( plus_plus_nat @ M @ ( suc @ N ) )
      = ( suc @ ( plus_plus_nat @ M @ N ) ) ) ).

% add_Suc_right
thf(fact_719_max__Suc__Suc,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_max_nat @ ( suc @ M ) @ ( suc @ N ) )
      = ( suc @ ( ord_max_nat @ M @ N ) ) ) ).

% max_Suc_Suc
thf(fact_720_semiring__norm_I13_J,axiom,
    ! [M: num,N: num] :
      ( ( times_times_num @ ( bit0 @ M ) @ ( bit0 @ N ) )
      = ( bit0 @ ( bit0 @ ( times_times_num @ M @ N ) ) ) ) ).

% semiring_norm(13)
thf(fact_721_semiring__norm_I12_J,axiom,
    ! [N: num] :
      ( ( times_times_num @ one @ N )
      = N ) ).

% semiring_norm(12)
thf(fact_722_semiring__norm_I11_J,axiom,
    ! [M: num] :
      ( ( times_times_num @ M @ one )
      = M ) ).

% semiring_norm(11)
thf(fact_723_mult__Suc__right,axiom,
    ! [M: nat,N: nat] :
      ( ( times_times_nat @ M @ ( suc @ N ) )
      = ( plus_plus_nat @ M @ ( times_times_nat @ M @ N ) ) ) ).

% mult_Suc_right
thf(fact_724_num__double,axiom,
    ! [N: num] :
      ( ( times_times_num @ ( bit0 @ one ) @ N )
      = ( bit0 @ N ) ) ).

% num_double
thf(fact_725_power__mult__numeral,axiom,
    ! [A: nat,M: num,N: num] :
      ( ( power_power_nat @ ( power_power_nat @ A @ ( numeral_numeral_nat @ M ) ) @ ( numeral_numeral_nat @ N ) )
      = ( power_power_nat @ A @ ( numeral_numeral_nat @ ( times_times_num @ M @ N ) ) ) ) ).

% power_mult_numeral
thf(fact_726_power__mult__numeral,axiom,
    ! [A: real,M: num,N: num] :
      ( ( power_power_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ M ) ) @ ( numeral_numeral_nat @ N ) )
      = ( power_power_real @ A @ ( numeral_numeral_nat @ ( times_times_num @ M @ N ) ) ) ) ).

% power_mult_numeral
thf(fact_727_power__mult__numeral,axiom,
    ! [A: complex,M: num,N: num] :
      ( ( power_power_complex @ ( power_power_complex @ A @ ( numeral_numeral_nat @ M ) ) @ ( numeral_numeral_nat @ N ) )
      = ( power_power_complex @ A @ ( numeral_numeral_nat @ ( times_times_num @ M @ N ) ) ) ) ).

% power_mult_numeral
thf(fact_728_power__mult__numeral,axiom,
    ! [A: int,M: num,N: num] :
      ( ( power_power_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ M ) ) @ ( numeral_numeral_nat @ N ) )
      = ( power_power_int @ A @ ( numeral_numeral_nat @ ( times_times_num @ M @ N ) ) ) ) ).

% power_mult_numeral
thf(fact_729_semiring__norm_I14_J,axiom,
    ! [M: num,N: num] :
      ( ( times_times_num @ ( bit0 @ M ) @ ( bit1 @ N ) )
      = ( bit0 @ ( times_times_num @ M @ ( bit1 @ N ) ) ) ) ).

% semiring_norm(14)
thf(fact_730_semiring__norm_I15_J,axiom,
    ! [M: num,N: num] :
      ( ( times_times_num @ ( bit1 @ M ) @ ( bit0 @ N ) )
      = ( bit0 @ ( times_times_num @ ( bit1 @ M ) @ N ) ) ) ).

% semiring_norm(15)
thf(fact_731_enat__ord__number_I2_J,axiom,
    ! [M: num,N: num] :
      ( ( ord_le72135733267957522d_enat @ ( numera1916890842035813515d_enat @ M ) @ ( numera1916890842035813515d_enat @ N ) )
      = ( ord_less_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) ) ) ).

% enat_ord_number(2)
thf(fact_732_Suc__numeral,axiom,
    ! [N: num] :
      ( ( suc @ ( numeral_numeral_nat @ N ) )
      = ( numeral_numeral_nat @ ( plus_plus_num @ N @ one ) ) ) ).

% Suc_numeral
thf(fact_733_semiring__norm_I16_J,axiom,
    ! [M: num,N: num] :
      ( ( times_times_num @ ( bit1 @ M ) @ ( bit1 @ N ) )
      = ( bit1 @ ( plus_plus_num @ ( plus_plus_num @ M @ N ) @ ( bit0 @ ( times_times_num @ M @ N ) ) ) ) ) ).

% semiring_norm(16)
thf(fact_734_add__2__eq__Suc,axiom,
    ! [N: nat] :
      ( ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
      = ( suc @ ( suc @ N ) ) ) ).

% add_2_eq_Suc
thf(fact_735_add__2__eq__Suc_H,axiom,
    ! [N: nat] :
      ( ( plus_plus_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( suc @ ( suc @ N ) ) ) ).

% add_2_eq_Suc'
thf(fact_736_Suc__1,axiom,
    ( ( suc @ one_one_nat )
    = ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ).

% Suc_1
thf(fact_737_div2__Suc__Suc,axiom,
    ! [M: nat] :
      ( ( divide_divide_nat @ ( suc @ ( suc @ M ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( suc @ ( divide_divide_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% div2_Suc_Suc
thf(fact_738_div__Suc__eq__div__add3,axiom,
    ! [M: nat,N: nat] :
      ( ( divide_divide_nat @ M @ ( suc @ ( suc @ ( suc @ N ) ) ) )
      = ( divide_divide_nat @ M @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ one ) ) @ N ) ) ) ).

% div_Suc_eq_div_add3
thf(fact_739_Suc__div__eq__add3__div__numeral,axiom,
    ! [M: nat,V: num] :
      ( ( divide_divide_nat @ ( suc @ ( suc @ ( suc @ M ) ) ) @ ( numeral_numeral_nat @ V ) )
      = ( divide_divide_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ one ) ) @ M ) @ ( numeral_numeral_nat @ V ) ) ) ).

% Suc_div_eq_add3_div_numeral
thf(fact_740_real__arch__pow,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_real @ one_one_real @ X2 )
     => ? [N3: nat] : ( ord_less_real @ Y2 @ ( power_power_real @ X2 @ N3 ) ) ) ).

% real_arch_pow
thf(fact_741_less__eq__real__def,axiom,
    ( ord_less_eq_real
    = ( ^ [X: real,Y: real] :
          ( ( ord_less_real @ X @ Y )
          | ( X = Y ) ) ) ) ).

% less_eq_real_def
thf(fact_742_complete__real,axiom,
    ! [S3: set_real] :
      ( ? [X3: real] : ( member_real @ X3 @ S3 )
     => ( ? [Z2: real] :
          ! [X4: real] :
            ( ( member_real @ X4 @ S3 )
           => ( ord_less_eq_real @ X4 @ Z2 ) )
       => ? [Y3: real] :
            ( ! [X3: real] :
                ( ( member_real @ X3 @ S3 )
               => ( ord_less_eq_real @ X3 @ Y3 ) )
            & ! [Z2: real] :
                ( ! [X4: real] :
                    ( ( member_real @ X4 @ S3 )
                   => ( ord_less_eq_real @ X4 @ Z2 ) )
               => ( ord_less_eq_real @ Y3 @ Z2 ) ) ) ) ) ).

% complete_real
thf(fact_743_imageE,axiom,
    ! [B: complex,F: complex > complex,A2: set_complex] :
      ( ( member_complex @ B @ ( image_1468599708987790691omplex @ F @ A2 ) )
     => ~ ! [X4: complex] :
            ( ( B
              = ( F @ X4 ) )
           => ~ ( member_complex @ X4 @ A2 ) ) ) ).

% imageE
thf(fact_744_imageE,axiom,
    ! [B: complex,F: real > complex,A2: set_real] :
      ( ( member_complex @ B @ ( image_real_complex @ F @ A2 ) )
     => ~ ! [X4: real] :
            ( ( B
              = ( F @ X4 ) )
           => ~ ( member_real @ X4 @ A2 ) ) ) ).

% imageE
thf(fact_745_imageE,axiom,
    ! [B: complex,F: nat > complex,A2: set_nat] :
      ( ( member_complex @ B @ ( image_nat_complex @ F @ A2 ) )
     => ~ ! [X4: nat] :
            ( ( B
              = ( F @ X4 ) )
           => ~ ( member_nat @ X4 @ A2 ) ) ) ).

% imageE
thf(fact_746_imageE,axiom,
    ! [B: complex,F: int > complex,A2: set_int] :
      ( ( member_complex @ B @ ( image_int_complex @ F @ A2 ) )
     => ~ ! [X4: int] :
            ( ( B
              = ( F @ X4 ) )
           => ~ ( member_int @ X4 @ A2 ) ) ) ).

% imageE
thf(fact_747_imageE,axiom,
    ! [B: real,F: complex > real,A2: set_complex] :
      ( ( member_real @ B @ ( image_complex_real @ F @ A2 ) )
     => ~ ! [X4: complex] :
            ( ( B
              = ( F @ X4 ) )
           => ~ ( member_complex @ X4 @ A2 ) ) ) ).

% imageE
thf(fact_748_imageE,axiom,
    ! [B: real,F: real > real,A2: set_real] :
      ( ( member_real @ B @ ( image_real_real @ F @ A2 ) )
     => ~ ! [X4: real] :
            ( ( B
              = ( F @ X4 ) )
           => ~ ( member_real @ X4 @ A2 ) ) ) ).

% imageE
thf(fact_749_imageE,axiom,
    ! [B: real,F: nat > real,A2: set_nat] :
      ( ( member_real @ B @ ( image_nat_real @ F @ A2 ) )
     => ~ ! [X4: nat] :
            ( ( B
              = ( F @ X4 ) )
           => ~ ( member_nat @ X4 @ A2 ) ) ) ).

% imageE
thf(fact_750_imageE,axiom,
    ! [B: real,F: int > real,A2: set_int] :
      ( ( member_real @ B @ ( image_int_real @ F @ A2 ) )
     => ~ ! [X4: int] :
            ( ( B
              = ( F @ X4 ) )
           => ~ ( member_int @ X4 @ A2 ) ) ) ).

% imageE
thf(fact_751_imageE,axiom,
    ! [B: nat,F: complex > nat,A2: set_complex] :
      ( ( member_nat @ B @ ( image_complex_nat @ F @ A2 ) )
     => ~ ! [X4: complex] :
            ( ( B
              = ( F @ X4 ) )
           => ~ ( member_complex @ X4 @ A2 ) ) ) ).

% imageE
thf(fact_752_imageE,axiom,
    ! [B: nat,F: real > nat,A2: set_real] :
      ( ( member_nat @ B @ ( image_real_nat @ F @ A2 ) )
     => ~ ! [X4: real] :
            ( ( B
              = ( F @ X4 ) )
           => ~ ( member_real @ X4 @ A2 ) ) ) ).

% imageE
thf(fact_753_Suc__inject,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ( suc @ X2 )
        = ( suc @ Y2 ) )
     => ( X2 = Y2 ) ) ).

% Suc_inject
thf(fact_754_n__not__Suc__n,axiom,
    ! [N: nat] :
      ( N
     != ( suc @ N ) ) ).

% n_not_Suc_n
thf(fact_755_image__image,axiom,
    ! [F: nat > nat,G: nat > nat,A2: set_nat] :
      ( ( image_nat_nat @ F @ ( image_nat_nat @ G @ A2 ) )
      = ( image_nat_nat
        @ ^ [X: nat] : ( F @ ( G @ X ) )
        @ A2 ) ) ).

% image_image
thf(fact_756_image__image,axiom,
    ! [F: nat > nat,G: int > nat,A2: set_int] :
      ( ( image_nat_nat @ F @ ( image_int_nat @ G @ A2 ) )
      = ( image_int_nat
        @ ^ [X: int] : ( F @ ( G @ X ) )
        @ A2 ) ) ).

% image_image
thf(fact_757_image__image,axiom,
    ! [F: nat > int,G: nat > nat,A2: set_nat] :
      ( ( image_nat_int @ F @ ( image_nat_nat @ G @ A2 ) )
      = ( image_nat_int
        @ ^ [X: nat] : ( F @ ( G @ X ) )
        @ A2 ) ) ).

% image_image
thf(fact_758_image__image,axiom,
    ! [F: nat > int,G: int > nat,A2: set_int] :
      ( ( image_nat_int @ F @ ( image_int_nat @ G @ A2 ) )
      = ( image_int_int
        @ ^ [X: int] : ( F @ ( G @ X ) )
        @ A2 ) ) ).

% image_image
thf(fact_759_image__image,axiom,
    ! [F: int > nat,G: nat > int,A2: set_nat] :
      ( ( image_int_nat @ F @ ( image_nat_int @ G @ A2 ) )
      = ( image_nat_nat
        @ ^ [X: nat] : ( F @ ( G @ X ) )
        @ A2 ) ) ).

% image_image
thf(fact_760_image__image,axiom,
    ! [F: int > nat,G: int > int,A2: set_int] :
      ( ( image_int_nat @ F @ ( image_int_int @ G @ A2 ) )
      = ( image_int_nat
        @ ^ [X: int] : ( F @ ( G @ X ) )
        @ A2 ) ) ).

% image_image
thf(fact_761_image__image,axiom,
    ! [F: int > int,G: nat > int,A2: set_nat] :
      ( ( image_int_int @ F @ ( image_nat_int @ G @ A2 ) )
      = ( image_nat_int
        @ ^ [X: nat] : ( F @ ( G @ X ) )
        @ A2 ) ) ).

% image_image
thf(fact_762_image__image,axiom,
    ! [F: int > int,G: int > int,A2: set_int] :
      ( ( image_int_int @ F @ ( image_int_int @ G @ A2 ) )
      = ( image_int_int
        @ ^ [X: int] : ( F @ ( G @ X ) )
        @ A2 ) ) ).

% image_image
thf(fact_763_image__image,axiom,
    ! [F: set_nat > nat,G: nat > set_nat,A2: set_nat] :
      ( ( image_set_nat_nat @ F @ ( image_nat_set_nat @ G @ A2 ) )
      = ( image_nat_nat
        @ ^ [X: nat] : ( F @ ( G @ X ) )
        @ A2 ) ) ).

% image_image
thf(fact_764_image__image,axiom,
    ! [F: set_nat > int,G: nat > set_nat,A2: set_nat] :
      ( ( image_set_nat_int @ F @ ( image_nat_set_nat @ G @ A2 ) )
      = ( image_nat_int
        @ ^ [X: nat] : ( F @ ( G @ X ) )
        @ A2 ) ) ).

% image_image
thf(fact_765_insert__compr,axiom,
    ( insert_VEBT_VEBT
    = ( ^ [A3: vEBT_VEBT,B4: set_VEBT_VEBT] :
          ( collect_VEBT_VEBT
          @ ^ [X: vEBT_VEBT] :
              ( ( X = A3 )
              | ( member_VEBT_VEBT @ X @ B4 ) ) ) ) ) ).

% insert_compr
thf(fact_766_insert__compr,axiom,
    ( insert_o
    = ( ^ [A3: $o,B4: set_o] :
          ( collect_o
          @ ^ [X: $o] :
              ( ( X = A3 )
              | ( member_o @ X @ B4 ) ) ) ) ) ).

% insert_compr
thf(fact_767_insert__compr,axiom,
    ( insert_real
    = ( ^ [A3: real,B4: set_real] :
          ( collect_real
          @ ^ [X: real] :
              ( ( X = A3 )
              | ( member_real @ X @ B4 ) ) ) ) ) ).

% insert_compr
thf(fact_768_insert__compr,axiom,
    ( insert5033312907999012233nt_int
    = ( ^ [A3: product_prod_int_int,B4: set_Pr958786334691620121nt_int] :
          ( collec213857154873943460nt_int
          @ ^ [X: product_prod_int_int] :
              ( ( X = A3 )
              | ( member5262025264175285858nt_int @ X @ B4 ) ) ) ) ) ).

% insert_compr
thf(fact_769_insert__compr,axiom,
    ( insert_complex
    = ( ^ [A3: complex,B4: set_complex] :
          ( collect_complex
          @ ^ [X: complex] :
              ( ( X = A3 )
              | ( member_complex @ X @ B4 ) ) ) ) ) ).

% insert_compr
thf(fact_770_insert__compr,axiom,
    ( insert_set_nat
    = ( ^ [A3: set_nat,B4: set_set_nat] :
          ( collect_set_nat
          @ ^ [X: set_nat] :
              ( ( X = A3 )
              | ( member_set_nat @ X @ B4 ) ) ) ) ) ).

% insert_compr
thf(fact_771_insert__compr,axiom,
    ( insert_nat
    = ( ^ [A3: nat,B4: set_nat] :
          ( collect_nat
          @ ^ [X: nat] :
              ( ( X = A3 )
              | ( member_nat @ X @ B4 ) ) ) ) ) ).

% insert_compr
thf(fact_772_insert__compr,axiom,
    ( insert_int
    = ( ^ [A3: int,B4: set_int] :
          ( collect_int
          @ ^ [X: int] :
              ( ( X = A3 )
              | ( member_int @ X @ B4 ) ) ) ) ) ).

% insert_compr
thf(fact_773_Compr__image__eq,axiom,
    ! [F: real > real,A2: set_real,P: real > $o] :
      ( ( collect_real
        @ ^ [X: real] :
            ( ( member_real @ X @ ( image_real_real @ F @ A2 ) )
            & ( P @ X ) ) )
      = ( image_real_real @ F
        @ ( collect_real
          @ ^ [X: real] :
              ( ( member_real @ X @ A2 )
              & ( P @ ( F @ X ) ) ) ) ) ) ).

% Compr_image_eq
thf(fact_774_Compr__image__eq,axiom,
    ! [F: complex > real,A2: set_complex,P: real > $o] :
      ( ( collect_real
        @ ^ [X: real] :
            ( ( member_real @ X @ ( image_complex_real @ F @ A2 ) )
            & ( P @ X ) ) )
      = ( image_complex_real @ F
        @ ( collect_complex
          @ ^ [X: complex] :
              ( ( member_complex @ X @ A2 )
              & ( P @ ( F @ X ) ) ) ) ) ) ).

% Compr_image_eq
thf(fact_775_Compr__image__eq,axiom,
    ! [F: nat > real,A2: set_nat,P: real > $o] :
      ( ( collect_real
        @ ^ [X: real] :
            ( ( member_real @ X @ ( image_nat_real @ F @ A2 ) )
            & ( P @ X ) ) )
      = ( image_nat_real @ F
        @ ( collect_nat
          @ ^ [X: nat] :
              ( ( member_nat @ X @ A2 )
              & ( P @ ( F @ X ) ) ) ) ) ) ).

% Compr_image_eq
thf(fact_776_Compr__image__eq,axiom,
    ! [F: int > real,A2: set_int,P: real > $o] :
      ( ( collect_real
        @ ^ [X: real] :
            ( ( member_real @ X @ ( image_int_real @ F @ A2 ) )
            & ( P @ X ) ) )
      = ( image_int_real @ F
        @ ( collect_int
          @ ^ [X: int] :
              ( ( member_int @ X @ A2 )
              & ( P @ ( F @ X ) ) ) ) ) ) ).

% Compr_image_eq
thf(fact_777_Compr__image__eq,axiom,
    ! [F: real > complex,A2: set_real,P: complex > $o] :
      ( ( collect_complex
        @ ^ [X: complex] :
            ( ( member_complex @ X @ ( image_real_complex @ F @ A2 ) )
            & ( P @ X ) ) )
      = ( image_real_complex @ F
        @ ( collect_real
          @ ^ [X: real] :
              ( ( member_real @ X @ A2 )
              & ( P @ ( F @ X ) ) ) ) ) ) ).

% Compr_image_eq
thf(fact_778_Compr__image__eq,axiom,
    ! [F: complex > complex,A2: set_complex,P: complex > $o] :
      ( ( collect_complex
        @ ^ [X: complex] :
            ( ( member_complex @ X @ ( image_1468599708987790691omplex @ F @ A2 ) )
            & ( P @ X ) ) )
      = ( image_1468599708987790691omplex @ F
        @ ( collect_complex
          @ ^ [X: complex] :
              ( ( member_complex @ X @ A2 )
              & ( P @ ( F @ X ) ) ) ) ) ) ).

% Compr_image_eq
thf(fact_779_Compr__image__eq,axiom,
    ! [F: nat > complex,A2: set_nat,P: complex > $o] :
      ( ( collect_complex
        @ ^ [X: complex] :
            ( ( member_complex @ X @ ( image_nat_complex @ F @ A2 ) )
            & ( P @ X ) ) )
      = ( image_nat_complex @ F
        @ ( collect_nat
          @ ^ [X: nat] :
              ( ( member_nat @ X @ A2 )
              & ( P @ ( F @ X ) ) ) ) ) ) ).

% Compr_image_eq
thf(fact_780_Compr__image__eq,axiom,
    ! [F: int > complex,A2: set_int,P: complex > $o] :
      ( ( collect_complex
        @ ^ [X: complex] :
            ( ( member_complex @ X @ ( image_int_complex @ F @ A2 ) )
            & ( P @ X ) ) )
      = ( image_int_complex @ F
        @ ( collect_int
          @ ^ [X: int] :
              ( ( member_int @ X @ A2 )
              & ( P @ ( F @ X ) ) ) ) ) ) ).

% Compr_image_eq
thf(fact_781_Compr__image__eq,axiom,
    ! [F: real > nat,A2: set_real,P: nat > $o] :
      ( ( collect_nat
        @ ^ [X: nat] :
            ( ( member_nat @ X @ ( image_real_nat @ F @ A2 ) )
            & ( P @ X ) ) )
      = ( image_real_nat @ F
        @ ( collect_real
          @ ^ [X: real] :
              ( ( member_real @ X @ A2 )
              & ( P @ ( F @ X ) ) ) ) ) ) ).

% Compr_image_eq
thf(fact_782_Compr__image__eq,axiom,
    ! [F: complex > nat,A2: set_complex,P: nat > $o] :
      ( ( collect_nat
        @ ^ [X: nat] :
            ( ( member_nat @ X @ ( image_complex_nat @ F @ A2 ) )
            & ( P @ X ) ) )
      = ( image_complex_nat @ F
        @ ( collect_complex
          @ ^ [X: complex] :
              ( ( member_complex @ X @ A2 )
              & ( P @ ( F @ X ) ) ) ) ) ) ).

% Compr_image_eq
thf(fact_783_insert__Collect,axiom,
    ! [A: vEBT_VEBT,P: vEBT_VEBT > $o] :
      ( ( insert_VEBT_VEBT @ A @ ( collect_VEBT_VEBT @ P ) )
      = ( collect_VEBT_VEBT
        @ ^ [U2: vEBT_VEBT] :
            ( ( U2 != A )
           => ( P @ U2 ) ) ) ) ).

% insert_Collect
thf(fact_784_insert__Collect,axiom,
    ! [A: real,P: real > $o] :
      ( ( insert_real @ A @ ( collect_real @ P ) )
      = ( collect_real
        @ ^ [U2: real] :
            ( ( U2 != A )
           => ( P @ U2 ) ) ) ) ).

% insert_Collect
thf(fact_785_insert__Collect,axiom,
    ! [A: $o,P: $o > $o] :
      ( ( insert_o @ A @ ( collect_o @ P ) )
      = ( collect_o
        @ ^ [U2: $o] :
            ( ( U2 != A )
           => ( P @ U2 ) ) ) ) ).

% insert_Collect
thf(fact_786_insert__Collect,axiom,
    ! [A: product_prod_int_int,P: product_prod_int_int > $o] :
      ( ( insert5033312907999012233nt_int @ A @ ( collec213857154873943460nt_int @ P ) )
      = ( collec213857154873943460nt_int
        @ ^ [U2: product_prod_int_int] :
            ( ( U2 != A )
           => ( P @ U2 ) ) ) ) ).

% insert_Collect
thf(fact_787_insert__Collect,axiom,
    ! [A: complex,P: complex > $o] :
      ( ( insert_complex @ A @ ( collect_complex @ P ) )
      = ( collect_complex
        @ ^ [U2: complex] :
            ( ( U2 != A )
           => ( P @ U2 ) ) ) ) ).

% insert_Collect
thf(fact_788_insert__Collect,axiom,
    ! [A: set_nat,P: set_nat > $o] :
      ( ( insert_set_nat @ A @ ( collect_set_nat @ P ) )
      = ( collect_set_nat
        @ ^ [U2: set_nat] :
            ( ( U2 != A )
           => ( P @ U2 ) ) ) ) ).

% insert_Collect
thf(fact_789_insert__Collect,axiom,
    ! [A: nat,P: nat > $o] :
      ( ( insert_nat @ A @ ( collect_nat @ P ) )
      = ( collect_nat
        @ ^ [U2: nat] :
            ( ( U2 != A )
           => ( P @ U2 ) ) ) ) ).

% insert_Collect
thf(fact_790_insert__Collect,axiom,
    ! [A: int,P: int > $o] :
      ( ( insert_int @ A @ ( collect_int @ P ) )
      = ( collect_int
        @ ^ [U2: int] :
            ( ( U2 != A )
           => ( P @ U2 ) ) ) ) ).

% insert_Collect
thf(fact_791_set__vebt__def,axiom,
    ( vEBT_set_vebt
    = ( ^ [T2: vEBT_VEBT] : ( collect_nat @ ( vEBT_V8194947554948674370ptions @ T2 ) ) ) ) ).

% set_vebt_def
thf(fact_792_not__less__less__Suc__eq,axiom,
    ! [N: nat,M: nat] :
      ( ~ ( ord_less_nat @ N @ M )
     => ( ( ord_less_nat @ N @ ( suc @ M ) )
        = ( N = M ) ) ) ).

% not_less_less_Suc_eq
thf(fact_793_strict__inc__induct,axiom,
    ! [I: nat,J: nat,P: nat > $o] :
      ( ( ord_less_nat @ I @ J )
     => ( ! [I3: nat] :
            ( ( J
              = ( suc @ I3 ) )
           => ( P @ I3 ) )
       => ( ! [I3: nat] :
              ( ( ord_less_nat @ I3 @ J )
             => ( ( P @ ( suc @ I3 ) )
               => ( P @ I3 ) ) )
         => ( P @ I ) ) ) ) ).

% strict_inc_induct
thf(fact_794_less__Suc__induct,axiom,
    ! [I: nat,J: nat,P: nat > nat > $o] :
      ( ( ord_less_nat @ I @ J )
     => ( ! [I3: nat] : ( P @ I3 @ ( suc @ I3 ) )
       => ( ! [I3: nat,J2: nat,K3: nat] :
              ( ( ord_less_nat @ I3 @ J2 )
             => ( ( ord_less_nat @ J2 @ K3 )
               => ( ( P @ I3 @ J2 )
                 => ( ( P @ J2 @ K3 )
                   => ( P @ I3 @ K3 ) ) ) ) )
         => ( P @ I @ J ) ) ) ) ).

% less_Suc_induct
thf(fact_795_less__trans__Suc,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ( ord_less_nat @ J @ K )
       => ( ord_less_nat @ ( suc @ I ) @ K ) ) ) ).

% less_trans_Suc
thf(fact_796_Suc__less__SucD,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ ( suc @ M ) @ ( suc @ N ) )
     => ( ord_less_nat @ M @ N ) ) ).

% Suc_less_SucD
thf(fact_797_less__antisym,axiom,
    ! [N: nat,M: nat] :
      ( ~ ( ord_less_nat @ N @ M )
     => ( ( ord_less_nat @ N @ ( suc @ M ) )
       => ( M = N ) ) ) ).

% less_antisym
thf(fact_798_Suc__less__eq2,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ ( suc @ N ) @ M )
      = ( ? [M5: nat] :
            ( ( M
              = ( suc @ M5 ) )
            & ( ord_less_nat @ N @ M5 ) ) ) ) ).

% Suc_less_eq2
thf(fact_799_All__less__Suc,axiom,
    ! [N: nat,P: nat > $o] :
      ( ( ! [I4: nat] :
            ( ( ord_less_nat @ I4 @ ( suc @ N ) )
           => ( P @ I4 ) ) )
      = ( ( P @ N )
        & ! [I4: nat] :
            ( ( ord_less_nat @ I4 @ N )
           => ( P @ I4 ) ) ) ) ).

% All_less_Suc
thf(fact_800_not__less__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ~ ( ord_less_nat @ M @ N ) )
      = ( ord_less_nat @ N @ ( suc @ M ) ) ) ).

% not_less_eq
thf(fact_801_less__Suc__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ ( suc @ N ) )
      = ( ( ord_less_nat @ M @ N )
        | ( M = N ) ) ) ).

% less_Suc_eq
thf(fact_802_Ex__less__Suc,axiom,
    ! [N: nat,P: nat > $o] :
      ( ( ? [I4: nat] :
            ( ( ord_less_nat @ I4 @ ( suc @ N ) )
            & ( P @ I4 ) ) )
      = ( ( P @ N )
        | ? [I4: nat] :
            ( ( ord_less_nat @ I4 @ N )
            & ( P @ I4 ) ) ) ) ).

% Ex_less_Suc
thf(fact_803_less__SucI,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_nat @ M @ ( suc @ N ) ) ) ).

% less_SucI
thf(fact_804_less__SucE,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ ( suc @ N ) )
     => ( ~ ( ord_less_nat @ M @ N )
       => ( M = N ) ) ) ).

% less_SucE
thf(fact_805_Suc__lessI,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ( ( suc @ M )
         != N )
       => ( ord_less_nat @ ( suc @ M ) @ N ) ) ) ).

% Suc_lessI
thf(fact_806_Suc__lessE,axiom,
    ! [I: nat,K: nat] :
      ( ( ord_less_nat @ ( suc @ I ) @ K )
     => ~ ! [J2: nat] :
            ( ( ord_less_nat @ I @ J2 )
           => ( K
             != ( suc @ J2 ) ) ) ) ).

% Suc_lessE
thf(fact_807_Suc__lessD,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ ( suc @ M ) @ N )
     => ( ord_less_nat @ M @ N ) ) ).

% Suc_lessD
thf(fact_808_Nat_OlessE,axiom,
    ! [I: nat,K: nat] :
      ( ( ord_less_nat @ I @ K )
     => ( ( K
         != ( suc @ I ) )
       => ~ ! [J2: nat] :
              ( ( ord_less_nat @ I @ J2 )
             => ( K
               != ( suc @ J2 ) ) ) ) ) ).

% Nat.lessE
thf(fact_809_Suc__leD,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( suc @ M ) @ N )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% Suc_leD
thf(fact_810_le__SucE,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ ( suc @ N ) )
     => ( ~ ( ord_less_eq_nat @ M @ N )
       => ( M
          = ( suc @ N ) ) ) ) ).

% le_SucE
thf(fact_811_le__SucI,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ord_less_eq_nat @ M @ ( suc @ N ) ) ) ).

% le_SucI
thf(fact_812_Suc__le__D,axiom,
    ! [N: nat,M6: nat] :
      ( ( ord_less_eq_nat @ ( suc @ N ) @ M6 )
     => ? [M4: nat] :
          ( M6
          = ( suc @ M4 ) ) ) ).

% Suc_le_D
thf(fact_813_le__Suc__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ ( suc @ N ) )
      = ( ( ord_less_eq_nat @ M @ N )
        | ( M
          = ( suc @ N ) ) ) ) ).

% le_Suc_eq
thf(fact_814_Suc__n__not__le__n,axiom,
    ! [N: nat] :
      ~ ( ord_less_eq_nat @ ( suc @ N ) @ N ) ).

% Suc_n_not_le_n
thf(fact_815_not__less__eq__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ~ ( ord_less_eq_nat @ M @ N ) )
      = ( ord_less_eq_nat @ ( suc @ N ) @ M ) ) ).

% not_less_eq_eq
thf(fact_816_full__nat__induct,axiom,
    ! [P: nat > $o,N: nat] :
      ( ! [N3: nat] :
          ( ! [M2: nat] :
              ( ( ord_less_eq_nat @ ( suc @ M2 ) @ N3 )
             => ( P @ M2 ) )
         => ( P @ N3 ) )
     => ( P @ N ) ) ).

% full_nat_induct
thf(fact_817_nat__induct__at__least,axiom,
    ! [M: nat,N: nat,P: nat > $o] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( P @ M )
       => ( ! [N3: nat] :
              ( ( ord_less_eq_nat @ M @ N3 )
             => ( ( P @ N3 )
               => ( P @ ( suc @ N3 ) ) ) )
         => ( P @ N ) ) ) ) ).

% nat_induct_at_least
thf(fact_818_transitive__stepwise__le,axiom,
    ! [M: nat,N: nat,R: nat > nat > $o] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ! [X4: nat] : ( R @ X4 @ X4 )
       => ( ! [X4: nat,Y3: nat,Z3: nat] :
              ( ( R @ X4 @ Y3 )
             => ( ( R @ Y3 @ Z3 )
               => ( R @ X4 @ Z3 ) ) )
         => ( ! [N3: nat] : ( R @ N3 @ ( suc @ N3 ) )
           => ( R @ M @ N ) ) ) ) ) ).

% transitive_stepwise_le
thf(fact_819_nat__arith_Osuc1,axiom,
    ! [A2: nat,K: nat,A: nat] :
      ( ( A2
        = ( plus_plus_nat @ K @ A ) )
     => ( ( suc @ A2 )
        = ( plus_plus_nat @ K @ ( suc @ A ) ) ) ) ).

% nat_arith.suc1
thf(fact_820_add__Suc,axiom,
    ! [M: nat,N: nat] :
      ( ( plus_plus_nat @ ( suc @ M ) @ N )
      = ( suc @ ( plus_plus_nat @ M @ N ) ) ) ).

% add_Suc
thf(fact_821_add__Suc__shift,axiom,
    ! [M: nat,N: nat] :
      ( ( plus_plus_nat @ ( suc @ M ) @ N )
      = ( plus_plus_nat @ M @ ( suc @ N ) ) ) ).

% add_Suc_shift
thf(fact_822_Suc__mult__cancel1,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ( times_times_nat @ ( suc @ K ) @ M )
        = ( times_times_nat @ ( suc @ K ) @ N ) )
      = ( M = N ) ) ).

% Suc_mult_cancel1
thf(fact_823_numeral__code_I2_J,axiom,
    ! [N: num] :
      ( ( numera6690914467698888265omplex @ ( bit0 @ N ) )
      = ( plus_plus_complex @ ( numera6690914467698888265omplex @ N ) @ ( numera6690914467698888265omplex @ N ) ) ) ).

% numeral_code(2)
thf(fact_824_numeral__code_I2_J,axiom,
    ! [N: num] :
      ( ( numeral_numeral_real @ ( bit0 @ N ) )
      = ( plus_plus_real @ ( numeral_numeral_real @ N ) @ ( numeral_numeral_real @ N ) ) ) ).

% numeral_code(2)
thf(fact_825_numeral__code_I2_J,axiom,
    ! [N: num] :
      ( ( numeral_numeral_rat @ ( bit0 @ N ) )
      = ( plus_plus_rat @ ( numeral_numeral_rat @ N ) @ ( numeral_numeral_rat @ N ) ) ) ).

% numeral_code(2)
thf(fact_826_numeral__code_I2_J,axiom,
    ! [N: num] :
      ( ( numeral_numeral_nat @ ( bit0 @ N ) )
      = ( plus_plus_nat @ ( numeral_numeral_nat @ N ) @ ( numeral_numeral_nat @ N ) ) ) ).

% numeral_code(2)
thf(fact_827_numeral__code_I2_J,axiom,
    ! [N: num] :
      ( ( numeral_numeral_int @ ( bit0 @ N ) )
      = ( plus_plus_int @ ( numeral_numeral_int @ N ) @ ( numeral_numeral_int @ N ) ) ) ).

% numeral_code(2)
thf(fact_828_power__numeral__even,axiom,
    ! [Z: complex,W: num] :
      ( ( power_power_complex @ Z @ ( numeral_numeral_nat @ ( bit0 @ W ) ) )
      = ( times_times_complex @ ( power_power_complex @ Z @ ( numeral_numeral_nat @ W ) ) @ ( power_power_complex @ Z @ ( numeral_numeral_nat @ W ) ) ) ) ).

% power_numeral_even
thf(fact_829_power__numeral__even,axiom,
    ! [Z: real,W: num] :
      ( ( power_power_real @ Z @ ( numeral_numeral_nat @ ( bit0 @ W ) ) )
      = ( times_times_real @ ( power_power_real @ Z @ ( numeral_numeral_nat @ W ) ) @ ( power_power_real @ Z @ ( numeral_numeral_nat @ W ) ) ) ) ).

% power_numeral_even
thf(fact_830_power__numeral__even,axiom,
    ! [Z: rat,W: num] :
      ( ( power_power_rat @ Z @ ( numeral_numeral_nat @ ( bit0 @ W ) ) )
      = ( times_times_rat @ ( power_power_rat @ Z @ ( numeral_numeral_nat @ W ) ) @ ( power_power_rat @ Z @ ( numeral_numeral_nat @ W ) ) ) ) ).

% power_numeral_even
thf(fact_831_power__numeral__even,axiom,
    ! [Z: nat,W: num] :
      ( ( power_power_nat @ Z @ ( numeral_numeral_nat @ ( bit0 @ W ) ) )
      = ( times_times_nat @ ( power_power_nat @ Z @ ( numeral_numeral_nat @ W ) ) @ ( power_power_nat @ Z @ ( numeral_numeral_nat @ W ) ) ) ) ).

% power_numeral_even
thf(fact_832_power__numeral__even,axiom,
    ! [Z: int,W: num] :
      ( ( power_power_int @ Z @ ( numeral_numeral_nat @ ( bit0 @ W ) ) )
      = ( times_times_int @ ( power_power_int @ Z @ ( numeral_numeral_nat @ W ) ) @ ( power_power_int @ Z @ ( numeral_numeral_nat @ W ) ) ) ) ).

% power_numeral_even
thf(fact_833_numeral__code_I3_J,axiom,
    ! [N: num] :
      ( ( numera6690914467698888265omplex @ ( bit1 @ N ) )
      = ( plus_plus_complex @ ( plus_plus_complex @ ( numera6690914467698888265omplex @ N ) @ ( numera6690914467698888265omplex @ N ) ) @ one_one_complex ) ) ).

% numeral_code(3)
thf(fact_834_numeral__code_I3_J,axiom,
    ! [N: num] :
      ( ( numeral_numeral_real @ ( bit1 @ N ) )
      = ( plus_plus_real @ ( plus_plus_real @ ( numeral_numeral_real @ N ) @ ( numeral_numeral_real @ N ) ) @ one_one_real ) ) ).

% numeral_code(3)
thf(fact_835_numeral__code_I3_J,axiom,
    ! [N: num] :
      ( ( numeral_numeral_rat @ ( bit1 @ N ) )
      = ( plus_plus_rat @ ( plus_plus_rat @ ( numeral_numeral_rat @ N ) @ ( numeral_numeral_rat @ N ) ) @ one_one_rat ) ) ).

% numeral_code(3)
thf(fact_836_numeral__code_I3_J,axiom,
    ! [N: num] :
      ( ( numeral_numeral_nat @ ( bit1 @ N ) )
      = ( plus_plus_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ N ) @ ( numeral_numeral_nat @ N ) ) @ one_one_nat ) ) ).

% numeral_code(3)
thf(fact_837_numeral__code_I3_J,axiom,
    ! [N: num] :
      ( ( numeral_numeral_int @ ( bit1 @ N ) )
      = ( plus_plus_int @ ( plus_plus_int @ ( numeral_numeral_int @ N ) @ ( numeral_numeral_int @ N ) ) @ one_one_int ) ) ).

% numeral_code(3)
thf(fact_838_power__numeral__odd,axiom,
    ! [Z: complex,W: num] :
      ( ( power_power_complex @ Z @ ( numeral_numeral_nat @ ( bit1 @ W ) ) )
      = ( times_times_complex @ ( times_times_complex @ Z @ ( power_power_complex @ Z @ ( numeral_numeral_nat @ W ) ) ) @ ( power_power_complex @ Z @ ( numeral_numeral_nat @ W ) ) ) ) ).

% power_numeral_odd
thf(fact_839_power__numeral__odd,axiom,
    ! [Z: real,W: num] :
      ( ( power_power_real @ Z @ ( numeral_numeral_nat @ ( bit1 @ W ) ) )
      = ( times_times_real @ ( times_times_real @ Z @ ( power_power_real @ Z @ ( numeral_numeral_nat @ W ) ) ) @ ( power_power_real @ Z @ ( numeral_numeral_nat @ W ) ) ) ) ).

% power_numeral_odd
thf(fact_840_power__numeral__odd,axiom,
    ! [Z: rat,W: num] :
      ( ( power_power_rat @ Z @ ( numeral_numeral_nat @ ( bit1 @ W ) ) )
      = ( times_times_rat @ ( times_times_rat @ Z @ ( power_power_rat @ Z @ ( numeral_numeral_nat @ W ) ) ) @ ( power_power_rat @ Z @ ( numeral_numeral_nat @ W ) ) ) ) ).

% power_numeral_odd
thf(fact_841_power__numeral__odd,axiom,
    ! [Z: nat,W: num] :
      ( ( power_power_nat @ Z @ ( numeral_numeral_nat @ ( bit1 @ W ) ) )
      = ( times_times_nat @ ( times_times_nat @ Z @ ( power_power_nat @ Z @ ( numeral_numeral_nat @ W ) ) ) @ ( power_power_nat @ Z @ ( numeral_numeral_nat @ W ) ) ) ) ).

% power_numeral_odd
thf(fact_842_power__numeral__odd,axiom,
    ! [Z: int,W: num] :
      ( ( power_power_int @ Z @ ( numeral_numeral_nat @ ( bit1 @ W ) ) )
      = ( times_times_int @ ( times_times_int @ Z @ ( power_power_int @ Z @ ( numeral_numeral_nat @ W ) ) ) @ ( power_power_int @ Z @ ( numeral_numeral_nat @ W ) ) ) ) ).

% power_numeral_odd
thf(fact_843_four__x__squared,axiom,
    ! [X2: real] :
      ( ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( power_power_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% four_x_squared
thf(fact_844_L2__set__mult__ineq__lemma,axiom,
    ! [A: real,C: real,B: real,D: real] : ( ord_less_eq_real @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( times_times_real @ A @ C ) ) @ ( times_times_real @ B @ D ) ) @ ( plus_plus_real @ ( times_times_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ D @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_real @ ( power_power_real @ B @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ C @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% L2_set_mult_ineq_lemma
thf(fact_845_div__mult2__numeral__eq,axiom,
    ! [A: nat,K: num,L: num] :
      ( ( divide_divide_nat @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ K ) ) @ ( numeral_numeral_nat @ L ) )
      = ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( times_times_num @ K @ L ) ) ) ) ).

% div_mult2_numeral_eq
thf(fact_846_div__mult2__numeral__eq,axiom,
    ! [A: int,K: num,L: num] :
      ( ( divide_divide_int @ ( divide_divide_int @ A @ ( numeral_numeral_int @ K ) ) @ ( numeral_numeral_int @ L ) )
      = ( divide_divide_int @ A @ ( numeral_numeral_int @ ( times_times_num @ K @ L ) ) ) ) ).

% div_mult2_numeral_eq
thf(fact_847_lift__Suc__mono__less__iff,axiom,
    ! [F: nat > real,N: nat,M: nat] :
      ( ! [N3: nat] : ( ord_less_real @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
     => ( ( ord_less_real @ ( F @ N ) @ ( F @ M ) )
        = ( ord_less_nat @ N @ M ) ) ) ).

% lift_Suc_mono_less_iff
thf(fact_848_lift__Suc__mono__less__iff,axiom,
    ! [F: nat > rat,N: nat,M: nat] :
      ( ! [N3: nat] : ( ord_less_rat @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
     => ( ( ord_less_rat @ ( F @ N ) @ ( F @ M ) )
        = ( ord_less_nat @ N @ M ) ) ) ).

% lift_Suc_mono_less_iff
thf(fact_849_lift__Suc__mono__less__iff,axiom,
    ! [F: nat > num,N: nat,M: nat] :
      ( ! [N3: nat] : ( ord_less_num @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
     => ( ( ord_less_num @ ( F @ N ) @ ( F @ M ) )
        = ( ord_less_nat @ N @ M ) ) ) ).

% lift_Suc_mono_less_iff
thf(fact_850_lift__Suc__mono__less__iff,axiom,
    ! [F: nat > nat,N: nat,M: nat] :
      ( ! [N3: nat] : ( ord_less_nat @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
     => ( ( ord_less_nat @ ( F @ N ) @ ( F @ M ) )
        = ( ord_less_nat @ N @ M ) ) ) ).

% lift_Suc_mono_less_iff
thf(fact_851_lift__Suc__mono__less__iff,axiom,
    ! [F: nat > int,N: nat,M: nat] :
      ( ! [N3: nat] : ( ord_less_int @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
     => ( ( ord_less_int @ ( F @ N ) @ ( F @ M ) )
        = ( ord_less_nat @ N @ M ) ) ) ).

% lift_Suc_mono_less_iff
thf(fact_852_lift__Suc__mono__less,axiom,
    ! [F: nat > real,N: nat,N5: nat] :
      ( ! [N3: nat] : ( ord_less_real @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
     => ( ( ord_less_nat @ N @ N5 )
       => ( ord_less_real @ ( F @ N ) @ ( F @ N5 ) ) ) ) ).

% lift_Suc_mono_less
thf(fact_853_lift__Suc__mono__less,axiom,
    ! [F: nat > rat,N: nat,N5: nat] :
      ( ! [N3: nat] : ( ord_less_rat @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
     => ( ( ord_less_nat @ N @ N5 )
       => ( ord_less_rat @ ( F @ N ) @ ( F @ N5 ) ) ) ) ).

% lift_Suc_mono_less
thf(fact_854_lift__Suc__mono__less,axiom,
    ! [F: nat > num,N: nat,N5: nat] :
      ( ! [N3: nat] : ( ord_less_num @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
     => ( ( ord_less_nat @ N @ N5 )
       => ( ord_less_num @ ( F @ N ) @ ( F @ N5 ) ) ) ) ).

% lift_Suc_mono_less
thf(fact_855_lift__Suc__mono__less,axiom,
    ! [F: nat > nat,N: nat,N5: nat] :
      ( ! [N3: nat] : ( ord_less_nat @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
     => ( ( ord_less_nat @ N @ N5 )
       => ( ord_less_nat @ ( F @ N ) @ ( F @ N5 ) ) ) ) ).

% lift_Suc_mono_less
thf(fact_856_lift__Suc__mono__less,axiom,
    ! [F: nat > int,N: nat,N5: nat] :
      ( ! [N3: nat] : ( ord_less_int @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
     => ( ( ord_less_nat @ N @ N5 )
       => ( ord_less_int @ ( F @ N ) @ ( F @ N5 ) ) ) ) ).

% lift_Suc_mono_less
thf(fact_857_power__Suc,axiom,
    ! [A: complex,N: nat] :
      ( ( power_power_complex @ A @ ( suc @ N ) )
      = ( times_times_complex @ A @ ( power_power_complex @ A @ N ) ) ) ).

% power_Suc
thf(fact_858_power__Suc,axiom,
    ! [A: real,N: nat] :
      ( ( power_power_real @ A @ ( suc @ N ) )
      = ( times_times_real @ A @ ( power_power_real @ A @ N ) ) ) ).

% power_Suc
thf(fact_859_power__Suc,axiom,
    ! [A: rat,N: nat] :
      ( ( power_power_rat @ A @ ( suc @ N ) )
      = ( times_times_rat @ A @ ( power_power_rat @ A @ N ) ) ) ).

% power_Suc
thf(fact_860_power__Suc,axiom,
    ! [A: nat,N: nat] :
      ( ( power_power_nat @ A @ ( suc @ N ) )
      = ( times_times_nat @ A @ ( power_power_nat @ A @ N ) ) ) ).

% power_Suc
thf(fact_861_power__Suc,axiom,
    ! [A: int,N: nat] :
      ( ( power_power_int @ A @ ( suc @ N ) )
      = ( times_times_int @ A @ ( power_power_int @ A @ N ) ) ) ).

% power_Suc
thf(fact_862_power__Suc2,axiom,
    ! [A: complex,N: nat] :
      ( ( power_power_complex @ A @ ( suc @ N ) )
      = ( times_times_complex @ ( power_power_complex @ A @ N ) @ A ) ) ).

% power_Suc2
thf(fact_863_power__Suc2,axiom,
    ! [A: real,N: nat] :
      ( ( power_power_real @ A @ ( suc @ N ) )
      = ( times_times_real @ ( power_power_real @ A @ N ) @ A ) ) ).

% power_Suc2
thf(fact_864_power__Suc2,axiom,
    ! [A: rat,N: nat] :
      ( ( power_power_rat @ A @ ( suc @ N ) )
      = ( times_times_rat @ ( power_power_rat @ A @ N ) @ A ) ) ).

% power_Suc2
thf(fact_865_power__Suc2,axiom,
    ! [A: nat,N: nat] :
      ( ( power_power_nat @ A @ ( suc @ N ) )
      = ( times_times_nat @ ( power_power_nat @ A @ N ) @ A ) ) ).

% power_Suc2
thf(fact_866_power__Suc2,axiom,
    ! [A: int,N: nat] :
      ( ( power_power_int @ A @ ( suc @ N ) )
      = ( times_times_int @ ( power_power_int @ A @ N ) @ A ) ) ).

% power_Suc2
thf(fact_867_lift__Suc__mono__le,axiom,
    ! [F: nat > set_int,N: nat,N5: nat] :
      ( ! [N3: nat] : ( ord_less_eq_set_int @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
     => ( ( ord_less_eq_nat @ N @ N5 )
       => ( ord_less_eq_set_int @ ( F @ N ) @ ( F @ N5 ) ) ) ) ).

% lift_Suc_mono_le
thf(fact_868_lift__Suc__mono__le,axiom,
    ! [F: nat > rat,N: nat,N5: nat] :
      ( ! [N3: nat] : ( ord_less_eq_rat @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
     => ( ( ord_less_eq_nat @ N @ N5 )
       => ( ord_less_eq_rat @ ( F @ N ) @ ( F @ N5 ) ) ) ) ).

% lift_Suc_mono_le
thf(fact_869_lift__Suc__mono__le,axiom,
    ! [F: nat > num,N: nat,N5: nat] :
      ( ! [N3: nat] : ( ord_less_eq_num @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
     => ( ( ord_less_eq_nat @ N @ N5 )
       => ( ord_less_eq_num @ ( F @ N ) @ ( F @ N5 ) ) ) ) ).

% lift_Suc_mono_le
thf(fact_870_lift__Suc__mono__le,axiom,
    ! [F: nat > nat,N: nat,N5: nat] :
      ( ! [N3: nat] : ( ord_less_eq_nat @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
     => ( ( ord_less_eq_nat @ N @ N5 )
       => ( ord_less_eq_nat @ ( F @ N ) @ ( F @ N5 ) ) ) ) ).

% lift_Suc_mono_le
thf(fact_871_lift__Suc__mono__le,axiom,
    ! [F: nat > int,N: nat,N5: nat] :
      ( ! [N3: nat] : ( ord_less_eq_int @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
     => ( ( ord_less_eq_nat @ N @ N5 )
       => ( ord_less_eq_int @ ( F @ N ) @ ( F @ N5 ) ) ) ) ).

% lift_Suc_mono_le
thf(fact_872_lift__Suc__antimono__le,axiom,
    ! [F: nat > set_int,N: nat,N5: nat] :
      ( ! [N3: nat] : ( ord_less_eq_set_int @ ( F @ ( suc @ N3 ) ) @ ( F @ N3 ) )
     => ( ( ord_less_eq_nat @ N @ N5 )
       => ( ord_less_eq_set_int @ ( F @ N5 ) @ ( F @ N ) ) ) ) ).

% lift_Suc_antimono_le
thf(fact_873_lift__Suc__antimono__le,axiom,
    ! [F: nat > rat,N: nat,N5: nat] :
      ( ! [N3: nat] : ( ord_less_eq_rat @ ( F @ ( suc @ N3 ) ) @ ( F @ N3 ) )
     => ( ( ord_less_eq_nat @ N @ N5 )
       => ( ord_less_eq_rat @ ( F @ N5 ) @ ( F @ N ) ) ) ) ).

% lift_Suc_antimono_le
thf(fact_874_lift__Suc__antimono__le,axiom,
    ! [F: nat > num,N: nat,N5: nat] :
      ( ! [N3: nat] : ( ord_less_eq_num @ ( F @ ( suc @ N3 ) ) @ ( F @ N3 ) )
     => ( ( ord_less_eq_nat @ N @ N5 )
       => ( ord_less_eq_num @ ( F @ N5 ) @ ( F @ N ) ) ) ) ).

% lift_Suc_antimono_le
thf(fact_875_lift__Suc__antimono__le,axiom,
    ! [F: nat > nat,N: nat,N5: nat] :
      ( ! [N3: nat] : ( ord_less_eq_nat @ ( F @ ( suc @ N3 ) ) @ ( F @ N3 ) )
     => ( ( ord_less_eq_nat @ N @ N5 )
       => ( ord_less_eq_nat @ ( F @ N5 ) @ ( F @ N ) ) ) ) ).

% lift_Suc_antimono_le
thf(fact_876_lift__Suc__antimono__le,axiom,
    ! [F: nat > int,N: nat,N5: nat] :
      ( ! [N3: nat] : ( ord_less_eq_int @ ( F @ ( suc @ N3 ) ) @ ( F @ N3 ) )
     => ( ( ord_less_eq_nat @ N @ N5 )
       => ( ord_less_eq_int @ ( F @ N5 ) @ ( F @ N ) ) ) ) ).

% lift_Suc_antimono_le
thf(fact_877_Suc__leI,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_eq_nat @ ( suc @ M ) @ N ) ) ).

% Suc_leI
thf(fact_878_Suc__le__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( suc @ M ) @ N )
      = ( ord_less_nat @ M @ N ) ) ).

% Suc_le_eq
thf(fact_879_dec__induct,axiom,
    ! [I: nat,J: nat,P: nat > $o] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( P @ I )
       => ( ! [N3: nat] :
              ( ( ord_less_eq_nat @ I @ N3 )
             => ( ( ord_less_nat @ N3 @ J )
               => ( ( P @ N3 )
                 => ( P @ ( suc @ N3 ) ) ) ) )
         => ( P @ J ) ) ) ) ).

% dec_induct
thf(fact_880_inc__induct,axiom,
    ! [I: nat,J: nat,P: nat > $o] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( P @ J )
       => ( ! [N3: nat] :
              ( ( ord_less_eq_nat @ I @ N3 )
             => ( ( ord_less_nat @ N3 @ J )
               => ( ( P @ ( suc @ N3 ) )
                 => ( P @ N3 ) ) ) )
         => ( P @ I ) ) ) ) ).

% inc_induct
thf(fact_881_Suc__le__lessD,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( suc @ M ) @ N )
     => ( ord_less_nat @ M @ N ) ) ).

% Suc_le_lessD
thf(fact_882_le__less__Suc__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( ord_less_nat @ N @ ( suc @ M ) )
        = ( N = M ) ) ) ).

% le_less_Suc_eq
thf(fact_883_less__Suc__eq__le,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ ( suc @ N ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% less_Suc_eq_le
thf(fact_884_less__eq__Suc__le,axiom,
    ( ord_less_nat
    = ( ^ [N2: nat] : ( ord_less_eq_nat @ ( suc @ N2 ) ) ) ) ).

% less_eq_Suc_le
thf(fact_885_le__imp__less__Suc,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ord_less_nat @ M @ ( suc @ N ) ) ) ).

% le_imp_less_Suc
thf(fact_886_less__natE,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ~ ! [Q3: nat] :
            ( N
           != ( suc @ ( plus_plus_nat @ M @ Q3 ) ) ) ) ).

% less_natE
thf(fact_887_less__add__Suc1,axiom,
    ! [I: nat,M: nat] : ( ord_less_nat @ I @ ( suc @ ( plus_plus_nat @ I @ M ) ) ) ).

% less_add_Suc1
thf(fact_888_less__add__Suc2,axiom,
    ! [I: nat,M: nat] : ( ord_less_nat @ I @ ( suc @ ( plus_plus_nat @ M @ I ) ) ) ).

% less_add_Suc2
thf(fact_889_less__iff__Suc__add,axiom,
    ( ord_less_nat
    = ( ^ [M3: nat,N2: nat] :
        ? [K2: nat] :
          ( N2
          = ( suc @ ( plus_plus_nat @ M3 @ K2 ) ) ) ) ) ).

% less_iff_Suc_add
thf(fact_890_less__imp__Suc__add,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ? [K3: nat] :
          ( N
          = ( suc @ ( plus_plus_nat @ M @ K3 ) ) ) ) ).

% less_imp_Suc_add
thf(fact_891_Suc__mult__less__cancel1,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ ( times_times_nat @ ( suc @ K ) @ M ) @ ( times_times_nat @ ( suc @ K ) @ N ) )
      = ( ord_less_nat @ M @ N ) ) ).

% Suc_mult_less_cancel1
thf(fact_892_Suc__mult__le__cancel1,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( times_times_nat @ ( suc @ K ) @ M ) @ ( times_times_nat @ ( suc @ K ) @ N ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% Suc_mult_le_cancel1
thf(fact_893_Suc__div__le__mono,axiom,
    ! [M: nat,N: nat] : ( ord_less_eq_nat @ ( divide_divide_nat @ M @ N ) @ ( divide_divide_nat @ ( suc @ M ) @ N ) ) ).

% Suc_div_le_mono
thf(fact_894_mult__Suc,axiom,
    ! [M: nat,N: nat] :
      ( ( times_times_nat @ ( suc @ M ) @ N )
      = ( plus_plus_nat @ N @ ( times_times_nat @ M @ N ) ) ) ).

% mult_Suc
thf(fact_895_Suc__eq__plus1,axiom,
    ( suc
    = ( ^ [N2: nat] : ( plus_plus_nat @ N2 @ one_one_nat ) ) ) ).

% Suc_eq_plus1
thf(fact_896_plus__1__eq__Suc,axiom,
    ( ( plus_plus_nat @ one_one_nat )
    = suc ) ).

% plus_1_eq_Suc
thf(fact_897_Suc__eq__plus1__left,axiom,
    ( suc
    = ( plus_plus_nat @ one_one_nat ) ) ).

% Suc_eq_plus1_left
thf(fact_898_power__gt1,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ord_less_real @ one_one_real @ ( power_power_real @ A @ ( suc @ N ) ) ) ) ).

% power_gt1
thf(fact_899_power__gt1,axiom,
    ! [A: rat,N: nat] :
      ( ( ord_less_rat @ one_one_rat @ A )
     => ( ord_less_rat @ one_one_rat @ ( power_power_rat @ A @ ( suc @ N ) ) ) ) ).

% power_gt1
thf(fact_900_power__gt1,axiom,
    ! [A: nat,N: nat] :
      ( ( ord_less_nat @ one_one_nat @ A )
     => ( ord_less_nat @ one_one_nat @ ( power_power_nat @ A @ ( suc @ N ) ) ) ) ).

% power_gt1
thf(fact_901_power__gt1,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_int @ one_one_int @ A )
     => ( ord_less_int @ one_one_int @ ( power_power_int @ A @ ( suc @ N ) ) ) ) ).

% power_gt1
thf(fact_902_eval__nat__numeral_I3_J,axiom,
    ! [N: num] :
      ( ( numeral_numeral_nat @ ( bit1 @ N ) )
      = ( suc @ ( numeral_numeral_nat @ ( bit0 @ N ) ) ) ) ).

% eval_nat_numeral(3)
thf(fact_903_subset__image__iff,axiom,
    ! [B3: set_set_nat,F: nat > set_nat,A2: set_nat] :
      ( ( ord_le6893508408891458716et_nat @ B3 @ ( image_nat_set_nat @ F @ A2 ) )
      = ( ? [AA: set_nat] :
            ( ( ord_less_eq_set_nat @ AA @ A2 )
            & ( B3
              = ( image_nat_set_nat @ F @ AA ) ) ) ) ) ).

% subset_image_iff
thf(fact_904_subset__image__iff,axiom,
    ! [B3: set_nat,F: nat > nat,A2: set_nat] :
      ( ( ord_less_eq_set_nat @ B3 @ ( image_nat_nat @ F @ A2 ) )
      = ( ? [AA: set_nat] :
            ( ( ord_less_eq_set_nat @ AA @ A2 )
            & ( B3
              = ( image_nat_nat @ F @ AA ) ) ) ) ) ).

% subset_image_iff
thf(fact_905_subset__image__iff,axiom,
    ! [B3: set_nat,F: int > nat,A2: set_int] :
      ( ( ord_less_eq_set_nat @ B3 @ ( image_int_nat @ F @ A2 ) )
      = ( ? [AA: set_int] :
            ( ( ord_less_eq_set_int @ AA @ A2 )
            & ( B3
              = ( image_int_nat @ F @ AA ) ) ) ) ) ).

% subset_image_iff
thf(fact_906_subset__image__iff,axiom,
    ! [B3: set_int,F: nat > int,A2: set_nat] :
      ( ( ord_less_eq_set_int @ B3 @ ( image_nat_int @ F @ A2 ) )
      = ( ? [AA: set_nat] :
            ( ( ord_less_eq_set_nat @ AA @ A2 )
            & ( B3
              = ( image_nat_int @ F @ AA ) ) ) ) ) ).

% subset_image_iff
thf(fact_907_subset__image__iff,axiom,
    ! [B3: set_int,F: int > int,A2: set_int] :
      ( ( ord_less_eq_set_int @ B3 @ ( image_int_int @ F @ A2 ) )
      = ( ? [AA: set_int] :
            ( ( ord_less_eq_set_int @ AA @ A2 )
            & ( B3
              = ( image_int_int @ F @ AA ) ) ) ) ) ).

% subset_image_iff
thf(fact_908_image__subset__iff,axiom,
    ! [F: nat > set_nat,A2: set_nat,B3: set_set_nat] :
      ( ( ord_le6893508408891458716et_nat @ ( image_nat_set_nat @ F @ A2 ) @ B3 )
      = ( ! [X: nat] :
            ( ( member_nat @ X @ A2 )
           => ( member_set_nat @ ( F @ X ) @ B3 ) ) ) ) ).

% image_subset_iff
thf(fact_909_image__subset__iff,axiom,
    ! [F: nat > nat,A2: set_nat,B3: set_nat] :
      ( ( ord_less_eq_set_nat @ ( image_nat_nat @ F @ A2 ) @ B3 )
      = ( ! [X: nat] :
            ( ( member_nat @ X @ A2 )
           => ( member_nat @ ( F @ X ) @ B3 ) ) ) ) ).

% image_subset_iff
thf(fact_910_image__subset__iff,axiom,
    ! [F: int > nat,A2: set_int,B3: set_nat] :
      ( ( ord_less_eq_set_nat @ ( image_int_nat @ F @ A2 ) @ B3 )
      = ( ! [X: int] :
            ( ( member_int @ X @ A2 )
           => ( member_nat @ ( F @ X ) @ B3 ) ) ) ) ).

% image_subset_iff
thf(fact_911_image__subset__iff,axiom,
    ! [F: nat > int,A2: set_nat,B3: set_int] :
      ( ( ord_less_eq_set_int @ ( image_nat_int @ F @ A2 ) @ B3 )
      = ( ! [X: nat] :
            ( ( member_nat @ X @ A2 )
           => ( member_int @ ( F @ X ) @ B3 ) ) ) ) ).

% image_subset_iff
thf(fact_912_image__subset__iff,axiom,
    ! [F: int > int,A2: set_int,B3: set_int] :
      ( ( ord_less_eq_set_int @ ( image_int_int @ F @ A2 ) @ B3 )
      = ( ! [X: int] :
            ( ( member_int @ X @ A2 )
           => ( member_int @ ( F @ X ) @ B3 ) ) ) ) ).

% image_subset_iff
thf(fact_913_subset__imageE,axiom,
    ! [B3: set_set_nat,F: nat > set_nat,A2: set_nat] :
      ( ( ord_le6893508408891458716et_nat @ B3 @ ( image_nat_set_nat @ F @ A2 ) )
     => ~ ! [C2: set_nat] :
            ( ( ord_less_eq_set_nat @ C2 @ A2 )
           => ( B3
             != ( image_nat_set_nat @ F @ C2 ) ) ) ) ).

% subset_imageE
thf(fact_914_subset__imageE,axiom,
    ! [B3: set_nat,F: nat > nat,A2: set_nat] :
      ( ( ord_less_eq_set_nat @ B3 @ ( image_nat_nat @ F @ A2 ) )
     => ~ ! [C2: set_nat] :
            ( ( ord_less_eq_set_nat @ C2 @ A2 )
           => ( B3
             != ( image_nat_nat @ F @ C2 ) ) ) ) ).

% subset_imageE
thf(fact_915_subset__imageE,axiom,
    ! [B3: set_nat,F: int > nat,A2: set_int] :
      ( ( ord_less_eq_set_nat @ B3 @ ( image_int_nat @ F @ A2 ) )
     => ~ ! [C2: set_int] :
            ( ( ord_less_eq_set_int @ C2 @ A2 )
           => ( B3
             != ( image_int_nat @ F @ C2 ) ) ) ) ).

% subset_imageE
thf(fact_916_subset__imageE,axiom,
    ! [B3: set_int,F: nat > int,A2: set_nat] :
      ( ( ord_less_eq_set_int @ B3 @ ( image_nat_int @ F @ A2 ) )
     => ~ ! [C2: set_nat] :
            ( ( ord_less_eq_set_nat @ C2 @ A2 )
           => ( B3
             != ( image_nat_int @ F @ C2 ) ) ) ) ).

% subset_imageE
thf(fact_917_subset__imageE,axiom,
    ! [B3: set_int,F: int > int,A2: set_int] :
      ( ( ord_less_eq_set_int @ B3 @ ( image_int_int @ F @ A2 ) )
     => ~ ! [C2: set_int] :
            ( ( ord_less_eq_set_int @ C2 @ A2 )
           => ( B3
             != ( image_int_int @ F @ C2 ) ) ) ) ).

% subset_imageE
thf(fact_918_rev__image__eqI,axiom,
    ! [X2: complex,A2: set_complex,B: complex,F: complex > complex] :
      ( ( member_complex @ X2 @ A2 )
     => ( ( B
          = ( F @ X2 ) )
       => ( member_complex @ B @ ( image_1468599708987790691omplex @ F @ A2 ) ) ) ) ).

% rev_image_eqI
thf(fact_919_rev__image__eqI,axiom,
    ! [X2: complex,A2: set_complex,B: real,F: complex > real] :
      ( ( member_complex @ X2 @ A2 )
     => ( ( B
          = ( F @ X2 ) )
       => ( member_real @ B @ ( image_complex_real @ F @ A2 ) ) ) ) ).

% rev_image_eqI
thf(fact_920_rev__image__eqI,axiom,
    ! [X2: complex,A2: set_complex,B: nat,F: complex > nat] :
      ( ( member_complex @ X2 @ A2 )
     => ( ( B
          = ( F @ X2 ) )
       => ( member_nat @ B @ ( image_complex_nat @ F @ A2 ) ) ) ) ).

% rev_image_eqI
thf(fact_921_rev__image__eqI,axiom,
    ! [X2: complex,A2: set_complex,B: int,F: complex > int] :
      ( ( member_complex @ X2 @ A2 )
     => ( ( B
          = ( F @ X2 ) )
       => ( member_int @ B @ ( image_complex_int @ F @ A2 ) ) ) ) ).

% rev_image_eqI
thf(fact_922_rev__image__eqI,axiom,
    ! [X2: real,A2: set_real,B: complex,F: real > complex] :
      ( ( member_real @ X2 @ A2 )
     => ( ( B
          = ( F @ X2 ) )
       => ( member_complex @ B @ ( image_real_complex @ F @ A2 ) ) ) ) ).

% rev_image_eqI
thf(fact_923_rev__image__eqI,axiom,
    ! [X2: real,A2: set_real,B: real,F: real > real] :
      ( ( member_real @ X2 @ A2 )
     => ( ( B
          = ( F @ X2 ) )
       => ( member_real @ B @ ( image_real_real @ F @ A2 ) ) ) ) ).

% rev_image_eqI
thf(fact_924_rev__image__eqI,axiom,
    ! [X2: real,A2: set_real,B: nat,F: real > nat] :
      ( ( member_real @ X2 @ A2 )
     => ( ( B
          = ( F @ X2 ) )
       => ( member_nat @ B @ ( image_real_nat @ F @ A2 ) ) ) ) ).

% rev_image_eqI
thf(fact_925_rev__image__eqI,axiom,
    ! [X2: real,A2: set_real,B: int,F: real > int] :
      ( ( member_real @ X2 @ A2 )
     => ( ( B
          = ( F @ X2 ) )
       => ( member_int @ B @ ( image_real_int @ F @ A2 ) ) ) ) ).

% rev_image_eqI
thf(fact_926_rev__image__eqI,axiom,
    ! [X2: nat,A2: set_nat,B: complex,F: nat > complex] :
      ( ( member_nat @ X2 @ A2 )
     => ( ( B
          = ( F @ X2 ) )
       => ( member_complex @ B @ ( image_nat_complex @ F @ A2 ) ) ) ) ).

% rev_image_eqI
thf(fact_927_rev__image__eqI,axiom,
    ! [X2: nat,A2: set_nat,B: real,F: nat > real] :
      ( ( member_nat @ X2 @ A2 )
     => ( ( B
          = ( F @ X2 ) )
       => ( member_real @ B @ ( image_nat_real @ F @ A2 ) ) ) ) ).

% rev_image_eqI
thf(fact_928_image__subsetI,axiom,
    ! [A2: set_complex,F: complex > complex,B3: set_complex] :
      ( ! [X4: complex] :
          ( ( member_complex @ X4 @ A2 )
         => ( member_complex @ ( F @ X4 ) @ B3 ) )
     => ( ord_le211207098394363844omplex @ ( image_1468599708987790691omplex @ F @ A2 ) @ B3 ) ) ).

% image_subsetI
thf(fact_929_image__subsetI,axiom,
    ! [A2: set_complex,F: complex > real,B3: set_real] :
      ( ! [X4: complex] :
          ( ( member_complex @ X4 @ A2 )
         => ( member_real @ ( F @ X4 ) @ B3 ) )
     => ( ord_less_eq_set_real @ ( image_complex_real @ F @ A2 ) @ B3 ) ) ).

% image_subsetI
thf(fact_930_image__subsetI,axiom,
    ! [A2: set_complex,F: complex > nat,B3: set_nat] :
      ( ! [X4: complex] :
          ( ( member_complex @ X4 @ A2 )
         => ( member_nat @ ( F @ X4 ) @ B3 ) )
     => ( ord_less_eq_set_nat @ ( image_complex_nat @ F @ A2 ) @ B3 ) ) ).

% image_subsetI
thf(fact_931_image__subsetI,axiom,
    ! [A2: set_real,F: real > complex,B3: set_complex] :
      ( ! [X4: real] :
          ( ( member_real @ X4 @ A2 )
         => ( member_complex @ ( F @ X4 ) @ B3 ) )
     => ( ord_le211207098394363844omplex @ ( image_real_complex @ F @ A2 ) @ B3 ) ) ).

% image_subsetI
thf(fact_932_image__subsetI,axiom,
    ! [A2: set_real,F: real > real,B3: set_real] :
      ( ! [X4: real] :
          ( ( member_real @ X4 @ A2 )
         => ( member_real @ ( F @ X4 ) @ B3 ) )
     => ( ord_less_eq_set_real @ ( image_real_real @ F @ A2 ) @ B3 ) ) ).

% image_subsetI
thf(fact_933_image__subsetI,axiom,
    ! [A2: set_real,F: real > nat,B3: set_nat] :
      ( ! [X4: real] :
          ( ( member_real @ X4 @ A2 )
         => ( member_nat @ ( F @ X4 ) @ B3 ) )
     => ( ord_less_eq_set_nat @ ( image_real_nat @ F @ A2 ) @ B3 ) ) ).

% image_subsetI
thf(fact_934_image__subsetI,axiom,
    ! [A2: set_nat,F: nat > complex,B3: set_complex] :
      ( ! [X4: nat] :
          ( ( member_nat @ X4 @ A2 )
         => ( member_complex @ ( F @ X4 ) @ B3 ) )
     => ( ord_le211207098394363844omplex @ ( image_nat_complex @ F @ A2 ) @ B3 ) ) ).

% image_subsetI
thf(fact_935_image__subsetI,axiom,
    ! [A2: set_nat,F: nat > real,B3: set_real] :
      ( ! [X4: nat] :
          ( ( member_nat @ X4 @ A2 )
         => ( member_real @ ( F @ X4 ) @ B3 ) )
     => ( ord_less_eq_set_real @ ( image_nat_real @ F @ A2 ) @ B3 ) ) ).

% image_subsetI
thf(fact_936_image__subsetI,axiom,
    ! [A2: set_nat,F: nat > nat,B3: set_nat] :
      ( ! [X4: nat] :
          ( ( member_nat @ X4 @ A2 )
         => ( member_nat @ ( F @ X4 ) @ B3 ) )
     => ( ord_less_eq_set_nat @ ( image_nat_nat @ F @ A2 ) @ B3 ) ) ).

% image_subsetI
thf(fact_937_image__subsetI,axiom,
    ! [A2: set_int,F: int > complex,B3: set_complex] :
      ( ! [X4: int] :
          ( ( member_int @ X4 @ A2 )
         => ( member_complex @ ( F @ X4 ) @ B3 ) )
     => ( ord_le211207098394363844omplex @ ( image_int_complex @ F @ A2 ) @ B3 ) ) ).

% image_subsetI
thf(fact_938_ball__imageD,axiom,
    ! [F: nat > set_nat,A2: set_nat,P: set_nat > $o] :
      ( ! [X4: set_nat] :
          ( ( member_set_nat @ X4 @ ( image_nat_set_nat @ F @ A2 ) )
         => ( P @ X4 ) )
     => ! [X3: nat] :
          ( ( member_nat @ X3 @ A2 )
         => ( P @ ( F @ X3 ) ) ) ) ).

% ball_imageD
thf(fact_939_ball__imageD,axiom,
    ! [F: nat > nat,A2: set_nat,P: nat > $o] :
      ( ! [X4: nat] :
          ( ( member_nat @ X4 @ ( image_nat_nat @ F @ A2 ) )
         => ( P @ X4 ) )
     => ! [X3: nat] :
          ( ( member_nat @ X3 @ A2 )
         => ( P @ ( F @ X3 ) ) ) ) ).

% ball_imageD
thf(fact_940_ball__imageD,axiom,
    ! [F: nat > int,A2: set_nat,P: int > $o] :
      ( ! [X4: int] :
          ( ( member_int @ X4 @ ( image_nat_int @ F @ A2 ) )
         => ( P @ X4 ) )
     => ! [X3: nat] :
          ( ( member_nat @ X3 @ A2 )
         => ( P @ ( F @ X3 ) ) ) ) ).

% ball_imageD
thf(fact_941_ball__imageD,axiom,
    ! [F: int > nat,A2: set_int,P: nat > $o] :
      ( ! [X4: nat] :
          ( ( member_nat @ X4 @ ( image_int_nat @ F @ A2 ) )
         => ( P @ X4 ) )
     => ! [X3: int] :
          ( ( member_int @ X3 @ A2 )
         => ( P @ ( F @ X3 ) ) ) ) ).

% ball_imageD
thf(fact_942_ball__imageD,axiom,
    ! [F: int > int,A2: set_int,P: int > $o] :
      ( ! [X4: int] :
          ( ( member_int @ X4 @ ( image_int_int @ F @ A2 ) )
         => ( P @ X4 ) )
     => ! [X3: int] :
          ( ( member_int @ X3 @ A2 )
         => ( P @ ( F @ X3 ) ) ) ) ).

% ball_imageD
thf(fact_943_image__mono,axiom,
    ! [A2: set_nat,B3: set_nat,F: nat > set_nat] :
      ( ( ord_less_eq_set_nat @ A2 @ B3 )
     => ( ord_le6893508408891458716et_nat @ ( image_nat_set_nat @ F @ A2 ) @ ( image_nat_set_nat @ F @ B3 ) ) ) ).

% image_mono
thf(fact_944_image__mono,axiom,
    ! [A2: set_nat,B3: set_nat,F: nat > nat] :
      ( ( ord_less_eq_set_nat @ A2 @ B3 )
     => ( ord_less_eq_set_nat @ ( image_nat_nat @ F @ A2 ) @ ( image_nat_nat @ F @ B3 ) ) ) ).

% image_mono
thf(fact_945_image__mono,axiom,
    ! [A2: set_nat,B3: set_nat,F: nat > int] :
      ( ( ord_less_eq_set_nat @ A2 @ B3 )
     => ( ord_less_eq_set_int @ ( image_nat_int @ F @ A2 ) @ ( image_nat_int @ F @ B3 ) ) ) ).

% image_mono
thf(fact_946_image__mono,axiom,
    ! [A2: set_int,B3: set_int,F: int > nat] :
      ( ( ord_less_eq_set_int @ A2 @ B3 )
     => ( ord_less_eq_set_nat @ ( image_int_nat @ F @ A2 ) @ ( image_int_nat @ F @ B3 ) ) ) ).

% image_mono
thf(fact_947_image__mono,axiom,
    ! [A2: set_int,B3: set_int,F: int > int] :
      ( ( ord_less_eq_set_int @ A2 @ B3 )
     => ( ord_less_eq_set_int @ ( image_int_int @ F @ A2 ) @ ( image_int_int @ F @ B3 ) ) ) ).

% image_mono
thf(fact_948_image__cong,axiom,
    ! [M7: set_nat,N4: set_nat,F: nat > set_nat,G: nat > set_nat] :
      ( ( M7 = N4 )
     => ( ! [X4: nat] :
            ( ( member_nat @ X4 @ N4 )
           => ( ( F @ X4 )
              = ( G @ X4 ) ) )
       => ( ( image_nat_set_nat @ F @ M7 )
          = ( image_nat_set_nat @ G @ N4 ) ) ) ) ).

% image_cong
thf(fact_949_image__cong,axiom,
    ! [M7: set_nat,N4: set_nat,F: nat > nat,G: nat > nat] :
      ( ( M7 = N4 )
     => ( ! [X4: nat] :
            ( ( member_nat @ X4 @ N4 )
           => ( ( F @ X4 )
              = ( G @ X4 ) ) )
       => ( ( image_nat_nat @ F @ M7 )
          = ( image_nat_nat @ G @ N4 ) ) ) ) ).

% image_cong
thf(fact_950_image__cong,axiom,
    ! [M7: set_nat,N4: set_nat,F: nat > int,G: nat > int] :
      ( ( M7 = N4 )
     => ( ! [X4: nat] :
            ( ( member_nat @ X4 @ N4 )
           => ( ( F @ X4 )
              = ( G @ X4 ) ) )
       => ( ( image_nat_int @ F @ M7 )
          = ( image_nat_int @ G @ N4 ) ) ) ) ).

% image_cong
thf(fact_951_image__cong,axiom,
    ! [M7: set_int,N4: set_int,F: int > nat,G: int > nat] :
      ( ( M7 = N4 )
     => ( ! [X4: int] :
            ( ( member_int @ X4 @ N4 )
           => ( ( F @ X4 )
              = ( G @ X4 ) ) )
       => ( ( image_int_nat @ F @ M7 )
          = ( image_int_nat @ G @ N4 ) ) ) ) ).

% image_cong
thf(fact_952_image__cong,axiom,
    ! [M7: set_int,N4: set_int,F: int > int,G: int > int] :
      ( ( M7 = N4 )
     => ( ! [X4: int] :
            ( ( member_int @ X4 @ N4 )
           => ( ( F @ X4 )
              = ( G @ X4 ) ) )
       => ( ( image_int_int @ F @ M7 )
          = ( image_int_int @ G @ N4 ) ) ) ) ).

% image_cong
thf(fact_953_bex__imageD,axiom,
    ! [F: nat > set_nat,A2: set_nat,P: set_nat > $o] :
      ( ? [X3: set_nat] :
          ( ( member_set_nat @ X3 @ ( image_nat_set_nat @ F @ A2 ) )
          & ( P @ X3 ) )
     => ? [X4: nat] :
          ( ( member_nat @ X4 @ A2 )
          & ( P @ ( F @ X4 ) ) ) ) ).

% bex_imageD
thf(fact_954_bex__imageD,axiom,
    ! [F: nat > nat,A2: set_nat,P: nat > $o] :
      ( ? [X3: nat] :
          ( ( member_nat @ X3 @ ( image_nat_nat @ F @ A2 ) )
          & ( P @ X3 ) )
     => ? [X4: nat] :
          ( ( member_nat @ X4 @ A2 )
          & ( P @ ( F @ X4 ) ) ) ) ).

% bex_imageD
thf(fact_955_bex__imageD,axiom,
    ! [F: nat > int,A2: set_nat,P: int > $o] :
      ( ? [X3: int] :
          ( ( member_int @ X3 @ ( image_nat_int @ F @ A2 ) )
          & ( P @ X3 ) )
     => ? [X4: nat] :
          ( ( member_nat @ X4 @ A2 )
          & ( P @ ( F @ X4 ) ) ) ) ).

% bex_imageD
thf(fact_956_bex__imageD,axiom,
    ! [F: int > nat,A2: set_int,P: nat > $o] :
      ( ? [X3: nat] :
          ( ( member_nat @ X3 @ ( image_int_nat @ F @ A2 ) )
          & ( P @ X3 ) )
     => ? [X4: int] :
          ( ( member_int @ X4 @ A2 )
          & ( P @ ( F @ X4 ) ) ) ) ).

% bex_imageD
thf(fact_957_bex__imageD,axiom,
    ! [F: int > int,A2: set_int,P: int > $o] :
      ( ? [X3: int] :
          ( ( member_int @ X3 @ ( image_int_int @ F @ A2 ) )
          & ( P @ X3 ) )
     => ? [X4: int] :
          ( ( member_int @ X4 @ A2 )
          & ( P @ ( F @ X4 ) ) ) ) ).

% bex_imageD
thf(fact_958_image__iff,axiom,
    ! [Z: set_nat,F: nat > set_nat,A2: set_nat] :
      ( ( member_set_nat @ Z @ ( image_nat_set_nat @ F @ A2 ) )
      = ( ? [X: nat] :
            ( ( member_nat @ X @ A2 )
            & ( Z
              = ( F @ X ) ) ) ) ) ).

% image_iff
thf(fact_959_image__iff,axiom,
    ! [Z: nat,F: nat > nat,A2: set_nat] :
      ( ( member_nat @ Z @ ( image_nat_nat @ F @ A2 ) )
      = ( ? [X: nat] :
            ( ( member_nat @ X @ A2 )
            & ( Z
              = ( F @ X ) ) ) ) ) ).

% image_iff
thf(fact_960_image__iff,axiom,
    ! [Z: nat,F: int > nat,A2: set_int] :
      ( ( member_nat @ Z @ ( image_int_nat @ F @ A2 ) )
      = ( ? [X: int] :
            ( ( member_int @ X @ A2 )
            & ( Z
              = ( F @ X ) ) ) ) ) ).

% image_iff
thf(fact_961_image__iff,axiom,
    ! [Z: int,F: nat > int,A2: set_nat] :
      ( ( member_int @ Z @ ( image_nat_int @ F @ A2 ) )
      = ( ? [X: nat] :
            ( ( member_nat @ X @ A2 )
            & ( Z
              = ( F @ X ) ) ) ) ) ).

% image_iff
thf(fact_962_image__iff,axiom,
    ! [Z: int,F: int > int,A2: set_int] :
      ( ( member_int @ Z @ ( image_int_int @ F @ A2 ) )
      = ( ? [X: int] :
            ( ( member_int @ X @ A2 )
            & ( Z
              = ( F @ X ) ) ) ) ) ).

% image_iff
thf(fact_963_imageI,axiom,
    ! [X2: complex,A2: set_complex,F: complex > complex] :
      ( ( member_complex @ X2 @ A2 )
     => ( member_complex @ ( F @ X2 ) @ ( image_1468599708987790691omplex @ F @ A2 ) ) ) ).

% imageI
thf(fact_964_imageI,axiom,
    ! [X2: complex,A2: set_complex,F: complex > real] :
      ( ( member_complex @ X2 @ A2 )
     => ( member_real @ ( F @ X2 ) @ ( image_complex_real @ F @ A2 ) ) ) ).

% imageI
thf(fact_965_imageI,axiom,
    ! [X2: complex,A2: set_complex,F: complex > nat] :
      ( ( member_complex @ X2 @ A2 )
     => ( member_nat @ ( F @ X2 ) @ ( image_complex_nat @ F @ A2 ) ) ) ).

% imageI
thf(fact_966_imageI,axiom,
    ! [X2: complex,A2: set_complex,F: complex > int] :
      ( ( member_complex @ X2 @ A2 )
     => ( member_int @ ( F @ X2 ) @ ( image_complex_int @ F @ A2 ) ) ) ).

% imageI
thf(fact_967_imageI,axiom,
    ! [X2: real,A2: set_real,F: real > complex] :
      ( ( member_real @ X2 @ A2 )
     => ( member_complex @ ( F @ X2 ) @ ( image_real_complex @ F @ A2 ) ) ) ).

% imageI
thf(fact_968_imageI,axiom,
    ! [X2: real,A2: set_real,F: real > real] :
      ( ( member_real @ X2 @ A2 )
     => ( member_real @ ( F @ X2 ) @ ( image_real_real @ F @ A2 ) ) ) ).

% imageI
thf(fact_969_imageI,axiom,
    ! [X2: real,A2: set_real,F: real > nat] :
      ( ( member_real @ X2 @ A2 )
     => ( member_nat @ ( F @ X2 ) @ ( image_real_nat @ F @ A2 ) ) ) ).

% imageI
thf(fact_970_imageI,axiom,
    ! [X2: real,A2: set_real,F: real > int] :
      ( ( member_real @ X2 @ A2 )
     => ( member_int @ ( F @ X2 ) @ ( image_real_int @ F @ A2 ) ) ) ).

% imageI
thf(fact_971_imageI,axiom,
    ! [X2: nat,A2: set_nat,F: nat > complex] :
      ( ( member_nat @ X2 @ A2 )
     => ( member_complex @ ( F @ X2 ) @ ( image_nat_complex @ F @ A2 ) ) ) ).

% imageI
thf(fact_972_imageI,axiom,
    ! [X2: nat,A2: set_nat,F: nat > real] :
      ( ( member_nat @ X2 @ A2 )
     => ( member_real @ ( F @ X2 ) @ ( image_nat_real @ F @ A2 ) ) ) ).

% imageI
thf(fact_973_mk__disjoint__insert,axiom,
    ! [A: vEBT_VEBT,A2: set_VEBT_VEBT] :
      ( ( member_VEBT_VEBT @ A @ A2 )
     => ? [B5: set_VEBT_VEBT] :
          ( ( A2
            = ( insert_VEBT_VEBT @ A @ B5 ) )
          & ~ ( member_VEBT_VEBT @ A @ B5 ) ) ) ).

% mk_disjoint_insert
thf(fact_974_mk__disjoint__insert,axiom,
    ! [A: $o,A2: set_o] :
      ( ( member_o @ A @ A2 )
     => ? [B5: set_o] :
          ( ( A2
            = ( insert_o @ A @ B5 ) )
          & ~ ( member_o @ A @ B5 ) ) ) ).

% mk_disjoint_insert
thf(fact_975_mk__disjoint__insert,axiom,
    ! [A: complex,A2: set_complex] :
      ( ( member_complex @ A @ A2 )
     => ? [B5: set_complex] :
          ( ( A2
            = ( insert_complex @ A @ B5 ) )
          & ~ ( member_complex @ A @ B5 ) ) ) ).

% mk_disjoint_insert
thf(fact_976_mk__disjoint__insert,axiom,
    ! [A: real,A2: set_real] :
      ( ( member_real @ A @ A2 )
     => ? [B5: set_real] :
          ( ( A2
            = ( insert_real @ A @ B5 ) )
          & ~ ( member_real @ A @ B5 ) ) ) ).

% mk_disjoint_insert
thf(fact_977_mk__disjoint__insert,axiom,
    ! [A: set_nat,A2: set_set_nat] :
      ( ( member_set_nat @ A @ A2 )
     => ? [B5: set_set_nat] :
          ( ( A2
            = ( insert_set_nat @ A @ B5 ) )
          & ~ ( member_set_nat @ A @ B5 ) ) ) ).

% mk_disjoint_insert
thf(fact_978_mk__disjoint__insert,axiom,
    ! [A: nat,A2: set_nat] :
      ( ( member_nat @ A @ A2 )
     => ? [B5: set_nat] :
          ( ( A2
            = ( insert_nat @ A @ B5 ) )
          & ~ ( member_nat @ A @ B5 ) ) ) ).

% mk_disjoint_insert
thf(fact_979_mk__disjoint__insert,axiom,
    ! [A: int,A2: set_int] :
      ( ( member_int @ A @ A2 )
     => ? [B5: set_int] :
          ( ( A2
            = ( insert_int @ A @ B5 ) )
          & ~ ( member_int @ A @ B5 ) ) ) ).

% mk_disjoint_insert
thf(fact_980_subset__insertI2,axiom,
    ! [A2: set_VEBT_VEBT,B3: set_VEBT_VEBT,B: vEBT_VEBT] :
      ( ( ord_le4337996190870823476T_VEBT @ A2 @ B3 )
     => ( ord_le4337996190870823476T_VEBT @ A2 @ ( insert_VEBT_VEBT @ B @ B3 ) ) ) ).

% subset_insertI2
thf(fact_981_subset__insertI2,axiom,
    ! [A2: set_nat,B3: set_nat,B: nat] :
      ( ( ord_less_eq_set_nat @ A2 @ B3 )
     => ( ord_less_eq_set_nat @ A2 @ ( insert_nat @ B @ B3 ) ) ) ).

% subset_insertI2
thf(fact_982_subset__insertI2,axiom,
    ! [A2: set_real,B3: set_real,B: real] :
      ( ( ord_less_eq_set_real @ A2 @ B3 )
     => ( ord_less_eq_set_real @ A2 @ ( insert_real @ B @ B3 ) ) ) ).

% subset_insertI2
thf(fact_983_subset__insertI2,axiom,
    ! [A2: set_o,B3: set_o,B: $o] :
      ( ( ord_less_eq_set_o @ A2 @ B3 )
     => ( ord_less_eq_set_o @ A2 @ ( insert_o @ B @ B3 ) ) ) ).

% subset_insertI2
thf(fact_984_subset__insertI2,axiom,
    ! [A2: set_int,B3: set_int,B: int] :
      ( ( ord_less_eq_set_int @ A2 @ B3 )
     => ( ord_less_eq_set_int @ A2 @ ( insert_int @ B @ B3 ) ) ) ).

% subset_insertI2
thf(fact_985_subset__insertI,axiom,
    ! [B3: set_VEBT_VEBT,A: vEBT_VEBT] : ( ord_le4337996190870823476T_VEBT @ B3 @ ( insert_VEBT_VEBT @ A @ B3 ) ) ).

% subset_insertI
thf(fact_986_subset__insertI,axiom,
    ! [B3: set_nat,A: nat] : ( ord_less_eq_set_nat @ B3 @ ( insert_nat @ A @ B3 ) ) ).

% subset_insertI
thf(fact_987_subset__insertI,axiom,
    ! [B3: set_real,A: real] : ( ord_less_eq_set_real @ B3 @ ( insert_real @ A @ B3 ) ) ).

% subset_insertI
thf(fact_988_subset__insertI,axiom,
    ! [B3: set_o,A: $o] : ( ord_less_eq_set_o @ B3 @ ( insert_o @ A @ B3 ) ) ).

% subset_insertI
thf(fact_989_subset__insertI,axiom,
    ! [B3: set_int,A: int] : ( ord_less_eq_set_int @ B3 @ ( insert_int @ A @ B3 ) ) ).

% subset_insertI
thf(fact_990_insert__commute,axiom,
    ! [X2: vEBT_VEBT,Y2: vEBT_VEBT,A2: set_VEBT_VEBT] :
      ( ( insert_VEBT_VEBT @ X2 @ ( insert_VEBT_VEBT @ Y2 @ A2 ) )
      = ( insert_VEBT_VEBT @ Y2 @ ( insert_VEBT_VEBT @ X2 @ A2 ) ) ) ).

% insert_commute
thf(fact_991_insert__commute,axiom,
    ! [X2: nat,Y2: nat,A2: set_nat] :
      ( ( insert_nat @ X2 @ ( insert_nat @ Y2 @ A2 ) )
      = ( insert_nat @ Y2 @ ( insert_nat @ X2 @ A2 ) ) ) ).

% insert_commute
thf(fact_992_insert__commute,axiom,
    ! [X2: int,Y2: int,A2: set_int] :
      ( ( insert_int @ X2 @ ( insert_int @ Y2 @ A2 ) )
      = ( insert_int @ Y2 @ ( insert_int @ X2 @ A2 ) ) ) ).

% insert_commute
thf(fact_993_insert__commute,axiom,
    ! [X2: real,Y2: real,A2: set_real] :
      ( ( insert_real @ X2 @ ( insert_real @ Y2 @ A2 ) )
      = ( insert_real @ Y2 @ ( insert_real @ X2 @ A2 ) ) ) ).

% insert_commute
thf(fact_994_insert__commute,axiom,
    ! [X2: $o,Y2: $o,A2: set_o] :
      ( ( insert_o @ X2 @ ( insert_o @ Y2 @ A2 ) )
      = ( insert_o @ Y2 @ ( insert_o @ X2 @ A2 ) ) ) ).

% insert_commute
thf(fact_995_subset__insert,axiom,
    ! [X2: vEBT_VEBT,A2: set_VEBT_VEBT,B3: set_VEBT_VEBT] :
      ( ~ ( member_VEBT_VEBT @ X2 @ A2 )
     => ( ( ord_le4337996190870823476T_VEBT @ A2 @ ( insert_VEBT_VEBT @ X2 @ B3 ) )
        = ( ord_le4337996190870823476T_VEBT @ A2 @ B3 ) ) ) ).

% subset_insert
thf(fact_996_subset__insert,axiom,
    ! [X2: $o,A2: set_o,B3: set_o] :
      ( ~ ( member_o @ X2 @ A2 )
     => ( ( ord_less_eq_set_o @ A2 @ ( insert_o @ X2 @ B3 ) )
        = ( ord_less_eq_set_o @ A2 @ B3 ) ) ) ).

% subset_insert
thf(fact_997_subset__insert,axiom,
    ! [X2: complex,A2: set_complex,B3: set_complex] :
      ( ~ ( member_complex @ X2 @ A2 )
     => ( ( ord_le211207098394363844omplex @ A2 @ ( insert_complex @ X2 @ B3 ) )
        = ( ord_le211207098394363844omplex @ A2 @ B3 ) ) ) ).

% subset_insert
thf(fact_998_subset__insert,axiom,
    ! [X2: real,A2: set_real,B3: set_real] :
      ( ~ ( member_real @ X2 @ A2 )
     => ( ( ord_less_eq_set_real @ A2 @ ( insert_real @ X2 @ B3 ) )
        = ( ord_less_eq_set_real @ A2 @ B3 ) ) ) ).

% subset_insert
thf(fact_999_subset__insert,axiom,
    ! [X2: set_nat,A2: set_set_nat,B3: set_set_nat] :
      ( ~ ( member_set_nat @ X2 @ A2 )
     => ( ( ord_le6893508408891458716et_nat @ A2 @ ( insert_set_nat @ X2 @ B3 ) )
        = ( ord_le6893508408891458716et_nat @ A2 @ B3 ) ) ) ).

% subset_insert
thf(fact_1000_subset__insert,axiom,
    ! [X2: nat,A2: set_nat,B3: set_nat] :
      ( ~ ( member_nat @ X2 @ A2 )
     => ( ( ord_less_eq_set_nat @ A2 @ ( insert_nat @ X2 @ B3 ) )
        = ( ord_less_eq_set_nat @ A2 @ B3 ) ) ) ).

% subset_insert
thf(fact_1001_subset__insert,axiom,
    ! [X2: int,A2: set_int,B3: set_int] :
      ( ~ ( member_int @ X2 @ A2 )
     => ( ( ord_less_eq_set_int @ A2 @ ( insert_int @ X2 @ B3 ) )
        = ( ord_less_eq_set_int @ A2 @ B3 ) ) ) ).

% subset_insert
thf(fact_1002_insert__eq__iff,axiom,
    ! [A: vEBT_VEBT,A2: set_VEBT_VEBT,B: vEBT_VEBT,B3: set_VEBT_VEBT] :
      ( ~ ( member_VEBT_VEBT @ A @ A2 )
     => ( ~ ( member_VEBT_VEBT @ B @ B3 )
       => ( ( ( insert_VEBT_VEBT @ A @ A2 )
            = ( insert_VEBT_VEBT @ B @ B3 ) )
          = ( ( ( A = B )
             => ( A2 = B3 ) )
            & ( ( A != B )
             => ? [C3: set_VEBT_VEBT] :
                  ( ( A2
                    = ( insert_VEBT_VEBT @ B @ C3 ) )
                  & ~ ( member_VEBT_VEBT @ B @ C3 )
                  & ( B3
                    = ( insert_VEBT_VEBT @ A @ C3 ) )
                  & ~ ( member_VEBT_VEBT @ A @ C3 ) ) ) ) ) ) ) ).

% insert_eq_iff
thf(fact_1003_insert__eq__iff,axiom,
    ! [A: $o,A2: set_o,B: $o,B3: set_o] :
      ( ~ ( member_o @ A @ A2 )
     => ( ~ ( member_o @ B @ B3 )
       => ( ( ( insert_o @ A @ A2 )
            = ( insert_o @ B @ B3 ) )
          = ( ( ( A = B )
             => ( A2 = B3 ) )
            & ( ( A = ~ B )
             => ? [C3: set_o] :
                  ( ( A2
                    = ( insert_o @ B @ C3 ) )
                  & ~ ( member_o @ B @ C3 )
                  & ( B3
                    = ( insert_o @ A @ C3 ) )
                  & ~ ( member_o @ A @ C3 ) ) ) ) ) ) ) ).

% insert_eq_iff
thf(fact_1004_insert__eq__iff,axiom,
    ! [A: complex,A2: set_complex,B: complex,B3: set_complex] :
      ( ~ ( member_complex @ A @ A2 )
     => ( ~ ( member_complex @ B @ B3 )
       => ( ( ( insert_complex @ A @ A2 )
            = ( insert_complex @ B @ B3 ) )
          = ( ( ( A = B )
             => ( A2 = B3 ) )
            & ( ( A != B )
             => ? [C3: set_complex] :
                  ( ( A2
                    = ( insert_complex @ B @ C3 ) )
                  & ~ ( member_complex @ B @ C3 )
                  & ( B3
                    = ( insert_complex @ A @ C3 ) )
                  & ~ ( member_complex @ A @ C3 ) ) ) ) ) ) ) ).

% insert_eq_iff
thf(fact_1005_insert__eq__iff,axiom,
    ! [A: real,A2: set_real,B: real,B3: set_real] :
      ( ~ ( member_real @ A @ A2 )
     => ( ~ ( member_real @ B @ B3 )
       => ( ( ( insert_real @ A @ A2 )
            = ( insert_real @ B @ B3 ) )
          = ( ( ( A = B )
             => ( A2 = B3 ) )
            & ( ( A != B )
             => ? [C3: set_real] :
                  ( ( A2
                    = ( insert_real @ B @ C3 ) )
                  & ~ ( member_real @ B @ C3 )
                  & ( B3
                    = ( insert_real @ A @ C3 ) )
                  & ~ ( member_real @ A @ C3 ) ) ) ) ) ) ) ).

% insert_eq_iff
thf(fact_1006_insert__eq__iff,axiom,
    ! [A: set_nat,A2: set_set_nat,B: set_nat,B3: set_set_nat] :
      ( ~ ( member_set_nat @ A @ A2 )
     => ( ~ ( member_set_nat @ B @ B3 )
       => ( ( ( insert_set_nat @ A @ A2 )
            = ( insert_set_nat @ B @ B3 ) )
          = ( ( ( A = B )
             => ( A2 = B3 ) )
            & ( ( A != B )
             => ? [C3: set_set_nat] :
                  ( ( A2
                    = ( insert_set_nat @ B @ C3 ) )
                  & ~ ( member_set_nat @ B @ C3 )
                  & ( B3
                    = ( insert_set_nat @ A @ C3 ) )
                  & ~ ( member_set_nat @ A @ C3 ) ) ) ) ) ) ) ).

% insert_eq_iff
thf(fact_1007_insert__eq__iff,axiom,
    ! [A: nat,A2: set_nat,B: nat,B3: set_nat] :
      ( ~ ( member_nat @ A @ A2 )
     => ( ~ ( member_nat @ B @ B3 )
       => ( ( ( insert_nat @ A @ A2 )
            = ( insert_nat @ B @ B3 ) )
          = ( ( ( A = B )
             => ( A2 = B3 ) )
            & ( ( A != B )
             => ? [C3: set_nat] :
                  ( ( A2
                    = ( insert_nat @ B @ C3 ) )
                  & ~ ( member_nat @ B @ C3 )
                  & ( B3
                    = ( insert_nat @ A @ C3 ) )
                  & ~ ( member_nat @ A @ C3 ) ) ) ) ) ) ) ).

% insert_eq_iff
thf(fact_1008_insert__eq__iff,axiom,
    ! [A: int,A2: set_int,B: int,B3: set_int] :
      ( ~ ( member_int @ A @ A2 )
     => ( ~ ( member_int @ B @ B3 )
       => ( ( ( insert_int @ A @ A2 )
            = ( insert_int @ B @ B3 ) )
          = ( ( ( A = B )
             => ( A2 = B3 ) )
            & ( ( A != B )
             => ? [C3: set_int] :
                  ( ( A2
                    = ( insert_int @ B @ C3 ) )
                  & ~ ( member_int @ B @ C3 )
                  & ( B3
                    = ( insert_int @ A @ C3 ) )
                  & ~ ( member_int @ A @ C3 ) ) ) ) ) ) ) ).

% insert_eq_iff
thf(fact_1009_insert__absorb,axiom,
    ! [A: vEBT_VEBT,A2: set_VEBT_VEBT] :
      ( ( member_VEBT_VEBT @ A @ A2 )
     => ( ( insert_VEBT_VEBT @ A @ A2 )
        = A2 ) ) ).

% insert_absorb
thf(fact_1010_insert__absorb,axiom,
    ! [A: $o,A2: set_o] :
      ( ( member_o @ A @ A2 )
     => ( ( insert_o @ A @ A2 )
        = A2 ) ) ).

% insert_absorb
thf(fact_1011_insert__absorb,axiom,
    ! [A: complex,A2: set_complex] :
      ( ( member_complex @ A @ A2 )
     => ( ( insert_complex @ A @ A2 )
        = A2 ) ) ).

% insert_absorb
thf(fact_1012_insert__absorb,axiom,
    ! [A: real,A2: set_real] :
      ( ( member_real @ A @ A2 )
     => ( ( insert_real @ A @ A2 )
        = A2 ) ) ).

% insert_absorb
thf(fact_1013_insert__absorb,axiom,
    ! [A: set_nat,A2: set_set_nat] :
      ( ( member_set_nat @ A @ A2 )
     => ( ( insert_set_nat @ A @ A2 )
        = A2 ) ) ).

% insert_absorb
thf(fact_1014_insert__absorb,axiom,
    ! [A: nat,A2: set_nat] :
      ( ( member_nat @ A @ A2 )
     => ( ( insert_nat @ A @ A2 )
        = A2 ) ) ).

% insert_absorb
thf(fact_1015_insert__absorb,axiom,
    ! [A: int,A2: set_int] :
      ( ( member_int @ A @ A2 )
     => ( ( insert_int @ A @ A2 )
        = A2 ) ) ).

% insert_absorb
thf(fact_1016_insert__ident,axiom,
    ! [X2: vEBT_VEBT,A2: set_VEBT_VEBT,B3: set_VEBT_VEBT] :
      ( ~ ( member_VEBT_VEBT @ X2 @ A2 )
     => ( ~ ( member_VEBT_VEBT @ X2 @ B3 )
       => ( ( ( insert_VEBT_VEBT @ X2 @ A2 )
            = ( insert_VEBT_VEBT @ X2 @ B3 ) )
          = ( A2 = B3 ) ) ) ) ).

% insert_ident
thf(fact_1017_insert__ident,axiom,
    ! [X2: $o,A2: set_o,B3: set_o] :
      ( ~ ( member_o @ X2 @ A2 )
     => ( ~ ( member_o @ X2 @ B3 )
       => ( ( ( insert_o @ X2 @ A2 )
            = ( insert_o @ X2 @ B3 ) )
          = ( A2 = B3 ) ) ) ) ).

% insert_ident
thf(fact_1018_insert__ident,axiom,
    ! [X2: complex,A2: set_complex,B3: set_complex] :
      ( ~ ( member_complex @ X2 @ A2 )
     => ( ~ ( member_complex @ X2 @ B3 )
       => ( ( ( insert_complex @ X2 @ A2 )
            = ( insert_complex @ X2 @ B3 ) )
          = ( A2 = B3 ) ) ) ) ).

% insert_ident
thf(fact_1019_insert__ident,axiom,
    ! [X2: real,A2: set_real,B3: set_real] :
      ( ~ ( member_real @ X2 @ A2 )
     => ( ~ ( member_real @ X2 @ B3 )
       => ( ( ( insert_real @ X2 @ A2 )
            = ( insert_real @ X2 @ B3 ) )
          = ( A2 = B3 ) ) ) ) ).

% insert_ident
thf(fact_1020_insert__ident,axiom,
    ! [X2: set_nat,A2: set_set_nat,B3: set_set_nat] :
      ( ~ ( member_set_nat @ X2 @ A2 )
     => ( ~ ( member_set_nat @ X2 @ B3 )
       => ( ( ( insert_set_nat @ X2 @ A2 )
            = ( insert_set_nat @ X2 @ B3 ) )
          = ( A2 = B3 ) ) ) ) ).

% insert_ident
thf(fact_1021_insert__ident,axiom,
    ! [X2: nat,A2: set_nat,B3: set_nat] :
      ( ~ ( member_nat @ X2 @ A2 )
     => ( ~ ( member_nat @ X2 @ B3 )
       => ( ( ( insert_nat @ X2 @ A2 )
            = ( insert_nat @ X2 @ B3 ) )
          = ( A2 = B3 ) ) ) ) ).

% insert_ident
thf(fact_1022_insert__ident,axiom,
    ! [X2: int,A2: set_int,B3: set_int] :
      ( ~ ( member_int @ X2 @ A2 )
     => ( ~ ( member_int @ X2 @ B3 )
       => ( ( ( insert_int @ X2 @ A2 )
            = ( insert_int @ X2 @ B3 ) )
          = ( A2 = B3 ) ) ) ) ).

% insert_ident
thf(fact_1023_insert__mono,axiom,
    ! [C4: set_VEBT_VEBT,D3: set_VEBT_VEBT,A: vEBT_VEBT] :
      ( ( ord_le4337996190870823476T_VEBT @ C4 @ D3 )
     => ( ord_le4337996190870823476T_VEBT @ ( insert_VEBT_VEBT @ A @ C4 ) @ ( insert_VEBT_VEBT @ A @ D3 ) ) ) ).

% insert_mono
thf(fact_1024_insert__mono,axiom,
    ! [C4: set_nat,D3: set_nat,A: nat] :
      ( ( ord_less_eq_set_nat @ C4 @ D3 )
     => ( ord_less_eq_set_nat @ ( insert_nat @ A @ C4 ) @ ( insert_nat @ A @ D3 ) ) ) ).

% insert_mono
thf(fact_1025_insert__mono,axiom,
    ! [C4: set_real,D3: set_real,A: real] :
      ( ( ord_less_eq_set_real @ C4 @ D3 )
     => ( ord_less_eq_set_real @ ( insert_real @ A @ C4 ) @ ( insert_real @ A @ D3 ) ) ) ).

% insert_mono
thf(fact_1026_insert__mono,axiom,
    ! [C4: set_o,D3: set_o,A: $o] :
      ( ( ord_less_eq_set_o @ C4 @ D3 )
     => ( ord_less_eq_set_o @ ( insert_o @ A @ C4 ) @ ( insert_o @ A @ D3 ) ) ) ).

% insert_mono
thf(fact_1027_insert__mono,axiom,
    ! [C4: set_int,D3: set_int,A: int] :
      ( ( ord_less_eq_set_int @ C4 @ D3 )
     => ( ord_less_eq_set_int @ ( insert_int @ A @ C4 ) @ ( insert_int @ A @ D3 ) ) ) ).

% insert_mono
thf(fact_1028_Set_Oset__insert,axiom,
    ! [X2: vEBT_VEBT,A2: set_VEBT_VEBT] :
      ( ( member_VEBT_VEBT @ X2 @ A2 )
     => ~ ! [B5: set_VEBT_VEBT] :
            ( ( A2
              = ( insert_VEBT_VEBT @ X2 @ B5 ) )
           => ( member_VEBT_VEBT @ X2 @ B5 ) ) ) ).

% Set.set_insert
thf(fact_1029_Set_Oset__insert,axiom,
    ! [X2: $o,A2: set_o] :
      ( ( member_o @ X2 @ A2 )
     => ~ ! [B5: set_o] :
            ( ( A2
              = ( insert_o @ X2 @ B5 ) )
           => ( member_o @ X2 @ B5 ) ) ) ).

% Set.set_insert
thf(fact_1030_Set_Oset__insert,axiom,
    ! [X2: complex,A2: set_complex] :
      ( ( member_complex @ X2 @ A2 )
     => ~ ! [B5: set_complex] :
            ( ( A2
              = ( insert_complex @ X2 @ B5 ) )
           => ( member_complex @ X2 @ B5 ) ) ) ).

% Set.set_insert
thf(fact_1031_Set_Oset__insert,axiom,
    ! [X2: real,A2: set_real] :
      ( ( member_real @ X2 @ A2 )
     => ~ ! [B5: set_real] :
            ( ( A2
              = ( insert_real @ X2 @ B5 ) )
           => ( member_real @ X2 @ B5 ) ) ) ).

% Set.set_insert
thf(fact_1032_Set_Oset__insert,axiom,
    ! [X2: set_nat,A2: set_set_nat] :
      ( ( member_set_nat @ X2 @ A2 )
     => ~ ! [B5: set_set_nat] :
            ( ( A2
              = ( insert_set_nat @ X2 @ B5 ) )
           => ( member_set_nat @ X2 @ B5 ) ) ) ).

% Set.set_insert
thf(fact_1033_Set_Oset__insert,axiom,
    ! [X2: nat,A2: set_nat] :
      ( ( member_nat @ X2 @ A2 )
     => ~ ! [B5: set_nat] :
            ( ( A2
              = ( insert_nat @ X2 @ B5 ) )
           => ( member_nat @ X2 @ B5 ) ) ) ).

% Set.set_insert
thf(fact_1034_Set_Oset__insert,axiom,
    ! [X2: int,A2: set_int] :
      ( ( member_int @ X2 @ A2 )
     => ~ ! [B5: set_int] :
            ( ( A2
              = ( insert_int @ X2 @ B5 ) )
           => ( member_int @ X2 @ B5 ) ) ) ).

% Set.set_insert
thf(fact_1035_insertI2,axiom,
    ! [A: vEBT_VEBT,B3: set_VEBT_VEBT,B: vEBT_VEBT] :
      ( ( member_VEBT_VEBT @ A @ B3 )
     => ( member_VEBT_VEBT @ A @ ( insert_VEBT_VEBT @ B @ B3 ) ) ) ).

% insertI2
thf(fact_1036_insertI2,axiom,
    ! [A: $o,B3: set_o,B: $o] :
      ( ( member_o @ A @ B3 )
     => ( member_o @ A @ ( insert_o @ B @ B3 ) ) ) ).

% insertI2
thf(fact_1037_insertI2,axiom,
    ! [A: complex,B3: set_complex,B: complex] :
      ( ( member_complex @ A @ B3 )
     => ( member_complex @ A @ ( insert_complex @ B @ B3 ) ) ) ).

% insertI2
thf(fact_1038_insertI2,axiom,
    ! [A: real,B3: set_real,B: real] :
      ( ( member_real @ A @ B3 )
     => ( member_real @ A @ ( insert_real @ B @ B3 ) ) ) ).

% insertI2
thf(fact_1039_insertI2,axiom,
    ! [A: set_nat,B3: set_set_nat,B: set_nat] :
      ( ( member_set_nat @ A @ B3 )
     => ( member_set_nat @ A @ ( insert_set_nat @ B @ B3 ) ) ) ).

% insertI2
thf(fact_1040_insertI2,axiom,
    ! [A: nat,B3: set_nat,B: nat] :
      ( ( member_nat @ A @ B3 )
     => ( member_nat @ A @ ( insert_nat @ B @ B3 ) ) ) ).

% insertI2
thf(fact_1041_insertI2,axiom,
    ! [A: int,B3: set_int,B: int] :
      ( ( member_int @ A @ B3 )
     => ( member_int @ A @ ( insert_int @ B @ B3 ) ) ) ).

% insertI2
thf(fact_1042_insertI1,axiom,
    ! [A: vEBT_VEBT,B3: set_VEBT_VEBT] : ( member_VEBT_VEBT @ A @ ( insert_VEBT_VEBT @ A @ B3 ) ) ).

% insertI1
thf(fact_1043_insertI1,axiom,
    ! [A: $o,B3: set_o] : ( member_o @ A @ ( insert_o @ A @ B3 ) ) ).

% insertI1
thf(fact_1044_insertI1,axiom,
    ! [A: complex,B3: set_complex] : ( member_complex @ A @ ( insert_complex @ A @ B3 ) ) ).

% insertI1
thf(fact_1045_insertI1,axiom,
    ! [A: real,B3: set_real] : ( member_real @ A @ ( insert_real @ A @ B3 ) ) ).

% insertI1
thf(fact_1046_insertI1,axiom,
    ! [A: set_nat,B3: set_set_nat] : ( member_set_nat @ A @ ( insert_set_nat @ A @ B3 ) ) ).

% insertI1
thf(fact_1047_insertI1,axiom,
    ! [A: nat,B3: set_nat] : ( member_nat @ A @ ( insert_nat @ A @ B3 ) ) ).

% insertI1
thf(fact_1048_insertI1,axiom,
    ! [A: int,B3: set_int] : ( member_int @ A @ ( insert_int @ A @ B3 ) ) ).

% insertI1
thf(fact_1049_insertE,axiom,
    ! [A: vEBT_VEBT,B: vEBT_VEBT,A2: set_VEBT_VEBT] :
      ( ( member_VEBT_VEBT @ A @ ( insert_VEBT_VEBT @ B @ A2 ) )
     => ( ( A != B )
       => ( member_VEBT_VEBT @ A @ A2 ) ) ) ).

% insertE
thf(fact_1050_insertE,axiom,
    ! [A: $o,B: $o,A2: set_o] :
      ( ( member_o @ A @ ( insert_o @ B @ A2 ) )
     => ( ( A = ~ B )
       => ( member_o @ A @ A2 ) ) ) ).

% insertE
thf(fact_1051_insertE,axiom,
    ! [A: complex,B: complex,A2: set_complex] :
      ( ( member_complex @ A @ ( insert_complex @ B @ A2 ) )
     => ( ( A != B )
       => ( member_complex @ A @ A2 ) ) ) ).

% insertE
thf(fact_1052_insertE,axiom,
    ! [A: real,B: real,A2: set_real] :
      ( ( member_real @ A @ ( insert_real @ B @ A2 ) )
     => ( ( A != B )
       => ( member_real @ A @ A2 ) ) ) ).

% insertE
thf(fact_1053_insertE,axiom,
    ! [A: set_nat,B: set_nat,A2: set_set_nat] :
      ( ( member_set_nat @ A @ ( insert_set_nat @ B @ A2 ) )
     => ( ( A != B )
       => ( member_set_nat @ A @ A2 ) ) ) ).

% insertE
thf(fact_1054_insertE,axiom,
    ! [A: nat,B: nat,A2: set_nat] :
      ( ( member_nat @ A @ ( insert_nat @ B @ A2 ) )
     => ( ( A != B )
       => ( member_nat @ A @ A2 ) ) ) ).

% insertE
thf(fact_1055_insertE,axiom,
    ! [A: int,B: int,A2: set_int] :
      ( ( member_int @ A @ ( insert_int @ B @ A2 ) )
     => ( ( A != B )
       => ( member_int @ A @ A2 ) ) ) ).

% insertE
thf(fact_1056_Suc3__eq__add__3,axiom,
    ! [N: nat] :
      ( ( suc @ ( suc @ ( suc @ N ) ) )
      = ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ one ) ) @ N ) ) ).

% Suc3_eq_add_3
thf(fact_1057_div__nat__eqI,axiom,
    ! [N: nat,Q2: nat,M: nat] :
      ( ( ord_less_eq_nat @ ( times_times_nat @ N @ Q2 ) @ M )
     => ( ( ord_less_nat @ M @ ( times_times_nat @ N @ ( suc @ Q2 ) ) )
       => ( ( divide_divide_nat @ M @ N )
          = Q2 ) ) ) ).

% div_nat_eqI
thf(fact_1058_Suc__nat__number__of__add,axiom,
    ! [V: num,N: nat] :
      ( ( suc @ ( plus_plus_nat @ ( numeral_numeral_nat @ V ) @ N ) )
      = ( plus_plus_nat @ ( numeral_numeral_nat @ ( plus_plus_num @ V @ one ) ) @ N ) ) ).

% Suc_nat_number_of_add
thf(fact_1059_T_092_060_094sub_062m_092_060_094sub_062e_092_060_094sub_062m_092_060_094sub_062b_092_060_094sub_062e_092_060_094sub_062r_Osimps_I5_J,axiom,
    ! [Mi: nat,Ma: nat,Va: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT,X2: nat] :
      ( ( vEBT_T_m_e_m_b_e_r @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList @ Summary ) @ X2 )
      = ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( if_nat @ ( X2 = Mi ) @ one_one_nat @ ( plus_plus_nat @ one_one_nat @ ( if_nat @ ( X2 = Ma ) @ one_one_nat @ ( plus_plus_nat @ one_one_nat @ ( if_nat @ ( ord_less_nat @ X2 @ Mi ) @ one_one_nat @ ( plus_plus_nat @ one_one_nat @ ( if_nat @ ( ord_less_nat @ Ma @ X2 ) @ one_one_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ ( bit0 @ ( bit0 @ one ) ) ) ) @ ( if_nat @ ( ord_less_nat @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) ) @ ( plus_plus_nat @ one_one_nat @ ( vEBT_T_m_e_m_b_e_r @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ one_one_nat ) ) ) ) ) ) ) ) ) ) ) ).

% T\<^sub>m\<^sub>e\<^sub>m\<^sub>b\<^sub>e\<^sub>r.simps(5)
thf(fact_1060_Suc__div__eq__add3__div,axiom,
    ! [M: nat,N: nat] :
      ( ( divide_divide_nat @ ( suc @ ( suc @ ( suc @ M ) ) ) @ N )
      = ( divide_divide_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ one ) ) @ M ) @ N ) ) ).

% Suc_div_eq_add3_div
thf(fact_1061_power__odd__eq,axiom,
    ! [A: complex,N: nat] :
      ( ( power_power_complex @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
      = ( times_times_complex @ A @ ( power_power_complex @ ( power_power_complex @ A @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% power_odd_eq
thf(fact_1062_power__odd__eq,axiom,
    ! [A: real,N: nat] :
      ( ( power_power_real @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
      = ( times_times_real @ A @ ( power_power_real @ ( power_power_real @ A @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% power_odd_eq
thf(fact_1063_power__odd__eq,axiom,
    ! [A: rat,N: nat] :
      ( ( power_power_rat @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
      = ( times_times_rat @ A @ ( power_power_rat @ ( power_power_rat @ A @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% power_odd_eq
thf(fact_1064_power__odd__eq,axiom,
    ! [A: nat,N: nat] :
      ( ( power_power_nat @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
      = ( times_times_nat @ A @ ( power_power_nat @ ( power_power_nat @ A @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% power_odd_eq
thf(fact_1065_power__odd__eq,axiom,
    ! [A: int,N: nat] :
      ( ( power_power_int @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
      = ( times_times_int @ A @ ( power_power_int @ ( power_power_int @ A @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% power_odd_eq
thf(fact_1066_invar__vebt_Ointros_I5_J,axiom,
    ! [TreeList: list_VEBT_VEBT,N: nat,Summary: vEBT_VEBT,M: nat,Deg: nat,Mi: nat,Ma: nat] :
      ( ! [X4: vEBT_VEBT] :
          ( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList ) )
         => ( vEBT_invar_vebt @ X4 @ N ) )
     => ( ( vEBT_invar_vebt @ Summary @ M )
       => ( ( ( size_s6755466524823107622T_VEBT @ TreeList )
            = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
         => ( ( M
              = ( suc @ N ) )
           => ( ( Deg
                = ( plus_plus_nat @ N @ M ) )
             => ( ! [I3: nat] :
                    ( ( ord_less_nat @ I3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
                   => ( ( ? [X5: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList @ I3 ) @ X5 ) )
                      = ( vEBT_V8194947554948674370ptions @ Summary @ I3 ) ) )
               => ( ( ( Mi = Ma )
                   => ! [X4: vEBT_VEBT] :
                        ( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList ) )
                       => ~ ? [X_12: nat] : ( vEBT_V8194947554948674370ptions @ X4 @ X_12 ) ) )
                 => ( ( ord_less_eq_nat @ Mi @ Ma )
                   => ( ( ord_less_nat @ Ma @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg ) )
                     => ( ( ( Mi != Ma )
                         => ! [I3: nat] :
                              ( ( ord_less_nat @ I3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
                             => ( ( ( ( vEBT_VEBT_high @ Ma @ N )
                                    = I3 )
                                 => ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList @ I3 ) @ ( vEBT_VEBT_low @ Ma @ N ) ) )
                                & ! [X4: nat] :
                                    ( ( ( ( vEBT_VEBT_high @ X4 @ N )
                                        = I3 )
                                      & ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList @ I3 ) @ ( vEBT_VEBT_low @ X4 @ N ) ) )
                                   => ( ( ord_less_nat @ Mi @ X4 )
                                      & ( ord_less_eq_nat @ X4 @ Ma ) ) ) ) ) )
                       => ( vEBT_invar_vebt @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ Deg ) ) ) ) ) ) ) ) ) ) ) ).

% invar_vebt.intros(5)
thf(fact_1067_vebt__member_Osimps_I5_J,axiom,
    ! [Mi: nat,Ma: nat,Va: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT,X2: nat] :
      ( ( vEBT_vebt_member @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList @ Summary ) @ X2 )
      = ( ( X2 != Mi )
       => ( ( X2 != Ma )
         => ( ~ ( ord_less_nat @ X2 @ Mi )
            & ( ~ ( ord_less_nat @ X2 @ Mi )
             => ( ~ ( ord_less_nat @ Ma @ X2 )
                & ( ~ ( ord_less_nat @ Ma @ X2 )
                 => ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) )
                     => ( vEBT_vebt_member @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                    & ( ord_less_nat @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) ) ) ) ) ) ) ) ) ) ).

% vebt_member.simps(5)
thf(fact_1068_set__vebt__set__vebt_H__valid,axiom,
    ! [T: vEBT_VEBT,N: nat] :
      ( ( vEBT_invar_vebt @ T @ N )
     => ( ( vEBT_set_vebt @ T )
        = ( vEBT_VEBT_set_vebt @ T ) ) ) ).

% set_vebt_set_vebt'_valid
thf(fact_1069_set__vebt_H__def,axiom,
    ( vEBT_VEBT_set_vebt
    = ( ^ [T2: vEBT_VEBT] : ( collect_nat @ ( vEBT_vebt_member @ T2 ) ) ) ) ).

% set_vebt'_def
thf(fact_1070_zdiv__numeral__Bit1,axiom,
    ! [V: num,W: num] :
      ( ( divide_divide_int @ ( numeral_numeral_int @ ( bit1 @ V ) ) @ ( numeral_numeral_int @ ( bit0 @ W ) ) )
      = ( divide_divide_int @ ( numeral_numeral_int @ V ) @ ( numeral_numeral_int @ W ) ) ) ).

% zdiv_numeral_Bit1
thf(fact_1071_Suc__double__not__eq__double,axiom,
    ! [M: nat,N: nat] :
      ( ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
     != ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).

% Suc_double_not_eq_double
thf(fact_1072_double__not__eq__Suc__double,axiom,
    ! [M: nat,N: nat] :
      ( ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M )
     != ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).

% double_not_eq_Suc_double
thf(fact_1073_VEBT__internal_Omembermima_Osimps_I4_J,axiom,
    ! [Mi: nat,Ma: nat,V: nat,TreeList: list_VEBT_VEBT,Vc: vEBT_VEBT,X2: nat] :
      ( ( vEBT_VEBT_membermima @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ ( suc @ V ) @ TreeList @ Vc ) @ X2 )
      = ( ( X2 = Mi )
        | ( X2 = Ma )
        | ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) )
           => ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X2 @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
          & ( ord_less_nat @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) ) ) ) ) ).

% VEBT_internal.membermima.simps(4)
thf(fact_1074_div__by__1,axiom,
    ! [A: complex] :
      ( ( divide1717551699836669952omplex @ A @ one_one_complex )
      = A ) ).

% div_by_1
thf(fact_1075_div__by__1,axiom,
    ! [A: real] :
      ( ( divide_divide_real @ A @ one_one_real )
      = A ) ).

% div_by_1
thf(fact_1076_div__by__1,axiom,
    ! [A: rat] :
      ( ( divide_divide_rat @ A @ one_one_rat )
      = A ) ).

% div_by_1
thf(fact_1077_div__by__1,axiom,
    ! [A: nat] :
      ( ( divide_divide_nat @ A @ one_one_nat )
      = A ) ).

% div_by_1
thf(fact_1078_div__by__1,axiom,
    ! [A: int] :
      ( ( divide_divide_int @ A @ one_one_int )
      = A ) ).

% div_by_1
thf(fact_1079_times__divide__eq__left,axiom,
    ! [B: complex,C: complex,A: complex] :
      ( ( times_times_complex @ ( divide1717551699836669952omplex @ B @ C ) @ A )
      = ( divide1717551699836669952omplex @ ( times_times_complex @ B @ A ) @ C ) ) ).

% times_divide_eq_left
thf(fact_1080_times__divide__eq__left,axiom,
    ! [B: real,C: real,A: real] :
      ( ( times_times_real @ ( divide_divide_real @ B @ C ) @ A )
      = ( divide_divide_real @ ( times_times_real @ B @ A ) @ C ) ) ).

% times_divide_eq_left
thf(fact_1081_times__divide__eq__left,axiom,
    ! [B: rat,C: rat,A: rat] :
      ( ( times_times_rat @ ( divide_divide_rat @ B @ C ) @ A )
      = ( divide_divide_rat @ ( times_times_rat @ B @ A ) @ C ) ) ).

% times_divide_eq_left
thf(fact_1082_divide__divide__eq__left,axiom,
    ! [A: complex,B: complex,C: complex] :
      ( ( divide1717551699836669952omplex @ ( divide1717551699836669952omplex @ A @ B ) @ C )
      = ( divide1717551699836669952omplex @ A @ ( times_times_complex @ B @ C ) ) ) ).

% divide_divide_eq_left
thf(fact_1083_divide__divide__eq__left,axiom,
    ! [A: real,B: real,C: real] :
      ( ( divide_divide_real @ ( divide_divide_real @ A @ B ) @ C )
      = ( divide_divide_real @ A @ ( times_times_real @ B @ C ) ) ) ).

% divide_divide_eq_left
thf(fact_1084_divide__divide__eq__left,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( divide_divide_rat @ ( divide_divide_rat @ A @ B ) @ C )
      = ( divide_divide_rat @ A @ ( times_times_rat @ B @ C ) ) ) ).

% divide_divide_eq_left
thf(fact_1085_divide__divide__eq__right,axiom,
    ! [A: complex,B: complex,C: complex] :
      ( ( divide1717551699836669952omplex @ A @ ( divide1717551699836669952omplex @ B @ C ) )
      = ( divide1717551699836669952omplex @ ( times_times_complex @ A @ C ) @ B ) ) ).

% divide_divide_eq_right
thf(fact_1086_divide__divide__eq__right,axiom,
    ! [A: real,B: real,C: real] :
      ( ( divide_divide_real @ A @ ( divide_divide_real @ B @ C ) )
      = ( divide_divide_real @ ( times_times_real @ A @ C ) @ B ) ) ).

% divide_divide_eq_right
thf(fact_1087_divide__divide__eq__right,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( divide_divide_rat @ A @ ( divide_divide_rat @ B @ C ) )
      = ( divide_divide_rat @ ( times_times_rat @ A @ C ) @ B ) ) ).

% divide_divide_eq_right
thf(fact_1088_subsetI,axiom,
    ! [A2: set_complex,B3: set_complex] :
      ( ! [X4: complex] :
          ( ( member_complex @ X4 @ A2 )
         => ( member_complex @ X4 @ B3 ) )
     => ( ord_le211207098394363844omplex @ A2 @ B3 ) ) ).

% subsetI
thf(fact_1089_subsetI,axiom,
    ! [A2: set_real,B3: set_real] :
      ( ! [X4: real] :
          ( ( member_real @ X4 @ A2 )
         => ( member_real @ X4 @ B3 ) )
     => ( ord_less_eq_set_real @ A2 @ B3 ) ) ).

% subsetI
thf(fact_1090_subsetI,axiom,
    ! [A2: set_set_nat,B3: set_set_nat] :
      ( ! [X4: set_nat] :
          ( ( member_set_nat @ X4 @ A2 )
         => ( member_set_nat @ X4 @ B3 ) )
     => ( ord_le6893508408891458716et_nat @ A2 @ B3 ) ) ).

% subsetI
thf(fact_1091_subsetI,axiom,
    ! [A2: set_nat,B3: set_nat] :
      ( ! [X4: nat] :
          ( ( member_nat @ X4 @ A2 )
         => ( member_nat @ X4 @ B3 ) )
     => ( ord_less_eq_set_nat @ A2 @ B3 ) ) ).

% subsetI
thf(fact_1092_subsetI,axiom,
    ! [A2: set_int,B3: set_int] :
      ( ! [X4: int] :
          ( ( member_int @ X4 @ A2 )
         => ( member_int @ X4 @ B3 ) )
     => ( ord_less_eq_set_int @ A2 @ B3 ) ) ).

% subsetI
thf(fact_1093_subset__antisym,axiom,
    ! [A2: set_int,B3: set_int] :
      ( ( ord_less_eq_set_int @ A2 @ B3 )
     => ( ( ord_less_eq_set_int @ B3 @ A2 )
       => ( A2 = B3 ) ) ) ).

% subset_antisym
thf(fact_1094_psubsetI,axiom,
    ! [A2: set_int,B3: set_int] :
      ( ( ord_less_eq_set_int @ A2 @ B3 )
     => ( ( A2 != B3 )
       => ( ord_less_set_int @ A2 @ B3 ) ) ) ).

% psubsetI
thf(fact_1095_real__divide__square__eq,axiom,
    ! [R2: real,A: real] :
      ( ( divide_divide_real @ ( times_times_real @ R2 @ A ) @ ( times_times_real @ R2 @ R2 ) )
      = ( divide_divide_real @ A @ R2 ) ) ).

% real_divide_square_eq
thf(fact_1096_times__divide__eq__right,axiom,
    ! [A: complex,B: complex,C: complex] :
      ( ( times_times_complex @ A @ ( divide1717551699836669952omplex @ B @ C ) )
      = ( divide1717551699836669952omplex @ ( times_times_complex @ A @ B ) @ C ) ) ).

% times_divide_eq_right
thf(fact_1097_times__divide__eq__right,axiom,
    ! [A: real,B: real,C: real] :
      ( ( times_times_real @ A @ ( divide_divide_real @ B @ C ) )
      = ( divide_divide_real @ ( times_times_real @ A @ B ) @ C ) ) ).

% times_divide_eq_right
thf(fact_1098_times__divide__eq__right,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( times_times_rat @ A @ ( divide_divide_rat @ B @ C ) )
      = ( divide_divide_rat @ ( times_times_rat @ A @ B ) @ C ) ) ).

% times_divide_eq_right
thf(fact_1099_zdiv__numeral__Bit0,axiom,
    ! [V: num,W: num] :
      ( ( divide_divide_int @ ( numeral_numeral_int @ ( bit0 @ V ) ) @ ( numeral_numeral_int @ ( bit0 @ W ) ) )
      = ( divide_divide_int @ ( numeral_numeral_int @ V ) @ ( numeral_numeral_int @ W ) ) ) ).

% zdiv_numeral_Bit0
thf(fact_1100_succ__member,axiom,
    ! [T: vEBT_VEBT,X2: nat,Y2: nat] :
      ( ( vEBT_is_succ_in_set @ ( vEBT_VEBT_set_vebt @ T ) @ X2 @ Y2 )
      = ( ( vEBT_vebt_member @ T @ Y2 )
        & ( ord_less_nat @ X2 @ Y2 )
        & ! [Z4: nat] :
            ( ( ( vEBT_vebt_member @ T @ Z4 )
              & ( ord_less_nat @ X2 @ Z4 ) )
           => ( ord_less_eq_nat @ Y2 @ Z4 ) ) ) ) ).

% succ_member
thf(fact_1101_pred__member,axiom,
    ! [T: vEBT_VEBT,X2: nat,Y2: nat] :
      ( ( vEBT_is_pred_in_set @ ( vEBT_VEBT_set_vebt @ T ) @ X2 @ Y2 )
      = ( ( vEBT_vebt_member @ T @ Y2 )
        & ( ord_less_nat @ Y2 @ X2 )
        & ! [Z4: nat] :
            ( ( ( vEBT_vebt_member @ T @ Z4 )
              & ( ord_less_nat @ Z4 @ X2 ) )
           => ( ord_less_eq_nat @ Z4 @ Y2 ) ) ) ) ).

% pred_member
thf(fact_1102_in__mono,axiom,
    ! [A2: set_complex,B3: set_complex,X2: complex] :
      ( ( ord_le211207098394363844omplex @ A2 @ B3 )
     => ( ( member_complex @ X2 @ A2 )
       => ( member_complex @ X2 @ B3 ) ) ) ).

% in_mono
thf(fact_1103_in__mono,axiom,
    ! [A2: set_real,B3: set_real,X2: real] :
      ( ( ord_less_eq_set_real @ A2 @ B3 )
     => ( ( member_real @ X2 @ A2 )
       => ( member_real @ X2 @ B3 ) ) ) ).

% in_mono
thf(fact_1104_in__mono,axiom,
    ! [A2: set_set_nat,B3: set_set_nat,X2: set_nat] :
      ( ( ord_le6893508408891458716et_nat @ A2 @ B3 )
     => ( ( member_set_nat @ X2 @ A2 )
       => ( member_set_nat @ X2 @ B3 ) ) ) ).

% in_mono
thf(fact_1105_in__mono,axiom,
    ! [A2: set_nat,B3: set_nat,X2: nat] :
      ( ( ord_less_eq_set_nat @ A2 @ B3 )
     => ( ( member_nat @ X2 @ A2 )
       => ( member_nat @ X2 @ B3 ) ) ) ).

% in_mono
thf(fact_1106_in__mono,axiom,
    ! [A2: set_int,B3: set_int,X2: int] :
      ( ( ord_less_eq_set_int @ A2 @ B3 )
     => ( ( member_int @ X2 @ A2 )
       => ( member_int @ X2 @ B3 ) ) ) ).

% in_mono
thf(fact_1107_subsetD,axiom,
    ! [A2: set_complex,B3: set_complex,C: complex] :
      ( ( ord_le211207098394363844omplex @ A2 @ B3 )
     => ( ( member_complex @ C @ A2 )
       => ( member_complex @ C @ B3 ) ) ) ).

% subsetD
thf(fact_1108_subsetD,axiom,
    ! [A2: set_real,B3: set_real,C: real] :
      ( ( ord_less_eq_set_real @ A2 @ B3 )
     => ( ( member_real @ C @ A2 )
       => ( member_real @ C @ B3 ) ) ) ).

% subsetD
thf(fact_1109_subsetD,axiom,
    ! [A2: set_set_nat,B3: set_set_nat,C: set_nat] :
      ( ( ord_le6893508408891458716et_nat @ A2 @ B3 )
     => ( ( member_set_nat @ C @ A2 )
       => ( member_set_nat @ C @ B3 ) ) ) ).

% subsetD
thf(fact_1110_subsetD,axiom,
    ! [A2: set_nat,B3: set_nat,C: nat] :
      ( ( ord_less_eq_set_nat @ A2 @ B3 )
     => ( ( member_nat @ C @ A2 )
       => ( member_nat @ C @ B3 ) ) ) ).

% subsetD
thf(fact_1111_subsetD,axiom,
    ! [A2: set_int,B3: set_int,C: int] :
      ( ( ord_less_eq_set_int @ A2 @ B3 )
     => ( ( member_int @ C @ A2 )
       => ( member_int @ C @ B3 ) ) ) ).

% subsetD
thf(fact_1112_equalityE,axiom,
    ! [A2: set_int,B3: set_int] :
      ( ( A2 = B3 )
     => ~ ( ( ord_less_eq_set_int @ A2 @ B3 )
         => ~ ( ord_less_eq_set_int @ B3 @ A2 ) ) ) ).

% equalityE
thf(fact_1113_subset__eq,axiom,
    ( ord_le211207098394363844omplex
    = ( ^ [A4: set_complex,B4: set_complex] :
        ! [X: complex] :
          ( ( member_complex @ X @ A4 )
         => ( member_complex @ X @ B4 ) ) ) ) ).

% subset_eq
thf(fact_1114_subset__eq,axiom,
    ( ord_less_eq_set_real
    = ( ^ [A4: set_real,B4: set_real] :
        ! [X: real] :
          ( ( member_real @ X @ A4 )
         => ( member_real @ X @ B4 ) ) ) ) ).

% subset_eq
thf(fact_1115_subset__eq,axiom,
    ( ord_le6893508408891458716et_nat
    = ( ^ [A4: set_set_nat,B4: set_set_nat] :
        ! [X: set_nat] :
          ( ( member_set_nat @ X @ A4 )
         => ( member_set_nat @ X @ B4 ) ) ) ) ).

% subset_eq
thf(fact_1116_subset__eq,axiom,
    ( ord_less_eq_set_nat
    = ( ^ [A4: set_nat,B4: set_nat] :
        ! [X: nat] :
          ( ( member_nat @ X @ A4 )
         => ( member_nat @ X @ B4 ) ) ) ) ).

% subset_eq
thf(fact_1117_subset__eq,axiom,
    ( ord_less_eq_set_int
    = ( ^ [A4: set_int,B4: set_int] :
        ! [X: int] :
          ( ( member_int @ X @ A4 )
         => ( member_int @ X @ B4 ) ) ) ) ).

% subset_eq
thf(fact_1118_equalityD1,axiom,
    ! [A2: set_int,B3: set_int] :
      ( ( A2 = B3 )
     => ( ord_less_eq_set_int @ A2 @ B3 ) ) ).

% equalityD1
thf(fact_1119_equalityD2,axiom,
    ! [A2: set_int,B3: set_int] :
      ( ( A2 = B3 )
     => ( ord_less_eq_set_int @ B3 @ A2 ) ) ).

% equalityD2
thf(fact_1120_subset__iff,axiom,
    ( ord_le211207098394363844omplex
    = ( ^ [A4: set_complex,B4: set_complex] :
        ! [T2: complex] :
          ( ( member_complex @ T2 @ A4 )
         => ( member_complex @ T2 @ B4 ) ) ) ) ).

% subset_iff
thf(fact_1121_subset__iff,axiom,
    ( ord_less_eq_set_real
    = ( ^ [A4: set_real,B4: set_real] :
        ! [T2: real] :
          ( ( member_real @ T2 @ A4 )
         => ( member_real @ T2 @ B4 ) ) ) ) ).

% subset_iff
thf(fact_1122_subset__iff,axiom,
    ( ord_le6893508408891458716et_nat
    = ( ^ [A4: set_set_nat,B4: set_set_nat] :
        ! [T2: set_nat] :
          ( ( member_set_nat @ T2 @ A4 )
         => ( member_set_nat @ T2 @ B4 ) ) ) ) ).

% subset_iff
thf(fact_1123_subset__iff,axiom,
    ( ord_less_eq_set_nat
    = ( ^ [A4: set_nat,B4: set_nat] :
        ! [T2: nat] :
          ( ( member_nat @ T2 @ A4 )
         => ( member_nat @ T2 @ B4 ) ) ) ) ).

% subset_iff
thf(fact_1124_subset__iff,axiom,
    ( ord_less_eq_set_int
    = ( ^ [A4: set_int,B4: set_int] :
        ! [T2: int] :
          ( ( member_int @ T2 @ A4 )
         => ( member_int @ T2 @ B4 ) ) ) ) ).

% subset_iff
thf(fact_1125_subset__refl,axiom,
    ! [A2: set_int] : ( ord_less_eq_set_int @ A2 @ A2 ) ).

% subset_refl
thf(fact_1126_Collect__mono,axiom,
    ! [P: product_prod_int_int > $o,Q: product_prod_int_int > $o] :
      ( ! [X4: product_prod_int_int] :
          ( ( P @ X4 )
         => ( Q @ X4 ) )
     => ( ord_le2843351958646193337nt_int @ ( collec213857154873943460nt_int @ P ) @ ( collec213857154873943460nt_int @ Q ) ) ) ).

% Collect_mono
thf(fact_1127_Collect__mono,axiom,
    ! [P: complex > $o,Q: complex > $o] :
      ( ! [X4: complex] :
          ( ( P @ X4 )
         => ( Q @ X4 ) )
     => ( ord_le211207098394363844omplex @ ( collect_complex @ P ) @ ( collect_complex @ Q ) ) ) ).

% Collect_mono
thf(fact_1128_Collect__mono,axiom,
    ! [P: set_nat > $o,Q: set_nat > $o] :
      ( ! [X4: set_nat] :
          ( ( P @ X4 )
         => ( Q @ X4 ) )
     => ( ord_le6893508408891458716et_nat @ ( collect_set_nat @ P ) @ ( collect_set_nat @ Q ) ) ) ).

% Collect_mono
thf(fact_1129_Collect__mono,axiom,
    ! [P: nat > $o,Q: nat > $o] :
      ( ! [X4: nat] :
          ( ( P @ X4 )
         => ( Q @ X4 ) )
     => ( ord_less_eq_set_nat @ ( collect_nat @ P ) @ ( collect_nat @ Q ) ) ) ).

% Collect_mono
thf(fact_1130_Collect__mono,axiom,
    ! [P: int > $o,Q: int > $o] :
      ( ! [X4: int] :
          ( ( P @ X4 )
         => ( Q @ X4 ) )
     => ( ord_less_eq_set_int @ ( collect_int @ P ) @ ( collect_int @ Q ) ) ) ).

% Collect_mono
thf(fact_1131_subset__trans,axiom,
    ! [A2: set_int,B3: set_int,C4: set_int] :
      ( ( ord_less_eq_set_int @ A2 @ B3 )
     => ( ( ord_less_eq_set_int @ B3 @ C4 )
       => ( ord_less_eq_set_int @ A2 @ C4 ) ) ) ).

% subset_trans
thf(fact_1132_set__eq__subset,axiom,
    ( ( ^ [Y6: set_int,Z5: set_int] : ( Y6 = Z5 ) )
    = ( ^ [A4: set_int,B4: set_int] :
          ( ( ord_less_eq_set_int @ A4 @ B4 )
          & ( ord_less_eq_set_int @ B4 @ A4 ) ) ) ) ).

% set_eq_subset
thf(fact_1133_Collect__subset,axiom,
    ! [A2: set_real,P: real > $o] :
      ( ord_less_eq_set_real
      @ ( collect_real
        @ ^ [X: real] :
            ( ( member_real @ X @ A2 )
            & ( P @ X ) ) )
      @ A2 ) ).

% Collect_subset
thf(fact_1134_Collect__subset,axiom,
    ! [A2: set_Pr958786334691620121nt_int,P: product_prod_int_int > $o] :
      ( ord_le2843351958646193337nt_int
      @ ( collec213857154873943460nt_int
        @ ^ [X: product_prod_int_int] :
            ( ( member5262025264175285858nt_int @ X @ A2 )
            & ( P @ X ) ) )
      @ A2 ) ).

% Collect_subset
thf(fact_1135_Collect__subset,axiom,
    ! [A2: set_complex,P: complex > $o] :
      ( ord_le211207098394363844omplex
      @ ( collect_complex
        @ ^ [X: complex] :
            ( ( member_complex @ X @ A2 )
            & ( P @ X ) ) )
      @ A2 ) ).

% Collect_subset
thf(fact_1136_Collect__subset,axiom,
    ! [A2: set_set_nat,P: set_nat > $o] :
      ( ord_le6893508408891458716et_nat
      @ ( collect_set_nat
        @ ^ [X: set_nat] :
            ( ( member_set_nat @ X @ A2 )
            & ( P @ X ) ) )
      @ A2 ) ).

% Collect_subset
thf(fact_1137_Collect__subset,axiom,
    ! [A2: set_nat,P: nat > $o] :
      ( ord_less_eq_set_nat
      @ ( collect_nat
        @ ^ [X: nat] :
            ( ( member_nat @ X @ A2 )
            & ( P @ X ) ) )
      @ A2 ) ).

% Collect_subset
thf(fact_1138_Collect__subset,axiom,
    ! [A2: set_int,P: int > $o] :
      ( ord_less_eq_set_int
      @ ( collect_int
        @ ^ [X: int] :
            ( ( member_int @ X @ A2 )
            & ( P @ X ) ) )
      @ A2 ) ).

% Collect_subset
thf(fact_1139_less__eq__set__def,axiom,
    ( ord_le211207098394363844omplex
    = ( ^ [A4: set_complex,B4: set_complex] :
          ( ord_le4573692005234683329plex_o
          @ ^ [X: complex] : ( member_complex @ X @ A4 )
          @ ^ [X: complex] : ( member_complex @ X @ B4 ) ) ) ) ).

% less_eq_set_def
thf(fact_1140_less__eq__set__def,axiom,
    ( ord_less_eq_set_real
    = ( ^ [A4: set_real,B4: set_real] :
          ( ord_less_eq_real_o
          @ ^ [X: real] : ( member_real @ X @ A4 )
          @ ^ [X: real] : ( member_real @ X @ B4 ) ) ) ) ).

% less_eq_set_def
thf(fact_1141_less__eq__set__def,axiom,
    ( ord_le6893508408891458716et_nat
    = ( ^ [A4: set_set_nat,B4: set_set_nat] :
          ( ord_le3964352015994296041_nat_o
          @ ^ [X: set_nat] : ( member_set_nat @ X @ A4 )
          @ ^ [X: set_nat] : ( member_set_nat @ X @ B4 ) ) ) ) ).

% less_eq_set_def
thf(fact_1142_less__eq__set__def,axiom,
    ( ord_less_eq_set_nat
    = ( ^ [A4: set_nat,B4: set_nat] :
          ( ord_less_eq_nat_o
          @ ^ [X: nat] : ( member_nat @ X @ A4 )
          @ ^ [X: nat] : ( member_nat @ X @ B4 ) ) ) ) ).

% less_eq_set_def
thf(fact_1143_less__eq__set__def,axiom,
    ( ord_less_eq_set_int
    = ( ^ [A4: set_int,B4: set_int] :
          ( ord_less_eq_int_o
          @ ^ [X: int] : ( member_int @ X @ A4 )
          @ ^ [X: int] : ( member_int @ X @ B4 ) ) ) ) ).

% less_eq_set_def
thf(fact_1144_Collect__mono__iff,axiom,
    ! [P: product_prod_int_int > $o,Q: product_prod_int_int > $o] :
      ( ( ord_le2843351958646193337nt_int @ ( collec213857154873943460nt_int @ P ) @ ( collec213857154873943460nt_int @ Q ) )
      = ( ! [X: product_prod_int_int] :
            ( ( P @ X )
           => ( Q @ X ) ) ) ) ).

% Collect_mono_iff
thf(fact_1145_Collect__mono__iff,axiom,
    ! [P: complex > $o,Q: complex > $o] :
      ( ( ord_le211207098394363844omplex @ ( collect_complex @ P ) @ ( collect_complex @ Q ) )
      = ( ! [X: complex] :
            ( ( P @ X )
           => ( Q @ X ) ) ) ) ).

% Collect_mono_iff
thf(fact_1146_Collect__mono__iff,axiom,
    ! [P: set_nat > $o,Q: set_nat > $o] :
      ( ( ord_le6893508408891458716et_nat @ ( collect_set_nat @ P ) @ ( collect_set_nat @ Q ) )
      = ( ! [X: set_nat] :
            ( ( P @ X )
           => ( Q @ X ) ) ) ) ).

% Collect_mono_iff
thf(fact_1147_Collect__mono__iff,axiom,
    ! [P: nat > $o,Q: nat > $o] :
      ( ( ord_less_eq_set_nat @ ( collect_nat @ P ) @ ( collect_nat @ Q ) )
      = ( ! [X: nat] :
            ( ( P @ X )
           => ( Q @ X ) ) ) ) ).

% Collect_mono_iff
thf(fact_1148_Collect__mono__iff,axiom,
    ! [P: int > $o,Q: int > $o] :
      ( ( ord_less_eq_set_int @ ( collect_int @ P ) @ ( collect_int @ Q ) )
      = ( ! [X: int] :
            ( ( P @ X )
           => ( Q @ X ) ) ) ) ).

% Collect_mono_iff
thf(fact_1149_enat__less__induct,axiom,
    ! [P: extended_enat > $o,N: extended_enat] :
      ( ! [N3: extended_enat] :
          ( ! [M2: extended_enat] :
              ( ( ord_le72135733267957522d_enat @ M2 @ N3 )
             => ( P @ M2 ) )
         => ( P @ N3 ) )
     => ( P @ N ) ) ).

% enat_less_induct
thf(fact_1150_subset__iff__psubset__eq,axiom,
    ( ord_less_eq_set_int
    = ( ^ [A4: set_int,B4: set_int] :
          ( ( ord_less_set_int @ A4 @ B4 )
          | ( A4 = B4 ) ) ) ) ).

% subset_iff_psubset_eq
thf(fact_1151_subset__psubset__trans,axiom,
    ! [A2: set_int,B3: set_int,C4: set_int] :
      ( ( ord_less_eq_set_int @ A2 @ B3 )
     => ( ( ord_less_set_int @ B3 @ C4 )
       => ( ord_less_set_int @ A2 @ C4 ) ) ) ).

% subset_psubset_trans
thf(fact_1152_subset__not__subset__eq,axiom,
    ( ord_less_set_int
    = ( ^ [A4: set_int,B4: set_int] :
          ( ( ord_less_eq_set_int @ A4 @ B4 )
          & ~ ( ord_less_eq_set_int @ B4 @ A4 ) ) ) ) ).

% subset_not_subset_eq
thf(fact_1153_psubset__subset__trans,axiom,
    ! [A2: set_int,B3: set_int,C4: set_int] :
      ( ( ord_less_set_int @ A2 @ B3 )
     => ( ( ord_less_eq_set_int @ B3 @ C4 )
       => ( ord_less_set_int @ A2 @ C4 ) ) ) ).

% psubset_subset_trans
thf(fact_1154_psubset__imp__subset,axiom,
    ! [A2: set_int,B3: set_int] :
      ( ( ord_less_set_int @ A2 @ B3 )
     => ( ord_less_eq_set_int @ A2 @ B3 ) ) ).

% psubset_imp_subset
thf(fact_1155_psubset__eq,axiom,
    ( ord_less_set_int
    = ( ^ [A4: set_int,B4: set_int] :
          ( ( ord_less_eq_set_int @ A4 @ B4 )
          & ( A4 != B4 ) ) ) ) ).

% psubset_eq
thf(fact_1156_psubsetE,axiom,
    ! [A2: set_int,B3: set_int] :
      ( ( ord_less_set_int @ A2 @ B3 )
     => ~ ( ( ord_less_eq_set_int @ A2 @ B3 )
         => ( ord_less_eq_set_int @ B3 @ A2 ) ) ) ).

% psubsetE
thf(fact_1157_linordered__field__no__lb,axiom,
    ! [X3: real] :
    ? [Y3: real] : ( ord_less_real @ Y3 @ X3 ) ).

% linordered_field_no_lb
thf(fact_1158_linordered__field__no__lb,axiom,
    ! [X3: rat] :
    ? [Y3: rat] : ( ord_less_rat @ Y3 @ X3 ) ).

% linordered_field_no_lb
thf(fact_1159_linordered__field__no__ub,axiom,
    ! [X3: real] :
    ? [X_12: real] : ( ord_less_real @ X3 @ X_12 ) ).

% linordered_field_no_ub
thf(fact_1160_linordered__field__no__ub,axiom,
    ! [X3: rat] :
    ? [X_12: rat] : ( ord_less_rat @ X3 @ X_12 ) ).

% linordered_field_no_ub
thf(fact_1161_linorder__neqE__linordered__idom,axiom,
    ! [X2: real,Y2: real] :
      ( ( X2 != Y2 )
     => ( ~ ( ord_less_real @ X2 @ Y2 )
       => ( ord_less_real @ Y2 @ X2 ) ) ) ).

% linorder_neqE_linordered_idom
thf(fact_1162_linorder__neqE__linordered__idom,axiom,
    ! [X2: rat,Y2: rat] :
      ( ( X2 != Y2 )
     => ( ~ ( ord_less_rat @ X2 @ Y2 )
       => ( ord_less_rat @ Y2 @ X2 ) ) ) ).

% linorder_neqE_linordered_idom
thf(fact_1163_linorder__neqE__linordered__idom,axiom,
    ! [X2: int,Y2: int] :
      ( ( X2 != Y2 )
     => ( ~ ( ord_less_int @ X2 @ Y2 )
       => ( ord_less_int @ Y2 @ X2 ) ) ) ).

% linorder_neqE_linordered_idom
thf(fact_1164_combine__common__factor,axiom,
    ! [A: real,E: real,B: real,C: real] :
      ( ( plus_plus_real @ ( times_times_real @ A @ E ) @ ( plus_plus_real @ ( times_times_real @ B @ E ) @ C ) )
      = ( plus_plus_real @ ( times_times_real @ ( plus_plus_real @ A @ B ) @ E ) @ C ) ) ).

% combine_common_factor
thf(fact_1165_combine__common__factor,axiom,
    ! [A: rat,E: rat,B: rat,C: rat] :
      ( ( plus_plus_rat @ ( times_times_rat @ A @ E ) @ ( plus_plus_rat @ ( times_times_rat @ B @ E ) @ C ) )
      = ( plus_plus_rat @ ( times_times_rat @ ( plus_plus_rat @ A @ B ) @ E ) @ C ) ) ).

% combine_common_factor
thf(fact_1166_combine__common__factor,axiom,
    ! [A: nat,E: nat,B: nat,C: nat] :
      ( ( plus_plus_nat @ ( times_times_nat @ A @ E ) @ ( plus_plus_nat @ ( times_times_nat @ B @ E ) @ C ) )
      = ( plus_plus_nat @ ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ E ) @ C ) ) ).

% combine_common_factor
thf(fact_1167_combine__common__factor,axiom,
    ! [A: int,E: int,B: int,C: int] :
      ( ( plus_plus_int @ ( times_times_int @ A @ E ) @ ( plus_plus_int @ ( times_times_int @ B @ E ) @ C ) )
      = ( plus_plus_int @ ( times_times_int @ ( plus_plus_int @ A @ B ) @ E ) @ C ) ) ).

% combine_common_factor
thf(fact_1168_distrib__right,axiom,
    ! [A: real,B: real,C: real] :
      ( ( times_times_real @ ( plus_plus_real @ A @ B ) @ C )
      = ( plus_plus_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ).

% distrib_right
thf(fact_1169_distrib__right,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( times_times_rat @ ( plus_plus_rat @ A @ B ) @ C )
      = ( plus_plus_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) ) ) ).

% distrib_right
thf(fact_1170_distrib__right,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ C )
      = ( plus_plus_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) ) ) ).

% distrib_right
thf(fact_1171_distrib__right,axiom,
    ! [A: int,B: int,C: int] :
      ( ( times_times_int @ ( plus_plus_int @ A @ B ) @ C )
      = ( plus_plus_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ).

% distrib_right
thf(fact_1172_distrib__left,axiom,
    ! [A: real,B: real,C: real] :
      ( ( times_times_real @ A @ ( plus_plus_real @ B @ C ) )
      = ( plus_plus_real @ ( times_times_real @ A @ B ) @ ( times_times_real @ A @ C ) ) ) ).

% distrib_left
thf(fact_1173_distrib__left,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( times_times_rat @ A @ ( plus_plus_rat @ B @ C ) )
      = ( plus_plus_rat @ ( times_times_rat @ A @ B ) @ ( times_times_rat @ A @ C ) ) ) ).

% distrib_left
thf(fact_1174_distrib__left,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( times_times_nat @ A @ ( plus_plus_nat @ B @ C ) )
      = ( plus_plus_nat @ ( times_times_nat @ A @ B ) @ ( times_times_nat @ A @ C ) ) ) ).

% distrib_left
thf(fact_1175_distrib__left,axiom,
    ! [A: int,B: int,C: int] :
      ( ( times_times_int @ A @ ( plus_plus_int @ B @ C ) )
      = ( plus_plus_int @ ( times_times_int @ A @ B ) @ ( times_times_int @ A @ C ) ) ) ).

% distrib_left
thf(fact_1176_comm__semiring__class_Odistrib,axiom,
    ! [A: real,B: real,C: real] :
      ( ( times_times_real @ ( plus_plus_real @ A @ B ) @ C )
      = ( plus_plus_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ).

% comm_semiring_class.distrib
thf(fact_1177_comm__semiring__class_Odistrib,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( times_times_rat @ ( plus_plus_rat @ A @ B ) @ C )
      = ( plus_plus_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) ) ) ).

% comm_semiring_class.distrib
thf(fact_1178_comm__semiring__class_Odistrib,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ C )
      = ( plus_plus_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) ) ) ).

% comm_semiring_class.distrib
thf(fact_1179_comm__semiring__class_Odistrib,axiom,
    ! [A: int,B: int,C: int] :
      ( ( times_times_int @ ( plus_plus_int @ A @ B ) @ C )
      = ( plus_plus_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ).

% comm_semiring_class.distrib
thf(fact_1180_ring__class_Oring__distribs_I1_J,axiom,
    ! [A: real,B: real,C: real] :
      ( ( times_times_real @ A @ ( plus_plus_real @ B @ C ) )
      = ( plus_plus_real @ ( times_times_real @ A @ B ) @ ( times_times_real @ A @ C ) ) ) ).

% ring_class.ring_distribs(1)
thf(fact_1181_ring__class_Oring__distribs_I1_J,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( times_times_rat @ A @ ( plus_plus_rat @ B @ C ) )
      = ( plus_plus_rat @ ( times_times_rat @ A @ B ) @ ( times_times_rat @ A @ C ) ) ) ).

% ring_class.ring_distribs(1)
thf(fact_1182_ring__class_Oring__distribs_I1_J,axiom,
    ! [A: int,B: int,C: int] :
      ( ( times_times_int @ A @ ( plus_plus_int @ B @ C ) )
      = ( plus_plus_int @ ( times_times_int @ A @ B ) @ ( times_times_int @ A @ C ) ) ) ).

% ring_class.ring_distribs(1)
thf(fact_1183_ring__class_Oring__distribs_I2_J,axiom,
    ! [A: real,B: real,C: real] :
      ( ( times_times_real @ ( plus_plus_real @ A @ B ) @ C )
      = ( plus_plus_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ).

% ring_class.ring_distribs(2)
thf(fact_1184_ring__class_Oring__distribs_I2_J,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( times_times_rat @ ( plus_plus_rat @ A @ B ) @ C )
      = ( plus_plus_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) ) ) ).

% ring_class.ring_distribs(2)
thf(fact_1185_ring__class_Oring__distribs_I2_J,axiom,
    ! [A: int,B: int,C: int] :
      ( ( times_times_int @ ( plus_plus_int @ A @ B ) @ C )
      = ( plus_plus_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ).

% ring_class.ring_distribs(2)
thf(fact_1186_divide__divide__eq__left_H,axiom,
    ! [A: complex,B: complex,C: complex] :
      ( ( divide1717551699836669952omplex @ ( divide1717551699836669952omplex @ A @ B ) @ C )
      = ( divide1717551699836669952omplex @ A @ ( times_times_complex @ C @ B ) ) ) ).

% divide_divide_eq_left'
thf(fact_1187_divide__divide__eq__left_H,axiom,
    ! [A: real,B: real,C: real] :
      ( ( divide_divide_real @ ( divide_divide_real @ A @ B ) @ C )
      = ( divide_divide_real @ A @ ( times_times_real @ C @ B ) ) ) ).

% divide_divide_eq_left'
thf(fact_1188_divide__divide__eq__left_H,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( divide_divide_rat @ ( divide_divide_rat @ A @ B ) @ C )
      = ( divide_divide_rat @ A @ ( times_times_rat @ C @ B ) ) ) ).

% divide_divide_eq_left'
thf(fact_1189_divide__divide__times__eq,axiom,
    ! [X2: complex,Y2: complex,Z: complex,W: complex] :
      ( ( divide1717551699836669952omplex @ ( divide1717551699836669952omplex @ X2 @ Y2 ) @ ( divide1717551699836669952omplex @ Z @ W ) )
      = ( divide1717551699836669952omplex @ ( times_times_complex @ X2 @ W ) @ ( times_times_complex @ Y2 @ Z ) ) ) ).

% divide_divide_times_eq
thf(fact_1190_divide__divide__times__eq,axiom,
    ! [X2: real,Y2: real,Z: real,W: real] :
      ( ( divide_divide_real @ ( divide_divide_real @ X2 @ Y2 ) @ ( divide_divide_real @ Z @ W ) )
      = ( divide_divide_real @ ( times_times_real @ X2 @ W ) @ ( times_times_real @ Y2 @ Z ) ) ) ).

% divide_divide_times_eq
thf(fact_1191_divide__divide__times__eq,axiom,
    ! [X2: rat,Y2: rat,Z: rat,W: rat] :
      ( ( divide_divide_rat @ ( divide_divide_rat @ X2 @ Y2 ) @ ( divide_divide_rat @ Z @ W ) )
      = ( divide_divide_rat @ ( times_times_rat @ X2 @ W ) @ ( times_times_rat @ Y2 @ Z ) ) ) ).

% divide_divide_times_eq
thf(fact_1192_times__divide__times__eq,axiom,
    ! [X2: complex,Y2: complex,Z: complex,W: complex] :
      ( ( times_times_complex @ ( divide1717551699836669952omplex @ X2 @ Y2 ) @ ( divide1717551699836669952omplex @ Z @ W ) )
      = ( divide1717551699836669952omplex @ ( times_times_complex @ X2 @ Z ) @ ( times_times_complex @ Y2 @ W ) ) ) ).

% times_divide_times_eq
thf(fact_1193_times__divide__times__eq,axiom,
    ! [X2: real,Y2: real,Z: real,W: real] :
      ( ( times_times_real @ ( divide_divide_real @ X2 @ Y2 ) @ ( divide_divide_real @ Z @ W ) )
      = ( divide_divide_real @ ( times_times_real @ X2 @ Z ) @ ( times_times_real @ Y2 @ W ) ) ) ).

% times_divide_times_eq
thf(fact_1194_times__divide__times__eq,axiom,
    ! [X2: rat,Y2: rat,Z: rat,W: rat] :
      ( ( times_times_rat @ ( divide_divide_rat @ X2 @ Y2 ) @ ( divide_divide_rat @ Z @ W ) )
      = ( divide_divide_rat @ ( times_times_rat @ X2 @ Z ) @ ( times_times_rat @ Y2 @ W ) ) ) ).

% times_divide_times_eq
thf(fact_1195_add__divide__distrib,axiom,
    ! [A: complex,B: complex,C: complex] :
      ( ( divide1717551699836669952omplex @ ( plus_plus_complex @ A @ B ) @ C )
      = ( plus_plus_complex @ ( divide1717551699836669952omplex @ A @ C ) @ ( divide1717551699836669952omplex @ B @ C ) ) ) ).

% add_divide_distrib
thf(fact_1196_add__divide__distrib,axiom,
    ! [A: real,B: real,C: real] :
      ( ( divide_divide_real @ ( plus_plus_real @ A @ B ) @ C )
      = ( plus_plus_real @ ( divide_divide_real @ A @ C ) @ ( divide_divide_real @ B @ C ) ) ) ).

% add_divide_distrib
thf(fact_1197_add__divide__distrib,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( divide_divide_rat @ ( plus_plus_rat @ A @ B ) @ C )
      = ( plus_plus_rat @ ( divide_divide_rat @ A @ C ) @ ( divide_divide_rat @ B @ C ) ) ) ).

% add_divide_distrib
thf(fact_1198_lambda__one,axiom,
    ( ( ^ [X: complex] : X )
    = ( times_times_complex @ one_one_complex ) ) ).

% lambda_one
thf(fact_1199_lambda__one,axiom,
    ( ( ^ [X: real] : X )
    = ( times_times_real @ one_one_real ) ) ).

% lambda_one
thf(fact_1200_lambda__one,axiom,
    ( ( ^ [X: rat] : X )
    = ( times_times_rat @ one_one_rat ) ) ).

% lambda_one
thf(fact_1201_lambda__one,axiom,
    ( ( ^ [X: nat] : X )
    = ( times_times_nat @ one_one_nat ) ) ).

% lambda_one
thf(fact_1202_lambda__one,axiom,
    ( ( ^ [X: int] : X )
    = ( times_times_int @ one_one_int ) ) ).

% lambda_one
thf(fact_1203_less__1__mult,axiom,
    ! [M: real,N: real] :
      ( ( ord_less_real @ one_one_real @ M )
     => ( ( ord_less_real @ one_one_real @ N )
       => ( ord_less_real @ one_one_real @ ( times_times_real @ M @ N ) ) ) ) ).

% less_1_mult
thf(fact_1204_less__1__mult,axiom,
    ! [M: rat,N: rat] :
      ( ( ord_less_rat @ one_one_rat @ M )
     => ( ( ord_less_rat @ one_one_rat @ N )
       => ( ord_less_rat @ one_one_rat @ ( times_times_rat @ M @ N ) ) ) ) ).

% less_1_mult
thf(fact_1205_less__1__mult,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ one_one_nat @ M )
     => ( ( ord_less_nat @ one_one_nat @ N )
       => ( ord_less_nat @ one_one_nat @ ( times_times_nat @ M @ N ) ) ) ) ).

% less_1_mult
thf(fact_1206_less__1__mult,axiom,
    ! [M: int,N: int] :
      ( ( ord_less_int @ one_one_int @ M )
     => ( ( ord_less_int @ one_one_int @ N )
       => ( ord_less_int @ one_one_int @ ( times_times_int @ M @ N ) ) ) ) ).

% less_1_mult
thf(fact_1207_add__mono1,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ( ord_less_real @ ( plus_plus_real @ A @ one_one_real ) @ ( plus_plus_real @ B @ one_one_real ) ) ) ).

% add_mono1
thf(fact_1208_add__mono1,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ord_less_rat @ ( plus_plus_rat @ A @ one_one_rat ) @ ( plus_plus_rat @ B @ one_one_rat ) ) ) ).

% add_mono1
thf(fact_1209_add__mono1,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ord_less_nat @ ( plus_plus_nat @ A @ one_one_nat ) @ ( plus_plus_nat @ B @ one_one_nat ) ) ) ).

% add_mono1
thf(fact_1210_add__mono1,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ B )
     => ( ord_less_int @ ( plus_plus_int @ A @ one_one_int ) @ ( plus_plus_int @ B @ one_one_int ) ) ) ).

% add_mono1
thf(fact_1211_less__add__one,axiom,
    ! [A: real] : ( ord_less_real @ A @ ( plus_plus_real @ A @ one_one_real ) ) ).

% less_add_one
thf(fact_1212_less__add__one,axiom,
    ! [A: rat] : ( ord_less_rat @ A @ ( plus_plus_rat @ A @ one_one_rat ) ) ).

% less_add_one
thf(fact_1213_less__add__one,axiom,
    ! [A: nat] : ( ord_less_nat @ A @ ( plus_plus_nat @ A @ one_one_nat ) ) ).

% less_add_one
thf(fact_1214_less__add__one,axiom,
    ! [A: int] : ( ord_less_int @ A @ ( plus_plus_int @ A @ one_one_int ) ) ).

% less_add_one
thf(fact_1215_discrete,axiom,
    ( ord_less_nat
    = ( ^ [A3: nat] : ( ord_less_eq_nat @ ( plus_plus_nat @ A3 @ one_one_nat ) ) ) ) ).

% discrete
thf(fact_1216_discrete,axiom,
    ( ord_less_int
    = ( ^ [A3: int] : ( ord_less_eq_int @ ( plus_plus_int @ A3 @ one_one_int ) ) ) ) ).

% discrete
thf(fact_1217_less__half__sum,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ( ord_less_real @ A @ ( divide_divide_real @ ( plus_plus_real @ A @ B ) @ ( plus_plus_real @ one_one_real @ one_one_real ) ) ) ) ).

% less_half_sum
thf(fact_1218_less__half__sum,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ord_less_rat @ A @ ( divide_divide_rat @ ( plus_plus_rat @ A @ B ) @ ( plus_plus_rat @ one_one_rat @ one_one_rat ) ) ) ) ).

% less_half_sum
thf(fact_1219_gt__half__sum,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ( ord_less_real @ ( divide_divide_real @ ( plus_plus_real @ A @ B ) @ ( plus_plus_real @ one_one_real @ one_one_real ) ) @ B ) ) ).

% gt_half_sum
thf(fact_1220_gt__half__sum,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ord_less_rat @ ( divide_divide_rat @ ( plus_plus_rat @ A @ B ) @ ( plus_plus_rat @ one_one_rat @ one_one_rat ) ) @ B ) ) ).

% gt_half_sum
thf(fact_1221_member__valid__both__member__options,axiom,
    ! [Tree: vEBT_VEBT,N: nat,X2: nat] :
      ( ( vEBT_invar_vebt @ Tree @ N )
     => ( ( vEBT_vebt_member @ Tree @ X2 )
       => ( ( vEBT_V5719532721284313246member @ Tree @ X2 )
          | ( vEBT_VEBT_membermima @ Tree @ X2 ) ) ) ) ).

% member_valid_both_member_options
thf(fact_1222_both__member__options__def,axiom,
    ( vEBT_V8194947554948674370ptions
    = ( ^ [T2: vEBT_VEBT,X: nat] :
          ( ( vEBT_V5719532721284313246member @ T2 @ X )
          | ( vEBT_VEBT_membermima @ T2 @ X ) ) ) ) ).

% both_member_options_def
thf(fact_1223_mult__1,axiom,
    ! [A: complex] :
      ( ( times_times_complex @ one_one_complex @ A )
      = A ) ).

% mult_1
thf(fact_1224_mult__1,axiom,
    ! [A: real] :
      ( ( times_times_real @ one_one_real @ A )
      = A ) ).

% mult_1
thf(fact_1225_mult__1,axiom,
    ! [A: rat] :
      ( ( times_times_rat @ one_one_rat @ A )
      = A ) ).

% mult_1
thf(fact_1226_mult__1,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ one_one_nat @ A )
      = A ) ).

% mult_1
thf(fact_1227_mult__1,axiom,
    ! [A: int] :
      ( ( times_times_int @ one_one_int @ A )
      = A ) ).

% mult_1
thf(fact_1228_mult_Oright__neutral,axiom,
    ! [A: complex] :
      ( ( times_times_complex @ A @ one_one_complex )
      = A ) ).

% mult.right_neutral
thf(fact_1229_mult_Oright__neutral,axiom,
    ! [A: real] :
      ( ( times_times_real @ A @ one_one_real )
      = A ) ).

% mult.right_neutral
thf(fact_1230_mult_Oright__neutral,axiom,
    ! [A: rat] :
      ( ( times_times_rat @ A @ one_one_rat )
      = A ) ).

% mult.right_neutral
thf(fact_1231_mult_Oright__neutral,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ A @ one_one_nat )
      = A ) ).

% mult.right_neutral
thf(fact_1232_mult_Oright__neutral,axiom,
    ! [A: int] :
      ( ( times_times_int @ A @ one_one_int )
      = A ) ).

% mult.right_neutral
thf(fact_1233_add__less__cancel__right,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) )
      = ( ord_less_real @ A @ B ) ) ).

% add_less_cancel_right
thf(fact_1234_add__less__cancel__right,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( ord_less_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ C ) )
      = ( ord_less_rat @ A @ B ) ) ).

% add_less_cancel_right
thf(fact_1235_add__less__cancel__right,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
      = ( ord_less_nat @ A @ B ) ) ).

% add_less_cancel_right
thf(fact_1236_add__less__cancel__right,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
      = ( ord_less_int @ A @ B ) ) ).

% add_less_cancel_right
thf(fact_1237_add__less__cancel__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) )
      = ( ord_less_real @ A @ B ) ) ).

% add_less_cancel_left
thf(fact_1238_add__less__cancel__left,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ ( plus_plus_rat @ C @ A ) @ ( plus_plus_rat @ C @ B ) )
      = ( ord_less_rat @ A @ B ) ) ).

% add_less_cancel_left
thf(fact_1239_add__less__cancel__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
      = ( ord_less_nat @ A @ B ) ) ).

% add_less_cancel_left
thf(fact_1240_add__less__cancel__left,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
      = ( ord_less_int @ A @ B ) ) ).

% add_less_cancel_left
thf(fact_1241_add__le__cancel__right,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) )
      = ( ord_less_eq_real @ A @ B ) ) ).

% add_le_cancel_right
thf(fact_1242_add__le__cancel__right,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ C ) )
      = ( ord_less_eq_rat @ A @ B ) ) ).

% add_le_cancel_right
thf(fact_1243_add__le__cancel__right,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
      = ( ord_less_eq_nat @ A @ B ) ) ).

% add_le_cancel_right
thf(fact_1244_add__le__cancel__right,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
      = ( ord_less_eq_int @ A @ B ) ) ).

% add_le_cancel_right
thf(fact_1245_add__le__cancel__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) )
      = ( ord_less_eq_real @ A @ B ) ) ).

% add_le_cancel_left
thf(fact_1246_add__le__cancel__left,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( plus_plus_rat @ C @ A ) @ ( plus_plus_rat @ C @ B ) )
      = ( ord_less_eq_rat @ A @ B ) ) ).

% add_le_cancel_left
thf(fact_1247_add__le__cancel__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
      = ( ord_less_eq_nat @ A @ B ) ) ).

% add_le_cancel_left
thf(fact_1248_add__le__cancel__left,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
      = ( ord_less_eq_int @ A @ B ) ) ).

% add_le_cancel_left
thf(fact_1249_VEBT__internal_Onaive__member_Osimps_I3_J,axiom,
    ! [Uy: option4927543243414619207at_nat,V: nat,TreeList: list_VEBT_VEBT,S: vEBT_VEBT,X2: nat] :
      ( ( vEBT_V5719532721284313246member @ ( vEBT_Node @ Uy @ ( suc @ V ) @ TreeList @ S ) @ X2 )
      = ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) )
         => ( vEBT_V5719532721284313246member @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X2 @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
        & ( ord_less_nat @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) ) ) ) ).

% VEBT_internal.naive_member.simps(3)
thf(fact_1250_power__minus__is__div,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ A @ B ) )
        = ( divide_divide_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) ) ) ).

% power_minus_is_div
thf(fact_1251_all__set__conv__all__nth,axiom,
    ! [Xs2: list_VEBT_VEBT,P: vEBT_VEBT > $o] :
      ( ( ! [X: vEBT_VEBT] :
            ( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ Xs2 ) )
           => ( P @ X ) ) )
      = ( ! [I4: nat] :
            ( ( ord_less_nat @ I4 @ ( size_s6755466524823107622T_VEBT @ Xs2 ) )
           => ( P @ ( nth_VEBT_VEBT @ Xs2 @ I4 ) ) ) ) ) ).

% all_set_conv_all_nth
thf(fact_1252_all__set__conv__all__nth,axiom,
    ! [Xs2: list_o,P: $o > $o] :
      ( ( ! [X: $o] :
            ( ( member_o @ X @ ( set_o2 @ Xs2 ) )
           => ( P @ X ) ) )
      = ( ! [I4: nat] :
            ( ( ord_less_nat @ I4 @ ( size_size_list_o @ Xs2 ) )
           => ( P @ ( nth_o @ Xs2 @ I4 ) ) ) ) ) ).

% all_set_conv_all_nth
thf(fact_1253_all__set__conv__all__nth,axiom,
    ! [Xs2: list_int,P: int > $o] :
      ( ( ! [X: int] :
            ( ( member_int @ X @ ( set_int2 @ Xs2 ) )
           => ( P @ X ) ) )
      = ( ! [I4: nat] :
            ( ( ord_less_nat @ I4 @ ( size_size_list_int @ Xs2 ) )
           => ( P @ ( nth_int @ Xs2 @ I4 ) ) ) ) ) ).

% all_set_conv_all_nth
thf(fact_1254_add__left__cancel,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ( plus_plus_real @ A @ B )
        = ( plus_plus_real @ A @ C ) )
      = ( B = C ) ) ).

% add_left_cancel
thf(fact_1255_add__left__cancel,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ( plus_plus_rat @ A @ B )
        = ( plus_plus_rat @ A @ C ) )
      = ( B = C ) ) ).

% add_left_cancel
thf(fact_1256_add__left__cancel,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ( plus_plus_nat @ A @ B )
        = ( plus_plus_nat @ A @ C ) )
      = ( B = C ) ) ).

% add_left_cancel
thf(fact_1257_add__left__cancel,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ( plus_plus_int @ A @ B )
        = ( plus_plus_int @ A @ C ) )
      = ( B = C ) ) ).

% add_left_cancel
thf(fact_1258_add__right__cancel,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ( plus_plus_real @ B @ A )
        = ( plus_plus_real @ C @ A ) )
      = ( B = C ) ) ).

% add_right_cancel
thf(fact_1259_add__right__cancel,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( ( plus_plus_rat @ B @ A )
        = ( plus_plus_rat @ C @ A ) )
      = ( B = C ) ) ).

% add_right_cancel
thf(fact_1260_add__right__cancel,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ( plus_plus_nat @ B @ A )
        = ( plus_plus_nat @ C @ A ) )
      = ( B = C ) ) ).

% add_right_cancel
thf(fact_1261_add__right__cancel,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ( plus_plus_int @ B @ A )
        = ( plus_plus_int @ C @ A ) )
      = ( B = C ) ) ).

% add_right_cancel
thf(fact_1262_add__diff__cancel,axiom,
    ! [A: real,B: real] :
      ( ( minus_minus_real @ ( plus_plus_real @ A @ B ) @ B )
      = A ) ).

% add_diff_cancel
thf(fact_1263_add__diff__cancel,axiom,
    ! [A: rat,B: rat] :
      ( ( minus_minus_rat @ ( plus_plus_rat @ A @ B ) @ B )
      = A ) ).

% add_diff_cancel
thf(fact_1264_add__diff__cancel,axiom,
    ! [A: int,B: int] :
      ( ( minus_minus_int @ ( plus_plus_int @ A @ B ) @ B )
      = A ) ).

% add_diff_cancel
thf(fact_1265_diff__add__cancel,axiom,
    ! [A: real,B: real] :
      ( ( plus_plus_real @ ( minus_minus_real @ A @ B ) @ B )
      = A ) ).

% diff_add_cancel
thf(fact_1266_diff__add__cancel,axiom,
    ! [A: rat,B: rat] :
      ( ( plus_plus_rat @ ( minus_minus_rat @ A @ B ) @ B )
      = A ) ).

% diff_add_cancel
thf(fact_1267_diff__add__cancel,axiom,
    ! [A: int,B: int] :
      ( ( plus_plus_int @ ( minus_minus_int @ A @ B ) @ B )
      = A ) ).

% diff_add_cancel
thf(fact_1268_add__diff__cancel__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( minus_minus_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) )
      = ( minus_minus_real @ A @ B ) ) ).

% add_diff_cancel_left
thf(fact_1269_add__diff__cancel__left,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( minus_minus_rat @ ( plus_plus_rat @ C @ A ) @ ( plus_plus_rat @ C @ B ) )
      = ( minus_minus_rat @ A @ B ) ) ).

% add_diff_cancel_left
thf(fact_1270_add__diff__cancel__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
      = ( minus_minus_nat @ A @ B ) ) ).

% add_diff_cancel_left
thf(fact_1271_add__diff__cancel__left,axiom,
    ! [C: int,A: int,B: int] :
      ( ( minus_minus_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
      = ( minus_minus_int @ A @ B ) ) ).

% add_diff_cancel_left
thf(fact_1272_add__diff__cancel__left_H,axiom,
    ! [A: real,B: real] :
      ( ( minus_minus_real @ ( plus_plus_real @ A @ B ) @ A )
      = B ) ).

% add_diff_cancel_left'
thf(fact_1273_add__diff__cancel__left_H,axiom,
    ! [A: rat,B: rat] :
      ( ( minus_minus_rat @ ( plus_plus_rat @ A @ B ) @ A )
      = B ) ).

% add_diff_cancel_left'
thf(fact_1274_add__diff__cancel__left_H,axiom,
    ! [A: nat,B: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ A @ B ) @ A )
      = B ) ).

% add_diff_cancel_left'
thf(fact_1275_add__diff__cancel__left_H,axiom,
    ! [A: int,B: int] :
      ( ( minus_minus_int @ ( plus_plus_int @ A @ B ) @ A )
      = B ) ).

% add_diff_cancel_left'
thf(fact_1276_add__diff__cancel__right,axiom,
    ! [A: real,C: real,B: real] :
      ( ( minus_minus_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) )
      = ( minus_minus_real @ A @ B ) ) ).

% add_diff_cancel_right
thf(fact_1277_add__diff__cancel__right,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( minus_minus_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ C ) )
      = ( minus_minus_rat @ A @ B ) ) ).

% add_diff_cancel_right
thf(fact_1278_add__diff__cancel__right,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
      = ( minus_minus_nat @ A @ B ) ) ).

% add_diff_cancel_right
thf(fact_1279_add__diff__cancel__right,axiom,
    ! [A: int,C: int,B: int] :
      ( ( minus_minus_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
      = ( minus_minus_int @ A @ B ) ) ).

% add_diff_cancel_right
thf(fact_1280_add__diff__cancel__right_H,axiom,
    ! [A: real,B: real] :
      ( ( minus_minus_real @ ( plus_plus_real @ A @ B ) @ B )
      = A ) ).

% add_diff_cancel_right'
thf(fact_1281_add__diff__cancel__right_H,axiom,
    ! [A: rat,B: rat] :
      ( ( minus_minus_rat @ ( plus_plus_rat @ A @ B ) @ B )
      = A ) ).

% add_diff_cancel_right'
thf(fact_1282_add__diff__cancel__right_H,axiom,
    ! [A: nat,B: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ A @ B ) @ B )
      = A ) ).

% add_diff_cancel_right'
thf(fact_1283_add__diff__cancel__right_H,axiom,
    ! [A: int,B: int] :
      ( ( minus_minus_int @ ( plus_plus_int @ A @ B ) @ B )
      = A ) ).

% add_diff_cancel_right'
thf(fact_1284_diff__Suc__Suc,axiom,
    ! [M: nat,N: nat] :
      ( ( minus_minus_nat @ ( suc @ M ) @ ( suc @ N ) )
      = ( minus_minus_nat @ M @ N ) ) ).

% diff_Suc_Suc
thf(fact_1285_Suc__diff__diff,axiom,
    ! [M: nat,N: nat,K: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ ( suc @ M ) @ N ) @ ( suc @ K ) )
      = ( minus_minus_nat @ ( minus_minus_nat @ M @ N ) @ K ) ) ).

% Suc_diff_diff
thf(fact_1286_diff__diff__cancel,axiom,
    ! [I: nat,N: nat] :
      ( ( ord_less_eq_nat @ I @ N )
     => ( ( minus_minus_nat @ N @ ( minus_minus_nat @ N @ I ) )
        = I ) ) ).

% diff_diff_cancel
thf(fact_1287_diff__diff__left,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ I @ J ) @ K )
      = ( minus_minus_nat @ I @ ( plus_plus_nat @ J @ K ) ) ) ).

% diff_diff_left
thf(fact_1288_le__add__diff__inverse,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_eq_real @ B @ A )
     => ( ( plus_plus_real @ B @ ( minus_minus_real @ A @ B ) )
        = A ) ) ).

% le_add_diff_inverse
thf(fact_1289_le__add__diff__inverse,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_eq_rat @ B @ A )
     => ( ( plus_plus_rat @ B @ ( minus_minus_rat @ A @ B ) )
        = A ) ) ).

% le_add_diff_inverse
thf(fact_1290_le__add__diff__inverse,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( plus_plus_nat @ B @ ( minus_minus_nat @ A @ B ) )
        = A ) ) ).

% le_add_diff_inverse
thf(fact_1291_le__add__diff__inverse,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_eq_int @ B @ A )
     => ( ( plus_plus_int @ B @ ( minus_minus_int @ A @ B ) )
        = A ) ) ).

% le_add_diff_inverse
thf(fact_1292_le__add__diff__inverse2,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_eq_real @ B @ A )
     => ( ( plus_plus_real @ ( minus_minus_real @ A @ B ) @ B )
        = A ) ) ).

% le_add_diff_inverse2
thf(fact_1293_le__add__diff__inverse2,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_eq_rat @ B @ A )
     => ( ( plus_plus_rat @ ( minus_minus_rat @ A @ B ) @ B )
        = A ) ) ).

% le_add_diff_inverse2
thf(fact_1294_le__add__diff__inverse2,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( plus_plus_nat @ ( minus_minus_nat @ A @ B ) @ B )
        = A ) ) ).

% le_add_diff_inverse2
thf(fact_1295_le__add__diff__inverse2,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_eq_int @ B @ A )
     => ( ( plus_plus_int @ ( minus_minus_int @ A @ B ) @ B )
        = A ) ) ).

% le_add_diff_inverse2
thf(fact_1296_right__diff__distrib__numeral,axiom,
    ! [V: num,B: complex,C: complex] :
      ( ( times_times_complex @ ( numera6690914467698888265omplex @ V ) @ ( minus_minus_complex @ B @ C ) )
      = ( minus_minus_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ V ) @ B ) @ ( times_times_complex @ ( numera6690914467698888265omplex @ V ) @ C ) ) ) ).

% right_diff_distrib_numeral
thf(fact_1297_right__diff__distrib__numeral,axiom,
    ! [V: num,B: real,C: real] :
      ( ( times_times_real @ ( numeral_numeral_real @ V ) @ ( minus_minus_real @ B @ C ) )
      = ( minus_minus_real @ ( times_times_real @ ( numeral_numeral_real @ V ) @ B ) @ ( times_times_real @ ( numeral_numeral_real @ V ) @ C ) ) ) ).

% right_diff_distrib_numeral
thf(fact_1298_right__diff__distrib__numeral,axiom,
    ! [V: num,B: rat,C: rat] :
      ( ( times_times_rat @ ( numeral_numeral_rat @ V ) @ ( minus_minus_rat @ B @ C ) )
      = ( minus_minus_rat @ ( times_times_rat @ ( numeral_numeral_rat @ V ) @ B ) @ ( times_times_rat @ ( numeral_numeral_rat @ V ) @ C ) ) ) ).

% right_diff_distrib_numeral
thf(fact_1299_right__diff__distrib__numeral,axiom,
    ! [V: num,B: int,C: int] :
      ( ( times_times_int @ ( numeral_numeral_int @ V ) @ ( minus_minus_int @ B @ C ) )
      = ( minus_minus_int @ ( times_times_int @ ( numeral_numeral_int @ V ) @ B ) @ ( times_times_int @ ( numeral_numeral_int @ V ) @ C ) ) ) ).

% right_diff_distrib_numeral
thf(fact_1300_left__diff__distrib__numeral,axiom,
    ! [A: complex,B: complex,V: num] :
      ( ( times_times_complex @ ( minus_minus_complex @ A @ B ) @ ( numera6690914467698888265omplex @ V ) )
      = ( minus_minus_complex @ ( times_times_complex @ A @ ( numera6690914467698888265omplex @ V ) ) @ ( times_times_complex @ B @ ( numera6690914467698888265omplex @ V ) ) ) ) ).

% left_diff_distrib_numeral
thf(fact_1301_left__diff__distrib__numeral,axiom,
    ! [A: real,B: real,V: num] :
      ( ( times_times_real @ ( minus_minus_real @ A @ B ) @ ( numeral_numeral_real @ V ) )
      = ( minus_minus_real @ ( times_times_real @ A @ ( numeral_numeral_real @ V ) ) @ ( times_times_real @ B @ ( numeral_numeral_real @ V ) ) ) ) ).

% left_diff_distrib_numeral
thf(fact_1302_left__diff__distrib__numeral,axiom,
    ! [A: rat,B: rat,V: num] :
      ( ( times_times_rat @ ( minus_minus_rat @ A @ B ) @ ( numeral_numeral_rat @ V ) )
      = ( minus_minus_rat @ ( times_times_rat @ A @ ( numeral_numeral_rat @ V ) ) @ ( times_times_rat @ B @ ( numeral_numeral_rat @ V ) ) ) ) ).

% left_diff_distrib_numeral
thf(fact_1303_left__diff__distrib__numeral,axiom,
    ! [A: int,B: int,V: num] :
      ( ( times_times_int @ ( minus_minus_int @ A @ B ) @ ( numeral_numeral_int @ V ) )
      = ( minus_minus_int @ ( times_times_int @ A @ ( numeral_numeral_int @ V ) ) @ ( times_times_int @ B @ ( numeral_numeral_int @ V ) ) ) ) ).

% left_diff_distrib_numeral
thf(fact_1304_diff__Suc__1,axiom,
    ! [N: nat] :
      ( ( minus_minus_nat @ ( suc @ N ) @ one_one_nat )
      = N ) ).

% diff_Suc_1
thf(fact_1305_Nat_Oadd__diff__assoc,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( plus_plus_nat @ I @ ( minus_minus_nat @ J @ K ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ I @ J ) @ K ) ) ) ).

% Nat.add_diff_assoc
thf(fact_1306_Nat_Oadd__diff__assoc2,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( plus_plus_nat @ ( minus_minus_nat @ J @ K ) @ I )
        = ( minus_minus_nat @ ( plus_plus_nat @ J @ I ) @ K ) ) ) ).

% Nat.add_diff_assoc2
thf(fact_1307_Nat_Odiff__diff__right,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( minus_minus_nat @ I @ ( minus_minus_nat @ J @ K ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ I @ K ) @ J ) ) ) ).

% Nat.diff_diff_right
thf(fact_1308_diff__Suc__diff__eq1,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( minus_minus_nat @ I @ ( suc @ ( minus_minus_nat @ J @ K ) ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ I @ K ) @ ( suc @ J ) ) ) ) ).

% diff_Suc_diff_eq1
thf(fact_1309_diff__Suc__diff__eq2,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( minus_minus_nat @ ( suc @ ( minus_minus_nat @ J @ K ) ) @ I )
        = ( minus_minus_nat @ ( suc @ J ) @ ( plus_plus_nat @ K @ I ) ) ) ) ).

% diff_Suc_diff_eq2
thf(fact_1310_less__set__def,axiom,
    ( ord_less_set_complex
    = ( ^ [A4: set_complex,B4: set_complex] :
          ( ord_less_complex_o
          @ ^ [X: complex] : ( member_complex @ X @ A4 )
          @ ^ [X: complex] : ( member_complex @ X @ B4 ) ) ) ) ).

% less_set_def
thf(fact_1311_less__set__def,axiom,
    ( ord_less_set_real
    = ( ^ [A4: set_real,B4: set_real] :
          ( ord_less_real_o
          @ ^ [X: real] : ( member_real @ X @ A4 )
          @ ^ [X: real] : ( member_real @ X @ B4 ) ) ) ) ).

% less_set_def
thf(fact_1312_less__set__def,axiom,
    ( ord_less_set_set_nat
    = ( ^ [A4: set_set_nat,B4: set_set_nat] :
          ( ord_less_set_nat_o
          @ ^ [X: set_nat] : ( member_set_nat @ X @ A4 )
          @ ^ [X: set_nat] : ( member_set_nat @ X @ B4 ) ) ) ) ).

% less_set_def
thf(fact_1313_less__set__def,axiom,
    ( ord_less_set_nat
    = ( ^ [A4: set_nat,B4: set_nat] :
          ( ord_less_nat_o
          @ ^ [X: nat] : ( member_nat @ X @ A4 )
          @ ^ [X: nat] : ( member_nat @ X @ B4 ) ) ) ) ).

% less_set_def
thf(fact_1314_less__set__def,axiom,
    ( ord_less_set_int
    = ( ^ [A4: set_int,B4: set_int] :
          ( ord_less_int_o
          @ ^ [X: int] : ( member_int @ X @ A4 )
          @ ^ [X: int] : ( member_int @ X @ B4 ) ) ) ) ).

% less_set_def
thf(fact_1315_psubsetD,axiom,
    ! [A2: set_complex,B3: set_complex,C: complex] :
      ( ( ord_less_set_complex @ A2 @ B3 )
     => ( ( member_complex @ C @ A2 )
       => ( member_complex @ C @ B3 ) ) ) ).

% psubsetD
thf(fact_1316_psubsetD,axiom,
    ! [A2: set_real,B3: set_real,C: real] :
      ( ( ord_less_set_real @ A2 @ B3 )
     => ( ( member_real @ C @ A2 )
       => ( member_real @ C @ B3 ) ) ) ).

% psubsetD
thf(fact_1317_psubsetD,axiom,
    ! [A2: set_set_nat,B3: set_set_nat,C: set_nat] :
      ( ( ord_less_set_set_nat @ A2 @ B3 )
     => ( ( member_set_nat @ C @ A2 )
       => ( member_set_nat @ C @ B3 ) ) ) ).

% psubsetD
thf(fact_1318_psubsetD,axiom,
    ! [A2: set_nat,B3: set_nat,C: nat] :
      ( ( ord_less_set_nat @ A2 @ B3 )
     => ( ( member_nat @ C @ A2 )
       => ( member_nat @ C @ B3 ) ) ) ).

% psubsetD
thf(fact_1319_psubsetD,axiom,
    ! [A2: set_int,B3: set_int,C: int] :
      ( ( ord_less_set_int @ A2 @ B3 )
     => ( ( member_int @ C @ A2 )
       => ( member_int @ C @ B3 ) ) ) ).

% psubsetD
thf(fact_1320_diff__commute,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ I @ J ) @ K )
      = ( minus_minus_nat @ ( minus_minus_nat @ I @ K ) @ J ) ) ).

% diff_commute
thf(fact_1321_diff__mono,axiom,
    ! [A: real,B: real,D: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ D @ C )
       => ( ord_less_eq_real @ ( minus_minus_real @ A @ C ) @ ( minus_minus_real @ B @ D ) ) ) ) ).

% diff_mono
thf(fact_1322_diff__mono,axiom,
    ! [A: rat,B: rat,D: rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_rat @ D @ C )
       => ( ord_less_eq_rat @ ( minus_minus_rat @ A @ C ) @ ( minus_minus_rat @ B @ D ) ) ) ) ).

% diff_mono
thf(fact_1323_diff__mono,axiom,
    ! [A: int,B: int,D: int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ D @ C )
       => ( ord_less_eq_int @ ( minus_minus_int @ A @ C ) @ ( minus_minus_int @ B @ D ) ) ) ) ).

% diff_mono
thf(fact_1324_diff__left__mono,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_eq_real @ B @ A )
     => ( ord_less_eq_real @ ( minus_minus_real @ C @ A ) @ ( minus_minus_real @ C @ B ) ) ) ).

% diff_left_mono
thf(fact_1325_diff__left__mono,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( ord_less_eq_rat @ B @ A )
     => ( ord_less_eq_rat @ ( minus_minus_rat @ C @ A ) @ ( minus_minus_rat @ C @ B ) ) ) ).

% diff_left_mono
thf(fact_1326_diff__left__mono,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_less_eq_int @ B @ A )
     => ( ord_less_eq_int @ ( minus_minus_int @ C @ A ) @ ( minus_minus_int @ C @ B ) ) ) ).

% diff_left_mono
thf(fact_1327_diff__right__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ord_less_eq_real @ ( minus_minus_real @ A @ C ) @ ( minus_minus_real @ B @ C ) ) ) ).

% diff_right_mono
thf(fact_1328_diff__right__mono,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ord_less_eq_rat @ ( minus_minus_rat @ A @ C ) @ ( minus_minus_rat @ B @ C ) ) ) ).

% diff_right_mono
thf(fact_1329_diff__right__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ord_less_eq_int @ ( minus_minus_int @ A @ C ) @ ( minus_minus_int @ B @ C ) ) ) ).

% diff_right_mono
thf(fact_1330_diff__eq__diff__less__eq,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( ( minus_minus_real @ A @ B )
        = ( minus_minus_real @ C @ D ) )
     => ( ( ord_less_eq_real @ A @ B )
        = ( ord_less_eq_real @ C @ D ) ) ) ).

% diff_eq_diff_less_eq
thf(fact_1331_diff__eq__diff__less__eq,axiom,
    ! [A: rat,B: rat,C: rat,D: rat] :
      ( ( ( minus_minus_rat @ A @ B )
        = ( minus_minus_rat @ C @ D ) )
     => ( ( ord_less_eq_rat @ A @ B )
        = ( ord_less_eq_rat @ C @ D ) ) ) ).

% diff_eq_diff_less_eq
thf(fact_1332_diff__eq__diff__less__eq,axiom,
    ! [A: int,B: int,C: int,D: int] :
      ( ( ( minus_minus_int @ A @ B )
        = ( minus_minus_int @ C @ D ) )
     => ( ( ord_less_eq_int @ A @ B )
        = ( ord_less_eq_int @ C @ D ) ) ) ).

% diff_eq_diff_less_eq
thf(fact_1333_diff__strict__right__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ord_less_real @ ( minus_minus_real @ A @ C ) @ ( minus_minus_real @ B @ C ) ) ) ).

% diff_strict_right_mono
thf(fact_1334_diff__strict__right__mono,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ord_less_rat @ ( minus_minus_rat @ A @ C ) @ ( minus_minus_rat @ B @ C ) ) ) ).

% diff_strict_right_mono
thf(fact_1335_diff__strict__right__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ord_less_int @ ( minus_minus_int @ A @ C ) @ ( minus_minus_int @ B @ C ) ) ) ).

% diff_strict_right_mono
thf(fact_1336_diff__strict__left__mono,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_real @ B @ A )
     => ( ord_less_real @ ( minus_minus_real @ C @ A ) @ ( minus_minus_real @ C @ B ) ) ) ).

% diff_strict_left_mono
thf(fact_1337_diff__strict__left__mono,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( ord_less_rat @ B @ A )
     => ( ord_less_rat @ ( minus_minus_rat @ C @ A ) @ ( minus_minus_rat @ C @ B ) ) ) ).

% diff_strict_left_mono
thf(fact_1338_diff__strict__left__mono,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_less_int @ B @ A )
     => ( ord_less_int @ ( minus_minus_int @ C @ A ) @ ( minus_minus_int @ C @ B ) ) ) ).

% diff_strict_left_mono
thf(fact_1339_diff__eq__diff__less,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( ( minus_minus_real @ A @ B )
        = ( minus_minus_real @ C @ D ) )
     => ( ( ord_less_real @ A @ B )
        = ( ord_less_real @ C @ D ) ) ) ).

% diff_eq_diff_less
thf(fact_1340_diff__eq__diff__less,axiom,
    ! [A: rat,B: rat,C: rat,D: rat] :
      ( ( ( minus_minus_rat @ A @ B )
        = ( minus_minus_rat @ C @ D ) )
     => ( ( ord_less_rat @ A @ B )
        = ( ord_less_rat @ C @ D ) ) ) ).

% diff_eq_diff_less
thf(fact_1341_diff__eq__diff__less,axiom,
    ! [A: int,B: int,C: int,D: int] :
      ( ( ( minus_minus_int @ A @ B )
        = ( minus_minus_int @ C @ D ) )
     => ( ( ord_less_int @ A @ B )
        = ( ord_less_int @ C @ D ) ) ) ).

% diff_eq_diff_less
thf(fact_1342_diff__strict__mono,axiom,
    ! [A: real,B: real,D: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ D @ C )
       => ( ord_less_real @ ( minus_minus_real @ A @ C ) @ ( minus_minus_real @ B @ D ) ) ) ) ).

% diff_strict_mono
thf(fact_1343_diff__strict__mono,axiom,
    ! [A: rat,B: rat,D: rat,C: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_rat @ D @ C )
       => ( ord_less_rat @ ( minus_minus_rat @ A @ C ) @ ( minus_minus_rat @ B @ D ) ) ) ) ).

% diff_strict_mono
thf(fact_1344_diff__strict__mono,axiom,
    ! [A: int,B: int,D: int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_int @ D @ C )
       => ( ord_less_int @ ( minus_minus_int @ A @ C ) @ ( minus_minus_int @ B @ D ) ) ) ) ).

% diff_strict_mono
thf(fact_1345_group__cancel_Osub1,axiom,
    ! [A2: real,K: real,A: real,B: real] :
      ( ( A2
        = ( plus_plus_real @ K @ A ) )
     => ( ( minus_minus_real @ A2 @ B )
        = ( plus_plus_real @ K @ ( minus_minus_real @ A @ B ) ) ) ) ).

% group_cancel.sub1
thf(fact_1346_group__cancel_Osub1,axiom,
    ! [A2: rat,K: rat,A: rat,B: rat] :
      ( ( A2
        = ( plus_plus_rat @ K @ A ) )
     => ( ( minus_minus_rat @ A2 @ B )
        = ( plus_plus_rat @ K @ ( minus_minus_rat @ A @ B ) ) ) ) ).

% group_cancel.sub1
thf(fact_1347_group__cancel_Osub1,axiom,
    ! [A2: int,K: int,A: int,B: int] :
      ( ( A2
        = ( plus_plus_int @ K @ A ) )
     => ( ( minus_minus_int @ A2 @ B )
        = ( plus_plus_int @ K @ ( minus_minus_int @ A @ B ) ) ) ) ).

% group_cancel.sub1
thf(fact_1348_diff__eq__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ( minus_minus_real @ A @ B )
        = C )
      = ( A
        = ( plus_plus_real @ C @ B ) ) ) ).

% diff_eq_eq
thf(fact_1349_diff__eq__eq,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ( minus_minus_rat @ A @ B )
        = C )
      = ( A
        = ( plus_plus_rat @ C @ B ) ) ) ).

% diff_eq_eq
thf(fact_1350_diff__eq__eq,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ( minus_minus_int @ A @ B )
        = C )
      = ( A
        = ( plus_plus_int @ C @ B ) ) ) ).

% diff_eq_eq
thf(fact_1351_eq__diff__eq,axiom,
    ! [A: real,C: real,B: real] :
      ( ( A
        = ( minus_minus_real @ C @ B ) )
      = ( ( plus_plus_real @ A @ B )
        = C ) ) ).

% eq_diff_eq
thf(fact_1352_eq__diff__eq,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( A
        = ( minus_minus_rat @ C @ B ) )
      = ( ( plus_plus_rat @ A @ B )
        = C ) ) ).

% eq_diff_eq
thf(fact_1353_eq__diff__eq,axiom,
    ! [A: int,C: int,B: int] :
      ( ( A
        = ( minus_minus_int @ C @ B ) )
      = ( ( plus_plus_int @ A @ B )
        = C ) ) ).

% eq_diff_eq
thf(fact_1354_add__diff__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( plus_plus_real @ A @ ( minus_minus_real @ B @ C ) )
      = ( minus_minus_real @ ( plus_plus_real @ A @ B ) @ C ) ) ).

% add_diff_eq
thf(fact_1355_add__diff__eq,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( plus_plus_rat @ A @ ( minus_minus_rat @ B @ C ) )
      = ( minus_minus_rat @ ( plus_plus_rat @ A @ B ) @ C ) ) ).

% add_diff_eq
thf(fact_1356_add__diff__eq,axiom,
    ! [A: int,B: int,C: int] :
      ( ( plus_plus_int @ A @ ( minus_minus_int @ B @ C ) )
      = ( minus_minus_int @ ( plus_plus_int @ A @ B ) @ C ) ) ).

% add_diff_eq
thf(fact_1357_diff__diff__eq2,axiom,
    ! [A: real,B: real,C: real] :
      ( ( minus_minus_real @ A @ ( minus_minus_real @ B @ C ) )
      = ( minus_minus_real @ ( plus_plus_real @ A @ C ) @ B ) ) ).

% diff_diff_eq2
thf(fact_1358_diff__diff__eq2,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( minus_minus_rat @ A @ ( minus_minus_rat @ B @ C ) )
      = ( minus_minus_rat @ ( plus_plus_rat @ A @ C ) @ B ) ) ).

% diff_diff_eq2
thf(fact_1359_diff__diff__eq2,axiom,
    ! [A: int,B: int,C: int] :
      ( ( minus_minus_int @ A @ ( minus_minus_int @ B @ C ) )
      = ( minus_minus_int @ ( plus_plus_int @ A @ C ) @ B ) ) ).

% diff_diff_eq2
thf(fact_1360_diff__add__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( plus_plus_real @ ( minus_minus_real @ A @ B ) @ C )
      = ( minus_minus_real @ ( plus_plus_real @ A @ C ) @ B ) ) ).

% diff_add_eq
thf(fact_1361_diff__add__eq,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( plus_plus_rat @ ( minus_minus_rat @ A @ B ) @ C )
      = ( minus_minus_rat @ ( plus_plus_rat @ A @ C ) @ B ) ) ).

% diff_add_eq
thf(fact_1362_diff__add__eq,axiom,
    ! [A: int,B: int,C: int] :
      ( ( plus_plus_int @ ( minus_minus_int @ A @ B ) @ C )
      = ( minus_minus_int @ ( plus_plus_int @ A @ C ) @ B ) ) ).

% diff_add_eq
thf(fact_1363_diff__add__eq__diff__diff__swap,axiom,
    ! [A: real,B: real,C: real] :
      ( ( minus_minus_real @ A @ ( plus_plus_real @ B @ C ) )
      = ( minus_minus_real @ ( minus_minus_real @ A @ C ) @ B ) ) ).

% diff_add_eq_diff_diff_swap
thf(fact_1364_diff__add__eq__diff__diff__swap,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( minus_minus_rat @ A @ ( plus_plus_rat @ B @ C ) )
      = ( minus_minus_rat @ ( minus_minus_rat @ A @ C ) @ B ) ) ).

% diff_add_eq_diff_diff_swap
thf(fact_1365_diff__add__eq__diff__diff__swap,axiom,
    ! [A: int,B: int,C: int] :
      ( ( minus_minus_int @ A @ ( plus_plus_int @ B @ C ) )
      = ( minus_minus_int @ ( minus_minus_int @ A @ C ) @ B ) ) ).

% diff_add_eq_diff_diff_swap
thf(fact_1366_add__implies__diff,axiom,
    ! [C: real,B: real,A: real] :
      ( ( ( plus_plus_real @ C @ B )
        = A )
     => ( C
        = ( minus_minus_real @ A @ B ) ) ) ).

% add_implies_diff
thf(fact_1367_add__implies__diff,axiom,
    ! [C: rat,B: rat,A: rat] :
      ( ( ( plus_plus_rat @ C @ B )
        = A )
     => ( C
        = ( minus_minus_rat @ A @ B ) ) ) ).

% add_implies_diff
thf(fact_1368_add__implies__diff,axiom,
    ! [C: nat,B: nat,A: nat] :
      ( ( ( plus_plus_nat @ C @ B )
        = A )
     => ( C
        = ( minus_minus_nat @ A @ B ) ) ) ).

% add_implies_diff
thf(fact_1369_add__implies__diff,axiom,
    ! [C: int,B: int,A: int] :
      ( ( ( plus_plus_int @ C @ B )
        = A )
     => ( C
        = ( minus_minus_int @ A @ B ) ) ) ).

% add_implies_diff
thf(fact_1370_diff__diff__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( minus_minus_real @ ( minus_minus_real @ A @ B ) @ C )
      = ( minus_minus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).

% diff_diff_eq
thf(fact_1371_diff__diff__eq,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( minus_minus_rat @ ( minus_minus_rat @ A @ B ) @ C )
      = ( minus_minus_rat @ A @ ( plus_plus_rat @ B @ C ) ) ) ).

% diff_diff_eq
thf(fact_1372_diff__diff__eq,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ A @ B ) @ C )
      = ( minus_minus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).

% diff_diff_eq
thf(fact_1373_diff__diff__eq,axiom,
    ! [A: int,B: int,C: int] :
      ( ( minus_minus_int @ ( minus_minus_int @ A @ B ) @ C )
      = ( minus_minus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).

% diff_diff_eq
thf(fact_1374_max__diff__distrib__left,axiom,
    ! [X2: real,Y2: real,Z: real] :
      ( ( minus_minus_real @ ( ord_max_real @ X2 @ Y2 ) @ Z )
      = ( ord_max_real @ ( minus_minus_real @ X2 @ Z ) @ ( minus_minus_real @ Y2 @ Z ) ) ) ).

% max_diff_distrib_left
thf(fact_1375_max__diff__distrib__left,axiom,
    ! [X2: rat,Y2: rat,Z: rat] :
      ( ( minus_minus_rat @ ( ord_max_rat @ X2 @ Y2 ) @ Z )
      = ( ord_max_rat @ ( minus_minus_rat @ X2 @ Z ) @ ( minus_minus_rat @ Y2 @ Z ) ) ) ).

% max_diff_distrib_left
thf(fact_1376_max__diff__distrib__left,axiom,
    ! [X2: int,Y2: int,Z: int] :
      ( ( minus_minus_int @ ( ord_max_int @ X2 @ Y2 ) @ Z )
      = ( ord_max_int @ ( minus_minus_int @ X2 @ Z ) @ ( minus_minus_int @ Y2 @ Z ) ) ) ).

% max_diff_distrib_left
thf(fact_1377_right__diff__distrib_H,axiom,
    ! [A: real,B: real,C: real] :
      ( ( times_times_real @ A @ ( minus_minus_real @ B @ C ) )
      = ( minus_minus_real @ ( times_times_real @ A @ B ) @ ( times_times_real @ A @ C ) ) ) ).

% right_diff_distrib'
thf(fact_1378_right__diff__distrib_H,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( times_times_rat @ A @ ( minus_minus_rat @ B @ C ) )
      = ( minus_minus_rat @ ( times_times_rat @ A @ B ) @ ( times_times_rat @ A @ C ) ) ) ).

% right_diff_distrib'
thf(fact_1379_right__diff__distrib_H,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( times_times_nat @ A @ ( minus_minus_nat @ B @ C ) )
      = ( minus_minus_nat @ ( times_times_nat @ A @ B ) @ ( times_times_nat @ A @ C ) ) ) ).

% right_diff_distrib'
thf(fact_1380_right__diff__distrib_H,axiom,
    ! [A: int,B: int,C: int] :
      ( ( times_times_int @ A @ ( minus_minus_int @ B @ C ) )
      = ( minus_minus_int @ ( times_times_int @ A @ B ) @ ( times_times_int @ A @ C ) ) ) ).

% right_diff_distrib'
thf(fact_1381_left__diff__distrib_H,axiom,
    ! [B: real,C: real,A: real] :
      ( ( times_times_real @ ( minus_minus_real @ B @ C ) @ A )
      = ( minus_minus_real @ ( times_times_real @ B @ A ) @ ( times_times_real @ C @ A ) ) ) ).

% left_diff_distrib'
thf(fact_1382_left__diff__distrib_H,axiom,
    ! [B: rat,C: rat,A: rat] :
      ( ( times_times_rat @ ( minus_minus_rat @ B @ C ) @ A )
      = ( minus_minus_rat @ ( times_times_rat @ B @ A ) @ ( times_times_rat @ C @ A ) ) ) ).

% left_diff_distrib'
thf(fact_1383_left__diff__distrib_H,axiom,
    ! [B: nat,C: nat,A: nat] :
      ( ( times_times_nat @ ( minus_minus_nat @ B @ C ) @ A )
      = ( minus_minus_nat @ ( times_times_nat @ B @ A ) @ ( times_times_nat @ C @ A ) ) ) ).

% left_diff_distrib'
thf(fact_1384_left__diff__distrib_H,axiom,
    ! [B: int,C: int,A: int] :
      ( ( times_times_int @ ( minus_minus_int @ B @ C ) @ A )
      = ( minus_minus_int @ ( times_times_int @ B @ A ) @ ( times_times_int @ C @ A ) ) ) ).

% left_diff_distrib'
thf(fact_1385_right__diff__distrib,axiom,
    ! [A: real,B: real,C: real] :
      ( ( times_times_real @ A @ ( minus_minus_real @ B @ C ) )
      = ( minus_minus_real @ ( times_times_real @ A @ B ) @ ( times_times_real @ A @ C ) ) ) ).

% right_diff_distrib
thf(fact_1386_right__diff__distrib,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( times_times_rat @ A @ ( minus_minus_rat @ B @ C ) )
      = ( minus_minus_rat @ ( times_times_rat @ A @ B ) @ ( times_times_rat @ A @ C ) ) ) ).

% right_diff_distrib
thf(fact_1387_right__diff__distrib,axiom,
    ! [A: int,B: int,C: int] :
      ( ( times_times_int @ A @ ( minus_minus_int @ B @ C ) )
      = ( minus_minus_int @ ( times_times_int @ A @ B ) @ ( times_times_int @ A @ C ) ) ) ).

% right_diff_distrib
thf(fact_1388_left__diff__distrib,axiom,
    ! [A: real,B: real,C: real] :
      ( ( times_times_real @ ( minus_minus_real @ A @ B ) @ C )
      = ( minus_minus_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ).

% left_diff_distrib
thf(fact_1389_left__diff__distrib,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( times_times_rat @ ( minus_minus_rat @ A @ B ) @ C )
      = ( minus_minus_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) ) ) ).

% left_diff_distrib
thf(fact_1390_left__diff__distrib,axiom,
    ! [A: int,B: int,C: int] :
      ( ( times_times_int @ ( minus_minus_int @ A @ B ) @ C )
      = ( minus_minus_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ).

% left_diff_distrib
thf(fact_1391_add__diff__add,axiom,
    ! [A: real,C: real,B: real,D: real] :
      ( ( minus_minus_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ D ) )
      = ( plus_plus_real @ ( minus_minus_real @ A @ B ) @ ( minus_minus_real @ C @ D ) ) ) ).

% add_diff_add
thf(fact_1392_add__diff__add,axiom,
    ! [A: rat,C: rat,B: rat,D: rat] :
      ( ( minus_minus_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ D ) )
      = ( plus_plus_rat @ ( minus_minus_rat @ A @ B ) @ ( minus_minus_rat @ C @ D ) ) ) ).

% add_diff_add
thf(fact_1393_add__diff__add,axiom,
    ! [A: int,C: int,B: int,D: int] :
      ( ( minus_minus_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ D ) )
      = ( plus_plus_int @ ( minus_minus_int @ A @ B ) @ ( minus_minus_int @ C @ D ) ) ) ).

% add_diff_add
thf(fact_1394_diff__divide__distrib,axiom,
    ! [A: complex,B: complex,C: complex] :
      ( ( divide1717551699836669952omplex @ ( minus_minus_complex @ A @ B ) @ C )
      = ( minus_minus_complex @ ( divide1717551699836669952omplex @ A @ C ) @ ( divide1717551699836669952omplex @ B @ C ) ) ) ).

% diff_divide_distrib
thf(fact_1395_diff__divide__distrib,axiom,
    ! [A: real,B: real,C: real] :
      ( ( divide_divide_real @ ( minus_minus_real @ A @ B ) @ C )
      = ( minus_minus_real @ ( divide_divide_real @ A @ C ) @ ( divide_divide_real @ B @ C ) ) ) ).

% diff_divide_distrib
thf(fact_1396_diff__divide__distrib,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( divide_divide_rat @ ( minus_minus_rat @ A @ B ) @ C )
      = ( minus_minus_rat @ ( divide_divide_rat @ A @ C ) @ ( divide_divide_rat @ B @ C ) ) ) ).

% diff_divide_distrib
thf(fact_1397_zero__induct__lemma,axiom,
    ! [P: nat > $o,K: nat,I: nat] :
      ( ( P @ K )
     => ( ! [N3: nat] :
            ( ( P @ ( suc @ N3 ) )
           => ( P @ N3 ) )
       => ( P @ ( minus_minus_nat @ K @ I ) ) ) ) ).

% zero_induct_lemma
thf(fact_1398_less__imp__diff__less,axiom,
    ! [J: nat,K: nat,N: nat] :
      ( ( ord_less_nat @ J @ K )
     => ( ord_less_nat @ ( minus_minus_nat @ J @ N ) @ K ) ) ).

% less_imp_diff_less
thf(fact_1399_diff__less__mono2,axiom,
    ! [M: nat,N: nat,L: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ( ord_less_nat @ M @ L )
       => ( ord_less_nat @ ( minus_minus_nat @ L @ N ) @ ( minus_minus_nat @ L @ M ) ) ) ) ).

% diff_less_mono2
thf(fact_1400_eq__diff__iff,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ M )
     => ( ( ord_less_eq_nat @ K @ N )
       => ( ( ( minus_minus_nat @ M @ K )
            = ( minus_minus_nat @ N @ K ) )
          = ( M = N ) ) ) ) ).

% eq_diff_iff
thf(fact_1401_le__diff__iff,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ M )
     => ( ( ord_less_eq_nat @ K @ N )
       => ( ( ord_less_eq_nat @ ( minus_minus_nat @ M @ K ) @ ( minus_minus_nat @ N @ K ) )
          = ( ord_less_eq_nat @ M @ N ) ) ) ) ).

% le_diff_iff
thf(fact_1402_Nat_Odiff__diff__eq,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ M )
     => ( ( ord_less_eq_nat @ K @ N )
       => ( ( minus_minus_nat @ ( minus_minus_nat @ M @ K ) @ ( minus_minus_nat @ N @ K ) )
          = ( minus_minus_nat @ M @ N ) ) ) ) ).

% Nat.diff_diff_eq
thf(fact_1403_diff__le__mono,axiom,
    ! [M: nat,N: nat,L: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ord_less_eq_nat @ ( minus_minus_nat @ M @ L ) @ ( minus_minus_nat @ N @ L ) ) ) ).

% diff_le_mono
thf(fact_1404_diff__le__self,axiom,
    ! [M: nat,N: nat] : ( ord_less_eq_nat @ ( minus_minus_nat @ M @ N ) @ M ) ).

% diff_le_self
thf(fact_1405_le__diff__iff_H,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ C )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ( ord_less_eq_nat @ ( minus_minus_nat @ C @ A ) @ ( minus_minus_nat @ C @ B ) )
          = ( ord_less_eq_nat @ B @ A ) ) ) ) ).

% le_diff_iff'
thf(fact_1406_diff__le__mono2,axiom,
    ! [M: nat,N: nat,L: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ord_less_eq_nat @ ( minus_minus_nat @ L @ N ) @ ( minus_minus_nat @ L @ M ) ) ) ).

% diff_le_mono2
thf(fact_1407_Nat_Odiff__cancel,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N ) )
      = ( minus_minus_nat @ M @ N ) ) ).

% Nat.diff_cancel
thf(fact_1408_diff__cancel2,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ M @ K ) @ ( plus_plus_nat @ N @ K ) )
      = ( minus_minus_nat @ M @ N ) ) ).

% diff_cancel2
thf(fact_1409_diff__add__inverse,axiom,
    ! [N: nat,M: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ N @ M ) @ N )
      = M ) ).

% diff_add_inverse
thf(fact_1410_diff__add__inverse2,axiom,
    ! [M: nat,N: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ M @ N ) @ N )
      = M ) ).

% diff_add_inverse2
thf(fact_1411_diff__mult__distrib,axiom,
    ! [M: nat,N: nat,K: nat] :
      ( ( times_times_nat @ ( minus_minus_nat @ M @ N ) @ K )
      = ( minus_minus_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N @ K ) ) ) ).

% diff_mult_distrib
thf(fact_1412_diff__mult__distrib2,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( times_times_nat @ K @ ( minus_minus_nat @ M @ N ) )
      = ( minus_minus_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) ) ) ).

% diff_mult_distrib2
thf(fact_1413_diff__le__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ ( minus_minus_real @ A @ B ) @ C )
      = ( ord_less_eq_real @ A @ ( plus_plus_real @ C @ B ) ) ) ).

% diff_le_eq
thf(fact_1414_diff__le__eq,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ ( minus_minus_rat @ A @ B ) @ C )
      = ( ord_less_eq_rat @ A @ ( plus_plus_rat @ C @ B ) ) ) ).

% diff_le_eq
thf(fact_1415_diff__le__eq,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ ( minus_minus_int @ A @ B ) @ C )
      = ( ord_less_eq_int @ A @ ( plus_plus_int @ C @ B ) ) ) ).

% diff_le_eq
thf(fact_1416_le__diff__eq,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_eq_real @ A @ ( minus_minus_real @ C @ B ) )
      = ( ord_less_eq_real @ ( plus_plus_real @ A @ B ) @ C ) ) ).

% le_diff_eq
thf(fact_1417_le__diff__eq,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( ord_less_eq_rat @ A @ ( minus_minus_rat @ C @ B ) )
      = ( ord_less_eq_rat @ ( plus_plus_rat @ A @ B ) @ C ) ) ).

% le_diff_eq
thf(fact_1418_le__diff__eq,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_eq_int @ A @ ( minus_minus_int @ C @ B ) )
      = ( ord_less_eq_int @ ( plus_plus_int @ A @ B ) @ C ) ) ).

% le_diff_eq
thf(fact_1419_diff__add,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( plus_plus_nat @ ( minus_minus_nat @ B @ A ) @ A )
        = B ) ) ).

% diff_add
thf(fact_1420_le__add__diff,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ord_less_eq_nat @ C @ ( minus_minus_nat @ ( plus_plus_nat @ B @ C ) @ A ) ) ) ).

% le_add_diff
thf(fact_1421_ordered__cancel__comm__monoid__diff__class_Ole__diff__conv2,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ ( minus_minus_nat @ B @ A ) )
        = ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ B ) ) ) ).

% ordered_cancel_comm_monoid_diff_class.le_diff_conv2
thf(fact_1422_ordered__cancel__comm__monoid__diff__class_Oadd__diff__assoc,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( plus_plus_nat @ C @ ( minus_minus_nat @ B @ A ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ C @ B ) @ A ) ) ) ).

% ordered_cancel_comm_monoid_diff_class.add_diff_assoc
thf(fact_1423_ordered__cancel__comm__monoid__diff__class_Odiff__add__assoc,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ C @ B ) @ A )
        = ( plus_plus_nat @ C @ ( minus_minus_nat @ B @ A ) ) ) ) ).

% ordered_cancel_comm_monoid_diff_class.diff_add_assoc
thf(fact_1424_ordered__cancel__comm__monoid__diff__class_Oadd__diff__assoc2,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( plus_plus_nat @ ( minus_minus_nat @ B @ A ) @ C )
        = ( minus_minus_nat @ ( plus_plus_nat @ B @ C ) @ A ) ) ) ).

% ordered_cancel_comm_monoid_diff_class.add_diff_assoc2
thf(fact_1425_ordered__cancel__comm__monoid__diff__class_Odiff__add__assoc2,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ B @ C ) @ A )
        = ( plus_plus_nat @ ( minus_minus_nat @ B @ A ) @ C ) ) ) ).

% ordered_cancel_comm_monoid_diff_class.diff_add_assoc2
thf(fact_1426_ordered__cancel__comm__monoid__diff__class_Odiff__diff__right,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( minus_minus_nat @ C @ ( minus_minus_nat @ B @ A ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ C @ A ) @ B ) ) ) ).

% ordered_cancel_comm_monoid_diff_class.diff_diff_right
thf(fact_1427_ordered__cancel__comm__monoid__diff__class_Oadd__diff__inverse,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( plus_plus_nat @ A @ ( minus_minus_nat @ B @ A ) )
        = B ) ) ).

% ordered_cancel_comm_monoid_diff_class.add_diff_inverse
thf(fact_1428_ordered__cancel__comm__monoid__diff__class_Ole__imp__diff__is__add,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ A @ B )
       => ( ( ( minus_minus_nat @ B @ A )
            = C )
          = ( B
            = ( plus_plus_nat @ C @ A ) ) ) ) ) ).

% ordered_cancel_comm_monoid_diff_class.le_imp_diff_is_add
thf(fact_1429_diff__less__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ ( minus_minus_real @ A @ B ) @ C )
      = ( ord_less_real @ A @ ( plus_plus_real @ C @ B ) ) ) ).

% diff_less_eq
thf(fact_1430_diff__less__eq,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_rat @ ( minus_minus_rat @ A @ B ) @ C )
      = ( ord_less_rat @ A @ ( plus_plus_rat @ C @ B ) ) ) ).

% diff_less_eq
thf(fact_1431_diff__less__eq,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ ( minus_minus_int @ A @ B ) @ C )
      = ( ord_less_int @ A @ ( plus_plus_int @ C @ B ) ) ) ).

% diff_less_eq
thf(fact_1432_less__diff__eq,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_real @ A @ ( minus_minus_real @ C @ B ) )
      = ( ord_less_real @ ( plus_plus_real @ A @ B ) @ C ) ) ).

% less_diff_eq
thf(fact_1433_less__diff__eq,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( ord_less_rat @ A @ ( minus_minus_rat @ C @ B ) )
      = ( ord_less_rat @ ( plus_plus_rat @ A @ B ) @ C ) ) ).

% less_diff_eq
thf(fact_1434_less__diff__eq,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_int @ A @ ( minus_minus_int @ C @ B ) )
      = ( ord_less_int @ ( plus_plus_int @ A @ B ) @ C ) ) ).

% less_diff_eq
thf(fact_1435_add__le__imp__le__diff,axiom,
    ! [I: real,K: real,N: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ I @ K ) @ N )
     => ( ord_less_eq_real @ I @ ( minus_minus_real @ N @ K ) ) ) ).

% add_le_imp_le_diff
thf(fact_1436_add__le__imp__le__diff,axiom,
    ! [I: rat,K: rat,N: rat] :
      ( ( ord_less_eq_rat @ ( plus_plus_rat @ I @ K ) @ N )
     => ( ord_less_eq_rat @ I @ ( minus_minus_rat @ N @ K ) ) ) ).

% add_le_imp_le_diff
thf(fact_1437_add__le__imp__le__diff,axiom,
    ! [I: nat,K: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ N )
     => ( ord_less_eq_nat @ I @ ( minus_minus_nat @ N @ K ) ) ) ).

% add_le_imp_le_diff
thf(fact_1438_add__le__imp__le__diff,axiom,
    ! [I: int,K: int,N: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ I @ K ) @ N )
     => ( ord_less_eq_int @ I @ ( minus_minus_int @ N @ K ) ) ) ).

% add_le_imp_le_diff
thf(fact_1439_add__le__add__imp__diff__le,axiom,
    ! [I: real,K: real,N: real,J: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ I @ K ) @ N )
     => ( ( ord_less_eq_real @ N @ ( plus_plus_real @ J @ K ) )
       => ( ( ord_less_eq_real @ ( plus_plus_real @ I @ K ) @ N )
         => ( ( ord_less_eq_real @ N @ ( plus_plus_real @ J @ K ) )
           => ( ord_less_eq_real @ ( minus_minus_real @ N @ K ) @ J ) ) ) ) ) ).

% add_le_add_imp_diff_le
thf(fact_1440_add__le__add__imp__diff__le,axiom,
    ! [I: rat,K: rat,N: rat,J: rat] :
      ( ( ord_less_eq_rat @ ( plus_plus_rat @ I @ K ) @ N )
     => ( ( ord_less_eq_rat @ N @ ( plus_plus_rat @ J @ K ) )
       => ( ( ord_less_eq_rat @ ( plus_plus_rat @ I @ K ) @ N )
         => ( ( ord_less_eq_rat @ N @ ( plus_plus_rat @ J @ K ) )
           => ( ord_less_eq_rat @ ( minus_minus_rat @ N @ K ) @ J ) ) ) ) ) ).

% add_le_add_imp_diff_le
thf(fact_1441_add__le__add__imp__diff__le,axiom,
    ! [I: nat,K: nat,N: nat,J: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ N )
     => ( ( ord_less_eq_nat @ N @ ( plus_plus_nat @ J @ K ) )
       => ( ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ N )
         => ( ( ord_less_eq_nat @ N @ ( plus_plus_nat @ J @ K ) )
           => ( ord_less_eq_nat @ ( minus_minus_nat @ N @ K ) @ J ) ) ) ) ) ).

% add_le_add_imp_diff_le
thf(fact_1442_add__le__add__imp__diff__le,axiom,
    ! [I: int,K: int,N: int,J: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ I @ K ) @ N )
     => ( ( ord_less_eq_int @ N @ ( plus_plus_int @ J @ K ) )
       => ( ( ord_less_eq_int @ ( plus_plus_int @ I @ K ) @ N )
         => ( ( ord_less_eq_int @ N @ ( plus_plus_int @ J @ K ) )
           => ( ord_less_eq_int @ ( minus_minus_int @ N @ K ) @ J ) ) ) ) ) ).

% add_le_add_imp_diff_le
thf(fact_1443_linordered__semidom__class_Oadd__diff__inverse,axiom,
    ! [A: real,B: real] :
      ( ~ ( ord_less_real @ A @ B )
     => ( ( plus_plus_real @ B @ ( minus_minus_real @ A @ B ) )
        = A ) ) ).

% linordered_semidom_class.add_diff_inverse
thf(fact_1444_linordered__semidom__class_Oadd__diff__inverse,axiom,
    ! [A: rat,B: rat] :
      ( ~ ( ord_less_rat @ A @ B )
     => ( ( plus_plus_rat @ B @ ( minus_minus_rat @ A @ B ) )
        = A ) ) ).

% linordered_semidom_class.add_diff_inverse
thf(fact_1445_linordered__semidom__class_Oadd__diff__inverse,axiom,
    ! [A: nat,B: nat] :
      ( ~ ( ord_less_nat @ A @ B )
     => ( ( plus_plus_nat @ B @ ( minus_minus_nat @ A @ B ) )
        = A ) ) ).

% linordered_semidom_class.add_diff_inverse
thf(fact_1446_linordered__semidom__class_Oadd__diff__inverse,axiom,
    ! [A: int,B: int] :
      ( ~ ( ord_less_int @ A @ B )
     => ( ( plus_plus_int @ B @ ( minus_minus_int @ A @ B ) )
        = A ) ) ).

% linordered_semidom_class.add_diff_inverse
thf(fact_1447_mult__diff__mult,axiom,
    ! [X2: real,Y2: real,A: real,B: real] :
      ( ( minus_minus_real @ ( times_times_real @ X2 @ Y2 ) @ ( times_times_real @ A @ B ) )
      = ( plus_plus_real @ ( times_times_real @ X2 @ ( minus_minus_real @ Y2 @ B ) ) @ ( times_times_real @ ( minus_minus_real @ X2 @ A ) @ B ) ) ) ).

% mult_diff_mult
thf(fact_1448_mult__diff__mult,axiom,
    ! [X2: rat,Y2: rat,A: rat,B: rat] :
      ( ( minus_minus_rat @ ( times_times_rat @ X2 @ Y2 ) @ ( times_times_rat @ A @ B ) )
      = ( plus_plus_rat @ ( times_times_rat @ X2 @ ( minus_minus_rat @ Y2 @ B ) ) @ ( times_times_rat @ ( minus_minus_rat @ X2 @ A ) @ B ) ) ) ).

% mult_diff_mult
thf(fact_1449_mult__diff__mult,axiom,
    ! [X2: int,Y2: int,A: int,B: int] :
      ( ( minus_minus_int @ ( times_times_int @ X2 @ Y2 ) @ ( times_times_int @ A @ B ) )
      = ( plus_plus_int @ ( times_times_int @ X2 @ ( minus_minus_int @ Y2 @ B ) ) @ ( times_times_int @ ( minus_minus_int @ X2 @ A ) @ B ) ) ) ).

% mult_diff_mult
thf(fact_1450_eq__add__iff1,axiom,
    ! [A: real,E: real,C: real,B: real,D: real] :
      ( ( ( plus_plus_real @ ( times_times_real @ A @ E ) @ C )
        = ( plus_plus_real @ ( times_times_real @ B @ E ) @ D ) )
      = ( ( plus_plus_real @ ( times_times_real @ ( minus_minus_real @ A @ B ) @ E ) @ C )
        = D ) ) ).

% eq_add_iff1
thf(fact_1451_eq__add__iff1,axiom,
    ! [A: rat,E: rat,C: rat,B: rat,D: rat] :
      ( ( ( plus_plus_rat @ ( times_times_rat @ A @ E ) @ C )
        = ( plus_plus_rat @ ( times_times_rat @ B @ E ) @ D ) )
      = ( ( plus_plus_rat @ ( times_times_rat @ ( minus_minus_rat @ A @ B ) @ E ) @ C )
        = D ) ) ).

% eq_add_iff1
thf(fact_1452_eq__add__iff1,axiom,
    ! [A: int,E: int,C: int,B: int,D: int] :
      ( ( ( plus_plus_int @ ( times_times_int @ A @ E ) @ C )
        = ( plus_plus_int @ ( times_times_int @ B @ E ) @ D ) )
      = ( ( plus_plus_int @ ( times_times_int @ ( minus_minus_int @ A @ B ) @ E ) @ C )
        = D ) ) ).

% eq_add_iff1
thf(fact_1453_eq__add__iff2,axiom,
    ! [A: real,E: real,C: real,B: real,D: real] :
      ( ( ( plus_plus_real @ ( times_times_real @ A @ E ) @ C )
        = ( plus_plus_real @ ( times_times_real @ B @ E ) @ D ) )
      = ( C
        = ( plus_plus_real @ ( times_times_real @ ( minus_minus_real @ B @ A ) @ E ) @ D ) ) ) ).

% eq_add_iff2
thf(fact_1454_eq__add__iff2,axiom,
    ! [A: rat,E: rat,C: rat,B: rat,D: rat] :
      ( ( ( plus_plus_rat @ ( times_times_rat @ A @ E ) @ C )
        = ( plus_plus_rat @ ( times_times_rat @ B @ E ) @ D ) )
      = ( C
        = ( plus_plus_rat @ ( times_times_rat @ ( minus_minus_rat @ B @ A ) @ E ) @ D ) ) ) ).

% eq_add_iff2
thf(fact_1455_eq__add__iff2,axiom,
    ! [A: int,E: int,C: int,B: int,D: int] :
      ( ( ( plus_plus_int @ ( times_times_int @ A @ E ) @ C )
        = ( plus_plus_int @ ( times_times_int @ B @ E ) @ D ) )
      = ( C
        = ( plus_plus_int @ ( times_times_int @ ( minus_minus_int @ B @ A ) @ E ) @ D ) ) ) ).

% eq_add_iff2
thf(fact_1456_square__diff__square__factored,axiom,
    ! [X2: real,Y2: real] :
      ( ( minus_minus_real @ ( times_times_real @ X2 @ X2 ) @ ( times_times_real @ Y2 @ Y2 ) )
      = ( times_times_real @ ( plus_plus_real @ X2 @ Y2 ) @ ( minus_minus_real @ X2 @ Y2 ) ) ) ).

% square_diff_square_factored
thf(fact_1457_square__diff__square__factored,axiom,
    ! [X2: rat,Y2: rat] :
      ( ( minus_minus_rat @ ( times_times_rat @ X2 @ X2 ) @ ( times_times_rat @ Y2 @ Y2 ) )
      = ( times_times_rat @ ( plus_plus_rat @ X2 @ Y2 ) @ ( minus_minus_rat @ X2 @ Y2 ) ) ) ).

% square_diff_square_factored
thf(fact_1458_square__diff__square__factored,axiom,
    ! [X2: int,Y2: int] :
      ( ( minus_minus_int @ ( times_times_int @ X2 @ X2 ) @ ( times_times_int @ Y2 @ Y2 ) )
      = ( times_times_int @ ( plus_plus_int @ X2 @ Y2 ) @ ( minus_minus_int @ X2 @ Y2 ) ) ) ).

% square_diff_square_factored
thf(fact_1459_diff__less__Suc,axiom,
    ! [M: nat,N: nat] : ( ord_less_nat @ ( minus_minus_nat @ M @ N ) @ ( suc @ M ) ) ).

% diff_less_Suc
thf(fact_1460_Suc__diff__Suc,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ N @ M )
     => ( ( suc @ ( minus_minus_nat @ M @ ( suc @ N ) ) )
        = ( minus_minus_nat @ M @ N ) ) ) ).

% Suc_diff_Suc
thf(fact_1461_Suc__diff__le,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq_nat @ N @ M )
     => ( ( minus_minus_nat @ ( suc @ M ) @ N )
        = ( suc @ ( minus_minus_nat @ M @ N ) ) ) ) ).

% Suc_diff_le
thf(fact_1462_less__diff__iff,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ M )
     => ( ( ord_less_eq_nat @ K @ N )
       => ( ( ord_less_nat @ ( minus_minus_nat @ M @ K ) @ ( minus_minus_nat @ N @ K ) )
          = ( ord_less_nat @ M @ N ) ) ) ) ).

% less_diff_iff
thf(fact_1463_diff__less__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ A )
       => ( ord_less_nat @ ( minus_minus_nat @ A @ C ) @ ( minus_minus_nat @ B @ C ) ) ) ) ).

% diff_less_mono
thf(fact_1464_less__diff__conv,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_nat @ I @ ( minus_minus_nat @ J @ K ) )
      = ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ J ) ) ).

% less_diff_conv
thf(fact_1465_add__diff__inverse__nat,axiom,
    ! [M: nat,N: nat] :
      ( ~ ( ord_less_nat @ M @ N )
     => ( ( plus_plus_nat @ N @ ( minus_minus_nat @ M @ N ) )
        = M ) ) ).

% add_diff_inverse_nat
thf(fact_1466_diff__Suc__eq__diff__pred,axiom,
    ! [M: nat,N: nat] :
      ( ( minus_minus_nat @ M @ ( suc @ N ) )
      = ( minus_minus_nat @ ( minus_minus_nat @ M @ one_one_nat ) @ N ) ) ).

% diff_Suc_eq_diff_pred
thf(fact_1467_le__diff__conv,axiom,
    ! [J: nat,K: nat,I: nat] :
      ( ( ord_less_eq_nat @ ( minus_minus_nat @ J @ K ) @ I )
      = ( ord_less_eq_nat @ J @ ( plus_plus_nat @ I @ K ) ) ) ).

% le_diff_conv
thf(fact_1468_Nat_Ole__diff__conv2,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( ord_less_eq_nat @ I @ ( minus_minus_nat @ J @ K ) )
        = ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ J ) ) ) ).

% Nat.le_diff_conv2
thf(fact_1469_Nat_Odiff__add__assoc,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ I @ J ) @ K )
        = ( plus_plus_nat @ I @ ( minus_minus_nat @ J @ K ) ) ) ) ).

% Nat.diff_add_assoc
thf(fact_1470_Nat_Odiff__add__assoc2,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ J @ I ) @ K )
        = ( plus_plus_nat @ ( minus_minus_nat @ J @ K ) @ I ) ) ) ).

% Nat.diff_add_assoc2
thf(fact_1471_Nat_Ole__imp__diff__is__add,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( ( minus_minus_nat @ J @ I )
          = K )
        = ( J
          = ( plus_plus_nat @ K @ I ) ) ) ) ).

% Nat.le_imp_diff_is_add
thf(fact_1472_nat__minus__add__max,axiom,
    ! [N: nat,M: nat] :
      ( ( plus_plus_nat @ ( minus_minus_nat @ N @ M ) @ M )
      = ( ord_max_nat @ N @ M ) ) ).

% nat_minus_add_max
thf(fact_1473_ordered__ring__class_Ole__add__iff1,axiom,
    ! [A: real,E: real,C: real,B: real,D: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ ( times_times_real @ A @ E ) @ C ) @ ( plus_plus_real @ ( times_times_real @ B @ E ) @ D ) )
      = ( ord_less_eq_real @ ( plus_plus_real @ ( times_times_real @ ( minus_minus_real @ A @ B ) @ E ) @ C ) @ D ) ) ).

% ordered_ring_class.le_add_iff1
thf(fact_1474_ordered__ring__class_Ole__add__iff1,axiom,
    ! [A: rat,E: rat,C: rat,B: rat,D: rat] :
      ( ( ord_less_eq_rat @ ( plus_plus_rat @ ( times_times_rat @ A @ E ) @ C ) @ ( plus_plus_rat @ ( times_times_rat @ B @ E ) @ D ) )
      = ( ord_less_eq_rat @ ( plus_plus_rat @ ( times_times_rat @ ( minus_minus_rat @ A @ B ) @ E ) @ C ) @ D ) ) ).

% ordered_ring_class.le_add_iff1
thf(fact_1475_ordered__ring__class_Ole__add__iff1,axiom,
    ! [A: int,E: int,C: int,B: int,D: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ ( times_times_int @ A @ E ) @ C ) @ ( plus_plus_int @ ( times_times_int @ B @ E ) @ D ) )
      = ( ord_less_eq_int @ ( plus_plus_int @ ( times_times_int @ ( minus_minus_int @ A @ B ) @ E ) @ C ) @ D ) ) ).

% ordered_ring_class.le_add_iff1
thf(fact_1476_ordered__ring__class_Ole__add__iff2,axiom,
    ! [A: real,E: real,C: real,B: real,D: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ ( times_times_real @ A @ E ) @ C ) @ ( plus_plus_real @ ( times_times_real @ B @ E ) @ D ) )
      = ( ord_less_eq_real @ C @ ( plus_plus_real @ ( times_times_real @ ( minus_minus_real @ B @ A ) @ E ) @ D ) ) ) ).

% ordered_ring_class.le_add_iff2
thf(fact_1477_ordered__ring__class_Ole__add__iff2,axiom,
    ! [A: rat,E: rat,C: rat,B: rat,D: rat] :
      ( ( ord_less_eq_rat @ ( plus_plus_rat @ ( times_times_rat @ A @ E ) @ C ) @ ( plus_plus_rat @ ( times_times_rat @ B @ E ) @ D ) )
      = ( ord_less_eq_rat @ C @ ( plus_plus_rat @ ( times_times_rat @ ( minus_minus_rat @ B @ A ) @ E ) @ D ) ) ) ).

% ordered_ring_class.le_add_iff2
thf(fact_1478_ordered__ring__class_Ole__add__iff2,axiom,
    ! [A: int,E: int,C: int,B: int,D: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ ( times_times_int @ A @ E ) @ C ) @ ( plus_plus_int @ ( times_times_int @ B @ E ) @ D ) )
      = ( ord_less_eq_int @ C @ ( plus_plus_int @ ( times_times_int @ ( minus_minus_int @ B @ A ) @ E ) @ D ) ) ) ).

% ordered_ring_class.le_add_iff2
thf(fact_1479_less__add__iff2,axiom,
    ! [A: real,E: real,C: real,B: real,D: real] :
      ( ( ord_less_real @ ( plus_plus_real @ ( times_times_real @ A @ E ) @ C ) @ ( plus_plus_real @ ( times_times_real @ B @ E ) @ D ) )
      = ( ord_less_real @ C @ ( plus_plus_real @ ( times_times_real @ ( minus_minus_real @ B @ A ) @ E ) @ D ) ) ) ).

% less_add_iff2
thf(fact_1480_less__add__iff2,axiom,
    ! [A: rat,E: rat,C: rat,B: rat,D: rat] :
      ( ( ord_less_rat @ ( plus_plus_rat @ ( times_times_rat @ A @ E ) @ C ) @ ( plus_plus_rat @ ( times_times_rat @ B @ E ) @ D ) )
      = ( ord_less_rat @ C @ ( plus_plus_rat @ ( times_times_rat @ ( minus_minus_rat @ B @ A ) @ E ) @ D ) ) ) ).

% less_add_iff2
thf(fact_1481_less__add__iff2,axiom,
    ! [A: int,E: int,C: int,B: int,D: int] :
      ( ( ord_less_int @ ( plus_plus_int @ ( times_times_int @ A @ E ) @ C ) @ ( plus_plus_int @ ( times_times_int @ B @ E ) @ D ) )
      = ( ord_less_int @ C @ ( plus_plus_int @ ( times_times_int @ ( minus_minus_int @ B @ A ) @ E ) @ D ) ) ) ).

% less_add_iff2
thf(fact_1482_less__add__iff1,axiom,
    ! [A: real,E: real,C: real,B: real,D: real] :
      ( ( ord_less_real @ ( plus_plus_real @ ( times_times_real @ A @ E ) @ C ) @ ( plus_plus_real @ ( times_times_real @ B @ E ) @ D ) )
      = ( ord_less_real @ ( plus_plus_real @ ( times_times_real @ ( minus_minus_real @ A @ B ) @ E ) @ C ) @ D ) ) ).

% less_add_iff1
thf(fact_1483_less__add__iff1,axiom,
    ! [A: rat,E: rat,C: rat,B: rat,D: rat] :
      ( ( ord_less_rat @ ( plus_plus_rat @ ( times_times_rat @ A @ E ) @ C ) @ ( plus_plus_rat @ ( times_times_rat @ B @ E ) @ D ) )
      = ( ord_less_rat @ ( plus_plus_rat @ ( times_times_rat @ ( minus_minus_rat @ A @ B ) @ E ) @ C ) @ D ) ) ).

% less_add_iff1
thf(fact_1484_less__add__iff1,axiom,
    ! [A: int,E: int,C: int,B: int,D: int] :
      ( ( ord_less_int @ ( plus_plus_int @ ( times_times_int @ A @ E ) @ C ) @ ( plus_plus_int @ ( times_times_int @ B @ E ) @ D ) )
      = ( ord_less_int @ ( plus_plus_int @ ( times_times_int @ ( minus_minus_int @ A @ B ) @ E ) @ C ) @ D ) ) ).

% less_add_iff1
thf(fact_1485_square__diff__one__factored,axiom,
    ! [X2: complex] :
      ( ( minus_minus_complex @ ( times_times_complex @ X2 @ X2 ) @ one_one_complex )
      = ( times_times_complex @ ( plus_plus_complex @ X2 @ one_one_complex ) @ ( minus_minus_complex @ X2 @ one_one_complex ) ) ) ).

% square_diff_one_factored
thf(fact_1486_square__diff__one__factored,axiom,
    ! [X2: real] :
      ( ( minus_minus_real @ ( times_times_real @ X2 @ X2 ) @ one_one_real )
      = ( times_times_real @ ( plus_plus_real @ X2 @ one_one_real ) @ ( minus_minus_real @ X2 @ one_one_real ) ) ) ).

% square_diff_one_factored
thf(fact_1487_square__diff__one__factored,axiom,
    ! [X2: rat] :
      ( ( minus_minus_rat @ ( times_times_rat @ X2 @ X2 ) @ one_one_rat )
      = ( times_times_rat @ ( plus_plus_rat @ X2 @ one_one_rat ) @ ( minus_minus_rat @ X2 @ one_one_rat ) ) ) ).

% square_diff_one_factored
thf(fact_1488_square__diff__one__factored,axiom,
    ! [X2: int] :
      ( ( minus_minus_int @ ( times_times_int @ X2 @ X2 ) @ one_one_int )
      = ( times_times_int @ ( plus_plus_int @ X2 @ one_one_int ) @ ( minus_minus_int @ X2 @ one_one_int ) ) ) ).

% square_diff_one_factored
thf(fact_1489_less__diff__conv2,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( ord_less_nat @ ( minus_minus_nat @ J @ K ) @ I )
        = ( ord_less_nat @ J @ ( plus_plus_nat @ I @ K ) ) ) ) ).

% less_diff_conv2
thf(fact_1490_nat__eq__add__iff1,axiom,
    ! [J: nat,I: nat,U: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ J @ I )
     => ( ( ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M )
          = ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
        = ( ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ I @ J ) @ U ) @ M )
          = N ) ) ) ).

% nat_eq_add_iff1
thf(fact_1491_nat__eq__add__iff2,axiom,
    ! [I: nat,J: nat,U: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M )
          = ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
        = ( M
          = ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ J @ I ) @ U ) @ N ) ) ) ) ).

% nat_eq_add_iff2
thf(fact_1492_nat__le__add__iff1,axiom,
    ! [J: nat,I: nat,U: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ J @ I )
     => ( ( ord_less_eq_nat @ ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
        = ( ord_less_eq_nat @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ I @ J ) @ U ) @ M ) @ N ) ) ) ).

% nat_le_add_iff1
thf(fact_1493_nat__le__add__iff2,axiom,
    ! [I: nat,J: nat,U: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( ord_less_eq_nat @ ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
        = ( ord_less_eq_nat @ M @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ J @ I ) @ U ) @ N ) ) ) ) ).

% nat_le_add_iff2
thf(fact_1494_nat__diff__add__eq1,axiom,
    ! [J: nat,I: nat,U: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ J @ I )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ I @ J ) @ U ) @ M ) @ N ) ) ) ).

% nat_diff_add_eq1
thf(fact_1495_nat__diff__add__eq2,axiom,
    ! [I: nat,J: nat,U: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
        = ( minus_minus_nat @ M @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ J @ I ) @ U ) @ N ) ) ) ) ).

% nat_diff_add_eq2
thf(fact_1496_mult_Oleft__commute,axiom,
    ! [B: real,A: real,C: real] :
      ( ( times_times_real @ B @ ( times_times_real @ A @ C ) )
      = ( times_times_real @ A @ ( times_times_real @ B @ C ) ) ) ).

% mult.left_commute
thf(fact_1497_mult_Oleft__commute,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( times_times_rat @ B @ ( times_times_rat @ A @ C ) )
      = ( times_times_rat @ A @ ( times_times_rat @ B @ C ) ) ) ).

% mult.left_commute
thf(fact_1498_mult_Oleft__commute,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( times_times_nat @ B @ ( times_times_nat @ A @ C ) )
      = ( times_times_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).

% mult.left_commute
thf(fact_1499_mult_Oleft__commute,axiom,
    ! [B: int,A: int,C: int] :
      ( ( times_times_int @ B @ ( times_times_int @ A @ C ) )
      = ( times_times_int @ A @ ( times_times_int @ B @ C ) ) ) ).

% mult.left_commute
thf(fact_1500_mult_Ocommute,axiom,
    ( times_times_real
    = ( ^ [A3: real,B2: real] : ( times_times_real @ B2 @ A3 ) ) ) ).

% mult.commute
thf(fact_1501_mult_Ocommute,axiom,
    ( times_times_rat
    = ( ^ [A3: rat,B2: rat] : ( times_times_rat @ B2 @ A3 ) ) ) ).

% mult.commute
thf(fact_1502_mult_Ocommute,axiom,
    ( times_times_nat
    = ( ^ [A3: nat,B2: nat] : ( times_times_nat @ B2 @ A3 ) ) ) ).

% mult.commute
thf(fact_1503_mult_Ocommute,axiom,
    ( times_times_int
    = ( ^ [A3: int,B2: int] : ( times_times_int @ B2 @ A3 ) ) ) ).

% mult.commute
thf(fact_1504_mult_Oassoc,axiom,
    ! [A: real,B: real,C: real] :
      ( ( times_times_real @ ( times_times_real @ A @ B ) @ C )
      = ( times_times_real @ A @ ( times_times_real @ B @ C ) ) ) ).

% mult.assoc
thf(fact_1505_mult_Oassoc,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( times_times_rat @ ( times_times_rat @ A @ B ) @ C )
      = ( times_times_rat @ A @ ( times_times_rat @ B @ C ) ) ) ).

% mult.assoc
thf(fact_1506_mult_Oassoc,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( times_times_nat @ ( times_times_nat @ A @ B ) @ C )
      = ( times_times_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).

% mult.assoc
thf(fact_1507_mult_Oassoc,axiom,
    ! [A: int,B: int,C: int] :
      ( ( times_times_int @ ( times_times_int @ A @ B ) @ C )
      = ( times_times_int @ A @ ( times_times_int @ B @ C ) ) ) ).

% mult.assoc
thf(fact_1508_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
    ! [A: real,B: real,C: real] :
      ( ( times_times_real @ ( times_times_real @ A @ B ) @ C )
      = ( times_times_real @ A @ ( times_times_real @ B @ C ) ) ) ).

% ab_semigroup_mult_class.mult_ac(1)
thf(fact_1509_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( times_times_rat @ ( times_times_rat @ A @ B ) @ C )
      = ( times_times_rat @ A @ ( times_times_rat @ B @ C ) ) ) ).

% ab_semigroup_mult_class.mult_ac(1)
thf(fact_1510_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( times_times_nat @ ( times_times_nat @ A @ B ) @ C )
      = ( times_times_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).

% ab_semigroup_mult_class.mult_ac(1)
thf(fact_1511_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
    ! [A: int,B: int,C: int] :
      ( ( times_times_int @ ( times_times_int @ A @ B ) @ C )
      = ( times_times_int @ A @ ( times_times_int @ B @ C ) ) ) ).

% ab_semigroup_mult_class.mult_ac(1)
thf(fact_1512_one__reorient,axiom,
    ! [X2: complex] :
      ( ( one_one_complex = X2 )
      = ( X2 = one_one_complex ) ) ).

% one_reorient
thf(fact_1513_one__reorient,axiom,
    ! [X2: real] :
      ( ( one_one_real = X2 )
      = ( X2 = one_one_real ) ) ).

% one_reorient
thf(fact_1514_one__reorient,axiom,
    ! [X2: rat] :
      ( ( one_one_rat = X2 )
      = ( X2 = one_one_rat ) ) ).

% one_reorient
thf(fact_1515_one__reorient,axiom,
    ! [X2: nat] :
      ( ( one_one_nat = X2 )
      = ( X2 = one_one_nat ) ) ).

% one_reorient
thf(fact_1516_one__reorient,axiom,
    ! [X2: int] :
      ( ( one_one_int = X2 )
      = ( X2 = one_one_int ) ) ).

% one_reorient
thf(fact_1517_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
    ! [A: real,B: real,C: real] :
      ( ( plus_plus_real @ ( plus_plus_real @ A @ B ) @ C )
      = ( plus_plus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).

% ab_semigroup_add_class.add_ac(1)
thf(fact_1518_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( plus_plus_rat @ ( plus_plus_rat @ A @ B ) @ C )
      = ( plus_plus_rat @ A @ ( plus_plus_rat @ B @ C ) ) ) ).

% ab_semigroup_add_class.add_ac(1)
thf(fact_1519_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( plus_plus_nat @ ( plus_plus_nat @ A @ B ) @ C )
      = ( plus_plus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).

% ab_semigroup_add_class.add_ac(1)
thf(fact_1520_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
    ! [A: int,B: int,C: int] :
      ( ( plus_plus_int @ ( plus_plus_int @ A @ B ) @ C )
      = ( plus_plus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).

% ab_semigroup_add_class.add_ac(1)
thf(fact_1521_add__mono__thms__linordered__semiring_I4_J,axiom,
    ! [I: real,J: real,K: real,L: real] :
      ( ( ( I = J )
        & ( K = L ) )
     => ( ( plus_plus_real @ I @ K )
        = ( plus_plus_real @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(4)
thf(fact_1522_add__mono__thms__linordered__semiring_I4_J,axiom,
    ! [I: rat,J: rat,K: rat,L: rat] :
      ( ( ( I = J )
        & ( K = L ) )
     => ( ( plus_plus_rat @ I @ K )
        = ( plus_plus_rat @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(4)
thf(fact_1523_add__mono__thms__linordered__semiring_I4_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( I = J )
        & ( K = L ) )
     => ( ( plus_plus_nat @ I @ K )
        = ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(4)
thf(fact_1524_add__mono__thms__linordered__semiring_I4_J,axiom,
    ! [I: int,J: int,K: int,L: int] :
      ( ( ( I = J )
        & ( K = L ) )
     => ( ( plus_plus_int @ I @ K )
        = ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(4)
thf(fact_1525_group__cancel_Oadd1,axiom,
    ! [A2: real,K: real,A: real,B: real] :
      ( ( A2
        = ( plus_plus_real @ K @ A ) )
     => ( ( plus_plus_real @ A2 @ B )
        = ( plus_plus_real @ K @ ( plus_plus_real @ A @ B ) ) ) ) ).

% group_cancel.add1
thf(fact_1526_group__cancel_Oadd1,axiom,
    ! [A2: rat,K: rat,A: rat,B: rat] :
      ( ( A2
        = ( plus_plus_rat @ K @ A ) )
     => ( ( plus_plus_rat @ A2 @ B )
        = ( plus_plus_rat @ K @ ( plus_plus_rat @ A @ B ) ) ) ) ).

% group_cancel.add1
thf(fact_1527_group__cancel_Oadd1,axiom,
    ! [A2: nat,K: nat,A: nat,B: nat] :
      ( ( A2
        = ( plus_plus_nat @ K @ A ) )
     => ( ( plus_plus_nat @ A2 @ B )
        = ( plus_plus_nat @ K @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% group_cancel.add1
thf(fact_1528_group__cancel_Oadd1,axiom,
    ! [A2: int,K: int,A: int,B: int] :
      ( ( A2
        = ( plus_plus_int @ K @ A ) )
     => ( ( plus_plus_int @ A2 @ B )
        = ( plus_plus_int @ K @ ( plus_plus_int @ A @ B ) ) ) ) ).

% group_cancel.add1
thf(fact_1529_group__cancel_Oadd2,axiom,
    ! [B3: real,K: real,B: real,A: real] :
      ( ( B3
        = ( plus_plus_real @ K @ B ) )
     => ( ( plus_plus_real @ A @ B3 )
        = ( plus_plus_real @ K @ ( plus_plus_real @ A @ B ) ) ) ) ).

% group_cancel.add2
thf(fact_1530_group__cancel_Oadd2,axiom,
    ! [B3: rat,K: rat,B: rat,A: rat] :
      ( ( B3
        = ( plus_plus_rat @ K @ B ) )
     => ( ( plus_plus_rat @ A @ B3 )
        = ( plus_plus_rat @ K @ ( plus_plus_rat @ A @ B ) ) ) ) ).

% group_cancel.add2
thf(fact_1531_group__cancel_Oadd2,axiom,
    ! [B3: nat,K: nat,B: nat,A: nat] :
      ( ( B3
        = ( plus_plus_nat @ K @ B ) )
     => ( ( plus_plus_nat @ A @ B3 )
        = ( plus_plus_nat @ K @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% group_cancel.add2
thf(fact_1532_group__cancel_Oadd2,axiom,
    ! [B3: int,K: int,B: int,A: int] :
      ( ( B3
        = ( plus_plus_int @ K @ B ) )
     => ( ( plus_plus_int @ A @ B3 )
        = ( plus_plus_int @ K @ ( plus_plus_int @ A @ B ) ) ) ) ).

% group_cancel.add2
thf(fact_1533_add_Oassoc,axiom,
    ! [A: real,B: real,C: real] :
      ( ( plus_plus_real @ ( plus_plus_real @ A @ B ) @ C )
      = ( plus_plus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).

% add.assoc
thf(fact_1534_add_Oassoc,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( plus_plus_rat @ ( plus_plus_rat @ A @ B ) @ C )
      = ( plus_plus_rat @ A @ ( plus_plus_rat @ B @ C ) ) ) ).

% add.assoc
thf(fact_1535_add_Oassoc,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( plus_plus_nat @ ( plus_plus_nat @ A @ B ) @ C )
      = ( plus_plus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).

% add.assoc
thf(fact_1536_add_Oassoc,axiom,
    ! [A: int,B: int,C: int] :
      ( ( plus_plus_int @ ( plus_plus_int @ A @ B ) @ C )
      = ( plus_plus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).

% add.assoc
thf(fact_1537_add_Oleft__cancel,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ( plus_plus_real @ A @ B )
        = ( plus_plus_real @ A @ C ) )
      = ( B = C ) ) ).

% add.left_cancel
thf(fact_1538_add_Oleft__cancel,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ( plus_plus_rat @ A @ B )
        = ( plus_plus_rat @ A @ C ) )
      = ( B = C ) ) ).

% add.left_cancel
thf(fact_1539_add_Oleft__cancel,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ( plus_plus_int @ A @ B )
        = ( plus_plus_int @ A @ C ) )
      = ( B = C ) ) ).

% add.left_cancel
thf(fact_1540_add_Oright__cancel,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ( plus_plus_real @ B @ A )
        = ( plus_plus_real @ C @ A ) )
      = ( B = C ) ) ).

% add.right_cancel
thf(fact_1541_add_Oright__cancel,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( ( plus_plus_rat @ B @ A )
        = ( plus_plus_rat @ C @ A ) )
      = ( B = C ) ) ).

% add.right_cancel
thf(fact_1542_add_Oright__cancel,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ( plus_plus_int @ B @ A )
        = ( plus_plus_int @ C @ A ) )
      = ( B = C ) ) ).

% add.right_cancel
thf(fact_1543_add_Ocommute,axiom,
    ( plus_plus_real
    = ( ^ [A3: real,B2: real] : ( plus_plus_real @ B2 @ A3 ) ) ) ).

% add.commute
thf(fact_1544_add_Ocommute,axiom,
    ( plus_plus_rat
    = ( ^ [A3: rat,B2: rat] : ( plus_plus_rat @ B2 @ A3 ) ) ) ).

% add.commute
thf(fact_1545_add_Ocommute,axiom,
    ( plus_plus_nat
    = ( ^ [A3: nat,B2: nat] : ( plus_plus_nat @ B2 @ A3 ) ) ) ).

% add.commute
thf(fact_1546_add_Ocommute,axiom,
    ( plus_plus_int
    = ( ^ [A3: int,B2: int] : ( plus_plus_int @ B2 @ A3 ) ) ) ).

% add.commute
thf(fact_1547_add_Oleft__commute,axiom,
    ! [B: real,A: real,C: real] :
      ( ( plus_plus_real @ B @ ( plus_plus_real @ A @ C ) )
      = ( plus_plus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).

% add.left_commute
thf(fact_1548_add_Oleft__commute,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( plus_plus_rat @ B @ ( plus_plus_rat @ A @ C ) )
      = ( plus_plus_rat @ A @ ( plus_plus_rat @ B @ C ) ) ) ).

% add.left_commute
thf(fact_1549_add_Oleft__commute,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( plus_plus_nat @ B @ ( plus_plus_nat @ A @ C ) )
      = ( plus_plus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).

% add.left_commute
thf(fact_1550_add_Oleft__commute,axiom,
    ! [B: int,A: int,C: int] :
      ( ( plus_plus_int @ B @ ( plus_plus_int @ A @ C ) )
      = ( plus_plus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).

% add.left_commute
thf(fact_1551_add__left__imp__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ( plus_plus_real @ A @ B )
        = ( plus_plus_real @ A @ C ) )
     => ( B = C ) ) ).

% add_left_imp_eq
thf(fact_1552_add__left__imp__eq,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ( plus_plus_rat @ A @ B )
        = ( plus_plus_rat @ A @ C ) )
     => ( B = C ) ) ).

% add_left_imp_eq
thf(fact_1553_add__left__imp__eq,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ( plus_plus_nat @ A @ B )
        = ( plus_plus_nat @ A @ C ) )
     => ( B = C ) ) ).

% add_left_imp_eq
thf(fact_1554_add__left__imp__eq,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ( plus_plus_int @ A @ B )
        = ( plus_plus_int @ A @ C ) )
     => ( B = C ) ) ).

% add_left_imp_eq
thf(fact_1555_add__right__imp__eq,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ( plus_plus_real @ B @ A )
        = ( plus_plus_real @ C @ A ) )
     => ( B = C ) ) ).

% add_right_imp_eq
thf(fact_1556_add__right__imp__eq,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( ( plus_plus_rat @ B @ A )
        = ( plus_plus_rat @ C @ A ) )
     => ( B = C ) ) ).

% add_right_imp_eq
thf(fact_1557_add__right__imp__eq,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ( plus_plus_nat @ B @ A )
        = ( plus_plus_nat @ C @ A ) )
     => ( B = C ) ) ).

% add_right_imp_eq
thf(fact_1558_add__right__imp__eq,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ( plus_plus_int @ B @ A )
        = ( plus_plus_int @ C @ A ) )
     => ( B = C ) ) ).

% add_right_imp_eq
thf(fact_1559_neq__if__length__neq,axiom,
    ! [Xs2: list_VEBT_VEBT,Ys: list_VEBT_VEBT] :
      ( ( ( size_s6755466524823107622T_VEBT @ Xs2 )
       != ( size_s6755466524823107622T_VEBT @ Ys ) )
     => ( Xs2 != Ys ) ) ).

% neq_if_length_neq
thf(fact_1560_neq__if__length__neq,axiom,
    ! [Xs2: list_o,Ys: list_o] :
      ( ( ( size_size_list_o @ Xs2 )
       != ( size_size_list_o @ Ys ) )
     => ( Xs2 != Ys ) ) ).

% neq_if_length_neq
thf(fact_1561_neq__if__length__neq,axiom,
    ! [Xs2: list_int,Ys: list_int] :
      ( ( ( size_size_list_int @ Xs2 )
       != ( size_size_list_int @ Ys ) )
     => ( Xs2 != Ys ) ) ).

% neq_if_length_neq
thf(fact_1562_Ex__list__of__length,axiom,
    ! [N: nat] :
    ? [Xs3: list_VEBT_VEBT] :
      ( ( size_s6755466524823107622T_VEBT @ Xs3 )
      = N ) ).

% Ex_list_of_length
thf(fact_1563_Ex__list__of__length,axiom,
    ! [N: nat] :
    ? [Xs3: list_o] :
      ( ( size_size_list_o @ Xs3 )
      = N ) ).

% Ex_list_of_length
thf(fact_1564_Ex__list__of__length,axiom,
    ! [N: nat] :
    ? [Xs3: list_int] :
      ( ( size_size_list_int @ Xs3 )
      = N ) ).

% Ex_list_of_length
thf(fact_1565_power2__commute,axiom,
    ! [X2: complex,Y2: complex] :
      ( ( power_power_complex @ ( minus_minus_complex @ X2 @ Y2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( power_power_complex @ ( minus_minus_complex @ Y2 @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power2_commute
thf(fact_1566_power2__commute,axiom,
    ! [X2: real,Y2: real] :
      ( ( power_power_real @ ( minus_minus_real @ X2 @ Y2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( power_power_real @ ( minus_minus_real @ Y2 @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power2_commute
thf(fact_1567_power2__commute,axiom,
    ! [X2: rat,Y2: rat] :
      ( ( power_power_rat @ ( minus_minus_rat @ X2 @ Y2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( power_power_rat @ ( minus_minus_rat @ Y2 @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power2_commute
thf(fact_1568_power2__commute,axiom,
    ! [X2: int,Y2: int] :
      ( ( power_power_int @ ( minus_minus_int @ X2 @ Y2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( power_power_int @ ( minus_minus_int @ Y2 @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power2_commute
thf(fact_1569_nat__less__add__iff1,axiom,
    ! [J: nat,I: nat,U: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ J @ I )
     => ( ( ord_less_nat @ ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
        = ( ord_less_nat @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ I @ J ) @ U ) @ M ) @ N ) ) ) ).

% nat_less_add_iff1
thf(fact_1570_nat__less__add__iff2,axiom,
    ! [I: nat,J: nat,U: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( ord_less_nat @ ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
        = ( ord_less_nat @ M @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ J @ I ) @ U ) @ N ) ) ) ) ).

% nat_less_add_iff2
thf(fact_1571_diff__le__diff__pow,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K )
     => ( ord_less_eq_nat @ ( minus_minus_nat @ M @ N ) @ ( minus_minus_nat @ ( power_power_nat @ K @ M ) @ ( power_power_nat @ K @ N ) ) ) ) ).

% diff_le_diff_pow
thf(fact_1572_add__mono__thms__linordered__semiring_I3_J,axiom,
    ! [I: real,J: real,K: real,L: real] :
      ( ( ( ord_less_eq_real @ I @ J )
        & ( K = L ) )
     => ( ord_less_eq_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(3)
thf(fact_1573_add__mono__thms__linordered__semiring_I3_J,axiom,
    ! [I: rat,J: rat,K: rat,L: rat] :
      ( ( ( ord_less_eq_rat @ I @ J )
        & ( K = L ) )
     => ( ord_less_eq_rat @ ( plus_plus_rat @ I @ K ) @ ( plus_plus_rat @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(3)
thf(fact_1574_add__mono__thms__linordered__semiring_I3_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( ord_less_eq_nat @ I @ J )
        & ( K = L ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(3)
thf(fact_1575_add__mono__thms__linordered__semiring_I3_J,axiom,
    ! [I: int,J: int,K: int,L: int] :
      ( ( ( ord_less_eq_int @ I @ J )
        & ( K = L ) )
     => ( ord_less_eq_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(3)
thf(fact_1576_add__mono__thms__linordered__semiring_I2_J,axiom,
    ! [I: real,J: real,K: real,L: real] :
      ( ( ( I = J )
        & ( ord_less_eq_real @ K @ L ) )
     => ( ord_less_eq_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(2)
thf(fact_1577_add__mono__thms__linordered__semiring_I2_J,axiom,
    ! [I: rat,J: rat,K: rat,L: rat] :
      ( ( ( I = J )
        & ( ord_less_eq_rat @ K @ L ) )
     => ( ord_less_eq_rat @ ( plus_plus_rat @ I @ K ) @ ( plus_plus_rat @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(2)
thf(fact_1578_add__mono__thms__linordered__semiring_I2_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( I = J )
        & ( ord_less_eq_nat @ K @ L ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(2)
thf(fact_1579_add__mono__thms__linordered__semiring_I2_J,axiom,
    ! [I: int,J: int,K: int,L: int] :
      ( ( ( I = J )
        & ( ord_less_eq_int @ K @ L ) )
     => ( ord_less_eq_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(2)
thf(fact_1580_add__mono__thms__linordered__semiring_I1_J,axiom,
    ! [I: real,J: real,K: real,L: real] :
      ( ( ( ord_less_eq_real @ I @ J )
        & ( ord_less_eq_real @ K @ L ) )
     => ( ord_less_eq_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(1)
thf(fact_1581_add__mono__thms__linordered__semiring_I1_J,axiom,
    ! [I: rat,J: rat,K: rat,L: rat] :
      ( ( ( ord_less_eq_rat @ I @ J )
        & ( ord_less_eq_rat @ K @ L ) )
     => ( ord_less_eq_rat @ ( plus_plus_rat @ I @ K ) @ ( plus_plus_rat @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(1)
thf(fact_1582_add__mono__thms__linordered__semiring_I1_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( ord_less_eq_nat @ I @ J )
        & ( ord_less_eq_nat @ K @ L ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(1)
thf(fact_1583_add__mono__thms__linordered__semiring_I1_J,axiom,
    ! [I: int,J: int,K: int,L: int] :
      ( ( ( ord_less_eq_int @ I @ J )
        & ( ord_less_eq_int @ K @ L ) )
     => ( ord_less_eq_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(1)
thf(fact_1584_add__mono,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ C @ D )
       => ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ D ) ) ) ) ).

% add_mono
thf(fact_1585_add__mono,axiom,
    ! [A: rat,B: rat,C: rat,D: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_rat @ C @ D )
       => ( ord_less_eq_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ D ) ) ) ) ).

% add_mono
thf(fact_1586_add__mono,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ D )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ D ) ) ) ) ).

% add_mono
thf(fact_1587_add__mono,axiom,
    ! [A: int,B: int,C: int,D: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ C @ D )
       => ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ D ) ) ) ) ).

% add_mono
thf(fact_1588_add__left__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ord_less_eq_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) ) ) ).

% add_left_mono
thf(fact_1589_add__left__mono,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ord_less_eq_rat @ ( plus_plus_rat @ C @ A ) @ ( plus_plus_rat @ C @ B ) ) ) ).

% add_left_mono
thf(fact_1590_add__left__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) ) ) ).

% add_left_mono
thf(fact_1591_add__left__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ord_less_eq_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) ) ) ).

% add_left_mono
thf(fact_1592_less__eqE,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ~ ! [C5: nat] :
            ( B
           != ( plus_plus_nat @ A @ C5 ) ) ) ).

% less_eqE
thf(fact_1593_add__right__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) ) ) ).

% add_right_mono
thf(fact_1594_add__right__mono,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ord_less_eq_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ C ) ) ) ).

% add_right_mono
thf(fact_1595_add__right__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) ) ) ).

% add_right_mono
thf(fact_1596_add__right__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) ) ) ).

% add_right_mono
thf(fact_1597_le__iff__add,axiom,
    ( ord_less_eq_nat
    = ( ^ [A3: nat,B2: nat] :
        ? [C6: nat] :
          ( B2
          = ( plus_plus_nat @ A3 @ C6 ) ) ) ) ).

% le_iff_add
thf(fact_1598_add__le__imp__le__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) )
     => ( ord_less_eq_real @ A @ B ) ) ).

% add_le_imp_le_left
thf(fact_1599_add__le__imp__le__left,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( plus_plus_rat @ C @ A ) @ ( plus_plus_rat @ C @ B ) )
     => ( ord_less_eq_rat @ A @ B ) ) ).

% add_le_imp_le_left
thf(fact_1600_add__le__imp__le__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
     => ( ord_less_eq_nat @ A @ B ) ) ).

% add_le_imp_le_left
thf(fact_1601_add__le__imp__le__left,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
     => ( ord_less_eq_int @ A @ B ) ) ).

% add_le_imp_le_left
thf(fact_1602_add__le__imp__le__right,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) )
     => ( ord_less_eq_real @ A @ B ) ) ).

% add_le_imp_le_right
thf(fact_1603_add__le__imp__le__right,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ C ) )
     => ( ord_less_eq_rat @ A @ B ) ) ).

% add_le_imp_le_right
thf(fact_1604_add__le__imp__le__right,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
     => ( ord_less_eq_nat @ A @ B ) ) ).

% add_le_imp_le_right
thf(fact_1605_add__le__imp__le__right,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
     => ( ord_less_eq_int @ A @ B ) ) ).

% add_le_imp_le_right
thf(fact_1606_add__mono__thms__linordered__field_I5_J,axiom,
    ! [I: real,J: real,K: real,L: real] :
      ( ( ( ord_less_real @ I @ J )
        & ( ord_less_real @ K @ L ) )
     => ( ord_less_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(5)
thf(fact_1607_add__mono__thms__linordered__field_I5_J,axiom,
    ! [I: rat,J: rat,K: rat,L: rat] :
      ( ( ( ord_less_rat @ I @ J )
        & ( ord_less_rat @ K @ L ) )
     => ( ord_less_rat @ ( plus_plus_rat @ I @ K ) @ ( plus_plus_rat @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(5)
thf(fact_1608_add__mono__thms__linordered__field_I5_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( ord_less_nat @ I @ J )
        & ( ord_less_nat @ K @ L ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(5)
thf(fact_1609_add__mono__thms__linordered__field_I5_J,axiom,
    ! [I: int,J: int,K: int,L: int] :
      ( ( ( ord_less_int @ I @ J )
        & ( ord_less_int @ K @ L ) )
     => ( ord_less_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(5)
thf(fact_1610_add__mono__thms__linordered__field_I2_J,axiom,
    ! [I: real,J: real,K: real,L: real] :
      ( ( ( I = J )
        & ( ord_less_real @ K @ L ) )
     => ( ord_less_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(2)
thf(fact_1611_add__mono__thms__linordered__field_I2_J,axiom,
    ! [I: rat,J: rat,K: rat,L: rat] :
      ( ( ( I = J )
        & ( ord_less_rat @ K @ L ) )
     => ( ord_less_rat @ ( plus_plus_rat @ I @ K ) @ ( plus_plus_rat @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(2)
thf(fact_1612_add__mono__thms__linordered__field_I2_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( I = J )
        & ( ord_less_nat @ K @ L ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(2)
thf(fact_1613_add__mono__thms__linordered__field_I2_J,axiom,
    ! [I: int,J: int,K: int,L: int] :
      ( ( ( I = J )
        & ( ord_less_int @ K @ L ) )
     => ( ord_less_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(2)
thf(fact_1614_add__mono__thms__linordered__field_I1_J,axiom,
    ! [I: real,J: real,K: real,L: real] :
      ( ( ( ord_less_real @ I @ J )
        & ( K = L ) )
     => ( ord_less_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(1)
thf(fact_1615_add__mono__thms__linordered__field_I1_J,axiom,
    ! [I: rat,J: rat,K: rat,L: rat] :
      ( ( ( ord_less_rat @ I @ J )
        & ( K = L ) )
     => ( ord_less_rat @ ( plus_plus_rat @ I @ K ) @ ( plus_plus_rat @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(1)
thf(fact_1616_add__mono__thms__linordered__field_I1_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( ord_less_nat @ I @ J )
        & ( K = L ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(1)
thf(fact_1617_add__mono__thms__linordered__field_I1_J,axiom,
    ! [I: int,J: int,K: int,L: int] :
      ( ( ( ord_less_int @ I @ J )
        & ( K = L ) )
     => ( ord_less_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(1)
thf(fact_1618_add__strict__mono,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ C @ D )
       => ( ord_less_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ D ) ) ) ) ).

% add_strict_mono
thf(fact_1619_add__strict__mono,axiom,
    ! [A: rat,B: rat,C: rat,D: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_rat @ C @ D )
       => ( ord_less_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ D ) ) ) ) ).

% add_strict_mono
thf(fact_1620_add__strict__mono,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ C @ D )
       => ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ D ) ) ) ) ).

% add_strict_mono
thf(fact_1621_add__strict__mono,axiom,
    ! [A: int,B: int,C: int,D: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_int @ C @ D )
       => ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ D ) ) ) ) ).

% add_strict_mono
thf(fact_1622_add__strict__left__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ord_less_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) ) ) ).

% add_strict_left_mono
thf(fact_1623_add__strict__left__mono,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ord_less_rat @ ( plus_plus_rat @ C @ A ) @ ( plus_plus_rat @ C @ B ) ) ) ).

% add_strict_left_mono
thf(fact_1624_add__strict__left__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ord_less_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) ) ) ).

% add_strict_left_mono
thf(fact_1625_add__strict__left__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ord_less_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) ) ) ).

% add_strict_left_mono
thf(fact_1626_add__strict__right__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ord_less_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) ) ) ).

% add_strict_right_mono
thf(fact_1627_add__strict__right__mono,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ord_less_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ C ) ) ) ).

% add_strict_right_mono
thf(fact_1628_add__strict__right__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) ) ) ).

% add_strict_right_mono
thf(fact_1629_add__strict__right__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) ) ) ).

% add_strict_right_mono
thf(fact_1630_add__less__imp__less__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) )
     => ( ord_less_real @ A @ B ) ) ).

% add_less_imp_less_left
thf(fact_1631_add__less__imp__less__left,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ ( plus_plus_rat @ C @ A ) @ ( plus_plus_rat @ C @ B ) )
     => ( ord_less_rat @ A @ B ) ) ).

% add_less_imp_less_left
thf(fact_1632_add__less__imp__less__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
     => ( ord_less_nat @ A @ B ) ) ).

% add_less_imp_less_left
thf(fact_1633_add__less__imp__less__left,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
     => ( ord_less_int @ A @ B ) ) ).

% add_less_imp_less_left
thf(fact_1634_add__less__imp__less__right,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) )
     => ( ord_less_real @ A @ B ) ) ).

% add_less_imp_less_right
thf(fact_1635_add__less__imp__less__right,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( ord_less_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ C ) )
     => ( ord_less_rat @ A @ B ) ) ).

% add_less_imp_less_right
thf(fact_1636_add__less__imp__less__right,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
     => ( ord_less_nat @ A @ B ) ) ).

% add_less_imp_less_right
thf(fact_1637_add__less__imp__less__right,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
     => ( ord_less_int @ A @ B ) ) ).

% add_less_imp_less_right
thf(fact_1638_comm__monoid__mult__class_Omult__1,axiom,
    ! [A: complex] :
      ( ( times_times_complex @ one_one_complex @ A )
      = A ) ).

% comm_monoid_mult_class.mult_1
thf(fact_1639_comm__monoid__mult__class_Omult__1,axiom,
    ! [A: real] :
      ( ( times_times_real @ one_one_real @ A )
      = A ) ).

% comm_monoid_mult_class.mult_1
thf(fact_1640_comm__monoid__mult__class_Omult__1,axiom,
    ! [A: rat] :
      ( ( times_times_rat @ one_one_rat @ A )
      = A ) ).

% comm_monoid_mult_class.mult_1
thf(fact_1641_comm__monoid__mult__class_Omult__1,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ one_one_nat @ A )
      = A ) ).

% comm_monoid_mult_class.mult_1
thf(fact_1642_comm__monoid__mult__class_Omult__1,axiom,
    ! [A: int] :
      ( ( times_times_int @ one_one_int @ A )
      = A ) ).

% comm_monoid_mult_class.mult_1
thf(fact_1643_mult_Ocomm__neutral,axiom,
    ! [A: complex] :
      ( ( times_times_complex @ A @ one_one_complex )
      = A ) ).

% mult.comm_neutral
thf(fact_1644_mult_Ocomm__neutral,axiom,
    ! [A: real] :
      ( ( times_times_real @ A @ one_one_real )
      = A ) ).

% mult.comm_neutral
thf(fact_1645_mult_Ocomm__neutral,axiom,
    ! [A: rat] :
      ( ( times_times_rat @ A @ one_one_rat )
      = A ) ).

% mult.comm_neutral
thf(fact_1646_mult_Ocomm__neutral,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ A @ one_one_nat )
      = A ) ).

% mult.comm_neutral
thf(fact_1647_mult_Ocomm__neutral,axiom,
    ! [A: int] :
      ( ( times_times_int @ A @ one_one_int )
      = A ) ).

% mult.comm_neutral
thf(fact_1648_power2__diff,axiom,
    ! [X2: complex,Y2: complex] :
      ( ( power_power_complex @ ( minus_minus_complex @ X2 @ Y2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( minus_minus_complex @ ( plus_plus_complex @ ( power_power_complex @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_complex @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ X2 ) @ Y2 ) ) ) ).

% power2_diff
thf(fact_1649_power2__diff,axiom,
    ! [X2: real,Y2: real] :
      ( ( power_power_real @ ( minus_minus_real @ X2 @ Y2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( minus_minus_real @ ( plus_plus_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X2 ) @ Y2 ) ) ) ).

% power2_diff
thf(fact_1650_power2__diff,axiom,
    ! [X2: rat,Y2: rat] :
      ( ( power_power_rat @ ( minus_minus_rat @ X2 @ Y2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( minus_minus_rat @ ( plus_plus_rat @ ( power_power_rat @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_rat @ ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ X2 ) @ Y2 ) ) ) ).

% power2_diff
thf(fact_1651_power2__diff,axiom,
    ! [X2: int,Y2: int] :
      ( ( power_power_int @ ( minus_minus_int @ X2 @ Y2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( minus_minus_int @ ( plus_plus_int @ ( power_power_int @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ X2 ) @ Y2 ) ) ) ).

% power2_diff
thf(fact_1652_subset__code_I1_J,axiom,
    ! [Xs2: list_complex,B3: set_complex] :
      ( ( ord_le211207098394363844omplex @ ( set_complex2 @ Xs2 ) @ B3 )
      = ( ! [X: complex] :
            ( ( member_complex @ X @ ( set_complex2 @ Xs2 ) )
           => ( member_complex @ X @ B3 ) ) ) ) ).

% subset_code(1)
thf(fact_1653_subset__code_I1_J,axiom,
    ! [Xs2: list_real,B3: set_real] :
      ( ( ord_less_eq_set_real @ ( set_real2 @ Xs2 ) @ B3 )
      = ( ! [X: real] :
            ( ( member_real @ X @ ( set_real2 @ Xs2 ) )
           => ( member_real @ X @ B3 ) ) ) ) ).

% subset_code(1)
thf(fact_1654_subset__code_I1_J,axiom,
    ! [Xs2: list_set_nat,B3: set_set_nat] :
      ( ( ord_le6893508408891458716et_nat @ ( set_set_nat2 @ Xs2 ) @ B3 )
      = ( ! [X: set_nat] :
            ( ( member_set_nat @ X @ ( set_set_nat2 @ Xs2 ) )
           => ( member_set_nat @ X @ B3 ) ) ) ) ).

% subset_code(1)
thf(fact_1655_subset__code_I1_J,axiom,
    ! [Xs2: list_nat,B3: set_nat] :
      ( ( ord_less_eq_set_nat @ ( set_nat2 @ Xs2 ) @ B3 )
      = ( ! [X: nat] :
            ( ( member_nat @ X @ ( set_nat2 @ Xs2 ) )
           => ( member_nat @ X @ B3 ) ) ) ) ).

% subset_code(1)
thf(fact_1656_subset__code_I1_J,axiom,
    ! [Xs2: list_VEBT_VEBT,B3: set_VEBT_VEBT] :
      ( ( ord_le4337996190870823476T_VEBT @ ( set_VEBT_VEBT2 @ Xs2 ) @ B3 )
      = ( ! [X: vEBT_VEBT] :
            ( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ Xs2 ) )
           => ( member_VEBT_VEBT @ X @ B3 ) ) ) ) ).

% subset_code(1)
thf(fact_1657_subset__code_I1_J,axiom,
    ! [Xs2: list_int,B3: set_int] :
      ( ( ord_less_eq_set_int @ ( set_int2 @ Xs2 ) @ B3 )
      = ( ! [X: int] :
            ( ( member_int @ X @ ( set_int2 @ Xs2 ) )
           => ( member_int @ X @ B3 ) ) ) ) ).

% subset_code(1)
thf(fact_1658_length__induct,axiom,
    ! [P: list_VEBT_VEBT > $o,Xs2: list_VEBT_VEBT] :
      ( ! [Xs3: list_VEBT_VEBT] :
          ( ! [Ys2: list_VEBT_VEBT] :
              ( ( ord_less_nat @ ( size_s6755466524823107622T_VEBT @ Ys2 ) @ ( size_s6755466524823107622T_VEBT @ Xs3 ) )
             => ( P @ Ys2 ) )
         => ( P @ Xs3 ) )
     => ( P @ Xs2 ) ) ).

% length_induct
thf(fact_1659_length__induct,axiom,
    ! [P: list_o > $o,Xs2: list_o] :
      ( ! [Xs3: list_o] :
          ( ! [Ys2: list_o] :
              ( ( ord_less_nat @ ( size_size_list_o @ Ys2 ) @ ( size_size_list_o @ Xs3 ) )
             => ( P @ Ys2 ) )
         => ( P @ Xs3 ) )
     => ( P @ Xs2 ) ) ).

% length_induct
thf(fact_1660_length__induct,axiom,
    ! [P: list_int > $o,Xs2: list_int] :
      ( ! [Xs3: list_int] :
          ( ! [Ys2: list_int] :
              ( ( ord_less_nat @ ( size_size_list_int @ Ys2 ) @ ( size_size_list_int @ Xs3 ) )
             => ( P @ Ys2 ) )
         => ( P @ Xs3 ) )
     => ( P @ Xs2 ) ) ).

% length_induct
thf(fact_1661_max__add__distrib__left,axiom,
    ! [X2: real,Y2: real,Z: real] :
      ( ( plus_plus_real @ ( ord_max_real @ X2 @ Y2 ) @ Z )
      = ( ord_max_real @ ( plus_plus_real @ X2 @ Z ) @ ( plus_plus_real @ Y2 @ Z ) ) ) ).

% max_add_distrib_left
thf(fact_1662_max__add__distrib__left,axiom,
    ! [X2: rat,Y2: rat,Z: rat] :
      ( ( plus_plus_rat @ ( ord_max_rat @ X2 @ Y2 ) @ Z )
      = ( ord_max_rat @ ( plus_plus_rat @ X2 @ Z ) @ ( plus_plus_rat @ Y2 @ Z ) ) ) ).

% max_add_distrib_left
thf(fact_1663_max__add__distrib__left,axiom,
    ! [X2: nat,Y2: nat,Z: nat] :
      ( ( plus_plus_nat @ ( ord_max_nat @ X2 @ Y2 ) @ Z )
      = ( ord_max_nat @ ( plus_plus_nat @ X2 @ Z ) @ ( plus_plus_nat @ Y2 @ Z ) ) ) ).

% max_add_distrib_left
thf(fact_1664_max__add__distrib__left,axiom,
    ! [X2: int,Y2: int,Z: int] :
      ( ( plus_plus_int @ ( ord_max_int @ X2 @ Y2 ) @ Z )
      = ( ord_max_int @ ( plus_plus_int @ X2 @ Z ) @ ( plus_plus_int @ Y2 @ Z ) ) ) ).

% max_add_distrib_left
thf(fact_1665_max__add__distrib__right,axiom,
    ! [X2: real,Y2: real,Z: real] :
      ( ( plus_plus_real @ X2 @ ( ord_max_real @ Y2 @ Z ) )
      = ( ord_max_real @ ( plus_plus_real @ X2 @ Y2 ) @ ( plus_plus_real @ X2 @ Z ) ) ) ).

% max_add_distrib_right
thf(fact_1666_max__add__distrib__right,axiom,
    ! [X2: rat,Y2: rat,Z: rat] :
      ( ( plus_plus_rat @ X2 @ ( ord_max_rat @ Y2 @ Z ) )
      = ( ord_max_rat @ ( plus_plus_rat @ X2 @ Y2 ) @ ( plus_plus_rat @ X2 @ Z ) ) ) ).

% max_add_distrib_right
thf(fact_1667_max__add__distrib__right,axiom,
    ! [X2: nat,Y2: nat,Z: nat] :
      ( ( plus_plus_nat @ X2 @ ( ord_max_nat @ Y2 @ Z ) )
      = ( ord_max_nat @ ( plus_plus_nat @ X2 @ Y2 ) @ ( plus_plus_nat @ X2 @ Z ) ) ) ).

% max_add_distrib_right
thf(fact_1668_max__add__distrib__right,axiom,
    ! [X2: int,Y2: int,Z: int] :
      ( ( plus_plus_int @ X2 @ ( ord_max_int @ Y2 @ Z ) )
      = ( ord_max_int @ ( plus_plus_int @ X2 @ Y2 ) @ ( plus_plus_int @ X2 @ Z ) ) ) ).

% max_add_distrib_right
thf(fact_1669_add__mono__thms__linordered__field_I4_J,axiom,
    ! [I: real,J: real,K: real,L: real] :
      ( ( ( ord_less_eq_real @ I @ J )
        & ( ord_less_real @ K @ L ) )
     => ( ord_less_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(4)
thf(fact_1670_add__mono__thms__linordered__field_I4_J,axiom,
    ! [I: rat,J: rat,K: rat,L: rat] :
      ( ( ( ord_less_eq_rat @ I @ J )
        & ( ord_less_rat @ K @ L ) )
     => ( ord_less_rat @ ( plus_plus_rat @ I @ K ) @ ( plus_plus_rat @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(4)
thf(fact_1671_add__mono__thms__linordered__field_I4_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( ord_less_eq_nat @ I @ J )
        & ( ord_less_nat @ K @ L ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(4)
thf(fact_1672_add__mono__thms__linordered__field_I4_J,axiom,
    ! [I: int,J: int,K: int,L: int] :
      ( ( ( ord_less_eq_int @ I @ J )
        & ( ord_less_int @ K @ L ) )
     => ( ord_less_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(4)
thf(fact_1673_add__mono__thms__linordered__field_I3_J,axiom,
    ! [I: real,J: real,K: real,L: real] :
      ( ( ( ord_less_real @ I @ J )
        & ( ord_less_eq_real @ K @ L ) )
     => ( ord_less_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(3)
thf(fact_1674_add__mono__thms__linordered__field_I3_J,axiom,
    ! [I: rat,J: rat,K: rat,L: rat] :
      ( ( ( ord_less_rat @ I @ J )
        & ( ord_less_eq_rat @ K @ L ) )
     => ( ord_less_rat @ ( plus_plus_rat @ I @ K ) @ ( plus_plus_rat @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(3)
thf(fact_1675_add__mono__thms__linordered__field_I3_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( ord_less_nat @ I @ J )
        & ( ord_less_eq_nat @ K @ L ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(3)
thf(fact_1676_add__mono__thms__linordered__field_I3_J,axiom,
    ! [I: int,J: int,K: int,L: int] :
      ( ( ( ord_less_int @ I @ J )
        & ( ord_less_eq_int @ K @ L ) )
     => ( ord_less_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(3)
thf(fact_1677_add__le__less__mono,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_real @ C @ D )
       => ( ord_less_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ D ) ) ) ) ).

% add_le_less_mono
thf(fact_1678_add__le__less__mono,axiom,
    ! [A: rat,B: rat,C: rat,D: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_rat @ C @ D )
       => ( ord_less_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ D ) ) ) ) ).

% add_le_less_mono
thf(fact_1679_add__le__less__mono,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_nat @ C @ D )
       => ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ D ) ) ) ) ).

% add_le_less_mono
thf(fact_1680_add__le__less__mono,axiom,
    ! [A: int,B: int,C: int,D: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_int @ C @ D )
       => ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ D ) ) ) ) ).

% add_le_less_mono
thf(fact_1681_add__less__le__mono,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_eq_real @ C @ D )
       => ( ord_less_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ D ) ) ) ) ).

% add_less_le_mono
thf(fact_1682_add__less__le__mono,axiom,
    ! [A: rat,B: rat,C: rat,D: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_eq_rat @ C @ D )
       => ( ord_less_rat @ ( plus_plus_rat @ A @ C ) @ ( plus_plus_rat @ B @ D ) ) ) ) ).

% add_less_le_mono
thf(fact_1683_add__less__le__mono,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ D )
       => ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ D ) ) ) ) ).

% add_less_le_mono
thf(fact_1684_add__less__le__mono,axiom,
    ! [A: int,B: int,C: int,D: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_eq_int @ C @ D )
       => ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ D ) ) ) ) ).

% add_less_le_mono
thf(fact_1685_nth__equalityI,axiom,
    ! [Xs2: list_VEBT_VEBT,Ys: list_VEBT_VEBT] :
      ( ( ( size_s6755466524823107622T_VEBT @ Xs2 )
        = ( size_s6755466524823107622T_VEBT @ Ys ) )
     => ( ! [I3: nat] :
            ( ( ord_less_nat @ I3 @ ( size_s6755466524823107622T_VEBT @ Xs2 ) )
           => ( ( nth_VEBT_VEBT @ Xs2 @ I3 )
              = ( nth_VEBT_VEBT @ Ys @ I3 ) ) )
       => ( Xs2 = Ys ) ) ) ).

% nth_equalityI
thf(fact_1686_nth__equalityI,axiom,
    ! [Xs2: list_o,Ys: list_o] :
      ( ( ( size_size_list_o @ Xs2 )
        = ( size_size_list_o @ Ys ) )
     => ( ! [I3: nat] :
            ( ( ord_less_nat @ I3 @ ( size_size_list_o @ Xs2 ) )
           => ( ( nth_o @ Xs2 @ I3 )
              = ( nth_o @ Ys @ I3 ) ) )
       => ( Xs2 = Ys ) ) ) ).

% nth_equalityI
thf(fact_1687_nth__equalityI,axiom,
    ! [Xs2: list_int,Ys: list_int] :
      ( ( ( size_size_list_int @ Xs2 )
        = ( size_size_list_int @ Ys ) )
     => ( ! [I3: nat] :
            ( ( ord_less_nat @ I3 @ ( size_size_list_int @ Xs2 ) )
           => ( ( nth_int @ Xs2 @ I3 )
              = ( nth_int @ Ys @ I3 ) ) )
       => ( Xs2 = Ys ) ) ) ).

% nth_equalityI
thf(fact_1688_Skolem__list__nth,axiom,
    ! [K: nat,P: nat > vEBT_VEBT > $o] :
      ( ( ! [I4: nat] :
            ( ( ord_less_nat @ I4 @ K )
           => ? [X5: vEBT_VEBT] : ( P @ I4 @ X5 ) ) )
      = ( ? [Xs: list_VEBT_VEBT] :
            ( ( ( size_s6755466524823107622T_VEBT @ Xs )
              = K )
            & ! [I4: nat] :
                ( ( ord_less_nat @ I4 @ K )
               => ( P @ I4 @ ( nth_VEBT_VEBT @ Xs @ I4 ) ) ) ) ) ) ).

% Skolem_list_nth
thf(fact_1689_Skolem__list__nth,axiom,
    ! [K: nat,P: nat > $o > $o] :
      ( ( ! [I4: nat] :
            ( ( ord_less_nat @ I4 @ K )
           => ? [X5: $o] : ( P @ I4 @ X5 ) ) )
      = ( ? [Xs: list_o] :
            ( ( ( size_size_list_o @ Xs )
              = K )
            & ! [I4: nat] :
                ( ( ord_less_nat @ I4 @ K )
               => ( P @ I4 @ ( nth_o @ Xs @ I4 ) ) ) ) ) ) ).

% Skolem_list_nth
thf(fact_1690_Skolem__list__nth,axiom,
    ! [K: nat,P: nat > int > $o] :
      ( ( ! [I4: nat] :
            ( ( ord_less_nat @ I4 @ K )
           => ? [X5: int] : ( P @ I4 @ X5 ) ) )
      = ( ? [Xs: list_int] :
            ( ( ( size_size_list_int @ Xs )
              = K )
            & ! [I4: nat] :
                ( ( ord_less_nat @ I4 @ K )
               => ( P @ I4 @ ( nth_int @ Xs @ I4 ) ) ) ) ) ) ).

% Skolem_list_nth
thf(fact_1691_list__eq__iff__nth__eq,axiom,
    ( ( ^ [Y6: list_VEBT_VEBT,Z5: list_VEBT_VEBT] : ( Y6 = Z5 ) )
    = ( ^ [Xs: list_VEBT_VEBT,Ys3: list_VEBT_VEBT] :
          ( ( ( size_s6755466524823107622T_VEBT @ Xs )
            = ( size_s6755466524823107622T_VEBT @ Ys3 ) )
          & ! [I4: nat] :
              ( ( ord_less_nat @ I4 @ ( size_s6755466524823107622T_VEBT @ Xs ) )
             => ( ( nth_VEBT_VEBT @ Xs @ I4 )
                = ( nth_VEBT_VEBT @ Ys3 @ I4 ) ) ) ) ) ) ).

% list_eq_iff_nth_eq
thf(fact_1692_list__eq__iff__nth__eq,axiom,
    ( ( ^ [Y6: list_o,Z5: list_o] : ( Y6 = Z5 ) )
    = ( ^ [Xs: list_o,Ys3: list_o] :
          ( ( ( size_size_list_o @ Xs )
            = ( size_size_list_o @ Ys3 ) )
          & ! [I4: nat] :
              ( ( ord_less_nat @ I4 @ ( size_size_list_o @ Xs ) )
             => ( ( nth_o @ Xs @ I4 )
                = ( nth_o @ Ys3 @ I4 ) ) ) ) ) ) ).

% list_eq_iff_nth_eq
thf(fact_1693_list__eq__iff__nth__eq,axiom,
    ( ( ^ [Y6: list_int,Z5: list_int] : ( Y6 = Z5 ) )
    = ( ^ [Xs: list_int,Ys3: list_int] :
          ( ( ( size_size_list_int @ Xs )
            = ( size_size_list_int @ Ys3 ) )
          & ! [I4: nat] :
              ( ( ord_less_nat @ I4 @ ( size_size_list_int @ Xs ) )
             => ( ( nth_int @ Xs @ I4 )
                = ( nth_int @ Ys3 @ I4 ) ) ) ) ) ) ).

% list_eq_iff_nth_eq
thf(fact_1694_nth__mem,axiom,
    ! [N: nat,Xs2: list_complex] :
      ( ( ord_less_nat @ N @ ( size_s3451745648224563538omplex @ Xs2 ) )
     => ( member_complex @ ( nth_complex @ Xs2 @ N ) @ ( set_complex2 @ Xs2 ) ) ) ).

% nth_mem
thf(fact_1695_nth__mem,axiom,
    ! [N: nat,Xs2: list_real] :
      ( ( ord_less_nat @ N @ ( size_size_list_real @ Xs2 ) )
     => ( member_real @ ( nth_real @ Xs2 @ N ) @ ( set_real2 @ Xs2 ) ) ) ).

% nth_mem
thf(fact_1696_nth__mem,axiom,
    ! [N: nat,Xs2: list_set_nat] :
      ( ( ord_less_nat @ N @ ( size_s3254054031482475050et_nat @ Xs2 ) )
     => ( member_set_nat @ ( nth_set_nat @ Xs2 @ N ) @ ( set_set_nat2 @ Xs2 ) ) ) ).

% nth_mem
thf(fact_1697_nth__mem,axiom,
    ! [N: nat,Xs2: list_nat] :
      ( ( ord_less_nat @ N @ ( size_size_list_nat @ Xs2 ) )
     => ( member_nat @ ( nth_nat @ Xs2 @ N ) @ ( set_nat2 @ Xs2 ) ) ) ).

% nth_mem
thf(fact_1698_nth__mem,axiom,
    ! [N: nat,Xs2: list_VEBT_VEBT] :
      ( ( ord_less_nat @ N @ ( size_s6755466524823107622T_VEBT @ Xs2 ) )
     => ( member_VEBT_VEBT @ ( nth_VEBT_VEBT @ Xs2 @ N ) @ ( set_VEBT_VEBT2 @ Xs2 ) ) ) ).

% nth_mem
thf(fact_1699_nth__mem,axiom,
    ! [N: nat,Xs2: list_o] :
      ( ( ord_less_nat @ N @ ( size_size_list_o @ Xs2 ) )
     => ( member_o @ ( nth_o @ Xs2 @ N ) @ ( set_o2 @ Xs2 ) ) ) ).

% nth_mem
thf(fact_1700_nth__mem,axiom,
    ! [N: nat,Xs2: list_int] :
      ( ( ord_less_nat @ N @ ( size_size_list_int @ Xs2 ) )
     => ( member_int @ ( nth_int @ Xs2 @ N ) @ ( set_int2 @ Xs2 ) ) ) ).

% nth_mem
thf(fact_1701_list__ball__nth,axiom,
    ! [N: nat,Xs2: list_VEBT_VEBT,P: vEBT_VEBT > $o] :
      ( ( ord_less_nat @ N @ ( size_s6755466524823107622T_VEBT @ Xs2 ) )
     => ( ! [X4: vEBT_VEBT] :
            ( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ Xs2 ) )
           => ( P @ X4 ) )
       => ( P @ ( nth_VEBT_VEBT @ Xs2 @ N ) ) ) ) ).

% list_ball_nth
thf(fact_1702_list__ball__nth,axiom,
    ! [N: nat,Xs2: list_o,P: $o > $o] :
      ( ( ord_less_nat @ N @ ( size_size_list_o @ Xs2 ) )
     => ( ! [X4: $o] :
            ( ( member_o @ X4 @ ( set_o2 @ Xs2 ) )
           => ( P @ X4 ) )
       => ( P @ ( nth_o @ Xs2 @ N ) ) ) ) ).

% list_ball_nth
thf(fact_1703_list__ball__nth,axiom,
    ! [N: nat,Xs2: list_int,P: int > $o] :
      ( ( ord_less_nat @ N @ ( size_size_list_int @ Xs2 ) )
     => ( ! [X4: int] :
            ( ( member_int @ X4 @ ( set_int2 @ Xs2 ) )
           => ( P @ X4 ) )
       => ( P @ ( nth_int @ Xs2 @ N ) ) ) ) ).

% list_ball_nth
thf(fact_1704_in__set__conv__nth,axiom,
    ! [X2: complex,Xs2: list_complex] :
      ( ( member_complex @ X2 @ ( set_complex2 @ Xs2 ) )
      = ( ? [I4: nat] :
            ( ( ord_less_nat @ I4 @ ( size_s3451745648224563538omplex @ Xs2 ) )
            & ( ( nth_complex @ Xs2 @ I4 )
              = X2 ) ) ) ) ).

% in_set_conv_nth
thf(fact_1705_in__set__conv__nth,axiom,
    ! [X2: real,Xs2: list_real] :
      ( ( member_real @ X2 @ ( set_real2 @ Xs2 ) )
      = ( ? [I4: nat] :
            ( ( ord_less_nat @ I4 @ ( size_size_list_real @ Xs2 ) )
            & ( ( nth_real @ Xs2 @ I4 )
              = X2 ) ) ) ) ).

% in_set_conv_nth
thf(fact_1706_in__set__conv__nth,axiom,
    ! [X2: set_nat,Xs2: list_set_nat] :
      ( ( member_set_nat @ X2 @ ( set_set_nat2 @ Xs2 ) )
      = ( ? [I4: nat] :
            ( ( ord_less_nat @ I4 @ ( size_s3254054031482475050et_nat @ Xs2 ) )
            & ( ( nth_set_nat @ Xs2 @ I4 )
              = X2 ) ) ) ) ).

% in_set_conv_nth
thf(fact_1707_in__set__conv__nth,axiom,
    ! [X2: nat,Xs2: list_nat] :
      ( ( member_nat @ X2 @ ( set_nat2 @ Xs2 ) )
      = ( ? [I4: nat] :
            ( ( ord_less_nat @ I4 @ ( size_size_list_nat @ Xs2 ) )
            & ( ( nth_nat @ Xs2 @ I4 )
              = X2 ) ) ) ) ).

% in_set_conv_nth
thf(fact_1708_in__set__conv__nth,axiom,
    ! [X2: vEBT_VEBT,Xs2: list_VEBT_VEBT] :
      ( ( member_VEBT_VEBT @ X2 @ ( set_VEBT_VEBT2 @ Xs2 ) )
      = ( ? [I4: nat] :
            ( ( ord_less_nat @ I4 @ ( size_s6755466524823107622T_VEBT @ Xs2 ) )
            & ( ( nth_VEBT_VEBT @ Xs2 @ I4 )
              = X2 ) ) ) ) ).

% in_set_conv_nth
thf(fact_1709_in__set__conv__nth,axiom,
    ! [X2: $o,Xs2: list_o] :
      ( ( member_o @ X2 @ ( set_o2 @ Xs2 ) )
      = ( ? [I4: nat] :
            ( ( ord_less_nat @ I4 @ ( size_size_list_o @ Xs2 ) )
            & ( ( nth_o @ Xs2 @ I4 )
              = X2 ) ) ) ) ).

% in_set_conv_nth
thf(fact_1710_in__set__conv__nth,axiom,
    ! [X2: int,Xs2: list_int] :
      ( ( member_int @ X2 @ ( set_int2 @ Xs2 ) )
      = ( ? [I4: nat] :
            ( ( ord_less_nat @ I4 @ ( size_size_list_int @ Xs2 ) )
            & ( ( nth_int @ Xs2 @ I4 )
              = X2 ) ) ) ) ).

% in_set_conv_nth
thf(fact_1711_all__nth__imp__all__set,axiom,
    ! [Xs2: list_complex,P: complex > $o,X2: complex] :
      ( ! [I3: nat] :
          ( ( ord_less_nat @ I3 @ ( size_s3451745648224563538omplex @ Xs2 ) )
         => ( P @ ( nth_complex @ Xs2 @ I3 ) ) )
     => ( ( member_complex @ X2 @ ( set_complex2 @ Xs2 ) )
       => ( P @ X2 ) ) ) ).

% all_nth_imp_all_set
thf(fact_1712_all__nth__imp__all__set,axiom,
    ! [Xs2: list_real,P: real > $o,X2: real] :
      ( ! [I3: nat] :
          ( ( ord_less_nat @ I3 @ ( size_size_list_real @ Xs2 ) )
         => ( P @ ( nth_real @ Xs2 @ I3 ) ) )
     => ( ( member_real @ X2 @ ( set_real2 @ Xs2 ) )
       => ( P @ X2 ) ) ) ).

% all_nth_imp_all_set
thf(fact_1713_all__nth__imp__all__set,axiom,
    ! [Xs2: list_set_nat,P: set_nat > $o,X2: set_nat] :
      ( ! [I3: nat] :
          ( ( ord_less_nat @ I3 @ ( size_s3254054031482475050et_nat @ Xs2 ) )
         => ( P @ ( nth_set_nat @ Xs2 @ I3 ) ) )
     => ( ( member_set_nat @ X2 @ ( set_set_nat2 @ Xs2 ) )
       => ( P @ X2 ) ) ) ).

% all_nth_imp_all_set
thf(fact_1714_all__nth__imp__all__set,axiom,
    ! [Xs2: list_nat,P: nat > $o,X2: nat] :
      ( ! [I3: nat] :
          ( ( ord_less_nat @ I3 @ ( size_size_list_nat @ Xs2 ) )
         => ( P @ ( nth_nat @ Xs2 @ I3 ) ) )
     => ( ( member_nat @ X2 @ ( set_nat2 @ Xs2 ) )
       => ( P @ X2 ) ) ) ).

% all_nth_imp_all_set
thf(fact_1715_all__nth__imp__all__set,axiom,
    ! [Xs2: list_VEBT_VEBT,P: vEBT_VEBT > $o,X2: vEBT_VEBT] :
      ( ! [I3: nat] :
          ( ( ord_less_nat @ I3 @ ( size_s6755466524823107622T_VEBT @ Xs2 ) )
         => ( P @ ( nth_VEBT_VEBT @ Xs2 @ I3 ) ) )
     => ( ( member_VEBT_VEBT @ X2 @ ( set_VEBT_VEBT2 @ Xs2 ) )
       => ( P @ X2 ) ) ) ).

% all_nth_imp_all_set
thf(fact_1716_all__nth__imp__all__set,axiom,
    ! [Xs2: list_o,P: $o > $o,X2: $o] :
      ( ! [I3: nat] :
          ( ( ord_less_nat @ I3 @ ( size_size_list_o @ Xs2 ) )
         => ( P @ ( nth_o @ Xs2 @ I3 ) ) )
     => ( ( member_o @ X2 @ ( set_o2 @ Xs2 ) )
       => ( P @ X2 ) ) ) ).

% all_nth_imp_all_set
thf(fact_1717_all__nth__imp__all__set,axiom,
    ! [Xs2: list_int,P: int > $o,X2: int] :
      ( ! [I3: nat] :
          ( ( ord_less_nat @ I3 @ ( size_size_list_int @ Xs2 ) )
         => ( P @ ( nth_int @ Xs2 @ I3 ) ) )
     => ( ( member_int @ X2 @ ( set_int2 @ Xs2 ) )
       => ( P @ X2 ) ) ) ).

% all_nth_imp_all_set
thf(fact_1718_divmod__step__eq,axiom,
    ! [L: num,R2: nat,Q2: nat] :
      ( ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ L ) @ R2 )
       => ( ( unique5026877609467782581ep_nat @ L @ ( product_Pair_nat_nat @ Q2 @ R2 ) )
          = ( product_Pair_nat_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Q2 ) @ one_one_nat ) @ ( minus_minus_nat @ R2 @ ( numeral_numeral_nat @ L ) ) ) ) )
      & ( ~ ( ord_less_eq_nat @ ( numeral_numeral_nat @ L ) @ R2 )
       => ( ( unique5026877609467782581ep_nat @ L @ ( product_Pair_nat_nat @ Q2 @ R2 ) )
          = ( product_Pair_nat_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Q2 ) @ R2 ) ) ) ) ).

% divmod_step_eq
thf(fact_1719_divmod__step__eq,axiom,
    ! [L: num,R2: int,Q2: int] :
      ( ( ( ord_less_eq_int @ ( numeral_numeral_int @ L ) @ R2 )
       => ( ( unique5024387138958732305ep_int @ L @ ( product_Pair_int_int @ Q2 @ R2 ) )
          = ( product_Pair_int_int @ ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Q2 ) @ one_one_int ) @ ( minus_minus_int @ R2 @ ( numeral_numeral_int @ L ) ) ) ) )
      & ( ~ ( ord_less_eq_int @ ( numeral_numeral_int @ L ) @ R2 )
       => ( ( unique5024387138958732305ep_int @ L @ ( product_Pair_int_int @ Q2 @ R2 ) )
          = ( product_Pair_int_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Q2 ) @ R2 ) ) ) ) ).

% divmod_step_eq
thf(fact_1720_divmod__step__eq,axiom,
    ! [L: num,R2: code_integer,Q2: code_integer] :
      ( ( ( ord_le3102999989581377725nteger @ ( numera6620942414471956472nteger @ L ) @ R2 )
       => ( ( unique4921790084139445826nteger @ L @ ( produc1086072967326762835nteger @ Q2 @ R2 ) )
          = ( produc1086072967326762835nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ Q2 ) @ one_one_Code_integer ) @ ( minus_8373710615458151222nteger @ R2 @ ( numera6620942414471956472nteger @ L ) ) ) ) )
      & ( ~ ( ord_le3102999989581377725nteger @ ( numera6620942414471956472nteger @ L ) @ R2 )
       => ( ( unique4921790084139445826nteger @ L @ ( produc1086072967326762835nteger @ Q2 @ R2 ) )
          = ( produc1086072967326762835nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ Q2 ) @ R2 ) ) ) ) ).

% divmod_step_eq
thf(fact_1721_nested__mint,axiom,
    ! [Mi: nat,Ma: nat,Deg: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT,N: nat,Va: nat] :
      ( ( vEBT_invar_vebt @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ N )
     => ( ( N
          = ( suc @ ( suc @ Va ) ) )
       => ( ~ ( ord_less_nat @ Ma @ Mi )
         => ( ( Ma != Mi )
           => ( ord_less_nat @ ( vEBT_VEBT_high @ ( plus_plus_nat @ ( times_times_nat @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Va @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( the_nat @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_mint @ Summary ) ) ) ) ) ) @ ( suc @ ( divide_divide_nat @ Va @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) ) ) ) ) ) ).

% nested_mint
thf(fact_1722_insert__simp__excp,axiom,
    ! [Mi: nat,Deg: nat,TreeList: list_VEBT_VEBT,X2: nat,Ma: nat,Summary: vEBT_VEBT] :
      ( ( ord_less_nat @ ( vEBT_VEBT_high @ Mi @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) )
     => ( ( ord_less_nat @ X2 @ Mi )
       => ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
         => ( ( X2 != Ma )
           => ( ( vEBT_vebt_insert @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X2 )
              = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ X2 @ ( ord_max_nat @ Mi @ Ma ) ) ) @ Deg @ ( list_u1324408373059187874T_VEBT @ TreeList @ ( vEBT_VEBT_high @ Mi @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_insert @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ Mi @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Mi @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( if_VEBT_VEBT @ ( vEBT_VEBT_minNull @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ Mi @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_insert @ Summary @ ( vEBT_VEBT_high @ Mi @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ Summary ) ) ) ) ) ) ) ).

% insert_simp_excp
thf(fact_1723_insert__simp__norm,axiom,
    ! [X2: nat,Deg: nat,TreeList: list_VEBT_VEBT,Mi: nat,Ma: nat,Summary: vEBT_VEBT] :
      ( ( ord_less_nat @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) )
     => ( ( ord_less_nat @ Mi @ X2 )
       => ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
         => ( ( X2 != Ma )
           => ( ( vEBT_vebt_insert @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X2 )
              = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ ( ord_max_nat @ X2 @ Ma ) ) ) @ Deg @ ( list_u1324408373059187874T_VEBT @ TreeList @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_insert @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( if_VEBT_VEBT @ ( vEBT_VEBT_minNull @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_insert @ Summary @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ Summary ) ) ) ) ) ) ) ).

% insert_simp_norm
thf(fact_1724_VEBT__internal_Omembermima_Osimps_I5_J,axiom,
    ! [V: nat,TreeList: list_VEBT_VEBT,Vd: vEBT_VEBT,X2: nat] :
      ( ( vEBT_VEBT_membermima @ ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V ) @ TreeList @ Vd ) @ X2 )
      = ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) )
         => ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X2 @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
        & ( ord_less_nat @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ V ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) ) ) ) ).

% VEBT_internal.membermima.simps(5)
thf(fact_1725_low__def,axiom,
    ( vEBT_VEBT_low
    = ( ^ [X: nat,N2: nat] : ( modulo_modulo_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) ) ).

% low_def
thf(fact_1726_is__pred__in__set__def,axiom,
    ( vEBT_is_pred_in_set
    = ( ^ [Xs: set_nat,X: nat,Y: nat] :
          ( ( member_nat @ Y @ Xs )
          & ( ord_less_nat @ Y @ X )
          & ! [Z4: nat] :
              ( ( member_nat @ Z4 @ Xs )
             => ( ( ord_less_nat @ Z4 @ X )
               => ( ord_less_eq_nat @ Z4 @ Y ) ) ) ) ) ) ).

% is_pred_in_set_def
thf(fact_1727_is__succ__in__set__def,axiom,
    ( vEBT_is_succ_in_set
    = ( ^ [Xs: set_nat,X: nat,Y: nat] :
          ( ( member_nat @ Y @ Xs )
          & ( ord_less_nat @ X @ Y )
          & ! [Z4: nat] :
              ( ( member_nat @ Z4 @ Xs )
             => ( ( ord_less_nat @ X @ Z4 )
               => ( ord_less_eq_nat @ Y @ Z4 ) ) ) ) ) ) ).

% is_succ_in_set_def
thf(fact_1728_buildup__nothing__in__leaf,axiom,
    ! [N: nat,X2: nat] :
      ~ ( vEBT_V5719532721284313246member @ ( vEBT_vebt_buildup @ N ) @ X2 ) ).

% buildup_nothing_in_leaf
thf(fact_1729_obtain__set__succ,axiom,
    ! [X2: nat,Z: nat,A2: set_nat,B3: set_nat] :
      ( ( ord_less_nat @ X2 @ Z )
     => ( ( vEBT_VEBT_max_in_set @ A2 @ Z )
       => ( ( finite_finite_nat @ B3 )
         => ( ( A2 = B3 )
           => ? [X_12: nat] : ( vEBT_is_succ_in_set @ A2 @ X2 @ X_12 ) ) ) ) ) ).

% obtain_set_succ
thf(fact_1730_not__min__Null__member,axiom,
    ! [T: vEBT_VEBT] :
      ( ~ ( vEBT_VEBT_minNull @ T )
     => ? [X_12: nat] : ( vEBT_V8194947554948674370ptions @ T @ X_12 ) ) ).

% not_min_Null_member
thf(fact_1731_min__Null__member,axiom,
    ! [T: vEBT_VEBT,X2: nat] :
      ( ( vEBT_VEBT_minNull @ T )
     => ~ ( vEBT_vebt_member @ T @ X2 ) ) ).

% min_Null_member
thf(fact_1732_buildup__nothing__in__min__max,axiom,
    ! [N: nat,X2: nat] :
      ~ ( vEBT_VEBT_membermima @ ( vEBT_vebt_buildup @ N ) @ X2 ) ).

% buildup_nothing_in_min_max
thf(fact_1733_set__vebt__finite,axiom,
    ! [T: vEBT_VEBT,N: nat] :
      ( ( vEBT_invar_vebt @ T @ N )
     => ( finite_finite_nat @ ( vEBT_VEBT_set_vebt @ T ) ) ) ).

% set_vebt_finite
thf(fact_1734_pred__none__empty,axiom,
    ! [Xs2: set_nat,A: nat] :
      ( ~ ? [X_12: nat] : ( vEBT_is_pred_in_set @ Xs2 @ A @ X_12 )
     => ( ( finite_finite_nat @ Xs2 )
       => ~ ? [X3: nat] :
              ( ( member_nat @ X3 @ Xs2 )
              & ( ord_less_nat @ X3 @ A ) ) ) ) ).

% pred_none_empty
thf(fact_1735_succ__none__empty,axiom,
    ! [Xs2: set_nat,A: nat] :
      ( ~ ? [X_12: nat] : ( vEBT_is_succ_in_set @ Xs2 @ A @ X_12 )
     => ( ( finite_finite_nat @ Xs2 )
       => ~ ? [X3: nat] :
              ( ( member_nat @ X3 @ Xs2 )
              & ( ord_less_nat @ A @ X3 ) ) ) ) ).

% succ_none_empty
thf(fact_1736_Diff__insert0,axiom,
    ! [X2: vEBT_VEBT,A2: set_VEBT_VEBT,B3: set_VEBT_VEBT] :
      ( ~ ( member_VEBT_VEBT @ X2 @ A2 )
     => ( ( minus_5127226145743854075T_VEBT @ A2 @ ( insert_VEBT_VEBT @ X2 @ B3 ) )
        = ( minus_5127226145743854075T_VEBT @ A2 @ B3 ) ) ) ).

% Diff_insert0
thf(fact_1737_Diff__insert0,axiom,
    ! [X2: $o,A2: set_o,B3: set_o] :
      ( ~ ( member_o @ X2 @ A2 )
     => ( ( minus_minus_set_o @ A2 @ ( insert_o @ X2 @ B3 ) )
        = ( minus_minus_set_o @ A2 @ B3 ) ) ) ).

% Diff_insert0
thf(fact_1738_Diff__insert0,axiom,
    ! [X2: complex,A2: set_complex,B3: set_complex] :
      ( ~ ( member_complex @ X2 @ A2 )
     => ( ( minus_811609699411566653omplex @ A2 @ ( insert_complex @ X2 @ B3 ) )
        = ( minus_811609699411566653omplex @ A2 @ B3 ) ) ) ).

% Diff_insert0
thf(fact_1739_Diff__insert0,axiom,
    ! [X2: real,A2: set_real,B3: set_real] :
      ( ~ ( member_real @ X2 @ A2 )
     => ( ( minus_minus_set_real @ A2 @ ( insert_real @ X2 @ B3 ) )
        = ( minus_minus_set_real @ A2 @ B3 ) ) ) ).

% Diff_insert0
thf(fact_1740_Diff__insert0,axiom,
    ! [X2: set_nat,A2: set_set_nat,B3: set_set_nat] :
      ( ~ ( member_set_nat @ X2 @ A2 )
     => ( ( minus_2163939370556025621et_nat @ A2 @ ( insert_set_nat @ X2 @ B3 ) )
        = ( minus_2163939370556025621et_nat @ A2 @ B3 ) ) ) ).

% Diff_insert0
thf(fact_1741_Diff__insert0,axiom,
    ! [X2: int,A2: set_int,B3: set_int] :
      ( ~ ( member_int @ X2 @ A2 )
     => ( ( minus_minus_set_int @ A2 @ ( insert_int @ X2 @ B3 ) )
        = ( minus_minus_set_int @ A2 @ B3 ) ) ) ).

% Diff_insert0
thf(fact_1742_Diff__insert0,axiom,
    ! [X2: nat,A2: set_nat,B3: set_nat] :
      ( ~ ( member_nat @ X2 @ A2 )
     => ( ( minus_minus_set_nat @ A2 @ ( insert_nat @ X2 @ B3 ) )
        = ( minus_minus_set_nat @ A2 @ B3 ) ) ) ).

% Diff_insert0
thf(fact_1743_insert__Diff1,axiom,
    ! [X2: vEBT_VEBT,B3: set_VEBT_VEBT,A2: set_VEBT_VEBT] :
      ( ( member_VEBT_VEBT @ X2 @ B3 )
     => ( ( minus_5127226145743854075T_VEBT @ ( insert_VEBT_VEBT @ X2 @ A2 ) @ B3 )
        = ( minus_5127226145743854075T_VEBT @ A2 @ B3 ) ) ) ).

% insert_Diff1
thf(fact_1744_insert__Diff1,axiom,
    ! [X2: $o,B3: set_o,A2: set_o] :
      ( ( member_o @ X2 @ B3 )
     => ( ( minus_minus_set_o @ ( insert_o @ X2 @ A2 ) @ B3 )
        = ( minus_minus_set_o @ A2 @ B3 ) ) ) ).

% insert_Diff1
thf(fact_1745_insert__Diff1,axiom,
    ! [X2: complex,B3: set_complex,A2: set_complex] :
      ( ( member_complex @ X2 @ B3 )
     => ( ( minus_811609699411566653omplex @ ( insert_complex @ X2 @ A2 ) @ B3 )
        = ( minus_811609699411566653omplex @ A2 @ B3 ) ) ) ).

% insert_Diff1
thf(fact_1746_insert__Diff1,axiom,
    ! [X2: real,B3: set_real,A2: set_real] :
      ( ( member_real @ X2 @ B3 )
     => ( ( minus_minus_set_real @ ( insert_real @ X2 @ A2 ) @ B3 )
        = ( minus_minus_set_real @ A2 @ B3 ) ) ) ).

% insert_Diff1
thf(fact_1747_insert__Diff1,axiom,
    ! [X2: set_nat,B3: set_set_nat,A2: set_set_nat] :
      ( ( member_set_nat @ X2 @ B3 )
     => ( ( minus_2163939370556025621et_nat @ ( insert_set_nat @ X2 @ A2 ) @ B3 )
        = ( minus_2163939370556025621et_nat @ A2 @ B3 ) ) ) ).

% insert_Diff1
thf(fact_1748_insert__Diff1,axiom,
    ! [X2: int,B3: set_int,A2: set_int] :
      ( ( member_int @ X2 @ B3 )
     => ( ( minus_minus_set_int @ ( insert_int @ X2 @ A2 ) @ B3 )
        = ( minus_minus_set_int @ A2 @ B3 ) ) ) ).

% insert_Diff1
thf(fact_1749_insert__Diff1,axiom,
    ! [X2: nat,B3: set_nat,A2: set_nat] :
      ( ( member_nat @ X2 @ B3 )
     => ( ( minus_minus_set_nat @ ( insert_nat @ X2 @ A2 ) @ B3 )
        = ( minus_minus_set_nat @ A2 @ B3 ) ) ) ).

% insert_Diff1
thf(fact_1750_mod__mod__trivial,axiom,
    ! [A: nat,B: nat] :
      ( ( modulo_modulo_nat @ ( modulo_modulo_nat @ A @ B ) @ B )
      = ( modulo_modulo_nat @ A @ B ) ) ).

% mod_mod_trivial
thf(fact_1751_mod__mod__trivial,axiom,
    ! [A: int,B: int] :
      ( ( modulo_modulo_int @ ( modulo_modulo_int @ A @ B ) @ B )
      = ( modulo_modulo_int @ A @ B ) ) ).

% mod_mod_trivial
thf(fact_1752_mod__mod__trivial,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( modulo364778990260209775nteger @ ( modulo364778990260209775nteger @ A @ B ) @ B )
      = ( modulo364778990260209775nteger @ A @ B ) ) ).

% mod_mod_trivial
thf(fact_1753_obtain__set__pred,axiom,
    ! [Z: nat,X2: nat,A2: set_nat] :
      ( ( ord_less_nat @ Z @ X2 )
     => ( ( vEBT_VEBT_min_in_set @ A2 @ Z )
       => ( ( finite_finite_nat @ A2 )
         => ? [X_12: nat] : ( vEBT_is_pred_in_set @ A2 @ X2 @ X_12 ) ) ) ) ).

% obtain_set_pred
thf(fact_1754_mod__add__self2,axiom,
    ! [A: nat,B: nat] :
      ( ( modulo_modulo_nat @ ( plus_plus_nat @ A @ B ) @ B )
      = ( modulo_modulo_nat @ A @ B ) ) ).

% mod_add_self2
thf(fact_1755_mod__add__self2,axiom,
    ! [A: int,B: int] :
      ( ( modulo_modulo_int @ ( plus_plus_int @ A @ B ) @ B )
      = ( modulo_modulo_int @ A @ B ) ) ).

% mod_add_self2
thf(fact_1756_mod__add__self2,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ A @ B ) @ B )
      = ( modulo364778990260209775nteger @ A @ B ) ) ).

% mod_add_self2
thf(fact_1757_mod__add__self1,axiom,
    ! [B: nat,A: nat] :
      ( ( modulo_modulo_nat @ ( plus_plus_nat @ B @ A ) @ B )
      = ( modulo_modulo_nat @ A @ B ) ) ).

% mod_add_self1
thf(fact_1758_mod__add__self1,axiom,
    ! [B: int,A: int] :
      ( ( modulo_modulo_int @ ( plus_plus_int @ B @ A ) @ B )
      = ( modulo_modulo_int @ A @ B ) ) ).

% mod_add_self1
thf(fact_1759_mod__add__self1,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ B @ A ) @ B )
      = ( modulo364778990260209775nteger @ A @ B ) ) ).

% mod_add_self1
thf(fact_1760_List_Ofinite__set,axiom,
    ! [Xs2: list_VEBT_VEBT] : ( finite5795047828879050333T_VEBT @ ( set_VEBT_VEBT2 @ Xs2 ) ) ).

% List.finite_set
thf(fact_1761_List_Ofinite__set,axiom,
    ! [Xs2: list_nat] : ( finite_finite_nat @ ( set_nat2 @ Xs2 ) ) ).

% List.finite_set
thf(fact_1762_List_Ofinite__set,axiom,
    ! [Xs2: list_int] : ( finite_finite_int @ ( set_int2 @ Xs2 ) ) ).

% List.finite_set
thf(fact_1763_List_Ofinite__set,axiom,
    ! [Xs2: list_complex] : ( finite3207457112153483333omplex @ ( set_complex2 @ Xs2 ) ) ).

% List.finite_set
thf(fact_1764_minus__mod__self2,axiom,
    ! [A: int,B: int] :
      ( ( modulo_modulo_int @ ( minus_minus_int @ A @ B ) @ B )
      = ( modulo_modulo_int @ A @ B ) ) ).

% minus_mod_self2
thf(fact_1765_minus__mod__self2,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( modulo364778990260209775nteger @ ( minus_8373710615458151222nteger @ A @ B ) @ B )
      = ( modulo364778990260209775nteger @ A @ B ) ) ).

% minus_mod_self2
thf(fact_1766_mod__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ( modulo_modulo_nat @ M @ N )
        = M ) ) ).

% mod_less
thf(fact_1767_length__list__update,axiom,
    ! [Xs2: list_VEBT_VEBT,I: nat,X2: vEBT_VEBT] :
      ( ( size_s6755466524823107622T_VEBT @ ( list_u1324408373059187874T_VEBT @ Xs2 @ I @ X2 ) )
      = ( size_s6755466524823107622T_VEBT @ Xs2 ) ) ).

% length_list_update
thf(fact_1768_length__list__update,axiom,
    ! [Xs2: list_o,I: nat,X2: $o] :
      ( ( size_size_list_o @ ( list_update_o @ Xs2 @ I @ X2 ) )
      = ( size_size_list_o @ Xs2 ) ) ).

% length_list_update
thf(fact_1769_length__list__update,axiom,
    ! [Xs2: list_int,I: nat,X2: int] :
      ( ( size_size_list_int @ ( list_update_int @ Xs2 @ I @ X2 ) )
      = ( size_size_list_int @ Xs2 ) ) ).

% length_list_update
thf(fact_1770_nth__list__update__neq,axiom,
    ! [I: nat,J: nat,Xs2: list_int,X2: int] :
      ( ( I != J )
     => ( ( nth_int @ ( list_update_int @ Xs2 @ I @ X2 ) @ J )
        = ( nth_int @ Xs2 @ J ) ) ) ).

% nth_list_update_neq
thf(fact_1771_nth__list__update__neq,axiom,
    ! [I: nat,J: nat,Xs2: list_VEBT_VEBT,X2: vEBT_VEBT] :
      ( ( I != J )
     => ( ( nth_VEBT_VEBT @ ( list_u1324408373059187874T_VEBT @ Xs2 @ I @ X2 ) @ J )
        = ( nth_VEBT_VEBT @ Xs2 @ J ) ) ) ).

% nth_list_update_neq
thf(fact_1772_list__update__id,axiom,
    ! [Xs2: list_int,I: nat] :
      ( ( list_update_int @ Xs2 @ I @ ( nth_int @ Xs2 @ I ) )
      = Xs2 ) ).

% list_update_id
thf(fact_1773_list__update__id,axiom,
    ! [Xs2: list_VEBT_VEBT,I: nat] :
      ( ( list_u1324408373059187874T_VEBT @ Xs2 @ I @ ( nth_VEBT_VEBT @ Xs2 @ I ) )
      = Xs2 ) ).

% list_update_id
thf(fact_1774_mod__mult__self1,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( modulo_modulo_nat @ ( plus_plus_nat @ A @ ( times_times_nat @ C @ B ) ) @ B )
      = ( modulo_modulo_nat @ A @ B ) ) ).

% mod_mult_self1
thf(fact_1775_mod__mult__self1,axiom,
    ! [A: int,C: int,B: int] :
      ( ( modulo_modulo_int @ ( plus_plus_int @ A @ ( times_times_int @ C @ B ) ) @ B )
      = ( modulo_modulo_int @ A @ B ) ) ).

% mod_mult_self1
thf(fact_1776_mod__mult__self1,axiom,
    ! [A: code_integer,C: code_integer,B: code_integer] :
      ( ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ A @ ( times_3573771949741848930nteger @ C @ B ) ) @ B )
      = ( modulo364778990260209775nteger @ A @ B ) ) ).

% mod_mult_self1
thf(fact_1777_mod__mult__self2,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( modulo_modulo_nat @ ( plus_plus_nat @ A @ ( times_times_nat @ B @ C ) ) @ B )
      = ( modulo_modulo_nat @ A @ B ) ) ).

% mod_mult_self2
thf(fact_1778_mod__mult__self2,axiom,
    ! [A: int,B: int,C: int] :
      ( ( modulo_modulo_int @ ( plus_plus_int @ A @ ( times_times_int @ B @ C ) ) @ B )
      = ( modulo_modulo_int @ A @ B ) ) ).

% mod_mult_self2
thf(fact_1779_mod__mult__self2,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ A @ ( times_3573771949741848930nteger @ B @ C ) ) @ B )
      = ( modulo364778990260209775nteger @ A @ B ) ) ).

% mod_mult_self2
thf(fact_1780_mod__mult__self3,axiom,
    ! [C: nat,B: nat,A: nat] :
      ( ( modulo_modulo_nat @ ( plus_plus_nat @ ( times_times_nat @ C @ B ) @ A ) @ B )
      = ( modulo_modulo_nat @ A @ B ) ) ).

% mod_mult_self3
thf(fact_1781_mod__mult__self3,axiom,
    ! [C: int,B: int,A: int] :
      ( ( modulo_modulo_int @ ( plus_plus_int @ ( times_times_int @ C @ B ) @ A ) @ B )
      = ( modulo_modulo_int @ A @ B ) ) ).

% mod_mult_self3
thf(fact_1782_mod__mult__self3,axiom,
    ! [C: code_integer,B: code_integer,A: code_integer] :
      ( ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ C @ B ) @ A ) @ B )
      = ( modulo364778990260209775nteger @ A @ B ) ) ).

% mod_mult_self3
thf(fact_1783_mod__mult__self4,axiom,
    ! [B: nat,C: nat,A: nat] :
      ( ( modulo_modulo_nat @ ( plus_plus_nat @ ( times_times_nat @ B @ C ) @ A ) @ B )
      = ( modulo_modulo_nat @ A @ B ) ) ).

% mod_mult_self4
thf(fact_1784_mod__mult__self4,axiom,
    ! [B: int,C: int,A: int] :
      ( ( modulo_modulo_int @ ( plus_plus_int @ ( times_times_int @ B @ C ) @ A ) @ B )
      = ( modulo_modulo_int @ A @ B ) ) ).

% mod_mult_self4
thf(fact_1785_mod__mult__self4,axiom,
    ! [B: code_integer,C: code_integer,A: code_integer] :
      ( ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ B @ C ) @ A ) @ B )
      = ( modulo364778990260209775nteger @ A @ B ) ) ).

% mod_mult_self4
thf(fact_1786_list__update__beyond,axiom,
    ! [Xs2: list_VEBT_VEBT,I: nat,X2: vEBT_VEBT] :
      ( ( ord_less_eq_nat @ ( size_s6755466524823107622T_VEBT @ Xs2 ) @ I )
     => ( ( list_u1324408373059187874T_VEBT @ Xs2 @ I @ X2 )
        = Xs2 ) ) ).

% list_update_beyond
thf(fact_1787_list__update__beyond,axiom,
    ! [Xs2: list_o,I: nat,X2: $o] :
      ( ( ord_less_eq_nat @ ( size_size_list_o @ Xs2 ) @ I )
     => ( ( list_update_o @ Xs2 @ I @ X2 )
        = Xs2 ) ) ).

% list_update_beyond
thf(fact_1788_list__update__beyond,axiom,
    ! [Xs2: list_int,I: nat,X2: int] :
      ( ( ord_less_eq_nat @ ( size_size_list_int @ Xs2 ) @ I )
     => ( ( list_update_int @ Xs2 @ I @ X2 )
        = Xs2 ) ) ).

% list_update_beyond
thf(fact_1789_Suc__mod__mult__self4,axiom,
    ! [N: nat,K: nat,M: nat] :
      ( ( modulo_modulo_nat @ ( suc @ ( plus_plus_nat @ ( times_times_nat @ N @ K ) @ M ) ) @ N )
      = ( modulo_modulo_nat @ ( suc @ M ) @ N ) ) ).

% Suc_mod_mult_self4
thf(fact_1790_Suc__mod__mult__self3,axiom,
    ! [K: nat,N: nat,M: nat] :
      ( ( modulo_modulo_nat @ ( suc @ ( plus_plus_nat @ ( times_times_nat @ K @ N ) @ M ) ) @ N )
      = ( modulo_modulo_nat @ ( suc @ M ) @ N ) ) ).

% Suc_mod_mult_self3
thf(fact_1791_Suc__mod__mult__self2,axiom,
    ! [M: nat,N: nat,K: nat] :
      ( ( modulo_modulo_nat @ ( suc @ ( plus_plus_nat @ M @ ( times_times_nat @ N @ K ) ) ) @ N )
      = ( modulo_modulo_nat @ ( suc @ M ) @ N ) ) ).

% Suc_mod_mult_self2
thf(fact_1792_Suc__mod__mult__self1,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( modulo_modulo_nat @ ( suc @ ( plus_plus_nat @ M @ ( times_times_nat @ K @ N ) ) ) @ N )
      = ( modulo_modulo_nat @ ( suc @ M ) @ N ) ) ).

% Suc_mod_mult_self1
thf(fact_1793_nth__list__update__eq,axiom,
    ! [I: nat,Xs2: list_VEBT_VEBT,X2: vEBT_VEBT] :
      ( ( ord_less_nat @ I @ ( size_s6755466524823107622T_VEBT @ Xs2 ) )
     => ( ( nth_VEBT_VEBT @ ( list_u1324408373059187874T_VEBT @ Xs2 @ I @ X2 ) @ I )
        = X2 ) ) ).

% nth_list_update_eq
thf(fact_1794_nth__list__update__eq,axiom,
    ! [I: nat,Xs2: list_o,X2: $o] :
      ( ( ord_less_nat @ I @ ( size_size_list_o @ Xs2 ) )
     => ( ( nth_o @ ( list_update_o @ Xs2 @ I @ X2 ) @ I )
        = X2 ) ) ).

% nth_list_update_eq
thf(fact_1795_nth__list__update__eq,axiom,
    ! [I: nat,Xs2: list_int,X2: int] :
      ( ( ord_less_nat @ I @ ( size_size_list_int @ Xs2 ) )
     => ( ( nth_int @ ( list_update_int @ Xs2 @ I @ X2 ) @ I )
        = X2 ) ) ).

% nth_list_update_eq
thf(fact_1796_one__mod__two__eq__one,axiom,
    ( ( modulo_modulo_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = one_one_nat ) ).

% one_mod_two_eq_one
thf(fact_1797_one__mod__two__eq__one,axiom,
    ( ( modulo_modulo_int @ one_one_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
    = one_one_int ) ).

% one_mod_two_eq_one
thf(fact_1798_one__mod__two__eq__one,axiom,
    ( ( modulo364778990260209775nteger @ one_one_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
    = one_one_Code_integer ) ).

% one_mod_two_eq_one
thf(fact_1799_bits__one__mod__two__eq__one,axiom,
    ( ( modulo_modulo_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = one_one_nat ) ).

% bits_one_mod_two_eq_one
thf(fact_1800_bits__one__mod__two__eq__one,axiom,
    ( ( modulo_modulo_int @ one_one_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
    = one_one_int ) ).

% bits_one_mod_two_eq_one
thf(fact_1801_bits__one__mod__two__eq__one,axiom,
    ( ( modulo364778990260209775nteger @ one_one_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
    = one_one_Code_integer ) ).

% bits_one_mod_two_eq_one
thf(fact_1802_mod2__Suc__Suc,axiom,
    ! [M: nat] :
      ( ( modulo_modulo_nat @ ( suc @ ( suc @ M ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( modulo_modulo_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% mod2_Suc_Suc
thf(fact_1803_Suc__times__numeral__mod__eq,axiom,
    ! [K: num,N: nat] :
      ( ( ( numeral_numeral_nat @ K )
       != one_one_nat )
     => ( ( modulo_modulo_nat @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ K ) @ N ) ) @ ( numeral_numeral_nat @ K ) )
        = one_one_nat ) ) ).

% Suc_times_numeral_mod_eq
thf(fact_1804_set__swap,axiom,
    ! [I: nat,Xs2: list_VEBT_VEBT,J: nat] :
      ( ( ord_less_nat @ I @ ( size_s6755466524823107622T_VEBT @ Xs2 ) )
     => ( ( ord_less_nat @ J @ ( size_s6755466524823107622T_VEBT @ Xs2 ) )
       => ( ( set_VEBT_VEBT2 @ ( list_u1324408373059187874T_VEBT @ ( list_u1324408373059187874T_VEBT @ Xs2 @ I @ ( nth_VEBT_VEBT @ Xs2 @ J ) ) @ J @ ( nth_VEBT_VEBT @ Xs2 @ I ) ) )
          = ( set_VEBT_VEBT2 @ Xs2 ) ) ) ) ).

% set_swap
thf(fact_1805_set__swap,axiom,
    ! [I: nat,Xs2: list_o,J: nat] :
      ( ( ord_less_nat @ I @ ( size_size_list_o @ Xs2 ) )
     => ( ( ord_less_nat @ J @ ( size_size_list_o @ Xs2 ) )
       => ( ( set_o2 @ ( list_update_o @ ( list_update_o @ Xs2 @ I @ ( nth_o @ Xs2 @ J ) ) @ J @ ( nth_o @ Xs2 @ I ) ) )
          = ( set_o2 @ Xs2 ) ) ) ) ).

% set_swap
thf(fact_1806_set__swap,axiom,
    ! [I: nat,Xs2: list_int,J: nat] :
      ( ( ord_less_nat @ I @ ( size_size_list_int @ Xs2 ) )
     => ( ( ord_less_nat @ J @ ( size_size_list_int @ Xs2 ) )
       => ( ( set_int2 @ ( list_update_int @ ( list_update_int @ Xs2 @ I @ ( nth_int @ Xs2 @ J ) ) @ J @ ( nth_int @ Xs2 @ I ) ) )
          = ( set_int2 @ Xs2 ) ) ) ) ).

% set_swap
thf(fact_1807_Suc__mod__eq__add3__mod__numeral,axiom,
    ! [M: nat,V: num] :
      ( ( modulo_modulo_nat @ ( suc @ ( suc @ ( suc @ M ) ) ) @ ( numeral_numeral_nat @ V ) )
      = ( modulo_modulo_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ one ) ) @ M ) @ ( numeral_numeral_nat @ V ) ) ) ).

% Suc_mod_eq_add3_mod_numeral
thf(fact_1808_mod__Suc__eq__mod__add3,axiom,
    ! [M: nat,N: nat] :
      ( ( modulo_modulo_nat @ M @ ( suc @ ( suc @ ( suc @ N ) ) ) )
      = ( modulo_modulo_nat @ M @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ one ) ) @ N ) ) ) ).

% mod_Suc_eq_mod_add3
thf(fact_1809_VEBT__internal_OminNull_Osimps_I4_J,axiom,
    ! [Uw: nat,Ux: list_VEBT_VEBT,Uy: vEBT_VEBT] : ( vEBT_VEBT_minNull @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Uw @ Ux @ Uy ) ) ).

% VEBT_internal.minNull.simps(4)
thf(fact_1810_mod__mult__right__eq,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( modulo_modulo_nat @ ( times_times_nat @ A @ ( modulo_modulo_nat @ B @ C ) ) @ C )
      = ( modulo_modulo_nat @ ( times_times_nat @ A @ B ) @ C ) ) ).

% mod_mult_right_eq
thf(fact_1811_mod__mult__right__eq,axiom,
    ! [A: int,B: int,C: int] :
      ( ( modulo_modulo_int @ ( times_times_int @ A @ ( modulo_modulo_int @ B @ C ) ) @ C )
      = ( modulo_modulo_int @ ( times_times_int @ A @ B ) @ C ) ) ).

% mod_mult_right_eq
thf(fact_1812_mod__mult__right__eq,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ A @ ( modulo364778990260209775nteger @ B @ C ) ) @ C )
      = ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ A @ B ) @ C ) ) ).

% mod_mult_right_eq
thf(fact_1813_mod__mult__left__eq,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( modulo_modulo_nat @ ( times_times_nat @ ( modulo_modulo_nat @ A @ C ) @ B ) @ C )
      = ( modulo_modulo_nat @ ( times_times_nat @ A @ B ) @ C ) ) ).

% mod_mult_left_eq
thf(fact_1814_mod__mult__left__eq,axiom,
    ! [A: int,C: int,B: int] :
      ( ( modulo_modulo_int @ ( times_times_int @ ( modulo_modulo_int @ A @ C ) @ B ) @ C )
      = ( modulo_modulo_int @ ( times_times_int @ A @ B ) @ C ) ) ).

% mod_mult_left_eq
thf(fact_1815_mod__mult__left__eq,axiom,
    ! [A: code_integer,C: code_integer,B: code_integer] :
      ( ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ ( modulo364778990260209775nteger @ A @ C ) @ B ) @ C )
      = ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ A @ B ) @ C ) ) ).

% mod_mult_left_eq
thf(fact_1816_mult__mod__right,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( times_times_nat @ C @ ( modulo_modulo_nat @ A @ B ) )
      = ( modulo_modulo_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) ) ) ).

% mult_mod_right
thf(fact_1817_mult__mod__right,axiom,
    ! [C: int,A: int,B: int] :
      ( ( times_times_int @ C @ ( modulo_modulo_int @ A @ B ) )
      = ( modulo_modulo_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ).

% mult_mod_right
thf(fact_1818_mult__mod__right,axiom,
    ! [C: code_integer,A: code_integer,B: code_integer] :
      ( ( times_3573771949741848930nteger @ C @ ( modulo364778990260209775nteger @ A @ B ) )
      = ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ C @ A ) @ ( times_3573771949741848930nteger @ C @ B ) ) ) ).

% mult_mod_right
thf(fact_1819_mod__mult__mult2,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( modulo_modulo_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) )
      = ( times_times_nat @ ( modulo_modulo_nat @ A @ B ) @ C ) ) ).

% mod_mult_mult2
thf(fact_1820_mod__mult__mult2,axiom,
    ! [A: int,C: int,B: int] :
      ( ( modulo_modulo_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
      = ( times_times_int @ ( modulo_modulo_int @ A @ B ) @ C ) ) ).

% mod_mult_mult2
thf(fact_1821_mod__mult__mult2,axiom,
    ! [A: code_integer,C: code_integer,B: code_integer] :
      ( ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ A @ C ) @ ( times_3573771949741848930nteger @ B @ C ) )
      = ( times_3573771949741848930nteger @ ( modulo364778990260209775nteger @ A @ B ) @ C ) ) ).

% mod_mult_mult2
thf(fact_1822_mod__mult__cong,axiom,
    ! [A: nat,C: nat,A5: nat,B: nat,B6: nat] :
      ( ( ( modulo_modulo_nat @ A @ C )
        = ( modulo_modulo_nat @ A5 @ C ) )
     => ( ( ( modulo_modulo_nat @ B @ C )
          = ( modulo_modulo_nat @ B6 @ C ) )
       => ( ( modulo_modulo_nat @ ( times_times_nat @ A @ B ) @ C )
          = ( modulo_modulo_nat @ ( times_times_nat @ A5 @ B6 ) @ C ) ) ) ) ).

% mod_mult_cong
thf(fact_1823_mod__mult__cong,axiom,
    ! [A: int,C: int,A5: int,B: int,B6: int] :
      ( ( ( modulo_modulo_int @ A @ C )
        = ( modulo_modulo_int @ A5 @ C ) )
     => ( ( ( modulo_modulo_int @ B @ C )
          = ( modulo_modulo_int @ B6 @ C ) )
       => ( ( modulo_modulo_int @ ( times_times_int @ A @ B ) @ C )
          = ( modulo_modulo_int @ ( times_times_int @ A5 @ B6 ) @ C ) ) ) ) ).

% mod_mult_cong
thf(fact_1824_mod__mult__cong,axiom,
    ! [A: code_integer,C: code_integer,A5: code_integer,B: code_integer,B6: code_integer] :
      ( ( ( modulo364778990260209775nteger @ A @ C )
        = ( modulo364778990260209775nteger @ A5 @ C ) )
     => ( ( ( modulo364778990260209775nteger @ B @ C )
          = ( modulo364778990260209775nteger @ B6 @ C ) )
       => ( ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ A @ B ) @ C )
          = ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ A5 @ B6 ) @ C ) ) ) ) ).

% mod_mult_cong
thf(fact_1825_mod__mult__eq,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( modulo_modulo_nat @ ( times_times_nat @ ( modulo_modulo_nat @ A @ C ) @ ( modulo_modulo_nat @ B @ C ) ) @ C )
      = ( modulo_modulo_nat @ ( times_times_nat @ A @ B ) @ C ) ) ).

% mod_mult_eq
thf(fact_1826_mod__mult__eq,axiom,
    ! [A: int,C: int,B: int] :
      ( ( modulo_modulo_int @ ( times_times_int @ ( modulo_modulo_int @ A @ C ) @ ( modulo_modulo_int @ B @ C ) ) @ C )
      = ( modulo_modulo_int @ ( times_times_int @ A @ B ) @ C ) ) ).

% mod_mult_eq
thf(fact_1827_mod__mult__eq,axiom,
    ! [A: code_integer,C: code_integer,B: code_integer] :
      ( ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ ( modulo364778990260209775nteger @ A @ C ) @ ( modulo364778990260209775nteger @ B @ C ) ) @ C )
      = ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ A @ B ) @ C ) ) ).

% mod_mult_eq
thf(fact_1828_mod__add__right__eq,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( modulo_modulo_nat @ ( plus_plus_nat @ A @ ( modulo_modulo_nat @ B @ C ) ) @ C )
      = ( modulo_modulo_nat @ ( plus_plus_nat @ A @ B ) @ C ) ) ).

% mod_add_right_eq
thf(fact_1829_mod__add__right__eq,axiom,
    ! [A: int,B: int,C: int] :
      ( ( modulo_modulo_int @ ( plus_plus_int @ A @ ( modulo_modulo_int @ B @ C ) ) @ C )
      = ( modulo_modulo_int @ ( plus_plus_int @ A @ B ) @ C ) ) ).

% mod_add_right_eq
thf(fact_1830_mod__add__right__eq,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ A @ ( modulo364778990260209775nteger @ B @ C ) ) @ C )
      = ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ A @ B ) @ C ) ) ).

% mod_add_right_eq
thf(fact_1831_mod__add__left__eq,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( modulo_modulo_nat @ ( plus_plus_nat @ ( modulo_modulo_nat @ A @ C ) @ B ) @ C )
      = ( modulo_modulo_nat @ ( plus_plus_nat @ A @ B ) @ C ) ) ).

% mod_add_left_eq
thf(fact_1832_mod__add__left__eq,axiom,
    ! [A: int,C: int,B: int] :
      ( ( modulo_modulo_int @ ( plus_plus_int @ ( modulo_modulo_int @ A @ C ) @ B ) @ C )
      = ( modulo_modulo_int @ ( plus_plus_int @ A @ B ) @ C ) ) ).

% mod_add_left_eq
thf(fact_1833_mod__add__left__eq,axiom,
    ! [A: code_integer,C: code_integer,B: code_integer] :
      ( ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ ( modulo364778990260209775nteger @ A @ C ) @ B ) @ C )
      = ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ A @ B ) @ C ) ) ).

% mod_add_left_eq
thf(fact_1834_mod__add__cong,axiom,
    ! [A: nat,C: nat,A5: nat,B: nat,B6: nat] :
      ( ( ( modulo_modulo_nat @ A @ C )
        = ( modulo_modulo_nat @ A5 @ C ) )
     => ( ( ( modulo_modulo_nat @ B @ C )
          = ( modulo_modulo_nat @ B6 @ C ) )
       => ( ( modulo_modulo_nat @ ( plus_plus_nat @ A @ B ) @ C )
          = ( modulo_modulo_nat @ ( plus_plus_nat @ A5 @ B6 ) @ C ) ) ) ) ).

% mod_add_cong
thf(fact_1835_mod__add__cong,axiom,
    ! [A: int,C: int,A5: int,B: int,B6: int] :
      ( ( ( modulo_modulo_int @ A @ C )
        = ( modulo_modulo_int @ A5 @ C ) )
     => ( ( ( modulo_modulo_int @ B @ C )
          = ( modulo_modulo_int @ B6 @ C ) )
       => ( ( modulo_modulo_int @ ( plus_plus_int @ A @ B ) @ C )
          = ( modulo_modulo_int @ ( plus_plus_int @ A5 @ B6 ) @ C ) ) ) ) ).

% mod_add_cong
thf(fact_1836_mod__add__cong,axiom,
    ! [A: code_integer,C: code_integer,A5: code_integer,B: code_integer,B6: code_integer] :
      ( ( ( modulo364778990260209775nteger @ A @ C )
        = ( modulo364778990260209775nteger @ A5 @ C ) )
     => ( ( ( modulo364778990260209775nteger @ B @ C )
          = ( modulo364778990260209775nteger @ B6 @ C ) )
       => ( ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ A @ B ) @ C )
          = ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ A5 @ B6 ) @ C ) ) ) ) ).

% mod_add_cong
thf(fact_1837_mod__add__eq,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( modulo_modulo_nat @ ( plus_plus_nat @ ( modulo_modulo_nat @ A @ C ) @ ( modulo_modulo_nat @ B @ C ) ) @ C )
      = ( modulo_modulo_nat @ ( plus_plus_nat @ A @ B ) @ C ) ) ).

% mod_add_eq
thf(fact_1838_mod__add__eq,axiom,
    ! [A: int,C: int,B: int] :
      ( ( modulo_modulo_int @ ( plus_plus_int @ ( modulo_modulo_int @ A @ C ) @ ( modulo_modulo_int @ B @ C ) ) @ C )
      = ( modulo_modulo_int @ ( plus_plus_int @ A @ B ) @ C ) ) ).

% mod_add_eq
thf(fact_1839_mod__add__eq,axiom,
    ! [A: code_integer,C: code_integer,B: code_integer] :
      ( ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ ( modulo364778990260209775nteger @ A @ C ) @ ( modulo364778990260209775nteger @ B @ C ) ) @ C )
      = ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ A @ B ) @ C ) ) ).

% mod_add_eq
thf(fact_1840_mod__diff__right__eq,axiom,
    ! [A: int,B: int,C: int] :
      ( ( modulo_modulo_int @ ( minus_minus_int @ A @ ( modulo_modulo_int @ B @ C ) ) @ C )
      = ( modulo_modulo_int @ ( minus_minus_int @ A @ B ) @ C ) ) ).

% mod_diff_right_eq
thf(fact_1841_mod__diff__right__eq,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( modulo364778990260209775nteger @ ( minus_8373710615458151222nteger @ A @ ( modulo364778990260209775nteger @ B @ C ) ) @ C )
      = ( modulo364778990260209775nteger @ ( minus_8373710615458151222nteger @ A @ B ) @ C ) ) ).

% mod_diff_right_eq
thf(fact_1842_mod__diff__left__eq,axiom,
    ! [A: int,C: int,B: int] :
      ( ( modulo_modulo_int @ ( minus_minus_int @ ( modulo_modulo_int @ A @ C ) @ B ) @ C )
      = ( modulo_modulo_int @ ( minus_minus_int @ A @ B ) @ C ) ) ).

% mod_diff_left_eq
thf(fact_1843_mod__diff__left__eq,axiom,
    ! [A: code_integer,C: code_integer,B: code_integer] :
      ( ( modulo364778990260209775nteger @ ( minus_8373710615458151222nteger @ ( modulo364778990260209775nteger @ A @ C ) @ B ) @ C )
      = ( modulo364778990260209775nteger @ ( minus_8373710615458151222nteger @ A @ B ) @ C ) ) ).

% mod_diff_left_eq
thf(fact_1844_mod__diff__cong,axiom,
    ! [A: int,C: int,A5: int,B: int,B6: int] :
      ( ( ( modulo_modulo_int @ A @ C )
        = ( modulo_modulo_int @ A5 @ C ) )
     => ( ( ( modulo_modulo_int @ B @ C )
          = ( modulo_modulo_int @ B6 @ C ) )
       => ( ( modulo_modulo_int @ ( minus_minus_int @ A @ B ) @ C )
          = ( modulo_modulo_int @ ( minus_minus_int @ A5 @ B6 ) @ C ) ) ) ) ).

% mod_diff_cong
thf(fact_1845_mod__diff__cong,axiom,
    ! [A: code_integer,C: code_integer,A5: code_integer,B: code_integer,B6: code_integer] :
      ( ( ( modulo364778990260209775nteger @ A @ C )
        = ( modulo364778990260209775nteger @ A5 @ C ) )
     => ( ( ( modulo364778990260209775nteger @ B @ C )
          = ( modulo364778990260209775nteger @ B6 @ C ) )
       => ( ( modulo364778990260209775nteger @ ( minus_8373710615458151222nteger @ A @ B ) @ C )
          = ( modulo364778990260209775nteger @ ( minus_8373710615458151222nteger @ A5 @ B6 ) @ C ) ) ) ) ).

% mod_diff_cong
thf(fact_1846_mod__diff__eq,axiom,
    ! [A: int,C: int,B: int] :
      ( ( modulo_modulo_int @ ( minus_minus_int @ ( modulo_modulo_int @ A @ C ) @ ( modulo_modulo_int @ B @ C ) ) @ C )
      = ( modulo_modulo_int @ ( minus_minus_int @ A @ B ) @ C ) ) ).

% mod_diff_eq
thf(fact_1847_mod__diff__eq,axiom,
    ! [A: code_integer,C: code_integer,B: code_integer] :
      ( ( modulo364778990260209775nteger @ ( minus_8373710615458151222nteger @ ( modulo364778990260209775nteger @ A @ C ) @ ( modulo364778990260209775nteger @ B @ C ) ) @ C )
      = ( modulo364778990260209775nteger @ ( minus_8373710615458151222nteger @ A @ B ) @ C ) ) ).

% mod_diff_eq
thf(fact_1848_power__mod,axiom,
    ! [A: nat,B: nat,N: nat] :
      ( ( modulo_modulo_nat @ ( power_power_nat @ ( modulo_modulo_nat @ A @ B ) @ N ) @ B )
      = ( modulo_modulo_nat @ ( power_power_nat @ A @ N ) @ B ) ) ).

% power_mod
thf(fact_1849_power__mod,axiom,
    ! [A: int,B: int,N: nat] :
      ( ( modulo_modulo_int @ ( power_power_int @ ( modulo_modulo_int @ A @ B ) @ N ) @ B )
      = ( modulo_modulo_int @ ( power_power_int @ A @ N ) @ B ) ) ).

% power_mod
thf(fact_1850_power__mod,axiom,
    ! [A: code_integer,B: code_integer,N: nat] :
      ( ( modulo364778990260209775nteger @ ( power_8256067586552552935nteger @ ( modulo364778990260209775nteger @ A @ B ) @ N ) @ B )
      = ( modulo364778990260209775nteger @ ( power_8256067586552552935nteger @ A @ N ) @ B ) ) ).

% power_mod
thf(fact_1851_mod__Suc__Suc__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( modulo_modulo_nat @ ( suc @ ( suc @ ( modulo_modulo_nat @ M @ N ) ) ) @ N )
      = ( modulo_modulo_nat @ ( suc @ ( suc @ M ) ) @ N ) ) ).

% mod_Suc_Suc_eq
thf(fact_1852_mod__Suc__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( modulo_modulo_nat @ ( suc @ ( modulo_modulo_nat @ M @ N ) ) @ N )
      = ( modulo_modulo_nat @ ( suc @ M ) @ N ) ) ).

% mod_Suc_eq
thf(fact_1853_mod__less__eq__dividend,axiom,
    ! [M: nat,N: nat] : ( ord_less_eq_nat @ ( modulo_modulo_nat @ M @ N ) @ M ) ).

% mod_less_eq_dividend
thf(fact_1854_Diff__mono,axiom,
    ! [A2: set_nat,C4: set_nat,D3: set_nat,B3: set_nat] :
      ( ( ord_less_eq_set_nat @ A2 @ C4 )
     => ( ( ord_less_eq_set_nat @ D3 @ B3 )
       => ( ord_less_eq_set_nat @ ( minus_minus_set_nat @ A2 @ B3 ) @ ( minus_minus_set_nat @ C4 @ D3 ) ) ) ) ).

% Diff_mono
thf(fact_1855_Diff__mono,axiom,
    ! [A2: set_int,C4: set_int,D3: set_int,B3: set_int] :
      ( ( ord_less_eq_set_int @ A2 @ C4 )
     => ( ( ord_less_eq_set_int @ D3 @ B3 )
       => ( ord_less_eq_set_int @ ( minus_minus_set_int @ A2 @ B3 ) @ ( minus_minus_set_int @ C4 @ D3 ) ) ) ) ).

% Diff_mono
thf(fact_1856_Diff__subset,axiom,
    ! [A2: set_nat,B3: set_nat] : ( ord_less_eq_set_nat @ ( minus_minus_set_nat @ A2 @ B3 ) @ A2 ) ).

% Diff_subset
thf(fact_1857_Diff__subset,axiom,
    ! [A2: set_int,B3: set_int] : ( ord_less_eq_set_int @ ( minus_minus_set_int @ A2 @ B3 ) @ A2 ) ).

% Diff_subset
thf(fact_1858_double__diff,axiom,
    ! [A2: set_nat,B3: set_nat,C4: set_nat] :
      ( ( ord_less_eq_set_nat @ A2 @ B3 )
     => ( ( ord_less_eq_set_nat @ B3 @ C4 )
       => ( ( minus_minus_set_nat @ B3 @ ( minus_minus_set_nat @ C4 @ A2 ) )
          = A2 ) ) ) ).

% double_diff
thf(fact_1859_double__diff,axiom,
    ! [A2: set_int,B3: set_int,C4: set_int] :
      ( ( ord_less_eq_set_int @ A2 @ B3 )
     => ( ( ord_less_eq_set_int @ B3 @ C4 )
       => ( ( minus_minus_set_int @ B3 @ ( minus_minus_set_int @ C4 @ A2 ) )
          = A2 ) ) ) ).

% double_diff
thf(fact_1860_insert__Diff__if,axiom,
    ! [X2: vEBT_VEBT,B3: set_VEBT_VEBT,A2: set_VEBT_VEBT] :
      ( ( ( member_VEBT_VEBT @ X2 @ B3 )
       => ( ( minus_5127226145743854075T_VEBT @ ( insert_VEBT_VEBT @ X2 @ A2 ) @ B3 )
          = ( minus_5127226145743854075T_VEBT @ A2 @ B3 ) ) )
      & ( ~ ( member_VEBT_VEBT @ X2 @ B3 )
       => ( ( minus_5127226145743854075T_VEBT @ ( insert_VEBT_VEBT @ X2 @ A2 ) @ B3 )
          = ( insert_VEBT_VEBT @ X2 @ ( minus_5127226145743854075T_VEBT @ A2 @ B3 ) ) ) ) ) ).

% insert_Diff_if
thf(fact_1861_insert__Diff__if,axiom,
    ! [X2: $o,B3: set_o,A2: set_o] :
      ( ( ( member_o @ X2 @ B3 )
       => ( ( minus_minus_set_o @ ( insert_o @ X2 @ A2 ) @ B3 )
          = ( minus_minus_set_o @ A2 @ B3 ) ) )
      & ( ~ ( member_o @ X2 @ B3 )
       => ( ( minus_minus_set_o @ ( insert_o @ X2 @ A2 ) @ B3 )
          = ( insert_o @ X2 @ ( minus_minus_set_o @ A2 @ B3 ) ) ) ) ) ).

% insert_Diff_if
thf(fact_1862_insert__Diff__if,axiom,
    ! [X2: complex,B3: set_complex,A2: set_complex] :
      ( ( ( member_complex @ X2 @ B3 )
       => ( ( minus_811609699411566653omplex @ ( insert_complex @ X2 @ A2 ) @ B3 )
          = ( minus_811609699411566653omplex @ A2 @ B3 ) ) )
      & ( ~ ( member_complex @ X2 @ B3 )
       => ( ( minus_811609699411566653omplex @ ( insert_complex @ X2 @ A2 ) @ B3 )
          = ( insert_complex @ X2 @ ( minus_811609699411566653omplex @ A2 @ B3 ) ) ) ) ) ).

% insert_Diff_if
thf(fact_1863_insert__Diff__if,axiom,
    ! [X2: real,B3: set_real,A2: set_real] :
      ( ( ( member_real @ X2 @ B3 )
       => ( ( minus_minus_set_real @ ( insert_real @ X2 @ A2 ) @ B3 )
          = ( minus_minus_set_real @ A2 @ B3 ) ) )
      & ( ~ ( member_real @ X2 @ B3 )
       => ( ( minus_minus_set_real @ ( insert_real @ X2 @ A2 ) @ B3 )
          = ( insert_real @ X2 @ ( minus_minus_set_real @ A2 @ B3 ) ) ) ) ) ).

% insert_Diff_if
thf(fact_1864_insert__Diff__if,axiom,
    ! [X2: set_nat,B3: set_set_nat,A2: set_set_nat] :
      ( ( ( member_set_nat @ X2 @ B3 )
       => ( ( minus_2163939370556025621et_nat @ ( insert_set_nat @ X2 @ A2 ) @ B3 )
          = ( minus_2163939370556025621et_nat @ A2 @ B3 ) ) )
      & ( ~ ( member_set_nat @ X2 @ B3 )
       => ( ( minus_2163939370556025621et_nat @ ( insert_set_nat @ X2 @ A2 ) @ B3 )
          = ( insert_set_nat @ X2 @ ( minus_2163939370556025621et_nat @ A2 @ B3 ) ) ) ) ) ).

% insert_Diff_if
thf(fact_1865_insert__Diff__if,axiom,
    ! [X2: int,B3: set_int,A2: set_int] :
      ( ( ( member_int @ X2 @ B3 )
       => ( ( minus_minus_set_int @ ( insert_int @ X2 @ A2 ) @ B3 )
          = ( minus_minus_set_int @ A2 @ B3 ) ) )
      & ( ~ ( member_int @ X2 @ B3 )
       => ( ( minus_minus_set_int @ ( insert_int @ X2 @ A2 ) @ B3 )
          = ( insert_int @ X2 @ ( minus_minus_set_int @ A2 @ B3 ) ) ) ) ) ).

% insert_Diff_if
thf(fact_1866_insert__Diff__if,axiom,
    ! [X2: nat,B3: set_nat,A2: set_nat] :
      ( ( ( member_nat @ X2 @ B3 )
       => ( ( minus_minus_set_nat @ ( insert_nat @ X2 @ A2 ) @ B3 )
          = ( minus_minus_set_nat @ A2 @ B3 ) ) )
      & ( ~ ( member_nat @ X2 @ B3 )
       => ( ( minus_minus_set_nat @ ( insert_nat @ X2 @ A2 ) @ B3 )
          = ( insert_nat @ X2 @ ( minus_minus_set_nat @ A2 @ B3 ) ) ) ) ) ).

% insert_Diff_if
thf(fact_1867_finite__list,axiom,
    ! [A2: set_VEBT_VEBT] :
      ( ( finite5795047828879050333T_VEBT @ A2 )
     => ? [Xs3: list_VEBT_VEBT] :
          ( ( set_VEBT_VEBT2 @ Xs3 )
          = A2 ) ) ).

% finite_list
thf(fact_1868_finite__list,axiom,
    ! [A2: set_nat] :
      ( ( finite_finite_nat @ A2 )
     => ? [Xs3: list_nat] :
          ( ( set_nat2 @ Xs3 )
          = A2 ) ) ).

% finite_list
thf(fact_1869_finite__list,axiom,
    ! [A2: set_int] :
      ( ( finite_finite_int @ A2 )
     => ? [Xs3: list_int] :
          ( ( set_int2 @ Xs3 )
          = A2 ) ) ).

% finite_list
thf(fact_1870_finite__list,axiom,
    ! [A2: set_complex] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ? [Xs3: list_complex] :
          ( ( set_complex2 @ Xs3 )
          = A2 ) ) ).

% finite_list
thf(fact_1871_psubset__imp__ex__mem,axiom,
    ! [A2: set_complex,B3: set_complex] :
      ( ( ord_less_set_complex @ A2 @ B3 )
     => ? [B7: complex] : ( member_complex @ B7 @ ( minus_811609699411566653omplex @ B3 @ A2 ) ) ) ).

% psubset_imp_ex_mem
thf(fact_1872_psubset__imp__ex__mem,axiom,
    ! [A2: set_real,B3: set_real] :
      ( ( ord_less_set_real @ A2 @ B3 )
     => ? [B7: real] : ( member_real @ B7 @ ( minus_minus_set_real @ B3 @ A2 ) ) ) ).

% psubset_imp_ex_mem
thf(fact_1873_psubset__imp__ex__mem,axiom,
    ! [A2: set_set_nat,B3: set_set_nat] :
      ( ( ord_less_set_set_nat @ A2 @ B3 )
     => ? [B7: set_nat] : ( member_set_nat @ B7 @ ( minus_2163939370556025621et_nat @ B3 @ A2 ) ) ) ).

% psubset_imp_ex_mem
thf(fact_1874_psubset__imp__ex__mem,axiom,
    ! [A2: set_int,B3: set_int] :
      ( ( ord_less_set_int @ A2 @ B3 )
     => ? [B7: int] : ( member_int @ B7 @ ( minus_minus_set_int @ B3 @ A2 ) ) ) ).

% psubset_imp_ex_mem
thf(fact_1875_psubset__imp__ex__mem,axiom,
    ! [A2: set_nat,B3: set_nat] :
      ( ( ord_less_set_nat @ A2 @ B3 )
     => ? [B7: nat] : ( member_nat @ B7 @ ( minus_minus_set_nat @ B3 @ A2 ) ) ) ).

% psubset_imp_ex_mem
thf(fact_1876_add__diff__assoc__enat,axiom,
    ! [Z: extended_enat,Y2: extended_enat,X2: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ Z @ Y2 )
     => ( ( plus_p3455044024723400733d_enat @ X2 @ ( minus_3235023915231533773d_enat @ Y2 @ Z ) )
        = ( minus_3235023915231533773d_enat @ ( plus_p3455044024723400733d_enat @ X2 @ Y2 ) @ Z ) ) ) ).

% add_diff_assoc_enat
thf(fact_1877_finite__lists__length__eq,axiom,
    ! [A2: set_nat,N: nat] :
      ( ( finite_finite_nat @ A2 )
     => ( finite8100373058378681591st_nat
        @ ( collect_list_nat
          @ ^ [Xs: list_nat] :
              ( ( ord_less_eq_set_nat @ ( set_nat2 @ Xs ) @ A2 )
              & ( ( size_size_list_nat @ Xs )
                = N ) ) ) ) ) ).

% finite_lists_length_eq
thf(fact_1878_finite__lists__length__eq,axiom,
    ! [A2: set_complex,N: nat] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( finite8712137658972009173omplex
        @ ( collect_list_complex
          @ ^ [Xs: list_complex] :
              ( ( ord_le211207098394363844omplex @ ( set_complex2 @ Xs ) @ A2 )
              & ( ( size_s3451745648224563538omplex @ Xs )
                = N ) ) ) ) ) ).

% finite_lists_length_eq
thf(fact_1879_finite__lists__length__eq,axiom,
    ! [A2: set_VEBT_VEBT,N: nat] :
      ( ( finite5795047828879050333T_VEBT @ A2 )
     => ( finite3004134309566078307T_VEBT
        @ ( collec5608196760682091941T_VEBT
          @ ^ [Xs: list_VEBT_VEBT] :
              ( ( ord_le4337996190870823476T_VEBT @ ( set_VEBT_VEBT2 @ Xs ) @ A2 )
              & ( ( size_s6755466524823107622T_VEBT @ Xs )
                = N ) ) ) ) ) ).

% finite_lists_length_eq
thf(fact_1880_finite__lists__length__eq,axiom,
    ! [A2: set_o,N: nat] :
      ( ( finite_finite_o @ A2 )
     => ( finite_finite_list_o
        @ ( collect_list_o
          @ ^ [Xs: list_o] :
              ( ( ord_less_eq_set_o @ ( set_o2 @ Xs ) @ A2 )
              & ( ( size_size_list_o @ Xs )
                = N ) ) ) ) ) ).

% finite_lists_length_eq
thf(fact_1881_finite__lists__length__eq,axiom,
    ! [A2: set_int,N: nat] :
      ( ( finite_finite_int @ A2 )
     => ( finite3922522038869484883st_int
        @ ( collect_list_int
          @ ^ [Xs: list_int] :
              ( ( ord_less_eq_set_int @ ( set_int2 @ Xs ) @ A2 )
              & ( ( size_size_list_int @ Xs )
                = N ) ) ) ) ) ).

% finite_lists_length_eq
thf(fact_1882_cong__exp__iff__simps_I9_J,axiom,
    ! [M: num,Q2: num,N: num] :
      ( ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit0 @ M ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) )
        = ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit0 @ N ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) ) )
      = ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ Q2 ) )
        = ( modulo_modulo_nat @ ( numeral_numeral_nat @ N ) @ ( numeral_numeral_nat @ Q2 ) ) ) ) ).

% cong_exp_iff_simps(9)
thf(fact_1883_cong__exp__iff__simps_I9_J,axiom,
    ! [M: num,Q2: num,N: num] :
      ( ( ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit0 @ M ) ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) )
        = ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) ) )
      = ( ( modulo_modulo_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ Q2 ) )
        = ( modulo_modulo_int @ ( numeral_numeral_int @ N ) @ ( numeral_numeral_int @ Q2 ) ) ) ) ).

% cong_exp_iff_simps(9)
thf(fact_1884_cong__exp__iff__simps_I9_J,axiom,
    ! [M: num,Q2: num,N: num] :
      ( ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit0 @ M ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) )
        = ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit0 @ N ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) ) )
      = ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ M ) @ ( numera6620942414471956472nteger @ Q2 ) )
        = ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ N ) @ ( numera6620942414471956472nteger @ Q2 ) ) ) ) ).

% cong_exp_iff_simps(9)
thf(fact_1885_cong__exp__iff__simps_I4_J,axiom,
    ! [M: num,N: num] :
      ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ one ) )
      = ( modulo_modulo_nat @ ( numeral_numeral_nat @ N ) @ ( numeral_numeral_nat @ one ) ) ) ).

% cong_exp_iff_simps(4)
thf(fact_1886_cong__exp__iff__simps_I4_J,axiom,
    ! [M: num,N: num] :
      ( ( modulo_modulo_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ one ) )
      = ( modulo_modulo_int @ ( numeral_numeral_int @ N ) @ ( numeral_numeral_int @ one ) ) ) ).

% cong_exp_iff_simps(4)
thf(fact_1887_cong__exp__iff__simps_I4_J,axiom,
    ! [M: num,N: num] :
      ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ M ) @ ( numera6620942414471956472nteger @ one ) )
      = ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ N ) @ ( numera6620942414471956472nteger @ one ) ) ) ).

% cong_exp_iff_simps(4)
thf(fact_1888_mod__eqE,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ( modulo_modulo_int @ A @ C )
        = ( modulo_modulo_int @ B @ C ) )
     => ~ ! [D4: int] :
            ( B
           != ( plus_plus_int @ A @ ( times_times_int @ C @ D4 ) ) ) ) ).

% mod_eqE
thf(fact_1889_mod__eqE,axiom,
    ! [A: code_integer,C: code_integer,B: code_integer] :
      ( ( ( modulo364778990260209775nteger @ A @ C )
        = ( modulo364778990260209775nteger @ B @ C ) )
     => ~ ! [D4: code_integer] :
            ( B
           != ( plus_p5714425477246183910nteger @ A @ ( times_3573771949741848930nteger @ C @ D4 ) ) ) ) ).

% mod_eqE
thf(fact_1890_div__add1__eq,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( divide_divide_nat @ ( plus_plus_nat @ A @ B ) @ C )
      = ( plus_plus_nat @ ( plus_plus_nat @ ( divide_divide_nat @ A @ C ) @ ( divide_divide_nat @ B @ C ) ) @ ( divide_divide_nat @ ( plus_plus_nat @ ( modulo_modulo_nat @ A @ C ) @ ( modulo_modulo_nat @ B @ C ) ) @ C ) ) ) ).

% div_add1_eq
thf(fact_1891_div__add1__eq,axiom,
    ! [A: int,B: int,C: int] :
      ( ( divide_divide_int @ ( plus_plus_int @ A @ B ) @ C )
      = ( plus_plus_int @ ( plus_plus_int @ ( divide_divide_int @ A @ C ) @ ( divide_divide_int @ B @ C ) ) @ ( divide_divide_int @ ( plus_plus_int @ ( modulo_modulo_int @ A @ C ) @ ( modulo_modulo_int @ B @ C ) ) @ C ) ) ) ).

% div_add1_eq
thf(fact_1892_div__add1__eq,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( divide6298287555418463151nteger @ ( plus_p5714425477246183910nteger @ A @ B ) @ C )
      = ( plus_p5714425477246183910nteger @ ( plus_p5714425477246183910nteger @ ( divide6298287555418463151nteger @ A @ C ) @ ( divide6298287555418463151nteger @ B @ C ) ) @ ( divide6298287555418463151nteger @ ( plus_p5714425477246183910nteger @ ( modulo364778990260209775nteger @ A @ C ) @ ( modulo364778990260209775nteger @ B @ C ) ) @ C ) ) ) ).

% div_add1_eq
thf(fact_1893_mod__induct,axiom,
    ! [P: nat > $o,N: nat,P2: nat,M: nat] :
      ( ( P @ N )
     => ( ( ord_less_nat @ N @ P2 )
       => ( ( ord_less_nat @ M @ P2 )
         => ( ! [N3: nat] :
                ( ( ord_less_nat @ N3 @ P2 )
               => ( ( P @ N3 )
                 => ( P @ ( modulo_modulo_nat @ ( suc @ N3 ) @ P2 ) ) ) )
           => ( P @ M ) ) ) ) ) ).

% mod_induct
thf(fact_1894_mod__Suc__le__divisor,axiom,
    ! [M: nat,N: nat] : ( ord_less_eq_nat @ ( modulo_modulo_nat @ M @ ( suc @ N ) ) @ N ) ).

% mod_Suc_le_divisor
thf(fact_1895_mod__geq,axiom,
    ! [M: nat,N: nat] :
      ( ~ ( ord_less_nat @ M @ N )
     => ( ( modulo_modulo_nat @ M @ N )
        = ( modulo_modulo_nat @ ( minus_minus_nat @ M @ N ) @ N ) ) ) ).

% mod_geq
thf(fact_1896_mod__if,axiom,
    ( modulo_modulo_nat
    = ( ^ [M3: nat,N2: nat] : ( if_nat @ ( ord_less_nat @ M3 @ N2 ) @ M3 @ ( modulo_modulo_nat @ ( minus_minus_nat @ M3 @ N2 ) @ N2 ) ) ) ) ).

% mod_if
thf(fact_1897_le__mod__geq,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq_nat @ N @ M )
     => ( ( modulo_modulo_nat @ M @ N )
        = ( modulo_modulo_nat @ ( minus_minus_nat @ M @ N ) @ N ) ) ) ).

% le_mod_geq
thf(fact_1898_nat__mod__eq__iff,axiom,
    ! [X2: nat,N: nat,Y2: nat] :
      ( ( ( modulo_modulo_nat @ X2 @ N )
        = ( modulo_modulo_nat @ Y2 @ N ) )
      = ( ? [Q1: nat,Q22: nat] :
            ( ( plus_plus_nat @ X2 @ ( times_times_nat @ N @ Q1 ) )
            = ( plus_plus_nat @ Y2 @ ( times_times_nat @ N @ Q22 ) ) ) ) ) ).

% nat_mod_eq_iff
thf(fact_1899_image__diff__subset,axiom,
    ! [F: nat > set_nat,A2: set_nat,B3: set_nat] : ( ord_le6893508408891458716et_nat @ ( minus_2163939370556025621et_nat @ ( image_nat_set_nat @ F @ A2 ) @ ( image_nat_set_nat @ F @ B3 ) ) @ ( image_nat_set_nat @ F @ ( minus_minus_set_nat @ A2 @ B3 ) ) ) ).

% image_diff_subset
thf(fact_1900_image__diff__subset,axiom,
    ! [F: int > nat,A2: set_int,B3: set_int] : ( ord_less_eq_set_nat @ ( minus_minus_set_nat @ ( image_int_nat @ F @ A2 ) @ ( image_int_nat @ F @ B3 ) ) @ ( image_int_nat @ F @ ( minus_minus_set_int @ A2 @ B3 ) ) ) ).

% image_diff_subset
thf(fact_1901_image__diff__subset,axiom,
    ! [F: nat > nat,A2: set_nat,B3: set_nat] : ( ord_less_eq_set_nat @ ( minus_minus_set_nat @ ( image_nat_nat @ F @ A2 ) @ ( image_nat_nat @ F @ B3 ) ) @ ( image_nat_nat @ F @ ( minus_minus_set_nat @ A2 @ B3 ) ) ) ).

% image_diff_subset
thf(fact_1902_image__diff__subset,axiom,
    ! [F: int > int,A2: set_int,B3: set_int] : ( ord_less_eq_set_int @ ( minus_minus_set_int @ ( image_int_int @ F @ A2 ) @ ( image_int_int @ F @ B3 ) ) @ ( image_int_int @ F @ ( minus_minus_set_int @ A2 @ B3 ) ) ) ).

% image_diff_subset
thf(fact_1903_image__diff__subset,axiom,
    ! [F: nat > int,A2: set_nat,B3: set_nat] : ( ord_less_eq_set_int @ ( minus_minus_set_int @ ( image_nat_int @ F @ A2 ) @ ( image_nat_int @ F @ B3 ) ) @ ( image_nat_int @ F @ ( minus_minus_set_nat @ A2 @ B3 ) ) ) ).

% image_diff_subset
thf(fact_1904_subset__Diff__insert,axiom,
    ! [A2: set_VEBT_VEBT,B3: set_VEBT_VEBT,X2: vEBT_VEBT,C4: set_VEBT_VEBT] :
      ( ( ord_le4337996190870823476T_VEBT @ A2 @ ( minus_5127226145743854075T_VEBT @ B3 @ ( insert_VEBT_VEBT @ X2 @ C4 ) ) )
      = ( ( ord_le4337996190870823476T_VEBT @ A2 @ ( minus_5127226145743854075T_VEBT @ B3 @ C4 ) )
        & ~ ( member_VEBT_VEBT @ X2 @ A2 ) ) ) ).

% subset_Diff_insert
thf(fact_1905_subset__Diff__insert,axiom,
    ! [A2: set_o,B3: set_o,X2: $o,C4: set_o] :
      ( ( ord_less_eq_set_o @ A2 @ ( minus_minus_set_o @ B3 @ ( insert_o @ X2 @ C4 ) ) )
      = ( ( ord_less_eq_set_o @ A2 @ ( minus_minus_set_o @ B3 @ C4 ) )
        & ~ ( member_o @ X2 @ A2 ) ) ) ).

% subset_Diff_insert
thf(fact_1906_subset__Diff__insert,axiom,
    ! [A2: set_complex,B3: set_complex,X2: complex,C4: set_complex] :
      ( ( ord_le211207098394363844omplex @ A2 @ ( minus_811609699411566653omplex @ B3 @ ( insert_complex @ X2 @ C4 ) ) )
      = ( ( ord_le211207098394363844omplex @ A2 @ ( minus_811609699411566653omplex @ B3 @ C4 ) )
        & ~ ( member_complex @ X2 @ A2 ) ) ) ).

% subset_Diff_insert
thf(fact_1907_subset__Diff__insert,axiom,
    ! [A2: set_real,B3: set_real,X2: real,C4: set_real] :
      ( ( ord_less_eq_set_real @ A2 @ ( minus_minus_set_real @ B3 @ ( insert_real @ X2 @ C4 ) ) )
      = ( ( ord_less_eq_set_real @ A2 @ ( minus_minus_set_real @ B3 @ C4 ) )
        & ~ ( member_real @ X2 @ A2 ) ) ) ).

% subset_Diff_insert
thf(fact_1908_subset__Diff__insert,axiom,
    ! [A2: set_set_nat,B3: set_set_nat,X2: set_nat,C4: set_set_nat] :
      ( ( ord_le6893508408891458716et_nat @ A2 @ ( minus_2163939370556025621et_nat @ B3 @ ( insert_set_nat @ X2 @ C4 ) ) )
      = ( ( ord_le6893508408891458716et_nat @ A2 @ ( minus_2163939370556025621et_nat @ B3 @ C4 ) )
        & ~ ( member_set_nat @ X2 @ A2 ) ) ) ).

% subset_Diff_insert
thf(fact_1909_subset__Diff__insert,axiom,
    ! [A2: set_nat,B3: set_nat,X2: nat,C4: set_nat] :
      ( ( ord_less_eq_set_nat @ A2 @ ( minus_minus_set_nat @ B3 @ ( insert_nat @ X2 @ C4 ) ) )
      = ( ( ord_less_eq_set_nat @ A2 @ ( minus_minus_set_nat @ B3 @ C4 ) )
        & ~ ( member_nat @ X2 @ A2 ) ) ) ).

% subset_Diff_insert
thf(fact_1910_subset__Diff__insert,axiom,
    ! [A2: set_int,B3: set_int,X2: int,C4: set_int] :
      ( ( ord_less_eq_set_int @ A2 @ ( minus_minus_set_int @ B3 @ ( insert_int @ X2 @ C4 ) ) )
      = ( ( ord_less_eq_set_int @ A2 @ ( minus_minus_set_int @ B3 @ C4 ) )
        & ~ ( member_int @ X2 @ A2 ) ) ) ).

% subset_Diff_insert
thf(fact_1911_set__update__subsetI,axiom,
    ! [Xs2: list_complex,A2: set_complex,X2: complex,I: nat] :
      ( ( ord_le211207098394363844omplex @ ( set_complex2 @ Xs2 ) @ A2 )
     => ( ( member_complex @ X2 @ A2 )
       => ( ord_le211207098394363844omplex @ ( set_complex2 @ ( list_update_complex @ Xs2 @ I @ X2 ) ) @ A2 ) ) ) ).

% set_update_subsetI
thf(fact_1912_set__update__subsetI,axiom,
    ! [Xs2: list_real,A2: set_real,X2: real,I: nat] :
      ( ( ord_less_eq_set_real @ ( set_real2 @ Xs2 ) @ A2 )
     => ( ( member_real @ X2 @ A2 )
       => ( ord_less_eq_set_real @ ( set_real2 @ ( list_update_real @ Xs2 @ I @ X2 ) ) @ A2 ) ) ) ).

% set_update_subsetI
thf(fact_1913_set__update__subsetI,axiom,
    ! [Xs2: list_set_nat,A2: set_set_nat,X2: set_nat,I: nat] :
      ( ( ord_le6893508408891458716et_nat @ ( set_set_nat2 @ Xs2 ) @ A2 )
     => ( ( member_set_nat @ X2 @ A2 )
       => ( ord_le6893508408891458716et_nat @ ( set_set_nat2 @ ( list_update_set_nat @ Xs2 @ I @ X2 ) ) @ A2 ) ) ) ).

% set_update_subsetI
thf(fact_1914_set__update__subsetI,axiom,
    ! [Xs2: list_nat,A2: set_nat,X2: nat,I: nat] :
      ( ( ord_less_eq_set_nat @ ( set_nat2 @ Xs2 ) @ A2 )
     => ( ( member_nat @ X2 @ A2 )
       => ( ord_less_eq_set_nat @ ( set_nat2 @ ( list_update_nat @ Xs2 @ I @ X2 ) ) @ A2 ) ) ) ).

% set_update_subsetI
thf(fact_1915_set__update__subsetI,axiom,
    ! [Xs2: list_VEBT_VEBT,A2: set_VEBT_VEBT,X2: vEBT_VEBT,I: nat] :
      ( ( ord_le4337996190870823476T_VEBT @ ( set_VEBT_VEBT2 @ Xs2 ) @ A2 )
     => ( ( member_VEBT_VEBT @ X2 @ A2 )
       => ( ord_le4337996190870823476T_VEBT @ ( set_VEBT_VEBT2 @ ( list_u1324408373059187874T_VEBT @ Xs2 @ I @ X2 ) ) @ A2 ) ) ) ).

% set_update_subsetI
thf(fact_1916_set__update__subsetI,axiom,
    ! [Xs2: list_int,A2: set_int,X2: int,I: nat] :
      ( ( ord_less_eq_set_int @ ( set_int2 @ Xs2 ) @ A2 )
     => ( ( member_int @ X2 @ A2 )
       => ( ord_less_eq_set_int @ ( set_int2 @ ( list_update_int @ Xs2 @ I @ X2 ) ) @ A2 ) ) ) ).

% set_update_subsetI
thf(fact_1917_finite__lists__length__le,axiom,
    ! [A2: set_nat,N: nat] :
      ( ( finite_finite_nat @ A2 )
     => ( finite8100373058378681591st_nat
        @ ( collect_list_nat
          @ ^ [Xs: list_nat] :
              ( ( ord_less_eq_set_nat @ ( set_nat2 @ Xs ) @ A2 )
              & ( ord_less_eq_nat @ ( size_size_list_nat @ Xs ) @ N ) ) ) ) ) ).

% finite_lists_length_le
thf(fact_1918_finite__lists__length__le,axiom,
    ! [A2: set_complex,N: nat] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( finite8712137658972009173omplex
        @ ( collect_list_complex
          @ ^ [Xs: list_complex] :
              ( ( ord_le211207098394363844omplex @ ( set_complex2 @ Xs ) @ A2 )
              & ( ord_less_eq_nat @ ( size_s3451745648224563538omplex @ Xs ) @ N ) ) ) ) ) ).

% finite_lists_length_le
thf(fact_1919_finite__lists__length__le,axiom,
    ! [A2: set_VEBT_VEBT,N: nat] :
      ( ( finite5795047828879050333T_VEBT @ A2 )
     => ( finite3004134309566078307T_VEBT
        @ ( collec5608196760682091941T_VEBT
          @ ^ [Xs: list_VEBT_VEBT] :
              ( ( ord_le4337996190870823476T_VEBT @ ( set_VEBT_VEBT2 @ Xs ) @ A2 )
              & ( ord_less_eq_nat @ ( size_s6755466524823107622T_VEBT @ Xs ) @ N ) ) ) ) ) ).

% finite_lists_length_le
thf(fact_1920_finite__lists__length__le,axiom,
    ! [A2: set_o,N: nat] :
      ( ( finite_finite_o @ A2 )
     => ( finite_finite_list_o
        @ ( collect_list_o
          @ ^ [Xs: list_o] :
              ( ( ord_less_eq_set_o @ ( set_o2 @ Xs ) @ A2 )
              & ( ord_less_eq_nat @ ( size_size_list_o @ Xs ) @ N ) ) ) ) ) ).

% finite_lists_length_le
thf(fact_1921_finite__lists__length__le,axiom,
    ! [A2: set_int,N: nat] :
      ( ( finite_finite_int @ A2 )
     => ( finite3922522038869484883st_int
        @ ( collect_list_int
          @ ^ [Xs: list_int] :
              ( ( ord_less_eq_set_int @ ( set_int2 @ Xs ) @ A2 )
              & ( ord_less_eq_nat @ ( size_size_list_int @ Xs ) @ N ) ) ) ) ) ).

% finite_lists_length_le
thf(fact_1922_vebt__member_Osimps_I2_J,axiom,
    ! [Uu: nat,Uv: list_VEBT_VEBT,Uw: vEBT_VEBT,X2: nat] :
      ~ ( vEBT_vebt_member @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu @ Uv @ Uw ) @ X2 ) ).

% vebt_member.simps(2)
thf(fact_1923_cong__exp__iff__simps_I6_J,axiom,
    ! [Q2: num,N: num] :
      ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ one ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) )
     != ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit0 @ N ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) ) ) ).

% cong_exp_iff_simps(6)
thf(fact_1924_cong__exp__iff__simps_I6_J,axiom,
    ! [Q2: num,N: num] :
      ( ( modulo_modulo_int @ ( numeral_numeral_int @ one ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) )
     != ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) ) ) ).

% cong_exp_iff_simps(6)
thf(fact_1925_cong__exp__iff__simps_I6_J,axiom,
    ! [Q2: num,N: num] :
      ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ one ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) )
     != ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit0 @ N ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) ) ) ).

% cong_exp_iff_simps(6)
thf(fact_1926_cong__exp__iff__simps_I8_J,axiom,
    ! [M: num,Q2: num] :
      ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit0 @ M ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) )
     != ( modulo_modulo_nat @ ( numeral_numeral_nat @ one ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) ) ) ).

% cong_exp_iff_simps(8)
thf(fact_1927_cong__exp__iff__simps_I8_J,axiom,
    ! [M: num,Q2: num] :
      ( ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit0 @ M ) ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) )
     != ( modulo_modulo_int @ ( numeral_numeral_int @ one ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) ) ) ).

% cong_exp_iff_simps(8)
thf(fact_1928_cong__exp__iff__simps_I8_J,axiom,
    ! [M: num,Q2: num] :
      ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit0 @ M ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) )
     != ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ one ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) ) ) ).

% cong_exp_iff_simps(8)
thf(fact_1929_mult__div__mod__eq,axiom,
    ! [B: nat,A: nat] :
      ( ( plus_plus_nat @ ( times_times_nat @ B @ ( divide_divide_nat @ A @ B ) ) @ ( modulo_modulo_nat @ A @ B ) )
      = A ) ).

% mult_div_mod_eq
thf(fact_1930_mult__div__mod__eq,axiom,
    ! [B: int,A: int] :
      ( ( plus_plus_int @ ( times_times_int @ B @ ( divide_divide_int @ A @ B ) ) @ ( modulo_modulo_int @ A @ B ) )
      = A ) ).

% mult_div_mod_eq
thf(fact_1931_mult__div__mod__eq,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ B @ ( divide6298287555418463151nteger @ A @ B ) ) @ ( modulo364778990260209775nteger @ A @ B ) )
      = A ) ).

% mult_div_mod_eq
thf(fact_1932_mod__mult__div__eq,axiom,
    ! [A: nat,B: nat] :
      ( ( plus_plus_nat @ ( modulo_modulo_nat @ A @ B ) @ ( times_times_nat @ B @ ( divide_divide_nat @ A @ B ) ) )
      = A ) ).

% mod_mult_div_eq
thf(fact_1933_mod__mult__div__eq,axiom,
    ! [A: int,B: int] :
      ( ( plus_plus_int @ ( modulo_modulo_int @ A @ B ) @ ( times_times_int @ B @ ( divide_divide_int @ A @ B ) ) )
      = A ) ).

% mod_mult_div_eq
thf(fact_1934_mod__mult__div__eq,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( plus_p5714425477246183910nteger @ ( modulo364778990260209775nteger @ A @ B ) @ ( times_3573771949741848930nteger @ B @ ( divide6298287555418463151nteger @ A @ B ) ) )
      = A ) ).

% mod_mult_div_eq
thf(fact_1935_mod__div__mult__eq,axiom,
    ! [A: nat,B: nat] :
      ( ( plus_plus_nat @ ( modulo_modulo_nat @ A @ B ) @ ( times_times_nat @ ( divide_divide_nat @ A @ B ) @ B ) )
      = A ) ).

% mod_div_mult_eq
thf(fact_1936_mod__div__mult__eq,axiom,
    ! [A: int,B: int] :
      ( ( plus_plus_int @ ( modulo_modulo_int @ A @ B ) @ ( times_times_int @ ( divide_divide_int @ A @ B ) @ B ) )
      = A ) ).

% mod_div_mult_eq
thf(fact_1937_mod__div__mult__eq,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( plus_p5714425477246183910nteger @ ( modulo364778990260209775nteger @ A @ B ) @ ( times_3573771949741848930nteger @ ( divide6298287555418463151nteger @ A @ B ) @ B ) )
      = A ) ).

% mod_div_mult_eq
thf(fact_1938_div__mult__mod__eq,axiom,
    ! [A: nat,B: nat] :
      ( ( plus_plus_nat @ ( times_times_nat @ ( divide_divide_nat @ A @ B ) @ B ) @ ( modulo_modulo_nat @ A @ B ) )
      = A ) ).

% div_mult_mod_eq
thf(fact_1939_div__mult__mod__eq,axiom,
    ! [A: int,B: int] :
      ( ( plus_plus_int @ ( times_times_int @ ( divide_divide_int @ A @ B ) @ B ) @ ( modulo_modulo_int @ A @ B ) )
      = A ) ).

% div_mult_mod_eq
thf(fact_1940_div__mult__mod__eq,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( divide6298287555418463151nteger @ A @ B ) @ B ) @ ( modulo364778990260209775nteger @ A @ B ) )
      = A ) ).

% div_mult_mod_eq
thf(fact_1941_mod__div__decomp,axiom,
    ! [A: nat,B: nat] :
      ( A
      = ( plus_plus_nat @ ( times_times_nat @ ( divide_divide_nat @ A @ B ) @ B ) @ ( modulo_modulo_nat @ A @ B ) ) ) ).

% mod_div_decomp
thf(fact_1942_mod__div__decomp,axiom,
    ! [A: int,B: int] :
      ( A
      = ( plus_plus_int @ ( times_times_int @ ( divide_divide_int @ A @ B ) @ B ) @ ( modulo_modulo_int @ A @ B ) ) ) ).

% mod_div_decomp
thf(fact_1943_mod__div__decomp,axiom,
    ! [A: code_integer,B: code_integer] :
      ( A
      = ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( divide6298287555418463151nteger @ A @ B ) @ B ) @ ( modulo364778990260209775nteger @ A @ B ) ) ) ).

% mod_div_decomp
thf(fact_1944_cancel__div__mod__rules_I1_J,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( plus_plus_nat @ ( plus_plus_nat @ ( times_times_nat @ ( divide_divide_nat @ A @ B ) @ B ) @ ( modulo_modulo_nat @ A @ B ) ) @ C )
      = ( plus_plus_nat @ A @ C ) ) ).

% cancel_div_mod_rules(1)
thf(fact_1945_cancel__div__mod__rules_I1_J,axiom,
    ! [A: int,B: int,C: int] :
      ( ( plus_plus_int @ ( plus_plus_int @ ( times_times_int @ ( divide_divide_int @ A @ B ) @ B ) @ ( modulo_modulo_int @ A @ B ) ) @ C )
      = ( plus_plus_int @ A @ C ) ) ).

% cancel_div_mod_rules(1)
thf(fact_1946_cancel__div__mod__rules_I1_J,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( plus_p5714425477246183910nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( divide6298287555418463151nteger @ A @ B ) @ B ) @ ( modulo364778990260209775nteger @ A @ B ) ) @ C )
      = ( plus_p5714425477246183910nteger @ A @ C ) ) ).

% cancel_div_mod_rules(1)
thf(fact_1947_cancel__div__mod__rules_I2_J,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( plus_plus_nat @ ( plus_plus_nat @ ( times_times_nat @ B @ ( divide_divide_nat @ A @ B ) ) @ ( modulo_modulo_nat @ A @ B ) ) @ C )
      = ( plus_plus_nat @ A @ C ) ) ).

% cancel_div_mod_rules(2)
thf(fact_1948_cancel__div__mod__rules_I2_J,axiom,
    ! [B: int,A: int,C: int] :
      ( ( plus_plus_int @ ( plus_plus_int @ ( times_times_int @ B @ ( divide_divide_int @ A @ B ) ) @ ( modulo_modulo_int @ A @ B ) ) @ C )
      = ( plus_plus_int @ A @ C ) ) ).

% cancel_div_mod_rules(2)
thf(fact_1949_cancel__div__mod__rules_I2_J,axiom,
    ! [B: code_integer,A: code_integer,C: code_integer] :
      ( ( plus_p5714425477246183910nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ B @ ( divide6298287555418463151nteger @ A @ B ) ) @ ( modulo364778990260209775nteger @ A @ B ) ) @ C )
      = ( plus_p5714425477246183910nteger @ A @ C ) ) ).

% cancel_div_mod_rules(2)
thf(fact_1950_div__mult1__eq,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( divide_divide_nat @ ( times_times_nat @ A @ B ) @ C )
      = ( plus_plus_nat @ ( times_times_nat @ A @ ( divide_divide_nat @ B @ C ) ) @ ( divide_divide_nat @ ( times_times_nat @ A @ ( modulo_modulo_nat @ B @ C ) ) @ C ) ) ) ).

% div_mult1_eq
thf(fact_1951_div__mult1__eq,axiom,
    ! [A: int,B: int,C: int] :
      ( ( divide_divide_int @ ( times_times_int @ A @ B ) @ C )
      = ( plus_plus_int @ ( times_times_int @ A @ ( divide_divide_int @ B @ C ) ) @ ( divide_divide_int @ ( times_times_int @ A @ ( modulo_modulo_int @ B @ C ) ) @ C ) ) ) ).

% div_mult1_eq
thf(fact_1952_div__mult1__eq,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( divide6298287555418463151nteger @ ( times_3573771949741848930nteger @ A @ B ) @ C )
      = ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ A @ ( divide6298287555418463151nteger @ B @ C ) ) @ ( divide6298287555418463151nteger @ ( times_3573771949741848930nteger @ A @ ( modulo364778990260209775nteger @ B @ C ) ) @ C ) ) ) ).

% div_mult1_eq
thf(fact_1953_minus__mult__div__eq__mod,axiom,
    ! [A: nat,B: nat] :
      ( ( minus_minus_nat @ A @ ( times_times_nat @ B @ ( divide_divide_nat @ A @ B ) ) )
      = ( modulo_modulo_nat @ A @ B ) ) ).

% minus_mult_div_eq_mod
thf(fact_1954_minus__mult__div__eq__mod,axiom,
    ! [A: int,B: int] :
      ( ( minus_minus_int @ A @ ( times_times_int @ B @ ( divide_divide_int @ A @ B ) ) )
      = ( modulo_modulo_int @ A @ B ) ) ).

% minus_mult_div_eq_mod
thf(fact_1955_minus__mult__div__eq__mod,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( minus_8373710615458151222nteger @ A @ ( times_3573771949741848930nteger @ B @ ( divide6298287555418463151nteger @ A @ B ) ) )
      = ( modulo364778990260209775nteger @ A @ B ) ) ).

% minus_mult_div_eq_mod
thf(fact_1956_minus__mod__eq__mult__div,axiom,
    ! [A: nat,B: nat] :
      ( ( minus_minus_nat @ A @ ( modulo_modulo_nat @ A @ B ) )
      = ( times_times_nat @ B @ ( divide_divide_nat @ A @ B ) ) ) ).

% minus_mod_eq_mult_div
thf(fact_1957_minus__mod__eq__mult__div,axiom,
    ! [A: int,B: int] :
      ( ( minus_minus_int @ A @ ( modulo_modulo_int @ A @ B ) )
      = ( times_times_int @ B @ ( divide_divide_int @ A @ B ) ) ) ).

% minus_mod_eq_mult_div
thf(fact_1958_minus__mod__eq__mult__div,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( minus_8373710615458151222nteger @ A @ ( modulo364778990260209775nteger @ A @ B ) )
      = ( times_3573771949741848930nteger @ B @ ( divide6298287555418463151nteger @ A @ B ) ) ) ).

% minus_mod_eq_mult_div
thf(fact_1959_minus__mod__eq__div__mult,axiom,
    ! [A: nat,B: nat] :
      ( ( minus_minus_nat @ A @ ( modulo_modulo_nat @ A @ B ) )
      = ( times_times_nat @ ( divide_divide_nat @ A @ B ) @ B ) ) ).

% minus_mod_eq_div_mult
thf(fact_1960_minus__mod__eq__div__mult,axiom,
    ! [A: int,B: int] :
      ( ( minus_minus_int @ A @ ( modulo_modulo_int @ A @ B ) )
      = ( times_times_int @ ( divide_divide_int @ A @ B ) @ B ) ) ).

% minus_mod_eq_div_mult
thf(fact_1961_minus__mod__eq__div__mult,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( minus_8373710615458151222nteger @ A @ ( modulo364778990260209775nteger @ A @ B ) )
      = ( times_3573771949741848930nteger @ ( divide6298287555418463151nteger @ A @ B ) @ B ) ) ).

% minus_mod_eq_div_mult
thf(fact_1962_minus__div__mult__eq__mod,axiom,
    ! [A: nat,B: nat] :
      ( ( minus_minus_nat @ A @ ( times_times_nat @ ( divide_divide_nat @ A @ B ) @ B ) )
      = ( modulo_modulo_nat @ A @ B ) ) ).

% minus_div_mult_eq_mod
thf(fact_1963_minus__div__mult__eq__mod,axiom,
    ! [A: int,B: int] :
      ( ( minus_minus_int @ A @ ( times_times_int @ ( divide_divide_int @ A @ B ) @ B ) )
      = ( modulo_modulo_int @ A @ B ) ) ).

% minus_div_mult_eq_mod
thf(fact_1964_minus__div__mult__eq__mod,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( minus_8373710615458151222nteger @ A @ ( times_3573771949741848930nteger @ ( divide6298287555418463151nteger @ A @ B ) @ B ) )
      = ( modulo364778990260209775nteger @ A @ B ) ) ).

% minus_div_mult_eq_mod
thf(fact_1965_cong__exp__iff__simps_I10_J,axiom,
    ! [M: num,Q2: num,N: num] :
      ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit0 @ M ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) )
     != ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit1 @ N ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) ) ) ).

% cong_exp_iff_simps(10)
thf(fact_1966_cong__exp__iff__simps_I10_J,axiom,
    ! [M: num,Q2: num,N: num] :
      ( ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit0 @ M ) ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) )
     != ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) ) ) ).

% cong_exp_iff_simps(10)
thf(fact_1967_cong__exp__iff__simps_I10_J,axiom,
    ! [M: num,Q2: num,N: num] :
      ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit0 @ M ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) )
     != ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit1 @ N ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) ) ) ).

% cong_exp_iff_simps(10)
thf(fact_1968_cong__exp__iff__simps_I12_J,axiom,
    ! [M: num,Q2: num,N: num] :
      ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit1 @ M ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) )
     != ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit0 @ N ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) ) ) ).

% cong_exp_iff_simps(12)
thf(fact_1969_cong__exp__iff__simps_I12_J,axiom,
    ! [M: num,Q2: num,N: num] :
      ( ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit1 @ M ) ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) )
     != ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) ) ) ).

% cong_exp_iff_simps(12)
thf(fact_1970_cong__exp__iff__simps_I12_J,axiom,
    ! [M: num,Q2: num,N: num] :
      ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit1 @ M ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) )
     != ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit0 @ N ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) ) ) ).

% cong_exp_iff_simps(12)
thf(fact_1971_cong__exp__iff__simps_I13_J,axiom,
    ! [M: num,Q2: num,N: num] :
      ( ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit1 @ M ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) )
        = ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit1 @ N ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) ) )
      = ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ Q2 ) )
        = ( modulo_modulo_nat @ ( numeral_numeral_nat @ N ) @ ( numeral_numeral_nat @ Q2 ) ) ) ) ).

% cong_exp_iff_simps(13)
thf(fact_1972_cong__exp__iff__simps_I13_J,axiom,
    ! [M: num,Q2: num,N: num] :
      ( ( ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit1 @ M ) ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) )
        = ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) ) )
      = ( ( modulo_modulo_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ Q2 ) )
        = ( modulo_modulo_int @ ( numeral_numeral_int @ N ) @ ( numeral_numeral_int @ Q2 ) ) ) ) ).

% cong_exp_iff_simps(13)
thf(fact_1973_cong__exp__iff__simps_I13_J,axiom,
    ! [M: num,Q2: num,N: num] :
      ( ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit1 @ M ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) )
        = ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit1 @ N ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) ) )
      = ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ M ) @ ( numera6620942414471956472nteger @ Q2 ) )
        = ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ N ) @ ( numera6620942414471956472nteger @ Q2 ) ) ) ) ).

% cong_exp_iff_simps(13)
thf(fact_1974_nat__mod__eq__lemma,axiom,
    ! [X2: nat,N: nat,Y2: nat] :
      ( ( ( modulo_modulo_nat @ X2 @ N )
        = ( modulo_modulo_nat @ Y2 @ N ) )
     => ( ( ord_less_eq_nat @ Y2 @ X2 )
       => ? [Q3: nat] :
            ( X2
            = ( plus_plus_nat @ Y2 @ ( times_times_nat @ N @ Q3 ) ) ) ) ) ).

% nat_mod_eq_lemma
thf(fact_1975_mod__eq__nat2E,axiom,
    ! [M: nat,Q2: nat,N: nat] :
      ( ( ( modulo_modulo_nat @ M @ Q2 )
        = ( modulo_modulo_nat @ N @ Q2 ) )
     => ( ( ord_less_eq_nat @ M @ N )
       => ~ ! [S2: nat] :
              ( N
             != ( plus_plus_nat @ M @ ( times_times_nat @ Q2 @ S2 ) ) ) ) ) ).

% mod_eq_nat2E
thf(fact_1976_mod__eq__nat1E,axiom,
    ! [M: nat,Q2: nat,N: nat] :
      ( ( ( modulo_modulo_nat @ M @ Q2 )
        = ( modulo_modulo_nat @ N @ Q2 ) )
     => ( ( ord_less_eq_nat @ N @ M )
       => ~ ! [S2: nat] :
              ( M
             != ( plus_plus_nat @ N @ ( times_times_nat @ Q2 @ S2 ) ) ) ) ) ).

% mod_eq_nat1E
thf(fact_1977_VEBT__internal_OminNull_Osimps_I5_J,axiom,
    ! [Uz: product_prod_nat_nat,Va: nat,Vb: list_VEBT_VEBT,Vc: vEBT_VEBT] :
      ~ ( vEBT_VEBT_minNull @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ Uz ) @ Va @ Vb @ Vc ) ) ).

% VEBT_internal.minNull.simps(5)
thf(fact_1978_xor__num_Ocases,axiom,
    ! [X2: product_prod_num_num] :
      ( ( X2
       != ( product_Pair_num_num @ one @ one ) )
     => ( ! [N3: num] :
            ( X2
           != ( product_Pair_num_num @ one @ ( bit0 @ N3 ) ) )
       => ( ! [N3: num] :
              ( X2
             != ( product_Pair_num_num @ one @ ( bit1 @ N3 ) ) )
         => ( ! [M4: num] :
                ( X2
               != ( product_Pair_num_num @ ( bit0 @ M4 ) @ one ) )
           => ( ! [M4: num,N3: num] :
                  ( X2
                 != ( product_Pair_num_num @ ( bit0 @ M4 ) @ ( bit0 @ N3 ) ) )
             => ( ! [M4: num,N3: num] :
                    ( X2
                   != ( product_Pair_num_num @ ( bit0 @ M4 ) @ ( bit1 @ N3 ) ) )
               => ( ! [M4: num] :
                      ( X2
                     != ( product_Pair_num_num @ ( bit1 @ M4 ) @ one ) )
                 => ( ! [M4: num,N3: num] :
                        ( X2
                       != ( product_Pair_num_num @ ( bit1 @ M4 ) @ ( bit0 @ N3 ) ) )
                   => ~ ! [M4: num,N3: num] :
                          ( X2
                         != ( product_Pair_num_num @ ( bit1 @ M4 ) @ ( bit1 @ N3 ) ) ) ) ) ) ) ) ) ) ) ).

% xor_num.cases
thf(fact_1979_mod__mult2__eq,axiom,
    ! [M: nat,N: nat,Q2: nat] :
      ( ( modulo_modulo_nat @ M @ ( times_times_nat @ N @ Q2 ) )
      = ( plus_plus_nat @ ( times_times_nat @ N @ ( modulo_modulo_nat @ ( divide_divide_nat @ M @ N ) @ Q2 ) ) @ ( modulo_modulo_nat @ M @ N ) ) ) ).

% mod_mult2_eq
thf(fact_1980_modulo__nat__def,axiom,
    ( modulo_modulo_nat
    = ( ^ [M3: nat,N2: nat] : ( minus_minus_nat @ M3 @ ( times_times_nat @ ( divide_divide_nat @ M3 @ N2 ) @ N2 ) ) ) ) ).

% modulo_nat_def
thf(fact_1981_set__update__subset__insert,axiom,
    ! [Xs2: list_nat,I: nat,X2: nat] : ( ord_less_eq_set_nat @ ( set_nat2 @ ( list_update_nat @ Xs2 @ I @ X2 ) ) @ ( insert_nat @ X2 @ ( set_nat2 @ Xs2 ) ) ) ).

% set_update_subset_insert
thf(fact_1982_set__update__subset__insert,axiom,
    ! [Xs2: list_real,I: nat,X2: real] : ( ord_less_eq_set_real @ ( set_real2 @ ( list_update_real @ Xs2 @ I @ X2 ) ) @ ( insert_real @ X2 @ ( set_real2 @ Xs2 ) ) ) ).

% set_update_subset_insert
thf(fact_1983_set__update__subset__insert,axiom,
    ! [Xs2: list_o,I: nat,X2: $o] : ( ord_less_eq_set_o @ ( set_o2 @ ( list_update_o @ Xs2 @ I @ X2 ) ) @ ( insert_o @ X2 @ ( set_o2 @ Xs2 ) ) ) ).

% set_update_subset_insert
thf(fact_1984_set__update__subset__insert,axiom,
    ! [Xs2: list_VEBT_VEBT,I: nat,X2: vEBT_VEBT] : ( ord_le4337996190870823476T_VEBT @ ( set_VEBT_VEBT2 @ ( list_u1324408373059187874T_VEBT @ Xs2 @ I @ X2 ) ) @ ( insert_VEBT_VEBT @ X2 @ ( set_VEBT_VEBT2 @ Xs2 ) ) ) ).

% set_update_subset_insert
thf(fact_1985_set__update__subset__insert,axiom,
    ! [Xs2: list_int,I: nat,X2: int] : ( ord_less_eq_set_int @ ( set_int2 @ ( list_update_int @ Xs2 @ I @ X2 ) ) @ ( insert_int @ X2 @ ( set_int2 @ Xs2 ) ) ) ).

% set_update_subset_insert
thf(fact_1986_set__update__memI,axiom,
    ! [N: nat,Xs2: list_complex,X2: complex] :
      ( ( ord_less_nat @ N @ ( size_s3451745648224563538omplex @ Xs2 ) )
     => ( member_complex @ X2 @ ( set_complex2 @ ( list_update_complex @ Xs2 @ N @ X2 ) ) ) ) ).

% set_update_memI
thf(fact_1987_set__update__memI,axiom,
    ! [N: nat,Xs2: list_real,X2: real] :
      ( ( ord_less_nat @ N @ ( size_size_list_real @ Xs2 ) )
     => ( member_real @ X2 @ ( set_real2 @ ( list_update_real @ Xs2 @ N @ X2 ) ) ) ) ).

% set_update_memI
thf(fact_1988_set__update__memI,axiom,
    ! [N: nat,Xs2: list_set_nat,X2: set_nat] :
      ( ( ord_less_nat @ N @ ( size_s3254054031482475050et_nat @ Xs2 ) )
     => ( member_set_nat @ X2 @ ( set_set_nat2 @ ( list_update_set_nat @ Xs2 @ N @ X2 ) ) ) ) ).

% set_update_memI
thf(fact_1989_set__update__memI,axiom,
    ! [N: nat,Xs2: list_nat,X2: nat] :
      ( ( ord_less_nat @ N @ ( size_size_list_nat @ Xs2 ) )
     => ( member_nat @ X2 @ ( set_nat2 @ ( list_update_nat @ Xs2 @ N @ X2 ) ) ) ) ).

% set_update_memI
thf(fact_1990_set__update__memI,axiom,
    ! [N: nat,Xs2: list_VEBT_VEBT,X2: vEBT_VEBT] :
      ( ( ord_less_nat @ N @ ( size_s6755466524823107622T_VEBT @ Xs2 ) )
     => ( member_VEBT_VEBT @ X2 @ ( set_VEBT_VEBT2 @ ( list_u1324408373059187874T_VEBT @ Xs2 @ N @ X2 ) ) ) ) ).

% set_update_memI
thf(fact_1991_set__update__memI,axiom,
    ! [N: nat,Xs2: list_o,X2: $o] :
      ( ( ord_less_nat @ N @ ( size_size_list_o @ Xs2 ) )
     => ( member_o @ X2 @ ( set_o2 @ ( list_update_o @ Xs2 @ N @ X2 ) ) ) ) ).

% set_update_memI
thf(fact_1992_set__update__memI,axiom,
    ! [N: nat,Xs2: list_int,X2: int] :
      ( ( ord_less_nat @ N @ ( size_size_list_int @ Xs2 ) )
     => ( member_int @ X2 @ ( set_int2 @ ( list_update_int @ Xs2 @ N @ X2 ) ) ) ) ).

% set_update_memI
thf(fact_1993_list__update__same__conv,axiom,
    ! [I: nat,Xs2: list_VEBT_VEBT,X2: vEBT_VEBT] :
      ( ( ord_less_nat @ I @ ( size_s6755466524823107622T_VEBT @ Xs2 ) )
     => ( ( ( list_u1324408373059187874T_VEBT @ Xs2 @ I @ X2 )
          = Xs2 )
        = ( ( nth_VEBT_VEBT @ Xs2 @ I )
          = X2 ) ) ) ).

% list_update_same_conv
thf(fact_1994_list__update__same__conv,axiom,
    ! [I: nat,Xs2: list_o,X2: $o] :
      ( ( ord_less_nat @ I @ ( size_size_list_o @ Xs2 ) )
     => ( ( ( list_update_o @ Xs2 @ I @ X2 )
          = Xs2 )
        = ( ( nth_o @ Xs2 @ I )
          = X2 ) ) ) ).

% list_update_same_conv
thf(fact_1995_list__update__same__conv,axiom,
    ! [I: nat,Xs2: list_int,X2: int] :
      ( ( ord_less_nat @ I @ ( size_size_list_int @ Xs2 ) )
     => ( ( ( list_update_int @ Xs2 @ I @ X2 )
          = Xs2 )
        = ( ( nth_int @ Xs2 @ I )
          = X2 ) ) ) ).

% list_update_same_conv
thf(fact_1996_nth__list__update,axiom,
    ! [I: nat,Xs2: list_VEBT_VEBT,J: nat,X2: vEBT_VEBT] :
      ( ( ord_less_nat @ I @ ( size_s6755466524823107622T_VEBT @ Xs2 ) )
     => ( ( ( I = J )
         => ( ( nth_VEBT_VEBT @ ( list_u1324408373059187874T_VEBT @ Xs2 @ I @ X2 ) @ J )
            = X2 ) )
        & ( ( I != J )
         => ( ( nth_VEBT_VEBT @ ( list_u1324408373059187874T_VEBT @ Xs2 @ I @ X2 ) @ J )
            = ( nth_VEBT_VEBT @ Xs2 @ J ) ) ) ) ) ).

% nth_list_update
thf(fact_1997_nth__list__update,axiom,
    ! [I: nat,Xs2: list_o,X2: $o,J: nat] :
      ( ( ord_less_nat @ I @ ( size_size_list_o @ Xs2 ) )
     => ( ( nth_o @ ( list_update_o @ Xs2 @ I @ X2 ) @ J )
        = ( ( ( I = J )
           => X2 )
          & ( ( I != J )
           => ( nth_o @ Xs2 @ J ) ) ) ) ) ).

% nth_list_update
thf(fact_1998_nth__list__update,axiom,
    ! [I: nat,Xs2: list_int,J: nat,X2: int] :
      ( ( ord_less_nat @ I @ ( size_size_list_int @ Xs2 ) )
     => ( ( ( I = J )
         => ( ( nth_int @ ( list_update_int @ Xs2 @ I @ X2 ) @ J )
            = X2 ) )
        & ( ( I != J )
         => ( ( nth_int @ ( list_update_int @ Xs2 @ I @ X2 ) @ J )
            = ( nth_int @ Xs2 @ J ) ) ) ) ) ).

% nth_list_update
thf(fact_1999_Suc__mod__eq__add3__mod,axiom,
    ! [M: nat,N: nat] :
      ( ( modulo_modulo_nat @ ( suc @ ( suc @ ( suc @ M ) ) ) @ N )
      = ( modulo_modulo_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ one ) ) @ M ) @ N ) ) ).

% Suc_mod_eq_add3_mod
thf(fact_2000_T_092_060_094sub_062m_092_060_094sub_062e_092_060_094sub_062m_092_060_094sub_062b_092_060_094sub_062e_092_060_094sub_062r_Osimps_I2_J,axiom,
    ! [Uu: nat,Uv: list_VEBT_VEBT,Uw: vEBT_VEBT,X2: nat] :
      ( ( vEBT_T_m_e_m_b_e_r @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu @ Uv @ Uw ) @ X2 )
      = ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ).

% T\<^sub>m\<^sub>e\<^sub>m\<^sub>b\<^sub>e\<^sub>r.simps(2)
thf(fact_2001_div__exp__mod__exp__eq,axiom,
    ! [A: nat,N: nat,M: nat] :
      ( ( modulo_modulo_nat @ ( divide_divide_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
      = ( divide_divide_nat @ ( modulo_modulo_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ N @ M ) ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).

% div_exp_mod_exp_eq
thf(fact_2002_div__exp__mod__exp__eq,axiom,
    ! [A: int,N: nat,M: nat] :
      ( ( modulo_modulo_int @ ( divide_divide_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) )
      = ( divide_divide_int @ ( modulo_modulo_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_nat @ N @ M ) ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ).

% div_exp_mod_exp_eq
thf(fact_2003_div__exp__mod__exp__eq,axiom,
    ! [A: code_integer,N: nat,M: nat] :
      ( ( modulo364778990260209775nteger @ ( divide6298287555418463151nteger @ A @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) )
      = ( divide6298287555418463151nteger @ ( modulo364778990260209775nteger @ A @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( plus_plus_nat @ N @ M ) ) ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) ) ) ).

% div_exp_mod_exp_eq
thf(fact_2004_mult__exp__mod__exp__eq,axiom,
    ! [M: nat,N: nat,A: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( modulo_modulo_nat @ ( times_times_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
        = ( times_times_nat @ ( modulo_modulo_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N @ M ) ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) ) ) ).

% mult_exp_mod_exp_eq
thf(fact_2005_mult__exp__mod__exp__eq,axiom,
    ! [M: nat,N: nat,A: int] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( modulo_modulo_int @ ( times_times_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
        = ( times_times_int @ ( modulo_modulo_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N @ M ) ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) ) ) ) ).

% mult_exp_mod_exp_eq
thf(fact_2006_mult__exp__mod__exp__eq,axiom,
    ! [M: nat,N: nat,A: code_integer] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ A @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) )
        = ( times_3573771949741848930nteger @ ( modulo364778990260209775nteger @ A @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N @ M ) ) ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) ) ) ) ).

% mult_exp_mod_exp_eq
thf(fact_2007_invar__vebt_Ointros_I2_J,axiom,
    ! [TreeList: list_VEBT_VEBT,N: nat,Summary: vEBT_VEBT,M: nat,Deg: nat] :
      ( ! [X4: vEBT_VEBT] :
          ( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList ) )
         => ( vEBT_invar_vebt @ X4 @ N ) )
     => ( ( vEBT_invar_vebt @ Summary @ M )
       => ( ( ( size_s6755466524823107622T_VEBT @ TreeList )
            = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
         => ( ( M = N )
           => ( ( Deg
                = ( plus_plus_nat @ N @ M ) )
             => ( ~ ? [X_12: nat] : ( vEBT_V8194947554948674370ptions @ Summary @ X_12 )
               => ( ! [X4: vEBT_VEBT] :
                      ( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList ) )
                     => ~ ? [X_12: nat] : ( vEBT_V8194947554948674370ptions @ X4 @ X_12 ) )
                 => ( vEBT_invar_vebt @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Deg @ TreeList @ Summary ) @ Deg ) ) ) ) ) ) ) ) ).

% invar_vebt.intros(2)
thf(fact_2008_invar__vebt_Ointros_I3_J,axiom,
    ! [TreeList: list_VEBT_VEBT,N: nat,Summary: vEBT_VEBT,M: nat,Deg: nat] :
      ( ! [X4: vEBT_VEBT] :
          ( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList ) )
         => ( vEBT_invar_vebt @ X4 @ N ) )
     => ( ( vEBT_invar_vebt @ Summary @ M )
       => ( ( ( size_s6755466524823107622T_VEBT @ TreeList )
            = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
         => ( ( M
              = ( suc @ N ) )
           => ( ( Deg
                = ( plus_plus_nat @ N @ M ) )
             => ( ~ ? [X_12: nat] : ( vEBT_V8194947554948674370ptions @ Summary @ X_12 )
               => ( ! [X4: vEBT_VEBT] :
                      ( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ TreeList ) )
                     => ~ ? [X_12: nat] : ( vEBT_V8194947554948674370ptions @ X4 @ X_12 ) )
                 => ( vEBT_invar_vebt @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Deg @ TreeList @ Summary ) @ Deg ) ) ) ) ) ) ) ) ).

% invar_vebt.intros(3)
thf(fact_2009_vebt__insert_Osimps_I5_J,axiom,
    ! [Mi: nat,Ma: nat,Va: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT,X2: nat] :
      ( ( vEBT_vebt_insert @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList @ Summary ) @ X2 )
      = ( if_VEBT_VEBT
        @ ( ( ord_less_nat @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ X2 @ Mi ) @ Mi @ X2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) )
          & ~ ( ( X2 = Mi )
              | ( X2 = Ma ) ) )
        @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ ( if_nat @ ( ord_less_nat @ X2 @ Mi ) @ X2 @ Mi ) @ ( ord_max_nat @ ( if_nat @ ( ord_less_nat @ X2 @ Mi ) @ Mi @ X2 ) @ Ma ) ) ) @ ( suc @ ( suc @ Va ) ) @ ( list_u1324408373059187874T_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ X2 @ Mi ) @ Mi @ X2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_insert @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ X2 @ Mi ) @ Mi @ X2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( ord_less_nat @ X2 @ Mi ) @ Mi @ X2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( if_VEBT_VEBT @ ( vEBT_VEBT_minNull @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ X2 @ Mi ) @ Mi @ X2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_insert @ Summary @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ X2 @ Mi ) @ Mi @ X2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ Summary ) )
        @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList @ Summary ) ) ) ).

% vebt_insert.simps(5)
thf(fact_2010_summaxma,axiom,
    ! [Mi: nat,Ma: nat,Deg: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT] :
      ( ( vEBT_invar_vebt @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ Deg )
     => ( ( Mi != Ma )
       => ( ( the_nat @ ( vEBT_vebt_maxt @ Summary ) )
          = ( vEBT_VEBT_high @ Ma @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% summaxma
thf(fact_2011_real__average__minus__first,axiom,
    ! [A: real,B: real] :
      ( ( minus_minus_real @ ( divide_divide_real @ ( plus_plus_real @ A @ B ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ A )
      = ( divide_divide_real @ ( minus_minus_real @ B @ A ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% real_average_minus_first
thf(fact_2012_real__average__minus__second,axiom,
    ! [B: real,A: real] :
      ( ( minus_minus_real @ ( divide_divide_real @ ( plus_plus_real @ B @ A ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ A )
      = ( divide_divide_real @ ( minus_minus_real @ B @ A ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% real_average_minus_second
thf(fact_2013_mintlistlength,axiom,
    ! [Mi: nat,Ma: nat,Deg: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT,N: nat] :
      ( ( vEBT_invar_vebt @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ N )
     => ( ( Mi != Ma )
       => ( ( ord_less_nat @ Mi @ Ma )
          & ? [M4: nat] :
              ( ( ( some_nat @ M4 )
                = ( vEBT_vebt_mint @ Summary ) )
              & ( ord_less_nat @ M4 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ).

% mintlistlength
thf(fact_2014_option_Ocollapse,axiom,
    ! [Option: option4927543243414619207at_nat] :
      ( ( Option != none_P5556105721700978146at_nat )
     => ( ( some_P7363390416028606310at_nat @ ( the_Pr8591224930841456533at_nat @ Option ) )
        = Option ) ) ).

% option.collapse
thf(fact_2015_option_Ocollapse,axiom,
    ! [Option: option_nat] :
      ( ( Option != none_nat )
     => ( ( some_nat @ ( the_nat @ Option ) )
        = Option ) ) ).

% option.collapse
thf(fact_2016_vebt__insert_Osimps_I4_J,axiom,
    ! [V: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT,X2: nat] :
      ( ( vEBT_vebt_insert @ ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ V ) ) @ TreeList @ Summary ) @ X2 )
      = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ X2 @ X2 ) ) @ ( suc @ ( suc @ V ) ) @ TreeList @ Summary ) ) ).

% vebt_insert.simps(4)
thf(fact_2017_finite__Collect__le__nat,axiom,
    ! [K: nat] :
      ( finite_finite_nat
      @ ( collect_nat
        @ ^ [N2: nat] : ( ord_less_eq_nat @ N2 @ K ) ) ) ).

% finite_Collect_le_nat
thf(fact_2018_finite__Collect__less__nat,axiom,
    ! [K: nat] :
      ( finite_finite_nat
      @ ( collect_nat
        @ ^ [N2: nat] : ( ord_less_nat @ N2 @ K ) ) ) ).

% finite_Collect_less_nat
thf(fact_2019_finite__Collect__subsets,axiom,
    ! [A2: set_nat] :
      ( ( finite_finite_nat @ A2 )
     => ( finite1152437895449049373et_nat
        @ ( collect_set_nat
          @ ^ [B4: set_nat] : ( ord_less_eq_set_nat @ B4 @ A2 ) ) ) ) ).

% finite_Collect_subsets
thf(fact_2020_finite__Collect__subsets,axiom,
    ! [A2: set_complex] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( finite6551019134538273531omplex
        @ ( collect_set_complex
          @ ^ [B4: set_complex] : ( ord_le211207098394363844omplex @ B4 @ A2 ) ) ) ) ).

% finite_Collect_subsets
thf(fact_2021_finite__Collect__subsets,axiom,
    ! [A2: set_int] :
      ( ( finite_finite_int @ A2 )
     => ( finite6197958912794628473et_int
        @ ( collect_set_int
          @ ^ [B4: set_int] : ( ord_less_eq_set_int @ B4 @ A2 ) ) ) ) ).

% finite_Collect_subsets
thf(fact_2022_minminNull,axiom,
    ! [T: vEBT_VEBT] :
      ( ( ( vEBT_vebt_mint @ T )
        = none_nat )
     => ( vEBT_VEBT_minNull @ T ) ) ).

% minminNull
thf(fact_2023_minNullmin,axiom,
    ! [T: vEBT_VEBT] :
      ( ( vEBT_VEBT_minNull @ T )
     => ( ( vEBT_vebt_mint @ T )
        = none_nat ) ) ).

% minNullmin
thf(fact_2024_maxbmo,axiom,
    ! [T: vEBT_VEBT,X2: nat] :
      ( ( ( vEBT_vebt_maxt @ T )
        = ( some_nat @ X2 ) )
     => ( vEBT_V8194947554948674370ptions @ T @ X2 ) ) ).

% maxbmo
thf(fact_2025_power__shift,axiom,
    ! [X2: nat,Y2: nat,Z: nat] :
      ( ( ( power_power_nat @ X2 @ Y2 )
        = Z )
      = ( ( vEBT_VEBT_power @ ( some_nat @ X2 ) @ ( some_nat @ Y2 ) )
        = ( some_nat @ Z ) ) ) ).

% power_shift
thf(fact_2026_mint__member,axiom,
    ! [T: vEBT_VEBT,N: nat,Maxi: nat] :
      ( ( vEBT_invar_vebt @ T @ N )
     => ( ( ( vEBT_vebt_mint @ T )
          = ( some_nat @ Maxi ) )
       => ( vEBT_vebt_member @ T @ Maxi ) ) ) ).

% mint_member
thf(fact_2027_maxt__member,axiom,
    ! [T: vEBT_VEBT,N: nat,Maxi: nat] :
      ( ( vEBT_invar_vebt @ T @ N )
     => ( ( ( vEBT_vebt_maxt @ T )
          = ( some_nat @ Maxi ) )
       => ( vEBT_vebt_member @ T @ Maxi ) ) ) ).

% maxt_member
thf(fact_2028_option_Oinject,axiom,
    ! [X23: product_prod_nat_nat,Y22: product_prod_nat_nat] :
      ( ( ( some_P7363390416028606310at_nat @ X23 )
        = ( some_P7363390416028606310at_nat @ Y22 ) )
      = ( X23 = Y22 ) ) ).

% option.inject
thf(fact_2029_option_Oinject,axiom,
    ! [X23: nat,Y22: nat] :
      ( ( ( some_nat @ X23 )
        = ( some_nat @ Y22 ) )
      = ( X23 = Y22 ) ) ).

% option.inject
thf(fact_2030_DiffI,axiom,
    ! [C: complex,A2: set_complex,B3: set_complex] :
      ( ( member_complex @ C @ A2 )
     => ( ~ ( member_complex @ C @ B3 )
       => ( member_complex @ C @ ( minus_811609699411566653omplex @ A2 @ B3 ) ) ) ) ).

% DiffI
thf(fact_2031_DiffI,axiom,
    ! [C: real,A2: set_real,B3: set_real] :
      ( ( member_real @ C @ A2 )
     => ( ~ ( member_real @ C @ B3 )
       => ( member_real @ C @ ( minus_minus_set_real @ A2 @ B3 ) ) ) ) ).

% DiffI
thf(fact_2032_DiffI,axiom,
    ! [C: set_nat,A2: set_set_nat,B3: set_set_nat] :
      ( ( member_set_nat @ C @ A2 )
     => ( ~ ( member_set_nat @ C @ B3 )
       => ( member_set_nat @ C @ ( minus_2163939370556025621et_nat @ A2 @ B3 ) ) ) ) ).

% DiffI
thf(fact_2033_DiffI,axiom,
    ! [C: int,A2: set_int,B3: set_int] :
      ( ( member_int @ C @ A2 )
     => ( ~ ( member_int @ C @ B3 )
       => ( member_int @ C @ ( minus_minus_set_int @ A2 @ B3 ) ) ) ) ).

% DiffI
thf(fact_2034_DiffI,axiom,
    ! [C: nat,A2: set_nat,B3: set_nat] :
      ( ( member_nat @ C @ A2 )
     => ( ~ ( member_nat @ C @ B3 )
       => ( member_nat @ C @ ( minus_minus_set_nat @ A2 @ B3 ) ) ) ) ).

% DiffI
thf(fact_2035_Diff__iff,axiom,
    ! [C: complex,A2: set_complex,B3: set_complex] :
      ( ( member_complex @ C @ ( minus_811609699411566653omplex @ A2 @ B3 ) )
      = ( ( member_complex @ C @ A2 )
        & ~ ( member_complex @ C @ B3 ) ) ) ).

% Diff_iff
thf(fact_2036_Diff__iff,axiom,
    ! [C: real,A2: set_real,B3: set_real] :
      ( ( member_real @ C @ ( minus_minus_set_real @ A2 @ B3 ) )
      = ( ( member_real @ C @ A2 )
        & ~ ( member_real @ C @ B3 ) ) ) ).

% Diff_iff
thf(fact_2037_Diff__iff,axiom,
    ! [C: set_nat,A2: set_set_nat,B3: set_set_nat] :
      ( ( member_set_nat @ C @ ( minus_2163939370556025621et_nat @ A2 @ B3 ) )
      = ( ( member_set_nat @ C @ A2 )
        & ~ ( member_set_nat @ C @ B3 ) ) ) ).

% Diff_iff
thf(fact_2038_Diff__iff,axiom,
    ! [C: int,A2: set_int,B3: set_int] :
      ( ( member_int @ C @ ( minus_minus_set_int @ A2 @ B3 ) )
      = ( ( member_int @ C @ A2 )
        & ~ ( member_int @ C @ B3 ) ) ) ).

% Diff_iff
thf(fact_2039_Diff__iff,axiom,
    ! [C: nat,A2: set_nat,B3: set_nat] :
      ( ( member_nat @ C @ ( minus_minus_set_nat @ A2 @ B3 ) )
      = ( ( member_nat @ C @ A2 )
        & ~ ( member_nat @ C @ B3 ) ) ) ).

% Diff_iff
thf(fact_2040_Diff__idemp,axiom,
    ! [A2: set_nat,B3: set_nat] :
      ( ( minus_minus_set_nat @ ( minus_minus_set_nat @ A2 @ B3 ) @ B3 )
      = ( minus_minus_set_nat @ A2 @ B3 ) ) ).

% Diff_idemp
thf(fact_2041_mint__corr__help,axiom,
    ! [T: vEBT_VEBT,N: nat,Mini: nat,X2: nat] :
      ( ( vEBT_invar_vebt @ T @ N )
     => ( ( ( vEBT_vebt_mint @ T )
          = ( some_nat @ Mini ) )
       => ( ( vEBT_vebt_member @ T @ X2 )
         => ( ord_less_eq_nat @ Mini @ X2 ) ) ) ) ).

% mint_corr_help
thf(fact_2042_maxt__corr__help,axiom,
    ! [T: vEBT_VEBT,N: nat,Maxi: nat,X2: nat] :
      ( ( vEBT_invar_vebt @ T @ N )
     => ( ( ( vEBT_vebt_maxt @ T )
          = ( some_nat @ Maxi ) )
       => ( ( vEBT_vebt_member @ T @ X2 )
         => ( ord_less_eq_nat @ X2 @ Maxi ) ) ) ) ).

% maxt_corr_help
thf(fact_2043_finite__Collect__conjI,axiom,
    ! [P: product_prod_int_int > $o,Q: product_prod_int_int > $o] :
      ( ( ( finite2998713641127702882nt_int @ ( collec213857154873943460nt_int @ P ) )
        | ( finite2998713641127702882nt_int @ ( collec213857154873943460nt_int @ Q ) ) )
     => ( finite2998713641127702882nt_int
        @ ( collec213857154873943460nt_int
          @ ^ [X: product_prod_int_int] :
              ( ( P @ X )
              & ( Q @ X ) ) ) ) ) ).

% finite_Collect_conjI
thf(fact_2044_finite__Collect__conjI,axiom,
    ! [P: set_nat > $o,Q: set_nat > $o] :
      ( ( ( finite1152437895449049373et_nat @ ( collect_set_nat @ P ) )
        | ( finite1152437895449049373et_nat @ ( collect_set_nat @ Q ) ) )
     => ( finite1152437895449049373et_nat
        @ ( collect_set_nat
          @ ^ [X: set_nat] :
              ( ( P @ X )
              & ( Q @ X ) ) ) ) ) ).

% finite_Collect_conjI
thf(fact_2045_finite__Collect__conjI,axiom,
    ! [P: nat > $o,Q: nat > $o] :
      ( ( ( finite_finite_nat @ ( collect_nat @ P ) )
        | ( finite_finite_nat @ ( collect_nat @ Q ) ) )
     => ( finite_finite_nat
        @ ( collect_nat
          @ ^ [X: nat] :
              ( ( P @ X )
              & ( Q @ X ) ) ) ) ) ).

% finite_Collect_conjI
thf(fact_2046_finite__Collect__conjI,axiom,
    ! [P: int > $o,Q: int > $o] :
      ( ( ( finite_finite_int @ ( collect_int @ P ) )
        | ( finite_finite_int @ ( collect_int @ Q ) ) )
     => ( finite_finite_int
        @ ( collect_int
          @ ^ [X: int] :
              ( ( P @ X )
              & ( Q @ X ) ) ) ) ) ).

% finite_Collect_conjI
thf(fact_2047_finite__Collect__conjI,axiom,
    ! [P: complex > $o,Q: complex > $o] :
      ( ( ( finite3207457112153483333omplex @ ( collect_complex @ P ) )
        | ( finite3207457112153483333omplex @ ( collect_complex @ Q ) ) )
     => ( finite3207457112153483333omplex
        @ ( collect_complex
          @ ^ [X: complex] :
              ( ( P @ X )
              & ( Q @ X ) ) ) ) ) ).

% finite_Collect_conjI
thf(fact_2048_finite__Collect__disjI,axiom,
    ! [P: product_prod_int_int > $o,Q: product_prod_int_int > $o] :
      ( ( finite2998713641127702882nt_int
        @ ( collec213857154873943460nt_int
          @ ^ [X: product_prod_int_int] :
              ( ( P @ X )
              | ( Q @ X ) ) ) )
      = ( ( finite2998713641127702882nt_int @ ( collec213857154873943460nt_int @ P ) )
        & ( finite2998713641127702882nt_int @ ( collec213857154873943460nt_int @ Q ) ) ) ) ).

% finite_Collect_disjI
thf(fact_2049_finite__Collect__disjI,axiom,
    ! [P: set_nat > $o,Q: set_nat > $o] :
      ( ( finite1152437895449049373et_nat
        @ ( collect_set_nat
          @ ^ [X: set_nat] :
              ( ( P @ X )
              | ( Q @ X ) ) ) )
      = ( ( finite1152437895449049373et_nat @ ( collect_set_nat @ P ) )
        & ( finite1152437895449049373et_nat @ ( collect_set_nat @ Q ) ) ) ) ).

% finite_Collect_disjI
thf(fact_2050_finite__Collect__disjI,axiom,
    ! [P: nat > $o,Q: nat > $o] :
      ( ( finite_finite_nat
        @ ( collect_nat
          @ ^ [X: nat] :
              ( ( P @ X )
              | ( Q @ X ) ) ) )
      = ( ( finite_finite_nat @ ( collect_nat @ P ) )
        & ( finite_finite_nat @ ( collect_nat @ Q ) ) ) ) ).

% finite_Collect_disjI
thf(fact_2051_finite__Collect__disjI,axiom,
    ! [P: int > $o,Q: int > $o] :
      ( ( finite_finite_int
        @ ( collect_int
          @ ^ [X: int] :
              ( ( P @ X )
              | ( Q @ X ) ) ) )
      = ( ( finite_finite_int @ ( collect_int @ P ) )
        & ( finite_finite_int @ ( collect_int @ Q ) ) ) ) ).

% finite_Collect_disjI
thf(fact_2052_finite__Collect__disjI,axiom,
    ! [P: complex > $o,Q: complex > $o] :
      ( ( finite3207457112153483333omplex
        @ ( collect_complex
          @ ^ [X: complex] :
              ( ( P @ X )
              | ( Q @ X ) ) ) )
      = ( ( finite3207457112153483333omplex @ ( collect_complex @ P ) )
        & ( finite3207457112153483333omplex @ ( collect_complex @ Q ) ) ) ) ).

% finite_Collect_disjI
thf(fact_2053_mint__sound,axiom,
    ! [T: vEBT_VEBT,N: nat,X2: nat] :
      ( ( vEBT_invar_vebt @ T @ N )
     => ( ( vEBT_VEBT_min_in_set @ ( vEBT_VEBT_set_vebt @ T ) @ X2 )
       => ( ( vEBT_vebt_mint @ T )
          = ( some_nat @ X2 ) ) ) ) ).

% mint_sound
thf(fact_2054_mint__corr,axiom,
    ! [T: vEBT_VEBT,N: nat,X2: nat] :
      ( ( vEBT_invar_vebt @ T @ N )
     => ( ( ( vEBT_vebt_mint @ T )
          = ( some_nat @ X2 ) )
       => ( vEBT_VEBT_min_in_set @ ( vEBT_VEBT_set_vebt @ T ) @ X2 ) ) ) ).

% mint_corr
thf(fact_2055_maxt__sound,axiom,
    ! [T: vEBT_VEBT,N: nat,X2: nat] :
      ( ( vEBT_invar_vebt @ T @ N )
     => ( ( vEBT_VEBT_max_in_set @ ( vEBT_VEBT_set_vebt @ T ) @ X2 )
       => ( ( vEBT_vebt_maxt @ T )
          = ( some_nat @ X2 ) ) ) ) ).

% maxt_sound
thf(fact_2056_maxt__corr,axiom,
    ! [T: vEBT_VEBT,N: nat,X2: nat] :
      ( ( vEBT_invar_vebt @ T @ N )
     => ( ( ( vEBT_vebt_maxt @ T )
          = ( some_nat @ X2 ) )
       => ( vEBT_VEBT_max_in_set @ ( vEBT_VEBT_set_vebt @ T ) @ X2 ) ) ) ).

% maxt_corr
thf(fact_2057_finite__imageI,axiom,
    ! [F2: set_nat,H2: nat > set_nat] :
      ( ( finite_finite_nat @ F2 )
     => ( finite1152437895449049373et_nat @ ( image_nat_set_nat @ H2 @ F2 ) ) ) ).

% finite_imageI
thf(fact_2058_finite__imageI,axiom,
    ! [F2: set_nat,H2: nat > nat] :
      ( ( finite_finite_nat @ F2 )
     => ( finite_finite_nat @ ( image_nat_nat @ H2 @ F2 ) ) ) ).

% finite_imageI
thf(fact_2059_finite__imageI,axiom,
    ! [F2: set_nat,H2: nat > int] :
      ( ( finite_finite_nat @ F2 )
     => ( finite_finite_int @ ( image_nat_int @ H2 @ F2 ) ) ) ).

% finite_imageI
thf(fact_2060_finite__imageI,axiom,
    ! [F2: set_nat,H2: nat > complex] :
      ( ( finite_finite_nat @ F2 )
     => ( finite3207457112153483333omplex @ ( image_nat_complex @ H2 @ F2 ) ) ) ).

% finite_imageI
thf(fact_2061_finite__imageI,axiom,
    ! [F2: set_int,H2: int > nat] :
      ( ( finite_finite_int @ F2 )
     => ( finite_finite_nat @ ( image_int_nat @ H2 @ F2 ) ) ) ).

% finite_imageI
thf(fact_2062_finite__imageI,axiom,
    ! [F2: set_int,H2: int > int] :
      ( ( finite_finite_int @ F2 )
     => ( finite_finite_int @ ( image_int_int @ H2 @ F2 ) ) ) ).

% finite_imageI
thf(fact_2063_finite__imageI,axiom,
    ! [F2: set_int,H2: int > complex] :
      ( ( finite_finite_int @ F2 )
     => ( finite3207457112153483333omplex @ ( image_int_complex @ H2 @ F2 ) ) ) ).

% finite_imageI
thf(fact_2064_finite__imageI,axiom,
    ! [F2: set_complex,H2: complex > nat] :
      ( ( finite3207457112153483333omplex @ F2 )
     => ( finite_finite_nat @ ( image_complex_nat @ H2 @ F2 ) ) ) ).

% finite_imageI
thf(fact_2065_finite__imageI,axiom,
    ! [F2: set_complex,H2: complex > int] :
      ( ( finite3207457112153483333omplex @ F2 )
     => ( finite_finite_int @ ( image_complex_int @ H2 @ F2 ) ) ) ).

% finite_imageI
thf(fact_2066_finite__imageI,axiom,
    ! [F2: set_complex,H2: complex > complex] :
      ( ( finite3207457112153483333omplex @ F2 )
     => ( finite3207457112153483333omplex @ ( image_1468599708987790691omplex @ H2 @ F2 ) ) ) ).

% finite_imageI
thf(fact_2067_finite__insert,axiom,
    ! [A: vEBT_VEBT,A2: set_VEBT_VEBT] :
      ( ( finite5795047828879050333T_VEBT @ ( insert_VEBT_VEBT @ A @ A2 ) )
      = ( finite5795047828879050333T_VEBT @ A2 ) ) ).

% finite_insert
thf(fact_2068_finite__insert,axiom,
    ! [A: real,A2: set_real] :
      ( ( finite_finite_real @ ( insert_real @ A @ A2 ) )
      = ( finite_finite_real @ A2 ) ) ).

% finite_insert
thf(fact_2069_finite__insert,axiom,
    ! [A: $o,A2: set_o] :
      ( ( finite_finite_o @ ( insert_o @ A @ A2 ) )
      = ( finite_finite_o @ A2 ) ) ).

% finite_insert
thf(fact_2070_finite__insert,axiom,
    ! [A: nat,A2: set_nat] :
      ( ( finite_finite_nat @ ( insert_nat @ A @ A2 ) )
      = ( finite_finite_nat @ A2 ) ) ).

% finite_insert
thf(fact_2071_finite__insert,axiom,
    ! [A: int,A2: set_int] :
      ( ( finite_finite_int @ ( insert_int @ A @ A2 ) )
      = ( finite_finite_int @ A2 ) ) ).

% finite_insert
thf(fact_2072_finite__insert,axiom,
    ! [A: complex,A2: set_complex] :
      ( ( finite3207457112153483333omplex @ ( insert_complex @ A @ A2 ) )
      = ( finite3207457112153483333omplex @ A2 ) ) ).

% finite_insert
thf(fact_2073_misiz,axiom,
    ! [T: vEBT_VEBT,N: nat,M: nat] :
      ( ( vEBT_invar_vebt @ T @ N )
     => ( ( ( some_nat @ M )
          = ( vEBT_vebt_mint @ T ) )
       => ( ord_less_nat @ M @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ) ).

% misiz
thf(fact_2074_not__None__eq,axiom,
    ! [X2: option4927543243414619207at_nat] :
      ( ( X2 != none_P5556105721700978146at_nat )
      = ( ? [Y: product_prod_nat_nat] :
            ( X2
            = ( some_P7363390416028606310at_nat @ Y ) ) ) ) ).

% not_None_eq
thf(fact_2075_not__None__eq,axiom,
    ! [X2: option_nat] :
      ( ( X2 != none_nat )
      = ( ? [Y: nat] :
            ( X2
            = ( some_nat @ Y ) ) ) ) ).

% not_None_eq
thf(fact_2076_not__Some__eq,axiom,
    ! [X2: option4927543243414619207at_nat] :
      ( ( ! [Y: product_prod_nat_nat] :
            ( X2
           != ( some_P7363390416028606310at_nat @ Y ) ) )
      = ( X2 = none_P5556105721700978146at_nat ) ) ).

% not_Some_eq
thf(fact_2077_not__Some__eq,axiom,
    ! [X2: option_nat] :
      ( ( ! [Y: nat] :
            ( X2
           != ( some_nat @ Y ) ) )
      = ( X2 = none_nat ) ) ).

% not_Some_eq
thf(fact_2078_zmod__numeral__Bit0,axiom,
    ! [V: num,W: num] :
      ( ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit0 @ V ) ) @ ( numeral_numeral_int @ ( bit0 @ W ) ) )
      = ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( modulo_modulo_int @ ( numeral_numeral_int @ V ) @ ( numeral_numeral_int @ W ) ) ) ) ).

% zmod_numeral_Bit0
thf(fact_2079_finite__Diff__insert,axiom,
    ! [A2: set_VEBT_VEBT,A: vEBT_VEBT,B3: set_VEBT_VEBT] :
      ( ( finite5795047828879050333T_VEBT @ ( minus_5127226145743854075T_VEBT @ A2 @ ( insert_VEBT_VEBT @ A @ B3 ) ) )
      = ( finite5795047828879050333T_VEBT @ ( minus_5127226145743854075T_VEBT @ A2 @ B3 ) ) ) ).

% finite_Diff_insert
thf(fact_2080_finite__Diff__insert,axiom,
    ! [A2: set_real,A: real,B3: set_real] :
      ( ( finite_finite_real @ ( minus_minus_set_real @ A2 @ ( insert_real @ A @ B3 ) ) )
      = ( finite_finite_real @ ( minus_minus_set_real @ A2 @ B3 ) ) ) ).

% finite_Diff_insert
thf(fact_2081_finite__Diff__insert,axiom,
    ! [A2: set_o,A: $o,B3: set_o] :
      ( ( finite_finite_o @ ( minus_minus_set_o @ A2 @ ( insert_o @ A @ B3 ) ) )
      = ( finite_finite_o @ ( minus_minus_set_o @ A2 @ B3 ) ) ) ).

% finite_Diff_insert
thf(fact_2082_finite__Diff__insert,axiom,
    ! [A2: set_int,A: int,B3: set_int] :
      ( ( finite_finite_int @ ( minus_minus_set_int @ A2 @ ( insert_int @ A @ B3 ) ) )
      = ( finite_finite_int @ ( minus_minus_set_int @ A2 @ B3 ) ) ) ).

% finite_Diff_insert
thf(fact_2083_finite__Diff__insert,axiom,
    ! [A2: set_complex,A: complex,B3: set_complex] :
      ( ( finite3207457112153483333omplex @ ( minus_811609699411566653omplex @ A2 @ ( insert_complex @ A @ B3 ) ) )
      = ( finite3207457112153483333omplex @ ( minus_811609699411566653omplex @ A2 @ B3 ) ) ) ).

% finite_Diff_insert
thf(fact_2084_finite__Diff__insert,axiom,
    ! [A2: set_nat,A: nat,B3: set_nat] :
      ( ( finite_finite_nat @ ( minus_minus_set_nat @ A2 @ ( insert_nat @ A @ B3 ) ) )
      = ( finite_finite_nat @ ( minus_minus_set_nat @ A2 @ B3 ) ) ) ).

% finite_Diff_insert
thf(fact_2085_zmod__numeral__Bit1,axiom,
    ! [V: num,W: num] :
      ( ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit1 @ V ) ) @ ( numeral_numeral_int @ ( bit0 @ W ) ) )
      = ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( modulo_modulo_int @ ( numeral_numeral_int @ V ) @ ( numeral_numeral_int @ W ) ) ) @ one_one_int ) ) ).

% zmod_numeral_Bit1
thf(fact_2086_lesseq__shift,axiom,
    ( ord_less_eq_nat
    = ( ^ [X: nat,Y: nat] : ( vEBT_VEBT_lesseq @ ( some_nat @ X ) @ ( some_nat @ Y ) ) ) ) ).

% lesseq_shift
thf(fact_2087_DiffE,axiom,
    ! [C: complex,A2: set_complex,B3: set_complex] :
      ( ( member_complex @ C @ ( minus_811609699411566653omplex @ A2 @ B3 ) )
     => ~ ( ( member_complex @ C @ A2 )
         => ( member_complex @ C @ B3 ) ) ) ).

% DiffE
thf(fact_2088_DiffE,axiom,
    ! [C: real,A2: set_real,B3: set_real] :
      ( ( member_real @ C @ ( minus_minus_set_real @ A2 @ B3 ) )
     => ~ ( ( member_real @ C @ A2 )
         => ( member_real @ C @ B3 ) ) ) ).

% DiffE
thf(fact_2089_DiffE,axiom,
    ! [C: set_nat,A2: set_set_nat,B3: set_set_nat] :
      ( ( member_set_nat @ C @ ( minus_2163939370556025621et_nat @ A2 @ B3 ) )
     => ~ ( ( member_set_nat @ C @ A2 )
         => ( member_set_nat @ C @ B3 ) ) ) ).

% DiffE
thf(fact_2090_DiffE,axiom,
    ! [C: int,A2: set_int,B3: set_int] :
      ( ( member_int @ C @ ( minus_minus_set_int @ A2 @ B3 ) )
     => ~ ( ( member_int @ C @ A2 )
         => ( member_int @ C @ B3 ) ) ) ).

% DiffE
thf(fact_2091_DiffE,axiom,
    ! [C: nat,A2: set_nat,B3: set_nat] :
      ( ( member_nat @ C @ ( minus_minus_set_nat @ A2 @ B3 ) )
     => ~ ( ( member_nat @ C @ A2 )
         => ( member_nat @ C @ B3 ) ) ) ).

% DiffE
thf(fact_2092_DiffD1,axiom,
    ! [C: complex,A2: set_complex,B3: set_complex] :
      ( ( member_complex @ C @ ( minus_811609699411566653omplex @ A2 @ B3 ) )
     => ( member_complex @ C @ A2 ) ) ).

% DiffD1
thf(fact_2093_DiffD1,axiom,
    ! [C: real,A2: set_real,B3: set_real] :
      ( ( member_real @ C @ ( minus_minus_set_real @ A2 @ B3 ) )
     => ( member_real @ C @ A2 ) ) ).

% DiffD1
thf(fact_2094_DiffD1,axiom,
    ! [C: set_nat,A2: set_set_nat,B3: set_set_nat] :
      ( ( member_set_nat @ C @ ( minus_2163939370556025621et_nat @ A2 @ B3 ) )
     => ( member_set_nat @ C @ A2 ) ) ).

% DiffD1
thf(fact_2095_DiffD1,axiom,
    ! [C: int,A2: set_int,B3: set_int] :
      ( ( member_int @ C @ ( minus_minus_set_int @ A2 @ B3 ) )
     => ( member_int @ C @ A2 ) ) ).

% DiffD1
thf(fact_2096_DiffD1,axiom,
    ! [C: nat,A2: set_nat,B3: set_nat] :
      ( ( member_nat @ C @ ( minus_minus_set_nat @ A2 @ B3 ) )
     => ( member_nat @ C @ A2 ) ) ).

% DiffD1
thf(fact_2097_DiffD2,axiom,
    ! [C: complex,A2: set_complex,B3: set_complex] :
      ( ( member_complex @ C @ ( minus_811609699411566653omplex @ A2 @ B3 ) )
     => ~ ( member_complex @ C @ B3 ) ) ).

% DiffD2
thf(fact_2098_DiffD2,axiom,
    ! [C: real,A2: set_real,B3: set_real] :
      ( ( member_real @ C @ ( minus_minus_set_real @ A2 @ B3 ) )
     => ~ ( member_real @ C @ B3 ) ) ).

% DiffD2
thf(fact_2099_DiffD2,axiom,
    ! [C: set_nat,A2: set_set_nat,B3: set_set_nat] :
      ( ( member_set_nat @ C @ ( minus_2163939370556025621et_nat @ A2 @ B3 ) )
     => ~ ( member_set_nat @ C @ B3 ) ) ).

% DiffD2
thf(fact_2100_DiffD2,axiom,
    ! [C: int,A2: set_int,B3: set_int] :
      ( ( member_int @ C @ ( minus_minus_set_int @ A2 @ B3 ) )
     => ~ ( member_int @ C @ B3 ) ) ).

% DiffD2
thf(fact_2101_DiffD2,axiom,
    ! [C: nat,A2: set_nat,B3: set_nat] :
      ( ( member_nat @ C @ ( minus_minus_set_nat @ A2 @ B3 ) )
     => ~ ( member_nat @ C @ B3 ) ) ).

% DiffD2
thf(fact_2102_minus__set__def,axiom,
    ( minus_minus_set_real
    = ( ^ [A4: set_real,B4: set_real] :
          ( collect_real
          @ ( minus_minus_real_o
            @ ^ [X: real] : ( member_real @ X @ A4 )
            @ ^ [X: real] : ( member_real @ X @ B4 ) ) ) ) ) ).

% minus_set_def
thf(fact_2103_minus__set__def,axiom,
    ( minus_1052850069191792384nt_int
    = ( ^ [A4: set_Pr958786334691620121nt_int,B4: set_Pr958786334691620121nt_int] :
          ( collec213857154873943460nt_int
          @ ( minus_711738161318947805_int_o
            @ ^ [X: product_prod_int_int] : ( member5262025264175285858nt_int @ X @ A4 )
            @ ^ [X: product_prod_int_int] : ( member5262025264175285858nt_int @ X @ B4 ) ) ) ) ) ).

% minus_set_def
thf(fact_2104_minus__set__def,axiom,
    ( minus_811609699411566653omplex
    = ( ^ [A4: set_complex,B4: set_complex] :
          ( collect_complex
          @ ( minus_8727706125548526216plex_o
            @ ^ [X: complex] : ( member_complex @ X @ A4 )
            @ ^ [X: complex] : ( member_complex @ X @ B4 ) ) ) ) ) ).

% minus_set_def
thf(fact_2105_minus__set__def,axiom,
    ( minus_2163939370556025621et_nat
    = ( ^ [A4: set_set_nat,B4: set_set_nat] :
          ( collect_set_nat
          @ ( minus_6910147592129066416_nat_o
            @ ^ [X: set_nat] : ( member_set_nat @ X @ A4 )
            @ ^ [X: set_nat] : ( member_set_nat @ X @ B4 ) ) ) ) ) ).

% minus_set_def
thf(fact_2106_minus__set__def,axiom,
    ( minus_minus_set_int
    = ( ^ [A4: set_int,B4: set_int] :
          ( collect_int
          @ ( minus_minus_int_o
            @ ^ [X: int] : ( member_int @ X @ A4 )
            @ ^ [X: int] : ( member_int @ X @ B4 ) ) ) ) ) ).

% minus_set_def
thf(fact_2107_minus__set__def,axiom,
    ( minus_minus_set_nat
    = ( ^ [A4: set_nat,B4: set_nat] :
          ( collect_nat
          @ ( minus_minus_nat_o
            @ ^ [X: nat] : ( member_nat @ X @ A4 )
            @ ^ [X: nat] : ( member_nat @ X @ B4 ) ) ) ) ) ).

% minus_set_def
thf(fact_2108_set__diff__eq,axiom,
    ( minus_minus_set_real
    = ( ^ [A4: set_real,B4: set_real] :
          ( collect_real
          @ ^ [X: real] :
              ( ( member_real @ X @ A4 )
              & ~ ( member_real @ X @ B4 ) ) ) ) ) ).

% set_diff_eq
thf(fact_2109_set__diff__eq,axiom,
    ( minus_1052850069191792384nt_int
    = ( ^ [A4: set_Pr958786334691620121nt_int,B4: set_Pr958786334691620121nt_int] :
          ( collec213857154873943460nt_int
          @ ^ [X: product_prod_int_int] :
              ( ( member5262025264175285858nt_int @ X @ A4 )
              & ~ ( member5262025264175285858nt_int @ X @ B4 ) ) ) ) ) ).

% set_diff_eq
thf(fact_2110_set__diff__eq,axiom,
    ( minus_811609699411566653omplex
    = ( ^ [A4: set_complex,B4: set_complex] :
          ( collect_complex
          @ ^ [X: complex] :
              ( ( member_complex @ X @ A4 )
              & ~ ( member_complex @ X @ B4 ) ) ) ) ) ).

% set_diff_eq
thf(fact_2111_set__diff__eq,axiom,
    ( minus_2163939370556025621et_nat
    = ( ^ [A4: set_set_nat,B4: set_set_nat] :
          ( collect_set_nat
          @ ^ [X: set_nat] :
              ( ( member_set_nat @ X @ A4 )
              & ~ ( member_set_nat @ X @ B4 ) ) ) ) ) ).

% set_diff_eq
thf(fact_2112_set__diff__eq,axiom,
    ( minus_minus_set_int
    = ( ^ [A4: set_int,B4: set_int] :
          ( collect_int
          @ ^ [X: int] :
              ( ( member_int @ X @ A4 )
              & ~ ( member_int @ X @ B4 ) ) ) ) ) ).

% set_diff_eq
thf(fact_2113_set__diff__eq,axiom,
    ( minus_minus_set_nat
    = ( ^ [A4: set_nat,B4: set_nat] :
          ( collect_nat
          @ ^ [X: nat] :
              ( ( member_nat @ X @ A4 )
              & ~ ( member_nat @ X @ B4 ) ) ) ) ) ).

% set_diff_eq
thf(fact_2114_finite__maxlen,axiom,
    ! [M7: set_list_VEBT_VEBT] :
      ( ( finite3004134309566078307T_VEBT @ M7 )
     => ? [N3: nat] :
        ! [X3: list_VEBT_VEBT] :
          ( ( member2936631157270082147T_VEBT @ X3 @ M7 )
         => ( ord_less_nat @ ( size_s6755466524823107622T_VEBT @ X3 ) @ N3 ) ) ) ).

% finite_maxlen
thf(fact_2115_finite__maxlen,axiom,
    ! [M7: set_list_o] :
      ( ( finite_finite_list_o @ M7 )
     => ? [N3: nat] :
        ! [X3: list_o] :
          ( ( member_list_o @ X3 @ M7 )
         => ( ord_less_nat @ ( size_size_list_o @ X3 ) @ N3 ) ) ) ).

% finite_maxlen
thf(fact_2116_finite__maxlen,axiom,
    ! [M7: set_list_int] :
      ( ( finite3922522038869484883st_int @ M7 )
     => ? [N3: nat] :
        ! [X3: list_int] :
          ( ( member_list_int @ X3 @ M7 )
         => ( ord_less_nat @ ( size_size_list_int @ X3 ) @ N3 ) ) ) ).

% finite_maxlen
thf(fact_2117_mult__commute__abs,axiom,
    ! [C: real] :
      ( ( ^ [X: real] : ( times_times_real @ X @ C ) )
      = ( times_times_real @ C ) ) ).

% mult_commute_abs
thf(fact_2118_mult__commute__abs,axiom,
    ! [C: rat] :
      ( ( ^ [X: rat] : ( times_times_rat @ X @ C ) )
      = ( times_times_rat @ C ) ) ).

% mult_commute_abs
thf(fact_2119_mult__commute__abs,axiom,
    ! [C: nat] :
      ( ( ^ [X: nat] : ( times_times_nat @ X @ C ) )
      = ( times_times_nat @ C ) ) ).

% mult_commute_abs
thf(fact_2120_mult__commute__abs,axiom,
    ! [C: int] :
      ( ( ^ [X: int] : ( times_times_int @ X @ C ) )
      = ( times_times_int @ C ) ) ).

% mult_commute_abs
thf(fact_2121_not__finite__existsD,axiom,
    ! [P: product_prod_int_int > $o] :
      ( ~ ( finite2998713641127702882nt_int @ ( collec213857154873943460nt_int @ P ) )
     => ? [X_12: product_prod_int_int] : ( P @ X_12 ) ) ).

% not_finite_existsD
thf(fact_2122_not__finite__existsD,axiom,
    ! [P: set_nat > $o] :
      ( ~ ( finite1152437895449049373et_nat @ ( collect_set_nat @ P ) )
     => ? [X_12: set_nat] : ( P @ X_12 ) ) ).

% not_finite_existsD
thf(fact_2123_not__finite__existsD,axiom,
    ! [P: nat > $o] :
      ( ~ ( finite_finite_nat @ ( collect_nat @ P ) )
     => ? [X_12: nat] : ( P @ X_12 ) ) ).

% not_finite_existsD
thf(fact_2124_not__finite__existsD,axiom,
    ! [P: int > $o] :
      ( ~ ( finite_finite_int @ ( collect_int @ P ) )
     => ? [X_12: int] : ( P @ X_12 ) ) ).

% not_finite_existsD
thf(fact_2125_not__finite__existsD,axiom,
    ! [P: complex > $o] :
      ( ~ ( finite3207457112153483333omplex @ ( collect_complex @ P ) )
     => ? [X_12: complex] : ( P @ X_12 ) ) ).

% not_finite_existsD
thf(fact_2126_pigeonhole__infinite__rel,axiom,
    ! [A2: set_real,B3: set_nat,R: real > nat > $o] :
      ( ~ ( finite_finite_real @ A2 )
     => ( ( finite_finite_nat @ B3 )
       => ( ! [X4: real] :
              ( ( member_real @ X4 @ A2 )
             => ? [Xa: nat] :
                  ( ( member_nat @ Xa @ B3 )
                  & ( R @ X4 @ Xa ) ) )
         => ? [X4: nat] :
              ( ( member_nat @ X4 @ B3 )
              & ~ ( finite_finite_real
                  @ ( collect_real
                    @ ^ [A3: real] :
                        ( ( member_real @ A3 @ A2 )
                        & ( R @ A3 @ X4 ) ) ) ) ) ) ) ) ).

% pigeonhole_infinite_rel
thf(fact_2127_pigeonhole__infinite__rel,axiom,
    ! [A2: set_real,B3: set_int,R: real > int > $o] :
      ( ~ ( finite_finite_real @ A2 )
     => ( ( finite_finite_int @ B3 )
       => ( ! [X4: real] :
              ( ( member_real @ X4 @ A2 )
             => ? [Xa: int] :
                  ( ( member_int @ Xa @ B3 )
                  & ( R @ X4 @ Xa ) ) )
         => ? [X4: int] :
              ( ( member_int @ X4 @ B3 )
              & ~ ( finite_finite_real
                  @ ( collect_real
                    @ ^ [A3: real] :
                        ( ( member_real @ A3 @ A2 )
                        & ( R @ A3 @ X4 ) ) ) ) ) ) ) ) ).

% pigeonhole_infinite_rel
thf(fact_2128_pigeonhole__infinite__rel,axiom,
    ! [A2: set_real,B3: set_complex,R: real > complex > $o] :
      ( ~ ( finite_finite_real @ A2 )
     => ( ( finite3207457112153483333omplex @ B3 )
       => ( ! [X4: real] :
              ( ( member_real @ X4 @ A2 )
             => ? [Xa: complex] :
                  ( ( member_complex @ Xa @ B3 )
                  & ( R @ X4 @ Xa ) ) )
         => ? [X4: complex] :
              ( ( member_complex @ X4 @ B3 )
              & ~ ( finite_finite_real
                  @ ( collect_real
                    @ ^ [A3: real] :
                        ( ( member_real @ A3 @ A2 )
                        & ( R @ A3 @ X4 ) ) ) ) ) ) ) ) ).

% pigeonhole_infinite_rel
thf(fact_2129_pigeonhole__infinite__rel,axiom,
    ! [A2: set_nat,B3: set_nat,R: nat > nat > $o] :
      ( ~ ( finite_finite_nat @ A2 )
     => ( ( finite_finite_nat @ B3 )
       => ( ! [X4: nat] :
              ( ( member_nat @ X4 @ A2 )
             => ? [Xa: nat] :
                  ( ( member_nat @ Xa @ B3 )
                  & ( R @ X4 @ Xa ) ) )
         => ? [X4: nat] :
              ( ( member_nat @ X4 @ B3 )
              & ~ ( finite_finite_nat
                  @ ( collect_nat
                    @ ^ [A3: nat] :
                        ( ( member_nat @ A3 @ A2 )
                        & ( R @ A3 @ X4 ) ) ) ) ) ) ) ) ).

% pigeonhole_infinite_rel
thf(fact_2130_pigeonhole__infinite__rel,axiom,
    ! [A2: set_nat,B3: set_int,R: nat > int > $o] :
      ( ~ ( finite_finite_nat @ A2 )
     => ( ( finite_finite_int @ B3 )
       => ( ! [X4: nat] :
              ( ( member_nat @ X4 @ A2 )
             => ? [Xa: int] :
                  ( ( member_int @ Xa @ B3 )
                  & ( R @ X4 @ Xa ) ) )
         => ? [X4: int] :
              ( ( member_int @ X4 @ B3 )
              & ~ ( finite_finite_nat
                  @ ( collect_nat
                    @ ^ [A3: nat] :
                        ( ( member_nat @ A3 @ A2 )
                        & ( R @ A3 @ X4 ) ) ) ) ) ) ) ) ).

% pigeonhole_infinite_rel
thf(fact_2131_pigeonhole__infinite__rel,axiom,
    ! [A2: set_nat,B3: set_complex,R: nat > complex > $o] :
      ( ~ ( finite_finite_nat @ A2 )
     => ( ( finite3207457112153483333omplex @ B3 )
       => ( ! [X4: nat] :
              ( ( member_nat @ X4 @ A2 )
             => ? [Xa: complex] :
                  ( ( member_complex @ Xa @ B3 )
                  & ( R @ X4 @ Xa ) ) )
         => ? [X4: complex] :
              ( ( member_complex @ X4 @ B3 )
              & ~ ( finite_finite_nat
                  @ ( collect_nat
                    @ ^ [A3: nat] :
                        ( ( member_nat @ A3 @ A2 )
                        & ( R @ A3 @ X4 ) ) ) ) ) ) ) ) ).

% pigeonhole_infinite_rel
thf(fact_2132_pigeonhole__infinite__rel,axiom,
    ! [A2: set_int,B3: set_nat,R: int > nat > $o] :
      ( ~ ( finite_finite_int @ A2 )
     => ( ( finite_finite_nat @ B3 )
       => ( ! [X4: int] :
              ( ( member_int @ X4 @ A2 )
             => ? [Xa: nat] :
                  ( ( member_nat @ Xa @ B3 )
                  & ( R @ X4 @ Xa ) ) )
         => ? [X4: nat] :
              ( ( member_nat @ X4 @ B3 )
              & ~ ( finite_finite_int
                  @ ( collect_int
                    @ ^ [A3: int] :
                        ( ( member_int @ A3 @ A2 )
                        & ( R @ A3 @ X4 ) ) ) ) ) ) ) ) ).

% pigeonhole_infinite_rel
thf(fact_2133_pigeonhole__infinite__rel,axiom,
    ! [A2: set_int,B3: set_int,R: int > int > $o] :
      ( ~ ( finite_finite_int @ A2 )
     => ( ( finite_finite_int @ B3 )
       => ( ! [X4: int] :
              ( ( member_int @ X4 @ A2 )
             => ? [Xa: int] :
                  ( ( member_int @ Xa @ B3 )
                  & ( R @ X4 @ Xa ) ) )
         => ? [X4: int] :
              ( ( member_int @ X4 @ B3 )
              & ~ ( finite_finite_int
                  @ ( collect_int
                    @ ^ [A3: int] :
                        ( ( member_int @ A3 @ A2 )
                        & ( R @ A3 @ X4 ) ) ) ) ) ) ) ) ).

% pigeonhole_infinite_rel
thf(fact_2134_pigeonhole__infinite__rel,axiom,
    ! [A2: set_int,B3: set_complex,R: int > complex > $o] :
      ( ~ ( finite_finite_int @ A2 )
     => ( ( finite3207457112153483333omplex @ B3 )
       => ( ! [X4: int] :
              ( ( member_int @ X4 @ A2 )
             => ? [Xa: complex] :
                  ( ( member_complex @ Xa @ B3 )
                  & ( R @ X4 @ Xa ) ) )
         => ? [X4: complex] :
              ( ( member_complex @ X4 @ B3 )
              & ~ ( finite_finite_int
                  @ ( collect_int
                    @ ^ [A3: int] :
                        ( ( member_int @ A3 @ A2 )
                        & ( R @ A3 @ X4 ) ) ) ) ) ) ) ) ).

% pigeonhole_infinite_rel
thf(fact_2135_pigeonhole__infinite__rel,axiom,
    ! [A2: set_complex,B3: set_nat,R: complex > nat > $o] :
      ( ~ ( finite3207457112153483333omplex @ A2 )
     => ( ( finite_finite_nat @ B3 )
       => ( ! [X4: complex] :
              ( ( member_complex @ X4 @ A2 )
             => ? [Xa: nat] :
                  ( ( member_nat @ Xa @ B3 )
                  & ( R @ X4 @ Xa ) ) )
         => ? [X4: nat] :
              ( ( member_nat @ X4 @ B3 )
              & ~ ( finite3207457112153483333omplex
                  @ ( collect_complex
                    @ ^ [A3: complex] :
                        ( ( member_complex @ A3 @ A2 )
                        & ( R @ A3 @ X4 ) ) ) ) ) ) ) ) ).

% pigeonhole_infinite_rel
thf(fact_2136_finite__has__maximal2,axiom,
    ! [A2: set_real,A: real] :
      ( ( finite_finite_real @ A2 )
     => ( ( member_real @ A @ A2 )
       => ? [X4: real] :
            ( ( member_real @ X4 @ A2 )
            & ( ord_less_eq_real @ A @ X4 )
            & ! [Xa: real] :
                ( ( member_real @ Xa @ A2 )
               => ( ( ord_less_eq_real @ X4 @ Xa )
                 => ( X4 = Xa ) ) ) ) ) ) ).

% finite_has_maximal2
thf(fact_2137_finite__has__maximal2,axiom,
    ! [A2: set_set_nat,A: set_nat] :
      ( ( finite1152437895449049373et_nat @ A2 )
     => ( ( member_set_nat @ A @ A2 )
       => ? [X4: set_nat] :
            ( ( member_set_nat @ X4 @ A2 )
            & ( ord_less_eq_set_nat @ A @ X4 )
            & ! [Xa: set_nat] :
                ( ( member_set_nat @ Xa @ A2 )
               => ( ( ord_less_eq_set_nat @ X4 @ Xa )
                 => ( X4 = Xa ) ) ) ) ) ) ).

% finite_has_maximal2
thf(fact_2138_finite__has__maximal2,axiom,
    ! [A2: set_set_int,A: set_int] :
      ( ( finite6197958912794628473et_int @ A2 )
     => ( ( member_set_int @ A @ A2 )
       => ? [X4: set_int] :
            ( ( member_set_int @ X4 @ A2 )
            & ( ord_less_eq_set_int @ A @ X4 )
            & ! [Xa: set_int] :
                ( ( member_set_int @ Xa @ A2 )
               => ( ( ord_less_eq_set_int @ X4 @ Xa )
                 => ( X4 = Xa ) ) ) ) ) ) ).

% finite_has_maximal2
thf(fact_2139_finite__has__maximal2,axiom,
    ! [A2: set_rat,A: rat] :
      ( ( finite_finite_rat @ A2 )
     => ( ( member_rat @ A @ A2 )
       => ? [X4: rat] :
            ( ( member_rat @ X4 @ A2 )
            & ( ord_less_eq_rat @ A @ X4 )
            & ! [Xa: rat] :
                ( ( member_rat @ Xa @ A2 )
               => ( ( ord_less_eq_rat @ X4 @ Xa )
                 => ( X4 = Xa ) ) ) ) ) ) ).

% finite_has_maximal2
thf(fact_2140_finite__has__maximal2,axiom,
    ! [A2: set_num,A: num] :
      ( ( finite_finite_num @ A2 )
     => ( ( member_num @ A @ A2 )
       => ? [X4: num] :
            ( ( member_num @ X4 @ A2 )
            & ( ord_less_eq_num @ A @ X4 )
            & ! [Xa: num] :
                ( ( member_num @ Xa @ A2 )
               => ( ( ord_less_eq_num @ X4 @ Xa )
                 => ( X4 = Xa ) ) ) ) ) ) ).

% finite_has_maximal2
thf(fact_2141_finite__has__maximal2,axiom,
    ! [A2: set_nat,A: nat] :
      ( ( finite_finite_nat @ A2 )
     => ( ( member_nat @ A @ A2 )
       => ? [X4: nat] :
            ( ( member_nat @ X4 @ A2 )
            & ( ord_less_eq_nat @ A @ X4 )
            & ! [Xa: nat] :
                ( ( member_nat @ Xa @ A2 )
               => ( ( ord_less_eq_nat @ X4 @ Xa )
                 => ( X4 = Xa ) ) ) ) ) ) ).

% finite_has_maximal2
thf(fact_2142_finite__has__maximal2,axiom,
    ! [A2: set_int,A: int] :
      ( ( finite_finite_int @ A2 )
     => ( ( member_int @ A @ A2 )
       => ? [X4: int] :
            ( ( member_int @ X4 @ A2 )
            & ( ord_less_eq_int @ A @ X4 )
            & ! [Xa: int] :
                ( ( member_int @ Xa @ A2 )
               => ( ( ord_less_eq_int @ X4 @ Xa )
                 => ( X4 = Xa ) ) ) ) ) ) ).

% finite_has_maximal2
thf(fact_2143_finite__has__minimal2,axiom,
    ! [A2: set_real,A: real] :
      ( ( finite_finite_real @ A2 )
     => ( ( member_real @ A @ A2 )
       => ? [X4: real] :
            ( ( member_real @ X4 @ A2 )
            & ( ord_less_eq_real @ X4 @ A )
            & ! [Xa: real] :
                ( ( member_real @ Xa @ A2 )
               => ( ( ord_less_eq_real @ Xa @ X4 )
                 => ( X4 = Xa ) ) ) ) ) ) ).

% finite_has_minimal2
thf(fact_2144_finite__has__minimal2,axiom,
    ! [A2: set_set_nat,A: set_nat] :
      ( ( finite1152437895449049373et_nat @ A2 )
     => ( ( member_set_nat @ A @ A2 )
       => ? [X4: set_nat] :
            ( ( member_set_nat @ X4 @ A2 )
            & ( ord_less_eq_set_nat @ X4 @ A )
            & ! [Xa: set_nat] :
                ( ( member_set_nat @ Xa @ A2 )
               => ( ( ord_less_eq_set_nat @ Xa @ X4 )
                 => ( X4 = Xa ) ) ) ) ) ) ).

% finite_has_minimal2
thf(fact_2145_finite__has__minimal2,axiom,
    ! [A2: set_set_int,A: set_int] :
      ( ( finite6197958912794628473et_int @ A2 )
     => ( ( member_set_int @ A @ A2 )
       => ? [X4: set_int] :
            ( ( member_set_int @ X4 @ A2 )
            & ( ord_less_eq_set_int @ X4 @ A )
            & ! [Xa: set_int] :
                ( ( member_set_int @ Xa @ A2 )
               => ( ( ord_less_eq_set_int @ Xa @ X4 )
                 => ( X4 = Xa ) ) ) ) ) ) ).

% finite_has_minimal2
thf(fact_2146_finite__has__minimal2,axiom,
    ! [A2: set_rat,A: rat] :
      ( ( finite_finite_rat @ A2 )
     => ( ( member_rat @ A @ A2 )
       => ? [X4: rat] :
            ( ( member_rat @ X4 @ A2 )
            & ( ord_less_eq_rat @ X4 @ A )
            & ! [Xa: rat] :
                ( ( member_rat @ Xa @ A2 )
               => ( ( ord_less_eq_rat @ Xa @ X4 )
                 => ( X4 = Xa ) ) ) ) ) ) ).

% finite_has_minimal2
thf(fact_2147_finite__has__minimal2,axiom,
    ! [A2: set_num,A: num] :
      ( ( finite_finite_num @ A2 )
     => ( ( member_num @ A @ A2 )
       => ? [X4: num] :
            ( ( member_num @ X4 @ A2 )
            & ( ord_less_eq_num @ X4 @ A )
            & ! [Xa: num] :
                ( ( member_num @ Xa @ A2 )
               => ( ( ord_less_eq_num @ Xa @ X4 )
                 => ( X4 = Xa ) ) ) ) ) ) ).

% finite_has_minimal2
thf(fact_2148_finite__has__minimal2,axiom,
    ! [A2: set_nat,A: nat] :
      ( ( finite_finite_nat @ A2 )
     => ( ( member_nat @ A @ A2 )
       => ? [X4: nat] :
            ( ( member_nat @ X4 @ A2 )
            & ( ord_less_eq_nat @ X4 @ A )
            & ! [Xa: nat] :
                ( ( member_nat @ Xa @ A2 )
               => ( ( ord_less_eq_nat @ Xa @ X4 )
                 => ( X4 = Xa ) ) ) ) ) ) ).

% finite_has_minimal2
thf(fact_2149_finite__has__minimal2,axiom,
    ! [A2: set_int,A: int] :
      ( ( finite_finite_int @ A2 )
     => ( ( member_int @ A @ A2 )
       => ? [X4: int] :
            ( ( member_int @ X4 @ A2 )
            & ( ord_less_eq_int @ X4 @ A )
            & ! [Xa: int] :
                ( ( member_int @ Xa @ A2 )
               => ( ( ord_less_eq_int @ Xa @ X4 )
                 => ( X4 = Xa ) ) ) ) ) ) ).

% finite_has_minimal2
thf(fact_2150_all__subset__image,axiom,
    ! [F: nat > set_nat,A2: set_nat,P: set_set_nat > $o] :
      ( ( ! [B4: set_set_nat] :
            ( ( ord_le6893508408891458716et_nat @ B4 @ ( image_nat_set_nat @ F @ A2 ) )
           => ( P @ B4 ) ) )
      = ( ! [B4: set_nat] :
            ( ( ord_less_eq_set_nat @ B4 @ A2 )
           => ( P @ ( image_nat_set_nat @ F @ B4 ) ) ) ) ) ).

% all_subset_image
thf(fact_2151_all__subset__image,axiom,
    ! [F: nat > nat,A2: set_nat,P: set_nat > $o] :
      ( ( ! [B4: set_nat] :
            ( ( ord_less_eq_set_nat @ B4 @ ( image_nat_nat @ F @ A2 ) )
           => ( P @ B4 ) ) )
      = ( ! [B4: set_nat] :
            ( ( ord_less_eq_set_nat @ B4 @ A2 )
           => ( P @ ( image_nat_nat @ F @ B4 ) ) ) ) ) ).

% all_subset_image
thf(fact_2152_all__subset__image,axiom,
    ! [F: int > nat,A2: set_int,P: set_nat > $o] :
      ( ( ! [B4: set_nat] :
            ( ( ord_less_eq_set_nat @ B4 @ ( image_int_nat @ F @ A2 ) )
           => ( P @ B4 ) ) )
      = ( ! [B4: set_int] :
            ( ( ord_less_eq_set_int @ B4 @ A2 )
           => ( P @ ( image_int_nat @ F @ B4 ) ) ) ) ) ).

% all_subset_image
thf(fact_2153_all__subset__image,axiom,
    ! [F: nat > int,A2: set_nat,P: set_int > $o] :
      ( ( ! [B4: set_int] :
            ( ( ord_less_eq_set_int @ B4 @ ( image_nat_int @ F @ A2 ) )
           => ( P @ B4 ) ) )
      = ( ! [B4: set_nat] :
            ( ( ord_less_eq_set_nat @ B4 @ A2 )
           => ( P @ ( image_nat_int @ F @ B4 ) ) ) ) ) ).

% all_subset_image
thf(fact_2154_all__subset__image,axiom,
    ! [F: int > int,A2: set_int,P: set_int > $o] :
      ( ( ! [B4: set_int] :
            ( ( ord_less_eq_set_int @ B4 @ ( image_int_int @ F @ A2 ) )
           => ( P @ B4 ) ) )
      = ( ! [B4: set_int] :
            ( ( ord_less_eq_set_int @ B4 @ A2 )
           => ( P @ ( image_int_int @ F @ B4 ) ) ) ) ) ).

% all_subset_image
thf(fact_2155_rev__finite__subset,axiom,
    ! [B3: set_nat,A2: set_nat] :
      ( ( finite_finite_nat @ B3 )
     => ( ( ord_less_eq_set_nat @ A2 @ B3 )
       => ( finite_finite_nat @ A2 ) ) ) ).

% rev_finite_subset
thf(fact_2156_rev__finite__subset,axiom,
    ! [B3: set_complex,A2: set_complex] :
      ( ( finite3207457112153483333omplex @ B3 )
     => ( ( ord_le211207098394363844omplex @ A2 @ B3 )
       => ( finite3207457112153483333omplex @ A2 ) ) ) ).

% rev_finite_subset
thf(fact_2157_rev__finite__subset,axiom,
    ! [B3: set_int,A2: set_int] :
      ( ( finite_finite_int @ B3 )
     => ( ( ord_less_eq_set_int @ A2 @ B3 )
       => ( finite_finite_int @ A2 ) ) ) ).

% rev_finite_subset
thf(fact_2158_infinite__super,axiom,
    ! [S3: set_nat,T3: set_nat] :
      ( ( ord_less_eq_set_nat @ S3 @ T3 )
     => ( ~ ( finite_finite_nat @ S3 )
       => ~ ( finite_finite_nat @ T3 ) ) ) ).

% infinite_super
thf(fact_2159_infinite__super,axiom,
    ! [S3: set_complex,T3: set_complex] :
      ( ( ord_le211207098394363844omplex @ S3 @ T3 )
     => ( ~ ( finite3207457112153483333omplex @ S3 )
       => ~ ( finite3207457112153483333omplex @ T3 ) ) ) ).

% infinite_super
thf(fact_2160_infinite__super,axiom,
    ! [S3: set_int,T3: set_int] :
      ( ( ord_less_eq_set_int @ S3 @ T3 )
     => ( ~ ( finite_finite_int @ S3 )
       => ~ ( finite_finite_int @ T3 ) ) ) ).

% infinite_super
thf(fact_2161_finite__subset,axiom,
    ! [A2: set_nat,B3: set_nat] :
      ( ( ord_less_eq_set_nat @ A2 @ B3 )
     => ( ( finite_finite_nat @ B3 )
       => ( finite_finite_nat @ A2 ) ) ) ).

% finite_subset
thf(fact_2162_finite__subset,axiom,
    ! [A2: set_complex,B3: set_complex] :
      ( ( ord_le211207098394363844omplex @ A2 @ B3 )
     => ( ( finite3207457112153483333omplex @ B3 )
       => ( finite3207457112153483333omplex @ A2 ) ) ) ).

% finite_subset
thf(fact_2163_finite__subset,axiom,
    ! [A2: set_int,B3: set_int] :
      ( ( ord_less_eq_set_int @ A2 @ B3 )
     => ( ( finite_finite_int @ B3 )
       => ( finite_finite_int @ A2 ) ) ) ).

% finite_subset
thf(fact_2164_finite_OinsertI,axiom,
    ! [A2: set_VEBT_VEBT,A: vEBT_VEBT] :
      ( ( finite5795047828879050333T_VEBT @ A2 )
     => ( finite5795047828879050333T_VEBT @ ( insert_VEBT_VEBT @ A @ A2 ) ) ) ).

% finite.insertI
thf(fact_2165_finite_OinsertI,axiom,
    ! [A2: set_real,A: real] :
      ( ( finite_finite_real @ A2 )
     => ( finite_finite_real @ ( insert_real @ A @ A2 ) ) ) ).

% finite.insertI
thf(fact_2166_finite_OinsertI,axiom,
    ! [A2: set_o,A: $o] :
      ( ( finite_finite_o @ A2 )
     => ( finite_finite_o @ ( insert_o @ A @ A2 ) ) ) ).

% finite.insertI
thf(fact_2167_finite_OinsertI,axiom,
    ! [A2: set_nat,A: nat] :
      ( ( finite_finite_nat @ A2 )
     => ( finite_finite_nat @ ( insert_nat @ A @ A2 ) ) ) ).

% finite.insertI
thf(fact_2168_finite_OinsertI,axiom,
    ! [A2: set_int,A: int] :
      ( ( finite_finite_int @ A2 )
     => ( finite_finite_int @ ( insert_int @ A @ A2 ) ) ) ).

% finite.insertI
thf(fact_2169_finite_OinsertI,axiom,
    ! [A2: set_complex,A: complex] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( finite3207457112153483333omplex @ ( insert_complex @ A @ A2 ) ) ) ).

% finite.insertI
thf(fact_2170_None__notin__image__Some,axiom,
    ! [A2: set_Pr1261947904930325089at_nat] :
      ~ ( member3954567711264315760at_nat @ none_P5556105721700978146at_nat @ ( image_4198897800814241419at_nat @ some_P7363390416028606310at_nat @ A2 ) ) ).

% None_notin_image_Some
thf(fact_2171_None__notin__image__Some,axiom,
    ! [A2: set_nat] :
      ~ ( member_option_nat @ none_nat @ ( image_nat_option_nat @ some_nat @ A2 ) ) ).

% None_notin_image_Some
thf(fact_2172_option_Odistinct_I1_J,axiom,
    ! [X23: product_prod_nat_nat] :
      ( none_P5556105721700978146at_nat
     != ( some_P7363390416028606310at_nat @ X23 ) ) ).

% option.distinct(1)
thf(fact_2173_option_Odistinct_I1_J,axiom,
    ! [X23: nat] :
      ( none_nat
     != ( some_nat @ X23 ) ) ).

% option.distinct(1)
thf(fact_2174_option_OdiscI,axiom,
    ! [Option: option4927543243414619207at_nat,X23: product_prod_nat_nat] :
      ( ( Option
        = ( some_P7363390416028606310at_nat @ X23 ) )
     => ( Option != none_P5556105721700978146at_nat ) ) ).

% option.discI
thf(fact_2175_option_OdiscI,axiom,
    ! [Option: option_nat,X23: nat] :
      ( ( Option
        = ( some_nat @ X23 ) )
     => ( Option != none_nat ) ) ).

% option.discI
thf(fact_2176_option_Oexhaust,axiom,
    ! [Y2: option4927543243414619207at_nat] :
      ( ( Y2 != none_P5556105721700978146at_nat )
     => ~ ! [X22: product_prod_nat_nat] :
            ( Y2
           != ( some_P7363390416028606310at_nat @ X22 ) ) ) ).

% option.exhaust
thf(fact_2177_option_Oexhaust,axiom,
    ! [Y2: option_nat] :
      ( ( Y2 != none_nat )
     => ~ ! [X22: nat] :
            ( Y2
           != ( some_nat @ X22 ) ) ) ).

% option.exhaust
thf(fact_2178_split__option__ex,axiom,
    ( ( ^ [P3: option4927543243414619207at_nat > $o] :
        ? [X6: option4927543243414619207at_nat] : ( P3 @ X6 ) )
    = ( ^ [P4: option4927543243414619207at_nat > $o] :
          ( ( P4 @ none_P5556105721700978146at_nat )
          | ? [X: product_prod_nat_nat] : ( P4 @ ( some_P7363390416028606310at_nat @ X ) ) ) ) ) ).

% split_option_ex
thf(fact_2179_split__option__ex,axiom,
    ( ( ^ [P3: option_nat > $o] :
        ? [X6: option_nat] : ( P3 @ X6 ) )
    = ( ^ [P4: option_nat > $o] :
          ( ( P4 @ none_nat )
          | ? [X: nat] : ( P4 @ ( some_nat @ X ) ) ) ) ) ).

% split_option_ex
thf(fact_2180_split__option__all,axiom,
    ( ( ^ [P3: option4927543243414619207at_nat > $o] :
        ! [X6: option4927543243414619207at_nat] : ( P3 @ X6 ) )
    = ( ^ [P4: option4927543243414619207at_nat > $o] :
          ( ( P4 @ none_P5556105721700978146at_nat )
          & ! [X: product_prod_nat_nat] : ( P4 @ ( some_P7363390416028606310at_nat @ X ) ) ) ) ) ).

% split_option_all
thf(fact_2181_split__option__all,axiom,
    ( ( ^ [P3: option_nat > $o] :
        ! [X6: option_nat] : ( P3 @ X6 ) )
    = ( ^ [P4: option_nat > $o] :
          ( ( P4 @ none_nat )
          & ! [X: nat] : ( P4 @ ( some_nat @ X ) ) ) ) ) ).

% split_option_all
thf(fact_2182_combine__options__cases,axiom,
    ! [X2: option4927543243414619207at_nat,P: option4927543243414619207at_nat > option4927543243414619207at_nat > $o,Y2: option4927543243414619207at_nat] :
      ( ( ( X2 = none_P5556105721700978146at_nat )
       => ( P @ X2 @ Y2 ) )
     => ( ( ( Y2 = none_P5556105721700978146at_nat )
         => ( P @ X2 @ Y2 ) )
       => ( ! [A6: product_prod_nat_nat,B7: product_prod_nat_nat] :
              ( ( X2
                = ( some_P7363390416028606310at_nat @ A6 ) )
             => ( ( Y2
                  = ( some_P7363390416028606310at_nat @ B7 ) )
               => ( P @ X2 @ Y2 ) ) )
         => ( P @ X2 @ Y2 ) ) ) ) ).

% combine_options_cases
thf(fact_2183_combine__options__cases,axiom,
    ! [X2: option4927543243414619207at_nat,P: option4927543243414619207at_nat > option_nat > $o,Y2: option_nat] :
      ( ( ( X2 = none_P5556105721700978146at_nat )
       => ( P @ X2 @ Y2 ) )
     => ( ( ( Y2 = none_nat )
         => ( P @ X2 @ Y2 ) )
       => ( ! [A6: product_prod_nat_nat,B7: nat] :
              ( ( X2
                = ( some_P7363390416028606310at_nat @ A6 ) )
             => ( ( Y2
                  = ( some_nat @ B7 ) )
               => ( P @ X2 @ Y2 ) ) )
         => ( P @ X2 @ Y2 ) ) ) ) ).

% combine_options_cases
thf(fact_2184_combine__options__cases,axiom,
    ! [X2: option_nat,P: option_nat > option4927543243414619207at_nat > $o,Y2: option4927543243414619207at_nat] :
      ( ( ( X2 = none_nat )
       => ( P @ X2 @ Y2 ) )
     => ( ( ( Y2 = none_P5556105721700978146at_nat )
         => ( P @ X2 @ Y2 ) )
       => ( ! [A6: nat,B7: product_prod_nat_nat] :
              ( ( X2
                = ( some_nat @ A6 ) )
             => ( ( Y2
                  = ( some_P7363390416028606310at_nat @ B7 ) )
               => ( P @ X2 @ Y2 ) ) )
         => ( P @ X2 @ Y2 ) ) ) ) ).

% combine_options_cases
thf(fact_2185_combine__options__cases,axiom,
    ! [X2: option_nat,P: option_nat > option_nat > $o,Y2: option_nat] :
      ( ( ( X2 = none_nat )
       => ( P @ X2 @ Y2 ) )
     => ( ( ( Y2 = none_nat )
         => ( P @ X2 @ Y2 ) )
       => ( ! [A6: nat,B7: nat] :
              ( ( X2
                = ( some_nat @ A6 ) )
             => ( ( Y2
                  = ( some_nat @ B7 ) )
               => ( P @ X2 @ Y2 ) ) )
         => ( P @ X2 @ Y2 ) ) ) ) ).

% combine_options_cases
thf(fact_2186_finite__psubset__induct,axiom,
    ! [A2: set_nat,P: set_nat > $o] :
      ( ( finite_finite_nat @ A2 )
     => ( ! [A7: set_nat] :
            ( ( finite_finite_nat @ A7 )
           => ( ! [B8: set_nat] :
                  ( ( ord_less_set_nat @ B8 @ A7 )
                 => ( P @ B8 ) )
             => ( P @ A7 ) ) )
       => ( P @ A2 ) ) ) ).

% finite_psubset_induct
thf(fact_2187_finite__psubset__induct,axiom,
    ! [A2: set_int,P: set_int > $o] :
      ( ( finite_finite_int @ A2 )
     => ( ! [A7: set_int] :
            ( ( finite_finite_int @ A7 )
           => ( ! [B8: set_int] :
                  ( ( ord_less_set_int @ B8 @ A7 )
                 => ( P @ B8 ) )
             => ( P @ A7 ) ) )
       => ( P @ A2 ) ) ) ).

% finite_psubset_induct
thf(fact_2188_finite__psubset__induct,axiom,
    ! [A2: set_complex,P: set_complex > $o] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( ! [A7: set_complex] :
            ( ( finite3207457112153483333omplex @ A7 )
           => ( ! [B8: set_complex] :
                  ( ( ord_less_set_complex @ B8 @ A7 )
                 => ( P @ B8 ) )
             => ( P @ A7 ) ) )
       => ( P @ A2 ) ) ) ).

% finite_psubset_induct
thf(fact_2189_option_Osel,axiom,
    ! [X23: product_prod_nat_nat] :
      ( ( the_Pr8591224930841456533at_nat @ ( some_P7363390416028606310at_nat @ X23 ) )
      = X23 ) ).

% option.sel
thf(fact_2190_option_Osel,axiom,
    ! [X23: nat] :
      ( ( the_nat @ ( some_nat @ X23 ) )
      = X23 ) ).

% option.sel
thf(fact_2191_pigeonhole__infinite,axiom,
    ! [A2: set_real,F: real > nat] :
      ( ~ ( finite_finite_real @ A2 )
     => ( ( finite_finite_nat @ ( image_real_nat @ F @ A2 ) )
       => ? [X4: real] :
            ( ( member_real @ X4 @ A2 )
            & ~ ( finite_finite_real
                @ ( collect_real
                  @ ^ [A3: real] :
                      ( ( member_real @ A3 @ A2 )
                      & ( ( F @ A3 )
                        = ( F @ X4 ) ) ) ) ) ) ) ) ).

% pigeonhole_infinite
thf(fact_2192_pigeonhole__infinite,axiom,
    ! [A2: set_real,F: real > int] :
      ( ~ ( finite_finite_real @ A2 )
     => ( ( finite_finite_int @ ( image_real_int @ F @ A2 ) )
       => ? [X4: real] :
            ( ( member_real @ X4 @ A2 )
            & ~ ( finite_finite_real
                @ ( collect_real
                  @ ^ [A3: real] :
                      ( ( member_real @ A3 @ A2 )
                      & ( ( F @ A3 )
                        = ( F @ X4 ) ) ) ) ) ) ) ) ).

% pigeonhole_infinite
thf(fact_2193_pigeonhole__infinite,axiom,
    ! [A2: set_real,F: real > complex] :
      ( ~ ( finite_finite_real @ A2 )
     => ( ( finite3207457112153483333omplex @ ( image_real_complex @ F @ A2 ) )
       => ? [X4: real] :
            ( ( member_real @ X4 @ A2 )
            & ~ ( finite_finite_real
                @ ( collect_real
                  @ ^ [A3: real] :
                      ( ( member_real @ A3 @ A2 )
                      & ( ( F @ A3 )
                        = ( F @ X4 ) ) ) ) ) ) ) ) ).

% pigeonhole_infinite
thf(fact_2194_pigeonhole__infinite,axiom,
    ! [A2: set_nat,F: nat > nat] :
      ( ~ ( finite_finite_nat @ A2 )
     => ( ( finite_finite_nat @ ( image_nat_nat @ F @ A2 ) )
       => ? [X4: nat] :
            ( ( member_nat @ X4 @ A2 )
            & ~ ( finite_finite_nat
                @ ( collect_nat
                  @ ^ [A3: nat] :
                      ( ( member_nat @ A3 @ A2 )
                      & ( ( F @ A3 )
                        = ( F @ X4 ) ) ) ) ) ) ) ) ).

% pigeonhole_infinite
thf(fact_2195_pigeonhole__infinite,axiom,
    ! [A2: set_nat,F: nat > int] :
      ( ~ ( finite_finite_nat @ A2 )
     => ( ( finite_finite_int @ ( image_nat_int @ F @ A2 ) )
       => ? [X4: nat] :
            ( ( member_nat @ X4 @ A2 )
            & ~ ( finite_finite_nat
                @ ( collect_nat
                  @ ^ [A3: nat] :
                      ( ( member_nat @ A3 @ A2 )
                      & ( ( F @ A3 )
                        = ( F @ X4 ) ) ) ) ) ) ) ) ).

% pigeonhole_infinite
thf(fact_2196_pigeonhole__infinite,axiom,
    ! [A2: set_nat,F: nat > complex] :
      ( ~ ( finite_finite_nat @ A2 )
     => ( ( finite3207457112153483333omplex @ ( image_nat_complex @ F @ A2 ) )
       => ? [X4: nat] :
            ( ( member_nat @ X4 @ A2 )
            & ~ ( finite_finite_nat
                @ ( collect_nat
                  @ ^ [A3: nat] :
                      ( ( member_nat @ A3 @ A2 )
                      & ( ( F @ A3 )
                        = ( F @ X4 ) ) ) ) ) ) ) ) ).

% pigeonhole_infinite
thf(fact_2197_pigeonhole__infinite,axiom,
    ! [A2: set_int,F: int > nat] :
      ( ~ ( finite_finite_int @ A2 )
     => ( ( finite_finite_nat @ ( image_int_nat @ F @ A2 ) )
       => ? [X4: int] :
            ( ( member_int @ X4 @ A2 )
            & ~ ( finite_finite_int
                @ ( collect_int
                  @ ^ [A3: int] :
                      ( ( member_int @ A3 @ A2 )
                      & ( ( F @ A3 )
                        = ( F @ X4 ) ) ) ) ) ) ) ) ).

% pigeonhole_infinite
thf(fact_2198_pigeonhole__infinite,axiom,
    ! [A2: set_int,F: int > int] :
      ( ~ ( finite_finite_int @ A2 )
     => ( ( finite_finite_int @ ( image_int_int @ F @ A2 ) )
       => ? [X4: int] :
            ( ( member_int @ X4 @ A2 )
            & ~ ( finite_finite_int
                @ ( collect_int
                  @ ^ [A3: int] :
                      ( ( member_int @ A3 @ A2 )
                      & ( ( F @ A3 )
                        = ( F @ X4 ) ) ) ) ) ) ) ) ).

% pigeonhole_infinite
thf(fact_2199_pigeonhole__infinite,axiom,
    ! [A2: set_int,F: int > complex] :
      ( ~ ( finite_finite_int @ A2 )
     => ( ( finite3207457112153483333omplex @ ( image_int_complex @ F @ A2 ) )
       => ? [X4: int] :
            ( ( member_int @ X4 @ A2 )
            & ~ ( finite_finite_int
                @ ( collect_int
                  @ ^ [A3: int] :
                      ( ( member_int @ A3 @ A2 )
                      & ( ( F @ A3 )
                        = ( F @ X4 ) ) ) ) ) ) ) ) ).

% pigeonhole_infinite
thf(fact_2200_pigeonhole__infinite,axiom,
    ! [A2: set_complex,F: complex > nat] :
      ( ~ ( finite3207457112153483333omplex @ A2 )
     => ( ( finite_finite_nat @ ( image_complex_nat @ F @ A2 ) )
       => ? [X4: complex] :
            ( ( member_complex @ X4 @ A2 )
            & ~ ( finite3207457112153483333omplex
                @ ( collect_complex
                  @ ^ [A3: complex] :
                      ( ( member_complex @ A3 @ A2 )
                      & ( ( F @ A3 )
                        = ( F @ X4 ) ) ) ) ) ) ) ) ).

% pigeonhole_infinite
thf(fact_2201_finite__conv__nat__seg__image,axiom,
    ( finite1152437895449049373et_nat
    = ( ^ [A4: set_set_nat] :
        ? [N2: nat,F3: nat > set_nat] :
          ( A4
          = ( image_nat_set_nat @ F3
            @ ( collect_nat
              @ ^ [I4: nat] : ( ord_less_nat @ I4 @ N2 ) ) ) ) ) ) ).

% finite_conv_nat_seg_image
thf(fact_2202_finite__conv__nat__seg__image,axiom,
    ( finite_finite_nat
    = ( ^ [A4: set_nat] :
        ? [N2: nat,F3: nat > nat] :
          ( A4
          = ( image_nat_nat @ F3
            @ ( collect_nat
              @ ^ [I4: nat] : ( ord_less_nat @ I4 @ N2 ) ) ) ) ) ) ).

% finite_conv_nat_seg_image
thf(fact_2203_finite__conv__nat__seg__image,axiom,
    ( finite_finite_int
    = ( ^ [A4: set_int] :
        ? [N2: nat,F3: nat > int] :
          ( A4
          = ( image_nat_int @ F3
            @ ( collect_nat
              @ ^ [I4: nat] : ( ord_less_nat @ I4 @ N2 ) ) ) ) ) ) ).

% finite_conv_nat_seg_image
thf(fact_2204_finite__conv__nat__seg__image,axiom,
    ( finite3207457112153483333omplex
    = ( ^ [A4: set_complex] :
        ? [N2: nat,F3: nat > complex] :
          ( A4
          = ( image_nat_complex @ F3
            @ ( collect_nat
              @ ^ [I4: nat] : ( ord_less_nat @ I4 @ N2 ) ) ) ) ) ) ).

% finite_conv_nat_seg_image
thf(fact_2205_nat__seg__image__imp__finite,axiom,
    ! [A2: set_set_nat,F: nat > set_nat,N: nat] :
      ( ( A2
        = ( image_nat_set_nat @ F
          @ ( collect_nat
            @ ^ [I4: nat] : ( ord_less_nat @ I4 @ N ) ) ) )
     => ( finite1152437895449049373et_nat @ A2 ) ) ).

% nat_seg_image_imp_finite
thf(fact_2206_nat__seg__image__imp__finite,axiom,
    ! [A2: set_nat,F: nat > nat,N: nat] :
      ( ( A2
        = ( image_nat_nat @ F
          @ ( collect_nat
            @ ^ [I4: nat] : ( ord_less_nat @ I4 @ N ) ) ) )
     => ( finite_finite_nat @ A2 ) ) ).

% nat_seg_image_imp_finite
thf(fact_2207_nat__seg__image__imp__finite,axiom,
    ! [A2: set_int,F: nat > int,N: nat] :
      ( ( A2
        = ( image_nat_int @ F
          @ ( collect_nat
            @ ^ [I4: nat] : ( ord_less_nat @ I4 @ N ) ) ) )
     => ( finite_finite_int @ A2 ) ) ).

% nat_seg_image_imp_finite
thf(fact_2208_nat__seg__image__imp__finite,axiom,
    ! [A2: set_complex,F: nat > complex,N: nat] :
      ( ( A2
        = ( image_nat_complex @ F
          @ ( collect_nat
            @ ^ [I4: nat] : ( ord_less_nat @ I4 @ N ) ) ) )
     => ( finite3207457112153483333omplex @ A2 ) ) ).

% nat_seg_image_imp_finite
thf(fact_2209_all__finite__subset__image,axiom,
    ! [F: nat > set_nat,A2: set_nat,P: set_set_nat > $o] :
      ( ( ! [B4: set_set_nat] :
            ( ( ( finite1152437895449049373et_nat @ B4 )
              & ( ord_le6893508408891458716et_nat @ B4 @ ( image_nat_set_nat @ F @ A2 ) ) )
           => ( P @ B4 ) ) )
      = ( ! [B4: set_nat] :
            ( ( ( finite_finite_nat @ B4 )
              & ( ord_less_eq_set_nat @ B4 @ A2 ) )
           => ( P @ ( image_nat_set_nat @ F @ B4 ) ) ) ) ) ).

% all_finite_subset_image
thf(fact_2210_all__finite__subset__image,axiom,
    ! [F: nat > nat,A2: set_nat,P: set_nat > $o] :
      ( ( ! [B4: set_nat] :
            ( ( ( finite_finite_nat @ B4 )
              & ( ord_less_eq_set_nat @ B4 @ ( image_nat_nat @ F @ A2 ) ) )
           => ( P @ B4 ) ) )
      = ( ! [B4: set_nat] :
            ( ( ( finite_finite_nat @ B4 )
              & ( ord_less_eq_set_nat @ B4 @ A2 ) )
           => ( P @ ( image_nat_nat @ F @ B4 ) ) ) ) ) ).

% all_finite_subset_image
thf(fact_2211_all__finite__subset__image,axiom,
    ! [F: complex > nat,A2: set_complex,P: set_nat > $o] :
      ( ( ! [B4: set_nat] :
            ( ( ( finite_finite_nat @ B4 )
              & ( ord_less_eq_set_nat @ B4 @ ( image_complex_nat @ F @ A2 ) ) )
           => ( P @ B4 ) ) )
      = ( ! [B4: set_complex] :
            ( ( ( finite3207457112153483333omplex @ B4 )
              & ( ord_le211207098394363844omplex @ B4 @ A2 ) )
           => ( P @ ( image_complex_nat @ F @ B4 ) ) ) ) ) ).

% all_finite_subset_image
thf(fact_2212_all__finite__subset__image,axiom,
    ! [F: nat > complex,A2: set_nat,P: set_complex > $o] :
      ( ( ! [B4: set_complex] :
            ( ( ( finite3207457112153483333omplex @ B4 )
              & ( ord_le211207098394363844omplex @ B4 @ ( image_nat_complex @ F @ A2 ) ) )
           => ( P @ B4 ) ) )
      = ( ! [B4: set_nat] :
            ( ( ( finite_finite_nat @ B4 )
              & ( ord_less_eq_set_nat @ B4 @ A2 ) )
           => ( P @ ( image_nat_complex @ F @ B4 ) ) ) ) ) ).

% all_finite_subset_image
thf(fact_2213_all__finite__subset__image,axiom,
    ! [F: complex > complex,A2: set_complex,P: set_complex > $o] :
      ( ( ! [B4: set_complex] :
            ( ( ( finite3207457112153483333omplex @ B4 )
              & ( ord_le211207098394363844omplex @ B4 @ ( image_1468599708987790691omplex @ F @ A2 ) ) )
           => ( P @ B4 ) ) )
      = ( ! [B4: set_complex] :
            ( ( ( finite3207457112153483333omplex @ B4 )
              & ( ord_le211207098394363844omplex @ B4 @ A2 ) )
           => ( P @ ( image_1468599708987790691omplex @ F @ B4 ) ) ) ) ) ).

% all_finite_subset_image
thf(fact_2214_all__finite__subset__image,axiom,
    ! [F: int > nat,A2: set_int,P: set_nat > $o] :
      ( ( ! [B4: set_nat] :
            ( ( ( finite_finite_nat @ B4 )
              & ( ord_less_eq_set_nat @ B4 @ ( image_int_nat @ F @ A2 ) ) )
           => ( P @ B4 ) ) )
      = ( ! [B4: set_int] :
            ( ( ( finite_finite_int @ B4 )
              & ( ord_less_eq_set_int @ B4 @ A2 ) )
           => ( P @ ( image_int_nat @ F @ B4 ) ) ) ) ) ).

% all_finite_subset_image
thf(fact_2215_all__finite__subset__image,axiom,
    ! [F: int > complex,A2: set_int,P: set_complex > $o] :
      ( ( ! [B4: set_complex] :
            ( ( ( finite3207457112153483333omplex @ B4 )
              & ( ord_le211207098394363844omplex @ B4 @ ( image_int_complex @ F @ A2 ) ) )
           => ( P @ B4 ) ) )
      = ( ! [B4: set_int] :
            ( ( ( finite_finite_int @ B4 )
              & ( ord_less_eq_set_int @ B4 @ A2 ) )
           => ( P @ ( image_int_complex @ F @ B4 ) ) ) ) ) ).

% all_finite_subset_image
thf(fact_2216_all__finite__subset__image,axiom,
    ! [F: nat > int,A2: set_nat,P: set_int > $o] :
      ( ( ! [B4: set_int] :
            ( ( ( finite_finite_int @ B4 )
              & ( ord_less_eq_set_int @ B4 @ ( image_nat_int @ F @ A2 ) ) )
           => ( P @ B4 ) ) )
      = ( ! [B4: set_nat] :
            ( ( ( finite_finite_nat @ B4 )
              & ( ord_less_eq_set_nat @ B4 @ A2 ) )
           => ( P @ ( image_nat_int @ F @ B4 ) ) ) ) ) ).

% all_finite_subset_image
thf(fact_2217_all__finite__subset__image,axiom,
    ! [F: complex > int,A2: set_complex,P: set_int > $o] :
      ( ( ! [B4: set_int] :
            ( ( ( finite_finite_int @ B4 )
              & ( ord_less_eq_set_int @ B4 @ ( image_complex_int @ F @ A2 ) ) )
           => ( P @ B4 ) ) )
      = ( ! [B4: set_complex] :
            ( ( ( finite3207457112153483333omplex @ B4 )
              & ( ord_le211207098394363844omplex @ B4 @ A2 ) )
           => ( P @ ( image_complex_int @ F @ B4 ) ) ) ) ) ).

% all_finite_subset_image
thf(fact_2218_all__finite__subset__image,axiom,
    ! [F: int > int,A2: set_int,P: set_int > $o] :
      ( ( ! [B4: set_int] :
            ( ( ( finite_finite_int @ B4 )
              & ( ord_less_eq_set_int @ B4 @ ( image_int_int @ F @ A2 ) ) )
           => ( P @ B4 ) ) )
      = ( ! [B4: set_int] :
            ( ( ( finite_finite_int @ B4 )
              & ( ord_less_eq_set_int @ B4 @ A2 ) )
           => ( P @ ( image_int_int @ F @ B4 ) ) ) ) ) ).

% all_finite_subset_image
thf(fact_2219_ex__finite__subset__image,axiom,
    ! [F: nat > set_nat,A2: set_nat,P: set_set_nat > $o] :
      ( ( ? [B4: set_set_nat] :
            ( ( finite1152437895449049373et_nat @ B4 )
            & ( ord_le6893508408891458716et_nat @ B4 @ ( image_nat_set_nat @ F @ A2 ) )
            & ( P @ B4 ) ) )
      = ( ? [B4: set_nat] :
            ( ( finite_finite_nat @ B4 )
            & ( ord_less_eq_set_nat @ B4 @ A2 )
            & ( P @ ( image_nat_set_nat @ F @ B4 ) ) ) ) ) ).

% ex_finite_subset_image
thf(fact_2220_ex__finite__subset__image,axiom,
    ! [F: nat > nat,A2: set_nat,P: set_nat > $o] :
      ( ( ? [B4: set_nat] :
            ( ( finite_finite_nat @ B4 )
            & ( ord_less_eq_set_nat @ B4 @ ( image_nat_nat @ F @ A2 ) )
            & ( P @ B4 ) ) )
      = ( ? [B4: set_nat] :
            ( ( finite_finite_nat @ B4 )
            & ( ord_less_eq_set_nat @ B4 @ A2 )
            & ( P @ ( image_nat_nat @ F @ B4 ) ) ) ) ) ).

% ex_finite_subset_image
thf(fact_2221_ex__finite__subset__image,axiom,
    ! [F: complex > nat,A2: set_complex,P: set_nat > $o] :
      ( ( ? [B4: set_nat] :
            ( ( finite_finite_nat @ B4 )
            & ( ord_less_eq_set_nat @ B4 @ ( image_complex_nat @ F @ A2 ) )
            & ( P @ B4 ) ) )
      = ( ? [B4: set_complex] :
            ( ( finite3207457112153483333omplex @ B4 )
            & ( ord_le211207098394363844omplex @ B4 @ A2 )
            & ( P @ ( image_complex_nat @ F @ B4 ) ) ) ) ) ).

% ex_finite_subset_image
thf(fact_2222_ex__finite__subset__image,axiom,
    ! [F: nat > complex,A2: set_nat,P: set_complex > $o] :
      ( ( ? [B4: set_complex] :
            ( ( finite3207457112153483333omplex @ B4 )
            & ( ord_le211207098394363844omplex @ B4 @ ( image_nat_complex @ F @ A2 ) )
            & ( P @ B4 ) ) )
      = ( ? [B4: set_nat] :
            ( ( finite_finite_nat @ B4 )
            & ( ord_less_eq_set_nat @ B4 @ A2 )
            & ( P @ ( image_nat_complex @ F @ B4 ) ) ) ) ) ).

% ex_finite_subset_image
thf(fact_2223_ex__finite__subset__image,axiom,
    ! [F: complex > complex,A2: set_complex,P: set_complex > $o] :
      ( ( ? [B4: set_complex] :
            ( ( finite3207457112153483333omplex @ B4 )
            & ( ord_le211207098394363844omplex @ B4 @ ( image_1468599708987790691omplex @ F @ A2 ) )
            & ( P @ B4 ) ) )
      = ( ? [B4: set_complex] :
            ( ( finite3207457112153483333omplex @ B4 )
            & ( ord_le211207098394363844omplex @ B4 @ A2 )
            & ( P @ ( image_1468599708987790691omplex @ F @ B4 ) ) ) ) ) ).

% ex_finite_subset_image
thf(fact_2224_ex__finite__subset__image,axiom,
    ! [F: int > nat,A2: set_int,P: set_nat > $o] :
      ( ( ? [B4: set_nat] :
            ( ( finite_finite_nat @ B4 )
            & ( ord_less_eq_set_nat @ B4 @ ( image_int_nat @ F @ A2 ) )
            & ( P @ B4 ) ) )
      = ( ? [B4: set_int] :
            ( ( finite_finite_int @ B4 )
            & ( ord_less_eq_set_int @ B4 @ A2 )
            & ( P @ ( image_int_nat @ F @ B4 ) ) ) ) ) ).

% ex_finite_subset_image
thf(fact_2225_ex__finite__subset__image,axiom,
    ! [F: int > complex,A2: set_int,P: set_complex > $o] :
      ( ( ? [B4: set_complex] :
            ( ( finite3207457112153483333omplex @ B4 )
            & ( ord_le211207098394363844omplex @ B4 @ ( image_int_complex @ F @ A2 ) )
            & ( P @ B4 ) ) )
      = ( ? [B4: set_int] :
            ( ( finite_finite_int @ B4 )
            & ( ord_less_eq_set_int @ B4 @ A2 )
            & ( P @ ( image_int_complex @ F @ B4 ) ) ) ) ) ).

% ex_finite_subset_image
thf(fact_2226_ex__finite__subset__image,axiom,
    ! [F: nat > int,A2: set_nat,P: set_int > $o] :
      ( ( ? [B4: set_int] :
            ( ( finite_finite_int @ B4 )
            & ( ord_less_eq_set_int @ B4 @ ( image_nat_int @ F @ A2 ) )
            & ( P @ B4 ) ) )
      = ( ? [B4: set_nat] :
            ( ( finite_finite_nat @ B4 )
            & ( ord_less_eq_set_nat @ B4 @ A2 )
            & ( P @ ( image_nat_int @ F @ B4 ) ) ) ) ) ).

% ex_finite_subset_image
thf(fact_2227_ex__finite__subset__image,axiom,
    ! [F: complex > int,A2: set_complex,P: set_int > $o] :
      ( ( ? [B4: set_int] :
            ( ( finite_finite_int @ B4 )
            & ( ord_less_eq_set_int @ B4 @ ( image_complex_int @ F @ A2 ) )
            & ( P @ B4 ) ) )
      = ( ? [B4: set_complex] :
            ( ( finite3207457112153483333omplex @ B4 )
            & ( ord_le211207098394363844omplex @ B4 @ A2 )
            & ( P @ ( image_complex_int @ F @ B4 ) ) ) ) ) ).

% ex_finite_subset_image
thf(fact_2228_ex__finite__subset__image,axiom,
    ! [F: int > int,A2: set_int,P: set_int > $o] :
      ( ( ? [B4: set_int] :
            ( ( finite_finite_int @ B4 )
            & ( ord_less_eq_set_int @ B4 @ ( image_int_int @ F @ A2 ) )
            & ( P @ B4 ) ) )
      = ( ? [B4: set_int] :
            ( ( finite_finite_int @ B4 )
            & ( ord_less_eq_set_int @ B4 @ A2 )
            & ( P @ ( image_int_int @ F @ B4 ) ) ) ) ) ).

% ex_finite_subset_image
thf(fact_2229_finite__subset__image,axiom,
    ! [B3: set_set_nat,F: nat > set_nat,A2: set_nat] :
      ( ( finite1152437895449049373et_nat @ B3 )
     => ( ( ord_le6893508408891458716et_nat @ B3 @ ( image_nat_set_nat @ F @ A2 ) )
       => ? [C2: set_nat] :
            ( ( ord_less_eq_set_nat @ C2 @ A2 )
            & ( finite_finite_nat @ C2 )
            & ( B3
              = ( image_nat_set_nat @ F @ C2 ) ) ) ) ) ).

% finite_subset_image
thf(fact_2230_finite__subset__image,axiom,
    ! [B3: set_nat,F: nat > nat,A2: set_nat] :
      ( ( finite_finite_nat @ B3 )
     => ( ( ord_less_eq_set_nat @ B3 @ ( image_nat_nat @ F @ A2 ) )
       => ? [C2: set_nat] :
            ( ( ord_less_eq_set_nat @ C2 @ A2 )
            & ( finite_finite_nat @ C2 )
            & ( B3
              = ( image_nat_nat @ F @ C2 ) ) ) ) ) ).

% finite_subset_image
thf(fact_2231_finite__subset__image,axiom,
    ! [B3: set_nat,F: complex > nat,A2: set_complex] :
      ( ( finite_finite_nat @ B3 )
     => ( ( ord_less_eq_set_nat @ B3 @ ( image_complex_nat @ F @ A2 ) )
       => ? [C2: set_complex] :
            ( ( ord_le211207098394363844omplex @ C2 @ A2 )
            & ( finite3207457112153483333omplex @ C2 )
            & ( B3
              = ( image_complex_nat @ F @ C2 ) ) ) ) ) ).

% finite_subset_image
thf(fact_2232_finite__subset__image,axiom,
    ! [B3: set_complex,F: nat > complex,A2: set_nat] :
      ( ( finite3207457112153483333omplex @ B3 )
     => ( ( ord_le211207098394363844omplex @ B3 @ ( image_nat_complex @ F @ A2 ) )
       => ? [C2: set_nat] :
            ( ( ord_less_eq_set_nat @ C2 @ A2 )
            & ( finite_finite_nat @ C2 )
            & ( B3
              = ( image_nat_complex @ F @ C2 ) ) ) ) ) ).

% finite_subset_image
thf(fact_2233_finite__subset__image,axiom,
    ! [B3: set_complex,F: complex > complex,A2: set_complex] :
      ( ( finite3207457112153483333omplex @ B3 )
     => ( ( ord_le211207098394363844omplex @ B3 @ ( image_1468599708987790691omplex @ F @ A2 ) )
       => ? [C2: set_complex] :
            ( ( ord_le211207098394363844omplex @ C2 @ A2 )
            & ( finite3207457112153483333omplex @ C2 )
            & ( B3
              = ( image_1468599708987790691omplex @ F @ C2 ) ) ) ) ) ).

% finite_subset_image
thf(fact_2234_finite__subset__image,axiom,
    ! [B3: set_nat,F: int > nat,A2: set_int] :
      ( ( finite_finite_nat @ B3 )
     => ( ( ord_less_eq_set_nat @ B3 @ ( image_int_nat @ F @ A2 ) )
       => ? [C2: set_int] :
            ( ( ord_less_eq_set_int @ C2 @ A2 )
            & ( finite_finite_int @ C2 )
            & ( B3
              = ( image_int_nat @ F @ C2 ) ) ) ) ) ).

% finite_subset_image
thf(fact_2235_finite__subset__image,axiom,
    ! [B3: set_complex,F: int > complex,A2: set_int] :
      ( ( finite3207457112153483333omplex @ B3 )
     => ( ( ord_le211207098394363844omplex @ B3 @ ( image_int_complex @ F @ A2 ) )
       => ? [C2: set_int] :
            ( ( ord_less_eq_set_int @ C2 @ A2 )
            & ( finite_finite_int @ C2 )
            & ( B3
              = ( image_int_complex @ F @ C2 ) ) ) ) ) ).

% finite_subset_image
thf(fact_2236_finite__subset__image,axiom,
    ! [B3: set_int,F: nat > int,A2: set_nat] :
      ( ( finite_finite_int @ B3 )
     => ( ( ord_less_eq_set_int @ B3 @ ( image_nat_int @ F @ A2 ) )
       => ? [C2: set_nat] :
            ( ( ord_less_eq_set_nat @ C2 @ A2 )
            & ( finite_finite_nat @ C2 )
            & ( B3
              = ( image_nat_int @ F @ C2 ) ) ) ) ) ).

% finite_subset_image
thf(fact_2237_finite__subset__image,axiom,
    ! [B3: set_int,F: complex > int,A2: set_complex] :
      ( ( finite_finite_int @ B3 )
     => ( ( ord_less_eq_set_int @ B3 @ ( image_complex_int @ F @ A2 ) )
       => ? [C2: set_complex] :
            ( ( ord_le211207098394363844omplex @ C2 @ A2 )
            & ( finite3207457112153483333omplex @ C2 )
            & ( B3
              = ( image_complex_int @ F @ C2 ) ) ) ) ) ).

% finite_subset_image
thf(fact_2238_finite__subset__image,axiom,
    ! [B3: set_int,F: int > int,A2: set_int] :
      ( ( finite_finite_int @ B3 )
     => ( ( ord_less_eq_set_int @ B3 @ ( image_int_int @ F @ A2 ) )
       => ? [C2: set_int] :
            ( ( ord_less_eq_set_int @ C2 @ A2 )
            & ( finite_finite_int @ C2 )
            & ( B3
              = ( image_int_int @ F @ C2 ) ) ) ) ) ).

% finite_subset_image
thf(fact_2239_finite__surj,axiom,
    ! [A2: set_nat,B3: set_set_nat,F: nat > set_nat] :
      ( ( finite_finite_nat @ A2 )
     => ( ( ord_le6893508408891458716et_nat @ B3 @ ( image_nat_set_nat @ F @ A2 ) )
       => ( finite1152437895449049373et_nat @ B3 ) ) ) ).

% finite_surj
thf(fact_2240_finite__surj,axiom,
    ! [A2: set_nat,B3: set_nat,F: nat > nat] :
      ( ( finite_finite_nat @ A2 )
     => ( ( ord_less_eq_set_nat @ B3 @ ( image_nat_nat @ F @ A2 ) )
       => ( finite_finite_nat @ B3 ) ) ) ).

% finite_surj
thf(fact_2241_finite__surj,axiom,
    ! [A2: set_nat,B3: set_complex,F: nat > complex] :
      ( ( finite_finite_nat @ A2 )
     => ( ( ord_le211207098394363844omplex @ B3 @ ( image_nat_complex @ F @ A2 ) )
       => ( finite3207457112153483333omplex @ B3 ) ) ) ).

% finite_surj
thf(fact_2242_finite__surj,axiom,
    ! [A2: set_int,B3: set_nat,F: int > nat] :
      ( ( finite_finite_int @ A2 )
     => ( ( ord_less_eq_set_nat @ B3 @ ( image_int_nat @ F @ A2 ) )
       => ( finite_finite_nat @ B3 ) ) ) ).

% finite_surj
thf(fact_2243_finite__surj,axiom,
    ! [A2: set_int,B3: set_complex,F: int > complex] :
      ( ( finite_finite_int @ A2 )
     => ( ( ord_le211207098394363844omplex @ B3 @ ( image_int_complex @ F @ A2 ) )
       => ( finite3207457112153483333omplex @ B3 ) ) ) ).

% finite_surj
thf(fact_2244_finite__surj,axiom,
    ! [A2: set_complex,B3: set_nat,F: complex > nat] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( ( ord_less_eq_set_nat @ B3 @ ( image_complex_nat @ F @ A2 ) )
       => ( finite_finite_nat @ B3 ) ) ) ).

% finite_surj
thf(fact_2245_finite__surj,axiom,
    ! [A2: set_complex,B3: set_complex,F: complex > complex] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( ( ord_le211207098394363844omplex @ B3 @ ( image_1468599708987790691omplex @ F @ A2 ) )
       => ( finite3207457112153483333omplex @ B3 ) ) ) ).

% finite_surj
thf(fact_2246_finite__surj,axiom,
    ! [A2: set_nat,B3: set_int,F: nat > int] :
      ( ( finite_finite_nat @ A2 )
     => ( ( ord_less_eq_set_int @ B3 @ ( image_nat_int @ F @ A2 ) )
       => ( finite_finite_int @ B3 ) ) ) ).

% finite_surj
thf(fact_2247_finite__surj,axiom,
    ! [A2: set_int,B3: set_int,F: int > int] :
      ( ( finite_finite_int @ A2 )
     => ( ( ord_less_eq_set_int @ B3 @ ( image_int_int @ F @ A2 ) )
       => ( finite_finite_int @ B3 ) ) ) ).

% finite_surj
thf(fact_2248_finite__surj,axiom,
    ! [A2: set_complex,B3: set_int,F: complex > int] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( ( ord_less_eq_set_int @ B3 @ ( image_complex_int @ F @ A2 ) )
       => ( finite_finite_int @ B3 ) ) ) ).

% finite_surj
thf(fact_2249_option_Oexhaust__sel,axiom,
    ! [Option: option4927543243414619207at_nat] :
      ( ( Option != none_P5556105721700978146at_nat )
     => ( Option
        = ( some_P7363390416028606310at_nat @ ( the_Pr8591224930841456533at_nat @ Option ) ) ) ) ).

% option.exhaust_sel
thf(fact_2250_option_Oexhaust__sel,axiom,
    ! [Option: option_nat] :
      ( ( Option != none_nat )
     => ( Option
        = ( some_nat @ ( the_nat @ Option ) ) ) ) ).

% option.exhaust_sel
thf(fact_2251_pred__list__to__short,axiom,
    ! [Deg: nat,X2: nat,Ma: nat,TreeList: list_VEBT_VEBT,Mi: nat,Summary: vEBT_VEBT] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
     => ( ( ord_less_eq_nat @ X2 @ Ma )
       => ( ( ord_less_eq_nat @ ( size_s6755466524823107622T_VEBT @ TreeList ) @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
         => ( ( vEBT_vebt_pred @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X2 )
            = none_nat ) ) ) ) ).

% pred_list_to_short
thf(fact_2252_succ__list__to__short,axiom,
    ! [Deg: nat,Mi: nat,X2: nat,TreeList: list_VEBT_VEBT,Ma: nat,Summary: vEBT_VEBT] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
     => ( ( ord_less_eq_nat @ Mi @ X2 )
       => ( ( ord_less_eq_nat @ ( size_s6755466524823107622T_VEBT @ TreeList ) @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
         => ( ( vEBT_vebt_succ @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X2 )
            = none_nat ) ) ) ) ).

% succ_list_to_short
thf(fact_2253_pred__max,axiom,
    ! [Deg: nat,Ma: nat,X2: nat,Mi: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
     => ( ( ord_less_nat @ Ma @ X2 )
       => ( ( vEBT_vebt_pred @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X2 )
          = ( some_nat @ Ma ) ) ) ) ).

% pred_max
thf(fact_2254_succ__min,axiom,
    ! [Deg: nat,X2: nat,Mi: nat,Ma: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
     => ( ( ord_less_nat @ X2 @ Mi )
       => ( ( vEBT_vebt_succ @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X2 )
          = ( some_nat @ Mi ) ) ) ) ).

% succ_min
thf(fact_2255_less__shift,axiom,
    ( ord_less_nat
    = ( ^ [X: nat,Y: nat] : ( vEBT_VEBT_less @ ( some_nat @ X ) @ ( some_nat @ Y ) ) ) ) ).

% less_shift
thf(fact_2256_greater__shift,axiom,
    ( ord_less_nat
    = ( ^ [Y: nat,X: nat] : ( vEBT_VEBT_greater @ ( some_nat @ X ) @ ( some_nat @ Y ) ) ) ) ).

% greater_shift
thf(fact_2257_helpyd,axiom,
    ! [T: vEBT_VEBT,N: nat,X2: nat,Y2: nat] :
      ( ( vEBT_invar_vebt @ T @ N )
     => ( ( ( vEBT_vebt_succ @ T @ X2 )
          = ( some_nat @ Y2 ) )
       => ( ord_less_nat @ Y2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ) ).

% helpyd
thf(fact_2258_helpypredd,axiom,
    ! [T: vEBT_VEBT,N: nat,X2: nat,Y2: nat] :
      ( ( vEBT_invar_vebt @ T @ N )
     => ( ( ( vEBT_vebt_pred @ T @ X2 )
          = ( some_nat @ Y2 ) )
       => ( ord_less_nat @ Y2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ) ).

% helpypredd
thf(fact_2259_succ__correct,axiom,
    ! [T: vEBT_VEBT,N: nat,X2: nat,Sx: nat] :
      ( ( vEBT_invar_vebt @ T @ N )
     => ( ( ( vEBT_vebt_succ @ T @ X2 )
          = ( some_nat @ Sx ) )
        = ( vEBT_is_succ_in_set @ ( vEBT_set_vebt @ T ) @ X2 @ Sx ) ) ) ).

% succ_correct
thf(fact_2260_pred__correct,axiom,
    ! [T: vEBT_VEBT,N: nat,X2: nat,Sx: nat] :
      ( ( vEBT_invar_vebt @ T @ N )
     => ( ( ( vEBT_vebt_pred @ T @ X2 )
          = ( some_nat @ Sx ) )
        = ( vEBT_is_pred_in_set @ ( vEBT_set_vebt @ T ) @ X2 @ Sx ) ) ) ).

% pred_correct
thf(fact_2261_pred__corr,axiom,
    ! [T: vEBT_VEBT,N: nat,X2: nat,Px: nat] :
      ( ( vEBT_invar_vebt @ T @ N )
     => ( ( ( vEBT_vebt_pred @ T @ X2 )
          = ( some_nat @ Px ) )
        = ( vEBT_is_pred_in_set @ ( vEBT_VEBT_set_vebt @ T ) @ X2 @ Px ) ) ) ).

% pred_corr
thf(fact_2262_succ__corr,axiom,
    ! [T: vEBT_VEBT,N: nat,X2: nat,Sx: nat] :
      ( ( vEBT_invar_vebt @ T @ N )
     => ( ( ( vEBT_vebt_succ @ T @ X2 )
          = ( some_nat @ Sx ) )
        = ( vEBT_is_succ_in_set @ ( vEBT_VEBT_set_vebt @ T ) @ X2 @ Sx ) ) ) ).

% succ_corr
thf(fact_2263_geqmaxNone,axiom,
    ! [Mi: nat,Ma: nat,Deg: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT,N: nat,X2: nat] :
      ( ( vEBT_invar_vebt @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ N )
     => ( ( ord_less_eq_nat @ Ma @ X2 )
       => ( ( vEBT_vebt_succ @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X2 )
          = none_nat ) ) ) ).

% geqmaxNone
thf(fact_2264_local_Opower__def,axiom,
    ( vEBT_VEBT_power
    = ( vEBT_V4262088993061758097ft_nat @ power_power_nat ) ) ).

% local.power_def
thf(fact_2265_vebt__pred_Osimps_I4_J,axiom,
    ! [Uy: nat,Uz: list_VEBT_VEBT,Va: vEBT_VEBT,Vb: nat] :
      ( ( vEBT_vebt_pred @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Uy @ Uz @ Va ) @ Vb )
      = none_nat ) ).

% vebt_pred.simps(4)
thf(fact_2266_vebt__succ_Osimps_I3_J,axiom,
    ! [Ux: nat,Uy: list_VEBT_VEBT,Uz: vEBT_VEBT,Va: nat] :
      ( ( vEBT_vebt_succ @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Ux @ Uy @ Uz ) @ Va )
      = none_nat ) ).

% vebt_succ.simps(3)
thf(fact_2267_succ__less__length__list,axiom,
    ! [Deg: nat,Mi: nat,X2: nat,TreeList: list_VEBT_VEBT,Ma: nat,Summary: vEBT_VEBT] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
     => ( ( ord_less_eq_nat @ Mi @ X2 )
       => ( ( ord_less_nat @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) )
         => ( ( vEBT_vebt_succ @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X2 )
            = ( if_option_nat
              @ ( ( ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                 != none_nat )
                & ( vEBT_VEBT_less @ ( some_nat @ ( vEBT_VEBT_low @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) )
              @ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( some_nat @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_succ @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
              @ ( if_option_nat
                @ ( ( vEBT_vebt_succ @ Summary @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
                  = none_nat )
                @ none_nat
                @ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_succ @ Summary @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_succ @ Summary @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).

% succ_less_length_list
thf(fact_2268_succ__greatereq__min,axiom,
    ! [Deg: nat,Mi: nat,X2: nat,Ma: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
     => ( ( ord_less_eq_nat @ Mi @ X2 )
       => ( ( vEBT_vebt_succ @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X2 )
          = ( if_option_nat @ ( ord_less_nat @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) )
            @ ( if_option_nat
              @ ( ( ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                 != none_nat )
                & ( vEBT_VEBT_less @ ( some_nat @ ( vEBT_VEBT_low @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) )
              @ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( some_nat @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_succ @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
              @ ( if_option_nat
                @ ( ( vEBT_vebt_succ @ Summary @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
                  = none_nat )
                @ none_nat
                @ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_succ @ Summary @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_succ @ Summary @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) )
            @ none_nat ) ) ) ) ).

% succ_greatereq_min
thf(fact_2269_pred__lesseq__max,axiom,
    ! [Deg: nat,X2: nat,Ma: nat,Mi: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
     => ( ( ord_less_eq_nat @ X2 @ Ma )
       => ( ( vEBT_vebt_pred @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X2 )
          = ( if_option_nat @ ( ord_less_nat @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) )
            @ ( if_option_nat
              @ ( ( ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                 != none_nat )
                & ( vEBT_VEBT_greater @ ( some_nat @ ( vEBT_VEBT_low @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) )
              @ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( some_nat @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_pred @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
              @ ( if_option_nat
                @ ( ( vEBT_vebt_pred @ Summary @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
                  = none_nat )
                @ ( if_option_nat @ ( ord_less_nat @ Mi @ X2 ) @ ( some_nat @ Mi ) @ none_nat )
                @ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_pred @ Summary @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_pred @ Summary @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) )
            @ none_nat ) ) ) ) ).

% pred_lesseq_max
thf(fact_2270_pred__less__length__list,axiom,
    ! [Deg: nat,X2: nat,Ma: nat,TreeList: list_VEBT_VEBT,Mi: nat,Summary: vEBT_VEBT] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg )
     => ( ( ord_less_eq_nat @ X2 @ Ma )
       => ( ( ord_less_nat @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) )
         => ( ( vEBT_vebt_pred @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Deg @ TreeList @ Summary ) @ X2 )
            = ( if_option_nat
              @ ( ( ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                 != none_nat )
                & ( vEBT_VEBT_greater @ ( some_nat @ ( vEBT_VEBT_low @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) )
              @ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( some_nat @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_pred @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
              @ ( if_option_nat
                @ ( ( vEBT_vebt_pred @ Summary @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
                  = none_nat )
                @ ( if_option_nat @ ( ord_less_nat @ Mi @ X2 ) @ ( some_nat @ Mi ) @ none_nat )
                @ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_pred @ Summary @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_pred @ Summary @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ Deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).

% pred_less_length_list
thf(fact_2271_vebt__maxt_Osimps_I3_J,axiom,
    ! [Mi: nat,Ma: nat,Ux: nat,Uy: list_VEBT_VEBT,Uz: vEBT_VEBT] :
      ( ( vEBT_vebt_maxt @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Ux @ Uy @ Uz ) )
      = ( some_nat @ Ma ) ) ).

% vebt_maxt.simps(3)
thf(fact_2272_vebt__mint_Osimps_I3_J,axiom,
    ! [Mi: nat,Ma: nat,Ux: nat,Uy: list_VEBT_VEBT,Uz: vEBT_VEBT] :
      ( ( vEBT_vebt_mint @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ Ux @ Uy @ Uz ) )
      = ( some_nat @ Mi ) ) ).

% vebt_mint.simps(3)
thf(fact_2273_finite__roots__unity,axiom,
    ! [N: nat] :
      ( ( ord_less_eq_nat @ one_one_nat @ N )
     => ( finite_finite_real
        @ ( collect_real
          @ ^ [Z4: real] :
              ( ( power_power_real @ Z4 @ N )
              = one_one_real ) ) ) ) ).

% finite_roots_unity
thf(fact_2274_finite__roots__unity,axiom,
    ! [N: nat] :
      ( ( ord_less_eq_nat @ one_one_nat @ N )
     => ( finite3207457112153483333omplex
        @ ( collect_complex
          @ ^ [Z4: complex] :
              ( ( power_power_complex @ Z4 @ N )
              = one_one_complex ) ) ) ) ).

% finite_roots_unity
thf(fact_2275_pred__empty,axiom,
    ! [T: vEBT_VEBT,N: nat,X2: nat] :
      ( ( vEBT_invar_vebt @ T @ N )
     => ( ( ( vEBT_vebt_pred @ T @ X2 )
          = none_nat )
        = ( ( collect_nat
            @ ^ [Y: nat] :
                ( ( vEBT_vebt_member @ T @ Y )
                & ( ord_less_nat @ Y @ X2 ) ) )
          = bot_bot_set_nat ) ) ) ).

% pred_empty
thf(fact_2276_succ__empty,axiom,
    ! [T: vEBT_VEBT,N: nat,X2: nat] :
      ( ( vEBT_invar_vebt @ T @ N )
     => ( ( ( vEBT_vebt_succ @ T @ X2 )
          = none_nat )
        = ( ( collect_nat
            @ ^ [Y: nat] :
                ( ( vEBT_vebt_member @ T @ Y )
                & ( ord_less_nat @ X2 @ Y ) ) )
          = bot_bot_set_nat ) ) ) ).

% succ_empty
thf(fact_2277_add__shift,axiom,
    ! [X2: nat,Y2: nat,Z: nat] :
      ( ( ( plus_plus_nat @ X2 @ Y2 )
        = Z )
      = ( ( vEBT_VEBT_add @ ( some_nat @ X2 ) @ ( some_nat @ Y2 ) )
        = ( some_nat @ Z ) ) ) ).

% add_shift
thf(fact_2278_mul__shift,axiom,
    ! [X2: nat,Y2: nat,Z: nat] :
      ( ( ( times_times_nat @ X2 @ Y2 )
        = Z )
      = ( ( vEBT_VEBT_mul @ ( some_nat @ X2 ) @ ( some_nat @ Y2 ) )
        = ( some_nat @ Z ) ) ) ).

% mul_shift
thf(fact_2279_buildup__gives__empty,axiom,
    ! [N: nat] :
      ( ( vEBT_VEBT_set_vebt @ ( vEBT_vebt_buildup @ N ) )
      = bot_bot_set_nat ) ).

% buildup_gives_empty
thf(fact_2280_add__def,axiom,
    ( vEBT_VEBT_add
    = ( vEBT_V4262088993061758097ft_nat @ plus_plus_nat ) ) ).

% add_def
thf(fact_2281_mul__def,axiom,
    ( vEBT_VEBT_mul
    = ( vEBT_V4262088993061758097ft_nat @ times_times_nat ) ) ).

% mul_def
thf(fact_2282_empty__iff,axiom,
    ! [C: complex] :
      ~ ( member_complex @ C @ bot_bot_set_complex ) ).

% empty_iff
thf(fact_2283_empty__iff,axiom,
    ! [C: set_nat] :
      ~ ( member_set_nat @ C @ bot_bot_set_set_nat ) ).

% empty_iff
thf(fact_2284_empty__iff,axiom,
    ! [C: real] :
      ~ ( member_real @ C @ bot_bot_set_real ) ).

% empty_iff
thf(fact_2285_empty__iff,axiom,
    ! [C: $o] :
      ~ ( member_o @ C @ bot_bot_set_o ) ).

% empty_iff
thf(fact_2286_empty__iff,axiom,
    ! [C: nat] :
      ~ ( member_nat @ C @ bot_bot_set_nat ) ).

% empty_iff
thf(fact_2287_empty__iff,axiom,
    ! [C: int] :
      ~ ( member_int @ C @ bot_bot_set_int ) ).

% empty_iff
thf(fact_2288_all__not__in__conv,axiom,
    ! [A2: set_complex] :
      ( ( ! [X: complex] :
            ~ ( member_complex @ X @ A2 ) )
      = ( A2 = bot_bot_set_complex ) ) ).

% all_not_in_conv
thf(fact_2289_all__not__in__conv,axiom,
    ! [A2: set_set_nat] :
      ( ( ! [X: set_nat] :
            ~ ( member_set_nat @ X @ A2 ) )
      = ( A2 = bot_bot_set_set_nat ) ) ).

% all_not_in_conv
thf(fact_2290_all__not__in__conv,axiom,
    ! [A2: set_real] :
      ( ( ! [X: real] :
            ~ ( member_real @ X @ A2 ) )
      = ( A2 = bot_bot_set_real ) ) ).

% all_not_in_conv
thf(fact_2291_all__not__in__conv,axiom,
    ! [A2: set_o] :
      ( ( ! [X: $o] :
            ~ ( member_o @ X @ A2 ) )
      = ( A2 = bot_bot_set_o ) ) ).

% all_not_in_conv
thf(fact_2292_all__not__in__conv,axiom,
    ! [A2: set_nat] :
      ( ( ! [X: nat] :
            ~ ( member_nat @ X @ A2 ) )
      = ( A2 = bot_bot_set_nat ) ) ).

% all_not_in_conv
thf(fact_2293_all__not__in__conv,axiom,
    ! [A2: set_int] :
      ( ( ! [X: int] :
            ~ ( member_int @ X @ A2 ) )
      = ( A2 = bot_bot_set_int ) ) ).

% all_not_in_conv
thf(fact_2294_Collect__empty__eq,axiom,
    ! [P: product_prod_int_int > $o] :
      ( ( ( collec213857154873943460nt_int @ P )
        = bot_bo1796632182523588997nt_int )
      = ( ! [X: product_prod_int_int] :
            ~ ( P @ X ) ) ) ).

% Collect_empty_eq
thf(fact_2295_Collect__empty__eq,axiom,
    ! [P: complex > $o] :
      ( ( ( collect_complex @ P )
        = bot_bot_set_complex )
      = ( ! [X: complex] :
            ~ ( P @ X ) ) ) ).

% Collect_empty_eq
thf(fact_2296_Collect__empty__eq,axiom,
    ! [P: set_nat > $o] :
      ( ( ( collect_set_nat @ P )
        = bot_bot_set_set_nat )
      = ( ! [X: set_nat] :
            ~ ( P @ X ) ) ) ).

% Collect_empty_eq
thf(fact_2297_Collect__empty__eq,axiom,
    ! [P: real > $o] :
      ( ( ( collect_real @ P )
        = bot_bot_set_real )
      = ( ! [X: real] :
            ~ ( P @ X ) ) ) ).

% Collect_empty_eq
thf(fact_2298_Collect__empty__eq,axiom,
    ! [P: $o > $o] :
      ( ( ( collect_o @ P )
        = bot_bot_set_o )
      = ( ! [X: $o] :
            ~ ( P @ X ) ) ) ).

% Collect_empty_eq
thf(fact_2299_Collect__empty__eq,axiom,
    ! [P: nat > $o] :
      ( ( ( collect_nat @ P )
        = bot_bot_set_nat )
      = ( ! [X: nat] :
            ~ ( P @ X ) ) ) ).

% Collect_empty_eq
thf(fact_2300_Collect__empty__eq,axiom,
    ! [P: int > $o] :
      ( ( ( collect_int @ P )
        = bot_bot_set_int )
      = ( ! [X: int] :
            ~ ( P @ X ) ) ) ).

% Collect_empty_eq
thf(fact_2301_empty__Collect__eq,axiom,
    ! [P: product_prod_int_int > $o] :
      ( ( bot_bo1796632182523588997nt_int
        = ( collec213857154873943460nt_int @ P ) )
      = ( ! [X: product_prod_int_int] :
            ~ ( P @ X ) ) ) ).

% empty_Collect_eq
thf(fact_2302_empty__Collect__eq,axiom,
    ! [P: complex > $o] :
      ( ( bot_bot_set_complex
        = ( collect_complex @ P ) )
      = ( ! [X: complex] :
            ~ ( P @ X ) ) ) ).

% empty_Collect_eq
thf(fact_2303_empty__Collect__eq,axiom,
    ! [P: set_nat > $o] :
      ( ( bot_bot_set_set_nat
        = ( collect_set_nat @ P ) )
      = ( ! [X: set_nat] :
            ~ ( P @ X ) ) ) ).

% empty_Collect_eq
thf(fact_2304_empty__Collect__eq,axiom,
    ! [P: real > $o] :
      ( ( bot_bot_set_real
        = ( collect_real @ P ) )
      = ( ! [X: real] :
            ~ ( P @ X ) ) ) ).

% empty_Collect_eq
thf(fact_2305_empty__Collect__eq,axiom,
    ! [P: $o > $o] :
      ( ( bot_bot_set_o
        = ( collect_o @ P ) )
      = ( ! [X: $o] :
            ~ ( P @ X ) ) ) ).

% empty_Collect_eq
thf(fact_2306_empty__Collect__eq,axiom,
    ! [P: nat > $o] :
      ( ( bot_bot_set_nat
        = ( collect_nat @ P ) )
      = ( ! [X: nat] :
            ~ ( P @ X ) ) ) ).

% empty_Collect_eq
thf(fact_2307_empty__Collect__eq,axiom,
    ! [P: int > $o] :
      ( ( bot_bot_set_int
        = ( collect_int @ P ) )
      = ( ! [X: int] :
            ~ ( P @ X ) ) ) ).

% empty_Collect_eq
thf(fact_2308_mint__corr__help__empty,axiom,
    ! [T: vEBT_VEBT,N: nat] :
      ( ( vEBT_invar_vebt @ T @ N )
     => ( ( ( vEBT_vebt_mint @ T )
          = none_nat )
       => ( ( vEBT_VEBT_set_vebt @ T )
          = bot_bot_set_nat ) ) ) ).

% mint_corr_help_empty
thf(fact_2309_maxt__corr__help__empty,axiom,
    ! [T: vEBT_VEBT,N: nat] :
      ( ( vEBT_invar_vebt @ T @ N )
     => ( ( ( vEBT_vebt_maxt @ T )
          = none_nat )
       => ( ( vEBT_VEBT_set_vebt @ T )
          = bot_bot_set_nat ) ) ) ).

% maxt_corr_help_empty
thf(fact_2310_image__is__empty,axiom,
    ! [F: real > real,A2: set_real] :
      ( ( ( image_real_real @ F @ A2 )
        = bot_bot_set_real )
      = ( A2 = bot_bot_set_real ) ) ).

% image_is_empty
thf(fact_2311_image__is__empty,axiom,
    ! [F: $o > real,A2: set_o] :
      ( ( ( image_o_real @ F @ A2 )
        = bot_bot_set_real )
      = ( A2 = bot_bot_set_o ) ) ).

% image_is_empty
thf(fact_2312_image__is__empty,axiom,
    ! [F: nat > real,A2: set_nat] :
      ( ( ( image_nat_real @ F @ A2 )
        = bot_bot_set_real )
      = ( A2 = bot_bot_set_nat ) ) ).

% image_is_empty
thf(fact_2313_image__is__empty,axiom,
    ! [F: int > real,A2: set_int] :
      ( ( ( image_int_real @ F @ A2 )
        = bot_bot_set_real )
      = ( A2 = bot_bot_set_int ) ) ).

% image_is_empty
thf(fact_2314_image__is__empty,axiom,
    ! [F: real > $o,A2: set_real] :
      ( ( ( image_real_o @ F @ A2 )
        = bot_bot_set_o )
      = ( A2 = bot_bot_set_real ) ) ).

% image_is_empty
thf(fact_2315_image__is__empty,axiom,
    ! [F: $o > $o,A2: set_o] :
      ( ( ( image_o_o @ F @ A2 )
        = bot_bot_set_o )
      = ( A2 = bot_bot_set_o ) ) ).

% image_is_empty
thf(fact_2316_image__is__empty,axiom,
    ! [F: nat > $o,A2: set_nat] :
      ( ( ( image_nat_o @ F @ A2 )
        = bot_bot_set_o )
      = ( A2 = bot_bot_set_nat ) ) ).

% image_is_empty
thf(fact_2317_image__is__empty,axiom,
    ! [F: int > $o,A2: set_int] :
      ( ( ( image_int_o @ F @ A2 )
        = bot_bot_set_o )
      = ( A2 = bot_bot_set_int ) ) ).

% image_is_empty
thf(fact_2318_image__is__empty,axiom,
    ! [F: real > nat,A2: set_real] :
      ( ( ( image_real_nat @ F @ A2 )
        = bot_bot_set_nat )
      = ( A2 = bot_bot_set_real ) ) ).

% image_is_empty
thf(fact_2319_image__is__empty,axiom,
    ! [F: $o > nat,A2: set_o] :
      ( ( ( image_o_nat @ F @ A2 )
        = bot_bot_set_nat )
      = ( A2 = bot_bot_set_o ) ) ).

% image_is_empty
thf(fact_2320_empty__is__image,axiom,
    ! [F: real > real,A2: set_real] :
      ( ( bot_bot_set_real
        = ( image_real_real @ F @ A2 ) )
      = ( A2 = bot_bot_set_real ) ) ).

% empty_is_image
thf(fact_2321_empty__is__image,axiom,
    ! [F: $o > real,A2: set_o] :
      ( ( bot_bot_set_real
        = ( image_o_real @ F @ A2 ) )
      = ( A2 = bot_bot_set_o ) ) ).

% empty_is_image
thf(fact_2322_empty__is__image,axiom,
    ! [F: nat > real,A2: set_nat] :
      ( ( bot_bot_set_real
        = ( image_nat_real @ F @ A2 ) )
      = ( A2 = bot_bot_set_nat ) ) ).

% empty_is_image
thf(fact_2323_empty__is__image,axiom,
    ! [F: int > real,A2: set_int] :
      ( ( bot_bot_set_real
        = ( image_int_real @ F @ A2 ) )
      = ( A2 = bot_bot_set_int ) ) ).

% empty_is_image
thf(fact_2324_empty__is__image,axiom,
    ! [F: real > $o,A2: set_real] :
      ( ( bot_bot_set_o
        = ( image_real_o @ F @ A2 ) )
      = ( A2 = bot_bot_set_real ) ) ).

% empty_is_image
thf(fact_2325_empty__is__image,axiom,
    ! [F: $o > $o,A2: set_o] :
      ( ( bot_bot_set_o
        = ( image_o_o @ F @ A2 ) )
      = ( A2 = bot_bot_set_o ) ) ).

% empty_is_image
thf(fact_2326_empty__is__image,axiom,
    ! [F: nat > $o,A2: set_nat] :
      ( ( bot_bot_set_o
        = ( image_nat_o @ F @ A2 ) )
      = ( A2 = bot_bot_set_nat ) ) ).

% empty_is_image
thf(fact_2327_empty__is__image,axiom,
    ! [F: int > $o,A2: set_int] :
      ( ( bot_bot_set_o
        = ( image_int_o @ F @ A2 ) )
      = ( A2 = bot_bot_set_int ) ) ).

% empty_is_image
thf(fact_2328_empty__is__image,axiom,
    ! [F: real > nat,A2: set_real] :
      ( ( bot_bot_set_nat
        = ( image_real_nat @ F @ A2 ) )
      = ( A2 = bot_bot_set_real ) ) ).

% empty_is_image
thf(fact_2329_empty__is__image,axiom,
    ! [F: $o > nat,A2: set_o] :
      ( ( bot_bot_set_nat
        = ( image_o_nat @ F @ A2 ) )
      = ( A2 = bot_bot_set_o ) ) ).

% empty_is_image
thf(fact_2330_image__empty,axiom,
    ! [F: real > real] :
      ( ( image_real_real @ F @ bot_bot_set_real )
      = bot_bot_set_real ) ).

% image_empty
thf(fact_2331_image__empty,axiom,
    ! [F: real > $o] :
      ( ( image_real_o @ F @ bot_bot_set_real )
      = bot_bot_set_o ) ).

% image_empty
thf(fact_2332_image__empty,axiom,
    ! [F: real > nat] :
      ( ( image_real_nat @ F @ bot_bot_set_real )
      = bot_bot_set_nat ) ).

% image_empty
thf(fact_2333_image__empty,axiom,
    ! [F: real > int] :
      ( ( image_real_int @ F @ bot_bot_set_real )
      = bot_bot_set_int ) ).

% image_empty
thf(fact_2334_image__empty,axiom,
    ! [F: $o > real] :
      ( ( image_o_real @ F @ bot_bot_set_o )
      = bot_bot_set_real ) ).

% image_empty
thf(fact_2335_image__empty,axiom,
    ! [F: $o > $o] :
      ( ( image_o_o @ F @ bot_bot_set_o )
      = bot_bot_set_o ) ).

% image_empty
thf(fact_2336_image__empty,axiom,
    ! [F: $o > nat] :
      ( ( image_o_nat @ F @ bot_bot_set_o )
      = bot_bot_set_nat ) ).

% image_empty
thf(fact_2337_image__empty,axiom,
    ! [F: $o > int] :
      ( ( image_o_int @ F @ bot_bot_set_o )
      = bot_bot_set_int ) ).

% image_empty
thf(fact_2338_image__empty,axiom,
    ! [F: nat > real] :
      ( ( image_nat_real @ F @ bot_bot_set_nat )
      = bot_bot_set_real ) ).

% image_empty
thf(fact_2339_image__empty,axiom,
    ! [F: nat > $o] :
      ( ( image_nat_o @ F @ bot_bot_set_nat )
      = bot_bot_set_o ) ).

% image_empty
thf(fact_2340_empty__subsetI,axiom,
    ! [A2: set_real] : ( ord_less_eq_set_real @ bot_bot_set_real @ A2 ) ).

% empty_subsetI
thf(fact_2341_empty__subsetI,axiom,
    ! [A2: set_o] : ( ord_less_eq_set_o @ bot_bot_set_o @ A2 ) ).

% empty_subsetI
thf(fact_2342_empty__subsetI,axiom,
    ! [A2: set_nat] : ( ord_less_eq_set_nat @ bot_bot_set_nat @ A2 ) ).

% empty_subsetI
thf(fact_2343_empty__subsetI,axiom,
    ! [A2: set_int] : ( ord_less_eq_set_int @ bot_bot_set_int @ A2 ) ).

% empty_subsetI
thf(fact_2344_subset__empty,axiom,
    ! [A2: set_real] :
      ( ( ord_less_eq_set_real @ A2 @ bot_bot_set_real )
      = ( A2 = bot_bot_set_real ) ) ).

% subset_empty
thf(fact_2345_subset__empty,axiom,
    ! [A2: set_o] :
      ( ( ord_less_eq_set_o @ A2 @ bot_bot_set_o )
      = ( A2 = bot_bot_set_o ) ) ).

% subset_empty
thf(fact_2346_subset__empty,axiom,
    ! [A2: set_nat] :
      ( ( ord_less_eq_set_nat @ A2 @ bot_bot_set_nat )
      = ( A2 = bot_bot_set_nat ) ) ).

% subset_empty
thf(fact_2347_subset__empty,axiom,
    ! [A2: set_int] :
      ( ( ord_less_eq_set_int @ A2 @ bot_bot_set_int )
      = ( A2 = bot_bot_set_int ) ) ).

% subset_empty
thf(fact_2348_singletonI,axiom,
    ! [A: vEBT_VEBT] : ( member_VEBT_VEBT @ A @ ( insert_VEBT_VEBT @ A @ bot_bo8194388402131092736T_VEBT ) ) ).

% singletonI
thf(fact_2349_singletonI,axiom,
    ! [A: complex] : ( member_complex @ A @ ( insert_complex @ A @ bot_bot_set_complex ) ) ).

% singletonI
thf(fact_2350_singletonI,axiom,
    ! [A: set_nat] : ( member_set_nat @ A @ ( insert_set_nat @ A @ bot_bot_set_set_nat ) ) ).

% singletonI
thf(fact_2351_singletonI,axiom,
    ! [A: real] : ( member_real @ A @ ( insert_real @ A @ bot_bot_set_real ) ) ).

% singletonI
thf(fact_2352_singletonI,axiom,
    ! [A: $o] : ( member_o @ A @ ( insert_o @ A @ bot_bot_set_o ) ) ).

% singletonI
thf(fact_2353_singletonI,axiom,
    ! [A: nat] : ( member_nat @ A @ ( insert_nat @ A @ bot_bot_set_nat ) ) ).

% singletonI
thf(fact_2354_singletonI,axiom,
    ! [A: int] : ( member_int @ A @ ( insert_int @ A @ bot_bot_set_int ) ) ).

% singletonI
thf(fact_2355_Diff__empty,axiom,
    ! [A2: set_real] :
      ( ( minus_minus_set_real @ A2 @ bot_bot_set_real )
      = A2 ) ).

% Diff_empty
thf(fact_2356_Diff__empty,axiom,
    ! [A2: set_o] :
      ( ( minus_minus_set_o @ A2 @ bot_bot_set_o )
      = A2 ) ).

% Diff_empty
thf(fact_2357_Diff__empty,axiom,
    ! [A2: set_int] :
      ( ( minus_minus_set_int @ A2 @ bot_bot_set_int )
      = A2 ) ).

% Diff_empty
thf(fact_2358_Diff__empty,axiom,
    ! [A2: set_nat] :
      ( ( minus_minus_set_nat @ A2 @ bot_bot_set_nat )
      = A2 ) ).

% Diff_empty
thf(fact_2359_empty__Diff,axiom,
    ! [A2: set_real] :
      ( ( minus_minus_set_real @ bot_bot_set_real @ A2 )
      = bot_bot_set_real ) ).

% empty_Diff
thf(fact_2360_empty__Diff,axiom,
    ! [A2: set_o] :
      ( ( minus_minus_set_o @ bot_bot_set_o @ A2 )
      = bot_bot_set_o ) ).

% empty_Diff
thf(fact_2361_empty__Diff,axiom,
    ! [A2: set_int] :
      ( ( minus_minus_set_int @ bot_bot_set_int @ A2 )
      = bot_bot_set_int ) ).

% empty_Diff
thf(fact_2362_empty__Diff,axiom,
    ! [A2: set_nat] :
      ( ( minus_minus_set_nat @ bot_bot_set_nat @ A2 )
      = bot_bot_set_nat ) ).

% empty_Diff
thf(fact_2363_Diff__cancel,axiom,
    ! [A2: set_real] :
      ( ( minus_minus_set_real @ A2 @ A2 )
      = bot_bot_set_real ) ).

% Diff_cancel
thf(fact_2364_Diff__cancel,axiom,
    ! [A2: set_o] :
      ( ( minus_minus_set_o @ A2 @ A2 )
      = bot_bot_set_o ) ).

% Diff_cancel
thf(fact_2365_Diff__cancel,axiom,
    ! [A2: set_int] :
      ( ( minus_minus_set_int @ A2 @ A2 )
      = bot_bot_set_int ) ).

% Diff_cancel
thf(fact_2366_Diff__cancel,axiom,
    ! [A2: set_nat] :
      ( ( minus_minus_set_nat @ A2 @ A2 )
      = bot_bot_set_nat ) ).

% Diff_cancel
thf(fact_2367_singleton__conv,axiom,
    ! [A: vEBT_VEBT] :
      ( ( collect_VEBT_VEBT
        @ ^ [X: vEBT_VEBT] : ( X = A ) )
      = ( insert_VEBT_VEBT @ A @ bot_bo8194388402131092736T_VEBT ) ) ).

% singleton_conv
thf(fact_2368_singleton__conv,axiom,
    ! [A: product_prod_int_int] :
      ( ( collec213857154873943460nt_int
        @ ^ [X: product_prod_int_int] : ( X = A ) )
      = ( insert5033312907999012233nt_int @ A @ bot_bo1796632182523588997nt_int ) ) ).

% singleton_conv
thf(fact_2369_singleton__conv,axiom,
    ! [A: complex] :
      ( ( collect_complex
        @ ^ [X: complex] : ( X = A ) )
      = ( insert_complex @ A @ bot_bot_set_complex ) ) ).

% singleton_conv
thf(fact_2370_singleton__conv,axiom,
    ! [A: set_nat] :
      ( ( collect_set_nat
        @ ^ [X: set_nat] : ( X = A ) )
      = ( insert_set_nat @ A @ bot_bot_set_set_nat ) ) ).

% singleton_conv
thf(fact_2371_singleton__conv,axiom,
    ! [A: real] :
      ( ( collect_real
        @ ^ [X: real] : ( X = A ) )
      = ( insert_real @ A @ bot_bot_set_real ) ) ).

% singleton_conv
thf(fact_2372_singleton__conv,axiom,
    ! [A: $o] :
      ( ( collect_o
        @ ^ [X: $o] : ( X = A ) )
      = ( insert_o @ A @ bot_bot_set_o ) ) ).

% singleton_conv
thf(fact_2373_singleton__conv,axiom,
    ! [A: nat] :
      ( ( collect_nat
        @ ^ [X: nat] : ( X = A ) )
      = ( insert_nat @ A @ bot_bot_set_nat ) ) ).

% singleton_conv
thf(fact_2374_singleton__conv,axiom,
    ! [A: int] :
      ( ( collect_int
        @ ^ [X: int] : ( X = A ) )
      = ( insert_int @ A @ bot_bot_set_int ) ) ).

% singleton_conv
thf(fact_2375_singleton__conv2,axiom,
    ! [A: vEBT_VEBT] :
      ( ( collect_VEBT_VEBT
        @ ( ^ [Y6: vEBT_VEBT,Z5: vEBT_VEBT] : ( Y6 = Z5 )
          @ A ) )
      = ( insert_VEBT_VEBT @ A @ bot_bo8194388402131092736T_VEBT ) ) ).

% singleton_conv2
thf(fact_2376_singleton__conv2,axiom,
    ! [A: product_prod_int_int] :
      ( ( collec213857154873943460nt_int
        @ ( ^ [Y6: product_prod_int_int,Z5: product_prod_int_int] : ( Y6 = Z5 )
          @ A ) )
      = ( insert5033312907999012233nt_int @ A @ bot_bo1796632182523588997nt_int ) ) ).

% singleton_conv2
thf(fact_2377_singleton__conv2,axiom,
    ! [A: complex] :
      ( ( collect_complex
        @ ( ^ [Y6: complex,Z5: complex] : ( Y6 = Z5 )
          @ A ) )
      = ( insert_complex @ A @ bot_bot_set_complex ) ) ).

% singleton_conv2
thf(fact_2378_singleton__conv2,axiom,
    ! [A: set_nat] :
      ( ( collect_set_nat
        @ ( ^ [Y6: set_nat,Z5: set_nat] : ( Y6 = Z5 )
          @ A ) )
      = ( insert_set_nat @ A @ bot_bot_set_set_nat ) ) ).

% singleton_conv2
thf(fact_2379_singleton__conv2,axiom,
    ! [A: real] :
      ( ( collect_real
        @ ( ^ [Y6: real,Z5: real] : ( Y6 = Z5 )
          @ A ) )
      = ( insert_real @ A @ bot_bot_set_real ) ) ).

% singleton_conv2
thf(fact_2380_singleton__conv2,axiom,
    ! [A: $o] :
      ( ( collect_o
        @ ( ^ [Y6: $o,Z5: $o] : ( Y6 = Z5 )
          @ A ) )
      = ( insert_o @ A @ bot_bot_set_o ) ) ).

% singleton_conv2
thf(fact_2381_singleton__conv2,axiom,
    ! [A: nat] :
      ( ( collect_nat
        @ ( ^ [Y6: nat,Z5: nat] : ( Y6 = Z5 )
          @ A ) )
      = ( insert_nat @ A @ bot_bot_set_nat ) ) ).

% singleton_conv2
thf(fact_2382_singleton__conv2,axiom,
    ! [A: int] :
      ( ( collect_int
        @ ( ^ [Y6: int,Z5: int] : ( Y6 = Z5 )
          @ A ) )
      = ( insert_int @ A @ bot_bot_set_int ) ) ).

% singleton_conv2
thf(fact_2383_singleton__insert__inj__eq_H,axiom,
    ! [A: vEBT_VEBT,A2: set_VEBT_VEBT,B: vEBT_VEBT] :
      ( ( ( insert_VEBT_VEBT @ A @ A2 )
        = ( insert_VEBT_VEBT @ B @ bot_bo8194388402131092736T_VEBT ) )
      = ( ( A = B )
        & ( ord_le4337996190870823476T_VEBT @ A2 @ ( insert_VEBT_VEBT @ B @ bot_bo8194388402131092736T_VEBT ) ) ) ) ).

% singleton_insert_inj_eq'
thf(fact_2384_singleton__insert__inj__eq_H,axiom,
    ! [A: real,A2: set_real,B: real] :
      ( ( ( insert_real @ A @ A2 )
        = ( insert_real @ B @ bot_bot_set_real ) )
      = ( ( A = B )
        & ( ord_less_eq_set_real @ A2 @ ( insert_real @ B @ bot_bot_set_real ) ) ) ) ).

% singleton_insert_inj_eq'
thf(fact_2385_singleton__insert__inj__eq_H,axiom,
    ! [A: $o,A2: set_o,B: $o] :
      ( ( ( insert_o @ A @ A2 )
        = ( insert_o @ B @ bot_bot_set_o ) )
      = ( ( A = B )
        & ( ord_less_eq_set_o @ A2 @ ( insert_o @ B @ bot_bot_set_o ) ) ) ) ).

% singleton_insert_inj_eq'
thf(fact_2386_singleton__insert__inj__eq_H,axiom,
    ! [A: nat,A2: set_nat,B: nat] :
      ( ( ( insert_nat @ A @ A2 )
        = ( insert_nat @ B @ bot_bot_set_nat ) )
      = ( ( A = B )
        & ( ord_less_eq_set_nat @ A2 @ ( insert_nat @ B @ bot_bot_set_nat ) ) ) ) ).

% singleton_insert_inj_eq'
thf(fact_2387_singleton__insert__inj__eq_H,axiom,
    ! [A: int,A2: set_int,B: int] :
      ( ( ( insert_int @ A @ A2 )
        = ( insert_int @ B @ bot_bot_set_int ) )
      = ( ( A = B )
        & ( ord_less_eq_set_int @ A2 @ ( insert_int @ B @ bot_bot_set_int ) ) ) ) ).

% singleton_insert_inj_eq'
thf(fact_2388_singleton__insert__inj__eq,axiom,
    ! [B: vEBT_VEBT,A: vEBT_VEBT,A2: set_VEBT_VEBT] :
      ( ( ( insert_VEBT_VEBT @ B @ bot_bo8194388402131092736T_VEBT )
        = ( insert_VEBT_VEBT @ A @ A2 ) )
      = ( ( A = B )
        & ( ord_le4337996190870823476T_VEBT @ A2 @ ( insert_VEBT_VEBT @ B @ bot_bo8194388402131092736T_VEBT ) ) ) ) ).

% singleton_insert_inj_eq
thf(fact_2389_singleton__insert__inj__eq,axiom,
    ! [B: real,A: real,A2: set_real] :
      ( ( ( insert_real @ B @ bot_bot_set_real )
        = ( insert_real @ A @ A2 ) )
      = ( ( A = B )
        & ( ord_less_eq_set_real @ A2 @ ( insert_real @ B @ bot_bot_set_real ) ) ) ) ).

% singleton_insert_inj_eq
thf(fact_2390_singleton__insert__inj__eq,axiom,
    ! [B: $o,A: $o,A2: set_o] :
      ( ( ( insert_o @ B @ bot_bot_set_o )
        = ( insert_o @ A @ A2 ) )
      = ( ( A = B )
        & ( ord_less_eq_set_o @ A2 @ ( insert_o @ B @ bot_bot_set_o ) ) ) ) ).

% singleton_insert_inj_eq
thf(fact_2391_singleton__insert__inj__eq,axiom,
    ! [B: nat,A: nat,A2: set_nat] :
      ( ( ( insert_nat @ B @ bot_bot_set_nat )
        = ( insert_nat @ A @ A2 ) )
      = ( ( A = B )
        & ( ord_less_eq_set_nat @ A2 @ ( insert_nat @ B @ bot_bot_set_nat ) ) ) ) ).

% singleton_insert_inj_eq
thf(fact_2392_singleton__insert__inj__eq,axiom,
    ! [B: int,A: int,A2: set_int] :
      ( ( ( insert_int @ B @ bot_bot_set_int )
        = ( insert_int @ A @ A2 ) )
      = ( ( A = B )
        & ( ord_less_eq_set_int @ A2 @ ( insert_int @ B @ bot_bot_set_int ) ) ) ) ).

% singleton_insert_inj_eq
thf(fact_2393_Diff__eq__empty__iff,axiom,
    ! [A2: set_real,B3: set_real] :
      ( ( ( minus_minus_set_real @ A2 @ B3 )
        = bot_bot_set_real )
      = ( ord_less_eq_set_real @ A2 @ B3 ) ) ).

% Diff_eq_empty_iff
thf(fact_2394_Diff__eq__empty__iff,axiom,
    ! [A2: set_o,B3: set_o] :
      ( ( ( minus_minus_set_o @ A2 @ B3 )
        = bot_bot_set_o )
      = ( ord_less_eq_set_o @ A2 @ B3 ) ) ).

% Diff_eq_empty_iff
thf(fact_2395_Diff__eq__empty__iff,axiom,
    ! [A2: set_nat,B3: set_nat] :
      ( ( ( minus_minus_set_nat @ A2 @ B3 )
        = bot_bot_set_nat )
      = ( ord_less_eq_set_nat @ A2 @ B3 ) ) ).

% Diff_eq_empty_iff
thf(fact_2396_Diff__eq__empty__iff,axiom,
    ! [A2: set_int,B3: set_int] :
      ( ( ( minus_minus_set_int @ A2 @ B3 )
        = bot_bot_set_int )
      = ( ord_less_eq_set_int @ A2 @ B3 ) ) ).

% Diff_eq_empty_iff
thf(fact_2397_insert__Diff__single,axiom,
    ! [A: vEBT_VEBT,A2: set_VEBT_VEBT] :
      ( ( insert_VEBT_VEBT @ A @ ( minus_5127226145743854075T_VEBT @ A2 @ ( insert_VEBT_VEBT @ A @ bot_bo8194388402131092736T_VEBT ) ) )
      = ( insert_VEBT_VEBT @ A @ A2 ) ) ).

% insert_Diff_single
thf(fact_2398_insert__Diff__single,axiom,
    ! [A: real,A2: set_real] :
      ( ( insert_real @ A @ ( minus_minus_set_real @ A2 @ ( insert_real @ A @ bot_bot_set_real ) ) )
      = ( insert_real @ A @ A2 ) ) ).

% insert_Diff_single
thf(fact_2399_insert__Diff__single,axiom,
    ! [A: $o,A2: set_o] :
      ( ( insert_o @ A @ ( minus_minus_set_o @ A2 @ ( insert_o @ A @ bot_bot_set_o ) ) )
      = ( insert_o @ A @ A2 ) ) ).

% insert_Diff_single
thf(fact_2400_insert__Diff__single,axiom,
    ! [A: int,A2: set_int] :
      ( ( insert_int @ A @ ( minus_minus_set_int @ A2 @ ( insert_int @ A @ bot_bot_set_int ) ) )
      = ( insert_int @ A @ A2 ) ) ).

% insert_Diff_single
thf(fact_2401_insert__Diff__single,axiom,
    ! [A: nat,A2: set_nat] :
      ( ( insert_nat @ A @ ( minus_minus_set_nat @ A2 @ ( insert_nat @ A @ bot_bot_set_nat ) ) )
      = ( insert_nat @ A @ A2 ) ) ).

% insert_Diff_single
thf(fact_2402_emptyE,axiom,
    ! [A: complex] :
      ~ ( member_complex @ A @ bot_bot_set_complex ) ).

% emptyE
thf(fact_2403_emptyE,axiom,
    ! [A: set_nat] :
      ~ ( member_set_nat @ A @ bot_bot_set_set_nat ) ).

% emptyE
thf(fact_2404_emptyE,axiom,
    ! [A: real] :
      ~ ( member_real @ A @ bot_bot_set_real ) ).

% emptyE
thf(fact_2405_emptyE,axiom,
    ! [A: $o] :
      ~ ( member_o @ A @ bot_bot_set_o ) ).

% emptyE
thf(fact_2406_emptyE,axiom,
    ! [A: nat] :
      ~ ( member_nat @ A @ bot_bot_set_nat ) ).

% emptyE
thf(fact_2407_emptyE,axiom,
    ! [A: int] :
      ~ ( member_int @ A @ bot_bot_set_int ) ).

% emptyE
thf(fact_2408_equals0D,axiom,
    ! [A2: set_complex,A: complex] :
      ( ( A2 = bot_bot_set_complex )
     => ~ ( member_complex @ A @ A2 ) ) ).

% equals0D
thf(fact_2409_equals0D,axiom,
    ! [A2: set_set_nat,A: set_nat] :
      ( ( A2 = bot_bot_set_set_nat )
     => ~ ( member_set_nat @ A @ A2 ) ) ).

% equals0D
thf(fact_2410_equals0D,axiom,
    ! [A2: set_real,A: real] :
      ( ( A2 = bot_bot_set_real )
     => ~ ( member_real @ A @ A2 ) ) ).

% equals0D
thf(fact_2411_equals0D,axiom,
    ! [A2: set_o,A: $o] :
      ( ( A2 = bot_bot_set_o )
     => ~ ( member_o @ A @ A2 ) ) ).

% equals0D
thf(fact_2412_equals0D,axiom,
    ! [A2: set_nat,A: nat] :
      ( ( A2 = bot_bot_set_nat )
     => ~ ( member_nat @ A @ A2 ) ) ).

% equals0D
thf(fact_2413_equals0D,axiom,
    ! [A2: set_int,A: int] :
      ( ( A2 = bot_bot_set_int )
     => ~ ( member_int @ A @ A2 ) ) ).

% equals0D
thf(fact_2414_equals0I,axiom,
    ! [A2: set_complex] :
      ( ! [Y3: complex] :
          ~ ( member_complex @ Y3 @ A2 )
     => ( A2 = bot_bot_set_complex ) ) ).

% equals0I
thf(fact_2415_equals0I,axiom,
    ! [A2: set_set_nat] :
      ( ! [Y3: set_nat] :
          ~ ( member_set_nat @ Y3 @ A2 )
     => ( A2 = bot_bot_set_set_nat ) ) ).

% equals0I
thf(fact_2416_equals0I,axiom,
    ! [A2: set_real] :
      ( ! [Y3: real] :
          ~ ( member_real @ Y3 @ A2 )
     => ( A2 = bot_bot_set_real ) ) ).

% equals0I
thf(fact_2417_equals0I,axiom,
    ! [A2: set_o] :
      ( ! [Y3: $o] :
          ~ ( member_o @ Y3 @ A2 )
     => ( A2 = bot_bot_set_o ) ) ).

% equals0I
thf(fact_2418_equals0I,axiom,
    ! [A2: set_nat] :
      ( ! [Y3: nat] :
          ~ ( member_nat @ Y3 @ A2 )
     => ( A2 = bot_bot_set_nat ) ) ).

% equals0I
thf(fact_2419_equals0I,axiom,
    ! [A2: set_int] :
      ( ! [Y3: int] :
          ~ ( member_int @ Y3 @ A2 )
     => ( A2 = bot_bot_set_int ) ) ).

% equals0I
thf(fact_2420_ex__in__conv,axiom,
    ! [A2: set_complex] :
      ( ( ? [X: complex] : ( member_complex @ X @ A2 ) )
      = ( A2 != bot_bot_set_complex ) ) ).

% ex_in_conv
thf(fact_2421_ex__in__conv,axiom,
    ! [A2: set_set_nat] :
      ( ( ? [X: set_nat] : ( member_set_nat @ X @ A2 ) )
      = ( A2 != bot_bot_set_set_nat ) ) ).

% ex_in_conv
thf(fact_2422_ex__in__conv,axiom,
    ! [A2: set_real] :
      ( ( ? [X: real] : ( member_real @ X @ A2 ) )
      = ( A2 != bot_bot_set_real ) ) ).

% ex_in_conv
thf(fact_2423_ex__in__conv,axiom,
    ! [A2: set_o] :
      ( ( ? [X: $o] : ( member_o @ X @ A2 ) )
      = ( A2 != bot_bot_set_o ) ) ).

% ex_in_conv
thf(fact_2424_ex__in__conv,axiom,
    ! [A2: set_nat] :
      ( ( ? [X: nat] : ( member_nat @ X @ A2 ) )
      = ( A2 != bot_bot_set_nat ) ) ).

% ex_in_conv
thf(fact_2425_ex__in__conv,axiom,
    ! [A2: set_int] :
      ( ( ? [X: int] : ( member_int @ X @ A2 ) )
      = ( A2 != bot_bot_set_int ) ) ).

% ex_in_conv
thf(fact_2426_empty__def,axiom,
    ( bot_bo1796632182523588997nt_int
    = ( collec213857154873943460nt_int
      @ ^ [X: product_prod_int_int] : $false ) ) ).

% empty_def
thf(fact_2427_empty__def,axiom,
    ( bot_bot_set_complex
    = ( collect_complex
      @ ^ [X: complex] : $false ) ) ).

% empty_def
thf(fact_2428_empty__def,axiom,
    ( bot_bot_set_set_nat
    = ( collect_set_nat
      @ ^ [X: set_nat] : $false ) ) ).

% empty_def
thf(fact_2429_empty__def,axiom,
    ( bot_bot_set_real
    = ( collect_real
      @ ^ [X: real] : $false ) ) ).

% empty_def
thf(fact_2430_empty__def,axiom,
    ( bot_bot_set_o
    = ( collect_o
      @ ^ [X: $o] : $false ) ) ).

% empty_def
thf(fact_2431_empty__def,axiom,
    ( bot_bot_set_nat
    = ( collect_nat
      @ ^ [X: nat] : $false ) ) ).

% empty_def
thf(fact_2432_empty__def,axiom,
    ( bot_bot_set_int
    = ( collect_int
      @ ^ [X: int] : $false ) ) ).

% empty_def
thf(fact_2433_VEBT__internal_Ooption__shift_Osimps_I3_J,axiom,
    ! [F: product_prod_nat_nat > product_prod_nat_nat > product_prod_nat_nat,A: product_prod_nat_nat,B: product_prod_nat_nat] :
      ( ( vEBT_V1502963449132264192at_nat @ F @ ( some_P7363390416028606310at_nat @ A ) @ ( some_P7363390416028606310at_nat @ B ) )
      = ( some_P7363390416028606310at_nat @ ( F @ A @ B ) ) ) ).

% VEBT_internal.option_shift.simps(3)
thf(fact_2434_VEBT__internal_Ooption__shift_Osimps_I3_J,axiom,
    ! [F: nat > nat > nat,A: nat,B: nat] :
      ( ( vEBT_V4262088993061758097ft_nat @ F @ ( some_nat @ A ) @ ( some_nat @ B ) )
      = ( some_nat @ ( F @ A @ B ) ) ) ).

% VEBT_internal.option_shift.simps(3)
thf(fact_2435_singleton__inject,axiom,
    ! [A: vEBT_VEBT,B: vEBT_VEBT] :
      ( ( ( insert_VEBT_VEBT @ A @ bot_bo8194388402131092736T_VEBT )
        = ( insert_VEBT_VEBT @ B @ bot_bo8194388402131092736T_VEBT ) )
     => ( A = B ) ) ).

% singleton_inject
thf(fact_2436_singleton__inject,axiom,
    ! [A: real,B: real] :
      ( ( ( insert_real @ A @ bot_bot_set_real )
        = ( insert_real @ B @ bot_bot_set_real ) )
     => ( A = B ) ) ).

% singleton_inject
thf(fact_2437_singleton__inject,axiom,
    ! [A: $o,B: $o] :
      ( ( ( insert_o @ A @ bot_bot_set_o )
        = ( insert_o @ B @ bot_bot_set_o ) )
     => ( A = B ) ) ).

% singleton_inject
thf(fact_2438_singleton__inject,axiom,
    ! [A: nat,B: nat] :
      ( ( ( insert_nat @ A @ bot_bot_set_nat )
        = ( insert_nat @ B @ bot_bot_set_nat ) )
     => ( A = B ) ) ).

% singleton_inject
thf(fact_2439_singleton__inject,axiom,
    ! [A: int,B: int] :
      ( ( ( insert_int @ A @ bot_bot_set_int )
        = ( insert_int @ B @ bot_bot_set_int ) )
     => ( A = B ) ) ).

% singleton_inject
thf(fact_2440_insert__not__empty,axiom,
    ! [A: vEBT_VEBT,A2: set_VEBT_VEBT] :
      ( ( insert_VEBT_VEBT @ A @ A2 )
     != bot_bo8194388402131092736T_VEBT ) ).

% insert_not_empty
thf(fact_2441_insert__not__empty,axiom,
    ! [A: real,A2: set_real] :
      ( ( insert_real @ A @ A2 )
     != bot_bot_set_real ) ).

% insert_not_empty
thf(fact_2442_insert__not__empty,axiom,
    ! [A: $o,A2: set_o] :
      ( ( insert_o @ A @ A2 )
     != bot_bot_set_o ) ).

% insert_not_empty
thf(fact_2443_insert__not__empty,axiom,
    ! [A: nat,A2: set_nat] :
      ( ( insert_nat @ A @ A2 )
     != bot_bot_set_nat ) ).

% insert_not_empty
thf(fact_2444_insert__not__empty,axiom,
    ! [A: int,A2: set_int] :
      ( ( insert_int @ A @ A2 )
     != bot_bot_set_int ) ).

% insert_not_empty
thf(fact_2445_doubleton__eq__iff,axiom,
    ! [A: vEBT_VEBT,B: vEBT_VEBT,C: vEBT_VEBT,D: vEBT_VEBT] :
      ( ( ( insert_VEBT_VEBT @ A @ ( insert_VEBT_VEBT @ B @ bot_bo8194388402131092736T_VEBT ) )
        = ( insert_VEBT_VEBT @ C @ ( insert_VEBT_VEBT @ D @ bot_bo8194388402131092736T_VEBT ) ) )
      = ( ( ( A = C )
          & ( B = D ) )
        | ( ( A = D )
          & ( B = C ) ) ) ) ).

% doubleton_eq_iff
thf(fact_2446_doubleton__eq__iff,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( ( insert_real @ A @ ( insert_real @ B @ bot_bot_set_real ) )
        = ( insert_real @ C @ ( insert_real @ D @ bot_bot_set_real ) ) )
      = ( ( ( A = C )
          & ( B = D ) )
        | ( ( A = D )
          & ( B = C ) ) ) ) ).

% doubleton_eq_iff
thf(fact_2447_doubleton__eq__iff,axiom,
    ! [A: $o,B: $o,C: $o,D: $o] :
      ( ( ( insert_o @ A @ ( insert_o @ B @ bot_bot_set_o ) )
        = ( insert_o @ C @ ( insert_o @ D @ bot_bot_set_o ) ) )
      = ( ( ( A = C )
          & ( B = D ) )
        | ( ( A = D )
          & ( B = C ) ) ) ) ).

% doubleton_eq_iff
thf(fact_2448_doubleton__eq__iff,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ( insert_nat @ A @ ( insert_nat @ B @ bot_bot_set_nat ) )
        = ( insert_nat @ C @ ( insert_nat @ D @ bot_bot_set_nat ) ) )
      = ( ( ( A = C )
          & ( B = D ) )
        | ( ( A = D )
          & ( B = C ) ) ) ) ).

% doubleton_eq_iff
thf(fact_2449_doubleton__eq__iff,axiom,
    ! [A: int,B: int,C: int,D: int] :
      ( ( ( insert_int @ A @ ( insert_int @ B @ bot_bot_set_int ) )
        = ( insert_int @ C @ ( insert_int @ D @ bot_bot_set_int ) ) )
      = ( ( ( A = C )
          & ( B = D ) )
        | ( ( A = D )
          & ( B = C ) ) ) ) ).

% doubleton_eq_iff
thf(fact_2450_singleton__iff,axiom,
    ! [B: vEBT_VEBT,A: vEBT_VEBT] :
      ( ( member_VEBT_VEBT @ B @ ( insert_VEBT_VEBT @ A @ bot_bo8194388402131092736T_VEBT ) )
      = ( B = A ) ) ).

% singleton_iff
thf(fact_2451_singleton__iff,axiom,
    ! [B: complex,A: complex] :
      ( ( member_complex @ B @ ( insert_complex @ A @ bot_bot_set_complex ) )
      = ( B = A ) ) ).

% singleton_iff
thf(fact_2452_singleton__iff,axiom,
    ! [B: set_nat,A: set_nat] :
      ( ( member_set_nat @ B @ ( insert_set_nat @ A @ bot_bot_set_set_nat ) )
      = ( B = A ) ) ).

% singleton_iff
thf(fact_2453_singleton__iff,axiom,
    ! [B: real,A: real] :
      ( ( member_real @ B @ ( insert_real @ A @ bot_bot_set_real ) )
      = ( B = A ) ) ).

% singleton_iff
thf(fact_2454_singleton__iff,axiom,
    ! [B: $o,A: $o] :
      ( ( member_o @ B @ ( insert_o @ A @ bot_bot_set_o ) )
      = ( B = A ) ) ).

% singleton_iff
thf(fact_2455_singleton__iff,axiom,
    ! [B: nat,A: nat] :
      ( ( member_nat @ B @ ( insert_nat @ A @ bot_bot_set_nat ) )
      = ( B = A ) ) ).

% singleton_iff
thf(fact_2456_singleton__iff,axiom,
    ! [B: int,A: int] :
      ( ( member_int @ B @ ( insert_int @ A @ bot_bot_set_int ) )
      = ( B = A ) ) ).

% singleton_iff
thf(fact_2457_singletonD,axiom,
    ! [B: vEBT_VEBT,A: vEBT_VEBT] :
      ( ( member_VEBT_VEBT @ B @ ( insert_VEBT_VEBT @ A @ bot_bo8194388402131092736T_VEBT ) )
     => ( B = A ) ) ).

% singletonD
thf(fact_2458_singletonD,axiom,
    ! [B: complex,A: complex] :
      ( ( member_complex @ B @ ( insert_complex @ A @ bot_bot_set_complex ) )
     => ( B = A ) ) ).

% singletonD
thf(fact_2459_singletonD,axiom,
    ! [B: set_nat,A: set_nat] :
      ( ( member_set_nat @ B @ ( insert_set_nat @ A @ bot_bot_set_set_nat ) )
     => ( B = A ) ) ).

% singletonD
thf(fact_2460_singletonD,axiom,
    ! [B: real,A: real] :
      ( ( member_real @ B @ ( insert_real @ A @ bot_bot_set_real ) )
     => ( B = A ) ) ).

% singletonD
thf(fact_2461_singletonD,axiom,
    ! [B: $o,A: $o] :
      ( ( member_o @ B @ ( insert_o @ A @ bot_bot_set_o ) )
     => ( B = A ) ) ).

% singletonD
thf(fact_2462_singletonD,axiom,
    ! [B: nat,A: nat] :
      ( ( member_nat @ B @ ( insert_nat @ A @ bot_bot_set_nat ) )
     => ( B = A ) ) ).

% singletonD
thf(fact_2463_singletonD,axiom,
    ! [B: int,A: int] :
      ( ( member_int @ B @ ( insert_int @ A @ bot_bot_set_int ) )
     => ( B = A ) ) ).

% singletonD
thf(fact_2464_not__psubset__empty,axiom,
    ! [A2: set_real] :
      ~ ( ord_less_set_real @ A2 @ bot_bot_set_real ) ).

% not_psubset_empty
thf(fact_2465_not__psubset__empty,axiom,
    ! [A2: set_o] :
      ~ ( ord_less_set_o @ A2 @ bot_bot_set_o ) ).

% not_psubset_empty
thf(fact_2466_not__psubset__empty,axiom,
    ! [A2: set_nat] :
      ~ ( ord_less_set_nat @ A2 @ bot_bot_set_nat ) ).

% not_psubset_empty
thf(fact_2467_not__psubset__empty,axiom,
    ! [A2: set_int] :
      ~ ( ord_less_set_int @ A2 @ bot_bot_set_int ) ).

% not_psubset_empty
thf(fact_2468_Collect__conv__if,axiom,
    ! [P: vEBT_VEBT > $o,A: vEBT_VEBT] :
      ( ( ( P @ A )
       => ( ( collect_VEBT_VEBT
            @ ^ [X: vEBT_VEBT] :
                ( ( X = A )
                & ( P @ X ) ) )
          = ( insert_VEBT_VEBT @ A @ bot_bo8194388402131092736T_VEBT ) ) )
      & ( ~ ( P @ A )
       => ( ( collect_VEBT_VEBT
            @ ^ [X: vEBT_VEBT] :
                ( ( X = A )
                & ( P @ X ) ) )
          = bot_bo8194388402131092736T_VEBT ) ) ) ).

% Collect_conv_if
thf(fact_2469_Collect__conv__if,axiom,
    ! [P: product_prod_int_int > $o,A: product_prod_int_int] :
      ( ( ( P @ A )
       => ( ( collec213857154873943460nt_int
            @ ^ [X: product_prod_int_int] :
                ( ( X = A )
                & ( P @ X ) ) )
          = ( insert5033312907999012233nt_int @ A @ bot_bo1796632182523588997nt_int ) ) )
      & ( ~ ( P @ A )
       => ( ( collec213857154873943460nt_int
            @ ^ [X: product_prod_int_int] :
                ( ( X = A )
                & ( P @ X ) ) )
          = bot_bo1796632182523588997nt_int ) ) ) ).

% Collect_conv_if
thf(fact_2470_Collect__conv__if,axiom,
    ! [P: complex > $o,A: complex] :
      ( ( ( P @ A )
       => ( ( collect_complex
            @ ^ [X: complex] :
                ( ( X = A )
                & ( P @ X ) ) )
          = ( insert_complex @ A @ bot_bot_set_complex ) ) )
      & ( ~ ( P @ A )
       => ( ( collect_complex
            @ ^ [X: complex] :
                ( ( X = A )
                & ( P @ X ) ) )
          = bot_bot_set_complex ) ) ) ).

% Collect_conv_if
thf(fact_2471_Collect__conv__if,axiom,
    ! [P: set_nat > $o,A: set_nat] :
      ( ( ( P @ A )
       => ( ( collect_set_nat
            @ ^ [X: set_nat] :
                ( ( X = A )
                & ( P @ X ) ) )
          = ( insert_set_nat @ A @ bot_bot_set_set_nat ) ) )
      & ( ~ ( P @ A )
       => ( ( collect_set_nat
            @ ^ [X: set_nat] :
                ( ( X = A )
                & ( P @ X ) ) )
          = bot_bot_set_set_nat ) ) ) ).

% Collect_conv_if
thf(fact_2472_Collect__conv__if,axiom,
    ! [P: real > $o,A: real] :
      ( ( ( P @ A )
       => ( ( collect_real
            @ ^ [X: real] :
                ( ( X = A )
                & ( P @ X ) ) )
          = ( insert_real @ A @ bot_bot_set_real ) ) )
      & ( ~ ( P @ A )
       => ( ( collect_real
            @ ^ [X: real] :
                ( ( X = A )
                & ( P @ X ) ) )
          = bot_bot_set_real ) ) ) ).

% Collect_conv_if
thf(fact_2473_Collect__conv__if,axiom,
    ! [P: $o > $o,A: $o] :
      ( ( ( P @ A )
       => ( ( collect_o
            @ ^ [X: $o] :
                ( ( X = A )
                & ( P @ X ) ) )
          = ( insert_o @ A @ bot_bot_set_o ) ) )
      & ( ~ ( P @ A )
       => ( ( collect_o
            @ ^ [X: $o] :
                ( ( X = A )
                & ( P @ X ) ) )
          = bot_bot_set_o ) ) ) ).

% Collect_conv_if
thf(fact_2474_Collect__conv__if,axiom,
    ! [P: nat > $o,A: nat] :
      ( ( ( P @ A )
       => ( ( collect_nat
            @ ^ [X: nat] :
                ( ( X = A )
                & ( P @ X ) ) )
          = ( insert_nat @ A @ bot_bot_set_nat ) ) )
      & ( ~ ( P @ A )
       => ( ( collect_nat
            @ ^ [X: nat] :
                ( ( X = A )
                & ( P @ X ) ) )
          = bot_bot_set_nat ) ) ) ).

% Collect_conv_if
thf(fact_2475_Collect__conv__if,axiom,
    ! [P: int > $o,A: int] :
      ( ( ( P @ A )
       => ( ( collect_int
            @ ^ [X: int] :
                ( ( X = A )
                & ( P @ X ) ) )
          = ( insert_int @ A @ bot_bot_set_int ) ) )
      & ( ~ ( P @ A )
       => ( ( collect_int
            @ ^ [X: int] :
                ( ( X = A )
                & ( P @ X ) ) )
          = bot_bot_set_int ) ) ) ).

% Collect_conv_if
thf(fact_2476_Collect__conv__if2,axiom,
    ! [P: vEBT_VEBT > $o,A: vEBT_VEBT] :
      ( ( ( P @ A )
       => ( ( collect_VEBT_VEBT
            @ ^ [X: vEBT_VEBT] :
                ( ( A = X )
                & ( P @ X ) ) )
          = ( insert_VEBT_VEBT @ A @ bot_bo8194388402131092736T_VEBT ) ) )
      & ( ~ ( P @ A )
       => ( ( collect_VEBT_VEBT
            @ ^ [X: vEBT_VEBT] :
                ( ( A = X )
                & ( P @ X ) ) )
          = bot_bo8194388402131092736T_VEBT ) ) ) ).

% Collect_conv_if2
thf(fact_2477_Collect__conv__if2,axiom,
    ! [P: product_prod_int_int > $o,A: product_prod_int_int] :
      ( ( ( P @ A )
       => ( ( collec213857154873943460nt_int
            @ ^ [X: product_prod_int_int] :
                ( ( A = X )
                & ( P @ X ) ) )
          = ( insert5033312907999012233nt_int @ A @ bot_bo1796632182523588997nt_int ) ) )
      & ( ~ ( P @ A )
       => ( ( collec213857154873943460nt_int
            @ ^ [X: product_prod_int_int] :
                ( ( A = X )
                & ( P @ X ) ) )
          = bot_bo1796632182523588997nt_int ) ) ) ).

% Collect_conv_if2
thf(fact_2478_Collect__conv__if2,axiom,
    ! [P: complex > $o,A: complex] :
      ( ( ( P @ A )
       => ( ( collect_complex
            @ ^ [X: complex] :
                ( ( A = X )
                & ( P @ X ) ) )
          = ( insert_complex @ A @ bot_bot_set_complex ) ) )
      & ( ~ ( P @ A )
       => ( ( collect_complex
            @ ^ [X: complex] :
                ( ( A = X )
                & ( P @ X ) ) )
          = bot_bot_set_complex ) ) ) ).

% Collect_conv_if2
thf(fact_2479_Collect__conv__if2,axiom,
    ! [P: set_nat > $o,A: set_nat] :
      ( ( ( P @ A )
       => ( ( collect_set_nat
            @ ^ [X: set_nat] :
                ( ( A = X )
                & ( P @ X ) ) )
          = ( insert_set_nat @ A @ bot_bot_set_set_nat ) ) )
      & ( ~ ( P @ A )
       => ( ( collect_set_nat
            @ ^ [X: set_nat] :
                ( ( A = X )
                & ( P @ X ) ) )
          = bot_bot_set_set_nat ) ) ) ).

% Collect_conv_if2
thf(fact_2480_Collect__conv__if2,axiom,
    ! [P: real > $o,A: real] :
      ( ( ( P @ A )
       => ( ( collect_real
            @ ^ [X: real] :
                ( ( A = X )
                & ( P @ X ) ) )
          = ( insert_real @ A @ bot_bot_set_real ) ) )
      & ( ~ ( P @ A )
       => ( ( collect_real
            @ ^ [X: real] :
                ( ( A = X )
                & ( P @ X ) ) )
          = bot_bot_set_real ) ) ) ).

% Collect_conv_if2
thf(fact_2481_Collect__conv__if2,axiom,
    ! [P: $o > $o,A: $o] :
      ( ( ( P @ A )
       => ( ( collect_o
            @ ^ [X: $o] :
                ( ( A = X )
                & ( P @ X ) ) )
          = ( insert_o @ A @ bot_bot_set_o ) ) )
      & ( ~ ( P @ A )
       => ( ( collect_o
            @ ^ [X: $o] :
                ( ( A = X )
                & ( P @ X ) ) )
          = bot_bot_set_o ) ) ) ).

% Collect_conv_if2
thf(fact_2482_Collect__conv__if2,axiom,
    ! [P: nat > $o,A: nat] :
      ( ( ( P @ A )
       => ( ( collect_nat
            @ ^ [X: nat] :
                ( ( A = X )
                & ( P @ X ) ) )
          = ( insert_nat @ A @ bot_bot_set_nat ) ) )
      & ( ~ ( P @ A )
       => ( ( collect_nat
            @ ^ [X: nat] :
                ( ( A = X )
                & ( P @ X ) ) )
          = bot_bot_set_nat ) ) ) ).

% Collect_conv_if2
thf(fact_2483_Collect__conv__if2,axiom,
    ! [P: int > $o,A: int] :
      ( ( ( P @ A )
       => ( ( collect_int
            @ ^ [X: int] :
                ( ( A = X )
                & ( P @ X ) ) )
          = ( insert_int @ A @ bot_bot_set_int ) ) )
      & ( ~ ( P @ A )
       => ( ( collect_int
            @ ^ [X: int] :
                ( ( A = X )
                & ( P @ X ) ) )
          = bot_bot_set_int ) ) ) ).

% Collect_conv_if2
thf(fact_2484_finite__has__minimal,axiom,
    ! [A2: set_real] :
      ( ( finite_finite_real @ A2 )
     => ( ( A2 != bot_bot_set_real )
       => ? [X4: real] :
            ( ( member_real @ X4 @ A2 )
            & ! [Xa: real] :
                ( ( member_real @ Xa @ A2 )
               => ( ( ord_less_eq_real @ Xa @ X4 )
                 => ( X4 = Xa ) ) ) ) ) ) ).

% finite_has_minimal
thf(fact_2485_finite__has__minimal,axiom,
    ! [A2: set_o] :
      ( ( finite_finite_o @ A2 )
     => ( ( A2 != bot_bot_set_o )
       => ? [X4: $o] :
            ( ( member_o @ X4 @ A2 )
            & ! [Xa: $o] :
                ( ( member_o @ Xa @ A2 )
               => ( ( ord_less_eq_o @ Xa @ X4 )
                 => ( X4 = Xa ) ) ) ) ) ) ).

% finite_has_minimal
thf(fact_2486_finite__has__minimal,axiom,
    ! [A2: set_set_int] :
      ( ( finite6197958912794628473et_int @ A2 )
     => ( ( A2 != bot_bot_set_set_int )
       => ? [X4: set_int] :
            ( ( member_set_int @ X4 @ A2 )
            & ! [Xa: set_int] :
                ( ( member_set_int @ Xa @ A2 )
               => ( ( ord_less_eq_set_int @ Xa @ X4 )
                 => ( X4 = Xa ) ) ) ) ) ) ).

% finite_has_minimal
thf(fact_2487_finite__has__minimal,axiom,
    ! [A2: set_rat] :
      ( ( finite_finite_rat @ A2 )
     => ( ( A2 != bot_bot_set_rat )
       => ? [X4: rat] :
            ( ( member_rat @ X4 @ A2 )
            & ! [Xa: rat] :
                ( ( member_rat @ Xa @ A2 )
               => ( ( ord_less_eq_rat @ Xa @ X4 )
                 => ( X4 = Xa ) ) ) ) ) ) ).

% finite_has_minimal
thf(fact_2488_finite__has__minimal,axiom,
    ! [A2: set_num] :
      ( ( finite_finite_num @ A2 )
     => ( ( A2 != bot_bot_set_num )
       => ? [X4: num] :
            ( ( member_num @ X4 @ A2 )
            & ! [Xa: num] :
                ( ( member_num @ Xa @ A2 )
               => ( ( ord_less_eq_num @ Xa @ X4 )
                 => ( X4 = Xa ) ) ) ) ) ) ).

% finite_has_minimal
thf(fact_2489_finite__has__minimal,axiom,
    ! [A2: set_nat] :
      ( ( finite_finite_nat @ A2 )
     => ( ( A2 != bot_bot_set_nat )
       => ? [X4: nat] :
            ( ( member_nat @ X4 @ A2 )
            & ! [Xa: nat] :
                ( ( member_nat @ Xa @ A2 )
               => ( ( ord_less_eq_nat @ Xa @ X4 )
                 => ( X4 = Xa ) ) ) ) ) ) ).

% finite_has_minimal
thf(fact_2490_finite__has__minimal,axiom,
    ! [A2: set_int] :
      ( ( finite_finite_int @ A2 )
     => ( ( A2 != bot_bot_set_int )
       => ? [X4: int] :
            ( ( member_int @ X4 @ A2 )
            & ! [Xa: int] :
                ( ( member_int @ Xa @ A2 )
               => ( ( ord_less_eq_int @ Xa @ X4 )
                 => ( X4 = Xa ) ) ) ) ) ) ).

% finite_has_minimal
thf(fact_2491_finite__has__maximal,axiom,
    ! [A2: set_real] :
      ( ( finite_finite_real @ A2 )
     => ( ( A2 != bot_bot_set_real )
       => ? [X4: real] :
            ( ( member_real @ X4 @ A2 )
            & ! [Xa: real] :
                ( ( member_real @ Xa @ A2 )
               => ( ( ord_less_eq_real @ X4 @ Xa )
                 => ( X4 = Xa ) ) ) ) ) ) ).

% finite_has_maximal
thf(fact_2492_finite__has__maximal,axiom,
    ! [A2: set_o] :
      ( ( finite_finite_o @ A2 )
     => ( ( A2 != bot_bot_set_o )
       => ? [X4: $o] :
            ( ( member_o @ X4 @ A2 )
            & ! [Xa: $o] :
                ( ( member_o @ Xa @ A2 )
               => ( ( ord_less_eq_o @ X4 @ Xa )
                 => ( X4 = Xa ) ) ) ) ) ) ).

% finite_has_maximal
thf(fact_2493_finite__has__maximal,axiom,
    ! [A2: set_set_int] :
      ( ( finite6197958912794628473et_int @ A2 )
     => ( ( A2 != bot_bot_set_set_int )
       => ? [X4: set_int] :
            ( ( member_set_int @ X4 @ A2 )
            & ! [Xa: set_int] :
                ( ( member_set_int @ Xa @ A2 )
               => ( ( ord_less_eq_set_int @ X4 @ Xa )
                 => ( X4 = Xa ) ) ) ) ) ) ).

% finite_has_maximal
thf(fact_2494_finite__has__maximal,axiom,
    ! [A2: set_rat] :
      ( ( finite_finite_rat @ A2 )
     => ( ( A2 != bot_bot_set_rat )
       => ? [X4: rat] :
            ( ( member_rat @ X4 @ A2 )
            & ! [Xa: rat] :
                ( ( member_rat @ Xa @ A2 )
               => ( ( ord_less_eq_rat @ X4 @ Xa )
                 => ( X4 = Xa ) ) ) ) ) ) ).

% finite_has_maximal
thf(fact_2495_finite__has__maximal,axiom,
    ! [A2: set_num] :
      ( ( finite_finite_num @ A2 )
     => ( ( A2 != bot_bot_set_num )
       => ? [X4: num] :
            ( ( member_num @ X4 @ A2 )
            & ! [Xa: num] :
                ( ( member_num @ Xa @ A2 )
               => ( ( ord_less_eq_num @ X4 @ Xa )
                 => ( X4 = Xa ) ) ) ) ) ) ).

% finite_has_maximal
thf(fact_2496_finite__has__maximal,axiom,
    ! [A2: set_nat] :
      ( ( finite_finite_nat @ A2 )
     => ( ( A2 != bot_bot_set_nat )
       => ? [X4: nat] :
            ( ( member_nat @ X4 @ A2 )
            & ! [Xa: nat] :
                ( ( member_nat @ Xa @ A2 )
               => ( ( ord_less_eq_nat @ X4 @ Xa )
                 => ( X4 = Xa ) ) ) ) ) ) ).

% finite_has_maximal
thf(fact_2497_finite__has__maximal,axiom,
    ! [A2: set_int] :
      ( ( finite_finite_int @ A2 )
     => ( ( A2 != bot_bot_set_int )
       => ? [X4: int] :
            ( ( member_int @ X4 @ A2 )
            & ! [Xa: int] :
                ( ( member_int @ Xa @ A2 )
               => ( ( ord_less_eq_int @ X4 @ Xa )
                 => ( X4 = Xa ) ) ) ) ) ) ).

% finite_has_maximal
thf(fact_2498_infinite__finite__induct,axiom,
    ! [P: set_VEBT_VEBT > $o,A2: set_VEBT_VEBT] :
      ( ! [A7: set_VEBT_VEBT] :
          ( ~ ( finite5795047828879050333T_VEBT @ A7 )
         => ( P @ A7 ) )
     => ( ( P @ bot_bo8194388402131092736T_VEBT )
       => ( ! [X4: vEBT_VEBT,F4: set_VEBT_VEBT] :
              ( ( finite5795047828879050333T_VEBT @ F4 )
             => ( ~ ( member_VEBT_VEBT @ X4 @ F4 )
               => ( ( P @ F4 )
                 => ( P @ ( insert_VEBT_VEBT @ X4 @ F4 ) ) ) ) )
         => ( P @ A2 ) ) ) ) ).

% infinite_finite_induct
thf(fact_2499_infinite__finite__induct,axiom,
    ! [P: set_set_nat > $o,A2: set_set_nat] :
      ( ! [A7: set_set_nat] :
          ( ~ ( finite1152437895449049373et_nat @ A7 )
         => ( P @ A7 ) )
     => ( ( P @ bot_bot_set_set_nat )
       => ( ! [X4: set_nat,F4: set_set_nat] :
              ( ( finite1152437895449049373et_nat @ F4 )
             => ( ~ ( member_set_nat @ X4 @ F4 )
               => ( ( P @ F4 )
                 => ( P @ ( insert_set_nat @ X4 @ F4 ) ) ) ) )
         => ( P @ A2 ) ) ) ) ).

% infinite_finite_induct
thf(fact_2500_infinite__finite__induct,axiom,
    ! [P: set_complex > $o,A2: set_complex] :
      ( ! [A7: set_complex] :
          ( ~ ( finite3207457112153483333omplex @ A7 )
         => ( P @ A7 ) )
     => ( ( P @ bot_bot_set_complex )
       => ( ! [X4: complex,F4: set_complex] :
              ( ( finite3207457112153483333omplex @ F4 )
             => ( ~ ( member_complex @ X4 @ F4 )
               => ( ( P @ F4 )
                 => ( P @ ( insert_complex @ X4 @ F4 ) ) ) ) )
         => ( P @ A2 ) ) ) ) ).

% infinite_finite_induct
thf(fact_2501_infinite__finite__induct,axiom,
    ! [P: set_real > $o,A2: set_real] :
      ( ! [A7: set_real] :
          ( ~ ( finite_finite_real @ A7 )
         => ( P @ A7 ) )
     => ( ( P @ bot_bot_set_real )
       => ( ! [X4: real,F4: set_real] :
              ( ( finite_finite_real @ F4 )
             => ( ~ ( member_real @ X4 @ F4 )
               => ( ( P @ F4 )
                 => ( P @ ( insert_real @ X4 @ F4 ) ) ) ) )
         => ( P @ A2 ) ) ) ) ).

% infinite_finite_induct
thf(fact_2502_infinite__finite__induct,axiom,
    ! [P: set_o > $o,A2: set_o] :
      ( ! [A7: set_o] :
          ( ~ ( finite_finite_o @ A7 )
         => ( P @ A7 ) )
     => ( ( P @ bot_bot_set_o )
       => ( ! [X4: $o,F4: set_o] :
              ( ( finite_finite_o @ F4 )
             => ( ~ ( member_o @ X4 @ F4 )
               => ( ( P @ F4 )
                 => ( P @ ( insert_o @ X4 @ F4 ) ) ) ) )
         => ( P @ A2 ) ) ) ) ).

% infinite_finite_induct
thf(fact_2503_infinite__finite__induct,axiom,
    ! [P: set_nat > $o,A2: set_nat] :
      ( ! [A7: set_nat] :
          ( ~ ( finite_finite_nat @ A7 )
         => ( P @ A7 ) )
     => ( ( P @ bot_bot_set_nat )
       => ( ! [X4: nat,F4: set_nat] :
              ( ( finite_finite_nat @ F4 )
             => ( ~ ( member_nat @ X4 @ F4 )
               => ( ( P @ F4 )
                 => ( P @ ( insert_nat @ X4 @ F4 ) ) ) ) )
         => ( P @ A2 ) ) ) ) ).

% infinite_finite_induct
thf(fact_2504_infinite__finite__induct,axiom,
    ! [P: set_int > $o,A2: set_int] :
      ( ! [A7: set_int] :
          ( ~ ( finite_finite_int @ A7 )
         => ( P @ A7 ) )
     => ( ( P @ bot_bot_set_int )
       => ( ! [X4: int,F4: set_int] :
              ( ( finite_finite_int @ F4 )
             => ( ~ ( member_int @ X4 @ F4 )
               => ( ( P @ F4 )
                 => ( P @ ( insert_int @ X4 @ F4 ) ) ) ) )
         => ( P @ A2 ) ) ) ) ).

% infinite_finite_induct
thf(fact_2505_finite__ne__induct,axiom,
    ! [F2: set_VEBT_VEBT,P: set_VEBT_VEBT > $o] :
      ( ( finite5795047828879050333T_VEBT @ F2 )
     => ( ( F2 != bot_bo8194388402131092736T_VEBT )
       => ( ! [X4: vEBT_VEBT] : ( P @ ( insert_VEBT_VEBT @ X4 @ bot_bo8194388402131092736T_VEBT ) )
         => ( ! [X4: vEBT_VEBT,F4: set_VEBT_VEBT] :
                ( ( finite5795047828879050333T_VEBT @ F4 )
               => ( ( F4 != bot_bo8194388402131092736T_VEBT )
                 => ( ~ ( member_VEBT_VEBT @ X4 @ F4 )
                   => ( ( P @ F4 )
                     => ( P @ ( insert_VEBT_VEBT @ X4 @ F4 ) ) ) ) ) )
           => ( P @ F2 ) ) ) ) ) ).

% finite_ne_induct
thf(fact_2506_finite__ne__induct,axiom,
    ! [F2: set_set_nat,P: set_set_nat > $o] :
      ( ( finite1152437895449049373et_nat @ F2 )
     => ( ( F2 != bot_bot_set_set_nat )
       => ( ! [X4: set_nat] : ( P @ ( insert_set_nat @ X4 @ bot_bot_set_set_nat ) )
         => ( ! [X4: set_nat,F4: set_set_nat] :
                ( ( finite1152437895449049373et_nat @ F4 )
               => ( ( F4 != bot_bot_set_set_nat )
                 => ( ~ ( member_set_nat @ X4 @ F4 )
                   => ( ( P @ F4 )
                     => ( P @ ( insert_set_nat @ X4 @ F4 ) ) ) ) ) )
           => ( P @ F2 ) ) ) ) ) ).

% finite_ne_induct
thf(fact_2507_finite__ne__induct,axiom,
    ! [F2: set_complex,P: set_complex > $o] :
      ( ( finite3207457112153483333omplex @ F2 )
     => ( ( F2 != bot_bot_set_complex )
       => ( ! [X4: complex] : ( P @ ( insert_complex @ X4 @ bot_bot_set_complex ) )
         => ( ! [X4: complex,F4: set_complex] :
                ( ( finite3207457112153483333omplex @ F4 )
               => ( ( F4 != bot_bot_set_complex )
                 => ( ~ ( member_complex @ X4 @ F4 )
                   => ( ( P @ F4 )
                     => ( P @ ( insert_complex @ X4 @ F4 ) ) ) ) ) )
           => ( P @ F2 ) ) ) ) ) ).

% finite_ne_induct
thf(fact_2508_finite__ne__induct,axiom,
    ! [F2: set_real,P: set_real > $o] :
      ( ( finite_finite_real @ F2 )
     => ( ( F2 != bot_bot_set_real )
       => ( ! [X4: real] : ( P @ ( insert_real @ X4 @ bot_bot_set_real ) )
         => ( ! [X4: real,F4: set_real] :
                ( ( finite_finite_real @ F4 )
               => ( ( F4 != bot_bot_set_real )
                 => ( ~ ( member_real @ X4 @ F4 )
                   => ( ( P @ F4 )
                     => ( P @ ( insert_real @ X4 @ F4 ) ) ) ) ) )
           => ( P @ F2 ) ) ) ) ) ).

% finite_ne_induct
thf(fact_2509_finite__ne__induct,axiom,
    ! [F2: set_o,P: set_o > $o] :
      ( ( finite_finite_o @ F2 )
     => ( ( F2 != bot_bot_set_o )
       => ( ! [X4: $o] : ( P @ ( insert_o @ X4 @ bot_bot_set_o ) )
         => ( ! [X4: $o,F4: set_o] :
                ( ( finite_finite_o @ F4 )
               => ( ( F4 != bot_bot_set_o )
                 => ( ~ ( member_o @ X4 @ F4 )
                   => ( ( P @ F4 )
                     => ( P @ ( insert_o @ X4 @ F4 ) ) ) ) ) )
           => ( P @ F2 ) ) ) ) ) ).

% finite_ne_induct
thf(fact_2510_finite__ne__induct,axiom,
    ! [F2: set_nat,P: set_nat > $o] :
      ( ( finite_finite_nat @ F2 )
     => ( ( F2 != bot_bot_set_nat )
       => ( ! [X4: nat] : ( P @ ( insert_nat @ X4 @ bot_bot_set_nat ) )
         => ( ! [X4: nat,F4: set_nat] :
                ( ( finite_finite_nat @ F4 )
               => ( ( F4 != bot_bot_set_nat )
                 => ( ~ ( member_nat @ X4 @ F4 )
                   => ( ( P @ F4 )
                     => ( P @ ( insert_nat @ X4 @ F4 ) ) ) ) ) )
           => ( P @ F2 ) ) ) ) ) ).

% finite_ne_induct
thf(fact_2511_finite__ne__induct,axiom,
    ! [F2: set_int,P: set_int > $o] :
      ( ( finite_finite_int @ F2 )
     => ( ( F2 != bot_bot_set_int )
       => ( ! [X4: int] : ( P @ ( insert_int @ X4 @ bot_bot_set_int ) )
         => ( ! [X4: int,F4: set_int] :
                ( ( finite_finite_int @ F4 )
               => ( ( F4 != bot_bot_set_int )
                 => ( ~ ( member_int @ X4 @ F4 )
                   => ( ( P @ F4 )
                     => ( P @ ( insert_int @ X4 @ F4 ) ) ) ) ) )
           => ( P @ F2 ) ) ) ) ) ).

% finite_ne_induct
thf(fact_2512_finite__induct,axiom,
    ! [F2: set_VEBT_VEBT,P: set_VEBT_VEBT > $o] :
      ( ( finite5795047828879050333T_VEBT @ F2 )
     => ( ( P @ bot_bo8194388402131092736T_VEBT )
       => ( ! [X4: vEBT_VEBT,F4: set_VEBT_VEBT] :
              ( ( finite5795047828879050333T_VEBT @ F4 )
             => ( ~ ( member_VEBT_VEBT @ X4 @ F4 )
               => ( ( P @ F4 )
                 => ( P @ ( insert_VEBT_VEBT @ X4 @ F4 ) ) ) ) )
         => ( P @ F2 ) ) ) ) ).

% finite_induct
thf(fact_2513_finite__induct,axiom,
    ! [F2: set_set_nat,P: set_set_nat > $o] :
      ( ( finite1152437895449049373et_nat @ F2 )
     => ( ( P @ bot_bot_set_set_nat )
       => ( ! [X4: set_nat,F4: set_set_nat] :
              ( ( finite1152437895449049373et_nat @ F4 )
             => ( ~ ( member_set_nat @ X4 @ F4 )
               => ( ( P @ F4 )
                 => ( P @ ( insert_set_nat @ X4 @ F4 ) ) ) ) )
         => ( P @ F2 ) ) ) ) ).

% finite_induct
thf(fact_2514_finite__induct,axiom,
    ! [F2: set_complex,P: set_complex > $o] :
      ( ( finite3207457112153483333omplex @ F2 )
     => ( ( P @ bot_bot_set_complex )
       => ( ! [X4: complex,F4: set_complex] :
              ( ( finite3207457112153483333omplex @ F4 )
             => ( ~ ( member_complex @ X4 @ F4 )
               => ( ( P @ F4 )
                 => ( P @ ( insert_complex @ X4 @ F4 ) ) ) ) )
         => ( P @ F2 ) ) ) ) ).

% finite_induct
thf(fact_2515_finite__induct,axiom,
    ! [F2: set_real,P: set_real > $o] :
      ( ( finite_finite_real @ F2 )
     => ( ( P @ bot_bot_set_real )
       => ( ! [X4: real,F4: set_real] :
              ( ( finite_finite_real @ F4 )
             => ( ~ ( member_real @ X4 @ F4 )
               => ( ( P @ F4 )
                 => ( P @ ( insert_real @ X4 @ F4 ) ) ) ) )
         => ( P @ F2 ) ) ) ) ).

% finite_induct
thf(fact_2516_finite__induct,axiom,
    ! [F2: set_o,P: set_o > $o] :
      ( ( finite_finite_o @ F2 )
     => ( ( P @ bot_bot_set_o )
       => ( ! [X4: $o,F4: set_o] :
              ( ( finite_finite_o @ F4 )
             => ( ~ ( member_o @ X4 @ F4 )
               => ( ( P @ F4 )
                 => ( P @ ( insert_o @ X4 @ F4 ) ) ) ) )
         => ( P @ F2 ) ) ) ) ).

% finite_induct
thf(fact_2517_finite__induct,axiom,
    ! [F2: set_nat,P: set_nat > $o] :
      ( ( finite_finite_nat @ F2 )
     => ( ( P @ bot_bot_set_nat )
       => ( ! [X4: nat,F4: set_nat] :
              ( ( finite_finite_nat @ F4 )
             => ( ~ ( member_nat @ X4 @ F4 )
               => ( ( P @ F4 )
                 => ( P @ ( insert_nat @ X4 @ F4 ) ) ) ) )
         => ( P @ F2 ) ) ) ) ).

% finite_induct
thf(fact_2518_finite__induct,axiom,
    ! [F2: set_int,P: set_int > $o] :
      ( ( finite_finite_int @ F2 )
     => ( ( P @ bot_bot_set_int )
       => ( ! [X4: int,F4: set_int] :
              ( ( finite_finite_int @ F4 )
             => ( ~ ( member_int @ X4 @ F4 )
               => ( ( P @ F4 )
                 => ( P @ ( insert_int @ X4 @ F4 ) ) ) ) )
         => ( P @ F2 ) ) ) ) ).

% finite_induct
thf(fact_2519_finite_Osimps,axiom,
    ( finite5795047828879050333T_VEBT
    = ( ^ [A3: set_VEBT_VEBT] :
          ( ( A3 = bot_bo8194388402131092736T_VEBT )
          | ? [A4: set_VEBT_VEBT,B2: vEBT_VEBT] :
              ( ( A3
                = ( insert_VEBT_VEBT @ B2 @ A4 ) )
              & ( finite5795047828879050333T_VEBT @ A4 ) ) ) ) ) ).

% finite.simps
thf(fact_2520_finite_Osimps,axiom,
    ( finite3207457112153483333omplex
    = ( ^ [A3: set_complex] :
          ( ( A3 = bot_bot_set_complex )
          | ? [A4: set_complex,B2: complex] :
              ( ( A3
                = ( insert_complex @ B2 @ A4 ) )
              & ( finite3207457112153483333omplex @ A4 ) ) ) ) ) ).

% finite.simps
thf(fact_2521_finite_Osimps,axiom,
    ( finite_finite_real
    = ( ^ [A3: set_real] :
          ( ( A3 = bot_bot_set_real )
          | ? [A4: set_real,B2: real] :
              ( ( A3
                = ( insert_real @ B2 @ A4 ) )
              & ( finite_finite_real @ A4 ) ) ) ) ) ).

% finite.simps
thf(fact_2522_finite_Osimps,axiom,
    ( finite_finite_o
    = ( ^ [A3: set_o] :
          ( ( A3 = bot_bot_set_o )
          | ? [A4: set_o,B2: $o] :
              ( ( A3
                = ( insert_o @ B2 @ A4 ) )
              & ( finite_finite_o @ A4 ) ) ) ) ) ).

% finite.simps
thf(fact_2523_finite_Osimps,axiom,
    ( finite_finite_nat
    = ( ^ [A3: set_nat] :
          ( ( A3 = bot_bot_set_nat )
          | ? [A4: set_nat,B2: nat] :
              ( ( A3
                = ( insert_nat @ B2 @ A4 ) )
              & ( finite_finite_nat @ A4 ) ) ) ) ) ).

% finite.simps
thf(fact_2524_finite_Osimps,axiom,
    ( finite_finite_int
    = ( ^ [A3: set_int] :
          ( ( A3 = bot_bot_set_int )
          | ? [A4: set_int,B2: int] :
              ( ( A3
                = ( insert_int @ B2 @ A4 ) )
              & ( finite_finite_int @ A4 ) ) ) ) ) ).

% finite.simps
thf(fact_2525_finite_Ocases,axiom,
    ! [A: set_VEBT_VEBT] :
      ( ( finite5795047828879050333T_VEBT @ A )
     => ( ( A != bot_bo8194388402131092736T_VEBT )
       => ~ ! [A7: set_VEBT_VEBT] :
              ( ? [A6: vEBT_VEBT] :
                  ( A
                  = ( insert_VEBT_VEBT @ A6 @ A7 ) )
             => ~ ( finite5795047828879050333T_VEBT @ A7 ) ) ) ) ).

% finite.cases
thf(fact_2526_finite_Ocases,axiom,
    ! [A: set_complex] :
      ( ( finite3207457112153483333omplex @ A )
     => ( ( A != bot_bot_set_complex )
       => ~ ! [A7: set_complex] :
              ( ? [A6: complex] :
                  ( A
                  = ( insert_complex @ A6 @ A7 ) )
             => ~ ( finite3207457112153483333omplex @ A7 ) ) ) ) ).

% finite.cases
thf(fact_2527_finite_Ocases,axiom,
    ! [A: set_real] :
      ( ( finite_finite_real @ A )
     => ( ( A != bot_bot_set_real )
       => ~ ! [A7: set_real] :
              ( ? [A6: real] :
                  ( A
                  = ( insert_real @ A6 @ A7 ) )
             => ~ ( finite_finite_real @ A7 ) ) ) ) ).

% finite.cases
thf(fact_2528_finite_Ocases,axiom,
    ! [A: set_o] :
      ( ( finite_finite_o @ A )
     => ( ( A != bot_bot_set_o )
       => ~ ! [A7: set_o] :
              ( ? [A6: $o] :
                  ( A
                  = ( insert_o @ A6 @ A7 ) )
             => ~ ( finite_finite_o @ A7 ) ) ) ) ).

% finite.cases
thf(fact_2529_finite_Ocases,axiom,
    ! [A: set_nat] :
      ( ( finite_finite_nat @ A )
     => ( ( A != bot_bot_set_nat )
       => ~ ! [A7: set_nat] :
              ( ? [A6: nat] :
                  ( A
                  = ( insert_nat @ A6 @ A7 ) )
             => ~ ( finite_finite_nat @ A7 ) ) ) ) ).

% finite.cases
thf(fact_2530_finite_Ocases,axiom,
    ! [A: set_int] :
      ( ( finite_finite_int @ A )
     => ( ( A != bot_bot_set_int )
       => ~ ! [A7: set_int] :
              ( ? [A6: int] :
                  ( A
                  = ( insert_int @ A6 @ A7 ) )
             => ~ ( finite_finite_int @ A7 ) ) ) ) ).

% finite.cases
thf(fact_2531_subset__singleton__iff,axiom,
    ! [X7: set_VEBT_VEBT,A: vEBT_VEBT] :
      ( ( ord_le4337996190870823476T_VEBT @ X7 @ ( insert_VEBT_VEBT @ A @ bot_bo8194388402131092736T_VEBT ) )
      = ( ( X7 = bot_bo8194388402131092736T_VEBT )
        | ( X7
          = ( insert_VEBT_VEBT @ A @ bot_bo8194388402131092736T_VEBT ) ) ) ) ).

% subset_singleton_iff
thf(fact_2532_subset__singleton__iff,axiom,
    ! [X7: set_real,A: real] :
      ( ( ord_less_eq_set_real @ X7 @ ( insert_real @ A @ bot_bot_set_real ) )
      = ( ( X7 = bot_bot_set_real )
        | ( X7
          = ( insert_real @ A @ bot_bot_set_real ) ) ) ) ).

% subset_singleton_iff
thf(fact_2533_subset__singleton__iff,axiom,
    ! [X7: set_o,A: $o] :
      ( ( ord_less_eq_set_o @ X7 @ ( insert_o @ A @ bot_bot_set_o ) )
      = ( ( X7 = bot_bot_set_o )
        | ( X7
          = ( insert_o @ A @ bot_bot_set_o ) ) ) ) ).

% subset_singleton_iff
thf(fact_2534_subset__singleton__iff,axiom,
    ! [X7: set_nat,A: nat] :
      ( ( ord_less_eq_set_nat @ X7 @ ( insert_nat @ A @ bot_bot_set_nat ) )
      = ( ( X7 = bot_bot_set_nat )
        | ( X7
          = ( insert_nat @ A @ bot_bot_set_nat ) ) ) ) ).

% subset_singleton_iff
thf(fact_2535_subset__singleton__iff,axiom,
    ! [X7: set_int,A: int] :
      ( ( ord_less_eq_set_int @ X7 @ ( insert_int @ A @ bot_bot_set_int ) )
      = ( ( X7 = bot_bot_set_int )
        | ( X7
          = ( insert_int @ A @ bot_bot_set_int ) ) ) ) ).

% subset_singleton_iff
thf(fact_2536_subset__singletonD,axiom,
    ! [A2: set_VEBT_VEBT,X2: vEBT_VEBT] :
      ( ( ord_le4337996190870823476T_VEBT @ A2 @ ( insert_VEBT_VEBT @ X2 @ bot_bo8194388402131092736T_VEBT ) )
     => ( ( A2 = bot_bo8194388402131092736T_VEBT )
        | ( A2
          = ( insert_VEBT_VEBT @ X2 @ bot_bo8194388402131092736T_VEBT ) ) ) ) ).

% subset_singletonD
thf(fact_2537_subset__singletonD,axiom,
    ! [A2: set_real,X2: real] :
      ( ( ord_less_eq_set_real @ A2 @ ( insert_real @ X2 @ bot_bot_set_real ) )
     => ( ( A2 = bot_bot_set_real )
        | ( A2
          = ( insert_real @ X2 @ bot_bot_set_real ) ) ) ) ).

% subset_singletonD
thf(fact_2538_subset__singletonD,axiom,
    ! [A2: set_o,X2: $o] :
      ( ( ord_less_eq_set_o @ A2 @ ( insert_o @ X2 @ bot_bot_set_o ) )
     => ( ( A2 = bot_bot_set_o )
        | ( A2
          = ( insert_o @ X2 @ bot_bot_set_o ) ) ) ) ).

% subset_singletonD
thf(fact_2539_subset__singletonD,axiom,
    ! [A2: set_nat,X2: nat] :
      ( ( ord_less_eq_set_nat @ A2 @ ( insert_nat @ X2 @ bot_bot_set_nat ) )
     => ( ( A2 = bot_bot_set_nat )
        | ( A2
          = ( insert_nat @ X2 @ bot_bot_set_nat ) ) ) ) ).

% subset_singletonD
thf(fact_2540_subset__singletonD,axiom,
    ! [A2: set_int,X2: int] :
      ( ( ord_less_eq_set_int @ A2 @ ( insert_int @ X2 @ bot_bot_set_int ) )
     => ( ( A2 = bot_bot_set_int )
        | ( A2
          = ( insert_int @ X2 @ bot_bot_set_int ) ) ) ) ).

% subset_singletonD
thf(fact_2541_Diff__insert,axiom,
    ! [A2: set_VEBT_VEBT,A: vEBT_VEBT,B3: set_VEBT_VEBT] :
      ( ( minus_5127226145743854075T_VEBT @ A2 @ ( insert_VEBT_VEBT @ A @ B3 ) )
      = ( minus_5127226145743854075T_VEBT @ ( minus_5127226145743854075T_VEBT @ A2 @ B3 ) @ ( insert_VEBT_VEBT @ A @ bot_bo8194388402131092736T_VEBT ) ) ) ).

% Diff_insert
thf(fact_2542_Diff__insert,axiom,
    ! [A2: set_real,A: real,B3: set_real] :
      ( ( minus_minus_set_real @ A2 @ ( insert_real @ A @ B3 ) )
      = ( minus_minus_set_real @ ( minus_minus_set_real @ A2 @ B3 ) @ ( insert_real @ A @ bot_bot_set_real ) ) ) ).

% Diff_insert
thf(fact_2543_Diff__insert,axiom,
    ! [A2: set_o,A: $o,B3: set_o] :
      ( ( minus_minus_set_o @ A2 @ ( insert_o @ A @ B3 ) )
      = ( minus_minus_set_o @ ( minus_minus_set_o @ A2 @ B3 ) @ ( insert_o @ A @ bot_bot_set_o ) ) ) ).

% Diff_insert
thf(fact_2544_Diff__insert,axiom,
    ! [A2: set_int,A: int,B3: set_int] :
      ( ( minus_minus_set_int @ A2 @ ( insert_int @ A @ B3 ) )
      = ( minus_minus_set_int @ ( minus_minus_set_int @ A2 @ B3 ) @ ( insert_int @ A @ bot_bot_set_int ) ) ) ).

% Diff_insert
thf(fact_2545_Diff__insert,axiom,
    ! [A2: set_nat,A: nat,B3: set_nat] :
      ( ( minus_minus_set_nat @ A2 @ ( insert_nat @ A @ B3 ) )
      = ( minus_minus_set_nat @ ( minus_minus_set_nat @ A2 @ B3 ) @ ( insert_nat @ A @ bot_bot_set_nat ) ) ) ).

% Diff_insert
thf(fact_2546_insert__Diff,axiom,
    ! [A: vEBT_VEBT,A2: set_VEBT_VEBT] :
      ( ( member_VEBT_VEBT @ A @ A2 )
     => ( ( insert_VEBT_VEBT @ A @ ( minus_5127226145743854075T_VEBT @ A2 @ ( insert_VEBT_VEBT @ A @ bot_bo8194388402131092736T_VEBT ) ) )
        = A2 ) ) ).

% insert_Diff
thf(fact_2547_insert__Diff,axiom,
    ! [A: complex,A2: set_complex] :
      ( ( member_complex @ A @ A2 )
     => ( ( insert_complex @ A @ ( minus_811609699411566653omplex @ A2 @ ( insert_complex @ A @ bot_bot_set_complex ) ) )
        = A2 ) ) ).

% insert_Diff
thf(fact_2548_insert__Diff,axiom,
    ! [A: set_nat,A2: set_set_nat] :
      ( ( member_set_nat @ A @ A2 )
     => ( ( insert_set_nat @ A @ ( minus_2163939370556025621et_nat @ A2 @ ( insert_set_nat @ A @ bot_bot_set_set_nat ) ) )
        = A2 ) ) ).

% insert_Diff
thf(fact_2549_insert__Diff,axiom,
    ! [A: real,A2: set_real] :
      ( ( member_real @ A @ A2 )
     => ( ( insert_real @ A @ ( minus_minus_set_real @ A2 @ ( insert_real @ A @ bot_bot_set_real ) ) )
        = A2 ) ) ).

% insert_Diff
thf(fact_2550_insert__Diff,axiom,
    ! [A: $o,A2: set_o] :
      ( ( member_o @ A @ A2 )
     => ( ( insert_o @ A @ ( minus_minus_set_o @ A2 @ ( insert_o @ A @ bot_bot_set_o ) ) )
        = A2 ) ) ).

% insert_Diff
thf(fact_2551_insert__Diff,axiom,
    ! [A: int,A2: set_int] :
      ( ( member_int @ A @ A2 )
     => ( ( insert_int @ A @ ( minus_minus_set_int @ A2 @ ( insert_int @ A @ bot_bot_set_int ) ) )
        = A2 ) ) ).

% insert_Diff
thf(fact_2552_insert__Diff,axiom,
    ! [A: nat,A2: set_nat] :
      ( ( member_nat @ A @ A2 )
     => ( ( insert_nat @ A @ ( minus_minus_set_nat @ A2 @ ( insert_nat @ A @ bot_bot_set_nat ) ) )
        = A2 ) ) ).

% insert_Diff
thf(fact_2553_Diff__insert2,axiom,
    ! [A2: set_VEBT_VEBT,A: vEBT_VEBT,B3: set_VEBT_VEBT] :
      ( ( minus_5127226145743854075T_VEBT @ A2 @ ( insert_VEBT_VEBT @ A @ B3 ) )
      = ( minus_5127226145743854075T_VEBT @ ( minus_5127226145743854075T_VEBT @ A2 @ ( insert_VEBT_VEBT @ A @ bot_bo8194388402131092736T_VEBT ) ) @ B3 ) ) ).

% Diff_insert2
thf(fact_2554_Diff__insert2,axiom,
    ! [A2: set_real,A: real,B3: set_real] :
      ( ( minus_minus_set_real @ A2 @ ( insert_real @ A @ B3 ) )
      = ( minus_minus_set_real @ ( minus_minus_set_real @ A2 @ ( insert_real @ A @ bot_bot_set_real ) ) @ B3 ) ) ).

% Diff_insert2
thf(fact_2555_Diff__insert2,axiom,
    ! [A2: set_o,A: $o,B3: set_o] :
      ( ( minus_minus_set_o @ A2 @ ( insert_o @ A @ B3 ) )
      = ( minus_minus_set_o @ ( minus_minus_set_o @ A2 @ ( insert_o @ A @ bot_bot_set_o ) ) @ B3 ) ) ).

% Diff_insert2
thf(fact_2556_Diff__insert2,axiom,
    ! [A2: set_int,A: int,B3: set_int] :
      ( ( minus_minus_set_int @ A2 @ ( insert_int @ A @ B3 ) )
      = ( minus_minus_set_int @ ( minus_minus_set_int @ A2 @ ( insert_int @ A @ bot_bot_set_int ) ) @ B3 ) ) ).

% Diff_insert2
thf(fact_2557_Diff__insert2,axiom,
    ! [A2: set_nat,A: nat,B3: set_nat] :
      ( ( minus_minus_set_nat @ A2 @ ( insert_nat @ A @ B3 ) )
      = ( minus_minus_set_nat @ ( minus_minus_set_nat @ A2 @ ( insert_nat @ A @ bot_bot_set_nat ) ) @ B3 ) ) ).

% Diff_insert2
thf(fact_2558_Diff__insert__absorb,axiom,
    ! [X2: vEBT_VEBT,A2: set_VEBT_VEBT] :
      ( ~ ( member_VEBT_VEBT @ X2 @ A2 )
     => ( ( minus_5127226145743854075T_VEBT @ ( insert_VEBT_VEBT @ X2 @ A2 ) @ ( insert_VEBT_VEBT @ X2 @ bot_bo8194388402131092736T_VEBT ) )
        = A2 ) ) ).

% Diff_insert_absorb
thf(fact_2559_Diff__insert__absorb,axiom,
    ! [X2: complex,A2: set_complex] :
      ( ~ ( member_complex @ X2 @ A2 )
     => ( ( minus_811609699411566653omplex @ ( insert_complex @ X2 @ A2 ) @ ( insert_complex @ X2 @ bot_bot_set_complex ) )
        = A2 ) ) ).

% Diff_insert_absorb
thf(fact_2560_Diff__insert__absorb,axiom,
    ! [X2: set_nat,A2: set_set_nat] :
      ( ~ ( member_set_nat @ X2 @ A2 )
     => ( ( minus_2163939370556025621et_nat @ ( insert_set_nat @ X2 @ A2 ) @ ( insert_set_nat @ X2 @ bot_bot_set_set_nat ) )
        = A2 ) ) ).

% Diff_insert_absorb
thf(fact_2561_Diff__insert__absorb,axiom,
    ! [X2: real,A2: set_real] :
      ( ~ ( member_real @ X2 @ A2 )
     => ( ( minus_minus_set_real @ ( insert_real @ X2 @ A2 ) @ ( insert_real @ X2 @ bot_bot_set_real ) )
        = A2 ) ) ).

% Diff_insert_absorb
thf(fact_2562_Diff__insert__absorb,axiom,
    ! [X2: $o,A2: set_o] :
      ( ~ ( member_o @ X2 @ A2 )
     => ( ( minus_minus_set_o @ ( insert_o @ X2 @ A2 ) @ ( insert_o @ X2 @ bot_bot_set_o ) )
        = A2 ) ) ).

% Diff_insert_absorb
thf(fact_2563_Diff__insert__absorb,axiom,
    ! [X2: int,A2: set_int] :
      ( ~ ( member_int @ X2 @ A2 )
     => ( ( minus_minus_set_int @ ( insert_int @ X2 @ A2 ) @ ( insert_int @ X2 @ bot_bot_set_int ) )
        = A2 ) ) ).

% Diff_insert_absorb
thf(fact_2564_Diff__insert__absorb,axiom,
    ! [X2: nat,A2: set_nat] :
      ( ~ ( member_nat @ X2 @ A2 )
     => ( ( minus_minus_set_nat @ ( insert_nat @ X2 @ A2 ) @ ( insert_nat @ X2 @ bot_bot_set_nat ) )
        = A2 ) ) ).

% Diff_insert_absorb
thf(fact_2565_in__image__insert__iff,axiom,
    ! [B3: set_set_VEBT_VEBT,X2: vEBT_VEBT,A2: set_VEBT_VEBT] :
      ( ! [C2: set_VEBT_VEBT] :
          ( ( member_set_VEBT_VEBT @ C2 @ B3 )
         => ~ ( member_VEBT_VEBT @ X2 @ C2 ) )
     => ( ( member_set_VEBT_VEBT @ A2 @ ( image_1661326939266726661T_VEBT @ ( insert_VEBT_VEBT @ X2 ) @ B3 ) )
        = ( ( member_VEBT_VEBT @ X2 @ A2 )
          & ( member_set_VEBT_VEBT @ ( minus_5127226145743854075T_VEBT @ A2 @ ( insert_VEBT_VEBT @ X2 @ bot_bo8194388402131092736T_VEBT ) ) @ B3 ) ) ) ) ).

% in_image_insert_iff
thf(fact_2566_in__image__insert__iff,axiom,
    ! [B3: set_set_complex,X2: complex,A2: set_complex] :
      ( ! [C2: set_complex] :
          ( ( member_set_complex @ C2 @ B3 )
         => ~ ( member_complex @ X2 @ C2 ) )
     => ( ( member_set_complex @ A2 @ ( image_7998606247489673935omplex @ ( insert_complex @ X2 ) @ B3 ) )
        = ( ( member_complex @ X2 @ A2 )
          & ( member_set_complex @ ( minus_811609699411566653omplex @ A2 @ ( insert_complex @ X2 @ bot_bot_set_complex ) ) @ B3 ) ) ) ) ).

% in_image_insert_iff
thf(fact_2567_in__image__insert__iff,axiom,
    ! [B3: set_set_set_nat,X2: set_nat,A2: set_set_nat] :
      ( ! [C2: set_set_nat] :
          ( ( member_set_set_nat @ C2 @ B3 )
         => ~ ( member_set_nat @ X2 @ C2 ) )
     => ( ( member_set_set_nat @ A2 @ ( image_7884819252390400639et_nat @ ( insert_set_nat @ X2 ) @ B3 ) )
        = ( ( member_set_nat @ X2 @ A2 )
          & ( member_set_set_nat @ ( minus_2163939370556025621et_nat @ A2 @ ( insert_set_nat @ X2 @ bot_bot_set_set_nat ) ) @ B3 ) ) ) ) ).

% in_image_insert_iff
thf(fact_2568_in__image__insert__iff,axiom,
    ! [B3: set_set_real,X2: real,A2: set_real] :
      ( ! [C2: set_real] :
          ( ( member_set_real @ C2 @ B3 )
         => ~ ( member_real @ X2 @ C2 ) )
     => ( ( member_set_real @ A2 @ ( image_2436557299294012491t_real @ ( insert_real @ X2 ) @ B3 ) )
        = ( ( member_real @ X2 @ A2 )
          & ( member_set_real @ ( minus_minus_set_real @ A2 @ ( insert_real @ X2 @ bot_bot_set_real ) ) @ B3 ) ) ) ) ).

% in_image_insert_iff
thf(fact_2569_in__image__insert__iff,axiom,
    ! [B3: set_set_o,X2: $o,A2: set_o] :
      ( ! [C2: set_o] :
          ( ( member_set_o @ C2 @ B3 )
         => ~ ( member_o @ X2 @ C2 ) )
     => ( ( member_set_o @ A2 @ ( image_set_o_set_o @ ( insert_o @ X2 ) @ B3 ) )
        = ( ( member_o @ X2 @ A2 )
          & ( member_set_o @ ( minus_minus_set_o @ A2 @ ( insert_o @ X2 @ bot_bot_set_o ) ) @ B3 ) ) ) ) ).

% in_image_insert_iff
thf(fact_2570_in__image__insert__iff,axiom,
    ! [B3: set_set_int,X2: int,A2: set_int] :
      ( ! [C2: set_int] :
          ( ( member_set_int @ C2 @ B3 )
         => ~ ( member_int @ X2 @ C2 ) )
     => ( ( member_set_int @ A2 @ ( image_524474410958335435et_int @ ( insert_int @ X2 ) @ B3 ) )
        = ( ( member_int @ X2 @ A2 )
          & ( member_set_int @ ( minus_minus_set_int @ A2 @ ( insert_int @ X2 @ bot_bot_set_int ) ) @ B3 ) ) ) ) ).

% in_image_insert_iff
thf(fact_2571_in__image__insert__iff,axiom,
    ! [B3: set_set_nat,X2: nat,A2: set_nat] :
      ( ! [C2: set_nat] :
          ( ( member_set_nat @ C2 @ B3 )
         => ~ ( member_nat @ X2 @ C2 ) )
     => ( ( member_set_nat @ A2 @ ( image_7916887816326733075et_nat @ ( insert_nat @ X2 ) @ B3 ) )
        = ( ( member_nat @ X2 @ A2 )
          & ( member_set_nat @ ( minus_minus_set_nat @ A2 @ ( insert_nat @ X2 @ bot_bot_set_nat ) ) @ B3 ) ) ) ) ).

% in_image_insert_iff
thf(fact_2572_VEBT__internal_Ooption__shift_Oelims,axiom,
    ! [X2: product_prod_nat_nat > product_prod_nat_nat > product_prod_nat_nat,Xa2: option4927543243414619207at_nat,Xb: option4927543243414619207at_nat,Y2: option4927543243414619207at_nat] :
      ( ( ( vEBT_V1502963449132264192at_nat @ X2 @ Xa2 @ Xb )
        = Y2 )
     => ( ( ( Xa2 = none_P5556105721700978146at_nat )
         => ( Y2 != none_P5556105721700978146at_nat ) )
       => ( ( ? [V2: product_prod_nat_nat] :
                ( Xa2
                = ( some_P7363390416028606310at_nat @ V2 ) )
           => ( ( Xb = none_P5556105721700978146at_nat )
             => ( Y2 != none_P5556105721700978146at_nat ) ) )
         => ~ ! [A6: product_prod_nat_nat] :
                ( ( Xa2
                  = ( some_P7363390416028606310at_nat @ A6 ) )
               => ! [B7: product_prod_nat_nat] :
                    ( ( Xb
                      = ( some_P7363390416028606310at_nat @ B7 ) )
                   => ( Y2
                     != ( some_P7363390416028606310at_nat @ ( X2 @ A6 @ B7 ) ) ) ) ) ) ) ) ).

% VEBT_internal.option_shift.elims
thf(fact_2573_VEBT__internal_Ooption__shift_Oelims,axiom,
    ! [X2: nat > nat > nat,Xa2: option_nat,Xb: option_nat,Y2: option_nat] :
      ( ( ( vEBT_V4262088993061758097ft_nat @ X2 @ Xa2 @ Xb )
        = Y2 )
     => ( ( ( Xa2 = none_nat )
         => ( Y2 != none_nat ) )
       => ( ( ? [V2: nat] :
                ( Xa2
                = ( some_nat @ V2 ) )
           => ( ( Xb = none_nat )
             => ( Y2 != none_nat ) ) )
         => ~ ! [A6: nat] :
                ( ( Xa2
                  = ( some_nat @ A6 ) )
               => ! [B7: nat] :
                    ( ( Xb
                      = ( some_nat @ B7 ) )
                   => ( Y2
                     != ( some_nat @ ( X2 @ A6 @ B7 ) ) ) ) ) ) ) ) ).

% VEBT_internal.option_shift.elims
thf(fact_2574_VEBT__internal_Ooption__shift_Osimps_I2_J,axiom,
    ! [Uw: product_prod_nat_nat > product_prod_nat_nat > product_prod_nat_nat,V: product_prod_nat_nat] :
      ( ( vEBT_V1502963449132264192at_nat @ Uw @ ( some_P7363390416028606310at_nat @ V ) @ none_P5556105721700978146at_nat )
      = none_P5556105721700978146at_nat ) ).

% VEBT_internal.option_shift.simps(2)
thf(fact_2575_VEBT__internal_Ooption__shift_Osimps_I2_J,axiom,
    ! [Uw: nat > nat > nat,V: nat] :
      ( ( vEBT_V4262088993061758097ft_nat @ Uw @ ( some_nat @ V ) @ none_nat )
      = none_nat ) ).

% VEBT_internal.option_shift.simps(2)
thf(fact_2576_image__constant,axiom,
    ! [X2: complex,A2: set_complex,C: vEBT_VEBT] :
      ( ( member_complex @ X2 @ A2 )
     => ( ( image_932796090930683071T_VEBT
          @ ^ [X: complex] : C
          @ A2 )
        = ( insert_VEBT_VEBT @ C @ bot_bo8194388402131092736T_VEBT ) ) ) ).

% image_constant
thf(fact_2577_image__constant,axiom,
    ! [X2: real,A2: set_real,C: vEBT_VEBT] :
      ( ( member_real @ X2 @ A2 )
     => ( ( image_real_VEBT_VEBT
          @ ^ [X: real] : C
          @ A2 )
        = ( insert_VEBT_VEBT @ C @ bot_bo8194388402131092736T_VEBT ) ) ) ).

% image_constant
thf(fact_2578_image__constant,axiom,
    ! [X2: nat,A2: set_nat,C: vEBT_VEBT] :
      ( ( member_nat @ X2 @ A2 )
     => ( ( image_nat_VEBT_VEBT
          @ ^ [X: nat] : C
          @ A2 )
        = ( insert_VEBT_VEBT @ C @ bot_bo8194388402131092736T_VEBT ) ) ) ).

% image_constant
thf(fact_2579_image__constant,axiom,
    ! [X2: int,A2: set_int,C: vEBT_VEBT] :
      ( ( member_int @ X2 @ A2 )
     => ( ( image_int_VEBT_VEBT
          @ ^ [X: int] : C
          @ A2 )
        = ( insert_VEBT_VEBT @ C @ bot_bo8194388402131092736T_VEBT ) ) ) ).

% image_constant
thf(fact_2580_image__constant,axiom,
    ! [X2: complex,A2: set_complex,C: real] :
      ( ( member_complex @ X2 @ A2 )
     => ( ( image_complex_real
          @ ^ [X: complex] : C
          @ A2 )
        = ( insert_real @ C @ bot_bot_set_real ) ) ) ).

% image_constant
thf(fact_2581_image__constant,axiom,
    ! [X2: real,A2: set_real,C: real] :
      ( ( member_real @ X2 @ A2 )
     => ( ( image_real_real
          @ ^ [X: real] : C
          @ A2 )
        = ( insert_real @ C @ bot_bot_set_real ) ) ) ).

% image_constant
thf(fact_2582_image__constant,axiom,
    ! [X2: nat,A2: set_nat,C: real] :
      ( ( member_nat @ X2 @ A2 )
     => ( ( image_nat_real
          @ ^ [X: nat] : C
          @ A2 )
        = ( insert_real @ C @ bot_bot_set_real ) ) ) ).

% image_constant
thf(fact_2583_image__constant,axiom,
    ! [X2: int,A2: set_int,C: real] :
      ( ( member_int @ X2 @ A2 )
     => ( ( image_int_real
          @ ^ [X: int] : C
          @ A2 )
        = ( insert_real @ C @ bot_bot_set_real ) ) ) ).

% image_constant
thf(fact_2584_image__constant,axiom,
    ! [X2: complex,A2: set_complex,C: $o] :
      ( ( member_complex @ X2 @ A2 )
     => ( ( image_complex_o
          @ ^ [X: complex] : C
          @ A2 )
        = ( insert_o @ C @ bot_bot_set_o ) ) ) ).

% image_constant
thf(fact_2585_image__constant,axiom,
    ! [X2: real,A2: set_real,C: $o] :
      ( ( member_real @ X2 @ A2 )
     => ( ( image_real_o
          @ ^ [X: real] : C
          @ A2 )
        = ( insert_o @ C @ bot_bot_set_o ) ) ) ).

% image_constant
thf(fact_2586_image__constant__conv,axiom,
    ! [A2: set_real,C: vEBT_VEBT] :
      ( ( ( A2 = bot_bot_set_real )
       => ( ( image_real_VEBT_VEBT
            @ ^ [X: real] : C
            @ A2 )
          = bot_bo8194388402131092736T_VEBT ) )
      & ( ( A2 != bot_bot_set_real )
       => ( ( image_real_VEBT_VEBT
            @ ^ [X: real] : C
            @ A2 )
          = ( insert_VEBT_VEBT @ C @ bot_bo8194388402131092736T_VEBT ) ) ) ) ).

% image_constant_conv
thf(fact_2587_image__constant__conv,axiom,
    ! [A2: set_real,C: real] :
      ( ( ( A2 = bot_bot_set_real )
       => ( ( image_real_real
            @ ^ [X: real] : C
            @ A2 )
          = bot_bot_set_real ) )
      & ( ( A2 != bot_bot_set_real )
       => ( ( image_real_real
            @ ^ [X: real] : C
            @ A2 )
          = ( insert_real @ C @ bot_bot_set_real ) ) ) ) ).

% image_constant_conv
thf(fact_2588_image__constant__conv,axiom,
    ! [A2: set_real,C: $o] :
      ( ( ( A2 = bot_bot_set_real )
       => ( ( image_real_o
            @ ^ [X: real] : C
            @ A2 )
          = bot_bot_set_o ) )
      & ( ( A2 != bot_bot_set_real )
       => ( ( image_real_o
            @ ^ [X: real] : C
            @ A2 )
          = ( insert_o @ C @ bot_bot_set_o ) ) ) ) ).

% image_constant_conv
thf(fact_2589_image__constant__conv,axiom,
    ! [A2: set_real,C: nat] :
      ( ( ( A2 = bot_bot_set_real )
       => ( ( image_real_nat
            @ ^ [X: real] : C
            @ A2 )
          = bot_bot_set_nat ) )
      & ( ( A2 != bot_bot_set_real )
       => ( ( image_real_nat
            @ ^ [X: real] : C
            @ A2 )
          = ( insert_nat @ C @ bot_bot_set_nat ) ) ) ) ).

% image_constant_conv
thf(fact_2590_image__constant__conv,axiom,
    ! [A2: set_real,C: int] :
      ( ( ( A2 = bot_bot_set_real )
       => ( ( image_real_int
            @ ^ [X: real] : C
            @ A2 )
          = bot_bot_set_int ) )
      & ( ( A2 != bot_bot_set_real )
       => ( ( image_real_int
            @ ^ [X: real] : C
            @ A2 )
          = ( insert_int @ C @ bot_bot_set_int ) ) ) ) ).

% image_constant_conv
thf(fact_2591_image__constant__conv,axiom,
    ! [A2: set_o,C: vEBT_VEBT] :
      ( ( ( A2 = bot_bot_set_o )
       => ( ( image_o_VEBT_VEBT
            @ ^ [X: $o] : C
            @ A2 )
          = bot_bo8194388402131092736T_VEBT ) )
      & ( ( A2 != bot_bot_set_o )
       => ( ( image_o_VEBT_VEBT
            @ ^ [X: $o] : C
            @ A2 )
          = ( insert_VEBT_VEBT @ C @ bot_bo8194388402131092736T_VEBT ) ) ) ) ).

% image_constant_conv
thf(fact_2592_image__constant__conv,axiom,
    ! [A2: set_o,C: real] :
      ( ( ( A2 = bot_bot_set_o )
       => ( ( image_o_real
            @ ^ [X: $o] : C
            @ A2 )
          = bot_bot_set_real ) )
      & ( ( A2 != bot_bot_set_o )
       => ( ( image_o_real
            @ ^ [X: $o] : C
            @ A2 )
          = ( insert_real @ C @ bot_bot_set_real ) ) ) ) ).

% image_constant_conv
thf(fact_2593_image__constant__conv,axiom,
    ! [A2: set_o,C: $o] :
      ( ( ( A2 = bot_bot_set_o )
       => ( ( image_o_o
            @ ^ [X: $o] : C
            @ A2 )
          = bot_bot_set_o ) )
      & ( ( A2 != bot_bot_set_o )
       => ( ( image_o_o
            @ ^ [X: $o] : C
            @ A2 )
          = ( insert_o @ C @ bot_bot_set_o ) ) ) ) ).

% image_constant_conv
thf(fact_2594_image__constant__conv,axiom,
    ! [A2: set_o,C: nat] :
      ( ( ( A2 = bot_bot_set_o )
       => ( ( image_o_nat
            @ ^ [X: $o] : C
            @ A2 )
          = bot_bot_set_nat ) )
      & ( ( A2 != bot_bot_set_o )
       => ( ( image_o_nat
            @ ^ [X: $o] : C
            @ A2 )
          = ( insert_nat @ C @ bot_bot_set_nat ) ) ) ) ).

% image_constant_conv
thf(fact_2595_image__constant__conv,axiom,
    ! [A2: set_o,C: int] :
      ( ( ( A2 = bot_bot_set_o )
       => ( ( image_o_int
            @ ^ [X: $o] : C
            @ A2 )
          = bot_bot_set_int ) )
      & ( ( A2 != bot_bot_set_o )
       => ( ( image_o_int
            @ ^ [X: $o] : C
            @ A2 )
          = ( insert_int @ C @ bot_bot_set_int ) ) ) ) ).

% image_constant_conv
thf(fact_2596_finite__subset__induct_H,axiom,
    ! [F2: set_VEBT_VEBT,A2: set_VEBT_VEBT,P: set_VEBT_VEBT > $o] :
      ( ( finite5795047828879050333T_VEBT @ F2 )
     => ( ( ord_le4337996190870823476T_VEBT @ F2 @ A2 )
       => ( ( P @ bot_bo8194388402131092736T_VEBT )
         => ( ! [A6: vEBT_VEBT,F4: set_VEBT_VEBT] :
                ( ( finite5795047828879050333T_VEBT @ F4 )
               => ( ( member_VEBT_VEBT @ A6 @ A2 )
                 => ( ( ord_le4337996190870823476T_VEBT @ F4 @ A2 )
                   => ( ~ ( member_VEBT_VEBT @ A6 @ F4 )
                     => ( ( P @ F4 )
                       => ( P @ ( insert_VEBT_VEBT @ A6 @ F4 ) ) ) ) ) ) )
           => ( P @ F2 ) ) ) ) ) ).

% finite_subset_induct'
thf(fact_2597_finite__subset__induct_H,axiom,
    ! [F2: set_set_nat,A2: set_set_nat,P: set_set_nat > $o] :
      ( ( finite1152437895449049373et_nat @ F2 )
     => ( ( ord_le6893508408891458716et_nat @ F2 @ A2 )
       => ( ( P @ bot_bot_set_set_nat )
         => ( ! [A6: set_nat,F4: set_set_nat] :
                ( ( finite1152437895449049373et_nat @ F4 )
               => ( ( member_set_nat @ A6 @ A2 )
                 => ( ( ord_le6893508408891458716et_nat @ F4 @ A2 )
                   => ( ~ ( member_set_nat @ A6 @ F4 )
                     => ( ( P @ F4 )
                       => ( P @ ( insert_set_nat @ A6 @ F4 ) ) ) ) ) ) )
           => ( P @ F2 ) ) ) ) ) ).

% finite_subset_induct'
thf(fact_2598_finite__subset__induct_H,axiom,
    ! [F2: set_complex,A2: set_complex,P: set_complex > $o] :
      ( ( finite3207457112153483333omplex @ F2 )
     => ( ( ord_le211207098394363844omplex @ F2 @ A2 )
       => ( ( P @ bot_bot_set_complex )
         => ( ! [A6: complex,F4: set_complex] :
                ( ( finite3207457112153483333omplex @ F4 )
               => ( ( member_complex @ A6 @ A2 )
                 => ( ( ord_le211207098394363844omplex @ F4 @ A2 )
                   => ( ~ ( member_complex @ A6 @ F4 )
                     => ( ( P @ F4 )
                       => ( P @ ( insert_complex @ A6 @ F4 ) ) ) ) ) ) )
           => ( P @ F2 ) ) ) ) ) ).

% finite_subset_induct'
thf(fact_2599_finite__subset__induct_H,axiom,
    ! [F2: set_real,A2: set_real,P: set_real > $o] :
      ( ( finite_finite_real @ F2 )
     => ( ( ord_less_eq_set_real @ F2 @ A2 )
       => ( ( P @ bot_bot_set_real )
         => ( ! [A6: real,F4: set_real] :
                ( ( finite_finite_real @ F4 )
               => ( ( member_real @ A6 @ A2 )
                 => ( ( ord_less_eq_set_real @ F4 @ A2 )
                   => ( ~ ( member_real @ A6 @ F4 )
                     => ( ( P @ F4 )
                       => ( P @ ( insert_real @ A6 @ F4 ) ) ) ) ) ) )
           => ( P @ F2 ) ) ) ) ) ).

% finite_subset_induct'
thf(fact_2600_finite__subset__induct_H,axiom,
    ! [F2: set_o,A2: set_o,P: set_o > $o] :
      ( ( finite_finite_o @ F2 )
     => ( ( ord_less_eq_set_o @ F2 @ A2 )
       => ( ( P @ bot_bot_set_o )
         => ( ! [A6: $o,F4: set_o] :
                ( ( finite_finite_o @ F4 )
               => ( ( member_o @ A6 @ A2 )
                 => ( ( ord_less_eq_set_o @ F4 @ A2 )
                   => ( ~ ( member_o @ A6 @ F4 )
                     => ( ( P @ F4 )
                       => ( P @ ( insert_o @ A6 @ F4 ) ) ) ) ) ) )
           => ( P @ F2 ) ) ) ) ) ).

% finite_subset_induct'
thf(fact_2601_finite__subset__induct_H,axiom,
    ! [F2: set_nat,A2: set_nat,P: set_nat > $o] :
      ( ( finite_finite_nat @ F2 )
     => ( ( ord_less_eq_set_nat @ F2 @ A2 )
       => ( ( P @ bot_bot_set_nat )
         => ( ! [A6: nat,F4: set_nat] :
                ( ( finite_finite_nat @ F4 )
               => ( ( member_nat @ A6 @ A2 )
                 => ( ( ord_less_eq_set_nat @ F4 @ A2 )
                   => ( ~ ( member_nat @ A6 @ F4 )
                     => ( ( P @ F4 )
                       => ( P @ ( insert_nat @ A6 @ F4 ) ) ) ) ) ) )
           => ( P @ F2 ) ) ) ) ) ).

% finite_subset_induct'
thf(fact_2602_finite__subset__induct_H,axiom,
    ! [F2: set_int,A2: set_int,P: set_int > $o] :
      ( ( finite_finite_int @ F2 )
     => ( ( ord_less_eq_set_int @ F2 @ A2 )
       => ( ( P @ bot_bot_set_int )
         => ( ! [A6: int,F4: set_int] :
                ( ( finite_finite_int @ F4 )
               => ( ( member_int @ A6 @ A2 )
                 => ( ( ord_less_eq_set_int @ F4 @ A2 )
                   => ( ~ ( member_int @ A6 @ F4 )
                     => ( ( P @ F4 )
                       => ( P @ ( insert_int @ A6 @ F4 ) ) ) ) ) ) )
           => ( P @ F2 ) ) ) ) ) ).

% finite_subset_induct'
thf(fact_2603_finite__subset__induct,axiom,
    ! [F2: set_VEBT_VEBT,A2: set_VEBT_VEBT,P: set_VEBT_VEBT > $o] :
      ( ( finite5795047828879050333T_VEBT @ F2 )
     => ( ( ord_le4337996190870823476T_VEBT @ F2 @ A2 )
       => ( ( P @ bot_bo8194388402131092736T_VEBT )
         => ( ! [A6: vEBT_VEBT,F4: set_VEBT_VEBT] :
                ( ( finite5795047828879050333T_VEBT @ F4 )
               => ( ( member_VEBT_VEBT @ A6 @ A2 )
                 => ( ~ ( member_VEBT_VEBT @ A6 @ F4 )
                   => ( ( P @ F4 )
                     => ( P @ ( insert_VEBT_VEBT @ A6 @ F4 ) ) ) ) ) )
           => ( P @ F2 ) ) ) ) ) ).

% finite_subset_induct
thf(fact_2604_finite__subset__induct,axiom,
    ! [F2: set_set_nat,A2: set_set_nat,P: set_set_nat > $o] :
      ( ( finite1152437895449049373et_nat @ F2 )
     => ( ( ord_le6893508408891458716et_nat @ F2 @ A2 )
       => ( ( P @ bot_bot_set_set_nat )
         => ( ! [A6: set_nat,F4: set_set_nat] :
                ( ( finite1152437895449049373et_nat @ F4 )
               => ( ( member_set_nat @ A6 @ A2 )
                 => ( ~ ( member_set_nat @ A6 @ F4 )
                   => ( ( P @ F4 )
                     => ( P @ ( insert_set_nat @ A6 @ F4 ) ) ) ) ) )
           => ( P @ F2 ) ) ) ) ) ).

% finite_subset_induct
thf(fact_2605_finite__subset__induct,axiom,
    ! [F2: set_complex,A2: set_complex,P: set_complex > $o] :
      ( ( finite3207457112153483333omplex @ F2 )
     => ( ( ord_le211207098394363844omplex @ F2 @ A2 )
       => ( ( P @ bot_bot_set_complex )
         => ( ! [A6: complex,F4: set_complex] :
                ( ( finite3207457112153483333omplex @ F4 )
               => ( ( member_complex @ A6 @ A2 )
                 => ( ~ ( member_complex @ A6 @ F4 )
                   => ( ( P @ F4 )
                     => ( P @ ( insert_complex @ A6 @ F4 ) ) ) ) ) )
           => ( P @ F2 ) ) ) ) ) ).

% finite_subset_induct
thf(fact_2606_finite__subset__induct,axiom,
    ! [F2: set_real,A2: set_real,P: set_real > $o] :
      ( ( finite_finite_real @ F2 )
     => ( ( ord_less_eq_set_real @ F2 @ A2 )
       => ( ( P @ bot_bot_set_real )
         => ( ! [A6: real,F4: set_real] :
                ( ( finite_finite_real @ F4 )
               => ( ( member_real @ A6 @ A2 )
                 => ( ~ ( member_real @ A6 @ F4 )
                   => ( ( P @ F4 )
                     => ( P @ ( insert_real @ A6 @ F4 ) ) ) ) ) )
           => ( P @ F2 ) ) ) ) ) ).

% finite_subset_induct
thf(fact_2607_finite__subset__induct,axiom,
    ! [F2: set_o,A2: set_o,P: set_o > $o] :
      ( ( finite_finite_o @ F2 )
     => ( ( ord_less_eq_set_o @ F2 @ A2 )
       => ( ( P @ bot_bot_set_o )
         => ( ! [A6: $o,F4: set_o] :
                ( ( finite_finite_o @ F4 )
               => ( ( member_o @ A6 @ A2 )
                 => ( ~ ( member_o @ A6 @ F4 )
                   => ( ( P @ F4 )
                     => ( P @ ( insert_o @ A6 @ F4 ) ) ) ) ) )
           => ( P @ F2 ) ) ) ) ) ).

% finite_subset_induct
thf(fact_2608_finite__subset__induct,axiom,
    ! [F2: set_nat,A2: set_nat,P: set_nat > $o] :
      ( ( finite_finite_nat @ F2 )
     => ( ( ord_less_eq_set_nat @ F2 @ A2 )
       => ( ( P @ bot_bot_set_nat )
         => ( ! [A6: nat,F4: set_nat] :
                ( ( finite_finite_nat @ F4 )
               => ( ( member_nat @ A6 @ A2 )
                 => ( ~ ( member_nat @ A6 @ F4 )
                   => ( ( P @ F4 )
                     => ( P @ ( insert_nat @ A6 @ F4 ) ) ) ) ) )
           => ( P @ F2 ) ) ) ) ) ).

% finite_subset_induct
thf(fact_2609_finite__subset__induct,axiom,
    ! [F2: set_int,A2: set_int,P: set_int > $o] :
      ( ( finite_finite_int @ F2 )
     => ( ( ord_less_eq_set_int @ F2 @ A2 )
       => ( ( P @ bot_bot_set_int )
         => ( ! [A6: int,F4: set_int] :
                ( ( finite_finite_int @ F4 )
               => ( ( member_int @ A6 @ A2 )
                 => ( ~ ( member_int @ A6 @ F4 )
                   => ( ( P @ F4 )
                     => ( P @ ( insert_int @ A6 @ F4 ) ) ) ) ) )
           => ( P @ F2 ) ) ) ) ) ).

% finite_subset_induct
thf(fact_2610_infinite__remove,axiom,
    ! [S3: set_VEBT_VEBT,A: vEBT_VEBT] :
      ( ~ ( finite5795047828879050333T_VEBT @ S3 )
     => ~ ( finite5795047828879050333T_VEBT @ ( minus_5127226145743854075T_VEBT @ S3 @ ( insert_VEBT_VEBT @ A @ bot_bo8194388402131092736T_VEBT ) ) ) ) ).

% infinite_remove
thf(fact_2611_infinite__remove,axiom,
    ! [S3: set_complex,A: complex] :
      ( ~ ( finite3207457112153483333omplex @ S3 )
     => ~ ( finite3207457112153483333omplex @ ( minus_811609699411566653omplex @ S3 @ ( insert_complex @ A @ bot_bot_set_complex ) ) ) ) ).

% infinite_remove
thf(fact_2612_infinite__remove,axiom,
    ! [S3: set_real,A: real] :
      ( ~ ( finite_finite_real @ S3 )
     => ~ ( finite_finite_real @ ( minus_minus_set_real @ S3 @ ( insert_real @ A @ bot_bot_set_real ) ) ) ) ).

% infinite_remove
thf(fact_2613_infinite__remove,axiom,
    ! [S3: set_o,A: $o] :
      ( ~ ( finite_finite_o @ S3 )
     => ~ ( finite_finite_o @ ( minus_minus_set_o @ S3 @ ( insert_o @ A @ bot_bot_set_o ) ) ) ) ).

% infinite_remove
thf(fact_2614_infinite__remove,axiom,
    ! [S3: set_int,A: int] :
      ( ~ ( finite_finite_int @ S3 )
     => ~ ( finite_finite_int @ ( minus_minus_set_int @ S3 @ ( insert_int @ A @ bot_bot_set_int ) ) ) ) ).

% infinite_remove
thf(fact_2615_infinite__remove,axiom,
    ! [S3: set_nat,A: nat] :
      ( ~ ( finite_finite_nat @ S3 )
     => ~ ( finite_finite_nat @ ( minus_minus_set_nat @ S3 @ ( insert_nat @ A @ bot_bot_set_nat ) ) ) ) ).

% infinite_remove
thf(fact_2616_infinite__coinduct,axiom,
    ! [X7: set_VEBT_VEBT > $o,A2: set_VEBT_VEBT] :
      ( ( X7 @ A2 )
     => ( ! [A7: set_VEBT_VEBT] :
            ( ( X7 @ A7 )
           => ? [X3: vEBT_VEBT] :
                ( ( member_VEBT_VEBT @ X3 @ A7 )
                & ( ( X7 @ ( minus_5127226145743854075T_VEBT @ A7 @ ( insert_VEBT_VEBT @ X3 @ bot_bo8194388402131092736T_VEBT ) ) )
                  | ~ ( finite5795047828879050333T_VEBT @ ( minus_5127226145743854075T_VEBT @ A7 @ ( insert_VEBT_VEBT @ X3 @ bot_bo8194388402131092736T_VEBT ) ) ) ) ) )
       => ~ ( finite5795047828879050333T_VEBT @ A2 ) ) ) ).

% infinite_coinduct
thf(fact_2617_infinite__coinduct,axiom,
    ! [X7: set_complex > $o,A2: set_complex] :
      ( ( X7 @ A2 )
     => ( ! [A7: set_complex] :
            ( ( X7 @ A7 )
           => ? [X3: complex] :
                ( ( member_complex @ X3 @ A7 )
                & ( ( X7 @ ( minus_811609699411566653omplex @ A7 @ ( insert_complex @ X3 @ bot_bot_set_complex ) ) )
                  | ~ ( finite3207457112153483333omplex @ ( minus_811609699411566653omplex @ A7 @ ( insert_complex @ X3 @ bot_bot_set_complex ) ) ) ) ) )
       => ~ ( finite3207457112153483333omplex @ A2 ) ) ) ).

% infinite_coinduct
thf(fact_2618_infinite__coinduct,axiom,
    ! [X7: set_real > $o,A2: set_real] :
      ( ( X7 @ A2 )
     => ( ! [A7: set_real] :
            ( ( X7 @ A7 )
           => ? [X3: real] :
                ( ( member_real @ X3 @ A7 )
                & ( ( X7 @ ( minus_minus_set_real @ A7 @ ( insert_real @ X3 @ bot_bot_set_real ) ) )
                  | ~ ( finite_finite_real @ ( minus_minus_set_real @ A7 @ ( insert_real @ X3 @ bot_bot_set_real ) ) ) ) ) )
       => ~ ( finite_finite_real @ A2 ) ) ) ).

% infinite_coinduct
thf(fact_2619_infinite__coinduct,axiom,
    ! [X7: set_o > $o,A2: set_o] :
      ( ( X7 @ A2 )
     => ( ! [A7: set_o] :
            ( ( X7 @ A7 )
           => ? [X3: $o] :
                ( ( member_o @ X3 @ A7 )
                & ( ( X7 @ ( minus_minus_set_o @ A7 @ ( insert_o @ X3 @ bot_bot_set_o ) ) )
                  | ~ ( finite_finite_o @ ( minus_minus_set_o @ A7 @ ( insert_o @ X3 @ bot_bot_set_o ) ) ) ) ) )
       => ~ ( finite_finite_o @ A2 ) ) ) ).

% infinite_coinduct
thf(fact_2620_infinite__coinduct,axiom,
    ! [X7: set_int > $o,A2: set_int] :
      ( ( X7 @ A2 )
     => ( ! [A7: set_int] :
            ( ( X7 @ A7 )
           => ? [X3: int] :
                ( ( member_int @ X3 @ A7 )
                & ( ( X7 @ ( minus_minus_set_int @ A7 @ ( insert_int @ X3 @ bot_bot_set_int ) ) )
                  | ~ ( finite_finite_int @ ( minus_minus_set_int @ A7 @ ( insert_int @ X3 @ bot_bot_set_int ) ) ) ) ) )
       => ~ ( finite_finite_int @ A2 ) ) ) ).

% infinite_coinduct
thf(fact_2621_infinite__coinduct,axiom,
    ! [X7: set_nat > $o,A2: set_nat] :
      ( ( X7 @ A2 )
     => ( ! [A7: set_nat] :
            ( ( X7 @ A7 )
           => ? [X3: nat] :
                ( ( member_nat @ X3 @ A7 )
                & ( ( X7 @ ( minus_minus_set_nat @ A7 @ ( insert_nat @ X3 @ bot_bot_set_nat ) ) )
                  | ~ ( finite_finite_nat @ ( minus_minus_set_nat @ A7 @ ( insert_nat @ X3 @ bot_bot_set_nat ) ) ) ) ) )
       => ~ ( finite_finite_nat @ A2 ) ) ) ).

% infinite_coinduct
thf(fact_2622_finite__empty__induct,axiom,
    ! [A2: set_VEBT_VEBT,P: set_VEBT_VEBT > $o] :
      ( ( finite5795047828879050333T_VEBT @ A2 )
     => ( ( P @ A2 )
       => ( ! [A6: vEBT_VEBT,A7: set_VEBT_VEBT] :
              ( ( finite5795047828879050333T_VEBT @ A7 )
             => ( ( member_VEBT_VEBT @ A6 @ A7 )
               => ( ( P @ A7 )
                 => ( P @ ( minus_5127226145743854075T_VEBT @ A7 @ ( insert_VEBT_VEBT @ A6 @ bot_bo8194388402131092736T_VEBT ) ) ) ) ) )
         => ( P @ bot_bo8194388402131092736T_VEBT ) ) ) ) ).

% finite_empty_induct
thf(fact_2623_finite__empty__induct,axiom,
    ! [A2: set_set_nat,P: set_set_nat > $o] :
      ( ( finite1152437895449049373et_nat @ A2 )
     => ( ( P @ A2 )
       => ( ! [A6: set_nat,A7: set_set_nat] :
              ( ( finite1152437895449049373et_nat @ A7 )
             => ( ( member_set_nat @ A6 @ A7 )
               => ( ( P @ A7 )
                 => ( P @ ( minus_2163939370556025621et_nat @ A7 @ ( insert_set_nat @ A6 @ bot_bot_set_set_nat ) ) ) ) ) )
         => ( P @ bot_bot_set_set_nat ) ) ) ) ).

% finite_empty_induct
thf(fact_2624_finite__empty__induct,axiom,
    ! [A2: set_complex,P: set_complex > $o] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( ( P @ A2 )
       => ( ! [A6: complex,A7: set_complex] :
              ( ( finite3207457112153483333omplex @ A7 )
             => ( ( member_complex @ A6 @ A7 )
               => ( ( P @ A7 )
                 => ( P @ ( minus_811609699411566653omplex @ A7 @ ( insert_complex @ A6 @ bot_bot_set_complex ) ) ) ) ) )
         => ( P @ bot_bot_set_complex ) ) ) ) ).

% finite_empty_induct
thf(fact_2625_finite__empty__induct,axiom,
    ! [A2: set_real,P: set_real > $o] :
      ( ( finite_finite_real @ A2 )
     => ( ( P @ A2 )
       => ( ! [A6: real,A7: set_real] :
              ( ( finite_finite_real @ A7 )
             => ( ( member_real @ A6 @ A7 )
               => ( ( P @ A7 )
                 => ( P @ ( minus_minus_set_real @ A7 @ ( insert_real @ A6 @ bot_bot_set_real ) ) ) ) ) )
         => ( P @ bot_bot_set_real ) ) ) ) ).

% finite_empty_induct
thf(fact_2626_finite__empty__induct,axiom,
    ! [A2: set_o,P: set_o > $o] :
      ( ( finite_finite_o @ A2 )
     => ( ( P @ A2 )
       => ( ! [A6: $o,A7: set_o] :
              ( ( finite_finite_o @ A7 )
             => ( ( member_o @ A6 @ A7 )
               => ( ( P @ A7 )
                 => ( P @ ( minus_minus_set_o @ A7 @ ( insert_o @ A6 @ bot_bot_set_o ) ) ) ) ) )
         => ( P @ bot_bot_set_o ) ) ) ) ).

% finite_empty_induct
thf(fact_2627_finite__empty__induct,axiom,
    ! [A2: set_int,P: set_int > $o] :
      ( ( finite_finite_int @ A2 )
     => ( ( P @ A2 )
       => ( ! [A6: int,A7: set_int] :
              ( ( finite_finite_int @ A7 )
             => ( ( member_int @ A6 @ A7 )
               => ( ( P @ A7 )
                 => ( P @ ( minus_minus_set_int @ A7 @ ( insert_int @ A6 @ bot_bot_set_int ) ) ) ) ) )
         => ( P @ bot_bot_set_int ) ) ) ) ).

% finite_empty_induct
thf(fact_2628_finite__empty__induct,axiom,
    ! [A2: set_nat,P: set_nat > $o] :
      ( ( finite_finite_nat @ A2 )
     => ( ( P @ A2 )
       => ( ! [A6: nat,A7: set_nat] :
              ( ( finite_finite_nat @ A7 )
             => ( ( member_nat @ A6 @ A7 )
               => ( ( P @ A7 )
                 => ( P @ ( minus_minus_set_nat @ A7 @ ( insert_nat @ A6 @ bot_bot_set_nat ) ) ) ) ) )
         => ( P @ bot_bot_set_nat ) ) ) ) ).

% finite_empty_induct
thf(fact_2629_subset__insert__iff,axiom,
    ! [A2: set_VEBT_VEBT,X2: vEBT_VEBT,B3: set_VEBT_VEBT] :
      ( ( ord_le4337996190870823476T_VEBT @ A2 @ ( insert_VEBT_VEBT @ X2 @ B3 ) )
      = ( ( ( member_VEBT_VEBT @ X2 @ A2 )
         => ( ord_le4337996190870823476T_VEBT @ ( minus_5127226145743854075T_VEBT @ A2 @ ( insert_VEBT_VEBT @ X2 @ bot_bo8194388402131092736T_VEBT ) ) @ B3 ) )
        & ( ~ ( member_VEBT_VEBT @ X2 @ A2 )
         => ( ord_le4337996190870823476T_VEBT @ A2 @ B3 ) ) ) ) ).

% subset_insert_iff
thf(fact_2630_subset__insert__iff,axiom,
    ! [A2: set_complex,X2: complex,B3: set_complex] :
      ( ( ord_le211207098394363844omplex @ A2 @ ( insert_complex @ X2 @ B3 ) )
      = ( ( ( member_complex @ X2 @ A2 )
         => ( ord_le211207098394363844omplex @ ( minus_811609699411566653omplex @ A2 @ ( insert_complex @ X2 @ bot_bot_set_complex ) ) @ B3 ) )
        & ( ~ ( member_complex @ X2 @ A2 )
         => ( ord_le211207098394363844omplex @ A2 @ B3 ) ) ) ) ).

% subset_insert_iff
thf(fact_2631_subset__insert__iff,axiom,
    ! [A2: set_set_nat,X2: set_nat,B3: set_set_nat] :
      ( ( ord_le6893508408891458716et_nat @ A2 @ ( insert_set_nat @ X2 @ B3 ) )
      = ( ( ( member_set_nat @ X2 @ A2 )
         => ( ord_le6893508408891458716et_nat @ ( minus_2163939370556025621et_nat @ A2 @ ( insert_set_nat @ X2 @ bot_bot_set_set_nat ) ) @ B3 ) )
        & ( ~ ( member_set_nat @ X2 @ A2 )
         => ( ord_le6893508408891458716et_nat @ A2 @ B3 ) ) ) ) ).

% subset_insert_iff
thf(fact_2632_subset__insert__iff,axiom,
    ! [A2: set_real,X2: real,B3: set_real] :
      ( ( ord_less_eq_set_real @ A2 @ ( insert_real @ X2 @ B3 ) )
      = ( ( ( member_real @ X2 @ A2 )
         => ( ord_less_eq_set_real @ ( minus_minus_set_real @ A2 @ ( insert_real @ X2 @ bot_bot_set_real ) ) @ B3 ) )
        & ( ~ ( member_real @ X2 @ A2 )
         => ( ord_less_eq_set_real @ A2 @ B3 ) ) ) ) ).

% subset_insert_iff
thf(fact_2633_subset__insert__iff,axiom,
    ! [A2: set_o,X2: $o,B3: set_o] :
      ( ( ord_less_eq_set_o @ A2 @ ( insert_o @ X2 @ B3 ) )
      = ( ( ( member_o @ X2 @ A2 )
         => ( ord_less_eq_set_o @ ( minus_minus_set_o @ A2 @ ( insert_o @ X2 @ bot_bot_set_o ) ) @ B3 ) )
        & ( ~ ( member_o @ X2 @ A2 )
         => ( ord_less_eq_set_o @ A2 @ B3 ) ) ) ) ).

% subset_insert_iff
thf(fact_2634_subset__insert__iff,axiom,
    ! [A2: set_nat,X2: nat,B3: set_nat] :
      ( ( ord_less_eq_set_nat @ A2 @ ( insert_nat @ X2 @ B3 ) )
      = ( ( ( member_nat @ X2 @ A2 )
         => ( ord_less_eq_set_nat @ ( minus_minus_set_nat @ A2 @ ( insert_nat @ X2 @ bot_bot_set_nat ) ) @ B3 ) )
        & ( ~ ( member_nat @ X2 @ A2 )
         => ( ord_less_eq_set_nat @ A2 @ B3 ) ) ) ) ).

% subset_insert_iff
thf(fact_2635_subset__insert__iff,axiom,
    ! [A2: set_int,X2: int,B3: set_int] :
      ( ( ord_less_eq_set_int @ A2 @ ( insert_int @ X2 @ B3 ) )
      = ( ( ( member_int @ X2 @ A2 )
         => ( ord_less_eq_set_int @ ( minus_minus_set_int @ A2 @ ( insert_int @ X2 @ bot_bot_set_int ) ) @ B3 ) )
        & ( ~ ( member_int @ X2 @ A2 )
         => ( ord_less_eq_set_int @ A2 @ B3 ) ) ) ) ).

% subset_insert_iff
thf(fact_2636_Diff__single__insert,axiom,
    ! [A2: set_VEBT_VEBT,X2: vEBT_VEBT,B3: set_VEBT_VEBT] :
      ( ( ord_le4337996190870823476T_VEBT @ ( minus_5127226145743854075T_VEBT @ A2 @ ( insert_VEBT_VEBT @ X2 @ bot_bo8194388402131092736T_VEBT ) ) @ B3 )
     => ( ord_le4337996190870823476T_VEBT @ A2 @ ( insert_VEBT_VEBT @ X2 @ B3 ) ) ) ).

% Diff_single_insert
thf(fact_2637_Diff__single__insert,axiom,
    ! [A2: set_real,X2: real,B3: set_real] :
      ( ( ord_less_eq_set_real @ ( minus_minus_set_real @ A2 @ ( insert_real @ X2 @ bot_bot_set_real ) ) @ B3 )
     => ( ord_less_eq_set_real @ A2 @ ( insert_real @ X2 @ B3 ) ) ) ).

% Diff_single_insert
thf(fact_2638_Diff__single__insert,axiom,
    ! [A2: set_o,X2: $o,B3: set_o] :
      ( ( ord_less_eq_set_o @ ( minus_minus_set_o @ A2 @ ( insert_o @ X2 @ bot_bot_set_o ) ) @ B3 )
     => ( ord_less_eq_set_o @ A2 @ ( insert_o @ X2 @ B3 ) ) ) ).

% Diff_single_insert
thf(fact_2639_Diff__single__insert,axiom,
    ! [A2: set_nat,X2: nat,B3: set_nat] :
      ( ( ord_less_eq_set_nat @ ( minus_minus_set_nat @ A2 @ ( insert_nat @ X2 @ bot_bot_set_nat ) ) @ B3 )
     => ( ord_less_eq_set_nat @ A2 @ ( insert_nat @ X2 @ B3 ) ) ) ).

% Diff_single_insert
thf(fact_2640_Diff__single__insert,axiom,
    ! [A2: set_int,X2: int,B3: set_int] :
      ( ( ord_less_eq_set_int @ ( minus_minus_set_int @ A2 @ ( insert_int @ X2 @ bot_bot_set_int ) ) @ B3 )
     => ( ord_less_eq_set_int @ A2 @ ( insert_int @ X2 @ B3 ) ) ) ).

% Diff_single_insert
thf(fact_2641_finite__remove__induct,axiom,
    ! [B3: set_VEBT_VEBT,P: set_VEBT_VEBT > $o] :
      ( ( finite5795047828879050333T_VEBT @ B3 )
     => ( ( P @ bot_bo8194388402131092736T_VEBT )
       => ( ! [A7: set_VEBT_VEBT] :
              ( ( finite5795047828879050333T_VEBT @ A7 )
             => ( ( A7 != bot_bo8194388402131092736T_VEBT )
               => ( ( ord_le4337996190870823476T_VEBT @ A7 @ B3 )
                 => ( ! [X3: vEBT_VEBT] :
                        ( ( member_VEBT_VEBT @ X3 @ A7 )
                       => ( P @ ( minus_5127226145743854075T_VEBT @ A7 @ ( insert_VEBT_VEBT @ X3 @ bot_bo8194388402131092736T_VEBT ) ) ) )
                   => ( P @ A7 ) ) ) ) )
         => ( P @ B3 ) ) ) ) ).

% finite_remove_induct
thf(fact_2642_finite__remove__induct,axiom,
    ! [B3: set_set_nat,P: set_set_nat > $o] :
      ( ( finite1152437895449049373et_nat @ B3 )
     => ( ( P @ bot_bot_set_set_nat )
       => ( ! [A7: set_set_nat] :
              ( ( finite1152437895449049373et_nat @ A7 )
             => ( ( A7 != bot_bot_set_set_nat )
               => ( ( ord_le6893508408891458716et_nat @ A7 @ B3 )
                 => ( ! [X3: set_nat] :
                        ( ( member_set_nat @ X3 @ A7 )
                       => ( P @ ( minus_2163939370556025621et_nat @ A7 @ ( insert_set_nat @ X3 @ bot_bot_set_set_nat ) ) ) )
                   => ( P @ A7 ) ) ) ) )
         => ( P @ B3 ) ) ) ) ).

% finite_remove_induct
thf(fact_2643_finite__remove__induct,axiom,
    ! [B3: set_complex,P: set_complex > $o] :
      ( ( finite3207457112153483333omplex @ B3 )
     => ( ( P @ bot_bot_set_complex )
       => ( ! [A7: set_complex] :
              ( ( finite3207457112153483333omplex @ A7 )
             => ( ( A7 != bot_bot_set_complex )
               => ( ( ord_le211207098394363844omplex @ A7 @ B3 )
                 => ( ! [X3: complex] :
                        ( ( member_complex @ X3 @ A7 )
                       => ( P @ ( minus_811609699411566653omplex @ A7 @ ( insert_complex @ X3 @ bot_bot_set_complex ) ) ) )
                   => ( P @ A7 ) ) ) ) )
         => ( P @ B3 ) ) ) ) ).

% finite_remove_induct
thf(fact_2644_finite__remove__induct,axiom,
    ! [B3: set_real,P: set_real > $o] :
      ( ( finite_finite_real @ B3 )
     => ( ( P @ bot_bot_set_real )
       => ( ! [A7: set_real] :
              ( ( finite_finite_real @ A7 )
             => ( ( A7 != bot_bot_set_real )
               => ( ( ord_less_eq_set_real @ A7 @ B3 )
                 => ( ! [X3: real] :
                        ( ( member_real @ X3 @ A7 )
                       => ( P @ ( minus_minus_set_real @ A7 @ ( insert_real @ X3 @ bot_bot_set_real ) ) ) )
                   => ( P @ A7 ) ) ) ) )
         => ( P @ B3 ) ) ) ) ).

% finite_remove_induct
thf(fact_2645_finite__remove__induct,axiom,
    ! [B3: set_o,P: set_o > $o] :
      ( ( finite_finite_o @ B3 )
     => ( ( P @ bot_bot_set_o )
       => ( ! [A7: set_o] :
              ( ( finite_finite_o @ A7 )
             => ( ( A7 != bot_bot_set_o )
               => ( ( ord_less_eq_set_o @ A7 @ B3 )
                 => ( ! [X3: $o] :
                        ( ( member_o @ X3 @ A7 )
                       => ( P @ ( minus_minus_set_o @ A7 @ ( insert_o @ X3 @ bot_bot_set_o ) ) ) )
                   => ( P @ A7 ) ) ) ) )
         => ( P @ B3 ) ) ) ) ).

% finite_remove_induct
thf(fact_2646_finite__remove__induct,axiom,
    ! [B3: set_nat,P: set_nat > $o] :
      ( ( finite_finite_nat @ B3 )
     => ( ( P @ bot_bot_set_nat )
       => ( ! [A7: set_nat] :
              ( ( finite_finite_nat @ A7 )
             => ( ( A7 != bot_bot_set_nat )
               => ( ( ord_less_eq_set_nat @ A7 @ B3 )
                 => ( ! [X3: nat] :
                        ( ( member_nat @ X3 @ A7 )
                       => ( P @ ( minus_minus_set_nat @ A7 @ ( insert_nat @ X3 @ bot_bot_set_nat ) ) ) )
                   => ( P @ A7 ) ) ) ) )
         => ( P @ B3 ) ) ) ) ).

% finite_remove_induct
thf(fact_2647_finite__remove__induct,axiom,
    ! [B3: set_int,P: set_int > $o] :
      ( ( finite_finite_int @ B3 )
     => ( ( P @ bot_bot_set_int )
       => ( ! [A7: set_int] :
              ( ( finite_finite_int @ A7 )
             => ( ( A7 != bot_bot_set_int )
               => ( ( ord_less_eq_set_int @ A7 @ B3 )
                 => ( ! [X3: int] :
                        ( ( member_int @ X3 @ A7 )
                       => ( P @ ( minus_minus_set_int @ A7 @ ( insert_int @ X3 @ bot_bot_set_int ) ) ) )
                   => ( P @ A7 ) ) ) ) )
         => ( P @ B3 ) ) ) ) ).

% finite_remove_induct
thf(fact_2648_remove__induct,axiom,
    ! [P: set_VEBT_VEBT > $o,B3: set_VEBT_VEBT] :
      ( ( P @ bot_bo8194388402131092736T_VEBT )
     => ( ( ~ ( finite5795047828879050333T_VEBT @ B3 )
         => ( P @ B3 ) )
       => ( ! [A7: set_VEBT_VEBT] :
              ( ( finite5795047828879050333T_VEBT @ A7 )
             => ( ( A7 != bot_bo8194388402131092736T_VEBT )
               => ( ( ord_le4337996190870823476T_VEBT @ A7 @ B3 )
                 => ( ! [X3: vEBT_VEBT] :
                        ( ( member_VEBT_VEBT @ X3 @ A7 )
                       => ( P @ ( minus_5127226145743854075T_VEBT @ A7 @ ( insert_VEBT_VEBT @ X3 @ bot_bo8194388402131092736T_VEBT ) ) ) )
                   => ( P @ A7 ) ) ) ) )
         => ( P @ B3 ) ) ) ) ).

% remove_induct
thf(fact_2649_remove__induct,axiom,
    ! [P: set_set_nat > $o,B3: set_set_nat] :
      ( ( P @ bot_bot_set_set_nat )
     => ( ( ~ ( finite1152437895449049373et_nat @ B3 )
         => ( P @ B3 ) )
       => ( ! [A7: set_set_nat] :
              ( ( finite1152437895449049373et_nat @ A7 )
             => ( ( A7 != bot_bot_set_set_nat )
               => ( ( ord_le6893508408891458716et_nat @ A7 @ B3 )
                 => ( ! [X3: set_nat] :
                        ( ( member_set_nat @ X3 @ A7 )
                       => ( P @ ( minus_2163939370556025621et_nat @ A7 @ ( insert_set_nat @ X3 @ bot_bot_set_set_nat ) ) ) )
                   => ( P @ A7 ) ) ) ) )
         => ( P @ B3 ) ) ) ) ).

% remove_induct
thf(fact_2650_remove__induct,axiom,
    ! [P: set_complex > $o,B3: set_complex] :
      ( ( P @ bot_bot_set_complex )
     => ( ( ~ ( finite3207457112153483333omplex @ B3 )
         => ( P @ B3 ) )
       => ( ! [A7: set_complex] :
              ( ( finite3207457112153483333omplex @ A7 )
             => ( ( A7 != bot_bot_set_complex )
               => ( ( ord_le211207098394363844omplex @ A7 @ B3 )
                 => ( ! [X3: complex] :
                        ( ( member_complex @ X3 @ A7 )
                       => ( P @ ( minus_811609699411566653omplex @ A7 @ ( insert_complex @ X3 @ bot_bot_set_complex ) ) ) )
                   => ( P @ A7 ) ) ) ) )
         => ( P @ B3 ) ) ) ) ).

% remove_induct
thf(fact_2651_remove__induct,axiom,
    ! [P: set_real > $o,B3: set_real] :
      ( ( P @ bot_bot_set_real )
     => ( ( ~ ( finite_finite_real @ B3 )
         => ( P @ B3 ) )
       => ( ! [A7: set_real] :
              ( ( finite_finite_real @ A7 )
             => ( ( A7 != bot_bot_set_real )
               => ( ( ord_less_eq_set_real @ A7 @ B3 )
                 => ( ! [X3: real] :
                        ( ( member_real @ X3 @ A7 )
                       => ( P @ ( minus_minus_set_real @ A7 @ ( insert_real @ X3 @ bot_bot_set_real ) ) ) )
                   => ( P @ A7 ) ) ) ) )
         => ( P @ B3 ) ) ) ) ).

% remove_induct
thf(fact_2652_remove__induct,axiom,
    ! [P: set_o > $o,B3: set_o] :
      ( ( P @ bot_bot_set_o )
     => ( ( ~ ( finite_finite_o @ B3 )
         => ( P @ B3 ) )
       => ( ! [A7: set_o] :
              ( ( finite_finite_o @ A7 )
             => ( ( A7 != bot_bot_set_o )
               => ( ( ord_less_eq_set_o @ A7 @ B3 )
                 => ( ! [X3: $o] :
                        ( ( member_o @ X3 @ A7 )
                       => ( P @ ( minus_minus_set_o @ A7 @ ( insert_o @ X3 @ bot_bot_set_o ) ) ) )
                   => ( P @ A7 ) ) ) ) )
         => ( P @ B3 ) ) ) ) ).

% remove_induct
thf(fact_2653_remove__induct,axiom,
    ! [P: set_nat > $o,B3: set_nat] :
      ( ( P @ bot_bot_set_nat )
     => ( ( ~ ( finite_finite_nat @ B3 )
         => ( P @ B3 ) )
       => ( ! [A7: set_nat] :
              ( ( finite_finite_nat @ A7 )
             => ( ( A7 != bot_bot_set_nat )
               => ( ( ord_less_eq_set_nat @ A7 @ B3 )
                 => ( ! [X3: nat] :
                        ( ( member_nat @ X3 @ A7 )
                       => ( P @ ( minus_minus_set_nat @ A7 @ ( insert_nat @ X3 @ bot_bot_set_nat ) ) ) )
                   => ( P @ A7 ) ) ) ) )
         => ( P @ B3 ) ) ) ) ).

% remove_induct
thf(fact_2654_remove__induct,axiom,
    ! [P: set_int > $o,B3: set_int] :
      ( ( P @ bot_bot_set_int )
     => ( ( ~ ( finite_finite_int @ B3 )
         => ( P @ B3 ) )
       => ( ! [A7: set_int] :
              ( ( finite_finite_int @ A7 )
             => ( ( A7 != bot_bot_set_int )
               => ( ( ord_less_eq_set_int @ A7 @ B3 )
                 => ( ! [X3: int] :
                        ( ( member_int @ X3 @ A7 )
                       => ( P @ ( minus_minus_set_int @ A7 @ ( insert_int @ X3 @ bot_bot_set_int ) ) ) )
                   => ( P @ A7 ) ) ) ) )
         => ( P @ B3 ) ) ) ) ).

% remove_induct
thf(fact_2655_finite__induct__select,axiom,
    ! [S3: set_VEBT_VEBT,P: set_VEBT_VEBT > $o] :
      ( ( finite5795047828879050333T_VEBT @ S3 )
     => ( ( P @ bot_bo8194388402131092736T_VEBT )
       => ( ! [T4: set_VEBT_VEBT] :
              ( ( ord_le3480810397992357184T_VEBT @ T4 @ S3 )
             => ( ( P @ T4 )
               => ? [X3: vEBT_VEBT] :
                    ( ( member_VEBT_VEBT @ X3 @ ( minus_5127226145743854075T_VEBT @ S3 @ T4 ) )
                    & ( P @ ( insert_VEBT_VEBT @ X3 @ T4 ) ) ) ) )
         => ( P @ S3 ) ) ) ) ).

% finite_induct_select
thf(fact_2656_finite__induct__select,axiom,
    ! [S3: set_complex,P: set_complex > $o] :
      ( ( finite3207457112153483333omplex @ S3 )
     => ( ( P @ bot_bot_set_complex )
       => ( ! [T4: set_complex] :
              ( ( ord_less_set_complex @ T4 @ S3 )
             => ( ( P @ T4 )
               => ? [X3: complex] :
                    ( ( member_complex @ X3 @ ( minus_811609699411566653omplex @ S3 @ T4 ) )
                    & ( P @ ( insert_complex @ X3 @ T4 ) ) ) ) )
         => ( P @ S3 ) ) ) ) ).

% finite_induct_select
thf(fact_2657_finite__induct__select,axiom,
    ! [S3: set_real,P: set_real > $o] :
      ( ( finite_finite_real @ S3 )
     => ( ( P @ bot_bot_set_real )
       => ( ! [T4: set_real] :
              ( ( ord_less_set_real @ T4 @ S3 )
             => ( ( P @ T4 )
               => ? [X3: real] :
                    ( ( member_real @ X3 @ ( minus_minus_set_real @ S3 @ T4 ) )
                    & ( P @ ( insert_real @ X3 @ T4 ) ) ) ) )
         => ( P @ S3 ) ) ) ) ).

% finite_induct_select
thf(fact_2658_finite__induct__select,axiom,
    ! [S3: set_o,P: set_o > $o] :
      ( ( finite_finite_o @ S3 )
     => ( ( P @ bot_bot_set_o )
       => ( ! [T4: set_o] :
              ( ( ord_less_set_o @ T4 @ S3 )
             => ( ( P @ T4 )
               => ? [X3: $o] :
                    ( ( member_o @ X3 @ ( minus_minus_set_o @ S3 @ T4 ) )
                    & ( P @ ( insert_o @ X3 @ T4 ) ) ) ) )
         => ( P @ S3 ) ) ) ) ).

% finite_induct_select
thf(fact_2659_finite__induct__select,axiom,
    ! [S3: set_int,P: set_int > $o] :
      ( ( finite_finite_int @ S3 )
     => ( ( P @ bot_bot_set_int )
       => ( ! [T4: set_int] :
              ( ( ord_less_set_int @ T4 @ S3 )
             => ( ( P @ T4 )
               => ? [X3: int] :
                    ( ( member_int @ X3 @ ( minus_minus_set_int @ S3 @ T4 ) )
                    & ( P @ ( insert_int @ X3 @ T4 ) ) ) ) )
         => ( P @ S3 ) ) ) ) ).

% finite_induct_select
thf(fact_2660_finite__induct__select,axiom,
    ! [S3: set_nat,P: set_nat > $o] :
      ( ( finite_finite_nat @ S3 )
     => ( ( P @ bot_bot_set_nat )
       => ( ! [T4: set_nat] :
              ( ( ord_less_set_nat @ T4 @ S3 )
             => ( ( P @ T4 )
               => ? [X3: nat] :
                    ( ( member_nat @ X3 @ ( minus_minus_set_nat @ S3 @ T4 ) )
                    & ( P @ ( insert_nat @ X3 @ T4 ) ) ) ) )
         => ( P @ S3 ) ) ) ) ).

% finite_induct_select
thf(fact_2661_psubset__insert__iff,axiom,
    ! [A2: set_VEBT_VEBT,X2: vEBT_VEBT,B3: set_VEBT_VEBT] :
      ( ( ord_le3480810397992357184T_VEBT @ A2 @ ( insert_VEBT_VEBT @ X2 @ B3 ) )
      = ( ( ( member_VEBT_VEBT @ X2 @ B3 )
         => ( ord_le3480810397992357184T_VEBT @ A2 @ B3 ) )
        & ( ~ ( member_VEBT_VEBT @ X2 @ B3 )
         => ( ( ( member_VEBT_VEBT @ X2 @ A2 )
             => ( ord_le3480810397992357184T_VEBT @ ( minus_5127226145743854075T_VEBT @ A2 @ ( insert_VEBT_VEBT @ X2 @ bot_bo8194388402131092736T_VEBT ) ) @ B3 ) )
            & ( ~ ( member_VEBT_VEBT @ X2 @ A2 )
             => ( ord_le4337996190870823476T_VEBT @ A2 @ B3 ) ) ) ) ) ) ).

% psubset_insert_iff
thf(fact_2662_psubset__insert__iff,axiom,
    ! [A2: set_complex,X2: complex,B3: set_complex] :
      ( ( ord_less_set_complex @ A2 @ ( insert_complex @ X2 @ B3 ) )
      = ( ( ( member_complex @ X2 @ B3 )
         => ( ord_less_set_complex @ A2 @ B3 ) )
        & ( ~ ( member_complex @ X2 @ B3 )
         => ( ( ( member_complex @ X2 @ A2 )
             => ( ord_less_set_complex @ ( minus_811609699411566653omplex @ A2 @ ( insert_complex @ X2 @ bot_bot_set_complex ) ) @ B3 ) )
            & ( ~ ( member_complex @ X2 @ A2 )
             => ( ord_le211207098394363844omplex @ A2 @ B3 ) ) ) ) ) ) ).

% psubset_insert_iff
thf(fact_2663_psubset__insert__iff,axiom,
    ! [A2: set_set_nat,X2: set_nat,B3: set_set_nat] :
      ( ( ord_less_set_set_nat @ A2 @ ( insert_set_nat @ X2 @ B3 ) )
      = ( ( ( member_set_nat @ X2 @ B3 )
         => ( ord_less_set_set_nat @ A2 @ B3 ) )
        & ( ~ ( member_set_nat @ X2 @ B3 )
         => ( ( ( member_set_nat @ X2 @ A2 )
             => ( ord_less_set_set_nat @ ( minus_2163939370556025621et_nat @ A2 @ ( insert_set_nat @ X2 @ bot_bot_set_set_nat ) ) @ B3 ) )
            & ( ~ ( member_set_nat @ X2 @ A2 )
             => ( ord_le6893508408891458716et_nat @ A2 @ B3 ) ) ) ) ) ) ).

% psubset_insert_iff
thf(fact_2664_psubset__insert__iff,axiom,
    ! [A2: set_real,X2: real,B3: set_real] :
      ( ( ord_less_set_real @ A2 @ ( insert_real @ X2 @ B3 ) )
      = ( ( ( member_real @ X2 @ B3 )
         => ( ord_less_set_real @ A2 @ B3 ) )
        & ( ~ ( member_real @ X2 @ B3 )
         => ( ( ( member_real @ X2 @ A2 )
             => ( ord_less_set_real @ ( minus_minus_set_real @ A2 @ ( insert_real @ X2 @ bot_bot_set_real ) ) @ B3 ) )
            & ( ~ ( member_real @ X2 @ A2 )
             => ( ord_less_eq_set_real @ A2 @ B3 ) ) ) ) ) ) ).

% psubset_insert_iff
thf(fact_2665_psubset__insert__iff,axiom,
    ! [A2: set_o,X2: $o,B3: set_o] :
      ( ( ord_less_set_o @ A2 @ ( insert_o @ X2 @ B3 ) )
      = ( ( ( member_o @ X2 @ B3 )
         => ( ord_less_set_o @ A2 @ B3 ) )
        & ( ~ ( member_o @ X2 @ B3 )
         => ( ( ( member_o @ X2 @ A2 )
             => ( ord_less_set_o @ ( minus_minus_set_o @ A2 @ ( insert_o @ X2 @ bot_bot_set_o ) ) @ B3 ) )
            & ( ~ ( member_o @ X2 @ A2 )
             => ( ord_less_eq_set_o @ A2 @ B3 ) ) ) ) ) ) ).

% psubset_insert_iff
thf(fact_2666_psubset__insert__iff,axiom,
    ! [A2: set_nat,X2: nat,B3: set_nat] :
      ( ( ord_less_set_nat @ A2 @ ( insert_nat @ X2 @ B3 ) )
      = ( ( ( member_nat @ X2 @ B3 )
         => ( ord_less_set_nat @ A2 @ B3 ) )
        & ( ~ ( member_nat @ X2 @ B3 )
         => ( ( ( member_nat @ X2 @ A2 )
             => ( ord_less_set_nat @ ( minus_minus_set_nat @ A2 @ ( insert_nat @ X2 @ bot_bot_set_nat ) ) @ B3 ) )
            & ( ~ ( member_nat @ X2 @ A2 )
             => ( ord_less_eq_set_nat @ A2 @ B3 ) ) ) ) ) ) ).

% psubset_insert_iff
thf(fact_2667_psubset__insert__iff,axiom,
    ! [A2: set_int,X2: int,B3: set_int] :
      ( ( ord_less_set_int @ A2 @ ( insert_int @ X2 @ B3 ) )
      = ( ( ( member_int @ X2 @ B3 )
         => ( ord_less_set_int @ A2 @ B3 ) )
        & ( ~ ( member_int @ X2 @ B3 )
         => ( ( ( member_int @ X2 @ A2 )
             => ( ord_less_set_int @ ( minus_minus_set_int @ A2 @ ( insert_int @ X2 @ bot_bot_set_int ) ) @ B3 ) )
            & ( ~ ( member_int @ X2 @ A2 )
             => ( ord_less_eq_set_int @ A2 @ B3 ) ) ) ) ) ) ).

% psubset_insert_iff
thf(fact_2668_VEBT__internal_Ooption__comp__shift_Ocases,axiom,
    ! [X2: produc5491161045314408544at_nat] :
      ( ! [Uu2: product_prod_nat_nat > product_prod_nat_nat > $o,Uv2: option4927543243414619207at_nat] :
          ( X2
         != ( produc3994169339658061776at_nat @ Uu2 @ ( produc488173922507101015at_nat @ none_P5556105721700978146at_nat @ Uv2 ) ) )
     => ( ! [Uw2: product_prod_nat_nat > product_prod_nat_nat > $o,V2: product_prod_nat_nat] :
            ( X2
           != ( produc3994169339658061776at_nat @ Uw2 @ ( produc488173922507101015at_nat @ ( some_P7363390416028606310at_nat @ V2 ) @ none_P5556105721700978146at_nat ) ) )
       => ~ ! [F5: product_prod_nat_nat > product_prod_nat_nat > $o,X4: product_prod_nat_nat,Y3: product_prod_nat_nat] :
              ( X2
             != ( produc3994169339658061776at_nat @ F5 @ ( produc488173922507101015at_nat @ ( some_P7363390416028606310at_nat @ X4 ) @ ( some_P7363390416028606310at_nat @ Y3 ) ) ) ) ) ) ).

% VEBT_internal.option_comp_shift.cases
thf(fact_2669_VEBT__internal_Ooption__comp__shift_Ocases,axiom,
    ! [X2: produc2233624965454879586on_nat] :
      ( ! [Uu2: nat > nat > $o,Uv2: option_nat] :
          ( X2
         != ( produc4035269172776083154on_nat @ Uu2 @ ( produc5098337634421038937on_nat @ none_nat @ Uv2 ) ) )
     => ( ! [Uw2: nat > nat > $o,V2: nat] :
            ( X2
           != ( produc4035269172776083154on_nat @ Uw2 @ ( produc5098337634421038937on_nat @ ( some_nat @ V2 ) @ none_nat ) ) )
       => ~ ! [F5: nat > nat > $o,X4: nat,Y3: nat] :
              ( X2
             != ( produc4035269172776083154on_nat @ F5 @ ( produc5098337634421038937on_nat @ ( some_nat @ X4 ) @ ( some_nat @ Y3 ) ) ) ) ) ) ).

% VEBT_internal.option_comp_shift.cases
thf(fact_2670_VEBT__internal_Ooption__shift_Ocases,axiom,
    ! [X2: produc5542196010084753463at_nat] :
      ( ! [Uu2: product_prod_nat_nat > product_prod_nat_nat > product_prod_nat_nat,Uv2: option4927543243414619207at_nat] :
          ( X2
         != ( produc2899441246263362727at_nat @ Uu2 @ ( produc488173922507101015at_nat @ none_P5556105721700978146at_nat @ Uv2 ) ) )
     => ( ! [Uw2: product_prod_nat_nat > product_prod_nat_nat > product_prod_nat_nat,V2: product_prod_nat_nat] :
            ( X2
           != ( produc2899441246263362727at_nat @ Uw2 @ ( produc488173922507101015at_nat @ ( some_P7363390416028606310at_nat @ V2 ) @ none_P5556105721700978146at_nat ) ) )
       => ~ ! [F5: product_prod_nat_nat > product_prod_nat_nat > product_prod_nat_nat,A6: product_prod_nat_nat,B7: product_prod_nat_nat] :
              ( X2
             != ( produc2899441246263362727at_nat @ F5 @ ( produc488173922507101015at_nat @ ( some_P7363390416028606310at_nat @ A6 ) @ ( some_P7363390416028606310at_nat @ B7 ) ) ) ) ) ) ).

% VEBT_internal.option_shift.cases
thf(fact_2671_VEBT__internal_Ooption__shift_Ocases,axiom,
    ! [X2: produc8306885398267862888on_nat] :
      ( ! [Uu2: nat > nat > nat,Uv2: option_nat] :
          ( X2
         != ( produc8929957630744042906on_nat @ Uu2 @ ( produc5098337634421038937on_nat @ none_nat @ Uv2 ) ) )
     => ( ! [Uw2: nat > nat > nat,V2: nat] :
            ( X2
           != ( produc8929957630744042906on_nat @ Uw2 @ ( produc5098337634421038937on_nat @ ( some_nat @ V2 ) @ none_nat ) ) )
       => ~ ! [F5: nat > nat > nat,A6: nat,B7: nat] :
              ( X2
             != ( produc8929957630744042906on_nat @ F5 @ ( produc5098337634421038937on_nat @ ( some_nat @ A6 ) @ ( some_nat @ B7 ) ) ) ) ) ) ).

% VEBT_internal.option_shift.cases
thf(fact_2672_vebt__pred_Osimps_I7_J,axiom,
    ! [Ma: nat,X2: nat,Mi: nat,Va: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT] :
      ( ( ( ord_less_nat @ Ma @ X2 )
       => ( ( vEBT_vebt_pred @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList @ Summary ) @ X2 )
          = ( some_nat @ Ma ) ) )
      & ( ~ ( ord_less_nat @ Ma @ X2 )
       => ( ( vEBT_vebt_pred @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList @ Summary ) @ X2 )
          = ( if_option_nat @ ( ord_less_nat @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) )
            @ ( if_option_nat
              @ ( ( ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                 != none_nat )
                & ( vEBT_VEBT_greater @ ( some_nat @ ( vEBT_VEBT_low @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) )
              @ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( some_nat @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_pred @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
              @ ( if_option_nat
                @ ( ( vEBT_vebt_pred @ Summary @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
                  = none_nat )
                @ ( if_option_nat @ ( ord_less_nat @ Mi @ X2 ) @ ( some_nat @ Mi ) @ none_nat )
                @ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_pred @ Summary @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_pred @ Summary @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) )
            @ none_nat ) ) ) ) ).

% vebt_pred.simps(7)
thf(fact_2673_vebt__succ_Osimps_I6_J,axiom,
    ! [X2: nat,Mi: nat,Ma: nat,Va: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT] :
      ( ( ( ord_less_nat @ X2 @ Mi )
       => ( ( vEBT_vebt_succ @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList @ Summary ) @ X2 )
          = ( some_nat @ Mi ) ) )
      & ( ~ ( ord_less_nat @ X2 @ Mi )
       => ( ( vEBT_vebt_succ @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList @ Summary ) @ X2 )
          = ( if_option_nat @ ( ord_less_nat @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) )
            @ ( if_option_nat
              @ ( ( ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                 != none_nat )
                & ( vEBT_VEBT_less @ ( some_nat @ ( vEBT_VEBT_low @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) )
              @ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( some_nat @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_succ @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
              @ ( if_option_nat
                @ ( ( vEBT_vebt_succ @ Summary @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
                  = none_nat )
                @ none_nat
                @ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_succ @ Summary @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList @ ( the_nat @ ( vEBT_vebt_succ @ Summary @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) )
            @ none_nat ) ) ) ) ).

% vebt_succ.simps(6)
thf(fact_2674_vebt__mint_Osimps_I2_J,axiom,
    ! [Uu: nat,Uv: list_VEBT_VEBT,Uw: vEBT_VEBT] :
      ( ( vEBT_vebt_mint @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu @ Uv @ Uw ) )
      = none_nat ) ).

% vebt_mint.simps(2)
thf(fact_2675_vebt__maxt_Osimps_I2_J,axiom,
    ! [Uu: nat,Uv: list_VEBT_VEBT,Uw: vEBT_VEBT] :
      ( ( vEBT_vebt_maxt @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu @ Uv @ Uw ) )
      = none_nat ) ).

% vebt_maxt.simps(2)
thf(fact_2676_Max__insert,axiom,
    ! [A2: set_real,X2: real] :
      ( ( finite_finite_real @ A2 )
     => ( ( A2 != bot_bot_set_real )
       => ( ( lattic4275903605611617917x_real @ ( insert_real @ X2 @ A2 ) )
          = ( ord_max_real @ X2 @ ( lattic4275903605611617917x_real @ A2 ) ) ) ) ) ).

% Max_insert
thf(fact_2677_Max__insert,axiom,
    ! [A2: set_o,X2: $o] :
      ( ( finite_finite_o @ A2 )
     => ( ( A2 != bot_bot_set_o )
       => ( ( lattic1921953407002678535_Max_o @ ( insert_o @ X2 @ A2 ) )
          = ( ord_max_o @ X2 @ ( lattic1921953407002678535_Max_o @ A2 ) ) ) ) ) ).

% Max_insert
thf(fact_2678_Max__insert,axiom,
    ! [A2: set_Extended_enat,X2: extended_enat] :
      ( ( finite4001608067531595151d_enat @ A2 )
     => ( ( A2 != bot_bo7653980558646680370d_enat )
       => ( ( lattic921264341876707157d_enat @ ( insert_Extended_enat @ X2 @ A2 ) )
          = ( ord_ma741700101516333627d_enat @ X2 @ ( lattic921264341876707157d_enat @ A2 ) ) ) ) ) ).

% Max_insert
thf(fact_2679_Max__insert,axiom,
    ! [A2: set_nat,X2: nat] :
      ( ( finite_finite_nat @ A2 )
     => ( ( A2 != bot_bot_set_nat )
       => ( ( lattic8265883725875713057ax_nat @ ( insert_nat @ X2 @ A2 ) )
          = ( ord_max_nat @ X2 @ ( lattic8265883725875713057ax_nat @ A2 ) ) ) ) ) ).

% Max_insert
thf(fact_2680_Max__insert,axiom,
    ! [A2: set_int,X2: int] :
      ( ( finite_finite_int @ A2 )
     => ( ( A2 != bot_bot_set_int )
       => ( ( lattic8263393255366662781ax_int @ ( insert_int @ X2 @ A2 ) )
          = ( ord_max_int @ X2 @ ( lattic8263393255366662781ax_int @ A2 ) ) ) ) ) ).

% Max_insert
thf(fact_2681_Max__const,axiom,
    ! [A2: set_complex,C: nat] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( ( A2 != bot_bot_set_complex )
       => ( ( lattic8265883725875713057ax_nat
            @ ( image_complex_nat
              @ ^ [Uu3: complex] : C
              @ A2 ) )
          = C ) ) ) ).

% Max_const
thf(fact_2682_Max__const,axiom,
    ! [A2: set_real,C: nat] :
      ( ( finite_finite_real @ A2 )
     => ( ( A2 != bot_bot_set_real )
       => ( ( lattic8265883725875713057ax_nat
            @ ( image_real_nat
              @ ^ [Uu3: real] : C
              @ A2 ) )
          = C ) ) ) ).

% Max_const
thf(fact_2683_Max__const,axiom,
    ! [A2: set_o,C: nat] :
      ( ( finite_finite_o @ A2 )
     => ( ( A2 != bot_bot_set_o )
       => ( ( lattic8265883725875713057ax_nat
            @ ( image_o_nat
              @ ^ [Uu3: $o] : C
              @ A2 ) )
          = C ) ) ) ).

% Max_const
thf(fact_2684_Max__const,axiom,
    ! [A2: set_nat,C: nat] :
      ( ( finite_finite_nat @ A2 )
     => ( ( A2 != bot_bot_set_nat )
       => ( ( lattic8265883725875713057ax_nat
            @ ( image_nat_nat
              @ ^ [Uu3: nat] : C
              @ A2 ) )
          = C ) ) ) ).

% Max_const
thf(fact_2685_Max__const,axiom,
    ! [A2: set_int,C: nat] :
      ( ( finite_finite_int @ A2 )
     => ( ( A2 != bot_bot_set_int )
       => ( ( lattic8265883725875713057ax_nat
            @ ( image_int_nat
              @ ^ [Uu3: int] : C
              @ A2 ) )
          = C ) ) ) ).

% Max_const
thf(fact_2686_Max__const,axiom,
    ! [A2: set_complex,C: int] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( ( A2 != bot_bot_set_complex )
       => ( ( lattic8263393255366662781ax_int
            @ ( image_complex_int
              @ ^ [Uu3: complex] : C
              @ A2 ) )
          = C ) ) ) ).

% Max_const
thf(fact_2687_Max__const,axiom,
    ! [A2: set_real,C: int] :
      ( ( finite_finite_real @ A2 )
     => ( ( A2 != bot_bot_set_real )
       => ( ( lattic8263393255366662781ax_int
            @ ( image_real_int
              @ ^ [Uu3: real] : C
              @ A2 ) )
          = C ) ) ) ).

% Max_const
thf(fact_2688_Max__const,axiom,
    ! [A2: set_o,C: int] :
      ( ( finite_finite_o @ A2 )
     => ( ( A2 != bot_bot_set_o )
       => ( ( lattic8263393255366662781ax_int
            @ ( image_o_int
              @ ^ [Uu3: $o] : C
              @ A2 ) )
          = C ) ) ) ).

% Max_const
thf(fact_2689_Max__const,axiom,
    ! [A2: set_nat,C: int] :
      ( ( finite_finite_nat @ A2 )
     => ( ( A2 != bot_bot_set_nat )
       => ( ( lattic8263393255366662781ax_int
            @ ( image_nat_int
              @ ^ [Uu3: nat] : C
              @ A2 ) )
          = C ) ) ) ).

% Max_const
thf(fact_2690_Max__const,axiom,
    ! [A2: set_int,C: int] :
      ( ( finite_finite_int @ A2 )
     => ( ( A2 != bot_bot_set_int )
       => ( ( lattic8263393255366662781ax_int
            @ ( image_int_int
              @ ^ [Uu3: int] : C
              @ A2 ) )
          = C ) ) ) ).

% Max_const
thf(fact_2691_Max__less__iff,axiom,
    ! [A2: set_o,X2: $o] :
      ( ( finite_finite_o @ A2 )
     => ( ( A2 != bot_bot_set_o )
       => ( ( ord_less_o @ ( lattic1921953407002678535_Max_o @ A2 ) @ X2 )
          = ( ! [X: $o] :
                ( ( member_o @ X @ A2 )
               => ( ord_less_o @ X @ X2 ) ) ) ) ) ) ).

% Max_less_iff
thf(fact_2692_Max__less__iff,axiom,
    ! [A2: set_real,X2: real] :
      ( ( finite_finite_real @ A2 )
     => ( ( A2 != bot_bot_set_real )
       => ( ( ord_less_real @ ( lattic4275903605611617917x_real @ A2 ) @ X2 )
          = ( ! [X: real] :
                ( ( member_real @ X @ A2 )
               => ( ord_less_real @ X @ X2 ) ) ) ) ) ) ).

% Max_less_iff
thf(fact_2693_Max__less__iff,axiom,
    ! [A2: set_rat,X2: rat] :
      ( ( finite_finite_rat @ A2 )
     => ( ( A2 != bot_bot_set_rat )
       => ( ( ord_less_rat @ ( lattic7630753665789217321ax_rat @ A2 ) @ X2 )
          = ( ! [X: rat] :
                ( ( member_rat @ X @ A2 )
               => ( ord_less_rat @ X @ X2 ) ) ) ) ) ) ).

% Max_less_iff
thf(fact_2694_Max__less__iff,axiom,
    ! [A2: set_num,X2: num] :
      ( ( finite_finite_num @ A2 )
     => ( ( A2 != bot_bot_set_num )
       => ( ( ord_less_num @ ( lattic4823215512031491691ax_num @ A2 ) @ X2 )
          = ( ! [X: num] :
                ( ( member_num @ X @ A2 )
               => ( ord_less_num @ X @ X2 ) ) ) ) ) ) ).

% Max_less_iff
thf(fact_2695_Max__less__iff,axiom,
    ! [A2: set_nat,X2: nat] :
      ( ( finite_finite_nat @ A2 )
     => ( ( A2 != bot_bot_set_nat )
       => ( ( ord_less_nat @ ( lattic8265883725875713057ax_nat @ A2 ) @ X2 )
          = ( ! [X: nat] :
                ( ( member_nat @ X @ A2 )
               => ( ord_less_nat @ X @ X2 ) ) ) ) ) ) ).

% Max_less_iff
thf(fact_2696_Max__less__iff,axiom,
    ! [A2: set_int,X2: int] :
      ( ( finite_finite_int @ A2 )
     => ( ( A2 != bot_bot_set_int )
       => ( ( ord_less_int @ ( lattic8263393255366662781ax_int @ A2 ) @ X2 )
          = ( ! [X: int] :
                ( ( member_int @ X @ A2 )
               => ( ord_less_int @ X @ X2 ) ) ) ) ) ) ).

% Max_less_iff
thf(fact_2697_Max_Obounded__iff,axiom,
    ! [A2: set_real,X2: real] :
      ( ( finite_finite_real @ A2 )
     => ( ( A2 != bot_bot_set_real )
       => ( ( ord_less_eq_real @ ( lattic4275903605611617917x_real @ A2 ) @ X2 )
          = ( ! [X: real] :
                ( ( member_real @ X @ A2 )
               => ( ord_less_eq_real @ X @ X2 ) ) ) ) ) ) ).

% Max.bounded_iff
thf(fact_2698_Max_Obounded__iff,axiom,
    ! [A2: set_o,X2: $o] :
      ( ( finite_finite_o @ A2 )
     => ( ( A2 != bot_bot_set_o )
       => ( ( ord_less_eq_o @ ( lattic1921953407002678535_Max_o @ A2 ) @ X2 )
          = ( ! [X: $o] :
                ( ( member_o @ X @ A2 )
               => ( ord_less_eq_o @ X @ X2 ) ) ) ) ) ) ).

% Max.bounded_iff
thf(fact_2699_Max_Obounded__iff,axiom,
    ! [A2: set_rat,X2: rat] :
      ( ( finite_finite_rat @ A2 )
     => ( ( A2 != bot_bot_set_rat )
       => ( ( ord_less_eq_rat @ ( lattic7630753665789217321ax_rat @ A2 ) @ X2 )
          = ( ! [X: rat] :
                ( ( member_rat @ X @ A2 )
               => ( ord_less_eq_rat @ X @ X2 ) ) ) ) ) ) ).

% Max.bounded_iff
thf(fact_2700_Max_Obounded__iff,axiom,
    ! [A2: set_num,X2: num] :
      ( ( finite_finite_num @ A2 )
     => ( ( A2 != bot_bot_set_num )
       => ( ( ord_less_eq_num @ ( lattic4823215512031491691ax_num @ A2 ) @ X2 )
          = ( ! [X: num] :
                ( ( member_num @ X @ A2 )
               => ( ord_less_eq_num @ X @ X2 ) ) ) ) ) ) ).

% Max.bounded_iff
thf(fact_2701_Max_Obounded__iff,axiom,
    ! [A2: set_nat,X2: nat] :
      ( ( finite_finite_nat @ A2 )
     => ( ( A2 != bot_bot_set_nat )
       => ( ( ord_less_eq_nat @ ( lattic8265883725875713057ax_nat @ A2 ) @ X2 )
          = ( ! [X: nat] :
                ( ( member_nat @ X @ A2 )
               => ( ord_less_eq_nat @ X @ X2 ) ) ) ) ) ) ).

% Max.bounded_iff
thf(fact_2702_Max_Obounded__iff,axiom,
    ! [A2: set_int,X2: int] :
      ( ( finite_finite_int @ A2 )
     => ( ( A2 != bot_bot_set_int )
       => ( ( ord_less_eq_int @ ( lattic8263393255366662781ax_int @ A2 ) @ X2 )
          = ( ! [X: int] :
                ( ( member_int @ X @ A2 )
               => ( ord_less_eq_int @ X @ X2 ) ) ) ) ) ) ).

% Max.bounded_iff
thf(fact_2703_Max__singleton,axiom,
    ! [X2: real] :
      ( ( lattic4275903605611617917x_real @ ( insert_real @ X2 @ bot_bot_set_real ) )
      = X2 ) ).

% Max_singleton
thf(fact_2704_Max__singleton,axiom,
    ! [X2: $o] :
      ( ( lattic1921953407002678535_Max_o @ ( insert_o @ X2 @ bot_bot_set_o ) )
      = X2 ) ).

% Max_singleton
thf(fact_2705_Max__singleton,axiom,
    ! [X2: nat] :
      ( ( lattic8265883725875713057ax_nat @ ( insert_nat @ X2 @ bot_bot_set_nat ) )
      = X2 ) ).

% Max_singleton
thf(fact_2706_Max__singleton,axiom,
    ! [X2: int] :
      ( ( lattic8263393255366662781ax_int @ ( insert_int @ X2 @ bot_bot_set_int ) )
      = X2 ) ).

% Max_singleton
thf(fact_2707_zle__add1__eq__le,axiom,
    ! [W: int,Z: int] :
      ( ( ord_less_int @ W @ ( plus_plus_int @ Z @ one_one_int ) )
      = ( ord_less_eq_int @ W @ Z ) ) ).

% zle_add1_eq_le
thf(fact_2708_Max_Oremove,axiom,
    ! [A2: set_real,X2: real] :
      ( ( finite_finite_real @ A2 )
     => ( ( member_real @ X2 @ A2 )
       => ( ( ( ( minus_minus_set_real @ A2 @ ( insert_real @ X2 @ bot_bot_set_real ) )
              = bot_bot_set_real )
           => ( ( lattic4275903605611617917x_real @ A2 )
              = X2 ) )
          & ( ( ( minus_minus_set_real @ A2 @ ( insert_real @ X2 @ bot_bot_set_real ) )
             != bot_bot_set_real )
           => ( ( lattic4275903605611617917x_real @ A2 )
              = ( ord_max_real @ X2 @ ( lattic4275903605611617917x_real @ ( minus_minus_set_real @ A2 @ ( insert_real @ X2 @ bot_bot_set_real ) ) ) ) ) ) ) ) ) ).

% Max.remove
thf(fact_2709_Max_Oremove,axiom,
    ! [A2: set_o,X2: $o] :
      ( ( finite_finite_o @ A2 )
     => ( ( member_o @ X2 @ A2 )
       => ( ( lattic1921953407002678535_Max_o @ A2 )
          = ( ( ( ( minus_minus_set_o @ A2 @ ( insert_o @ X2 @ bot_bot_set_o ) )
                = bot_bot_set_o )
             => X2 )
            & ( ( ( minus_minus_set_o @ A2 @ ( insert_o @ X2 @ bot_bot_set_o ) )
               != bot_bot_set_o )
             => ( ord_max_o @ X2 @ ( lattic1921953407002678535_Max_o @ ( minus_minus_set_o @ A2 @ ( insert_o @ X2 @ bot_bot_set_o ) ) ) ) ) ) ) ) ) ).

% Max.remove
thf(fact_2710_Max_Oremove,axiom,
    ! [A2: set_Extended_enat,X2: extended_enat] :
      ( ( finite4001608067531595151d_enat @ A2 )
     => ( ( member_Extended_enat @ X2 @ A2 )
       => ( ( ( ( minus_925952699566721837d_enat @ A2 @ ( insert_Extended_enat @ X2 @ bot_bo7653980558646680370d_enat ) )
              = bot_bo7653980558646680370d_enat )
           => ( ( lattic921264341876707157d_enat @ A2 )
              = X2 ) )
          & ( ( ( minus_925952699566721837d_enat @ A2 @ ( insert_Extended_enat @ X2 @ bot_bo7653980558646680370d_enat ) )
             != bot_bo7653980558646680370d_enat )
           => ( ( lattic921264341876707157d_enat @ A2 )
              = ( ord_ma741700101516333627d_enat @ X2 @ ( lattic921264341876707157d_enat @ ( minus_925952699566721837d_enat @ A2 @ ( insert_Extended_enat @ X2 @ bot_bo7653980558646680370d_enat ) ) ) ) ) ) ) ) ) ).

% Max.remove
thf(fact_2711_Max_Oremove,axiom,
    ! [A2: set_nat,X2: nat] :
      ( ( finite_finite_nat @ A2 )
     => ( ( member_nat @ X2 @ A2 )
       => ( ( ( ( minus_minus_set_nat @ A2 @ ( insert_nat @ X2 @ bot_bot_set_nat ) )
              = bot_bot_set_nat )
           => ( ( lattic8265883725875713057ax_nat @ A2 )
              = X2 ) )
          & ( ( ( minus_minus_set_nat @ A2 @ ( insert_nat @ X2 @ bot_bot_set_nat ) )
             != bot_bot_set_nat )
           => ( ( lattic8265883725875713057ax_nat @ A2 )
              = ( ord_max_nat @ X2 @ ( lattic8265883725875713057ax_nat @ ( minus_minus_set_nat @ A2 @ ( insert_nat @ X2 @ bot_bot_set_nat ) ) ) ) ) ) ) ) ) ).

% Max.remove
thf(fact_2712_Max_Oremove,axiom,
    ! [A2: set_int,X2: int] :
      ( ( finite_finite_int @ A2 )
     => ( ( member_int @ X2 @ A2 )
       => ( ( ( ( minus_minus_set_int @ A2 @ ( insert_int @ X2 @ bot_bot_set_int ) )
              = bot_bot_set_int )
           => ( ( lattic8263393255366662781ax_int @ A2 )
              = X2 ) )
          & ( ( ( minus_minus_set_int @ A2 @ ( insert_int @ X2 @ bot_bot_set_int ) )
             != bot_bot_set_int )
           => ( ( lattic8263393255366662781ax_int @ A2 )
              = ( ord_max_int @ X2 @ ( lattic8263393255366662781ax_int @ ( minus_minus_set_int @ A2 @ ( insert_int @ X2 @ bot_bot_set_int ) ) ) ) ) ) ) ) ) ).

% Max.remove
thf(fact_2713_Max_Oinsert__remove,axiom,
    ! [A2: set_real,X2: real] :
      ( ( finite_finite_real @ A2 )
     => ( ( ( ( minus_minus_set_real @ A2 @ ( insert_real @ X2 @ bot_bot_set_real ) )
            = bot_bot_set_real )
         => ( ( lattic4275903605611617917x_real @ ( insert_real @ X2 @ A2 ) )
            = X2 ) )
        & ( ( ( minus_minus_set_real @ A2 @ ( insert_real @ X2 @ bot_bot_set_real ) )
           != bot_bot_set_real )
         => ( ( lattic4275903605611617917x_real @ ( insert_real @ X2 @ A2 ) )
            = ( ord_max_real @ X2 @ ( lattic4275903605611617917x_real @ ( minus_minus_set_real @ A2 @ ( insert_real @ X2 @ bot_bot_set_real ) ) ) ) ) ) ) ) ).

% Max.insert_remove
thf(fact_2714_Max_Oinsert__remove,axiom,
    ! [A2: set_o,X2: $o] :
      ( ( finite_finite_o @ A2 )
     => ( ( lattic1921953407002678535_Max_o @ ( insert_o @ X2 @ A2 ) )
        = ( ( ( ( minus_minus_set_o @ A2 @ ( insert_o @ X2 @ bot_bot_set_o ) )
              = bot_bot_set_o )
           => X2 )
          & ( ( ( minus_minus_set_o @ A2 @ ( insert_o @ X2 @ bot_bot_set_o ) )
             != bot_bot_set_o )
           => ( ord_max_o @ X2 @ ( lattic1921953407002678535_Max_o @ ( minus_minus_set_o @ A2 @ ( insert_o @ X2 @ bot_bot_set_o ) ) ) ) ) ) ) ) ).

% Max.insert_remove
thf(fact_2715_Max_Oinsert__remove,axiom,
    ! [A2: set_Extended_enat,X2: extended_enat] :
      ( ( finite4001608067531595151d_enat @ A2 )
     => ( ( ( ( minus_925952699566721837d_enat @ A2 @ ( insert_Extended_enat @ X2 @ bot_bo7653980558646680370d_enat ) )
            = bot_bo7653980558646680370d_enat )
         => ( ( lattic921264341876707157d_enat @ ( insert_Extended_enat @ X2 @ A2 ) )
            = X2 ) )
        & ( ( ( minus_925952699566721837d_enat @ A2 @ ( insert_Extended_enat @ X2 @ bot_bo7653980558646680370d_enat ) )
           != bot_bo7653980558646680370d_enat )
         => ( ( lattic921264341876707157d_enat @ ( insert_Extended_enat @ X2 @ A2 ) )
            = ( ord_ma741700101516333627d_enat @ X2 @ ( lattic921264341876707157d_enat @ ( minus_925952699566721837d_enat @ A2 @ ( insert_Extended_enat @ X2 @ bot_bo7653980558646680370d_enat ) ) ) ) ) ) ) ) ).

% Max.insert_remove
thf(fact_2716_Max_Oinsert__remove,axiom,
    ! [A2: set_nat,X2: nat] :
      ( ( finite_finite_nat @ A2 )
     => ( ( ( ( minus_minus_set_nat @ A2 @ ( insert_nat @ X2 @ bot_bot_set_nat ) )
            = bot_bot_set_nat )
         => ( ( lattic8265883725875713057ax_nat @ ( insert_nat @ X2 @ A2 ) )
            = X2 ) )
        & ( ( ( minus_minus_set_nat @ A2 @ ( insert_nat @ X2 @ bot_bot_set_nat ) )
           != bot_bot_set_nat )
         => ( ( lattic8265883725875713057ax_nat @ ( insert_nat @ X2 @ A2 ) )
            = ( ord_max_nat @ X2 @ ( lattic8265883725875713057ax_nat @ ( minus_minus_set_nat @ A2 @ ( insert_nat @ X2 @ bot_bot_set_nat ) ) ) ) ) ) ) ) ).

% Max.insert_remove
thf(fact_2717_Max_Oinsert__remove,axiom,
    ! [A2: set_int,X2: int] :
      ( ( finite_finite_int @ A2 )
     => ( ( ( ( minus_minus_set_int @ A2 @ ( insert_int @ X2 @ bot_bot_set_int ) )
            = bot_bot_set_int )
         => ( ( lattic8263393255366662781ax_int @ ( insert_int @ X2 @ A2 ) )
            = X2 ) )
        & ( ( ( minus_minus_set_int @ A2 @ ( insert_int @ X2 @ bot_bot_set_int ) )
           != bot_bot_set_int )
         => ( ( lattic8263393255366662781ax_int @ ( insert_int @ X2 @ A2 ) )
            = ( ord_max_int @ X2 @ ( lattic8263393255366662781ax_int @ ( minus_minus_set_int @ A2 @ ( insert_int @ X2 @ bot_bot_set_int ) ) ) ) ) ) ) ) ).

% Max.insert_remove
thf(fact_2718_Max__add__commute,axiom,
    ! [S3: set_complex,F: complex > real,K: real] :
      ( ( finite3207457112153483333omplex @ S3 )
     => ( ( S3 != bot_bot_set_complex )
       => ( ( lattic4275903605611617917x_real
            @ ( image_complex_real
              @ ^ [X: complex] : ( plus_plus_real @ ( F @ X ) @ K )
              @ S3 ) )
          = ( plus_plus_real @ ( lattic4275903605611617917x_real @ ( image_complex_real @ F @ S3 ) ) @ K ) ) ) ) ).

% Max_add_commute
thf(fact_2719_Max__add__commute,axiom,
    ! [S3: set_complex,F: complex > rat,K: rat] :
      ( ( finite3207457112153483333omplex @ S3 )
     => ( ( S3 != bot_bot_set_complex )
       => ( ( lattic7630753665789217321ax_rat
            @ ( image_complex_rat
              @ ^ [X: complex] : ( plus_plus_rat @ ( F @ X ) @ K )
              @ S3 ) )
          = ( plus_plus_rat @ ( lattic7630753665789217321ax_rat @ ( image_complex_rat @ F @ S3 ) ) @ K ) ) ) ) ).

% Max_add_commute
thf(fact_2720_Max__add__commute,axiom,
    ! [S3: set_real,F: real > real,K: real] :
      ( ( finite_finite_real @ S3 )
     => ( ( S3 != bot_bot_set_real )
       => ( ( lattic4275903605611617917x_real
            @ ( image_real_real
              @ ^ [X: real] : ( plus_plus_real @ ( F @ X ) @ K )
              @ S3 ) )
          = ( plus_plus_real @ ( lattic4275903605611617917x_real @ ( image_real_real @ F @ S3 ) ) @ K ) ) ) ) ).

% Max_add_commute
thf(fact_2721_Max__add__commute,axiom,
    ! [S3: set_real,F: real > rat,K: rat] :
      ( ( finite_finite_real @ S3 )
     => ( ( S3 != bot_bot_set_real )
       => ( ( lattic7630753665789217321ax_rat
            @ ( image_real_rat
              @ ^ [X: real] : ( plus_plus_rat @ ( F @ X ) @ K )
              @ S3 ) )
          = ( plus_plus_rat @ ( lattic7630753665789217321ax_rat @ ( image_real_rat @ F @ S3 ) ) @ K ) ) ) ) ).

% Max_add_commute
thf(fact_2722_Max__add__commute,axiom,
    ! [S3: set_o,F: $o > real,K: real] :
      ( ( finite_finite_o @ S3 )
     => ( ( S3 != bot_bot_set_o )
       => ( ( lattic4275903605611617917x_real
            @ ( image_o_real
              @ ^ [X: $o] : ( plus_plus_real @ ( F @ X ) @ K )
              @ S3 ) )
          = ( plus_plus_real @ ( lattic4275903605611617917x_real @ ( image_o_real @ F @ S3 ) ) @ K ) ) ) ) ).

% Max_add_commute
thf(fact_2723_Max__add__commute,axiom,
    ! [S3: set_o,F: $o > rat,K: rat] :
      ( ( finite_finite_o @ S3 )
     => ( ( S3 != bot_bot_set_o )
       => ( ( lattic7630753665789217321ax_rat
            @ ( image_o_rat
              @ ^ [X: $o] : ( plus_plus_rat @ ( F @ X ) @ K )
              @ S3 ) )
          = ( plus_plus_rat @ ( lattic7630753665789217321ax_rat @ ( image_o_rat @ F @ S3 ) ) @ K ) ) ) ) ).

% Max_add_commute
thf(fact_2724_Max__add__commute,axiom,
    ! [S3: set_nat,F: nat > real,K: real] :
      ( ( finite_finite_nat @ S3 )
     => ( ( S3 != bot_bot_set_nat )
       => ( ( lattic4275903605611617917x_real
            @ ( image_nat_real
              @ ^ [X: nat] : ( plus_plus_real @ ( F @ X ) @ K )
              @ S3 ) )
          = ( plus_plus_real @ ( lattic4275903605611617917x_real @ ( image_nat_real @ F @ S3 ) ) @ K ) ) ) ) ).

% Max_add_commute
thf(fact_2725_Max__add__commute,axiom,
    ! [S3: set_nat,F: nat > rat,K: rat] :
      ( ( finite_finite_nat @ S3 )
     => ( ( S3 != bot_bot_set_nat )
       => ( ( lattic7630753665789217321ax_rat
            @ ( image_nat_rat
              @ ^ [X: nat] : ( plus_plus_rat @ ( F @ X ) @ K )
              @ S3 ) )
          = ( plus_plus_rat @ ( lattic7630753665789217321ax_rat @ ( image_nat_rat @ F @ S3 ) ) @ K ) ) ) ) ).

% Max_add_commute
thf(fact_2726_Max__add__commute,axiom,
    ! [S3: set_int,F: int > real,K: real] :
      ( ( finite_finite_int @ S3 )
     => ( ( S3 != bot_bot_set_int )
       => ( ( lattic4275903605611617917x_real
            @ ( image_int_real
              @ ^ [X: int] : ( plus_plus_real @ ( F @ X ) @ K )
              @ S3 ) )
          = ( plus_plus_real @ ( lattic4275903605611617917x_real @ ( image_int_real @ F @ S3 ) ) @ K ) ) ) ) ).

% Max_add_commute
thf(fact_2727_Max__add__commute,axiom,
    ! [S3: set_int,F: int > rat,K: rat] :
      ( ( finite_finite_int @ S3 )
     => ( ( S3 != bot_bot_set_int )
       => ( ( lattic7630753665789217321ax_rat
            @ ( image_int_rat
              @ ^ [X: int] : ( plus_plus_rat @ ( F @ X ) @ K )
              @ S3 ) )
          = ( plus_plus_rat @ ( lattic7630753665789217321ax_rat @ ( image_int_rat @ F @ S3 ) ) @ K ) ) ) ) ).

% Max_add_commute
thf(fact_2728_finite__interval__int1,axiom,
    ! [A: int,B: int] :
      ( finite_finite_int
      @ ( collect_int
        @ ^ [I4: int] :
            ( ( ord_less_eq_int @ A @ I4 )
            & ( ord_less_eq_int @ I4 @ B ) ) ) ) ).

% finite_interval_int1
thf(fact_2729_finite__interval__int4,axiom,
    ! [A: int,B: int] :
      ( finite_finite_int
      @ ( collect_int
        @ ^ [I4: int] :
            ( ( ord_less_int @ A @ I4 )
            & ( ord_less_int @ I4 @ B ) ) ) ) ).

% finite_interval_int4
thf(fact_2730_finite__interval__int3,axiom,
    ! [A: int,B: int] :
      ( finite_finite_int
      @ ( collect_int
        @ ^ [I4: int] :
            ( ( ord_less_int @ A @ I4 )
            & ( ord_less_eq_int @ I4 @ B ) ) ) ) ).

% finite_interval_int3
thf(fact_2731_finite__interval__int2,axiom,
    ! [A: int,B: int] :
      ( finite_finite_int
      @ ( collect_int
        @ ^ [I4: int] :
            ( ( ord_less_eq_int @ A @ I4 )
            & ( ord_less_int @ I4 @ B ) ) ) ) ).

% finite_interval_int2
thf(fact_2732_zle__diff1__eq,axiom,
    ! [W: int,Z: int] :
      ( ( ord_less_eq_int @ W @ ( minus_minus_int @ Z @ one_one_int ) )
      = ( ord_less_int @ W @ Z ) ) ).

% zle_diff1_eq
thf(fact_2733_int__less__induct,axiom,
    ! [I: int,K: int,P: int > $o] :
      ( ( ord_less_int @ I @ K )
     => ( ( P @ ( minus_minus_int @ K @ one_one_int ) )
       => ( ! [I3: int] :
              ( ( ord_less_int @ I3 @ K )
             => ( ( P @ I3 )
               => ( P @ ( minus_minus_int @ I3 @ one_one_int ) ) ) )
         => ( P @ I ) ) ) ) ).

% int_less_induct
thf(fact_2734_int__distrib_I4_J,axiom,
    ! [W: int,Z1: int,Z22: int] :
      ( ( times_times_int @ W @ ( minus_minus_int @ Z1 @ Z22 ) )
      = ( minus_minus_int @ ( times_times_int @ W @ Z1 ) @ ( times_times_int @ W @ Z22 ) ) ) ).

% int_distrib(4)
thf(fact_2735_int__distrib_I3_J,axiom,
    ! [Z1: int,Z22: int,W: int] :
      ( ( times_times_int @ ( minus_minus_int @ Z1 @ Z22 ) @ W )
      = ( minus_minus_int @ ( times_times_int @ Z1 @ W ) @ ( times_times_int @ Z22 @ W ) ) ) ).

% int_distrib(3)
thf(fact_2736_int__le__induct,axiom,
    ! [I: int,K: int,P: int > $o] :
      ( ( ord_less_eq_int @ I @ K )
     => ( ( P @ K )
       => ( ! [I3: int] :
              ( ( ord_less_eq_int @ I3 @ K )
             => ( ( P @ I3 )
               => ( P @ ( minus_minus_int @ I3 @ one_one_int ) ) ) )
         => ( P @ I ) ) ) ) ).

% int_le_induct
thf(fact_2737_zless__add1__eq,axiom,
    ! [W: int,Z: int] :
      ( ( ord_less_int @ W @ ( plus_plus_int @ Z @ one_one_int ) )
      = ( ( ord_less_int @ W @ Z )
        | ( W = Z ) ) ) ).

% zless_add1_eq
thf(fact_2738_int__gr__induct,axiom,
    ! [K: int,I: int,P: int > $o] :
      ( ( ord_less_int @ K @ I )
     => ( ( P @ ( plus_plus_int @ K @ one_one_int ) )
       => ( ! [I3: int] :
              ( ( ord_less_int @ K @ I3 )
             => ( ( P @ I3 )
               => ( P @ ( plus_plus_int @ I3 @ one_one_int ) ) ) )
         => ( P @ I ) ) ) ) ).

% int_gr_induct
thf(fact_2739_int__distrib_I1_J,axiom,
    ! [Z1: int,Z22: int,W: int] :
      ( ( times_times_int @ ( plus_plus_int @ Z1 @ Z22 ) @ W )
      = ( plus_plus_int @ ( times_times_int @ Z1 @ W ) @ ( times_times_int @ Z22 @ W ) ) ) ).

% int_distrib(1)
thf(fact_2740_int__distrib_I2_J,axiom,
    ! [W: int,Z1: int,Z22: int] :
      ( ( times_times_int @ W @ ( plus_plus_int @ Z1 @ Z22 ) )
      = ( plus_plus_int @ ( times_times_int @ W @ Z1 ) @ ( times_times_int @ W @ Z22 ) ) ) ).

% int_distrib(2)
thf(fact_2741_infinite__growing,axiom,
    ! [X7: set_o] :
      ( ( X7 != bot_bot_set_o )
     => ( ! [X4: $o] :
            ( ( member_o @ X4 @ X7 )
           => ? [Xa: $o] :
                ( ( member_o @ Xa @ X7 )
                & ( ord_less_o @ X4 @ Xa ) ) )
       => ~ ( finite_finite_o @ X7 ) ) ) ).

% infinite_growing
thf(fact_2742_infinite__growing,axiom,
    ! [X7: set_real] :
      ( ( X7 != bot_bot_set_real )
     => ( ! [X4: real] :
            ( ( member_real @ X4 @ X7 )
           => ? [Xa: real] :
                ( ( member_real @ Xa @ X7 )
                & ( ord_less_real @ X4 @ Xa ) ) )
       => ~ ( finite_finite_real @ X7 ) ) ) ).

% infinite_growing
thf(fact_2743_infinite__growing,axiom,
    ! [X7: set_rat] :
      ( ( X7 != bot_bot_set_rat )
     => ( ! [X4: rat] :
            ( ( member_rat @ X4 @ X7 )
           => ? [Xa: rat] :
                ( ( member_rat @ Xa @ X7 )
                & ( ord_less_rat @ X4 @ Xa ) ) )
       => ~ ( finite_finite_rat @ X7 ) ) ) ).

% infinite_growing
thf(fact_2744_infinite__growing,axiom,
    ! [X7: set_num] :
      ( ( X7 != bot_bot_set_num )
     => ( ! [X4: num] :
            ( ( member_num @ X4 @ X7 )
           => ? [Xa: num] :
                ( ( member_num @ Xa @ X7 )
                & ( ord_less_num @ X4 @ Xa ) ) )
       => ~ ( finite_finite_num @ X7 ) ) ) ).

% infinite_growing
thf(fact_2745_infinite__growing,axiom,
    ! [X7: set_nat] :
      ( ( X7 != bot_bot_set_nat )
     => ( ! [X4: nat] :
            ( ( member_nat @ X4 @ X7 )
           => ? [Xa: nat] :
                ( ( member_nat @ Xa @ X7 )
                & ( ord_less_nat @ X4 @ Xa ) ) )
       => ~ ( finite_finite_nat @ X7 ) ) ) ).

% infinite_growing
thf(fact_2746_infinite__growing,axiom,
    ! [X7: set_int] :
      ( ( X7 != bot_bot_set_int )
     => ( ! [X4: int] :
            ( ( member_int @ X4 @ X7 )
           => ? [Xa: int] :
                ( ( member_int @ Xa @ X7 )
                & ( ord_less_int @ X4 @ Xa ) ) )
       => ~ ( finite_finite_int @ X7 ) ) ) ).

% infinite_growing
thf(fact_2747_ex__min__if__finite,axiom,
    ! [S3: set_o] :
      ( ( finite_finite_o @ S3 )
     => ( ( S3 != bot_bot_set_o )
       => ? [X4: $o] :
            ( ( member_o @ X4 @ S3 )
            & ~ ? [Xa: $o] :
                  ( ( member_o @ Xa @ S3 )
                  & ( ord_less_o @ Xa @ X4 ) ) ) ) ) ).

% ex_min_if_finite
thf(fact_2748_ex__min__if__finite,axiom,
    ! [S3: set_real] :
      ( ( finite_finite_real @ S3 )
     => ( ( S3 != bot_bot_set_real )
       => ? [X4: real] :
            ( ( member_real @ X4 @ S3 )
            & ~ ? [Xa: real] :
                  ( ( member_real @ Xa @ S3 )
                  & ( ord_less_real @ Xa @ X4 ) ) ) ) ) ).

% ex_min_if_finite
thf(fact_2749_ex__min__if__finite,axiom,
    ! [S3: set_rat] :
      ( ( finite_finite_rat @ S3 )
     => ( ( S3 != bot_bot_set_rat )
       => ? [X4: rat] :
            ( ( member_rat @ X4 @ S3 )
            & ~ ? [Xa: rat] :
                  ( ( member_rat @ Xa @ S3 )
                  & ( ord_less_rat @ Xa @ X4 ) ) ) ) ) ).

% ex_min_if_finite
thf(fact_2750_ex__min__if__finite,axiom,
    ! [S3: set_num] :
      ( ( finite_finite_num @ S3 )
     => ( ( S3 != bot_bot_set_num )
       => ? [X4: num] :
            ( ( member_num @ X4 @ S3 )
            & ~ ? [Xa: num] :
                  ( ( member_num @ Xa @ S3 )
                  & ( ord_less_num @ Xa @ X4 ) ) ) ) ) ).

% ex_min_if_finite
thf(fact_2751_ex__min__if__finite,axiom,
    ! [S3: set_nat] :
      ( ( finite_finite_nat @ S3 )
     => ( ( S3 != bot_bot_set_nat )
       => ? [X4: nat] :
            ( ( member_nat @ X4 @ S3 )
            & ~ ? [Xa: nat] :
                  ( ( member_nat @ Xa @ S3 )
                  & ( ord_less_nat @ Xa @ X4 ) ) ) ) ) ).

% ex_min_if_finite
thf(fact_2752_ex__min__if__finite,axiom,
    ! [S3: set_int] :
      ( ( finite_finite_int @ S3 )
     => ( ( S3 != bot_bot_set_int )
       => ? [X4: int] :
            ( ( member_int @ X4 @ S3 )
            & ~ ? [Xa: int] :
                  ( ( member_int @ Xa @ S3 )
                  & ( ord_less_int @ Xa @ X4 ) ) ) ) ) ).

% ex_min_if_finite
thf(fact_2753_Max_OcoboundedI,axiom,
    ! [A2: set_real,A: real] :
      ( ( finite_finite_real @ A2 )
     => ( ( member_real @ A @ A2 )
       => ( ord_less_eq_real @ A @ ( lattic4275903605611617917x_real @ A2 ) ) ) ) ).

% Max.coboundedI
thf(fact_2754_Max_OcoboundedI,axiom,
    ! [A2: set_rat,A: rat] :
      ( ( finite_finite_rat @ A2 )
     => ( ( member_rat @ A @ A2 )
       => ( ord_less_eq_rat @ A @ ( lattic7630753665789217321ax_rat @ A2 ) ) ) ) ).

% Max.coboundedI
thf(fact_2755_Max_OcoboundedI,axiom,
    ! [A2: set_num,A: num] :
      ( ( finite_finite_num @ A2 )
     => ( ( member_num @ A @ A2 )
       => ( ord_less_eq_num @ A @ ( lattic4823215512031491691ax_num @ A2 ) ) ) ) ).

% Max.coboundedI
thf(fact_2756_Max_OcoboundedI,axiom,
    ! [A2: set_nat,A: nat] :
      ( ( finite_finite_nat @ A2 )
     => ( ( member_nat @ A @ A2 )
       => ( ord_less_eq_nat @ A @ ( lattic8265883725875713057ax_nat @ A2 ) ) ) ) ).

% Max.coboundedI
thf(fact_2757_Max_OcoboundedI,axiom,
    ! [A2: set_int,A: int] :
      ( ( finite_finite_int @ A2 )
     => ( ( member_int @ A @ A2 )
       => ( ord_less_eq_int @ A @ ( lattic8263393255366662781ax_int @ A2 ) ) ) ) ).

% Max.coboundedI
thf(fact_2758_Max__eq__if,axiom,
    ! [A2: set_rat,B3: set_rat] :
      ( ( finite_finite_rat @ A2 )
     => ( ( finite_finite_rat @ B3 )
       => ( ! [X4: rat] :
              ( ( member_rat @ X4 @ A2 )
             => ? [Xa: rat] :
                  ( ( member_rat @ Xa @ B3 )
                  & ( ord_less_eq_rat @ X4 @ Xa ) ) )
         => ( ! [X4: rat] :
                ( ( member_rat @ X4 @ B3 )
               => ? [Xa: rat] :
                    ( ( member_rat @ Xa @ A2 )
                    & ( ord_less_eq_rat @ X4 @ Xa ) ) )
           => ( ( lattic7630753665789217321ax_rat @ A2 )
              = ( lattic7630753665789217321ax_rat @ B3 ) ) ) ) ) ) ).

% Max_eq_if
thf(fact_2759_Max__eq__if,axiom,
    ! [A2: set_num,B3: set_num] :
      ( ( finite_finite_num @ A2 )
     => ( ( finite_finite_num @ B3 )
       => ( ! [X4: num] :
              ( ( member_num @ X4 @ A2 )
             => ? [Xa: num] :
                  ( ( member_num @ Xa @ B3 )
                  & ( ord_less_eq_num @ X4 @ Xa ) ) )
         => ( ! [X4: num] :
                ( ( member_num @ X4 @ B3 )
               => ? [Xa: num] :
                    ( ( member_num @ Xa @ A2 )
                    & ( ord_less_eq_num @ X4 @ Xa ) ) )
           => ( ( lattic4823215512031491691ax_num @ A2 )
              = ( lattic4823215512031491691ax_num @ B3 ) ) ) ) ) ) ).

% Max_eq_if
thf(fact_2760_Max__eq__if,axiom,
    ! [A2: set_nat,B3: set_nat] :
      ( ( finite_finite_nat @ A2 )
     => ( ( finite_finite_nat @ B3 )
       => ( ! [X4: nat] :
              ( ( member_nat @ X4 @ A2 )
             => ? [Xa: nat] :
                  ( ( member_nat @ Xa @ B3 )
                  & ( ord_less_eq_nat @ X4 @ Xa ) ) )
         => ( ! [X4: nat] :
                ( ( member_nat @ X4 @ B3 )
               => ? [Xa: nat] :
                    ( ( member_nat @ Xa @ A2 )
                    & ( ord_less_eq_nat @ X4 @ Xa ) ) )
           => ( ( lattic8265883725875713057ax_nat @ A2 )
              = ( lattic8265883725875713057ax_nat @ B3 ) ) ) ) ) ) ).

% Max_eq_if
thf(fact_2761_Max__eq__if,axiom,
    ! [A2: set_int,B3: set_int] :
      ( ( finite_finite_int @ A2 )
     => ( ( finite_finite_int @ B3 )
       => ( ! [X4: int] :
              ( ( member_int @ X4 @ A2 )
             => ? [Xa: int] :
                  ( ( member_int @ Xa @ B3 )
                  & ( ord_less_eq_int @ X4 @ Xa ) ) )
         => ( ! [X4: int] :
                ( ( member_int @ X4 @ B3 )
               => ? [Xa: int] :
                    ( ( member_int @ Xa @ A2 )
                    & ( ord_less_eq_int @ X4 @ Xa ) ) )
           => ( ( lattic8263393255366662781ax_int @ A2 )
              = ( lattic8263393255366662781ax_int @ B3 ) ) ) ) ) ) ).

% Max_eq_if
thf(fact_2762_Max__eqI,axiom,
    ! [A2: set_real,X2: real] :
      ( ( finite_finite_real @ A2 )
     => ( ! [Y3: real] :
            ( ( member_real @ Y3 @ A2 )
           => ( ord_less_eq_real @ Y3 @ X2 ) )
       => ( ( member_real @ X2 @ A2 )
         => ( ( lattic4275903605611617917x_real @ A2 )
            = X2 ) ) ) ) ).

% Max_eqI
thf(fact_2763_Max__eqI,axiom,
    ! [A2: set_rat,X2: rat] :
      ( ( finite_finite_rat @ A2 )
     => ( ! [Y3: rat] :
            ( ( member_rat @ Y3 @ A2 )
           => ( ord_less_eq_rat @ Y3 @ X2 ) )
       => ( ( member_rat @ X2 @ A2 )
         => ( ( lattic7630753665789217321ax_rat @ A2 )
            = X2 ) ) ) ) ).

% Max_eqI
thf(fact_2764_Max__eqI,axiom,
    ! [A2: set_num,X2: num] :
      ( ( finite_finite_num @ A2 )
     => ( ! [Y3: num] :
            ( ( member_num @ Y3 @ A2 )
           => ( ord_less_eq_num @ Y3 @ X2 ) )
       => ( ( member_num @ X2 @ A2 )
         => ( ( lattic4823215512031491691ax_num @ A2 )
            = X2 ) ) ) ) ).

% Max_eqI
thf(fact_2765_Max__eqI,axiom,
    ! [A2: set_nat,X2: nat] :
      ( ( finite_finite_nat @ A2 )
     => ( ! [Y3: nat] :
            ( ( member_nat @ Y3 @ A2 )
           => ( ord_less_eq_nat @ Y3 @ X2 ) )
       => ( ( member_nat @ X2 @ A2 )
         => ( ( lattic8265883725875713057ax_nat @ A2 )
            = X2 ) ) ) ) ).

% Max_eqI
thf(fact_2766_Max__eqI,axiom,
    ! [A2: set_int,X2: int] :
      ( ( finite_finite_int @ A2 )
     => ( ! [Y3: int] :
            ( ( member_int @ Y3 @ A2 )
           => ( ord_less_eq_int @ Y3 @ X2 ) )
       => ( ( member_int @ X2 @ A2 )
         => ( ( lattic8263393255366662781ax_int @ A2 )
            = X2 ) ) ) ) ).

% Max_eqI
thf(fact_2767_Max__ge,axiom,
    ! [A2: set_real,X2: real] :
      ( ( finite_finite_real @ A2 )
     => ( ( member_real @ X2 @ A2 )
       => ( ord_less_eq_real @ X2 @ ( lattic4275903605611617917x_real @ A2 ) ) ) ) ).

% Max_ge
thf(fact_2768_Max__ge,axiom,
    ! [A2: set_rat,X2: rat] :
      ( ( finite_finite_rat @ A2 )
     => ( ( member_rat @ X2 @ A2 )
       => ( ord_less_eq_rat @ X2 @ ( lattic7630753665789217321ax_rat @ A2 ) ) ) ) ).

% Max_ge
thf(fact_2769_Max__ge,axiom,
    ! [A2: set_num,X2: num] :
      ( ( finite_finite_num @ A2 )
     => ( ( member_num @ X2 @ A2 )
       => ( ord_less_eq_num @ X2 @ ( lattic4823215512031491691ax_num @ A2 ) ) ) ) ).

% Max_ge
thf(fact_2770_Max__ge,axiom,
    ! [A2: set_nat,X2: nat] :
      ( ( finite_finite_nat @ A2 )
     => ( ( member_nat @ X2 @ A2 )
       => ( ord_less_eq_nat @ X2 @ ( lattic8265883725875713057ax_nat @ A2 ) ) ) ) ).

% Max_ge
thf(fact_2771_Max__ge,axiom,
    ! [A2: set_int,X2: int] :
      ( ( finite_finite_int @ A2 )
     => ( ( member_int @ X2 @ A2 )
       => ( ord_less_eq_int @ X2 @ ( lattic8263393255366662781ax_int @ A2 ) ) ) ) ).

% Max_ge
thf(fact_2772_Max__in,axiom,
    ! [A2: set_real] :
      ( ( finite_finite_real @ A2 )
     => ( ( A2 != bot_bot_set_real )
       => ( member_real @ ( lattic4275903605611617917x_real @ A2 ) @ A2 ) ) ) ).

% Max_in
thf(fact_2773_Max__in,axiom,
    ! [A2: set_o] :
      ( ( finite_finite_o @ A2 )
     => ( ( A2 != bot_bot_set_o )
       => ( member_o @ ( lattic1921953407002678535_Max_o @ A2 ) @ A2 ) ) ) ).

% Max_in
thf(fact_2774_Max__in,axiom,
    ! [A2: set_nat] :
      ( ( finite_finite_nat @ A2 )
     => ( ( A2 != bot_bot_set_nat )
       => ( member_nat @ ( lattic8265883725875713057ax_nat @ A2 ) @ A2 ) ) ) ).

% Max_in
thf(fact_2775_Max__in,axiom,
    ! [A2: set_int] :
      ( ( finite_finite_int @ A2 )
     => ( ( A2 != bot_bot_set_int )
       => ( member_int @ ( lattic8263393255366662781ax_int @ A2 ) @ A2 ) ) ) ).

% Max_in
thf(fact_2776_int__induct,axiom,
    ! [P: int > $o,K: int,I: int] :
      ( ( P @ K )
     => ( ! [I3: int] :
            ( ( ord_less_eq_int @ K @ I3 )
           => ( ( P @ I3 )
             => ( P @ ( plus_plus_int @ I3 @ one_one_int ) ) ) )
       => ( ! [I3: int] :
              ( ( ord_less_eq_int @ I3 @ K )
             => ( ( P @ I3 )
               => ( P @ ( minus_minus_int @ I3 @ one_one_int ) ) ) )
         => ( P @ I ) ) ) ) ).

% int_induct
thf(fact_2777_zless__imp__add1__zle,axiom,
    ! [W: int,Z: int] :
      ( ( ord_less_int @ W @ Z )
     => ( ord_less_eq_int @ ( plus_plus_int @ W @ one_one_int ) @ Z ) ) ).

% zless_imp_add1_zle
thf(fact_2778_add1__zle__eq,axiom,
    ! [W: int,Z: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ W @ one_one_int ) @ Z )
      = ( ord_less_int @ W @ Z ) ) ).

% add1_zle_eq
thf(fact_2779_int__ge__induct,axiom,
    ! [K: int,I: int,P: int > $o] :
      ( ( ord_less_eq_int @ K @ I )
     => ( ( P @ K )
       => ( ! [I3: int] :
              ( ( ord_less_eq_int @ K @ I3 )
             => ( ( P @ I3 )
               => ( P @ ( plus_plus_int @ I3 @ one_one_int ) ) ) )
         => ( P @ I ) ) ) ) ).

% int_ge_induct
thf(fact_2780_Max_Oin__idem,axiom,
    ! [A2: set_real,X2: real] :
      ( ( finite_finite_real @ A2 )
     => ( ( member_real @ X2 @ A2 )
       => ( ( ord_max_real @ X2 @ ( lattic4275903605611617917x_real @ A2 ) )
          = ( lattic4275903605611617917x_real @ A2 ) ) ) ) ).

% Max.in_idem
thf(fact_2781_Max_Oin__idem,axiom,
    ! [A2: set_Extended_enat,X2: extended_enat] :
      ( ( finite4001608067531595151d_enat @ A2 )
     => ( ( member_Extended_enat @ X2 @ A2 )
       => ( ( ord_ma741700101516333627d_enat @ X2 @ ( lattic921264341876707157d_enat @ A2 ) )
          = ( lattic921264341876707157d_enat @ A2 ) ) ) ) ).

% Max.in_idem
thf(fact_2782_Max_Oin__idem,axiom,
    ! [A2: set_nat,X2: nat] :
      ( ( finite_finite_nat @ A2 )
     => ( ( member_nat @ X2 @ A2 )
       => ( ( ord_max_nat @ X2 @ ( lattic8265883725875713057ax_nat @ A2 ) )
          = ( lattic8265883725875713057ax_nat @ A2 ) ) ) ) ).

% Max.in_idem
thf(fact_2783_Max_Oin__idem,axiom,
    ! [A2: set_int,X2: int] :
      ( ( finite_finite_int @ A2 )
     => ( ( member_int @ X2 @ A2 )
       => ( ( ord_max_int @ X2 @ ( lattic8263393255366662781ax_int @ A2 ) )
          = ( lattic8263393255366662781ax_int @ A2 ) ) ) ) ).

% Max.in_idem
thf(fact_2784_finite__ranking__induct,axiom,
    ! [S3: set_VEBT_VEBT,P: set_VEBT_VEBT > $o,F: vEBT_VEBT > rat] :
      ( ( finite5795047828879050333T_VEBT @ S3 )
     => ( ( P @ bot_bo8194388402131092736T_VEBT )
       => ( ! [X4: vEBT_VEBT,S4: set_VEBT_VEBT] :
              ( ( finite5795047828879050333T_VEBT @ S4 )
             => ( ! [Y4: vEBT_VEBT] :
                    ( ( member_VEBT_VEBT @ Y4 @ S4 )
                   => ( ord_less_eq_rat @ ( F @ Y4 ) @ ( F @ X4 ) ) )
               => ( ( P @ S4 )
                 => ( P @ ( insert_VEBT_VEBT @ X4 @ S4 ) ) ) ) )
         => ( P @ S3 ) ) ) ) ).

% finite_ranking_induct
thf(fact_2785_finite__ranking__induct,axiom,
    ! [S3: set_complex,P: set_complex > $o,F: complex > rat] :
      ( ( finite3207457112153483333omplex @ S3 )
     => ( ( P @ bot_bot_set_complex )
       => ( ! [X4: complex,S4: set_complex] :
              ( ( finite3207457112153483333omplex @ S4 )
             => ( ! [Y4: complex] :
                    ( ( member_complex @ Y4 @ S4 )
                   => ( ord_less_eq_rat @ ( F @ Y4 ) @ ( F @ X4 ) ) )
               => ( ( P @ S4 )
                 => ( P @ ( insert_complex @ X4 @ S4 ) ) ) ) )
         => ( P @ S3 ) ) ) ) ).

% finite_ranking_induct
thf(fact_2786_finite__ranking__induct,axiom,
    ! [S3: set_real,P: set_real > $o,F: real > rat] :
      ( ( finite_finite_real @ S3 )
     => ( ( P @ bot_bot_set_real )
       => ( ! [X4: real,S4: set_real] :
              ( ( finite_finite_real @ S4 )
             => ( ! [Y4: real] :
                    ( ( member_real @ Y4 @ S4 )
                   => ( ord_less_eq_rat @ ( F @ Y4 ) @ ( F @ X4 ) ) )
               => ( ( P @ S4 )
                 => ( P @ ( insert_real @ X4 @ S4 ) ) ) ) )
         => ( P @ S3 ) ) ) ) ).

% finite_ranking_induct
thf(fact_2787_finite__ranking__induct,axiom,
    ! [S3: set_o,P: set_o > $o,F: $o > rat] :
      ( ( finite_finite_o @ S3 )
     => ( ( P @ bot_bot_set_o )
       => ( ! [X4: $o,S4: set_o] :
              ( ( finite_finite_o @ S4 )
             => ( ! [Y4: $o] :
                    ( ( member_o @ Y4 @ S4 )
                   => ( ord_less_eq_rat @ ( F @ Y4 ) @ ( F @ X4 ) ) )
               => ( ( P @ S4 )
                 => ( P @ ( insert_o @ X4 @ S4 ) ) ) ) )
         => ( P @ S3 ) ) ) ) ).

% finite_ranking_induct
thf(fact_2788_finite__ranking__induct,axiom,
    ! [S3: set_nat,P: set_nat > $o,F: nat > rat] :
      ( ( finite_finite_nat @ S3 )
     => ( ( P @ bot_bot_set_nat )
       => ( ! [X4: nat,S4: set_nat] :
              ( ( finite_finite_nat @ S4 )
             => ( ! [Y4: nat] :
                    ( ( member_nat @ Y4 @ S4 )
                   => ( ord_less_eq_rat @ ( F @ Y4 ) @ ( F @ X4 ) ) )
               => ( ( P @ S4 )
                 => ( P @ ( insert_nat @ X4 @ S4 ) ) ) ) )
         => ( P @ S3 ) ) ) ) ).

% finite_ranking_induct
thf(fact_2789_finite__ranking__induct,axiom,
    ! [S3: set_int,P: set_int > $o,F: int > rat] :
      ( ( finite_finite_int @ S3 )
     => ( ( P @ bot_bot_set_int )
       => ( ! [X4: int,S4: set_int] :
              ( ( finite_finite_int @ S4 )
             => ( ! [Y4: int] :
                    ( ( member_int @ Y4 @ S4 )
                   => ( ord_less_eq_rat @ ( F @ Y4 ) @ ( F @ X4 ) ) )
               => ( ( P @ S4 )
                 => ( P @ ( insert_int @ X4 @ S4 ) ) ) ) )
         => ( P @ S3 ) ) ) ) ).

% finite_ranking_induct
thf(fact_2790_finite__ranking__induct,axiom,
    ! [S3: set_VEBT_VEBT,P: set_VEBT_VEBT > $o,F: vEBT_VEBT > num] :
      ( ( finite5795047828879050333T_VEBT @ S3 )
     => ( ( P @ bot_bo8194388402131092736T_VEBT )
       => ( ! [X4: vEBT_VEBT,S4: set_VEBT_VEBT] :
              ( ( finite5795047828879050333T_VEBT @ S4 )
             => ( ! [Y4: vEBT_VEBT] :
                    ( ( member_VEBT_VEBT @ Y4 @ S4 )
                   => ( ord_less_eq_num @ ( F @ Y4 ) @ ( F @ X4 ) ) )
               => ( ( P @ S4 )
                 => ( P @ ( insert_VEBT_VEBT @ X4 @ S4 ) ) ) ) )
         => ( P @ S3 ) ) ) ) ).

% finite_ranking_induct
thf(fact_2791_finite__ranking__induct,axiom,
    ! [S3: set_complex,P: set_complex > $o,F: complex > num] :
      ( ( finite3207457112153483333omplex @ S3 )
     => ( ( P @ bot_bot_set_complex )
       => ( ! [X4: complex,S4: set_complex] :
              ( ( finite3207457112153483333omplex @ S4 )
             => ( ! [Y4: complex] :
                    ( ( member_complex @ Y4 @ S4 )
                   => ( ord_less_eq_num @ ( F @ Y4 ) @ ( F @ X4 ) ) )
               => ( ( P @ S4 )
                 => ( P @ ( insert_complex @ X4 @ S4 ) ) ) ) )
         => ( P @ S3 ) ) ) ) ).

% finite_ranking_induct
thf(fact_2792_finite__ranking__induct,axiom,
    ! [S3: set_real,P: set_real > $o,F: real > num] :
      ( ( finite_finite_real @ S3 )
     => ( ( P @ bot_bot_set_real )
       => ( ! [X4: real,S4: set_real] :
              ( ( finite_finite_real @ S4 )
             => ( ! [Y4: real] :
                    ( ( member_real @ Y4 @ S4 )
                   => ( ord_less_eq_num @ ( F @ Y4 ) @ ( F @ X4 ) ) )
               => ( ( P @ S4 )
                 => ( P @ ( insert_real @ X4 @ S4 ) ) ) ) )
         => ( P @ S3 ) ) ) ) ).

% finite_ranking_induct
thf(fact_2793_finite__ranking__induct,axiom,
    ! [S3: set_o,P: set_o > $o,F: $o > num] :
      ( ( finite_finite_o @ S3 )
     => ( ( P @ bot_bot_set_o )
       => ( ! [X4: $o,S4: set_o] :
              ( ( finite_finite_o @ S4 )
             => ( ! [Y4: $o] :
                    ( ( member_o @ Y4 @ S4 )
                   => ( ord_less_eq_num @ ( F @ Y4 ) @ ( F @ X4 ) ) )
               => ( ( P @ S4 )
                 => ( P @ ( insert_o @ X4 @ S4 ) ) ) ) )
         => ( P @ S3 ) ) ) ) ).

% finite_ranking_induct
thf(fact_2794_finite__linorder__max__induct,axiom,
    ! [A2: set_o,P: set_o > $o] :
      ( ( finite_finite_o @ A2 )
     => ( ( P @ bot_bot_set_o )
       => ( ! [B7: $o,A7: set_o] :
              ( ( finite_finite_o @ A7 )
             => ( ! [X3: $o] :
                    ( ( member_o @ X3 @ A7 )
                   => ( ord_less_o @ X3 @ B7 ) )
               => ( ( P @ A7 )
                 => ( P @ ( insert_o @ B7 @ A7 ) ) ) ) )
         => ( P @ A2 ) ) ) ) ).

% finite_linorder_max_induct
thf(fact_2795_finite__linorder__max__induct,axiom,
    ! [A2: set_real,P: set_real > $o] :
      ( ( finite_finite_real @ A2 )
     => ( ( P @ bot_bot_set_real )
       => ( ! [B7: real,A7: set_real] :
              ( ( finite_finite_real @ A7 )
             => ( ! [X3: real] :
                    ( ( member_real @ X3 @ A7 )
                   => ( ord_less_real @ X3 @ B7 ) )
               => ( ( P @ A7 )
                 => ( P @ ( insert_real @ B7 @ A7 ) ) ) ) )
         => ( P @ A2 ) ) ) ) ).

% finite_linorder_max_induct
thf(fact_2796_finite__linorder__max__induct,axiom,
    ! [A2: set_rat,P: set_rat > $o] :
      ( ( finite_finite_rat @ A2 )
     => ( ( P @ bot_bot_set_rat )
       => ( ! [B7: rat,A7: set_rat] :
              ( ( finite_finite_rat @ A7 )
             => ( ! [X3: rat] :
                    ( ( member_rat @ X3 @ A7 )
                   => ( ord_less_rat @ X3 @ B7 ) )
               => ( ( P @ A7 )
                 => ( P @ ( insert_rat @ B7 @ A7 ) ) ) ) )
         => ( P @ A2 ) ) ) ) ).

% finite_linorder_max_induct
thf(fact_2797_finite__linorder__max__induct,axiom,
    ! [A2: set_num,P: set_num > $o] :
      ( ( finite_finite_num @ A2 )
     => ( ( P @ bot_bot_set_num )
       => ( ! [B7: num,A7: set_num] :
              ( ( finite_finite_num @ A7 )
             => ( ! [X3: num] :
                    ( ( member_num @ X3 @ A7 )
                   => ( ord_less_num @ X3 @ B7 ) )
               => ( ( P @ A7 )
                 => ( P @ ( insert_num @ B7 @ A7 ) ) ) ) )
         => ( P @ A2 ) ) ) ) ).

% finite_linorder_max_induct
thf(fact_2798_finite__linorder__max__induct,axiom,
    ! [A2: set_nat,P: set_nat > $o] :
      ( ( finite_finite_nat @ A2 )
     => ( ( P @ bot_bot_set_nat )
       => ( ! [B7: nat,A7: set_nat] :
              ( ( finite_finite_nat @ A7 )
             => ( ! [X3: nat] :
                    ( ( member_nat @ X3 @ A7 )
                   => ( ord_less_nat @ X3 @ B7 ) )
               => ( ( P @ A7 )
                 => ( P @ ( insert_nat @ B7 @ A7 ) ) ) ) )
         => ( P @ A2 ) ) ) ) ).

% finite_linorder_max_induct
thf(fact_2799_finite__linorder__max__induct,axiom,
    ! [A2: set_int,P: set_int > $o] :
      ( ( finite_finite_int @ A2 )
     => ( ( P @ bot_bot_set_int )
       => ( ! [B7: int,A7: set_int] :
              ( ( finite_finite_int @ A7 )
             => ( ! [X3: int] :
                    ( ( member_int @ X3 @ A7 )
                   => ( ord_less_int @ X3 @ B7 ) )
               => ( ( P @ A7 )
                 => ( P @ ( insert_int @ B7 @ A7 ) ) ) ) )
         => ( P @ A2 ) ) ) ) ).

% finite_linorder_max_induct
thf(fact_2800_finite__linorder__min__induct,axiom,
    ! [A2: set_o,P: set_o > $o] :
      ( ( finite_finite_o @ A2 )
     => ( ( P @ bot_bot_set_o )
       => ( ! [B7: $o,A7: set_o] :
              ( ( finite_finite_o @ A7 )
             => ( ! [X3: $o] :
                    ( ( member_o @ X3 @ A7 )
                   => ( ord_less_o @ B7 @ X3 ) )
               => ( ( P @ A7 )
                 => ( P @ ( insert_o @ B7 @ A7 ) ) ) ) )
         => ( P @ A2 ) ) ) ) ).

% finite_linorder_min_induct
thf(fact_2801_finite__linorder__min__induct,axiom,
    ! [A2: set_real,P: set_real > $o] :
      ( ( finite_finite_real @ A2 )
     => ( ( P @ bot_bot_set_real )
       => ( ! [B7: real,A7: set_real] :
              ( ( finite_finite_real @ A7 )
             => ( ! [X3: real] :
                    ( ( member_real @ X3 @ A7 )
                   => ( ord_less_real @ B7 @ X3 ) )
               => ( ( P @ A7 )
                 => ( P @ ( insert_real @ B7 @ A7 ) ) ) ) )
         => ( P @ A2 ) ) ) ) ).

% finite_linorder_min_induct
thf(fact_2802_finite__linorder__min__induct,axiom,
    ! [A2: set_rat,P: set_rat > $o] :
      ( ( finite_finite_rat @ A2 )
     => ( ( P @ bot_bot_set_rat )
       => ( ! [B7: rat,A7: set_rat] :
              ( ( finite_finite_rat @ A7 )
             => ( ! [X3: rat] :
                    ( ( member_rat @ X3 @ A7 )
                   => ( ord_less_rat @ B7 @ X3 ) )
               => ( ( P @ A7 )
                 => ( P @ ( insert_rat @ B7 @ A7 ) ) ) ) )
         => ( P @ A2 ) ) ) ) ).

% finite_linorder_min_induct
thf(fact_2803_finite__linorder__min__induct,axiom,
    ! [A2: set_num,P: set_num > $o] :
      ( ( finite_finite_num @ A2 )
     => ( ( P @ bot_bot_set_num )
       => ( ! [B7: num,A7: set_num] :
              ( ( finite_finite_num @ A7 )
             => ( ! [X3: num] :
                    ( ( member_num @ X3 @ A7 )
                   => ( ord_less_num @ B7 @ X3 ) )
               => ( ( P @ A7 )
                 => ( P @ ( insert_num @ B7 @ A7 ) ) ) ) )
         => ( P @ A2 ) ) ) ) ).

% finite_linorder_min_induct
thf(fact_2804_finite__linorder__min__induct,axiom,
    ! [A2: set_nat,P: set_nat > $o] :
      ( ( finite_finite_nat @ A2 )
     => ( ( P @ bot_bot_set_nat )
       => ( ! [B7: nat,A7: set_nat] :
              ( ( finite_finite_nat @ A7 )
             => ( ! [X3: nat] :
                    ( ( member_nat @ X3 @ A7 )
                   => ( ord_less_nat @ B7 @ X3 ) )
               => ( ( P @ A7 )
                 => ( P @ ( insert_nat @ B7 @ A7 ) ) ) ) )
         => ( P @ A2 ) ) ) ) ).

% finite_linorder_min_induct
thf(fact_2805_finite__linorder__min__induct,axiom,
    ! [A2: set_int,P: set_int > $o] :
      ( ( finite_finite_int @ A2 )
     => ( ( P @ bot_bot_set_int )
       => ( ! [B7: int,A7: set_int] :
              ( ( finite_finite_int @ A7 )
             => ( ! [X3: int] :
                    ( ( member_int @ X3 @ A7 )
                   => ( ord_less_int @ B7 @ X3 ) )
               => ( ( P @ A7 )
                 => ( P @ ( insert_int @ B7 @ A7 ) ) ) ) )
         => ( P @ A2 ) ) ) ) ).

% finite_linorder_min_induct
thf(fact_2806_Max__eq__iff,axiom,
    ! [A2: set_real,M: real] :
      ( ( finite_finite_real @ A2 )
     => ( ( A2 != bot_bot_set_real )
       => ( ( ( lattic4275903605611617917x_real @ A2 )
            = M )
          = ( ( member_real @ M @ A2 )
            & ! [X: real] :
                ( ( member_real @ X @ A2 )
               => ( ord_less_eq_real @ X @ M ) ) ) ) ) ) ).

% Max_eq_iff
thf(fact_2807_Max__eq__iff,axiom,
    ! [A2: set_o,M: $o] :
      ( ( finite_finite_o @ A2 )
     => ( ( A2 != bot_bot_set_o )
       => ( ( ( lattic1921953407002678535_Max_o @ A2 )
            = M )
          = ( ( member_o @ M @ A2 )
            & ! [X: $o] :
                ( ( member_o @ X @ A2 )
               => ( ord_less_eq_o @ X @ M ) ) ) ) ) ) ).

% Max_eq_iff
thf(fact_2808_Max__eq__iff,axiom,
    ! [A2: set_rat,M: rat] :
      ( ( finite_finite_rat @ A2 )
     => ( ( A2 != bot_bot_set_rat )
       => ( ( ( lattic7630753665789217321ax_rat @ A2 )
            = M )
          = ( ( member_rat @ M @ A2 )
            & ! [X: rat] :
                ( ( member_rat @ X @ A2 )
               => ( ord_less_eq_rat @ X @ M ) ) ) ) ) ) ).

% Max_eq_iff
thf(fact_2809_Max__eq__iff,axiom,
    ! [A2: set_num,M: num] :
      ( ( finite_finite_num @ A2 )
     => ( ( A2 != bot_bot_set_num )
       => ( ( ( lattic4823215512031491691ax_num @ A2 )
            = M )
          = ( ( member_num @ M @ A2 )
            & ! [X: num] :
                ( ( member_num @ X @ A2 )
               => ( ord_less_eq_num @ X @ M ) ) ) ) ) ) ).

% Max_eq_iff
thf(fact_2810_Max__eq__iff,axiom,
    ! [A2: set_nat,M: nat] :
      ( ( finite_finite_nat @ A2 )
     => ( ( A2 != bot_bot_set_nat )
       => ( ( ( lattic8265883725875713057ax_nat @ A2 )
            = M )
          = ( ( member_nat @ M @ A2 )
            & ! [X: nat] :
                ( ( member_nat @ X @ A2 )
               => ( ord_less_eq_nat @ X @ M ) ) ) ) ) ) ).

% Max_eq_iff
thf(fact_2811_Max__eq__iff,axiom,
    ! [A2: set_int,M: int] :
      ( ( finite_finite_int @ A2 )
     => ( ( A2 != bot_bot_set_int )
       => ( ( ( lattic8263393255366662781ax_int @ A2 )
            = M )
          = ( ( member_int @ M @ A2 )
            & ! [X: int] :
                ( ( member_int @ X @ A2 )
               => ( ord_less_eq_int @ X @ M ) ) ) ) ) ) ).

% Max_eq_iff
thf(fact_2812_Max__ge__iff,axiom,
    ! [A2: set_real,X2: real] :
      ( ( finite_finite_real @ A2 )
     => ( ( A2 != bot_bot_set_real )
       => ( ( ord_less_eq_real @ X2 @ ( lattic4275903605611617917x_real @ A2 ) )
          = ( ? [X: real] :
                ( ( member_real @ X @ A2 )
                & ( ord_less_eq_real @ X2 @ X ) ) ) ) ) ) ).

% Max_ge_iff
thf(fact_2813_Max__ge__iff,axiom,
    ! [A2: set_o,X2: $o] :
      ( ( finite_finite_o @ A2 )
     => ( ( A2 != bot_bot_set_o )
       => ( ( ord_less_eq_o @ X2 @ ( lattic1921953407002678535_Max_o @ A2 ) )
          = ( ? [X: $o] :
                ( ( member_o @ X @ A2 )
                & ( ord_less_eq_o @ X2 @ X ) ) ) ) ) ) ).

% Max_ge_iff
thf(fact_2814_Max__ge__iff,axiom,
    ! [A2: set_rat,X2: rat] :
      ( ( finite_finite_rat @ A2 )
     => ( ( A2 != bot_bot_set_rat )
       => ( ( ord_less_eq_rat @ X2 @ ( lattic7630753665789217321ax_rat @ A2 ) )
          = ( ? [X: rat] :
                ( ( member_rat @ X @ A2 )
                & ( ord_less_eq_rat @ X2 @ X ) ) ) ) ) ) ).

% Max_ge_iff
thf(fact_2815_Max__ge__iff,axiom,
    ! [A2: set_num,X2: num] :
      ( ( finite_finite_num @ A2 )
     => ( ( A2 != bot_bot_set_num )
       => ( ( ord_less_eq_num @ X2 @ ( lattic4823215512031491691ax_num @ A2 ) )
          = ( ? [X: num] :
                ( ( member_num @ X @ A2 )
                & ( ord_less_eq_num @ X2 @ X ) ) ) ) ) ) ).

% Max_ge_iff
thf(fact_2816_Max__ge__iff,axiom,
    ! [A2: set_nat,X2: nat] :
      ( ( finite_finite_nat @ A2 )
     => ( ( A2 != bot_bot_set_nat )
       => ( ( ord_less_eq_nat @ X2 @ ( lattic8265883725875713057ax_nat @ A2 ) )
          = ( ? [X: nat] :
                ( ( member_nat @ X @ A2 )
                & ( ord_less_eq_nat @ X2 @ X ) ) ) ) ) ) ).

% Max_ge_iff
thf(fact_2817_Max__ge__iff,axiom,
    ! [A2: set_int,X2: int] :
      ( ( finite_finite_int @ A2 )
     => ( ( A2 != bot_bot_set_int )
       => ( ( ord_less_eq_int @ X2 @ ( lattic8263393255366662781ax_int @ A2 ) )
          = ( ? [X: int] :
                ( ( member_int @ X @ A2 )
                & ( ord_less_eq_int @ X2 @ X ) ) ) ) ) ) ).

% Max_ge_iff
thf(fact_2818_eq__Max__iff,axiom,
    ! [A2: set_real,M: real] :
      ( ( finite_finite_real @ A2 )
     => ( ( A2 != bot_bot_set_real )
       => ( ( M
            = ( lattic4275903605611617917x_real @ A2 ) )
          = ( ( member_real @ M @ A2 )
            & ! [X: real] :
                ( ( member_real @ X @ A2 )
               => ( ord_less_eq_real @ X @ M ) ) ) ) ) ) ).

% eq_Max_iff
thf(fact_2819_eq__Max__iff,axiom,
    ! [A2: set_o,M: $o] :
      ( ( finite_finite_o @ A2 )
     => ( ( A2 != bot_bot_set_o )
       => ( ( M
            = ( lattic1921953407002678535_Max_o @ A2 ) )
          = ( ( member_o @ M @ A2 )
            & ! [X: $o] :
                ( ( member_o @ X @ A2 )
               => ( ord_less_eq_o @ X @ M ) ) ) ) ) ) ).

% eq_Max_iff
thf(fact_2820_eq__Max__iff,axiom,
    ! [A2: set_rat,M: rat] :
      ( ( finite_finite_rat @ A2 )
     => ( ( A2 != bot_bot_set_rat )
       => ( ( M
            = ( lattic7630753665789217321ax_rat @ A2 ) )
          = ( ( member_rat @ M @ A2 )
            & ! [X: rat] :
                ( ( member_rat @ X @ A2 )
               => ( ord_less_eq_rat @ X @ M ) ) ) ) ) ) ).

% eq_Max_iff
thf(fact_2821_eq__Max__iff,axiom,
    ! [A2: set_num,M: num] :
      ( ( finite_finite_num @ A2 )
     => ( ( A2 != bot_bot_set_num )
       => ( ( M
            = ( lattic4823215512031491691ax_num @ A2 ) )
          = ( ( member_num @ M @ A2 )
            & ! [X: num] :
                ( ( member_num @ X @ A2 )
               => ( ord_less_eq_num @ X @ M ) ) ) ) ) ) ).

% eq_Max_iff
thf(fact_2822_eq__Max__iff,axiom,
    ! [A2: set_nat,M: nat] :
      ( ( finite_finite_nat @ A2 )
     => ( ( A2 != bot_bot_set_nat )
       => ( ( M
            = ( lattic8265883725875713057ax_nat @ A2 ) )
          = ( ( member_nat @ M @ A2 )
            & ! [X: nat] :
                ( ( member_nat @ X @ A2 )
               => ( ord_less_eq_nat @ X @ M ) ) ) ) ) ) ).

% eq_Max_iff
thf(fact_2823_eq__Max__iff,axiom,
    ! [A2: set_int,M: int] :
      ( ( finite_finite_int @ A2 )
     => ( ( A2 != bot_bot_set_int )
       => ( ( M
            = ( lattic8263393255366662781ax_int @ A2 ) )
          = ( ( member_int @ M @ A2 )
            & ! [X: int] :
                ( ( member_int @ X @ A2 )
               => ( ord_less_eq_int @ X @ M ) ) ) ) ) ) ).

% eq_Max_iff
thf(fact_2824_Max_OboundedE,axiom,
    ! [A2: set_real,X2: real] :
      ( ( finite_finite_real @ A2 )
     => ( ( A2 != bot_bot_set_real )
       => ( ( ord_less_eq_real @ ( lattic4275903605611617917x_real @ A2 ) @ X2 )
         => ! [A8: real] :
              ( ( member_real @ A8 @ A2 )
             => ( ord_less_eq_real @ A8 @ X2 ) ) ) ) ) ).

% Max.boundedE
thf(fact_2825_Max_OboundedE,axiom,
    ! [A2: set_o,X2: $o] :
      ( ( finite_finite_o @ A2 )
     => ( ( A2 != bot_bot_set_o )
       => ( ( ord_less_eq_o @ ( lattic1921953407002678535_Max_o @ A2 ) @ X2 )
         => ! [A8: $o] :
              ( ( member_o @ A8 @ A2 )
             => ( ord_less_eq_o @ A8 @ X2 ) ) ) ) ) ).

% Max.boundedE
thf(fact_2826_Max_OboundedE,axiom,
    ! [A2: set_rat,X2: rat] :
      ( ( finite_finite_rat @ A2 )
     => ( ( A2 != bot_bot_set_rat )
       => ( ( ord_less_eq_rat @ ( lattic7630753665789217321ax_rat @ A2 ) @ X2 )
         => ! [A8: rat] :
              ( ( member_rat @ A8 @ A2 )
             => ( ord_less_eq_rat @ A8 @ X2 ) ) ) ) ) ).

% Max.boundedE
thf(fact_2827_Max_OboundedE,axiom,
    ! [A2: set_num,X2: num] :
      ( ( finite_finite_num @ A2 )
     => ( ( A2 != bot_bot_set_num )
       => ( ( ord_less_eq_num @ ( lattic4823215512031491691ax_num @ A2 ) @ X2 )
         => ! [A8: num] :
              ( ( member_num @ A8 @ A2 )
             => ( ord_less_eq_num @ A8 @ X2 ) ) ) ) ) ).

% Max.boundedE
thf(fact_2828_Max_OboundedE,axiom,
    ! [A2: set_nat,X2: nat] :
      ( ( finite_finite_nat @ A2 )
     => ( ( A2 != bot_bot_set_nat )
       => ( ( ord_less_eq_nat @ ( lattic8265883725875713057ax_nat @ A2 ) @ X2 )
         => ! [A8: nat] :
              ( ( member_nat @ A8 @ A2 )
             => ( ord_less_eq_nat @ A8 @ X2 ) ) ) ) ) ).

% Max.boundedE
thf(fact_2829_Max_OboundedE,axiom,
    ! [A2: set_int,X2: int] :
      ( ( finite_finite_int @ A2 )
     => ( ( A2 != bot_bot_set_int )
       => ( ( ord_less_eq_int @ ( lattic8263393255366662781ax_int @ A2 ) @ X2 )
         => ! [A8: int] :
              ( ( member_int @ A8 @ A2 )
             => ( ord_less_eq_int @ A8 @ X2 ) ) ) ) ) ).

% Max.boundedE
thf(fact_2830_Max_OboundedI,axiom,
    ! [A2: set_real,X2: real] :
      ( ( finite_finite_real @ A2 )
     => ( ( A2 != bot_bot_set_real )
       => ( ! [A6: real] :
              ( ( member_real @ A6 @ A2 )
             => ( ord_less_eq_real @ A6 @ X2 ) )
         => ( ord_less_eq_real @ ( lattic4275903605611617917x_real @ A2 ) @ X2 ) ) ) ) ).

% Max.boundedI
thf(fact_2831_Max_OboundedI,axiom,
    ! [A2: set_o,X2: $o] :
      ( ( finite_finite_o @ A2 )
     => ( ( A2 != bot_bot_set_o )
       => ( ! [A6: $o] :
              ( ( member_o @ A6 @ A2 )
             => ( ord_less_eq_o @ A6 @ X2 ) )
         => ( ord_less_eq_o @ ( lattic1921953407002678535_Max_o @ A2 ) @ X2 ) ) ) ) ).

% Max.boundedI
thf(fact_2832_Max_OboundedI,axiom,
    ! [A2: set_rat,X2: rat] :
      ( ( finite_finite_rat @ A2 )
     => ( ( A2 != bot_bot_set_rat )
       => ( ! [A6: rat] :
              ( ( member_rat @ A6 @ A2 )
             => ( ord_less_eq_rat @ A6 @ X2 ) )
         => ( ord_less_eq_rat @ ( lattic7630753665789217321ax_rat @ A2 ) @ X2 ) ) ) ) ).

% Max.boundedI
thf(fact_2833_Max_OboundedI,axiom,
    ! [A2: set_num,X2: num] :
      ( ( finite_finite_num @ A2 )
     => ( ( A2 != bot_bot_set_num )
       => ( ! [A6: num] :
              ( ( member_num @ A6 @ A2 )
             => ( ord_less_eq_num @ A6 @ X2 ) )
         => ( ord_less_eq_num @ ( lattic4823215512031491691ax_num @ A2 ) @ X2 ) ) ) ) ).

% Max.boundedI
thf(fact_2834_Max_OboundedI,axiom,
    ! [A2: set_nat,X2: nat] :
      ( ( finite_finite_nat @ A2 )
     => ( ( A2 != bot_bot_set_nat )
       => ( ! [A6: nat] :
              ( ( member_nat @ A6 @ A2 )
             => ( ord_less_eq_nat @ A6 @ X2 ) )
         => ( ord_less_eq_nat @ ( lattic8265883725875713057ax_nat @ A2 ) @ X2 ) ) ) ) ).

% Max.boundedI
thf(fact_2835_Max_OboundedI,axiom,
    ! [A2: set_int,X2: int] :
      ( ( finite_finite_int @ A2 )
     => ( ( A2 != bot_bot_set_int )
       => ( ! [A6: int] :
              ( ( member_int @ A6 @ A2 )
             => ( ord_less_eq_int @ A6 @ X2 ) )
         => ( ord_less_eq_int @ ( lattic8263393255366662781ax_int @ A2 ) @ X2 ) ) ) ) ).

% Max.boundedI
thf(fact_2836_Max__gr__iff,axiom,
    ! [A2: set_o,X2: $o] :
      ( ( finite_finite_o @ A2 )
     => ( ( A2 != bot_bot_set_o )
       => ( ( ord_less_o @ X2 @ ( lattic1921953407002678535_Max_o @ A2 ) )
          = ( ? [X: $o] :
                ( ( member_o @ X @ A2 )
                & ( ord_less_o @ X2 @ X ) ) ) ) ) ) ).

% Max_gr_iff
thf(fact_2837_Max__gr__iff,axiom,
    ! [A2: set_real,X2: real] :
      ( ( finite_finite_real @ A2 )
     => ( ( A2 != bot_bot_set_real )
       => ( ( ord_less_real @ X2 @ ( lattic4275903605611617917x_real @ A2 ) )
          = ( ? [X: real] :
                ( ( member_real @ X @ A2 )
                & ( ord_less_real @ X2 @ X ) ) ) ) ) ) ).

% Max_gr_iff
thf(fact_2838_Max__gr__iff,axiom,
    ! [A2: set_rat,X2: rat] :
      ( ( finite_finite_rat @ A2 )
     => ( ( A2 != bot_bot_set_rat )
       => ( ( ord_less_rat @ X2 @ ( lattic7630753665789217321ax_rat @ A2 ) )
          = ( ? [X: rat] :
                ( ( member_rat @ X @ A2 )
                & ( ord_less_rat @ X2 @ X ) ) ) ) ) ) ).

% Max_gr_iff
thf(fact_2839_Max__gr__iff,axiom,
    ! [A2: set_num,X2: num] :
      ( ( finite_finite_num @ A2 )
     => ( ( A2 != bot_bot_set_num )
       => ( ( ord_less_num @ X2 @ ( lattic4823215512031491691ax_num @ A2 ) )
          = ( ? [X: num] :
                ( ( member_num @ X @ A2 )
                & ( ord_less_num @ X2 @ X ) ) ) ) ) ) ).

% Max_gr_iff
thf(fact_2840_Max__gr__iff,axiom,
    ! [A2: set_nat,X2: nat] :
      ( ( finite_finite_nat @ A2 )
     => ( ( A2 != bot_bot_set_nat )
       => ( ( ord_less_nat @ X2 @ ( lattic8265883725875713057ax_nat @ A2 ) )
          = ( ? [X: nat] :
                ( ( member_nat @ X @ A2 )
                & ( ord_less_nat @ X2 @ X ) ) ) ) ) ) ).

% Max_gr_iff
thf(fact_2841_Max__gr__iff,axiom,
    ! [A2: set_int,X2: int] :
      ( ( finite_finite_int @ A2 )
     => ( ( A2 != bot_bot_set_int )
       => ( ( ord_less_int @ X2 @ ( lattic8263393255366662781ax_int @ A2 ) )
          = ( ? [X: int] :
                ( ( member_int @ X @ A2 )
                & ( ord_less_int @ X2 @ X ) ) ) ) ) ) ).

% Max_gr_iff
thf(fact_2842_Max__insert2,axiom,
    ! [A2: set_o,A: $o] :
      ( ( finite_finite_o @ A2 )
     => ( ! [B7: $o] :
            ( ( member_o @ B7 @ A2 )
           => ( ord_less_eq_o @ B7 @ A ) )
       => ( ( lattic1921953407002678535_Max_o @ ( insert_o @ A @ A2 ) )
          = A ) ) ) ).

% Max_insert2
thf(fact_2843_Max__insert2,axiom,
    ! [A2: set_real,A: real] :
      ( ( finite_finite_real @ A2 )
     => ( ! [B7: real] :
            ( ( member_real @ B7 @ A2 )
           => ( ord_less_eq_real @ B7 @ A ) )
       => ( ( lattic4275903605611617917x_real @ ( insert_real @ A @ A2 ) )
          = A ) ) ) ).

% Max_insert2
thf(fact_2844_Max__insert2,axiom,
    ! [A2: set_rat,A: rat] :
      ( ( finite_finite_rat @ A2 )
     => ( ! [B7: rat] :
            ( ( member_rat @ B7 @ A2 )
           => ( ord_less_eq_rat @ B7 @ A ) )
       => ( ( lattic7630753665789217321ax_rat @ ( insert_rat @ A @ A2 ) )
          = A ) ) ) ).

% Max_insert2
thf(fact_2845_Max__insert2,axiom,
    ! [A2: set_num,A: num] :
      ( ( finite_finite_num @ A2 )
     => ( ! [B7: num] :
            ( ( member_num @ B7 @ A2 )
           => ( ord_less_eq_num @ B7 @ A ) )
       => ( ( lattic4823215512031491691ax_num @ ( insert_num @ A @ A2 ) )
          = A ) ) ) ).

% Max_insert2
thf(fact_2846_Max__insert2,axiom,
    ! [A2: set_nat,A: nat] :
      ( ( finite_finite_nat @ A2 )
     => ( ! [B7: nat] :
            ( ( member_nat @ B7 @ A2 )
           => ( ord_less_eq_nat @ B7 @ A ) )
       => ( ( lattic8265883725875713057ax_nat @ ( insert_nat @ A @ A2 ) )
          = A ) ) ) ).

% Max_insert2
thf(fact_2847_Max__insert2,axiom,
    ! [A2: set_int,A: int] :
      ( ( finite_finite_int @ A2 )
     => ( ! [B7: int] :
            ( ( member_int @ B7 @ A2 )
           => ( ord_less_eq_int @ B7 @ A ) )
       => ( ( lattic8263393255366662781ax_int @ ( insert_int @ A @ A2 ) )
          = A ) ) ) ).

% Max_insert2
thf(fact_2848_Max_Oinfinite,axiom,
    ! [A2: set_nat] :
      ( ~ ( finite_finite_nat @ A2 )
     => ( ( lattic8265883725875713057ax_nat @ A2 )
        = ( the_nat @ none_nat ) ) ) ).

% Max.infinite
thf(fact_2849_Max_Oinfinite,axiom,
    ! [A2: set_int] :
      ( ~ ( finite_finite_int @ A2 )
     => ( ( lattic8263393255366662781ax_int @ A2 )
        = ( the_int2 @ none_int ) ) ) ).

% Max.infinite
thf(fact_2850_Max__mono,axiom,
    ! [M7: set_real,N4: set_real] :
      ( ( ord_less_eq_set_real @ M7 @ N4 )
     => ( ( M7 != bot_bot_set_real )
       => ( ( finite_finite_real @ N4 )
         => ( ord_less_eq_real @ ( lattic4275903605611617917x_real @ M7 ) @ ( lattic4275903605611617917x_real @ N4 ) ) ) ) ) ).

% Max_mono
thf(fact_2851_Max__mono,axiom,
    ! [M7: set_o,N4: set_o] :
      ( ( ord_less_eq_set_o @ M7 @ N4 )
     => ( ( M7 != bot_bot_set_o )
       => ( ( finite_finite_o @ N4 )
         => ( ord_less_eq_o @ ( lattic1921953407002678535_Max_o @ M7 ) @ ( lattic1921953407002678535_Max_o @ N4 ) ) ) ) ) ).

% Max_mono
thf(fact_2852_Max__mono,axiom,
    ! [M7: set_rat,N4: set_rat] :
      ( ( ord_less_eq_set_rat @ M7 @ N4 )
     => ( ( M7 != bot_bot_set_rat )
       => ( ( finite_finite_rat @ N4 )
         => ( ord_less_eq_rat @ ( lattic7630753665789217321ax_rat @ M7 ) @ ( lattic7630753665789217321ax_rat @ N4 ) ) ) ) ) ).

% Max_mono
thf(fact_2853_Max__mono,axiom,
    ! [M7: set_num,N4: set_num] :
      ( ( ord_less_eq_set_num @ M7 @ N4 )
     => ( ( M7 != bot_bot_set_num )
       => ( ( finite_finite_num @ N4 )
         => ( ord_less_eq_num @ ( lattic4823215512031491691ax_num @ M7 ) @ ( lattic4823215512031491691ax_num @ N4 ) ) ) ) ) ).

% Max_mono
thf(fact_2854_Max__mono,axiom,
    ! [M7: set_nat,N4: set_nat] :
      ( ( ord_less_eq_set_nat @ M7 @ N4 )
     => ( ( M7 != bot_bot_set_nat )
       => ( ( finite_finite_nat @ N4 )
         => ( ord_less_eq_nat @ ( lattic8265883725875713057ax_nat @ M7 ) @ ( lattic8265883725875713057ax_nat @ N4 ) ) ) ) ) ).

% Max_mono
thf(fact_2855_Max__mono,axiom,
    ! [M7: set_int,N4: set_int] :
      ( ( ord_less_eq_set_int @ M7 @ N4 )
     => ( ( M7 != bot_bot_set_int )
       => ( ( finite_finite_int @ N4 )
         => ( ord_less_eq_int @ ( lattic8263393255366662781ax_int @ M7 ) @ ( lattic8263393255366662781ax_int @ N4 ) ) ) ) ) ).

% Max_mono
thf(fact_2856_Max_Osubset__imp,axiom,
    ! [A2: set_real,B3: set_real] :
      ( ( ord_less_eq_set_real @ A2 @ B3 )
     => ( ( A2 != bot_bot_set_real )
       => ( ( finite_finite_real @ B3 )
         => ( ord_less_eq_real @ ( lattic4275903605611617917x_real @ A2 ) @ ( lattic4275903605611617917x_real @ B3 ) ) ) ) ) ).

% Max.subset_imp
thf(fact_2857_Max_Osubset__imp,axiom,
    ! [A2: set_o,B3: set_o] :
      ( ( ord_less_eq_set_o @ A2 @ B3 )
     => ( ( A2 != bot_bot_set_o )
       => ( ( finite_finite_o @ B3 )
         => ( ord_less_eq_o @ ( lattic1921953407002678535_Max_o @ A2 ) @ ( lattic1921953407002678535_Max_o @ B3 ) ) ) ) ) ).

% Max.subset_imp
thf(fact_2858_Max_Osubset__imp,axiom,
    ! [A2: set_rat,B3: set_rat] :
      ( ( ord_less_eq_set_rat @ A2 @ B3 )
     => ( ( A2 != bot_bot_set_rat )
       => ( ( finite_finite_rat @ B3 )
         => ( ord_less_eq_rat @ ( lattic7630753665789217321ax_rat @ A2 ) @ ( lattic7630753665789217321ax_rat @ B3 ) ) ) ) ) ).

% Max.subset_imp
thf(fact_2859_Max_Osubset__imp,axiom,
    ! [A2: set_num,B3: set_num] :
      ( ( ord_less_eq_set_num @ A2 @ B3 )
     => ( ( A2 != bot_bot_set_num )
       => ( ( finite_finite_num @ B3 )
         => ( ord_less_eq_num @ ( lattic4823215512031491691ax_num @ A2 ) @ ( lattic4823215512031491691ax_num @ B3 ) ) ) ) ) ).

% Max.subset_imp
thf(fact_2860_Max_Osubset__imp,axiom,
    ! [A2: set_nat,B3: set_nat] :
      ( ( ord_less_eq_set_nat @ A2 @ B3 )
     => ( ( A2 != bot_bot_set_nat )
       => ( ( finite_finite_nat @ B3 )
         => ( ord_less_eq_nat @ ( lattic8265883725875713057ax_nat @ A2 ) @ ( lattic8265883725875713057ax_nat @ B3 ) ) ) ) ) ).

% Max.subset_imp
thf(fact_2861_Max_Osubset__imp,axiom,
    ! [A2: set_int,B3: set_int] :
      ( ( ord_less_eq_set_int @ A2 @ B3 )
     => ( ( A2 != bot_bot_set_int )
       => ( ( finite_finite_int @ B3 )
         => ( ord_less_eq_int @ ( lattic8263393255366662781ax_int @ A2 ) @ ( lattic8263393255366662781ax_int @ B3 ) ) ) ) ) ).

% Max.subset_imp
thf(fact_2862_hom__Max__commute,axiom,
    ! [H2: real > real,N4: set_real] :
      ( ! [X4: real,Y3: real] :
          ( ( H2 @ ( ord_max_real @ X4 @ Y3 ) )
          = ( ord_max_real @ ( H2 @ X4 ) @ ( H2 @ Y3 ) ) )
     => ( ( finite_finite_real @ N4 )
       => ( ( N4 != bot_bot_set_real )
         => ( ( H2 @ ( lattic4275903605611617917x_real @ N4 ) )
            = ( lattic4275903605611617917x_real @ ( image_real_real @ H2 @ N4 ) ) ) ) ) ) ).

% hom_Max_commute
thf(fact_2863_hom__Max__commute,axiom,
    ! [H2: $o > $o,N4: set_o] :
      ( ! [X4: $o,Y3: $o] :
          ( ( H2 @ ( ord_max_o @ X4 @ Y3 ) )
          = ( ord_max_o @ ( H2 @ X4 ) @ ( H2 @ Y3 ) ) )
     => ( ( finite_finite_o @ N4 )
       => ( ( N4 != bot_bot_set_o )
         => ( ( H2 @ ( lattic1921953407002678535_Max_o @ N4 ) )
            = ( lattic1921953407002678535_Max_o @ ( image_o_o @ H2 @ N4 ) ) ) ) ) ) ).

% hom_Max_commute
thf(fact_2864_hom__Max__commute,axiom,
    ! [H2: extended_enat > extended_enat,N4: set_Extended_enat] :
      ( ! [X4: extended_enat,Y3: extended_enat] :
          ( ( H2 @ ( ord_ma741700101516333627d_enat @ X4 @ Y3 ) )
          = ( ord_ma741700101516333627d_enat @ ( H2 @ X4 ) @ ( H2 @ Y3 ) ) )
     => ( ( finite4001608067531595151d_enat @ N4 )
       => ( ( N4 != bot_bo7653980558646680370d_enat )
         => ( ( H2 @ ( lattic921264341876707157d_enat @ N4 ) )
            = ( lattic921264341876707157d_enat @ ( image_80655429650038917d_enat @ H2 @ N4 ) ) ) ) ) ) ).

% hom_Max_commute
thf(fact_2865_hom__Max__commute,axiom,
    ! [H2: nat > nat,N4: set_nat] :
      ( ! [X4: nat,Y3: nat] :
          ( ( H2 @ ( ord_max_nat @ X4 @ Y3 ) )
          = ( ord_max_nat @ ( H2 @ X4 ) @ ( H2 @ Y3 ) ) )
     => ( ( finite_finite_nat @ N4 )
       => ( ( N4 != bot_bot_set_nat )
         => ( ( H2 @ ( lattic8265883725875713057ax_nat @ N4 ) )
            = ( lattic8265883725875713057ax_nat @ ( image_nat_nat @ H2 @ N4 ) ) ) ) ) ) ).

% hom_Max_commute
thf(fact_2866_hom__Max__commute,axiom,
    ! [H2: int > int,N4: set_int] :
      ( ! [X4: int,Y3: int] :
          ( ( H2 @ ( ord_max_int @ X4 @ Y3 ) )
          = ( ord_max_int @ ( H2 @ X4 ) @ ( H2 @ Y3 ) ) )
     => ( ( finite_finite_int @ N4 )
       => ( ( N4 != bot_bot_set_int )
         => ( ( H2 @ ( lattic8263393255366662781ax_int @ N4 ) )
            = ( lattic8263393255366662781ax_int @ ( image_int_int @ H2 @ N4 ) ) ) ) ) ) ).

% hom_Max_commute
thf(fact_2867_Max_Osubset,axiom,
    ! [A2: set_real,B3: set_real] :
      ( ( finite_finite_real @ A2 )
     => ( ( B3 != bot_bot_set_real )
       => ( ( ord_less_eq_set_real @ B3 @ A2 )
         => ( ( ord_max_real @ ( lattic4275903605611617917x_real @ B3 ) @ ( lattic4275903605611617917x_real @ A2 ) )
            = ( lattic4275903605611617917x_real @ A2 ) ) ) ) ) ).

% Max.subset
thf(fact_2868_Max_Osubset,axiom,
    ! [A2: set_o,B3: set_o] :
      ( ( finite_finite_o @ A2 )
     => ( ( B3 != bot_bot_set_o )
       => ( ( ord_less_eq_set_o @ B3 @ A2 )
         => ( ( ord_max_o @ ( lattic1921953407002678535_Max_o @ B3 ) @ ( lattic1921953407002678535_Max_o @ A2 ) )
            = ( lattic1921953407002678535_Max_o @ A2 ) ) ) ) ) ).

% Max.subset
thf(fact_2869_Max_Osubset,axiom,
    ! [A2: set_Extended_enat,B3: set_Extended_enat] :
      ( ( finite4001608067531595151d_enat @ A2 )
     => ( ( B3 != bot_bo7653980558646680370d_enat )
       => ( ( ord_le7203529160286727270d_enat @ B3 @ A2 )
         => ( ( ord_ma741700101516333627d_enat @ ( lattic921264341876707157d_enat @ B3 ) @ ( lattic921264341876707157d_enat @ A2 ) )
            = ( lattic921264341876707157d_enat @ A2 ) ) ) ) ) ).

% Max.subset
thf(fact_2870_Max_Osubset,axiom,
    ! [A2: set_nat,B3: set_nat] :
      ( ( finite_finite_nat @ A2 )
     => ( ( B3 != bot_bot_set_nat )
       => ( ( ord_less_eq_set_nat @ B3 @ A2 )
         => ( ( ord_max_nat @ ( lattic8265883725875713057ax_nat @ B3 ) @ ( lattic8265883725875713057ax_nat @ A2 ) )
            = ( lattic8265883725875713057ax_nat @ A2 ) ) ) ) ) ).

% Max.subset
thf(fact_2871_Max_Osubset,axiom,
    ! [A2: set_int,B3: set_int] :
      ( ( finite_finite_int @ A2 )
     => ( ( B3 != bot_bot_set_int )
       => ( ( ord_less_eq_set_int @ B3 @ A2 )
         => ( ( ord_max_int @ ( lattic8263393255366662781ax_int @ B3 ) @ ( lattic8263393255366662781ax_int @ A2 ) )
            = ( lattic8263393255366662781ax_int @ A2 ) ) ) ) ) ).

% Max.subset
thf(fact_2872_Max_Oclosed,axiom,
    ! [A2: set_real] :
      ( ( finite_finite_real @ A2 )
     => ( ( A2 != bot_bot_set_real )
       => ( ! [X4: real,Y3: real] : ( member_real @ ( ord_max_real @ X4 @ Y3 ) @ ( insert_real @ X4 @ ( insert_real @ Y3 @ bot_bot_set_real ) ) )
         => ( member_real @ ( lattic4275903605611617917x_real @ A2 ) @ A2 ) ) ) ) ).

% Max.closed
thf(fact_2873_Max_Oclosed,axiom,
    ! [A2: set_o] :
      ( ( finite_finite_o @ A2 )
     => ( ( A2 != bot_bot_set_o )
       => ( ! [X4: $o,Y3: $o] : ( member_o @ ( ord_max_o @ X4 @ Y3 ) @ ( insert_o @ X4 @ ( insert_o @ Y3 @ bot_bot_set_o ) ) )
         => ( member_o @ ( lattic1921953407002678535_Max_o @ A2 ) @ A2 ) ) ) ) ).

% Max.closed
thf(fact_2874_Max_Oclosed,axiom,
    ! [A2: set_Extended_enat] :
      ( ( finite4001608067531595151d_enat @ A2 )
     => ( ( A2 != bot_bo7653980558646680370d_enat )
       => ( ! [X4: extended_enat,Y3: extended_enat] : ( member_Extended_enat @ ( ord_ma741700101516333627d_enat @ X4 @ Y3 ) @ ( insert_Extended_enat @ X4 @ ( insert_Extended_enat @ Y3 @ bot_bo7653980558646680370d_enat ) ) )
         => ( member_Extended_enat @ ( lattic921264341876707157d_enat @ A2 ) @ A2 ) ) ) ) ).

% Max.closed
thf(fact_2875_Max_Oclosed,axiom,
    ! [A2: set_nat] :
      ( ( finite_finite_nat @ A2 )
     => ( ( A2 != bot_bot_set_nat )
       => ( ! [X4: nat,Y3: nat] : ( member_nat @ ( ord_max_nat @ X4 @ Y3 ) @ ( insert_nat @ X4 @ ( insert_nat @ Y3 @ bot_bot_set_nat ) ) )
         => ( member_nat @ ( lattic8265883725875713057ax_nat @ A2 ) @ A2 ) ) ) ) ).

% Max.closed
thf(fact_2876_Max_Oclosed,axiom,
    ! [A2: set_int] :
      ( ( finite_finite_int @ A2 )
     => ( ( A2 != bot_bot_set_int )
       => ( ! [X4: int,Y3: int] : ( member_int @ ( ord_max_int @ X4 @ Y3 ) @ ( insert_int @ X4 @ ( insert_int @ Y3 @ bot_bot_set_int ) ) )
         => ( member_int @ ( lattic8263393255366662781ax_int @ A2 ) @ A2 ) ) ) ) ).

% Max.closed
thf(fact_2877_Max_Oinsert__not__elem,axiom,
    ! [A2: set_real,X2: real] :
      ( ( finite_finite_real @ A2 )
     => ( ~ ( member_real @ X2 @ A2 )
       => ( ( A2 != bot_bot_set_real )
         => ( ( lattic4275903605611617917x_real @ ( insert_real @ X2 @ A2 ) )
            = ( ord_max_real @ X2 @ ( lattic4275903605611617917x_real @ A2 ) ) ) ) ) ) ).

% Max.insert_not_elem
thf(fact_2878_Max_Oinsert__not__elem,axiom,
    ! [A2: set_o,X2: $o] :
      ( ( finite_finite_o @ A2 )
     => ( ~ ( member_o @ X2 @ A2 )
       => ( ( A2 != bot_bot_set_o )
         => ( ( lattic1921953407002678535_Max_o @ ( insert_o @ X2 @ A2 ) )
            = ( ord_max_o @ X2 @ ( lattic1921953407002678535_Max_o @ A2 ) ) ) ) ) ) ).

% Max.insert_not_elem
thf(fact_2879_Max_Oinsert__not__elem,axiom,
    ! [A2: set_Extended_enat,X2: extended_enat] :
      ( ( finite4001608067531595151d_enat @ A2 )
     => ( ~ ( member_Extended_enat @ X2 @ A2 )
       => ( ( A2 != bot_bo7653980558646680370d_enat )
         => ( ( lattic921264341876707157d_enat @ ( insert_Extended_enat @ X2 @ A2 ) )
            = ( ord_ma741700101516333627d_enat @ X2 @ ( lattic921264341876707157d_enat @ A2 ) ) ) ) ) ) ).

% Max.insert_not_elem
thf(fact_2880_Max_Oinsert__not__elem,axiom,
    ! [A2: set_nat,X2: nat] :
      ( ( finite_finite_nat @ A2 )
     => ( ~ ( member_nat @ X2 @ A2 )
       => ( ( A2 != bot_bot_set_nat )
         => ( ( lattic8265883725875713057ax_nat @ ( insert_nat @ X2 @ A2 ) )
            = ( ord_max_nat @ X2 @ ( lattic8265883725875713057ax_nat @ A2 ) ) ) ) ) ) ).

% Max.insert_not_elem
thf(fact_2881_Max_Oinsert__not__elem,axiom,
    ! [A2: set_int,X2: int] :
      ( ( finite_finite_int @ A2 )
     => ( ~ ( member_int @ X2 @ A2 )
       => ( ( A2 != bot_bot_set_int )
         => ( ( lattic8263393255366662781ax_int @ ( insert_int @ X2 @ A2 ) )
            = ( ord_max_int @ X2 @ ( lattic8263393255366662781ax_int @ A2 ) ) ) ) ) ) ).

% Max.insert_not_elem
thf(fact_2882_max__bot,axiom,
    ! [X2: set_real] :
      ( ( ord_max_set_real @ bot_bot_set_real @ X2 )
      = X2 ) ).

% max_bot
thf(fact_2883_max__bot,axiom,
    ! [X2: set_o] :
      ( ( ord_max_set_o @ bot_bot_set_o @ X2 )
      = X2 ) ).

% max_bot
thf(fact_2884_max__bot,axiom,
    ! [X2: set_nat] :
      ( ( ord_max_set_nat @ bot_bot_set_nat @ X2 )
      = X2 ) ).

% max_bot
thf(fact_2885_max__bot,axiom,
    ! [X2: set_int] :
      ( ( ord_max_set_int @ bot_bot_set_int @ X2 )
      = X2 ) ).

% max_bot
thf(fact_2886_max__bot,axiom,
    ! [X2: nat] :
      ( ( ord_max_nat @ bot_bot_nat @ X2 )
      = X2 ) ).

% max_bot
thf(fact_2887_max__bot,axiom,
    ! [X2: extended_enat] :
      ( ( ord_ma741700101516333627d_enat @ bot_bo4199563552545308370d_enat @ X2 )
      = X2 ) ).

% max_bot
thf(fact_2888_max__bot2,axiom,
    ! [X2: set_real] :
      ( ( ord_max_set_real @ X2 @ bot_bot_set_real )
      = X2 ) ).

% max_bot2
thf(fact_2889_max__bot2,axiom,
    ! [X2: set_o] :
      ( ( ord_max_set_o @ X2 @ bot_bot_set_o )
      = X2 ) ).

% max_bot2
thf(fact_2890_max__bot2,axiom,
    ! [X2: set_nat] :
      ( ( ord_max_set_nat @ X2 @ bot_bot_set_nat )
      = X2 ) ).

% max_bot2
thf(fact_2891_max__bot2,axiom,
    ! [X2: set_int] :
      ( ( ord_max_set_int @ X2 @ bot_bot_set_int )
      = X2 ) ).

% max_bot2
thf(fact_2892_max__bot2,axiom,
    ! [X2: nat] :
      ( ( ord_max_nat @ X2 @ bot_bot_nat )
      = X2 ) ).

% max_bot2
thf(fact_2893_max__bot2,axiom,
    ! [X2: extended_enat] :
      ( ( ord_ma741700101516333627d_enat @ X2 @ bot_bo4199563552545308370d_enat )
      = X2 ) ).

% max_bot2
thf(fact_2894_VEBT__internal_Omembermima_Oelims_I2_J,axiom,
    ! [X2: vEBT_VEBT,Xa2: nat] :
      ( ( vEBT_VEBT_membermima @ X2 @ Xa2 )
     => ( ! [Mi2: nat,Ma2: nat] :
            ( ? [Va2: list_VEBT_VEBT,Vb2: vEBT_VEBT] :
                ( X2
                = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ Va2 @ Vb2 ) )
           => ~ ( ( Xa2 = Mi2 )
                | ( Xa2 = Ma2 ) ) )
       => ( ! [Mi2: nat,Ma2: nat,V2: nat,TreeList3: list_VEBT_VEBT] :
              ( ? [Vc2: vEBT_VEBT] :
                  ( X2
                  = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ V2 ) @ TreeList3 @ Vc2 ) )
             => ~ ( ( Xa2 = Mi2 )
                  | ( Xa2 = Ma2 )
                  | ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                     => ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                    & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) ) )
         => ~ ! [V2: nat,TreeList3: list_VEBT_VEBT] :
                ( ? [Vd2: vEBT_VEBT] :
                    ( X2
                    = ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V2 ) @ TreeList3 @ Vd2 ) )
               => ~ ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                     => ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                    & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) ) ) ) ) ).

% VEBT_internal.membermima.elims(2)
thf(fact_2895_div__mod__decomp__int,axiom,
    ! [A2: int,N: int] :
      ( A2
      = ( plus_plus_int @ ( times_times_int @ ( divide_divide_int @ A2 @ N ) @ N ) @ ( modulo_modulo_int @ A2 @ N ) ) ) ).

% div_mod_decomp_int
thf(fact_2896_div__mod__decomp,axiom,
    ! [A2: nat,N: nat] :
      ( A2
      = ( plus_plus_nat @ ( times_times_nat @ ( divide_divide_nat @ A2 @ N ) @ N ) @ ( modulo_modulo_nat @ A2 @ N ) ) ) ).

% div_mod_decomp
thf(fact_2897_unset__bit__Suc,axiom,
    ! [N: nat,A: code_integer] :
      ( ( bit_se8260200283734997820nteger @ ( suc @ N ) @ A )
      = ( plus_p5714425477246183910nteger @ ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_se8260200283734997820nteger @ N @ ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ) ).

% unset_bit_Suc
thf(fact_2898_unset__bit__Suc,axiom,
    ! [N: nat,A: int] :
      ( ( bit_se4203085406695923979it_int @ ( suc @ N ) @ A )
      = ( plus_plus_int @ ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se4203085406695923979it_int @ N @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ).

% unset_bit_Suc
thf(fact_2899_unset__bit__Suc,axiom,
    ! [N: nat,A: nat] :
      ( ( bit_se4205575877204974255it_nat @ ( suc @ N ) @ A )
      = ( plus_plus_nat @ ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se4205575877204974255it_nat @ N @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% unset_bit_Suc
thf(fact_2900_flip__bit__Suc,axiom,
    ! [N: nat,A: code_integer] :
      ( ( bit_se1345352211410354436nteger @ ( suc @ N ) @ A )
      = ( plus_p5714425477246183910nteger @ ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_se1345352211410354436nteger @ N @ ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ) ).

% flip_bit_Suc
thf(fact_2901_flip__bit__Suc,axiom,
    ! [N: nat,A: int] :
      ( ( bit_se2159334234014336723it_int @ ( suc @ N ) @ A )
      = ( plus_plus_int @ ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se2159334234014336723it_int @ N @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ).

% flip_bit_Suc
thf(fact_2902_flip__bit__Suc,axiom,
    ! [N: nat,A: nat] :
      ( ( bit_se2161824704523386999it_nat @ ( suc @ N ) @ A )
      = ( plus_plus_nat @ ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se2161824704523386999it_nat @ N @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% flip_bit_Suc
thf(fact_2903_set__bit__Suc,axiom,
    ! [N: nat,A: code_integer] :
      ( ( bit_se2793503036327961859nteger @ ( suc @ N ) @ A )
      = ( plus_p5714425477246183910nteger @ ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_se2793503036327961859nteger @ N @ ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ) ).

% set_bit_Suc
thf(fact_2904_set__bit__Suc,axiom,
    ! [N: nat,A: int] :
      ( ( bit_se7879613467334960850it_int @ ( suc @ N ) @ A )
      = ( plus_plus_int @ ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se7879613467334960850it_int @ N @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ).

% set_bit_Suc
thf(fact_2905_set__bit__Suc,axiom,
    ! [N: nat,A: nat] :
      ( ( bit_se7882103937844011126it_nat @ ( suc @ N ) @ A )
      = ( plus_plus_nat @ ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se7882103937844011126it_nat @ N @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% set_bit_Suc
thf(fact_2906_vebt__succ_Oelims,axiom,
    ! [X2: vEBT_VEBT,Xa2: nat,Y2: option_nat] :
      ( ( ( vEBT_vebt_succ @ X2 @ Xa2 )
        = Y2 )
     => ( ! [Uu2: $o,B7: $o] :
            ( ( X2
              = ( vEBT_Leaf @ Uu2 @ B7 ) )
           => ( ( Xa2 = zero_zero_nat )
             => ~ ( ( B7
                   => ( Y2
                      = ( some_nat @ one_one_nat ) ) )
                  & ( ~ B7
                   => ( Y2 = none_nat ) ) ) ) )
       => ( ( ? [Uv2: $o,Uw2: $o] :
                ( X2
                = ( vEBT_Leaf @ Uv2 @ Uw2 ) )
           => ( ? [N3: nat] :
                  ( Xa2
                  = ( suc @ N3 ) )
             => ( Y2 != none_nat ) ) )
         => ( ( ? [Ux2: nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT] :
                  ( X2
                  = ( vEBT_Node @ none_P5556105721700978146at_nat @ Ux2 @ Uy2 @ Uz2 ) )
             => ( Y2 != none_nat ) )
           => ( ( ? [V2: product_prod_nat_nat,Vc2: list_VEBT_VEBT,Vd2: vEBT_VEBT] :
                    ( X2
                    = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ zero_zero_nat @ Vc2 @ Vd2 ) )
               => ( Y2 != none_nat ) )
             => ( ( ? [V2: product_prod_nat_nat,Vg: list_VEBT_VEBT,Vh: vEBT_VEBT] :
                      ( X2
                      = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ ( suc @ zero_zero_nat ) @ Vg @ Vh ) )
                 => ( Y2 != none_nat ) )
               => ~ ! [Mi2: nat,Ma2: nat,Va3: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
                      ( ( X2
                        = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va3 ) ) @ TreeList3 @ Summary2 ) )
                     => ~ ( ( ( ord_less_nat @ Xa2 @ Mi2 )
                           => ( Y2
                              = ( some_nat @ Mi2 ) ) )
                          & ( ~ ( ord_less_nat @ Xa2 @ Mi2 )
                           => ( Y2
                              = ( if_option_nat @ ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                                @ ( if_option_nat
                                  @ ( ( ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                     != none_nat )
                                    & ( vEBT_VEBT_less @ ( some_nat @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) )
                                  @ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( some_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_succ @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                  @ ( if_option_nat
                                    @ ( ( vEBT_vebt_succ @ Summary2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
                                      = none_nat )
                                    @ none_nat
                                    @ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_succ @ Summary2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_succ @ Summary2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) )
                                @ none_nat ) ) ) ) ) ) ) ) ) ) ) ).

% vebt_succ.elims
thf(fact_2907_valid__tree__deg__neq__0,axiom,
    ! [T: vEBT_VEBT] :
      ~ ( vEBT_invar_vebt @ T @ zero_zero_nat ) ).

% valid_tree_deg_neq_0
thf(fact_2908_valid__0__not,axiom,
    ! [T: vEBT_VEBT] :
      ~ ( vEBT_invar_vebt @ T @ zero_zero_nat ) ).

% valid_0_not
thf(fact_2909_deg__not__0,axiom,
    ! [T: vEBT_VEBT,N: nat] :
      ( ( vEBT_invar_vebt @ T @ N )
     => ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% deg_not_0
thf(fact_2910_Leaf__0__not,axiom,
    ! [A: $o,B: $o] :
      ~ ( vEBT_invar_vebt @ ( vEBT_Leaf @ A @ B ) @ zero_zero_nat ) ).

% Leaf_0_not
thf(fact_2911_deg1Leaf,axiom,
    ! [T: vEBT_VEBT] :
      ( ( vEBT_invar_vebt @ T @ one_one_nat )
      = ( ? [A3: $o,B2: $o] :
            ( T
            = ( vEBT_Leaf @ A3 @ B2 ) ) ) ) ).

% deg1Leaf
thf(fact_2912_deg__1__Leaf,axiom,
    ! [T: vEBT_VEBT] :
      ( ( vEBT_invar_vebt @ T @ one_one_nat )
     => ? [A6: $o,B7: $o] :
          ( T
          = ( vEBT_Leaf @ A6 @ B7 ) ) ) ).

% deg_1_Leaf
thf(fact_2913_deg__1__Leafy,axiom,
    ! [T: vEBT_VEBT,N: nat] :
      ( ( vEBT_invar_vebt @ T @ N )
     => ( ( N = one_one_nat )
       => ? [A6: $o,B7: $o] :
            ( T
            = ( vEBT_Leaf @ A6 @ B7 ) ) ) ) ).

% deg_1_Leafy
thf(fact_2914_buildup__gives__valid,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( vEBT_invar_vebt @ ( vEBT_vebt_buildup @ N ) @ N ) ) ).

% buildup_gives_valid
thf(fact_2915_order__refl,axiom,
    ! [X2: set_int] : ( ord_less_eq_set_int @ X2 @ X2 ) ).

% order_refl
thf(fact_2916_order__refl,axiom,
    ! [X2: rat] : ( ord_less_eq_rat @ X2 @ X2 ) ).

% order_refl
thf(fact_2917_order__refl,axiom,
    ! [X2: num] : ( ord_less_eq_num @ X2 @ X2 ) ).

% order_refl
thf(fact_2918_order__refl,axiom,
    ! [X2: nat] : ( ord_less_eq_nat @ X2 @ X2 ) ).

% order_refl
thf(fact_2919_order__refl,axiom,
    ! [X2: int] : ( ord_less_eq_int @ X2 @ X2 ) ).

% order_refl
thf(fact_2920_dual__order_Orefl,axiom,
    ! [A: set_int] : ( ord_less_eq_set_int @ A @ A ) ).

% dual_order.refl
thf(fact_2921_dual__order_Orefl,axiom,
    ! [A: rat] : ( ord_less_eq_rat @ A @ A ) ).

% dual_order.refl
thf(fact_2922_dual__order_Orefl,axiom,
    ! [A: num] : ( ord_less_eq_num @ A @ A ) ).

% dual_order.refl
thf(fact_2923_dual__order_Orefl,axiom,
    ! [A: nat] : ( ord_less_eq_nat @ A @ A ) ).

% dual_order.refl
thf(fact_2924_dual__order_Orefl,axiom,
    ! [A: int] : ( ord_less_eq_int @ A @ A ) ).

% dual_order.refl
thf(fact_2925_verit__eq__simplify_I8_J,axiom,
    ! [X23: num,Y22: num] :
      ( ( ( bit0 @ X23 )
        = ( bit0 @ Y22 ) )
      = ( X23 = Y22 ) ) ).

% verit_eq_simplify(8)
thf(fact_2926_verit__eq__simplify_I9_J,axiom,
    ! [X33: num,Y32: num] :
      ( ( ( bit1 @ X33 )
        = ( bit1 @ Y32 ) )
      = ( X33 = Y32 ) ) ).

% verit_eq_simplify(9)
thf(fact_2927_VEBT_Oinject_I2_J,axiom,
    ! [X21: $o,X222: $o,Y21: $o,Y222: $o] :
      ( ( ( vEBT_Leaf @ X21 @ X222 )
        = ( vEBT_Leaf @ Y21 @ Y222 ) )
      = ( ( X21 = Y21 )
        & ( X222 = Y222 ) ) ) ).

% VEBT.inject(2)
thf(fact_2928_le__zero__eq,axiom,
    ! [N: nat] :
      ( ( ord_less_eq_nat @ N @ zero_zero_nat )
      = ( N = zero_zero_nat ) ) ).

% le_zero_eq
thf(fact_2929_not__gr__zero,axiom,
    ! [N: nat] :
      ( ( ~ ( ord_less_nat @ zero_zero_nat @ N ) )
      = ( N = zero_zero_nat ) ) ).

% not_gr_zero
thf(fact_2930_mult__cancel__right,axiom,
    ! [A: complex,C: complex,B: complex] :
      ( ( ( times_times_complex @ A @ C )
        = ( times_times_complex @ B @ C ) )
      = ( ( C = zero_zero_complex )
        | ( A = B ) ) ) ).

% mult_cancel_right
thf(fact_2931_mult__cancel__right,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ( times_times_real @ A @ C )
        = ( times_times_real @ B @ C ) )
      = ( ( C = zero_zero_real )
        | ( A = B ) ) ) ).

% mult_cancel_right
thf(fact_2932_mult__cancel__right,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( ( times_times_rat @ A @ C )
        = ( times_times_rat @ B @ C ) )
      = ( ( C = zero_zero_rat )
        | ( A = B ) ) ) ).

% mult_cancel_right
thf(fact_2933_mult__cancel__right,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ( times_times_nat @ A @ C )
        = ( times_times_nat @ B @ C ) )
      = ( ( C = zero_zero_nat )
        | ( A = B ) ) ) ).

% mult_cancel_right
thf(fact_2934_mult__cancel__right,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ( times_times_int @ A @ C )
        = ( times_times_int @ B @ C ) )
      = ( ( C = zero_zero_int )
        | ( A = B ) ) ) ).

% mult_cancel_right
thf(fact_2935_mult__cancel__left,axiom,
    ! [C: complex,A: complex,B: complex] :
      ( ( ( times_times_complex @ C @ A )
        = ( times_times_complex @ C @ B ) )
      = ( ( C = zero_zero_complex )
        | ( A = B ) ) ) ).

% mult_cancel_left
thf(fact_2936_mult__cancel__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ( times_times_real @ C @ A )
        = ( times_times_real @ C @ B ) )
      = ( ( C = zero_zero_real )
        | ( A = B ) ) ) ).

% mult_cancel_left
thf(fact_2937_mult__cancel__left,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ( times_times_rat @ C @ A )
        = ( times_times_rat @ C @ B ) )
      = ( ( C = zero_zero_rat )
        | ( A = B ) ) ) ).

% mult_cancel_left
thf(fact_2938_mult__cancel__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ( times_times_nat @ C @ A )
        = ( times_times_nat @ C @ B ) )
      = ( ( C = zero_zero_nat )
        | ( A = B ) ) ) ).

% mult_cancel_left
thf(fact_2939_mult__cancel__left,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ( times_times_int @ C @ A )
        = ( times_times_int @ C @ B ) )
      = ( ( C = zero_zero_int )
        | ( A = B ) ) ) ).

% mult_cancel_left
thf(fact_2940_mult__eq__0__iff,axiom,
    ! [A: complex,B: complex] :
      ( ( ( times_times_complex @ A @ B )
        = zero_zero_complex )
      = ( ( A = zero_zero_complex )
        | ( B = zero_zero_complex ) ) ) ).

% mult_eq_0_iff
thf(fact_2941_mult__eq__0__iff,axiom,
    ! [A: real,B: real] :
      ( ( ( times_times_real @ A @ B )
        = zero_zero_real )
      = ( ( A = zero_zero_real )
        | ( B = zero_zero_real ) ) ) ).

% mult_eq_0_iff
thf(fact_2942_mult__eq__0__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ( times_times_rat @ A @ B )
        = zero_zero_rat )
      = ( ( A = zero_zero_rat )
        | ( B = zero_zero_rat ) ) ) ).

% mult_eq_0_iff
thf(fact_2943_mult__eq__0__iff,axiom,
    ! [A: nat,B: nat] :
      ( ( ( times_times_nat @ A @ B )
        = zero_zero_nat )
      = ( ( A = zero_zero_nat )
        | ( B = zero_zero_nat ) ) ) ).

% mult_eq_0_iff
thf(fact_2944_mult__eq__0__iff,axiom,
    ! [A: int,B: int] :
      ( ( ( times_times_int @ A @ B )
        = zero_zero_int )
      = ( ( A = zero_zero_int )
        | ( B = zero_zero_int ) ) ) ).

% mult_eq_0_iff
thf(fact_2945_mult__zero__right,axiom,
    ! [A: complex] :
      ( ( times_times_complex @ A @ zero_zero_complex )
      = zero_zero_complex ) ).

% mult_zero_right
thf(fact_2946_mult__zero__right,axiom,
    ! [A: real] :
      ( ( times_times_real @ A @ zero_zero_real )
      = zero_zero_real ) ).

% mult_zero_right
thf(fact_2947_mult__zero__right,axiom,
    ! [A: rat] :
      ( ( times_times_rat @ A @ zero_zero_rat )
      = zero_zero_rat ) ).

% mult_zero_right
thf(fact_2948_mult__zero__right,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ A @ zero_zero_nat )
      = zero_zero_nat ) ).

% mult_zero_right
thf(fact_2949_mult__zero__right,axiom,
    ! [A: int] :
      ( ( times_times_int @ A @ zero_zero_int )
      = zero_zero_int ) ).

% mult_zero_right
thf(fact_2950_mult__zero__left,axiom,
    ! [A: complex] :
      ( ( times_times_complex @ zero_zero_complex @ A )
      = zero_zero_complex ) ).

% mult_zero_left
thf(fact_2951_mult__zero__left,axiom,
    ! [A: real] :
      ( ( times_times_real @ zero_zero_real @ A )
      = zero_zero_real ) ).

% mult_zero_left
thf(fact_2952_mult__zero__left,axiom,
    ! [A: rat] :
      ( ( times_times_rat @ zero_zero_rat @ A )
      = zero_zero_rat ) ).

% mult_zero_left
thf(fact_2953_mult__zero__left,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ zero_zero_nat @ A )
      = zero_zero_nat ) ).

% mult_zero_left
thf(fact_2954_mult__zero__left,axiom,
    ! [A: int] :
      ( ( times_times_int @ zero_zero_int @ A )
      = zero_zero_int ) ).

% mult_zero_left
thf(fact_2955_add_Oright__neutral,axiom,
    ! [A: complex] :
      ( ( plus_plus_complex @ A @ zero_zero_complex )
      = A ) ).

% add.right_neutral
thf(fact_2956_add_Oright__neutral,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ A @ zero_zero_real )
      = A ) ).

% add.right_neutral
thf(fact_2957_add_Oright__neutral,axiom,
    ! [A: rat] :
      ( ( plus_plus_rat @ A @ zero_zero_rat )
      = A ) ).

% add.right_neutral
thf(fact_2958_add_Oright__neutral,axiom,
    ! [A: nat] :
      ( ( plus_plus_nat @ A @ zero_zero_nat )
      = A ) ).

% add.right_neutral
thf(fact_2959_add_Oright__neutral,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ A @ zero_zero_int )
      = A ) ).

% add.right_neutral
thf(fact_2960_double__zero__sym,axiom,
    ! [A: real] :
      ( ( zero_zero_real
        = ( plus_plus_real @ A @ A ) )
      = ( A = zero_zero_real ) ) ).

% double_zero_sym
thf(fact_2961_double__zero__sym,axiom,
    ! [A: rat] :
      ( ( zero_zero_rat
        = ( plus_plus_rat @ A @ A ) )
      = ( A = zero_zero_rat ) ) ).

% double_zero_sym
thf(fact_2962_double__zero__sym,axiom,
    ! [A: int] :
      ( ( zero_zero_int
        = ( plus_plus_int @ A @ A ) )
      = ( A = zero_zero_int ) ) ).

% double_zero_sym
thf(fact_2963_add__cancel__left__left,axiom,
    ! [B: complex,A: complex] :
      ( ( ( plus_plus_complex @ B @ A )
        = A )
      = ( B = zero_zero_complex ) ) ).

% add_cancel_left_left
thf(fact_2964_add__cancel__left__left,axiom,
    ! [B: real,A: real] :
      ( ( ( plus_plus_real @ B @ A )
        = A )
      = ( B = zero_zero_real ) ) ).

% add_cancel_left_left
thf(fact_2965_add__cancel__left__left,axiom,
    ! [B: rat,A: rat] :
      ( ( ( plus_plus_rat @ B @ A )
        = A )
      = ( B = zero_zero_rat ) ) ).

% add_cancel_left_left
thf(fact_2966_add__cancel__left__left,axiom,
    ! [B: nat,A: nat] :
      ( ( ( plus_plus_nat @ B @ A )
        = A )
      = ( B = zero_zero_nat ) ) ).

% add_cancel_left_left
thf(fact_2967_add__cancel__left__left,axiom,
    ! [B: int,A: int] :
      ( ( ( plus_plus_int @ B @ A )
        = A )
      = ( B = zero_zero_int ) ) ).

% add_cancel_left_left
thf(fact_2968_add__cancel__left__right,axiom,
    ! [A: complex,B: complex] :
      ( ( ( plus_plus_complex @ A @ B )
        = A )
      = ( B = zero_zero_complex ) ) ).

% add_cancel_left_right
thf(fact_2969_add__cancel__left__right,axiom,
    ! [A: real,B: real] :
      ( ( ( plus_plus_real @ A @ B )
        = A )
      = ( B = zero_zero_real ) ) ).

% add_cancel_left_right
thf(fact_2970_add__cancel__left__right,axiom,
    ! [A: rat,B: rat] :
      ( ( ( plus_plus_rat @ A @ B )
        = A )
      = ( B = zero_zero_rat ) ) ).

% add_cancel_left_right
thf(fact_2971_add__cancel__left__right,axiom,
    ! [A: nat,B: nat] :
      ( ( ( plus_plus_nat @ A @ B )
        = A )
      = ( B = zero_zero_nat ) ) ).

% add_cancel_left_right
thf(fact_2972_add__cancel__left__right,axiom,
    ! [A: int,B: int] :
      ( ( ( plus_plus_int @ A @ B )
        = A )
      = ( B = zero_zero_int ) ) ).

% add_cancel_left_right
thf(fact_2973_add__cancel__right__left,axiom,
    ! [A: complex,B: complex] :
      ( ( A
        = ( plus_plus_complex @ B @ A ) )
      = ( B = zero_zero_complex ) ) ).

% add_cancel_right_left
thf(fact_2974_add__cancel__right__left,axiom,
    ! [A: real,B: real] :
      ( ( A
        = ( plus_plus_real @ B @ A ) )
      = ( B = zero_zero_real ) ) ).

% add_cancel_right_left
thf(fact_2975_add__cancel__right__left,axiom,
    ! [A: rat,B: rat] :
      ( ( A
        = ( plus_plus_rat @ B @ A ) )
      = ( B = zero_zero_rat ) ) ).

% add_cancel_right_left
thf(fact_2976_add__cancel__right__left,axiom,
    ! [A: nat,B: nat] :
      ( ( A
        = ( plus_plus_nat @ B @ A ) )
      = ( B = zero_zero_nat ) ) ).

% add_cancel_right_left
thf(fact_2977_add__cancel__right__left,axiom,
    ! [A: int,B: int] :
      ( ( A
        = ( plus_plus_int @ B @ A ) )
      = ( B = zero_zero_int ) ) ).

% add_cancel_right_left
thf(fact_2978_add__cancel__right__right,axiom,
    ! [A: complex,B: complex] :
      ( ( A
        = ( plus_plus_complex @ A @ B ) )
      = ( B = zero_zero_complex ) ) ).

% add_cancel_right_right
thf(fact_2979_add__cancel__right__right,axiom,
    ! [A: real,B: real] :
      ( ( A
        = ( plus_plus_real @ A @ B ) )
      = ( B = zero_zero_real ) ) ).

% add_cancel_right_right
thf(fact_2980_add__cancel__right__right,axiom,
    ! [A: rat,B: rat] :
      ( ( A
        = ( plus_plus_rat @ A @ B ) )
      = ( B = zero_zero_rat ) ) ).

% add_cancel_right_right
thf(fact_2981_add__cancel__right__right,axiom,
    ! [A: nat,B: nat] :
      ( ( A
        = ( plus_plus_nat @ A @ B ) )
      = ( B = zero_zero_nat ) ) ).

% add_cancel_right_right
thf(fact_2982_add__cancel__right__right,axiom,
    ! [A: int,B: int] :
      ( ( A
        = ( plus_plus_int @ A @ B ) )
      = ( B = zero_zero_int ) ) ).

% add_cancel_right_right
thf(fact_2983_add__eq__0__iff__both__eq__0,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ( plus_plus_nat @ X2 @ Y2 )
        = zero_zero_nat )
      = ( ( X2 = zero_zero_nat )
        & ( Y2 = zero_zero_nat ) ) ) ).

% add_eq_0_iff_both_eq_0
thf(fact_2984_zero__eq__add__iff__both__eq__0,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( zero_zero_nat
        = ( plus_plus_nat @ X2 @ Y2 ) )
      = ( ( X2 = zero_zero_nat )
        & ( Y2 = zero_zero_nat ) ) ) ).

% zero_eq_add_iff_both_eq_0
thf(fact_2985_add__0,axiom,
    ! [A: complex] :
      ( ( plus_plus_complex @ zero_zero_complex @ A )
      = A ) ).

% add_0
thf(fact_2986_add__0,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ zero_zero_real @ A )
      = A ) ).

% add_0
thf(fact_2987_add__0,axiom,
    ! [A: rat] :
      ( ( plus_plus_rat @ zero_zero_rat @ A )
      = A ) ).

% add_0
thf(fact_2988_add__0,axiom,
    ! [A: nat] :
      ( ( plus_plus_nat @ zero_zero_nat @ A )
      = A ) ).

% add_0
thf(fact_2989_add__0,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ zero_zero_int @ A )
      = A ) ).

% add_0
thf(fact_2990_double__eq__0__iff,axiom,
    ! [A: real] :
      ( ( ( plus_plus_real @ A @ A )
        = zero_zero_real )
      = ( A = zero_zero_real ) ) ).

% double_eq_0_iff
thf(fact_2991_double__eq__0__iff,axiom,
    ! [A: rat] :
      ( ( ( plus_plus_rat @ A @ A )
        = zero_zero_rat )
      = ( A = zero_zero_rat ) ) ).

% double_eq_0_iff
thf(fact_2992_double__eq__0__iff,axiom,
    ! [A: int] :
      ( ( ( plus_plus_int @ A @ A )
        = zero_zero_int )
      = ( A = zero_zero_int ) ) ).

% double_eq_0_iff
thf(fact_2993_bits__div__0,axiom,
    ! [A: nat] :
      ( ( divide_divide_nat @ zero_zero_nat @ A )
      = zero_zero_nat ) ).

% bits_div_0
thf(fact_2994_bits__div__0,axiom,
    ! [A: int] :
      ( ( divide_divide_int @ zero_zero_int @ A )
      = zero_zero_int ) ).

% bits_div_0
thf(fact_2995_bits__div__by__0,axiom,
    ! [A: nat] :
      ( ( divide_divide_nat @ A @ zero_zero_nat )
      = zero_zero_nat ) ).

% bits_div_by_0
thf(fact_2996_bits__div__by__0,axiom,
    ! [A: int] :
      ( ( divide_divide_int @ A @ zero_zero_int )
      = zero_zero_int ) ).

% bits_div_by_0
thf(fact_2997_div__0,axiom,
    ! [A: complex] :
      ( ( divide1717551699836669952omplex @ zero_zero_complex @ A )
      = zero_zero_complex ) ).

% div_0
thf(fact_2998_div__0,axiom,
    ! [A: real] :
      ( ( divide_divide_real @ zero_zero_real @ A )
      = zero_zero_real ) ).

% div_0
thf(fact_2999_div__0,axiom,
    ! [A: rat] :
      ( ( divide_divide_rat @ zero_zero_rat @ A )
      = zero_zero_rat ) ).

% div_0
thf(fact_3000_div__0,axiom,
    ! [A: nat] :
      ( ( divide_divide_nat @ zero_zero_nat @ A )
      = zero_zero_nat ) ).

% div_0
thf(fact_3001_div__0,axiom,
    ! [A: int] :
      ( ( divide_divide_int @ zero_zero_int @ A )
      = zero_zero_int ) ).

% div_0
thf(fact_3002_divide__eq__0__iff,axiom,
    ! [A: complex,B: complex] :
      ( ( ( divide1717551699836669952omplex @ A @ B )
        = zero_zero_complex )
      = ( ( A = zero_zero_complex )
        | ( B = zero_zero_complex ) ) ) ).

% divide_eq_0_iff
thf(fact_3003_divide__eq__0__iff,axiom,
    ! [A: real,B: real] :
      ( ( ( divide_divide_real @ A @ B )
        = zero_zero_real )
      = ( ( A = zero_zero_real )
        | ( B = zero_zero_real ) ) ) ).

% divide_eq_0_iff
thf(fact_3004_divide__eq__0__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ( divide_divide_rat @ A @ B )
        = zero_zero_rat )
      = ( ( A = zero_zero_rat )
        | ( B = zero_zero_rat ) ) ) ).

% divide_eq_0_iff
thf(fact_3005_div__by__0,axiom,
    ! [A: complex] :
      ( ( divide1717551699836669952omplex @ A @ zero_zero_complex )
      = zero_zero_complex ) ).

% div_by_0
thf(fact_3006_div__by__0,axiom,
    ! [A: real] :
      ( ( divide_divide_real @ A @ zero_zero_real )
      = zero_zero_real ) ).

% div_by_0
thf(fact_3007_div__by__0,axiom,
    ! [A: rat] :
      ( ( divide_divide_rat @ A @ zero_zero_rat )
      = zero_zero_rat ) ).

% div_by_0
thf(fact_3008_div__by__0,axiom,
    ! [A: nat] :
      ( ( divide_divide_nat @ A @ zero_zero_nat )
      = zero_zero_nat ) ).

% div_by_0
thf(fact_3009_div__by__0,axiom,
    ! [A: int] :
      ( ( divide_divide_int @ A @ zero_zero_int )
      = zero_zero_int ) ).

% div_by_0
thf(fact_3010_divide__cancel__left,axiom,
    ! [C: complex,A: complex,B: complex] :
      ( ( ( divide1717551699836669952omplex @ C @ A )
        = ( divide1717551699836669952omplex @ C @ B ) )
      = ( ( C = zero_zero_complex )
        | ( A = B ) ) ) ).

% divide_cancel_left
thf(fact_3011_divide__cancel__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ( divide_divide_real @ C @ A )
        = ( divide_divide_real @ C @ B ) )
      = ( ( C = zero_zero_real )
        | ( A = B ) ) ) ).

% divide_cancel_left
thf(fact_3012_divide__cancel__left,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ( divide_divide_rat @ C @ A )
        = ( divide_divide_rat @ C @ B ) )
      = ( ( C = zero_zero_rat )
        | ( A = B ) ) ) ).

% divide_cancel_left
thf(fact_3013_divide__cancel__right,axiom,
    ! [A: complex,C: complex,B: complex] :
      ( ( ( divide1717551699836669952omplex @ A @ C )
        = ( divide1717551699836669952omplex @ B @ C ) )
      = ( ( C = zero_zero_complex )
        | ( A = B ) ) ) ).

% divide_cancel_right
thf(fact_3014_divide__cancel__right,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ( divide_divide_real @ A @ C )
        = ( divide_divide_real @ B @ C ) )
      = ( ( C = zero_zero_real )
        | ( A = B ) ) ) ).

% divide_cancel_right
thf(fact_3015_divide__cancel__right,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( ( divide_divide_rat @ A @ C )
        = ( divide_divide_rat @ B @ C ) )
      = ( ( C = zero_zero_rat )
        | ( A = B ) ) ) ).

% divide_cancel_right
thf(fact_3016_division__ring__divide__zero,axiom,
    ! [A: complex] :
      ( ( divide1717551699836669952omplex @ A @ zero_zero_complex )
      = zero_zero_complex ) ).

% division_ring_divide_zero
thf(fact_3017_division__ring__divide__zero,axiom,
    ! [A: real] :
      ( ( divide_divide_real @ A @ zero_zero_real )
      = zero_zero_real ) ).

% division_ring_divide_zero
thf(fact_3018_division__ring__divide__zero,axiom,
    ! [A: rat] :
      ( ( divide_divide_rat @ A @ zero_zero_rat )
      = zero_zero_rat ) ).

% division_ring_divide_zero
thf(fact_3019_mod__0,axiom,
    ! [A: nat] :
      ( ( modulo_modulo_nat @ zero_zero_nat @ A )
      = zero_zero_nat ) ).

% mod_0
thf(fact_3020_mod__0,axiom,
    ! [A: int] :
      ( ( modulo_modulo_int @ zero_zero_int @ A )
      = zero_zero_int ) ).

% mod_0
thf(fact_3021_mod__0,axiom,
    ! [A: code_integer] :
      ( ( modulo364778990260209775nteger @ zero_z3403309356797280102nteger @ A )
      = zero_z3403309356797280102nteger ) ).

% mod_0
thf(fact_3022_mod__by__0,axiom,
    ! [A: nat] :
      ( ( modulo_modulo_nat @ A @ zero_zero_nat )
      = A ) ).

% mod_by_0
thf(fact_3023_mod__by__0,axiom,
    ! [A: int] :
      ( ( modulo_modulo_int @ A @ zero_zero_int )
      = A ) ).

% mod_by_0
thf(fact_3024_mod__by__0,axiom,
    ! [A: code_integer] :
      ( ( modulo364778990260209775nteger @ A @ zero_z3403309356797280102nteger )
      = A ) ).

% mod_by_0
thf(fact_3025_mod__self,axiom,
    ! [A: nat] :
      ( ( modulo_modulo_nat @ A @ A )
      = zero_zero_nat ) ).

% mod_self
thf(fact_3026_mod__self,axiom,
    ! [A: int] :
      ( ( modulo_modulo_int @ A @ A )
      = zero_zero_int ) ).

% mod_self
thf(fact_3027_mod__self,axiom,
    ! [A: code_integer] :
      ( ( modulo364778990260209775nteger @ A @ A )
      = zero_z3403309356797280102nteger ) ).

% mod_self
thf(fact_3028_bits__mod__0,axiom,
    ! [A: nat] :
      ( ( modulo_modulo_nat @ zero_zero_nat @ A )
      = zero_zero_nat ) ).

% bits_mod_0
thf(fact_3029_bits__mod__0,axiom,
    ! [A: int] :
      ( ( modulo_modulo_int @ zero_zero_int @ A )
      = zero_zero_int ) ).

% bits_mod_0
thf(fact_3030_bits__mod__0,axiom,
    ! [A: code_integer] :
      ( ( modulo364778990260209775nteger @ zero_z3403309356797280102nteger @ A )
      = zero_z3403309356797280102nteger ) ).

% bits_mod_0
thf(fact_3031_less__nat__zero__code,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ zero_zero_nat ) ).

% less_nat_zero_code
thf(fact_3032_neq0__conv,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
      = ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% neq0_conv
thf(fact_3033_bot__nat__0_Onot__eq__extremum,axiom,
    ! [A: nat] :
      ( ( A != zero_zero_nat )
      = ( ord_less_nat @ zero_zero_nat @ A ) ) ).

% bot_nat_0.not_eq_extremum
thf(fact_3034_bot__nat__0_Oextremum,axiom,
    ! [A: nat] : ( ord_less_eq_nat @ zero_zero_nat @ A ) ).

% bot_nat_0.extremum
thf(fact_3035_le0,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N ) ).

% le0
thf(fact_3036_add__is__0,axiom,
    ! [M: nat,N: nat] :
      ( ( ( plus_plus_nat @ M @ N )
        = zero_zero_nat )
      = ( ( M = zero_zero_nat )
        & ( N = zero_zero_nat ) ) ) ).

% add_is_0
thf(fact_3037_Nat_Oadd__0__right,axiom,
    ! [M: nat] :
      ( ( plus_plus_nat @ M @ zero_zero_nat )
      = M ) ).

% Nat.add_0_right
thf(fact_3038_diff__0__eq__0,axiom,
    ! [N: nat] :
      ( ( minus_minus_nat @ zero_zero_nat @ N )
      = zero_zero_nat ) ).

% diff_0_eq_0
thf(fact_3039_diff__self__eq__0,axiom,
    ! [M: nat] :
      ( ( minus_minus_nat @ M @ M )
      = zero_zero_nat ) ).

% diff_self_eq_0
thf(fact_3040_mult__is__0,axiom,
    ! [M: nat,N: nat] :
      ( ( ( times_times_nat @ M @ N )
        = zero_zero_nat )
      = ( ( M = zero_zero_nat )
        | ( N = zero_zero_nat ) ) ) ).

% mult_is_0
thf(fact_3041_mult__0__right,axiom,
    ! [M: nat] :
      ( ( times_times_nat @ M @ zero_zero_nat )
      = zero_zero_nat ) ).

% mult_0_right
thf(fact_3042_mult__cancel1,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ( times_times_nat @ K @ M )
        = ( times_times_nat @ K @ N ) )
      = ( ( M = N )
        | ( K = zero_zero_nat ) ) ) ).

% mult_cancel1
thf(fact_3043_mult__cancel2,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( ( times_times_nat @ M @ K )
        = ( times_times_nat @ N @ K ) )
      = ( ( M = N )
        | ( K = zero_zero_nat ) ) ) ).

% mult_cancel2
thf(fact_3044_max__nat_Oeq__neutr__iff,axiom,
    ! [A: nat,B: nat] :
      ( ( ( ord_max_nat @ A @ B )
        = zero_zero_nat )
      = ( ( A = zero_zero_nat )
        & ( B = zero_zero_nat ) ) ) ).

% max_nat.eq_neutr_iff
thf(fact_3045_max__nat_Oleft__neutral,axiom,
    ! [A: nat] :
      ( ( ord_max_nat @ zero_zero_nat @ A )
      = A ) ).

% max_nat.left_neutral
thf(fact_3046_max__nat_Oneutr__eq__iff,axiom,
    ! [A: nat,B: nat] :
      ( ( zero_zero_nat
        = ( ord_max_nat @ A @ B ) )
      = ( ( A = zero_zero_nat )
        & ( B = zero_zero_nat ) ) ) ).

% max_nat.neutr_eq_iff
thf(fact_3047_max__nat_Oright__neutral,axiom,
    ! [A: nat] :
      ( ( ord_max_nat @ A @ zero_zero_nat )
      = A ) ).

% max_nat.right_neutral
thf(fact_3048_max__0L,axiom,
    ! [N: nat] :
      ( ( ord_max_nat @ zero_zero_nat @ N )
      = N ) ).

% max_0L
thf(fact_3049_max__0R,axiom,
    ! [N: nat] :
      ( ( ord_max_nat @ N @ zero_zero_nat )
      = N ) ).

% max_0R
thf(fact_3050_add__le__same__cancel1,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ B @ A ) @ B )
      = ( ord_less_eq_real @ A @ zero_zero_real ) ) ).

% add_le_same_cancel1
thf(fact_3051_add__le__same__cancel1,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_eq_rat @ ( plus_plus_rat @ B @ A ) @ B )
      = ( ord_less_eq_rat @ A @ zero_zero_rat ) ) ).

% add_le_same_cancel1
thf(fact_3052_add__le__same__cancel1,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ B @ A ) @ B )
      = ( ord_less_eq_nat @ A @ zero_zero_nat ) ) ).

% add_le_same_cancel1
thf(fact_3053_add__le__same__cancel1,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ B @ A ) @ B )
      = ( ord_less_eq_int @ A @ zero_zero_int ) ) ).

% add_le_same_cancel1
thf(fact_3054_add__le__same__cancel2,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ A @ B ) @ B )
      = ( ord_less_eq_real @ A @ zero_zero_real ) ) ).

% add_le_same_cancel2
thf(fact_3055_add__le__same__cancel2,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( plus_plus_rat @ A @ B ) @ B )
      = ( ord_less_eq_rat @ A @ zero_zero_rat ) ) ).

% add_le_same_cancel2
thf(fact_3056_add__le__same__cancel2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ A @ B ) @ B )
      = ( ord_less_eq_nat @ A @ zero_zero_nat ) ) ).

% add_le_same_cancel2
thf(fact_3057_add__le__same__cancel2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ A @ B ) @ B )
      = ( ord_less_eq_int @ A @ zero_zero_int ) ) ).

% add_le_same_cancel2
thf(fact_3058_le__add__same__cancel1,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ ( plus_plus_real @ A @ B ) )
      = ( ord_less_eq_real @ zero_zero_real @ B ) ) ).

% le_add_same_cancel1
thf(fact_3059_le__add__same__cancel1,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ A @ ( plus_plus_rat @ A @ B ) )
      = ( ord_less_eq_rat @ zero_zero_rat @ B ) ) ).

% le_add_same_cancel1
thf(fact_3060_le__add__same__cancel1,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ ( plus_plus_nat @ A @ B ) )
      = ( ord_less_eq_nat @ zero_zero_nat @ B ) ) ).

% le_add_same_cancel1
thf(fact_3061_le__add__same__cancel1,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ ( plus_plus_int @ A @ B ) )
      = ( ord_less_eq_int @ zero_zero_int @ B ) ) ).

% le_add_same_cancel1
thf(fact_3062_le__add__same__cancel2,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ ( plus_plus_real @ B @ A ) )
      = ( ord_less_eq_real @ zero_zero_real @ B ) ) ).

% le_add_same_cancel2
thf(fact_3063_le__add__same__cancel2,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ A @ ( plus_plus_rat @ B @ A ) )
      = ( ord_less_eq_rat @ zero_zero_rat @ B ) ) ).

% le_add_same_cancel2
thf(fact_3064_le__add__same__cancel2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ ( plus_plus_nat @ B @ A ) )
      = ( ord_less_eq_nat @ zero_zero_nat @ B ) ) ).

% le_add_same_cancel2
thf(fact_3065_le__add__same__cancel2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ ( plus_plus_int @ B @ A ) )
      = ( ord_less_eq_int @ zero_zero_int @ B ) ) ).

% le_add_same_cancel2
thf(fact_3066_double__add__le__zero__iff__single__add__le__zero,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ A @ A ) @ zero_zero_real )
      = ( ord_less_eq_real @ A @ zero_zero_real ) ) ).

% double_add_le_zero_iff_single_add_le_zero
thf(fact_3067_double__add__le__zero__iff__single__add__le__zero,axiom,
    ! [A: rat] :
      ( ( ord_less_eq_rat @ ( plus_plus_rat @ A @ A ) @ zero_zero_rat )
      = ( ord_less_eq_rat @ A @ zero_zero_rat ) ) ).

% double_add_le_zero_iff_single_add_le_zero
thf(fact_3068_double__add__le__zero__iff__single__add__le__zero,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ A @ A ) @ zero_zero_int )
      = ( ord_less_eq_int @ A @ zero_zero_int ) ) ).

% double_add_le_zero_iff_single_add_le_zero
thf(fact_3069_zero__le__double__add__iff__zero__le__single__add,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( plus_plus_real @ A @ A ) )
      = ( ord_less_eq_real @ zero_zero_real @ A ) ) ).

% zero_le_double_add_iff_zero_le_single_add
thf(fact_3070_zero__le__double__add__iff__zero__le__single__add,axiom,
    ! [A: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ ( plus_plus_rat @ A @ A ) )
      = ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ).

% zero_le_double_add_iff_zero_le_single_add
thf(fact_3071_zero__le__double__add__iff__zero__le__single__add,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( plus_plus_int @ A @ A ) )
      = ( ord_less_eq_int @ zero_zero_int @ A ) ) ).

% zero_le_double_add_iff_zero_le_single_add
thf(fact_3072_add__less__same__cancel1,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_real @ ( plus_plus_real @ B @ A ) @ B )
      = ( ord_less_real @ A @ zero_zero_real ) ) ).

% add_less_same_cancel1
thf(fact_3073_add__less__same__cancel1,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_rat @ ( plus_plus_rat @ B @ A ) @ B )
      = ( ord_less_rat @ A @ zero_zero_rat ) ) ).

% add_less_same_cancel1
thf(fact_3074_add__less__same__cancel1,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ B @ A ) @ B )
      = ( ord_less_nat @ A @ zero_zero_nat ) ) ).

% add_less_same_cancel1
thf(fact_3075_add__less__same__cancel1,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ ( plus_plus_int @ B @ A ) @ B )
      = ( ord_less_int @ A @ zero_zero_int ) ) ).

% add_less_same_cancel1
thf(fact_3076_add__less__same__cancel2,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ ( plus_plus_real @ A @ B ) @ B )
      = ( ord_less_real @ A @ zero_zero_real ) ) ).

% add_less_same_cancel2
thf(fact_3077_add__less__same__cancel2,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ ( plus_plus_rat @ A @ B ) @ B )
      = ( ord_less_rat @ A @ zero_zero_rat ) ) ).

% add_less_same_cancel2
thf(fact_3078_add__less__same__cancel2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ A @ B ) @ B )
      = ( ord_less_nat @ A @ zero_zero_nat ) ) ).

% add_less_same_cancel2
thf(fact_3079_add__less__same__cancel2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ ( plus_plus_int @ A @ B ) @ B )
      = ( ord_less_int @ A @ zero_zero_int ) ) ).

% add_less_same_cancel2
thf(fact_3080_less__add__same__cancel1,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ ( plus_plus_real @ A @ B ) )
      = ( ord_less_real @ zero_zero_real @ B ) ) ).

% less_add_same_cancel1
thf(fact_3081_less__add__same__cancel1,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ ( plus_plus_rat @ A @ B ) )
      = ( ord_less_rat @ zero_zero_rat @ B ) ) ).

% less_add_same_cancel1
thf(fact_3082_less__add__same__cancel1,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ ( plus_plus_nat @ A @ B ) )
      = ( ord_less_nat @ zero_zero_nat @ B ) ) ).

% less_add_same_cancel1
thf(fact_3083_less__add__same__cancel1,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ ( plus_plus_int @ A @ B ) )
      = ( ord_less_int @ zero_zero_int @ B ) ) ).

% less_add_same_cancel1
thf(fact_3084_less__add__same__cancel2,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ ( plus_plus_real @ B @ A ) )
      = ( ord_less_real @ zero_zero_real @ B ) ) ).

% less_add_same_cancel2
thf(fact_3085_less__add__same__cancel2,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ ( plus_plus_rat @ B @ A ) )
      = ( ord_less_rat @ zero_zero_rat @ B ) ) ).

% less_add_same_cancel2
thf(fact_3086_less__add__same__cancel2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ ( plus_plus_nat @ B @ A ) )
      = ( ord_less_nat @ zero_zero_nat @ B ) ) ).

% less_add_same_cancel2
thf(fact_3087_less__add__same__cancel2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ ( plus_plus_int @ B @ A ) )
      = ( ord_less_int @ zero_zero_int @ B ) ) ).

% less_add_same_cancel2
thf(fact_3088_double__add__less__zero__iff__single__add__less__zero,axiom,
    ! [A: real] :
      ( ( ord_less_real @ ( plus_plus_real @ A @ A ) @ zero_zero_real )
      = ( ord_less_real @ A @ zero_zero_real ) ) ).

% double_add_less_zero_iff_single_add_less_zero
thf(fact_3089_double__add__less__zero__iff__single__add__less__zero,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ ( plus_plus_rat @ A @ A ) @ zero_zero_rat )
      = ( ord_less_rat @ A @ zero_zero_rat ) ) ).

% double_add_less_zero_iff_single_add_less_zero
thf(fact_3090_double__add__less__zero__iff__single__add__less__zero,axiom,
    ! [A: int] :
      ( ( ord_less_int @ ( plus_plus_int @ A @ A ) @ zero_zero_int )
      = ( ord_less_int @ A @ zero_zero_int ) ) ).

% double_add_less_zero_iff_single_add_less_zero
thf(fact_3091_zero__less__double__add__iff__zero__less__single__add,axiom,
    ! [A: real] :
      ( ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ A @ A ) )
      = ( ord_less_real @ zero_zero_real @ A ) ) ).

% zero_less_double_add_iff_zero_less_single_add
thf(fact_3092_zero__less__double__add__iff__zero__less__single__add,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( plus_plus_rat @ A @ A ) )
      = ( ord_less_rat @ zero_zero_rat @ A ) ) ).

% zero_less_double_add_iff_zero_less_single_add
thf(fact_3093_zero__less__double__add__iff__zero__less__single__add,axiom,
    ! [A: int] :
      ( ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ A @ A ) )
      = ( ord_less_int @ zero_zero_int @ A ) ) ).

% zero_less_double_add_iff_zero_less_single_add
thf(fact_3094_diff__ge__0__iff__ge,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( minus_minus_real @ A @ B ) )
      = ( ord_less_eq_real @ B @ A ) ) ).

% diff_ge_0_iff_ge
thf(fact_3095_diff__ge__0__iff__ge,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ ( minus_minus_rat @ A @ B ) )
      = ( ord_less_eq_rat @ B @ A ) ) ).

% diff_ge_0_iff_ge
thf(fact_3096_diff__ge__0__iff__ge,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( minus_minus_int @ A @ B ) )
      = ( ord_less_eq_int @ B @ A ) ) ).

% diff_ge_0_iff_ge
thf(fact_3097_diff__gt__0__iff__gt,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ ( minus_minus_real @ A @ B ) )
      = ( ord_less_real @ B @ A ) ) ).

% diff_gt_0_iff_gt
thf(fact_3098_diff__gt__0__iff__gt,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( minus_minus_rat @ A @ B ) )
      = ( ord_less_rat @ B @ A ) ) ).

% diff_gt_0_iff_gt
thf(fact_3099_diff__gt__0__iff__gt,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ ( minus_minus_int @ A @ B ) )
      = ( ord_less_int @ B @ A ) ) ).

% diff_gt_0_iff_gt
thf(fact_3100_mult__cancel__left1,axiom,
    ! [C: complex,B: complex] :
      ( ( C
        = ( times_times_complex @ C @ B ) )
      = ( ( C = zero_zero_complex )
        | ( B = one_one_complex ) ) ) ).

% mult_cancel_left1
thf(fact_3101_mult__cancel__left1,axiom,
    ! [C: real,B: real] :
      ( ( C
        = ( times_times_real @ C @ B ) )
      = ( ( C = zero_zero_real )
        | ( B = one_one_real ) ) ) ).

% mult_cancel_left1
thf(fact_3102_mult__cancel__left1,axiom,
    ! [C: rat,B: rat] :
      ( ( C
        = ( times_times_rat @ C @ B ) )
      = ( ( C = zero_zero_rat )
        | ( B = one_one_rat ) ) ) ).

% mult_cancel_left1
thf(fact_3103_mult__cancel__left1,axiom,
    ! [C: int,B: int] :
      ( ( C
        = ( times_times_int @ C @ B ) )
      = ( ( C = zero_zero_int )
        | ( B = one_one_int ) ) ) ).

% mult_cancel_left1
thf(fact_3104_mult__cancel__left2,axiom,
    ! [C: complex,A: complex] :
      ( ( ( times_times_complex @ C @ A )
        = C )
      = ( ( C = zero_zero_complex )
        | ( A = one_one_complex ) ) ) ).

% mult_cancel_left2
thf(fact_3105_mult__cancel__left2,axiom,
    ! [C: real,A: real] :
      ( ( ( times_times_real @ C @ A )
        = C )
      = ( ( C = zero_zero_real )
        | ( A = one_one_real ) ) ) ).

% mult_cancel_left2
thf(fact_3106_mult__cancel__left2,axiom,
    ! [C: rat,A: rat] :
      ( ( ( times_times_rat @ C @ A )
        = C )
      = ( ( C = zero_zero_rat )
        | ( A = one_one_rat ) ) ) ).

% mult_cancel_left2
thf(fact_3107_mult__cancel__left2,axiom,
    ! [C: int,A: int] :
      ( ( ( times_times_int @ C @ A )
        = C )
      = ( ( C = zero_zero_int )
        | ( A = one_one_int ) ) ) ).

% mult_cancel_left2
thf(fact_3108_mult__cancel__right1,axiom,
    ! [C: complex,B: complex] :
      ( ( C
        = ( times_times_complex @ B @ C ) )
      = ( ( C = zero_zero_complex )
        | ( B = one_one_complex ) ) ) ).

% mult_cancel_right1
thf(fact_3109_mult__cancel__right1,axiom,
    ! [C: real,B: real] :
      ( ( C
        = ( times_times_real @ B @ C ) )
      = ( ( C = zero_zero_real )
        | ( B = one_one_real ) ) ) ).

% mult_cancel_right1
thf(fact_3110_mult__cancel__right1,axiom,
    ! [C: rat,B: rat] :
      ( ( C
        = ( times_times_rat @ B @ C ) )
      = ( ( C = zero_zero_rat )
        | ( B = one_one_rat ) ) ) ).

% mult_cancel_right1
thf(fact_3111_mult__cancel__right1,axiom,
    ! [C: int,B: int] :
      ( ( C
        = ( times_times_int @ B @ C ) )
      = ( ( C = zero_zero_int )
        | ( B = one_one_int ) ) ) ).

% mult_cancel_right1
thf(fact_3112_mult__cancel__right2,axiom,
    ! [A: complex,C: complex] :
      ( ( ( times_times_complex @ A @ C )
        = C )
      = ( ( C = zero_zero_complex )
        | ( A = one_one_complex ) ) ) ).

% mult_cancel_right2
thf(fact_3113_mult__cancel__right2,axiom,
    ! [A: real,C: real] :
      ( ( ( times_times_real @ A @ C )
        = C )
      = ( ( C = zero_zero_real )
        | ( A = one_one_real ) ) ) ).

% mult_cancel_right2
thf(fact_3114_mult__cancel__right2,axiom,
    ! [A: rat,C: rat] :
      ( ( ( times_times_rat @ A @ C )
        = C )
      = ( ( C = zero_zero_rat )
        | ( A = one_one_rat ) ) ) ).

% mult_cancel_right2
thf(fact_3115_mult__cancel__right2,axiom,
    ! [A: int,C: int] :
      ( ( ( times_times_int @ A @ C )
        = C )
      = ( ( C = zero_zero_int )
        | ( A = one_one_int ) ) ) ).

% mult_cancel_right2
thf(fact_3116_sum__squares__eq__zero__iff,axiom,
    ! [X2: real,Y2: real] :
      ( ( ( plus_plus_real @ ( times_times_real @ X2 @ X2 ) @ ( times_times_real @ Y2 @ Y2 ) )
        = zero_zero_real )
      = ( ( X2 = zero_zero_real )
        & ( Y2 = zero_zero_real ) ) ) ).

% sum_squares_eq_zero_iff
thf(fact_3117_sum__squares__eq__zero__iff,axiom,
    ! [X2: rat,Y2: rat] :
      ( ( ( plus_plus_rat @ ( times_times_rat @ X2 @ X2 ) @ ( times_times_rat @ Y2 @ Y2 ) )
        = zero_zero_rat )
      = ( ( X2 = zero_zero_rat )
        & ( Y2 = zero_zero_rat ) ) ) ).

% sum_squares_eq_zero_iff
thf(fact_3118_sum__squares__eq__zero__iff,axiom,
    ! [X2: int,Y2: int] :
      ( ( ( plus_plus_int @ ( times_times_int @ X2 @ X2 ) @ ( times_times_int @ Y2 @ Y2 ) )
        = zero_zero_int )
      = ( ( X2 = zero_zero_int )
        & ( Y2 = zero_zero_int ) ) ) ).

% sum_squares_eq_zero_iff
thf(fact_3119_diff__numeral__special_I9_J,axiom,
    ( ( minus_minus_complex @ one_one_complex @ one_one_complex )
    = zero_zero_complex ) ).

% diff_numeral_special(9)
thf(fact_3120_diff__numeral__special_I9_J,axiom,
    ( ( minus_minus_real @ one_one_real @ one_one_real )
    = zero_zero_real ) ).

% diff_numeral_special(9)
thf(fact_3121_diff__numeral__special_I9_J,axiom,
    ( ( minus_minus_rat @ one_one_rat @ one_one_rat )
    = zero_zero_rat ) ).

% diff_numeral_special(9)
thf(fact_3122_diff__numeral__special_I9_J,axiom,
    ( ( minus_minus_int @ one_one_int @ one_one_int )
    = zero_zero_int ) ).

% diff_numeral_special(9)
thf(fact_3123_div__mult__mult1__if,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ( C = zero_zero_nat )
       => ( ( divide_divide_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) )
          = zero_zero_nat ) )
      & ( ( C != zero_zero_nat )
       => ( ( divide_divide_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) )
          = ( divide_divide_nat @ A @ B ) ) ) ) ).

% div_mult_mult1_if
thf(fact_3124_div__mult__mult1__if,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ( C = zero_zero_int )
       => ( ( divide_divide_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
          = zero_zero_int ) )
      & ( ( C != zero_zero_int )
       => ( ( divide_divide_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
          = ( divide_divide_int @ A @ B ) ) ) ) ).

% div_mult_mult1_if
thf(fact_3125_div__mult__mult2,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( C != zero_zero_nat )
     => ( ( divide_divide_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) )
        = ( divide_divide_nat @ A @ B ) ) ) ).

% div_mult_mult2
thf(fact_3126_div__mult__mult2,axiom,
    ! [C: int,A: int,B: int] :
      ( ( C != zero_zero_int )
     => ( ( divide_divide_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
        = ( divide_divide_int @ A @ B ) ) ) ).

% div_mult_mult2
thf(fact_3127_div__mult__mult1,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( C != zero_zero_nat )
     => ( ( divide_divide_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) )
        = ( divide_divide_nat @ A @ B ) ) ) ).

% div_mult_mult1
thf(fact_3128_div__mult__mult1,axiom,
    ! [C: int,A: int,B: int] :
      ( ( C != zero_zero_int )
     => ( ( divide_divide_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
        = ( divide_divide_int @ A @ B ) ) ) ).

% div_mult_mult1
thf(fact_3129_mult__divide__mult__cancel__left__if,axiom,
    ! [C: complex,A: complex,B: complex] :
      ( ( ( C = zero_zero_complex )
       => ( ( divide1717551699836669952omplex @ ( times_times_complex @ C @ A ) @ ( times_times_complex @ C @ B ) )
          = zero_zero_complex ) )
      & ( ( C != zero_zero_complex )
       => ( ( divide1717551699836669952omplex @ ( times_times_complex @ C @ A ) @ ( times_times_complex @ C @ B ) )
          = ( divide1717551699836669952omplex @ A @ B ) ) ) ) ).

% mult_divide_mult_cancel_left_if
thf(fact_3130_mult__divide__mult__cancel__left__if,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ( C = zero_zero_real )
       => ( ( divide_divide_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
          = zero_zero_real ) )
      & ( ( C != zero_zero_real )
       => ( ( divide_divide_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
          = ( divide_divide_real @ A @ B ) ) ) ) ).

% mult_divide_mult_cancel_left_if
thf(fact_3131_mult__divide__mult__cancel__left__if,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ( C = zero_zero_rat )
       => ( ( divide_divide_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
          = zero_zero_rat ) )
      & ( ( C != zero_zero_rat )
       => ( ( divide_divide_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
          = ( divide_divide_rat @ A @ B ) ) ) ) ).

% mult_divide_mult_cancel_left_if
thf(fact_3132_nonzero__mult__divide__mult__cancel__left,axiom,
    ! [C: complex,A: complex,B: complex] :
      ( ( C != zero_zero_complex )
     => ( ( divide1717551699836669952omplex @ ( times_times_complex @ C @ A ) @ ( times_times_complex @ C @ B ) )
        = ( divide1717551699836669952omplex @ A @ B ) ) ) ).

% nonzero_mult_divide_mult_cancel_left
thf(fact_3133_nonzero__mult__divide__mult__cancel__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( C != zero_zero_real )
     => ( ( divide_divide_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
        = ( divide_divide_real @ A @ B ) ) ) ).

% nonzero_mult_divide_mult_cancel_left
thf(fact_3134_nonzero__mult__divide__mult__cancel__left,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( C != zero_zero_rat )
     => ( ( divide_divide_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
        = ( divide_divide_rat @ A @ B ) ) ) ).

% nonzero_mult_divide_mult_cancel_left
thf(fact_3135_nonzero__mult__div__cancel__left,axiom,
    ! [A: complex,B: complex] :
      ( ( A != zero_zero_complex )
     => ( ( divide1717551699836669952omplex @ ( times_times_complex @ A @ B ) @ A )
        = B ) ) ).

% nonzero_mult_div_cancel_left
thf(fact_3136_nonzero__mult__div__cancel__left,axiom,
    ! [A: real,B: real] :
      ( ( A != zero_zero_real )
     => ( ( divide_divide_real @ ( times_times_real @ A @ B ) @ A )
        = B ) ) ).

% nonzero_mult_div_cancel_left
thf(fact_3137_nonzero__mult__div__cancel__left,axiom,
    ! [A: rat,B: rat] :
      ( ( A != zero_zero_rat )
     => ( ( divide_divide_rat @ ( times_times_rat @ A @ B ) @ A )
        = B ) ) ).

% nonzero_mult_div_cancel_left
thf(fact_3138_nonzero__mult__div__cancel__left,axiom,
    ! [A: nat,B: nat] :
      ( ( A != zero_zero_nat )
     => ( ( divide_divide_nat @ ( times_times_nat @ A @ B ) @ A )
        = B ) ) ).

% nonzero_mult_div_cancel_left
thf(fact_3139_nonzero__mult__div__cancel__left,axiom,
    ! [A: int,B: int] :
      ( ( A != zero_zero_int )
     => ( ( divide_divide_int @ ( times_times_int @ A @ B ) @ A )
        = B ) ) ).

% nonzero_mult_div_cancel_left
thf(fact_3140_nonzero__mult__divide__mult__cancel__left2,axiom,
    ! [C: complex,A: complex,B: complex] :
      ( ( C != zero_zero_complex )
     => ( ( divide1717551699836669952omplex @ ( times_times_complex @ C @ A ) @ ( times_times_complex @ B @ C ) )
        = ( divide1717551699836669952omplex @ A @ B ) ) ) ).

% nonzero_mult_divide_mult_cancel_left2
thf(fact_3141_nonzero__mult__divide__mult__cancel__left2,axiom,
    ! [C: real,A: real,B: real] :
      ( ( C != zero_zero_real )
     => ( ( divide_divide_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ B @ C ) )
        = ( divide_divide_real @ A @ B ) ) ) ).

% nonzero_mult_divide_mult_cancel_left2
thf(fact_3142_nonzero__mult__divide__mult__cancel__left2,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( C != zero_zero_rat )
     => ( ( divide_divide_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ B @ C ) )
        = ( divide_divide_rat @ A @ B ) ) ) ).

% nonzero_mult_divide_mult_cancel_left2
thf(fact_3143_nonzero__mult__divide__mult__cancel__right,axiom,
    ! [C: complex,A: complex,B: complex] :
      ( ( C != zero_zero_complex )
     => ( ( divide1717551699836669952omplex @ ( times_times_complex @ A @ C ) @ ( times_times_complex @ B @ C ) )
        = ( divide1717551699836669952omplex @ A @ B ) ) ) ).

% nonzero_mult_divide_mult_cancel_right
thf(fact_3144_nonzero__mult__divide__mult__cancel__right,axiom,
    ! [C: real,A: real,B: real] :
      ( ( C != zero_zero_real )
     => ( ( divide_divide_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) )
        = ( divide_divide_real @ A @ B ) ) ) ).

% nonzero_mult_divide_mult_cancel_right
thf(fact_3145_nonzero__mult__divide__mult__cancel__right,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( C != zero_zero_rat )
     => ( ( divide_divide_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) )
        = ( divide_divide_rat @ A @ B ) ) ) ).

% nonzero_mult_divide_mult_cancel_right
thf(fact_3146_nonzero__mult__div__cancel__right,axiom,
    ! [B: complex,A: complex] :
      ( ( B != zero_zero_complex )
     => ( ( divide1717551699836669952omplex @ ( times_times_complex @ A @ B ) @ B )
        = A ) ) ).

% nonzero_mult_div_cancel_right
thf(fact_3147_nonzero__mult__div__cancel__right,axiom,
    ! [B: real,A: real] :
      ( ( B != zero_zero_real )
     => ( ( divide_divide_real @ ( times_times_real @ A @ B ) @ B )
        = A ) ) ).

% nonzero_mult_div_cancel_right
thf(fact_3148_nonzero__mult__div__cancel__right,axiom,
    ! [B: rat,A: rat] :
      ( ( B != zero_zero_rat )
     => ( ( divide_divide_rat @ ( times_times_rat @ A @ B ) @ B )
        = A ) ) ).

% nonzero_mult_div_cancel_right
thf(fact_3149_nonzero__mult__div__cancel__right,axiom,
    ! [B: nat,A: nat] :
      ( ( B != zero_zero_nat )
     => ( ( divide_divide_nat @ ( times_times_nat @ A @ B ) @ B )
        = A ) ) ).

% nonzero_mult_div_cancel_right
thf(fact_3150_nonzero__mult__div__cancel__right,axiom,
    ! [B: int,A: int] :
      ( ( B != zero_zero_int )
     => ( ( divide_divide_int @ ( times_times_int @ A @ B ) @ B )
        = A ) ) ).

% nonzero_mult_div_cancel_right
thf(fact_3151_nonzero__mult__divide__mult__cancel__right2,axiom,
    ! [C: complex,A: complex,B: complex] :
      ( ( C != zero_zero_complex )
     => ( ( divide1717551699836669952omplex @ ( times_times_complex @ A @ C ) @ ( times_times_complex @ C @ B ) )
        = ( divide1717551699836669952omplex @ A @ B ) ) ) ).

% nonzero_mult_divide_mult_cancel_right2
thf(fact_3152_nonzero__mult__divide__mult__cancel__right2,axiom,
    ! [C: real,A: real,B: real] :
      ( ( C != zero_zero_real )
     => ( ( divide_divide_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ C @ B ) )
        = ( divide_divide_real @ A @ B ) ) ) ).

% nonzero_mult_divide_mult_cancel_right2
thf(fact_3153_nonzero__mult__divide__mult__cancel__right2,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( C != zero_zero_rat )
     => ( ( divide_divide_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ C @ B ) )
        = ( divide_divide_rat @ A @ B ) ) ) ).

% nonzero_mult_divide_mult_cancel_right2
thf(fact_3154_diff__add__zero,axiom,
    ! [A: nat,B: nat] :
      ( ( minus_minus_nat @ A @ ( plus_plus_nat @ A @ B ) )
      = zero_zero_nat ) ).

% diff_add_zero
thf(fact_3155_divide__eq__1__iff,axiom,
    ! [A: complex,B: complex] :
      ( ( ( divide1717551699836669952omplex @ A @ B )
        = one_one_complex )
      = ( ( B != zero_zero_complex )
        & ( A = B ) ) ) ).

% divide_eq_1_iff
thf(fact_3156_divide__eq__1__iff,axiom,
    ! [A: real,B: real] :
      ( ( ( divide_divide_real @ A @ B )
        = one_one_real )
      = ( ( B != zero_zero_real )
        & ( A = B ) ) ) ).

% divide_eq_1_iff
thf(fact_3157_divide__eq__1__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ( divide_divide_rat @ A @ B )
        = one_one_rat )
      = ( ( B != zero_zero_rat )
        & ( A = B ) ) ) ).

% divide_eq_1_iff
thf(fact_3158_div__self,axiom,
    ! [A: complex] :
      ( ( A != zero_zero_complex )
     => ( ( divide1717551699836669952omplex @ A @ A )
        = one_one_complex ) ) ).

% div_self
thf(fact_3159_div__self,axiom,
    ! [A: real] :
      ( ( A != zero_zero_real )
     => ( ( divide_divide_real @ A @ A )
        = one_one_real ) ) ).

% div_self
thf(fact_3160_div__self,axiom,
    ! [A: rat] :
      ( ( A != zero_zero_rat )
     => ( ( divide_divide_rat @ A @ A )
        = one_one_rat ) ) ).

% div_self
thf(fact_3161_div__self,axiom,
    ! [A: nat] :
      ( ( A != zero_zero_nat )
     => ( ( divide_divide_nat @ A @ A )
        = one_one_nat ) ) ).

% div_self
thf(fact_3162_div__self,axiom,
    ! [A: int] :
      ( ( A != zero_zero_int )
     => ( ( divide_divide_int @ A @ A )
        = one_one_int ) ) ).

% div_self
thf(fact_3163_one__eq__divide__iff,axiom,
    ! [A: complex,B: complex] :
      ( ( one_one_complex
        = ( divide1717551699836669952omplex @ A @ B ) )
      = ( ( B != zero_zero_complex )
        & ( A = B ) ) ) ).

% one_eq_divide_iff
thf(fact_3164_one__eq__divide__iff,axiom,
    ! [A: real,B: real] :
      ( ( one_one_real
        = ( divide_divide_real @ A @ B ) )
      = ( ( B != zero_zero_real )
        & ( A = B ) ) ) ).

% one_eq_divide_iff
thf(fact_3165_one__eq__divide__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( one_one_rat
        = ( divide_divide_rat @ A @ B ) )
      = ( ( B != zero_zero_rat )
        & ( A = B ) ) ) ).

% one_eq_divide_iff
thf(fact_3166_divide__self,axiom,
    ! [A: complex] :
      ( ( A != zero_zero_complex )
     => ( ( divide1717551699836669952omplex @ A @ A )
        = one_one_complex ) ) ).

% divide_self
thf(fact_3167_divide__self,axiom,
    ! [A: real] :
      ( ( A != zero_zero_real )
     => ( ( divide_divide_real @ A @ A )
        = one_one_real ) ) ).

% divide_self
thf(fact_3168_divide__self,axiom,
    ! [A: rat] :
      ( ( A != zero_zero_rat )
     => ( ( divide_divide_rat @ A @ A )
        = one_one_rat ) ) ).

% divide_self
thf(fact_3169_divide__self__if,axiom,
    ! [A: complex] :
      ( ( ( A = zero_zero_complex )
       => ( ( divide1717551699836669952omplex @ A @ A )
          = zero_zero_complex ) )
      & ( ( A != zero_zero_complex )
       => ( ( divide1717551699836669952omplex @ A @ A )
          = one_one_complex ) ) ) ).

% divide_self_if
thf(fact_3170_divide__self__if,axiom,
    ! [A: real] :
      ( ( ( A = zero_zero_real )
       => ( ( divide_divide_real @ A @ A )
          = zero_zero_real ) )
      & ( ( A != zero_zero_real )
       => ( ( divide_divide_real @ A @ A )
          = one_one_real ) ) ) ).

% divide_self_if
thf(fact_3171_divide__self__if,axiom,
    ! [A: rat] :
      ( ( ( A = zero_zero_rat )
       => ( ( divide_divide_rat @ A @ A )
          = zero_zero_rat ) )
      & ( ( A != zero_zero_rat )
       => ( ( divide_divide_rat @ A @ A )
          = one_one_rat ) ) ) ).

% divide_self_if
thf(fact_3172_divide__eq__eq__1,axiom,
    ! [B: real,A: real] :
      ( ( ( divide_divide_real @ B @ A )
        = one_one_real )
      = ( ( A != zero_zero_real )
        & ( A = B ) ) ) ).

% divide_eq_eq_1
thf(fact_3173_divide__eq__eq__1,axiom,
    ! [B: rat,A: rat] :
      ( ( ( divide_divide_rat @ B @ A )
        = one_one_rat )
      = ( ( A != zero_zero_rat )
        & ( A = B ) ) ) ).

% divide_eq_eq_1
thf(fact_3174_eq__divide__eq__1,axiom,
    ! [B: real,A: real] :
      ( ( one_one_real
        = ( divide_divide_real @ B @ A ) )
      = ( ( A != zero_zero_real )
        & ( A = B ) ) ) ).

% eq_divide_eq_1
thf(fact_3175_eq__divide__eq__1,axiom,
    ! [B: rat,A: rat] :
      ( ( one_one_rat
        = ( divide_divide_rat @ B @ A ) )
      = ( ( A != zero_zero_rat )
        & ( A = B ) ) ) ).

% eq_divide_eq_1
thf(fact_3176_one__divide__eq__0__iff,axiom,
    ! [A: real] :
      ( ( ( divide_divide_real @ one_one_real @ A )
        = zero_zero_real )
      = ( A = zero_zero_real ) ) ).

% one_divide_eq_0_iff
thf(fact_3177_one__divide__eq__0__iff,axiom,
    ! [A: rat] :
      ( ( ( divide_divide_rat @ one_one_rat @ A )
        = zero_zero_rat )
      = ( A = zero_zero_rat ) ) ).

% one_divide_eq_0_iff
thf(fact_3178_zero__eq__1__divide__iff,axiom,
    ! [A: real] :
      ( ( zero_zero_real
        = ( divide_divide_real @ one_one_real @ A ) )
      = ( A = zero_zero_real ) ) ).

% zero_eq_1_divide_iff
thf(fact_3179_zero__eq__1__divide__iff,axiom,
    ! [A: rat] :
      ( ( zero_zero_rat
        = ( divide_divide_rat @ one_one_rat @ A ) )
      = ( A = zero_zero_rat ) ) ).

% zero_eq_1_divide_iff
thf(fact_3180_image__add__0,axiom,
    ! [S3: set_complex] :
      ( ( image_1468599708987790691omplex @ ( plus_plus_complex @ zero_zero_complex ) @ S3 )
      = S3 ) ).

% image_add_0
thf(fact_3181_image__add__0,axiom,
    ! [S3: set_real] :
      ( ( image_real_real @ ( plus_plus_real @ zero_zero_real ) @ S3 )
      = S3 ) ).

% image_add_0
thf(fact_3182_image__add__0,axiom,
    ! [S3: set_rat] :
      ( ( image_rat_rat @ ( plus_plus_rat @ zero_zero_rat ) @ S3 )
      = S3 ) ).

% image_add_0
thf(fact_3183_image__add__0,axiom,
    ! [S3: set_nat] :
      ( ( image_nat_nat @ ( plus_plus_nat @ zero_zero_nat ) @ S3 )
      = S3 ) ).

% image_add_0
thf(fact_3184_image__add__0,axiom,
    ! [S3: set_int] :
      ( ( image_int_int @ ( plus_plus_int @ zero_zero_int ) @ S3 )
      = S3 ) ).

% image_add_0
thf(fact_3185_power__0__Suc,axiom,
    ! [N: nat] :
      ( ( power_power_rat @ zero_zero_rat @ ( suc @ N ) )
      = zero_zero_rat ) ).

% power_0_Suc
thf(fact_3186_power__0__Suc,axiom,
    ! [N: nat] :
      ( ( power_power_nat @ zero_zero_nat @ ( suc @ N ) )
      = zero_zero_nat ) ).

% power_0_Suc
thf(fact_3187_power__0__Suc,axiom,
    ! [N: nat] :
      ( ( power_power_real @ zero_zero_real @ ( suc @ N ) )
      = zero_zero_real ) ).

% power_0_Suc
thf(fact_3188_power__0__Suc,axiom,
    ! [N: nat] :
      ( ( power_power_complex @ zero_zero_complex @ ( suc @ N ) )
      = zero_zero_complex ) ).

% power_0_Suc
thf(fact_3189_power__0__Suc,axiom,
    ! [N: nat] :
      ( ( power_power_int @ zero_zero_int @ ( suc @ N ) )
      = zero_zero_int ) ).

% power_0_Suc
thf(fact_3190_power__zero__numeral,axiom,
    ! [K: num] :
      ( ( power_power_rat @ zero_zero_rat @ ( numeral_numeral_nat @ K ) )
      = zero_zero_rat ) ).

% power_zero_numeral
thf(fact_3191_power__zero__numeral,axiom,
    ! [K: num] :
      ( ( power_power_nat @ zero_zero_nat @ ( numeral_numeral_nat @ K ) )
      = zero_zero_nat ) ).

% power_zero_numeral
thf(fact_3192_power__zero__numeral,axiom,
    ! [K: num] :
      ( ( power_power_real @ zero_zero_real @ ( numeral_numeral_nat @ K ) )
      = zero_zero_real ) ).

% power_zero_numeral
thf(fact_3193_power__zero__numeral,axiom,
    ! [K: num] :
      ( ( power_power_complex @ zero_zero_complex @ ( numeral_numeral_nat @ K ) )
      = zero_zero_complex ) ).

% power_zero_numeral
thf(fact_3194_power__zero__numeral,axiom,
    ! [K: num] :
      ( ( power_power_int @ zero_zero_int @ ( numeral_numeral_nat @ K ) )
      = zero_zero_int ) ).

% power_zero_numeral
thf(fact_3195_mod__mult__self1__is__0,axiom,
    ! [B: nat,A: nat] :
      ( ( modulo_modulo_nat @ ( times_times_nat @ B @ A ) @ B )
      = zero_zero_nat ) ).

% mod_mult_self1_is_0
thf(fact_3196_mod__mult__self1__is__0,axiom,
    ! [B: int,A: int] :
      ( ( modulo_modulo_int @ ( times_times_int @ B @ A ) @ B )
      = zero_zero_int ) ).

% mod_mult_self1_is_0
thf(fact_3197_mod__mult__self1__is__0,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ B @ A ) @ B )
      = zero_z3403309356797280102nteger ) ).

% mod_mult_self1_is_0
thf(fact_3198_mod__mult__self2__is__0,axiom,
    ! [A: nat,B: nat] :
      ( ( modulo_modulo_nat @ ( times_times_nat @ A @ B ) @ B )
      = zero_zero_nat ) ).

% mod_mult_self2_is_0
thf(fact_3199_mod__mult__self2__is__0,axiom,
    ! [A: int,B: int] :
      ( ( modulo_modulo_int @ ( times_times_int @ A @ B ) @ B )
      = zero_zero_int ) ).

% mod_mult_self2_is_0
thf(fact_3200_mod__mult__self2__is__0,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( modulo364778990260209775nteger @ ( times_3573771949741848930nteger @ A @ B ) @ B )
      = zero_z3403309356797280102nteger ) ).

% mod_mult_self2_is_0
thf(fact_3201_bits__mod__by__1,axiom,
    ! [A: nat] :
      ( ( modulo_modulo_nat @ A @ one_one_nat )
      = zero_zero_nat ) ).

% bits_mod_by_1
thf(fact_3202_bits__mod__by__1,axiom,
    ! [A: int] :
      ( ( modulo_modulo_int @ A @ one_one_int )
      = zero_zero_int ) ).

% bits_mod_by_1
thf(fact_3203_bits__mod__by__1,axiom,
    ! [A: code_integer] :
      ( ( modulo364778990260209775nteger @ A @ one_one_Code_integer )
      = zero_z3403309356797280102nteger ) ).

% bits_mod_by_1
thf(fact_3204_mod__by__1,axiom,
    ! [A: nat] :
      ( ( modulo_modulo_nat @ A @ one_one_nat )
      = zero_zero_nat ) ).

% mod_by_1
thf(fact_3205_mod__by__1,axiom,
    ! [A: int] :
      ( ( modulo_modulo_int @ A @ one_one_int )
      = zero_zero_int ) ).

% mod_by_1
thf(fact_3206_mod__by__1,axiom,
    ! [A: code_integer] :
      ( ( modulo364778990260209775nteger @ A @ one_one_Code_integer )
      = zero_z3403309356797280102nteger ) ).

% mod_by_1
thf(fact_3207_bits__mod__div__trivial,axiom,
    ! [A: nat,B: nat] :
      ( ( divide_divide_nat @ ( modulo_modulo_nat @ A @ B ) @ B )
      = zero_zero_nat ) ).

% bits_mod_div_trivial
thf(fact_3208_bits__mod__div__trivial,axiom,
    ! [A: int,B: int] :
      ( ( divide_divide_int @ ( modulo_modulo_int @ A @ B ) @ B )
      = zero_zero_int ) ).

% bits_mod_div_trivial
thf(fact_3209_bits__mod__div__trivial,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( divide6298287555418463151nteger @ ( modulo364778990260209775nteger @ A @ B ) @ B )
      = zero_z3403309356797280102nteger ) ).

% bits_mod_div_trivial
thf(fact_3210_mod__div__trivial,axiom,
    ! [A: nat,B: nat] :
      ( ( divide_divide_nat @ ( modulo_modulo_nat @ A @ B ) @ B )
      = zero_zero_nat ) ).

% mod_div_trivial
thf(fact_3211_mod__div__trivial,axiom,
    ! [A: int,B: int] :
      ( ( divide_divide_int @ ( modulo_modulo_int @ A @ B ) @ B )
      = zero_zero_int ) ).

% mod_div_trivial
thf(fact_3212_mod__div__trivial,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( divide6298287555418463151nteger @ ( modulo364778990260209775nteger @ A @ B ) @ B )
      = zero_z3403309356797280102nteger ) ).

% mod_div_trivial
thf(fact_3213_power__Suc0__right,axiom,
    ! [A: nat] :
      ( ( power_power_nat @ A @ ( suc @ zero_zero_nat ) )
      = A ) ).

% power_Suc0_right
thf(fact_3214_power__Suc0__right,axiom,
    ! [A: real] :
      ( ( power_power_real @ A @ ( suc @ zero_zero_nat ) )
      = A ) ).

% power_Suc0_right
thf(fact_3215_power__Suc0__right,axiom,
    ! [A: complex] :
      ( ( power_power_complex @ A @ ( suc @ zero_zero_nat ) )
      = A ) ).

% power_Suc0_right
thf(fact_3216_power__Suc0__right,axiom,
    ! [A: int] :
      ( ( power_power_int @ A @ ( suc @ zero_zero_nat ) )
      = A ) ).

% power_Suc0_right
thf(fact_3217_zero__less__Suc,axiom,
    ! [N: nat] : ( ord_less_nat @ zero_zero_nat @ ( suc @ N ) ) ).

% zero_less_Suc
thf(fact_3218_less__Suc0,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ N @ ( suc @ zero_zero_nat ) )
      = ( N = zero_zero_nat ) ) ).

% less_Suc0
thf(fact_3219_max__0__1_I3_J,axiom,
    ! [X2: num] :
      ( ( ord_ma741700101516333627d_enat @ zero_z5237406670263579293d_enat @ ( numera1916890842035813515d_enat @ X2 ) )
      = ( numera1916890842035813515d_enat @ X2 ) ) ).

% max_0_1(3)
thf(fact_3220_max__0__1_I3_J,axiom,
    ! [X2: num] :
      ( ( ord_max_real @ zero_zero_real @ ( numeral_numeral_real @ X2 ) )
      = ( numeral_numeral_real @ X2 ) ) ).

% max_0_1(3)
thf(fact_3221_max__0__1_I3_J,axiom,
    ! [X2: num] :
      ( ( ord_max_rat @ zero_zero_rat @ ( numeral_numeral_rat @ X2 ) )
      = ( numeral_numeral_rat @ X2 ) ) ).

% max_0_1(3)
thf(fact_3222_max__0__1_I3_J,axiom,
    ! [X2: num] :
      ( ( ord_max_nat @ zero_zero_nat @ ( numeral_numeral_nat @ X2 ) )
      = ( numeral_numeral_nat @ X2 ) ) ).

% max_0_1(3)
thf(fact_3223_max__0__1_I3_J,axiom,
    ! [X2: num] :
      ( ( ord_max_int @ zero_zero_int @ ( numeral_numeral_int @ X2 ) )
      = ( numeral_numeral_int @ X2 ) ) ).

% max_0_1(3)
thf(fact_3224_max__0__1_I4_J,axiom,
    ! [X2: num] :
      ( ( ord_ma741700101516333627d_enat @ ( numera1916890842035813515d_enat @ X2 ) @ zero_z5237406670263579293d_enat )
      = ( numera1916890842035813515d_enat @ X2 ) ) ).

% max_0_1(4)
thf(fact_3225_max__0__1_I4_J,axiom,
    ! [X2: num] :
      ( ( ord_max_real @ ( numeral_numeral_real @ X2 ) @ zero_zero_real )
      = ( numeral_numeral_real @ X2 ) ) ).

% max_0_1(4)
thf(fact_3226_max__0__1_I4_J,axiom,
    ! [X2: num] :
      ( ( ord_max_rat @ ( numeral_numeral_rat @ X2 ) @ zero_zero_rat )
      = ( numeral_numeral_rat @ X2 ) ) ).

% max_0_1(4)
thf(fact_3227_max__0__1_I4_J,axiom,
    ! [X2: num] :
      ( ( ord_max_nat @ ( numeral_numeral_nat @ X2 ) @ zero_zero_nat )
      = ( numeral_numeral_nat @ X2 ) ) ).

% max_0_1(4)
thf(fact_3228_max__0__1_I4_J,axiom,
    ! [X2: num] :
      ( ( ord_max_int @ ( numeral_numeral_int @ X2 ) @ zero_zero_int )
      = ( numeral_numeral_int @ X2 ) ) ).

% max_0_1(4)
thf(fact_3229_max__0__1_I1_J,axiom,
    ( ( ord_max_real @ zero_zero_real @ one_one_real )
    = one_one_real ) ).

% max_0_1(1)
thf(fact_3230_max__0__1_I1_J,axiom,
    ( ( ord_max_rat @ zero_zero_rat @ one_one_rat )
    = one_one_rat ) ).

% max_0_1(1)
thf(fact_3231_max__0__1_I1_J,axiom,
    ( ( ord_max_nat @ zero_zero_nat @ one_one_nat )
    = one_one_nat ) ).

% max_0_1(1)
thf(fact_3232_max__0__1_I1_J,axiom,
    ( ( ord_ma741700101516333627d_enat @ zero_z5237406670263579293d_enat @ one_on7984719198319812577d_enat )
    = one_on7984719198319812577d_enat ) ).

% max_0_1(1)
thf(fact_3233_max__0__1_I1_J,axiom,
    ( ( ord_max_int @ zero_zero_int @ one_one_int )
    = one_one_int ) ).

% max_0_1(1)
thf(fact_3234_max__0__1_I2_J,axiom,
    ( ( ord_max_real @ one_one_real @ zero_zero_real )
    = one_one_real ) ).

% max_0_1(2)
thf(fact_3235_max__0__1_I2_J,axiom,
    ( ( ord_max_rat @ one_one_rat @ zero_zero_rat )
    = one_one_rat ) ).

% max_0_1(2)
thf(fact_3236_max__0__1_I2_J,axiom,
    ( ( ord_max_nat @ one_one_nat @ zero_zero_nat )
    = one_one_nat ) ).

% max_0_1(2)
thf(fact_3237_max__0__1_I2_J,axiom,
    ( ( ord_ma741700101516333627d_enat @ one_on7984719198319812577d_enat @ zero_z5237406670263579293d_enat )
    = one_on7984719198319812577d_enat ) ).

% max_0_1(2)
thf(fact_3238_max__0__1_I2_J,axiom,
    ( ( ord_max_int @ one_one_int @ zero_zero_int )
    = one_one_int ) ).

% max_0_1(2)
thf(fact_3239_add__gr__0,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ M @ N ) )
      = ( ( ord_less_nat @ zero_zero_nat @ M )
        | ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% add_gr_0
thf(fact_3240_mult__eq__1__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ( times_times_nat @ M @ N )
        = ( suc @ zero_zero_nat ) )
      = ( ( M
          = ( suc @ zero_zero_nat ) )
        & ( N
          = ( suc @ zero_zero_nat ) ) ) ) ).

% mult_eq_1_iff
thf(fact_3241_one__eq__mult__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ( suc @ zero_zero_nat )
        = ( times_times_nat @ M @ N ) )
      = ( ( M
          = ( suc @ zero_zero_nat ) )
        & ( N
          = ( suc @ zero_zero_nat ) ) ) ) ).

% one_eq_mult_iff
thf(fact_3242_div__by__Suc__0,axiom,
    ! [M: nat] :
      ( ( divide_divide_nat @ M @ ( suc @ zero_zero_nat ) )
      = M ) ).

% div_by_Suc_0
thf(fact_3243_zero__less__diff,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( minus_minus_nat @ N @ M ) )
      = ( ord_less_nat @ M @ N ) ) ).

% zero_less_diff
thf(fact_3244_nat__mult__less__cancel__disj,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
      = ( ( ord_less_nat @ zero_zero_nat @ K )
        & ( ord_less_nat @ M @ N ) ) ) ).

% nat_mult_less_cancel_disj
thf(fact_3245_nat__0__less__mult__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ M @ N ) )
      = ( ( ord_less_nat @ zero_zero_nat @ M )
        & ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% nat_0_less_mult_iff
thf(fact_3246_mult__less__cancel2,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( ord_less_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N @ K ) )
      = ( ( ord_less_nat @ zero_zero_nat @ K )
        & ( ord_less_nat @ M @ N ) ) ) ).

% mult_less_cancel2
thf(fact_3247_less__one,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ N @ one_one_nat )
      = ( N = zero_zero_nat ) ) ).

% less_one
thf(fact_3248_div__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ( divide_divide_nat @ M @ N )
        = zero_zero_nat ) ) ).

% div_less
thf(fact_3249_diff__is__0__eq_H,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( minus_minus_nat @ M @ N )
        = zero_zero_nat ) ) ).

% diff_is_0_eq'
thf(fact_3250_diff__is__0__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ( minus_minus_nat @ M @ N )
        = zero_zero_nat )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% diff_is_0_eq
thf(fact_3251_power__Suc__0,axiom,
    ! [N: nat] :
      ( ( power_power_nat @ ( suc @ zero_zero_nat ) @ N )
      = ( suc @ zero_zero_nat ) ) ).

% power_Suc_0
thf(fact_3252_nat__power__eq__Suc__0__iff,axiom,
    ! [X2: nat,M: nat] :
      ( ( ( power_power_nat @ X2 @ M )
        = ( suc @ zero_zero_nat ) )
      = ( ( M = zero_zero_nat )
        | ( X2
          = ( suc @ zero_zero_nat ) ) ) ) ).

% nat_power_eq_Suc_0_iff
thf(fact_3253_nat__zero__less__power__iff,axiom,
    ! [X2: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( power_power_nat @ X2 @ N ) )
      = ( ( ord_less_nat @ zero_zero_nat @ X2 )
        | ( N = zero_zero_nat ) ) ) ).

% nat_zero_less_power_iff
thf(fact_3254_nat__mult__div__cancel__disj,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ( K = zero_zero_nat )
       => ( ( divide_divide_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
          = zero_zero_nat ) )
      & ( ( K != zero_zero_nat )
       => ( ( divide_divide_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
          = ( divide_divide_nat @ M @ N ) ) ) ) ).

% nat_mult_div_cancel_disj
thf(fact_3255_mod__by__Suc__0,axiom,
    ! [M: nat] :
      ( ( modulo_modulo_nat @ M @ ( suc @ zero_zero_nat ) )
      = zero_zero_nat ) ).

% mod_by_Suc_0
thf(fact_3256_divide__le__0__1__iff,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ ( divide_divide_real @ one_one_real @ A ) @ zero_zero_real )
      = ( ord_less_eq_real @ A @ zero_zero_real ) ) ).

% divide_le_0_1_iff
thf(fact_3257_divide__le__0__1__iff,axiom,
    ! [A: rat] :
      ( ( ord_less_eq_rat @ ( divide_divide_rat @ one_one_rat @ A ) @ zero_zero_rat )
      = ( ord_less_eq_rat @ A @ zero_zero_rat ) ) ).

% divide_le_0_1_iff
thf(fact_3258_zero__le__divide__1__iff,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ one_one_real @ A ) )
      = ( ord_less_eq_real @ zero_zero_real @ A ) ) ).

% zero_le_divide_1_iff
thf(fact_3259_zero__le__divide__1__iff,axiom,
    ! [A: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ ( divide_divide_rat @ one_one_rat @ A ) )
      = ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ).

% zero_le_divide_1_iff
thf(fact_3260_divide__less__0__1__iff,axiom,
    ! [A: real] :
      ( ( ord_less_real @ ( divide_divide_real @ one_one_real @ A ) @ zero_zero_real )
      = ( ord_less_real @ A @ zero_zero_real ) ) ).

% divide_less_0_1_iff
thf(fact_3261_divide__less__0__1__iff,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ ( divide_divide_rat @ one_one_rat @ A ) @ zero_zero_rat )
      = ( ord_less_rat @ A @ zero_zero_rat ) ) ).

% divide_less_0_1_iff
thf(fact_3262_divide__less__eq__1__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ( ord_less_real @ ( divide_divide_real @ B @ A ) @ one_one_real )
        = ( ord_less_real @ A @ B ) ) ) ).

% divide_less_eq_1_neg
thf(fact_3263_divide__less__eq__1__neg,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ zero_zero_rat )
     => ( ( ord_less_rat @ ( divide_divide_rat @ B @ A ) @ one_one_rat )
        = ( ord_less_rat @ A @ B ) ) ) ).

% divide_less_eq_1_neg
thf(fact_3264_divide__less__eq__1__pos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ ( divide_divide_real @ B @ A ) @ one_one_real )
        = ( ord_less_real @ B @ A ) ) ) ).

% divide_less_eq_1_pos
thf(fact_3265_divide__less__eq__1__pos,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ( ord_less_rat @ ( divide_divide_rat @ B @ A ) @ one_one_rat )
        = ( ord_less_rat @ B @ A ) ) ) ).

% divide_less_eq_1_pos
thf(fact_3266_less__divide__eq__1__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ( ord_less_real @ one_one_real @ ( divide_divide_real @ B @ A ) )
        = ( ord_less_real @ B @ A ) ) ) ).

% less_divide_eq_1_neg
thf(fact_3267_less__divide__eq__1__neg,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ zero_zero_rat )
     => ( ( ord_less_rat @ one_one_rat @ ( divide_divide_rat @ B @ A ) )
        = ( ord_less_rat @ B @ A ) ) ) ).

% less_divide_eq_1_neg
thf(fact_3268_less__divide__eq__1__pos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ one_one_real @ ( divide_divide_real @ B @ A ) )
        = ( ord_less_real @ A @ B ) ) ) ).

% less_divide_eq_1_pos
thf(fact_3269_less__divide__eq__1__pos,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ( ord_less_rat @ one_one_rat @ ( divide_divide_rat @ B @ A ) )
        = ( ord_less_rat @ A @ B ) ) ) ).

% less_divide_eq_1_pos
thf(fact_3270_zero__less__divide__1__iff,axiom,
    ! [A: real] :
      ( ( ord_less_real @ zero_zero_real @ ( divide_divide_real @ one_one_real @ A ) )
      = ( ord_less_real @ zero_zero_real @ A ) ) ).

% zero_less_divide_1_iff
thf(fact_3271_zero__less__divide__1__iff,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( divide_divide_rat @ one_one_rat @ A ) )
      = ( ord_less_rat @ zero_zero_rat @ A ) ) ).

% zero_less_divide_1_iff
thf(fact_3272_divide__eq__eq__numeral1_I1_J,axiom,
    ! [B: complex,W: num,A: complex] :
      ( ( ( divide1717551699836669952omplex @ B @ ( numera6690914467698888265omplex @ W ) )
        = A )
      = ( ( ( ( numera6690914467698888265omplex @ W )
           != zero_zero_complex )
         => ( B
            = ( times_times_complex @ A @ ( numera6690914467698888265omplex @ W ) ) ) )
        & ( ( ( numera6690914467698888265omplex @ W )
            = zero_zero_complex )
         => ( A = zero_zero_complex ) ) ) ) ).

% divide_eq_eq_numeral1(1)
thf(fact_3273_divide__eq__eq__numeral1_I1_J,axiom,
    ! [B: real,W: num,A: real] :
      ( ( ( divide_divide_real @ B @ ( numeral_numeral_real @ W ) )
        = A )
      = ( ( ( ( numeral_numeral_real @ W )
           != zero_zero_real )
         => ( B
            = ( times_times_real @ A @ ( numeral_numeral_real @ W ) ) ) )
        & ( ( ( numeral_numeral_real @ W )
            = zero_zero_real )
         => ( A = zero_zero_real ) ) ) ) ).

% divide_eq_eq_numeral1(1)
thf(fact_3274_divide__eq__eq__numeral1_I1_J,axiom,
    ! [B: rat,W: num,A: rat] :
      ( ( ( divide_divide_rat @ B @ ( numeral_numeral_rat @ W ) )
        = A )
      = ( ( ( ( numeral_numeral_rat @ W )
           != zero_zero_rat )
         => ( B
            = ( times_times_rat @ A @ ( numeral_numeral_rat @ W ) ) ) )
        & ( ( ( numeral_numeral_rat @ W )
            = zero_zero_rat )
         => ( A = zero_zero_rat ) ) ) ) ).

% divide_eq_eq_numeral1(1)
thf(fact_3275_eq__divide__eq__numeral1_I1_J,axiom,
    ! [A: complex,B: complex,W: num] :
      ( ( A
        = ( divide1717551699836669952omplex @ B @ ( numera6690914467698888265omplex @ W ) ) )
      = ( ( ( ( numera6690914467698888265omplex @ W )
           != zero_zero_complex )
         => ( ( times_times_complex @ A @ ( numera6690914467698888265omplex @ W ) )
            = B ) )
        & ( ( ( numera6690914467698888265omplex @ W )
            = zero_zero_complex )
         => ( A = zero_zero_complex ) ) ) ) ).

% eq_divide_eq_numeral1(1)
thf(fact_3276_eq__divide__eq__numeral1_I1_J,axiom,
    ! [A: real,B: real,W: num] :
      ( ( A
        = ( divide_divide_real @ B @ ( numeral_numeral_real @ W ) ) )
      = ( ( ( ( numeral_numeral_real @ W )
           != zero_zero_real )
         => ( ( times_times_real @ A @ ( numeral_numeral_real @ W ) )
            = B ) )
        & ( ( ( numeral_numeral_real @ W )
            = zero_zero_real )
         => ( A = zero_zero_real ) ) ) ) ).

% eq_divide_eq_numeral1(1)
thf(fact_3277_eq__divide__eq__numeral1_I1_J,axiom,
    ! [A: rat,B: rat,W: num] :
      ( ( A
        = ( divide_divide_rat @ B @ ( numeral_numeral_rat @ W ) ) )
      = ( ( ( ( numeral_numeral_rat @ W )
           != zero_zero_rat )
         => ( ( times_times_rat @ A @ ( numeral_numeral_rat @ W ) )
            = B ) )
        & ( ( ( numeral_numeral_rat @ W )
            = zero_zero_rat )
         => ( A = zero_zero_rat ) ) ) ) ).

% eq_divide_eq_numeral1(1)
thf(fact_3278_nonzero__divide__mult__cancel__left,axiom,
    ! [A: complex,B: complex] :
      ( ( A != zero_zero_complex )
     => ( ( divide1717551699836669952omplex @ A @ ( times_times_complex @ A @ B ) )
        = ( divide1717551699836669952omplex @ one_one_complex @ B ) ) ) ).

% nonzero_divide_mult_cancel_left
thf(fact_3279_nonzero__divide__mult__cancel__left,axiom,
    ! [A: real,B: real] :
      ( ( A != zero_zero_real )
     => ( ( divide_divide_real @ A @ ( times_times_real @ A @ B ) )
        = ( divide_divide_real @ one_one_real @ B ) ) ) ).

% nonzero_divide_mult_cancel_left
thf(fact_3280_nonzero__divide__mult__cancel__left,axiom,
    ! [A: rat,B: rat] :
      ( ( A != zero_zero_rat )
     => ( ( divide_divide_rat @ A @ ( times_times_rat @ A @ B ) )
        = ( divide_divide_rat @ one_one_rat @ B ) ) ) ).

% nonzero_divide_mult_cancel_left
thf(fact_3281_nonzero__divide__mult__cancel__right,axiom,
    ! [B: complex,A: complex] :
      ( ( B != zero_zero_complex )
     => ( ( divide1717551699836669952omplex @ B @ ( times_times_complex @ A @ B ) )
        = ( divide1717551699836669952omplex @ one_one_complex @ A ) ) ) ).

% nonzero_divide_mult_cancel_right
thf(fact_3282_nonzero__divide__mult__cancel__right,axiom,
    ! [B: real,A: real] :
      ( ( B != zero_zero_real )
     => ( ( divide_divide_real @ B @ ( times_times_real @ A @ B ) )
        = ( divide_divide_real @ one_one_real @ A ) ) ) ).

% nonzero_divide_mult_cancel_right
thf(fact_3283_nonzero__divide__mult__cancel__right,axiom,
    ! [B: rat,A: rat] :
      ( ( B != zero_zero_rat )
     => ( ( divide_divide_rat @ B @ ( times_times_rat @ A @ B ) )
        = ( divide_divide_rat @ one_one_rat @ A ) ) ) ).

% nonzero_divide_mult_cancel_right
thf(fact_3284_div__mult__self1,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( B != zero_zero_nat )
     => ( ( divide_divide_nat @ ( plus_plus_nat @ A @ ( times_times_nat @ C @ B ) ) @ B )
        = ( plus_plus_nat @ C @ ( divide_divide_nat @ A @ B ) ) ) ) ).

% div_mult_self1
thf(fact_3285_div__mult__self1,axiom,
    ! [B: int,A: int,C: int] :
      ( ( B != zero_zero_int )
     => ( ( divide_divide_int @ ( plus_plus_int @ A @ ( times_times_int @ C @ B ) ) @ B )
        = ( plus_plus_int @ C @ ( divide_divide_int @ A @ B ) ) ) ) ).

% div_mult_self1
thf(fact_3286_div__mult__self2,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( B != zero_zero_nat )
     => ( ( divide_divide_nat @ ( plus_plus_nat @ A @ ( times_times_nat @ B @ C ) ) @ B )
        = ( plus_plus_nat @ C @ ( divide_divide_nat @ A @ B ) ) ) ) ).

% div_mult_self2
thf(fact_3287_div__mult__self2,axiom,
    ! [B: int,A: int,C: int] :
      ( ( B != zero_zero_int )
     => ( ( divide_divide_int @ ( plus_plus_int @ A @ ( times_times_int @ B @ C ) ) @ B )
        = ( plus_plus_int @ C @ ( divide_divide_int @ A @ B ) ) ) ) ).

% div_mult_self2
thf(fact_3288_div__mult__self3,axiom,
    ! [B: nat,C: nat,A: nat] :
      ( ( B != zero_zero_nat )
     => ( ( divide_divide_nat @ ( plus_plus_nat @ ( times_times_nat @ C @ B ) @ A ) @ B )
        = ( plus_plus_nat @ C @ ( divide_divide_nat @ A @ B ) ) ) ) ).

% div_mult_self3
thf(fact_3289_div__mult__self3,axiom,
    ! [B: int,C: int,A: int] :
      ( ( B != zero_zero_int )
     => ( ( divide_divide_int @ ( plus_plus_int @ ( times_times_int @ C @ B ) @ A ) @ B )
        = ( plus_plus_int @ C @ ( divide_divide_int @ A @ B ) ) ) ) ).

% div_mult_self3
thf(fact_3290_div__mult__self4,axiom,
    ! [B: nat,C: nat,A: nat] :
      ( ( B != zero_zero_nat )
     => ( ( divide_divide_nat @ ( plus_plus_nat @ ( times_times_nat @ B @ C ) @ A ) @ B )
        = ( plus_plus_nat @ C @ ( divide_divide_nat @ A @ B ) ) ) ) ).

% div_mult_self4
thf(fact_3291_div__mult__self4,axiom,
    ! [B: int,C: int,A: int] :
      ( ( B != zero_zero_int )
     => ( ( divide_divide_int @ ( plus_plus_int @ ( times_times_int @ B @ C ) @ A ) @ B )
        = ( plus_plus_int @ C @ ( divide_divide_int @ A @ B ) ) ) ) ).

% div_mult_self4
thf(fact_3292_power__eq__0__iff,axiom,
    ! [A: rat,N: nat] :
      ( ( ( power_power_rat @ A @ N )
        = zero_zero_rat )
      = ( ( A = zero_zero_rat )
        & ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% power_eq_0_iff
thf(fact_3293_power__eq__0__iff,axiom,
    ! [A: nat,N: nat] :
      ( ( ( power_power_nat @ A @ N )
        = zero_zero_nat )
      = ( ( A = zero_zero_nat )
        & ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% power_eq_0_iff
thf(fact_3294_power__eq__0__iff,axiom,
    ! [A: real,N: nat] :
      ( ( ( power_power_real @ A @ N )
        = zero_zero_real )
      = ( ( A = zero_zero_real )
        & ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% power_eq_0_iff
thf(fact_3295_power__eq__0__iff,axiom,
    ! [A: complex,N: nat] :
      ( ( ( power_power_complex @ A @ N )
        = zero_zero_complex )
      = ( ( A = zero_zero_complex )
        & ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% power_eq_0_iff
thf(fact_3296_power__eq__0__iff,axiom,
    ! [A: int,N: nat] :
      ( ( ( power_power_int @ A @ N )
        = zero_zero_int )
      = ( ( A = zero_zero_int )
        & ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% power_eq_0_iff
thf(fact_3297_Suc__pred,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( suc @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) )
        = N ) ) ).

% Suc_pred
thf(fact_3298_one__le__mult__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ ( times_times_nat @ M @ N ) )
      = ( ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ M )
        & ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ N ) ) ) ).

% one_le_mult_iff
thf(fact_3299_nat__mult__le__cancel__disj,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
      = ( ( ord_less_nat @ zero_zero_nat @ K )
       => ( ord_less_eq_nat @ M @ N ) ) ) ).

% nat_mult_le_cancel_disj
thf(fact_3300_mult__le__cancel2,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N @ K ) )
      = ( ( ord_less_nat @ zero_zero_nat @ K )
       => ( ord_less_eq_nat @ M @ N ) ) ) ).

% mult_le_cancel2
thf(fact_3301_div__mult__self1__is__m,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( divide_divide_nat @ ( times_times_nat @ N @ M ) @ N )
        = M ) ) ).

% div_mult_self1_is_m
thf(fact_3302_div__mult__self__is__m,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( divide_divide_nat @ ( times_times_nat @ M @ N ) @ N )
        = M ) ) ).

% div_mult_self_is_m
thf(fact_3303_divide__le__eq__1__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ( ord_less_eq_real @ ( divide_divide_real @ B @ A ) @ one_one_real )
        = ( ord_less_eq_real @ A @ B ) ) ) ).

% divide_le_eq_1_neg
thf(fact_3304_divide__le__eq__1__neg,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ zero_zero_rat )
     => ( ( ord_less_eq_rat @ ( divide_divide_rat @ B @ A ) @ one_one_rat )
        = ( ord_less_eq_rat @ A @ B ) ) ) ).

% divide_le_eq_1_neg
thf(fact_3305_divide__le__eq__1__pos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ ( divide_divide_real @ B @ A ) @ one_one_real )
        = ( ord_less_eq_real @ B @ A ) ) ) ).

% divide_le_eq_1_pos
thf(fact_3306_divide__le__eq__1__pos,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ( ord_less_eq_rat @ ( divide_divide_rat @ B @ A ) @ one_one_rat )
        = ( ord_less_eq_rat @ B @ A ) ) ) ).

% divide_le_eq_1_pos
thf(fact_3307_le__divide__eq__1__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ( ord_less_eq_real @ one_one_real @ ( divide_divide_real @ B @ A ) )
        = ( ord_less_eq_real @ B @ A ) ) ) ).

% le_divide_eq_1_neg
thf(fact_3308_le__divide__eq__1__neg,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ zero_zero_rat )
     => ( ( ord_less_eq_rat @ one_one_rat @ ( divide_divide_rat @ B @ A ) )
        = ( ord_less_eq_rat @ B @ A ) ) ) ).

% le_divide_eq_1_neg
thf(fact_3309_le__divide__eq__1__pos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ one_one_real @ ( divide_divide_real @ B @ A ) )
        = ( ord_less_eq_real @ A @ B ) ) ) ).

% le_divide_eq_1_pos
thf(fact_3310_le__divide__eq__1__pos,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ( ord_less_eq_rat @ one_one_rat @ ( divide_divide_rat @ B @ A ) )
        = ( ord_less_eq_rat @ A @ B ) ) ) ).

% le_divide_eq_1_pos
thf(fact_3311_power__strict__decreasing__iff,axiom,
    ! [B: real,M: nat,N: nat] :
      ( ( ord_less_real @ zero_zero_real @ B )
     => ( ( ord_less_real @ B @ one_one_real )
       => ( ( ord_less_real @ ( power_power_real @ B @ M ) @ ( power_power_real @ B @ N ) )
          = ( ord_less_nat @ N @ M ) ) ) ) ).

% power_strict_decreasing_iff
thf(fact_3312_power__strict__decreasing__iff,axiom,
    ! [B: rat,M: nat,N: nat] :
      ( ( ord_less_rat @ zero_zero_rat @ B )
     => ( ( ord_less_rat @ B @ one_one_rat )
       => ( ( ord_less_rat @ ( power_power_rat @ B @ M ) @ ( power_power_rat @ B @ N ) )
          = ( ord_less_nat @ N @ M ) ) ) ) ).

% power_strict_decreasing_iff
thf(fact_3313_power__strict__decreasing__iff,axiom,
    ! [B: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ B )
     => ( ( ord_less_nat @ B @ one_one_nat )
       => ( ( ord_less_nat @ ( power_power_nat @ B @ M ) @ ( power_power_nat @ B @ N ) )
          = ( ord_less_nat @ N @ M ) ) ) ) ).

% power_strict_decreasing_iff
thf(fact_3314_power__strict__decreasing__iff,axiom,
    ! [B: int,M: nat,N: nat] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ( ord_less_int @ B @ one_one_int )
       => ( ( ord_less_int @ ( power_power_int @ B @ M ) @ ( power_power_int @ B @ N ) )
          = ( ord_less_nat @ N @ M ) ) ) ) ).

% power_strict_decreasing_iff
thf(fact_3315_zero__eq__power2,axiom,
    ! [A: rat] :
      ( ( ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = zero_zero_rat )
      = ( A = zero_zero_rat ) ) ).

% zero_eq_power2
thf(fact_3316_zero__eq__power2,axiom,
    ! [A: nat] :
      ( ( ( power_power_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = zero_zero_nat )
      = ( A = zero_zero_nat ) ) ).

% zero_eq_power2
thf(fact_3317_zero__eq__power2,axiom,
    ! [A: real] :
      ( ( ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = zero_zero_real )
      = ( A = zero_zero_real ) ) ).

% zero_eq_power2
thf(fact_3318_zero__eq__power2,axiom,
    ! [A: complex] :
      ( ( ( power_power_complex @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = zero_zero_complex )
      = ( A = zero_zero_complex ) ) ).

% zero_eq_power2
thf(fact_3319_zero__eq__power2,axiom,
    ! [A: int] :
      ( ( ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = zero_zero_int )
      = ( A = zero_zero_int ) ) ).

% zero_eq_power2
thf(fact_3320_power__mono__iff,axiom,
    ! [A: real,B: real,N: nat] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ zero_zero_real @ B )
       => ( ( ord_less_nat @ zero_zero_nat @ N )
         => ( ( ord_less_eq_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ B @ N ) )
            = ( ord_less_eq_real @ A @ B ) ) ) ) ) ).

% power_mono_iff
thf(fact_3321_power__mono__iff,axiom,
    ! [A: rat,B: rat,N: nat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ A )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ B )
       => ( ( ord_less_nat @ zero_zero_nat @ N )
         => ( ( ord_less_eq_rat @ ( power_power_rat @ A @ N ) @ ( power_power_rat @ B @ N ) )
            = ( ord_less_eq_rat @ A @ B ) ) ) ) ) ).

% power_mono_iff
thf(fact_3322_power__mono__iff,axiom,
    ! [A: nat,B: nat,N: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
       => ( ( ord_less_nat @ zero_zero_nat @ N )
         => ( ( ord_less_eq_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ B @ N ) )
            = ( ord_less_eq_nat @ A @ B ) ) ) ) ) ).

% power_mono_iff
thf(fact_3323_power__mono__iff,axiom,
    ! [A: int,B: int,N: nat] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_eq_int @ zero_zero_int @ B )
       => ( ( ord_less_nat @ zero_zero_nat @ N )
         => ( ( ord_less_eq_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ B @ N ) )
            = ( ord_less_eq_int @ A @ B ) ) ) ) ) ).

% power_mono_iff
thf(fact_3324_Suc__diff__1,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( suc @ ( minus_minus_nat @ N @ one_one_nat ) )
        = N ) ) ).

% Suc_diff_1
thf(fact_3325_bits__1__div__2,axiom,
    ( ( divide_divide_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = zero_zero_nat ) ).

% bits_1_div_2
thf(fact_3326_bits__1__div__2,axiom,
    ( ( divide_divide_int @ one_one_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
    = zero_zero_int ) ).

% bits_1_div_2
thf(fact_3327_one__div__two__eq__zero,axiom,
    ( ( divide_divide_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = zero_zero_nat ) ).

% one_div_two_eq_zero
thf(fact_3328_one__div__two__eq__zero,axiom,
    ( ( divide_divide_int @ one_one_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
    = zero_zero_int ) ).

% one_div_two_eq_zero
thf(fact_3329_power__decreasing__iff,axiom,
    ! [B: real,M: nat,N: nat] :
      ( ( ord_less_real @ zero_zero_real @ B )
     => ( ( ord_less_real @ B @ one_one_real )
       => ( ( ord_less_eq_real @ ( power_power_real @ B @ M ) @ ( power_power_real @ B @ N ) )
          = ( ord_less_eq_nat @ N @ M ) ) ) ) ).

% power_decreasing_iff
thf(fact_3330_power__decreasing__iff,axiom,
    ! [B: rat,M: nat,N: nat] :
      ( ( ord_less_rat @ zero_zero_rat @ B )
     => ( ( ord_less_rat @ B @ one_one_rat )
       => ( ( ord_less_eq_rat @ ( power_power_rat @ B @ M ) @ ( power_power_rat @ B @ N ) )
          = ( ord_less_eq_nat @ N @ M ) ) ) ) ).

% power_decreasing_iff
thf(fact_3331_power__decreasing__iff,axiom,
    ! [B: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ B )
     => ( ( ord_less_nat @ B @ one_one_nat )
       => ( ( ord_less_eq_nat @ ( power_power_nat @ B @ M ) @ ( power_power_nat @ B @ N ) )
          = ( ord_less_eq_nat @ N @ M ) ) ) ) ).

% power_decreasing_iff
thf(fact_3332_power__decreasing__iff,axiom,
    ! [B: int,M: nat,N: nat] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ( ord_less_int @ B @ one_one_int )
       => ( ( ord_less_eq_int @ ( power_power_int @ B @ M ) @ ( power_power_int @ B @ N ) )
          = ( ord_less_eq_nat @ N @ M ) ) ) ) ).

% power_decreasing_iff
thf(fact_3333_power2__less__eq__zero__iff,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ zero_zero_real )
      = ( A = zero_zero_real ) ) ).

% power2_less_eq_zero_iff
thf(fact_3334_power2__less__eq__zero__iff,axiom,
    ! [A: rat] :
      ( ( ord_less_eq_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ zero_zero_rat )
      = ( A = zero_zero_rat ) ) ).

% power2_less_eq_zero_iff
thf(fact_3335_power2__less__eq__zero__iff,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ zero_zero_int )
      = ( A = zero_zero_int ) ) ).

% power2_less_eq_zero_iff
thf(fact_3336_power2__eq__iff__nonneg,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y2 )
       => ( ( ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
            = ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
          = ( X2 = Y2 ) ) ) ) ).

% power2_eq_iff_nonneg
thf(fact_3337_power2__eq__iff__nonneg,axiom,
    ! [X2: rat,Y2: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ X2 )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ Y2 )
       => ( ( ( power_power_rat @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
            = ( power_power_rat @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
          = ( X2 = Y2 ) ) ) ) ).

% power2_eq_iff_nonneg
thf(fact_3338_power2__eq__iff__nonneg,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ X2 )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ Y2 )
       => ( ( ( power_power_nat @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
            = ( power_power_nat @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
          = ( X2 = Y2 ) ) ) ) ).

% power2_eq_iff_nonneg
thf(fact_3339_power2__eq__iff__nonneg,axiom,
    ! [X2: int,Y2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X2 )
     => ( ( ord_less_eq_int @ zero_zero_int @ Y2 )
       => ( ( ( power_power_int @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
            = ( power_power_int @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
          = ( X2 = Y2 ) ) ) ) ).

% power2_eq_iff_nonneg
thf(fact_3340_zero__less__power2,axiom,
    ! [A: real] :
      ( ( ord_less_real @ zero_zero_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( A != zero_zero_real ) ) ).

% zero_less_power2
thf(fact_3341_zero__less__power2,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( A != zero_zero_rat ) ) ).

% zero_less_power2
thf(fact_3342_zero__less__power2,axiom,
    ! [A: int] :
      ( ( ord_less_int @ zero_zero_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( A != zero_zero_int ) ) ).

% zero_less_power2
thf(fact_3343_sum__power2__eq__zero__iff,axiom,
    ! [X2: rat,Y2: rat] :
      ( ( ( plus_plus_rat @ ( power_power_rat @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
        = zero_zero_rat )
      = ( ( X2 = zero_zero_rat )
        & ( Y2 = zero_zero_rat ) ) ) ).

% sum_power2_eq_zero_iff
thf(fact_3344_sum__power2__eq__zero__iff,axiom,
    ! [X2: real,Y2: real] :
      ( ( ( plus_plus_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
        = zero_zero_real )
      = ( ( X2 = zero_zero_real )
        & ( Y2 = zero_zero_real ) ) ) ).

% sum_power2_eq_zero_iff
thf(fact_3345_sum__power2__eq__zero__iff,axiom,
    ! [X2: int,Y2: int] :
      ( ( ( plus_plus_int @ ( power_power_int @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
        = zero_zero_int )
      = ( ( X2 = zero_zero_int )
        & ( Y2 = zero_zero_int ) ) ) ).

% sum_power2_eq_zero_iff
thf(fact_3346_not__mod__2__eq__0__eq__1,axiom,
    ! [A: nat] :
      ( ( ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
       != zero_zero_nat )
      = ( ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = one_one_nat ) ) ).

% not_mod_2_eq_0_eq_1
thf(fact_3347_not__mod__2__eq__0__eq__1,axiom,
    ! [A: int] :
      ( ( ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
       != zero_zero_int )
      = ( ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
        = one_one_int ) ) ).

% not_mod_2_eq_0_eq_1
thf(fact_3348_not__mod__2__eq__0__eq__1,axiom,
    ! [A: code_integer] :
      ( ( ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
       != zero_z3403309356797280102nteger )
      = ( ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
        = one_one_Code_integer ) ) ).

% not_mod_2_eq_0_eq_1
thf(fact_3349_not__mod__2__eq__1__eq__0,axiom,
    ! [A: nat] :
      ( ( ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
       != one_one_nat )
      = ( ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = zero_zero_nat ) ) ).

% not_mod_2_eq_1_eq_0
thf(fact_3350_not__mod__2__eq__1__eq__0,axiom,
    ! [A: int] :
      ( ( ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
       != one_one_int )
      = ( ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
        = zero_zero_int ) ) ).

% not_mod_2_eq_1_eq_0
thf(fact_3351_not__mod__2__eq__1__eq__0,axiom,
    ! [A: code_integer] :
      ( ( ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
       != one_one_Code_integer )
      = ( ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
        = zero_z3403309356797280102nteger ) ) ).

% not_mod_2_eq_1_eq_0
thf(fact_3352_not__mod2__eq__Suc__0__eq__0,axiom,
    ! [N: nat] :
      ( ( ( modulo_modulo_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
       != ( suc @ zero_zero_nat ) )
      = ( ( modulo_modulo_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = zero_zero_nat ) ) ).

% not_mod2_eq_Suc_0_eq_0
thf(fact_3353_add__self__mod__2,axiom,
    ! [M: nat] :
      ( ( modulo_modulo_nat @ ( plus_plus_nat @ M @ M ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = zero_zero_nat ) ).

% add_self_mod_2
thf(fact_3354_mod2__gr__0,axiom,
    ! [M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( modulo_modulo_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( ( modulo_modulo_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = one_one_nat ) ) ).

% mod2_gr_0
thf(fact_3355_unset__bit__0,axiom,
    ! [A: int] :
      ( ( bit_se4203085406695923979it_int @ zero_zero_nat @ A )
      = ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ).

% unset_bit_0
thf(fact_3356_unset__bit__0,axiom,
    ! [A: nat] :
      ( ( bit_se4205575877204974255it_nat @ zero_zero_nat @ A )
      = ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% unset_bit_0
thf(fact_3357_set__bit__0,axiom,
    ! [A: int] :
      ( ( bit_se7879613467334960850it_int @ zero_zero_nat @ A )
      = ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ).

% set_bit_0
thf(fact_3358_set__bit__0,axiom,
    ! [A: nat] :
      ( ( bit_se7882103937844011126it_nat @ zero_zero_nat @ A )
      = ( plus_plus_nat @ one_one_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% set_bit_0
thf(fact_3359_bot__nat__def,axiom,
    bot_bot_nat = zero_zero_nat ).

% bot_nat_def
thf(fact_3360_VEBT_Osize_I4_J,axiom,
    ! [X21: $o,X222: $o] :
      ( ( size_size_VEBT_VEBT @ ( vEBT_Leaf @ X21 @ X222 ) )
      = zero_zero_nat ) ).

% VEBT.size(4)
thf(fact_3361_VEBT__internal_Oheight_Osimps_I1_J,axiom,
    ! [A: $o,B: $o] :
      ( ( vEBT_VEBT_height @ ( vEBT_Leaf @ A @ B ) )
      = zero_zero_nat ) ).

% VEBT_internal.height.simps(1)
thf(fact_3362_verit__sum__simplify,axiom,
    ! [A: complex] :
      ( ( plus_plus_complex @ A @ zero_zero_complex )
      = A ) ).

% verit_sum_simplify
thf(fact_3363_verit__sum__simplify,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ A @ zero_zero_real )
      = A ) ).

% verit_sum_simplify
thf(fact_3364_verit__sum__simplify,axiom,
    ! [A: rat] :
      ( ( plus_plus_rat @ A @ zero_zero_rat )
      = A ) ).

% verit_sum_simplify
thf(fact_3365_verit__sum__simplify,axiom,
    ! [A: nat] :
      ( ( plus_plus_nat @ A @ zero_zero_nat )
      = A ) ).

% verit_sum_simplify
thf(fact_3366_verit__sum__simplify,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ A @ zero_zero_int )
      = A ) ).

% verit_sum_simplify
thf(fact_3367_vebt__buildup_Osimps_I1_J,axiom,
    ( ( vEBT_vebt_buildup @ zero_zero_nat )
    = ( vEBT_Leaf @ $false @ $false ) ) ).

% vebt_buildup.simps(1)
thf(fact_3368_VEBT__internal_Onaive__member_Ocases,axiom,
    ! [X2: produc9072475918466114483BT_nat] :
      ( ! [A6: $o,B7: $o,X4: nat] :
          ( X2
         != ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A6 @ B7 ) @ X4 ) )
     => ( ! [Uu2: option4927543243414619207at_nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT,Ux2: nat] :
            ( X2
           != ( produc738532404422230701BT_nat @ ( vEBT_Node @ Uu2 @ zero_zero_nat @ Uv2 @ Uw2 ) @ Ux2 ) )
       => ~ ! [Uy2: option4927543243414619207at_nat,V2: nat,TreeList3: list_VEBT_VEBT,S2: vEBT_VEBT,X4: nat] :
              ( X2
             != ( produc738532404422230701BT_nat @ ( vEBT_Node @ Uy2 @ ( suc @ V2 ) @ TreeList3 @ S2 ) @ X4 ) ) ) ) ).

% VEBT_internal.naive_member.cases
thf(fact_3369_invar__vebt_Ointros_I1_J,axiom,
    ! [A: $o,B: $o] : ( vEBT_invar_vebt @ ( vEBT_Leaf @ A @ B ) @ ( suc @ zero_zero_nat ) ) ).

% invar_vebt.intros(1)
thf(fact_3370_bot__set__def,axiom,
    ( bot_bo1796632182523588997nt_int
    = ( collec213857154873943460nt_int @ bot_bo8147686125503663512_int_o ) ) ).

% bot_set_def
thf(fact_3371_bot__set__def,axiom,
    ( bot_bot_set_complex
    = ( collect_complex @ bot_bot_complex_o ) ) ).

% bot_set_def
thf(fact_3372_bot__set__def,axiom,
    ( bot_bot_set_set_nat
    = ( collect_set_nat @ bot_bot_set_nat_o ) ) ).

% bot_set_def
thf(fact_3373_bot__set__def,axiom,
    ( bot_bot_set_real
    = ( collect_real @ bot_bot_real_o ) ) ).

% bot_set_def
thf(fact_3374_bot__set__def,axiom,
    ( bot_bot_set_o
    = ( collect_o @ bot_bot_o_o ) ) ).

% bot_set_def
thf(fact_3375_bot__set__def,axiom,
    ( bot_bot_set_nat
    = ( collect_nat @ bot_bot_nat_o ) ) ).

% bot_set_def
thf(fact_3376_bot__set__def,axiom,
    ( bot_bot_set_int
    = ( collect_int @ bot_bot_int_o ) ) ).

% bot_set_def
thf(fact_3377_power__0__left,axiom,
    ! [N: nat] :
      ( ( ( N = zero_zero_nat )
       => ( ( power_power_rat @ zero_zero_rat @ N )
          = one_one_rat ) )
      & ( ( N != zero_zero_nat )
       => ( ( power_power_rat @ zero_zero_rat @ N )
          = zero_zero_rat ) ) ) ).

% power_0_left
thf(fact_3378_power__0__left,axiom,
    ! [N: nat] :
      ( ( ( N = zero_zero_nat )
       => ( ( power_power_nat @ zero_zero_nat @ N )
          = one_one_nat ) )
      & ( ( N != zero_zero_nat )
       => ( ( power_power_nat @ zero_zero_nat @ N )
          = zero_zero_nat ) ) ) ).

% power_0_left
thf(fact_3379_power__0__left,axiom,
    ! [N: nat] :
      ( ( ( N = zero_zero_nat )
       => ( ( power_power_real @ zero_zero_real @ N )
          = one_one_real ) )
      & ( ( N != zero_zero_nat )
       => ( ( power_power_real @ zero_zero_real @ N )
          = zero_zero_real ) ) ) ).

% power_0_left
thf(fact_3380_power__0__left,axiom,
    ! [N: nat] :
      ( ( ( N = zero_zero_nat )
       => ( ( power_power_complex @ zero_zero_complex @ N )
          = one_one_complex ) )
      & ( ( N != zero_zero_nat )
       => ( ( power_power_complex @ zero_zero_complex @ N )
          = zero_zero_complex ) ) ) ).

% power_0_left
thf(fact_3381_power__0__left,axiom,
    ! [N: nat] :
      ( ( ( N = zero_zero_nat )
       => ( ( power_power_int @ zero_zero_int @ N )
          = one_one_int ) )
      & ( ( N != zero_zero_nat )
       => ( ( power_power_int @ zero_zero_int @ N )
          = zero_zero_int ) ) ) ).

% power_0_left
thf(fact_3382_zero__power,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( power_power_rat @ zero_zero_rat @ N )
        = zero_zero_rat ) ) ).

% zero_power
thf(fact_3383_zero__power,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( power_power_nat @ zero_zero_nat @ N )
        = zero_zero_nat ) ) ).

% zero_power
thf(fact_3384_zero__power,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( power_power_real @ zero_zero_real @ N )
        = zero_zero_real ) ) ).

% zero_power
thf(fact_3385_zero__power,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( power_power_complex @ zero_zero_complex @ N )
        = zero_zero_complex ) ) ).

% zero_power
thf(fact_3386_zero__power,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( power_power_int @ zero_zero_int @ N )
        = zero_zero_int ) ) ).

% zero_power
thf(fact_3387_vebt__member_Osimps_I1_J,axiom,
    ! [A: $o,B: $o,X2: nat] :
      ( ( vEBT_vebt_member @ ( vEBT_Leaf @ A @ B ) @ X2 )
      = ( ( ( X2 = zero_zero_nat )
         => A )
        & ( ( X2 != zero_zero_nat )
         => ( ( ( X2 = one_one_nat )
             => B )
            & ( X2 = one_one_nat ) ) ) ) ) ).

% vebt_member.simps(1)
thf(fact_3388_VEBT_Odistinct_I1_J,axiom,
    ! [X11: option4927543243414619207at_nat,X12: nat,X13: list_VEBT_VEBT,X14: vEBT_VEBT,X21: $o,X222: $o] :
      ( ( vEBT_Node @ X11 @ X12 @ X13 @ X14 )
     != ( vEBT_Leaf @ X21 @ X222 ) ) ).

% VEBT.distinct(1)
thf(fact_3389_VEBT_Oexhaust,axiom,
    ! [Y2: vEBT_VEBT] :
      ( ! [X112: option4927543243414619207at_nat,X122: nat,X132: list_VEBT_VEBT,X142: vEBT_VEBT] :
          ( Y2
         != ( vEBT_Node @ X112 @ X122 @ X132 @ X142 ) )
     => ~ ! [X212: $o,X223: $o] :
            ( Y2
           != ( vEBT_Leaf @ X212 @ X223 ) ) ) ).

% VEBT.exhaust
thf(fact_3390_VEBT__internal_Oheight_Ocases,axiom,
    ! [X2: vEBT_VEBT] :
      ( ! [A6: $o,B7: $o] :
          ( X2
         != ( vEBT_Leaf @ A6 @ B7 ) )
     => ~ ! [Uu2: option4927543243414619207at_nat,Deg2: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
            ( X2
           != ( vEBT_Node @ Uu2 @ Deg2 @ TreeList3 @ Summary2 ) ) ) ).

% VEBT_internal.height.cases
thf(fact_3391_VEBT__internal_Ovalid_H_Ocases,axiom,
    ! [X2: produc9072475918466114483BT_nat] :
      ( ! [Uu2: $o,Uv2: $o,D4: nat] :
          ( X2
         != ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uu2 @ Uv2 ) @ D4 ) )
     => ~ ! [Mima: option4927543243414619207at_nat,Deg2: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT,Deg3: nat] :
            ( X2
           != ( produc738532404422230701BT_nat @ ( vEBT_Node @ Mima @ Deg2 @ TreeList3 @ Summary2 ) @ Deg3 ) ) ) ).

% VEBT_internal.valid'.cases
thf(fact_3392_vebt__buildup_Osimps_I2_J,axiom,
    ( ( vEBT_vebt_buildup @ ( suc @ zero_zero_nat ) )
    = ( vEBT_Leaf @ $false @ $false ) ) ).

% vebt_buildup.simps(2)
thf(fact_3393_vebt__insert_Osimps_I1_J,axiom,
    ! [X2: nat,A: $o,B: $o] :
      ( ( ( X2 = zero_zero_nat )
       => ( ( vEBT_vebt_insert @ ( vEBT_Leaf @ A @ B ) @ X2 )
          = ( vEBT_Leaf @ $true @ B ) ) )
      & ( ( X2 != zero_zero_nat )
       => ( ( ( X2 = one_one_nat )
           => ( ( vEBT_vebt_insert @ ( vEBT_Leaf @ A @ B ) @ X2 )
              = ( vEBT_Leaf @ A @ $true ) ) )
          & ( ( X2 != one_one_nat )
           => ( ( vEBT_vebt_insert @ ( vEBT_Leaf @ A @ B ) @ X2 )
              = ( vEBT_Leaf @ A @ B ) ) ) ) ) ) ).

% vebt_insert.simps(1)
thf(fact_3394_VEBT__internal_Onaive__member_Osimps_I1_J,axiom,
    ! [A: $o,B: $o,X2: nat] :
      ( ( vEBT_V5719532721284313246member @ ( vEBT_Leaf @ A @ B ) @ X2 )
      = ( ( ( X2 = zero_zero_nat )
         => A )
        & ( ( X2 != zero_zero_nat )
         => ( ( ( X2 = one_one_nat )
             => B )
            & ( X2 = one_one_nat ) ) ) ) ) ).

% VEBT_internal.naive_member.simps(1)
thf(fact_3395_zero__le,axiom,
    ! [X2: nat] : ( ord_less_eq_nat @ zero_zero_nat @ X2 ) ).

% zero_le
thf(fact_3396_le__numeral__extra_I3_J,axiom,
    ord_less_eq_real @ zero_zero_real @ zero_zero_real ).

% le_numeral_extra(3)
thf(fact_3397_le__numeral__extra_I3_J,axiom,
    ord_less_eq_rat @ zero_zero_rat @ zero_zero_rat ).

% le_numeral_extra(3)
thf(fact_3398_le__numeral__extra_I3_J,axiom,
    ord_less_eq_nat @ zero_zero_nat @ zero_zero_nat ).

% le_numeral_extra(3)
thf(fact_3399_le__numeral__extra_I3_J,axiom,
    ord_less_eq_int @ zero_zero_int @ zero_zero_int ).

% le_numeral_extra(3)
thf(fact_3400_zero__less__iff__neq__zero,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
      = ( N != zero_zero_nat ) ) ).

% zero_less_iff_neq_zero
thf(fact_3401_gr__implies__not__zero,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( N != zero_zero_nat ) ) ).

% gr_implies_not_zero
thf(fact_3402_not__less__zero,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ zero_zero_nat ) ).

% not_less_zero
thf(fact_3403_gr__zeroI,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
     => ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% gr_zeroI
thf(fact_3404_less__numeral__extra_I3_J,axiom,
    ~ ( ord_less_real @ zero_zero_real @ zero_zero_real ) ).

% less_numeral_extra(3)
thf(fact_3405_less__numeral__extra_I3_J,axiom,
    ~ ( ord_less_rat @ zero_zero_rat @ zero_zero_rat ) ).

% less_numeral_extra(3)
thf(fact_3406_less__numeral__extra_I3_J,axiom,
    ~ ( ord_less_nat @ zero_zero_nat @ zero_zero_nat ) ).

% less_numeral_extra(3)
thf(fact_3407_less__numeral__extra_I3_J,axiom,
    ~ ( ord_less_int @ zero_zero_int @ zero_zero_int ) ).

% less_numeral_extra(3)
thf(fact_3408_field__lbound__gt__zero,axiom,
    ! [D1: real,D22: real] :
      ( ( ord_less_real @ zero_zero_real @ D1 )
     => ( ( ord_less_real @ zero_zero_real @ D22 )
       => ? [E2: real] :
            ( ( ord_less_real @ zero_zero_real @ E2 )
            & ( ord_less_real @ E2 @ D1 )
            & ( ord_less_real @ E2 @ D22 ) ) ) ) ).

% field_lbound_gt_zero
thf(fact_3409_field__lbound__gt__zero,axiom,
    ! [D1: rat,D22: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ D1 )
     => ( ( ord_less_rat @ zero_zero_rat @ D22 )
       => ? [E2: rat] :
            ( ( ord_less_rat @ zero_zero_rat @ E2 )
            & ( ord_less_rat @ E2 @ D1 )
            & ( ord_less_rat @ E2 @ D22 ) ) ) ) ).

% field_lbound_gt_zero
thf(fact_3410_zero__neq__numeral,axiom,
    ! [N: num] :
      ( zero_zero_complex
     != ( numera6690914467698888265omplex @ N ) ) ).

% zero_neq_numeral
thf(fact_3411_zero__neq__numeral,axiom,
    ! [N: num] :
      ( zero_zero_real
     != ( numeral_numeral_real @ N ) ) ).

% zero_neq_numeral
thf(fact_3412_zero__neq__numeral,axiom,
    ! [N: num] :
      ( zero_zero_rat
     != ( numeral_numeral_rat @ N ) ) ).

% zero_neq_numeral
thf(fact_3413_zero__neq__numeral,axiom,
    ! [N: num] :
      ( zero_zero_nat
     != ( numeral_numeral_nat @ N ) ) ).

% zero_neq_numeral
thf(fact_3414_zero__neq__numeral,axiom,
    ! [N: num] :
      ( zero_zero_int
     != ( numeral_numeral_int @ N ) ) ).

% zero_neq_numeral
thf(fact_3415_mult__right__cancel,axiom,
    ! [C: complex,A: complex,B: complex] :
      ( ( C != zero_zero_complex )
     => ( ( ( times_times_complex @ A @ C )
          = ( times_times_complex @ B @ C ) )
        = ( A = B ) ) ) ).

% mult_right_cancel
thf(fact_3416_mult__right__cancel,axiom,
    ! [C: real,A: real,B: real] :
      ( ( C != zero_zero_real )
     => ( ( ( times_times_real @ A @ C )
          = ( times_times_real @ B @ C ) )
        = ( A = B ) ) ) ).

% mult_right_cancel
thf(fact_3417_mult__right__cancel,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( C != zero_zero_rat )
     => ( ( ( times_times_rat @ A @ C )
          = ( times_times_rat @ B @ C ) )
        = ( A = B ) ) ) ).

% mult_right_cancel
thf(fact_3418_mult__right__cancel,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( C != zero_zero_nat )
     => ( ( ( times_times_nat @ A @ C )
          = ( times_times_nat @ B @ C ) )
        = ( A = B ) ) ) ).

% mult_right_cancel
thf(fact_3419_mult__right__cancel,axiom,
    ! [C: int,A: int,B: int] :
      ( ( C != zero_zero_int )
     => ( ( ( times_times_int @ A @ C )
          = ( times_times_int @ B @ C ) )
        = ( A = B ) ) ) ).

% mult_right_cancel
thf(fact_3420_mult__left__cancel,axiom,
    ! [C: complex,A: complex,B: complex] :
      ( ( C != zero_zero_complex )
     => ( ( ( times_times_complex @ C @ A )
          = ( times_times_complex @ C @ B ) )
        = ( A = B ) ) ) ).

% mult_left_cancel
thf(fact_3421_mult__left__cancel,axiom,
    ! [C: real,A: real,B: real] :
      ( ( C != zero_zero_real )
     => ( ( ( times_times_real @ C @ A )
          = ( times_times_real @ C @ B ) )
        = ( A = B ) ) ) ).

% mult_left_cancel
thf(fact_3422_mult__left__cancel,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( C != zero_zero_rat )
     => ( ( ( times_times_rat @ C @ A )
          = ( times_times_rat @ C @ B ) )
        = ( A = B ) ) ) ).

% mult_left_cancel
thf(fact_3423_mult__left__cancel,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( C != zero_zero_nat )
     => ( ( ( times_times_nat @ C @ A )
          = ( times_times_nat @ C @ B ) )
        = ( A = B ) ) ) ).

% mult_left_cancel
thf(fact_3424_mult__left__cancel,axiom,
    ! [C: int,A: int,B: int] :
      ( ( C != zero_zero_int )
     => ( ( ( times_times_int @ C @ A )
          = ( times_times_int @ C @ B ) )
        = ( A = B ) ) ) ).

% mult_left_cancel
thf(fact_3425_no__zero__divisors,axiom,
    ! [A: complex,B: complex] :
      ( ( A != zero_zero_complex )
     => ( ( B != zero_zero_complex )
       => ( ( times_times_complex @ A @ B )
         != zero_zero_complex ) ) ) ).

% no_zero_divisors
thf(fact_3426_no__zero__divisors,axiom,
    ! [A: real,B: real] :
      ( ( A != zero_zero_real )
     => ( ( B != zero_zero_real )
       => ( ( times_times_real @ A @ B )
         != zero_zero_real ) ) ) ).

% no_zero_divisors
thf(fact_3427_no__zero__divisors,axiom,
    ! [A: rat,B: rat] :
      ( ( A != zero_zero_rat )
     => ( ( B != zero_zero_rat )
       => ( ( times_times_rat @ A @ B )
         != zero_zero_rat ) ) ) ).

% no_zero_divisors
thf(fact_3428_no__zero__divisors,axiom,
    ! [A: nat,B: nat] :
      ( ( A != zero_zero_nat )
     => ( ( B != zero_zero_nat )
       => ( ( times_times_nat @ A @ B )
         != zero_zero_nat ) ) ) ).

% no_zero_divisors
thf(fact_3429_no__zero__divisors,axiom,
    ! [A: int,B: int] :
      ( ( A != zero_zero_int )
     => ( ( B != zero_zero_int )
       => ( ( times_times_int @ A @ B )
         != zero_zero_int ) ) ) ).

% no_zero_divisors
thf(fact_3430_divisors__zero,axiom,
    ! [A: complex,B: complex] :
      ( ( ( times_times_complex @ A @ B )
        = zero_zero_complex )
     => ( ( A = zero_zero_complex )
        | ( B = zero_zero_complex ) ) ) ).

% divisors_zero
thf(fact_3431_divisors__zero,axiom,
    ! [A: real,B: real] :
      ( ( ( times_times_real @ A @ B )
        = zero_zero_real )
     => ( ( A = zero_zero_real )
        | ( B = zero_zero_real ) ) ) ).

% divisors_zero
thf(fact_3432_divisors__zero,axiom,
    ! [A: rat,B: rat] :
      ( ( ( times_times_rat @ A @ B )
        = zero_zero_rat )
     => ( ( A = zero_zero_rat )
        | ( B = zero_zero_rat ) ) ) ).

% divisors_zero
thf(fact_3433_divisors__zero,axiom,
    ! [A: nat,B: nat] :
      ( ( ( times_times_nat @ A @ B )
        = zero_zero_nat )
     => ( ( A = zero_zero_nat )
        | ( B = zero_zero_nat ) ) ) ).

% divisors_zero
thf(fact_3434_divisors__zero,axiom,
    ! [A: int,B: int] :
      ( ( ( times_times_int @ A @ B )
        = zero_zero_int )
     => ( ( A = zero_zero_int )
        | ( B = zero_zero_int ) ) ) ).

% divisors_zero
thf(fact_3435_mult__not__zero,axiom,
    ! [A: complex,B: complex] :
      ( ( ( times_times_complex @ A @ B )
       != zero_zero_complex )
     => ( ( A != zero_zero_complex )
        & ( B != zero_zero_complex ) ) ) ).

% mult_not_zero
thf(fact_3436_mult__not__zero,axiom,
    ! [A: real,B: real] :
      ( ( ( times_times_real @ A @ B )
       != zero_zero_real )
     => ( ( A != zero_zero_real )
        & ( B != zero_zero_real ) ) ) ).

% mult_not_zero
thf(fact_3437_mult__not__zero,axiom,
    ! [A: rat,B: rat] :
      ( ( ( times_times_rat @ A @ B )
       != zero_zero_rat )
     => ( ( A != zero_zero_rat )
        & ( B != zero_zero_rat ) ) ) ).

% mult_not_zero
thf(fact_3438_mult__not__zero,axiom,
    ! [A: nat,B: nat] :
      ( ( ( times_times_nat @ A @ B )
       != zero_zero_nat )
     => ( ( A != zero_zero_nat )
        & ( B != zero_zero_nat ) ) ) ).

% mult_not_zero
thf(fact_3439_mult__not__zero,axiom,
    ! [A: int,B: int] :
      ( ( ( times_times_int @ A @ B )
       != zero_zero_int )
     => ( ( A != zero_zero_int )
        & ( B != zero_zero_int ) ) ) ).

% mult_not_zero
thf(fact_3440_zero__neq__one,axiom,
    zero_zero_complex != one_one_complex ).

% zero_neq_one
thf(fact_3441_zero__neq__one,axiom,
    zero_zero_real != one_one_real ).

% zero_neq_one
thf(fact_3442_zero__neq__one,axiom,
    zero_zero_rat != one_one_rat ).

% zero_neq_one
thf(fact_3443_zero__neq__one,axiom,
    zero_zero_nat != one_one_nat ).

% zero_neq_one
thf(fact_3444_zero__neq__one,axiom,
    zero_zero_int != one_one_int ).

% zero_neq_one
thf(fact_3445_comm__monoid__add__class_Oadd__0,axiom,
    ! [A: complex] :
      ( ( plus_plus_complex @ zero_zero_complex @ A )
      = A ) ).

% comm_monoid_add_class.add_0
thf(fact_3446_comm__monoid__add__class_Oadd__0,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ zero_zero_real @ A )
      = A ) ).

% comm_monoid_add_class.add_0
thf(fact_3447_comm__monoid__add__class_Oadd__0,axiom,
    ! [A: rat] :
      ( ( plus_plus_rat @ zero_zero_rat @ A )
      = A ) ).

% comm_monoid_add_class.add_0
thf(fact_3448_comm__monoid__add__class_Oadd__0,axiom,
    ! [A: nat] :
      ( ( plus_plus_nat @ zero_zero_nat @ A )
      = A ) ).

% comm_monoid_add_class.add_0
thf(fact_3449_comm__monoid__add__class_Oadd__0,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ zero_zero_int @ A )
      = A ) ).

% comm_monoid_add_class.add_0
thf(fact_3450_add_Ocomm__neutral,axiom,
    ! [A: complex] :
      ( ( plus_plus_complex @ A @ zero_zero_complex )
      = A ) ).

% add.comm_neutral
thf(fact_3451_add_Ocomm__neutral,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ A @ zero_zero_real )
      = A ) ).

% add.comm_neutral
thf(fact_3452_add_Ocomm__neutral,axiom,
    ! [A: rat] :
      ( ( plus_plus_rat @ A @ zero_zero_rat )
      = A ) ).

% add.comm_neutral
thf(fact_3453_add_Ocomm__neutral,axiom,
    ! [A: nat] :
      ( ( plus_plus_nat @ A @ zero_zero_nat )
      = A ) ).

% add.comm_neutral
thf(fact_3454_add_Ocomm__neutral,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ A @ zero_zero_int )
      = A ) ).

% add.comm_neutral
thf(fact_3455_add_Ogroup__left__neutral,axiom,
    ! [A: complex] :
      ( ( plus_plus_complex @ zero_zero_complex @ A )
      = A ) ).

% add.group_left_neutral
thf(fact_3456_add_Ogroup__left__neutral,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ zero_zero_real @ A )
      = A ) ).

% add.group_left_neutral
thf(fact_3457_add_Ogroup__left__neutral,axiom,
    ! [A: rat] :
      ( ( plus_plus_rat @ zero_zero_rat @ A )
      = A ) ).

% add.group_left_neutral
thf(fact_3458_add_Ogroup__left__neutral,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ zero_zero_int @ A )
      = A ) ).

% add.group_left_neutral
thf(fact_3459_power__not__zero,axiom,
    ! [A: rat,N: nat] :
      ( ( A != zero_zero_rat )
     => ( ( power_power_rat @ A @ N )
       != zero_zero_rat ) ) ).

% power_not_zero
thf(fact_3460_power__not__zero,axiom,
    ! [A: nat,N: nat] :
      ( ( A != zero_zero_nat )
     => ( ( power_power_nat @ A @ N )
       != zero_zero_nat ) ) ).

% power_not_zero
thf(fact_3461_power__not__zero,axiom,
    ! [A: real,N: nat] :
      ( ( A != zero_zero_real )
     => ( ( power_power_real @ A @ N )
       != zero_zero_real ) ) ).

% power_not_zero
thf(fact_3462_power__not__zero,axiom,
    ! [A: complex,N: nat] :
      ( ( A != zero_zero_complex )
     => ( ( power_power_complex @ A @ N )
       != zero_zero_complex ) ) ).

% power_not_zero
thf(fact_3463_power__not__zero,axiom,
    ! [A: int,N: nat] :
      ( ( A != zero_zero_int )
     => ( ( power_power_int @ A @ N )
       != zero_zero_int ) ) ).

% power_not_zero
thf(fact_3464_num_Osize_I4_J,axiom,
    ( ( size_size_num @ one )
    = zero_zero_nat ) ).

% num.size(4)
thf(fact_3465_nat_Odistinct_I1_J,axiom,
    ! [X23: nat] :
      ( zero_zero_nat
     != ( suc @ X23 ) ) ).

% nat.distinct(1)
thf(fact_3466_old_Onat_Odistinct_I2_J,axiom,
    ! [Nat2: nat] :
      ( ( suc @ Nat2 )
     != zero_zero_nat ) ).

% old.nat.distinct(2)
thf(fact_3467_old_Onat_Odistinct_I1_J,axiom,
    ! [Nat2: nat] :
      ( zero_zero_nat
     != ( suc @ Nat2 ) ) ).

% old.nat.distinct(1)
thf(fact_3468_nat_OdiscI,axiom,
    ! [Nat: nat,X23: nat] :
      ( ( Nat
        = ( suc @ X23 ) )
     => ( Nat != zero_zero_nat ) ) ).

% nat.discI
thf(fact_3469_old_Onat_Oexhaust,axiom,
    ! [Y2: nat] :
      ( ( Y2 != zero_zero_nat )
     => ~ ! [Nat3: nat] :
            ( Y2
           != ( suc @ Nat3 ) ) ) ).

% old.nat.exhaust
thf(fact_3470_nat__induct,axiom,
    ! [P: nat > $o,N: nat] :
      ( ( P @ zero_zero_nat )
     => ( ! [N3: nat] :
            ( ( P @ N3 )
           => ( P @ ( suc @ N3 ) ) )
       => ( P @ N ) ) ) ).

% nat_induct
thf(fact_3471_diff__induct,axiom,
    ! [P: nat > nat > $o,M: nat,N: nat] :
      ( ! [X4: nat] : ( P @ X4 @ zero_zero_nat )
     => ( ! [Y3: nat] : ( P @ zero_zero_nat @ ( suc @ Y3 ) )
       => ( ! [X4: nat,Y3: nat] :
              ( ( P @ X4 @ Y3 )
             => ( P @ ( suc @ X4 ) @ ( suc @ Y3 ) ) )
         => ( P @ M @ N ) ) ) ) ).

% diff_induct
thf(fact_3472_zero__induct,axiom,
    ! [P: nat > $o,K: nat] :
      ( ( P @ K )
     => ( ! [N3: nat] :
            ( ( P @ ( suc @ N3 ) )
           => ( P @ N3 ) )
       => ( P @ zero_zero_nat ) ) ) ).

% zero_induct
thf(fact_3473_Suc__neq__Zero,axiom,
    ! [M: nat] :
      ( ( suc @ M )
     != zero_zero_nat ) ).

% Suc_neq_Zero
thf(fact_3474_Zero__neq__Suc,axiom,
    ! [M: nat] :
      ( zero_zero_nat
     != ( suc @ M ) ) ).

% Zero_neq_Suc
thf(fact_3475_Zero__not__Suc,axiom,
    ! [M: nat] :
      ( zero_zero_nat
     != ( suc @ M ) ) ).

% Zero_not_Suc
thf(fact_3476_not0__implies__Suc,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
     => ? [M4: nat] :
          ( N
          = ( suc @ M4 ) ) ) ).

% not0_implies_Suc
thf(fact_3477_vebt__buildup_Ocases,axiom,
    ! [X2: nat] :
      ( ( X2 != zero_zero_nat )
     => ( ( X2
         != ( suc @ zero_zero_nat ) )
       => ~ ! [Va3: nat] :
              ( X2
             != ( suc @ ( suc @ Va3 ) ) ) ) ) ).

% vebt_buildup.cases
thf(fact_3478_infinite__descent0,axiom,
    ! [P: nat > $o,N: nat] :
      ( ( P @ zero_zero_nat )
     => ( ! [N3: nat] :
            ( ( ord_less_nat @ zero_zero_nat @ N3 )
           => ( ~ ( P @ N3 )
             => ? [M2: nat] :
                  ( ( ord_less_nat @ M2 @ N3 )
                  & ~ ( P @ M2 ) ) ) )
       => ( P @ N ) ) ) ).

% infinite_descent0
thf(fact_3479_gr__implies__not0,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( N != zero_zero_nat ) ) ).

% gr_implies_not0
thf(fact_3480_less__zeroE,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ zero_zero_nat ) ).

% less_zeroE
thf(fact_3481_not__less0,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ zero_zero_nat ) ).

% not_less0
thf(fact_3482_not__gr0,axiom,
    ! [N: nat] :
      ( ( ~ ( ord_less_nat @ zero_zero_nat @ N ) )
      = ( N = zero_zero_nat ) ) ).

% not_gr0
thf(fact_3483_gr0I,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
     => ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% gr0I
thf(fact_3484_bot__nat__0_Oextremum__strict,axiom,
    ! [A: nat] :
      ~ ( ord_less_nat @ A @ zero_zero_nat ) ).

% bot_nat_0.extremum_strict
thf(fact_3485_VEBT__internal_Omembermima_Osimps_I1_J,axiom,
    ! [Uu: $o,Uv: $o,Uw: nat] :
      ~ ( vEBT_VEBT_membermima @ ( vEBT_Leaf @ Uu @ Uv ) @ Uw ) ).

% VEBT_internal.membermima.simps(1)
thf(fact_3486_less__eq__nat_Osimps_I1_J,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N ) ).

% less_eq_nat.simps(1)
thf(fact_3487_bot__nat__0_Oextremum__unique,axiom,
    ! [A: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
      = ( A = zero_zero_nat ) ) ).

% bot_nat_0.extremum_unique
thf(fact_3488_bot__nat__0_Oextremum__uniqueI,axiom,
    ! [A: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
     => ( A = zero_zero_nat ) ) ).

% bot_nat_0.extremum_uniqueI
thf(fact_3489_le__0__eq,axiom,
    ! [N: nat] :
      ( ( ord_less_eq_nat @ N @ zero_zero_nat )
      = ( N = zero_zero_nat ) ) ).

% le_0_eq
thf(fact_3490_plus__nat_Oadd__0,axiom,
    ! [N: nat] :
      ( ( plus_plus_nat @ zero_zero_nat @ N )
      = N ) ).

% plus_nat.add_0
thf(fact_3491_add__eq__self__zero,axiom,
    ! [M: nat,N: nat] :
      ( ( ( plus_plus_nat @ M @ N )
        = M )
     => ( N = zero_zero_nat ) ) ).

% add_eq_self_zero
thf(fact_3492_minus__nat_Odiff__0,axiom,
    ! [M: nat] :
      ( ( minus_minus_nat @ M @ zero_zero_nat )
      = M ) ).

% minus_nat.diff_0
thf(fact_3493_diffs0__imp__equal,axiom,
    ! [M: nat,N: nat] :
      ( ( ( minus_minus_nat @ M @ N )
        = zero_zero_nat )
     => ( ( ( minus_minus_nat @ N @ M )
          = zero_zero_nat )
       => ( M = N ) ) ) ).

% diffs0_imp_equal
thf(fact_3494_mult__0,axiom,
    ! [N: nat] :
      ( ( times_times_nat @ zero_zero_nat @ N )
      = zero_zero_nat ) ).

% mult_0
thf(fact_3495_nat__mult__eq__cancel__disj,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ( times_times_nat @ K @ M )
        = ( times_times_nat @ K @ N ) )
      = ( ( K = zero_zero_nat )
        | ( M = N ) ) ) ).

% nat_mult_eq_cancel_disj
thf(fact_3496_VEBT__internal_OminNull_Osimps_I3_J,axiom,
    ! [Uu: $o] :
      ~ ( vEBT_VEBT_minNull @ ( vEBT_Leaf @ Uu @ $true ) ) ).

% VEBT_internal.minNull.simps(3)
thf(fact_3497_VEBT__internal_OminNull_Osimps_I2_J,axiom,
    ! [Uv: $o] :
      ~ ( vEBT_VEBT_minNull @ ( vEBT_Leaf @ $true @ Uv ) ) ).

% VEBT_internal.minNull.simps(2)
thf(fact_3498_VEBT__internal_OminNull_Osimps_I1_J,axiom,
    vEBT_VEBT_minNull @ ( vEBT_Leaf @ $false @ $false ) ).

% VEBT_internal.minNull.simps(1)
thf(fact_3499_power__eq__imp__eq__base,axiom,
    ! [A: real,N: nat,B: real] :
      ( ( ( power_power_real @ A @ N )
        = ( power_power_real @ B @ N ) )
     => ( ( ord_less_eq_real @ zero_zero_real @ A )
       => ( ( ord_less_eq_real @ zero_zero_real @ B )
         => ( ( ord_less_nat @ zero_zero_nat @ N )
           => ( A = B ) ) ) ) ) ).

% power_eq_imp_eq_base
thf(fact_3500_power__eq__imp__eq__base,axiom,
    ! [A: rat,N: nat,B: rat] :
      ( ( ( power_power_rat @ A @ N )
        = ( power_power_rat @ B @ N ) )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ A )
       => ( ( ord_less_eq_rat @ zero_zero_rat @ B )
         => ( ( ord_less_nat @ zero_zero_nat @ N )
           => ( A = B ) ) ) ) ) ).

% power_eq_imp_eq_base
thf(fact_3501_power__eq__imp__eq__base,axiom,
    ! [A: nat,N: nat,B: nat] :
      ( ( ( power_power_nat @ A @ N )
        = ( power_power_nat @ B @ N ) )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ A )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
         => ( ( ord_less_nat @ zero_zero_nat @ N )
           => ( A = B ) ) ) ) ) ).

% power_eq_imp_eq_base
thf(fact_3502_power__eq__imp__eq__base,axiom,
    ! [A: int,N: nat,B: int] :
      ( ( ( power_power_int @ A @ N )
        = ( power_power_int @ B @ N ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ A )
       => ( ( ord_less_eq_int @ zero_zero_int @ B )
         => ( ( ord_less_nat @ zero_zero_nat @ N )
           => ( A = B ) ) ) ) ) ).

% power_eq_imp_eq_base
thf(fact_3503_power__eq__iff__eq__base,axiom,
    ! [N: nat,A: real,B: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_eq_real @ zero_zero_real @ A )
       => ( ( ord_less_eq_real @ zero_zero_real @ B )
         => ( ( ( power_power_real @ A @ N )
              = ( power_power_real @ B @ N ) )
            = ( A = B ) ) ) ) ) ).

% power_eq_iff_eq_base
thf(fact_3504_power__eq__iff__eq__base,axiom,
    ! [N: nat,A: rat,B: rat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ A )
       => ( ( ord_less_eq_rat @ zero_zero_rat @ B )
         => ( ( ( power_power_rat @ A @ N )
              = ( power_power_rat @ B @ N ) )
            = ( A = B ) ) ) ) ) ).

% power_eq_iff_eq_base
thf(fact_3505_power__eq__iff__eq__base,axiom,
    ! [N: nat,A: nat,B: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ A )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
         => ( ( ( power_power_nat @ A @ N )
              = ( power_power_nat @ B @ N ) )
            = ( A = B ) ) ) ) ) ).

% power_eq_iff_eq_base
thf(fact_3506_power__eq__iff__eq__base,axiom,
    ! [N: nat,A: int,B: int] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_eq_int @ zero_zero_int @ A )
       => ( ( ord_less_eq_int @ zero_zero_int @ B )
         => ( ( ( power_power_int @ A @ N )
              = ( power_power_int @ B @ N ) )
            = ( A = B ) ) ) ) ) ).

% power_eq_iff_eq_base
thf(fact_3507_lambda__zero,axiom,
    ( ( ^ [H: complex] : zero_zero_complex )
    = ( times_times_complex @ zero_zero_complex ) ) ).

% lambda_zero
thf(fact_3508_lambda__zero,axiom,
    ( ( ^ [H: real] : zero_zero_real )
    = ( times_times_real @ zero_zero_real ) ) ).

% lambda_zero
thf(fact_3509_lambda__zero,axiom,
    ( ( ^ [H: rat] : zero_zero_rat )
    = ( times_times_rat @ zero_zero_rat ) ) ).

% lambda_zero
thf(fact_3510_lambda__zero,axiom,
    ( ( ^ [H: nat] : zero_zero_nat )
    = ( times_times_nat @ zero_zero_nat ) ) ).

% lambda_zero
thf(fact_3511_lambda__zero,axiom,
    ( ( ^ [H: int] : zero_zero_int )
    = ( times_times_int @ zero_zero_int ) ) ).

% lambda_zero
thf(fact_3512_unset__bit__less__eq,axiom,
    ! [N: nat,K: int] : ( ord_less_eq_int @ ( bit_se4203085406695923979it_int @ N @ K ) @ K ) ).

% unset_bit_less_eq
thf(fact_3513_set__bit__greater__eq,axiom,
    ! [K: int,N: nat] : ( ord_less_eq_int @ K @ ( bit_se7879613467334960850it_int @ N @ K ) ) ).

% set_bit_greater_eq
thf(fact_3514_power__strict__mono,axiom,
    ! [A: real,B: real,N: nat] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_eq_real @ zero_zero_real @ A )
       => ( ( ord_less_nat @ zero_zero_nat @ N )
         => ( ord_less_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ B @ N ) ) ) ) ) ).

% power_strict_mono
thf(fact_3515_power__strict__mono,axiom,
    ! [A: rat,B: rat,N: nat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ A )
       => ( ( ord_less_nat @ zero_zero_nat @ N )
         => ( ord_less_rat @ ( power_power_rat @ A @ N ) @ ( power_power_rat @ B @ N ) ) ) ) ) ).

% power_strict_mono
thf(fact_3516_power__strict__mono,axiom,
    ! [A: nat,B: nat,N: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ A )
       => ( ( ord_less_nat @ zero_zero_nat @ N )
         => ( ord_less_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ B @ N ) ) ) ) ) ).

% power_strict_mono
thf(fact_3517_power__strict__mono,axiom,
    ! [A: int,B: int,N: nat] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_eq_int @ zero_zero_int @ A )
       => ( ( ord_less_nat @ zero_zero_nat @ N )
         => ( ord_less_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ B @ N ) ) ) ) ) ).

% power_strict_mono
thf(fact_3518_vebt__pred_Osimps_I2_J,axiom,
    ! [A: $o,Uw: $o] :
      ( ( A
       => ( ( vEBT_vebt_pred @ ( vEBT_Leaf @ A @ Uw ) @ ( suc @ zero_zero_nat ) )
          = ( some_nat @ zero_zero_nat ) ) )
      & ( ~ A
       => ( ( vEBT_vebt_pred @ ( vEBT_Leaf @ A @ Uw ) @ ( suc @ zero_zero_nat ) )
          = none_nat ) ) ) ).

% vebt_pred.simps(2)
thf(fact_3519_vebt__mint_Osimps_I1_J,axiom,
    ! [A: $o,B: $o] :
      ( ( A
       => ( ( vEBT_vebt_mint @ ( vEBT_Leaf @ A @ B ) )
          = ( some_nat @ zero_zero_nat ) ) )
      & ( ~ A
       => ( ( B
           => ( ( vEBT_vebt_mint @ ( vEBT_Leaf @ A @ B ) )
              = ( some_nat @ one_one_nat ) ) )
          & ( ~ B
           => ( ( vEBT_vebt_mint @ ( vEBT_Leaf @ A @ B ) )
              = none_nat ) ) ) ) ) ).

% vebt_mint.simps(1)
thf(fact_3520_vebt__succ_Osimps_I1_J,axiom,
    ! [B: $o,Uu: $o] :
      ( ( B
       => ( ( vEBT_vebt_succ @ ( vEBT_Leaf @ Uu @ B ) @ zero_zero_nat )
          = ( some_nat @ one_one_nat ) ) )
      & ( ~ B
       => ( ( vEBT_vebt_succ @ ( vEBT_Leaf @ Uu @ B ) @ zero_zero_nat )
          = none_nat ) ) ) ).

% vebt_succ.simps(1)
thf(fact_3521_vebt__maxt_Osimps_I1_J,axiom,
    ! [B: $o,A: $o] :
      ( ( B
       => ( ( vEBT_vebt_maxt @ ( vEBT_Leaf @ A @ B ) )
          = ( some_nat @ one_one_nat ) ) )
      & ( ~ B
       => ( ( A
           => ( ( vEBT_vebt_maxt @ ( vEBT_Leaf @ A @ B ) )
              = ( some_nat @ zero_zero_nat ) ) )
          & ( ~ A
           => ( ( vEBT_vebt_maxt @ ( vEBT_Leaf @ A @ B ) )
              = none_nat ) ) ) ) ) ).

% vebt_maxt.simps(1)
thf(fact_3522_zero__le__numeral,axiom,
    ! [N: num] : ( ord_less_eq_real @ zero_zero_real @ ( numeral_numeral_real @ N ) ) ).

% zero_le_numeral
thf(fact_3523_zero__le__numeral,axiom,
    ! [N: num] : ( ord_less_eq_rat @ zero_zero_rat @ ( numeral_numeral_rat @ N ) ) ).

% zero_le_numeral
thf(fact_3524_zero__le__numeral,axiom,
    ! [N: num] : ( ord_less_eq_nat @ zero_zero_nat @ ( numeral_numeral_nat @ N ) ) ).

% zero_le_numeral
thf(fact_3525_zero__le__numeral,axiom,
    ! [N: num] : ( ord_less_eq_int @ zero_zero_int @ ( numeral_numeral_int @ N ) ) ).

% zero_le_numeral
thf(fact_3526_not__numeral__le__zero,axiom,
    ! [N: num] :
      ~ ( ord_less_eq_real @ ( numeral_numeral_real @ N ) @ zero_zero_real ) ).

% not_numeral_le_zero
thf(fact_3527_not__numeral__le__zero,axiom,
    ! [N: num] :
      ~ ( ord_less_eq_rat @ ( numeral_numeral_rat @ N ) @ zero_zero_rat ) ).

% not_numeral_le_zero
thf(fact_3528_not__numeral__le__zero,axiom,
    ! [N: num] :
      ~ ( ord_less_eq_nat @ ( numeral_numeral_nat @ N ) @ zero_zero_nat ) ).

% not_numeral_le_zero
thf(fact_3529_not__numeral__le__zero,axiom,
    ! [N: num] :
      ~ ( ord_less_eq_int @ ( numeral_numeral_int @ N ) @ zero_zero_int ) ).

% not_numeral_le_zero
thf(fact_3530_mult__mono,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ C @ D )
       => ( ( ord_less_eq_real @ zero_zero_real @ B )
         => ( ( ord_less_eq_real @ zero_zero_real @ C )
           => ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D ) ) ) ) ) ) ).

% mult_mono
thf(fact_3531_mult__mono,axiom,
    ! [A: rat,B: rat,C: rat,D: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_rat @ C @ D )
       => ( ( ord_less_eq_rat @ zero_zero_rat @ B )
         => ( ( ord_less_eq_rat @ zero_zero_rat @ C )
           => ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ D ) ) ) ) ) ) ).

% mult_mono
thf(fact_3532_mult__mono,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ D )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
         => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
           => ( ord_less_eq_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) ) ) ) ) ) ).

% mult_mono
thf(fact_3533_mult__mono,axiom,
    ! [A: int,B: int,C: int,D: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ C @ D )
       => ( ( ord_less_eq_int @ zero_zero_int @ B )
         => ( ( ord_less_eq_int @ zero_zero_int @ C )
           => ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D ) ) ) ) ) ) ).

% mult_mono
thf(fact_3534_mult__mono_H,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ C @ D )
       => ( ( ord_less_eq_real @ zero_zero_real @ A )
         => ( ( ord_less_eq_real @ zero_zero_real @ C )
           => ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D ) ) ) ) ) ) ).

% mult_mono'
thf(fact_3535_mult__mono_H,axiom,
    ! [A: rat,B: rat,C: rat,D: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_rat @ C @ D )
       => ( ( ord_less_eq_rat @ zero_zero_rat @ A )
         => ( ( ord_less_eq_rat @ zero_zero_rat @ C )
           => ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ D ) ) ) ) ) ) ).

% mult_mono'
thf(fact_3536_mult__mono_H,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ D )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ A )
         => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
           => ( ord_less_eq_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) ) ) ) ) ) ).

% mult_mono'
thf(fact_3537_mult__mono_H,axiom,
    ! [A: int,B: int,C: int,D: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ C @ D )
       => ( ( ord_less_eq_int @ zero_zero_int @ A )
         => ( ( ord_less_eq_int @ zero_zero_int @ C )
           => ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D ) ) ) ) ) ) ).

% mult_mono'
thf(fact_3538_zero__le__square,axiom,
    ! [A: real] : ( ord_less_eq_real @ zero_zero_real @ ( times_times_real @ A @ A ) ) ).

% zero_le_square
thf(fact_3539_zero__le__square,axiom,
    ! [A: rat] : ( ord_less_eq_rat @ zero_zero_rat @ ( times_times_rat @ A @ A ) ) ).

% zero_le_square
thf(fact_3540_zero__le__square,axiom,
    ! [A: int] : ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A @ A ) ) ).

% zero_le_square
thf(fact_3541_split__mult__pos__le,axiom,
    ! [A: real,B: real] :
      ( ( ( ( ord_less_eq_real @ zero_zero_real @ A )
          & ( ord_less_eq_real @ zero_zero_real @ B ) )
        | ( ( ord_less_eq_real @ A @ zero_zero_real )
          & ( ord_less_eq_real @ B @ zero_zero_real ) ) )
     => ( ord_less_eq_real @ zero_zero_real @ ( times_times_real @ A @ B ) ) ) ).

% split_mult_pos_le
thf(fact_3542_split__mult__pos__le,axiom,
    ! [A: rat,B: rat] :
      ( ( ( ( ord_less_eq_rat @ zero_zero_rat @ A )
          & ( ord_less_eq_rat @ zero_zero_rat @ B ) )
        | ( ( ord_less_eq_rat @ A @ zero_zero_rat )
          & ( ord_less_eq_rat @ B @ zero_zero_rat ) ) )
     => ( ord_less_eq_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) ) ) ).

% split_mult_pos_le
thf(fact_3543_split__mult__pos__le,axiom,
    ! [A: int,B: int] :
      ( ( ( ( ord_less_eq_int @ zero_zero_int @ A )
          & ( ord_less_eq_int @ zero_zero_int @ B ) )
        | ( ( ord_less_eq_int @ A @ zero_zero_int )
          & ( ord_less_eq_int @ B @ zero_zero_int ) ) )
     => ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A @ B ) ) ) ).

% split_mult_pos_le
thf(fact_3544_mult__left__mono__neg,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_eq_real @ B @ A )
     => ( ( ord_less_eq_real @ C @ zero_zero_real )
       => ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).

% mult_left_mono_neg
thf(fact_3545_mult__left__mono__neg,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( ord_less_eq_rat @ B @ A )
     => ( ( ord_less_eq_rat @ C @ zero_zero_rat )
       => ( ord_less_eq_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) ) ) ) ).

% mult_left_mono_neg
thf(fact_3546_mult__left__mono__neg,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_less_eq_int @ B @ A )
     => ( ( ord_less_eq_int @ C @ zero_zero_int )
       => ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).

% mult_left_mono_neg
thf(fact_3547_mult__nonpos__nonpos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ zero_zero_real )
     => ( ( ord_less_eq_real @ B @ zero_zero_real )
       => ( ord_less_eq_real @ zero_zero_real @ ( times_times_real @ A @ B ) ) ) ) ).

% mult_nonpos_nonpos
thf(fact_3548_mult__nonpos__nonpos,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ A @ zero_zero_rat )
     => ( ( ord_less_eq_rat @ B @ zero_zero_rat )
       => ( ord_less_eq_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) ) ) ) ).

% mult_nonpos_nonpos
thf(fact_3549_mult__nonpos__nonpos,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ zero_zero_int )
     => ( ( ord_less_eq_int @ B @ zero_zero_int )
       => ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A @ B ) ) ) ) ).

% mult_nonpos_nonpos
thf(fact_3550_mult__left__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ zero_zero_real @ C )
       => ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).

% mult_left_mono
thf(fact_3551_mult__left__mono,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ C )
       => ( ord_less_eq_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) ) ) ) ).

% mult_left_mono
thf(fact_3552_mult__left__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
       => ( ord_less_eq_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) ) ) ) ).

% mult_left_mono
thf(fact_3553_mult__left__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ zero_zero_int @ C )
       => ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).

% mult_left_mono
thf(fact_3554_mult__right__mono__neg,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_eq_real @ B @ A )
     => ( ( ord_less_eq_real @ C @ zero_zero_real )
       => ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ) ).

% mult_right_mono_neg
thf(fact_3555_mult__right__mono__neg,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( ord_less_eq_rat @ B @ A )
     => ( ( ord_less_eq_rat @ C @ zero_zero_rat )
       => ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) ) ) ) ).

% mult_right_mono_neg
thf(fact_3556_mult__right__mono__neg,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_less_eq_int @ B @ A )
     => ( ( ord_less_eq_int @ C @ zero_zero_int )
       => ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ) ).

% mult_right_mono_neg
thf(fact_3557_mult__right__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ zero_zero_real @ C )
       => ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ) ).

% mult_right_mono
thf(fact_3558_mult__right__mono,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ C )
       => ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) ) ) ) ).

% mult_right_mono
thf(fact_3559_mult__right__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
       => ( ord_less_eq_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) ) ) ) ).

% mult_right_mono
thf(fact_3560_mult__right__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ zero_zero_int @ C )
       => ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ) ).

% mult_right_mono
thf(fact_3561_mult__le__0__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ ( times_times_real @ A @ B ) @ zero_zero_real )
      = ( ( ( ord_less_eq_real @ zero_zero_real @ A )
          & ( ord_less_eq_real @ B @ zero_zero_real ) )
        | ( ( ord_less_eq_real @ A @ zero_zero_real )
          & ( ord_less_eq_real @ zero_zero_real @ B ) ) ) ) ).

% mult_le_0_iff
thf(fact_3562_mult__le__0__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( times_times_rat @ A @ B ) @ zero_zero_rat )
      = ( ( ( ord_less_eq_rat @ zero_zero_rat @ A )
          & ( ord_less_eq_rat @ B @ zero_zero_rat ) )
        | ( ( ord_less_eq_rat @ A @ zero_zero_rat )
          & ( ord_less_eq_rat @ zero_zero_rat @ B ) ) ) ) ).

% mult_le_0_iff
thf(fact_3563_mult__le__0__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ ( times_times_int @ A @ B ) @ zero_zero_int )
      = ( ( ( ord_less_eq_int @ zero_zero_int @ A )
          & ( ord_less_eq_int @ B @ zero_zero_int ) )
        | ( ( ord_less_eq_int @ A @ zero_zero_int )
          & ( ord_less_eq_int @ zero_zero_int @ B ) ) ) ) ).

% mult_le_0_iff
thf(fact_3564_split__mult__neg__le,axiom,
    ! [A: real,B: real] :
      ( ( ( ( ord_less_eq_real @ zero_zero_real @ A )
          & ( ord_less_eq_real @ B @ zero_zero_real ) )
        | ( ( ord_less_eq_real @ A @ zero_zero_real )
          & ( ord_less_eq_real @ zero_zero_real @ B ) ) )
     => ( ord_less_eq_real @ ( times_times_real @ A @ B ) @ zero_zero_real ) ) ).

% split_mult_neg_le
thf(fact_3565_split__mult__neg__le,axiom,
    ! [A: rat,B: rat] :
      ( ( ( ( ord_less_eq_rat @ zero_zero_rat @ A )
          & ( ord_less_eq_rat @ B @ zero_zero_rat ) )
        | ( ( ord_less_eq_rat @ A @ zero_zero_rat )
          & ( ord_less_eq_rat @ zero_zero_rat @ B ) ) )
     => ( ord_less_eq_rat @ ( times_times_rat @ A @ B ) @ zero_zero_rat ) ) ).

% split_mult_neg_le
thf(fact_3566_split__mult__neg__le,axiom,
    ! [A: nat,B: nat] :
      ( ( ( ( ord_less_eq_nat @ zero_zero_nat @ A )
          & ( ord_less_eq_nat @ B @ zero_zero_nat ) )
        | ( ( ord_less_eq_nat @ A @ zero_zero_nat )
          & ( ord_less_eq_nat @ zero_zero_nat @ B ) ) )
     => ( ord_less_eq_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ).

% split_mult_neg_le
thf(fact_3567_split__mult__neg__le,axiom,
    ! [A: int,B: int] :
      ( ( ( ( ord_less_eq_int @ zero_zero_int @ A )
          & ( ord_less_eq_int @ B @ zero_zero_int ) )
        | ( ( ord_less_eq_int @ A @ zero_zero_int )
          & ( ord_less_eq_int @ zero_zero_int @ B ) ) )
     => ( ord_less_eq_int @ ( times_times_int @ A @ B ) @ zero_zero_int ) ) ).

% split_mult_neg_le
thf(fact_3568_mult__nonneg__nonneg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ zero_zero_real @ B )
       => ( ord_less_eq_real @ zero_zero_real @ ( times_times_real @ A @ B ) ) ) ) ).

% mult_nonneg_nonneg
thf(fact_3569_mult__nonneg__nonneg,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ A )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ B )
       => ( ord_less_eq_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) ) ) ) ).

% mult_nonneg_nonneg
thf(fact_3570_mult__nonneg__nonneg,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
       => ( ord_less_eq_nat @ zero_zero_nat @ ( times_times_nat @ A @ B ) ) ) ) ).

% mult_nonneg_nonneg
thf(fact_3571_mult__nonneg__nonneg,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_eq_int @ zero_zero_int @ B )
       => ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A @ B ) ) ) ) ).

% mult_nonneg_nonneg
thf(fact_3572_mult__nonneg__nonpos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ B @ zero_zero_real )
       => ( ord_less_eq_real @ ( times_times_real @ A @ B ) @ zero_zero_real ) ) ) ).

% mult_nonneg_nonpos
thf(fact_3573_mult__nonneg__nonpos,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ A )
     => ( ( ord_less_eq_rat @ B @ zero_zero_rat )
       => ( ord_less_eq_rat @ ( times_times_rat @ A @ B ) @ zero_zero_rat ) ) ) ).

% mult_nonneg_nonpos
thf(fact_3574_mult__nonneg__nonpos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ B @ zero_zero_nat )
       => ( ord_less_eq_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% mult_nonneg_nonpos
thf(fact_3575_mult__nonneg__nonpos,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_eq_int @ B @ zero_zero_int )
       => ( ord_less_eq_int @ ( times_times_int @ A @ B ) @ zero_zero_int ) ) ) ).

% mult_nonneg_nonpos
thf(fact_3576_mult__nonpos__nonneg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ zero_zero_real )
     => ( ( ord_less_eq_real @ zero_zero_real @ B )
       => ( ord_less_eq_real @ ( times_times_real @ A @ B ) @ zero_zero_real ) ) ) ).

% mult_nonpos_nonneg
thf(fact_3577_mult__nonpos__nonneg,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ A @ zero_zero_rat )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ B )
       => ( ord_less_eq_rat @ ( times_times_rat @ A @ B ) @ zero_zero_rat ) ) ) ).

% mult_nonpos_nonneg
thf(fact_3578_mult__nonpos__nonneg,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
       => ( ord_less_eq_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% mult_nonpos_nonneg
thf(fact_3579_mult__nonpos__nonneg,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ zero_zero_int )
     => ( ( ord_less_eq_int @ zero_zero_int @ B )
       => ( ord_less_eq_int @ ( times_times_int @ A @ B ) @ zero_zero_int ) ) ) ).

% mult_nonpos_nonneg
thf(fact_3580_mult__nonneg__nonpos2,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ B @ zero_zero_real )
       => ( ord_less_eq_real @ ( times_times_real @ B @ A ) @ zero_zero_real ) ) ) ).

% mult_nonneg_nonpos2
thf(fact_3581_mult__nonneg__nonpos2,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ A )
     => ( ( ord_less_eq_rat @ B @ zero_zero_rat )
       => ( ord_less_eq_rat @ ( times_times_rat @ B @ A ) @ zero_zero_rat ) ) ) ).

% mult_nonneg_nonpos2
thf(fact_3582_mult__nonneg__nonpos2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ B @ zero_zero_nat )
       => ( ord_less_eq_nat @ ( times_times_nat @ B @ A ) @ zero_zero_nat ) ) ) ).

% mult_nonneg_nonpos2
thf(fact_3583_mult__nonneg__nonpos2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_eq_int @ B @ zero_zero_int )
       => ( ord_less_eq_int @ ( times_times_int @ B @ A ) @ zero_zero_int ) ) ) ).

% mult_nonneg_nonpos2
thf(fact_3584_zero__le__mult__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
      = ( ( ( ord_less_eq_real @ zero_zero_real @ A )
          & ( ord_less_eq_real @ zero_zero_real @ B ) )
        | ( ( ord_less_eq_real @ A @ zero_zero_real )
          & ( ord_less_eq_real @ B @ zero_zero_real ) ) ) ) ).

% zero_le_mult_iff
thf(fact_3585_zero__le__mult__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) )
      = ( ( ( ord_less_eq_rat @ zero_zero_rat @ A )
          & ( ord_less_eq_rat @ zero_zero_rat @ B ) )
        | ( ( ord_less_eq_rat @ A @ zero_zero_rat )
          & ( ord_less_eq_rat @ B @ zero_zero_rat ) ) ) ) ).

% zero_le_mult_iff
thf(fact_3586_zero__le__mult__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A @ B ) )
      = ( ( ( ord_less_eq_int @ zero_zero_int @ A )
          & ( ord_less_eq_int @ zero_zero_int @ B ) )
        | ( ( ord_less_eq_int @ A @ zero_zero_int )
          & ( ord_less_eq_int @ B @ zero_zero_int ) ) ) ) ).

% zero_le_mult_iff
thf(fact_3587_ordered__comm__semiring__class_Ocomm__mult__left__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ zero_zero_real @ C )
       => ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).

% ordered_comm_semiring_class.comm_mult_left_mono
thf(fact_3588_ordered__comm__semiring__class_Ocomm__mult__left__mono,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ C )
       => ( ord_less_eq_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) ) ) ) ).

% ordered_comm_semiring_class.comm_mult_left_mono
thf(fact_3589_ordered__comm__semiring__class_Ocomm__mult__left__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
       => ( ord_less_eq_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) ) ) ) ).

% ordered_comm_semiring_class.comm_mult_left_mono
thf(fact_3590_ordered__comm__semiring__class_Ocomm__mult__left__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ zero_zero_int @ C )
       => ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).

% ordered_comm_semiring_class.comm_mult_left_mono
thf(fact_3591_zero__less__numeral,axiom,
    ! [N: num] : ( ord_less_real @ zero_zero_real @ ( numeral_numeral_real @ N ) ) ).

% zero_less_numeral
thf(fact_3592_zero__less__numeral,axiom,
    ! [N: num] : ( ord_less_rat @ zero_zero_rat @ ( numeral_numeral_rat @ N ) ) ).

% zero_less_numeral
thf(fact_3593_zero__less__numeral,axiom,
    ! [N: num] : ( ord_less_nat @ zero_zero_nat @ ( numeral_numeral_nat @ N ) ) ).

% zero_less_numeral
thf(fact_3594_zero__less__numeral,axiom,
    ! [N: num] : ( ord_less_int @ zero_zero_int @ ( numeral_numeral_int @ N ) ) ).

% zero_less_numeral
thf(fact_3595_not__numeral__less__zero,axiom,
    ! [N: num] :
      ~ ( ord_less_real @ ( numeral_numeral_real @ N ) @ zero_zero_real ) ).

% not_numeral_less_zero
thf(fact_3596_not__numeral__less__zero,axiom,
    ! [N: num] :
      ~ ( ord_less_rat @ ( numeral_numeral_rat @ N ) @ zero_zero_rat ) ).

% not_numeral_less_zero
thf(fact_3597_not__numeral__less__zero,axiom,
    ! [N: num] :
      ~ ( ord_less_nat @ ( numeral_numeral_nat @ N ) @ zero_zero_nat ) ).

% not_numeral_less_zero
thf(fact_3598_not__numeral__less__zero,axiom,
    ! [N: num] :
      ~ ( ord_less_int @ ( numeral_numeral_int @ N ) @ zero_zero_int ) ).

% not_numeral_less_zero
thf(fact_3599_zero__less__one__class_Ozero__le__one,axiom,
    ord_less_eq_real @ zero_zero_real @ one_one_real ).

% zero_less_one_class.zero_le_one
thf(fact_3600_zero__less__one__class_Ozero__le__one,axiom,
    ord_less_eq_rat @ zero_zero_rat @ one_one_rat ).

% zero_less_one_class.zero_le_one
thf(fact_3601_zero__less__one__class_Ozero__le__one,axiom,
    ord_less_eq_nat @ zero_zero_nat @ one_one_nat ).

% zero_less_one_class.zero_le_one
thf(fact_3602_zero__less__one__class_Ozero__le__one,axiom,
    ord_less_eq_int @ zero_zero_int @ one_one_int ).

% zero_less_one_class.zero_le_one
thf(fact_3603_linordered__nonzero__semiring__class_Ozero__le__one,axiom,
    ord_less_eq_real @ zero_zero_real @ one_one_real ).

% linordered_nonzero_semiring_class.zero_le_one
thf(fact_3604_linordered__nonzero__semiring__class_Ozero__le__one,axiom,
    ord_less_eq_rat @ zero_zero_rat @ one_one_rat ).

% linordered_nonzero_semiring_class.zero_le_one
thf(fact_3605_linordered__nonzero__semiring__class_Ozero__le__one,axiom,
    ord_less_eq_nat @ zero_zero_nat @ one_one_nat ).

% linordered_nonzero_semiring_class.zero_le_one
thf(fact_3606_linordered__nonzero__semiring__class_Ozero__le__one,axiom,
    ord_less_eq_int @ zero_zero_int @ one_one_int ).

% linordered_nonzero_semiring_class.zero_le_one
thf(fact_3607_not__one__le__zero,axiom,
    ~ ( ord_less_eq_real @ one_one_real @ zero_zero_real ) ).

% not_one_le_zero
thf(fact_3608_not__one__le__zero,axiom,
    ~ ( ord_less_eq_rat @ one_one_rat @ zero_zero_rat ) ).

% not_one_le_zero
thf(fact_3609_not__one__le__zero,axiom,
    ~ ( ord_less_eq_nat @ one_one_nat @ zero_zero_nat ) ).

% not_one_le_zero
thf(fact_3610_not__one__le__zero,axiom,
    ~ ( ord_less_eq_int @ one_one_int @ zero_zero_int ) ).

% not_one_le_zero
thf(fact_3611_add__decreasing,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_eq_real @ A @ zero_zero_real )
     => ( ( ord_less_eq_real @ C @ B )
       => ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ B ) ) ) ).

% add_decreasing
thf(fact_3612_add__decreasing,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( ord_less_eq_rat @ A @ zero_zero_rat )
     => ( ( ord_less_eq_rat @ C @ B )
       => ( ord_less_eq_rat @ ( plus_plus_rat @ A @ C ) @ B ) ) ) ).

% add_decreasing
thf(fact_3613_add__decreasing,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ C @ B )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ B ) ) ) ).

% add_decreasing
thf(fact_3614_add__decreasing,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_eq_int @ A @ zero_zero_int )
     => ( ( ord_less_eq_int @ C @ B )
       => ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ B ) ) ) ).

% add_decreasing
thf(fact_3615_add__increasing,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ B @ C )
       => ( ord_less_eq_real @ B @ ( plus_plus_real @ A @ C ) ) ) ) ).

% add_increasing
thf(fact_3616_add__increasing,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ A )
     => ( ( ord_less_eq_rat @ B @ C )
       => ( ord_less_eq_rat @ B @ ( plus_plus_rat @ A @ C ) ) ) ) ).

% add_increasing
thf(fact_3617_add__increasing,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ord_less_eq_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).

% add_increasing
thf(fact_3618_add__increasing,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_eq_int @ B @ C )
       => ( ord_less_eq_int @ B @ ( plus_plus_int @ A @ C ) ) ) ) ).

% add_increasing
thf(fact_3619_add__decreasing2,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_eq_real @ C @ zero_zero_real )
     => ( ( ord_less_eq_real @ A @ B )
       => ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ B ) ) ) ).

% add_decreasing2
thf(fact_3620_add__decreasing2,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_eq_rat @ C @ zero_zero_rat )
     => ( ( ord_less_eq_rat @ A @ B )
       => ( ord_less_eq_rat @ ( plus_plus_rat @ A @ C ) @ B ) ) ) ).

% add_decreasing2
thf(fact_3621_add__decreasing2,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_eq_nat @ C @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ A @ B )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ B ) ) ) ).

% add_decreasing2
thf(fact_3622_add__decreasing2,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_eq_int @ C @ zero_zero_int )
     => ( ( ord_less_eq_int @ A @ B )
       => ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ B ) ) ) ).

% add_decreasing2
thf(fact_3623_add__increasing2,axiom,
    ! [C: real,B: real,A: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ C )
     => ( ( ord_less_eq_real @ B @ A )
       => ( ord_less_eq_real @ B @ ( plus_plus_real @ A @ C ) ) ) ) ).

% add_increasing2
thf(fact_3624_add__increasing2,axiom,
    ! [C: rat,B: rat,A: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ C )
     => ( ( ord_less_eq_rat @ B @ A )
       => ( ord_less_eq_rat @ B @ ( plus_plus_rat @ A @ C ) ) ) ) ).

% add_increasing2
thf(fact_3625_add__increasing2,axiom,
    ! [C: nat,B: nat,A: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ C )
     => ( ( ord_less_eq_nat @ B @ A )
       => ( ord_less_eq_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).

% add_increasing2
thf(fact_3626_add__increasing2,axiom,
    ! [C: int,B: int,A: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ C )
     => ( ( ord_less_eq_int @ B @ A )
       => ( ord_less_eq_int @ B @ ( plus_plus_int @ A @ C ) ) ) ) ).

% add_increasing2
thf(fact_3627_add__nonneg__nonneg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ zero_zero_real @ B )
       => ( ord_less_eq_real @ zero_zero_real @ ( plus_plus_real @ A @ B ) ) ) ) ).

% add_nonneg_nonneg
thf(fact_3628_add__nonneg__nonneg,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ A )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ B )
       => ( ord_less_eq_rat @ zero_zero_rat @ ( plus_plus_rat @ A @ B ) ) ) ) ).

% add_nonneg_nonneg
thf(fact_3629_add__nonneg__nonneg,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
       => ( ord_less_eq_nat @ zero_zero_nat @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% add_nonneg_nonneg
thf(fact_3630_add__nonneg__nonneg,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_eq_int @ zero_zero_int @ B )
       => ( ord_less_eq_int @ zero_zero_int @ ( plus_plus_int @ A @ B ) ) ) ) ).

% add_nonneg_nonneg
thf(fact_3631_add__nonpos__nonpos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ zero_zero_real )
     => ( ( ord_less_eq_real @ B @ zero_zero_real )
       => ( ord_less_eq_real @ ( plus_plus_real @ A @ B ) @ zero_zero_real ) ) ) ).

% add_nonpos_nonpos
thf(fact_3632_add__nonpos__nonpos,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ A @ zero_zero_rat )
     => ( ( ord_less_eq_rat @ B @ zero_zero_rat )
       => ( ord_less_eq_rat @ ( plus_plus_rat @ A @ B ) @ zero_zero_rat ) ) ) ).

% add_nonpos_nonpos
thf(fact_3633_add__nonpos__nonpos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ B @ zero_zero_nat )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% add_nonpos_nonpos
thf(fact_3634_add__nonpos__nonpos,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ zero_zero_int )
     => ( ( ord_less_eq_int @ B @ zero_zero_int )
       => ( ord_less_eq_int @ ( plus_plus_int @ A @ B ) @ zero_zero_int ) ) ) ).

% add_nonpos_nonpos
thf(fact_3635_add__nonneg__eq__0__iff,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y2 )
       => ( ( ( plus_plus_real @ X2 @ Y2 )
            = zero_zero_real )
          = ( ( X2 = zero_zero_real )
            & ( Y2 = zero_zero_real ) ) ) ) ) ).

% add_nonneg_eq_0_iff
thf(fact_3636_add__nonneg__eq__0__iff,axiom,
    ! [X2: rat,Y2: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ X2 )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ Y2 )
       => ( ( ( plus_plus_rat @ X2 @ Y2 )
            = zero_zero_rat )
          = ( ( X2 = zero_zero_rat )
            & ( Y2 = zero_zero_rat ) ) ) ) ) ).

% add_nonneg_eq_0_iff
thf(fact_3637_add__nonneg__eq__0__iff,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ X2 )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ Y2 )
       => ( ( ( plus_plus_nat @ X2 @ Y2 )
            = zero_zero_nat )
          = ( ( X2 = zero_zero_nat )
            & ( Y2 = zero_zero_nat ) ) ) ) ) ).

% add_nonneg_eq_0_iff
thf(fact_3638_add__nonneg__eq__0__iff,axiom,
    ! [X2: int,Y2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X2 )
     => ( ( ord_less_eq_int @ zero_zero_int @ Y2 )
       => ( ( ( plus_plus_int @ X2 @ Y2 )
            = zero_zero_int )
          = ( ( X2 = zero_zero_int )
            & ( Y2 = zero_zero_int ) ) ) ) ) ).

% add_nonneg_eq_0_iff
thf(fact_3639_add__nonpos__eq__0__iff,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_eq_real @ X2 @ zero_zero_real )
     => ( ( ord_less_eq_real @ Y2 @ zero_zero_real )
       => ( ( ( plus_plus_real @ X2 @ Y2 )
            = zero_zero_real )
          = ( ( X2 = zero_zero_real )
            & ( Y2 = zero_zero_real ) ) ) ) ) ).

% add_nonpos_eq_0_iff
thf(fact_3640_add__nonpos__eq__0__iff,axiom,
    ! [X2: rat,Y2: rat] :
      ( ( ord_less_eq_rat @ X2 @ zero_zero_rat )
     => ( ( ord_less_eq_rat @ Y2 @ zero_zero_rat )
       => ( ( ( plus_plus_rat @ X2 @ Y2 )
            = zero_zero_rat )
          = ( ( X2 = zero_zero_rat )
            & ( Y2 = zero_zero_rat ) ) ) ) ) ).

% add_nonpos_eq_0_iff
thf(fact_3641_add__nonpos__eq__0__iff,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ord_less_eq_nat @ X2 @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ Y2 @ zero_zero_nat )
       => ( ( ( plus_plus_nat @ X2 @ Y2 )
            = zero_zero_nat )
          = ( ( X2 = zero_zero_nat )
            & ( Y2 = zero_zero_nat ) ) ) ) ) ).

% add_nonpos_eq_0_iff
thf(fact_3642_add__nonpos__eq__0__iff,axiom,
    ! [X2: int,Y2: int] :
      ( ( ord_less_eq_int @ X2 @ zero_zero_int )
     => ( ( ord_less_eq_int @ Y2 @ zero_zero_int )
       => ( ( ( plus_plus_int @ X2 @ Y2 )
            = zero_zero_int )
          = ( ( X2 = zero_zero_int )
            & ( Y2 = zero_zero_int ) ) ) ) ) ).

% add_nonpos_eq_0_iff
thf(fact_3643_linordered__comm__semiring__strict__class_Ocomm__mult__strict__left__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ zero_zero_real @ C )
       => ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).

% linordered_comm_semiring_strict_class.comm_mult_strict_left_mono
thf(fact_3644_linordered__comm__semiring__strict__class_Ocomm__mult__strict__left__mono,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_rat @ zero_zero_rat @ C )
       => ( ord_less_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) ) ) ) ).

% linordered_comm_semiring_strict_class.comm_mult_strict_left_mono
thf(fact_3645_linordered__comm__semiring__strict__class_Ocomm__mult__strict__left__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ zero_zero_nat @ C )
       => ( ord_less_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) ) ) ) ).

% linordered_comm_semiring_strict_class.comm_mult_strict_left_mono
thf(fact_3646_linordered__comm__semiring__strict__class_Ocomm__mult__strict__left__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_int @ zero_zero_int @ C )
       => ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).

% linordered_comm_semiring_strict_class.comm_mult_strict_left_mono
thf(fact_3647_mult__less__cancel__right__disj,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
          & ( ord_less_real @ A @ B ) )
        | ( ( ord_less_real @ C @ zero_zero_real )
          & ( ord_less_real @ B @ A ) ) ) ) ).

% mult_less_cancel_right_disj
thf(fact_3648_mult__less__cancel__right__disj,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
          & ( ord_less_rat @ A @ B ) )
        | ( ( ord_less_rat @ C @ zero_zero_rat )
          & ( ord_less_rat @ B @ A ) ) ) ) ).

% mult_less_cancel_right_disj
thf(fact_3649_mult__less__cancel__right__disj,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
      = ( ( ( ord_less_int @ zero_zero_int @ C )
          & ( ord_less_int @ A @ B ) )
        | ( ( ord_less_int @ C @ zero_zero_int )
          & ( ord_less_int @ B @ A ) ) ) ) ).

% mult_less_cancel_right_disj
thf(fact_3650_mult__strict__right__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ zero_zero_real @ C )
       => ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ) ).

% mult_strict_right_mono
thf(fact_3651_mult__strict__right__mono,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_rat @ zero_zero_rat @ C )
       => ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) ) ) ) ).

% mult_strict_right_mono
thf(fact_3652_mult__strict__right__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ zero_zero_nat @ C )
       => ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) ) ) ) ).

% mult_strict_right_mono
thf(fact_3653_mult__strict__right__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_int @ zero_zero_int @ C )
       => ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ) ).

% mult_strict_right_mono
thf(fact_3654_mult__strict__right__mono__neg,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_real @ B @ A )
     => ( ( ord_less_real @ C @ zero_zero_real )
       => ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ) ).

% mult_strict_right_mono_neg
thf(fact_3655_mult__strict__right__mono__neg,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( ord_less_rat @ B @ A )
     => ( ( ord_less_rat @ C @ zero_zero_rat )
       => ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) ) ) ) ).

% mult_strict_right_mono_neg
thf(fact_3656_mult__strict__right__mono__neg,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_less_int @ B @ A )
     => ( ( ord_less_int @ C @ zero_zero_int )
       => ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ) ).

% mult_strict_right_mono_neg
thf(fact_3657_mult__less__cancel__left__disj,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
          & ( ord_less_real @ A @ B ) )
        | ( ( ord_less_real @ C @ zero_zero_real )
          & ( ord_less_real @ B @ A ) ) ) ) ).

% mult_less_cancel_left_disj
thf(fact_3658_mult__less__cancel__left__disj,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
          & ( ord_less_rat @ A @ B ) )
        | ( ( ord_less_rat @ C @ zero_zero_rat )
          & ( ord_less_rat @ B @ A ) ) ) ) ).

% mult_less_cancel_left_disj
thf(fact_3659_mult__less__cancel__left__disj,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
      = ( ( ( ord_less_int @ zero_zero_int @ C )
          & ( ord_less_int @ A @ B ) )
        | ( ( ord_less_int @ C @ zero_zero_int )
          & ( ord_less_int @ B @ A ) ) ) ) ).

% mult_less_cancel_left_disj
thf(fact_3660_mult__strict__left__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ zero_zero_real @ C )
       => ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).

% mult_strict_left_mono
thf(fact_3661_mult__strict__left__mono,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_rat @ zero_zero_rat @ C )
       => ( ord_less_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) ) ) ) ).

% mult_strict_left_mono
thf(fact_3662_mult__strict__left__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ zero_zero_nat @ C )
       => ( ord_less_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) ) ) ) ).

% mult_strict_left_mono
thf(fact_3663_mult__strict__left__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_int @ zero_zero_int @ C )
       => ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).

% mult_strict_left_mono
thf(fact_3664_mult__strict__left__mono__neg,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_real @ B @ A )
     => ( ( ord_less_real @ C @ zero_zero_real )
       => ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).

% mult_strict_left_mono_neg
thf(fact_3665_mult__strict__left__mono__neg,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( ord_less_rat @ B @ A )
     => ( ( ord_less_rat @ C @ zero_zero_rat )
       => ( ord_less_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) ) ) ) ).

% mult_strict_left_mono_neg
thf(fact_3666_mult__strict__left__mono__neg,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_less_int @ B @ A )
     => ( ( ord_less_int @ C @ zero_zero_int )
       => ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).

% mult_strict_left_mono_neg
thf(fact_3667_mult__less__cancel__left__pos,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ C )
     => ( ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
        = ( ord_less_real @ A @ B ) ) ) ).

% mult_less_cancel_left_pos
thf(fact_3668_mult__less__cancel__left__pos,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ C )
     => ( ( ord_less_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
        = ( ord_less_rat @ A @ B ) ) ) ).

% mult_less_cancel_left_pos
thf(fact_3669_mult__less__cancel__left__pos,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ C )
     => ( ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
        = ( ord_less_int @ A @ B ) ) ) ).

% mult_less_cancel_left_pos
thf(fact_3670_mult__less__cancel__left__neg,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ C @ zero_zero_real )
     => ( ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
        = ( ord_less_real @ B @ A ) ) ) ).

% mult_less_cancel_left_neg
thf(fact_3671_mult__less__cancel__left__neg,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ C @ zero_zero_rat )
     => ( ( ord_less_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
        = ( ord_less_rat @ B @ A ) ) ) ).

% mult_less_cancel_left_neg
thf(fact_3672_mult__less__cancel__left__neg,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_int @ C @ zero_zero_int )
     => ( ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
        = ( ord_less_int @ B @ A ) ) ) ).

% mult_less_cancel_left_neg
thf(fact_3673_zero__less__mult__pos2,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_real @ zero_zero_real @ ( times_times_real @ B @ A ) )
     => ( ( ord_less_real @ zero_zero_real @ A )
       => ( ord_less_real @ zero_zero_real @ B ) ) ) ).

% zero_less_mult_pos2
thf(fact_3674_zero__less__mult__pos2,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ B @ A ) )
     => ( ( ord_less_rat @ zero_zero_rat @ A )
       => ( ord_less_rat @ zero_zero_rat @ B ) ) ) ).

% zero_less_mult_pos2
thf(fact_3675_zero__less__mult__pos2,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ B @ A ) )
     => ( ( ord_less_nat @ zero_zero_nat @ A )
       => ( ord_less_nat @ zero_zero_nat @ B ) ) ) ).

% zero_less_mult_pos2
thf(fact_3676_zero__less__mult__pos2,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ zero_zero_int @ ( times_times_int @ B @ A ) )
     => ( ( ord_less_int @ zero_zero_int @ A )
       => ( ord_less_int @ zero_zero_int @ B ) ) ) ).

% zero_less_mult_pos2
thf(fact_3677_zero__less__mult__pos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
     => ( ( ord_less_real @ zero_zero_real @ A )
       => ( ord_less_real @ zero_zero_real @ B ) ) ) ).

% zero_less_mult_pos
thf(fact_3678_zero__less__mult__pos,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) )
     => ( ( ord_less_rat @ zero_zero_rat @ A )
       => ( ord_less_rat @ zero_zero_rat @ B ) ) ) ).

% zero_less_mult_pos
thf(fact_3679_zero__less__mult__pos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ A @ B ) )
     => ( ( ord_less_nat @ zero_zero_nat @ A )
       => ( ord_less_nat @ zero_zero_nat @ B ) ) ) ).

% zero_less_mult_pos
thf(fact_3680_zero__less__mult__pos,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ ( times_times_int @ A @ B ) )
     => ( ( ord_less_int @ zero_zero_int @ A )
       => ( ord_less_int @ zero_zero_int @ B ) ) ) ).

% zero_less_mult_pos
thf(fact_3681_zero__less__mult__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
      = ( ( ( ord_less_real @ zero_zero_real @ A )
          & ( ord_less_real @ zero_zero_real @ B ) )
        | ( ( ord_less_real @ A @ zero_zero_real )
          & ( ord_less_real @ B @ zero_zero_real ) ) ) ) ).

% zero_less_mult_iff
thf(fact_3682_zero__less__mult__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ A )
          & ( ord_less_rat @ zero_zero_rat @ B ) )
        | ( ( ord_less_rat @ A @ zero_zero_rat )
          & ( ord_less_rat @ B @ zero_zero_rat ) ) ) ) ).

% zero_less_mult_iff
thf(fact_3683_zero__less__mult__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ ( times_times_int @ A @ B ) )
      = ( ( ( ord_less_int @ zero_zero_int @ A )
          & ( ord_less_int @ zero_zero_int @ B ) )
        | ( ( ord_less_int @ A @ zero_zero_int )
          & ( ord_less_int @ B @ zero_zero_int ) ) ) ) ).

% zero_less_mult_iff
thf(fact_3684_mult__pos__neg2,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ B @ zero_zero_real )
       => ( ord_less_real @ ( times_times_real @ B @ A ) @ zero_zero_real ) ) ) ).

% mult_pos_neg2
thf(fact_3685_mult__pos__neg2,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ( ord_less_rat @ B @ zero_zero_rat )
       => ( ord_less_rat @ ( times_times_rat @ B @ A ) @ zero_zero_rat ) ) ) ).

% mult_pos_neg2
thf(fact_3686_mult__pos__neg2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ B @ zero_zero_nat )
       => ( ord_less_nat @ ( times_times_nat @ B @ A ) @ zero_zero_nat ) ) ) ).

% mult_pos_neg2
thf(fact_3687_mult__pos__neg2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ B @ zero_zero_int )
       => ( ord_less_int @ ( times_times_int @ B @ A ) @ zero_zero_int ) ) ) ).

% mult_pos_neg2
thf(fact_3688_mult__pos__pos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ B )
       => ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) ) ) ) ).

% mult_pos_pos
thf(fact_3689_mult__pos__pos,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ( ord_less_rat @ zero_zero_rat @ B )
       => ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) ) ) ) ).

% mult_pos_pos
thf(fact_3690_mult__pos__pos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ B )
       => ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ A @ B ) ) ) ) ).

% mult_pos_pos
thf(fact_3691_mult__pos__pos,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ zero_zero_int @ B )
       => ( ord_less_int @ zero_zero_int @ ( times_times_int @ A @ B ) ) ) ) ).

% mult_pos_pos
thf(fact_3692_mult__pos__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ B @ zero_zero_real )
       => ( ord_less_real @ ( times_times_real @ A @ B ) @ zero_zero_real ) ) ) ).

% mult_pos_neg
thf(fact_3693_mult__pos__neg,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ( ord_less_rat @ B @ zero_zero_rat )
       => ( ord_less_rat @ ( times_times_rat @ A @ B ) @ zero_zero_rat ) ) ) ).

% mult_pos_neg
thf(fact_3694_mult__pos__neg,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ B @ zero_zero_nat )
       => ( ord_less_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% mult_pos_neg
thf(fact_3695_mult__pos__neg,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ B @ zero_zero_int )
       => ( ord_less_int @ ( times_times_int @ A @ B ) @ zero_zero_int ) ) ) ).

% mult_pos_neg
thf(fact_3696_mult__neg__pos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ( ord_less_real @ zero_zero_real @ B )
       => ( ord_less_real @ ( times_times_real @ A @ B ) @ zero_zero_real ) ) ) ).

% mult_neg_pos
thf(fact_3697_mult__neg__pos,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ zero_zero_rat )
     => ( ( ord_less_rat @ zero_zero_rat @ B )
       => ( ord_less_rat @ ( times_times_rat @ A @ B ) @ zero_zero_rat ) ) ) ).

% mult_neg_pos
thf(fact_3698_mult__neg__pos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ zero_zero_nat )
     => ( ( ord_less_nat @ zero_zero_nat @ B )
       => ( ord_less_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% mult_neg_pos
thf(fact_3699_mult__neg__pos,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ zero_zero_int )
     => ( ( ord_less_int @ zero_zero_int @ B )
       => ( ord_less_int @ ( times_times_int @ A @ B ) @ zero_zero_int ) ) ) ).

% mult_neg_pos
thf(fact_3700_mult__less__0__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ ( times_times_real @ A @ B ) @ zero_zero_real )
      = ( ( ( ord_less_real @ zero_zero_real @ A )
          & ( ord_less_real @ B @ zero_zero_real ) )
        | ( ( ord_less_real @ A @ zero_zero_real )
          & ( ord_less_real @ zero_zero_real @ B ) ) ) ) ).

% mult_less_0_iff
thf(fact_3701_mult__less__0__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ ( times_times_rat @ A @ B ) @ zero_zero_rat )
      = ( ( ( ord_less_rat @ zero_zero_rat @ A )
          & ( ord_less_rat @ B @ zero_zero_rat ) )
        | ( ( ord_less_rat @ A @ zero_zero_rat )
          & ( ord_less_rat @ zero_zero_rat @ B ) ) ) ) ).

% mult_less_0_iff
thf(fact_3702_mult__less__0__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ ( times_times_int @ A @ B ) @ zero_zero_int )
      = ( ( ( ord_less_int @ zero_zero_int @ A )
          & ( ord_less_int @ B @ zero_zero_int ) )
        | ( ( ord_less_int @ A @ zero_zero_int )
          & ( ord_less_int @ zero_zero_int @ B ) ) ) ) ).

% mult_less_0_iff
thf(fact_3703_not__square__less__zero,axiom,
    ! [A: real] :
      ~ ( ord_less_real @ ( times_times_real @ A @ A ) @ zero_zero_real ) ).

% not_square_less_zero
thf(fact_3704_not__square__less__zero,axiom,
    ! [A: rat] :
      ~ ( ord_less_rat @ ( times_times_rat @ A @ A ) @ zero_zero_rat ) ).

% not_square_less_zero
thf(fact_3705_not__square__less__zero,axiom,
    ! [A: int] :
      ~ ( ord_less_int @ ( times_times_int @ A @ A ) @ zero_zero_int ) ).

% not_square_less_zero
thf(fact_3706_mult__neg__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ( ord_less_real @ B @ zero_zero_real )
       => ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) ) ) ) ).

% mult_neg_neg
thf(fact_3707_mult__neg__neg,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ zero_zero_rat )
     => ( ( ord_less_rat @ B @ zero_zero_rat )
       => ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) ) ) ) ).

% mult_neg_neg
thf(fact_3708_mult__neg__neg,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ zero_zero_int )
     => ( ( ord_less_int @ B @ zero_zero_int )
       => ( ord_less_int @ zero_zero_int @ ( times_times_int @ A @ B ) ) ) ) ).

% mult_neg_neg
thf(fact_3709_less__numeral__extra_I1_J,axiom,
    ord_less_real @ zero_zero_real @ one_one_real ).

% less_numeral_extra(1)
thf(fact_3710_less__numeral__extra_I1_J,axiom,
    ord_less_rat @ zero_zero_rat @ one_one_rat ).

% less_numeral_extra(1)
thf(fact_3711_less__numeral__extra_I1_J,axiom,
    ord_less_nat @ zero_zero_nat @ one_one_nat ).

% less_numeral_extra(1)
thf(fact_3712_less__numeral__extra_I1_J,axiom,
    ord_less_int @ zero_zero_int @ one_one_int ).

% less_numeral_extra(1)
thf(fact_3713_zero__less__one,axiom,
    ord_less_real @ zero_zero_real @ one_one_real ).

% zero_less_one
thf(fact_3714_zero__less__one,axiom,
    ord_less_rat @ zero_zero_rat @ one_one_rat ).

% zero_less_one
thf(fact_3715_zero__less__one,axiom,
    ord_less_nat @ zero_zero_nat @ one_one_nat ).

% zero_less_one
thf(fact_3716_zero__less__one,axiom,
    ord_less_int @ zero_zero_int @ one_one_int ).

% zero_less_one
thf(fact_3717_not__one__less__zero,axiom,
    ~ ( ord_less_real @ one_one_real @ zero_zero_real ) ).

% not_one_less_zero
thf(fact_3718_not__one__less__zero,axiom,
    ~ ( ord_less_rat @ one_one_rat @ zero_zero_rat ) ).

% not_one_less_zero
thf(fact_3719_not__one__less__zero,axiom,
    ~ ( ord_less_nat @ one_one_nat @ zero_zero_nat ) ).

% not_one_less_zero
thf(fact_3720_not__one__less__zero,axiom,
    ~ ( ord_less_int @ one_one_int @ zero_zero_int ) ).

% not_one_less_zero
thf(fact_3721_add__neg__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ( ord_less_real @ B @ zero_zero_real )
       => ( ord_less_real @ ( plus_plus_real @ A @ B ) @ zero_zero_real ) ) ) ).

% add_neg_neg
thf(fact_3722_add__neg__neg,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ zero_zero_rat )
     => ( ( ord_less_rat @ B @ zero_zero_rat )
       => ( ord_less_rat @ ( plus_plus_rat @ A @ B ) @ zero_zero_rat ) ) ) ).

% add_neg_neg
thf(fact_3723_add__neg__neg,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ zero_zero_nat )
     => ( ( ord_less_nat @ B @ zero_zero_nat )
       => ( ord_less_nat @ ( plus_plus_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% add_neg_neg
thf(fact_3724_add__neg__neg,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ zero_zero_int )
     => ( ( ord_less_int @ B @ zero_zero_int )
       => ( ord_less_int @ ( plus_plus_int @ A @ B ) @ zero_zero_int ) ) ) ).

% add_neg_neg
thf(fact_3725_add__pos__pos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ B )
       => ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ A @ B ) ) ) ) ).

% add_pos_pos
thf(fact_3726_add__pos__pos,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ( ord_less_rat @ zero_zero_rat @ B )
       => ( ord_less_rat @ zero_zero_rat @ ( plus_plus_rat @ A @ B ) ) ) ) ).

% add_pos_pos
thf(fact_3727_add__pos__pos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ B )
       => ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% add_pos_pos
thf(fact_3728_add__pos__pos,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ zero_zero_int @ B )
       => ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ A @ B ) ) ) ) ).

% add_pos_pos
thf(fact_3729_canonically__ordered__monoid__add__class_OlessE,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ~ ! [C5: nat] :
            ( ( B
              = ( plus_plus_nat @ A @ C5 ) )
           => ( C5 = zero_zero_nat ) ) ) ).

% canonically_ordered_monoid_add_class.lessE
thf(fact_3730_pos__add__strict,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ B @ C )
       => ( ord_less_real @ B @ ( plus_plus_real @ A @ C ) ) ) ) ).

% pos_add_strict
thf(fact_3731_pos__add__strict,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ( ord_less_rat @ B @ C )
       => ( ord_less_rat @ B @ ( plus_plus_rat @ A @ C ) ) ) ) ).

% pos_add_strict
thf(fact_3732_pos__add__strict,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ B @ C )
       => ( ord_less_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).

% pos_add_strict
thf(fact_3733_pos__add__strict,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ B @ C )
       => ( ord_less_int @ B @ ( plus_plus_int @ A @ C ) ) ) ) ).

% pos_add_strict
thf(fact_3734_add__less__zeroD,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_real @ ( plus_plus_real @ X2 @ Y2 ) @ zero_zero_real )
     => ( ( ord_less_real @ X2 @ zero_zero_real )
        | ( ord_less_real @ Y2 @ zero_zero_real ) ) ) ).

% add_less_zeroD
thf(fact_3735_add__less__zeroD,axiom,
    ! [X2: rat,Y2: rat] :
      ( ( ord_less_rat @ ( plus_plus_rat @ X2 @ Y2 ) @ zero_zero_rat )
     => ( ( ord_less_rat @ X2 @ zero_zero_rat )
        | ( ord_less_rat @ Y2 @ zero_zero_rat ) ) ) ).

% add_less_zeroD
thf(fact_3736_add__less__zeroD,axiom,
    ! [X2: int,Y2: int] :
      ( ( ord_less_int @ ( plus_plus_int @ X2 @ Y2 ) @ zero_zero_int )
     => ( ( ord_less_int @ X2 @ zero_zero_int )
        | ( ord_less_int @ Y2 @ zero_zero_int ) ) ) ).

% add_less_zeroD
thf(fact_3737_le__iff__diff__le__0,axiom,
    ( ord_less_eq_real
    = ( ^ [A3: real,B2: real] : ( ord_less_eq_real @ ( minus_minus_real @ A3 @ B2 ) @ zero_zero_real ) ) ) ).

% le_iff_diff_le_0
thf(fact_3738_le__iff__diff__le__0,axiom,
    ( ord_less_eq_rat
    = ( ^ [A3: rat,B2: rat] : ( ord_less_eq_rat @ ( minus_minus_rat @ A3 @ B2 ) @ zero_zero_rat ) ) ) ).

% le_iff_diff_le_0
thf(fact_3739_le__iff__diff__le__0,axiom,
    ( ord_less_eq_int
    = ( ^ [A3: int,B2: int] : ( ord_less_eq_int @ ( minus_minus_int @ A3 @ B2 ) @ zero_zero_int ) ) ) ).

% le_iff_diff_le_0
thf(fact_3740_divide__le__0__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ ( divide_divide_real @ A @ B ) @ zero_zero_real )
      = ( ( ( ord_less_eq_real @ zero_zero_real @ A )
          & ( ord_less_eq_real @ B @ zero_zero_real ) )
        | ( ( ord_less_eq_real @ A @ zero_zero_real )
          & ( ord_less_eq_real @ zero_zero_real @ B ) ) ) ) ).

% divide_le_0_iff
thf(fact_3741_divide__le__0__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( divide_divide_rat @ A @ B ) @ zero_zero_rat )
      = ( ( ( ord_less_eq_rat @ zero_zero_rat @ A )
          & ( ord_less_eq_rat @ B @ zero_zero_rat ) )
        | ( ( ord_less_eq_rat @ A @ zero_zero_rat )
          & ( ord_less_eq_rat @ zero_zero_rat @ B ) ) ) ) ).

% divide_le_0_iff
thf(fact_3742_divide__right__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ zero_zero_real @ C )
       => ( ord_less_eq_real @ ( divide_divide_real @ A @ C ) @ ( divide_divide_real @ B @ C ) ) ) ) ).

% divide_right_mono
thf(fact_3743_divide__right__mono,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ C )
       => ( ord_less_eq_rat @ ( divide_divide_rat @ A @ C ) @ ( divide_divide_rat @ B @ C ) ) ) ) ).

% divide_right_mono
thf(fact_3744_zero__le__divide__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ A @ B ) )
      = ( ( ( ord_less_eq_real @ zero_zero_real @ A )
          & ( ord_less_eq_real @ zero_zero_real @ B ) )
        | ( ( ord_less_eq_real @ A @ zero_zero_real )
          & ( ord_less_eq_real @ B @ zero_zero_real ) ) ) ) ).

% zero_le_divide_iff
thf(fact_3745_zero__le__divide__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ ( divide_divide_rat @ A @ B ) )
      = ( ( ( ord_less_eq_rat @ zero_zero_rat @ A )
          & ( ord_less_eq_rat @ zero_zero_rat @ B ) )
        | ( ( ord_less_eq_rat @ A @ zero_zero_rat )
          & ( ord_less_eq_rat @ B @ zero_zero_rat ) ) ) ) ).

% zero_le_divide_iff
thf(fact_3746_divide__nonneg__nonneg,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y2 )
       => ( ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ X2 @ Y2 ) ) ) ) ).

% divide_nonneg_nonneg
thf(fact_3747_divide__nonneg__nonneg,axiom,
    ! [X2: rat,Y2: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ X2 )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ Y2 )
       => ( ord_less_eq_rat @ zero_zero_rat @ ( divide_divide_rat @ X2 @ Y2 ) ) ) ) ).

% divide_nonneg_nonneg
thf(fact_3748_divide__nonneg__nonpos,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ( ord_less_eq_real @ Y2 @ zero_zero_real )
       => ( ord_less_eq_real @ ( divide_divide_real @ X2 @ Y2 ) @ zero_zero_real ) ) ) ).

% divide_nonneg_nonpos
thf(fact_3749_divide__nonneg__nonpos,axiom,
    ! [X2: rat,Y2: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ X2 )
     => ( ( ord_less_eq_rat @ Y2 @ zero_zero_rat )
       => ( ord_less_eq_rat @ ( divide_divide_rat @ X2 @ Y2 ) @ zero_zero_rat ) ) ) ).

% divide_nonneg_nonpos
thf(fact_3750_divide__nonpos__nonneg,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_eq_real @ X2 @ zero_zero_real )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y2 )
       => ( ord_less_eq_real @ ( divide_divide_real @ X2 @ Y2 ) @ zero_zero_real ) ) ) ).

% divide_nonpos_nonneg
thf(fact_3751_divide__nonpos__nonneg,axiom,
    ! [X2: rat,Y2: rat] :
      ( ( ord_less_eq_rat @ X2 @ zero_zero_rat )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ Y2 )
       => ( ord_less_eq_rat @ ( divide_divide_rat @ X2 @ Y2 ) @ zero_zero_rat ) ) ) ).

% divide_nonpos_nonneg
thf(fact_3752_divide__nonpos__nonpos,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_eq_real @ X2 @ zero_zero_real )
     => ( ( ord_less_eq_real @ Y2 @ zero_zero_real )
       => ( ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ X2 @ Y2 ) ) ) ) ).

% divide_nonpos_nonpos
thf(fact_3753_divide__nonpos__nonpos,axiom,
    ! [X2: rat,Y2: rat] :
      ( ( ord_less_eq_rat @ X2 @ zero_zero_rat )
     => ( ( ord_less_eq_rat @ Y2 @ zero_zero_rat )
       => ( ord_less_eq_rat @ zero_zero_rat @ ( divide_divide_rat @ X2 @ Y2 ) ) ) ) ).

% divide_nonpos_nonpos
thf(fact_3754_divide__right__mono__neg,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ C @ zero_zero_real )
       => ( ord_less_eq_real @ ( divide_divide_real @ B @ C ) @ ( divide_divide_real @ A @ C ) ) ) ) ).

% divide_right_mono_neg
thf(fact_3755_divide__right__mono__neg,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_rat @ C @ zero_zero_rat )
       => ( ord_less_eq_rat @ ( divide_divide_rat @ B @ C ) @ ( divide_divide_rat @ A @ C ) ) ) ) ).

% divide_right_mono_neg
thf(fact_3756_less__iff__diff__less__0,axiom,
    ( ord_less_real
    = ( ^ [A3: real,B2: real] : ( ord_less_real @ ( minus_minus_real @ A3 @ B2 ) @ zero_zero_real ) ) ) ).

% less_iff_diff_less_0
thf(fact_3757_less__iff__diff__less__0,axiom,
    ( ord_less_rat
    = ( ^ [A3: rat,B2: rat] : ( ord_less_rat @ ( minus_minus_rat @ A3 @ B2 ) @ zero_zero_rat ) ) ) ).

% less_iff_diff_less_0
thf(fact_3758_less__iff__diff__less__0,axiom,
    ( ord_less_int
    = ( ^ [A3: int,B2: int] : ( ord_less_int @ ( minus_minus_int @ A3 @ B2 ) @ zero_zero_int ) ) ) ).

% less_iff_diff_less_0
thf(fact_3759_divide__neg__neg,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_real @ X2 @ zero_zero_real )
     => ( ( ord_less_real @ Y2 @ zero_zero_real )
       => ( ord_less_real @ zero_zero_real @ ( divide_divide_real @ X2 @ Y2 ) ) ) ) ).

% divide_neg_neg
thf(fact_3760_divide__neg__neg,axiom,
    ! [X2: rat,Y2: rat] :
      ( ( ord_less_rat @ X2 @ zero_zero_rat )
     => ( ( ord_less_rat @ Y2 @ zero_zero_rat )
       => ( ord_less_rat @ zero_zero_rat @ ( divide_divide_rat @ X2 @ Y2 ) ) ) ) ).

% divide_neg_neg
thf(fact_3761_divide__neg__pos,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_real @ X2 @ zero_zero_real )
     => ( ( ord_less_real @ zero_zero_real @ Y2 )
       => ( ord_less_real @ ( divide_divide_real @ X2 @ Y2 ) @ zero_zero_real ) ) ) ).

% divide_neg_pos
thf(fact_3762_divide__neg__pos,axiom,
    ! [X2: rat,Y2: rat] :
      ( ( ord_less_rat @ X2 @ zero_zero_rat )
     => ( ( ord_less_rat @ zero_zero_rat @ Y2 )
       => ( ord_less_rat @ ( divide_divide_rat @ X2 @ Y2 ) @ zero_zero_rat ) ) ) ).

% divide_neg_pos
thf(fact_3763_divide__pos__neg,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( ( ord_less_real @ Y2 @ zero_zero_real )
       => ( ord_less_real @ ( divide_divide_real @ X2 @ Y2 ) @ zero_zero_real ) ) ) ).

% divide_pos_neg
thf(fact_3764_divide__pos__neg,axiom,
    ! [X2: rat,Y2: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ X2 )
     => ( ( ord_less_rat @ Y2 @ zero_zero_rat )
       => ( ord_less_rat @ ( divide_divide_rat @ X2 @ Y2 ) @ zero_zero_rat ) ) ) ).

% divide_pos_neg
thf(fact_3765_divide__pos__pos,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( ( ord_less_real @ zero_zero_real @ Y2 )
       => ( ord_less_real @ zero_zero_real @ ( divide_divide_real @ X2 @ Y2 ) ) ) ) ).

% divide_pos_pos
thf(fact_3766_divide__pos__pos,axiom,
    ! [X2: rat,Y2: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ X2 )
     => ( ( ord_less_rat @ zero_zero_rat @ Y2 )
       => ( ord_less_rat @ zero_zero_rat @ ( divide_divide_rat @ X2 @ Y2 ) ) ) ) ).

% divide_pos_pos
thf(fact_3767_divide__less__0__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ ( divide_divide_real @ A @ B ) @ zero_zero_real )
      = ( ( ( ord_less_real @ zero_zero_real @ A )
          & ( ord_less_real @ B @ zero_zero_real ) )
        | ( ( ord_less_real @ A @ zero_zero_real )
          & ( ord_less_real @ zero_zero_real @ B ) ) ) ) ).

% divide_less_0_iff
thf(fact_3768_divide__less__0__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ ( divide_divide_rat @ A @ B ) @ zero_zero_rat )
      = ( ( ( ord_less_rat @ zero_zero_rat @ A )
          & ( ord_less_rat @ B @ zero_zero_rat ) )
        | ( ( ord_less_rat @ A @ zero_zero_rat )
          & ( ord_less_rat @ zero_zero_rat @ B ) ) ) ) ).

% divide_less_0_iff
thf(fact_3769_divide__less__cancel,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_real @ ( divide_divide_real @ A @ C ) @ ( divide_divide_real @ B @ C ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_real @ A @ B ) )
        & ( ( ord_less_real @ C @ zero_zero_real )
         => ( ord_less_real @ B @ A ) )
        & ( C != zero_zero_real ) ) ) ).

% divide_less_cancel
thf(fact_3770_divide__less__cancel,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( ord_less_rat @ ( divide_divide_rat @ A @ C ) @ ( divide_divide_rat @ B @ C ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_rat @ A @ B ) )
        & ( ( ord_less_rat @ C @ zero_zero_rat )
         => ( ord_less_rat @ B @ A ) )
        & ( C != zero_zero_rat ) ) ) ).

% divide_less_cancel
thf(fact_3771_zero__less__divide__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ ( divide_divide_real @ A @ B ) )
      = ( ( ( ord_less_real @ zero_zero_real @ A )
          & ( ord_less_real @ zero_zero_real @ B ) )
        | ( ( ord_less_real @ A @ zero_zero_real )
          & ( ord_less_real @ B @ zero_zero_real ) ) ) ) ).

% zero_less_divide_iff
thf(fact_3772_zero__less__divide__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( divide_divide_rat @ A @ B ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ A )
          & ( ord_less_rat @ zero_zero_rat @ B ) )
        | ( ( ord_less_rat @ A @ zero_zero_rat )
          & ( ord_less_rat @ B @ zero_zero_rat ) ) ) ) ).

% zero_less_divide_iff
thf(fact_3773_divide__strict__right__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ zero_zero_real @ C )
       => ( ord_less_real @ ( divide_divide_real @ A @ C ) @ ( divide_divide_real @ B @ C ) ) ) ) ).

% divide_strict_right_mono
thf(fact_3774_divide__strict__right__mono,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_rat @ zero_zero_rat @ C )
       => ( ord_less_rat @ ( divide_divide_rat @ A @ C ) @ ( divide_divide_rat @ B @ C ) ) ) ) ).

% divide_strict_right_mono
thf(fact_3775_divide__strict__right__mono__neg,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_real @ B @ A )
     => ( ( ord_less_real @ C @ zero_zero_real )
       => ( ord_less_real @ ( divide_divide_real @ A @ C ) @ ( divide_divide_real @ B @ C ) ) ) ) ).

% divide_strict_right_mono_neg
thf(fact_3776_divide__strict__right__mono__neg,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( ord_less_rat @ B @ A )
     => ( ( ord_less_rat @ C @ zero_zero_rat )
       => ( ord_less_rat @ ( divide_divide_rat @ A @ C ) @ ( divide_divide_rat @ B @ C ) ) ) ) ).

% divide_strict_right_mono_neg
thf(fact_3777_zero__le__power,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ A @ N ) ) ) ).

% zero_le_power
thf(fact_3778_zero__le__power,axiom,
    ! [A: rat,N: nat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ A )
     => ( ord_less_eq_rat @ zero_zero_rat @ ( power_power_rat @ A @ N ) ) ) ).

% zero_le_power
thf(fact_3779_zero__le__power,axiom,
    ! [A: nat,N: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ord_less_eq_nat @ zero_zero_nat @ ( power_power_nat @ A @ N ) ) ) ).

% zero_le_power
thf(fact_3780_zero__le__power,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ A @ N ) ) ) ).

% zero_le_power
thf(fact_3781_power__mono,axiom,
    ! [A: real,B: real,N: nat] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ zero_zero_real @ A )
       => ( ord_less_eq_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ B @ N ) ) ) ) ).

% power_mono
thf(fact_3782_power__mono,axiom,
    ! [A: rat,B: rat,N: nat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ A )
       => ( ord_less_eq_rat @ ( power_power_rat @ A @ N ) @ ( power_power_rat @ B @ N ) ) ) ) ).

% power_mono
thf(fact_3783_power__mono,axiom,
    ! [A: nat,B: nat,N: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ A )
       => ( ord_less_eq_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ B @ N ) ) ) ) ).

% power_mono
thf(fact_3784_power__mono,axiom,
    ! [A: int,B: int,N: nat] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ zero_zero_int @ A )
       => ( ord_less_eq_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ B @ N ) ) ) ) ).

% power_mono
thf(fact_3785_zero__less__power,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ord_less_real @ zero_zero_real @ ( power_power_real @ A @ N ) ) ) ).

% zero_less_power
thf(fact_3786_zero__less__power,axiom,
    ! [A: rat,N: nat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ord_less_rat @ zero_zero_rat @ ( power_power_rat @ A @ N ) ) ) ).

% zero_less_power
thf(fact_3787_zero__less__power,axiom,
    ! [A: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ord_less_nat @ zero_zero_nat @ ( power_power_nat @ A @ N ) ) ) ).

% zero_less_power
thf(fact_3788_zero__less__power,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_int @ zero_zero_int @ A )
     => ( ord_less_int @ zero_zero_int @ ( power_power_int @ A @ N ) ) ) ).

% zero_less_power
thf(fact_3789_frac__eq__eq,axiom,
    ! [Y2: complex,Z: complex,X2: complex,W: complex] :
      ( ( Y2 != zero_zero_complex )
     => ( ( Z != zero_zero_complex )
       => ( ( ( divide1717551699836669952omplex @ X2 @ Y2 )
            = ( divide1717551699836669952omplex @ W @ Z ) )
          = ( ( times_times_complex @ X2 @ Z )
            = ( times_times_complex @ W @ Y2 ) ) ) ) ) ).

% frac_eq_eq
thf(fact_3790_frac__eq__eq,axiom,
    ! [Y2: real,Z: real,X2: real,W: real] :
      ( ( Y2 != zero_zero_real )
     => ( ( Z != zero_zero_real )
       => ( ( ( divide_divide_real @ X2 @ Y2 )
            = ( divide_divide_real @ W @ Z ) )
          = ( ( times_times_real @ X2 @ Z )
            = ( times_times_real @ W @ Y2 ) ) ) ) ) ).

% frac_eq_eq
thf(fact_3791_frac__eq__eq,axiom,
    ! [Y2: rat,Z: rat,X2: rat,W: rat] :
      ( ( Y2 != zero_zero_rat )
     => ( ( Z != zero_zero_rat )
       => ( ( ( divide_divide_rat @ X2 @ Y2 )
            = ( divide_divide_rat @ W @ Z ) )
          = ( ( times_times_rat @ X2 @ Z )
            = ( times_times_rat @ W @ Y2 ) ) ) ) ) ).

% frac_eq_eq
thf(fact_3792_divide__eq__eq,axiom,
    ! [B: complex,C: complex,A: complex] :
      ( ( ( divide1717551699836669952omplex @ B @ C )
        = A )
      = ( ( ( C != zero_zero_complex )
         => ( B
            = ( times_times_complex @ A @ C ) ) )
        & ( ( C = zero_zero_complex )
         => ( A = zero_zero_complex ) ) ) ) ).

% divide_eq_eq
thf(fact_3793_divide__eq__eq,axiom,
    ! [B: real,C: real,A: real] :
      ( ( ( divide_divide_real @ B @ C )
        = A )
      = ( ( ( C != zero_zero_real )
         => ( B
            = ( times_times_real @ A @ C ) ) )
        & ( ( C = zero_zero_real )
         => ( A = zero_zero_real ) ) ) ) ).

% divide_eq_eq
thf(fact_3794_divide__eq__eq,axiom,
    ! [B: rat,C: rat,A: rat] :
      ( ( ( divide_divide_rat @ B @ C )
        = A )
      = ( ( ( C != zero_zero_rat )
         => ( B
            = ( times_times_rat @ A @ C ) ) )
        & ( ( C = zero_zero_rat )
         => ( A = zero_zero_rat ) ) ) ) ).

% divide_eq_eq
thf(fact_3795_eq__divide__eq,axiom,
    ! [A: complex,B: complex,C: complex] :
      ( ( A
        = ( divide1717551699836669952omplex @ B @ C ) )
      = ( ( ( C != zero_zero_complex )
         => ( ( times_times_complex @ A @ C )
            = B ) )
        & ( ( C = zero_zero_complex )
         => ( A = zero_zero_complex ) ) ) ) ).

% eq_divide_eq
thf(fact_3796_eq__divide__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( A
        = ( divide_divide_real @ B @ C ) )
      = ( ( ( C != zero_zero_real )
         => ( ( times_times_real @ A @ C )
            = B ) )
        & ( ( C = zero_zero_real )
         => ( A = zero_zero_real ) ) ) ) ).

% eq_divide_eq
thf(fact_3797_eq__divide__eq,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( A
        = ( divide_divide_rat @ B @ C ) )
      = ( ( ( C != zero_zero_rat )
         => ( ( times_times_rat @ A @ C )
            = B ) )
        & ( ( C = zero_zero_rat )
         => ( A = zero_zero_rat ) ) ) ) ).

% eq_divide_eq
thf(fact_3798_divide__eq__imp,axiom,
    ! [C: complex,B: complex,A: complex] :
      ( ( C != zero_zero_complex )
     => ( ( B
          = ( times_times_complex @ A @ C ) )
       => ( ( divide1717551699836669952omplex @ B @ C )
          = A ) ) ) ).

% divide_eq_imp
thf(fact_3799_divide__eq__imp,axiom,
    ! [C: real,B: real,A: real] :
      ( ( C != zero_zero_real )
     => ( ( B
          = ( times_times_real @ A @ C ) )
       => ( ( divide_divide_real @ B @ C )
          = A ) ) ) ).

% divide_eq_imp
thf(fact_3800_divide__eq__imp,axiom,
    ! [C: rat,B: rat,A: rat] :
      ( ( C != zero_zero_rat )
     => ( ( B
          = ( times_times_rat @ A @ C ) )
       => ( ( divide_divide_rat @ B @ C )
          = A ) ) ) ).

% divide_eq_imp
thf(fact_3801_eq__divide__imp,axiom,
    ! [C: complex,A: complex,B: complex] :
      ( ( C != zero_zero_complex )
     => ( ( ( times_times_complex @ A @ C )
          = B )
       => ( A
          = ( divide1717551699836669952omplex @ B @ C ) ) ) ) ).

% eq_divide_imp
thf(fact_3802_eq__divide__imp,axiom,
    ! [C: real,A: real,B: real] :
      ( ( C != zero_zero_real )
     => ( ( ( times_times_real @ A @ C )
          = B )
       => ( A
          = ( divide_divide_real @ B @ C ) ) ) ) ).

% eq_divide_imp
thf(fact_3803_eq__divide__imp,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( C != zero_zero_rat )
     => ( ( ( times_times_rat @ A @ C )
          = B )
       => ( A
          = ( divide_divide_rat @ B @ C ) ) ) ) ).

% eq_divide_imp
thf(fact_3804_nonzero__divide__eq__eq,axiom,
    ! [C: complex,B: complex,A: complex] :
      ( ( C != zero_zero_complex )
     => ( ( ( divide1717551699836669952omplex @ B @ C )
          = A )
        = ( B
          = ( times_times_complex @ A @ C ) ) ) ) ).

% nonzero_divide_eq_eq
thf(fact_3805_nonzero__divide__eq__eq,axiom,
    ! [C: real,B: real,A: real] :
      ( ( C != zero_zero_real )
     => ( ( ( divide_divide_real @ B @ C )
          = A )
        = ( B
          = ( times_times_real @ A @ C ) ) ) ) ).

% nonzero_divide_eq_eq
thf(fact_3806_nonzero__divide__eq__eq,axiom,
    ! [C: rat,B: rat,A: rat] :
      ( ( C != zero_zero_rat )
     => ( ( ( divide_divide_rat @ B @ C )
          = A )
        = ( B
          = ( times_times_rat @ A @ C ) ) ) ) ).

% nonzero_divide_eq_eq
thf(fact_3807_nonzero__eq__divide__eq,axiom,
    ! [C: complex,A: complex,B: complex] :
      ( ( C != zero_zero_complex )
     => ( ( A
          = ( divide1717551699836669952omplex @ B @ C ) )
        = ( ( times_times_complex @ A @ C )
          = B ) ) ) ).

% nonzero_eq_divide_eq
thf(fact_3808_nonzero__eq__divide__eq,axiom,
    ! [C: real,A: real,B: real] :
      ( ( C != zero_zero_real )
     => ( ( A
          = ( divide_divide_real @ B @ C ) )
        = ( ( times_times_real @ A @ C )
          = B ) ) ) ).

% nonzero_eq_divide_eq
thf(fact_3809_nonzero__eq__divide__eq,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( C != zero_zero_rat )
     => ( ( A
          = ( divide_divide_rat @ B @ C ) )
        = ( ( times_times_rat @ A @ C )
          = B ) ) ) ).

% nonzero_eq_divide_eq
thf(fact_3810_right__inverse__eq,axiom,
    ! [B: complex,A: complex] :
      ( ( B != zero_zero_complex )
     => ( ( ( divide1717551699836669952omplex @ A @ B )
          = one_one_complex )
        = ( A = B ) ) ) ).

% right_inverse_eq
thf(fact_3811_right__inverse__eq,axiom,
    ! [B: real,A: real] :
      ( ( B != zero_zero_real )
     => ( ( ( divide_divide_real @ A @ B )
          = one_one_real )
        = ( A = B ) ) ) ).

% right_inverse_eq
thf(fact_3812_right__inverse__eq,axiom,
    ! [B: rat,A: rat] :
      ( ( B != zero_zero_rat )
     => ( ( ( divide_divide_rat @ A @ B )
          = one_one_rat )
        = ( A = B ) ) ) ).

% right_inverse_eq
thf(fact_3813_unique__euclidean__semiring__numeral__class_Omod__less__eq__dividend,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A )
     => ( ord_le3102999989581377725nteger @ ( modulo364778990260209775nteger @ A @ B ) @ A ) ) ).

% unique_euclidean_semiring_numeral_class.mod_less_eq_dividend
thf(fact_3814_unique__euclidean__semiring__numeral__class_Omod__less__eq__dividend,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ord_less_eq_nat @ ( modulo_modulo_nat @ A @ B ) @ A ) ) ).

% unique_euclidean_semiring_numeral_class.mod_less_eq_dividend
thf(fact_3815_unique__euclidean__semiring__numeral__class_Omod__less__eq__dividend,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ord_less_eq_int @ ( modulo_modulo_int @ A @ B ) @ A ) ) ).

% unique_euclidean_semiring_numeral_class.mod_less_eq_dividend
thf(fact_3816_unique__euclidean__semiring__numeral__class_Opos__mod__bound,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ B )
     => ( ord_less_nat @ ( modulo_modulo_nat @ A @ B ) @ B ) ) ).

% unique_euclidean_semiring_numeral_class.pos_mod_bound
thf(fact_3817_unique__euclidean__semiring__numeral__class_Opos__mod__bound,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ord_less_int @ ( modulo_modulo_int @ A @ B ) @ B ) ) ).

% unique_euclidean_semiring_numeral_class.pos_mod_bound
thf(fact_3818_unique__euclidean__semiring__numeral__class_Opos__mod__bound,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ B )
     => ( ord_le6747313008572928689nteger @ ( modulo364778990260209775nteger @ A @ B ) @ B ) ) ).

% unique_euclidean_semiring_numeral_class.pos_mod_bound
thf(fact_3819_power__0,axiom,
    ! [A: rat] :
      ( ( power_power_rat @ A @ zero_zero_nat )
      = one_one_rat ) ).

% power_0
thf(fact_3820_power__0,axiom,
    ! [A: nat] :
      ( ( power_power_nat @ A @ zero_zero_nat )
      = one_one_nat ) ).

% power_0
thf(fact_3821_power__0,axiom,
    ! [A: real] :
      ( ( power_power_real @ A @ zero_zero_nat )
      = one_one_real ) ).

% power_0
thf(fact_3822_power__0,axiom,
    ! [A: complex] :
      ( ( power_power_complex @ A @ zero_zero_nat )
      = one_one_complex ) ).

% power_0
thf(fact_3823_power__0,axiom,
    ! [A: int] :
      ( ( power_power_int @ A @ zero_zero_nat )
      = one_one_int ) ).

% power_0
thf(fact_3824_mod__eq__self__iff__div__eq__0,axiom,
    ! [A: nat,B: nat] :
      ( ( ( modulo_modulo_nat @ A @ B )
        = A )
      = ( ( divide_divide_nat @ A @ B )
        = zero_zero_nat ) ) ).

% mod_eq_self_iff_div_eq_0
thf(fact_3825_mod__eq__self__iff__div__eq__0,axiom,
    ! [A: int,B: int] :
      ( ( ( modulo_modulo_int @ A @ B )
        = A )
      = ( ( divide_divide_int @ A @ B )
        = zero_zero_int ) ) ).

% mod_eq_self_iff_div_eq_0
thf(fact_3826_mod__eq__self__iff__div__eq__0,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ( modulo364778990260209775nteger @ A @ B )
        = A )
      = ( ( divide6298287555418463151nteger @ A @ B )
        = zero_z3403309356797280102nteger ) ) ).

% mod_eq_self_iff_div_eq_0
thf(fact_3827_less__Suc__eq__0__disj,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ ( suc @ N ) )
      = ( ( M = zero_zero_nat )
        | ? [J3: nat] :
            ( ( M
              = ( suc @ J3 ) )
            & ( ord_less_nat @ J3 @ N ) ) ) ) ).

% less_Suc_eq_0_disj
thf(fact_3828_gr0__implies__Suc,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ? [M4: nat] :
          ( N
          = ( suc @ M4 ) ) ) ).

% gr0_implies_Suc
thf(fact_3829_All__less__Suc2,axiom,
    ! [N: nat,P: nat > $o] :
      ( ( ! [I4: nat] :
            ( ( ord_less_nat @ I4 @ ( suc @ N ) )
           => ( P @ I4 ) ) )
      = ( ( P @ zero_zero_nat )
        & ! [I4: nat] :
            ( ( ord_less_nat @ I4 @ N )
           => ( P @ ( suc @ I4 ) ) ) ) ) ).

% All_less_Suc2
thf(fact_3830_gr0__conv__Suc,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
      = ( ? [M3: nat] :
            ( N
            = ( suc @ M3 ) ) ) ) ).

% gr0_conv_Suc
thf(fact_3831_Ex__less__Suc2,axiom,
    ! [N: nat,P: nat > $o] :
      ( ( ? [I4: nat] :
            ( ( ord_less_nat @ I4 @ ( suc @ N ) )
            & ( P @ I4 ) ) )
      = ( ( P @ zero_zero_nat )
        | ? [I4: nat] :
            ( ( ord_less_nat @ I4 @ N )
            & ( P @ ( suc @ I4 ) ) ) ) ) ).

% Ex_less_Suc2
thf(fact_3832_one__is__add,axiom,
    ! [M: nat,N: nat] :
      ( ( ( suc @ zero_zero_nat )
        = ( plus_plus_nat @ M @ N ) )
      = ( ( ( M
            = ( suc @ zero_zero_nat ) )
          & ( N = zero_zero_nat ) )
        | ( ( M = zero_zero_nat )
          & ( N
            = ( suc @ zero_zero_nat ) ) ) ) ) ).

% one_is_add
thf(fact_3833_add__is__1,axiom,
    ! [M: nat,N: nat] :
      ( ( ( plus_plus_nat @ M @ N )
        = ( suc @ zero_zero_nat ) )
      = ( ( ( M
            = ( suc @ zero_zero_nat ) )
          & ( N = zero_zero_nat ) )
        | ( ( M = zero_zero_nat )
          & ( N
            = ( suc @ zero_zero_nat ) ) ) ) ) ).

% add_is_1
thf(fact_3834_ex__least__nat__le,axiom,
    ! [P: nat > $o,N: nat] :
      ( ( P @ N )
     => ( ~ ( P @ zero_zero_nat )
       => ? [K3: nat] :
            ( ( ord_less_eq_nat @ K3 @ N )
            & ! [I2: nat] :
                ( ( ord_less_nat @ I2 @ K3 )
               => ~ ( P @ I2 ) )
            & ( P @ K3 ) ) ) ) ).

% ex_least_nat_le
thf(fact_3835_option_Osize_I4_J,axiom,
    ! [X23: product_prod_nat_nat] :
      ( ( size_s170228958280169651at_nat @ ( some_P7363390416028606310at_nat @ X23 ) )
      = ( suc @ zero_zero_nat ) ) ).

% option.size(4)
thf(fact_3836_option_Osize_I4_J,axiom,
    ! [X23: nat] :
      ( ( size_size_option_nat @ ( some_nat @ X23 ) )
      = ( suc @ zero_zero_nat ) ) ).

% option.size(4)
thf(fact_3837_less__imp__add__positive,axiom,
    ! [I: nat,J: nat] :
      ( ( ord_less_nat @ I @ J )
     => ? [K3: nat] :
          ( ( ord_less_nat @ zero_zero_nat @ K3 )
          & ( ( plus_plus_nat @ I @ K3 )
            = J ) ) ) ).

% less_imp_add_positive
thf(fact_3838_div__less__mono,axiom,
    ! [A2: nat,B3: nat,N: nat] :
      ( ( ord_less_nat @ A2 @ B3 )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ( ( modulo_modulo_nat @ A2 @ N )
            = zero_zero_nat )
         => ( ( ( modulo_modulo_nat @ B3 @ N )
              = zero_zero_nat )
           => ( ord_less_nat @ ( divide_divide_nat @ A2 @ N ) @ ( divide_divide_nat @ B3 @ N ) ) ) ) ) ) ).

% div_less_mono
thf(fact_3839_option_Osize_I3_J,axiom,
    ( ( size_s170228958280169651at_nat @ none_P5556105721700978146at_nat )
    = ( suc @ zero_zero_nat ) ) ).

% option.size(3)
thf(fact_3840_option_Osize_I3_J,axiom,
    ( ( size_size_option_nat @ none_nat )
    = ( suc @ zero_zero_nat ) ) ).

% option.size(3)
thf(fact_3841_One__nat__def,axiom,
    ( one_one_nat
    = ( suc @ zero_zero_nat ) ) ).

% One_nat_def
thf(fact_3842_diff__less,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_nat @ zero_zero_nat @ M )
       => ( ord_less_nat @ ( minus_minus_nat @ M @ N ) @ M ) ) ) ).

% diff_less
thf(fact_3843_nat__mult__eq__cancel1,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ K )
     => ( ( ( times_times_nat @ K @ M )
          = ( times_times_nat @ K @ N ) )
        = ( M = N ) ) ) ).

% nat_mult_eq_cancel1
thf(fact_3844_nat__mult__less__cancel1,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ K )
     => ( ( ord_less_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
        = ( ord_less_nat @ M @ N ) ) ) ).

% nat_mult_less_cancel1
thf(fact_3845_mult__less__mono2,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ( ord_less_nat @ zero_zero_nat @ K )
       => ( ord_less_nat @ ( times_times_nat @ K @ I ) @ ( times_times_nat @ K @ J ) ) ) ) ).

% mult_less_mono2
thf(fact_3846_mult__less__mono1,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ( ord_less_nat @ zero_zero_nat @ K )
       => ( ord_less_nat @ ( times_times_nat @ I @ K ) @ ( times_times_nat @ J @ K ) ) ) ) ).

% mult_less_mono1
thf(fact_3847_Euclidean__Division_Odiv__eq__0__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ( divide_divide_nat @ M @ N )
        = zero_zero_nat )
      = ( ( ord_less_nat @ M @ N )
        | ( N = zero_zero_nat ) ) ) ).

% Euclidean_Division.div_eq_0_iff
thf(fact_3848_diff__add__0,axiom,
    ! [N: nat,M: nat] :
      ( ( minus_minus_nat @ N @ ( plus_plus_nat @ N @ M ) )
      = zero_zero_nat ) ).

% diff_add_0
thf(fact_3849_nat__power__less__imp__less,axiom,
    ! [I: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ I )
     => ( ( ord_less_nat @ ( power_power_nat @ I @ M ) @ ( power_power_nat @ I @ N ) )
       => ( ord_less_nat @ M @ N ) ) ) ).

% nat_power_less_imp_less
thf(fact_3850_mult__eq__self__implies__10,axiom,
    ! [M: nat,N: nat] :
      ( ( M
        = ( times_times_nat @ M @ N ) )
     => ( ( N = one_one_nat )
        | ( M = zero_zero_nat ) ) ) ).

% mult_eq_self_implies_10
thf(fact_3851_mod__Suc,axiom,
    ! [M: nat,N: nat] :
      ( ( ( ( suc @ ( modulo_modulo_nat @ M @ N ) )
          = N )
       => ( ( modulo_modulo_nat @ ( suc @ M ) @ N )
          = zero_zero_nat ) )
      & ( ( ( suc @ ( modulo_modulo_nat @ M @ N ) )
         != N )
       => ( ( modulo_modulo_nat @ ( suc @ M ) @ N )
          = ( suc @ ( modulo_modulo_nat @ M @ N ) ) ) ) ) ).

% mod_Suc
thf(fact_3852_mod__less__divisor,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ord_less_nat @ ( modulo_modulo_nat @ M @ N ) @ N ) ) ).

% mod_less_divisor
thf(fact_3853_mod__eq__0D,axiom,
    ! [M: nat,D: nat] :
      ( ( ( modulo_modulo_nat @ M @ D )
        = zero_zero_nat )
     => ? [Q3: nat] :
          ( M
          = ( times_times_nat @ D @ Q3 ) ) ) ).

% mod_eq_0D
thf(fact_3854_vebt__insert_Ocases,axiom,
    ! [X2: produc9072475918466114483BT_nat] :
      ( ! [A6: $o,B7: $o,X4: nat] :
          ( X2
         != ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A6 @ B7 ) @ X4 ) )
     => ( ! [Info2: option4927543243414619207at_nat,Ts: list_VEBT_VEBT,S2: vEBT_VEBT,X4: nat] :
            ( X2
           != ( produc738532404422230701BT_nat @ ( vEBT_Node @ Info2 @ zero_zero_nat @ Ts @ S2 ) @ X4 ) )
       => ( ! [Info2: option4927543243414619207at_nat,Ts: list_VEBT_VEBT,S2: vEBT_VEBT,X4: nat] :
              ( X2
             != ( produc738532404422230701BT_nat @ ( vEBT_Node @ Info2 @ ( suc @ zero_zero_nat ) @ Ts @ S2 ) @ X4 ) )
         => ( ! [V2: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT,X4: nat] :
                ( X2
               != ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ V2 ) ) @ TreeList3 @ Summary2 ) @ X4 ) )
           => ~ ! [Mi2: nat,Ma2: nat,Va3: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT,X4: nat] :
                  ( X2
                 != ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va3 ) ) @ TreeList3 @ Summary2 ) @ X4 ) ) ) ) ) ) ).

% vebt_insert.cases
thf(fact_3855_VEBT__internal_Omembermima_Ocases,axiom,
    ! [X2: produc9072475918466114483BT_nat] :
      ( ! [Uu2: $o,Uv2: $o,Uw2: nat] :
          ( X2
         != ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uu2 @ Uv2 ) @ Uw2 ) )
     => ( ! [Ux2: list_VEBT_VEBT,Uy2: vEBT_VEBT,Uz2: nat] :
            ( X2
           != ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ zero_zero_nat @ Ux2 @ Uy2 ) @ Uz2 ) )
       => ( ! [Mi2: nat,Ma2: nat,Va2: list_VEBT_VEBT,Vb2: vEBT_VEBT,X4: nat] :
              ( X2
             != ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ Va2 @ Vb2 ) @ X4 ) )
         => ( ! [Mi2: nat,Ma2: nat,V2: nat,TreeList3: list_VEBT_VEBT,Vc2: vEBT_VEBT,X4: nat] :
                ( X2
               != ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ V2 ) @ TreeList3 @ Vc2 ) @ X4 ) )
           => ~ ! [V2: nat,TreeList3: list_VEBT_VEBT,Vd2: vEBT_VEBT,X4: nat] :
                  ( X2
                 != ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V2 ) @ TreeList3 @ Vd2 ) @ X4 ) ) ) ) ) ) ).

% VEBT_internal.membermima.cases
thf(fact_3856_T_092_060_094sub_062m_092_060_094sub_062e_092_060_094sub_062m_092_060_094sub_062b_092_060_094sub_062e_092_060_094sub_062r_H_Ocases,axiom,
    ! [X2: produc9072475918466114483BT_nat] :
      ( ! [A6: $o,B7: $o,X4: nat] :
          ( X2
         != ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A6 @ B7 ) @ X4 ) )
     => ( ! [Uu2: nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT,X4: nat] :
            ( X2
           != ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu2 @ Uv2 @ Uw2 ) @ X4 ) )
       => ( ! [V2: product_prod_nat_nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT,X4: nat] :
              ( X2
             != ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ zero_zero_nat @ Uy2 @ Uz2 ) @ X4 ) )
         => ( ! [V2: product_prod_nat_nat,Vb2: list_VEBT_VEBT,Vc2: vEBT_VEBT,X4: nat] :
                ( X2
               != ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ ( suc @ zero_zero_nat ) @ Vb2 @ Vc2 ) @ X4 ) )
           => ~ ! [Mi2: nat,Ma2: nat,Va3: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT,X4: nat] :
                  ( X2
                 != ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va3 ) ) @ TreeList3 @ Summary2 ) @ X4 ) ) ) ) ) ) ).

% T\<^sub>m\<^sub>e\<^sub>m\<^sub>b\<^sub>e\<^sub>r'.cases
thf(fact_3857_vebt__pred_Ocases,axiom,
    ! [X2: produc9072475918466114483BT_nat] :
      ( ! [Uu2: $o,Uv2: $o] :
          ( X2
         != ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uu2 @ Uv2 ) @ zero_zero_nat ) )
     => ( ! [A6: $o,Uw2: $o] :
            ( X2
           != ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A6 @ Uw2 ) @ ( suc @ zero_zero_nat ) ) )
       => ( ! [A6: $o,B7: $o,Va3: nat] :
              ( X2
             != ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A6 @ B7 ) @ ( suc @ ( suc @ Va3 ) ) ) )
         => ( ! [Uy2: nat,Uz2: list_VEBT_VEBT,Va2: vEBT_VEBT,Vb2: nat] :
                ( X2
               != ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Uy2 @ Uz2 @ Va2 ) @ Vb2 ) )
           => ( ! [V2: product_prod_nat_nat,Vd2: list_VEBT_VEBT,Ve: vEBT_VEBT,Vf: nat] :
                  ( X2
                 != ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ zero_zero_nat @ Vd2 @ Ve ) @ Vf ) )
             => ( ! [V2: product_prod_nat_nat,Vh: list_VEBT_VEBT,Vi: vEBT_VEBT,Vj: nat] :
                    ( X2
                   != ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ ( suc @ zero_zero_nat ) @ Vh @ Vi ) @ Vj ) )
               => ~ ! [Mi2: nat,Ma2: nat,Va3: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT,X4: nat] :
                      ( X2
                     != ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va3 ) ) @ TreeList3 @ Summary2 ) @ X4 ) ) ) ) ) ) ) ) ).

% vebt_pred.cases
thf(fact_3858_vebt__succ_Ocases,axiom,
    ! [X2: produc9072475918466114483BT_nat] :
      ( ! [Uu2: $o,B7: $o] :
          ( X2
         != ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uu2 @ B7 ) @ zero_zero_nat ) )
     => ( ! [Uv2: $o,Uw2: $o,N3: nat] :
            ( X2
           != ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uv2 @ Uw2 ) @ ( suc @ N3 ) ) )
       => ( ! [Ux2: nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT,Va2: nat] :
              ( X2
             != ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Ux2 @ Uy2 @ Uz2 ) @ Va2 ) )
         => ( ! [V2: product_prod_nat_nat,Vc2: list_VEBT_VEBT,Vd2: vEBT_VEBT,Ve: nat] :
                ( X2
               != ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ zero_zero_nat @ Vc2 @ Vd2 ) @ Ve ) )
           => ( ! [V2: product_prod_nat_nat,Vg: list_VEBT_VEBT,Vh: vEBT_VEBT,Vi: nat] :
                  ( X2
                 != ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ ( suc @ zero_zero_nat ) @ Vg @ Vh ) @ Vi ) )
             => ~ ! [Mi2: nat,Ma2: nat,Va3: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT,X4: nat] :
                    ( X2
                   != ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va3 ) ) @ TreeList3 @ Summary2 ) @ X4 ) ) ) ) ) ) ) ).

% vebt_succ.cases
thf(fact_3859_vebt__insert_Osimps_I2_J,axiom,
    ! [Info: option4927543243414619207at_nat,Ts2: list_VEBT_VEBT,S: vEBT_VEBT,X2: nat] :
      ( ( vEBT_vebt_insert @ ( vEBT_Node @ Info @ zero_zero_nat @ Ts2 @ S ) @ X2 )
      = ( vEBT_Node @ Info @ zero_zero_nat @ Ts2 @ S ) ) ).

% vebt_insert.simps(2)
thf(fact_3860_vebt__pred_Osimps_I3_J,axiom,
    ! [B: $o,A: $o,Va: nat] :
      ( ( B
       => ( ( vEBT_vebt_pred @ ( vEBT_Leaf @ A @ B ) @ ( suc @ ( suc @ Va ) ) )
          = ( some_nat @ one_one_nat ) ) )
      & ( ~ B
       => ( ( A
           => ( ( vEBT_vebt_pred @ ( vEBT_Leaf @ A @ B ) @ ( suc @ ( suc @ Va ) ) )
              = ( some_nat @ zero_zero_nat ) ) )
          & ( ~ A
           => ( ( vEBT_vebt_pred @ ( vEBT_Leaf @ A @ B ) @ ( suc @ ( suc @ Va ) ) )
              = none_nat ) ) ) ) ) ).

% vebt_pred.simps(3)
thf(fact_3861_VEBT__internal_Onaive__member_Osimps_I2_J,axiom,
    ! [Uu: option4927543243414619207at_nat,Uv: list_VEBT_VEBT,Uw: vEBT_VEBT,Ux: nat] :
      ~ ( vEBT_V5719532721284313246member @ ( vEBT_Node @ Uu @ zero_zero_nat @ Uv @ Uw ) @ Ux ) ).

% VEBT_internal.naive_member.simps(2)
thf(fact_3862_T_092_060_094sub_062m_092_060_094sub_062e_092_060_094sub_062m_092_060_094sub_062b_092_060_094sub_062e_092_060_094sub_062r_Osimps_I1_J,axiom,
    ! [A: $o,B: $o,X2: nat] :
      ( ( vEBT_T_m_e_m_b_e_r @ ( vEBT_Leaf @ A @ B ) @ X2 )
      = ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( if_nat @ ( X2 = zero_zero_nat ) @ one_one_nat @ ( plus_plus_nat @ one_one_nat @ one_one_nat ) ) ) ) ).

% T\<^sub>m\<^sub>e\<^sub>m\<^sub>b\<^sub>e\<^sub>r.simps(1)
thf(fact_3863_VEBT__internal_OminNull_Ocases,axiom,
    ! [X2: vEBT_VEBT] :
      ( ( X2
       != ( vEBT_Leaf @ $false @ $false ) )
     => ( ! [Uv2: $o] :
            ( X2
           != ( vEBT_Leaf @ $true @ Uv2 ) )
       => ( ! [Uu2: $o] :
              ( X2
             != ( vEBT_Leaf @ Uu2 @ $true ) )
         => ( ! [Uw2: nat,Ux2: list_VEBT_VEBT,Uy2: vEBT_VEBT] :
                ( X2
               != ( vEBT_Node @ none_P5556105721700978146at_nat @ Uw2 @ Ux2 @ Uy2 ) )
           => ~ ! [Uz2: product_prod_nat_nat,Va2: nat,Vb2: list_VEBT_VEBT,Vc2: vEBT_VEBT] :
                  ( X2
                 != ( vEBT_Node @ ( some_P7363390416028606310at_nat @ Uz2 ) @ Va2 @ Vb2 @ Vc2 ) ) ) ) ) ) ).

% VEBT_internal.minNull.cases
thf(fact_3864_verit__comp__simplify1_I2_J,axiom,
    ! [A: set_int] : ( ord_less_eq_set_int @ A @ A ) ).

% verit_comp_simplify1(2)
thf(fact_3865_verit__comp__simplify1_I2_J,axiom,
    ! [A: rat] : ( ord_less_eq_rat @ A @ A ) ).

% verit_comp_simplify1(2)
thf(fact_3866_verit__comp__simplify1_I2_J,axiom,
    ! [A: num] : ( ord_less_eq_num @ A @ A ) ).

% verit_comp_simplify1(2)
thf(fact_3867_verit__comp__simplify1_I2_J,axiom,
    ! [A: nat] : ( ord_less_eq_nat @ A @ A ) ).

% verit_comp_simplify1(2)
thf(fact_3868_verit__comp__simplify1_I2_J,axiom,
    ! [A: int] : ( ord_less_eq_int @ A @ A ) ).

% verit_comp_simplify1(2)
thf(fact_3869_nle__le,axiom,
    ! [A: rat,B: rat] :
      ( ( ~ ( ord_less_eq_rat @ A @ B ) )
      = ( ( ord_less_eq_rat @ B @ A )
        & ( B != A ) ) ) ).

% nle_le
thf(fact_3870_nle__le,axiom,
    ! [A: num,B: num] :
      ( ( ~ ( ord_less_eq_num @ A @ B ) )
      = ( ( ord_less_eq_num @ B @ A )
        & ( B != A ) ) ) ).

% nle_le
thf(fact_3871_nle__le,axiom,
    ! [A: nat,B: nat] :
      ( ( ~ ( ord_less_eq_nat @ A @ B ) )
      = ( ( ord_less_eq_nat @ B @ A )
        & ( B != A ) ) ) ).

% nle_le
thf(fact_3872_nle__le,axiom,
    ! [A: int,B: int] :
      ( ( ~ ( ord_less_eq_int @ A @ B ) )
      = ( ( ord_less_eq_int @ B @ A )
        & ( B != A ) ) ) ).

% nle_le
thf(fact_3873_le__cases3,axiom,
    ! [X2: rat,Y2: rat,Z: rat] :
      ( ( ( ord_less_eq_rat @ X2 @ Y2 )
       => ~ ( ord_less_eq_rat @ Y2 @ Z ) )
     => ( ( ( ord_less_eq_rat @ Y2 @ X2 )
         => ~ ( ord_less_eq_rat @ X2 @ Z ) )
       => ( ( ( ord_less_eq_rat @ X2 @ Z )
           => ~ ( ord_less_eq_rat @ Z @ Y2 ) )
         => ( ( ( ord_less_eq_rat @ Z @ Y2 )
             => ~ ( ord_less_eq_rat @ Y2 @ X2 ) )
           => ( ( ( ord_less_eq_rat @ Y2 @ Z )
               => ~ ( ord_less_eq_rat @ Z @ X2 ) )
             => ~ ( ( ord_less_eq_rat @ Z @ X2 )
                 => ~ ( ord_less_eq_rat @ X2 @ Y2 ) ) ) ) ) ) ) ).

% le_cases3
thf(fact_3874_le__cases3,axiom,
    ! [X2: num,Y2: num,Z: num] :
      ( ( ( ord_less_eq_num @ X2 @ Y2 )
       => ~ ( ord_less_eq_num @ Y2 @ Z ) )
     => ( ( ( ord_less_eq_num @ Y2 @ X2 )
         => ~ ( ord_less_eq_num @ X2 @ Z ) )
       => ( ( ( ord_less_eq_num @ X2 @ Z )
           => ~ ( ord_less_eq_num @ Z @ Y2 ) )
         => ( ( ( ord_less_eq_num @ Z @ Y2 )
             => ~ ( ord_less_eq_num @ Y2 @ X2 ) )
           => ( ( ( ord_less_eq_num @ Y2 @ Z )
               => ~ ( ord_less_eq_num @ Z @ X2 ) )
             => ~ ( ( ord_less_eq_num @ Z @ X2 )
                 => ~ ( ord_less_eq_num @ X2 @ Y2 ) ) ) ) ) ) ) ).

% le_cases3
thf(fact_3875_le__cases3,axiom,
    ! [X2: nat,Y2: nat,Z: nat] :
      ( ( ( ord_less_eq_nat @ X2 @ Y2 )
       => ~ ( ord_less_eq_nat @ Y2 @ Z ) )
     => ( ( ( ord_less_eq_nat @ Y2 @ X2 )
         => ~ ( ord_less_eq_nat @ X2 @ Z ) )
       => ( ( ( ord_less_eq_nat @ X2 @ Z )
           => ~ ( ord_less_eq_nat @ Z @ Y2 ) )
         => ( ( ( ord_less_eq_nat @ Z @ Y2 )
             => ~ ( ord_less_eq_nat @ Y2 @ X2 ) )
           => ( ( ( ord_less_eq_nat @ Y2 @ Z )
               => ~ ( ord_less_eq_nat @ Z @ X2 ) )
             => ~ ( ( ord_less_eq_nat @ Z @ X2 )
                 => ~ ( ord_less_eq_nat @ X2 @ Y2 ) ) ) ) ) ) ) ).

% le_cases3
thf(fact_3876_le__cases3,axiom,
    ! [X2: int,Y2: int,Z: int] :
      ( ( ( ord_less_eq_int @ X2 @ Y2 )
       => ~ ( ord_less_eq_int @ Y2 @ Z ) )
     => ( ( ( ord_less_eq_int @ Y2 @ X2 )
         => ~ ( ord_less_eq_int @ X2 @ Z ) )
       => ( ( ( ord_less_eq_int @ X2 @ Z )
           => ~ ( ord_less_eq_int @ Z @ Y2 ) )
         => ( ( ( ord_less_eq_int @ Z @ Y2 )
             => ~ ( ord_less_eq_int @ Y2 @ X2 ) )
           => ( ( ( ord_less_eq_int @ Y2 @ Z )
               => ~ ( ord_less_eq_int @ Z @ X2 ) )
             => ~ ( ( ord_less_eq_int @ Z @ X2 )
                 => ~ ( ord_less_eq_int @ X2 @ Y2 ) ) ) ) ) ) ) ).

% le_cases3
thf(fact_3877_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y6: set_int,Z5: set_int] : ( Y6 = Z5 ) )
    = ( ^ [X: set_int,Y: set_int] :
          ( ( ord_less_eq_set_int @ X @ Y )
          & ( ord_less_eq_set_int @ Y @ X ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_3878_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y6: rat,Z5: rat] : ( Y6 = Z5 ) )
    = ( ^ [X: rat,Y: rat] :
          ( ( ord_less_eq_rat @ X @ Y )
          & ( ord_less_eq_rat @ Y @ X ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_3879_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y6: num,Z5: num] : ( Y6 = Z5 ) )
    = ( ^ [X: num,Y: num] :
          ( ( ord_less_eq_num @ X @ Y )
          & ( ord_less_eq_num @ Y @ X ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_3880_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y6: nat,Z5: nat] : ( Y6 = Z5 ) )
    = ( ^ [X: nat,Y: nat] :
          ( ( ord_less_eq_nat @ X @ Y )
          & ( ord_less_eq_nat @ Y @ X ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_3881_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y6: int,Z5: int] : ( Y6 = Z5 ) )
    = ( ^ [X: int,Y: int] :
          ( ( ord_less_eq_int @ X @ Y )
          & ( ord_less_eq_int @ Y @ X ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_3882_ord__eq__le__trans,axiom,
    ! [A: set_int,B: set_int,C: set_int] :
      ( ( A = B )
     => ( ( ord_less_eq_set_int @ B @ C )
       => ( ord_less_eq_set_int @ A @ C ) ) ) ).

% ord_eq_le_trans
thf(fact_3883_ord__eq__le__trans,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( A = B )
     => ( ( ord_less_eq_rat @ B @ C )
       => ( ord_less_eq_rat @ A @ C ) ) ) ).

% ord_eq_le_trans
thf(fact_3884_ord__eq__le__trans,axiom,
    ! [A: num,B: num,C: num] :
      ( ( A = B )
     => ( ( ord_less_eq_num @ B @ C )
       => ( ord_less_eq_num @ A @ C ) ) ) ).

% ord_eq_le_trans
thf(fact_3885_ord__eq__le__trans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( A = B )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ord_less_eq_nat @ A @ C ) ) ) ).

% ord_eq_le_trans
thf(fact_3886_ord__eq__le__trans,axiom,
    ! [A: int,B: int,C: int] :
      ( ( A = B )
     => ( ( ord_less_eq_int @ B @ C )
       => ( ord_less_eq_int @ A @ C ) ) ) ).

% ord_eq_le_trans
thf(fact_3887_ord__le__eq__trans,axiom,
    ! [A: set_int,B: set_int,C: set_int] :
      ( ( ord_less_eq_set_int @ A @ B )
     => ( ( B = C )
       => ( ord_less_eq_set_int @ A @ C ) ) ) ).

% ord_le_eq_trans
thf(fact_3888_ord__le__eq__trans,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( B = C )
       => ( ord_less_eq_rat @ A @ C ) ) ) ).

% ord_le_eq_trans
thf(fact_3889_ord__le__eq__trans,axiom,
    ! [A: num,B: num,C: num] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( B = C )
       => ( ord_less_eq_num @ A @ C ) ) ) ).

% ord_le_eq_trans
thf(fact_3890_ord__le__eq__trans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( B = C )
       => ( ord_less_eq_nat @ A @ C ) ) ) ).

% ord_le_eq_trans
thf(fact_3891_ord__le__eq__trans,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( B = C )
       => ( ord_less_eq_int @ A @ C ) ) ) ).

% ord_le_eq_trans
thf(fact_3892_order__antisym,axiom,
    ! [X2: set_int,Y2: set_int] :
      ( ( ord_less_eq_set_int @ X2 @ Y2 )
     => ( ( ord_less_eq_set_int @ Y2 @ X2 )
       => ( X2 = Y2 ) ) ) ).

% order_antisym
thf(fact_3893_order__antisym,axiom,
    ! [X2: rat,Y2: rat] :
      ( ( ord_less_eq_rat @ X2 @ Y2 )
     => ( ( ord_less_eq_rat @ Y2 @ X2 )
       => ( X2 = Y2 ) ) ) ).

% order_antisym
thf(fact_3894_order__antisym,axiom,
    ! [X2: num,Y2: num] :
      ( ( ord_less_eq_num @ X2 @ Y2 )
     => ( ( ord_less_eq_num @ Y2 @ X2 )
       => ( X2 = Y2 ) ) ) ).

% order_antisym
thf(fact_3895_order__antisym,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ord_less_eq_nat @ X2 @ Y2 )
     => ( ( ord_less_eq_nat @ Y2 @ X2 )
       => ( X2 = Y2 ) ) ) ).

% order_antisym
thf(fact_3896_order__antisym,axiom,
    ! [X2: int,Y2: int] :
      ( ( ord_less_eq_int @ X2 @ Y2 )
     => ( ( ord_less_eq_int @ Y2 @ X2 )
       => ( X2 = Y2 ) ) ) ).

% order_antisym
thf(fact_3897_order_Otrans,axiom,
    ! [A: set_int,B: set_int,C: set_int] :
      ( ( ord_less_eq_set_int @ A @ B )
     => ( ( ord_less_eq_set_int @ B @ C )
       => ( ord_less_eq_set_int @ A @ C ) ) ) ).

% order.trans
thf(fact_3898_order_Otrans,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_rat @ B @ C )
       => ( ord_less_eq_rat @ A @ C ) ) ) ).

% order.trans
thf(fact_3899_order_Otrans,axiom,
    ! [A: num,B: num,C: num] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( ord_less_eq_num @ B @ C )
       => ( ord_less_eq_num @ A @ C ) ) ) ).

% order.trans
thf(fact_3900_order_Otrans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ord_less_eq_nat @ A @ C ) ) ) ).

% order.trans
thf(fact_3901_order_Otrans,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ B @ C )
       => ( ord_less_eq_int @ A @ C ) ) ) ).

% order.trans
thf(fact_3902_order__trans,axiom,
    ! [X2: set_int,Y2: set_int,Z: set_int] :
      ( ( ord_less_eq_set_int @ X2 @ Y2 )
     => ( ( ord_less_eq_set_int @ Y2 @ Z )
       => ( ord_less_eq_set_int @ X2 @ Z ) ) ) ).

% order_trans
thf(fact_3903_order__trans,axiom,
    ! [X2: rat,Y2: rat,Z: rat] :
      ( ( ord_less_eq_rat @ X2 @ Y2 )
     => ( ( ord_less_eq_rat @ Y2 @ Z )
       => ( ord_less_eq_rat @ X2 @ Z ) ) ) ).

% order_trans
thf(fact_3904_order__trans,axiom,
    ! [X2: num,Y2: num,Z: num] :
      ( ( ord_less_eq_num @ X2 @ Y2 )
     => ( ( ord_less_eq_num @ Y2 @ Z )
       => ( ord_less_eq_num @ X2 @ Z ) ) ) ).

% order_trans
thf(fact_3905_order__trans,axiom,
    ! [X2: nat,Y2: nat,Z: nat] :
      ( ( ord_less_eq_nat @ X2 @ Y2 )
     => ( ( ord_less_eq_nat @ Y2 @ Z )
       => ( ord_less_eq_nat @ X2 @ Z ) ) ) ).

% order_trans
thf(fact_3906_order__trans,axiom,
    ! [X2: int,Y2: int,Z: int] :
      ( ( ord_less_eq_int @ X2 @ Y2 )
     => ( ( ord_less_eq_int @ Y2 @ Z )
       => ( ord_less_eq_int @ X2 @ Z ) ) ) ).

% order_trans
thf(fact_3907_linorder__wlog,axiom,
    ! [P: rat > rat > $o,A: rat,B: rat] :
      ( ! [A6: rat,B7: rat] :
          ( ( ord_less_eq_rat @ A6 @ B7 )
         => ( P @ A6 @ B7 ) )
     => ( ! [A6: rat,B7: rat] :
            ( ( P @ B7 @ A6 )
           => ( P @ A6 @ B7 ) )
       => ( P @ A @ B ) ) ) ).

% linorder_wlog
thf(fact_3908_linorder__wlog,axiom,
    ! [P: num > num > $o,A: num,B: num] :
      ( ! [A6: num,B7: num] :
          ( ( ord_less_eq_num @ A6 @ B7 )
         => ( P @ A6 @ B7 ) )
     => ( ! [A6: num,B7: num] :
            ( ( P @ B7 @ A6 )
           => ( P @ A6 @ B7 ) )
       => ( P @ A @ B ) ) ) ).

% linorder_wlog
thf(fact_3909_linorder__wlog,axiom,
    ! [P: nat > nat > $o,A: nat,B: nat] :
      ( ! [A6: nat,B7: nat] :
          ( ( ord_less_eq_nat @ A6 @ B7 )
         => ( P @ A6 @ B7 ) )
     => ( ! [A6: nat,B7: nat] :
            ( ( P @ B7 @ A6 )
           => ( P @ A6 @ B7 ) )
       => ( P @ A @ B ) ) ) ).

% linorder_wlog
thf(fact_3910_linorder__wlog,axiom,
    ! [P: int > int > $o,A: int,B: int] :
      ( ! [A6: int,B7: int] :
          ( ( ord_less_eq_int @ A6 @ B7 )
         => ( P @ A6 @ B7 ) )
     => ( ! [A6: int,B7: int] :
            ( ( P @ B7 @ A6 )
           => ( P @ A6 @ B7 ) )
       => ( P @ A @ B ) ) ) ).

% linorder_wlog
thf(fact_3911_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y6: set_int,Z5: set_int] : ( Y6 = Z5 ) )
    = ( ^ [A3: set_int,B2: set_int] :
          ( ( ord_less_eq_set_int @ B2 @ A3 )
          & ( ord_less_eq_set_int @ A3 @ B2 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_3912_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y6: rat,Z5: rat] : ( Y6 = Z5 ) )
    = ( ^ [A3: rat,B2: rat] :
          ( ( ord_less_eq_rat @ B2 @ A3 )
          & ( ord_less_eq_rat @ A3 @ B2 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_3913_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y6: num,Z5: num] : ( Y6 = Z5 ) )
    = ( ^ [A3: num,B2: num] :
          ( ( ord_less_eq_num @ B2 @ A3 )
          & ( ord_less_eq_num @ A3 @ B2 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_3914_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y6: nat,Z5: nat] : ( Y6 = Z5 ) )
    = ( ^ [A3: nat,B2: nat] :
          ( ( ord_less_eq_nat @ B2 @ A3 )
          & ( ord_less_eq_nat @ A3 @ B2 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_3915_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y6: int,Z5: int] : ( Y6 = Z5 ) )
    = ( ^ [A3: int,B2: int] :
          ( ( ord_less_eq_int @ B2 @ A3 )
          & ( ord_less_eq_int @ A3 @ B2 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_3916_dual__order_Oantisym,axiom,
    ! [B: set_int,A: set_int] :
      ( ( ord_less_eq_set_int @ B @ A )
     => ( ( ord_less_eq_set_int @ A @ B )
       => ( A = B ) ) ) ).

% dual_order.antisym
thf(fact_3917_dual__order_Oantisym,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_eq_rat @ B @ A )
     => ( ( ord_less_eq_rat @ A @ B )
       => ( A = B ) ) ) ).

% dual_order.antisym
thf(fact_3918_dual__order_Oantisym,axiom,
    ! [B: num,A: num] :
      ( ( ord_less_eq_num @ B @ A )
     => ( ( ord_less_eq_num @ A @ B )
       => ( A = B ) ) ) ).

% dual_order.antisym
thf(fact_3919_dual__order_Oantisym,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( ord_less_eq_nat @ A @ B )
       => ( A = B ) ) ) ).

% dual_order.antisym
thf(fact_3920_dual__order_Oantisym,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_eq_int @ B @ A )
     => ( ( ord_less_eq_int @ A @ B )
       => ( A = B ) ) ) ).

% dual_order.antisym
thf(fact_3921_dual__order_Otrans,axiom,
    ! [B: set_int,A: set_int,C: set_int] :
      ( ( ord_less_eq_set_int @ B @ A )
     => ( ( ord_less_eq_set_int @ C @ B )
       => ( ord_less_eq_set_int @ C @ A ) ) ) ).

% dual_order.trans
thf(fact_3922_dual__order_Otrans,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( ord_less_eq_rat @ B @ A )
     => ( ( ord_less_eq_rat @ C @ B )
       => ( ord_less_eq_rat @ C @ A ) ) ) ).

% dual_order.trans
thf(fact_3923_dual__order_Otrans,axiom,
    ! [B: num,A: num,C: num] :
      ( ( ord_less_eq_num @ B @ A )
     => ( ( ord_less_eq_num @ C @ B )
       => ( ord_less_eq_num @ C @ A ) ) ) ).

% dual_order.trans
thf(fact_3924_dual__order_Otrans,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( ord_less_eq_nat @ C @ B )
       => ( ord_less_eq_nat @ C @ A ) ) ) ).

% dual_order.trans
thf(fact_3925_dual__order_Otrans,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_less_eq_int @ B @ A )
     => ( ( ord_less_eq_int @ C @ B )
       => ( ord_less_eq_int @ C @ A ) ) ) ).

% dual_order.trans
thf(fact_3926_antisym,axiom,
    ! [A: set_int,B: set_int] :
      ( ( ord_less_eq_set_int @ A @ B )
     => ( ( ord_less_eq_set_int @ B @ A )
       => ( A = B ) ) ) ).

% antisym
thf(fact_3927_antisym,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_rat @ B @ A )
       => ( A = B ) ) ) ).

% antisym
thf(fact_3928_antisym,axiom,
    ! [A: num,B: num] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( ord_less_eq_num @ B @ A )
       => ( A = B ) ) ) ).

% antisym
thf(fact_3929_antisym,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ B @ A )
       => ( A = B ) ) ) ).

% antisym
thf(fact_3930_antisym,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ B @ A )
       => ( A = B ) ) ) ).

% antisym
thf(fact_3931_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y6: set_int,Z5: set_int] : ( Y6 = Z5 ) )
    = ( ^ [A3: set_int,B2: set_int] :
          ( ( ord_less_eq_set_int @ A3 @ B2 )
          & ( ord_less_eq_set_int @ B2 @ A3 ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_3932_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y6: rat,Z5: rat] : ( Y6 = Z5 ) )
    = ( ^ [A3: rat,B2: rat] :
          ( ( ord_less_eq_rat @ A3 @ B2 )
          & ( ord_less_eq_rat @ B2 @ A3 ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_3933_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y6: num,Z5: num] : ( Y6 = Z5 ) )
    = ( ^ [A3: num,B2: num] :
          ( ( ord_less_eq_num @ A3 @ B2 )
          & ( ord_less_eq_num @ B2 @ A3 ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_3934_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y6: nat,Z5: nat] : ( Y6 = Z5 ) )
    = ( ^ [A3: nat,B2: nat] :
          ( ( ord_less_eq_nat @ A3 @ B2 )
          & ( ord_less_eq_nat @ B2 @ A3 ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_3935_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y6: int,Z5: int] : ( Y6 = Z5 ) )
    = ( ^ [A3: int,B2: int] :
          ( ( ord_less_eq_int @ A3 @ B2 )
          & ( ord_less_eq_int @ B2 @ A3 ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_3936_order__subst1,axiom,
    ! [A: rat,F: rat > rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_rat @ B @ C )
       => ( ! [X4: rat,Y3: rat] :
              ( ( ord_less_eq_rat @ X4 @ Y3 )
             => ( ord_less_eq_rat @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_rat @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_3937_order__subst1,axiom,
    ! [A: rat,F: num > rat,B: num,C: num] :
      ( ( ord_less_eq_rat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_num @ B @ C )
       => ( ! [X4: num,Y3: num] :
              ( ( ord_less_eq_num @ X4 @ Y3 )
             => ( ord_less_eq_rat @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_rat @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_3938_order__subst1,axiom,
    ! [A: rat,F: nat > rat,B: nat,C: nat] :
      ( ( ord_less_eq_rat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X4: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X4 @ Y3 )
             => ( ord_less_eq_rat @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_rat @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_3939_order__subst1,axiom,
    ! [A: rat,F: int > rat,B: int,C: int] :
      ( ( ord_less_eq_rat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_int @ B @ C )
       => ( ! [X4: int,Y3: int] :
              ( ( ord_less_eq_int @ X4 @ Y3 )
             => ( ord_less_eq_rat @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_rat @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_3940_order__subst1,axiom,
    ! [A: num,F: rat > num,B: rat,C: rat] :
      ( ( ord_less_eq_num @ A @ ( F @ B ) )
     => ( ( ord_less_eq_rat @ B @ C )
       => ( ! [X4: rat,Y3: rat] :
              ( ( ord_less_eq_rat @ X4 @ Y3 )
             => ( ord_less_eq_num @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_num @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_3941_order__subst1,axiom,
    ! [A: num,F: num > num,B: num,C: num] :
      ( ( ord_less_eq_num @ A @ ( F @ B ) )
     => ( ( ord_less_eq_num @ B @ C )
       => ( ! [X4: num,Y3: num] :
              ( ( ord_less_eq_num @ X4 @ Y3 )
             => ( ord_less_eq_num @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_num @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_3942_order__subst1,axiom,
    ! [A: num,F: nat > num,B: nat,C: nat] :
      ( ( ord_less_eq_num @ A @ ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X4: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X4 @ Y3 )
             => ( ord_less_eq_num @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_num @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_3943_order__subst1,axiom,
    ! [A: num,F: int > num,B: int,C: int] :
      ( ( ord_less_eq_num @ A @ ( F @ B ) )
     => ( ( ord_less_eq_int @ B @ C )
       => ( ! [X4: int,Y3: int] :
              ( ( ord_less_eq_int @ X4 @ Y3 )
             => ( ord_less_eq_num @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_num @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_3944_order__subst1,axiom,
    ! [A: nat,F: rat > nat,B: rat,C: rat] :
      ( ( ord_less_eq_nat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_rat @ B @ C )
       => ( ! [X4: rat,Y3: rat] :
              ( ( ord_less_eq_rat @ X4 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_3945_order__subst1,axiom,
    ! [A: nat,F: num > nat,B: num,C: num] :
      ( ( ord_less_eq_nat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_num @ B @ C )
       => ( ! [X4: num,Y3: num] :
              ( ( ord_less_eq_num @ X4 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_3946_order__subst2,axiom,
    ! [A: rat,B: rat,F: rat > rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_rat @ ( F @ B ) @ C )
       => ( ! [X4: rat,Y3: rat] :
              ( ( ord_less_eq_rat @ X4 @ Y3 )
             => ( ord_less_eq_rat @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_rat @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_3947_order__subst2,axiom,
    ! [A: rat,B: rat,F: rat > num,C: num] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_num @ ( F @ B ) @ C )
       => ( ! [X4: rat,Y3: rat] :
              ( ( ord_less_eq_rat @ X4 @ Y3 )
             => ( ord_less_eq_num @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_num @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_3948_order__subst2,axiom,
    ! [A: rat,B: rat,F: rat > nat,C: nat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_nat @ ( F @ B ) @ C )
       => ( ! [X4: rat,Y3: rat] :
              ( ( ord_less_eq_rat @ X4 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_3949_order__subst2,axiom,
    ! [A: rat,B: rat,F: rat > int,C: int] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_int @ ( F @ B ) @ C )
       => ( ! [X4: rat,Y3: rat] :
              ( ( ord_less_eq_rat @ X4 @ Y3 )
             => ( ord_less_eq_int @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_int @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_3950_order__subst2,axiom,
    ! [A: num,B: num,F: num > rat,C: rat] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( ord_less_eq_rat @ ( F @ B ) @ C )
       => ( ! [X4: num,Y3: num] :
              ( ( ord_less_eq_num @ X4 @ Y3 )
             => ( ord_less_eq_rat @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_rat @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_3951_order__subst2,axiom,
    ! [A: num,B: num,F: num > num,C: num] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( ord_less_eq_num @ ( F @ B ) @ C )
       => ( ! [X4: num,Y3: num] :
              ( ( ord_less_eq_num @ X4 @ Y3 )
             => ( ord_less_eq_num @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_num @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_3952_order__subst2,axiom,
    ! [A: num,B: num,F: num > nat,C: nat] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( ord_less_eq_nat @ ( F @ B ) @ C )
       => ( ! [X4: num,Y3: num] :
              ( ( ord_less_eq_num @ X4 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_3953_order__subst2,axiom,
    ! [A: num,B: num,F: num > int,C: int] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( ord_less_eq_int @ ( F @ B ) @ C )
       => ( ! [X4: num,Y3: num] :
              ( ( ord_less_eq_num @ X4 @ Y3 )
             => ( ord_less_eq_int @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_int @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_3954_order__subst2,axiom,
    ! [A: nat,B: nat,F: nat > rat,C: rat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_rat @ ( F @ B ) @ C )
       => ( ! [X4: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X4 @ Y3 )
             => ( ord_less_eq_rat @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_rat @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_3955_order__subst2,axiom,
    ! [A: nat,B: nat,F: nat > num,C: num] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_num @ ( F @ B ) @ C )
       => ( ! [X4: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X4 @ Y3 )
             => ( ord_less_eq_num @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_num @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_3956_order__eq__refl,axiom,
    ! [X2: set_int,Y2: set_int] :
      ( ( X2 = Y2 )
     => ( ord_less_eq_set_int @ X2 @ Y2 ) ) ).

% order_eq_refl
thf(fact_3957_order__eq__refl,axiom,
    ! [X2: rat,Y2: rat] :
      ( ( X2 = Y2 )
     => ( ord_less_eq_rat @ X2 @ Y2 ) ) ).

% order_eq_refl
thf(fact_3958_order__eq__refl,axiom,
    ! [X2: num,Y2: num] :
      ( ( X2 = Y2 )
     => ( ord_less_eq_num @ X2 @ Y2 ) ) ).

% order_eq_refl
thf(fact_3959_order__eq__refl,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( X2 = Y2 )
     => ( ord_less_eq_nat @ X2 @ Y2 ) ) ).

% order_eq_refl
thf(fact_3960_order__eq__refl,axiom,
    ! [X2: int,Y2: int] :
      ( ( X2 = Y2 )
     => ( ord_less_eq_int @ X2 @ Y2 ) ) ).

% order_eq_refl
thf(fact_3961_verit__la__disequality,axiom,
    ! [A: rat,B: rat] :
      ( ( A = B )
      | ~ ( ord_less_eq_rat @ A @ B )
      | ~ ( ord_less_eq_rat @ B @ A ) ) ).

% verit_la_disequality
thf(fact_3962_verit__la__disequality,axiom,
    ! [A: num,B: num] :
      ( ( A = B )
      | ~ ( ord_less_eq_num @ A @ B )
      | ~ ( ord_less_eq_num @ B @ A ) ) ).

% verit_la_disequality
thf(fact_3963_verit__la__disequality,axiom,
    ! [A: nat,B: nat] :
      ( ( A = B )
      | ~ ( ord_less_eq_nat @ A @ B )
      | ~ ( ord_less_eq_nat @ B @ A ) ) ).

% verit_la_disequality
thf(fact_3964_verit__la__disequality,axiom,
    ! [A: int,B: int] :
      ( ( A = B )
      | ~ ( ord_less_eq_int @ A @ B )
      | ~ ( ord_less_eq_int @ B @ A ) ) ).

% verit_la_disequality
thf(fact_3965_linorder__linear,axiom,
    ! [X2: rat,Y2: rat] :
      ( ( ord_less_eq_rat @ X2 @ Y2 )
      | ( ord_less_eq_rat @ Y2 @ X2 ) ) ).

% linorder_linear
thf(fact_3966_linorder__linear,axiom,
    ! [X2: num,Y2: num] :
      ( ( ord_less_eq_num @ X2 @ Y2 )
      | ( ord_less_eq_num @ Y2 @ X2 ) ) ).

% linorder_linear
thf(fact_3967_linorder__linear,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ord_less_eq_nat @ X2 @ Y2 )
      | ( ord_less_eq_nat @ Y2 @ X2 ) ) ).

% linorder_linear
thf(fact_3968_linorder__linear,axiom,
    ! [X2: int,Y2: int] :
      ( ( ord_less_eq_int @ X2 @ Y2 )
      | ( ord_less_eq_int @ Y2 @ X2 ) ) ).

% linorder_linear
thf(fact_3969_ord__eq__le__subst,axiom,
    ! [A: rat,F: rat > rat,B: rat,C: rat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_rat @ B @ C )
       => ( ! [X4: rat,Y3: rat] :
              ( ( ord_less_eq_rat @ X4 @ Y3 )
             => ( ord_less_eq_rat @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_rat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_3970_ord__eq__le__subst,axiom,
    ! [A: num,F: rat > num,B: rat,C: rat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_rat @ B @ C )
       => ( ! [X4: rat,Y3: rat] :
              ( ( ord_less_eq_rat @ X4 @ Y3 )
             => ( ord_less_eq_num @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_num @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_3971_ord__eq__le__subst,axiom,
    ! [A: nat,F: rat > nat,B: rat,C: rat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_rat @ B @ C )
       => ( ! [X4: rat,Y3: rat] :
              ( ( ord_less_eq_rat @ X4 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_3972_ord__eq__le__subst,axiom,
    ! [A: int,F: rat > int,B: rat,C: rat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_rat @ B @ C )
       => ( ! [X4: rat,Y3: rat] :
              ( ( ord_less_eq_rat @ X4 @ Y3 )
             => ( ord_less_eq_int @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_int @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_3973_ord__eq__le__subst,axiom,
    ! [A: rat,F: num > rat,B: num,C: num] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_num @ B @ C )
       => ( ! [X4: num,Y3: num] :
              ( ( ord_less_eq_num @ X4 @ Y3 )
             => ( ord_less_eq_rat @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_rat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_3974_ord__eq__le__subst,axiom,
    ! [A: num,F: num > num,B: num,C: num] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_num @ B @ C )
       => ( ! [X4: num,Y3: num] :
              ( ( ord_less_eq_num @ X4 @ Y3 )
             => ( ord_less_eq_num @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_num @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_3975_ord__eq__le__subst,axiom,
    ! [A: nat,F: num > nat,B: num,C: num] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_num @ B @ C )
       => ( ! [X4: num,Y3: num] :
              ( ( ord_less_eq_num @ X4 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_3976_ord__eq__le__subst,axiom,
    ! [A: int,F: num > int,B: num,C: num] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_num @ B @ C )
       => ( ! [X4: num,Y3: num] :
              ( ( ord_less_eq_num @ X4 @ Y3 )
             => ( ord_less_eq_int @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_int @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_3977_ord__eq__le__subst,axiom,
    ! [A: rat,F: nat > rat,B: nat,C: nat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X4: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X4 @ Y3 )
             => ( ord_less_eq_rat @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_rat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_3978_ord__eq__le__subst,axiom,
    ! [A: num,F: nat > num,B: nat,C: nat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X4: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X4 @ Y3 )
             => ( ord_less_eq_num @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_num @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_3979_ord__le__eq__subst,axiom,
    ! [A: rat,B: rat,F: rat > rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X4: rat,Y3: rat] :
              ( ( ord_less_eq_rat @ X4 @ Y3 )
             => ( ord_less_eq_rat @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_rat @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_3980_ord__le__eq__subst,axiom,
    ! [A: rat,B: rat,F: rat > num,C: num] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X4: rat,Y3: rat] :
              ( ( ord_less_eq_rat @ X4 @ Y3 )
             => ( ord_less_eq_num @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_num @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_3981_ord__le__eq__subst,axiom,
    ! [A: rat,B: rat,F: rat > nat,C: nat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X4: rat,Y3: rat] :
              ( ( ord_less_eq_rat @ X4 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_3982_ord__le__eq__subst,axiom,
    ! [A: rat,B: rat,F: rat > int,C: int] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X4: rat,Y3: rat] :
              ( ( ord_less_eq_rat @ X4 @ Y3 )
             => ( ord_less_eq_int @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_int @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_3983_ord__le__eq__subst,axiom,
    ! [A: num,B: num,F: num > rat,C: rat] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X4: num,Y3: num] :
              ( ( ord_less_eq_num @ X4 @ Y3 )
             => ( ord_less_eq_rat @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_rat @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_3984_ord__le__eq__subst,axiom,
    ! [A: num,B: num,F: num > num,C: num] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X4: num,Y3: num] :
              ( ( ord_less_eq_num @ X4 @ Y3 )
             => ( ord_less_eq_num @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_num @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_3985_ord__le__eq__subst,axiom,
    ! [A: num,B: num,F: num > nat,C: nat] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X4: num,Y3: num] :
              ( ( ord_less_eq_num @ X4 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_3986_ord__le__eq__subst,axiom,
    ! [A: num,B: num,F: num > int,C: int] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X4: num,Y3: num] :
              ( ( ord_less_eq_num @ X4 @ Y3 )
             => ( ord_less_eq_int @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_int @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_3987_ord__le__eq__subst,axiom,
    ! [A: nat,B: nat,F: nat > rat,C: rat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X4: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X4 @ Y3 )
             => ( ord_less_eq_rat @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_rat @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_3988_ord__le__eq__subst,axiom,
    ! [A: nat,B: nat,F: nat > num,C: num] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X4: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X4 @ Y3 )
             => ( ord_less_eq_num @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_num @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_3989_linorder__le__cases,axiom,
    ! [X2: rat,Y2: rat] :
      ( ~ ( ord_less_eq_rat @ X2 @ Y2 )
     => ( ord_less_eq_rat @ Y2 @ X2 ) ) ).

% linorder_le_cases
thf(fact_3990_linorder__le__cases,axiom,
    ! [X2: num,Y2: num] :
      ( ~ ( ord_less_eq_num @ X2 @ Y2 )
     => ( ord_less_eq_num @ Y2 @ X2 ) ) ).

% linorder_le_cases
thf(fact_3991_linorder__le__cases,axiom,
    ! [X2: nat,Y2: nat] :
      ( ~ ( ord_less_eq_nat @ X2 @ Y2 )
     => ( ord_less_eq_nat @ Y2 @ X2 ) ) ).

% linorder_le_cases
thf(fact_3992_linorder__le__cases,axiom,
    ! [X2: int,Y2: int] :
      ( ~ ( ord_less_eq_int @ X2 @ Y2 )
     => ( ord_less_eq_int @ Y2 @ X2 ) ) ).

% linorder_le_cases
thf(fact_3993_order__antisym__conv,axiom,
    ! [Y2: set_int,X2: set_int] :
      ( ( ord_less_eq_set_int @ Y2 @ X2 )
     => ( ( ord_less_eq_set_int @ X2 @ Y2 )
        = ( X2 = Y2 ) ) ) ).

% order_antisym_conv
thf(fact_3994_order__antisym__conv,axiom,
    ! [Y2: rat,X2: rat] :
      ( ( ord_less_eq_rat @ Y2 @ X2 )
     => ( ( ord_less_eq_rat @ X2 @ Y2 )
        = ( X2 = Y2 ) ) ) ).

% order_antisym_conv
thf(fact_3995_order__antisym__conv,axiom,
    ! [Y2: num,X2: num] :
      ( ( ord_less_eq_num @ Y2 @ X2 )
     => ( ( ord_less_eq_num @ X2 @ Y2 )
        = ( X2 = Y2 ) ) ) ).

% order_antisym_conv
thf(fact_3996_order__antisym__conv,axiom,
    ! [Y2: nat,X2: nat] :
      ( ( ord_less_eq_nat @ Y2 @ X2 )
     => ( ( ord_less_eq_nat @ X2 @ Y2 )
        = ( X2 = Y2 ) ) ) ).

% order_antisym_conv
thf(fact_3997_order__antisym__conv,axiom,
    ! [Y2: int,X2: int] :
      ( ( ord_less_eq_int @ Y2 @ X2 )
     => ( ( ord_less_eq_int @ X2 @ Y2 )
        = ( X2 = Y2 ) ) ) ).

% order_antisym_conv
thf(fact_3998_order__less__imp__not__less,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_real @ X2 @ Y2 )
     => ~ ( ord_less_real @ Y2 @ X2 ) ) ).

% order_less_imp_not_less
thf(fact_3999_order__less__imp__not__less,axiom,
    ! [X2: rat,Y2: rat] :
      ( ( ord_less_rat @ X2 @ Y2 )
     => ~ ( ord_less_rat @ Y2 @ X2 ) ) ).

% order_less_imp_not_less
thf(fact_4000_order__less__imp__not__less,axiom,
    ! [X2: num,Y2: num] :
      ( ( ord_less_num @ X2 @ Y2 )
     => ~ ( ord_less_num @ Y2 @ X2 ) ) ).

% order_less_imp_not_less
thf(fact_4001_order__less__imp__not__less,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ord_less_nat @ X2 @ Y2 )
     => ~ ( ord_less_nat @ Y2 @ X2 ) ) ).

% order_less_imp_not_less
thf(fact_4002_order__less__imp__not__less,axiom,
    ! [X2: int,Y2: int] :
      ( ( ord_less_int @ X2 @ Y2 )
     => ~ ( ord_less_int @ Y2 @ X2 ) ) ).

% order_less_imp_not_less
thf(fact_4003_order__less__imp__not__eq2,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_real @ X2 @ Y2 )
     => ( Y2 != X2 ) ) ).

% order_less_imp_not_eq2
thf(fact_4004_order__less__imp__not__eq2,axiom,
    ! [X2: rat,Y2: rat] :
      ( ( ord_less_rat @ X2 @ Y2 )
     => ( Y2 != X2 ) ) ).

% order_less_imp_not_eq2
thf(fact_4005_order__less__imp__not__eq2,axiom,
    ! [X2: num,Y2: num] :
      ( ( ord_less_num @ X2 @ Y2 )
     => ( Y2 != X2 ) ) ).

% order_less_imp_not_eq2
thf(fact_4006_order__less__imp__not__eq2,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ord_less_nat @ X2 @ Y2 )
     => ( Y2 != X2 ) ) ).

% order_less_imp_not_eq2
thf(fact_4007_order__less__imp__not__eq2,axiom,
    ! [X2: int,Y2: int] :
      ( ( ord_less_int @ X2 @ Y2 )
     => ( Y2 != X2 ) ) ).

% order_less_imp_not_eq2
thf(fact_4008_order__less__imp__not__eq,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_real @ X2 @ Y2 )
     => ( X2 != Y2 ) ) ).

% order_less_imp_not_eq
thf(fact_4009_order__less__imp__not__eq,axiom,
    ! [X2: rat,Y2: rat] :
      ( ( ord_less_rat @ X2 @ Y2 )
     => ( X2 != Y2 ) ) ).

% order_less_imp_not_eq
thf(fact_4010_order__less__imp__not__eq,axiom,
    ! [X2: num,Y2: num] :
      ( ( ord_less_num @ X2 @ Y2 )
     => ( X2 != Y2 ) ) ).

% order_less_imp_not_eq
thf(fact_4011_order__less__imp__not__eq,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ord_less_nat @ X2 @ Y2 )
     => ( X2 != Y2 ) ) ).

% order_less_imp_not_eq
thf(fact_4012_order__less__imp__not__eq,axiom,
    ! [X2: int,Y2: int] :
      ( ( ord_less_int @ X2 @ Y2 )
     => ( X2 != Y2 ) ) ).

% order_less_imp_not_eq
thf(fact_4013_linorder__less__linear,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_real @ X2 @ Y2 )
      | ( X2 = Y2 )
      | ( ord_less_real @ Y2 @ X2 ) ) ).

% linorder_less_linear
thf(fact_4014_linorder__less__linear,axiom,
    ! [X2: rat,Y2: rat] :
      ( ( ord_less_rat @ X2 @ Y2 )
      | ( X2 = Y2 )
      | ( ord_less_rat @ Y2 @ X2 ) ) ).

% linorder_less_linear
thf(fact_4015_linorder__less__linear,axiom,
    ! [X2: num,Y2: num] :
      ( ( ord_less_num @ X2 @ Y2 )
      | ( X2 = Y2 )
      | ( ord_less_num @ Y2 @ X2 ) ) ).

% linorder_less_linear
thf(fact_4016_linorder__less__linear,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ord_less_nat @ X2 @ Y2 )
      | ( X2 = Y2 )
      | ( ord_less_nat @ Y2 @ X2 ) ) ).

% linorder_less_linear
thf(fact_4017_linorder__less__linear,axiom,
    ! [X2: int,Y2: int] :
      ( ( ord_less_int @ X2 @ Y2 )
      | ( X2 = Y2 )
      | ( ord_less_int @ Y2 @ X2 ) ) ).

% linorder_less_linear
thf(fact_4018_order__less__imp__triv,axiom,
    ! [X2: real,Y2: real,P: $o] :
      ( ( ord_less_real @ X2 @ Y2 )
     => ( ( ord_less_real @ Y2 @ X2 )
       => P ) ) ).

% order_less_imp_triv
thf(fact_4019_order__less__imp__triv,axiom,
    ! [X2: rat,Y2: rat,P: $o] :
      ( ( ord_less_rat @ X2 @ Y2 )
     => ( ( ord_less_rat @ Y2 @ X2 )
       => P ) ) ).

% order_less_imp_triv
thf(fact_4020_order__less__imp__triv,axiom,
    ! [X2: num,Y2: num,P: $o] :
      ( ( ord_less_num @ X2 @ Y2 )
     => ( ( ord_less_num @ Y2 @ X2 )
       => P ) ) ).

% order_less_imp_triv
thf(fact_4021_order__less__imp__triv,axiom,
    ! [X2: nat,Y2: nat,P: $o] :
      ( ( ord_less_nat @ X2 @ Y2 )
     => ( ( ord_less_nat @ Y2 @ X2 )
       => P ) ) ).

% order_less_imp_triv
thf(fact_4022_order__less__imp__triv,axiom,
    ! [X2: int,Y2: int,P: $o] :
      ( ( ord_less_int @ X2 @ Y2 )
     => ( ( ord_less_int @ Y2 @ X2 )
       => P ) ) ).

% order_less_imp_triv
thf(fact_4023_order__less__not__sym,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_real @ X2 @ Y2 )
     => ~ ( ord_less_real @ Y2 @ X2 ) ) ).

% order_less_not_sym
thf(fact_4024_order__less__not__sym,axiom,
    ! [X2: rat,Y2: rat] :
      ( ( ord_less_rat @ X2 @ Y2 )
     => ~ ( ord_less_rat @ Y2 @ X2 ) ) ).

% order_less_not_sym
thf(fact_4025_order__less__not__sym,axiom,
    ! [X2: num,Y2: num] :
      ( ( ord_less_num @ X2 @ Y2 )
     => ~ ( ord_less_num @ Y2 @ X2 ) ) ).

% order_less_not_sym
thf(fact_4026_order__less__not__sym,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ord_less_nat @ X2 @ Y2 )
     => ~ ( ord_less_nat @ Y2 @ X2 ) ) ).

% order_less_not_sym
thf(fact_4027_order__less__not__sym,axiom,
    ! [X2: int,Y2: int] :
      ( ( ord_less_int @ X2 @ Y2 )
     => ~ ( ord_less_int @ Y2 @ X2 ) ) ).

% order_less_not_sym
thf(fact_4028_order__less__subst2,axiom,
    ! [A: real,B: real,F: real > real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ ( F @ B ) @ C )
       => ( ! [X4: real,Y3: real] :
              ( ( ord_less_real @ X4 @ Y3 )
             => ( ord_less_real @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_4029_order__less__subst2,axiom,
    ! [A: real,B: real,F: real > rat,C: rat] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_rat @ ( F @ B ) @ C )
       => ( ! [X4: real,Y3: real] :
              ( ( ord_less_real @ X4 @ Y3 )
             => ( ord_less_rat @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_rat @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_4030_order__less__subst2,axiom,
    ! [A: real,B: real,F: real > num,C: num] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_num @ ( F @ B ) @ C )
       => ( ! [X4: real,Y3: real] :
              ( ( ord_less_real @ X4 @ Y3 )
             => ( ord_less_num @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_num @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_4031_order__less__subst2,axiom,
    ! [A: real,B: real,F: real > nat,C: nat] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_nat @ ( F @ B ) @ C )
       => ( ! [X4: real,Y3: real] :
              ( ( ord_less_real @ X4 @ Y3 )
             => ( ord_less_nat @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_4032_order__less__subst2,axiom,
    ! [A: real,B: real,F: real > int,C: int] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_int @ ( F @ B ) @ C )
       => ( ! [X4: real,Y3: real] :
              ( ( ord_less_real @ X4 @ Y3 )
             => ( ord_less_int @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_4033_order__less__subst2,axiom,
    ! [A: rat,B: rat,F: rat > real,C: real] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_real @ ( F @ B ) @ C )
       => ( ! [X4: rat,Y3: rat] :
              ( ( ord_less_rat @ X4 @ Y3 )
             => ( ord_less_real @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_4034_order__less__subst2,axiom,
    ! [A: rat,B: rat,F: rat > rat,C: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_rat @ ( F @ B ) @ C )
       => ( ! [X4: rat,Y3: rat] :
              ( ( ord_less_rat @ X4 @ Y3 )
             => ( ord_less_rat @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_rat @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_4035_order__less__subst2,axiom,
    ! [A: rat,B: rat,F: rat > num,C: num] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_num @ ( F @ B ) @ C )
       => ( ! [X4: rat,Y3: rat] :
              ( ( ord_less_rat @ X4 @ Y3 )
             => ( ord_less_num @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_num @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_4036_order__less__subst2,axiom,
    ! [A: rat,B: rat,F: rat > nat,C: nat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_nat @ ( F @ B ) @ C )
       => ( ! [X4: rat,Y3: rat] :
              ( ( ord_less_rat @ X4 @ Y3 )
             => ( ord_less_nat @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_4037_order__less__subst2,axiom,
    ! [A: rat,B: rat,F: rat > int,C: int] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_int @ ( F @ B ) @ C )
       => ( ! [X4: rat,Y3: rat] :
              ( ( ord_less_rat @ X4 @ Y3 )
             => ( ord_less_int @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_4038_order__less__subst1,axiom,
    ! [A: real,F: real > real,B: real,C: real] :
      ( ( ord_less_real @ A @ ( F @ B ) )
     => ( ( ord_less_real @ B @ C )
       => ( ! [X4: real,Y3: real] :
              ( ( ord_less_real @ X4 @ Y3 )
             => ( ord_less_real @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_4039_order__less__subst1,axiom,
    ! [A: real,F: rat > real,B: rat,C: rat] :
      ( ( ord_less_real @ A @ ( F @ B ) )
     => ( ( ord_less_rat @ B @ C )
       => ( ! [X4: rat,Y3: rat] :
              ( ( ord_less_rat @ X4 @ Y3 )
             => ( ord_less_real @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_4040_order__less__subst1,axiom,
    ! [A: real,F: num > real,B: num,C: num] :
      ( ( ord_less_real @ A @ ( F @ B ) )
     => ( ( ord_less_num @ B @ C )
       => ( ! [X4: num,Y3: num] :
              ( ( ord_less_num @ X4 @ Y3 )
             => ( ord_less_real @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_4041_order__less__subst1,axiom,
    ! [A: real,F: nat > real,B: nat,C: nat] :
      ( ( ord_less_real @ A @ ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X4: nat,Y3: nat] :
              ( ( ord_less_nat @ X4 @ Y3 )
             => ( ord_less_real @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_4042_order__less__subst1,axiom,
    ! [A: real,F: int > real,B: int,C: int] :
      ( ( ord_less_real @ A @ ( F @ B ) )
     => ( ( ord_less_int @ B @ C )
       => ( ! [X4: int,Y3: int] :
              ( ( ord_less_int @ X4 @ Y3 )
             => ( ord_less_real @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_4043_order__less__subst1,axiom,
    ! [A: rat,F: real > rat,B: real,C: real] :
      ( ( ord_less_rat @ A @ ( F @ B ) )
     => ( ( ord_less_real @ B @ C )
       => ( ! [X4: real,Y3: real] :
              ( ( ord_less_real @ X4 @ Y3 )
             => ( ord_less_rat @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_4044_order__less__subst1,axiom,
    ! [A: rat,F: rat > rat,B: rat,C: rat] :
      ( ( ord_less_rat @ A @ ( F @ B ) )
     => ( ( ord_less_rat @ B @ C )
       => ( ! [X4: rat,Y3: rat] :
              ( ( ord_less_rat @ X4 @ Y3 )
             => ( ord_less_rat @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_4045_order__less__subst1,axiom,
    ! [A: rat,F: num > rat,B: num,C: num] :
      ( ( ord_less_rat @ A @ ( F @ B ) )
     => ( ( ord_less_num @ B @ C )
       => ( ! [X4: num,Y3: num] :
              ( ( ord_less_num @ X4 @ Y3 )
             => ( ord_less_rat @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_4046_order__less__subst1,axiom,
    ! [A: rat,F: nat > rat,B: nat,C: nat] :
      ( ( ord_less_rat @ A @ ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X4: nat,Y3: nat] :
              ( ( ord_less_nat @ X4 @ Y3 )
             => ( ord_less_rat @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_4047_order__less__subst1,axiom,
    ! [A: rat,F: int > rat,B: int,C: int] :
      ( ( ord_less_rat @ A @ ( F @ B ) )
     => ( ( ord_less_int @ B @ C )
       => ( ! [X4: int,Y3: int] :
              ( ( ord_less_int @ X4 @ Y3 )
             => ( ord_less_rat @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_4048_order__less__irrefl,axiom,
    ! [X2: real] :
      ~ ( ord_less_real @ X2 @ X2 ) ).

% order_less_irrefl
thf(fact_4049_order__less__irrefl,axiom,
    ! [X2: rat] :
      ~ ( ord_less_rat @ X2 @ X2 ) ).

% order_less_irrefl
thf(fact_4050_order__less__irrefl,axiom,
    ! [X2: num] :
      ~ ( ord_less_num @ X2 @ X2 ) ).

% order_less_irrefl
thf(fact_4051_order__less__irrefl,axiom,
    ! [X2: nat] :
      ~ ( ord_less_nat @ X2 @ X2 ) ).

% order_less_irrefl
thf(fact_4052_order__less__irrefl,axiom,
    ! [X2: int] :
      ~ ( ord_less_int @ X2 @ X2 ) ).

% order_less_irrefl
thf(fact_4053_ord__less__eq__subst,axiom,
    ! [A: real,B: real,F: real > real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X4: real,Y3: real] :
              ( ( ord_less_real @ X4 @ Y3 )
             => ( ord_less_real @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_4054_ord__less__eq__subst,axiom,
    ! [A: real,B: real,F: real > rat,C: rat] :
      ( ( ord_less_real @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X4: real,Y3: real] :
              ( ( ord_less_real @ X4 @ Y3 )
             => ( ord_less_rat @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_rat @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_4055_ord__less__eq__subst,axiom,
    ! [A: real,B: real,F: real > num,C: num] :
      ( ( ord_less_real @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X4: real,Y3: real] :
              ( ( ord_less_real @ X4 @ Y3 )
             => ( ord_less_num @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_num @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_4056_ord__less__eq__subst,axiom,
    ! [A: real,B: real,F: real > nat,C: nat] :
      ( ( ord_less_real @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X4: real,Y3: real] :
              ( ( ord_less_real @ X4 @ Y3 )
             => ( ord_less_nat @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_4057_ord__less__eq__subst,axiom,
    ! [A: real,B: real,F: real > int,C: int] :
      ( ( ord_less_real @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X4: real,Y3: real] :
              ( ( ord_less_real @ X4 @ Y3 )
             => ( ord_less_int @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_4058_ord__less__eq__subst,axiom,
    ! [A: rat,B: rat,F: rat > real,C: real] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X4: rat,Y3: rat] :
              ( ( ord_less_rat @ X4 @ Y3 )
             => ( ord_less_real @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_4059_ord__less__eq__subst,axiom,
    ! [A: rat,B: rat,F: rat > rat,C: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X4: rat,Y3: rat] :
              ( ( ord_less_rat @ X4 @ Y3 )
             => ( ord_less_rat @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_rat @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_4060_ord__less__eq__subst,axiom,
    ! [A: rat,B: rat,F: rat > num,C: num] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X4: rat,Y3: rat] :
              ( ( ord_less_rat @ X4 @ Y3 )
             => ( ord_less_num @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_num @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_4061_ord__less__eq__subst,axiom,
    ! [A: rat,B: rat,F: rat > nat,C: nat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X4: rat,Y3: rat] :
              ( ( ord_less_rat @ X4 @ Y3 )
             => ( ord_less_nat @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_4062_ord__less__eq__subst,axiom,
    ! [A: rat,B: rat,F: rat > int,C: int] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X4: rat,Y3: rat] :
              ( ( ord_less_rat @ X4 @ Y3 )
             => ( ord_less_int @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_4063_ord__eq__less__subst,axiom,
    ! [A: real,F: real > real,B: real,C: real] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_real @ B @ C )
       => ( ! [X4: real,Y3: real] :
              ( ( ord_less_real @ X4 @ Y3 )
             => ( ord_less_real @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_4064_ord__eq__less__subst,axiom,
    ! [A: rat,F: real > rat,B: real,C: real] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_real @ B @ C )
       => ( ! [X4: real,Y3: real] :
              ( ( ord_less_real @ X4 @ Y3 )
             => ( ord_less_rat @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_4065_ord__eq__less__subst,axiom,
    ! [A: num,F: real > num,B: real,C: real] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_real @ B @ C )
       => ( ! [X4: real,Y3: real] :
              ( ( ord_less_real @ X4 @ Y3 )
             => ( ord_less_num @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_num @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_4066_ord__eq__less__subst,axiom,
    ! [A: nat,F: real > nat,B: real,C: real] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_real @ B @ C )
       => ( ! [X4: real,Y3: real] :
              ( ( ord_less_real @ X4 @ Y3 )
             => ( ord_less_nat @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_4067_ord__eq__less__subst,axiom,
    ! [A: int,F: real > int,B: real,C: real] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_real @ B @ C )
       => ( ! [X4: real,Y3: real] :
              ( ( ord_less_real @ X4 @ Y3 )
             => ( ord_less_int @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_4068_ord__eq__less__subst,axiom,
    ! [A: real,F: rat > real,B: rat,C: rat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_rat @ B @ C )
       => ( ! [X4: rat,Y3: rat] :
              ( ( ord_less_rat @ X4 @ Y3 )
             => ( ord_less_real @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_4069_ord__eq__less__subst,axiom,
    ! [A: rat,F: rat > rat,B: rat,C: rat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_rat @ B @ C )
       => ( ! [X4: rat,Y3: rat] :
              ( ( ord_less_rat @ X4 @ Y3 )
             => ( ord_less_rat @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_4070_ord__eq__less__subst,axiom,
    ! [A: num,F: rat > num,B: rat,C: rat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_rat @ B @ C )
       => ( ! [X4: rat,Y3: rat] :
              ( ( ord_less_rat @ X4 @ Y3 )
             => ( ord_less_num @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_num @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_4071_ord__eq__less__subst,axiom,
    ! [A: nat,F: rat > nat,B: rat,C: rat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_rat @ B @ C )
       => ( ! [X4: rat,Y3: rat] :
              ( ( ord_less_rat @ X4 @ Y3 )
             => ( ord_less_nat @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_4072_ord__eq__less__subst,axiom,
    ! [A: int,F: rat > int,B: rat,C: rat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_rat @ B @ C )
       => ( ! [X4: rat,Y3: rat] :
              ( ( ord_less_rat @ X4 @ Y3 )
             => ( ord_less_int @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_4073_order__less__trans,axiom,
    ! [X2: real,Y2: real,Z: real] :
      ( ( ord_less_real @ X2 @ Y2 )
     => ( ( ord_less_real @ Y2 @ Z )
       => ( ord_less_real @ X2 @ Z ) ) ) ).

% order_less_trans
thf(fact_4074_order__less__trans,axiom,
    ! [X2: rat,Y2: rat,Z: rat] :
      ( ( ord_less_rat @ X2 @ Y2 )
     => ( ( ord_less_rat @ Y2 @ Z )
       => ( ord_less_rat @ X2 @ Z ) ) ) ).

% order_less_trans
thf(fact_4075_order__less__trans,axiom,
    ! [X2: num,Y2: num,Z: num] :
      ( ( ord_less_num @ X2 @ Y2 )
     => ( ( ord_less_num @ Y2 @ Z )
       => ( ord_less_num @ X2 @ Z ) ) ) ).

% order_less_trans
thf(fact_4076_order__less__trans,axiom,
    ! [X2: nat,Y2: nat,Z: nat] :
      ( ( ord_less_nat @ X2 @ Y2 )
     => ( ( ord_less_nat @ Y2 @ Z )
       => ( ord_less_nat @ X2 @ Z ) ) ) ).

% order_less_trans
thf(fact_4077_order__less__trans,axiom,
    ! [X2: int,Y2: int,Z: int] :
      ( ( ord_less_int @ X2 @ Y2 )
     => ( ( ord_less_int @ Y2 @ Z )
       => ( ord_less_int @ X2 @ Z ) ) ) ).

% order_less_trans
thf(fact_4078_order__less__asym_H,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ~ ( ord_less_real @ B @ A ) ) ).

% order_less_asym'
thf(fact_4079_order__less__asym_H,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ B )
     => ~ ( ord_less_rat @ B @ A ) ) ).

% order_less_asym'
thf(fact_4080_order__less__asym_H,axiom,
    ! [A: num,B: num] :
      ( ( ord_less_num @ A @ B )
     => ~ ( ord_less_num @ B @ A ) ) ).

% order_less_asym'
thf(fact_4081_order__less__asym_H,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ~ ( ord_less_nat @ B @ A ) ) ).

% order_less_asym'
thf(fact_4082_order__less__asym_H,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ B )
     => ~ ( ord_less_int @ B @ A ) ) ).

% order_less_asym'
thf(fact_4083_linorder__neq__iff,axiom,
    ! [X2: real,Y2: real] :
      ( ( X2 != Y2 )
      = ( ( ord_less_real @ X2 @ Y2 )
        | ( ord_less_real @ Y2 @ X2 ) ) ) ).

% linorder_neq_iff
thf(fact_4084_linorder__neq__iff,axiom,
    ! [X2: rat,Y2: rat] :
      ( ( X2 != Y2 )
      = ( ( ord_less_rat @ X2 @ Y2 )
        | ( ord_less_rat @ Y2 @ X2 ) ) ) ).

% linorder_neq_iff
thf(fact_4085_linorder__neq__iff,axiom,
    ! [X2: num,Y2: num] :
      ( ( X2 != Y2 )
      = ( ( ord_less_num @ X2 @ Y2 )
        | ( ord_less_num @ Y2 @ X2 ) ) ) ).

% linorder_neq_iff
thf(fact_4086_linorder__neq__iff,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( X2 != Y2 )
      = ( ( ord_less_nat @ X2 @ Y2 )
        | ( ord_less_nat @ Y2 @ X2 ) ) ) ).

% linorder_neq_iff
thf(fact_4087_linorder__neq__iff,axiom,
    ! [X2: int,Y2: int] :
      ( ( X2 != Y2 )
      = ( ( ord_less_int @ X2 @ Y2 )
        | ( ord_less_int @ Y2 @ X2 ) ) ) ).

% linorder_neq_iff
thf(fact_4088_order__less__asym,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_real @ X2 @ Y2 )
     => ~ ( ord_less_real @ Y2 @ X2 ) ) ).

% order_less_asym
thf(fact_4089_order__less__asym,axiom,
    ! [X2: rat,Y2: rat] :
      ( ( ord_less_rat @ X2 @ Y2 )
     => ~ ( ord_less_rat @ Y2 @ X2 ) ) ).

% order_less_asym
thf(fact_4090_order__less__asym,axiom,
    ! [X2: num,Y2: num] :
      ( ( ord_less_num @ X2 @ Y2 )
     => ~ ( ord_less_num @ Y2 @ X2 ) ) ).

% order_less_asym
thf(fact_4091_order__less__asym,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ord_less_nat @ X2 @ Y2 )
     => ~ ( ord_less_nat @ Y2 @ X2 ) ) ).

% order_less_asym
thf(fact_4092_order__less__asym,axiom,
    ! [X2: int,Y2: int] :
      ( ( ord_less_int @ X2 @ Y2 )
     => ~ ( ord_less_int @ Y2 @ X2 ) ) ).

% order_less_asym
thf(fact_4093_linorder__neqE,axiom,
    ! [X2: real,Y2: real] :
      ( ( X2 != Y2 )
     => ( ~ ( ord_less_real @ X2 @ Y2 )
       => ( ord_less_real @ Y2 @ X2 ) ) ) ).

% linorder_neqE
thf(fact_4094_linorder__neqE,axiom,
    ! [X2: rat,Y2: rat] :
      ( ( X2 != Y2 )
     => ( ~ ( ord_less_rat @ X2 @ Y2 )
       => ( ord_less_rat @ Y2 @ X2 ) ) ) ).

% linorder_neqE
thf(fact_4095_linorder__neqE,axiom,
    ! [X2: num,Y2: num] :
      ( ( X2 != Y2 )
     => ( ~ ( ord_less_num @ X2 @ Y2 )
       => ( ord_less_num @ Y2 @ X2 ) ) ) ).

% linorder_neqE
thf(fact_4096_linorder__neqE,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( X2 != Y2 )
     => ( ~ ( ord_less_nat @ X2 @ Y2 )
       => ( ord_less_nat @ Y2 @ X2 ) ) ) ).

% linorder_neqE
thf(fact_4097_linorder__neqE,axiom,
    ! [X2: int,Y2: int] :
      ( ( X2 != Y2 )
     => ( ~ ( ord_less_int @ X2 @ Y2 )
       => ( ord_less_int @ Y2 @ X2 ) ) ) ).

% linorder_neqE
thf(fact_4098_dual__order_Ostrict__implies__not__eq,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_real @ B @ A )
     => ( A != B ) ) ).

% dual_order.strict_implies_not_eq
thf(fact_4099_dual__order_Ostrict__implies__not__eq,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_rat @ B @ A )
     => ( A != B ) ) ).

% dual_order.strict_implies_not_eq
thf(fact_4100_dual__order_Ostrict__implies__not__eq,axiom,
    ! [B: num,A: num] :
      ( ( ord_less_num @ B @ A )
     => ( A != B ) ) ).

% dual_order.strict_implies_not_eq
thf(fact_4101_dual__order_Ostrict__implies__not__eq,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ B @ A )
     => ( A != B ) ) ).

% dual_order.strict_implies_not_eq
thf(fact_4102_dual__order_Ostrict__implies__not__eq,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ B @ A )
     => ( A != B ) ) ).

% dual_order.strict_implies_not_eq
thf(fact_4103_order_Ostrict__implies__not__eq,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ( A != B ) ) ).

% order.strict_implies_not_eq
thf(fact_4104_order_Ostrict__implies__not__eq,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( A != B ) ) ).

% order.strict_implies_not_eq
thf(fact_4105_order_Ostrict__implies__not__eq,axiom,
    ! [A: num,B: num] :
      ( ( ord_less_num @ A @ B )
     => ( A != B ) ) ).

% order.strict_implies_not_eq
thf(fact_4106_order_Ostrict__implies__not__eq,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( A != B ) ) ).

% order.strict_implies_not_eq
thf(fact_4107_order_Ostrict__implies__not__eq,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ B )
     => ( A != B ) ) ).

% order.strict_implies_not_eq
thf(fact_4108_dual__order_Ostrict__trans,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_real @ B @ A )
     => ( ( ord_less_real @ C @ B )
       => ( ord_less_real @ C @ A ) ) ) ).

% dual_order.strict_trans
thf(fact_4109_dual__order_Ostrict__trans,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( ord_less_rat @ B @ A )
     => ( ( ord_less_rat @ C @ B )
       => ( ord_less_rat @ C @ A ) ) ) ).

% dual_order.strict_trans
thf(fact_4110_dual__order_Ostrict__trans,axiom,
    ! [B: num,A: num,C: num] :
      ( ( ord_less_num @ B @ A )
     => ( ( ord_less_num @ C @ B )
       => ( ord_less_num @ C @ A ) ) ) ).

% dual_order.strict_trans
thf(fact_4111_dual__order_Ostrict__trans,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ord_less_nat @ B @ A )
     => ( ( ord_less_nat @ C @ B )
       => ( ord_less_nat @ C @ A ) ) ) ).

% dual_order.strict_trans
thf(fact_4112_dual__order_Ostrict__trans,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_less_int @ B @ A )
     => ( ( ord_less_int @ C @ B )
       => ( ord_less_int @ C @ A ) ) ) ).

% dual_order.strict_trans
thf(fact_4113_not__less__iff__gr__or__eq,axiom,
    ! [X2: real,Y2: real] :
      ( ( ~ ( ord_less_real @ X2 @ Y2 ) )
      = ( ( ord_less_real @ Y2 @ X2 )
        | ( X2 = Y2 ) ) ) ).

% not_less_iff_gr_or_eq
thf(fact_4114_not__less__iff__gr__or__eq,axiom,
    ! [X2: rat,Y2: rat] :
      ( ( ~ ( ord_less_rat @ X2 @ Y2 ) )
      = ( ( ord_less_rat @ Y2 @ X2 )
        | ( X2 = Y2 ) ) ) ).

% not_less_iff_gr_or_eq
thf(fact_4115_not__less__iff__gr__or__eq,axiom,
    ! [X2: num,Y2: num] :
      ( ( ~ ( ord_less_num @ X2 @ Y2 ) )
      = ( ( ord_less_num @ Y2 @ X2 )
        | ( X2 = Y2 ) ) ) ).

% not_less_iff_gr_or_eq
thf(fact_4116_not__less__iff__gr__or__eq,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ~ ( ord_less_nat @ X2 @ Y2 ) )
      = ( ( ord_less_nat @ Y2 @ X2 )
        | ( X2 = Y2 ) ) ) ).

% not_less_iff_gr_or_eq
thf(fact_4117_not__less__iff__gr__or__eq,axiom,
    ! [X2: int,Y2: int] :
      ( ( ~ ( ord_less_int @ X2 @ Y2 ) )
      = ( ( ord_less_int @ Y2 @ X2 )
        | ( X2 = Y2 ) ) ) ).

% not_less_iff_gr_or_eq
thf(fact_4118_order_Ostrict__trans,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ B @ C )
       => ( ord_less_real @ A @ C ) ) ) ).

% order.strict_trans
thf(fact_4119_order_Ostrict__trans,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_rat @ B @ C )
       => ( ord_less_rat @ A @ C ) ) ) ).

% order.strict_trans
thf(fact_4120_order_Ostrict__trans,axiom,
    ! [A: num,B: num,C: num] :
      ( ( ord_less_num @ A @ B )
     => ( ( ord_less_num @ B @ C )
       => ( ord_less_num @ A @ C ) ) ) ).

% order.strict_trans
thf(fact_4121_order_Ostrict__trans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ B @ C )
       => ( ord_less_nat @ A @ C ) ) ) ).

% order.strict_trans
thf(fact_4122_order_Ostrict__trans,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_int @ B @ C )
       => ( ord_less_int @ A @ C ) ) ) ).

% order.strict_trans
thf(fact_4123_linorder__less__wlog,axiom,
    ! [P: real > real > $o,A: real,B: real] :
      ( ! [A6: real,B7: real] :
          ( ( ord_less_real @ A6 @ B7 )
         => ( P @ A6 @ B7 ) )
     => ( ! [A6: real] : ( P @ A6 @ A6 )
       => ( ! [A6: real,B7: real] :
              ( ( P @ B7 @ A6 )
             => ( P @ A6 @ B7 ) )
         => ( P @ A @ B ) ) ) ) ).

% linorder_less_wlog
thf(fact_4124_linorder__less__wlog,axiom,
    ! [P: rat > rat > $o,A: rat,B: rat] :
      ( ! [A6: rat,B7: rat] :
          ( ( ord_less_rat @ A6 @ B7 )
         => ( P @ A6 @ B7 ) )
     => ( ! [A6: rat] : ( P @ A6 @ A6 )
       => ( ! [A6: rat,B7: rat] :
              ( ( P @ B7 @ A6 )
             => ( P @ A6 @ B7 ) )
         => ( P @ A @ B ) ) ) ) ).

% linorder_less_wlog
thf(fact_4125_linorder__less__wlog,axiom,
    ! [P: num > num > $o,A: num,B: num] :
      ( ! [A6: num,B7: num] :
          ( ( ord_less_num @ A6 @ B7 )
         => ( P @ A6 @ B7 ) )
     => ( ! [A6: num] : ( P @ A6 @ A6 )
       => ( ! [A6: num,B7: num] :
              ( ( P @ B7 @ A6 )
             => ( P @ A6 @ B7 ) )
         => ( P @ A @ B ) ) ) ) ).

% linorder_less_wlog
thf(fact_4126_linorder__less__wlog,axiom,
    ! [P: nat > nat > $o,A: nat,B: nat] :
      ( ! [A6: nat,B7: nat] :
          ( ( ord_less_nat @ A6 @ B7 )
         => ( P @ A6 @ B7 ) )
     => ( ! [A6: nat] : ( P @ A6 @ A6 )
       => ( ! [A6: nat,B7: nat] :
              ( ( P @ B7 @ A6 )
             => ( P @ A6 @ B7 ) )
         => ( P @ A @ B ) ) ) ) ).

% linorder_less_wlog
thf(fact_4127_linorder__less__wlog,axiom,
    ! [P: int > int > $o,A: int,B: int] :
      ( ! [A6: int,B7: int] :
          ( ( ord_less_int @ A6 @ B7 )
         => ( P @ A6 @ B7 ) )
     => ( ! [A6: int] : ( P @ A6 @ A6 )
       => ( ! [A6: int,B7: int] :
              ( ( P @ B7 @ A6 )
             => ( P @ A6 @ B7 ) )
         => ( P @ A @ B ) ) ) ) ).

% linorder_less_wlog
thf(fact_4128_exists__least__iff,axiom,
    ( ( ^ [P3: nat > $o] :
        ? [X6: nat] : ( P3 @ X6 ) )
    = ( ^ [P4: nat > $o] :
        ? [N2: nat] :
          ( ( P4 @ N2 )
          & ! [M3: nat] :
              ( ( ord_less_nat @ M3 @ N2 )
             => ~ ( P4 @ M3 ) ) ) ) ) ).

% exists_least_iff
thf(fact_4129_dual__order_Oirrefl,axiom,
    ! [A: real] :
      ~ ( ord_less_real @ A @ A ) ).

% dual_order.irrefl
thf(fact_4130_dual__order_Oirrefl,axiom,
    ! [A: rat] :
      ~ ( ord_less_rat @ A @ A ) ).

% dual_order.irrefl
thf(fact_4131_dual__order_Oirrefl,axiom,
    ! [A: num] :
      ~ ( ord_less_num @ A @ A ) ).

% dual_order.irrefl
thf(fact_4132_dual__order_Oirrefl,axiom,
    ! [A: nat] :
      ~ ( ord_less_nat @ A @ A ) ).

% dual_order.irrefl
thf(fact_4133_dual__order_Oirrefl,axiom,
    ! [A: int] :
      ~ ( ord_less_int @ A @ A ) ).

% dual_order.irrefl
thf(fact_4134_dual__order_Oasym,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_real @ B @ A )
     => ~ ( ord_less_real @ A @ B ) ) ).

% dual_order.asym
thf(fact_4135_dual__order_Oasym,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_rat @ B @ A )
     => ~ ( ord_less_rat @ A @ B ) ) ).

% dual_order.asym
thf(fact_4136_dual__order_Oasym,axiom,
    ! [B: num,A: num] :
      ( ( ord_less_num @ B @ A )
     => ~ ( ord_less_num @ A @ B ) ) ).

% dual_order.asym
thf(fact_4137_dual__order_Oasym,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ B @ A )
     => ~ ( ord_less_nat @ A @ B ) ) ).

% dual_order.asym
thf(fact_4138_dual__order_Oasym,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ B @ A )
     => ~ ( ord_less_int @ A @ B ) ) ).

% dual_order.asym
thf(fact_4139_linorder__cases,axiom,
    ! [X2: real,Y2: real] :
      ( ~ ( ord_less_real @ X2 @ Y2 )
     => ( ( X2 != Y2 )
       => ( ord_less_real @ Y2 @ X2 ) ) ) ).

% linorder_cases
thf(fact_4140_linorder__cases,axiom,
    ! [X2: rat,Y2: rat] :
      ( ~ ( ord_less_rat @ X2 @ Y2 )
     => ( ( X2 != Y2 )
       => ( ord_less_rat @ Y2 @ X2 ) ) ) ).

% linorder_cases
thf(fact_4141_linorder__cases,axiom,
    ! [X2: num,Y2: num] :
      ( ~ ( ord_less_num @ X2 @ Y2 )
     => ( ( X2 != Y2 )
       => ( ord_less_num @ Y2 @ X2 ) ) ) ).

% linorder_cases
thf(fact_4142_linorder__cases,axiom,
    ! [X2: nat,Y2: nat] :
      ( ~ ( ord_less_nat @ X2 @ Y2 )
     => ( ( X2 != Y2 )
       => ( ord_less_nat @ Y2 @ X2 ) ) ) ).

% linorder_cases
thf(fact_4143_linorder__cases,axiom,
    ! [X2: int,Y2: int] :
      ( ~ ( ord_less_int @ X2 @ Y2 )
     => ( ( X2 != Y2 )
       => ( ord_less_int @ Y2 @ X2 ) ) ) ).

% linorder_cases
thf(fact_4144_antisym__conv3,axiom,
    ! [Y2: real,X2: real] :
      ( ~ ( ord_less_real @ Y2 @ X2 )
     => ( ( ~ ( ord_less_real @ X2 @ Y2 ) )
        = ( X2 = Y2 ) ) ) ).

% antisym_conv3
thf(fact_4145_antisym__conv3,axiom,
    ! [Y2: rat,X2: rat] :
      ( ~ ( ord_less_rat @ Y2 @ X2 )
     => ( ( ~ ( ord_less_rat @ X2 @ Y2 ) )
        = ( X2 = Y2 ) ) ) ).

% antisym_conv3
thf(fact_4146_antisym__conv3,axiom,
    ! [Y2: num,X2: num] :
      ( ~ ( ord_less_num @ Y2 @ X2 )
     => ( ( ~ ( ord_less_num @ X2 @ Y2 ) )
        = ( X2 = Y2 ) ) ) ).

% antisym_conv3
thf(fact_4147_antisym__conv3,axiom,
    ! [Y2: nat,X2: nat] :
      ( ~ ( ord_less_nat @ Y2 @ X2 )
     => ( ( ~ ( ord_less_nat @ X2 @ Y2 ) )
        = ( X2 = Y2 ) ) ) ).

% antisym_conv3
thf(fact_4148_antisym__conv3,axiom,
    ! [Y2: int,X2: int] :
      ( ~ ( ord_less_int @ Y2 @ X2 )
     => ( ( ~ ( ord_less_int @ X2 @ Y2 ) )
        = ( X2 = Y2 ) ) ) ).

% antisym_conv3
thf(fact_4149_less__induct,axiom,
    ! [P: nat > $o,A: nat] :
      ( ! [X4: nat] :
          ( ! [Y4: nat] :
              ( ( ord_less_nat @ Y4 @ X4 )
             => ( P @ Y4 ) )
         => ( P @ X4 ) )
     => ( P @ A ) ) ).

% less_induct
thf(fact_4150_ord__less__eq__trans,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( B = C )
       => ( ord_less_real @ A @ C ) ) ) ).

% ord_less_eq_trans
thf(fact_4151_ord__less__eq__trans,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( B = C )
       => ( ord_less_rat @ A @ C ) ) ) ).

% ord_less_eq_trans
thf(fact_4152_ord__less__eq__trans,axiom,
    ! [A: num,B: num,C: num] :
      ( ( ord_less_num @ A @ B )
     => ( ( B = C )
       => ( ord_less_num @ A @ C ) ) ) ).

% ord_less_eq_trans
thf(fact_4153_ord__less__eq__trans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( B = C )
       => ( ord_less_nat @ A @ C ) ) ) ).

% ord_less_eq_trans
thf(fact_4154_ord__less__eq__trans,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( B = C )
       => ( ord_less_int @ A @ C ) ) ) ).

% ord_less_eq_trans
thf(fact_4155_ord__eq__less__trans,axiom,
    ! [A: real,B: real,C: real] :
      ( ( A = B )
     => ( ( ord_less_real @ B @ C )
       => ( ord_less_real @ A @ C ) ) ) ).

% ord_eq_less_trans
thf(fact_4156_ord__eq__less__trans,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( A = B )
     => ( ( ord_less_rat @ B @ C )
       => ( ord_less_rat @ A @ C ) ) ) ).

% ord_eq_less_trans
thf(fact_4157_ord__eq__less__trans,axiom,
    ! [A: num,B: num,C: num] :
      ( ( A = B )
     => ( ( ord_less_num @ B @ C )
       => ( ord_less_num @ A @ C ) ) ) ).

% ord_eq_less_trans
thf(fact_4158_ord__eq__less__trans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( A = B )
     => ( ( ord_less_nat @ B @ C )
       => ( ord_less_nat @ A @ C ) ) ) ).

% ord_eq_less_trans
thf(fact_4159_ord__eq__less__trans,axiom,
    ! [A: int,B: int,C: int] :
      ( ( A = B )
     => ( ( ord_less_int @ B @ C )
       => ( ord_less_int @ A @ C ) ) ) ).

% ord_eq_less_trans
thf(fact_4160_order_Oasym,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ~ ( ord_less_real @ B @ A ) ) ).

% order.asym
thf(fact_4161_order_Oasym,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ B )
     => ~ ( ord_less_rat @ B @ A ) ) ).

% order.asym
thf(fact_4162_order_Oasym,axiom,
    ! [A: num,B: num] :
      ( ( ord_less_num @ A @ B )
     => ~ ( ord_less_num @ B @ A ) ) ).

% order.asym
thf(fact_4163_order_Oasym,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ~ ( ord_less_nat @ B @ A ) ) ).

% order.asym
thf(fact_4164_order_Oasym,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ B )
     => ~ ( ord_less_int @ B @ A ) ) ).

% order.asym
thf(fact_4165_less__imp__neq,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_real @ X2 @ Y2 )
     => ( X2 != Y2 ) ) ).

% less_imp_neq
thf(fact_4166_less__imp__neq,axiom,
    ! [X2: rat,Y2: rat] :
      ( ( ord_less_rat @ X2 @ Y2 )
     => ( X2 != Y2 ) ) ).

% less_imp_neq
thf(fact_4167_less__imp__neq,axiom,
    ! [X2: num,Y2: num] :
      ( ( ord_less_num @ X2 @ Y2 )
     => ( X2 != Y2 ) ) ).

% less_imp_neq
thf(fact_4168_less__imp__neq,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ord_less_nat @ X2 @ Y2 )
     => ( X2 != Y2 ) ) ).

% less_imp_neq
thf(fact_4169_less__imp__neq,axiom,
    ! [X2: int,Y2: int] :
      ( ( ord_less_int @ X2 @ Y2 )
     => ( X2 != Y2 ) ) ).

% less_imp_neq
thf(fact_4170_dense,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_real @ X2 @ Y2 )
     => ? [Z3: real] :
          ( ( ord_less_real @ X2 @ Z3 )
          & ( ord_less_real @ Z3 @ Y2 ) ) ) ).

% dense
thf(fact_4171_dense,axiom,
    ! [X2: rat,Y2: rat] :
      ( ( ord_less_rat @ X2 @ Y2 )
     => ? [Z3: rat] :
          ( ( ord_less_rat @ X2 @ Z3 )
          & ( ord_less_rat @ Z3 @ Y2 ) ) ) ).

% dense
thf(fact_4172_gt__ex,axiom,
    ! [X2: real] :
    ? [X_12: real] : ( ord_less_real @ X2 @ X_12 ) ).

% gt_ex
thf(fact_4173_gt__ex,axiom,
    ! [X2: rat] :
    ? [X_12: rat] : ( ord_less_rat @ X2 @ X_12 ) ).

% gt_ex
thf(fact_4174_gt__ex,axiom,
    ! [X2: nat] :
    ? [X_12: nat] : ( ord_less_nat @ X2 @ X_12 ) ).

% gt_ex
thf(fact_4175_gt__ex,axiom,
    ! [X2: int] :
    ? [X_12: int] : ( ord_less_int @ X2 @ X_12 ) ).

% gt_ex
thf(fact_4176_lt__ex,axiom,
    ! [X2: real] :
    ? [Y3: real] : ( ord_less_real @ Y3 @ X2 ) ).

% lt_ex
thf(fact_4177_lt__ex,axiom,
    ! [X2: rat] :
    ? [Y3: rat] : ( ord_less_rat @ Y3 @ X2 ) ).

% lt_ex
thf(fact_4178_lt__ex,axiom,
    ! [X2: int] :
    ? [Y3: int] : ( ord_less_int @ Y3 @ X2 ) ).

% lt_ex
thf(fact_4179_verit__comp__simplify1_I1_J,axiom,
    ! [A: real] :
      ~ ( ord_less_real @ A @ A ) ).

% verit_comp_simplify1(1)
thf(fact_4180_verit__comp__simplify1_I1_J,axiom,
    ! [A: rat] :
      ~ ( ord_less_rat @ A @ A ) ).

% verit_comp_simplify1(1)
thf(fact_4181_verit__comp__simplify1_I1_J,axiom,
    ! [A: num] :
      ~ ( ord_less_num @ A @ A ) ).

% verit_comp_simplify1(1)
thf(fact_4182_verit__comp__simplify1_I1_J,axiom,
    ! [A: nat] :
      ~ ( ord_less_nat @ A @ A ) ).

% verit_comp_simplify1(1)
thf(fact_4183_verit__comp__simplify1_I1_J,axiom,
    ! [A: int] :
      ~ ( ord_less_int @ A @ A ) ).

% verit_comp_simplify1(1)
thf(fact_4184_vebt__succ_Osimps_I2_J,axiom,
    ! [Uv: $o,Uw: $o,N: nat] :
      ( ( vEBT_vebt_succ @ ( vEBT_Leaf @ Uv @ Uw ) @ ( suc @ N ) )
      = none_nat ) ).

% vebt_succ.simps(2)
thf(fact_4185_mult__less__le__imp__less,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_eq_real @ C @ D )
       => ( ( ord_less_eq_real @ zero_zero_real @ A )
         => ( ( ord_less_real @ zero_zero_real @ C )
           => ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D ) ) ) ) ) ) ).

% mult_less_le_imp_less
thf(fact_4186_mult__less__le__imp__less,axiom,
    ! [A: rat,B: rat,C: rat,D: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_eq_rat @ C @ D )
       => ( ( ord_less_eq_rat @ zero_zero_rat @ A )
         => ( ( ord_less_rat @ zero_zero_rat @ C )
           => ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ D ) ) ) ) ) ) ).

% mult_less_le_imp_less
thf(fact_4187_mult__less__le__imp__less,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ D )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ A )
         => ( ( ord_less_nat @ zero_zero_nat @ C )
           => ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) ) ) ) ) ) ).

% mult_less_le_imp_less
thf(fact_4188_mult__less__le__imp__less,axiom,
    ! [A: int,B: int,C: int,D: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_eq_int @ C @ D )
       => ( ( ord_less_eq_int @ zero_zero_int @ A )
         => ( ( ord_less_int @ zero_zero_int @ C )
           => ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D ) ) ) ) ) ) ).

% mult_less_le_imp_less
thf(fact_4189_mult__le__less__imp__less,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_real @ C @ D )
       => ( ( ord_less_real @ zero_zero_real @ A )
         => ( ( ord_less_eq_real @ zero_zero_real @ C )
           => ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D ) ) ) ) ) ) ).

% mult_le_less_imp_less
thf(fact_4190_mult__le__less__imp__less,axiom,
    ! [A: rat,B: rat,C: rat,D: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_rat @ C @ D )
       => ( ( ord_less_rat @ zero_zero_rat @ A )
         => ( ( ord_less_eq_rat @ zero_zero_rat @ C )
           => ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ D ) ) ) ) ) ) ).

% mult_le_less_imp_less
thf(fact_4191_mult__le__less__imp__less,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_nat @ C @ D )
       => ( ( ord_less_nat @ zero_zero_nat @ A )
         => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
           => ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) ) ) ) ) ) ).

% mult_le_less_imp_less
thf(fact_4192_mult__le__less__imp__less,axiom,
    ! [A: int,B: int,C: int,D: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_int @ C @ D )
       => ( ( ord_less_int @ zero_zero_int @ A )
         => ( ( ord_less_eq_int @ zero_zero_int @ C )
           => ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D ) ) ) ) ) ) ).

% mult_le_less_imp_less
thf(fact_4193_mult__right__le__imp__le,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) )
     => ( ( ord_less_real @ zero_zero_real @ C )
       => ( ord_less_eq_real @ A @ B ) ) ) ).

% mult_right_le_imp_le
thf(fact_4194_mult__right__le__imp__le,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) )
     => ( ( ord_less_rat @ zero_zero_rat @ C )
       => ( ord_less_eq_rat @ A @ B ) ) ) ).

% mult_right_le_imp_le
thf(fact_4195_mult__right__le__imp__le,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) )
     => ( ( ord_less_nat @ zero_zero_nat @ C )
       => ( ord_less_eq_nat @ A @ B ) ) ) ).

% mult_right_le_imp_le
thf(fact_4196_mult__right__le__imp__le,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
     => ( ( ord_less_int @ zero_zero_int @ C )
       => ( ord_less_eq_int @ A @ B ) ) ) ).

% mult_right_le_imp_le
thf(fact_4197_mult__left__le__imp__le,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
     => ( ( ord_less_real @ zero_zero_real @ C )
       => ( ord_less_eq_real @ A @ B ) ) ) ).

% mult_left_le_imp_le
thf(fact_4198_mult__left__le__imp__le,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
     => ( ( ord_less_rat @ zero_zero_rat @ C )
       => ( ord_less_eq_rat @ A @ B ) ) ) ).

% mult_left_le_imp_le
thf(fact_4199_mult__left__le__imp__le,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) )
     => ( ( ord_less_nat @ zero_zero_nat @ C )
       => ( ord_less_eq_nat @ A @ B ) ) ) ).

% mult_left_le_imp_le
thf(fact_4200_mult__left__le__imp__le,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
     => ( ( ord_less_int @ zero_zero_int @ C )
       => ( ord_less_eq_int @ A @ B ) ) ) ).

% mult_left_le_imp_le
thf(fact_4201_mult__le__cancel__left__pos,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ C )
     => ( ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
        = ( ord_less_eq_real @ A @ B ) ) ) ).

% mult_le_cancel_left_pos
thf(fact_4202_mult__le__cancel__left__pos,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ C )
     => ( ( ord_less_eq_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
        = ( ord_less_eq_rat @ A @ B ) ) ) ).

% mult_le_cancel_left_pos
thf(fact_4203_mult__le__cancel__left__pos,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ C )
     => ( ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
        = ( ord_less_eq_int @ A @ B ) ) ) ).

% mult_le_cancel_left_pos
thf(fact_4204_mult__le__cancel__left__neg,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ C @ zero_zero_real )
     => ( ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
        = ( ord_less_eq_real @ B @ A ) ) ) ).

% mult_le_cancel_left_neg
thf(fact_4205_mult__le__cancel__left__neg,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ C @ zero_zero_rat )
     => ( ( ord_less_eq_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
        = ( ord_less_eq_rat @ B @ A ) ) ) ).

% mult_le_cancel_left_neg
thf(fact_4206_mult__le__cancel__left__neg,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_int @ C @ zero_zero_int )
     => ( ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
        = ( ord_less_eq_int @ B @ A ) ) ) ).

% mult_le_cancel_left_neg
thf(fact_4207_mult__less__cancel__right,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) )
      = ( ( ( ord_less_eq_real @ zero_zero_real @ C )
         => ( ord_less_real @ A @ B ) )
        & ( ( ord_less_eq_real @ C @ zero_zero_real )
         => ( ord_less_real @ B @ A ) ) ) ) ).

% mult_less_cancel_right
thf(fact_4208_mult__less__cancel__right,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) )
      = ( ( ( ord_less_eq_rat @ zero_zero_rat @ C )
         => ( ord_less_rat @ A @ B ) )
        & ( ( ord_less_eq_rat @ C @ zero_zero_rat )
         => ( ord_less_rat @ B @ A ) ) ) ) ).

% mult_less_cancel_right
thf(fact_4209_mult__less__cancel__right,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
      = ( ( ( ord_less_eq_int @ zero_zero_int @ C )
         => ( ord_less_int @ A @ B ) )
        & ( ( ord_less_eq_int @ C @ zero_zero_int )
         => ( ord_less_int @ B @ A ) ) ) ) ).

% mult_less_cancel_right
thf(fact_4210_mult__strict__mono_H,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ C @ D )
       => ( ( ord_less_eq_real @ zero_zero_real @ A )
         => ( ( ord_less_eq_real @ zero_zero_real @ C )
           => ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D ) ) ) ) ) ) ).

% mult_strict_mono'
thf(fact_4211_mult__strict__mono_H,axiom,
    ! [A: rat,B: rat,C: rat,D: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_rat @ C @ D )
       => ( ( ord_less_eq_rat @ zero_zero_rat @ A )
         => ( ( ord_less_eq_rat @ zero_zero_rat @ C )
           => ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ D ) ) ) ) ) ) ).

% mult_strict_mono'
thf(fact_4212_mult__strict__mono_H,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ C @ D )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ A )
         => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
           => ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) ) ) ) ) ) ).

% mult_strict_mono'
thf(fact_4213_mult__strict__mono_H,axiom,
    ! [A: int,B: int,C: int,D: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_int @ C @ D )
       => ( ( ord_less_eq_int @ zero_zero_int @ A )
         => ( ( ord_less_eq_int @ zero_zero_int @ C )
           => ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D ) ) ) ) ) ) ).

% mult_strict_mono'
thf(fact_4214_mult__right__less__imp__less,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) )
     => ( ( ord_less_eq_real @ zero_zero_real @ C )
       => ( ord_less_real @ A @ B ) ) ) ).

% mult_right_less_imp_less
thf(fact_4215_mult__right__less__imp__less,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ C )
       => ( ord_less_rat @ A @ B ) ) ) ).

% mult_right_less_imp_less
thf(fact_4216_mult__right__less__imp__less,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
       => ( ord_less_nat @ A @ B ) ) ) ).

% mult_right_less_imp_less
thf(fact_4217_mult__right__less__imp__less,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ C )
       => ( ord_less_int @ A @ B ) ) ) ).

% mult_right_less_imp_less
thf(fact_4218_mult__less__cancel__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
      = ( ( ( ord_less_eq_real @ zero_zero_real @ C )
         => ( ord_less_real @ A @ B ) )
        & ( ( ord_less_eq_real @ C @ zero_zero_real )
         => ( ord_less_real @ B @ A ) ) ) ) ).

% mult_less_cancel_left
thf(fact_4219_mult__less__cancel__left,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
      = ( ( ( ord_less_eq_rat @ zero_zero_rat @ C )
         => ( ord_less_rat @ A @ B ) )
        & ( ( ord_less_eq_rat @ C @ zero_zero_rat )
         => ( ord_less_rat @ B @ A ) ) ) ) ).

% mult_less_cancel_left
thf(fact_4220_mult__less__cancel__left,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
      = ( ( ( ord_less_eq_int @ zero_zero_int @ C )
         => ( ord_less_int @ A @ B ) )
        & ( ( ord_less_eq_int @ C @ zero_zero_int )
         => ( ord_less_int @ B @ A ) ) ) ) ).

% mult_less_cancel_left
thf(fact_4221_mult__strict__mono,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ C @ D )
       => ( ( ord_less_real @ zero_zero_real @ B )
         => ( ( ord_less_eq_real @ zero_zero_real @ C )
           => ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D ) ) ) ) ) ) ).

% mult_strict_mono
thf(fact_4222_mult__strict__mono,axiom,
    ! [A: rat,B: rat,C: rat,D: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_rat @ C @ D )
       => ( ( ord_less_rat @ zero_zero_rat @ B )
         => ( ( ord_less_eq_rat @ zero_zero_rat @ C )
           => ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ D ) ) ) ) ) ) ).

% mult_strict_mono
thf(fact_4223_mult__strict__mono,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ C @ D )
       => ( ( ord_less_nat @ zero_zero_nat @ B )
         => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
           => ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) ) ) ) ) ) ).

% mult_strict_mono
thf(fact_4224_mult__strict__mono,axiom,
    ! [A: int,B: int,C: int,D: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_int @ C @ D )
       => ( ( ord_less_int @ zero_zero_int @ B )
         => ( ( ord_less_eq_int @ zero_zero_int @ C )
           => ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D ) ) ) ) ) ) ).

% mult_strict_mono
thf(fact_4225_mult__left__less__imp__less,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
     => ( ( ord_less_eq_real @ zero_zero_real @ C )
       => ( ord_less_real @ A @ B ) ) ) ).

% mult_left_less_imp_less
thf(fact_4226_mult__left__less__imp__less,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ C )
       => ( ord_less_rat @ A @ B ) ) ) ).

% mult_left_less_imp_less
thf(fact_4227_mult__left__less__imp__less,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
       => ( ord_less_nat @ A @ B ) ) ) ).

% mult_left_less_imp_less
thf(fact_4228_mult__left__less__imp__less,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ C )
       => ( ord_less_int @ A @ B ) ) ) ).

% mult_left_less_imp_less
thf(fact_4229_mult__le__cancel__right,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ A @ B ) )
        & ( ( ord_less_real @ C @ zero_zero_real )
         => ( ord_less_eq_real @ B @ A ) ) ) ) ).

% mult_le_cancel_right
thf(fact_4230_mult__le__cancel__right,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_eq_rat @ A @ B ) )
        & ( ( ord_less_rat @ C @ zero_zero_rat )
         => ( ord_less_eq_rat @ B @ A ) ) ) ) ).

% mult_le_cancel_right
thf(fact_4231_mult__le__cancel__right,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
      = ( ( ( ord_less_int @ zero_zero_int @ C )
         => ( ord_less_eq_int @ A @ B ) )
        & ( ( ord_less_int @ C @ zero_zero_int )
         => ( ord_less_eq_int @ B @ A ) ) ) ) ).

% mult_le_cancel_right
thf(fact_4232_mult__le__cancel__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ A @ B ) )
        & ( ( ord_less_real @ C @ zero_zero_real )
         => ( ord_less_eq_real @ B @ A ) ) ) ) ).

% mult_le_cancel_left
thf(fact_4233_mult__le__cancel__left,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_eq_rat @ A @ B ) )
        & ( ( ord_less_rat @ C @ zero_zero_rat )
         => ( ord_less_eq_rat @ B @ A ) ) ) ) ).

% mult_le_cancel_left
thf(fact_4234_mult__le__cancel__left,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
      = ( ( ( ord_less_int @ zero_zero_int @ C )
         => ( ord_less_eq_int @ A @ B ) )
        & ( ( ord_less_int @ C @ zero_zero_int )
         => ( ord_less_eq_int @ B @ A ) ) ) ) ).

% mult_le_cancel_left
thf(fact_4235_add__neg__nonpos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ( ord_less_eq_real @ B @ zero_zero_real )
       => ( ord_less_real @ ( plus_plus_real @ A @ B ) @ zero_zero_real ) ) ) ).

% add_neg_nonpos
thf(fact_4236_add__neg__nonpos,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ zero_zero_rat )
     => ( ( ord_less_eq_rat @ B @ zero_zero_rat )
       => ( ord_less_rat @ ( plus_plus_rat @ A @ B ) @ zero_zero_rat ) ) ) ).

% add_neg_nonpos
thf(fact_4237_add__neg__nonpos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ B @ zero_zero_nat )
       => ( ord_less_nat @ ( plus_plus_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% add_neg_nonpos
thf(fact_4238_add__neg__nonpos,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ zero_zero_int )
     => ( ( ord_less_eq_int @ B @ zero_zero_int )
       => ( ord_less_int @ ( plus_plus_int @ A @ B ) @ zero_zero_int ) ) ) ).

% add_neg_nonpos
thf(fact_4239_add__nonneg__pos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ B )
       => ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ A @ B ) ) ) ) ).

% add_nonneg_pos
thf(fact_4240_add__nonneg__pos,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ A )
     => ( ( ord_less_rat @ zero_zero_rat @ B )
       => ( ord_less_rat @ zero_zero_rat @ ( plus_plus_rat @ A @ B ) ) ) ) ).

% add_nonneg_pos
thf(fact_4241_add__nonneg__pos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ B )
       => ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% add_nonneg_pos
thf(fact_4242_add__nonneg__pos,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ zero_zero_int @ B )
       => ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ A @ B ) ) ) ) ).

% add_nonneg_pos
thf(fact_4243_add__nonpos__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ zero_zero_real )
     => ( ( ord_less_real @ B @ zero_zero_real )
       => ( ord_less_real @ ( plus_plus_real @ A @ B ) @ zero_zero_real ) ) ) ).

% add_nonpos_neg
thf(fact_4244_add__nonpos__neg,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ A @ zero_zero_rat )
     => ( ( ord_less_rat @ B @ zero_zero_rat )
       => ( ord_less_rat @ ( plus_plus_rat @ A @ B ) @ zero_zero_rat ) ) ) ).

% add_nonpos_neg
thf(fact_4245_add__nonpos__neg,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
     => ( ( ord_less_nat @ B @ zero_zero_nat )
       => ( ord_less_nat @ ( plus_plus_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% add_nonpos_neg
thf(fact_4246_add__nonpos__neg,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ zero_zero_int )
     => ( ( ord_less_int @ B @ zero_zero_int )
       => ( ord_less_int @ ( plus_plus_int @ A @ B ) @ zero_zero_int ) ) ) ).

% add_nonpos_neg
thf(fact_4247_add__pos__nonneg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ zero_zero_real @ B )
       => ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ A @ B ) ) ) ) ).

% add_pos_nonneg
thf(fact_4248_add__pos__nonneg,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ B )
       => ( ord_less_rat @ zero_zero_rat @ ( plus_plus_rat @ A @ B ) ) ) ) ).

% add_pos_nonneg
thf(fact_4249_add__pos__nonneg,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
       => ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% add_pos_nonneg
thf(fact_4250_add__pos__nonneg,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ A )
     => ( ( ord_less_eq_int @ zero_zero_int @ B )
       => ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ A @ B ) ) ) ) ).

% add_pos_nonneg
thf(fact_4251_add__strict__increasing,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ B @ C )
       => ( ord_less_real @ B @ ( plus_plus_real @ A @ C ) ) ) ) ).

% add_strict_increasing
thf(fact_4252_add__strict__increasing,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ( ord_less_eq_rat @ B @ C )
       => ( ord_less_rat @ B @ ( plus_plus_rat @ A @ C ) ) ) ) ).

% add_strict_increasing
thf(fact_4253_add__strict__increasing,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ord_less_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).

% add_strict_increasing
thf(fact_4254_add__strict__increasing,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ zero_zero_int @ A )
     => ( ( ord_less_eq_int @ B @ C )
       => ( ord_less_int @ B @ ( plus_plus_int @ A @ C ) ) ) ) ).

% add_strict_increasing
thf(fact_4255_add__strict__increasing2,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ B @ C )
       => ( ord_less_real @ B @ ( plus_plus_real @ A @ C ) ) ) ) ).

% add_strict_increasing2
thf(fact_4256_add__strict__increasing2,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ A )
     => ( ( ord_less_rat @ B @ C )
       => ( ord_less_rat @ B @ ( plus_plus_rat @ A @ C ) ) ) ) ).

% add_strict_increasing2
thf(fact_4257_add__strict__increasing2,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ B @ C )
       => ( ord_less_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).

% add_strict_increasing2
thf(fact_4258_add__strict__increasing2,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ B @ C )
       => ( ord_less_int @ B @ ( plus_plus_int @ A @ C ) ) ) ) ).

% add_strict_increasing2
thf(fact_4259_field__le__epsilon,axiom,
    ! [X2: real,Y2: real] :
      ( ! [E2: real] :
          ( ( ord_less_real @ zero_zero_real @ E2 )
         => ( ord_less_eq_real @ X2 @ ( plus_plus_real @ Y2 @ E2 ) ) )
     => ( ord_less_eq_real @ X2 @ Y2 ) ) ).

% field_le_epsilon
thf(fact_4260_field__le__epsilon,axiom,
    ! [X2: rat,Y2: rat] :
      ( ! [E2: rat] :
          ( ( ord_less_rat @ zero_zero_rat @ E2 )
         => ( ord_less_eq_rat @ X2 @ ( plus_plus_rat @ Y2 @ E2 ) ) )
     => ( ord_less_eq_rat @ X2 @ Y2 ) ) ).

% field_le_epsilon
thf(fact_4261_VEBT__internal_OminNull_Oelims_I3_J,axiom,
    ! [X2: vEBT_VEBT] :
      ( ~ ( vEBT_VEBT_minNull @ X2 )
     => ( ! [Uv2: $o] :
            ( X2
           != ( vEBT_Leaf @ $true @ Uv2 ) )
       => ( ! [Uu2: $o] :
              ( X2
             != ( vEBT_Leaf @ Uu2 @ $true ) )
         => ~ ! [Uz2: product_prod_nat_nat,Va2: nat,Vb2: list_VEBT_VEBT,Vc2: vEBT_VEBT] :
                ( X2
               != ( vEBT_Node @ ( some_P7363390416028606310at_nat @ Uz2 ) @ Va2 @ Vb2 @ Vc2 ) ) ) ) ) ).

% VEBT_internal.minNull.elims(3)
thf(fact_4262_frac__le,axiom,
    ! [Y2: real,X2: real,W: real,Z: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ Y2 )
     => ( ( ord_less_eq_real @ X2 @ Y2 )
       => ( ( ord_less_real @ zero_zero_real @ W )
         => ( ( ord_less_eq_real @ W @ Z )
           => ( ord_less_eq_real @ ( divide_divide_real @ X2 @ Z ) @ ( divide_divide_real @ Y2 @ W ) ) ) ) ) ) ).

% frac_le
thf(fact_4263_frac__le,axiom,
    ! [Y2: rat,X2: rat,W: rat,Z: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ Y2 )
     => ( ( ord_less_eq_rat @ X2 @ Y2 )
       => ( ( ord_less_rat @ zero_zero_rat @ W )
         => ( ( ord_less_eq_rat @ W @ Z )
           => ( ord_less_eq_rat @ ( divide_divide_rat @ X2 @ Z ) @ ( divide_divide_rat @ Y2 @ W ) ) ) ) ) ) ).

% frac_le
thf(fact_4264_frac__less,axiom,
    ! [X2: real,Y2: real,W: real,Z: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ( ord_less_real @ X2 @ Y2 )
       => ( ( ord_less_real @ zero_zero_real @ W )
         => ( ( ord_less_eq_real @ W @ Z )
           => ( ord_less_real @ ( divide_divide_real @ X2 @ Z ) @ ( divide_divide_real @ Y2 @ W ) ) ) ) ) ) ).

% frac_less
thf(fact_4265_frac__less,axiom,
    ! [X2: rat,Y2: rat,W: rat,Z: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ X2 )
     => ( ( ord_less_rat @ X2 @ Y2 )
       => ( ( ord_less_rat @ zero_zero_rat @ W )
         => ( ( ord_less_eq_rat @ W @ Z )
           => ( ord_less_rat @ ( divide_divide_rat @ X2 @ Z ) @ ( divide_divide_rat @ Y2 @ W ) ) ) ) ) ) ).

% frac_less
thf(fact_4266_frac__less2,axiom,
    ! [X2: real,Y2: real,W: real,Z: real] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( ( ord_less_eq_real @ X2 @ Y2 )
       => ( ( ord_less_real @ zero_zero_real @ W )
         => ( ( ord_less_real @ W @ Z )
           => ( ord_less_real @ ( divide_divide_real @ X2 @ Z ) @ ( divide_divide_real @ Y2 @ W ) ) ) ) ) ) ).

% frac_less2
thf(fact_4267_frac__less2,axiom,
    ! [X2: rat,Y2: rat,W: rat,Z: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ X2 )
     => ( ( ord_less_eq_rat @ X2 @ Y2 )
       => ( ( ord_less_rat @ zero_zero_rat @ W )
         => ( ( ord_less_rat @ W @ Z )
           => ( ord_less_rat @ ( divide_divide_rat @ X2 @ Z ) @ ( divide_divide_rat @ Y2 @ W ) ) ) ) ) ) ).

% frac_less2
thf(fact_4268_divide__le__cancel,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_eq_real @ ( divide_divide_real @ A @ C ) @ ( divide_divide_real @ B @ C ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ A @ B ) )
        & ( ( ord_less_real @ C @ zero_zero_real )
         => ( ord_less_eq_real @ B @ A ) ) ) ) ).

% divide_le_cancel
thf(fact_4269_divide__le__cancel,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( divide_divide_rat @ A @ C ) @ ( divide_divide_rat @ B @ C ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_eq_rat @ A @ B ) )
        & ( ( ord_less_rat @ C @ zero_zero_rat )
         => ( ord_less_eq_rat @ B @ A ) ) ) ) ).

% divide_le_cancel
thf(fact_4270_divide__nonneg__neg,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ( ord_less_real @ Y2 @ zero_zero_real )
       => ( ord_less_eq_real @ ( divide_divide_real @ X2 @ Y2 ) @ zero_zero_real ) ) ) ).

% divide_nonneg_neg
thf(fact_4271_divide__nonneg__neg,axiom,
    ! [X2: rat,Y2: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ X2 )
     => ( ( ord_less_rat @ Y2 @ zero_zero_rat )
       => ( ord_less_eq_rat @ ( divide_divide_rat @ X2 @ Y2 ) @ zero_zero_rat ) ) ) ).

% divide_nonneg_neg
thf(fact_4272_divide__nonneg__pos,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ( ord_less_real @ zero_zero_real @ Y2 )
       => ( ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ X2 @ Y2 ) ) ) ) ).

% divide_nonneg_pos
thf(fact_4273_divide__nonneg__pos,axiom,
    ! [X2: rat,Y2: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ X2 )
     => ( ( ord_less_rat @ zero_zero_rat @ Y2 )
       => ( ord_less_eq_rat @ zero_zero_rat @ ( divide_divide_rat @ X2 @ Y2 ) ) ) ) ).

% divide_nonneg_pos
thf(fact_4274_divide__nonpos__neg,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_eq_real @ X2 @ zero_zero_real )
     => ( ( ord_less_real @ Y2 @ zero_zero_real )
       => ( ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ X2 @ Y2 ) ) ) ) ).

% divide_nonpos_neg
thf(fact_4275_divide__nonpos__neg,axiom,
    ! [X2: rat,Y2: rat] :
      ( ( ord_less_eq_rat @ X2 @ zero_zero_rat )
     => ( ( ord_less_rat @ Y2 @ zero_zero_rat )
       => ( ord_less_eq_rat @ zero_zero_rat @ ( divide_divide_rat @ X2 @ Y2 ) ) ) ) ).

% divide_nonpos_neg
thf(fact_4276_divide__nonpos__pos,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_eq_real @ X2 @ zero_zero_real )
     => ( ( ord_less_real @ zero_zero_real @ Y2 )
       => ( ord_less_eq_real @ ( divide_divide_real @ X2 @ Y2 ) @ zero_zero_real ) ) ) ).

% divide_nonpos_pos
thf(fact_4277_divide__nonpos__pos,axiom,
    ! [X2: rat,Y2: rat] :
      ( ( ord_less_eq_rat @ X2 @ zero_zero_rat )
     => ( ( ord_less_rat @ zero_zero_rat @ Y2 )
       => ( ord_less_eq_rat @ ( divide_divide_rat @ X2 @ Y2 ) @ zero_zero_rat ) ) ) ).

% divide_nonpos_pos
thf(fact_4278_unique__euclidean__semiring__numeral__class_Odiv__less,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ A @ B )
       => ( ( divide_divide_nat @ A @ B )
          = zero_zero_nat ) ) ) ).

% unique_euclidean_semiring_numeral_class.div_less
thf(fact_4279_unique__euclidean__semiring__numeral__class_Odiv__less,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ A @ B )
       => ( ( divide_divide_int @ A @ B )
          = zero_zero_int ) ) ) ).

% unique_euclidean_semiring_numeral_class.div_less
thf(fact_4280_div__positive,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ B )
     => ( ( ord_less_eq_nat @ B @ A )
       => ( ord_less_nat @ zero_zero_nat @ ( divide_divide_nat @ A @ B ) ) ) ) ).

% div_positive
thf(fact_4281_div__positive,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ( ord_less_eq_int @ B @ A )
       => ( ord_less_int @ zero_zero_int @ ( divide_divide_int @ A @ B ) ) ) ) ).

% div_positive
thf(fact_4282_mult__left__le__one__le,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y2 )
       => ( ( ord_less_eq_real @ Y2 @ one_one_real )
         => ( ord_less_eq_real @ ( times_times_real @ Y2 @ X2 ) @ X2 ) ) ) ) ).

% mult_left_le_one_le
thf(fact_4283_mult__left__le__one__le,axiom,
    ! [X2: rat,Y2: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ X2 )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ Y2 )
       => ( ( ord_less_eq_rat @ Y2 @ one_one_rat )
         => ( ord_less_eq_rat @ ( times_times_rat @ Y2 @ X2 ) @ X2 ) ) ) ) ).

% mult_left_le_one_le
thf(fact_4284_mult__left__le__one__le,axiom,
    ! [X2: int,Y2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X2 )
     => ( ( ord_less_eq_int @ zero_zero_int @ Y2 )
       => ( ( ord_less_eq_int @ Y2 @ one_one_int )
         => ( ord_less_eq_int @ ( times_times_int @ Y2 @ X2 ) @ X2 ) ) ) ) ).

% mult_left_le_one_le
thf(fact_4285_mult__right__le__one__le,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y2 )
       => ( ( ord_less_eq_real @ Y2 @ one_one_real )
         => ( ord_less_eq_real @ ( times_times_real @ X2 @ Y2 ) @ X2 ) ) ) ) ).

% mult_right_le_one_le
thf(fact_4286_mult__right__le__one__le,axiom,
    ! [X2: rat,Y2: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ X2 )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ Y2 )
       => ( ( ord_less_eq_rat @ Y2 @ one_one_rat )
         => ( ord_less_eq_rat @ ( times_times_rat @ X2 @ Y2 ) @ X2 ) ) ) ) ).

% mult_right_le_one_le
thf(fact_4287_mult__right__le__one__le,axiom,
    ! [X2: int,Y2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X2 )
     => ( ( ord_less_eq_int @ zero_zero_int @ Y2 )
       => ( ( ord_less_eq_int @ Y2 @ one_one_int )
         => ( ord_less_eq_int @ ( times_times_int @ X2 @ Y2 ) @ X2 ) ) ) ) ).

% mult_right_le_one_le
thf(fact_4288_mult__le__one,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ one_one_real )
     => ( ( ord_less_eq_real @ zero_zero_real @ B )
       => ( ( ord_less_eq_real @ B @ one_one_real )
         => ( ord_less_eq_real @ ( times_times_real @ A @ B ) @ one_one_real ) ) ) ) ).

% mult_le_one
thf(fact_4289_mult__le__one,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ A @ one_one_rat )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ B )
       => ( ( ord_less_eq_rat @ B @ one_one_rat )
         => ( ord_less_eq_rat @ ( times_times_rat @ A @ B ) @ one_one_rat ) ) ) ) ).

% mult_le_one
thf(fact_4290_mult__le__one,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ one_one_nat )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
       => ( ( ord_less_eq_nat @ B @ one_one_nat )
         => ( ord_less_eq_nat @ ( times_times_nat @ A @ B ) @ one_one_nat ) ) ) ) ).

% mult_le_one
thf(fact_4291_mult__le__one,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ one_one_int )
     => ( ( ord_less_eq_int @ zero_zero_int @ B )
       => ( ( ord_less_eq_int @ B @ one_one_int )
         => ( ord_less_eq_int @ ( times_times_int @ A @ B ) @ one_one_int ) ) ) ) ).

% mult_le_one
thf(fact_4292_mult__left__le,axiom,
    ! [C: real,A: real] :
      ( ( ord_less_eq_real @ C @ one_one_real )
     => ( ( ord_less_eq_real @ zero_zero_real @ A )
       => ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ A ) ) ) ).

% mult_left_le
thf(fact_4293_mult__left__le,axiom,
    ! [C: rat,A: rat] :
      ( ( ord_less_eq_rat @ C @ one_one_rat )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ A )
       => ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ A ) ) ) ).

% mult_left_le
thf(fact_4294_mult__left__le,axiom,
    ! [C: nat,A: nat] :
      ( ( ord_less_eq_nat @ C @ one_one_nat )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ A )
       => ( ord_less_eq_nat @ ( times_times_nat @ A @ C ) @ A ) ) ) ).

% mult_left_le
thf(fact_4295_mult__left__le,axiom,
    ! [C: int,A: int] :
      ( ( ord_less_eq_int @ C @ one_one_int )
     => ( ( ord_less_eq_int @ zero_zero_int @ A )
       => ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ A ) ) ) ).

% mult_left_le
thf(fact_4296_sum__squares__le__zero__iff,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ ( times_times_real @ X2 @ X2 ) @ ( times_times_real @ Y2 @ Y2 ) ) @ zero_zero_real )
      = ( ( X2 = zero_zero_real )
        & ( Y2 = zero_zero_real ) ) ) ).

% sum_squares_le_zero_iff
thf(fact_4297_sum__squares__le__zero__iff,axiom,
    ! [X2: rat,Y2: rat] :
      ( ( ord_less_eq_rat @ ( plus_plus_rat @ ( times_times_rat @ X2 @ X2 ) @ ( times_times_rat @ Y2 @ Y2 ) ) @ zero_zero_rat )
      = ( ( X2 = zero_zero_rat )
        & ( Y2 = zero_zero_rat ) ) ) ).

% sum_squares_le_zero_iff
thf(fact_4298_sum__squares__le__zero__iff,axiom,
    ! [X2: int,Y2: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ ( times_times_int @ X2 @ X2 ) @ ( times_times_int @ Y2 @ Y2 ) ) @ zero_zero_int )
      = ( ( X2 = zero_zero_int )
        & ( Y2 = zero_zero_int ) ) ) ).

% sum_squares_le_zero_iff
thf(fact_4299_sum__squares__ge__zero,axiom,
    ! [X2: real,Y2: real] : ( ord_less_eq_real @ zero_zero_real @ ( plus_plus_real @ ( times_times_real @ X2 @ X2 ) @ ( times_times_real @ Y2 @ Y2 ) ) ) ).

% sum_squares_ge_zero
thf(fact_4300_sum__squares__ge__zero,axiom,
    ! [X2: rat,Y2: rat] : ( ord_less_eq_rat @ zero_zero_rat @ ( plus_plus_rat @ ( times_times_rat @ X2 @ X2 ) @ ( times_times_rat @ Y2 @ Y2 ) ) ) ).

% sum_squares_ge_zero
thf(fact_4301_sum__squares__ge__zero,axiom,
    ! [X2: int,Y2: int] : ( ord_less_eq_int @ zero_zero_int @ ( plus_plus_int @ ( times_times_int @ X2 @ X2 ) @ ( times_times_int @ Y2 @ Y2 ) ) ) ).

% sum_squares_ge_zero
thf(fact_4302_sum__squares__gt__zero__iff,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ ( times_times_real @ X2 @ X2 ) @ ( times_times_real @ Y2 @ Y2 ) ) )
      = ( ( X2 != zero_zero_real )
        | ( Y2 != zero_zero_real ) ) ) ).

% sum_squares_gt_zero_iff
thf(fact_4303_sum__squares__gt__zero__iff,axiom,
    ! [X2: rat,Y2: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( plus_plus_rat @ ( times_times_rat @ X2 @ X2 ) @ ( times_times_rat @ Y2 @ Y2 ) ) )
      = ( ( X2 != zero_zero_rat )
        | ( Y2 != zero_zero_rat ) ) ) ).

% sum_squares_gt_zero_iff
thf(fact_4304_sum__squares__gt__zero__iff,axiom,
    ! [X2: int,Y2: int] :
      ( ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ ( times_times_int @ X2 @ X2 ) @ ( times_times_int @ Y2 @ Y2 ) ) )
      = ( ( X2 != zero_zero_int )
        | ( Y2 != zero_zero_int ) ) ) ).

% sum_squares_gt_zero_iff
thf(fact_4305_not__sum__squares__lt__zero,axiom,
    ! [X2: real,Y2: real] :
      ~ ( ord_less_real @ ( plus_plus_real @ ( times_times_real @ X2 @ X2 ) @ ( times_times_real @ Y2 @ Y2 ) ) @ zero_zero_real ) ).

% not_sum_squares_lt_zero
thf(fact_4306_not__sum__squares__lt__zero,axiom,
    ! [X2: rat,Y2: rat] :
      ~ ( ord_less_rat @ ( plus_plus_rat @ ( times_times_rat @ X2 @ X2 ) @ ( times_times_rat @ Y2 @ Y2 ) ) @ zero_zero_rat ) ).

% not_sum_squares_lt_zero
thf(fact_4307_not__sum__squares__lt__zero,axiom,
    ! [X2: int,Y2: int] :
      ~ ( ord_less_int @ ( plus_plus_int @ ( times_times_int @ X2 @ X2 ) @ ( times_times_int @ Y2 @ Y2 ) ) @ zero_zero_int ) ).

% not_sum_squares_lt_zero
thf(fact_4308_power__less__imp__less__base,axiom,
    ! [A: real,N: nat,B: real] :
      ( ( ord_less_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ B @ N ) )
     => ( ( ord_less_eq_real @ zero_zero_real @ B )
       => ( ord_less_real @ A @ B ) ) ) ).

% power_less_imp_less_base
thf(fact_4309_power__less__imp__less__base,axiom,
    ! [A: rat,N: nat,B: rat] :
      ( ( ord_less_rat @ ( power_power_rat @ A @ N ) @ ( power_power_rat @ B @ N ) )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ B )
       => ( ord_less_rat @ A @ B ) ) ) ).

% power_less_imp_less_base
thf(fact_4310_power__less__imp__less__base,axiom,
    ! [A: nat,N: nat,B: nat] :
      ( ( ord_less_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ B @ N ) )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
       => ( ord_less_nat @ A @ B ) ) ) ).

% power_less_imp_less_base
thf(fact_4311_power__less__imp__less__base,axiom,
    ! [A: int,N: nat,B: int] :
      ( ( ord_less_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ B @ N ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ B )
       => ( ord_less_int @ A @ B ) ) ) ).

% power_less_imp_less_base
thf(fact_4312_zero__less__two,axiom,
    ord_less_real @ zero_zero_real @ ( plus_plus_real @ one_one_real @ one_one_real ) ).

% zero_less_two
thf(fact_4313_zero__less__two,axiom,
    ord_less_rat @ zero_zero_rat @ ( plus_plus_rat @ one_one_rat @ one_one_rat ) ).

% zero_less_two
thf(fact_4314_zero__less__two,axiom,
    ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ one_one_nat @ one_one_nat ) ).

% zero_less_two
thf(fact_4315_zero__less__two,axiom,
    ord_less_int @ zero_zero_int @ ( plus_plus_int @ one_one_int @ one_one_int ) ).

% zero_less_two
thf(fact_4316_unique__euclidean__semiring__numeral__class_Odiv__mult2__eq,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ C )
     => ( ( divide_divide_nat @ A @ ( times_times_nat @ B @ C ) )
        = ( divide_divide_nat @ ( divide_divide_nat @ A @ B ) @ C ) ) ) ).

% unique_euclidean_semiring_numeral_class.div_mult2_eq
thf(fact_4317_unique__euclidean__semiring__numeral__class_Odiv__mult2__eq,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ C )
     => ( ( divide_divide_int @ A @ ( times_times_int @ B @ C ) )
        = ( divide_divide_int @ ( divide_divide_int @ A @ B ) @ C ) ) ) ).

% unique_euclidean_semiring_numeral_class.div_mult2_eq
thf(fact_4318_divide__strict__left__mono__neg,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ C @ zero_zero_real )
       => ( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
         => ( ord_less_real @ ( divide_divide_real @ C @ A ) @ ( divide_divide_real @ C @ B ) ) ) ) ) ).

% divide_strict_left_mono_neg
thf(fact_4319_divide__strict__left__mono__neg,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_rat @ C @ zero_zero_rat )
       => ( ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) )
         => ( ord_less_rat @ ( divide_divide_rat @ C @ A ) @ ( divide_divide_rat @ C @ B ) ) ) ) ) ).

% divide_strict_left_mono_neg
thf(fact_4320_divide__strict__left__mono,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_real @ B @ A )
     => ( ( ord_less_real @ zero_zero_real @ C )
       => ( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
         => ( ord_less_real @ ( divide_divide_real @ C @ A ) @ ( divide_divide_real @ C @ B ) ) ) ) ) ).

% divide_strict_left_mono
thf(fact_4321_divide__strict__left__mono,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( ord_less_rat @ B @ A )
     => ( ( ord_less_rat @ zero_zero_rat @ C )
       => ( ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) )
         => ( ord_less_rat @ ( divide_divide_rat @ C @ A ) @ ( divide_divide_rat @ C @ B ) ) ) ) ) ).

% divide_strict_left_mono
thf(fact_4322_mult__imp__less__div__pos,axiom,
    ! [Y2: real,Z: real,X2: real] :
      ( ( ord_less_real @ zero_zero_real @ Y2 )
     => ( ( ord_less_real @ ( times_times_real @ Z @ Y2 ) @ X2 )
       => ( ord_less_real @ Z @ ( divide_divide_real @ X2 @ Y2 ) ) ) ) ).

% mult_imp_less_div_pos
thf(fact_4323_mult__imp__less__div__pos,axiom,
    ! [Y2: rat,Z: rat,X2: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ Y2 )
     => ( ( ord_less_rat @ ( times_times_rat @ Z @ Y2 ) @ X2 )
       => ( ord_less_rat @ Z @ ( divide_divide_rat @ X2 @ Y2 ) ) ) ) ).

% mult_imp_less_div_pos
thf(fact_4324_mult__imp__div__pos__less,axiom,
    ! [Y2: real,X2: real,Z: real] :
      ( ( ord_less_real @ zero_zero_real @ Y2 )
     => ( ( ord_less_real @ X2 @ ( times_times_real @ Z @ Y2 ) )
       => ( ord_less_real @ ( divide_divide_real @ X2 @ Y2 ) @ Z ) ) ) ).

% mult_imp_div_pos_less
thf(fact_4325_mult__imp__div__pos__less,axiom,
    ! [Y2: rat,X2: rat,Z: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ Y2 )
     => ( ( ord_less_rat @ X2 @ ( times_times_rat @ Z @ Y2 ) )
       => ( ord_less_rat @ ( divide_divide_rat @ X2 @ Y2 ) @ Z ) ) ) ).

% mult_imp_div_pos_less
thf(fact_4326_pos__less__divide__eq,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ C )
     => ( ( ord_less_real @ A @ ( divide_divide_real @ B @ C ) )
        = ( ord_less_real @ ( times_times_real @ A @ C ) @ B ) ) ) ).

% pos_less_divide_eq
thf(fact_4327_pos__less__divide__eq,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ C )
     => ( ( ord_less_rat @ A @ ( divide_divide_rat @ B @ C ) )
        = ( ord_less_rat @ ( times_times_rat @ A @ C ) @ B ) ) ) ).

% pos_less_divide_eq
thf(fact_4328_pos__divide__less__eq,axiom,
    ! [C: real,B: real,A: real] :
      ( ( ord_less_real @ zero_zero_real @ C )
     => ( ( ord_less_real @ ( divide_divide_real @ B @ C ) @ A )
        = ( ord_less_real @ B @ ( times_times_real @ A @ C ) ) ) ) ).

% pos_divide_less_eq
thf(fact_4329_pos__divide__less__eq,axiom,
    ! [C: rat,B: rat,A: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ C )
     => ( ( ord_less_rat @ ( divide_divide_rat @ B @ C ) @ A )
        = ( ord_less_rat @ B @ ( times_times_rat @ A @ C ) ) ) ) ).

% pos_divide_less_eq
thf(fact_4330_neg__less__divide__eq,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ C @ zero_zero_real )
     => ( ( ord_less_real @ A @ ( divide_divide_real @ B @ C ) )
        = ( ord_less_real @ B @ ( times_times_real @ A @ C ) ) ) ) ).

% neg_less_divide_eq
thf(fact_4331_neg__less__divide__eq,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ C @ zero_zero_rat )
     => ( ( ord_less_rat @ A @ ( divide_divide_rat @ B @ C ) )
        = ( ord_less_rat @ B @ ( times_times_rat @ A @ C ) ) ) ) ).

% neg_less_divide_eq
thf(fact_4332_neg__divide__less__eq,axiom,
    ! [C: real,B: real,A: real] :
      ( ( ord_less_real @ C @ zero_zero_real )
     => ( ( ord_less_real @ ( divide_divide_real @ B @ C ) @ A )
        = ( ord_less_real @ ( times_times_real @ A @ C ) @ B ) ) ) ).

% neg_divide_less_eq
thf(fact_4333_neg__divide__less__eq,axiom,
    ! [C: rat,B: rat,A: rat] :
      ( ( ord_less_rat @ C @ zero_zero_rat )
     => ( ( ord_less_rat @ ( divide_divide_rat @ B @ C ) @ A )
        = ( ord_less_rat @ ( times_times_rat @ A @ C ) @ B ) ) ) ).

% neg_divide_less_eq
thf(fact_4334_less__divide__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ ( divide_divide_real @ B @ C ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_real @ ( times_times_real @ A @ C ) @ B ) )
        & ( ~ ( ord_less_real @ zero_zero_real @ C )
         => ( ( ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_real @ B @ ( times_times_real @ A @ C ) ) )
            & ( ~ ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_real @ A @ zero_zero_real ) ) ) ) ) ) ).

% less_divide_eq
thf(fact_4335_less__divide__eq,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_rat @ A @ ( divide_divide_rat @ B @ C ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_rat @ ( times_times_rat @ A @ C ) @ B ) )
        & ( ~ ( ord_less_rat @ zero_zero_rat @ C )
         => ( ( ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_rat @ B @ ( times_times_rat @ A @ C ) ) )
            & ( ~ ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_rat @ A @ zero_zero_rat ) ) ) ) ) ) ).

% less_divide_eq
thf(fact_4336_divide__less__eq,axiom,
    ! [B: real,C: real,A: real] :
      ( ( ord_less_real @ ( divide_divide_real @ B @ C ) @ A )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_real @ B @ ( times_times_real @ A @ C ) ) )
        & ( ~ ( ord_less_real @ zero_zero_real @ C )
         => ( ( ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_real @ ( times_times_real @ A @ C ) @ B ) )
            & ( ~ ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_real @ zero_zero_real @ A ) ) ) ) ) ) ).

% divide_less_eq
thf(fact_4337_divide__less__eq,axiom,
    ! [B: rat,C: rat,A: rat] :
      ( ( ord_less_rat @ ( divide_divide_rat @ B @ C ) @ A )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_rat @ B @ ( times_times_rat @ A @ C ) ) )
        & ( ~ ( ord_less_rat @ zero_zero_rat @ C )
         => ( ( ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_rat @ ( times_times_rat @ A @ C ) @ B ) )
            & ( ~ ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_rat @ zero_zero_rat @ A ) ) ) ) ) ) ).

% divide_less_eq
thf(fact_4338_divide__less__eq__1,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_real @ ( divide_divide_real @ B @ A ) @ one_one_real )
      = ( ( ( ord_less_real @ zero_zero_real @ A )
          & ( ord_less_real @ B @ A ) )
        | ( ( ord_less_real @ A @ zero_zero_real )
          & ( ord_less_real @ A @ B ) )
        | ( A = zero_zero_real ) ) ) ).

% divide_less_eq_1
thf(fact_4339_divide__less__eq__1,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_rat @ ( divide_divide_rat @ B @ A ) @ one_one_rat )
      = ( ( ( ord_less_rat @ zero_zero_rat @ A )
          & ( ord_less_rat @ B @ A ) )
        | ( ( ord_less_rat @ A @ zero_zero_rat )
          & ( ord_less_rat @ A @ B ) )
        | ( A = zero_zero_rat ) ) ) ).

% divide_less_eq_1
thf(fact_4340_less__divide__eq__1,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_real @ one_one_real @ ( divide_divide_real @ B @ A ) )
      = ( ( ( ord_less_real @ zero_zero_real @ A )
          & ( ord_less_real @ A @ B ) )
        | ( ( ord_less_real @ A @ zero_zero_real )
          & ( ord_less_real @ B @ A ) ) ) ) ).

% less_divide_eq_1
thf(fact_4341_less__divide__eq__1,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_rat @ one_one_rat @ ( divide_divide_rat @ B @ A ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ A )
          & ( ord_less_rat @ A @ B ) )
        | ( ( ord_less_rat @ A @ zero_zero_rat )
          & ( ord_less_rat @ B @ A ) ) ) ) ).

% less_divide_eq_1
thf(fact_4342_power__le__one,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ A @ one_one_real )
       => ( ord_less_eq_real @ ( power_power_real @ A @ N ) @ one_one_real ) ) ) ).

% power_le_one
thf(fact_4343_power__le__one,axiom,
    ! [A: rat,N: nat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ A )
     => ( ( ord_less_eq_rat @ A @ one_one_rat )
       => ( ord_less_eq_rat @ ( power_power_rat @ A @ N ) @ one_one_rat ) ) ) ).

% power_le_one
thf(fact_4344_power__le__one,axiom,
    ! [A: nat,N: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ A @ one_one_nat )
       => ( ord_less_eq_nat @ ( power_power_nat @ A @ N ) @ one_one_nat ) ) ) ).

% power_le_one
thf(fact_4345_power__le__one,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_eq_int @ A @ one_one_int )
       => ( ord_less_eq_int @ ( power_power_int @ A @ N ) @ one_one_int ) ) ) ).

% power_le_one
thf(fact_4346_divide__eq__eq__numeral_I1_J,axiom,
    ! [B: complex,C: complex,W: num] :
      ( ( ( divide1717551699836669952omplex @ B @ C )
        = ( numera6690914467698888265omplex @ W ) )
      = ( ( ( C != zero_zero_complex )
         => ( B
            = ( times_times_complex @ ( numera6690914467698888265omplex @ W ) @ C ) ) )
        & ( ( C = zero_zero_complex )
         => ( ( numera6690914467698888265omplex @ W )
            = zero_zero_complex ) ) ) ) ).

% divide_eq_eq_numeral(1)
thf(fact_4347_divide__eq__eq__numeral_I1_J,axiom,
    ! [B: real,C: real,W: num] :
      ( ( ( divide_divide_real @ B @ C )
        = ( numeral_numeral_real @ W ) )
      = ( ( ( C != zero_zero_real )
         => ( B
            = ( times_times_real @ ( numeral_numeral_real @ W ) @ C ) ) )
        & ( ( C = zero_zero_real )
         => ( ( numeral_numeral_real @ W )
            = zero_zero_real ) ) ) ) ).

% divide_eq_eq_numeral(1)
thf(fact_4348_divide__eq__eq__numeral_I1_J,axiom,
    ! [B: rat,C: rat,W: num] :
      ( ( ( divide_divide_rat @ B @ C )
        = ( numeral_numeral_rat @ W ) )
      = ( ( ( C != zero_zero_rat )
         => ( B
            = ( times_times_rat @ ( numeral_numeral_rat @ W ) @ C ) ) )
        & ( ( C = zero_zero_rat )
         => ( ( numeral_numeral_rat @ W )
            = zero_zero_rat ) ) ) ) ).

% divide_eq_eq_numeral(1)
thf(fact_4349_eq__divide__eq__numeral_I1_J,axiom,
    ! [W: num,B: complex,C: complex] :
      ( ( ( numera6690914467698888265omplex @ W )
        = ( divide1717551699836669952omplex @ B @ C ) )
      = ( ( ( C != zero_zero_complex )
         => ( ( times_times_complex @ ( numera6690914467698888265omplex @ W ) @ C )
            = B ) )
        & ( ( C = zero_zero_complex )
         => ( ( numera6690914467698888265omplex @ W )
            = zero_zero_complex ) ) ) ) ).

% eq_divide_eq_numeral(1)
thf(fact_4350_eq__divide__eq__numeral_I1_J,axiom,
    ! [W: num,B: real,C: real] :
      ( ( ( numeral_numeral_real @ W )
        = ( divide_divide_real @ B @ C ) )
      = ( ( ( C != zero_zero_real )
         => ( ( times_times_real @ ( numeral_numeral_real @ W ) @ C )
            = B ) )
        & ( ( C = zero_zero_real )
         => ( ( numeral_numeral_real @ W )
            = zero_zero_real ) ) ) ) ).

% eq_divide_eq_numeral(1)
thf(fact_4351_eq__divide__eq__numeral_I1_J,axiom,
    ! [W: num,B: rat,C: rat] :
      ( ( ( numeral_numeral_rat @ W )
        = ( divide_divide_rat @ B @ C ) )
      = ( ( ( C != zero_zero_rat )
         => ( ( times_times_rat @ ( numeral_numeral_rat @ W ) @ C )
            = B ) )
        & ( ( C = zero_zero_rat )
         => ( ( numeral_numeral_rat @ W )
            = zero_zero_rat ) ) ) ) ).

% eq_divide_eq_numeral(1)
thf(fact_4352_add__divide__eq__if__simps_I2_J,axiom,
    ! [Z: complex,A: complex,B: complex] :
      ( ( ( Z = zero_zero_complex )
       => ( ( plus_plus_complex @ ( divide1717551699836669952omplex @ A @ Z ) @ B )
          = B ) )
      & ( ( Z != zero_zero_complex )
       => ( ( plus_plus_complex @ ( divide1717551699836669952omplex @ A @ Z ) @ B )
          = ( divide1717551699836669952omplex @ ( plus_plus_complex @ A @ ( times_times_complex @ B @ Z ) ) @ Z ) ) ) ) ).

% add_divide_eq_if_simps(2)
thf(fact_4353_add__divide__eq__if__simps_I2_J,axiom,
    ! [Z: real,A: real,B: real] :
      ( ( ( Z = zero_zero_real )
       => ( ( plus_plus_real @ ( divide_divide_real @ A @ Z ) @ B )
          = B ) )
      & ( ( Z != zero_zero_real )
       => ( ( plus_plus_real @ ( divide_divide_real @ A @ Z ) @ B )
          = ( divide_divide_real @ ( plus_plus_real @ A @ ( times_times_real @ B @ Z ) ) @ Z ) ) ) ) ).

% add_divide_eq_if_simps(2)
thf(fact_4354_add__divide__eq__if__simps_I2_J,axiom,
    ! [Z: rat,A: rat,B: rat] :
      ( ( ( Z = zero_zero_rat )
       => ( ( plus_plus_rat @ ( divide_divide_rat @ A @ Z ) @ B )
          = B ) )
      & ( ( Z != zero_zero_rat )
       => ( ( plus_plus_rat @ ( divide_divide_rat @ A @ Z ) @ B )
          = ( divide_divide_rat @ ( plus_plus_rat @ A @ ( times_times_rat @ B @ Z ) ) @ Z ) ) ) ) ).

% add_divide_eq_if_simps(2)
thf(fact_4355_add__divide__eq__if__simps_I1_J,axiom,
    ! [Z: complex,A: complex,B: complex] :
      ( ( ( Z = zero_zero_complex )
       => ( ( plus_plus_complex @ A @ ( divide1717551699836669952omplex @ B @ Z ) )
          = A ) )
      & ( ( Z != zero_zero_complex )
       => ( ( plus_plus_complex @ A @ ( divide1717551699836669952omplex @ B @ Z ) )
          = ( divide1717551699836669952omplex @ ( plus_plus_complex @ ( times_times_complex @ A @ Z ) @ B ) @ Z ) ) ) ) ).

% add_divide_eq_if_simps(1)
thf(fact_4356_add__divide__eq__if__simps_I1_J,axiom,
    ! [Z: real,A: real,B: real] :
      ( ( ( Z = zero_zero_real )
       => ( ( plus_plus_real @ A @ ( divide_divide_real @ B @ Z ) )
          = A ) )
      & ( ( Z != zero_zero_real )
       => ( ( plus_plus_real @ A @ ( divide_divide_real @ B @ Z ) )
          = ( divide_divide_real @ ( plus_plus_real @ ( times_times_real @ A @ Z ) @ B ) @ Z ) ) ) ) ).

% add_divide_eq_if_simps(1)
thf(fact_4357_add__divide__eq__if__simps_I1_J,axiom,
    ! [Z: rat,A: rat,B: rat] :
      ( ( ( Z = zero_zero_rat )
       => ( ( plus_plus_rat @ A @ ( divide_divide_rat @ B @ Z ) )
          = A ) )
      & ( ( Z != zero_zero_rat )
       => ( ( plus_plus_rat @ A @ ( divide_divide_rat @ B @ Z ) )
          = ( divide_divide_rat @ ( plus_plus_rat @ ( times_times_rat @ A @ Z ) @ B ) @ Z ) ) ) ) ).

% add_divide_eq_if_simps(1)
thf(fact_4358_add__frac__eq,axiom,
    ! [Y2: complex,Z: complex,X2: complex,W: complex] :
      ( ( Y2 != zero_zero_complex )
     => ( ( Z != zero_zero_complex )
       => ( ( plus_plus_complex @ ( divide1717551699836669952omplex @ X2 @ Y2 ) @ ( divide1717551699836669952omplex @ W @ Z ) )
          = ( divide1717551699836669952omplex @ ( plus_plus_complex @ ( times_times_complex @ X2 @ Z ) @ ( times_times_complex @ W @ Y2 ) ) @ ( times_times_complex @ Y2 @ Z ) ) ) ) ) ).

% add_frac_eq
thf(fact_4359_add__frac__eq,axiom,
    ! [Y2: real,Z: real,X2: real,W: real] :
      ( ( Y2 != zero_zero_real )
     => ( ( Z != zero_zero_real )
       => ( ( plus_plus_real @ ( divide_divide_real @ X2 @ Y2 ) @ ( divide_divide_real @ W @ Z ) )
          = ( divide_divide_real @ ( plus_plus_real @ ( times_times_real @ X2 @ Z ) @ ( times_times_real @ W @ Y2 ) ) @ ( times_times_real @ Y2 @ Z ) ) ) ) ) ).

% add_frac_eq
thf(fact_4360_add__frac__eq,axiom,
    ! [Y2: rat,Z: rat,X2: rat,W: rat] :
      ( ( Y2 != zero_zero_rat )
     => ( ( Z != zero_zero_rat )
       => ( ( plus_plus_rat @ ( divide_divide_rat @ X2 @ Y2 ) @ ( divide_divide_rat @ W @ Z ) )
          = ( divide_divide_rat @ ( plus_plus_rat @ ( times_times_rat @ X2 @ Z ) @ ( times_times_rat @ W @ Y2 ) ) @ ( times_times_rat @ Y2 @ Z ) ) ) ) ) ).

% add_frac_eq
thf(fact_4361_add__frac__num,axiom,
    ! [Y2: complex,X2: complex,Z: complex] :
      ( ( Y2 != zero_zero_complex )
     => ( ( plus_plus_complex @ ( divide1717551699836669952omplex @ X2 @ Y2 ) @ Z )
        = ( divide1717551699836669952omplex @ ( plus_plus_complex @ X2 @ ( times_times_complex @ Z @ Y2 ) ) @ Y2 ) ) ) ).

% add_frac_num
thf(fact_4362_add__frac__num,axiom,
    ! [Y2: real,X2: real,Z: real] :
      ( ( Y2 != zero_zero_real )
     => ( ( plus_plus_real @ ( divide_divide_real @ X2 @ Y2 ) @ Z )
        = ( divide_divide_real @ ( plus_plus_real @ X2 @ ( times_times_real @ Z @ Y2 ) ) @ Y2 ) ) ) ).

% add_frac_num
thf(fact_4363_add__frac__num,axiom,
    ! [Y2: rat,X2: rat,Z: rat] :
      ( ( Y2 != zero_zero_rat )
     => ( ( plus_plus_rat @ ( divide_divide_rat @ X2 @ Y2 ) @ Z )
        = ( divide_divide_rat @ ( plus_plus_rat @ X2 @ ( times_times_rat @ Z @ Y2 ) ) @ Y2 ) ) ) ).

% add_frac_num
thf(fact_4364_add__num__frac,axiom,
    ! [Y2: complex,Z: complex,X2: complex] :
      ( ( Y2 != zero_zero_complex )
     => ( ( plus_plus_complex @ Z @ ( divide1717551699836669952omplex @ X2 @ Y2 ) )
        = ( divide1717551699836669952omplex @ ( plus_plus_complex @ X2 @ ( times_times_complex @ Z @ Y2 ) ) @ Y2 ) ) ) ).

% add_num_frac
thf(fact_4365_add__num__frac,axiom,
    ! [Y2: real,Z: real,X2: real] :
      ( ( Y2 != zero_zero_real )
     => ( ( plus_plus_real @ Z @ ( divide_divide_real @ X2 @ Y2 ) )
        = ( divide_divide_real @ ( plus_plus_real @ X2 @ ( times_times_real @ Z @ Y2 ) ) @ Y2 ) ) ) ).

% add_num_frac
thf(fact_4366_add__num__frac,axiom,
    ! [Y2: rat,Z: rat,X2: rat] :
      ( ( Y2 != zero_zero_rat )
     => ( ( plus_plus_rat @ Z @ ( divide_divide_rat @ X2 @ Y2 ) )
        = ( divide_divide_rat @ ( plus_plus_rat @ X2 @ ( times_times_rat @ Z @ Y2 ) ) @ Y2 ) ) ) ).

% add_num_frac
thf(fact_4367_add__divide__eq__iff,axiom,
    ! [Z: complex,X2: complex,Y2: complex] :
      ( ( Z != zero_zero_complex )
     => ( ( plus_plus_complex @ X2 @ ( divide1717551699836669952omplex @ Y2 @ Z ) )
        = ( divide1717551699836669952omplex @ ( plus_plus_complex @ ( times_times_complex @ X2 @ Z ) @ Y2 ) @ Z ) ) ) ).

% add_divide_eq_iff
thf(fact_4368_add__divide__eq__iff,axiom,
    ! [Z: real,X2: real,Y2: real] :
      ( ( Z != zero_zero_real )
     => ( ( plus_plus_real @ X2 @ ( divide_divide_real @ Y2 @ Z ) )
        = ( divide_divide_real @ ( plus_plus_real @ ( times_times_real @ X2 @ Z ) @ Y2 ) @ Z ) ) ) ).

% add_divide_eq_iff
thf(fact_4369_add__divide__eq__iff,axiom,
    ! [Z: rat,X2: rat,Y2: rat] :
      ( ( Z != zero_zero_rat )
     => ( ( plus_plus_rat @ X2 @ ( divide_divide_rat @ Y2 @ Z ) )
        = ( divide_divide_rat @ ( plus_plus_rat @ ( times_times_rat @ X2 @ Z ) @ Y2 ) @ Z ) ) ) ).

% add_divide_eq_iff
thf(fact_4370_divide__add__eq__iff,axiom,
    ! [Z: complex,X2: complex,Y2: complex] :
      ( ( Z != zero_zero_complex )
     => ( ( plus_plus_complex @ ( divide1717551699836669952omplex @ X2 @ Z ) @ Y2 )
        = ( divide1717551699836669952omplex @ ( plus_plus_complex @ X2 @ ( times_times_complex @ Y2 @ Z ) ) @ Z ) ) ) ).

% divide_add_eq_iff
thf(fact_4371_divide__add__eq__iff,axiom,
    ! [Z: real,X2: real,Y2: real] :
      ( ( Z != zero_zero_real )
     => ( ( plus_plus_real @ ( divide_divide_real @ X2 @ Z ) @ Y2 )
        = ( divide_divide_real @ ( plus_plus_real @ X2 @ ( times_times_real @ Y2 @ Z ) ) @ Z ) ) ) ).

% divide_add_eq_iff
thf(fact_4372_divide__add__eq__iff,axiom,
    ! [Z: rat,X2: rat,Y2: rat] :
      ( ( Z != zero_zero_rat )
     => ( ( plus_plus_rat @ ( divide_divide_rat @ X2 @ Z ) @ Y2 )
        = ( divide_divide_rat @ ( plus_plus_rat @ X2 @ ( times_times_rat @ Y2 @ Z ) ) @ Z ) ) ) ).

% divide_add_eq_iff
thf(fact_4373_power__le__imp__le__base,axiom,
    ! [A: real,N: nat,B: real] :
      ( ( ord_less_eq_real @ ( power_power_real @ A @ ( suc @ N ) ) @ ( power_power_real @ B @ ( suc @ N ) ) )
     => ( ( ord_less_eq_real @ zero_zero_real @ B )
       => ( ord_less_eq_real @ A @ B ) ) ) ).

% power_le_imp_le_base
thf(fact_4374_power__le__imp__le__base,axiom,
    ! [A: rat,N: nat,B: rat] :
      ( ( ord_less_eq_rat @ ( power_power_rat @ A @ ( suc @ N ) ) @ ( power_power_rat @ B @ ( suc @ N ) ) )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ B )
       => ( ord_less_eq_rat @ A @ B ) ) ) ).

% power_le_imp_le_base
thf(fact_4375_power__le__imp__le__base,axiom,
    ! [A: nat,N: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( power_power_nat @ A @ ( suc @ N ) ) @ ( power_power_nat @ B @ ( suc @ N ) ) )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
       => ( ord_less_eq_nat @ A @ B ) ) ) ).

% power_le_imp_le_base
thf(fact_4376_power__le__imp__le__base,axiom,
    ! [A: int,N: nat,B: int] :
      ( ( ord_less_eq_int @ ( power_power_int @ A @ ( suc @ N ) ) @ ( power_power_int @ B @ ( suc @ N ) ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ B )
       => ( ord_less_eq_int @ A @ B ) ) ) ).

% power_le_imp_le_base
thf(fact_4377_power__inject__base,axiom,
    ! [A: real,N: nat,B: real] :
      ( ( ( power_power_real @ A @ ( suc @ N ) )
        = ( power_power_real @ B @ ( suc @ N ) ) )
     => ( ( ord_less_eq_real @ zero_zero_real @ A )
       => ( ( ord_less_eq_real @ zero_zero_real @ B )
         => ( A = B ) ) ) ) ).

% power_inject_base
thf(fact_4378_power__inject__base,axiom,
    ! [A: rat,N: nat,B: rat] :
      ( ( ( power_power_rat @ A @ ( suc @ N ) )
        = ( power_power_rat @ B @ ( suc @ N ) ) )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ A )
       => ( ( ord_less_eq_rat @ zero_zero_rat @ B )
         => ( A = B ) ) ) ) ).

% power_inject_base
thf(fact_4379_power__inject__base,axiom,
    ! [A: nat,N: nat,B: nat] :
      ( ( ( power_power_nat @ A @ ( suc @ N ) )
        = ( power_power_nat @ B @ ( suc @ N ) ) )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ A )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
         => ( A = B ) ) ) ) ).

% power_inject_base
thf(fact_4380_power__inject__base,axiom,
    ! [A: int,N: nat,B: int] :
      ( ( ( power_power_int @ A @ ( suc @ N ) )
        = ( power_power_int @ B @ ( suc @ N ) ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ A )
       => ( ( ord_less_eq_int @ zero_zero_int @ B )
         => ( A = B ) ) ) ) ).

% power_inject_base
thf(fact_4381_div__add__self1,axiom,
    ! [B: nat,A: nat] :
      ( ( B != zero_zero_nat )
     => ( ( divide_divide_nat @ ( plus_plus_nat @ B @ A ) @ B )
        = ( plus_plus_nat @ ( divide_divide_nat @ A @ B ) @ one_one_nat ) ) ) ).

% div_add_self1
thf(fact_4382_div__add__self1,axiom,
    ! [B: int,A: int] :
      ( ( B != zero_zero_int )
     => ( ( divide_divide_int @ ( plus_plus_int @ B @ A ) @ B )
        = ( plus_plus_int @ ( divide_divide_int @ A @ B ) @ one_one_int ) ) ) ).

% div_add_self1
thf(fact_4383_div__add__self2,axiom,
    ! [B: nat,A: nat] :
      ( ( B != zero_zero_nat )
     => ( ( divide_divide_nat @ ( plus_plus_nat @ A @ B ) @ B )
        = ( plus_plus_nat @ ( divide_divide_nat @ A @ B ) @ one_one_nat ) ) ) ).

% div_add_self2
thf(fact_4384_div__add__self2,axiom,
    ! [B: int,A: int] :
      ( ( B != zero_zero_int )
     => ( ( divide_divide_int @ ( plus_plus_int @ A @ B ) @ B )
        = ( plus_plus_int @ ( divide_divide_int @ A @ B ) @ one_one_int ) ) ) ).

% div_add_self2
thf(fact_4385_add__divide__eq__if__simps_I4_J,axiom,
    ! [Z: complex,A: complex,B: complex] :
      ( ( ( Z = zero_zero_complex )
       => ( ( minus_minus_complex @ A @ ( divide1717551699836669952omplex @ B @ Z ) )
          = A ) )
      & ( ( Z != zero_zero_complex )
       => ( ( minus_minus_complex @ A @ ( divide1717551699836669952omplex @ B @ Z ) )
          = ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( times_times_complex @ A @ Z ) @ B ) @ Z ) ) ) ) ).

% add_divide_eq_if_simps(4)
thf(fact_4386_add__divide__eq__if__simps_I4_J,axiom,
    ! [Z: real,A: real,B: real] :
      ( ( ( Z = zero_zero_real )
       => ( ( minus_minus_real @ A @ ( divide_divide_real @ B @ Z ) )
          = A ) )
      & ( ( Z != zero_zero_real )
       => ( ( minus_minus_real @ A @ ( divide_divide_real @ B @ Z ) )
          = ( divide_divide_real @ ( minus_minus_real @ ( times_times_real @ A @ Z ) @ B ) @ Z ) ) ) ) ).

% add_divide_eq_if_simps(4)
thf(fact_4387_add__divide__eq__if__simps_I4_J,axiom,
    ! [Z: rat,A: rat,B: rat] :
      ( ( ( Z = zero_zero_rat )
       => ( ( minus_minus_rat @ A @ ( divide_divide_rat @ B @ Z ) )
          = A ) )
      & ( ( Z != zero_zero_rat )
       => ( ( minus_minus_rat @ A @ ( divide_divide_rat @ B @ Z ) )
          = ( divide_divide_rat @ ( minus_minus_rat @ ( times_times_rat @ A @ Z ) @ B ) @ Z ) ) ) ) ).

% add_divide_eq_if_simps(4)
thf(fact_4388_diff__frac__eq,axiom,
    ! [Y2: complex,Z: complex,X2: complex,W: complex] :
      ( ( Y2 != zero_zero_complex )
     => ( ( Z != zero_zero_complex )
       => ( ( minus_minus_complex @ ( divide1717551699836669952omplex @ X2 @ Y2 ) @ ( divide1717551699836669952omplex @ W @ Z ) )
          = ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( times_times_complex @ X2 @ Z ) @ ( times_times_complex @ W @ Y2 ) ) @ ( times_times_complex @ Y2 @ Z ) ) ) ) ) ).

% diff_frac_eq
thf(fact_4389_diff__frac__eq,axiom,
    ! [Y2: real,Z: real,X2: real,W: real] :
      ( ( Y2 != zero_zero_real )
     => ( ( Z != zero_zero_real )
       => ( ( minus_minus_real @ ( divide_divide_real @ X2 @ Y2 ) @ ( divide_divide_real @ W @ Z ) )
          = ( divide_divide_real @ ( minus_minus_real @ ( times_times_real @ X2 @ Z ) @ ( times_times_real @ W @ Y2 ) ) @ ( times_times_real @ Y2 @ Z ) ) ) ) ) ).

% diff_frac_eq
thf(fact_4390_diff__frac__eq,axiom,
    ! [Y2: rat,Z: rat,X2: rat,W: rat] :
      ( ( Y2 != zero_zero_rat )
     => ( ( Z != zero_zero_rat )
       => ( ( minus_minus_rat @ ( divide_divide_rat @ X2 @ Y2 ) @ ( divide_divide_rat @ W @ Z ) )
          = ( divide_divide_rat @ ( minus_minus_rat @ ( times_times_rat @ X2 @ Z ) @ ( times_times_rat @ W @ Y2 ) ) @ ( times_times_rat @ Y2 @ Z ) ) ) ) ) ).

% diff_frac_eq
thf(fact_4391_diff__divide__eq__iff,axiom,
    ! [Z: complex,X2: complex,Y2: complex] :
      ( ( Z != zero_zero_complex )
     => ( ( minus_minus_complex @ X2 @ ( divide1717551699836669952omplex @ Y2 @ Z ) )
        = ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( times_times_complex @ X2 @ Z ) @ Y2 ) @ Z ) ) ) ).

% diff_divide_eq_iff
thf(fact_4392_diff__divide__eq__iff,axiom,
    ! [Z: real,X2: real,Y2: real] :
      ( ( Z != zero_zero_real )
     => ( ( minus_minus_real @ X2 @ ( divide_divide_real @ Y2 @ Z ) )
        = ( divide_divide_real @ ( minus_minus_real @ ( times_times_real @ X2 @ Z ) @ Y2 ) @ Z ) ) ) ).

% diff_divide_eq_iff
thf(fact_4393_diff__divide__eq__iff,axiom,
    ! [Z: rat,X2: rat,Y2: rat] :
      ( ( Z != zero_zero_rat )
     => ( ( minus_minus_rat @ X2 @ ( divide_divide_rat @ Y2 @ Z ) )
        = ( divide_divide_rat @ ( minus_minus_rat @ ( times_times_rat @ X2 @ Z ) @ Y2 ) @ Z ) ) ) ).

% diff_divide_eq_iff
thf(fact_4394_divide__diff__eq__iff,axiom,
    ! [Z: complex,X2: complex,Y2: complex] :
      ( ( Z != zero_zero_complex )
     => ( ( minus_minus_complex @ ( divide1717551699836669952omplex @ X2 @ Z ) @ Y2 )
        = ( divide1717551699836669952omplex @ ( minus_minus_complex @ X2 @ ( times_times_complex @ Y2 @ Z ) ) @ Z ) ) ) ).

% divide_diff_eq_iff
thf(fact_4395_divide__diff__eq__iff,axiom,
    ! [Z: real,X2: real,Y2: real] :
      ( ( Z != zero_zero_real )
     => ( ( minus_minus_real @ ( divide_divide_real @ X2 @ Z ) @ Y2 )
        = ( divide_divide_real @ ( minus_minus_real @ X2 @ ( times_times_real @ Y2 @ Z ) ) @ Z ) ) ) ).

% divide_diff_eq_iff
thf(fact_4396_divide__diff__eq__iff,axiom,
    ! [Z: rat,X2: rat,Y2: rat] :
      ( ( Z != zero_zero_rat )
     => ( ( minus_minus_rat @ ( divide_divide_rat @ X2 @ Z ) @ Y2 )
        = ( divide_divide_rat @ ( minus_minus_rat @ X2 @ ( times_times_rat @ Y2 @ Z ) ) @ Z ) ) ) ).

% divide_diff_eq_iff
thf(fact_4397_VEBT__internal_OminNull_Oelims_I2_J,axiom,
    ! [X2: vEBT_VEBT] :
      ( ( vEBT_VEBT_minNull @ X2 )
     => ( ( X2
         != ( vEBT_Leaf @ $false @ $false ) )
       => ~ ! [Uw2: nat,Ux2: list_VEBT_VEBT,Uy2: vEBT_VEBT] :
              ( X2
             != ( vEBT_Node @ none_P5556105721700978146at_nat @ Uw2 @ Ux2 @ Uy2 ) ) ) ) ).

% VEBT_internal.minNull.elims(2)
thf(fact_4398_unique__euclidean__semiring__numeral__class_Opos__mod__sign,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ B )
     => ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( modulo364778990260209775nteger @ A @ B ) ) ) ).

% unique_euclidean_semiring_numeral_class.pos_mod_sign
thf(fact_4399_unique__euclidean__semiring__numeral__class_Opos__mod__sign,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ B )
     => ( ord_less_eq_nat @ zero_zero_nat @ ( modulo_modulo_nat @ A @ B ) ) ) ).

% unique_euclidean_semiring_numeral_class.pos_mod_sign
thf(fact_4400_unique__euclidean__semiring__numeral__class_Opos__mod__sign,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ord_less_eq_int @ zero_zero_int @ ( modulo_modulo_int @ A @ B ) ) ) ).

% unique_euclidean_semiring_numeral_class.pos_mod_sign
thf(fact_4401_unique__euclidean__semiring__numeral__class_Omod__less,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A )
     => ( ( ord_le6747313008572928689nteger @ A @ B )
       => ( ( modulo364778990260209775nteger @ A @ B )
          = A ) ) ) ).

% unique_euclidean_semiring_numeral_class.mod_less
thf(fact_4402_unique__euclidean__semiring__numeral__class_Omod__less,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ A @ B )
       => ( ( modulo_modulo_nat @ A @ B )
          = A ) ) ) ).

% unique_euclidean_semiring_numeral_class.mod_less
thf(fact_4403_unique__euclidean__semiring__numeral__class_Omod__less,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ A @ B )
       => ( ( modulo_modulo_int @ A @ B )
          = A ) ) ) ).

% unique_euclidean_semiring_numeral_class.mod_less
thf(fact_4404_cong__exp__iff__simps_I2_J,axiom,
    ! [N: num,Q2: num] :
      ( ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit0 @ N ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) )
        = zero_zero_nat )
      = ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ N ) @ ( numeral_numeral_nat @ Q2 ) )
        = zero_zero_nat ) ) ).

% cong_exp_iff_simps(2)
thf(fact_4405_cong__exp__iff__simps_I2_J,axiom,
    ! [N: num,Q2: num] :
      ( ( ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) )
        = zero_zero_int )
      = ( ( modulo_modulo_int @ ( numeral_numeral_int @ N ) @ ( numeral_numeral_int @ Q2 ) )
        = zero_zero_int ) ) ).

% cong_exp_iff_simps(2)
thf(fact_4406_cong__exp__iff__simps_I2_J,axiom,
    ! [N: num,Q2: num] :
      ( ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit0 @ N ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) )
        = zero_z3403309356797280102nteger )
      = ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ N ) @ ( numera6620942414471956472nteger @ Q2 ) )
        = zero_z3403309356797280102nteger ) ) ).

% cong_exp_iff_simps(2)
thf(fact_4407_cong__exp__iff__simps_I1_J,axiom,
    ! [N: num] :
      ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ N ) @ ( numeral_numeral_nat @ one ) )
      = zero_zero_nat ) ).

% cong_exp_iff_simps(1)
thf(fact_4408_cong__exp__iff__simps_I1_J,axiom,
    ! [N: num] :
      ( ( modulo_modulo_int @ ( numeral_numeral_int @ N ) @ ( numeral_numeral_int @ one ) )
      = zero_zero_int ) ).

% cong_exp_iff_simps(1)
thf(fact_4409_cong__exp__iff__simps_I1_J,axiom,
    ! [N: num] :
      ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ N ) @ ( numera6620942414471956472nteger @ one ) )
      = zero_z3403309356797280102nteger ) ).

% cong_exp_iff_simps(1)
thf(fact_4410_numeral__1__eq__Suc__0,axiom,
    ( ( numeral_numeral_nat @ one )
    = ( suc @ zero_zero_nat ) ) ).

% numeral_1_eq_Suc_0
thf(fact_4411_num_Osize_I5_J,axiom,
    ! [X23: num] :
      ( ( size_size_num @ ( bit0 @ X23 ) )
      = ( plus_plus_nat @ ( size_size_num @ X23 ) @ ( suc @ zero_zero_nat ) ) ) ).

% num.size(5)
thf(fact_4412_ex__least__nat__less,axiom,
    ! [P: nat > $o,N: nat] :
      ( ( P @ N )
     => ( ~ ( P @ zero_zero_nat )
       => ? [K3: nat] :
            ( ( ord_less_nat @ K3 @ N )
            & ! [I2: nat] :
                ( ( ord_less_eq_nat @ I2 @ K3 )
               => ~ ( P @ I2 ) )
            & ( P @ ( suc @ K3 ) ) ) ) ) ).

% ex_least_nat_less
thf(fact_4413_diff__Suc__less,axiom,
    ! [N: nat,I: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ord_less_nat @ ( minus_minus_nat @ N @ ( suc @ I ) ) @ N ) ) ).

% diff_Suc_less
thf(fact_4414_n__less__n__mult__m,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ M )
       => ( ord_less_nat @ N @ ( times_times_nat @ N @ M ) ) ) ) ).

% n_less_n_mult_m
thf(fact_4415_n__less__m__mult__n,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ M )
       => ( ord_less_nat @ N @ ( times_times_nat @ M @ N ) ) ) ) ).

% n_less_m_mult_n
thf(fact_4416_one__less__mult,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ N )
     => ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ M )
       => ( ord_less_nat @ ( suc @ zero_zero_nat ) @ ( times_times_nat @ M @ N ) ) ) ) ).

% one_less_mult
thf(fact_4417_num_Osize_I6_J,axiom,
    ! [X33: num] :
      ( ( size_size_num @ ( bit1 @ X33 ) )
      = ( plus_plus_nat @ ( size_size_num @ X33 ) @ ( suc @ zero_zero_nat ) ) ) ).

% num.size(6)
thf(fact_4418_nat__induct__non__zero,axiom,
    ! [N: nat,P: nat > $o] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( P @ one_one_nat )
       => ( ! [N3: nat] :
              ( ( ord_less_nat @ zero_zero_nat @ N3 )
             => ( ( P @ N3 )
               => ( P @ ( suc @ N3 ) ) ) )
         => ( P @ N ) ) ) ) ).

% nat_induct_non_zero
thf(fact_4419_length__pos__if__in__set,axiom,
    ! [X2: complex,Xs2: list_complex] :
      ( ( member_complex @ X2 @ ( set_complex2 @ Xs2 ) )
     => ( ord_less_nat @ zero_zero_nat @ ( size_s3451745648224563538omplex @ Xs2 ) ) ) ).

% length_pos_if_in_set
thf(fact_4420_length__pos__if__in__set,axiom,
    ! [X2: real,Xs2: list_real] :
      ( ( member_real @ X2 @ ( set_real2 @ Xs2 ) )
     => ( ord_less_nat @ zero_zero_nat @ ( size_size_list_real @ Xs2 ) ) ) ).

% length_pos_if_in_set
thf(fact_4421_length__pos__if__in__set,axiom,
    ! [X2: set_nat,Xs2: list_set_nat] :
      ( ( member_set_nat @ X2 @ ( set_set_nat2 @ Xs2 ) )
     => ( ord_less_nat @ zero_zero_nat @ ( size_s3254054031482475050et_nat @ Xs2 ) ) ) ).

% length_pos_if_in_set
thf(fact_4422_length__pos__if__in__set,axiom,
    ! [X2: nat,Xs2: list_nat] :
      ( ( member_nat @ X2 @ ( set_nat2 @ Xs2 ) )
     => ( ord_less_nat @ zero_zero_nat @ ( size_size_list_nat @ Xs2 ) ) ) ).

% length_pos_if_in_set
thf(fact_4423_length__pos__if__in__set,axiom,
    ! [X2: vEBT_VEBT,Xs2: list_VEBT_VEBT] :
      ( ( member_VEBT_VEBT @ X2 @ ( set_VEBT_VEBT2 @ Xs2 ) )
     => ( ord_less_nat @ zero_zero_nat @ ( size_s6755466524823107622T_VEBT @ Xs2 ) ) ) ).

% length_pos_if_in_set
thf(fact_4424_length__pos__if__in__set,axiom,
    ! [X2: $o,Xs2: list_o] :
      ( ( member_o @ X2 @ ( set_o2 @ Xs2 ) )
     => ( ord_less_nat @ zero_zero_nat @ ( size_size_list_o @ Xs2 ) ) ) ).

% length_pos_if_in_set
thf(fact_4425_length__pos__if__in__set,axiom,
    ! [X2: int,Xs2: list_int] :
      ( ( member_int @ X2 @ ( set_int2 @ Xs2 ) )
     => ( ord_less_nat @ zero_zero_nat @ ( size_size_list_int @ Xs2 ) ) ) ).

% length_pos_if_in_set
thf(fact_4426_nat__mult__le__cancel1,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ K )
     => ( ( ord_less_eq_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
        = ( ord_less_eq_nat @ M @ N ) ) ) ).

% nat_mult_le_cancel1
thf(fact_4427_power__gt__expt,axiom,
    ! [N: nat,K: nat] :
      ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ N )
     => ( ord_less_nat @ K @ ( power_power_nat @ N @ K ) ) ) ).

% power_gt_expt
thf(fact_4428_nat__diff__split__asm,axiom,
    ! [P: nat > $o,A: nat,B: nat] :
      ( ( P @ ( minus_minus_nat @ A @ B ) )
      = ( ~ ( ( ( ord_less_nat @ A @ B )
              & ~ ( P @ zero_zero_nat ) )
            | ? [D2: nat] :
                ( ( A
                  = ( plus_plus_nat @ B @ D2 ) )
                & ~ ( P @ D2 ) ) ) ) ) ).

% nat_diff_split_asm
thf(fact_4429_nat__diff__split,axiom,
    ! [P: nat > $o,A: nat,B: nat] :
      ( ( P @ ( minus_minus_nat @ A @ B ) )
      = ( ( ( ord_less_nat @ A @ B )
         => ( P @ zero_zero_nat ) )
        & ! [D2: nat] :
            ( ( A
              = ( plus_plus_nat @ B @ D2 ) )
           => ( P @ D2 ) ) ) ) ).

% nat_diff_split
thf(fact_4430_verit__la__generic,axiom,
    ! [A: int,X2: int] :
      ( ( ord_less_eq_int @ A @ X2 )
      | ( A = X2 )
      | ( ord_less_eq_int @ X2 @ A ) ) ).

% verit_la_generic
thf(fact_4431_div__le__mono2,axiom,
    ! [M: nat,N: nat,K: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ M )
     => ( ( ord_less_eq_nat @ M @ N )
       => ( ord_less_eq_nat @ ( divide_divide_nat @ K @ N ) @ ( divide_divide_nat @ K @ M ) ) ) ) ).

% div_le_mono2
thf(fact_4432_div__greater__zero__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( divide_divide_nat @ M @ N ) )
      = ( ( ord_less_eq_nat @ N @ M )
        & ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% div_greater_zero_iff
thf(fact_4433_nat__one__le__power,axiom,
    ! [I: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ I )
     => ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ ( power_power_nat @ I @ N ) ) ) ).

% nat_one_le_power
thf(fact_4434_nat__mult__div__cancel1,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ K )
     => ( ( divide_divide_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
        = ( divide_divide_nat @ M @ N ) ) ) ).

% nat_mult_div_cancel1
thf(fact_4435_div__less__iff__less__mult,axiom,
    ! [Q2: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ Q2 )
     => ( ( ord_less_nat @ ( divide_divide_nat @ M @ Q2 ) @ N )
        = ( ord_less_nat @ M @ ( times_times_nat @ N @ Q2 ) ) ) ) ).

% div_less_iff_less_mult
thf(fact_4436_div__less__dividend,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ one_one_nat @ N )
     => ( ( ord_less_nat @ zero_zero_nat @ M )
       => ( ord_less_nat @ ( divide_divide_nat @ M @ N ) @ M ) ) ) ).

% div_less_dividend
thf(fact_4437_div__eq__dividend__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ M )
     => ( ( ( divide_divide_nat @ M @ N )
          = M )
        = ( N = one_one_nat ) ) ) ).

% div_eq_dividend_iff
thf(fact_4438_mod__le__divisor,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ord_less_eq_nat @ ( modulo_modulo_nat @ M @ N ) @ N ) ) ).

% mod_le_divisor
thf(fact_4439_vebt__insert_Osimps_I3_J,axiom,
    ! [Info: option4927543243414619207at_nat,Ts2: list_VEBT_VEBT,S: vEBT_VEBT,X2: nat] :
      ( ( vEBT_vebt_insert @ ( vEBT_Node @ Info @ ( suc @ zero_zero_nat ) @ Ts2 @ S ) @ X2 )
      = ( vEBT_Node @ Info @ ( suc @ zero_zero_nat ) @ Ts2 @ S ) ) ).

% vebt_insert.simps(3)
thf(fact_4440_vebt__member_Osimps_I3_J,axiom,
    ! [V: product_prod_nat_nat,Uy: list_VEBT_VEBT,Uz: vEBT_VEBT,X2: nat] :
      ~ ( vEBT_vebt_member @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V ) @ zero_zero_nat @ Uy @ Uz ) @ X2 ) ).

% vebt_member.simps(3)
thf(fact_4441_VEBT__internal_Omembermima_Osimps_I2_J,axiom,
    ! [Ux: list_VEBT_VEBT,Uy: vEBT_VEBT,Uz: nat] :
      ~ ( vEBT_VEBT_membermima @ ( vEBT_Node @ none_P5556105721700978146at_nat @ zero_zero_nat @ Ux @ Uy ) @ Uz ) ).

% VEBT_internal.membermima.simps(2)
thf(fact_4442_vebt__mint_Ocases,axiom,
    ! [X2: vEBT_VEBT] :
      ( ! [A6: $o,B7: $o] :
          ( X2
         != ( vEBT_Leaf @ A6 @ B7 ) )
     => ( ! [Uu2: nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT] :
            ( X2
           != ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu2 @ Uv2 @ Uw2 ) )
       => ~ ! [Mi2: nat,Ma2: nat,Ux2: nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT] :
              ( X2
             != ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ Ux2 @ Uy2 @ Uz2 ) ) ) ) ).

% vebt_mint.cases
thf(fact_4443_mult__le__cancel__left1,axiom,
    ! [C: real,B: real] :
      ( ( ord_less_eq_real @ C @ ( times_times_real @ C @ B ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ one_one_real @ B ) )
        & ( ( ord_less_real @ C @ zero_zero_real )
         => ( ord_less_eq_real @ B @ one_one_real ) ) ) ) ).

% mult_le_cancel_left1
thf(fact_4444_mult__le__cancel__left1,axiom,
    ! [C: rat,B: rat] :
      ( ( ord_less_eq_rat @ C @ ( times_times_rat @ C @ B ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_eq_rat @ one_one_rat @ B ) )
        & ( ( ord_less_rat @ C @ zero_zero_rat )
         => ( ord_less_eq_rat @ B @ one_one_rat ) ) ) ) ).

% mult_le_cancel_left1
thf(fact_4445_mult__le__cancel__left1,axiom,
    ! [C: int,B: int] :
      ( ( ord_less_eq_int @ C @ ( times_times_int @ C @ B ) )
      = ( ( ( ord_less_int @ zero_zero_int @ C )
         => ( ord_less_eq_int @ one_one_int @ B ) )
        & ( ( ord_less_int @ C @ zero_zero_int )
         => ( ord_less_eq_int @ B @ one_one_int ) ) ) ) ).

% mult_le_cancel_left1
thf(fact_4446_mult__le__cancel__left2,axiom,
    ! [C: real,A: real] :
      ( ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ C )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ A @ one_one_real ) )
        & ( ( ord_less_real @ C @ zero_zero_real )
         => ( ord_less_eq_real @ one_one_real @ A ) ) ) ) ).

% mult_le_cancel_left2
thf(fact_4447_mult__le__cancel__left2,axiom,
    ! [C: rat,A: rat] :
      ( ( ord_less_eq_rat @ ( times_times_rat @ C @ A ) @ C )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_eq_rat @ A @ one_one_rat ) )
        & ( ( ord_less_rat @ C @ zero_zero_rat )
         => ( ord_less_eq_rat @ one_one_rat @ A ) ) ) ) ).

% mult_le_cancel_left2
thf(fact_4448_mult__le__cancel__left2,axiom,
    ! [C: int,A: int] :
      ( ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ C )
      = ( ( ( ord_less_int @ zero_zero_int @ C )
         => ( ord_less_eq_int @ A @ one_one_int ) )
        & ( ( ord_less_int @ C @ zero_zero_int )
         => ( ord_less_eq_int @ one_one_int @ A ) ) ) ) ).

% mult_le_cancel_left2
thf(fact_4449_mult__le__cancel__right1,axiom,
    ! [C: real,B: real] :
      ( ( ord_less_eq_real @ C @ ( times_times_real @ B @ C ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ one_one_real @ B ) )
        & ( ( ord_less_real @ C @ zero_zero_real )
         => ( ord_less_eq_real @ B @ one_one_real ) ) ) ) ).

% mult_le_cancel_right1
thf(fact_4450_mult__le__cancel__right1,axiom,
    ! [C: rat,B: rat] :
      ( ( ord_less_eq_rat @ C @ ( times_times_rat @ B @ C ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_eq_rat @ one_one_rat @ B ) )
        & ( ( ord_less_rat @ C @ zero_zero_rat )
         => ( ord_less_eq_rat @ B @ one_one_rat ) ) ) ) ).

% mult_le_cancel_right1
thf(fact_4451_mult__le__cancel__right1,axiom,
    ! [C: int,B: int] :
      ( ( ord_less_eq_int @ C @ ( times_times_int @ B @ C ) )
      = ( ( ( ord_less_int @ zero_zero_int @ C )
         => ( ord_less_eq_int @ one_one_int @ B ) )
        & ( ( ord_less_int @ C @ zero_zero_int )
         => ( ord_less_eq_int @ B @ one_one_int ) ) ) ) ).

% mult_le_cancel_right1
thf(fact_4452_mult__le__cancel__right2,axiom,
    ! [A: real,C: real] :
      ( ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ C )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ A @ one_one_real ) )
        & ( ( ord_less_real @ C @ zero_zero_real )
         => ( ord_less_eq_real @ one_one_real @ A ) ) ) ) ).

% mult_le_cancel_right2
thf(fact_4453_mult__le__cancel__right2,axiom,
    ! [A: rat,C: rat] :
      ( ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ C )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_eq_rat @ A @ one_one_rat ) )
        & ( ( ord_less_rat @ C @ zero_zero_rat )
         => ( ord_less_eq_rat @ one_one_rat @ A ) ) ) ) ).

% mult_le_cancel_right2
thf(fact_4454_mult__le__cancel__right2,axiom,
    ! [A: int,C: int] :
      ( ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ C )
      = ( ( ( ord_less_int @ zero_zero_int @ C )
         => ( ord_less_eq_int @ A @ one_one_int ) )
        & ( ( ord_less_int @ C @ zero_zero_int )
         => ( ord_less_eq_int @ one_one_int @ A ) ) ) ) ).

% mult_le_cancel_right2
thf(fact_4455_mult__less__cancel__left1,axiom,
    ! [C: real,B: real] :
      ( ( ord_less_real @ C @ ( times_times_real @ C @ B ) )
      = ( ( ( ord_less_eq_real @ zero_zero_real @ C )
         => ( ord_less_real @ one_one_real @ B ) )
        & ( ( ord_less_eq_real @ C @ zero_zero_real )
         => ( ord_less_real @ B @ one_one_real ) ) ) ) ).

% mult_less_cancel_left1
thf(fact_4456_mult__less__cancel__left1,axiom,
    ! [C: rat,B: rat] :
      ( ( ord_less_rat @ C @ ( times_times_rat @ C @ B ) )
      = ( ( ( ord_less_eq_rat @ zero_zero_rat @ C )
         => ( ord_less_rat @ one_one_rat @ B ) )
        & ( ( ord_less_eq_rat @ C @ zero_zero_rat )
         => ( ord_less_rat @ B @ one_one_rat ) ) ) ) ).

% mult_less_cancel_left1
thf(fact_4457_mult__less__cancel__left1,axiom,
    ! [C: int,B: int] :
      ( ( ord_less_int @ C @ ( times_times_int @ C @ B ) )
      = ( ( ( ord_less_eq_int @ zero_zero_int @ C )
         => ( ord_less_int @ one_one_int @ B ) )
        & ( ( ord_less_eq_int @ C @ zero_zero_int )
         => ( ord_less_int @ B @ one_one_int ) ) ) ) ).

% mult_less_cancel_left1
thf(fact_4458_mult__less__cancel__left2,axiom,
    ! [C: real,A: real] :
      ( ( ord_less_real @ ( times_times_real @ C @ A ) @ C )
      = ( ( ( ord_less_eq_real @ zero_zero_real @ C )
         => ( ord_less_real @ A @ one_one_real ) )
        & ( ( ord_less_eq_real @ C @ zero_zero_real )
         => ( ord_less_real @ one_one_real @ A ) ) ) ) ).

% mult_less_cancel_left2
thf(fact_4459_mult__less__cancel__left2,axiom,
    ! [C: rat,A: rat] :
      ( ( ord_less_rat @ ( times_times_rat @ C @ A ) @ C )
      = ( ( ( ord_less_eq_rat @ zero_zero_rat @ C )
         => ( ord_less_rat @ A @ one_one_rat ) )
        & ( ( ord_less_eq_rat @ C @ zero_zero_rat )
         => ( ord_less_rat @ one_one_rat @ A ) ) ) ) ).

% mult_less_cancel_left2
thf(fact_4460_mult__less__cancel__left2,axiom,
    ! [C: int,A: int] :
      ( ( ord_less_int @ ( times_times_int @ C @ A ) @ C )
      = ( ( ( ord_less_eq_int @ zero_zero_int @ C )
         => ( ord_less_int @ A @ one_one_int ) )
        & ( ( ord_less_eq_int @ C @ zero_zero_int )
         => ( ord_less_int @ one_one_int @ A ) ) ) ) ).

% mult_less_cancel_left2
thf(fact_4461_mult__less__cancel__right1,axiom,
    ! [C: real,B: real] :
      ( ( ord_less_real @ C @ ( times_times_real @ B @ C ) )
      = ( ( ( ord_less_eq_real @ zero_zero_real @ C )
         => ( ord_less_real @ one_one_real @ B ) )
        & ( ( ord_less_eq_real @ C @ zero_zero_real )
         => ( ord_less_real @ B @ one_one_real ) ) ) ) ).

% mult_less_cancel_right1
thf(fact_4462_mult__less__cancel__right1,axiom,
    ! [C: rat,B: rat] :
      ( ( ord_less_rat @ C @ ( times_times_rat @ B @ C ) )
      = ( ( ( ord_less_eq_rat @ zero_zero_rat @ C )
         => ( ord_less_rat @ one_one_rat @ B ) )
        & ( ( ord_less_eq_rat @ C @ zero_zero_rat )
         => ( ord_less_rat @ B @ one_one_rat ) ) ) ) ).

% mult_less_cancel_right1
thf(fact_4463_mult__less__cancel__right1,axiom,
    ! [C: int,B: int] :
      ( ( ord_less_int @ C @ ( times_times_int @ B @ C ) )
      = ( ( ( ord_less_eq_int @ zero_zero_int @ C )
         => ( ord_less_int @ one_one_int @ B ) )
        & ( ( ord_less_eq_int @ C @ zero_zero_int )
         => ( ord_less_int @ B @ one_one_int ) ) ) ) ).

% mult_less_cancel_right1
thf(fact_4464_mult__less__cancel__right2,axiom,
    ! [A: real,C: real] :
      ( ( ord_less_real @ ( times_times_real @ A @ C ) @ C )
      = ( ( ( ord_less_eq_real @ zero_zero_real @ C )
         => ( ord_less_real @ A @ one_one_real ) )
        & ( ( ord_less_eq_real @ C @ zero_zero_real )
         => ( ord_less_real @ one_one_real @ A ) ) ) ) ).

% mult_less_cancel_right2
thf(fact_4465_mult__less__cancel__right2,axiom,
    ! [A: rat,C: rat] :
      ( ( ord_less_rat @ ( times_times_rat @ A @ C ) @ C )
      = ( ( ( ord_less_eq_rat @ zero_zero_rat @ C )
         => ( ord_less_rat @ A @ one_one_rat ) )
        & ( ( ord_less_eq_rat @ C @ zero_zero_rat )
         => ( ord_less_rat @ one_one_rat @ A ) ) ) ) ).

% mult_less_cancel_right2
thf(fact_4466_mult__less__cancel__right2,axiom,
    ! [A: int,C: int] :
      ( ( ord_less_int @ ( times_times_int @ A @ C ) @ C )
      = ( ( ( ord_less_eq_int @ zero_zero_int @ C )
         => ( ord_less_int @ A @ one_one_int ) )
        & ( ( ord_less_eq_int @ C @ zero_zero_int )
         => ( ord_less_int @ one_one_int @ A ) ) ) ) ).

% mult_less_cancel_right2
thf(fact_4467_field__le__mult__one__interval,axiom,
    ! [X2: real,Y2: real] :
      ( ! [Z3: real] :
          ( ( ord_less_real @ zero_zero_real @ Z3 )
         => ( ( ord_less_real @ Z3 @ one_one_real )
           => ( ord_less_eq_real @ ( times_times_real @ Z3 @ X2 ) @ Y2 ) ) )
     => ( ord_less_eq_real @ X2 @ Y2 ) ) ).

% field_le_mult_one_interval
thf(fact_4468_field__le__mult__one__interval,axiom,
    ! [X2: rat,Y2: rat] :
      ( ! [Z3: rat] :
          ( ( ord_less_rat @ zero_zero_rat @ Z3 )
         => ( ( ord_less_rat @ Z3 @ one_one_rat )
           => ( ord_less_eq_rat @ ( times_times_rat @ Z3 @ X2 ) @ Y2 ) ) )
     => ( ord_less_eq_rat @ X2 @ Y2 ) ) ).

% field_le_mult_one_interval
thf(fact_4469_VEBT__internal_OminNull_Oelims_I1_J,axiom,
    ! [X2: vEBT_VEBT,Y2: $o] :
      ( ( ( vEBT_VEBT_minNull @ X2 )
        = Y2 )
     => ( ( ( X2
            = ( vEBT_Leaf @ $false @ $false ) )
         => ~ Y2 )
       => ( ( ? [Uv2: $o] :
                ( X2
                = ( vEBT_Leaf @ $true @ Uv2 ) )
           => Y2 )
         => ( ( ? [Uu2: $o] :
                  ( X2
                  = ( vEBT_Leaf @ Uu2 @ $true ) )
             => Y2 )
           => ( ( ? [Uw2: nat,Ux2: list_VEBT_VEBT,Uy2: vEBT_VEBT] :
                    ( X2
                    = ( vEBT_Node @ none_P5556105721700978146at_nat @ Uw2 @ Ux2 @ Uy2 ) )
               => ~ Y2 )
             => ~ ( ? [Uz2: product_prod_nat_nat,Va2: nat,Vb2: list_VEBT_VEBT,Vc2: vEBT_VEBT] :
                      ( X2
                      = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ Uz2 ) @ Va2 @ Vb2 @ Vc2 ) )
                 => Y2 ) ) ) ) ) ) ).

% VEBT_internal.minNull.elims(1)
thf(fact_4470_divide__le__eq,axiom,
    ! [B: real,C: real,A: real] :
      ( ( ord_less_eq_real @ ( divide_divide_real @ B @ C ) @ A )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ B @ ( times_times_real @ A @ C ) ) )
        & ( ~ ( ord_less_real @ zero_zero_real @ C )
         => ( ( ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ B ) )
            & ( ~ ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_eq_real @ zero_zero_real @ A ) ) ) ) ) ) ).

% divide_le_eq
thf(fact_4471_divide__le__eq,axiom,
    ! [B: rat,C: rat,A: rat] :
      ( ( ord_less_eq_rat @ ( divide_divide_rat @ B @ C ) @ A )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_eq_rat @ B @ ( times_times_rat @ A @ C ) ) )
        & ( ~ ( ord_less_rat @ zero_zero_rat @ C )
         => ( ( ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ B ) )
            & ( ~ ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ) ) ) ) ).

% divide_le_eq
thf(fact_4472_le__divide__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ ( divide_divide_real @ B @ C ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ B ) )
        & ( ~ ( ord_less_real @ zero_zero_real @ C )
         => ( ( ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_eq_real @ B @ ( times_times_real @ A @ C ) ) )
            & ( ~ ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_eq_real @ A @ zero_zero_real ) ) ) ) ) ) ).

% le_divide_eq
thf(fact_4473_le__divide__eq,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ ( divide_divide_rat @ B @ C ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ B ) )
        & ( ~ ( ord_less_rat @ zero_zero_rat @ C )
         => ( ( ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_eq_rat @ B @ ( times_times_rat @ A @ C ) ) )
            & ( ~ ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_eq_rat @ A @ zero_zero_rat ) ) ) ) ) ) ).

% le_divide_eq
thf(fact_4474_divide__left__mono,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_eq_real @ B @ A )
     => ( ( ord_less_eq_real @ zero_zero_real @ C )
       => ( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
         => ( ord_less_eq_real @ ( divide_divide_real @ C @ A ) @ ( divide_divide_real @ C @ B ) ) ) ) ) ).

% divide_left_mono
thf(fact_4475_divide__left__mono,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( ord_less_eq_rat @ B @ A )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ C )
       => ( ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) )
         => ( ord_less_eq_rat @ ( divide_divide_rat @ C @ A ) @ ( divide_divide_rat @ C @ B ) ) ) ) ) ).

% divide_left_mono
thf(fact_4476_neg__divide__le__eq,axiom,
    ! [C: real,B: real,A: real] :
      ( ( ord_less_real @ C @ zero_zero_real )
     => ( ( ord_less_eq_real @ ( divide_divide_real @ B @ C ) @ A )
        = ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ B ) ) ) ).

% neg_divide_le_eq
thf(fact_4477_neg__divide__le__eq,axiom,
    ! [C: rat,B: rat,A: rat] :
      ( ( ord_less_rat @ C @ zero_zero_rat )
     => ( ( ord_less_eq_rat @ ( divide_divide_rat @ B @ C ) @ A )
        = ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ B ) ) ) ).

% neg_divide_le_eq
thf(fact_4478_neg__le__divide__eq,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ C @ zero_zero_real )
     => ( ( ord_less_eq_real @ A @ ( divide_divide_real @ B @ C ) )
        = ( ord_less_eq_real @ B @ ( times_times_real @ A @ C ) ) ) ) ).

% neg_le_divide_eq
thf(fact_4479_neg__le__divide__eq,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ C @ zero_zero_rat )
     => ( ( ord_less_eq_rat @ A @ ( divide_divide_rat @ B @ C ) )
        = ( ord_less_eq_rat @ B @ ( times_times_rat @ A @ C ) ) ) ) ).

% neg_le_divide_eq
thf(fact_4480_pos__divide__le__eq,axiom,
    ! [C: real,B: real,A: real] :
      ( ( ord_less_real @ zero_zero_real @ C )
     => ( ( ord_less_eq_real @ ( divide_divide_real @ B @ C ) @ A )
        = ( ord_less_eq_real @ B @ ( times_times_real @ A @ C ) ) ) ) ).

% pos_divide_le_eq
thf(fact_4481_pos__divide__le__eq,axiom,
    ! [C: rat,B: rat,A: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ C )
     => ( ( ord_less_eq_rat @ ( divide_divide_rat @ B @ C ) @ A )
        = ( ord_less_eq_rat @ B @ ( times_times_rat @ A @ C ) ) ) ) ).

% pos_divide_le_eq
thf(fact_4482_pos__le__divide__eq,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ C )
     => ( ( ord_less_eq_real @ A @ ( divide_divide_real @ B @ C ) )
        = ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ B ) ) ) ).

% pos_le_divide_eq
thf(fact_4483_pos__le__divide__eq,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ C )
     => ( ( ord_less_eq_rat @ A @ ( divide_divide_rat @ B @ C ) )
        = ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ B ) ) ) ).

% pos_le_divide_eq
thf(fact_4484_mult__imp__div__pos__le,axiom,
    ! [Y2: real,X2: real,Z: real] :
      ( ( ord_less_real @ zero_zero_real @ Y2 )
     => ( ( ord_less_eq_real @ X2 @ ( times_times_real @ Z @ Y2 ) )
       => ( ord_less_eq_real @ ( divide_divide_real @ X2 @ Y2 ) @ Z ) ) ) ).

% mult_imp_div_pos_le
thf(fact_4485_mult__imp__div__pos__le,axiom,
    ! [Y2: rat,X2: rat,Z: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ Y2 )
     => ( ( ord_less_eq_rat @ X2 @ ( times_times_rat @ Z @ Y2 ) )
       => ( ord_less_eq_rat @ ( divide_divide_rat @ X2 @ Y2 ) @ Z ) ) ) ).

% mult_imp_div_pos_le
thf(fact_4486_mult__imp__le__div__pos,axiom,
    ! [Y2: real,Z: real,X2: real] :
      ( ( ord_less_real @ zero_zero_real @ Y2 )
     => ( ( ord_less_eq_real @ ( times_times_real @ Z @ Y2 ) @ X2 )
       => ( ord_less_eq_real @ Z @ ( divide_divide_real @ X2 @ Y2 ) ) ) ) ).

% mult_imp_le_div_pos
thf(fact_4487_mult__imp__le__div__pos,axiom,
    ! [Y2: rat,Z: rat,X2: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ Y2 )
     => ( ( ord_less_eq_rat @ ( times_times_rat @ Z @ Y2 ) @ X2 )
       => ( ord_less_eq_rat @ Z @ ( divide_divide_rat @ X2 @ Y2 ) ) ) ) ).

% mult_imp_le_div_pos
thf(fact_4488_divide__left__mono__neg,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ C @ zero_zero_real )
       => ( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
         => ( ord_less_eq_real @ ( divide_divide_real @ C @ A ) @ ( divide_divide_real @ C @ B ) ) ) ) ) ).

% divide_left_mono_neg
thf(fact_4489_divide__left__mono__neg,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_rat @ C @ zero_zero_rat )
       => ( ( ord_less_rat @ zero_zero_rat @ ( times_times_rat @ A @ B ) )
         => ( ord_less_eq_rat @ ( divide_divide_rat @ C @ A ) @ ( divide_divide_rat @ C @ B ) ) ) ) ) ).

% divide_left_mono_neg
thf(fact_4490_divide__le__eq__1,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_eq_real @ ( divide_divide_real @ B @ A ) @ one_one_real )
      = ( ( ( ord_less_real @ zero_zero_real @ A )
          & ( ord_less_eq_real @ B @ A ) )
        | ( ( ord_less_real @ A @ zero_zero_real )
          & ( ord_less_eq_real @ A @ B ) )
        | ( A = zero_zero_real ) ) ) ).

% divide_le_eq_1
thf(fact_4491_divide__le__eq__1,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_eq_rat @ ( divide_divide_rat @ B @ A ) @ one_one_rat )
      = ( ( ( ord_less_rat @ zero_zero_rat @ A )
          & ( ord_less_eq_rat @ B @ A ) )
        | ( ( ord_less_rat @ A @ zero_zero_rat )
          & ( ord_less_eq_rat @ A @ B ) )
        | ( A = zero_zero_rat ) ) ) ).

% divide_le_eq_1
thf(fact_4492_le__divide__eq__1,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_eq_real @ one_one_real @ ( divide_divide_real @ B @ A ) )
      = ( ( ( ord_less_real @ zero_zero_real @ A )
          & ( ord_less_eq_real @ A @ B ) )
        | ( ( ord_less_real @ A @ zero_zero_real )
          & ( ord_less_eq_real @ B @ A ) ) ) ) ).

% le_divide_eq_1
thf(fact_4493_le__divide__eq__1,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_eq_rat @ one_one_rat @ ( divide_divide_rat @ B @ A ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ A )
          & ( ord_less_eq_rat @ A @ B ) )
        | ( ( ord_less_rat @ A @ zero_zero_rat )
          & ( ord_less_eq_rat @ B @ A ) ) ) ) ).

% le_divide_eq_1
thf(fact_4494_convex__bound__le,axiom,
    ! [X2: real,A: real,Y2: real,U: real,V: real] :
      ( ( ord_less_eq_real @ X2 @ A )
     => ( ( ord_less_eq_real @ Y2 @ A )
       => ( ( ord_less_eq_real @ zero_zero_real @ U )
         => ( ( ord_less_eq_real @ zero_zero_real @ V )
           => ( ( ( plus_plus_real @ U @ V )
                = one_one_real )
             => ( ord_less_eq_real @ ( plus_plus_real @ ( times_times_real @ U @ X2 ) @ ( times_times_real @ V @ Y2 ) ) @ A ) ) ) ) ) ) ).

% convex_bound_le
thf(fact_4495_convex__bound__le,axiom,
    ! [X2: rat,A: rat,Y2: rat,U: rat,V: rat] :
      ( ( ord_less_eq_rat @ X2 @ A )
     => ( ( ord_less_eq_rat @ Y2 @ A )
       => ( ( ord_less_eq_rat @ zero_zero_rat @ U )
         => ( ( ord_less_eq_rat @ zero_zero_rat @ V )
           => ( ( ( plus_plus_rat @ U @ V )
                = one_one_rat )
             => ( ord_less_eq_rat @ ( plus_plus_rat @ ( times_times_rat @ U @ X2 ) @ ( times_times_rat @ V @ Y2 ) ) @ A ) ) ) ) ) ) ).

% convex_bound_le
thf(fact_4496_convex__bound__le,axiom,
    ! [X2: int,A: int,Y2: int,U: int,V: int] :
      ( ( ord_less_eq_int @ X2 @ A )
     => ( ( ord_less_eq_int @ Y2 @ A )
       => ( ( ord_less_eq_int @ zero_zero_int @ U )
         => ( ( ord_less_eq_int @ zero_zero_int @ V )
           => ( ( ( plus_plus_int @ U @ V )
                = one_one_int )
             => ( ord_less_eq_int @ ( plus_plus_int @ ( times_times_int @ U @ X2 ) @ ( times_times_int @ V @ Y2 ) ) @ A ) ) ) ) ) ) ).

% convex_bound_le
thf(fact_4497_divide__less__eq__numeral_I1_J,axiom,
    ! [B: real,C: real,W: num] :
      ( ( ord_less_real @ ( divide_divide_real @ B @ C ) @ ( numeral_numeral_real @ W ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_real @ B @ ( times_times_real @ ( numeral_numeral_real @ W ) @ C ) ) )
        & ( ~ ( ord_less_real @ zero_zero_real @ C )
         => ( ( ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_real @ ( times_times_real @ ( numeral_numeral_real @ W ) @ C ) @ B ) )
            & ( ~ ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_real @ zero_zero_real @ ( numeral_numeral_real @ W ) ) ) ) ) ) ) ).

% divide_less_eq_numeral(1)
thf(fact_4498_divide__less__eq__numeral_I1_J,axiom,
    ! [B: rat,C: rat,W: num] :
      ( ( ord_less_rat @ ( divide_divide_rat @ B @ C ) @ ( numeral_numeral_rat @ W ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_rat @ B @ ( times_times_rat @ ( numeral_numeral_rat @ W ) @ C ) ) )
        & ( ~ ( ord_less_rat @ zero_zero_rat @ C )
         => ( ( ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_rat @ ( times_times_rat @ ( numeral_numeral_rat @ W ) @ C ) @ B ) )
            & ( ~ ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_rat @ zero_zero_rat @ ( numeral_numeral_rat @ W ) ) ) ) ) ) ) ).

% divide_less_eq_numeral(1)
thf(fact_4499_less__divide__eq__numeral_I1_J,axiom,
    ! [W: num,B: real,C: real] :
      ( ( ord_less_real @ ( numeral_numeral_real @ W ) @ ( divide_divide_real @ B @ C ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_real @ ( times_times_real @ ( numeral_numeral_real @ W ) @ C ) @ B ) )
        & ( ~ ( ord_less_real @ zero_zero_real @ C )
         => ( ( ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_real @ B @ ( times_times_real @ ( numeral_numeral_real @ W ) @ C ) ) )
            & ( ~ ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_real @ ( numeral_numeral_real @ W ) @ zero_zero_real ) ) ) ) ) ) ).

% less_divide_eq_numeral(1)
thf(fact_4500_less__divide__eq__numeral_I1_J,axiom,
    ! [W: num,B: rat,C: rat] :
      ( ( ord_less_rat @ ( numeral_numeral_rat @ W ) @ ( divide_divide_rat @ B @ C ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_rat @ ( times_times_rat @ ( numeral_numeral_rat @ W ) @ C ) @ B ) )
        & ( ~ ( ord_less_rat @ zero_zero_rat @ C )
         => ( ( ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_rat @ B @ ( times_times_rat @ ( numeral_numeral_rat @ W ) @ C ) ) )
            & ( ~ ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_rat @ ( numeral_numeral_rat @ W ) @ zero_zero_rat ) ) ) ) ) ) ).

% less_divide_eq_numeral(1)
thf(fact_4501_frac__le__eq,axiom,
    ! [Y2: real,Z: real,X2: real,W: real] :
      ( ( Y2 != zero_zero_real )
     => ( ( Z != zero_zero_real )
       => ( ( ord_less_eq_real @ ( divide_divide_real @ X2 @ Y2 ) @ ( divide_divide_real @ W @ Z ) )
          = ( ord_less_eq_real @ ( divide_divide_real @ ( minus_minus_real @ ( times_times_real @ X2 @ Z ) @ ( times_times_real @ W @ Y2 ) ) @ ( times_times_real @ Y2 @ Z ) ) @ zero_zero_real ) ) ) ) ).

% frac_le_eq
thf(fact_4502_frac__le__eq,axiom,
    ! [Y2: rat,Z: rat,X2: rat,W: rat] :
      ( ( Y2 != zero_zero_rat )
     => ( ( Z != zero_zero_rat )
       => ( ( ord_less_eq_rat @ ( divide_divide_rat @ X2 @ Y2 ) @ ( divide_divide_rat @ W @ Z ) )
          = ( ord_less_eq_rat @ ( divide_divide_rat @ ( minus_minus_rat @ ( times_times_rat @ X2 @ Z ) @ ( times_times_rat @ W @ Y2 ) ) @ ( times_times_rat @ Y2 @ Z ) ) @ zero_zero_rat ) ) ) ) ).

% frac_le_eq
thf(fact_4503_frac__less__eq,axiom,
    ! [Y2: real,Z: real,X2: real,W: real] :
      ( ( Y2 != zero_zero_real )
     => ( ( Z != zero_zero_real )
       => ( ( ord_less_real @ ( divide_divide_real @ X2 @ Y2 ) @ ( divide_divide_real @ W @ Z ) )
          = ( ord_less_real @ ( divide_divide_real @ ( minus_minus_real @ ( times_times_real @ X2 @ Z ) @ ( times_times_real @ W @ Y2 ) ) @ ( times_times_real @ Y2 @ Z ) ) @ zero_zero_real ) ) ) ) ).

% frac_less_eq
thf(fact_4504_frac__less__eq,axiom,
    ! [Y2: rat,Z: rat,X2: rat,W: rat] :
      ( ( Y2 != zero_zero_rat )
     => ( ( Z != zero_zero_rat )
       => ( ( ord_less_rat @ ( divide_divide_rat @ X2 @ Y2 ) @ ( divide_divide_rat @ W @ Z ) )
          = ( ord_less_rat @ ( divide_divide_rat @ ( minus_minus_rat @ ( times_times_rat @ X2 @ Z ) @ ( times_times_rat @ W @ Y2 ) ) @ ( times_times_rat @ Y2 @ Z ) ) @ zero_zero_rat ) ) ) ) ).

% frac_less_eq
thf(fact_4505_power__Suc__less,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ A @ one_one_real )
       => ( ord_less_real @ ( times_times_real @ A @ ( power_power_real @ A @ N ) ) @ ( power_power_real @ A @ N ) ) ) ) ).

% power_Suc_less
thf(fact_4506_power__Suc__less,axiom,
    ! [A: rat,N: nat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ( ord_less_rat @ A @ one_one_rat )
       => ( ord_less_rat @ ( times_times_rat @ A @ ( power_power_rat @ A @ N ) ) @ ( power_power_rat @ A @ N ) ) ) ) ).

% power_Suc_less
thf(fact_4507_power__Suc__less,axiom,
    ! [A: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ A @ one_one_nat )
       => ( ord_less_nat @ ( times_times_nat @ A @ ( power_power_nat @ A @ N ) ) @ ( power_power_nat @ A @ N ) ) ) ) ).

% power_Suc_less
thf(fact_4508_power__Suc__less,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ A @ one_one_int )
       => ( ord_less_int @ ( times_times_int @ A @ ( power_power_int @ A @ N ) ) @ ( power_power_int @ A @ N ) ) ) ) ).

% power_Suc_less
thf(fact_4509_vebt__mint_Oelims,axiom,
    ! [X2: vEBT_VEBT,Y2: option_nat] :
      ( ( ( vEBT_vebt_mint @ X2 )
        = Y2 )
     => ( ! [A6: $o,B7: $o] :
            ( ( X2
              = ( vEBT_Leaf @ A6 @ B7 ) )
           => ~ ( ( A6
                 => ( Y2
                    = ( some_nat @ zero_zero_nat ) ) )
                & ( ~ A6
                 => ( ( B7
                     => ( Y2
                        = ( some_nat @ one_one_nat ) ) )
                    & ( ~ B7
                     => ( Y2 = none_nat ) ) ) ) ) )
       => ( ( ? [Uu2: nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT] :
                ( X2
                = ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu2 @ Uv2 @ Uw2 ) )
           => ( Y2 != none_nat ) )
         => ~ ! [Mi2: nat] :
                ( ? [Ma2: nat,Ux2: nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT] :
                    ( X2
                    = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ Ux2 @ Uy2 @ Uz2 ) )
               => ( Y2
                 != ( some_nat @ Mi2 ) ) ) ) ) ) ).

% vebt_mint.elims
thf(fact_4510_power__Suc__le__self,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ A @ one_one_real )
       => ( ord_less_eq_real @ ( power_power_real @ A @ ( suc @ N ) ) @ A ) ) ) ).

% power_Suc_le_self
thf(fact_4511_power__Suc__le__self,axiom,
    ! [A: rat,N: nat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ A )
     => ( ( ord_less_eq_rat @ A @ one_one_rat )
       => ( ord_less_eq_rat @ ( power_power_rat @ A @ ( suc @ N ) ) @ A ) ) ) ).

% power_Suc_le_self
thf(fact_4512_power__Suc__le__self,axiom,
    ! [A: nat,N: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ A @ one_one_nat )
       => ( ord_less_eq_nat @ ( power_power_nat @ A @ ( suc @ N ) ) @ A ) ) ) ).

% power_Suc_le_self
thf(fact_4513_power__Suc__le__self,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_eq_int @ A @ one_one_int )
       => ( ord_less_eq_int @ ( power_power_int @ A @ ( suc @ N ) ) @ A ) ) ) ).

% power_Suc_le_self
thf(fact_4514_power__Suc__less__one,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ A @ one_one_real )
       => ( ord_less_real @ ( power_power_real @ A @ ( suc @ N ) ) @ one_one_real ) ) ) ).

% power_Suc_less_one
thf(fact_4515_power__Suc__less__one,axiom,
    ! [A: rat,N: nat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ( ord_less_rat @ A @ one_one_rat )
       => ( ord_less_rat @ ( power_power_rat @ A @ ( suc @ N ) ) @ one_one_rat ) ) ) ).

% power_Suc_less_one
thf(fact_4516_power__Suc__less__one,axiom,
    ! [A: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ A @ one_one_nat )
       => ( ord_less_nat @ ( power_power_nat @ A @ ( suc @ N ) ) @ one_one_nat ) ) ) ).

% power_Suc_less_one
thf(fact_4517_power__Suc__less__one,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ A @ one_one_int )
       => ( ord_less_int @ ( power_power_int @ A @ ( suc @ N ) ) @ one_one_int ) ) ) ).

% power_Suc_less_one
thf(fact_4518_vebt__maxt_Oelims,axiom,
    ! [X2: vEBT_VEBT,Y2: option_nat] :
      ( ( ( vEBT_vebt_maxt @ X2 )
        = Y2 )
     => ( ! [A6: $o,B7: $o] :
            ( ( X2
              = ( vEBT_Leaf @ A6 @ B7 ) )
           => ~ ( ( B7
                 => ( Y2
                    = ( some_nat @ one_one_nat ) ) )
                & ( ~ B7
                 => ( ( A6
                     => ( Y2
                        = ( some_nat @ zero_zero_nat ) ) )
                    & ( ~ A6
                     => ( Y2 = none_nat ) ) ) ) ) )
       => ( ( ? [Uu2: nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT] :
                ( X2
                = ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu2 @ Uv2 @ Uw2 ) )
           => ( Y2 != none_nat ) )
         => ~ ! [Mi2: nat,Ma2: nat] :
                ( ? [Ux2: nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT] :
                    ( X2
                    = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ Ux2 @ Uy2 @ Uz2 ) )
               => ( Y2
                 != ( some_nat @ Ma2 ) ) ) ) ) ) ).

% vebt_maxt.elims
thf(fact_4519_power__strict__decreasing,axiom,
    ! [N: nat,N4: nat,A: real] :
      ( ( ord_less_nat @ N @ N4 )
     => ( ( ord_less_real @ zero_zero_real @ A )
       => ( ( ord_less_real @ A @ one_one_real )
         => ( ord_less_real @ ( power_power_real @ A @ N4 ) @ ( power_power_real @ A @ N ) ) ) ) ) ).

% power_strict_decreasing
thf(fact_4520_power__strict__decreasing,axiom,
    ! [N: nat,N4: nat,A: rat] :
      ( ( ord_less_nat @ N @ N4 )
     => ( ( ord_less_rat @ zero_zero_rat @ A )
       => ( ( ord_less_rat @ A @ one_one_rat )
         => ( ord_less_rat @ ( power_power_rat @ A @ N4 ) @ ( power_power_rat @ A @ N ) ) ) ) ) ).

% power_strict_decreasing
thf(fact_4521_power__strict__decreasing,axiom,
    ! [N: nat,N4: nat,A: nat] :
      ( ( ord_less_nat @ N @ N4 )
     => ( ( ord_less_nat @ zero_zero_nat @ A )
       => ( ( ord_less_nat @ A @ one_one_nat )
         => ( ord_less_nat @ ( power_power_nat @ A @ N4 ) @ ( power_power_nat @ A @ N ) ) ) ) ) ).

% power_strict_decreasing
thf(fact_4522_power__strict__decreasing,axiom,
    ! [N: nat,N4: nat,A: int] :
      ( ( ord_less_nat @ N @ N4 )
     => ( ( ord_less_int @ zero_zero_int @ A )
       => ( ( ord_less_int @ A @ one_one_int )
         => ( ord_less_int @ ( power_power_int @ A @ N4 ) @ ( power_power_int @ A @ N ) ) ) ) ) ).

% power_strict_decreasing
thf(fact_4523_power__decreasing,axiom,
    ! [N: nat,N4: nat,A: real] :
      ( ( ord_less_eq_nat @ N @ N4 )
     => ( ( ord_less_eq_real @ zero_zero_real @ A )
       => ( ( ord_less_eq_real @ A @ one_one_real )
         => ( ord_less_eq_real @ ( power_power_real @ A @ N4 ) @ ( power_power_real @ A @ N ) ) ) ) ) ).

% power_decreasing
thf(fact_4524_power__decreasing,axiom,
    ! [N: nat,N4: nat,A: rat] :
      ( ( ord_less_eq_nat @ N @ N4 )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ A )
       => ( ( ord_less_eq_rat @ A @ one_one_rat )
         => ( ord_less_eq_rat @ ( power_power_rat @ A @ N4 ) @ ( power_power_rat @ A @ N ) ) ) ) ) ).

% power_decreasing
thf(fact_4525_power__decreasing,axiom,
    ! [N: nat,N4: nat,A: nat] :
      ( ( ord_less_eq_nat @ N @ N4 )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ A )
       => ( ( ord_less_eq_nat @ A @ one_one_nat )
         => ( ord_less_eq_nat @ ( power_power_nat @ A @ N4 ) @ ( power_power_nat @ A @ N ) ) ) ) ) ).

% power_decreasing
thf(fact_4526_power__decreasing,axiom,
    ! [N: nat,N4: nat,A: int] :
      ( ( ord_less_eq_nat @ N @ N4 )
     => ( ( ord_less_eq_int @ zero_zero_int @ A )
       => ( ( ord_less_eq_int @ A @ one_one_int )
         => ( ord_less_eq_int @ ( power_power_int @ A @ N4 ) @ ( power_power_int @ A @ N ) ) ) ) ) ).

% power_decreasing
thf(fact_4527_zero__power2,axiom,
    ( ( power_power_rat @ zero_zero_rat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = zero_zero_rat ) ).

% zero_power2
thf(fact_4528_zero__power2,axiom,
    ( ( power_power_nat @ zero_zero_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = zero_zero_nat ) ).

% zero_power2
thf(fact_4529_zero__power2,axiom,
    ( ( power_power_real @ zero_zero_real @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = zero_zero_real ) ).

% zero_power2
thf(fact_4530_zero__power2,axiom,
    ( ( power_power_complex @ zero_zero_complex @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = zero_zero_complex ) ).

% zero_power2
thf(fact_4531_zero__power2,axiom,
    ( ( power_power_int @ zero_zero_int @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = zero_zero_int ) ).

% zero_power2
thf(fact_4532_self__le__power,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_eq_real @ one_one_real @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ord_less_eq_real @ A @ ( power_power_real @ A @ N ) ) ) ) ).

% self_le_power
thf(fact_4533_self__le__power,axiom,
    ! [A: rat,N: nat] :
      ( ( ord_less_eq_rat @ one_one_rat @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ord_less_eq_rat @ A @ ( power_power_rat @ A @ N ) ) ) ) ).

% self_le_power
thf(fact_4534_self__le__power,axiom,
    ! [A: nat,N: nat] :
      ( ( ord_less_eq_nat @ one_one_nat @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ord_less_eq_nat @ A @ ( power_power_nat @ A @ N ) ) ) ) ).

% self_le_power
thf(fact_4535_self__le__power,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_eq_int @ one_one_int @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ord_less_eq_int @ A @ ( power_power_int @ A @ N ) ) ) ) ).

% self_le_power
thf(fact_4536_cong__exp__iff__simps_I3_J,axiom,
    ! [N: num,Q2: num] :
      ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit1 @ N ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) )
     != zero_zero_nat ) ).

% cong_exp_iff_simps(3)
thf(fact_4537_cong__exp__iff__simps_I3_J,axiom,
    ! [N: num,Q2: num] :
      ( ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) )
     != zero_zero_int ) ).

% cong_exp_iff_simps(3)
thf(fact_4538_cong__exp__iff__simps_I3_J,axiom,
    ! [N: num,Q2: num] :
      ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit1 @ N ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) )
     != zero_z3403309356797280102nteger ) ).

% cong_exp_iff_simps(3)
thf(fact_4539_one__less__power,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ord_less_real @ one_one_real @ ( power_power_real @ A @ N ) ) ) ) ).

% one_less_power
thf(fact_4540_one__less__power,axiom,
    ! [A: rat,N: nat] :
      ( ( ord_less_rat @ one_one_rat @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ord_less_rat @ one_one_rat @ ( power_power_rat @ A @ N ) ) ) ) ).

% one_less_power
thf(fact_4541_one__less__power,axiom,
    ! [A: nat,N: nat] :
      ( ( ord_less_nat @ one_one_nat @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ord_less_nat @ one_one_nat @ ( power_power_nat @ A @ N ) ) ) ) ).

% one_less_power
thf(fact_4542_one__less__power,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_int @ one_one_int @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ord_less_int @ one_one_int @ ( power_power_int @ A @ N ) ) ) ) ).

% one_less_power
thf(fact_4543_numeral__2__eq__2,axiom,
    ( ( numeral_numeral_nat @ ( bit0 @ one ) )
    = ( suc @ ( suc @ zero_zero_nat ) ) ) ).

% numeral_2_eq_2
thf(fact_4544_pos2,axiom,
    ord_less_nat @ zero_zero_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ).

% pos2
thf(fact_4545_power__diff,axiom,
    ! [A: complex,N: nat,M: nat] :
      ( ( A != zero_zero_complex )
     => ( ( ord_less_eq_nat @ N @ M )
       => ( ( power_power_complex @ A @ ( minus_minus_nat @ M @ N ) )
          = ( divide1717551699836669952omplex @ ( power_power_complex @ A @ M ) @ ( power_power_complex @ A @ N ) ) ) ) ) ).

% power_diff
thf(fact_4546_power__diff,axiom,
    ! [A: real,N: nat,M: nat] :
      ( ( A != zero_zero_real )
     => ( ( ord_less_eq_nat @ N @ M )
       => ( ( power_power_real @ A @ ( minus_minus_nat @ M @ N ) )
          = ( divide_divide_real @ ( power_power_real @ A @ M ) @ ( power_power_real @ A @ N ) ) ) ) ) ).

% power_diff
thf(fact_4547_power__diff,axiom,
    ! [A: rat,N: nat,M: nat] :
      ( ( A != zero_zero_rat )
     => ( ( ord_less_eq_nat @ N @ M )
       => ( ( power_power_rat @ A @ ( minus_minus_nat @ M @ N ) )
          = ( divide_divide_rat @ ( power_power_rat @ A @ M ) @ ( power_power_rat @ A @ N ) ) ) ) ) ).

% power_diff
thf(fact_4548_power__diff,axiom,
    ! [A: nat,N: nat,M: nat] :
      ( ( A != zero_zero_nat )
     => ( ( ord_less_eq_nat @ N @ M )
       => ( ( power_power_nat @ A @ ( minus_minus_nat @ M @ N ) )
          = ( divide_divide_nat @ ( power_power_nat @ A @ M ) @ ( power_power_nat @ A @ N ) ) ) ) ) ).

% power_diff
thf(fact_4549_power__diff,axiom,
    ! [A: int,N: nat,M: nat] :
      ( ( A != zero_zero_int )
     => ( ( ord_less_eq_nat @ N @ M )
       => ( ( power_power_int @ A @ ( minus_minus_nat @ M @ N ) )
          = ( divide_divide_int @ ( power_power_int @ A @ M ) @ ( power_power_int @ A @ N ) ) ) ) ) ).

% power_diff
thf(fact_4550_numeral__3__eq__3,axiom,
    ( ( numeral_numeral_nat @ ( bit1 @ one ) )
    = ( suc @ ( suc @ ( suc @ zero_zero_nat ) ) ) ) ).

% numeral_3_eq_3
thf(fact_4551_Suc__diff__eq__diff__pred,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( minus_minus_nat @ ( suc @ M ) @ N )
        = ( minus_minus_nat @ M @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ) ).

% Suc_diff_eq_diff_pred
thf(fact_4552_Suc__pred_H,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( N
        = ( suc @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ) ).

% Suc_pred'
thf(fact_4553_div__if,axiom,
    ( divide_divide_nat
    = ( ^ [M3: nat,N2: nat] :
          ( if_nat
          @ ( ( ord_less_nat @ M3 @ N2 )
            | ( N2 = zero_zero_nat ) )
          @ zero_zero_nat
          @ ( suc @ ( divide_divide_nat @ ( minus_minus_nat @ M3 @ N2 ) @ N2 ) ) ) ) ) ).

% div_if
thf(fact_4554_div__geq,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ~ ( ord_less_nat @ M @ N )
       => ( ( divide_divide_nat @ M @ N )
          = ( suc @ ( divide_divide_nat @ ( minus_minus_nat @ M @ N ) @ N ) ) ) ) ) ).

% div_geq
thf(fact_4555_add__eq__if,axiom,
    ( plus_plus_nat
    = ( ^ [M3: nat,N2: nat] : ( if_nat @ ( M3 = zero_zero_nat ) @ N2 @ ( suc @ ( plus_plus_nat @ ( minus_minus_nat @ M3 @ one_one_nat ) @ N2 ) ) ) ) ) ).

% add_eq_if
thf(fact_4556_less__eq__div__iff__mult__less__eq,axiom,
    ! [Q2: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ Q2 )
     => ( ( ord_less_eq_nat @ M @ ( divide_divide_nat @ N @ Q2 ) )
        = ( ord_less_eq_nat @ ( times_times_nat @ M @ Q2 ) @ N ) ) ) ).

% less_eq_div_iff_mult_less_eq
thf(fact_4557_split__div,axiom,
    ! [P: nat > $o,M: nat,N: nat] :
      ( ( P @ ( divide_divide_nat @ M @ N ) )
      = ( ( ( N = zero_zero_nat )
         => ( P @ zero_zero_nat ) )
        & ( ( N != zero_zero_nat )
         => ! [I4: nat,J3: nat] :
              ( ( ord_less_nat @ J3 @ N )
             => ( ( M
                  = ( plus_plus_nat @ ( times_times_nat @ N @ I4 ) @ J3 ) )
               => ( P @ I4 ) ) ) ) ) ) ).

% split_div
thf(fact_4558_dividend__less__div__times,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ord_less_nat @ M @ ( plus_plus_nat @ N @ ( times_times_nat @ ( divide_divide_nat @ M @ N ) @ N ) ) ) ) ).

% dividend_less_div_times
thf(fact_4559_dividend__less__times__div,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ord_less_nat @ M @ ( plus_plus_nat @ N @ ( times_times_nat @ N @ ( divide_divide_nat @ M @ N ) ) ) ) ) ).

% dividend_less_times_div
thf(fact_4560_mult__eq__if,axiom,
    ( times_times_nat
    = ( ^ [M3: nat,N2: nat] : ( if_nat @ ( M3 = zero_zero_nat ) @ zero_zero_nat @ ( plus_plus_nat @ N2 @ ( times_times_nat @ ( minus_minus_nat @ M3 @ one_one_nat ) @ N2 ) ) ) ) ) ).

% mult_eq_if
thf(fact_4561_split__mod,axiom,
    ! [P: nat > $o,M: nat,N: nat] :
      ( ( P @ ( modulo_modulo_nat @ M @ N ) )
      = ( ( ( N = zero_zero_nat )
         => ( P @ M ) )
        & ( ( N != zero_zero_nat )
         => ! [I4: nat,J3: nat] :
              ( ( ord_less_nat @ J3 @ N )
             => ( ( M
                  = ( plus_plus_nat @ ( times_times_nat @ N @ I4 ) @ J3 ) )
               => ( P @ J3 ) ) ) ) ) ) ).

% split_mod
thf(fact_4562_VEBT__internal_Oheight_Oelims,axiom,
    ! [X2: vEBT_VEBT,Y2: nat] :
      ( ( ( vEBT_VEBT_height @ X2 )
        = Y2 )
     => ( ( ? [A6: $o,B7: $o] :
              ( X2
              = ( vEBT_Leaf @ A6 @ B7 ) )
         => ( Y2 != zero_zero_nat ) )
       => ~ ! [Uu2: option4927543243414619207at_nat,Deg2: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
              ( ( X2
                = ( vEBT_Node @ Uu2 @ Deg2 @ TreeList3 @ Summary2 ) )
             => ( Y2
               != ( plus_plus_nat @ one_one_nat @ ( lattic8265883725875713057ax_nat @ ( image_VEBT_VEBT_nat @ vEBT_VEBT_height @ ( insert_VEBT_VEBT @ Summary2 @ ( set_VEBT_VEBT2 @ TreeList3 ) ) ) ) ) ) ) ) ) ).

% VEBT_internal.height.elims
thf(fact_4563_vebt__member_Osimps_I4_J,axiom,
    ! [V: product_prod_nat_nat,Vb: list_VEBT_VEBT,Vc: vEBT_VEBT,X2: nat] :
      ~ ( vEBT_vebt_member @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V ) @ ( suc @ zero_zero_nat ) @ Vb @ Vc ) @ X2 ) ).

% vebt_member.simps(4)
thf(fact_4564_verit__le__mono__div,axiom,
    ! [A2: nat,B3: nat,N: nat] :
      ( ( ord_less_nat @ A2 @ B3 )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ord_less_eq_nat
          @ ( plus_plus_nat @ ( divide_divide_nat @ A2 @ N )
            @ ( if_nat
              @ ( ( modulo_modulo_nat @ B3 @ N )
                = zero_zero_nat )
              @ one_one_nat
              @ zero_zero_nat ) )
          @ ( divide_divide_nat @ B3 @ N ) ) ) ) ).

% verit_le_mono_div
thf(fact_4565_VEBT__internal_Omembermima_Osimps_I3_J,axiom,
    ! [Mi: nat,Ma: nat,Va: list_VEBT_VEBT,Vb: vEBT_VEBT,X2: nat] :
      ( ( vEBT_VEBT_membermima @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ zero_zero_nat @ Va @ Vb ) @ X2 )
      = ( ( X2 = Mi )
        | ( X2 = Ma ) ) ) ).

% VEBT_internal.membermima.simps(3)
thf(fact_4566_vebt__pred_Osimps_I5_J,axiom,
    ! [V: product_prod_nat_nat,Vd: list_VEBT_VEBT,Ve2: vEBT_VEBT,Vf2: nat] :
      ( ( vEBT_vebt_pred @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V ) @ zero_zero_nat @ Vd @ Ve2 ) @ Vf2 )
      = none_nat ) ).

% vebt_pred.simps(5)
thf(fact_4567_vebt__succ_Osimps_I4_J,axiom,
    ! [V: product_prod_nat_nat,Vc: list_VEBT_VEBT,Vd: vEBT_VEBT,Ve2: nat] :
      ( ( vEBT_vebt_succ @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V ) @ zero_zero_nat @ Vc @ Vd ) @ Ve2 )
      = none_nat ) ).

% vebt_succ.simps(4)
thf(fact_4568_convex__bound__lt,axiom,
    ! [X2: real,A: real,Y2: real,U: real,V: real] :
      ( ( ord_less_real @ X2 @ A )
     => ( ( ord_less_real @ Y2 @ A )
       => ( ( ord_less_eq_real @ zero_zero_real @ U )
         => ( ( ord_less_eq_real @ zero_zero_real @ V )
           => ( ( ( plus_plus_real @ U @ V )
                = one_one_real )
             => ( ord_less_real @ ( plus_plus_real @ ( times_times_real @ U @ X2 ) @ ( times_times_real @ V @ Y2 ) ) @ A ) ) ) ) ) ) ).

% convex_bound_lt
thf(fact_4569_convex__bound__lt,axiom,
    ! [X2: rat,A: rat,Y2: rat,U: rat,V: rat] :
      ( ( ord_less_rat @ X2 @ A )
     => ( ( ord_less_rat @ Y2 @ A )
       => ( ( ord_less_eq_rat @ zero_zero_rat @ U )
         => ( ( ord_less_eq_rat @ zero_zero_rat @ V )
           => ( ( ( plus_plus_rat @ U @ V )
                = one_one_rat )
             => ( ord_less_rat @ ( plus_plus_rat @ ( times_times_rat @ U @ X2 ) @ ( times_times_rat @ V @ Y2 ) ) @ A ) ) ) ) ) ) ).

% convex_bound_lt
thf(fact_4570_convex__bound__lt,axiom,
    ! [X2: int,A: int,Y2: int,U: int,V: int] :
      ( ( ord_less_int @ X2 @ A )
     => ( ( ord_less_int @ Y2 @ A )
       => ( ( ord_less_eq_int @ zero_zero_int @ U )
         => ( ( ord_less_eq_int @ zero_zero_int @ V )
           => ( ( ( plus_plus_int @ U @ V )
                = one_one_int )
             => ( ord_less_int @ ( plus_plus_int @ ( times_times_int @ U @ X2 ) @ ( times_times_int @ V @ Y2 ) ) @ A ) ) ) ) ) ) ).

% convex_bound_lt
thf(fact_4571_divide__le__eq__numeral_I1_J,axiom,
    ! [B: real,C: real,W: num] :
      ( ( ord_less_eq_real @ ( divide_divide_real @ B @ C ) @ ( numeral_numeral_real @ W ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ B @ ( times_times_real @ ( numeral_numeral_real @ W ) @ C ) ) )
        & ( ~ ( ord_less_real @ zero_zero_real @ C )
         => ( ( ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_eq_real @ ( times_times_real @ ( numeral_numeral_real @ W ) @ C ) @ B ) )
            & ( ~ ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_eq_real @ zero_zero_real @ ( numeral_numeral_real @ W ) ) ) ) ) ) ) ).

% divide_le_eq_numeral(1)
thf(fact_4572_divide__le__eq__numeral_I1_J,axiom,
    ! [B: rat,C: rat,W: num] :
      ( ( ord_less_eq_rat @ ( divide_divide_rat @ B @ C ) @ ( numeral_numeral_rat @ W ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_eq_rat @ B @ ( times_times_rat @ ( numeral_numeral_rat @ W ) @ C ) ) )
        & ( ~ ( ord_less_rat @ zero_zero_rat @ C )
         => ( ( ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_eq_rat @ ( times_times_rat @ ( numeral_numeral_rat @ W ) @ C ) @ B ) )
            & ( ~ ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_eq_rat @ zero_zero_rat @ ( numeral_numeral_rat @ W ) ) ) ) ) ) ) ).

% divide_le_eq_numeral(1)
thf(fact_4573_le__divide__eq__numeral_I1_J,axiom,
    ! [W: num,B: real,C: real] :
      ( ( ord_less_eq_real @ ( numeral_numeral_real @ W ) @ ( divide_divide_real @ B @ C ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ ( times_times_real @ ( numeral_numeral_real @ W ) @ C ) @ B ) )
        & ( ~ ( ord_less_real @ zero_zero_real @ C )
         => ( ( ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_eq_real @ B @ ( times_times_real @ ( numeral_numeral_real @ W ) @ C ) ) )
            & ( ~ ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_eq_real @ ( numeral_numeral_real @ W ) @ zero_zero_real ) ) ) ) ) ) ).

% le_divide_eq_numeral(1)
thf(fact_4574_le__divide__eq__numeral_I1_J,axiom,
    ! [W: num,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ ( numeral_numeral_rat @ W ) @ ( divide_divide_rat @ B @ C ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_eq_rat @ ( times_times_rat @ ( numeral_numeral_rat @ W ) @ C ) @ B ) )
        & ( ~ ( ord_less_rat @ zero_zero_rat @ C )
         => ( ( ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_eq_rat @ B @ ( times_times_rat @ ( numeral_numeral_rat @ W ) @ C ) ) )
            & ( ~ ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_eq_rat @ ( numeral_numeral_rat @ W ) @ zero_zero_rat ) ) ) ) ) ) ).

% le_divide_eq_numeral(1)
thf(fact_4575_divide__nat__def,axiom,
    ( divide_divide_nat
    = ( ^ [M3: nat,N2: nat] :
          ( if_nat @ ( N2 = zero_zero_nat ) @ zero_zero_nat
          @ ( lattic8265883725875713057ax_nat
            @ ( collect_nat
              @ ^ [K2: nat] : ( ord_less_eq_nat @ ( times_times_nat @ K2 @ N2 ) @ M3 ) ) ) ) ) ) ).

% divide_nat_def
thf(fact_4576_half__gt__zero,axiom,
    ! [A: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ord_less_real @ zero_zero_real @ ( divide_divide_real @ A @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).

% half_gt_zero
thf(fact_4577_half__gt__zero,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ord_less_rat @ zero_zero_rat @ ( divide_divide_rat @ A @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) ) ).

% half_gt_zero
thf(fact_4578_half__gt__zero__iff,axiom,
    ! [A: real] :
      ( ( ord_less_real @ zero_zero_real @ ( divide_divide_real @ A @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
      = ( ord_less_real @ zero_zero_real @ A ) ) ).

% half_gt_zero_iff
thf(fact_4579_half__gt__zero__iff,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( divide_divide_rat @ A @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) )
      = ( ord_less_rat @ zero_zero_rat @ A ) ) ).

% half_gt_zero_iff
thf(fact_4580_scaling__mono,axiom,
    ! [U: real,V: real,R2: real,S: real] :
      ( ( ord_less_eq_real @ U @ V )
     => ( ( ord_less_eq_real @ zero_zero_real @ R2 )
       => ( ( ord_less_eq_real @ R2 @ S )
         => ( ord_less_eq_real @ ( plus_plus_real @ U @ ( divide_divide_real @ ( times_times_real @ R2 @ ( minus_minus_real @ V @ U ) ) @ S ) ) @ V ) ) ) ) ).

% scaling_mono
thf(fact_4581_scaling__mono,axiom,
    ! [U: rat,V: rat,R2: rat,S: rat] :
      ( ( ord_less_eq_rat @ U @ V )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ R2 )
       => ( ( ord_less_eq_rat @ R2 @ S )
         => ( ord_less_eq_rat @ ( plus_plus_rat @ U @ ( divide_divide_rat @ ( times_times_rat @ R2 @ ( minus_minus_rat @ V @ U ) ) @ S ) ) @ V ) ) ) ) ).

% scaling_mono
thf(fact_4582_zero__le__power2,axiom,
    ! [A: real] : ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% zero_le_power2
thf(fact_4583_zero__le__power2,axiom,
    ! [A: rat] : ( ord_less_eq_rat @ zero_zero_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% zero_le_power2
thf(fact_4584_zero__le__power2,axiom,
    ! [A: int] : ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% zero_le_power2
thf(fact_4585_power2__eq__imp__eq,axiom,
    ! [X2: real,Y2: real] :
      ( ( ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
     => ( ( ord_less_eq_real @ zero_zero_real @ X2 )
       => ( ( ord_less_eq_real @ zero_zero_real @ Y2 )
         => ( X2 = Y2 ) ) ) ) ).

% power2_eq_imp_eq
thf(fact_4586_power2__eq__imp__eq,axiom,
    ! [X2: rat,Y2: rat] :
      ( ( ( power_power_rat @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( power_power_rat @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ X2 )
       => ( ( ord_less_eq_rat @ zero_zero_rat @ Y2 )
         => ( X2 = Y2 ) ) ) ) ).

% power2_eq_imp_eq
thf(fact_4587_power2__eq__imp__eq,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ( power_power_nat @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( power_power_nat @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ X2 )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ Y2 )
         => ( X2 = Y2 ) ) ) ) ).

% power2_eq_imp_eq
thf(fact_4588_power2__eq__imp__eq,axiom,
    ! [X2: int,Y2: int] :
      ( ( ( power_power_int @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( power_power_int @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ X2 )
       => ( ( ord_less_eq_int @ zero_zero_int @ Y2 )
         => ( X2 = Y2 ) ) ) ) ).

% power2_eq_imp_eq
thf(fact_4589_power2__le__imp__le,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_eq_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y2 )
       => ( ord_less_eq_real @ X2 @ Y2 ) ) ) ).

% power2_le_imp_le
thf(fact_4590_power2__le__imp__le,axiom,
    ! [X2: rat,Y2: rat] :
      ( ( ord_less_eq_rat @ ( power_power_rat @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ Y2 )
       => ( ord_less_eq_rat @ X2 @ Y2 ) ) ) ).

% power2_le_imp_le
thf(fact_4591_power2__le__imp__le,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ord_less_eq_nat @ ( power_power_nat @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_nat @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ Y2 )
       => ( ord_less_eq_nat @ X2 @ Y2 ) ) ) ).

% power2_le_imp_le
thf(fact_4592_power2__le__imp__le,axiom,
    ! [X2: int,Y2: int] :
      ( ( ord_less_eq_int @ ( power_power_int @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ Y2 )
       => ( ord_less_eq_int @ X2 @ Y2 ) ) ) ).

% power2_le_imp_le
thf(fact_4593_power2__less__0,axiom,
    ! [A: real] :
      ~ ( ord_less_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ zero_zero_real ) ).

% power2_less_0
thf(fact_4594_power2__less__0,axiom,
    ! [A: rat] :
      ~ ( ord_less_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ zero_zero_rat ) ).

% power2_less_0
thf(fact_4595_power2__less__0,axiom,
    ! [A: int] :
      ~ ( ord_less_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ zero_zero_int ) ).

% power2_less_0
thf(fact_4596_unique__euclidean__semiring__numeral__class_Omod__mult2__eq,axiom,
    ! [C: code_integer,A: code_integer,B: code_integer] :
      ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ C )
     => ( ( modulo364778990260209775nteger @ A @ ( times_3573771949741848930nteger @ B @ C ) )
        = ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ B @ ( modulo364778990260209775nteger @ ( divide6298287555418463151nteger @ A @ B ) @ C ) ) @ ( modulo364778990260209775nteger @ A @ B ) ) ) ) ).

% unique_euclidean_semiring_numeral_class.mod_mult2_eq
thf(fact_4597_unique__euclidean__semiring__numeral__class_Omod__mult2__eq,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ C )
     => ( ( modulo_modulo_nat @ A @ ( times_times_nat @ B @ C ) )
        = ( plus_plus_nat @ ( times_times_nat @ B @ ( modulo_modulo_nat @ ( divide_divide_nat @ A @ B ) @ C ) ) @ ( modulo_modulo_nat @ A @ B ) ) ) ) ).

% unique_euclidean_semiring_numeral_class.mod_mult2_eq
thf(fact_4598_unique__euclidean__semiring__numeral__class_Omod__mult2__eq,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ C )
     => ( ( modulo_modulo_int @ A @ ( times_times_int @ B @ C ) )
        = ( plus_plus_int @ ( times_times_int @ B @ ( modulo_modulo_int @ ( divide_divide_int @ A @ B ) @ C ) ) @ ( modulo_modulo_int @ A @ B ) ) ) ) ).

% unique_euclidean_semiring_numeral_class.mod_mult2_eq
thf(fact_4599_exp__add__not__zero__imp__left,axiom,
    ! [M: nat,N: nat] :
      ( ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N ) )
       != zero_zero_nat )
     => ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M )
       != zero_zero_nat ) ) ).

% exp_add_not_zero_imp_left
thf(fact_4600_exp__add__not__zero__imp__left,axiom,
    ! [M: nat,N: nat] :
      ( ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N ) )
       != zero_zero_int )
     => ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M )
       != zero_zero_int ) ) ).

% exp_add_not_zero_imp_left
thf(fact_4601_exp__add__not__zero__imp__right,axiom,
    ! [M: nat,N: nat] :
      ( ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N ) )
       != zero_zero_nat )
     => ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       != zero_zero_nat ) ) ).

% exp_add_not_zero_imp_right
thf(fact_4602_exp__add__not__zero__imp__right,axiom,
    ! [M: nat,N: nat] :
      ( ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N ) )
       != zero_zero_int )
     => ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N )
       != zero_zero_int ) ) ).

% exp_add_not_zero_imp_right
thf(fact_4603_exp__not__zero__imp__exp__diff__not__zero,axiom,
    ! [N: nat,M: nat] :
      ( ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       != zero_zero_nat )
     => ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N @ M ) )
       != zero_zero_nat ) ) ).

% exp_not_zero_imp_exp_diff_not_zero
thf(fact_4604_exp__not__zero__imp__exp__diff__not__zero,axiom,
    ! [N: nat,M: nat] :
      ( ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N )
       != zero_zero_int )
     => ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N @ M ) )
       != zero_zero_int ) ) ).

% exp_not_zero_imp_exp_diff_not_zero
thf(fact_4605_cong__exp__iff__simps_I11_J,axiom,
    ! [M: num,Q2: num] :
      ( ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit1 @ M ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) )
        = ( modulo_modulo_nat @ ( numeral_numeral_nat @ one ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) ) )
      = ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ Q2 ) )
        = zero_zero_nat ) ) ).

% cong_exp_iff_simps(11)
thf(fact_4606_cong__exp__iff__simps_I11_J,axiom,
    ! [M: num,Q2: num] :
      ( ( ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit1 @ M ) ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) )
        = ( modulo_modulo_int @ ( numeral_numeral_int @ one ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) ) )
      = ( ( modulo_modulo_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ Q2 ) )
        = zero_zero_int ) ) ).

% cong_exp_iff_simps(11)
thf(fact_4607_cong__exp__iff__simps_I11_J,axiom,
    ! [M: num,Q2: num] :
      ( ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit1 @ M ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) )
        = ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ one ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) ) )
      = ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ M ) @ ( numera6620942414471956472nteger @ Q2 ) )
        = zero_z3403309356797280102nteger ) ) ).

% cong_exp_iff_simps(11)
thf(fact_4608_cong__exp__iff__simps_I7_J,axiom,
    ! [Q2: num,N: num] :
      ( ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ one ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) )
        = ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit1 @ N ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) ) )
      = ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ N ) @ ( numeral_numeral_nat @ Q2 ) )
        = zero_zero_nat ) ) ).

% cong_exp_iff_simps(7)
thf(fact_4609_cong__exp__iff__simps_I7_J,axiom,
    ! [Q2: num,N: num] :
      ( ( ( modulo_modulo_int @ ( numeral_numeral_int @ one ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) )
        = ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) ) )
      = ( ( modulo_modulo_int @ ( numeral_numeral_int @ N ) @ ( numeral_numeral_int @ Q2 ) )
        = zero_zero_int ) ) ).

% cong_exp_iff_simps(7)
thf(fact_4610_cong__exp__iff__simps_I7_J,axiom,
    ! [Q2: num,N: num] :
      ( ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ one ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) )
        = ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ ( bit1 @ N ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ Q2 ) ) ) )
      = ( ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ N ) @ ( numera6620942414471956472nteger @ Q2 ) )
        = zero_z3403309356797280102nteger ) ) ).

% cong_exp_iff_simps(7)
thf(fact_4611_power__diff__power__eq,axiom,
    ! [A: nat,N: nat,M: nat] :
      ( ( A != zero_zero_nat )
     => ( ( ( ord_less_eq_nat @ N @ M )
         => ( ( divide_divide_nat @ ( power_power_nat @ A @ M ) @ ( power_power_nat @ A @ N ) )
            = ( power_power_nat @ A @ ( minus_minus_nat @ M @ N ) ) ) )
        & ( ~ ( ord_less_eq_nat @ N @ M )
         => ( ( divide_divide_nat @ ( power_power_nat @ A @ M ) @ ( power_power_nat @ A @ N ) )
            = ( divide_divide_nat @ one_one_nat @ ( power_power_nat @ A @ ( minus_minus_nat @ N @ M ) ) ) ) ) ) ) ).

% power_diff_power_eq
thf(fact_4612_power__diff__power__eq,axiom,
    ! [A: int,N: nat,M: nat] :
      ( ( A != zero_zero_int )
     => ( ( ( ord_less_eq_nat @ N @ M )
         => ( ( divide_divide_int @ ( power_power_int @ A @ M ) @ ( power_power_int @ A @ N ) )
            = ( power_power_int @ A @ ( minus_minus_nat @ M @ N ) ) ) )
        & ( ~ ( ord_less_eq_nat @ N @ M )
         => ( ( divide_divide_int @ ( power_power_int @ A @ M ) @ ( power_power_int @ A @ N ) )
            = ( divide_divide_int @ one_one_int @ ( power_power_int @ A @ ( minus_minus_nat @ N @ M ) ) ) ) ) ) ) ).

% power_diff_power_eq
thf(fact_4613_less__2__cases,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
     => ( ( N = zero_zero_nat )
        | ( N
          = ( suc @ zero_zero_nat ) ) ) ) ).

% less_2_cases
thf(fact_4614_less__2__cases__iff,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( ( N = zero_zero_nat )
        | ( N
          = ( suc @ zero_zero_nat ) ) ) ) ).

% less_2_cases_iff
thf(fact_4615_nat__induct2,axiom,
    ! [P: nat > $o,N: nat] :
      ( ( P @ zero_zero_nat )
     => ( ( P @ one_one_nat )
       => ( ! [N3: nat] :
              ( ( P @ N3 )
             => ( P @ ( plus_plus_nat @ N3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
         => ( P @ N ) ) ) ) ).

% nat_induct2
thf(fact_4616_power__eq__if,axiom,
    ( power_power_complex
    = ( ^ [P5: complex,M3: nat] : ( if_complex @ ( M3 = zero_zero_nat ) @ one_one_complex @ ( times_times_complex @ P5 @ ( power_power_complex @ P5 @ ( minus_minus_nat @ M3 @ one_one_nat ) ) ) ) ) ) ).

% power_eq_if
thf(fact_4617_power__eq__if,axiom,
    ( power_power_real
    = ( ^ [P5: real,M3: nat] : ( if_real @ ( M3 = zero_zero_nat ) @ one_one_real @ ( times_times_real @ P5 @ ( power_power_real @ P5 @ ( minus_minus_nat @ M3 @ one_one_nat ) ) ) ) ) ) ).

% power_eq_if
thf(fact_4618_power__eq__if,axiom,
    ( power_power_rat
    = ( ^ [P5: rat,M3: nat] : ( if_rat @ ( M3 = zero_zero_nat ) @ one_one_rat @ ( times_times_rat @ P5 @ ( power_power_rat @ P5 @ ( minus_minus_nat @ M3 @ one_one_nat ) ) ) ) ) ) ).

% power_eq_if
thf(fact_4619_power__eq__if,axiom,
    ( power_power_nat
    = ( ^ [P5: nat,M3: nat] : ( if_nat @ ( M3 = zero_zero_nat ) @ one_one_nat @ ( times_times_nat @ P5 @ ( power_power_nat @ P5 @ ( minus_minus_nat @ M3 @ one_one_nat ) ) ) ) ) ) ).

% power_eq_if
thf(fact_4620_power__eq__if,axiom,
    ( power_power_int
    = ( ^ [P5: int,M3: nat] : ( if_int @ ( M3 = zero_zero_nat ) @ one_one_int @ ( times_times_int @ P5 @ ( power_power_int @ P5 @ ( minus_minus_nat @ M3 @ one_one_nat ) ) ) ) ) ) ).

% power_eq_if
thf(fact_4621_power__minus__mult,axiom,
    ! [N: nat,A: complex] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( times_times_complex @ ( power_power_complex @ A @ ( minus_minus_nat @ N @ one_one_nat ) ) @ A )
        = ( power_power_complex @ A @ N ) ) ) ).

% power_minus_mult
thf(fact_4622_power__minus__mult,axiom,
    ! [N: nat,A: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( times_times_real @ ( power_power_real @ A @ ( minus_minus_nat @ N @ one_one_nat ) ) @ A )
        = ( power_power_real @ A @ N ) ) ) ).

% power_minus_mult
thf(fact_4623_power__minus__mult,axiom,
    ! [N: nat,A: rat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( times_times_rat @ ( power_power_rat @ A @ ( minus_minus_nat @ N @ one_one_nat ) ) @ A )
        = ( power_power_rat @ A @ N ) ) ) ).

% power_minus_mult
thf(fact_4624_power__minus__mult,axiom,
    ! [N: nat,A: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( times_times_nat @ ( power_power_nat @ A @ ( minus_minus_nat @ N @ one_one_nat ) ) @ A )
        = ( power_power_nat @ A @ N ) ) ) ).

% power_minus_mult
thf(fact_4625_power__minus__mult,axiom,
    ! [N: nat,A: int] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( times_times_int @ ( power_power_int @ A @ ( minus_minus_nat @ N @ one_one_nat ) ) @ A )
        = ( power_power_int @ A @ N ) ) ) ).

% power_minus_mult
thf(fact_4626_le__div__geq,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_eq_nat @ N @ M )
       => ( ( divide_divide_nat @ M @ N )
          = ( suc @ ( divide_divide_nat @ ( minus_minus_nat @ M @ N ) @ N ) ) ) ) ) ).

% le_div_geq
thf(fact_4627_split__div_H,axiom,
    ! [P: nat > $o,M: nat,N: nat] :
      ( ( P @ ( divide_divide_nat @ M @ N ) )
      = ( ( ( N = zero_zero_nat )
          & ( P @ zero_zero_nat ) )
        | ? [Q4: nat] :
            ( ( ord_less_eq_nat @ ( times_times_nat @ N @ Q4 ) @ M )
            & ( ord_less_nat @ M @ ( times_times_nat @ N @ ( suc @ Q4 ) ) )
            & ( P @ Q4 ) ) ) ) ).

% split_div'
thf(fact_4628_Suc__times__mod__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ M )
     => ( ( modulo_modulo_nat @ ( suc @ ( times_times_nat @ M @ N ) ) @ M )
        = one_one_nat ) ) ).

% Suc_times_mod_eq
thf(fact_4629_vebt__succ_Osimps_I5_J,axiom,
    ! [V: product_prod_nat_nat,Vg2: list_VEBT_VEBT,Vh2: vEBT_VEBT,Vi2: nat] :
      ( ( vEBT_vebt_succ @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V ) @ ( suc @ zero_zero_nat ) @ Vg2 @ Vh2 ) @ Vi2 )
      = none_nat ) ).

% vebt_succ.simps(5)
thf(fact_4630_vebt__pred_Osimps_I6_J,axiom,
    ! [V: product_prod_nat_nat,Vh2: list_VEBT_VEBT,Vi2: vEBT_VEBT,Vj2: nat] :
      ( ( vEBT_vebt_pred @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V ) @ ( suc @ zero_zero_nat ) @ Vh2 @ Vi2 ) @ Vj2 )
      = none_nat ) ).

% vebt_pred.simps(6)
thf(fact_4631_power2__less__imp__less,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y2 )
       => ( ord_less_real @ X2 @ Y2 ) ) ) ).

% power2_less_imp_less
thf(fact_4632_power2__less__imp__less,axiom,
    ! [X2: rat,Y2: rat] :
      ( ( ord_less_rat @ ( power_power_rat @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ Y2 )
       => ( ord_less_rat @ X2 @ Y2 ) ) ) ).

% power2_less_imp_less
thf(fact_4633_power2__less__imp__less,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ord_less_nat @ ( power_power_nat @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_nat @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ Y2 )
       => ( ord_less_nat @ X2 @ Y2 ) ) ) ).

% power2_less_imp_less
thf(fact_4634_power2__less__imp__less,axiom,
    ! [X2: int,Y2: int] :
      ( ( ord_less_int @ ( power_power_int @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ Y2 )
       => ( ord_less_int @ X2 @ Y2 ) ) ) ).

% power2_less_imp_less
thf(fact_4635_sum__power2__ge__zero,axiom,
    ! [X2: real,Y2: real] : ( ord_less_eq_real @ zero_zero_real @ ( plus_plus_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% sum_power2_ge_zero
thf(fact_4636_sum__power2__ge__zero,axiom,
    ! [X2: rat,Y2: rat] : ( ord_less_eq_rat @ zero_zero_rat @ ( plus_plus_rat @ ( power_power_rat @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% sum_power2_ge_zero
thf(fact_4637_sum__power2__ge__zero,axiom,
    ! [X2: int,Y2: int] : ( ord_less_eq_int @ zero_zero_int @ ( plus_plus_int @ ( power_power_int @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% sum_power2_ge_zero
thf(fact_4638_sum__power2__le__zero__iff,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ zero_zero_real )
      = ( ( X2 = zero_zero_real )
        & ( Y2 = zero_zero_real ) ) ) ).

% sum_power2_le_zero_iff
thf(fact_4639_sum__power2__le__zero__iff,axiom,
    ! [X2: rat,Y2: rat] :
      ( ( ord_less_eq_rat @ ( plus_plus_rat @ ( power_power_rat @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ zero_zero_rat )
      = ( ( X2 = zero_zero_rat )
        & ( Y2 = zero_zero_rat ) ) ) ).

% sum_power2_le_zero_iff
thf(fact_4640_sum__power2__le__zero__iff,axiom,
    ! [X2: int,Y2: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ ( power_power_int @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ zero_zero_int )
      = ( ( X2 = zero_zero_int )
        & ( Y2 = zero_zero_int ) ) ) ).

% sum_power2_le_zero_iff
thf(fact_4641_not__sum__power2__lt__zero,axiom,
    ! [X2: real,Y2: real] :
      ~ ( ord_less_real @ ( plus_plus_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ zero_zero_real ) ).

% not_sum_power2_lt_zero
thf(fact_4642_not__sum__power2__lt__zero,axiom,
    ! [X2: rat,Y2: rat] :
      ~ ( ord_less_rat @ ( plus_plus_rat @ ( power_power_rat @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ zero_zero_rat ) ).

% not_sum_power2_lt_zero
thf(fact_4643_not__sum__power2__lt__zero,axiom,
    ! [X2: int,Y2: int] :
      ~ ( ord_less_int @ ( plus_plus_int @ ( power_power_int @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ zero_zero_int ) ).

% not_sum_power2_lt_zero
thf(fact_4644_sum__power2__gt__zero__iff,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
      = ( ( X2 != zero_zero_real )
        | ( Y2 != zero_zero_real ) ) ) ).

% sum_power2_gt_zero_iff
thf(fact_4645_sum__power2__gt__zero__iff,axiom,
    ! [X2: rat,Y2: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( plus_plus_rat @ ( power_power_rat @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
      = ( ( X2 != zero_zero_rat )
        | ( Y2 != zero_zero_rat ) ) ) ).

% sum_power2_gt_zero_iff
thf(fact_4646_sum__power2__gt__zero__iff,axiom,
    ! [X2: int,Y2: int] :
      ( ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ ( power_power_int @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
      = ( ( X2 != zero_zero_int )
        | ( Y2 != zero_zero_int ) ) ) ).

% sum_power2_gt_zero_iff
thf(fact_4647_divmod__digit__0_I2_J,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ B )
     => ( ( ord_less_nat @ ( modulo_modulo_nat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) @ B )
       => ( ( modulo_modulo_nat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) )
          = ( modulo_modulo_nat @ A @ B ) ) ) ) ).

% divmod_digit_0(2)
thf(fact_4648_divmod__digit__0_I2_J,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ( ord_less_int @ ( modulo_modulo_int @ A @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) @ B )
       => ( ( modulo_modulo_int @ A @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) )
          = ( modulo_modulo_int @ A @ B ) ) ) ) ).

% divmod_digit_0(2)
thf(fact_4649_divmod__digit__0_I2_J,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ B )
     => ( ( ord_le6747313008572928689nteger @ ( modulo364778990260209775nteger @ A @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) @ B )
       => ( ( modulo364778990260209775nteger @ A @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) )
          = ( modulo364778990260209775nteger @ A @ B ) ) ) ) ).

% divmod_digit_0(2)
thf(fact_4650_bits__stable__imp__add__self,axiom,
    ! [A: nat] :
      ( ( ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = A )
     => ( ( plus_plus_nat @ A @ ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
        = zero_zero_nat ) ) ).

% bits_stable_imp_add_self
thf(fact_4651_bits__stable__imp__add__self,axiom,
    ! [A: int] :
      ( ( ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
        = A )
     => ( ( plus_plus_int @ A @ ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) )
        = zero_zero_int ) ) ).

% bits_stable_imp_add_self
thf(fact_4652_bits__stable__imp__add__self,axiom,
    ! [A: code_integer] :
      ( ( ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
        = A )
     => ( ( plus_p5714425477246183910nteger @ A @ ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) )
        = zero_z3403309356797280102nteger ) ) ).

% bits_stable_imp_add_self
thf(fact_4653_zero__le__even__power_H,axiom,
    ! [A: real,N: nat] : ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).

% zero_le_even_power'
thf(fact_4654_zero__le__even__power_H,axiom,
    ! [A: rat,N: nat] : ( ord_less_eq_rat @ zero_zero_rat @ ( power_power_rat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).

% zero_le_even_power'
thf(fact_4655_zero__le__even__power_H,axiom,
    ! [A: int,N: nat] : ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).

% zero_le_even_power'
thf(fact_4656_nat__bit__induct,axiom,
    ! [P: nat > $o,N: nat] :
      ( ( P @ zero_zero_nat )
     => ( ! [N3: nat] :
            ( ( P @ N3 )
           => ( ( ord_less_nat @ zero_zero_nat @ N3 )
             => ( P @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) ) ) )
       => ( ! [N3: nat] :
              ( ( P @ N3 )
             => ( P @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) ) ) )
         => ( P @ N ) ) ) ) ).

% nat_bit_induct
thf(fact_4657_div__2__gt__zero,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ N )
     => ( ord_less_nat @ zero_zero_nat @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% div_2_gt_zero
thf(fact_4658_Suc__n__div__2__gt__zero,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ord_less_nat @ zero_zero_nat @ ( divide_divide_nat @ ( suc @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% Suc_n_div_2_gt_zero
thf(fact_4659_verit__comp__simplify1_I3_J,axiom,
    ! [B6: real,A5: real] :
      ( ( ~ ( ord_less_eq_real @ B6 @ A5 ) )
      = ( ord_less_real @ A5 @ B6 ) ) ).

% verit_comp_simplify1(3)
thf(fact_4660_verit__comp__simplify1_I3_J,axiom,
    ! [B6: rat,A5: rat] :
      ( ( ~ ( ord_less_eq_rat @ B6 @ A5 ) )
      = ( ord_less_rat @ A5 @ B6 ) ) ).

% verit_comp_simplify1(3)
thf(fact_4661_verit__comp__simplify1_I3_J,axiom,
    ! [B6: num,A5: num] :
      ( ( ~ ( ord_less_eq_num @ B6 @ A5 ) )
      = ( ord_less_num @ A5 @ B6 ) ) ).

% verit_comp_simplify1(3)
thf(fact_4662_verit__comp__simplify1_I3_J,axiom,
    ! [B6: nat,A5: nat] :
      ( ( ~ ( ord_less_eq_nat @ B6 @ A5 ) )
      = ( ord_less_nat @ A5 @ B6 ) ) ).

% verit_comp_simplify1(3)
thf(fact_4663_verit__comp__simplify1_I3_J,axiom,
    ! [B6: int,A5: int] :
      ( ( ~ ( ord_less_eq_int @ B6 @ A5 ) )
      = ( ord_less_int @ A5 @ B6 ) ) ).

% verit_comp_simplify1(3)
thf(fact_4664_leD,axiom,
    ! [Y2: real,X2: real] :
      ( ( ord_less_eq_real @ Y2 @ X2 )
     => ~ ( ord_less_real @ X2 @ Y2 ) ) ).

% leD
thf(fact_4665_leD,axiom,
    ! [Y2: set_int,X2: set_int] :
      ( ( ord_less_eq_set_int @ Y2 @ X2 )
     => ~ ( ord_less_set_int @ X2 @ Y2 ) ) ).

% leD
thf(fact_4666_leD,axiom,
    ! [Y2: rat,X2: rat] :
      ( ( ord_less_eq_rat @ Y2 @ X2 )
     => ~ ( ord_less_rat @ X2 @ Y2 ) ) ).

% leD
thf(fact_4667_leD,axiom,
    ! [Y2: num,X2: num] :
      ( ( ord_less_eq_num @ Y2 @ X2 )
     => ~ ( ord_less_num @ X2 @ Y2 ) ) ).

% leD
thf(fact_4668_leD,axiom,
    ! [Y2: nat,X2: nat] :
      ( ( ord_less_eq_nat @ Y2 @ X2 )
     => ~ ( ord_less_nat @ X2 @ Y2 ) ) ).

% leD
thf(fact_4669_leD,axiom,
    ! [Y2: int,X2: int] :
      ( ( ord_less_eq_int @ Y2 @ X2 )
     => ~ ( ord_less_int @ X2 @ Y2 ) ) ).

% leD
thf(fact_4670_leI,axiom,
    ! [X2: real,Y2: real] :
      ( ~ ( ord_less_real @ X2 @ Y2 )
     => ( ord_less_eq_real @ Y2 @ X2 ) ) ).

% leI
thf(fact_4671_leI,axiom,
    ! [X2: rat,Y2: rat] :
      ( ~ ( ord_less_rat @ X2 @ Y2 )
     => ( ord_less_eq_rat @ Y2 @ X2 ) ) ).

% leI
thf(fact_4672_leI,axiom,
    ! [X2: num,Y2: num] :
      ( ~ ( ord_less_num @ X2 @ Y2 )
     => ( ord_less_eq_num @ Y2 @ X2 ) ) ).

% leI
thf(fact_4673_leI,axiom,
    ! [X2: nat,Y2: nat] :
      ( ~ ( ord_less_nat @ X2 @ Y2 )
     => ( ord_less_eq_nat @ Y2 @ X2 ) ) ).

% leI
thf(fact_4674_leI,axiom,
    ! [X2: int,Y2: int] :
      ( ~ ( ord_less_int @ X2 @ Y2 )
     => ( ord_less_eq_int @ Y2 @ X2 ) ) ).

% leI
thf(fact_4675_nless__le,axiom,
    ! [A: real,B: real] :
      ( ( ~ ( ord_less_real @ A @ B ) )
      = ( ~ ( ord_less_eq_real @ A @ B )
        | ( A = B ) ) ) ).

% nless_le
thf(fact_4676_nless__le,axiom,
    ! [A: set_int,B: set_int] :
      ( ( ~ ( ord_less_set_int @ A @ B ) )
      = ( ~ ( ord_less_eq_set_int @ A @ B )
        | ( A = B ) ) ) ).

% nless_le
thf(fact_4677_nless__le,axiom,
    ! [A: rat,B: rat] :
      ( ( ~ ( ord_less_rat @ A @ B ) )
      = ( ~ ( ord_less_eq_rat @ A @ B )
        | ( A = B ) ) ) ).

% nless_le
thf(fact_4678_nless__le,axiom,
    ! [A: num,B: num] :
      ( ( ~ ( ord_less_num @ A @ B ) )
      = ( ~ ( ord_less_eq_num @ A @ B )
        | ( A = B ) ) ) ).

% nless_le
thf(fact_4679_nless__le,axiom,
    ! [A: nat,B: nat] :
      ( ( ~ ( ord_less_nat @ A @ B ) )
      = ( ~ ( ord_less_eq_nat @ A @ B )
        | ( A = B ) ) ) ).

% nless_le
thf(fact_4680_nless__le,axiom,
    ! [A: int,B: int] :
      ( ( ~ ( ord_less_int @ A @ B ) )
      = ( ~ ( ord_less_eq_int @ A @ B )
        | ( A = B ) ) ) ).

% nless_le
thf(fact_4681_antisym__conv1,axiom,
    ! [X2: real,Y2: real] :
      ( ~ ( ord_less_real @ X2 @ Y2 )
     => ( ( ord_less_eq_real @ X2 @ Y2 )
        = ( X2 = Y2 ) ) ) ).

% antisym_conv1
thf(fact_4682_antisym__conv1,axiom,
    ! [X2: set_int,Y2: set_int] :
      ( ~ ( ord_less_set_int @ X2 @ Y2 )
     => ( ( ord_less_eq_set_int @ X2 @ Y2 )
        = ( X2 = Y2 ) ) ) ).

% antisym_conv1
thf(fact_4683_antisym__conv1,axiom,
    ! [X2: rat,Y2: rat] :
      ( ~ ( ord_less_rat @ X2 @ Y2 )
     => ( ( ord_less_eq_rat @ X2 @ Y2 )
        = ( X2 = Y2 ) ) ) ).

% antisym_conv1
thf(fact_4684_antisym__conv1,axiom,
    ! [X2: num,Y2: num] :
      ( ~ ( ord_less_num @ X2 @ Y2 )
     => ( ( ord_less_eq_num @ X2 @ Y2 )
        = ( X2 = Y2 ) ) ) ).

% antisym_conv1
thf(fact_4685_antisym__conv1,axiom,
    ! [X2: nat,Y2: nat] :
      ( ~ ( ord_less_nat @ X2 @ Y2 )
     => ( ( ord_less_eq_nat @ X2 @ Y2 )
        = ( X2 = Y2 ) ) ) ).

% antisym_conv1
thf(fact_4686_antisym__conv1,axiom,
    ! [X2: int,Y2: int] :
      ( ~ ( ord_less_int @ X2 @ Y2 )
     => ( ( ord_less_eq_int @ X2 @ Y2 )
        = ( X2 = Y2 ) ) ) ).

% antisym_conv1
thf(fact_4687_antisym__conv2,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_eq_real @ X2 @ Y2 )
     => ( ( ~ ( ord_less_real @ X2 @ Y2 ) )
        = ( X2 = Y2 ) ) ) ).

% antisym_conv2
thf(fact_4688_antisym__conv2,axiom,
    ! [X2: set_int,Y2: set_int] :
      ( ( ord_less_eq_set_int @ X2 @ Y2 )
     => ( ( ~ ( ord_less_set_int @ X2 @ Y2 ) )
        = ( X2 = Y2 ) ) ) ).

% antisym_conv2
thf(fact_4689_antisym__conv2,axiom,
    ! [X2: rat,Y2: rat] :
      ( ( ord_less_eq_rat @ X2 @ Y2 )
     => ( ( ~ ( ord_less_rat @ X2 @ Y2 ) )
        = ( X2 = Y2 ) ) ) ).

% antisym_conv2
thf(fact_4690_antisym__conv2,axiom,
    ! [X2: num,Y2: num] :
      ( ( ord_less_eq_num @ X2 @ Y2 )
     => ( ( ~ ( ord_less_num @ X2 @ Y2 ) )
        = ( X2 = Y2 ) ) ) ).

% antisym_conv2
thf(fact_4691_antisym__conv2,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ord_less_eq_nat @ X2 @ Y2 )
     => ( ( ~ ( ord_less_nat @ X2 @ Y2 ) )
        = ( X2 = Y2 ) ) ) ).

% antisym_conv2
thf(fact_4692_antisym__conv2,axiom,
    ! [X2: int,Y2: int] :
      ( ( ord_less_eq_int @ X2 @ Y2 )
     => ( ( ~ ( ord_less_int @ X2 @ Y2 ) )
        = ( X2 = Y2 ) ) ) ).

% antisym_conv2
thf(fact_4693_dense__ge,axiom,
    ! [Z: real,Y2: real] :
      ( ! [X4: real] :
          ( ( ord_less_real @ Z @ X4 )
         => ( ord_less_eq_real @ Y2 @ X4 ) )
     => ( ord_less_eq_real @ Y2 @ Z ) ) ).

% dense_ge
thf(fact_4694_dense__ge,axiom,
    ! [Z: rat,Y2: rat] :
      ( ! [X4: rat] :
          ( ( ord_less_rat @ Z @ X4 )
         => ( ord_less_eq_rat @ Y2 @ X4 ) )
     => ( ord_less_eq_rat @ Y2 @ Z ) ) ).

% dense_ge
thf(fact_4695_dense__le,axiom,
    ! [Y2: real,Z: real] :
      ( ! [X4: real] :
          ( ( ord_less_real @ X4 @ Y2 )
         => ( ord_less_eq_real @ X4 @ Z ) )
     => ( ord_less_eq_real @ Y2 @ Z ) ) ).

% dense_le
thf(fact_4696_dense__le,axiom,
    ! [Y2: rat,Z: rat] :
      ( ! [X4: rat] :
          ( ( ord_less_rat @ X4 @ Y2 )
         => ( ord_less_eq_rat @ X4 @ Z ) )
     => ( ord_less_eq_rat @ Y2 @ Z ) ) ).

% dense_le
thf(fact_4697_less__le__not__le,axiom,
    ( ord_less_real
    = ( ^ [X: real,Y: real] :
          ( ( ord_less_eq_real @ X @ Y )
          & ~ ( ord_less_eq_real @ Y @ X ) ) ) ) ).

% less_le_not_le
thf(fact_4698_less__le__not__le,axiom,
    ( ord_less_set_int
    = ( ^ [X: set_int,Y: set_int] :
          ( ( ord_less_eq_set_int @ X @ Y )
          & ~ ( ord_less_eq_set_int @ Y @ X ) ) ) ) ).

% less_le_not_le
thf(fact_4699_less__le__not__le,axiom,
    ( ord_less_rat
    = ( ^ [X: rat,Y: rat] :
          ( ( ord_less_eq_rat @ X @ Y )
          & ~ ( ord_less_eq_rat @ Y @ X ) ) ) ) ).

% less_le_not_le
thf(fact_4700_less__le__not__le,axiom,
    ( ord_less_num
    = ( ^ [X: num,Y: num] :
          ( ( ord_less_eq_num @ X @ Y )
          & ~ ( ord_less_eq_num @ Y @ X ) ) ) ) ).

% less_le_not_le
thf(fact_4701_less__le__not__le,axiom,
    ( ord_less_nat
    = ( ^ [X: nat,Y: nat] :
          ( ( ord_less_eq_nat @ X @ Y )
          & ~ ( ord_less_eq_nat @ Y @ X ) ) ) ) ).

% less_le_not_le
thf(fact_4702_less__le__not__le,axiom,
    ( ord_less_int
    = ( ^ [X: int,Y: int] :
          ( ( ord_less_eq_int @ X @ Y )
          & ~ ( ord_less_eq_int @ Y @ X ) ) ) ) ).

% less_le_not_le
thf(fact_4703_not__le__imp__less,axiom,
    ! [Y2: real,X2: real] :
      ( ~ ( ord_less_eq_real @ Y2 @ X2 )
     => ( ord_less_real @ X2 @ Y2 ) ) ).

% not_le_imp_less
thf(fact_4704_not__le__imp__less,axiom,
    ! [Y2: rat,X2: rat] :
      ( ~ ( ord_less_eq_rat @ Y2 @ X2 )
     => ( ord_less_rat @ X2 @ Y2 ) ) ).

% not_le_imp_less
thf(fact_4705_not__le__imp__less,axiom,
    ! [Y2: num,X2: num] :
      ( ~ ( ord_less_eq_num @ Y2 @ X2 )
     => ( ord_less_num @ X2 @ Y2 ) ) ).

% not_le_imp_less
thf(fact_4706_not__le__imp__less,axiom,
    ! [Y2: nat,X2: nat] :
      ( ~ ( ord_less_eq_nat @ Y2 @ X2 )
     => ( ord_less_nat @ X2 @ Y2 ) ) ).

% not_le_imp_less
thf(fact_4707_not__le__imp__less,axiom,
    ! [Y2: int,X2: int] :
      ( ~ ( ord_less_eq_int @ Y2 @ X2 )
     => ( ord_less_int @ X2 @ Y2 ) ) ).

% not_le_imp_less
thf(fact_4708_order_Oorder__iff__strict,axiom,
    ( ord_less_eq_real
    = ( ^ [A3: real,B2: real] :
          ( ( ord_less_real @ A3 @ B2 )
          | ( A3 = B2 ) ) ) ) ).

% order.order_iff_strict
thf(fact_4709_order_Oorder__iff__strict,axiom,
    ( ord_less_eq_set_int
    = ( ^ [A3: set_int,B2: set_int] :
          ( ( ord_less_set_int @ A3 @ B2 )
          | ( A3 = B2 ) ) ) ) ).

% order.order_iff_strict
thf(fact_4710_order_Oorder__iff__strict,axiom,
    ( ord_less_eq_rat
    = ( ^ [A3: rat,B2: rat] :
          ( ( ord_less_rat @ A3 @ B2 )
          | ( A3 = B2 ) ) ) ) ).

% order.order_iff_strict
thf(fact_4711_order_Oorder__iff__strict,axiom,
    ( ord_less_eq_num
    = ( ^ [A3: num,B2: num] :
          ( ( ord_less_num @ A3 @ B2 )
          | ( A3 = B2 ) ) ) ) ).

% order.order_iff_strict
thf(fact_4712_order_Oorder__iff__strict,axiom,
    ( ord_less_eq_nat
    = ( ^ [A3: nat,B2: nat] :
          ( ( ord_less_nat @ A3 @ B2 )
          | ( A3 = B2 ) ) ) ) ).

% order.order_iff_strict
thf(fact_4713_order_Oorder__iff__strict,axiom,
    ( ord_less_eq_int
    = ( ^ [A3: int,B2: int] :
          ( ( ord_less_int @ A3 @ B2 )
          | ( A3 = B2 ) ) ) ) ).

% order.order_iff_strict
thf(fact_4714_order_Ostrict__iff__order,axiom,
    ( ord_less_real
    = ( ^ [A3: real,B2: real] :
          ( ( ord_less_eq_real @ A3 @ B2 )
          & ( A3 != B2 ) ) ) ) ).

% order.strict_iff_order
thf(fact_4715_order_Ostrict__iff__order,axiom,
    ( ord_less_set_int
    = ( ^ [A3: set_int,B2: set_int] :
          ( ( ord_less_eq_set_int @ A3 @ B2 )
          & ( A3 != B2 ) ) ) ) ).

% order.strict_iff_order
thf(fact_4716_order_Ostrict__iff__order,axiom,
    ( ord_less_rat
    = ( ^ [A3: rat,B2: rat] :
          ( ( ord_less_eq_rat @ A3 @ B2 )
          & ( A3 != B2 ) ) ) ) ).

% order.strict_iff_order
thf(fact_4717_order_Ostrict__iff__order,axiom,
    ( ord_less_num
    = ( ^ [A3: num,B2: num] :
          ( ( ord_less_eq_num @ A3 @ B2 )
          & ( A3 != B2 ) ) ) ) ).

% order.strict_iff_order
thf(fact_4718_order_Ostrict__iff__order,axiom,
    ( ord_less_nat
    = ( ^ [A3: nat,B2: nat] :
          ( ( ord_less_eq_nat @ A3 @ B2 )
          & ( A3 != B2 ) ) ) ) ).

% order.strict_iff_order
thf(fact_4719_order_Ostrict__iff__order,axiom,
    ( ord_less_int
    = ( ^ [A3: int,B2: int] :
          ( ( ord_less_eq_int @ A3 @ B2 )
          & ( A3 != B2 ) ) ) ) ).

% order.strict_iff_order
thf(fact_4720_order_Ostrict__trans1,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_real @ B @ C )
       => ( ord_less_real @ A @ C ) ) ) ).

% order.strict_trans1
thf(fact_4721_order_Ostrict__trans1,axiom,
    ! [A: set_int,B: set_int,C: set_int] :
      ( ( ord_less_eq_set_int @ A @ B )
     => ( ( ord_less_set_int @ B @ C )
       => ( ord_less_set_int @ A @ C ) ) ) ).

% order.strict_trans1
thf(fact_4722_order_Ostrict__trans1,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_rat @ B @ C )
       => ( ord_less_rat @ A @ C ) ) ) ).

% order.strict_trans1
thf(fact_4723_order_Ostrict__trans1,axiom,
    ! [A: num,B: num,C: num] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( ord_less_num @ B @ C )
       => ( ord_less_num @ A @ C ) ) ) ).

% order.strict_trans1
thf(fact_4724_order_Ostrict__trans1,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_nat @ B @ C )
       => ( ord_less_nat @ A @ C ) ) ) ).

% order.strict_trans1
thf(fact_4725_order_Ostrict__trans1,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_int @ B @ C )
       => ( ord_less_int @ A @ C ) ) ) ).

% order.strict_trans1
thf(fact_4726_order_Ostrict__trans2,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_eq_real @ B @ C )
       => ( ord_less_real @ A @ C ) ) ) ).

% order.strict_trans2
thf(fact_4727_order_Ostrict__trans2,axiom,
    ! [A: set_int,B: set_int,C: set_int] :
      ( ( ord_less_set_int @ A @ B )
     => ( ( ord_less_eq_set_int @ B @ C )
       => ( ord_less_set_int @ A @ C ) ) ) ).

% order.strict_trans2
thf(fact_4728_order_Ostrict__trans2,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_eq_rat @ B @ C )
       => ( ord_less_rat @ A @ C ) ) ) ).

% order.strict_trans2
thf(fact_4729_order_Ostrict__trans2,axiom,
    ! [A: num,B: num,C: num] :
      ( ( ord_less_num @ A @ B )
     => ( ( ord_less_eq_num @ B @ C )
       => ( ord_less_num @ A @ C ) ) ) ).

% order.strict_trans2
thf(fact_4730_order_Ostrict__trans2,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ord_less_nat @ A @ C ) ) ) ).

% order.strict_trans2
thf(fact_4731_order_Ostrict__trans2,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_eq_int @ B @ C )
       => ( ord_less_int @ A @ C ) ) ) ).

% order.strict_trans2
thf(fact_4732_order_Ostrict__iff__not,axiom,
    ( ord_less_real
    = ( ^ [A3: real,B2: real] :
          ( ( ord_less_eq_real @ A3 @ B2 )
          & ~ ( ord_less_eq_real @ B2 @ A3 ) ) ) ) ).

% order.strict_iff_not
thf(fact_4733_order_Ostrict__iff__not,axiom,
    ( ord_less_set_int
    = ( ^ [A3: set_int,B2: set_int] :
          ( ( ord_less_eq_set_int @ A3 @ B2 )
          & ~ ( ord_less_eq_set_int @ B2 @ A3 ) ) ) ) ).

% order.strict_iff_not
thf(fact_4734_order_Ostrict__iff__not,axiom,
    ( ord_less_rat
    = ( ^ [A3: rat,B2: rat] :
          ( ( ord_less_eq_rat @ A3 @ B2 )
          & ~ ( ord_less_eq_rat @ B2 @ A3 ) ) ) ) ).

% order.strict_iff_not
thf(fact_4735_order_Ostrict__iff__not,axiom,
    ( ord_less_num
    = ( ^ [A3: num,B2: num] :
          ( ( ord_less_eq_num @ A3 @ B2 )
          & ~ ( ord_less_eq_num @ B2 @ A3 ) ) ) ) ).

% order.strict_iff_not
thf(fact_4736_order_Ostrict__iff__not,axiom,
    ( ord_less_nat
    = ( ^ [A3: nat,B2: nat] :
          ( ( ord_less_eq_nat @ A3 @ B2 )
          & ~ ( ord_less_eq_nat @ B2 @ A3 ) ) ) ) ).

% order.strict_iff_not
thf(fact_4737_order_Ostrict__iff__not,axiom,
    ( ord_less_int
    = ( ^ [A3: int,B2: int] :
          ( ( ord_less_eq_int @ A3 @ B2 )
          & ~ ( ord_less_eq_int @ B2 @ A3 ) ) ) ) ).

% order.strict_iff_not
thf(fact_4738_dense__ge__bounded,axiom,
    ! [Z: real,X2: real,Y2: real] :
      ( ( ord_less_real @ Z @ X2 )
     => ( ! [W2: real] :
            ( ( ord_less_real @ Z @ W2 )
           => ( ( ord_less_real @ W2 @ X2 )
             => ( ord_less_eq_real @ Y2 @ W2 ) ) )
       => ( ord_less_eq_real @ Y2 @ Z ) ) ) ).

% dense_ge_bounded
thf(fact_4739_dense__ge__bounded,axiom,
    ! [Z: rat,X2: rat,Y2: rat] :
      ( ( ord_less_rat @ Z @ X2 )
     => ( ! [W2: rat] :
            ( ( ord_less_rat @ Z @ W2 )
           => ( ( ord_less_rat @ W2 @ X2 )
             => ( ord_less_eq_rat @ Y2 @ W2 ) ) )
       => ( ord_less_eq_rat @ Y2 @ Z ) ) ) ).

% dense_ge_bounded
thf(fact_4740_dense__le__bounded,axiom,
    ! [X2: real,Y2: real,Z: real] :
      ( ( ord_less_real @ X2 @ Y2 )
     => ( ! [W2: real] :
            ( ( ord_less_real @ X2 @ W2 )
           => ( ( ord_less_real @ W2 @ Y2 )
             => ( ord_less_eq_real @ W2 @ Z ) ) )
       => ( ord_less_eq_real @ Y2 @ Z ) ) ) ).

% dense_le_bounded
thf(fact_4741_dense__le__bounded,axiom,
    ! [X2: rat,Y2: rat,Z: rat] :
      ( ( ord_less_rat @ X2 @ Y2 )
     => ( ! [W2: rat] :
            ( ( ord_less_rat @ X2 @ W2 )
           => ( ( ord_less_rat @ W2 @ Y2 )
             => ( ord_less_eq_rat @ W2 @ Z ) ) )
       => ( ord_less_eq_rat @ Y2 @ Z ) ) ) ).

% dense_le_bounded
thf(fact_4742_dual__order_Oorder__iff__strict,axiom,
    ( ord_less_eq_real
    = ( ^ [B2: real,A3: real] :
          ( ( ord_less_real @ B2 @ A3 )
          | ( A3 = B2 ) ) ) ) ).

% dual_order.order_iff_strict
thf(fact_4743_dual__order_Oorder__iff__strict,axiom,
    ( ord_less_eq_set_int
    = ( ^ [B2: set_int,A3: set_int] :
          ( ( ord_less_set_int @ B2 @ A3 )
          | ( A3 = B2 ) ) ) ) ).

% dual_order.order_iff_strict
thf(fact_4744_dual__order_Oorder__iff__strict,axiom,
    ( ord_less_eq_rat
    = ( ^ [B2: rat,A3: rat] :
          ( ( ord_less_rat @ B2 @ A3 )
          | ( A3 = B2 ) ) ) ) ).

% dual_order.order_iff_strict
thf(fact_4745_dual__order_Oorder__iff__strict,axiom,
    ( ord_less_eq_num
    = ( ^ [B2: num,A3: num] :
          ( ( ord_less_num @ B2 @ A3 )
          | ( A3 = B2 ) ) ) ) ).

% dual_order.order_iff_strict
thf(fact_4746_dual__order_Oorder__iff__strict,axiom,
    ( ord_less_eq_nat
    = ( ^ [B2: nat,A3: nat] :
          ( ( ord_less_nat @ B2 @ A3 )
          | ( A3 = B2 ) ) ) ) ).

% dual_order.order_iff_strict
thf(fact_4747_dual__order_Oorder__iff__strict,axiom,
    ( ord_less_eq_int
    = ( ^ [B2: int,A3: int] :
          ( ( ord_less_int @ B2 @ A3 )
          | ( A3 = B2 ) ) ) ) ).

% dual_order.order_iff_strict
thf(fact_4748_dual__order_Ostrict__iff__order,axiom,
    ( ord_less_real
    = ( ^ [B2: real,A3: real] :
          ( ( ord_less_eq_real @ B2 @ A3 )
          & ( A3 != B2 ) ) ) ) ).

% dual_order.strict_iff_order
thf(fact_4749_dual__order_Ostrict__iff__order,axiom,
    ( ord_less_set_int
    = ( ^ [B2: set_int,A3: set_int] :
          ( ( ord_less_eq_set_int @ B2 @ A3 )
          & ( A3 != B2 ) ) ) ) ).

% dual_order.strict_iff_order
thf(fact_4750_dual__order_Ostrict__iff__order,axiom,
    ( ord_less_rat
    = ( ^ [B2: rat,A3: rat] :
          ( ( ord_less_eq_rat @ B2 @ A3 )
          & ( A3 != B2 ) ) ) ) ).

% dual_order.strict_iff_order
thf(fact_4751_dual__order_Ostrict__iff__order,axiom,
    ( ord_less_num
    = ( ^ [B2: num,A3: num] :
          ( ( ord_less_eq_num @ B2 @ A3 )
          & ( A3 != B2 ) ) ) ) ).

% dual_order.strict_iff_order
thf(fact_4752_dual__order_Ostrict__iff__order,axiom,
    ( ord_less_nat
    = ( ^ [B2: nat,A3: nat] :
          ( ( ord_less_eq_nat @ B2 @ A3 )
          & ( A3 != B2 ) ) ) ) ).

% dual_order.strict_iff_order
thf(fact_4753_dual__order_Ostrict__iff__order,axiom,
    ( ord_less_int
    = ( ^ [B2: int,A3: int] :
          ( ( ord_less_eq_int @ B2 @ A3 )
          & ( A3 != B2 ) ) ) ) ).

% dual_order.strict_iff_order
thf(fact_4754_dual__order_Ostrict__trans1,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_eq_real @ B @ A )
     => ( ( ord_less_real @ C @ B )
       => ( ord_less_real @ C @ A ) ) ) ).

% dual_order.strict_trans1
thf(fact_4755_dual__order_Ostrict__trans1,axiom,
    ! [B: set_int,A: set_int,C: set_int] :
      ( ( ord_less_eq_set_int @ B @ A )
     => ( ( ord_less_set_int @ C @ B )
       => ( ord_less_set_int @ C @ A ) ) ) ).

% dual_order.strict_trans1
thf(fact_4756_dual__order_Ostrict__trans1,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( ord_less_eq_rat @ B @ A )
     => ( ( ord_less_rat @ C @ B )
       => ( ord_less_rat @ C @ A ) ) ) ).

% dual_order.strict_trans1
thf(fact_4757_dual__order_Ostrict__trans1,axiom,
    ! [B: num,A: num,C: num] :
      ( ( ord_less_eq_num @ B @ A )
     => ( ( ord_less_num @ C @ B )
       => ( ord_less_num @ C @ A ) ) ) ).

% dual_order.strict_trans1
thf(fact_4758_dual__order_Ostrict__trans1,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( ord_less_nat @ C @ B )
       => ( ord_less_nat @ C @ A ) ) ) ).

% dual_order.strict_trans1
thf(fact_4759_dual__order_Ostrict__trans1,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_less_eq_int @ B @ A )
     => ( ( ord_less_int @ C @ B )
       => ( ord_less_int @ C @ A ) ) ) ).

% dual_order.strict_trans1
thf(fact_4760_dual__order_Ostrict__trans2,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_real @ B @ A )
     => ( ( ord_less_eq_real @ C @ B )
       => ( ord_less_real @ C @ A ) ) ) ).

% dual_order.strict_trans2
thf(fact_4761_dual__order_Ostrict__trans2,axiom,
    ! [B: set_int,A: set_int,C: set_int] :
      ( ( ord_less_set_int @ B @ A )
     => ( ( ord_less_eq_set_int @ C @ B )
       => ( ord_less_set_int @ C @ A ) ) ) ).

% dual_order.strict_trans2
thf(fact_4762_dual__order_Ostrict__trans2,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( ord_less_rat @ B @ A )
     => ( ( ord_less_eq_rat @ C @ B )
       => ( ord_less_rat @ C @ A ) ) ) ).

% dual_order.strict_trans2
thf(fact_4763_dual__order_Ostrict__trans2,axiom,
    ! [B: num,A: num,C: num] :
      ( ( ord_less_num @ B @ A )
     => ( ( ord_less_eq_num @ C @ B )
       => ( ord_less_num @ C @ A ) ) ) ).

% dual_order.strict_trans2
thf(fact_4764_dual__order_Ostrict__trans2,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ord_less_nat @ B @ A )
     => ( ( ord_less_eq_nat @ C @ B )
       => ( ord_less_nat @ C @ A ) ) ) ).

% dual_order.strict_trans2
thf(fact_4765_dual__order_Ostrict__trans2,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_less_int @ B @ A )
     => ( ( ord_less_eq_int @ C @ B )
       => ( ord_less_int @ C @ A ) ) ) ).

% dual_order.strict_trans2
thf(fact_4766_dual__order_Ostrict__iff__not,axiom,
    ( ord_less_real
    = ( ^ [B2: real,A3: real] :
          ( ( ord_less_eq_real @ B2 @ A3 )
          & ~ ( ord_less_eq_real @ A3 @ B2 ) ) ) ) ).

% dual_order.strict_iff_not
thf(fact_4767_dual__order_Ostrict__iff__not,axiom,
    ( ord_less_set_int
    = ( ^ [B2: set_int,A3: set_int] :
          ( ( ord_less_eq_set_int @ B2 @ A3 )
          & ~ ( ord_less_eq_set_int @ A3 @ B2 ) ) ) ) ).

% dual_order.strict_iff_not
thf(fact_4768_dual__order_Ostrict__iff__not,axiom,
    ( ord_less_rat
    = ( ^ [B2: rat,A3: rat] :
          ( ( ord_less_eq_rat @ B2 @ A3 )
          & ~ ( ord_less_eq_rat @ A3 @ B2 ) ) ) ) ).

% dual_order.strict_iff_not
thf(fact_4769_dual__order_Ostrict__iff__not,axiom,
    ( ord_less_num
    = ( ^ [B2: num,A3: num] :
          ( ( ord_less_eq_num @ B2 @ A3 )
          & ~ ( ord_less_eq_num @ A3 @ B2 ) ) ) ) ).

% dual_order.strict_iff_not
thf(fact_4770_dual__order_Ostrict__iff__not,axiom,
    ( ord_less_nat
    = ( ^ [B2: nat,A3: nat] :
          ( ( ord_less_eq_nat @ B2 @ A3 )
          & ~ ( ord_less_eq_nat @ A3 @ B2 ) ) ) ) ).

% dual_order.strict_iff_not
thf(fact_4771_dual__order_Ostrict__iff__not,axiom,
    ( ord_less_int
    = ( ^ [B2: int,A3: int] :
          ( ( ord_less_eq_int @ B2 @ A3 )
          & ~ ( ord_less_eq_int @ A3 @ B2 ) ) ) ) ).

% dual_order.strict_iff_not
thf(fact_4772_order_Ostrict__implies__order,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ( ord_less_eq_real @ A @ B ) ) ).

% order.strict_implies_order
thf(fact_4773_order_Ostrict__implies__order,axiom,
    ! [A: set_int,B: set_int] :
      ( ( ord_less_set_int @ A @ B )
     => ( ord_less_eq_set_int @ A @ B ) ) ).

% order.strict_implies_order
thf(fact_4774_order_Ostrict__implies__order,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ord_less_eq_rat @ A @ B ) ) ).

% order.strict_implies_order
thf(fact_4775_order_Ostrict__implies__order,axiom,
    ! [A: num,B: num] :
      ( ( ord_less_num @ A @ B )
     => ( ord_less_eq_num @ A @ B ) ) ).

% order.strict_implies_order
thf(fact_4776_order_Ostrict__implies__order,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ord_less_eq_nat @ A @ B ) ) ).

% order.strict_implies_order
thf(fact_4777_order_Ostrict__implies__order,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ B )
     => ( ord_less_eq_int @ A @ B ) ) ).

% order.strict_implies_order
thf(fact_4778_dual__order_Ostrict__implies__order,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_real @ B @ A )
     => ( ord_less_eq_real @ B @ A ) ) ).

% dual_order.strict_implies_order
thf(fact_4779_dual__order_Ostrict__implies__order,axiom,
    ! [B: set_int,A: set_int] :
      ( ( ord_less_set_int @ B @ A )
     => ( ord_less_eq_set_int @ B @ A ) ) ).

% dual_order.strict_implies_order
thf(fact_4780_dual__order_Ostrict__implies__order,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_rat @ B @ A )
     => ( ord_less_eq_rat @ B @ A ) ) ).

% dual_order.strict_implies_order
thf(fact_4781_dual__order_Ostrict__implies__order,axiom,
    ! [B: num,A: num] :
      ( ( ord_less_num @ B @ A )
     => ( ord_less_eq_num @ B @ A ) ) ).

% dual_order.strict_implies_order
thf(fact_4782_dual__order_Ostrict__implies__order,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ B @ A )
     => ( ord_less_eq_nat @ B @ A ) ) ).

% dual_order.strict_implies_order
thf(fact_4783_dual__order_Ostrict__implies__order,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ B @ A )
     => ( ord_less_eq_int @ B @ A ) ) ).

% dual_order.strict_implies_order
thf(fact_4784_order__le__less,axiom,
    ( ord_less_eq_real
    = ( ^ [X: real,Y: real] :
          ( ( ord_less_real @ X @ Y )
          | ( X = Y ) ) ) ) ).

% order_le_less
thf(fact_4785_order__le__less,axiom,
    ( ord_less_eq_set_int
    = ( ^ [X: set_int,Y: set_int] :
          ( ( ord_less_set_int @ X @ Y )
          | ( X = Y ) ) ) ) ).

% order_le_less
thf(fact_4786_order__le__less,axiom,
    ( ord_less_eq_rat
    = ( ^ [X: rat,Y: rat] :
          ( ( ord_less_rat @ X @ Y )
          | ( X = Y ) ) ) ) ).

% order_le_less
thf(fact_4787_order__le__less,axiom,
    ( ord_less_eq_num
    = ( ^ [X: num,Y: num] :
          ( ( ord_less_num @ X @ Y )
          | ( X = Y ) ) ) ) ).

% order_le_less
thf(fact_4788_order__le__less,axiom,
    ( ord_less_eq_nat
    = ( ^ [X: nat,Y: nat] :
          ( ( ord_less_nat @ X @ Y )
          | ( X = Y ) ) ) ) ).

% order_le_less
thf(fact_4789_order__le__less,axiom,
    ( ord_less_eq_int
    = ( ^ [X: int,Y: int] :
          ( ( ord_less_int @ X @ Y )
          | ( X = Y ) ) ) ) ).

% order_le_less
thf(fact_4790_order__less__le,axiom,
    ( ord_less_real
    = ( ^ [X: real,Y: real] :
          ( ( ord_less_eq_real @ X @ Y )
          & ( X != Y ) ) ) ) ).

% order_less_le
thf(fact_4791_order__less__le,axiom,
    ( ord_less_set_int
    = ( ^ [X: set_int,Y: set_int] :
          ( ( ord_less_eq_set_int @ X @ Y )
          & ( X != Y ) ) ) ) ).

% order_less_le
thf(fact_4792_order__less__le,axiom,
    ( ord_less_rat
    = ( ^ [X: rat,Y: rat] :
          ( ( ord_less_eq_rat @ X @ Y )
          & ( X != Y ) ) ) ) ).

% order_less_le
thf(fact_4793_order__less__le,axiom,
    ( ord_less_num
    = ( ^ [X: num,Y: num] :
          ( ( ord_less_eq_num @ X @ Y )
          & ( X != Y ) ) ) ) ).

% order_less_le
thf(fact_4794_order__less__le,axiom,
    ( ord_less_nat
    = ( ^ [X: nat,Y: nat] :
          ( ( ord_less_eq_nat @ X @ Y )
          & ( X != Y ) ) ) ) ).

% order_less_le
thf(fact_4795_order__less__le,axiom,
    ( ord_less_int
    = ( ^ [X: int,Y: int] :
          ( ( ord_less_eq_int @ X @ Y )
          & ( X != Y ) ) ) ) ).

% order_less_le
thf(fact_4796_linorder__not__le,axiom,
    ! [X2: real,Y2: real] :
      ( ( ~ ( ord_less_eq_real @ X2 @ Y2 ) )
      = ( ord_less_real @ Y2 @ X2 ) ) ).

% linorder_not_le
thf(fact_4797_linorder__not__le,axiom,
    ! [X2: rat,Y2: rat] :
      ( ( ~ ( ord_less_eq_rat @ X2 @ Y2 ) )
      = ( ord_less_rat @ Y2 @ X2 ) ) ).

% linorder_not_le
thf(fact_4798_linorder__not__le,axiom,
    ! [X2: num,Y2: num] :
      ( ( ~ ( ord_less_eq_num @ X2 @ Y2 ) )
      = ( ord_less_num @ Y2 @ X2 ) ) ).

% linorder_not_le
thf(fact_4799_linorder__not__le,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ~ ( ord_less_eq_nat @ X2 @ Y2 ) )
      = ( ord_less_nat @ Y2 @ X2 ) ) ).

% linorder_not_le
thf(fact_4800_linorder__not__le,axiom,
    ! [X2: int,Y2: int] :
      ( ( ~ ( ord_less_eq_int @ X2 @ Y2 ) )
      = ( ord_less_int @ Y2 @ X2 ) ) ).

% linorder_not_le
thf(fact_4801_linorder__not__less,axiom,
    ! [X2: real,Y2: real] :
      ( ( ~ ( ord_less_real @ X2 @ Y2 ) )
      = ( ord_less_eq_real @ Y2 @ X2 ) ) ).

% linorder_not_less
thf(fact_4802_linorder__not__less,axiom,
    ! [X2: rat,Y2: rat] :
      ( ( ~ ( ord_less_rat @ X2 @ Y2 ) )
      = ( ord_less_eq_rat @ Y2 @ X2 ) ) ).

% linorder_not_less
thf(fact_4803_linorder__not__less,axiom,
    ! [X2: num,Y2: num] :
      ( ( ~ ( ord_less_num @ X2 @ Y2 ) )
      = ( ord_less_eq_num @ Y2 @ X2 ) ) ).

% linorder_not_less
thf(fact_4804_linorder__not__less,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ~ ( ord_less_nat @ X2 @ Y2 ) )
      = ( ord_less_eq_nat @ Y2 @ X2 ) ) ).

% linorder_not_less
thf(fact_4805_linorder__not__less,axiom,
    ! [X2: int,Y2: int] :
      ( ( ~ ( ord_less_int @ X2 @ Y2 ) )
      = ( ord_less_eq_int @ Y2 @ X2 ) ) ).

% linorder_not_less
thf(fact_4806_order__less__imp__le,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_real @ X2 @ Y2 )
     => ( ord_less_eq_real @ X2 @ Y2 ) ) ).

% order_less_imp_le
thf(fact_4807_order__less__imp__le,axiom,
    ! [X2: set_int,Y2: set_int] :
      ( ( ord_less_set_int @ X2 @ Y2 )
     => ( ord_less_eq_set_int @ X2 @ Y2 ) ) ).

% order_less_imp_le
thf(fact_4808_order__less__imp__le,axiom,
    ! [X2: rat,Y2: rat] :
      ( ( ord_less_rat @ X2 @ Y2 )
     => ( ord_less_eq_rat @ X2 @ Y2 ) ) ).

% order_less_imp_le
thf(fact_4809_order__less__imp__le,axiom,
    ! [X2: num,Y2: num] :
      ( ( ord_less_num @ X2 @ Y2 )
     => ( ord_less_eq_num @ X2 @ Y2 ) ) ).

% order_less_imp_le
thf(fact_4810_order__less__imp__le,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ord_less_nat @ X2 @ Y2 )
     => ( ord_less_eq_nat @ X2 @ Y2 ) ) ).

% order_less_imp_le
thf(fact_4811_order__less__imp__le,axiom,
    ! [X2: int,Y2: int] :
      ( ( ord_less_int @ X2 @ Y2 )
     => ( ord_less_eq_int @ X2 @ Y2 ) ) ).

% order_less_imp_le
thf(fact_4812_order__le__neq__trans,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( A != B )
       => ( ord_less_real @ A @ B ) ) ) ).

% order_le_neq_trans
thf(fact_4813_order__le__neq__trans,axiom,
    ! [A: set_int,B: set_int] :
      ( ( ord_less_eq_set_int @ A @ B )
     => ( ( A != B )
       => ( ord_less_set_int @ A @ B ) ) ) ).

% order_le_neq_trans
thf(fact_4814_order__le__neq__trans,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( A != B )
       => ( ord_less_rat @ A @ B ) ) ) ).

% order_le_neq_trans
thf(fact_4815_order__le__neq__trans,axiom,
    ! [A: num,B: num] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( A != B )
       => ( ord_less_num @ A @ B ) ) ) ).

% order_le_neq_trans
thf(fact_4816_order__le__neq__trans,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( A != B )
       => ( ord_less_nat @ A @ B ) ) ) ).

% order_le_neq_trans
thf(fact_4817_order__le__neq__trans,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( A != B )
       => ( ord_less_int @ A @ B ) ) ) ).

% order_le_neq_trans
thf(fact_4818_order__neq__le__trans,axiom,
    ! [A: real,B: real] :
      ( ( A != B )
     => ( ( ord_less_eq_real @ A @ B )
       => ( ord_less_real @ A @ B ) ) ) ).

% order_neq_le_trans
thf(fact_4819_order__neq__le__trans,axiom,
    ! [A: set_int,B: set_int] :
      ( ( A != B )
     => ( ( ord_less_eq_set_int @ A @ B )
       => ( ord_less_set_int @ A @ B ) ) ) ).

% order_neq_le_trans
thf(fact_4820_order__neq__le__trans,axiom,
    ! [A: rat,B: rat] :
      ( ( A != B )
     => ( ( ord_less_eq_rat @ A @ B )
       => ( ord_less_rat @ A @ B ) ) ) ).

% order_neq_le_trans
thf(fact_4821_order__neq__le__trans,axiom,
    ! [A: num,B: num] :
      ( ( A != B )
     => ( ( ord_less_eq_num @ A @ B )
       => ( ord_less_num @ A @ B ) ) ) ).

% order_neq_le_trans
thf(fact_4822_order__neq__le__trans,axiom,
    ! [A: nat,B: nat] :
      ( ( A != B )
     => ( ( ord_less_eq_nat @ A @ B )
       => ( ord_less_nat @ A @ B ) ) ) ).

% order_neq_le_trans
thf(fact_4823_order__neq__le__trans,axiom,
    ! [A: int,B: int] :
      ( ( A != B )
     => ( ( ord_less_eq_int @ A @ B )
       => ( ord_less_int @ A @ B ) ) ) ).

% order_neq_le_trans
thf(fact_4824_order__le__less__trans,axiom,
    ! [X2: real,Y2: real,Z: real] :
      ( ( ord_less_eq_real @ X2 @ Y2 )
     => ( ( ord_less_real @ Y2 @ Z )
       => ( ord_less_real @ X2 @ Z ) ) ) ).

% order_le_less_trans
thf(fact_4825_order__le__less__trans,axiom,
    ! [X2: set_int,Y2: set_int,Z: set_int] :
      ( ( ord_less_eq_set_int @ X2 @ Y2 )
     => ( ( ord_less_set_int @ Y2 @ Z )
       => ( ord_less_set_int @ X2 @ Z ) ) ) ).

% order_le_less_trans
thf(fact_4826_order__le__less__trans,axiom,
    ! [X2: rat,Y2: rat,Z: rat] :
      ( ( ord_less_eq_rat @ X2 @ Y2 )
     => ( ( ord_less_rat @ Y2 @ Z )
       => ( ord_less_rat @ X2 @ Z ) ) ) ).

% order_le_less_trans
thf(fact_4827_order__le__less__trans,axiom,
    ! [X2: num,Y2: num,Z: num] :
      ( ( ord_less_eq_num @ X2 @ Y2 )
     => ( ( ord_less_num @ Y2 @ Z )
       => ( ord_less_num @ X2 @ Z ) ) ) ).

% order_le_less_trans
thf(fact_4828_order__le__less__trans,axiom,
    ! [X2: nat,Y2: nat,Z: nat] :
      ( ( ord_less_eq_nat @ X2 @ Y2 )
     => ( ( ord_less_nat @ Y2 @ Z )
       => ( ord_less_nat @ X2 @ Z ) ) ) ).

% order_le_less_trans
thf(fact_4829_order__le__less__trans,axiom,
    ! [X2: int,Y2: int,Z: int] :
      ( ( ord_less_eq_int @ X2 @ Y2 )
     => ( ( ord_less_int @ Y2 @ Z )
       => ( ord_less_int @ X2 @ Z ) ) ) ).

% order_le_less_trans
thf(fact_4830_order__less__le__trans,axiom,
    ! [X2: real,Y2: real,Z: real] :
      ( ( ord_less_real @ X2 @ Y2 )
     => ( ( ord_less_eq_real @ Y2 @ Z )
       => ( ord_less_real @ X2 @ Z ) ) ) ).

% order_less_le_trans
thf(fact_4831_order__less__le__trans,axiom,
    ! [X2: set_int,Y2: set_int,Z: set_int] :
      ( ( ord_less_set_int @ X2 @ Y2 )
     => ( ( ord_less_eq_set_int @ Y2 @ Z )
       => ( ord_less_set_int @ X2 @ Z ) ) ) ).

% order_less_le_trans
thf(fact_4832_order__less__le__trans,axiom,
    ! [X2: rat,Y2: rat,Z: rat] :
      ( ( ord_less_rat @ X2 @ Y2 )
     => ( ( ord_less_eq_rat @ Y2 @ Z )
       => ( ord_less_rat @ X2 @ Z ) ) ) ).

% order_less_le_trans
thf(fact_4833_order__less__le__trans,axiom,
    ! [X2: num,Y2: num,Z: num] :
      ( ( ord_less_num @ X2 @ Y2 )
     => ( ( ord_less_eq_num @ Y2 @ Z )
       => ( ord_less_num @ X2 @ Z ) ) ) ).

% order_less_le_trans
thf(fact_4834_order__less__le__trans,axiom,
    ! [X2: nat,Y2: nat,Z: nat] :
      ( ( ord_less_nat @ X2 @ Y2 )
     => ( ( ord_less_eq_nat @ Y2 @ Z )
       => ( ord_less_nat @ X2 @ Z ) ) ) ).

% order_less_le_trans
thf(fact_4835_order__less__le__trans,axiom,
    ! [X2: int,Y2: int,Z: int] :
      ( ( ord_less_int @ X2 @ Y2 )
     => ( ( ord_less_eq_int @ Y2 @ Z )
       => ( ord_less_int @ X2 @ Z ) ) ) ).

% order_less_le_trans
thf(fact_4836_order__le__less__subst1,axiom,
    ! [A: real,F: real > real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ ( F @ B ) )
     => ( ( ord_less_real @ B @ C )
       => ( ! [X4: real,Y3: real] :
              ( ( ord_less_real @ X4 @ Y3 )
             => ( ord_less_real @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_4837_order__le__less__subst1,axiom,
    ! [A: real,F: rat > real,B: rat,C: rat] :
      ( ( ord_less_eq_real @ A @ ( F @ B ) )
     => ( ( ord_less_rat @ B @ C )
       => ( ! [X4: rat,Y3: rat] :
              ( ( ord_less_rat @ X4 @ Y3 )
             => ( ord_less_real @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_4838_order__le__less__subst1,axiom,
    ! [A: real,F: num > real,B: num,C: num] :
      ( ( ord_less_eq_real @ A @ ( F @ B ) )
     => ( ( ord_less_num @ B @ C )
       => ( ! [X4: num,Y3: num] :
              ( ( ord_less_num @ X4 @ Y3 )
             => ( ord_less_real @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_4839_order__le__less__subst1,axiom,
    ! [A: real,F: nat > real,B: nat,C: nat] :
      ( ( ord_less_eq_real @ A @ ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X4: nat,Y3: nat] :
              ( ( ord_less_nat @ X4 @ Y3 )
             => ( ord_less_real @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_4840_order__le__less__subst1,axiom,
    ! [A: real,F: int > real,B: int,C: int] :
      ( ( ord_less_eq_real @ A @ ( F @ B ) )
     => ( ( ord_less_int @ B @ C )
       => ( ! [X4: int,Y3: int] :
              ( ( ord_less_int @ X4 @ Y3 )
             => ( ord_less_real @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_4841_order__le__less__subst1,axiom,
    ! [A: rat,F: real > rat,B: real,C: real] :
      ( ( ord_less_eq_rat @ A @ ( F @ B ) )
     => ( ( ord_less_real @ B @ C )
       => ( ! [X4: real,Y3: real] :
              ( ( ord_less_real @ X4 @ Y3 )
             => ( ord_less_rat @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_4842_order__le__less__subst1,axiom,
    ! [A: rat,F: rat > rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ ( F @ B ) )
     => ( ( ord_less_rat @ B @ C )
       => ( ! [X4: rat,Y3: rat] :
              ( ( ord_less_rat @ X4 @ Y3 )
             => ( ord_less_rat @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_4843_order__le__less__subst1,axiom,
    ! [A: rat,F: num > rat,B: num,C: num] :
      ( ( ord_less_eq_rat @ A @ ( F @ B ) )
     => ( ( ord_less_num @ B @ C )
       => ( ! [X4: num,Y3: num] :
              ( ( ord_less_num @ X4 @ Y3 )
             => ( ord_less_rat @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_4844_order__le__less__subst1,axiom,
    ! [A: rat,F: nat > rat,B: nat,C: nat] :
      ( ( ord_less_eq_rat @ A @ ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X4: nat,Y3: nat] :
              ( ( ord_less_nat @ X4 @ Y3 )
             => ( ord_less_rat @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_4845_order__le__less__subst1,axiom,
    ! [A: rat,F: int > rat,B: int,C: int] :
      ( ( ord_less_eq_rat @ A @ ( F @ B ) )
     => ( ( ord_less_int @ B @ C )
       => ( ! [X4: int,Y3: int] :
              ( ( ord_less_int @ X4 @ Y3 )
             => ( ord_less_rat @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_4846_order__le__less__subst2,axiom,
    ! [A: rat,B: rat,F: rat > real,C: real] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_real @ ( F @ B ) @ C )
       => ( ! [X4: rat,Y3: rat] :
              ( ( ord_less_eq_rat @ X4 @ Y3 )
             => ( ord_less_eq_real @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_4847_order__le__less__subst2,axiom,
    ! [A: rat,B: rat,F: rat > rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_rat @ ( F @ B ) @ C )
       => ( ! [X4: rat,Y3: rat] :
              ( ( ord_less_eq_rat @ X4 @ Y3 )
             => ( ord_less_eq_rat @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_rat @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_4848_order__le__less__subst2,axiom,
    ! [A: rat,B: rat,F: rat > num,C: num] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_num @ ( F @ B ) @ C )
       => ( ! [X4: rat,Y3: rat] :
              ( ( ord_less_eq_rat @ X4 @ Y3 )
             => ( ord_less_eq_num @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_num @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_4849_order__le__less__subst2,axiom,
    ! [A: rat,B: rat,F: rat > nat,C: nat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_nat @ ( F @ B ) @ C )
       => ( ! [X4: rat,Y3: rat] :
              ( ( ord_less_eq_rat @ X4 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_4850_order__le__less__subst2,axiom,
    ! [A: rat,B: rat,F: rat > int,C: int] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_int @ ( F @ B ) @ C )
       => ( ! [X4: rat,Y3: rat] :
              ( ( ord_less_eq_rat @ X4 @ Y3 )
             => ( ord_less_eq_int @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_4851_order__le__less__subst2,axiom,
    ! [A: num,B: num,F: num > real,C: real] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( ord_less_real @ ( F @ B ) @ C )
       => ( ! [X4: num,Y3: num] :
              ( ( ord_less_eq_num @ X4 @ Y3 )
             => ( ord_less_eq_real @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_4852_order__le__less__subst2,axiom,
    ! [A: num,B: num,F: num > rat,C: rat] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( ord_less_rat @ ( F @ B ) @ C )
       => ( ! [X4: num,Y3: num] :
              ( ( ord_less_eq_num @ X4 @ Y3 )
             => ( ord_less_eq_rat @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_rat @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_4853_order__le__less__subst2,axiom,
    ! [A: num,B: num,F: num > num,C: num] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( ord_less_num @ ( F @ B ) @ C )
       => ( ! [X4: num,Y3: num] :
              ( ( ord_less_eq_num @ X4 @ Y3 )
             => ( ord_less_eq_num @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_num @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_4854_order__le__less__subst2,axiom,
    ! [A: num,B: num,F: num > nat,C: nat] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( ord_less_nat @ ( F @ B ) @ C )
       => ( ! [X4: num,Y3: num] :
              ( ( ord_less_eq_num @ X4 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_4855_order__le__less__subst2,axiom,
    ! [A: num,B: num,F: num > int,C: int] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( ord_less_int @ ( F @ B ) @ C )
       => ( ! [X4: num,Y3: num] :
              ( ( ord_less_eq_num @ X4 @ Y3 )
             => ( ord_less_eq_int @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_4856_order__less__le__subst1,axiom,
    ! [A: real,F: rat > real,B: rat,C: rat] :
      ( ( ord_less_real @ A @ ( F @ B ) )
     => ( ( ord_less_eq_rat @ B @ C )
       => ( ! [X4: rat,Y3: rat] :
              ( ( ord_less_eq_rat @ X4 @ Y3 )
             => ( ord_less_eq_real @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_4857_order__less__le__subst1,axiom,
    ! [A: rat,F: rat > rat,B: rat,C: rat] :
      ( ( ord_less_rat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_rat @ B @ C )
       => ( ! [X4: rat,Y3: rat] :
              ( ( ord_less_eq_rat @ X4 @ Y3 )
             => ( ord_less_eq_rat @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_4858_order__less__le__subst1,axiom,
    ! [A: num,F: rat > num,B: rat,C: rat] :
      ( ( ord_less_num @ A @ ( F @ B ) )
     => ( ( ord_less_eq_rat @ B @ C )
       => ( ! [X4: rat,Y3: rat] :
              ( ( ord_less_eq_rat @ X4 @ Y3 )
             => ( ord_less_eq_num @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_num @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_4859_order__less__le__subst1,axiom,
    ! [A: nat,F: rat > nat,B: rat,C: rat] :
      ( ( ord_less_nat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_rat @ B @ C )
       => ( ! [X4: rat,Y3: rat] :
              ( ( ord_less_eq_rat @ X4 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_4860_order__less__le__subst1,axiom,
    ! [A: int,F: rat > int,B: rat,C: rat] :
      ( ( ord_less_int @ A @ ( F @ B ) )
     => ( ( ord_less_eq_rat @ B @ C )
       => ( ! [X4: rat,Y3: rat] :
              ( ( ord_less_eq_rat @ X4 @ Y3 )
             => ( ord_less_eq_int @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_4861_order__less__le__subst1,axiom,
    ! [A: real,F: num > real,B: num,C: num] :
      ( ( ord_less_real @ A @ ( F @ B ) )
     => ( ( ord_less_eq_num @ B @ C )
       => ( ! [X4: num,Y3: num] :
              ( ( ord_less_eq_num @ X4 @ Y3 )
             => ( ord_less_eq_real @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_4862_order__less__le__subst1,axiom,
    ! [A: rat,F: num > rat,B: num,C: num] :
      ( ( ord_less_rat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_num @ B @ C )
       => ( ! [X4: num,Y3: num] :
              ( ( ord_less_eq_num @ X4 @ Y3 )
             => ( ord_less_eq_rat @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_rat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_4863_order__less__le__subst1,axiom,
    ! [A: num,F: num > num,B: num,C: num] :
      ( ( ord_less_num @ A @ ( F @ B ) )
     => ( ( ord_less_eq_num @ B @ C )
       => ( ! [X4: num,Y3: num] :
              ( ( ord_less_eq_num @ X4 @ Y3 )
             => ( ord_less_eq_num @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_num @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_4864_order__less__le__subst1,axiom,
    ! [A: nat,F: num > nat,B: num,C: num] :
      ( ( ord_less_nat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_num @ B @ C )
       => ( ! [X4: num,Y3: num] :
              ( ( ord_less_eq_num @ X4 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_4865_order__less__le__subst1,axiom,
    ! [A: int,F: num > int,B: num,C: num] :
      ( ( ord_less_int @ A @ ( F @ B ) )
     => ( ( ord_less_eq_num @ B @ C )
       => ( ! [X4: num,Y3: num] :
              ( ( ord_less_eq_num @ X4 @ Y3 )
             => ( ord_less_eq_int @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_4866_order__less__le__subst2,axiom,
    ! [A: real,B: real,F: real > real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_eq_real @ ( F @ B ) @ C )
       => ( ! [X4: real,Y3: real] :
              ( ( ord_less_real @ X4 @ Y3 )
             => ( ord_less_real @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_4867_order__less__le__subst2,axiom,
    ! [A: rat,B: rat,F: rat > real,C: real] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_eq_real @ ( F @ B ) @ C )
       => ( ! [X4: rat,Y3: rat] :
              ( ( ord_less_rat @ X4 @ Y3 )
             => ( ord_less_real @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_4868_order__less__le__subst2,axiom,
    ! [A: num,B: num,F: num > real,C: real] :
      ( ( ord_less_num @ A @ B )
     => ( ( ord_less_eq_real @ ( F @ B ) @ C )
       => ( ! [X4: num,Y3: num] :
              ( ( ord_less_num @ X4 @ Y3 )
             => ( ord_less_real @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_4869_order__less__le__subst2,axiom,
    ! [A: nat,B: nat,F: nat > real,C: real] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_real @ ( F @ B ) @ C )
       => ( ! [X4: nat,Y3: nat] :
              ( ( ord_less_nat @ X4 @ Y3 )
             => ( ord_less_real @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_4870_order__less__le__subst2,axiom,
    ! [A: int,B: int,F: int > real,C: real] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_eq_real @ ( F @ B ) @ C )
       => ( ! [X4: int,Y3: int] :
              ( ( ord_less_int @ X4 @ Y3 )
             => ( ord_less_real @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_4871_order__less__le__subst2,axiom,
    ! [A: real,B: real,F: real > rat,C: rat] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_eq_rat @ ( F @ B ) @ C )
       => ( ! [X4: real,Y3: real] :
              ( ( ord_less_real @ X4 @ Y3 )
             => ( ord_less_rat @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_rat @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_4872_order__less__le__subst2,axiom,
    ! [A: rat,B: rat,F: rat > rat,C: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ( ord_less_eq_rat @ ( F @ B ) @ C )
       => ( ! [X4: rat,Y3: rat] :
              ( ( ord_less_rat @ X4 @ Y3 )
             => ( ord_less_rat @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_rat @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_4873_order__less__le__subst2,axiom,
    ! [A: num,B: num,F: num > rat,C: rat] :
      ( ( ord_less_num @ A @ B )
     => ( ( ord_less_eq_rat @ ( F @ B ) @ C )
       => ( ! [X4: num,Y3: num] :
              ( ( ord_less_num @ X4 @ Y3 )
             => ( ord_less_rat @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_rat @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_4874_order__less__le__subst2,axiom,
    ! [A: nat,B: nat,F: nat > rat,C: rat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_rat @ ( F @ B ) @ C )
       => ( ! [X4: nat,Y3: nat] :
              ( ( ord_less_nat @ X4 @ Y3 )
             => ( ord_less_rat @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_rat @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_4875_order__less__le__subst2,axiom,
    ! [A: int,B: int,F: int > rat,C: rat] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_eq_rat @ ( F @ B ) @ C )
       => ( ! [X4: int,Y3: int] :
              ( ( ord_less_int @ X4 @ Y3 )
             => ( ord_less_rat @ ( F @ X4 ) @ ( F @ Y3 ) ) )
         => ( ord_less_rat @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_4876_linorder__le__less__linear,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_eq_real @ X2 @ Y2 )
      | ( ord_less_real @ Y2 @ X2 ) ) ).

% linorder_le_less_linear
thf(fact_4877_linorder__le__less__linear,axiom,
    ! [X2: rat,Y2: rat] :
      ( ( ord_less_eq_rat @ X2 @ Y2 )
      | ( ord_less_rat @ Y2 @ X2 ) ) ).

% linorder_le_less_linear
thf(fact_4878_linorder__le__less__linear,axiom,
    ! [X2: num,Y2: num] :
      ( ( ord_less_eq_num @ X2 @ Y2 )
      | ( ord_less_num @ Y2 @ X2 ) ) ).

% linorder_le_less_linear
thf(fact_4879_linorder__le__less__linear,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ord_less_eq_nat @ X2 @ Y2 )
      | ( ord_less_nat @ Y2 @ X2 ) ) ).

% linorder_le_less_linear
thf(fact_4880_linorder__le__less__linear,axiom,
    ! [X2: int,Y2: int] :
      ( ( ord_less_eq_int @ X2 @ Y2 )
      | ( ord_less_int @ Y2 @ X2 ) ) ).

% linorder_le_less_linear
thf(fact_4881_order__le__imp__less__or__eq,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_eq_real @ X2 @ Y2 )
     => ( ( ord_less_real @ X2 @ Y2 )
        | ( X2 = Y2 ) ) ) ).

% order_le_imp_less_or_eq
thf(fact_4882_order__le__imp__less__or__eq,axiom,
    ! [X2: set_int,Y2: set_int] :
      ( ( ord_less_eq_set_int @ X2 @ Y2 )
     => ( ( ord_less_set_int @ X2 @ Y2 )
        | ( X2 = Y2 ) ) ) ).

% order_le_imp_less_or_eq
thf(fact_4883_order__le__imp__less__or__eq,axiom,
    ! [X2: rat,Y2: rat] :
      ( ( ord_less_eq_rat @ X2 @ Y2 )
     => ( ( ord_less_rat @ X2 @ Y2 )
        | ( X2 = Y2 ) ) ) ).

% order_le_imp_less_or_eq
thf(fact_4884_order__le__imp__less__or__eq,axiom,
    ! [X2: num,Y2: num] :
      ( ( ord_less_eq_num @ X2 @ Y2 )
     => ( ( ord_less_num @ X2 @ Y2 )
        | ( X2 = Y2 ) ) ) ).

% order_le_imp_less_or_eq
thf(fact_4885_order__le__imp__less__or__eq,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ord_less_eq_nat @ X2 @ Y2 )
     => ( ( ord_less_nat @ X2 @ Y2 )
        | ( X2 = Y2 ) ) ) ).

% order_le_imp_less_or_eq
thf(fact_4886_order__le__imp__less__or__eq,axiom,
    ! [X2: int,Y2: int] :
      ( ( ord_less_eq_int @ X2 @ Y2 )
     => ( ( ord_less_int @ X2 @ Y2 )
        | ( X2 = Y2 ) ) ) ).

% order_le_imp_less_or_eq
thf(fact_4887_bot_Oextremum__uniqueI,axiom,
    ! [A: set_real] :
      ( ( ord_less_eq_set_real @ A @ bot_bot_set_real )
     => ( A = bot_bot_set_real ) ) ).

% bot.extremum_uniqueI
thf(fact_4888_bot_Oextremum__uniqueI,axiom,
    ! [A: set_o] :
      ( ( ord_less_eq_set_o @ A @ bot_bot_set_o )
     => ( A = bot_bot_set_o ) ) ).

% bot.extremum_uniqueI
thf(fact_4889_bot_Oextremum__uniqueI,axiom,
    ! [A: set_nat] :
      ( ( ord_less_eq_set_nat @ A @ bot_bot_set_nat )
     => ( A = bot_bot_set_nat ) ) ).

% bot.extremum_uniqueI
thf(fact_4890_bot_Oextremum__uniqueI,axiom,
    ! [A: set_int] :
      ( ( ord_less_eq_set_int @ A @ bot_bot_set_int )
     => ( A = bot_bot_set_int ) ) ).

% bot.extremum_uniqueI
thf(fact_4891_bot_Oextremum__uniqueI,axiom,
    ! [A: nat] :
      ( ( ord_less_eq_nat @ A @ bot_bot_nat )
     => ( A = bot_bot_nat ) ) ).

% bot.extremum_uniqueI
thf(fact_4892_bot_Oextremum__unique,axiom,
    ! [A: set_real] :
      ( ( ord_less_eq_set_real @ A @ bot_bot_set_real )
      = ( A = bot_bot_set_real ) ) ).

% bot.extremum_unique
thf(fact_4893_bot_Oextremum__unique,axiom,
    ! [A: set_o] :
      ( ( ord_less_eq_set_o @ A @ bot_bot_set_o )
      = ( A = bot_bot_set_o ) ) ).

% bot.extremum_unique
thf(fact_4894_bot_Oextremum__unique,axiom,
    ! [A: set_nat] :
      ( ( ord_less_eq_set_nat @ A @ bot_bot_set_nat )
      = ( A = bot_bot_set_nat ) ) ).

% bot.extremum_unique
thf(fact_4895_bot_Oextremum__unique,axiom,
    ! [A: set_int] :
      ( ( ord_less_eq_set_int @ A @ bot_bot_set_int )
      = ( A = bot_bot_set_int ) ) ).

% bot.extremum_unique
thf(fact_4896_bot_Oextremum__unique,axiom,
    ! [A: nat] :
      ( ( ord_less_eq_nat @ A @ bot_bot_nat )
      = ( A = bot_bot_nat ) ) ).

% bot.extremum_unique
thf(fact_4897_bot_Oextremum,axiom,
    ! [A: set_real] : ( ord_less_eq_set_real @ bot_bot_set_real @ A ) ).

% bot.extremum
thf(fact_4898_bot_Oextremum,axiom,
    ! [A: set_o] : ( ord_less_eq_set_o @ bot_bot_set_o @ A ) ).

% bot.extremum
thf(fact_4899_bot_Oextremum,axiom,
    ! [A: set_nat] : ( ord_less_eq_set_nat @ bot_bot_set_nat @ A ) ).

% bot.extremum
thf(fact_4900_bot_Oextremum,axiom,
    ! [A: set_int] : ( ord_less_eq_set_int @ bot_bot_set_int @ A ) ).

% bot.extremum
thf(fact_4901_bot_Oextremum,axiom,
    ! [A: nat] : ( ord_less_eq_nat @ bot_bot_nat @ A ) ).

% bot.extremum
thf(fact_4902_bot_Oextremum__strict,axiom,
    ! [A: set_real] :
      ~ ( ord_less_set_real @ A @ bot_bot_set_real ) ).

% bot.extremum_strict
thf(fact_4903_bot_Oextremum__strict,axiom,
    ! [A: set_o] :
      ~ ( ord_less_set_o @ A @ bot_bot_set_o ) ).

% bot.extremum_strict
thf(fact_4904_bot_Oextremum__strict,axiom,
    ! [A: set_nat] :
      ~ ( ord_less_set_nat @ A @ bot_bot_set_nat ) ).

% bot.extremum_strict
thf(fact_4905_bot_Oextremum__strict,axiom,
    ! [A: set_int] :
      ~ ( ord_less_set_int @ A @ bot_bot_set_int ) ).

% bot.extremum_strict
thf(fact_4906_bot_Oextremum__strict,axiom,
    ! [A: nat] :
      ~ ( ord_less_nat @ A @ bot_bot_nat ) ).

% bot.extremum_strict
thf(fact_4907_bot_Onot__eq__extremum,axiom,
    ! [A: set_real] :
      ( ( A != bot_bot_set_real )
      = ( ord_less_set_real @ bot_bot_set_real @ A ) ) ).

% bot.not_eq_extremum
thf(fact_4908_bot_Onot__eq__extremum,axiom,
    ! [A: set_o] :
      ( ( A != bot_bot_set_o )
      = ( ord_less_set_o @ bot_bot_set_o @ A ) ) ).

% bot.not_eq_extremum
thf(fact_4909_bot_Onot__eq__extremum,axiom,
    ! [A: set_nat] :
      ( ( A != bot_bot_set_nat )
      = ( ord_less_set_nat @ bot_bot_set_nat @ A ) ) ).

% bot.not_eq_extremum
thf(fact_4910_bot_Onot__eq__extremum,axiom,
    ! [A: set_int] :
      ( ( A != bot_bot_set_int )
      = ( ord_less_set_int @ bot_bot_set_int @ A ) ) ).

% bot.not_eq_extremum
thf(fact_4911_bot_Onot__eq__extremum,axiom,
    ! [A: nat] :
      ( ( A != bot_bot_nat )
      = ( ord_less_nat @ bot_bot_nat @ A ) ) ).

% bot.not_eq_extremum
thf(fact_4912_verit__eq__simplify_I10_J,axiom,
    ! [X23: num] :
      ( one
     != ( bit0 @ X23 ) ) ).

% verit_eq_simplify(10)
thf(fact_4913_verit__eq__simplify_I14_J,axiom,
    ! [X23: num,X33: num] :
      ( ( bit0 @ X23 )
     != ( bit1 @ X33 ) ) ).

% verit_eq_simplify(14)
thf(fact_4914_verit__eq__simplify_I12_J,axiom,
    ! [X33: num] :
      ( one
     != ( bit1 @ X33 ) ) ).

% verit_eq_simplify(12)
thf(fact_4915_T_092_060_094sub_062m_092_060_094sub_062e_092_060_094sub_062m_092_060_094sub_062b_092_060_094sub_062e_092_060_094sub_062r_Osimps_I3_J,axiom,
    ! [V: product_prod_nat_nat,Uy: list_VEBT_VEBT,Uz: vEBT_VEBT,X2: nat] :
      ( ( vEBT_T_m_e_m_b_e_r @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V ) @ zero_zero_nat @ Uy @ Uz ) @ X2 )
      = ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ).

% T\<^sub>m\<^sub>e\<^sub>m\<^sub>b\<^sub>e\<^sub>r.simps(3)
thf(fact_4916_max__def,axiom,
    ( ord_ma741700101516333627d_enat
    = ( ^ [A3: extended_enat,B2: extended_enat] : ( if_Extended_enat @ ( ord_le2932123472753598470d_enat @ A3 @ B2 ) @ B2 @ A3 ) ) ) ).

% max_def
thf(fact_4917_max__def,axiom,
    ( ord_max_set_int
    = ( ^ [A3: set_int,B2: set_int] : ( if_set_int @ ( ord_less_eq_set_int @ A3 @ B2 ) @ B2 @ A3 ) ) ) ).

% max_def
thf(fact_4918_max__def,axiom,
    ( ord_max_rat
    = ( ^ [A3: rat,B2: rat] : ( if_rat @ ( ord_less_eq_rat @ A3 @ B2 ) @ B2 @ A3 ) ) ) ).

% max_def
thf(fact_4919_max__def,axiom,
    ( ord_max_num
    = ( ^ [A3: num,B2: num] : ( if_num @ ( ord_less_eq_num @ A3 @ B2 ) @ B2 @ A3 ) ) ) ).

% max_def
thf(fact_4920_max__def,axiom,
    ( ord_max_nat
    = ( ^ [A3: nat,B2: nat] : ( if_nat @ ( ord_less_eq_nat @ A3 @ B2 ) @ B2 @ A3 ) ) ) ).

% max_def
thf(fact_4921_max__def,axiom,
    ( ord_max_int
    = ( ^ [A3: int,B2: int] : ( if_int @ ( ord_less_eq_int @ A3 @ B2 ) @ B2 @ A3 ) ) ) ).

% max_def
thf(fact_4922_max__absorb1,axiom,
    ! [Y2: extended_enat,X2: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ Y2 @ X2 )
     => ( ( ord_ma741700101516333627d_enat @ X2 @ Y2 )
        = X2 ) ) ).

% max_absorb1
thf(fact_4923_max__absorb1,axiom,
    ! [Y2: set_int,X2: set_int] :
      ( ( ord_less_eq_set_int @ Y2 @ X2 )
     => ( ( ord_max_set_int @ X2 @ Y2 )
        = X2 ) ) ).

% max_absorb1
thf(fact_4924_max__absorb1,axiom,
    ! [Y2: rat,X2: rat] :
      ( ( ord_less_eq_rat @ Y2 @ X2 )
     => ( ( ord_max_rat @ X2 @ Y2 )
        = X2 ) ) ).

% max_absorb1
thf(fact_4925_max__absorb1,axiom,
    ! [Y2: num,X2: num] :
      ( ( ord_less_eq_num @ Y2 @ X2 )
     => ( ( ord_max_num @ X2 @ Y2 )
        = X2 ) ) ).

% max_absorb1
thf(fact_4926_max__absorb1,axiom,
    ! [Y2: nat,X2: nat] :
      ( ( ord_less_eq_nat @ Y2 @ X2 )
     => ( ( ord_max_nat @ X2 @ Y2 )
        = X2 ) ) ).

% max_absorb1
thf(fact_4927_max__absorb1,axiom,
    ! [Y2: int,X2: int] :
      ( ( ord_less_eq_int @ Y2 @ X2 )
     => ( ( ord_max_int @ X2 @ Y2 )
        = X2 ) ) ).

% max_absorb1
thf(fact_4928_max__absorb2,axiom,
    ! [X2: extended_enat,Y2: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ X2 @ Y2 )
     => ( ( ord_ma741700101516333627d_enat @ X2 @ Y2 )
        = Y2 ) ) ).

% max_absorb2
thf(fact_4929_max__absorb2,axiom,
    ! [X2: set_int,Y2: set_int] :
      ( ( ord_less_eq_set_int @ X2 @ Y2 )
     => ( ( ord_max_set_int @ X2 @ Y2 )
        = Y2 ) ) ).

% max_absorb2
thf(fact_4930_max__absorb2,axiom,
    ! [X2: rat,Y2: rat] :
      ( ( ord_less_eq_rat @ X2 @ Y2 )
     => ( ( ord_max_rat @ X2 @ Y2 )
        = Y2 ) ) ).

% max_absorb2
thf(fact_4931_max__absorb2,axiom,
    ! [X2: num,Y2: num] :
      ( ( ord_less_eq_num @ X2 @ Y2 )
     => ( ( ord_max_num @ X2 @ Y2 )
        = Y2 ) ) ).

% max_absorb2
thf(fact_4932_max__absorb2,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ord_less_eq_nat @ X2 @ Y2 )
     => ( ( ord_max_nat @ X2 @ Y2 )
        = Y2 ) ) ).

% max_absorb2
thf(fact_4933_max__absorb2,axiom,
    ! [X2: int,Y2: int] :
      ( ( ord_less_eq_int @ X2 @ Y2 )
     => ( ( ord_max_int @ X2 @ Y2 )
        = Y2 ) ) ).

% max_absorb2
thf(fact_4934_VEBT__internal_Onaive__member_Oelims_I3_J,axiom,
    ! [X2: vEBT_VEBT,Xa2: nat] :
      ( ~ ( vEBT_V5719532721284313246member @ X2 @ Xa2 )
     => ( ! [A6: $o,B7: $o] :
            ( ( X2
              = ( vEBT_Leaf @ A6 @ B7 ) )
           => ( ( ( Xa2 = zero_zero_nat )
               => A6 )
              & ( ( Xa2 != zero_zero_nat )
               => ( ( ( Xa2 = one_one_nat )
                   => B7 )
                  & ( Xa2 = one_one_nat ) ) ) ) )
       => ( ! [Uu2: option4927543243414619207at_nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT] :
              ( X2
             != ( vEBT_Node @ Uu2 @ zero_zero_nat @ Uv2 @ Uw2 ) )
         => ~ ! [Uy2: option4927543243414619207at_nat,V2: nat,TreeList3: list_VEBT_VEBT] :
                ( ? [S2: vEBT_VEBT] :
                    ( X2
                    = ( vEBT_Node @ Uy2 @ ( suc @ V2 ) @ TreeList3 @ S2 ) )
               => ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                   => ( vEBT_V5719532721284313246member @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                  & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) ) ) ) ) ).

% VEBT_internal.naive_member.elims(3)
thf(fact_4935_VEBT__internal_Onaive__member_Oelims_I2_J,axiom,
    ! [X2: vEBT_VEBT,Xa2: nat] :
      ( ( vEBT_V5719532721284313246member @ X2 @ Xa2 )
     => ( ! [A6: $o,B7: $o] :
            ( ( X2
              = ( vEBT_Leaf @ A6 @ B7 ) )
           => ~ ( ( ( Xa2 = zero_zero_nat )
                 => A6 )
                & ( ( Xa2 != zero_zero_nat )
                 => ( ( ( Xa2 = one_one_nat )
                     => B7 )
                    & ( Xa2 = one_one_nat ) ) ) ) )
       => ~ ! [Uy2: option4927543243414619207at_nat,V2: nat,TreeList3: list_VEBT_VEBT] :
              ( ? [S2: vEBT_VEBT] :
                  ( X2
                  = ( vEBT_Node @ Uy2 @ ( suc @ V2 ) @ TreeList3 @ S2 ) )
             => ~ ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                   => ( vEBT_V5719532721284313246member @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                  & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) ) ) ) ).

% VEBT_internal.naive_member.elims(2)
thf(fact_4936_VEBT__internal_Onaive__member_Oelims_I1_J,axiom,
    ! [X2: vEBT_VEBT,Xa2: nat,Y2: $o] :
      ( ( ( vEBT_V5719532721284313246member @ X2 @ Xa2 )
        = Y2 )
     => ( ! [A6: $o,B7: $o] :
            ( ( X2
              = ( vEBT_Leaf @ A6 @ B7 ) )
           => ( Y2
              = ( ~ ( ( ( Xa2 = zero_zero_nat )
                     => A6 )
                    & ( ( Xa2 != zero_zero_nat )
                     => ( ( ( Xa2 = one_one_nat )
                         => B7 )
                        & ( Xa2 = one_one_nat ) ) ) ) ) ) )
       => ( ( ? [Uu2: option4927543243414619207at_nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT] :
                ( X2
                = ( vEBT_Node @ Uu2 @ zero_zero_nat @ Uv2 @ Uw2 ) )
           => Y2 )
         => ~ ! [Uy2: option4927543243414619207at_nat,V2: nat,TreeList3: list_VEBT_VEBT] :
                ( ? [S2: vEBT_VEBT] :
                    ( X2
                    = ( vEBT_Node @ Uy2 @ ( suc @ V2 ) @ TreeList3 @ S2 ) )
               => ( Y2
                  = ( ~ ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                         => ( vEBT_V5719532721284313246member @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                        & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) ) ) ) ) ) ) ).

% VEBT_internal.naive_member.elims(1)
thf(fact_4937_divmod__digit__0_I1_J,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ B )
     => ( ( ord_less_nat @ ( modulo_modulo_nat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) @ B )
       => ( ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) )
          = ( divide_divide_nat @ A @ B ) ) ) ) ).

% divmod_digit_0(1)
thf(fact_4938_divmod__digit__0_I1_J,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ( ord_less_int @ ( modulo_modulo_int @ A @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) @ B )
       => ( ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ A @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) )
          = ( divide_divide_int @ A @ B ) ) ) ) ).

% divmod_digit_0(1)
thf(fact_4939_divmod__digit__0_I1_J,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ B )
     => ( ( ord_le6747313008572928689nteger @ ( modulo364778990260209775nteger @ A @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) @ B )
       => ( ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( divide6298287555418463151nteger @ A @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) )
          = ( divide6298287555418463151nteger @ A @ B ) ) ) ) ).

% divmod_digit_0(1)
thf(fact_4940_odd__0__le__power__imp__0__le,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) )
     => ( ord_less_eq_real @ zero_zero_real @ A ) ) ).

% odd_0_le_power_imp_0_le
thf(fact_4941_odd__0__le__power__imp__0__le,axiom,
    ! [A: rat,N: nat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ ( power_power_rat @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) )
     => ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ).

% odd_0_le_power_imp_0_le
thf(fact_4942_odd__0__le__power__imp__0__le,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) )
     => ( ord_less_eq_int @ zero_zero_int @ A ) ) ).

% odd_0_le_power_imp_0_le
thf(fact_4943_odd__power__less__zero,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ord_less_real @ ( power_power_real @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) @ zero_zero_real ) ) ).

% odd_power_less_zero
thf(fact_4944_odd__power__less__zero,axiom,
    ! [A: rat,N: nat] :
      ( ( ord_less_rat @ A @ zero_zero_rat )
     => ( ord_less_rat @ ( power_power_rat @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) @ zero_zero_rat ) ) ).

% odd_power_less_zero
thf(fact_4945_odd__power__less__zero,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_int @ A @ zero_zero_int )
     => ( ord_less_int @ ( power_power_int @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) @ zero_zero_int ) ) ).

% odd_power_less_zero
thf(fact_4946_VEBT__internal_Oexp__split__high__low_I1_J,axiom,
    ! [X2: nat,N: nat,M: nat] :
      ( ( ord_less_nat @ X2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ N @ M ) ) )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ( ord_less_nat @ zero_zero_nat @ M )
         => ( ord_less_nat @ ( vEBT_VEBT_high @ X2 @ N ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) ) ) ) ).

% VEBT_internal.exp_split_high_low(1)
thf(fact_4947_VEBT__internal_Oexp__split__high__low_I2_J,axiom,
    ! [X2: nat,N: nat,M: nat] :
      ( ( ord_less_nat @ X2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ N @ M ) ) )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ( ord_less_nat @ zero_zero_nat @ M )
         => ( ord_less_nat @ ( vEBT_VEBT_low @ X2 @ N ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ) ) ).

% VEBT_internal.exp_split_high_low(2)
thf(fact_4948_vebt__member_Oelims_I2_J,axiom,
    ! [X2: vEBT_VEBT,Xa2: nat] :
      ( ( vEBT_vebt_member @ X2 @ Xa2 )
     => ( ! [A6: $o,B7: $o] :
            ( ( X2
              = ( vEBT_Leaf @ A6 @ B7 ) )
           => ~ ( ( ( Xa2 = zero_zero_nat )
                 => A6 )
                & ( ( Xa2 != zero_zero_nat )
                 => ( ( ( Xa2 = one_one_nat )
                     => B7 )
                    & ( Xa2 = one_one_nat ) ) ) ) )
       => ~ ! [Mi2: nat,Ma2: nat,Va3: nat,TreeList3: list_VEBT_VEBT] :
              ( ? [Summary2: vEBT_VEBT] :
                  ( X2
                  = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va3 ) ) @ TreeList3 @ Summary2 ) )
             => ~ ( ( Xa2 != Mi2 )
                 => ( ( Xa2 != Ma2 )
                   => ( ~ ( ord_less_nat @ Xa2 @ Mi2 )
                      & ( ~ ( ord_less_nat @ Xa2 @ Mi2 )
                       => ( ~ ( ord_less_nat @ Ma2 @ Xa2 )
                          & ( ~ ( ord_less_nat @ Ma2 @ Xa2 )
                           => ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                               => ( vEBT_vebt_member @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                              & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) ) ) ) ) ) ) ) ) ) ).

% vebt_member.elims(2)
thf(fact_4949_T_092_060_094sub_062m_092_060_094sub_062e_092_060_094sub_062m_092_060_094sub_062b_092_060_094sub_062e_092_060_094sub_062r_Osimps_I4_J,axiom,
    ! [V: product_prod_nat_nat,Vb: list_VEBT_VEBT,Vc: vEBT_VEBT,X2: nat] :
      ( ( vEBT_T_m_e_m_b_e_r @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V ) @ ( suc @ zero_zero_nat ) @ Vb @ Vc ) @ X2 )
      = ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ).

% T\<^sub>m\<^sub>e\<^sub>m\<^sub>b\<^sub>e\<^sub>r.simps(4)
thf(fact_4950_VEBT__internal_Omembermima_Oelims_I3_J,axiom,
    ! [X2: vEBT_VEBT,Xa2: nat] :
      ( ~ ( vEBT_VEBT_membermima @ X2 @ Xa2 )
     => ( ! [Uu2: $o,Uv2: $o] :
            ( X2
           != ( vEBT_Leaf @ Uu2 @ Uv2 ) )
       => ( ! [Ux2: list_VEBT_VEBT,Uy2: vEBT_VEBT] :
              ( X2
             != ( vEBT_Node @ none_P5556105721700978146at_nat @ zero_zero_nat @ Ux2 @ Uy2 ) )
         => ( ! [Mi2: nat,Ma2: nat] :
                ( ? [Va2: list_VEBT_VEBT,Vb2: vEBT_VEBT] :
                    ( X2
                    = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ Va2 @ Vb2 ) )
               => ( ( Xa2 = Mi2 )
                  | ( Xa2 = Ma2 ) ) )
           => ( ! [Mi2: nat,Ma2: nat,V2: nat,TreeList3: list_VEBT_VEBT] :
                  ( ? [Vc2: vEBT_VEBT] :
                      ( X2
                      = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ V2 ) @ TreeList3 @ Vc2 ) )
                 => ( ( Xa2 = Mi2 )
                    | ( Xa2 = Ma2 )
                    | ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                       => ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                      & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) ) )
             => ~ ! [V2: nat,TreeList3: list_VEBT_VEBT] :
                    ( ? [Vd2: vEBT_VEBT] :
                        ( X2
                        = ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V2 ) @ TreeList3 @ Vd2 ) )
                   => ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                       => ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                      & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) ) ) ) ) ) ) ).

% VEBT_internal.membermima.elims(3)
thf(fact_4951_VEBT__internal_Omembermima_Oelims_I1_J,axiom,
    ! [X2: vEBT_VEBT,Xa2: nat,Y2: $o] :
      ( ( ( vEBT_VEBT_membermima @ X2 @ Xa2 )
        = Y2 )
     => ( ( ? [Uu2: $o,Uv2: $o] :
              ( X2
              = ( vEBT_Leaf @ Uu2 @ Uv2 ) )
         => Y2 )
       => ( ( ? [Ux2: list_VEBT_VEBT,Uy2: vEBT_VEBT] :
                ( X2
                = ( vEBT_Node @ none_P5556105721700978146at_nat @ zero_zero_nat @ Ux2 @ Uy2 ) )
           => Y2 )
         => ( ! [Mi2: nat,Ma2: nat] :
                ( ? [Va2: list_VEBT_VEBT,Vb2: vEBT_VEBT] :
                    ( X2
                    = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ Va2 @ Vb2 ) )
               => ( Y2
                  = ( ~ ( ( Xa2 = Mi2 )
                        | ( Xa2 = Ma2 ) ) ) ) )
           => ( ! [Mi2: nat,Ma2: nat,V2: nat,TreeList3: list_VEBT_VEBT] :
                  ( ? [Vc2: vEBT_VEBT] :
                      ( X2
                      = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ V2 ) @ TreeList3 @ Vc2 ) )
                 => ( Y2
                    = ( ~ ( ( Xa2 = Mi2 )
                          | ( Xa2 = Ma2 )
                          | ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                             => ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                            & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) ) ) ) )
             => ~ ! [V2: nat,TreeList3: list_VEBT_VEBT] :
                    ( ? [Vd2: vEBT_VEBT] :
                        ( X2
                        = ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V2 ) @ TreeList3 @ Vd2 ) )
                   => ( Y2
                      = ( ~ ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                             => ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                            & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) ) ) ) ) ) ) ) ) ).

% VEBT_internal.membermima.elims(1)
thf(fact_4952_max__def__raw,axiom,
    ( ord_ma741700101516333627d_enat
    = ( ^ [A3: extended_enat,B2: extended_enat] : ( if_Extended_enat @ ( ord_le2932123472753598470d_enat @ A3 @ B2 ) @ B2 @ A3 ) ) ) ).

% max_def_raw
thf(fact_4953_max__def__raw,axiom,
    ( ord_max_set_int
    = ( ^ [A3: set_int,B2: set_int] : ( if_set_int @ ( ord_less_eq_set_int @ A3 @ B2 ) @ B2 @ A3 ) ) ) ).

% max_def_raw
thf(fact_4954_max__def__raw,axiom,
    ( ord_max_rat
    = ( ^ [A3: rat,B2: rat] : ( if_rat @ ( ord_less_eq_rat @ A3 @ B2 ) @ B2 @ A3 ) ) ) ).

% max_def_raw
thf(fact_4955_max__def__raw,axiom,
    ( ord_max_num
    = ( ^ [A3: num,B2: num] : ( if_num @ ( ord_less_eq_num @ A3 @ B2 ) @ B2 @ A3 ) ) ) ).

% max_def_raw
thf(fact_4956_max__def__raw,axiom,
    ( ord_max_nat
    = ( ^ [A3: nat,B2: nat] : ( if_nat @ ( ord_less_eq_nat @ A3 @ B2 ) @ B2 @ A3 ) ) ) ).

% max_def_raw
thf(fact_4957_max__def__raw,axiom,
    ( ord_max_int
    = ( ^ [A3: int,B2: int] : ( if_int @ ( ord_less_eq_int @ A3 @ B2 ) @ B2 @ A3 ) ) ) ).

% max_def_raw
thf(fact_4958_mod__double__modulus,axiom,
    ! [M: code_integer,X2: code_integer] :
      ( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ M )
     => ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ X2 )
       => ( ( ( modulo364778990260209775nteger @ X2 @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) )
            = ( modulo364778990260209775nteger @ X2 @ M ) )
          | ( ( modulo364778990260209775nteger @ X2 @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) )
            = ( plus_p5714425477246183910nteger @ ( modulo364778990260209775nteger @ X2 @ M ) @ M ) ) ) ) ) ).

% mod_double_modulus
thf(fact_4959_mod__double__modulus,axiom,
    ! [M: nat,X2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ M )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ X2 )
       => ( ( ( modulo_modulo_nat @ X2 @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
            = ( modulo_modulo_nat @ X2 @ M ) )
          | ( ( modulo_modulo_nat @ X2 @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
            = ( plus_plus_nat @ ( modulo_modulo_nat @ X2 @ M ) @ M ) ) ) ) ) ).

% mod_double_modulus
thf(fact_4960_mod__double__modulus,axiom,
    ! [M: int,X2: int] :
      ( ( ord_less_int @ zero_zero_int @ M )
     => ( ( ord_less_eq_int @ zero_zero_int @ X2 )
       => ( ( ( modulo_modulo_int @ X2 @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) )
            = ( modulo_modulo_int @ X2 @ M ) )
          | ( ( modulo_modulo_int @ X2 @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) )
            = ( plus_plus_int @ ( modulo_modulo_int @ X2 @ M ) @ M ) ) ) ) ) ).

% mod_double_modulus
thf(fact_4961_divmod__digit__1_I2_J,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A )
     => ( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ B )
       => ( ( ord_le3102999989581377725nteger @ B @ ( modulo364778990260209775nteger @ A @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) )
         => ( ( minus_8373710615458151222nteger @ ( modulo364778990260209775nteger @ A @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) @ B )
            = ( modulo364778990260209775nteger @ A @ B ) ) ) ) ) ).

% divmod_digit_1(2)
thf(fact_4962_divmod__digit__1_I2_J,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ B )
       => ( ( ord_less_eq_nat @ B @ ( modulo_modulo_nat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) )
         => ( ( minus_minus_nat @ ( modulo_modulo_nat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) @ B )
            = ( modulo_modulo_nat @ A @ B ) ) ) ) ) ).

% divmod_digit_1(2)
thf(fact_4963_divmod__digit__1_I2_J,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ zero_zero_int @ B )
       => ( ( ord_less_eq_int @ B @ ( modulo_modulo_int @ A @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) )
         => ( ( minus_minus_int @ ( modulo_modulo_int @ A @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) @ B )
            = ( modulo_modulo_int @ A @ B ) ) ) ) ) ).

% divmod_digit_1(2)
thf(fact_4964_vebt__member_Oelims_I3_J,axiom,
    ! [X2: vEBT_VEBT,Xa2: nat] :
      ( ~ ( vEBT_vebt_member @ X2 @ Xa2 )
     => ( ! [A6: $o,B7: $o] :
            ( ( X2
              = ( vEBT_Leaf @ A6 @ B7 ) )
           => ( ( ( Xa2 = zero_zero_nat )
               => A6 )
              & ( ( Xa2 != zero_zero_nat )
               => ( ( ( Xa2 = one_one_nat )
                   => B7 )
                  & ( Xa2 = one_one_nat ) ) ) ) )
       => ( ! [Uu2: nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT] :
              ( X2
             != ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu2 @ Uv2 @ Uw2 ) )
         => ( ! [V2: product_prod_nat_nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT] :
                ( X2
               != ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ zero_zero_nat @ Uy2 @ Uz2 ) )
           => ( ! [V2: product_prod_nat_nat,Vb2: list_VEBT_VEBT,Vc2: vEBT_VEBT] :
                  ( X2
                 != ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ ( suc @ zero_zero_nat ) @ Vb2 @ Vc2 ) )
             => ~ ! [Mi2: nat,Ma2: nat,Va3: nat,TreeList3: list_VEBT_VEBT] :
                    ( ? [Summary2: vEBT_VEBT] :
                        ( X2
                        = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va3 ) ) @ TreeList3 @ Summary2 ) )
                   => ( ( Xa2 != Mi2 )
                     => ( ( Xa2 != Ma2 )
                       => ( ~ ( ord_less_nat @ Xa2 @ Mi2 )
                          & ( ~ ( ord_less_nat @ Xa2 @ Mi2 )
                           => ( ~ ( ord_less_nat @ Ma2 @ Xa2 )
                              & ( ~ ( ord_less_nat @ Ma2 @ Xa2 )
                               => ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                                   => ( vEBT_vebt_member @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                  & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).

% vebt_member.elims(3)
thf(fact_4965_vebt__member_Oelims_I1_J,axiom,
    ! [X2: vEBT_VEBT,Xa2: nat,Y2: $o] :
      ( ( ( vEBT_vebt_member @ X2 @ Xa2 )
        = Y2 )
     => ( ! [A6: $o,B7: $o] :
            ( ( X2
              = ( vEBT_Leaf @ A6 @ B7 ) )
           => ( Y2
              = ( ~ ( ( ( Xa2 = zero_zero_nat )
                     => A6 )
                    & ( ( Xa2 != zero_zero_nat )
                     => ( ( ( Xa2 = one_one_nat )
                         => B7 )
                        & ( Xa2 = one_one_nat ) ) ) ) ) ) )
       => ( ( ? [Uu2: nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT] :
                ( X2
                = ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu2 @ Uv2 @ Uw2 ) )
           => Y2 )
         => ( ( ? [V2: product_prod_nat_nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT] :
                  ( X2
                  = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ zero_zero_nat @ Uy2 @ Uz2 ) )
             => Y2 )
           => ( ( ? [V2: product_prod_nat_nat,Vb2: list_VEBT_VEBT,Vc2: vEBT_VEBT] :
                    ( X2
                    = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ ( suc @ zero_zero_nat ) @ Vb2 @ Vc2 ) )
               => Y2 )
             => ~ ! [Mi2: nat,Ma2: nat,Va3: nat,TreeList3: list_VEBT_VEBT] :
                    ( ? [Summary2: vEBT_VEBT] :
                        ( X2
                        = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va3 ) ) @ TreeList3 @ Summary2 ) )
                   => ( Y2
                      = ( ~ ( ( Xa2 != Mi2 )
                           => ( ( Xa2 != Ma2 )
                             => ( ~ ( ord_less_nat @ Xa2 @ Mi2 )
                                & ( ~ ( ord_less_nat @ Xa2 @ Mi2 )
                                 => ( ~ ( ord_less_nat @ Ma2 @ Xa2 )
                                    & ( ~ ( ord_less_nat @ Ma2 @ Xa2 )
                                     => ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                                         => ( vEBT_vebt_member @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                        & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).

% vebt_member.elims(1)
thf(fact_4966_arith__geo__mean,axiom,
    ! [U: real,X2: real,Y2: real] :
      ( ( ( power_power_real @ U @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( times_times_real @ X2 @ Y2 ) )
     => ( ( ord_less_eq_real @ zero_zero_real @ X2 )
       => ( ( ord_less_eq_real @ zero_zero_real @ Y2 )
         => ( ord_less_eq_real @ U @ ( divide_divide_real @ ( plus_plus_real @ X2 @ Y2 ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ).

% arith_geo_mean
thf(fact_4967_arith__geo__mean,axiom,
    ! [U: rat,X2: rat,Y2: rat] :
      ( ( ( power_power_rat @ U @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( times_times_rat @ X2 @ Y2 ) )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ X2 )
       => ( ( ord_less_eq_rat @ zero_zero_rat @ Y2 )
         => ( ord_less_eq_rat @ U @ ( divide_divide_rat @ ( plus_plus_rat @ X2 @ Y2 ) @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% arith_geo_mean
thf(fact_4968_T_092_060_094sub_062m_092_060_094sub_062e_092_060_094sub_062m_092_060_094sub_062b_092_060_094sub_062e_092_060_094sub_062r_Oelims,axiom,
    ! [X2: vEBT_VEBT,Xa2: nat,Y2: nat] :
      ( ( ( vEBT_T_m_e_m_b_e_r @ X2 @ Xa2 )
        = Y2 )
     => ( ( ? [A6: $o,B7: $o] :
              ( X2
              = ( vEBT_Leaf @ A6 @ B7 ) )
         => ( Y2
           != ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( if_nat @ ( Xa2 = zero_zero_nat ) @ one_one_nat @ ( plus_plus_nat @ one_one_nat @ one_one_nat ) ) ) ) )
       => ( ( ? [Uu2: nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT] :
                ( X2
                = ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu2 @ Uv2 @ Uw2 ) )
           => ( Y2
             != ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
         => ( ( ? [V2: product_prod_nat_nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT] :
                  ( X2
                  = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ zero_zero_nat @ Uy2 @ Uz2 ) )
             => ( Y2
               != ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
           => ( ( ? [V2: product_prod_nat_nat,Vb2: list_VEBT_VEBT,Vc2: vEBT_VEBT] :
                    ( X2
                    = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ ( suc @ zero_zero_nat ) @ Vb2 @ Vc2 ) )
               => ( Y2
                 != ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
             => ~ ! [Mi2: nat,Ma2: nat,Va3: nat,TreeList3: list_VEBT_VEBT] :
                    ( ? [Summary2: vEBT_VEBT] :
                        ( X2
                        = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va3 ) ) @ TreeList3 @ Summary2 ) )
                   => ( Y2
                     != ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( if_nat @ ( Xa2 = Mi2 ) @ one_one_nat @ ( plus_plus_nat @ one_one_nat @ ( if_nat @ ( Xa2 = Ma2 ) @ one_one_nat @ ( plus_plus_nat @ one_one_nat @ ( if_nat @ ( ord_less_nat @ Xa2 @ Mi2 ) @ one_one_nat @ ( plus_plus_nat @ one_one_nat @ ( if_nat @ ( ord_less_nat @ Ma2 @ Xa2 ) @ one_one_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ ( bit0 @ ( bit0 @ one ) ) ) ) @ ( if_nat @ ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) @ ( plus_plus_nat @ one_one_nat @ ( vEBT_T_m_e_m_b_e_r @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ one_one_nat ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).

% T\<^sub>m\<^sub>e\<^sub>m\<^sub>b\<^sub>e\<^sub>r.elims
thf(fact_4969_invar__vebt_Ocases,axiom,
    ! [A1: vEBT_VEBT,A22: nat] :
      ( ( vEBT_invar_vebt @ A1 @ A22 )
     => ( ( ? [A6: $o,B7: $o] :
              ( A1
              = ( vEBT_Leaf @ A6 @ B7 ) )
         => ( A22
           != ( suc @ zero_zero_nat ) ) )
       => ( ! [TreeList3: list_VEBT_VEBT,N3: nat,Summary2: vEBT_VEBT,M4: nat,Deg2: nat] :
              ( ( A1
                = ( vEBT_Node @ none_P5556105721700978146at_nat @ Deg2 @ TreeList3 @ Summary2 ) )
             => ( ( A22 = Deg2 )
               => ( ! [X3: vEBT_VEBT] :
                      ( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
                     => ( vEBT_invar_vebt @ X3 @ N3 ) )
                 => ( ( vEBT_invar_vebt @ Summary2 @ M4 )
                   => ( ( ( size_s6755466524823107622T_VEBT @ TreeList3 )
                        = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M4 ) )
                     => ( ( M4 = N3 )
                       => ( ( Deg2
                            = ( plus_plus_nat @ N3 @ M4 ) )
                         => ( ~ ? [X_1: nat] : ( vEBT_V8194947554948674370ptions @ Summary2 @ X_1 )
                           => ~ ! [X3: vEBT_VEBT] :
                                  ( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
                                 => ~ ? [X_1: nat] : ( vEBT_V8194947554948674370ptions @ X3 @ X_1 ) ) ) ) ) ) ) ) ) )
         => ( ! [TreeList3: list_VEBT_VEBT,N3: nat,Summary2: vEBT_VEBT,M4: nat,Deg2: nat] :
                ( ( A1
                  = ( vEBT_Node @ none_P5556105721700978146at_nat @ Deg2 @ TreeList3 @ Summary2 ) )
               => ( ( A22 = Deg2 )
                 => ( ! [X3: vEBT_VEBT] :
                        ( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
                       => ( vEBT_invar_vebt @ X3 @ N3 ) )
                   => ( ( vEBT_invar_vebt @ Summary2 @ M4 )
                     => ( ( ( size_s6755466524823107622T_VEBT @ TreeList3 )
                          = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M4 ) )
                       => ( ( M4
                            = ( suc @ N3 ) )
                         => ( ( Deg2
                              = ( plus_plus_nat @ N3 @ M4 ) )
                           => ( ~ ? [X_1: nat] : ( vEBT_V8194947554948674370ptions @ Summary2 @ X_1 )
                             => ~ ! [X3: vEBT_VEBT] :
                                    ( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
                                   => ~ ? [X_1: nat] : ( vEBT_V8194947554948674370ptions @ X3 @ X_1 ) ) ) ) ) ) ) ) ) )
           => ( ! [TreeList3: list_VEBT_VEBT,N3: nat,Summary2: vEBT_VEBT,M4: nat,Deg2: nat,Mi2: nat,Ma2: nat] :
                  ( ( A1
                    = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ Deg2 @ TreeList3 @ Summary2 ) )
                 => ( ( A22 = Deg2 )
                   => ( ! [X3: vEBT_VEBT] :
                          ( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
                         => ( vEBT_invar_vebt @ X3 @ N3 ) )
                     => ( ( vEBT_invar_vebt @ Summary2 @ M4 )
                       => ( ( ( size_s6755466524823107622T_VEBT @ TreeList3 )
                            = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M4 ) )
                         => ( ( M4 = N3 )
                           => ( ( Deg2
                                = ( plus_plus_nat @ N3 @ M4 ) )
                             => ( ! [I2: nat] :
                                    ( ( ord_less_nat @ I2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M4 ) )
                                   => ( ( ? [X5: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList3 @ I2 ) @ X5 ) )
                                      = ( vEBT_V8194947554948674370ptions @ Summary2 @ I2 ) ) )
                               => ( ( ( Mi2 = Ma2 )
                                   => ! [X3: vEBT_VEBT] :
                                        ( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
                                       => ~ ? [X_1: nat] : ( vEBT_V8194947554948674370ptions @ X3 @ X_1 ) ) )
                                 => ( ( ord_less_eq_nat @ Mi2 @ Ma2 )
                                   => ( ( ord_less_nat @ Ma2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
                                     => ~ ( ( Mi2 != Ma2 )
                                         => ! [I2: nat] :
                                              ( ( ord_less_nat @ I2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M4 ) )
                                             => ( ( ( ( vEBT_VEBT_high @ Ma2 @ N3 )
                                                    = I2 )
                                                 => ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList3 @ I2 ) @ ( vEBT_VEBT_low @ Ma2 @ N3 ) ) )
                                                & ! [X3: nat] :
                                                    ( ( ( ( vEBT_VEBT_high @ X3 @ N3 )
                                                        = I2 )
                                                      & ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList3 @ I2 ) @ ( vEBT_VEBT_low @ X3 @ N3 ) ) )
                                                   => ( ( ord_less_nat @ Mi2 @ X3 )
                                                      & ( ord_less_eq_nat @ X3 @ Ma2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) )
             => ~ ! [TreeList3: list_VEBT_VEBT,N3: nat,Summary2: vEBT_VEBT,M4: nat,Deg2: nat,Mi2: nat,Ma2: nat] :
                    ( ( A1
                      = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ Deg2 @ TreeList3 @ Summary2 ) )
                   => ( ( A22 = Deg2 )
                     => ( ! [X3: vEBT_VEBT] :
                            ( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
                           => ( vEBT_invar_vebt @ X3 @ N3 ) )
                       => ( ( vEBT_invar_vebt @ Summary2 @ M4 )
                         => ( ( ( size_s6755466524823107622T_VEBT @ TreeList3 )
                              = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M4 ) )
                           => ( ( M4
                                = ( suc @ N3 ) )
                             => ( ( Deg2
                                  = ( plus_plus_nat @ N3 @ M4 ) )
                               => ( ! [I2: nat] :
                                      ( ( ord_less_nat @ I2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M4 ) )
                                     => ( ( ? [X5: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList3 @ I2 ) @ X5 ) )
                                        = ( vEBT_V8194947554948674370ptions @ Summary2 @ I2 ) ) )
                                 => ( ( ( Mi2 = Ma2 )
                                     => ! [X3: vEBT_VEBT] :
                                          ( ( member_VEBT_VEBT @ X3 @ ( set_VEBT_VEBT2 @ TreeList3 ) )
                                         => ~ ? [X_1: nat] : ( vEBT_V8194947554948674370ptions @ X3 @ X_1 ) ) )
                                   => ( ( ord_less_eq_nat @ Mi2 @ Ma2 )
                                     => ( ( ord_less_nat @ Ma2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Deg2 ) )
                                       => ~ ( ( Mi2 != Ma2 )
                                           => ! [I2: nat] :
                                                ( ( ord_less_nat @ I2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M4 ) )
                                               => ( ( ( ( vEBT_VEBT_high @ Ma2 @ N3 )
                                                      = I2 )
                                                   => ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList3 @ I2 ) @ ( vEBT_VEBT_low @ Ma2 @ N3 ) ) )
                                                  & ! [X3: nat] :
                                                      ( ( ( ( vEBT_VEBT_high @ X3 @ N3 )
                                                          = I2 )
                                                        & ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList3 @ I2 ) @ ( vEBT_VEBT_low @ X3 @ N3 ) ) )
                                                     => ( ( ord_less_nat @ Mi2 @ X3 )
                                                        & ( ord_less_eq_nat @ X3 @ Ma2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).

% invar_vebt.cases
thf(fact_4970_invar__vebt_Osimps,axiom,
    ( vEBT_invar_vebt
    = ( ^ [A12: vEBT_VEBT,A23: nat] :
          ( ( ? [A3: $o,B2: $o] :
                ( A12
                = ( vEBT_Leaf @ A3 @ B2 ) )
            & ( A23
              = ( suc @ zero_zero_nat ) ) )
          | ? [TreeList2: list_VEBT_VEBT,N2: nat,Summary3: vEBT_VEBT] :
              ( ( A12
                = ( vEBT_Node @ none_P5556105721700978146at_nat @ A23 @ TreeList2 @ Summary3 ) )
              & ! [X: vEBT_VEBT] :
                  ( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ TreeList2 ) )
                 => ( vEBT_invar_vebt @ X @ N2 ) )
              & ( vEBT_invar_vebt @ Summary3 @ N2 )
              & ( ( size_s6755466524823107622T_VEBT @ TreeList2 )
                = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
              & ( A23
                = ( plus_plus_nat @ N2 @ N2 ) )
              & ~ ? [X5: nat] : ( vEBT_V8194947554948674370ptions @ Summary3 @ X5 )
              & ! [X: vEBT_VEBT] :
                  ( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ TreeList2 ) )
                 => ~ ? [X5: nat] : ( vEBT_V8194947554948674370ptions @ X @ X5 ) ) )
          | ? [TreeList2: list_VEBT_VEBT,N2: nat,Summary3: vEBT_VEBT] :
              ( ( A12
                = ( vEBT_Node @ none_P5556105721700978146at_nat @ A23 @ TreeList2 @ Summary3 ) )
              & ! [X: vEBT_VEBT] :
                  ( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ TreeList2 ) )
                 => ( vEBT_invar_vebt @ X @ N2 ) )
              & ( vEBT_invar_vebt @ Summary3 @ ( suc @ N2 ) )
              & ( ( size_s6755466524823107622T_VEBT @ TreeList2 )
                = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ N2 ) ) )
              & ( A23
                = ( plus_plus_nat @ N2 @ ( suc @ N2 ) ) )
              & ~ ? [X5: nat] : ( vEBT_V8194947554948674370ptions @ Summary3 @ X5 )
              & ! [X: vEBT_VEBT] :
                  ( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ TreeList2 ) )
                 => ~ ? [X5: nat] : ( vEBT_V8194947554948674370ptions @ X @ X5 ) ) )
          | ? [TreeList2: list_VEBT_VEBT,N2: nat,Summary3: vEBT_VEBT,Mi3: nat,Ma3: nat] :
              ( ( A12
                = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi3 @ Ma3 ) ) @ A23 @ TreeList2 @ Summary3 ) )
              & ! [X: vEBT_VEBT] :
                  ( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ TreeList2 ) )
                 => ( vEBT_invar_vebt @ X @ N2 ) )
              & ( vEBT_invar_vebt @ Summary3 @ N2 )
              & ( ( size_s6755466524823107622T_VEBT @ TreeList2 )
                = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
              & ( A23
                = ( plus_plus_nat @ N2 @ N2 ) )
              & ! [I4: nat] :
                  ( ( ord_less_nat @ I4 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
                 => ( ( ? [X5: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList2 @ I4 ) @ X5 ) )
                    = ( vEBT_V8194947554948674370ptions @ Summary3 @ I4 ) ) )
              & ( ( Mi3 = Ma3 )
               => ! [X: vEBT_VEBT] :
                    ( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ TreeList2 ) )
                   => ~ ? [X5: nat] : ( vEBT_V8194947554948674370ptions @ X @ X5 ) ) )
              & ( ord_less_eq_nat @ Mi3 @ Ma3 )
              & ( ord_less_nat @ Ma3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A23 ) )
              & ( ( Mi3 != Ma3 )
               => ! [I4: nat] :
                    ( ( ord_less_nat @ I4 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) )
                   => ( ( ( ( vEBT_VEBT_high @ Ma3 @ N2 )
                          = I4 )
                       => ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList2 @ I4 ) @ ( vEBT_VEBT_low @ Ma3 @ N2 ) ) )
                      & ! [X: nat] :
                          ( ( ( ( vEBT_VEBT_high @ X @ N2 )
                              = I4 )
                            & ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList2 @ I4 ) @ ( vEBT_VEBT_low @ X @ N2 ) ) )
                         => ( ( ord_less_nat @ Mi3 @ X )
                            & ( ord_less_eq_nat @ X @ Ma3 ) ) ) ) ) ) )
          | ? [TreeList2: list_VEBT_VEBT,N2: nat,Summary3: vEBT_VEBT,Mi3: nat,Ma3: nat] :
              ( ( A12
                = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi3 @ Ma3 ) ) @ A23 @ TreeList2 @ Summary3 ) )
              & ! [X: vEBT_VEBT] :
                  ( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ TreeList2 ) )
                 => ( vEBT_invar_vebt @ X @ N2 ) )
              & ( vEBT_invar_vebt @ Summary3 @ ( suc @ N2 ) )
              & ( ( size_s6755466524823107622T_VEBT @ TreeList2 )
                = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ N2 ) ) )
              & ( A23
                = ( plus_plus_nat @ N2 @ ( suc @ N2 ) ) )
              & ! [I4: nat] :
                  ( ( ord_less_nat @ I4 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ N2 ) ) )
                 => ( ( ? [X5: nat] : ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList2 @ I4 ) @ X5 ) )
                    = ( vEBT_V8194947554948674370ptions @ Summary3 @ I4 ) ) )
              & ( ( Mi3 = Ma3 )
               => ! [X: vEBT_VEBT] :
                    ( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ TreeList2 ) )
                   => ~ ? [X5: nat] : ( vEBT_V8194947554948674370ptions @ X @ X5 ) ) )
              & ( ord_less_eq_nat @ Mi3 @ Ma3 )
              & ( ord_less_nat @ Ma3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A23 ) )
              & ( ( Mi3 != Ma3 )
               => ! [I4: nat] :
                    ( ( ord_less_nat @ I4 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ N2 ) ) )
                   => ( ( ( ( vEBT_VEBT_high @ Ma3 @ N2 )
                          = I4 )
                       => ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList2 @ I4 ) @ ( vEBT_VEBT_low @ Ma3 @ N2 ) ) )
                      & ! [X: nat] :
                          ( ( ( ( vEBT_VEBT_high @ X @ N2 )
                              = I4 )
                            & ( vEBT_V8194947554948674370ptions @ ( nth_VEBT_VEBT @ TreeList2 @ I4 ) @ ( vEBT_VEBT_low @ X @ N2 ) ) )
                         => ( ( ord_less_nat @ Mi3 @ X )
                            & ( ord_less_eq_nat @ X @ Ma3 ) ) ) ) ) ) ) ) ) ) ).

% invar_vebt.simps
thf(fact_4971_divmod__digit__1_I1_J,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A )
     => ( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ B )
       => ( ( ord_le3102999989581377725nteger @ B @ ( modulo364778990260209775nteger @ A @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) )
         => ( ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( divide6298287555418463151nteger @ A @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) ) @ one_one_Code_integer )
            = ( divide6298287555418463151nteger @ A @ B ) ) ) ) ) ).

% divmod_digit_1(1)
thf(fact_4972_divmod__digit__1_I1_J,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ B )
       => ( ( ord_less_eq_nat @ B @ ( modulo_modulo_nat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) )
         => ( ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) ) @ one_one_nat )
            = ( divide_divide_nat @ A @ B ) ) ) ) ) ).

% divmod_digit_1(1)
thf(fact_4973_divmod__digit__1_I1_J,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ zero_zero_int @ B )
       => ( ( ord_less_eq_int @ B @ ( modulo_modulo_int @ A @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) )
         => ( ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ A @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) ) @ one_one_int )
            = ( divide_divide_int @ A @ B ) ) ) ) ) ).

% divmod_digit_1(1)
thf(fact_4974_vebt__insert_Oelims,axiom,
    ! [X2: vEBT_VEBT,Xa2: nat,Y2: vEBT_VEBT] :
      ( ( ( vEBT_vebt_insert @ X2 @ Xa2 )
        = Y2 )
     => ( ! [A6: $o,B7: $o] :
            ( ( X2
              = ( vEBT_Leaf @ A6 @ B7 ) )
           => ~ ( ( ( Xa2 = zero_zero_nat )
                 => ( Y2
                    = ( vEBT_Leaf @ $true @ B7 ) ) )
                & ( ( Xa2 != zero_zero_nat )
                 => ( ( ( Xa2 = one_one_nat )
                     => ( Y2
                        = ( vEBT_Leaf @ A6 @ $true ) ) )
                    & ( ( Xa2 != one_one_nat )
                     => ( Y2
                        = ( vEBT_Leaf @ A6 @ B7 ) ) ) ) ) ) )
       => ( ! [Info2: option4927543243414619207at_nat,Ts: list_VEBT_VEBT,S2: vEBT_VEBT] :
              ( ( X2
                = ( vEBT_Node @ Info2 @ zero_zero_nat @ Ts @ S2 ) )
             => ( Y2
               != ( vEBT_Node @ Info2 @ zero_zero_nat @ Ts @ S2 ) ) )
         => ( ! [Info2: option4927543243414619207at_nat,Ts: list_VEBT_VEBT,S2: vEBT_VEBT] :
                ( ( X2
                  = ( vEBT_Node @ Info2 @ ( suc @ zero_zero_nat ) @ Ts @ S2 ) )
               => ( Y2
                 != ( vEBT_Node @ Info2 @ ( suc @ zero_zero_nat ) @ Ts @ S2 ) ) )
           => ( ! [V2: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
                  ( ( X2
                    = ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ V2 ) ) @ TreeList3 @ Summary2 ) )
                 => ( Y2
                   != ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Xa2 @ Xa2 ) ) @ ( suc @ ( suc @ V2 ) ) @ TreeList3 @ Summary2 ) ) )
             => ~ ! [Mi2: nat,Ma2: nat,Va3: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
                    ( ( X2
                      = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va3 ) ) @ TreeList3 @ Summary2 ) )
                   => ( Y2
                     != ( if_VEBT_VEBT
                        @ ( ( ord_less_nat @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa2 @ Mi2 ) @ Mi2 @ Xa2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                          & ~ ( ( Xa2 = Mi2 )
                              | ( Xa2 = Ma2 ) ) )
                        @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ ( if_nat @ ( ord_less_nat @ Xa2 @ Mi2 ) @ Xa2 @ Mi2 ) @ ( ord_max_nat @ ( if_nat @ ( ord_less_nat @ Xa2 @ Mi2 ) @ Mi2 @ Xa2 ) @ Ma2 ) ) ) @ ( suc @ ( suc @ Va3 ) ) @ ( list_u1324408373059187874T_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa2 @ Mi2 ) @ Mi2 @ Xa2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_insert @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa2 @ Mi2 ) @ Mi2 @ Xa2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( ord_less_nat @ Xa2 @ Mi2 ) @ Mi2 @ Xa2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( if_VEBT_VEBT @ ( vEBT_VEBT_minNull @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa2 @ Mi2 ) @ Mi2 @ Xa2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_insert @ Summary2 @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa2 @ Mi2 ) @ Mi2 @ Xa2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ Summary2 ) )
                        @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va3 ) ) @ TreeList3 @ Summary2 ) ) ) ) ) ) ) ) ) ).

% vebt_insert.elims
thf(fact_4975_vebt__pred_Oelims,axiom,
    ! [X2: vEBT_VEBT,Xa2: nat,Y2: option_nat] :
      ( ( ( vEBT_vebt_pred @ X2 @ Xa2 )
        = Y2 )
     => ( ( ? [Uu2: $o,Uv2: $o] :
              ( X2
              = ( vEBT_Leaf @ Uu2 @ Uv2 ) )
         => ( ( Xa2 = zero_zero_nat )
           => ( Y2 != none_nat ) ) )
       => ( ! [A6: $o] :
              ( ? [Uw2: $o] :
                  ( X2
                  = ( vEBT_Leaf @ A6 @ Uw2 ) )
             => ( ( Xa2
                  = ( suc @ zero_zero_nat ) )
               => ~ ( ( A6
                     => ( Y2
                        = ( some_nat @ zero_zero_nat ) ) )
                    & ( ~ A6
                     => ( Y2 = none_nat ) ) ) ) )
         => ( ! [A6: $o,B7: $o] :
                ( ( X2
                  = ( vEBT_Leaf @ A6 @ B7 ) )
               => ( ? [Va3: nat] :
                      ( Xa2
                      = ( suc @ ( suc @ Va3 ) ) )
                 => ~ ( ( B7
                       => ( Y2
                          = ( some_nat @ one_one_nat ) ) )
                      & ( ~ B7
                       => ( ( A6
                           => ( Y2
                              = ( some_nat @ zero_zero_nat ) ) )
                          & ( ~ A6
                           => ( Y2 = none_nat ) ) ) ) ) ) )
           => ( ( ? [Uy2: nat,Uz2: list_VEBT_VEBT,Va2: vEBT_VEBT] :
                    ( X2
                    = ( vEBT_Node @ none_P5556105721700978146at_nat @ Uy2 @ Uz2 @ Va2 ) )
               => ( Y2 != none_nat ) )
             => ( ( ? [V2: product_prod_nat_nat,Vd2: list_VEBT_VEBT,Ve: vEBT_VEBT] :
                      ( X2
                      = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ zero_zero_nat @ Vd2 @ Ve ) )
                 => ( Y2 != none_nat ) )
               => ( ( ? [V2: product_prod_nat_nat,Vh: list_VEBT_VEBT,Vi: vEBT_VEBT] :
                        ( X2
                        = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ ( suc @ zero_zero_nat ) @ Vh @ Vi ) )
                   => ( Y2 != none_nat ) )
                 => ~ ! [Mi2: nat,Ma2: nat,Va3: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
                        ( ( X2
                          = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va3 ) ) @ TreeList3 @ Summary2 ) )
                       => ~ ( ( ( ord_less_nat @ Ma2 @ Xa2 )
                             => ( Y2
                                = ( some_nat @ Ma2 ) ) )
                            & ( ~ ( ord_less_nat @ Ma2 @ Xa2 )
                             => ( Y2
                                = ( if_option_nat @ ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                                  @ ( if_option_nat
                                    @ ( ( ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                       != none_nat )
                                      & ( vEBT_VEBT_greater @ ( some_nat @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) )
                                    @ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( some_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_pred @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                    @ ( if_option_nat
                                      @ ( ( vEBT_vebt_pred @ Summary2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
                                        = none_nat )
                                      @ ( if_option_nat @ ( ord_less_nat @ Mi2 @ Xa2 ) @ ( some_nat @ Mi2 ) @ none_nat )
                                      @ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_pred @ Summary2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_pred @ Summary2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) )
                                  @ none_nat ) ) ) ) ) ) ) ) ) ) ) ) ).

% vebt_pred.elims
thf(fact_4976_T_092_060_094sub_062m_092_060_094sub_062e_092_060_094sub_062m_092_060_094sub_062b_092_060_094sub_062e_092_060_094sub_062r_H_Oelims,axiom,
    ! [X2: vEBT_VEBT,Xa2: nat,Y2: nat] :
      ( ( ( vEBT_T_m_e_m_b_e_r2 @ X2 @ Xa2 )
        = Y2 )
     => ( ( ? [A6: $o,B7: $o] :
              ( X2
              = ( vEBT_Leaf @ A6 @ B7 ) )
         => ( Y2 != one_one_nat ) )
       => ( ( ? [Uu2: nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT] :
                ( X2
                = ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu2 @ Uv2 @ Uw2 ) )
           => ( Y2 != one_one_nat ) )
         => ( ( ? [V2: product_prod_nat_nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT] :
                  ( X2
                  = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ zero_zero_nat @ Uy2 @ Uz2 ) )
             => ( Y2 != one_one_nat ) )
           => ( ( ? [V2: product_prod_nat_nat,Vb2: list_VEBT_VEBT,Vc2: vEBT_VEBT] :
                    ( X2
                    = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ ( suc @ zero_zero_nat ) @ Vb2 @ Vc2 ) )
               => ( Y2 != one_one_nat ) )
             => ~ ! [Mi2: nat,Ma2: nat,Va3: nat,TreeList3: list_VEBT_VEBT] :
                    ( ? [Summary2: vEBT_VEBT] :
                        ( X2
                        = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va3 ) ) @ TreeList3 @ Summary2 ) )
                   => ( Y2
                     != ( plus_plus_nat @ one_one_nat
                        @ ( if_nat @ ( Xa2 = Mi2 ) @ zero_zero_nat
                          @ ( if_nat @ ( Xa2 = Ma2 ) @ zero_zero_nat
                            @ ( if_nat @ ( ord_less_nat @ Xa2 @ Mi2 ) @ zero_zero_nat
                              @ ( if_nat @ ( ord_less_nat @ Ma2 @ Xa2 ) @ zero_zero_nat
                                @ ( if_nat
                                  @ ( ( ord_less_nat @ Mi2 @ Xa2 )
                                    & ( ord_less_nat @ Xa2 @ Ma2 ) )
                                  @ ( if_nat @ ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) @ ( vEBT_T_m_e_m_b_e_r2 @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ zero_zero_nat )
                                  @ zero_zero_nat ) ) ) ) ) ) ) ) ) ) ) ) ) ).

% T\<^sub>m\<^sub>e\<^sub>m\<^sub>b\<^sub>e\<^sub>r'.elims
thf(fact_4977_T_092_060_094sub_062m_092_060_094sub_062e_092_060_094sub_062m_092_060_094sub_062b_092_060_094sub_062e_092_060_094sub_062r_H_Osimps_I5_J,axiom,
    ! [Mi: nat,Ma: nat,Va: nat,TreeList: list_VEBT_VEBT,Summary: vEBT_VEBT,X2: nat] :
      ( ( vEBT_T_m_e_m_b_e_r2 @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi @ Ma ) ) @ ( suc @ ( suc @ Va ) ) @ TreeList @ Summary ) @ X2 )
      = ( plus_plus_nat @ one_one_nat
        @ ( if_nat @ ( X2 = Mi ) @ zero_zero_nat
          @ ( if_nat @ ( X2 = Ma ) @ zero_zero_nat
            @ ( if_nat @ ( ord_less_nat @ X2 @ Mi ) @ zero_zero_nat
              @ ( if_nat @ ( ord_less_nat @ Ma @ X2 ) @ zero_zero_nat
                @ ( if_nat
                  @ ( ( ord_less_nat @ Mi @ X2 )
                    & ( ord_less_nat @ X2 @ Ma ) )
                  @ ( if_nat @ ( ord_less_nat @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList ) ) @ ( vEBT_T_m_e_m_b_e_r2 @ ( nth_VEBT_VEBT @ TreeList @ ( vEBT_VEBT_high @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ X2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ zero_zero_nat )
                  @ zero_zero_nat ) ) ) ) ) ) ) ).

% T\<^sub>m\<^sub>e\<^sub>m\<^sub>b\<^sub>e\<^sub>r'.simps(5)
thf(fact_4978_mod__exhaust__less__4,axiom,
    ! [M: nat] :
      ( ( ( modulo_modulo_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
        = zero_zero_nat )
      | ( ( modulo_modulo_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
        = one_one_nat )
      | ( ( modulo_modulo_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
        = ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      | ( ( modulo_modulo_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
        = ( numeral_numeral_nat @ ( bit1 @ one ) ) ) ) ).

% mod_exhaust_less_4
thf(fact_4979_arcosh__1,axiom,
    ( ( arcosh_real @ one_one_real )
    = zero_zero_real ) ).

% arcosh_1
thf(fact_4980_inrange,axiom,
    ! [T: vEBT_VEBT,N: nat] :
      ( ( vEBT_invar_vebt @ T @ N )
     => ( ord_less_eq_set_nat @ ( vEBT_VEBT_set_vebt @ T ) @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ ( minus_minus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ one_one_nat ) ) ) ) ).

% inrange
thf(fact_4981_finite__nth__roots,axiom,
    ! [N: nat,C: complex] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( finite3207457112153483333omplex
        @ ( collect_complex
          @ ^ [Z4: complex] :
              ( ( power_power_complex @ Z4 @ N )
              = C ) ) ) ) ).

% finite_nth_roots
thf(fact_4982_vebt__succ_Opelims,axiom,
    ! [X2: vEBT_VEBT,Xa2: nat,Y2: option_nat] :
      ( ( ( vEBT_vebt_succ @ X2 @ Xa2 )
        = Y2 )
     => ( ( accp_P2887432264394892906BT_nat @ vEBT_vebt_succ_rel @ ( produc738532404422230701BT_nat @ X2 @ Xa2 ) )
       => ( ! [Uu2: $o,B7: $o] :
              ( ( X2
                = ( vEBT_Leaf @ Uu2 @ B7 ) )
             => ( ( Xa2 = zero_zero_nat )
               => ( ( ( B7
                     => ( Y2
                        = ( some_nat @ one_one_nat ) ) )
                    & ( ~ B7
                     => ( Y2 = none_nat ) ) )
                 => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_succ_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uu2 @ B7 ) @ zero_zero_nat ) ) ) ) )
         => ( ! [Uv2: $o,Uw2: $o] :
                ( ( X2
                  = ( vEBT_Leaf @ Uv2 @ Uw2 ) )
               => ! [N3: nat] :
                    ( ( Xa2
                      = ( suc @ N3 ) )
                   => ( ( Y2 = none_nat )
                     => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_succ_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uv2 @ Uw2 ) @ ( suc @ N3 ) ) ) ) ) )
           => ( ! [Ux2: nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT] :
                  ( ( X2
                    = ( vEBT_Node @ none_P5556105721700978146at_nat @ Ux2 @ Uy2 @ Uz2 ) )
                 => ( ( Y2 = none_nat )
                   => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_succ_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Ux2 @ Uy2 @ Uz2 ) @ Xa2 ) ) ) )
             => ( ! [V2: product_prod_nat_nat,Vc2: list_VEBT_VEBT,Vd2: vEBT_VEBT] :
                    ( ( X2
                      = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ zero_zero_nat @ Vc2 @ Vd2 ) )
                   => ( ( Y2 = none_nat )
                     => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_succ_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ zero_zero_nat @ Vc2 @ Vd2 ) @ Xa2 ) ) ) )
               => ( ! [V2: product_prod_nat_nat,Vg: list_VEBT_VEBT,Vh: vEBT_VEBT] :
                      ( ( X2
                        = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ ( suc @ zero_zero_nat ) @ Vg @ Vh ) )
                     => ( ( Y2 = none_nat )
                       => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_succ_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ ( suc @ zero_zero_nat ) @ Vg @ Vh ) @ Xa2 ) ) ) )
                 => ~ ! [Mi2: nat,Ma2: nat,Va3: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
                        ( ( X2
                          = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va3 ) ) @ TreeList3 @ Summary2 ) )
                       => ( ( ( ( ord_less_nat @ Xa2 @ Mi2 )
                             => ( Y2
                                = ( some_nat @ Mi2 ) ) )
                            & ( ~ ( ord_less_nat @ Xa2 @ Mi2 )
                             => ( Y2
                                = ( if_option_nat @ ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                                  @ ( if_option_nat
                                    @ ( ( ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                       != none_nat )
                                      & ( vEBT_VEBT_less @ ( some_nat @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) )
                                    @ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( some_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_succ @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                    @ ( if_option_nat
                                      @ ( ( vEBT_vebt_succ @ Summary2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
                                        = none_nat )
                                      @ none_nat
                                      @ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_succ @ Summary2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_succ @ Summary2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) )
                                  @ none_nat ) ) ) )
                         => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_succ_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va3 ) ) @ TreeList3 @ Summary2 ) @ Xa2 ) ) ) ) ) ) ) ) ) ) ) ).

% vebt_succ.pelims
thf(fact_4983_vebt__pred_Opelims,axiom,
    ! [X2: vEBT_VEBT,Xa2: nat,Y2: option_nat] :
      ( ( ( vEBT_vebt_pred @ X2 @ Xa2 )
        = Y2 )
     => ( ( accp_P2887432264394892906BT_nat @ vEBT_vebt_pred_rel @ ( produc738532404422230701BT_nat @ X2 @ Xa2 ) )
       => ( ! [Uu2: $o,Uv2: $o] :
              ( ( X2
                = ( vEBT_Leaf @ Uu2 @ Uv2 ) )
             => ( ( Xa2 = zero_zero_nat )
               => ( ( Y2 = none_nat )
                 => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_pred_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uu2 @ Uv2 ) @ zero_zero_nat ) ) ) ) )
         => ( ! [A6: $o,Uw2: $o] :
                ( ( X2
                  = ( vEBT_Leaf @ A6 @ Uw2 ) )
               => ( ( Xa2
                    = ( suc @ zero_zero_nat ) )
                 => ( ( ( A6
                       => ( Y2
                          = ( some_nat @ zero_zero_nat ) ) )
                      & ( ~ A6
                       => ( Y2 = none_nat ) ) )
                   => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_pred_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A6 @ Uw2 ) @ ( suc @ zero_zero_nat ) ) ) ) ) )
           => ( ! [A6: $o,B7: $o] :
                  ( ( X2
                    = ( vEBT_Leaf @ A6 @ B7 ) )
                 => ! [Va3: nat] :
                      ( ( Xa2
                        = ( suc @ ( suc @ Va3 ) ) )
                     => ( ( ( B7
                           => ( Y2
                              = ( some_nat @ one_one_nat ) ) )
                          & ( ~ B7
                           => ( ( A6
                               => ( Y2
                                  = ( some_nat @ zero_zero_nat ) ) )
                              & ( ~ A6
                               => ( Y2 = none_nat ) ) ) ) )
                       => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_pred_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A6 @ B7 ) @ ( suc @ ( suc @ Va3 ) ) ) ) ) ) )
             => ( ! [Uy2: nat,Uz2: list_VEBT_VEBT,Va2: vEBT_VEBT] :
                    ( ( X2
                      = ( vEBT_Node @ none_P5556105721700978146at_nat @ Uy2 @ Uz2 @ Va2 ) )
                   => ( ( Y2 = none_nat )
                     => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_pred_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Uy2 @ Uz2 @ Va2 ) @ Xa2 ) ) ) )
               => ( ! [V2: product_prod_nat_nat,Vd2: list_VEBT_VEBT,Ve: vEBT_VEBT] :
                      ( ( X2
                        = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ zero_zero_nat @ Vd2 @ Ve ) )
                     => ( ( Y2 = none_nat )
                       => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_pred_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ zero_zero_nat @ Vd2 @ Ve ) @ Xa2 ) ) ) )
                 => ( ! [V2: product_prod_nat_nat,Vh: list_VEBT_VEBT,Vi: vEBT_VEBT] :
                        ( ( X2
                          = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ ( suc @ zero_zero_nat ) @ Vh @ Vi ) )
                       => ( ( Y2 = none_nat )
                         => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_pred_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ ( suc @ zero_zero_nat ) @ Vh @ Vi ) @ Xa2 ) ) ) )
                   => ~ ! [Mi2: nat,Ma2: nat,Va3: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
                          ( ( X2
                            = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va3 ) ) @ TreeList3 @ Summary2 ) )
                         => ( ( ( ( ord_less_nat @ Ma2 @ Xa2 )
                               => ( Y2
                                  = ( some_nat @ Ma2 ) ) )
                              & ( ~ ( ord_less_nat @ Ma2 @ Xa2 )
                               => ( Y2
                                  = ( if_option_nat @ ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                                    @ ( if_option_nat
                                      @ ( ( ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                         != none_nat )
                                        & ( vEBT_VEBT_greater @ ( some_nat @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_mint @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) )
                                      @ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( some_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_pred @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                      @ ( if_option_nat
                                        @ ( ( vEBT_vebt_pred @ Summary2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
                                          = none_nat )
                                        @ ( if_option_nat @ ( ord_less_nat @ Mi2 @ Xa2 ) @ ( some_nat @ Mi2 ) @ none_nat )
                                        @ ( vEBT_VEBT_add @ ( vEBT_VEBT_mul @ ( some_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_pred @ Summary2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_maxt @ ( nth_VEBT_VEBT @ TreeList3 @ ( the_nat @ ( vEBT_vebt_pred @ Summary2 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) )
                                    @ none_nat ) ) ) )
                           => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_pred_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va3 ) ) @ TreeList3 @ Summary2 ) @ Xa2 ) ) ) ) ) ) ) ) ) ) ) ) ).

% vebt_pred.pelims
thf(fact_4984_vebt__insert_Opelims,axiom,
    ! [X2: vEBT_VEBT,Xa2: nat,Y2: vEBT_VEBT] :
      ( ( ( vEBT_vebt_insert @ X2 @ Xa2 )
        = Y2 )
     => ( ( accp_P2887432264394892906BT_nat @ vEBT_vebt_insert_rel @ ( produc738532404422230701BT_nat @ X2 @ Xa2 ) )
       => ( ! [A6: $o,B7: $o] :
              ( ( X2
                = ( vEBT_Leaf @ A6 @ B7 ) )
             => ( ( ( ( Xa2 = zero_zero_nat )
                   => ( Y2
                      = ( vEBT_Leaf @ $true @ B7 ) ) )
                  & ( ( Xa2 != zero_zero_nat )
                   => ( ( ( Xa2 = one_one_nat )
                       => ( Y2
                          = ( vEBT_Leaf @ A6 @ $true ) ) )
                      & ( ( Xa2 != one_one_nat )
                       => ( Y2
                          = ( vEBT_Leaf @ A6 @ B7 ) ) ) ) ) )
               => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_insert_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A6 @ B7 ) @ Xa2 ) ) ) )
         => ( ! [Info2: option4927543243414619207at_nat,Ts: list_VEBT_VEBT,S2: vEBT_VEBT] :
                ( ( X2
                  = ( vEBT_Node @ Info2 @ zero_zero_nat @ Ts @ S2 ) )
               => ( ( Y2
                    = ( vEBT_Node @ Info2 @ zero_zero_nat @ Ts @ S2 ) )
                 => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_insert_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ Info2 @ zero_zero_nat @ Ts @ S2 ) @ Xa2 ) ) ) )
           => ( ! [Info2: option4927543243414619207at_nat,Ts: list_VEBT_VEBT,S2: vEBT_VEBT] :
                  ( ( X2
                    = ( vEBT_Node @ Info2 @ ( suc @ zero_zero_nat ) @ Ts @ S2 ) )
                 => ( ( Y2
                      = ( vEBT_Node @ Info2 @ ( suc @ zero_zero_nat ) @ Ts @ S2 ) )
                   => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_insert_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ Info2 @ ( suc @ zero_zero_nat ) @ Ts @ S2 ) @ Xa2 ) ) ) )
             => ( ! [V2: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
                    ( ( X2
                      = ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ V2 ) ) @ TreeList3 @ Summary2 ) )
                   => ( ( Y2
                        = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Xa2 @ Xa2 ) ) @ ( suc @ ( suc @ V2 ) ) @ TreeList3 @ Summary2 ) )
                     => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_insert_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ V2 ) ) @ TreeList3 @ Summary2 ) @ Xa2 ) ) ) )
               => ~ ! [Mi2: nat,Ma2: nat,Va3: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
                      ( ( X2
                        = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va3 ) ) @ TreeList3 @ Summary2 ) )
                     => ( ( Y2
                          = ( if_VEBT_VEBT
                            @ ( ( ord_less_nat @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa2 @ Mi2 ) @ Mi2 @ Xa2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                              & ~ ( ( Xa2 = Mi2 )
                                  | ( Xa2 = Ma2 ) ) )
                            @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ ( if_nat @ ( ord_less_nat @ Xa2 @ Mi2 ) @ Xa2 @ Mi2 ) @ ( ord_max_nat @ ( if_nat @ ( ord_less_nat @ Xa2 @ Mi2 ) @ Mi2 @ Xa2 ) @ Ma2 ) ) ) @ ( suc @ ( suc @ Va3 ) ) @ ( list_u1324408373059187874T_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa2 @ Mi2 ) @ Mi2 @ Xa2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_insert @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa2 @ Mi2 ) @ Mi2 @ Xa2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ ( if_nat @ ( ord_less_nat @ Xa2 @ Mi2 ) @ Mi2 @ Xa2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( if_VEBT_VEBT @ ( vEBT_VEBT_minNull @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa2 @ Mi2 ) @ Mi2 @ Xa2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( vEBT_vebt_insert @ Summary2 @ ( vEBT_VEBT_high @ ( if_nat @ ( ord_less_nat @ Xa2 @ Mi2 ) @ Mi2 @ Xa2 ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ Summary2 ) )
                            @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va3 ) ) @ TreeList3 @ Summary2 ) ) )
                       => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_insert_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va3 ) ) @ TreeList3 @ Summary2 ) @ Xa2 ) ) ) ) ) ) ) ) ) ) ).

% vebt_insert.pelims
thf(fact_4985_flip__bit__nonnegative__int__iff,axiom,
    ! [N: nat,K: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( bit_se2159334234014336723it_int @ N @ K ) )
      = ( ord_less_eq_int @ zero_zero_int @ K ) ) ).

% flip_bit_nonnegative_int_iff
thf(fact_4986_flip__bit__negative__int__iff,axiom,
    ! [N: nat,K: int] :
      ( ( ord_less_int @ ( bit_se2159334234014336723it_int @ N @ K ) @ zero_zero_int )
      = ( ord_less_int @ K @ zero_zero_int ) ) ).

% flip_bit_negative_int_iff
thf(fact_4987_i0__less,axiom,
    ! [N: extended_enat] :
      ( ( ord_le72135733267957522d_enat @ zero_z5237406670263579293d_enat @ N )
      = ( N != zero_z5237406670263579293d_enat ) ) ).

% i0_less
thf(fact_4988_idiff__0__right,axiom,
    ! [N: extended_enat] :
      ( ( minus_3235023915231533773d_enat @ N @ zero_z5237406670263579293d_enat )
      = N ) ).

% idiff_0_right
thf(fact_4989_idiff__0,axiom,
    ! [N: extended_enat] :
      ( ( minus_3235023915231533773d_enat @ zero_z5237406670263579293d_enat @ N )
      = zero_z5237406670263579293d_enat ) ).

% idiff_0
thf(fact_4990_not__real__square__gt__zero,axiom,
    ! [X2: real] :
      ( ( ~ ( ord_less_real @ zero_zero_real @ ( times_times_real @ X2 @ X2 ) ) )
      = ( X2 = zero_zero_real ) ) ).

% not_real_square_gt_zero
thf(fact_4991_unset__bit__nonnegative__int__iff,axiom,
    ! [N: nat,K: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( bit_se4203085406695923979it_int @ N @ K ) )
      = ( ord_less_eq_int @ zero_zero_int @ K ) ) ).

% unset_bit_nonnegative_int_iff
thf(fact_4992_unset__bit__negative__int__iff,axiom,
    ! [N: nat,K: int] :
      ( ( ord_less_int @ ( bit_se4203085406695923979it_int @ N @ K ) @ zero_zero_int )
      = ( ord_less_int @ K @ zero_zero_int ) ) ).

% unset_bit_negative_int_iff
thf(fact_4993_set__bit__nonnegative__int__iff,axiom,
    ! [N: nat,K: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( bit_se7879613467334960850it_int @ N @ K ) )
      = ( ord_less_eq_int @ zero_zero_int @ K ) ) ).

% set_bit_nonnegative_int_iff
thf(fact_4994_set__bit__negative__int__iff,axiom,
    ! [N: nat,K: int] :
      ( ( ord_less_int @ ( bit_se7879613467334960850it_int @ N @ K ) @ zero_zero_int )
      = ( ord_less_int @ K @ zero_zero_int ) ) ).

% set_bit_negative_int_iff
thf(fact_4995_div__pos__pos__trivial,axiom,
    ! [K: int,L: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ K )
     => ( ( ord_less_int @ K @ L )
       => ( ( divide_divide_int @ K @ L )
          = zero_zero_int ) ) ) ).

% div_pos_pos_trivial
thf(fact_4996_div__neg__neg__trivial,axiom,
    ! [K: int,L: int] :
      ( ( ord_less_eq_int @ K @ zero_zero_int )
     => ( ( ord_less_int @ L @ K )
       => ( ( divide_divide_int @ K @ L )
          = zero_zero_int ) ) ) ).

% div_neg_neg_trivial
thf(fact_4997_mod__pos__pos__trivial,axiom,
    ! [K: int,L: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ K )
     => ( ( ord_less_int @ K @ L )
       => ( ( modulo_modulo_int @ K @ L )
          = K ) ) ) ).

% mod_pos_pos_trivial
thf(fact_4998_mod__neg__neg__trivial,axiom,
    ! [K: int,L: int] :
      ( ( ord_less_eq_int @ K @ zero_zero_int )
     => ( ( ord_less_int @ L @ K )
       => ( ( modulo_modulo_int @ K @ L )
          = K ) ) ) ).

% mod_neg_neg_trivial
thf(fact_4999_half__nonnegative__int__iff,axiom,
    ! [K: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( divide_divide_int @ K @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) )
      = ( ord_less_eq_int @ zero_zero_int @ K ) ) ).

% half_nonnegative_int_iff
thf(fact_5000_half__negative__int__iff,axiom,
    ! [K: int] :
      ( ( ord_less_int @ ( divide_divide_int @ K @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ zero_zero_int )
      = ( ord_less_int @ K @ zero_zero_int ) ) ).

% half_negative_int_iff
thf(fact_5001_less__eq__int__code_I1_J,axiom,
    ord_less_eq_int @ zero_zero_int @ zero_zero_int ).

% less_eq_int_code(1)
thf(fact_5002_less__int__code_I1_J,axiom,
    ~ ( ord_less_int @ zero_zero_int @ zero_zero_int ) ).

% less_int_code(1)
thf(fact_5003_times__int__code_I1_J,axiom,
    ! [K: int] :
      ( ( times_times_int @ K @ zero_zero_int )
      = zero_zero_int ) ).

% times_int_code(1)
thf(fact_5004_times__int__code_I2_J,axiom,
    ! [L: int] :
      ( ( times_times_int @ zero_zero_int @ L )
      = zero_zero_int ) ).

% times_int_code(2)
thf(fact_5005_plus__int__code_I1_J,axiom,
    ! [K: int] :
      ( ( plus_plus_int @ K @ zero_zero_int )
      = K ) ).

% plus_int_code(1)
thf(fact_5006_plus__int__code_I2_J,axiom,
    ! [L: int] :
      ( ( plus_plus_int @ zero_zero_int @ L )
      = L ) ).

% plus_int_code(2)
thf(fact_5007_enat__0__less__mult__iff,axiom,
    ! [M: extended_enat,N: extended_enat] :
      ( ( ord_le72135733267957522d_enat @ zero_z5237406670263579293d_enat @ ( times_7803423173614009249d_enat @ M @ N ) )
      = ( ( ord_le72135733267957522d_enat @ zero_z5237406670263579293d_enat @ M )
        & ( ord_le72135733267957522d_enat @ zero_z5237406670263579293d_enat @ N ) ) ) ).

% enat_0_less_mult_iff
thf(fact_5008_not__iless0,axiom,
    ! [N: extended_enat] :
      ~ ( ord_le72135733267957522d_enat @ N @ zero_z5237406670263579293d_enat ) ).

% not_iless0
thf(fact_5009_iadd__is__0,axiom,
    ! [M: extended_enat,N: extended_enat] :
      ( ( ( plus_p3455044024723400733d_enat @ M @ N )
        = zero_z5237406670263579293d_enat )
      = ( ( M = zero_z5237406670263579293d_enat )
        & ( N = zero_z5237406670263579293d_enat ) ) ) ).

% iadd_is_0
thf(fact_5010_ile0__eq,axiom,
    ! [N: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ N @ zero_z5237406670263579293d_enat )
      = ( N = zero_z5237406670263579293d_enat ) ) ).

% ile0_eq
thf(fact_5011_i0__lb,axiom,
    ! [N: extended_enat] : ( ord_le2932123472753598470d_enat @ zero_z5237406670263579293d_enat @ N ) ).

% i0_lb
thf(fact_5012_all__nat__less,axiom,
    ! [N: nat,P: nat > $o] :
      ( ( ! [M3: nat] :
            ( ( ord_less_eq_nat @ M3 @ N )
           => ( P @ M3 ) ) )
      = ( ! [X: nat] :
            ( ( member_nat @ X @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) )
           => ( P @ X ) ) ) ) ).

% all_nat_less
thf(fact_5013_ex__nat__less,axiom,
    ! [N: nat,P: nat > $o] :
      ( ( ? [M3: nat] :
            ( ( ord_less_eq_nat @ M3 @ N )
            & ( P @ M3 ) ) )
      = ( ? [X: nat] :
            ( ( member_nat @ X @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) )
            & ( P @ X ) ) ) ) ).

% ex_nat_less
thf(fact_5014_zmult__zless__mono2,axiom,
    ! [I: int,J: int,K: int] :
      ( ( ord_less_int @ I @ J )
     => ( ( ord_less_int @ zero_zero_int @ K )
       => ( ord_less_int @ ( times_times_int @ K @ I ) @ ( times_times_int @ K @ J ) ) ) ) ).

% zmult_zless_mono2
thf(fact_5015_odd__nonzero,axiom,
    ! [Z: int] :
      ( ( plus_plus_int @ ( plus_plus_int @ one_one_int @ Z ) @ Z )
     != zero_zero_int ) ).

% odd_nonzero
thf(fact_5016_div__neg__pos__less0,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ zero_zero_int )
     => ( ( ord_less_int @ zero_zero_int @ B )
       => ( ord_less_int @ ( divide_divide_int @ A @ B ) @ zero_zero_int ) ) ) ).

% div_neg_pos_less0
thf(fact_5017_neg__imp__zdiv__neg__iff,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ B @ zero_zero_int )
     => ( ( ord_less_int @ ( divide_divide_int @ A @ B ) @ zero_zero_int )
        = ( ord_less_int @ zero_zero_int @ A ) ) ) ).

% neg_imp_zdiv_neg_iff
thf(fact_5018_pos__imp__zdiv__neg__iff,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ( ord_less_int @ ( divide_divide_int @ A @ B ) @ zero_zero_int )
        = ( ord_less_int @ A @ zero_zero_int ) ) ) ).

% pos_imp_zdiv_neg_iff
thf(fact_5019_zmod__le__nonneg__dividend,axiom,
    ! [M: int,K: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ M )
     => ( ord_less_eq_int @ ( modulo_modulo_int @ M @ K ) @ M ) ) ).

% zmod_le_nonneg_dividend
thf(fact_5020_neg__mod__bound,axiom,
    ! [L: int,K: int] :
      ( ( ord_less_int @ L @ zero_zero_int )
     => ( ord_less_int @ L @ ( modulo_modulo_int @ K @ L ) ) ) ).

% neg_mod_bound
thf(fact_5021_Euclidean__Division_Opos__mod__bound,axiom,
    ! [L: int,K: int] :
      ( ( ord_less_int @ zero_zero_int @ L )
     => ( ord_less_int @ ( modulo_modulo_int @ K @ L ) @ L ) ) ).

% Euclidean_Division.pos_mod_bound
thf(fact_5022_zmod__eq__0__iff,axiom,
    ! [M: int,D: int] :
      ( ( ( modulo_modulo_int @ M @ D )
        = zero_zero_int )
      = ( ? [Q4: int] :
            ( M
            = ( times_times_int @ D @ Q4 ) ) ) ) ).

% zmod_eq_0_iff
thf(fact_5023_zmod__eq__0D,axiom,
    ! [M: int,D: int] :
      ( ( ( modulo_modulo_int @ M @ D )
        = zero_zero_int )
     => ? [Q3: int] :
          ( M
          = ( times_times_int @ D @ Q3 ) ) ) ).

% zmod_eq_0D
thf(fact_5024_realpow__pos__nth2,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ? [R3: real] :
          ( ( ord_less_real @ zero_zero_real @ R3 )
          & ( ( power_power_real @ R3 @ ( suc @ N ) )
            = A ) ) ) ).

% realpow_pos_nth2
thf(fact_5025_real__arch__pow__inv,axiom,
    ! [Y2: real,X2: real] :
      ( ( ord_less_real @ zero_zero_real @ Y2 )
     => ( ( ord_less_real @ X2 @ one_one_real )
       => ? [N3: nat] : ( ord_less_real @ ( power_power_real @ X2 @ N3 ) @ Y2 ) ) ) ).

% real_arch_pow_inv
thf(fact_5026_int__one__le__iff__zero__less,axiom,
    ! [Z: int] :
      ( ( ord_less_eq_int @ one_one_int @ Z )
      = ( ord_less_int @ zero_zero_int @ Z ) ) ).

% int_one_le_iff_zero_less
thf(fact_5027_pos__zmult__eq__1__iff,axiom,
    ! [M: int,N: int] :
      ( ( ord_less_int @ zero_zero_int @ M )
     => ( ( ( times_times_int @ M @ N )
          = one_one_int )
        = ( ( M = one_one_int )
          & ( N = one_one_int ) ) ) ) ).

% pos_zmult_eq_1_iff
thf(fact_5028_odd__less__0__iff,axiom,
    ! [Z: int] :
      ( ( ord_less_int @ ( plus_plus_int @ ( plus_plus_int @ one_one_int @ Z ) @ Z ) @ zero_zero_int )
      = ( ord_less_int @ Z @ zero_zero_int ) ) ).

% odd_less_0_iff
thf(fact_5029_nonneg1__imp__zdiv__pos__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ zero_zero_int @ ( divide_divide_int @ A @ B ) )
        = ( ( ord_less_eq_int @ B @ A )
          & ( ord_less_int @ zero_zero_int @ B ) ) ) ) ).

% nonneg1_imp_zdiv_pos_iff
thf(fact_5030_pos__imp__zdiv__nonneg__iff,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ( ord_less_eq_int @ zero_zero_int @ ( divide_divide_int @ A @ B ) )
        = ( ord_less_eq_int @ zero_zero_int @ A ) ) ) ).

% pos_imp_zdiv_nonneg_iff
thf(fact_5031_neg__imp__zdiv__nonneg__iff,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ B @ zero_zero_int )
     => ( ( ord_less_eq_int @ zero_zero_int @ ( divide_divide_int @ A @ B ) )
        = ( ord_less_eq_int @ A @ zero_zero_int ) ) ) ).

% neg_imp_zdiv_nonneg_iff
thf(fact_5032_pos__imp__zdiv__pos__iff,axiom,
    ! [K: int,I: int] :
      ( ( ord_less_int @ zero_zero_int @ K )
     => ( ( ord_less_int @ zero_zero_int @ ( divide_divide_int @ I @ K ) )
        = ( ord_less_eq_int @ K @ I ) ) ) ).

% pos_imp_zdiv_pos_iff
thf(fact_5033_div__nonpos__pos__le0,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ zero_zero_int )
     => ( ( ord_less_int @ zero_zero_int @ B )
       => ( ord_less_eq_int @ ( divide_divide_int @ A @ B ) @ zero_zero_int ) ) ) ).

% div_nonpos_pos_le0
thf(fact_5034_div__nonneg__neg__le0,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ B @ zero_zero_int )
       => ( ord_less_eq_int @ ( divide_divide_int @ A @ B ) @ zero_zero_int ) ) ) ).

% div_nonneg_neg_le0
thf(fact_5035_div__positive__int,axiom,
    ! [L: int,K: int] :
      ( ( ord_less_eq_int @ L @ K )
     => ( ( ord_less_int @ zero_zero_int @ L )
       => ( ord_less_int @ zero_zero_int @ ( divide_divide_int @ K @ L ) ) ) ) ).

% div_positive_int
thf(fact_5036_div__int__pos__iff,axiom,
    ! [K: int,L: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( divide_divide_int @ K @ L ) )
      = ( ( K = zero_zero_int )
        | ( L = zero_zero_int )
        | ( ( ord_less_eq_int @ zero_zero_int @ K )
          & ( ord_less_eq_int @ zero_zero_int @ L ) )
        | ( ( ord_less_int @ K @ zero_zero_int )
          & ( ord_less_int @ L @ zero_zero_int ) ) ) ) ).

% div_int_pos_iff
thf(fact_5037_zdiv__mono2__neg,axiom,
    ! [A: int,B6: int,B: int] :
      ( ( ord_less_int @ A @ zero_zero_int )
     => ( ( ord_less_int @ zero_zero_int @ B6 )
       => ( ( ord_less_eq_int @ B6 @ B )
         => ( ord_less_eq_int @ ( divide_divide_int @ A @ B6 ) @ ( divide_divide_int @ A @ B ) ) ) ) ) ).

% zdiv_mono2_neg
thf(fact_5038_zdiv__mono1__neg,axiom,
    ! [A: int,A5: int,B: int] :
      ( ( ord_less_eq_int @ A @ A5 )
     => ( ( ord_less_int @ B @ zero_zero_int )
       => ( ord_less_eq_int @ ( divide_divide_int @ A5 @ B ) @ ( divide_divide_int @ A @ B ) ) ) ) ).

% zdiv_mono1_neg
thf(fact_5039_zdiv__eq__0__iff,axiom,
    ! [I: int,K: int] :
      ( ( ( divide_divide_int @ I @ K )
        = zero_zero_int )
      = ( ( K = zero_zero_int )
        | ( ( ord_less_eq_int @ zero_zero_int @ I )
          & ( ord_less_int @ I @ K ) )
        | ( ( ord_less_eq_int @ I @ zero_zero_int )
          & ( ord_less_int @ K @ I ) ) ) ) ).

% zdiv_eq_0_iff
thf(fact_5040_zdiv__mono2,axiom,
    ! [A: int,B6: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ zero_zero_int @ B6 )
       => ( ( ord_less_eq_int @ B6 @ B )
         => ( ord_less_eq_int @ ( divide_divide_int @ A @ B ) @ ( divide_divide_int @ A @ B6 ) ) ) ) ) ).

% zdiv_mono2
thf(fact_5041_zdiv__mono1,axiom,
    ! [A: int,A5: int,B: int] :
      ( ( ord_less_eq_int @ A @ A5 )
     => ( ( ord_less_int @ zero_zero_int @ B )
       => ( ord_less_eq_int @ ( divide_divide_int @ A @ B ) @ ( divide_divide_int @ A5 @ B ) ) ) ) ).

% zdiv_mono1
thf(fact_5042_int__div__less__self,axiom,
    ! [X2: int,K: int] :
      ( ( ord_less_int @ zero_zero_int @ X2 )
     => ( ( ord_less_int @ one_one_int @ K )
       => ( ord_less_int @ ( divide_divide_int @ X2 @ K ) @ X2 ) ) ) ).

% int_div_less_self
thf(fact_5043_zdiv__zmult2__eq,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ C )
     => ( ( divide_divide_int @ A @ ( times_times_int @ B @ C ) )
        = ( divide_divide_int @ ( divide_divide_int @ A @ B ) @ C ) ) ) ).

% zdiv_zmult2_eq
thf(fact_5044_Euclidean__Division_Opos__mod__sign,axiom,
    ! [L: int,K: int] :
      ( ( ord_less_int @ zero_zero_int @ L )
     => ( ord_less_eq_int @ zero_zero_int @ ( modulo_modulo_int @ K @ L ) ) ) ).

% Euclidean_Division.pos_mod_sign
thf(fact_5045_neg__mod__sign,axiom,
    ! [L: int,K: int] :
      ( ( ord_less_int @ L @ zero_zero_int )
     => ( ord_less_eq_int @ ( modulo_modulo_int @ K @ L ) @ zero_zero_int ) ) ).

% neg_mod_sign
thf(fact_5046_zmod__trivial__iff,axiom,
    ! [I: int,K: int] :
      ( ( ( modulo_modulo_int @ I @ K )
        = I )
      = ( ( K = zero_zero_int )
        | ( ( ord_less_eq_int @ zero_zero_int @ I )
          & ( ord_less_int @ I @ K ) )
        | ( ( ord_less_eq_int @ I @ zero_zero_int )
          & ( ord_less_int @ K @ I ) ) ) ) ).

% zmod_trivial_iff
thf(fact_5047_pos__mod__conj,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ( ord_less_eq_int @ zero_zero_int @ ( modulo_modulo_int @ A @ B ) )
        & ( ord_less_int @ ( modulo_modulo_int @ A @ B ) @ B ) ) ) ).

% pos_mod_conj
thf(fact_5048_neg__mod__conj,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ B @ zero_zero_int )
     => ( ( ord_less_eq_int @ ( modulo_modulo_int @ A @ B ) @ zero_zero_int )
        & ( ord_less_int @ B @ ( modulo_modulo_int @ A @ B ) ) ) ) ).

% neg_mod_conj
thf(fact_5049_zdiv__mono__strict,axiom,
    ! [A2: int,B3: int,N: int] :
      ( ( ord_less_int @ A2 @ B3 )
     => ( ( ord_less_int @ zero_zero_int @ N )
       => ( ( ( modulo_modulo_int @ A2 @ N )
            = zero_zero_int )
         => ( ( ( modulo_modulo_int @ B3 @ N )
              = zero_zero_int )
           => ( ord_less_int @ ( divide_divide_int @ A2 @ N ) @ ( divide_divide_int @ B3 @ N ) ) ) ) ) ) ).

% zdiv_mono_strict
thf(fact_5050_T_092_060_094sub_062m_092_060_094sub_062e_092_060_094sub_062m_092_060_094sub_062b_092_060_094sub_062e_092_060_094sub_062r_H_Osimps_I1_J,axiom,
    ! [A: $o,B: $o,X2: nat] :
      ( ( vEBT_T_m_e_m_b_e_r2 @ ( vEBT_Leaf @ A @ B ) @ X2 )
      = one_one_nat ) ).

% T\<^sub>m\<^sub>e\<^sub>m\<^sub>b\<^sub>e\<^sub>r'.simps(1)
thf(fact_5051_not__exp__less__eq__0__int,axiom,
    ! [N: nat] :
      ~ ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) @ zero_zero_int ) ).

% not_exp_less_eq_0_int
thf(fact_5052_realpow__pos__nth,axiom,
    ! [N: nat,A: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_real @ zero_zero_real @ A )
       => ? [R3: real] :
            ( ( ord_less_real @ zero_zero_real @ R3 )
            & ( ( power_power_real @ R3 @ N )
              = A ) ) ) ) ).

% realpow_pos_nth
thf(fact_5053_realpow__pos__nth__unique,axiom,
    ! [N: nat,A: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_real @ zero_zero_real @ A )
       => ? [X4: real] :
            ( ( ord_less_real @ zero_zero_real @ X4 )
            & ( ( power_power_real @ X4 @ N )
              = A )
            & ! [Y4: real] :
                ( ( ( ord_less_real @ zero_zero_real @ Y4 )
                  & ( ( power_power_real @ Y4 @ N )
                    = A ) )
               => ( Y4 = X4 ) ) ) ) ) ).

% realpow_pos_nth_unique
thf(fact_5054_le__imp__0__less,axiom,
    ! [Z: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z )
     => ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ one_one_int @ Z ) ) ) ).

% le_imp_0_less
thf(fact_5055_q__pos__lemma,axiom,
    ! [B6: int,Q5: int,R4: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( plus_plus_int @ ( times_times_int @ B6 @ Q5 ) @ R4 ) )
     => ( ( ord_less_int @ R4 @ B6 )
       => ( ( ord_less_int @ zero_zero_int @ B6 )
         => ( ord_less_eq_int @ zero_zero_int @ Q5 ) ) ) ) ).

% q_pos_lemma
thf(fact_5056_zdiv__mono2__lemma,axiom,
    ! [B: int,Q2: int,R2: int,B6: int,Q5: int,R4: int] :
      ( ( ( plus_plus_int @ ( times_times_int @ B @ Q2 ) @ R2 )
        = ( plus_plus_int @ ( times_times_int @ B6 @ Q5 ) @ R4 ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ ( plus_plus_int @ ( times_times_int @ B6 @ Q5 ) @ R4 ) )
       => ( ( ord_less_int @ R4 @ B6 )
         => ( ( ord_less_eq_int @ zero_zero_int @ R2 )
           => ( ( ord_less_int @ zero_zero_int @ B6 )
             => ( ( ord_less_eq_int @ B6 @ B )
               => ( ord_less_eq_int @ Q2 @ Q5 ) ) ) ) ) ) ) ).

% zdiv_mono2_lemma
thf(fact_5057_zdiv__mono2__neg__lemma,axiom,
    ! [B: int,Q2: int,R2: int,B6: int,Q5: int,R4: int] :
      ( ( ( plus_plus_int @ ( times_times_int @ B @ Q2 ) @ R2 )
        = ( plus_plus_int @ ( times_times_int @ B6 @ Q5 ) @ R4 ) )
     => ( ( ord_less_int @ ( plus_plus_int @ ( times_times_int @ B6 @ Q5 ) @ R4 ) @ zero_zero_int )
       => ( ( ord_less_int @ R2 @ B )
         => ( ( ord_less_eq_int @ zero_zero_int @ R4 )
           => ( ( ord_less_int @ zero_zero_int @ B6 )
             => ( ( ord_less_eq_int @ B6 @ B )
               => ( ord_less_eq_int @ Q5 @ Q2 ) ) ) ) ) ) ) ).

% zdiv_mono2_neg_lemma
thf(fact_5058_unique__quotient__lemma,axiom,
    ! [B: int,Q5: int,R4: int,Q2: int,R2: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ ( times_times_int @ B @ Q5 ) @ R4 ) @ ( plus_plus_int @ ( times_times_int @ B @ Q2 ) @ R2 ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ R4 )
       => ( ( ord_less_int @ R4 @ B )
         => ( ( ord_less_int @ R2 @ B )
           => ( ord_less_eq_int @ Q5 @ Q2 ) ) ) ) ) ).

% unique_quotient_lemma
thf(fact_5059_unique__quotient__lemma__neg,axiom,
    ! [B: int,Q5: int,R4: int,Q2: int,R2: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ ( times_times_int @ B @ Q5 ) @ R4 ) @ ( plus_plus_int @ ( times_times_int @ B @ Q2 ) @ R2 ) )
     => ( ( ord_less_eq_int @ R2 @ zero_zero_int )
       => ( ( ord_less_int @ B @ R2 )
         => ( ( ord_less_int @ B @ R4 )
           => ( ord_less_eq_int @ Q2 @ Q5 ) ) ) ) ) ).

% unique_quotient_lemma_neg
thf(fact_5060_mod__pos__neg__trivial,axiom,
    ! [K: int,L: int] :
      ( ( ord_less_int @ zero_zero_int @ K )
     => ( ( ord_less_eq_int @ ( plus_plus_int @ K @ L ) @ zero_zero_int )
       => ( ( modulo_modulo_int @ K @ L )
          = ( plus_plus_int @ K @ L ) ) ) ) ).

% mod_pos_neg_trivial
thf(fact_5061_mod__pos__geq,axiom,
    ! [L: int,K: int] :
      ( ( ord_less_int @ zero_zero_int @ L )
     => ( ( ord_less_eq_int @ L @ K )
       => ( ( modulo_modulo_int @ K @ L )
          = ( modulo_modulo_int @ ( minus_minus_int @ K @ L ) @ L ) ) ) ) ).

% mod_pos_geq
thf(fact_5062_split__zdiv,axiom,
    ! [P: int > $o,N: int,K: int] :
      ( ( P @ ( divide_divide_int @ N @ K ) )
      = ( ( ( K = zero_zero_int )
         => ( P @ zero_zero_int ) )
        & ( ( ord_less_int @ zero_zero_int @ K )
         => ! [I4: int,J3: int] :
              ( ( ( ord_less_eq_int @ zero_zero_int @ J3 )
                & ( ord_less_int @ J3 @ K )
                & ( N
                  = ( plus_plus_int @ ( times_times_int @ K @ I4 ) @ J3 ) ) )
             => ( P @ I4 ) ) )
        & ( ( ord_less_int @ K @ zero_zero_int )
         => ! [I4: int,J3: int] :
              ( ( ( ord_less_int @ K @ J3 )
                & ( ord_less_eq_int @ J3 @ zero_zero_int )
                & ( N
                  = ( plus_plus_int @ ( times_times_int @ K @ I4 ) @ J3 ) ) )
             => ( P @ I4 ) ) ) ) ) ).

% split_zdiv
thf(fact_5063_int__div__neg__eq,axiom,
    ! [A: int,B: int,Q2: int,R2: int] :
      ( ( A
        = ( plus_plus_int @ ( times_times_int @ B @ Q2 ) @ R2 ) )
     => ( ( ord_less_eq_int @ R2 @ zero_zero_int )
       => ( ( ord_less_int @ B @ R2 )
         => ( ( divide_divide_int @ A @ B )
            = Q2 ) ) ) ) ).

% int_div_neg_eq
thf(fact_5064_int__div__pos__eq,axiom,
    ! [A: int,B: int,Q2: int,R2: int] :
      ( ( A
        = ( plus_plus_int @ ( times_times_int @ B @ Q2 ) @ R2 ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ R2 )
       => ( ( ord_less_int @ R2 @ B )
         => ( ( divide_divide_int @ A @ B )
            = Q2 ) ) ) ) ).

% int_div_pos_eq
thf(fact_5065_split__zmod,axiom,
    ! [P: int > $o,N: int,K: int] :
      ( ( P @ ( modulo_modulo_int @ N @ K ) )
      = ( ( ( K = zero_zero_int )
         => ( P @ N ) )
        & ( ( ord_less_int @ zero_zero_int @ K )
         => ! [I4: int,J3: int] :
              ( ( ( ord_less_eq_int @ zero_zero_int @ J3 )
                & ( ord_less_int @ J3 @ K )
                & ( N
                  = ( plus_plus_int @ ( times_times_int @ K @ I4 ) @ J3 ) ) )
             => ( P @ J3 ) ) )
        & ( ( ord_less_int @ K @ zero_zero_int )
         => ! [I4: int,J3: int] :
              ( ( ( ord_less_int @ K @ J3 )
                & ( ord_less_eq_int @ J3 @ zero_zero_int )
                & ( N
                  = ( plus_plus_int @ ( times_times_int @ K @ I4 ) @ J3 ) ) )
             => ( P @ J3 ) ) ) ) ) ).

% split_zmod
thf(fact_5066_int__mod__neg__eq,axiom,
    ! [A: int,B: int,Q2: int,R2: int] :
      ( ( A
        = ( plus_plus_int @ ( times_times_int @ B @ Q2 ) @ R2 ) )
     => ( ( ord_less_eq_int @ R2 @ zero_zero_int )
       => ( ( ord_less_int @ B @ R2 )
         => ( ( modulo_modulo_int @ A @ B )
            = R2 ) ) ) ) ).

% int_mod_neg_eq
thf(fact_5067_int__mod__pos__eq,axiom,
    ! [A: int,B: int,Q2: int,R2: int] :
      ( ( A
        = ( plus_plus_int @ ( times_times_int @ B @ Q2 ) @ R2 ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ R2 )
       => ( ( ord_less_int @ R2 @ B )
         => ( ( modulo_modulo_int @ A @ B )
            = R2 ) ) ) ) ).

% int_mod_pos_eq
thf(fact_5068_T_092_060_094sub_062m_092_060_094sub_062e_092_060_094sub_062m_092_060_094sub_062b_092_060_094sub_062e_092_060_094sub_062r_H_Osimps_I2_J,axiom,
    ! [Uu: nat,Uv: list_VEBT_VEBT,Uw: vEBT_VEBT,X2: nat] :
      ( ( vEBT_T_m_e_m_b_e_r2 @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu @ Uv @ Uw ) @ X2 )
      = one_one_nat ) ).

% T\<^sub>m\<^sub>e\<^sub>m\<^sub>b\<^sub>e\<^sub>r'.simps(2)
thf(fact_5069_zmod__zmult2__eq,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ C )
     => ( ( modulo_modulo_int @ A @ ( times_times_int @ B @ C ) )
        = ( plus_plus_int @ ( times_times_int @ B @ ( modulo_modulo_int @ ( divide_divide_int @ A @ B ) @ C ) ) @ ( modulo_modulo_int @ A @ B ) ) ) ) ).

% zmod_zmult2_eq
thf(fact_5070_int__power__div__base,axiom,
    ! [M: nat,K: int] :
      ( ( ord_less_nat @ zero_zero_nat @ M )
     => ( ( ord_less_int @ zero_zero_int @ K )
       => ( ( divide_divide_int @ ( power_power_int @ K @ M ) @ K )
          = ( power_power_int @ K @ ( minus_minus_nat @ M @ ( suc @ zero_zero_nat ) ) ) ) ) ) ).

% int_power_div_base
thf(fact_5071_div__pos__geq,axiom,
    ! [L: int,K: int] :
      ( ( ord_less_int @ zero_zero_int @ L )
     => ( ( ord_less_eq_int @ L @ K )
       => ( ( divide_divide_int @ K @ L )
          = ( plus_plus_int @ ( divide_divide_int @ ( minus_minus_int @ K @ L ) @ L ) @ one_one_int ) ) ) ) ).

% div_pos_geq
thf(fact_5072_verit__le__mono__div__int,axiom,
    ! [A2: int,B3: int,N: int] :
      ( ( ord_less_int @ A2 @ B3 )
     => ( ( ord_less_int @ zero_zero_int @ N )
       => ( ord_less_eq_int
          @ ( plus_plus_int @ ( divide_divide_int @ A2 @ N )
            @ ( if_int
              @ ( ( modulo_modulo_int @ B3 @ N )
                = zero_zero_int )
              @ one_one_int
              @ zero_zero_int ) )
          @ ( divide_divide_int @ B3 @ N ) ) ) ) ).

% verit_le_mono_div_int
thf(fact_5073_split__neg__lemma,axiom,
    ! [K: int,P: int > int > $o,N: int] :
      ( ( ord_less_int @ K @ zero_zero_int )
     => ( ( P @ ( divide_divide_int @ N @ K ) @ ( modulo_modulo_int @ N @ K ) )
        = ( ! [I4: int,J3: int] :
              ( ( ( ord_less_int @ K @ J3 )
                & ( ord_less_eq_int @ J3 @ zero_zero_int )
                & ( N
                  = ( plus_plus_int @ ( times_times_int @ K @ I4 ) @ J3 ) ) )
             => ( P @ I4 @ J3 ) ) ) ) ) ).

% split_neg_lemma
thf(fact_5074_split__pos__lemma,axiom,
    ! [K: int,P: int > int > $o,N: int] :
      ( ( ord_less_int @ zero_zero_int @ K )
     => ( ( P @ ( divide_divide_int @ N @ K ) @ ( modulo_modulo_int @ N @ K ) )
        = ( ! [I4: int,J3: int] :
              ( ( ( ord_less_eq_int @ zero_zero_int @ J3 )
                & ( ord_less_int @ J3 @ K )
                & ( N
                  = ( plus_plus_int @ ( times_times_int @ K @ I4 ) @ J3 ) ) )
             => ( P @ I4 @ J3 ) ) ) ) ) ).

% split_pos_lemma
thf(fact_5075_eq__diff__eq_H,axiom,
    ! [X2: real,Y2: real,Z: real] :
      ( ( X2
        = ( minus_minus_real @ Y2 @ Z ) )
      = ( Y2
        = ( plus_plus_real @ X2 @ Z ) ) ) ).

% eq_diff_eq'
thf(fact_5076_T_092_060_094sub_062m_092_060_094sub_062e_092_060_094sub_062m_092_060_094sub_062b_092_060_094sub_062e_092_060_094sub_062r_H_Osimps_I3_J,axiom,
    ! [V: product_prod_nat_nat,Uy: list_VEBT_VEBT,Uz: vEBT_VEBT,X2: nat] :
      ( ( vEBT_T_m_e_m_b_e_r2 @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V ) @ zero_zero_nat @ Uy @ Uz ) @ X2 )
      = one_one_nat ) ).

% T\<^sub>m\<^sub>e\<^sub>m\<^sub>b\<^sub>e\<^sub>r'.simps(3)
thf(fact_5077_neg__zdiv__mult__2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ zero_zero_int )
     => ( ( divide_divide_int @ ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) )
        = ( divide_divide_int @ ( plus_plus_int @ B @ one_one_int ) @ A ) ) ) ).

% neg_zdiv_mult_2
thf(fact_5078_pos__zdiv__mult__2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( divide_divide_int @ ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) )
        = ( divide_divide_int @ B @ A ) ) ) ).

% pos_zdiv_mult_2
thf(fact_5079_pos__zmod__mult__2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( modulo_modulo_int @ ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) )
        = ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( modulo_modulo_int @ B @ A ) ) ) ) ) ).

% pos_zmod_mult_2
thf(fact_5080_T_092_060_094sub_062m_092_060_094sub_062e_092_060_094sub_062m_092_060_094sub_062b_092_060_094sub_062e_092_060_094sub_062r_H_Osimps_I4_J,axiom,
    ! [V: product_prod_nat_nat,Vb: list_VEBT_VEBT,Vc: vEBT_VEBT,X2: nat] :
      ( ( vEBT_T_m_e_m_b_e_r2 @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V ) @ ( suc @ zero_zero_nat ) @ Vb @ Vc ) @ X2 )
      = one_one_nat ) ).

% T\<^sub>m\<^sub>e\<^sub>m\<^sub>b\<^sub>e\<^sub>r'.simps(4)
thf(fact_5081_neg__zmod__mult__2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ zero_zero_int )
     => ( ( modulo_modulo_int @ ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) )
        = ( minus_minus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( modulo_modulo_int @ ( plus_plus_int @ B @ one_one_int ) @ A ) ) @ one_one_int ) ) ) ).

% neg_zmod_mult_2
thf(fact_5082_T_092_060_094sub_062m_092_060_094sub_062e_092_060_094sub_062m_092_060_094sub_062b_092_060_094sub_062e_092_060_094sub_062r_Opelims,axiom,
    ! [X2: vEBT_VEBT,Xa2: nat,Y2: nat] :
      ( ( ( vEBT_T_m_e_m_b_e_r @ X2 @ Xa2 )
        = Y2 )
     => ( ( accp_P2887432264394892906BT_nat @ vEBT_T5837161174952499735_r_rel @ ( produc738532404422230701BT_nat @ X2 @ Xa2 ) )
       => ( ! [A6: $o,B7: $o] :
              ( ( X2
                = ( vEBT_Leaf @ A6 @ B7 ) )
             => ( ( Y2
                  = ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( if_nat @ ( Xa2 = zero_zero_nat ) @ one_one_nat @ ( plus_plus_nat @ one_one_nat @ one_one_nat ) ) ) )
               => ~ ( accp_P2887432264394892906BT_nat @ vEBT_T5837161174952499735_r_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A6 @ B7 ) @ Xa2 ) ) ) )
         => ( ! [Uu2: nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT] :
                ( ( X2
                  = ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu2 @ Uv2 @ Uw2 ) )
               => ( ( Y2
                    = ( numeral_numeral_nat @ ( bit0 @ one ) ) )
                 => ~ ( accp_P2887432264394892906BT_nat @ vEBT_T5837161174952499735_r_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu2 @ Uv2 @ Uw2 ) @ Xa2 ) ) ) )
           => ( ! [V2: product_prod_nat_nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT] :
                  ( ( X2
                    = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ zero_zero_nat @ Uy2 @ Uz2 ) )
                 => ( ( Y2
                      = ( numeral_numeral_nat @ ( bit0 @ one ) ) )
                   => ~ ( accp_P2887432264394892906BT_nat @ vEBT_T5837161174952499735_r_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ zero_zero_nat @ Uy2 @ Uz2 ) @ Xa2 ) ) ) )
             => ( ! [V2: product_prod_nat_nat,Vb2: list_VEBT_VEBT,Vc2: vEBT_VEBT] :
                    ( ( X2
                      = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ ( suc @ zero_zero_nat ) @ Vb2 @ Vc2 ) )
                   => ( ( Y2
                        = ( numeral_numeral_nat @ ( bit0 @ one ) ) )
                     => ~ ( accp_P2887432264394892906BT_nat @ vEBT_T5837161174952499735_r_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ ( suc @ zero_zero_nat ) @ Vb2 @ Vc2 ) @ Xa2 ) ) ) )
               => ~ ! [Mi2: nat,Ma2: nat,Va3: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
                      ( ( X2
                        = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va3 ) ) @ TreeList3 @ Summary2 ) )
                     => ( ( Y2
                          = ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( if_nat @ ( Xa2 = Mi2 ) @ one_one_nat @ ( plus_plus_nat @ one_one_nat @ ( if_nat @ ( Xa2 = Ma2 ) @ one_one_nat @ ( plus_plus_nat @ one_one_nat @ ( if_nat @ ( ord_less_nat @ Xa2 @ Mi2 ) @ one_one_nat @ ( plus_plus_nat @ one_one_nat @ ( if_nat @ ( ord_less_nat @ Ma2 @ Xa2 ) @ one_one_nat @ ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit1 @ ( bit0 @ ( bit0 @ one ) ) ) ) @ ( if_nat @ ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) @ ( plus_plus_nat @ one_one_nat @ ( vEBT_T_m_e_m_b_e_r @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ one_one_nat ) ) ) ) ) ) ) ) ) ) )
                       => ~ ( accp_P2887432264394892906BT_nat @ vEBT_T5837161174952499735_r_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va3 ) ) @ TreeList3 @ Summary2 ) @ Xa2 ) ) ) ) ) ) ) ) ) ) ).

% T\<^sub>m\<^sub>e\<^sub>m\<^sub>b\<^sub>e\<^sub>r.pelims
thf(fact_5083_T_092_060_094sub_062m_092_060_094sub_062e_092_060_094sub_062m_092_060_094sub_062b_092_060_094sub_062e_092_060_094sub_062r_H_Opelims,axiom,
    ! [X2: vEBT_VEBT,Xa2: nat,Y2: nat] :
      ( ( ( vEBT_T_m_e_m_b_e_r2 @ X2 @ Xa2 )
        = Y2 )
     => ( ( accp_P2887432264394892906BT_nat @ vEBT_T8099345112685741742_r_rel @ ( produc738532404422230701BT_nat @ X2 @ Xa2 ) )
       => ( ! [A6: $o,B7: $o] :
              ( ( X2
                = ( vEBT_Leaf @ A6 @ B7 ) )
             => ( ( Y2 = one_one_nat )
               => ~ ( accp_P2887432264394892906BT_nat @ vEBT_T8099345112685741742_r_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A6 @ B7 ) @ Xa2 ) ) ) )
         => ( ! [Uu2: nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT] :
                ( ( X2
                  = ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu2 @ Uv2 @ Uw2 ) )
               => ( ( Y2 = one_one_nat )
                 => ~ ( accp_P2887432264394892906BT_nat @ vEBT_T8099345112685741742_r_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu2 @ Uv2 @ Uw2 ) @ Xa2 ) ) ) )
           => ( ! [V2: product_prod_nat_nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT] :
                  ( ( X2
                    = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ zero_zero_nat @ Uy2 @ Uz2 ) )
                 => ( ( Y2 = one_one_nat )
                   => ~ ( accp_P2887432264394892906BT_nat @ vEBT_T8099345112685741742_r_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ zero_zero_nat @ Uy2 @ Uz2 ) @ Xa2 ) ) ) )
             => ( ! [V2: product_prod_nat_nat,Vb2: list_VEBT_VEBT,Vc2: vEBT_VEBT] :
                    ( ( X2
                      = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ ( suc @ zero_zero_nat ) @ Vb2 @ Vc2 ) )
                   => ( ( Y2 = one_one_nat )
                     => ~ ( accp_P2887432264394892906BT_nat @ vEBT_T8099345112685741742_r_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ ( suc @ zero_zero_nat ) @ Vb2 @ Vc2 ) @ Xa2 ) ) ) )
               => ~ ! [Mi2: nat,Ma2: nat,Va3: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
                      ( ( X2
                        = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va3 ) ) @ TreeList3 @ Summary2 ) )
                     => ( ( Y2
                          = ( plus_plus_nat @ one_one_nat
                            @ ( if_nat @ ( Xa2 = Mi2 ) @ zero_zero_nat
                              @ ( if_nat @ ( Xa2 = Ma2 ) @ zero_zero_nat
                                @ ( if_nat @ ( ord_less_nat @ Xa2 @ Mi2 ) @ zero_zero_nat
                                  @ ( if_nat @ ( ord_less_nat @ Ma2 @ Xa2 ) @ zero_zero_nat
                                    @ ( if_nat
                                      @ ( ( ord_less_nat @ Mi2 @ Xa2 )
                                        & ( ord_less_nat @ Xa2 @ Ma2 ) )
                                      @ ( if_nat @ ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) @ ( vEBT_T_m_e_m_b_e_r2 @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ zero_zero_nat )
                                      @ zero_zero_nat ) ) ) ) ) ) )
                       => ~ ( accp_P2887432264394892906BT_nat @ vEBT_T8099345112685741742_r_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va3 ) ) @ TreeList3 @ Summary2 ) @ Xa2 ) ) ) ) ) ) ) ) ) ) ).

% T\<^sub>m\<^sub>e\<^sub>m\<^sub>b\<^sub>e\<^sub>r'.pelims
thf(fact_5084_image__divide__atLeastAtMost,axiom,
    ! [D: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ D )
     => ( ( image_rat_rat
          @ ^ [C6: rat] : ( divide_divide_rat @ C6 @ D )
          @ ( set_or633870826150836451st_rat @ A @ B ) )
        = ( set_or633870826150836451st_rat @ ( divide_divide_rat @ A @ D ) @ ( divide_divide_rat @ B @ D ) ) ) ) ).

% image_divide_atLeastAtMost
thf(fact_5085_image__divide__atLeastAtMost,axiom,
    ! [D: real,A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ D )
     => ( ( image_real_real
          @ ^ [C6: real] : ( divide_divide_real @ C6 @ D )
          @ ( set_or1222579329274155063t_real @ A @ B ) )
        = ( set_or1222579329274155063t_real @ ( divide_divide_real @ A @ D ) @ ( divide_divide_real @ B @ D ) ) ) ) ).

% image_divide_atLeastAtMost
thf(fact_5086_image__mult__atLeastAtMost,axiom,
    ! [D: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ D )
     => ( ( image_rat_rat @ ( times_times_rat @ D ) @ ( set_or633870826150836451st_rat @ A @ B ) )
        = ( set_or633870826150836451st_rat @ ( times_times_rat @ D @ A ) @ ( times_times_rat @ D @ B ) ) ) ) ).

% image_mult_atLeastAtMost
thf(fact_5087_image__mult__atLeastAtMost,axiom,
    ! [D: real,A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ D )
     => ( ( image_real_real @ ( times_times_real @ D ) @ ( set_or1222579329274155063t_real @ A @ B ) )
        = ( set_or1222579329274155063t_real @ ( times_times_real @ D @ A ) @ ( times_times_real @ D @ B ) ) ) ) ).

% image_mult_atLeastAtMost
thf(fact_5088_vebt__member_Opelims_I1_J,axiom,
    ! [X2: vEBT_VEBT,Xa2: nat,Y2: $o] :
      ( ( ( vEBT_vebt_member @ X2 @ Xa2 )
        = Y2 )
     => ( ( accp_P2887432264394892906BT_nat @ vEBT_vebt_member_rel @ ( produc738532404422230701BT_nat @ X2 @ Xa2 ) )
       => ( ! [A6: $o,B7: $o] :
              ( ( X2
                = ( vEBT_Leaf @ A6 @ B7 ) )
             => ( ( Y2
                  = ( ( ( Xa2 = zero_zero_nat )
                     => A6 )
                    & ( ( Xa2 != zero_zero_nat )
                     => ( ( ( Xa2 = one_one_nat )
                         => B7 )
                        & ( Xa2 = one_one_nat ) ) ) ) )
               => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_member_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A6 @ B7 ) @ Xa2 ) ) ) )
         => ( ! [Uu2: nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT] :
                ( ( X2
                  = ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu2 @ Uv2 @ Uw2 ) )
               => ( ~ Y2
                 => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_member_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu2 @ Uv2 @ Uw2 ) @ Xa2 ) ) ) )
           => ( ! [V2: product_prod_nat_nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT] :
                  ( ( X2
                    = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ zero_zero_nat @ Uy2 @ Uz2 ) )
                 => ( ~ Y2
                   => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_member_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ zero_zero_nat @ Uy2 @ Uz2 ) @ Xa2 ) ) ) )
             => ( ! [V2: product_prod_nat_nat,Vb2: list_VEBT_VEBT,Vc2: vEBT_VEBT] :
                    ( ( X2
                      = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ ( suc @ zero_zero_nat ) @ Vb2 @ Vc2 ) )
                   => ( ~ Y2
                     => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_member_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ ( suc @ zero_zero_nat ) @ Vb2 @ Vc2 ) @ Xa2 ) ) ) )
               => ~ ! [Mi2: nat,Ma2: nat,Va3: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
                      ( ( X2
                        = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va3 ) ) @ TreeList3 @ Summary2 ) )
                     => ( ( Y2
                          = ( ( Xa2 != Mi2 )
                           => ( ( Xa2 != Ma2 )
                             => ( ~ ( ord_less_nat @ Xa2 @ Mi2 )
                                & ( ~ ( ord_less_nat @ Xa2 @ Mi2 )
                                 => ( ~ ( ord_less_nat @ Ma2 @ Xa2 )
                                    & ( ~ ( ord_less_nat @ Ma2 @ Xa2 )
                                     => ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                                         => ( vEBT_vebt_member @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                        & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) ) ) ) ) ) ) )
                       => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_member_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va3 ) ) @ TreeList3 @ Summary2 ) @ Xa2 ) ) ) ) ) ) ) ) ) ) ).

% vebt_member.pelims(1)
thf(fact_5089_vebt__member_Opelims_I3_J,axiom,
    ! [X2: vEBT_VEBT,Xa2: nat] :
      ( ~ ( vEBT_vebt_member @ X2 @ Xa2 )
     => ( ( accp_P2887432264394892906BT_nat @ vEBT_vebt_member_rel @ ( produc738532404422230701BT_nat @ X2 @ Xa2 ) )
       => ( ! [A6: $o,B7: $o] :
              ( ( X2
                = ( vEBT_Leaf @ A6 @ B7 ) )
             => ( ( accp_P2887432264394892906BT_nat @ vEBT_vebt_member_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A6 @ B7 ) @ Xa2 ) )
               => ( ( ( Xa2 = zero_zero_nat )
                   => A6 )
                  & ( ( Xa2 != zero_zero_nat )
                   => ( ( ( Xa2 = one_one_nat )
                       => B7 )
                      & ( Xa2 = one_one_nat ) ) ) ) ) )
         => ( ! [Uu2: nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT] :
                ( ( X2
                  = ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu2 @ Uv2 @ Uw2 ) )
               => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_member_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu2 @ Uv2 @ Uw2 ) @ Xa2 ) ) )
           => ( ! [V2: product_prod_nat_nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT] :
                  ( ( X2
                    = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ zero_zero_nat @ Uy2 @ Uz2 ) )
                 => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_member_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ zero_zero_nat @ Uy2 @ Uz2 ) @ Xa2 ) ) )
             => ( ! [V2: product_prod_nat_nat,Vb2: list_VEBT_VEBT,Vc2: vEBT_VEBT] :
                    ( ( X2
                      = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ ( suc @ zero_zero_nat ) @ Vb2 @ Vc2 ) )
                   => ~ ( accp_P2887432264394892906BT_nat @ vEBT_vebt_member_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ V2 ) @ ( suc @ zero_zero_nat ) @ Vb2 @ Vc2 ) @ Xa2 ) ) )
               => ~ ! [Mi2: nat,Ma2: nat,Va3: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
                      ( ( X2
                        = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va3 ) ) @ TreeList3 @ Summary2 ) )
                     => ( ( accp_P2887432264394892906BT_nat @ vEBT_vebt_member_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va3 ) ) @ TreeList3 @ Summary2 ) @ Xa2 ) )
                       => ( ( Xa2 != Mi2 )
                         => ( ( Xa2 != Ma2 )
                           => ( ~ ( ord_less_nat @ Xa2 @ Mi2 )
                              & ( ~ ( ord_less_nat @ Xa2 @ Mi2 )
                               => ( ~ ( ord_less_nat @ Ma2 @ Xa2 )
                                  & ( ~ ( ord_less_nat @ Ma2 @ Xa2 )
                                   => ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                                       => ( vEBT_vebt_member @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                      & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).

% vebt_member.pelims(3)
thf(fact_5090_VEBT__internal_Onaive__member_Opelims_I1_J,axiom,
    ! [X2: vEBT_VEBT,Xa2: nat,Y2: $o] :
      ( ( ( vEBT_V5719532721284313246member @ X2 @ Xa2 )
        = Y2 )
     => ( ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ X2 @ Xa2 ) )
       => ( ! [A6: $o,B7: $o] :
              ( ( X2
                = ( vEBT_Leaf @ A6 @ B7 ) )
             => ( ( Y2
                  = ( ( ( Xa2 = zero_zero_nat )
                     => A6 )
                    & ( ( Xa2 != zero_zero_nat )
                     => ( ( ( Xa2 = one_one_nat )
                         => B7 )
                        & ( Xa2 = one_one_nat ) ) ) ) )
               => ~ ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A6 @ B7 ) @ Xa2 ) ) ) )
         => ( ! [Uu2: option4927543243414619207at_nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT] :
                ( ( X2
                  = ( vEBT_Node @ Uu2 @ zero_zero_nat @ Uv2 @ Uw2 ) )
               => ( ~ Y2
                 => ~ ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ Uu2 @ zero_zero_nat @ Uv2 @ Uw2 ) @ Xa2 ) ) ) )
           => ~ ! [Uy2: option4927543243414619207at_nat,V2: nat,TreeList3: list_VEBT_VEBT,S2: vEBT_VEBT] :
                  ( ( X2
                    = ( vEBT_Node @ Uy2 @ ( suc @ V2 ) @ TreeList3 @ S2 ) )
                 => ( ( Y2
                      = ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                         => ( vEBT_V5719532721284313246member @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                        & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) )
                   => ~ ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ Uy2 @ ( suc @ V2 ) @ TreeList3 @ S2 ) @ Xa2 ) ) ) ) ) ) ) ) ).

% VEBT_internal.naive_member.pelims(1)
thf(fact_5091_max__enat__simps_I3_J,axiom,
    ! [Q2: extended_enat] :
      ( ( ord_ma741700101516333627d_enat @ zero_z5237406670263579293d_enat @ Q2 )
      = Q2 ) ).

% max_enat_simps(3)
thf(fact_5092_max__enat__simps_I2_J,axiom,
    ! [Q2: extended_enat] :
      ( ( ord_ma741700101516333627d_enat @ Q2 @ zero_z5237406670263579293d_enat )
      = Q2 ) ).

% max_enat_simps(2)
thf(fact_5093_atLeastAtMost__iff,axiom,
    ! [I: set_nat,L: set_nat,U: set_nat] :
      ( ( member_set_nat @ I @ ( set_or4548717258645045905et_nat @ L @ U ) )
      = ( ( ord_less_eq_set_nat @ L @ I )
        & ( ord_less_eq_set_nat @ I @ U ) ) ) ).

% atLeastAtMost_iff
thf(fact_5094_atLeastAtMost__iff,axiom,
    ! [I: set_int,L: set_int,U: set_int] :
      ( ( member_set_int @ I @ ( set_or370866239135849197et_int @ L @ U ) )
      = ( ( ord_less_eq_set_int @ L @ I )
        & ( ord_less_eq_set_int @ I @ U ) ) ) ).

% atLeastAtMost_iff
thf(fact_5095_atLeastAtMost__iff,axiom,
    ! [I: rat,L: rat,U: rat] :
      ( ( member_rat @ I @ ( set_or633870826150836451st_rat @ L @ U ) )
      = ( ( ord_less_eq_rat @ L @ I )
        & ( ord_less_eq_rat @ I @ U ) ) ) ).

% atLeastAtMost_iff
thf(fact_5096_atLeastAtMost__iff,axiom,
    ! [I: num,L: num,U: num] :
      ( ( member_num @ I @ ( set_or7049704709247886629st_num @ L @ U ) )
      = ( ( ord_less_eq_num @ L @ I )
        & ( ord_less_eq_num @ I @ U ) ) ) ).

% atLeastAtMost_iff
thf(fact_5097_atLeastAtMost__iff,axiom,
    ! [I: nat,L: nat,U: nat] :
      ( ( member_nat @ I @ ( set_or1269000886237332187st_nat @ L @ U ) )
      = ( ( ord_less_eq_nat @ L @ I )
        & ( ord_less_eq_nat @ I @ U ) ) ) ).

% atLeastAtMost_iff
thf(fact_5098_atLeastAtMost__iff,axiom,
    ! [I: int,L: int,U: int] :
      ( ( member_int @ I @ ( set_or1266510415728281911st_int @ L @ U ) )
      = ( ( ord_less_eq_int @ L @ I )
        & ( ord_less_eq_int @ I @ U ) ) ) ).

% atLeastAtMost_iff
thf(fact_5099_atLeastAtMost__iff,axiom,
    ! [I: real,L: real,U: real] :
      ( ( member_real @ I @ ( set_or1222579329274155063t_real @ L @ U ) )
      = ( ( ord_less_eq_real @ L @ I )
        & ( ord_less_eq_real @ I @ U ) ) ) ).

% atLeastAtMost_iff
thf(fact_5100_Icc__eq__Icc,axiom,
    ! [L: set_int,H2: set_int,L3: set_int,H3: set_int] :
      ( ( ( set_or370866239135849197et_int @ L @ H2 )
        = ( set_or370866239135849197et_int @ L3 @ H3 ) )
      = ( ( ( L = L3 )
          & ( H2 = H3 ) )
        | ( ~ ( ord_less_eq_set_int @ L @ H2 )
          & ~ ( ord_less_eq_set_int @ L3 @ H3 ) ) ) ) ).

% Icc_eq_Icc
thf(fact_5101_Icc__eq__Icc,axiom,
    ! [L: rat,H2: rat,L3: rat,H3: rat] :
      ( ( ( set_or633870826150836451st_rat @ L @ H2 )
        = ( set_or633870826150836451st_rat @ L3 @ H3 ) )
      = ( ( ( L = L3 )
          & ( H2 = H3 ) )
        | ( ~ ( ord_less_eq_rat @ L @ H2 )
          & ~ ( ord_less_eq_rat @ L3 @ H3 ) ) ) ) ).

% Icc_eq_Icc
thf(fact_5102_Icc__eq__Icc,axiom,
    ! [L: num,H2: num,L3: num,H3: num] :
      ( ( ( set_or7049704709247886629st_num @ L @ H2 )
        = ( set_or7049704709247886629st_num @ L3 @ H3 ) )
      = ( ( ( L = L3 )
          & ( H2 = H3 ) )
        | ( ~ ( ord_less_eq_num @ L @ H2 )
          & ~ ( ord_less_eq_num @ L3 @ H3 ) ) ) ) ).

% Icc_eq_Icc
thf(fact_5103_Icc__eq__Icc,axiom,
    ! [L: nat,H2: nat,L3: nat,H3: nat] :
      ( ( ( set_or1269000886237332187st_nat @ L @ H2 )
        = ( set_or1269000886237332187st_nat @ L3 @ H3 ) )
      = ( ( ( L = L3 )
          & ( H2 = H3 ) )
        | ( ~ ( ord_less_eq_nat @ L @ H2 )
          & ~ ( ord_less_eq_nat @ L3 @ H3 ) ) ) ) ).

% Icc_eq_Icc
thf(fact_5104_Icc__eq__Icc,axiom,
    ! [L: int,H2: int,L3: int,H3: int] :
      ( ( ( set_or1266510415728281911st_int @ L @ H2 )
        = ( set_or1266510415728281911st_int @ L3 @ H3 ) )
      = ( ( ( L = L3 )
          & ( H2 = H3 ) )
        | ( ~ ( ord_less_eq_int @ L @ H2 )
          & ~ ( ord_less_eq_int @ L3 @ H3 ) ) ) ) ).

% Icc_eq_Icc
thf(fact_5105_Icc__eq__Icc,axiom,
    ! [L: real,H2: real,L3: real,H3: real] :
      ( ( ( set_or1222579329274155063t_real @ L @ H2 )
        = ( set_or1222579329274155063t_real @ L3 @ H3 ) )
      = ( ( ( L = L3 )
          & ( H2 = H3 ) )
        | ( ~ ( ord_less_eq_real @ L @ H2 )
          & ~ ( ord_less_eq_real @ L3 @ H3 ) ) ) ) ).

% Icc_eq_Icc
thf(fact_5106_image__Suc__atLeastAtMost,axiom,
    ! [I: nat,J: nat] :
      ( ( image_nat_nat @ suc @ ( set_or1269000886237332187st_nat @ I @ J ) )
      = ( set_or1269000886237332187st_nat @ ( suc @ I ) @ ( suc @ J ) ) ) ).

% image_Suc_atLeastAtMost
thf(fact_5107_atLeastatMost__empty__iff2,axiom,
    ! [A: $o,B: $o] :
      ( ( bot_bot_set_o
        = ( set_or8904488021354931149Most_o @ A @ B ) )
      = ( ~ ( ord_less_eq_o @ A @ B ) ) ) ).

% atLeastatMost_empty_iff2
thf(fact_5108_atLeastatMost__empty__iff2,axiom,
    ! [A: set_int,B: set_int] :
      ( ( bot_bot_set_set_int
        = ( set_or370866239135849197et_int @ A @ B ) )
      = ( ~ ( ord_less_eq_set_int @ A @ B ) ) ) ).

% atLeastatMost_empty_iff2
thf(fact_5109_atLeastatMost__empty__iff2,axiom,
    ! [A: rat,B: rat] :
      ( ( bot_bot_set_rat
        = ( set_or633870826150836451st_rat @ A @ B ) )
      = ( ~ ( ord_less_eq_rat @ A @ B ) ) ) ).

% atLeastatMost_empty_iff2
thf(fact_5110_atLeastatMost__empty__iff2,axiom,
    ! [A: num,B: num] :
      ( ( bot_bot_set_num
        = ( set_or7049704709247886629st_num @ A @ B ) )
      = ( ~ ( ord_less_eq_num @ A @ B ) ) ) ).

% atLeastatMost_empty_iff2
thf(fact_5111_atLeastatMost__empty__iff2,axiom,
    ! [A: nat,B: nat] :
      ( ( bot_bot_set_nat
        = ( set_or1269000886237332187st_nat @ A @ B ) )
      = ( ~ ( ord_less_eq_nat @ A @ B ) ) ) ).

% atLeastatMost_empty_iff2
thf(fact_5112_atLeastatMost__empty__iff2,axiom,
    ! [A: int,B: int] :
      ( ( bot_bot_set_int
        = ( set_or1266510415728281911st_int @ A @ B ) )
      = ( ~ ( ord_less_eq_int @ A @ B ) ) ) ).

% atLeastatMost_empty_iff2
thf(fact_5113_atLeastatMost__empty__iff2,axiom,
    ! [A: real,B: real] :
      ( ( bot_bot_set_real
        = ( set_or1222579329274155063t_real @ A @ B ) )
      = ( ~ ( ord_less_eq_real @ A @ B ) ) ) ).

% atLeastatMost_empty_iff2
thf(fact_5114_atLeastatMost__empty__iff,axiom,
    ! [A: $o,B: $o] :
      ( ( ( set_or8904488021354931149Most_o @ A @ B )
        = bot_bot_set_o )
      = ( ~ ( ord_less_eq_o @ A @ B ) ) ) ).

% atLeastatMost_empty_iff
thf(fact_5115_atLeastatMost__empty__iff,axiom,
    ! [A: set_int,B: set_int] :
      ( ( ( set_or370866239135849197et_int @ A @ B )
        = bot_bot_set_set_int )
      = ( ~ ( ord_less_eq_set_int @ A @ B ) ) ) ).

% atLeastatMost_empty_iff
thf(fact_5116_atLeastatMost__empty__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ( set_or633870826150836451st_rat @ A @ B )
        = bot_bot_set_rat )
      = ( ~ ( ord_less_eq_rat @ A @ B ) ) ) ).

% atLeastatMost_empty_iff
thf(fact_5117_atLeastatMost__empty__iff,axiom,
    ! [A: num,B: num] :
      ( ( ( set_or7049704709247886629st_num @ A @ B )
        = bot_bot_set_num )
      = ( ~ ( ord_less_eq_num @ A @ B ) ) ) ).

% atLeastatMost_empty_iff
thf(fact_5118_atLeastatMost__empty__iff,axiom,
    ! [A: nat,B: nat] :
      ( ( ( set_or1269000886237332187st_nat @ A @ B )
        = bot_bot_set_nat )
      = ( ~ ( ord_less_eq_nat @ A @ B ) ) ) ).

% atLeastatMost_empty_iff
thf(fact_5119_atLeastatMost__empty__iff,axiom,
    ! [A: int,B: int] :
      ( ( ( set_or1266510415728281911st_int @ A @ B )
        = bot_bot_set_int )
      = ( ~ ( ord_less_eq_int @ A @ B ) ) ) ).

% atLeastatMost_empty_iff
thf(fact_5120_atLeastatMost__empty__iff,axiom,
    ! [A: real,B: real] :
      ( ( ( set_or1222579329274155063t_real @ A @ B )
        = bot_bot_set_real )
      = ( ~ ( ord_less_eq_real @ A @ B ) ) ) ).

% atLeastatMost_empty_iff
thf(fact_5121_atLeastatMost__subset__iff,axiom,
    ! [A: set_int,B: set_int,C: set_int,D: set_int] :
      ( ( ord_le4403425263959731960et_int @ ( set_or370866239135849197et_int @ A @ B ) @ ( set_or370866239135849197et_int @ C @ D ) )
      = ( ~ ( ord_less_eq_set_int @ A @ B )
        | ( ( ord_less_eq_set_int @ C @ A )
          & ( ord_less_eq_set_int @ B @ D ) ) ) ) ).

% atLeastatMost_subset_iff
thf(fact_5122_atLeastatMost__subset__iff,axiom,
    ! [A: rat,B: rat,C: rat,D: rat] :
      ( ( ord_less_eq_set_rat @ ( set_or633870826150836451st_rat @ A @ B ) @ ( set_or633870826150836451st_rat @ C @ D ) )
      = ( ~ ( ord_less_eq_rat @ A @ B )
        | ( ( ord_less_eq_rat @ C @ A )
          & ( ord_less_eq_rat @ B @ D ) ) ) ) ).

% atLeastatMost_subset_iff
thf(fact_5123_atLeastatMost__subset__iff,axiom,
    ! [A: num,B: num,C: num,D: num] :
      ( ( ord_less_eq_set_num @ ( set_or7049704709247886629st_num @ A @ B ) @ ( set_or7049704709247886629st_num @ C @ D ) )
      = ( ~ ( ord_less_eq_num @ A @ B )
        | ( ( ord_less_eq_num @ C @ A )
          & ( ord_less_eq_num @ B @ D ) ) ) ) ).

% atLeastatMost_subset_iff
thf(fact_5124_atLeastatMost__subset__iff,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_eq_set_nat @ ( set_or1269000886237332187st_nat @ A @ B ) @ ( set_or1269000886237332187st_nat @ C @ D ) )
      = ( ~ ( ord_less_eq_nat @ A @ B )
        | ( ( ord_less_eq_nat @ C @ A )
          & ( ord_less_eq_nat @ B @ D ) ) ) ) ).

% atLeastatMost_subset_iff
thf(fact_5125_atLeastatMost__subset__iff,axiom,
    ! [A: int,B: int,C: int,D: int] :
      ( ( ord_less_eq_set_int @ ( set_or1266510415728281911st_int @ A @ B ) @ ( set_or1266510415728281911st_int @ C @ D ) )
      = ( ~ ( ord_less_eq_int @ A @ B )
        | ( ( ord_less_eq_int @ C @ A )
          & ( ord_less_eq_int @ B @ D ) ) ) ) ).

% atLeastatMost_subset_iff
thf(fact_5126_atLeastatMost__subset__iff,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( ord_less_eq_set_real @ ( set_or1222579329274155063t_real @ A @ B ) @ ( set_or1222579329274155063t_real @ C @ D ) )
      = ( ~ ( ord_less_eq_real @ A @ B )
        | ( ( ord_less_eq_real @ C @ A )
          & ( ord_less_eq_real @ B @ D ) ) ) ) ).

% atLeastatMost_subset_iff
thf(fact_5127_atLeastatMost__empty,axiom,
    ! [B: $o,A: $o] :
      ( ( ord_less_o @ B @ A )
     => ( ( set_or8904488021354931149Most_o @ A @ B )
        = bot_bot_set_o ) ) ).

% atLeastatMost_empty
thf(fact_5128_atLeastatMost__empty,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_rat @ B @ A )
     => ( ( set_or633870826150836451st_rat @ A @ B )
        = bot_bot_set_rat ) ) ).

% atLeastatMost_empty
thf(fact_5129_atLeastatMost__empty,axiom,
    ! [B: num,A: num] :
      ( ( ord_less_num @ B @ A )
     => ( ( set_or7049704709247886629st_num @ A @ B )
        = bot_bot_set_num ) ) ).

% atLeastatMost_empty
thf(fact_5130_atLeastatMost__empty,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ B @ A )
     => ( ( set_or1269000886237332187st_nat @ A @ B )
        = bot_bot_set_nat ) ) ).

% atLeastatMost_empty
thf(fact_5131_atLeastatMost__empty,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ B @ A )
     => ( ( set_or1266510415728281911st_int @ A @ B )
        = bot_bot_set_int ) ) ).

% atLeastatMost_empty
thf(fact_5132_atLeastatMost__empty,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_real @ B @ A )
     => ( ( set_or1222579329274155063t_real @ A @ B )
        = bot_bot_set_real ) ) ).

% atLeastatMost_empty
thf(fact_5133_infinite__Icc__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ~ ( finite_finite_rat @ ( set_or633870826150836451st_rat @ A @ B ) ) )
      = ( ord_less_rat @ A @ B ) ) ).

% infinite_Icc_iff
thf(fact_5134_infinite__Icc__iff,axiom,
    ! [A: real,B: real] :
      ( ( ~ ( finite_finite_real @ ( set_or1222579329274155063t_real @ A @ B ) ) )
      = ( ord_less_real @ A @ B ) ) ).

% infinite_Icc_iff
thf(fact_5135_image__add__atLeastAtMost,axiom,
    ! [K: rat,I: rat,J: rat] :
      ( ( image_rat_rat @ ( plus_plus_rat @ K ) @ ( set_or633870826150836451st_rat @ I @ J ) )
      = ( set_or633870826150836451st_rat @ ( plus_plus_rat @ I @ K ) @ ( plus_plus_rat @ J @ K ) ) ) ).

% image_add_atLeastAtMost
thf(fact_5136_image__add__atLeastAtMost,axiom,
    ! [K: nat,I: nat,J: nat] :
      ( ( image_nat_nat @ ( plus_plus_nat @ K ) @ ( set_or1269000886237332187st_nat @ I @ J ) )
      = ( set_or1269000886237332187st_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ K ) ) ) ).

% image_add_atLeastAtMost
thf(fact_5137_image__add__atLeastAtMost,axiom,
    ! [K: int,I: int,J: int] :
      ( ( image_int_int @ ( plus_plus_int @ K ) @ ( set_or1266510415728281911st_int @ I @ J ) )
      = ( set_or1266510415728281911st_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ K ) ) ) ).

% image_add_atLeastAtMost
thf(fact_5138_image__add__atLeastAtMost,axiom,
    ! [K: real,I: real,J: real] :
      ( ( image_real_real @ ( plus_plus_real @ K ) @ ( set_or1222579329274155063t_real @ I @ J ) )
      = ( set_or1222579329274155063t_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ K ) ) ) ).

% image_add_atLeastAtMost
thf(fact_5139_image__diff__atLeastAtMost,axiom,
    ! [D: rat,A: rat,B: rat] :
      ( ( image_rat_rat @ ( minus_minus_rat @ D ) @ ( set_or633870826150836451st_rat @ A @ B ) )
      = ( set_or633870826150836451st_rat @ ( minus_minus_rat @ D @ B ) @ ( minus_minus_rat @ D @ A ) ) ) ).

% image_diff_atLeastAtMost
thf(fact_5140_image__diff__atLeastAtMost,axiom,
    ! [D: int,A: int,B: int] :
      ( ( image_int_int @ ( minus_minus_int @ D ) @ ( set_or1266510415728281911st_int @ A @ B ) )
      = ( set_or1266510415728281911st_int @ ( minus_minus_int @ D @ B ) @ ( minus_minus_int @ D @ A ) ) ) ).

% image_diff_atLeastAtMost
thf(fact_5141_image__diff__atLeastAtMost,axiom,
    ! [D: real,A: real,B: real] :
      ( ( image_real_real @ ( minus_minus_real @ D ) @ ( set_or1222579329274155063t_real @ A @ B ) )
      = ( set_or1222579329274155063t_real @ ( minus_minus_real @ D @ B ) @ ( minus_minus_real @ D @ A ) ) ) ).

% image_diff_atLeastAtMost
thf(fact_5142_atLeastAtMost__singleton__iff,axiom,
    ! [A: $o,B: $o,C: $o] :
      ( ( ( set_or8904488021354931149Most_o @ A @ B )
        = ( insert_o @ C @ bot_bot_set_o ) )
      = ( ( A = B )
        & ( B = C ) ) ) ).

% atLeastAtMost_singleton_iff
thf(fact_5143_atLeastAtMost__singleton__iff,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ( set_or1269000886237332187st_nat @ A @ B )
        = ( insert_nat @ C @ bot_bot_set_nat ) )
      = ( ( A = B )
        & ( B = C ) ) ) ).

% atLeastAtMost_singleton_iff
thf(fact_5144_atLeastAtMost__singleton__iff,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ( set_or1266510415728281911st_int @ A @ B )
        = ( insert_int @ C @ bot_bot_set_int ) )
      = ( ( A = B )
        & ( B = C ) ) ) ).

% atLeastAtMost_singleton_iff
thf(fact_5145_atLeastAtMost__singleton__iff,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ( set_or1222579329274155063t_real @ A @ B )
        = ( insert_real @ C @ bot_bot_set_real ) )
      = ( ( A = B )
        & ( B = C ) ) ) ).

% atLeastAtMost_singleton_iff
thf(fact_5146_atLeastAtMost__singleton,axiom,
    ! [A: $o] :
      ( ( set_or8904488021354931149Most_o @ A @ A )
      = ( insert_o @ A @ bot_bot_set_o ) ) ).

% atLeastAtMost_singleton
thf(fact_5147_atLeastAtMost__singleton,axiom,
    ! [A: nat] :
      ( ( set_or1269000886237332187st_nat @ A @ A )
      = ( insert_nat @ A @ bot_bot_set_nat ) ) ).

% atLeastAtMost_singleton
thf(fact_5148_atLeastAtMost__singleton,axiom,
    ! [A: int] :
      ( ( set_or1266510415728281911st_int @ A @ A )
      = ( insert_int @ A @ bot_bot_set_int ) ) ).

% atLeastAtMost_singleton
thf(fact_5149_atLeastAtMost__singleton,axiom,
    ! [A: real] :
      ( ( set_or1222579329274155063t_real @ A @ A )
      = ( insert_real @ A @ bot_bot_set_real ) ) ).

% atLeastAtMost_singleton
thf(fact_5150_image__add__atLeastAtMost_H,axiom,
    ! [K: rat,I: rat,J: rat] :
      ( ( image_rat_rat
        @ ^ [N2: rat] : ( plus_plus_rat @ N2 @ K )
        @ ( set_or633870826150836451st_rat @ I @ J ) )
      = ( set_or633870826150836451st_rat @ ( plus_plus_rat @ I @ K ) @ ( plus_plus_rat @ J @ K ) ) ) ).

% image_add_atLeastAtMost'
thf(fact_5151_image__add__atLeastAtMost_H,axiom,
    ! [K: nat,I: nat,J: nat] :
      ( ( image_nat_nat
        @ ^ [N2: nat] : ( plus_plus_nat @ N2 @ K )
        @ ( set_or1269000886237332187st_nat @ I @ J ) )
      = ( set_or1269000886237332187st_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ K ) ) ) ).

% image_add_atLeastAtMost'
thf(fact_5152_image__add__atLeastAtMost_H,axiom,
    ! [K: int,I: int,J: int] :
      ( ( image_int_int
        @ ^ [N2: int] : ( plus_plus_int @ N2 @ K )
        @ ( set_or1266510415728281911st_int @ I @ J ) )
      = ( set_or1266510415728281911st_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ K ) ) ) ).

% image_add_atLeastAtMost'
thf(fact_5153_image__add__atLeastAtMost_H,axiom,
    ! [K: real,I: real,J: real] :
      ( ( image_real_real
        @ ^ [N2: real] : ( plus_plus_real @ N2 @ K )
        @ ( set_or1222579329274155063t_real @ I @ J ) )
      = ( set_or1222579329274155063t_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ K ) ) ) ).

% image_add_atLeastAtMost'
thf(fact_5154_image__minus__const__atLeastAtMost_H,axiom,
    ! [D: rat,A: rat,B: rat] :
      ( ( image_rat_rat
        @ ^ [T2: rat] : ( minus_minus_rat @ T2 @ D )
        @ ( set_or633870826150836451st_rat @ A @ B ) )
      = ( set_or633870826150836451st_rat @ ( minus_minus_rat @ A @ D ) @ ( minus_minus_rat @ B @ D ) ) ) ).

% image_minus_const_atLeastAtMost'
thf(fact_5155_image__minus__const__atLeastAtMost_H,axiom,
    ! [D: int,A: int,B: int] :
      ( ( image_int_int
        @ ^ [T2: int] : ( minus_minus_int @ T2 @ D )
        @ ( set_or1266510415728281911st_int @ A @ B ) )
      = ( set_or1266510415728281911st_int @ ( minus_minus_int @ A @ D ) @ ( minus_minus_int @ B @ D ) ) ) ).

% image_minus_const_atLeastAtMost'
thf(fact_5156_image__minus__const__atLeastAtMost_H,axiom,
    ! [D: real,A: real,B: real] :
      ( ( image_real_real
        @ ^ [T2: real] : ( minus_minus_real @ T2 @ D )
        @ ( set_or1222579329274155063t_real @ A @ B ) )
      = ( set_or1222579329274155063t_real @ ( minus_minus_real @ A @ D ) @ ( minus_minus_real @ B @ D ) ) ) ).

% image_minus_const_atLeastAtMost'
thf(fact_5157_bot__enat__def,axiom,
    bot_bo4199563552545308370d_enat = zero_z5237406670263579293d_enat ).

% bot_enat_def
thf(fact_5158_zero__one__enat__neq_I1_J,axiom,
    zero_z5237406670263579293d_enat != one_on7984719198319812577d_enat ).

% zero_one_enat_neq(1)
thf(fact_5159_imult__is__0,axiom,
    ! [M: extended_enat,N: extended_enat] :
      ( ( ( times_7803423173614009249d_enat @ M @ N )
        = zero_z5237406670263579293d_enat )
      = ( ( M = zero_z5237406670263579293d_enat )
        | ( N = zero_z5237406670263579293d_enat ) ) ) ).

% imult_is_0
thf(fact_5160_atLeastAtMostPlus1__int__conv,axiom,
    ! [M: int,N: int] :
      ( ( ord_less_eq_int @ M @ ( plus_plus_int @ one_one_int @ N ) )
     => ( ( set_or1266510415728281911st_int @ M @ ( plus_plus_int @ one_one_int @ N ) )
        = ( insert_int @ ( plus_plus_int @ one_one_int @ N ) @ ( set_or1266510415728281911st_int @ M @ N ) ) ) ) ).

% atLeastAtMostPlus1_int_conv
thf(fact_5161_bounded__Max__nat,axiom,
    ! [P: nat > $o,X2: nat,M7: nat] :
      ( ( P @ X2 )
     => ( ! [X4: nat] :
            ( ( P @ X4 )
           => ( ord_less_eq_nat @ X4 @ M7 ) )
       => ~ ! [M4: nat] :
              ( ( P @ M4 )
             => ~ ! [X3: nat] :
                    ( ( P @ X3 )
                   => ( ord_less_eq_nat @ X3 @ M4 ) ) ) ) ) ).

% bounded_Max_nat
thf(fact_5162_fold__atLeastAtMost__nat_Ocases,axiom,
    ! [X2: produc4471711990508489141at_nat] :
      ~ ! [F5: nat > nat > nat,A6: nat,B7: nat,Acc: nat] :
          ( X2
         != ( produc3209952032786966637at_nat @ F5 @ ( produc487386426758144856at_nat @ A6 @ ( product_Pair_nat_nat @ B7 @ Acc ) ) ) ) ).

% fold_atLeastAtMost_nat.cases
thf(fact_5163_zero__notin__Suc__image,axiom,
    ! [A2: set_nat] :
      ~ ( member_nat @ zero_zero_nat @ ( image_nat_nat @ suc @ A2 ) ) ).

% zero_notin_Suc_image
thf(fact_5164_finite__nat__set__iff__bounded,axiom,
    ( finite_finite_nat
    = ( ^ [N6: set_nat] :
        ? [M3: nat] :
        ! [X: nat] :
          ( ( member_nat @ X @ N6 )
         => ( ord_less_nat @ X @ M3 ) ) ) ) ).

% finite_nat_set_iff_bounded
thf(fact_5165_bounded__nat__set__is__finite,axiom,
    ! [N4: set_nat,N: nat] :
      ( ! [X4: nat] :
          ( ( member_nat @ X4 @ N4 )
         => ( ord_less_nat @ X4 @ N ) )
     => ( finite_finite_nat @ N4 ) ) ).

% bounded_nat_set_is_finite
thf(fact_5166_finite__nat__set__iff__bounded__le,axiom,
    ( finite_finite_nat
    = ( ^ [N6: set_nat] :
        ? [M3: nat] :
        ! [X: nat] :
          ( ( member_nat @ X @ N6 )
         => ( ord_less_eq_nat @ X @ M3 ) ) ) ) ).

% finite_nat_set_iff_bounded_le
thf(fact_5167_finite__M__bounded__by__nat,axiom,
    ! [P: nat > $o,I: nat] :
      ( finite_finite_nat
      @ ( collect_nat
        @ ^ [K2: nat] :
            ( ( P @ K2 )
            & ( ord_less_nat @ K2 @ I ) ) ) ) ).

% finite_M_bounded_by_nat
thf(fact_5168_finite__less__ub,axiom,
    ! [F: nat > nat,U: nat] :
      ( ! [N3: nat] : ( ord_less_eq_nat @ N3 @ ( F @ N3 ) )
     => ( finite_finite_nat
        @ ( collect_nat
          @ ^ [N2: nat] : ( ord_less_eq_nat @ ( F @ N2 ) @ U ) ) ) ) ).

% finite_less_ub
thf(fact_5169_infinite__Icc,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ B )
     => ~ ( finite_finite_rat @ ( set_or633870826150836451st_rat @ A @ B ) ) ) ).

% infinite_Icc
thf(fact_5170_infinite__Icc,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ~ ( finite_finite_real @ ( set_or1222579329274155063t_real @ A @ B ) ) ) ).

% infinite_Icc
thf(fact_5171_atLeastAtMost__singleton_H,axiom,
    ! [A: $o,B: $o] :
      ( ( A = B )
     => ( ( set_or8904488021354931149Most_o @ A @ B )
        = ( insert_o @ A @ bot_bot_set_o ) ) ) ).

% atLeastAtMost_singleton'
thf(fact_5172_atLeastAtMost__singleton_H,axiom,
    ! [A: nat,B: nat] :
      ( ( A = B )
     => ( ( set_or1269000886237332187st_nat @ A @ B )
        = ( insert_nat @ A @ bot_bot_set_nat ) ) ) ).

% atLeastAtMost_singleton'
thf(fact_5173_atLeastAtMost__singleton_H,axiom,
    ! [A: int,B: int] :
      ( ( A = B )
     => ( ( set_or1266510415728281911st_int @ A @ B )
        = ( insert_int @ A @ bot_bot_set_int ) ) ) ).

% atLeastAtMost_singleton'
thf(fact_5174_atLeastAtMost__singleton_H,axiom,
    ! [A: real,B: real] :
      ( ( A = B )
     => ( ( set_or1222579329274155063t_real @ A @ B )
        = ( insert_real @ A @ bot_bot_set_real ) ) ) ).

% atLeastAtMost_singleton'
thf(fact_5175_atLeastatMost__psubset__iff,axiom,
    ! [A: set_int,B: set_int,C: set_int,D: set_int] :
      ( ( ord_less_set_set_int @ ( set_or370866239135849197et_int @ A @ B ) @ ( set_or370866239135849197et_int @ C @ D ) )
      = ( ( ~ ( ord_less_eq_set_int @ A @ B )
          | ( ( ord_less_eq_set_int @ C @ A )
            & ( ord_less_eq_set_int @ B @ D )
            & ( ( ord_less_set_int @ C @ A )
              | ( ord_less_set_int @ B @ D ) ) ) )
        & ( ord_less_eq_set_int @ C @ D ) ) ) ).

% atLeastatMost_psubset_iff
thf(fact_5176_atLeastatMost__psubset__iff,axiom,
    ! [A: rat,B: rat,C: rat,D: rat] :
      ( ( ord_less_set_rat @ ( set_or633870826150836451st_rat @ A @ B ) @ ( set_or633870826150836451st_rat @ C @ D ) )
      = ( ( ~ ( ord_less_eq_rat @ A @ B )
          | ( ( ord_less_eq_rat @ C @ A )
            & ( ord_less_eq_rat @ B @ D )
            & ( ( ord_less_rat @ C @ A )
              | ( ord_less_rat @ B @ D ) ) ) )
        & ( ord_less_eq_rat @ C @ D ) ) ) ).

% atLeastatMost_psubset_iff
thf(fact_5177_atLeastatMost__psubset__iff,axiom,
    ! [A: num,B: num,C: num,D: num] :
      ( ( ord_less_set_num @ ( set_or7049704709247886629st_num @ A @ B ) @ ( set_or7049704709247886629st_num @ C @ D ) )
      = ( ( ~ ( ord_less_eq_num @ A @ B )
          | ( ( ord_less_eq_num @ C @ A )
            & ( ord_less_eq_num @ B @ D )
            & ( ( ord_less_num @ C @ A )
              | ( ord_less_num @ B @ D ) ) ) )
        & ( ord_less_eq_num @ C @ D ) ) ) ).

% atLeastatMost_psubset_iff
thf(fact_5178_atLeastatMost__psubset__iff,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_set_nat @ ( set_or1269000886237332187st_nat @ A @ B ) @ ( set_or1269000886237332187st_nat @ C @ D ) )
      = ( ( ~ ( ord_less_eq_nat @ A @ B )
          | ( ( ord_less_eq_nat @ C @ A )
            & ( ord_less_eq_nat @ B @ D )
            & ( ( ord_less_nat @ C @ A )
              | ( ord_less_nat @ B @ D ) ) ) )
        & ( ord_less_eq_nat @ C @ D ) ) ) ).

% atLeastatMost_psubset_iff
thf(fact_5179_atLeastatMost__psubset__iff,axiom,
    ! [A: int,B: int,C: int,D: int] :
      ( ( ord_less_set_int @ ( set_or1266510415728281911st_int @ A @ B ) @ ( set_or1266510415728281911st_int @ C @ D ) )
      = ( ( ~ ( ord_less_eq_int @ A @ B )
          | ( ( ord_less_eq_int @ C @ A )
            & ( ord_less_eq_int @ B @ D )
            & ( ( ord_less_int @ C @ A )
              | ( ord_less_int @ B @ D ) ) ) )
        & ( ord_less_eq_int @ C @ D ) ) ) ).

% atLeastatMost_psubset_iff
thf(fact_5180_atLeastatMost__psubset__iff,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( ord_less_set_real @ ( set_or1222579329274155063t_real @ A @ B ) @ ( set_or1222579329274155063t_real @ C @ D ) )
      = ( ( ~ ( ord_less_eq_real @ A @ B )
          | ( ( ord_less_eq_real @ C @ A )
            & ( ord_less_eq_real @ B @ D )
            & ( ( ord_less_real @ C @ A )
              | ( ord_less_real @ B @ D ) ) ) )
        & ( ord_less_eq_real @ C @ D ) ) ) ).

% atLeastatMost_psubset_iff
thf(fact_5181_atLeast0__atMost__Suc,axiom,
    ! [N: nat] :
      ( ( set_or1269000886237332187st_nat @ zero_zero_nat @ ( suc @ N ) )
      = ( insert_nat @ ( suc @ N ) @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) ) ) ).

% atLeast0_atMost_Suc
thf(fact_5182_atLeast0__atMost__Suc__eq__insert__0,axiom,
    ! [N: nat] :
      ( ( set_or1269000886237332187st_nat @ zero_zero_nat @ ( suc @ N ) )
      = ( insert_nat @ zero_zero_nat @ ( image_nat_nat @ suc @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) ) ) ) ).

% atLeast0_atMost_Suc_eq_insert_0
thf(fact_5183_Icc__eq__insert__lb__nat,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( set_or1269000886237332187st_nat @ M @ N )
        = ( insert_nat @ M @ ( set_or1269000886237332187st_nat @ ( suc @ M ) @ N ) ) ) ) ).

% Icc_eq_insert_lb_nat
thf(fact_5184_atLeastAtMostSuc__conv,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ ( suc @ N ) )
     => ( ( set_or1269000886237332187st_nat @ M @ ( suc @ N ) )
        = ( insert_nat @ ( suc @ N ) @ ( set_or1269000886237332187st_nat @ M @ N ) ) ) ) ).

% atLeastAtMostSuc_conv
thf(fact_5185_atLeastAtMost__insertL,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( insert_nat @ M @ ( set_or1269000886237332187st_nat @ ( suc @ M ) @ N ) )
        = ( set_or1269000886237332187st_nat @ M @ N ) ) ) ).

% atLeastAtMost_insertL
thf(fact_5186_subset__eq__atLeast0__atMost__finite,axiom,
    ! [N4: set_nat,N: nat] :
      ( ( ord_less_eq_set_nat @ N4 @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) )
     => ( finite_finite_nat @ N4 ) ) ).

% subset_eq_atLeast0_atMost_finite
thf(fact_5187_image__mult__atLeastAtMost__if,axiom,
    ! [C: rat,X2: rat,Y2: rat] :
      ( ( ( ord_less_rat @ zero_zero_rat @ C )
       => ( ( image_rat_rat @ ( times_times_rat @ C ) @ ( set_or633870826150836451st_rat @ X2 @ Y2 ) )
          = ( set_or633870826150836451st_rat @ ( times_times_rat @ C @ X2 ) @ ( times_times_rat @ C @ Y2 ) ) ) )
      & ( ~ ( ord_less_rat @ zero_zero_rat @ C )
       => ( ( ( ord_less_eq_rat @ X2 @ Y2 )
           => ( ( image_rat_rat @ ( times_times_rat @ C ) @ ( set_or633870826150836451st_rat @ X2 @ Y2 ) )
              = ( set_or633870826150836451st_rat @ ( times_times_rat @ C @ Y2 ) @ ( times_times_rat @ C @ X2 ) ) ) )
          & ( ~ ( ord_less_eq_rat @ X2 @ Y2 )
           => ( ( image_rat_rat @ ( times_times_rat @ C ) @ ( set_or633870826150836451st_rat @ X2 @ Y2 ) )
              = bot_bot_set_rat ) ) ) ) ) ).

% image_mult_atLeastAtMost_if
thf(fact_5188_image__mult__atLeastAtMost__if,axiom,
    ! [C: real,X2: real,Y2: real] :
      ( ( ( ord_less_real @ zero_zero_real @ C )
       => ( ( image_real_real @ ( times_times_real @ C ) @ ( set_or1222579329274155063t_real @ X2 @ Y2 ) )
          = ( set_or1222579329274155063t_real @ ( times_times_real @ C @ X2 ) @ ( times_times_real @ C @ Y2 ) ) ) )
      & ( ~ ( ord_less_real @ zero_zero_real @ C )
       => ( ( ( ord_less_eq_real @ X2 @ Y2 )
           => ( ( image_real_real @ ( times_times_real @ C ) @ ( set_or1222579329274155063t_real @ X2 @ Y2 ) )
              = ( set_or1222579329274155063t_real @ ( times_times_real @ C @ Y2 ) @ ( times_times_real @ C @ X2 ) ) ) )
          & ( ~ ( ord_less_eq_real @ X2 @ Y2 )
           => ( ( image_real_real @ ( times_times_real @ C ) @ ( set_or1222579329274155063t_real @ X2 @ Y2 ) )
              = bot_bot_set_real ) ) ) ) ) ).

% image_mult_atLeastAtMost_if
thf(fact_5189_image__mult__atLeastAtMost__if_H,axiom,
    ! [X2: rat,Y2: rat,C: rat] :
      ( ( ( ord_less_eq_rat @ X2 @ Y2 )
       => ( ( ( ord_less_rat @ zero_zero_rat @ C )
           => ( ( image_rat_rat
                @ ^ [X: rat] : ( times_times_rat @ X @ C )
                @ ( set_or633870826150836451st_rat @ X2 @ Y2 ) )
              = ( set_or633870826150836451st_rat @ ( times_times_rat @ X2 @ C ) @ ( times_times_rat @ Y2 @ C ) ) ) )
          & ( ~ ( ord_less_rat @ zero_zero_rat @ C )
           => ( ( image_rat_rat
                @ ^ [X: rat] : ( times_times_rat @ X @ C )
                @ ( set_or633870826150836451st_rat @ X2 @ Y2 ) )
              = ( set_or633870826150836451st_rat @ ( times_times_rat @ Y2 @ C ) @ ( times_times_rat @ X2 @ C ) ) ) ) ) )
      & ( ~ ( ord_less_eq_rat @ X2 @ Y2 )
       => ( ( image_rat_rat
            @ ^ [X: rat] : ( times_times_rat @ X @ C )
            @ ( set_or633870826150836451st_rat @ X2 @ Y2 ) )
          = bot_bot_set_rat ) ) ) ).

% image_mult_atLeastAtMost_if'
thf(fact_5190_image__mult__atLeastAtMost__if_H,axiom,
    ! [X2: real,Y2: real,C: real] :
      ( ( ( ord_less_eq_real @ X2 @ Y2 )
       => ( ( ( ord_less_real @ zero_zero_real @ C )
           => ( ( image_real_real
                @ ^ [X: real] : ( times_times_real @ X @ C )
                @ ( set_or1222579329274155063t_real @ X2 @ Y2 ) )
              = ( set_or1222579329274155063t_real @ ( times_times_real @ X2 @ C ) @ ( times_times_real @ Y2 @ C ) ) ) )
          & ( ~ ( ord_less_real @ zero_zero_real @ C )
           => ( ( image_real_real
                @ ^ [X: real] : ( times_times_real @ X @ C )
                @ ( set_or1222579329274155063t_real @ X2 @ Y2 ) )
              = ( set_or1222579329274155063t_real @ ( times_times_real @ Y2 @ C ) @ ( times_times_real @ X2 @ C ) ) ) ) ) )
      & ( ~ ( ord_less_eq_real @ X2 @ Y2 )
       => ( ( image_real_real
            @ ^ [X: real] : ( times_times_real @ X @ C )
            @ ( set_or1222579329274155063t_real @ X2 @ Y2 ) )
          = bot_bot_set_real ) ) ) ).

% image_mult_atLeastAtMost_if'
thf(fact_5191_image__affinity__atLeastAtMost,axiom,
    ! [A: rat,B: rat,M: rat,C: rat] :
      ( ( ( ( set_or633870826150836451st_rat @ A @ B )
          = bot_bot_set_rat )
       => ( ( image_rat_rat
            @ ^ [X: rat] : ( plus_plus_rat @ ( times_times_rat @ M @ X ) @ C )
            @ ( set_or633870826150836451st_rat @ A @ B ) )
          = bot_bot_set_rat ) )
      & ( ( ( set_or633870826150836451st_rat @ A @ B )
         != bot_bot_set_rat )
       => ( ( ( ord_less_eq_rat @ zero_zero_rat @ M )
           => ( ( image_rat_rat
                @ ^ [X: rat] : ( plus_plus_rat @ ( times_times_rat @ M @ X ) @ C )
                @ ( set_or633870826150836451st_rat @ A @ B ) )
              = ( set_or633870826150836451st_rat @ ( plus_plus_rat @ ( times_times_rat @ M @ A ) @ C ) @ ( plus_plus_rat @ ( times_times_rat @ M @ B ) @ C ) ) ) )
          & ( ~ ( ord_less_eq_rat @ zero_zero_rat @ M )
           => ( ( image_rat_rat
                @ ^ [X: rat] : ( plus_plus_rat @ ( times_times_rat @ M @ X ) @ C )
                @ ( set_or633870826150836451st_rat @ A @ B ) )
              = ( set_or633870826150836451st_rat @ ( plus_plus_rat @ ( times_times_rat @ M @ B ) @ C ) @ ( plus_plus_rat @ ( times_times_rat @ M @ A ) @ C ) ) ) ) ) ) ) ).

% image_affinity_atLeastAtMost
thf(fact_5192_image__affinity__atLeastAtMost,axiom,
    ! [A: real,B: real,M: real,C: real] :
      ( ( ( ( set_or1222579329274155063t_real @ A @ B )
          = bot_bot_set_real )
       => ( ( image_real_real
            @ ^ [X: real] : ( plus_plus_real @ ( times_times_real @ M @ X ) @ C )
            @ ( set_or1222579329274155063t_real @ A @ B ) )
          = bot_bot_set_real ) )
      & ( ( ( set_or1222579329274155063t_real @ A @ B )
         != bot_bot_set_real )
       => ( ( ( ord_less_eq_real @ zero_zero_real @ M )
           => ( ( image_real_real
                @ ^ [X: real] : ( plus_plus_real @ ( times_times_real @ M @ X ) @ C )
                @ ( set_or1222579329274155063t_real @ A @ B ) )
              = ( set_or1222579329274155063t_real @ ( plus_plus_real @ ( times_times_real @ M @ A ) @ C ) @ ( plus_plus_real @ ( times_times_real @ M @ B ) @ C ) ) ) )
          & ( ~ ( ord_less_eq_real @ zero_zero_real @ M )
           => ( ( image_real_real
                @ ^ [X: real] : ( plus_plus_real @ ( times_times_real @ M @ X ) @ C )
                @ ( set_or1222579329274155063t_real @ A @ B ) )
              = ( set_or1222579329274155063t_real @ ( plus_plus_real @ ( times_times_real @ M @ B ) @ C ) @ ( plus_plus_real @ ( times_times_real @ M @ A ) @ C ) ) ) ) ) ) ) ).

% image_affinity_atLeastAtMost
thf(fact_5193_image__affinity__atLeastAtMost__diff,axiom,
    ! [A: rat,B: rat,M: rat,C: rat] :
      ( ( ( ( set_or633870826150836451st_rat @ A @ B )
          = bot_bot_set_rat )
       => ( ( image_rat_rat
            @ ^ [X: rat] : ( minus_minus_rat @ ( times_times_rat @ M @ X ) @ C )
            @ ( set_or633870826150836451st_rat @ A @ B ) )
          = bot_bot_set_rat ) )
      & ( ( ( set_or633870826150836451st_rat @ A @ B )
         != bot_bot_set_rat )
       => ( ( ( ord_less_eq_rat @ zero_zero_rat @ M )
           => ( ( image_rat_rat
                @ ^ [X: rat] : ( minus_minus_rat @ ( times_times_rat @ M @ X ) @ C )
                @ ( set_or633870826150836451st_rat @ A @ B ) )
              = ( set_or633870826150836451st_rat @ ( minus_minus_rat @ ( times_times_rat @ M @ A ) @ C ) @ ( minus_minus_rat @ ( times_times_rat @ M @ B ) @ C ) ) ) )
          & ( ~ ( ord_less_eq_rat @ zero_zero_rat @ M )
           => ( ( image_rat_rat
                @ ^ [X: rat] : ( minus_minus_rat @ ( times_times_rat @ M @ X ) @ C )
                @ ( set_or633870826150836451st_rat @ A @ B ) )
              = ( set_or633870826150836451st_rat @ ( minus_minus_rat @ ( times_times_rat @ M @ B ) @ C ) @ ( minus_minus_rat @ ( times_times_rat @ M @ A ) @ C ) ) ) ) ) ) ) ).

% image_affinity_atLeastAtMost_diff
thf(fact_5194_image__affinity__atLeastAtMost__diff,axiom,
    ! [A: real,B: real,M: real,C: real] :
      ( ( ( ( set_or1222579329274155063t_real @ A @ B )
          = bot_bot_set_real )
       => ( ( image_real_real
            @ ^ [X: real] : ( minus_minus_real @ ( times_times_real @ M @ X ) @ C )
            @ ( set_or1222579329274155063t_real @ A @ B ) )
          = bot_bot_set_real ) )
      & ( ( ( set_or1222579329274155063t_real @ A @ B )
         != bot_bot_set_real )
       => ( ( ( ord_less_eq_real @ zero_zero_real @ M )
           => ( ( image_real_real
                @ ^ [X: real] : ( minus_minus_real @ ( times_times_real @ M @ X ) @ C )
                @ ( set_or1222579329274155063t_real @ A @ B ) )
              = ( set_or1222579329274155063t_real @ ( minus_minus_real @ ( times_times_real @ M @ A ) @ C ) @ ( minus_minus_real @ ( times_times_real @ M @ B ) @ C ) ) ) )
          & ( ~ ( ord_less_eq_real @ zero_zero_real @ M )
           => ( ( image_real_real
                @ ^ [X: real] : ( minus_minus_real @ ( times_times_real @ M @ X ) @ C )
                @ ( set_or1222579329274155063t_real @ A @ B ) )
              = ( set_or1222579329274155063t_real @ ( minus_minus_real @ ( times_times_real @ M @ B ) @ C ) @ ( minus_minus_real @ ( times_times_real @ M @ A ) @ C ) ) ) ) ) ) ) ).

% image_affinity_atLeastAtMost_diff
thf(fact_5195_image__affinity__atLeastAtMost__div,axiom,
    ! [A: rat,B: rat,M: rat,C: rat] :
      ( ( ( ( set_or633870826150836451st_rat @ A @ B )
          = bot_bot_set_rat )
       => ( ( image_rat_rat
            @ ^ [X: rat] : ( plus_plus_rat @ ( divide_divide_rat @ X @ M ) @ C )
            @ ( set_or633870826150836451st_rat @ A @ B ) )
          = bot_bot_set_rat ) )
      & ( ( ( set_or633870826150836451st_rat @ A @ B )
         != bot_bot_set_rat )
       => ( ( ( ord_less_eq_rat @ zero_zero_rat @ M )
           => ( ( image_rat_rat
                @ ^ [X: rat] : ( plus_plus_rat @ ( divide_divide_rat @ X @ M ) @ C )
                @ ( set_or633870826150836451st_rat @ A @ B ) )
              = ( set_or633870826150836451st_rat @ ( plus_plus_rat @ ( divide_divide_rat @ A @ M ) @ C ) @ ( plus_plus_rat @ ( divide_divide_rat @ B @ M ) @ C ) ) ) )
          & ( ~ ( ord_less_eq_rat @ zero_zero_rat @ M )
           => ( ( image_rat_rat
                @ ^ [X: rat] : ( plus_plus_rat @ ( divide_divide_rat @ X @ M ) @ C )
                @ ( set_or633870826150836451st_rat @ A @ B ) )
              = ( set_or633870826150836451st_rat @ ( plus_plus_rat @ ( divide_divide_rat @ B @ M ) @ C ) @ ( plus_plus_rat @ ( divide_divide_rat @ A @ M ) @ C ) ) ) ) ) ) ) ).

% image_affinity_atLeastAtMost_div
thf(fact_5196_image__affinity__atLeastAtMost__div,axiom,
    ! [A: real,B: real,M: real,C: real] :
      ( ( ( ( set_or1222579329274155063t_real @ A @ B )
          = bot_bot_set_real )
       => ( ( image_real_real
            @ ^ [X: real] : ( plus_plus_real @ ( divide_divide_real @ X @ M ) @ C )
            @ ( set_or1222579329274155063t_real @ A @ B ) )
          = bot_bot_set_real ) )
      & ( ( ( set_or1222579329274155063t_real @ A @ B )
         != bot_bot_set_real )
       => ( ( ( ord_less_eq_real @ zero_zero_real @ M )
           => ( ( image_real_real
                @ ^ [X: real] : ( plus_plus_real @ ( divide_divide_real @ X @ M ) @ C )
                @ ( set_or1222579329274155063t_real @ A @ B ) )
              = ( set_or1222579329274155063t_real @ ( plus_plus_real @ ( divide_divide_real @ A @ M ) @ C ) @ ( plus_plus_real @ ( divide_divide_real @ B @ M ) @ C ) ) ) )
          & ( ~ ( ord_less_eq_real @ zero_zero_real @ M )
           => ( ( image_real_real
                @ ^ [X: real] : ( plus_plus_real @ ( divide_divide_real @ X @ M ) @ C )
                @ ( set_or1222579329274155063t_real @ A @ B ) )
              = ( set_or1222579329274155063t_real @ ( plus_plus_real @ ( divide_divide_real @ B @ M ) @ C ) @ ( plus_plus_real @ ( divide_divide_real @ A @ M ) @ C ) ) ) ) ) ) ) ).

% image_affinity_atLeastAtMost_div
thf(fact_5197_image__affinity__atLeastAtMost__div__diff,axiom,
    ! [A: rat,B: rat,M: rat,C: rat] :
      ( ( ( ( set_or633870826150836451st_rat @ A @ B )
          = bot_bot_set_rat )
       => ( ( image_rat_rat
            @ ^ [X: rat] : ( minus_minus_rat @ ( divide_divide_rat @ X @ M ) @ C )
            @ ( set_or633870826150836451st_rat @ A @ B ) )
          = bot_bot_set_rat ) )
      & ( ( ( set_or633870826150836451st_rat @ A @ B )
         != bot_bot_set_rat )
       => ( ( ( ord_less_eq_rat @ zero_zero_rat @ M )
           => ( ( image_rat_rat
                @ ^ [X: rat] : ( minus_minus_rat @ ( divide_divide_rat @ X @ M ) @ C )
                @ ( set_or633870826150836451st_rat @ A @ B ) )
              = ( set_or633870826150836451st_rat @ ( minus_minus_rat @ ( divide_divide_rat @ A @ M ) @ C ) @ ( minus_minus_rat @ ( divide_divide_rat @ B @ M ) @ C ) ) ) )
          & ( ~ ( ord_less_eq_rat @ zero_zero_rat @ M )
           => ( ( image_rat_rat
                @ ^ [X: rat] : ( minus_minus_rat @ ( divide_divide_rat @ X @ M ) @ C )
                @ ( set_or633870826150836451st_rat @ A @ B ) )
              = ( set_or633870826150836451st_rat @ ( minus_minus_rat @ ( divide_divide_rat @ B @ M ) @ C ) @ ( minus_minus_rat @ ( divide_divide_rat @ A @ M ) @ C ) ) ) ) ) ) ) ).

% image_affinity_atLeastAtMost_div_diff
thf(fact_5198_image__affinity__atLeastAtMost__div__diff,axiom,
    ! [A: real,B: real,M: real,C: real] :
      ( ( ( ( set_or1222579329274155063t_real @ A @ B )
          = bot_bot_set_real )
       => ( ( image_real_real
            @ ^ [X: real] : ( minus_minus_real @ ( divide_divide_real @ X @ M ) @ C )
            @ ( set_or1222579329274155063t_real @ A @ B ) )
          = bot_bot_set_real ) )
      & ( ( ( set_or1222579329274155063t_real @ A @ B )
         != bot_bot_set_real )
       => ( ( ( ord_less_eq_real @ zero_zero_real @ M )
           => ( ( image_real_real
                @ ^ [X: real] : ( minus_minus_real @ ( divide_divide_real @ X @ M ) @ C )
                @ ( set_or1222579329274155063t_real @ A @ B ) )
              = ( set_or1222579329274155063t_real @ ( minus_minus_real @ ( divide_divide_real @ A @ M ) @ C ) @ ( minus_minus_real @ ( divide_divide_real @ B @ M ) @ C ) ) ) )
          & ( ~ ( ord_less_eq_real @ zero_zero_real @ M )
           => ( ( image_real_real
                @ ^ [X: real] : ( minus_minus_real @ ( divide_divide_real @ X @ M ) @ C )
                @ ( set_or1222579329274155063t_real @ A @ B ) )
              = ( set_or1222579329274155063t_real @ ( minus_minus_real @ ( divide_divide_real @ B @ M ) @ C ) @ ( minus_minus_real @ ( divide_divide_real @ A @ M ) @ C ) ) ) ) ) ) ) ).

% image_affinity_atLeastAtMost_div_diff
thf(fact_5199_vebt__member_Opelims_I2_J,axiom,
    ! [X2: vEBT_VEBT,Xa2: nat] :
      ( ( vEBT_vebt_member @ X2 @ Xa2 )
     => ( ( accp_P2887432264394892906BT_nat @ vEBT_vebt_member_rel @ ( produc738532404422230701BT_nat @ X2 @ Xa2 ) )
       => ( ! [A6: $o,B7: $o] :
              ( ( X2
                = ( vEBT_Leaf @ A6 @ B7 ) )
             => ( ( accp_P2887432264394892906BT_nat @ vEBT_vebt_member_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A6 @ B7 ) @ Xa2 ) )
               => ~ ( ( ( Xa2 = zero_zero_nat )
                     => A6 )
                    & ( ( Xa2 != zero_zero_nat )
                     => ( ( ( Xa2 = one_one_nat )
                         => B7 )
                        & ( Xa2 = one_one_nat ) ) ) ) ) )
         => ~ ! [Mi2: nat,Ma2: nat,Va3: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
                ( ( X2
                  = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va3 ) ) @ TreeList3 @ Summary2 ) )
               => ( ( accp_P2887432264394892906BT_nat @ vEBT_vebt_member_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ ( suc @ Va3 ) ) @ TreeList3 @ Summary2 ) @ Xa2 ) )
                 => ~ ( ( Xa2 != Mi2 )
                     => ( ( Xa2 != Ma2 )
                       => ( ~ ( ord_less_nat @ Xa2 @ Mi2 )
                          & ( ~ ( ord_less_nat @ Xa2 @ Mi2 )
                           => ( ~ ( ord_less_nat @ Ma2 @ Xa2 )
                              & ( ~ ( ord_less_nat @ Ma2 @ Xa2 )
                               => ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                                   => ( vEBT_vebt_member @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                                  & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).

% vebt_member.pelims(2)
thf(fact_5200_VEBT__internal_Onaive__member_Opelims_I3_J,axiom,
    ! [X2: vEBT_VEBT,Xa2: nat] :
      ( ~ ( vEBT_V5719532721284313246member @ X2 @ Xa2 )
     => ( ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ X2 @ Xa2 ) )
       => ( ! [A6: $o,B7: $o] :
              ( ( X2
                = ( vEBT_Leaf @ A6 @ B7 ) )
             => ( ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A6 @ B7 ) @ Xa2 ) )
               => ( ( ( Xa2 = zero_zero_nat )
                   => A6 )
                  & ( ( Xa2 != zero_zero_nat )
                   => ( ( ( Xa2 = one_one_nat )
                       => B7 )
                      & ( Xa2 = one_one_nat ) ) ) ) ) )
         => ( ! [Uu2: option4927543243414619207at_nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT] :
                ( ( X2
                  = ( vEBT_Node @ Uu2 @ zero_zero_nat @ Uv2 @ Uw2 ) )
               => ~ ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ Uu2 @ zero_zero_nat @ Uv2 @ Uw2 ) @ Xa2 ) ) )
           => ~ ! [Uy2: option4927543243414619207at_nat,V2: nat,TreeList3: list_VEBT_VEBT,S2: vEBT_VEBT] :
                  ( ( X2
                    = ( vEBT_Node @ Uy2 @ ( suc @ V2 ) @ TreeList3 @ S2 ) )
                 => ( ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ Uy2 @ ( suc @ V2 ) @ TreeList3 @ S2 ) @ Xa2 ) )
                   => ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                       => ( vEBT_V5719532721284313246member @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                      & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) ) ) ) ) ) ) ).

% VEBT_internal.naive_member.pelims(3)
thf(fact_5201_VEBT__internal_Onaive__member_Opelims_I2_J,axiom,
    ! [X2: vEBT_VEBT,Xa2: nat] :
      ( ( vEBT_V5719532721284313246member @ X2 @ Xa2 )
     => ( ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ X2 @ Xa2 ) )
       => ( ! [A6: $o,B7: $o] :
              ( ( X2
                = ( vEBT_Leaf @ A6 @ B7 ) )
             => ( ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ A6 @ B7 ) @ Xa2 ) )
               => ~ ( ( ( Xa2 = zero_zero_nat )
                     => A6 )
                    & ( ( Xa2 != zero_zero_nat )
                     => ( ( ( Xa2 = one_one_nat )
                         => B7 )
                        & ( Xa2 = one_one_nat ) ) ) ) ) )
         => ~ ! [Uy2: option4927543243414619207at_nat,V2: nat,TreeList3: list_VEBT_VEBT,S2: vEBT_VEBT] :
                ( ( X2
                  = ( vEBT_Node @ Uy2 @ ( suc @ V2 ) @ TreeList3 @ S2 ) )
               => ( ( accp_P2887432264394892906BT_nat @ vEBT_V5765760719290551771er_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ Uy2 @ ( suc @ V2 ) @ TreeList3 @ S2 ) @ Xa2 ) )
                 => ~ ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                       => ( vEBT_V5719532721284313246member @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                      & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) ) ) ) ) ) ).

% VEBT_internal.naive_member.pelims(2)
thf(fact_5202_VEBT__internal_Omembermima_Opelims_I3_J,axiom,
    ! [X2: vEBT_VEBT,Xa2: nat] :
      ( ~ ( vEBT_VEBT_membermima @ X2 @ Xa2 )
     => ( ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ X2 @ Xa2 ) )
       => ( ! [Uu2: $o,Uv2: $o] :
              ( ( X2
                = ( vEBT_Leaf @ Uu2 @ Uv2 ) )
             => ~ ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uu2 @ Uv2 ) @ Xa2 ) ) )
         => ( ! [Ux2: list_VEBT_VEBT,Uy2: vEBT_VEBT] :
                ( ( X2
                  = ( vEBT_Node @ none_P5556105721700978146at_nat @ zero_zero_nat @ Ux2 @ Uy2 ) )
               => ~ ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ zero_zero_nat @ Ux2 @ Uy2 ) @ Xa2 ) ) )
           => ( ! [Mi2: nat,Ma2: nat,Va2: list_VEBT_VEBT,Vb2: vEBT_VEBT] :
                  ( ( X2
                    = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ Va2 @ Vb2 ) )
                 => ( ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ Va2 @ Vb2 ) @ Xa2 ) )
                   => ( ( Xa2 = Mi2 )
                      | ( Xa2 = Ma2 ) ) ) )
             => ( ! [Mi2: nat,Ma2: nat,V2: nat,TreeList3: list_VEBT_VEBT,Vc2: vEBT_VEBT] :
                    ( ( X2
                      = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ V2 ) @ TreeList3 @ Vc2 ) )
                   => ( ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ V2 ) @ TreeList3 @ Vc2 ) @ Xa2 ) )
                     => ( ( Xa2 = Mi2 )
                        | ( Xa2 = Ma2 )
                        | ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                           => ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                          & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) ) ) )
               => ~ ! [V2: nat,TreeList3: list_VEBT_VEBT,Vd2: vEBT_VEBT] :
                      ( ( X2
                        = ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V2 ) @ TreeList3 @ Vd2 ) )
                     => ( ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V2 ) @ TreeList3 @ Vd2 ) @ Xa2 ) )
                       => ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                           => ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                          & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) ) ) ) ) ) ) ) ) ).

% VEBT_internal.membermima.pelims(3)
thf(fact_5203_VEBT__internal_Omembermima_Opelims_I1_J,axiom,
    ! [X2: vEBT_VEBT,Xa2: nat,Y2: $o] :
      ( ( ( vEBT_VEBT_membermima @ X2 @ Xa2 )
        = Y2 )
     => ( ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ X2 @ Xa2 ) )
       => ( ! [Uu2: $o,Uv2: $o] :
              ( ( X2
                = ( vEBT_Leaf @ Uu2 @ Uv2 ) )
             => ( ~ Y2
               => ~ ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Leaf @ Uu2 @ Uv2 ) @ Xa2 ) ) ) )
         => ( ! [Ux2: list_VEBT_VEBT,Uy2: vEBT_VEBT] :
                ( ( X2
                  = ( vEBT_Node @ none_P5556105721700978146at_nat @ zero_zero_nat @ Ux2 @ Uy2 ) )
               => ( ~ Y2
                 => ~ ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ zero_zero_nat @ Ux2 @ Uy2 ) @ Xa2 ) ) ) )
           => ( ! [Mi2: nat,Ma2: nat,Va2: list_VEBT_VEBT,Vb2: vEBT_VEBT] :
                  ( ( X2
                    = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ Va2 @ Vb2 ) )
                 => ( ( Y2
                      = ( ( Xa2 = Mi2 )
                        | ( Xa2 = Ma2 ) ) )
                   => ~ ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ Va2 @ Vb2 ) @ Xa2 ) ) ) )
             => ( ! [Mi2: nat,Ma2: nat,V2: nat,TreeList3: list_VEBT_VEBT,Vc2: vEBT_VEBT] :
                    ( ( X2
                      = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ V2 ) @ TreeList3 @ Vc2 ) )
                   => ( ( Y2
                        = ( ( Xa2 = Mi2 )
                          | ( Xa2 = Ma2 )
                          | ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                             => ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                            & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) ) )
                     => ~ ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ V2 ) @ TreeList3 @ Vc2 ) @ Xa2 ) ) ) )
               => ~ ! [V2: nat,TreeList3: list_VEBT_VEBT,Vd2: vEBT_VEBT] :
                      ( ( X2
                        = ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V2 ) @ TreeList3 @ Vd2 ) )
                     => ( ( Y2
                          = ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                             => ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                            & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) )
                       => ~ ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V2 ) @ TreeList3 @ Vd2 ) @ Xa2 ) ) ) ) ) ) ) ) ) ) ).

% VEBT_internal.membermima.pelims(1)
thf(fact_5204_VEBT__internal_Omembermima_Opelims_I2_J,axiom,
    ! [X2: vEBT_VEBT,Xa2: nat] :
      ( ( vEBT_VEBT_membermima @ X2 @ Xa2 )
     => ( ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ X2 @ Xa2 ) )
       => ( ! [Mi2: nat,Ma2: nat,Va2: list_VEBT_VEBT,Vb2: vEBT_VEBT] :
              ( ( X2
                = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ Va2 @ Vb2 ) )
             => ( ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ zero_zero_nat @ Va2 @ Vb2 ) @ Xa2 ) )
               => ~ ( ( Xa2 = Mi2 )
                    | ( Xa2 = Ma2 ) ) ) )
         => ( ! [Mi2: nat,Ma2: nat,V2: nat,TreeList3: list_VEBT_VEBT,Vc2: vEBT_VEBT] :
                ( ( X2
                  = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ V2 ) @ TreeList3 @ Vc2 ) )
               => ( ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ ( suc @ V2 ) @ TreeList3 @ Vc2 ) @ Xa2 ) )
                 => ~ ( ( Xa2 = Mi2 )
                      | ( Xa2 = Ma2 )
                      | ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                         => ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                        & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) ) ) )
           => ~ ! [V2: nat,TreeList3: list_VEBT_VEBT,Vd2: vEBT_VEBT] :
                  ( ( X2
                    = ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V2 ) @ TreeList3 @ Vd2 ) )
                 => ( ( accp_P2887432264394892906BT_nat @ vEBT_V4351362008482014158ma_rel @ ( produc738532404422230701BT_nat @ ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ V2 ) @ TreeList3 @ Vd2 ) @ Xa2 ) )
                   => ~ ( ( ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) )
                         => ( vEBT_VEBT_membermima @ ( nth_VEBT_VEBT @ TreeList3 @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_VEBT_low @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
                        & ( ord_less_nat @ ( vEBT_VEBT_high @ Xa2 @ ( divide_divide_nat @ ( suc @ V2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( size_s6755466524823107622T_VEBT @ TreeList3 ) ) ) ) ) ) ) ) ) ).

% VEBT_internal.membermima.pelims(2)
thf(fact_5205_cppi,axiom,
    ! [D3: int,P: int > $o,P6: int > $o,A2: set_int] :
      ( ( ord_less_int @ zero_zero_int @ D3 )
     => ( ? [Z2: int] :
          ! [X4: int] :
            ( ( ord_less_int @ Z2 @ X4 )
           => ( ( P @ X4 )
              = ( P6 @ X4 ) ) )
       => ( ! [X4: int] :
              ( ! [Xa: int] :
                  ( ( member_int @ Xa @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
                 => ! [Xb2: int] :
                      ( ( member_int @ Xb2 @ A2 )
                     => ( X4
                       != ( minus_minus_int @ Xb2 @ Xa ) ) ) )
             => ( ( P @ X4 )
               => ( P @ ( plus_plus_int @ X4 @ D3 ) ) ) )
         => ( ! [X4: int,K3: int] :
                ( ( P6 @ X4 )
                = ( P6 @ ( minus_minus_int @ X4 @ ( times_times_int @ K3 @ D3 ) ) ) )
           => ( ( ? [X5: int] : ( P @ X5 ) )
              = ( ? [X: int] :
                    ( ( member_int @ X @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
                    & ( P6 @ X ) )
                | ? [X: int] :
                    ( ( member_int @ X @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
                    & ? [Y: int] :
                        ( ( member_int @ Y @ A2 )
                        & ( P @ ( minus_minus_int @ Y @ X ) ) ) ) ) ) ) ) ) ) ).

% cppi
thf(fact_5206_cpmi,axiom,
    ! [D3: int,P: int > $o,P6: int > $o,B3: set_int] :
      ( ( ord_less_int @ zero_zero_int @ D3 )
     => ( ? [Z2: int] :
          ! [X4: int] :
            ( ( ord_less_int @ X4 @ Z2 )
           => ( ( P @ X4 )
              = ( P6 @ X4 ) ) )
       => ( ! [X4: int] :
              ( ! [Xa: int] :
                  ( ( member_int @ Xa @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
                 => ! [Xb2: int] :
                      ( ( member_int @ Xb2 @ B3 )
                     => ( X4
                       != ( plus_plus_int @ Xb2 @ Xa ) ) ) )
             => ( ( P @ X4 )
               => ( P @ ( minus_minus_int @ X4 @ D3 ) ) ) )
         => ( ! [X4: int,K3: int] :
                ( ( P6 @ X4 )
                = ( P6 @ ( minus_minus_int @ X4 @ ( times_times_int @ K3 @ D3 ) ) ) )
           => ( ( ? [X5: int] : ( P @ X5 ) )
              = ( ? [X: int] :
                    ( ( member_int @ X @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
                    & ( P6 @ X ) )
                | ? [X: int] :
                    ( ( member_int @ X @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
                    & ? [Y: int] :
                        ( ( member_int @ Y @ B3 )
                        & ( P @ ( plus_plus_int @ Y @ X ) ) ) ) ) ) ) ) ) ) ).

% cpmi
thf(fact_5207_aset_I8_J,axiom,
    ! [D3: int,A2: set_int,T: int] :
      ( ( ord_less_int @ zero_zero_int @ D3 )
     => ! [X3: int] :
          ( ! [Xa3: int] :
              ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
             => ! [Xb3: int] :
                  ( ( member_int @ Xb3 @ A2 )
                 => ( X3
                   != ( minus_minus_int @ Xb3 @ Xa3 ) ) ) )
         => ( ( ord_less_eq_int @ T @ X3 )
           => ( ord_less_eq_int @ T @ ( plus_plus_int @ X3 @ D3 ) ) ) ) ) ).

% aset(8)
thf(fact_5208_aset_I6_J,axiom,
    ! [D3: int,T: int,A2: set_int] :
      ( ( ord_less_int @ zero_zero_int @ D3 )
     => ( ( member_int @ ( plus_plus_int @ T @ one_one_int ) @ A2 )
       => ! [X3: int] :
            ( ! [Xa3: int] :
                ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
               => ! [Xb3: int] :
                    ( ( member_int @ Xb3 @ A2 )
                   => ( X3
                     != ( minus_minus_int @ Xb3 @ Xa3 ) ) ) )
           => ( ( ord_less_eq_int @ X3 @ T )
             => ( ord_less_eq_int @ ( plus_plus_int @ X3 @ D3 ) @ T ) ) ) ) ) ).

% aset(6)
thf(fact_5209_minf_I7_J,axiom,
    ! [T: real] :
    ? [Z3: real] :
    ! [X3: real] :
      ( ( ord_less_real @ X3 @ Z3 )
     => ~ ( ord_less_real @ T @ X3 ) ) ).

% minf(7)
thf(fact_5210_minf_I7_J,axiom,
    ! [T: rat] :
    ? [Z3: rat] :
    ! [X3: rat] :
      ( ( ord_less_rat @ X3 @ Z3 )
     => ~ ( ord_less_rat @ T @ X3 ) ) ).

% minf(7)
thf(fact_5211_minf_I7_J,axiom,
    ! [T: num] :
    ? [Z3: num] :
    ! [X3: num] :
      ( ( ord_less_num @ X3 @ Z3 )
     => ~ ( ord_less_num @ T @ X3 ) ) ).

% minf(7)
thf(fact_5212_minf_I7_J,axiom,
    ! [T: nat] :
    ? [Z3: nat] :
    ! [X3: nat] :
      ( ( ord_less_nat @ X3 @ Z3 )
     => ~ ( ord_less_nat @ T @ X3 ) ) ).

% minf(7)
thf(fact_5213_minf_I7_J,axiom,
    ! [T: int] :
    ? [Z3: int] :
    ! [X3: int] :
      ( ( ord_less_int @ X3 @ Z3 )
     => ~ ( ord_less_int @ T @ X3 ) ) ).

% minf(7)
thf(fact_5214_minf_I5_J,axiom,
    ! [T: real] :
    ? [Z3: real] :
    ! [X3: real] :
      ( ( ord_less_real @ X3 @ Z3 )
     => ( ord_less_real @ X3 @ T ) ) ).

% minf(5)
thf(fact_5215_minf_I5_J,axiom,
    ! [T: rat] :
    ? [Z3: rat] :
    ! [X3: rat] :
      ( ( ord_less_rat @ X3 @ Z3 )
     => ( ord_less_rat @ X3 @ T ) ) ).

% minf(5)
thf(fact_5216_minf_I5_J,axiom,
    ! [T: num] :
    ? [Z3: num] :
    ! [X3: num] :
      ( ( ord_less_num @ X3 @ Z3 )
     => ( ord_less_num @ X3 @ T ) ) ).

% minf(5)
thf(fact_5217_minf_I5_J,axiom,
    ! [T: nat] :
    ? [Z3: nat] :
    ! [X3: nat] :
      ( ( ord_less_nat @ X3 @ Z3 )
     => ( ord_less_nat @ X3 @ T ) ) ).

% minf(5)
thf(fact_5218_minf_I5_J,axiom,
    ! [T: int] :
    ? [Z3: int] :
    ! [X3: int] :
      ( ( ord_less_int @ X3 @ Z3 )
     => ( ord_less_int @ X3 @ T ) ) ).

% minf(5)
thf(fact_5219_minf_I4_J,axiom,
    ! [T: real] :
    ? [Z3: real] :
    ! [X3: real] :
      ( ( ord_less_real @ X3 @ Z3 )
     => ( X3 != T ) ) ).

% minf(4)
thf(fact_5220_minf_I4_J,axiom,
    ! [T: rat] :
    ? [Z3: rat] :
    ! [X3: rat] :
      ( ( ord_less_rat @ X3 @ Z3 )
     => ( X3 != T ) ) ).

% minf(4)
thf(fact_5221_minf_I4_J,axiom,
    ! [T: num] :
    ? [Z3: num] :
    ! [X3: num] :
      ( ( ord_less_num @ X3 @ Z3 )
     => ( X3 != T ) ) ).

% minf(4)
thf(fact_5222_minf_I4_J,axiom,
    ! [T: nat] :
    ? [Z3: nat] :
    ! [X3: nat] :
      ( ( ord_less_nat @ X3 @ Z3 )
     => ( X3 != T ) ) ).

% minf(4)
thf(fact_5223_minf_I4_J,axiom,
    ! [T: int] :
    ? [Z3: int] :
    ! [X3: int] :
      ( ( ord_less_int @ X3 @ Z3 )
     => ( X3 != T ) ) ).

% minf(4)
thf(fact_5224_minf_I3_J,axiom,
    ! [T: real] :
    ? [Z3: real] :
    ! [X3: real] :
      ( ( ord_less_real @ X3 @ Z3 )
     => ( X3 != T ) ) ).

% minf(3)
thf(fact_5225_minf_I3_J,axiom,
    ! [T: rat] :
    ? [Z3: rat] :
    ! [X3: rat] :
      ( ( ord_less_rat @ X3 @ Z3 )
     => ( X3 != T ) ) ).

% minf(3)
thf(fact_5226_minf_I3_J,axiom,
    ! [T: num] :
    ? [Z3: num] :
    ! [X3: num] :
      ( ( ord_less_num @ X3 @ Z3 )
     => ( X3 != T ) ) ).

% minf(3)
thf(fact_5227_minf_I3_J,axiom,
    ! [T: nat] :
    ? [Z3: nat] :
    ! [X3: nat] :
      ( ( ord_less_nat @ X3 @ Z3 )
     => ( X3 != T ) ) ).

% minf(3)
thf(fact_5228_minf_I3_J,axiom,
    ! [T: int] :
    ? [Z3: int] :
    ! [X3: int] :
      ( ( ord_less_int @ X3 @ Z3 )
     => ( X3 != T ) ) ).

% minf(3)
thf(fact_5229_minf_I2_J,axiom,
    ! [P: real > $o,P6: real > $o,Q: real > $o,Q6: real > $o] :
      ( ? [Z2: real] :
        ! [X4: real] :
          ( ( ord_less_real @ X4 @ Z2 )
         => ( ( P @ X4 )
            = ( P6 @ X4 ) ) )
     => ( ? [Z2: real] :
          ! [X4: real] :
            ( ( ord_less_real @ X4 @ Z2 )
           => ( ( Q @ X4 )
              = ( Q6 @ X4 ) ) )
       => ? [Z3: real] :
          ! [X3: real] :
            ( ( ord_less_real @ X3 @ Z3 )
           => ( ( ( P @ X3 )
                | ( Q @ X3 ) )
              = ( ( P6 @ X3 )
                | ( Q6 @ X3 ) ) ) ) ) ) ).

% minf(2)
thf(fact_5230_minf_I2_J,axiom,
    ! [P: rat > $o,P6: rat > $o,Q: rat > $o,Q6: rat > $o] :
      ( ? [Z2: rat] :
        ! [X4: rat] :
          ( ( ord_less_rat @ X4 @ Z2 )
         => ( ( P @ X4 )
            = ( P6 @ X4 ) ) )
     => ( ? [Z2: rat] :
          ! [X4: rat] :
            ( ( ord_less_rat @ X4 @ Z2 )
           => ( ( Q @ X4 )
              = ( Q6 @ X4 ) ) )
       => ? [Z3: rat] :
          ! [X3: rat] :
            ( ( ord_less_rat @ X3 @ Z3 )
           => ( ( ( P @ X3 )
                | ( Q @ X3 ) )
              = ( ( P6 @ X3 )
                | ( Q6 @ X3 ) ) ) ) ) ) ).

% minf(2)
thf(fact_5231_minf_I2_J,axiom,
    ! [P: num > $o,P6: num > $o,Q: num > $o,Q6: num > $o] :
      ( ? [Z2: num] :
        ! [X4: num] :
          ( ( ord_less_num @ X4 @ Z2 )
         => ( ( P @ X4 )
            = ( P6 @ X4 ) ) )
     => ( ? [Z2: num] :
          ! [X4: num] :
            ( ( ord_less_num @ X4 @ Z2 )
           => ( ( Q @ X4 )
              = ( Q6 @ X4 ) ) )
       => ? [Z3: num] :
          ! [X3: num] :
            ( ( ord_less_num @ X3 @ Z3 )
           => ( ( ( P @ X3 )
                | ( Q @ X3 ) )
              = ( ( P6 @ X3 )
                | ( Q6 @ X3 ) ) ) ) ) ) ).

% minf(2)
thf(fact_5232_minf_I2_J,axiom,
    ! [P: nat > $o,P6: nat > $o,Q: nat > $o,Q6: nat > $o] :
      ( ? [Z2: nat] :
        ! [X4: nat] :
          ( ( ord_less_nat @ X4 @ Z2 )
         => ( ( P @ X4 )
            = ( P6 @ X4 ) ) )
     => ( ? [Z2: nat] :
          ! [X4: nat] :
            ( ( ord_less_nat @ X4 @ Z2 )
           => ( ( Q @ X4 )
              = ( Q6 @ X4 ) ) )
       => ? [Z3: nat] :
          ! [X3: nat] :
            ( ( ord_less_nat @ X3 @ Z3 )
           => ( ( ( P @ X3 )
                | ( Q @ X3 ) )
              = ( ( P6 @ X3 )
                | ( Q6 @ X3 ) ) ) ) ) ) ).

% minf(2)
thf(fact_5233_minf_I2_J,axiom,
    ! [P: int > $o,P6: int > $o,Q: int > $o,Q6: int > $o] :
      ( ? [Z2: int] :
        ! [X4: int] :
          ( ( ord_less_int @ X4 @ Z2 )
         => ( ( P @ X4 )
            = ( P6 @ X4 ) ) )
     => ( ? [Z2: int] :
          ! [X4: int] :
            ( ( ord_less_int @ X4 @ Z2 )
           => ( ( Q @ X4 )
              = ( Q6 @ X4 ) ) )
       => ? [Z3: int] :
          ! [X3: int] :
            ( ( ord_less_int @ X3 @ Z3 )
           => ( ( ( P @ X3 )
                | ( Q @ X3 ) )
              = ( ( P6 @ X3 )
                | ( Q6 @ X3 ) ) ) ) ) ) ).

% minf(2)
thf(fact_5234_minf_I1_J,axiom,
    ! [P: real > $o,P6: real > $o,Q: real > $o,Q6: real > $o] :
      ( ? [Z2: real] :
        ! [X4: real] :
          ( ( ord_less_real @ X4 @ Z2 )
         => ( ( P @ X4 )
            = ( P6 @ X4 ) ) )
     => ( ? [Z2: real] :
          ! [X4: real] :
            ( ( ord_less_real @ X4 @ Z2 )
           => ( ( Q @ X4 )
              = ( Q6 @ X4 ) ) )
       => ? [Z3: real] :
          ! [X3: real] :
            ( ( ord_less_real @ X3 @ Z3 )
           => ( ( ( P @ X3 )
                & ( Q @ X3 ) )
              = ( ( P6 @ X3 )
                & ( Q6 @ X3 ) ) ) ) ) ) ).

% minf(1)
thf(fact_5235_minf_I1_J,axiom,
    ! [P: rat > $o,P6: rat > $o,Q: rat > $o,Q6: rat > $o] :
      ( ? [Z2: rat] :
        ! [X4: rat] :
          ( ( ord_less_rat @ X4 @ Z2 )
         => ( ( P @ X4 )
            = ( P6 @ X4 ) ) )
     => ( ? [Z2: rat] :
          ! [X4: rat] :
            ( ( ord_less_rat @ X4 @ Z2 )
           => ( ( Q @ X4 )
              = ( Q6 @ X4 ) ) )
       => ? [Z3: rat] :
          ! [X3: rat] :
            ( ( ord_less_rat @ X3 @ Z3 )
           => ( ( ( P @ X3 )
                & ( Q @ X3 ) )
              = ( ( P6 @ X3 )
                & ( Q6 @ X3 ) ) ) ) ) ) ).

% minf(1)
thf(fact_5236_minf_I1_J,axiom,
    ! [P: num > $o,P6: num > $o,Q: num > $o,Q6: num > $o] :
      ( ? [Z2: num] :
        ! [X4: num] :
          ( ( ord_less_num @ X4 @ Z2 )
         => ( ( P @ X4 )
            = ( P6 @ X4 ) ) )
     => ( ? [Z2: num] :
          ! [X4: num] :
            ( ( ord_less_num @ X4 @ Z2 )
           => ( ( Q @ X4 )
              = ( Q6 @ X4 ) ) )
       => ? [Z3: num] :
          ! [X3: num] :
            ( ( ord_less_num @ X3 @ Z3 )
           => ( ( ( P @ X3 )
                & ( Q @ X3 ) )
              = ( ( P6 @ X3 )
                & ( Q6 @ X3 ) ) ) ) ) ) ).

% minf(1)
thf(fact_5237_minf_I1_J,axiom,
    ! [P: nat > $o,P6: nat > $o,Q: nat > $o,Q6: nat > $o] :
      ( ? [Z2: nat] :
        ! [X4: nat] :
          ( ( ord_less_nat @ X4 @ Z2 )
         => ( ( P @ X4 )
            = ( P6 @ X4 ) ) )
     => ( ? [Z2: nat] :
          ! [X4: nat] :
            ( ( ord_less_nat @ X4 @ Z2 )
           => ( ( Q @ X4 )
              = ( Q6 @ X4 ) ) )
       => ? [Z3: nat] :
          ! [X3: nat] :
            ( ( ord_less_nat @ X3 @ Z3 )
           => ( ( ( P @ X3 )
                & ( Q @ X3 ) )
              = ( ( P6 @ X3 )
                & ( Q6 @ X3 ) ) ) ) ) ) ).

% minf(1)
thf(fact_5238_minf_I1_J,axiom,
    ! [P: int > $o,P6: int > $o,Q: int > $o,Q6: int > $o] :
      ( ? [Z2: int] :
        ! [X4: int] :
          ( ( ord_less_int @ X4 @ Z2 )
         => ( ( P @ X4 )
            = ( P6 @ X4 ) ) )
     => ( ? [Z2: int] :
          ! [X4: int] :
            ( ( ord_less_int @ X4 @ Z2 )
           => ( ( Q @ X4 )
              = ( Q6 @ X4 ) ) )
       => ? [Z3: int] :
          ! [X3: int] :
            ( ( ord_less_int @ X3 @ Z3 )
           => ( ( ( P @ X3 )
                & ( Q @ X3 ) )
              = ( ( P6 @ X3 )
                & ( Q6 @ X3 ) ) ) ) ) ) ).

% minf(1)
thf(fact_5239_pinf_I7_J,axiom,
    ! [T: real] :
    ? [Z3: real] :
    ! [X3: real] :
      ( ( ord_less_real @ Z3 @ X3 )
     => ( ord_less_real @ T @ X3 ) ) ).

% pinf(7)
thf(fact_5240_pinf_I7_J,axiom,
    ! [T: rat] :
    ? [Z3: rat] :
    ! [X3: rat] :
      ( ( ord_less_rat @ Z3 @ X3 )
     => ( ord_less_rat @ T @ X3 ) ) ).

% pinf(7)
thf(fact_5241_pinf_I7_J,axiom,
    ! [T: num] :
    ? [Z3: num] :
    ! [X3: num] :
      ( ( ord_less_num @ Z3 @ X3 )
     => ( ord_less_num @ T @ X3 ) ) ).

% pinf(7)
thf(fact_5242_pinf_I7_J,axiom,
    ! [T: nat] :
    ? [Z3: nat] :
    ! [X3: nat] :
      ( ( ord_less_nat @ Z3 @ X3 )
     => ( ord_less_nat @ T @ X3 ) ) ).

% pinf(7)
thf(fact_5243_pinf_I7_J,axiom,
    ! [T: int] :
    ? [Z3: int] :
    ! [X3: int] :
      ( ( ord_less_int @ Z3 @ X3 )
     => ( ord_less_int @ T @ X3 ) ) ).

% pinf(7)
thf(fact_5244_pinf_I5_J,axiom,
    ! [T: real] :
    ? [Z3: real] :
    ! [X3: real] :
      ( ( ord_less_real @ Z3 @ X3 )
     => ~ ( ord_less_real @ X3 @ T ) ) ).

% pinf(5)
thf(fact_5245_pinf_I5_J,axiom,
    ! [T: rat] :
    ? [Z3: rat] :
    ! [X3: rat] :
      ( ( ord_less_rat @ Z3 @ X3 )
     => ~ ( ord_less_rat @ X3 @ T ) ) ).

% pinf(5)
thf(fact_5246_pinf_I5_J,axiom,
    ! [T: num] :
    ? [Z3: num] :
    ! [X3: num] :
      ( ( ord_less_num @ Z3 @ X3 )
     => ~ ( ord_less_num @ X3 @ T ) ) ).

% pinf(5)
thf(fact_5247_pinf_I5_J,axiom,
    ! [T: nat] :
    ? [Z3: nat] :
    ! [X3: nat] :
      ( ( ord_less_nat @ Z3 @ X3 )
     => ~ ( ord_less_nat @ X3 @ T ) ) ).

% pinf(5)
thf(fact_5248_pinf_I5_J,axiom,
    ! [T: int] :
    ? [Z3: int] :
    ! [X3: int] :
      ( ( ord_less_int @ Z3 @ X3 )
     => ~ ( ord_less_int @ X3 @ T ) ) ).

% pinf(5)
thf(fact_5249_pinf_I4_J,axiom,
    ! [T: real] :
    ? [Z3: real] :
    ! [X3: real] :
      ( ( ord_less_real @ Z3 @ X3 )
     => ( X3 != T ) ) ).

% pinf(4)
thf(fact_5250_pinf_I4_J,axiom,
    ! [T: rat] :
    ? [Z3: rat] :
    ! [X3: rat] :
      ( ( ord_less_rat @ Z3 @ X3 )
     => ( X3 != T ) ) ).

% pinf(4)
thf(fact_5251_pinf_I4_J,axiom,
    ! [T: num] :
    ? [Z3: num] :
    ! [X3: num] :
      ( ( ord_less_num @ Z3 @ X3 )
     => ( X3 != T ) ) ).

% pinf(4)
thf(fact_5252_pinf_I4_J,axiom,
    ! [T: nat] :
    ? [Z3: nat] :
    ! [X3: nat] :
      ( ( ord_less_nat @ Z3 @ X3 )
     => ( X3 != T ) ) ).

% pinf(4)
thf(fact_5253_pinf_I4_J,axiom,
    ! [T: int] :
    ? [Z3: int] :
    ! [X3: int] :
      ( ( ord_less_int @ Z3 @ X3 )
     => ( X3 != T ) ) ).

% pinf(4)
thf(fact_5254_pinf_I3_J,axiom,
    ! [T: real] :
    ? [Z3: real] :
    ! [X3: real] :
      ( ( ord_less_real @ Z3 @ X3 )
     => ( X3 != T ) ) ).

% pinf(3)
thf(fact_5255_pinf_I3_J,axiom,
    ! [T: rat] :
    ? [Z3: rat] :
    ! [X3: rat] :
      ( ( ord_less_rat @ Z3 @ X3 )
     => ( X3 != T ) ) ).

% pinf(3)
thf(fact_5256_pinf_I3_J,axiom,
    ! [T: num] :
    ? [Z3: num] :
    ! [X3: num] :
      ( ( ord_less_num @ Z3 @ X3 )
     => ( X3 != T ) ) ).

% pinf(3)
thf(fact_5257_pinf_I3_J,axiom,
    ! [T: nat] :
    ? [Z3: nat] :
    ! [X3: nat] :
      ( ( ord_less_nat @ Z3 @ X3 )
     => ( X3 != T ) ) ).

% pinf(3)
thf(fact_5258_pinf_I3_J,axiom,
    ! [T: int] :
    ? [Z3: int] :
    ! [X3: int] :
      ( ( ord_less_int @ Z3 @ X3 )
     => ( X3 != T ) ) ).

% pinf(3)
thf(fact_5259_pinf_I2_J,axiom,
    ! [P: real > $o,P6: real > $o,Q: real > $o,Q6: real > $o] :
      ( ? [Z2: real] :
        ! [X4: real] :
          ( ( ord_less_real @ Z2 @ X4 )
         => ( ( P @ X4 )
            = ( P6 @ X4 ) ) )
     => ( ? [Z2: real] :
          ! [X4: real] :
            ( ( ord_less_real @ Z2 @ X4 )
           => ( ( Q @ X4 )
              = ( Q6 @ X4 ) ) )
       => ? [Z3: real] :
          ! [X3: real] :
            ( ( ord_less_real @ Z3 @ X3 )
           => ( ( ( P @ X3 )
                | ( Q @ X3 ) )
              = ( ( P6 @ X3 )
                | ( Q6 @ X3 ) ) ) ) ) ) ).

% pinf(2)
thf(fact_5260_pinf_I2_J,axiom,
    ! [P: rat > $o,P6: rat > $o,Q: rat > $o,Q6: rat > $o] :
      ( ? [Z2: rat] :
        ! [X4: rat] :
          ( ( ord_less_rat @ Z2 @ X4 )
         => ( ( P @ X4 )
            = ( P6 @ X4 ) ) )
     => ( ? [Z2: rat] :
          ! [X4: rat] :
            ( ( ord_less_rat @ Z2 @ X4 )
           => ( ( Q @ X4 )
              = ( Q6 @ X4 ) ) )
       => ? [Z3: rat] :
          ! [X3: rat] :
            ( ( ord_less_rat @ Z3 @ X3 )
           => ( ( ( P @ X3 )
                | ( Q @ X3 ) )
              = ( ( P6 @ X3 )
                | ( Q6 @ X3 ) ) ) ) ) ) ).

% pinf(2)
thf(fact_5261_pinf_I2_J,axiom,
    ! [P: num > $o,P6: num > $o,Q: num > $o,Q6: num > $o] :
      ( ? [Z2: num] :
        ! [X4: num] :
          ( ( ord_less_num @ Z2 @ X4 )
         => ( ( P @ X4 )
            = ( P6 @ X4 ) ) )
     => ( ? [Z2: num] :
          ! [X4: num] :
            ( ( ord_less_num @ Z2 @ X4 )
           => ( ( Q @ X4 )
              = ( Q6 @ X4 ) ) )
       => ? [Z3: num] :
          ! [X3: num] :
            ( ( ord_less_num @ Z3 @ X3 )
           => ( ( ( P @ X3 )
                | ( Q @ X3 ) )
              = ( ( P6 @ X3 )
                | ( Q6 @ X3 ) ) ) ) ) ) ).

% pinf(2)
thf(fact_5262_pinf_I2_J,axiom,
    ! [P: nat > $o,P6: nat > $o,Q: nat > $o,Q6: nat > $o] :
      ( ? [Z2: nat] :
        ! [X4: nat] :
          ( ( ord_less_nat @ Z2 @ X4 )
         => ( ( P @ X4 )
            = ( P6 @ X4 ) ) )
     => ( ? [Z2: nat] :
          ! [X4: nat] :
            ( ( ord_less_nat @ Z2 @ X4 )
           => ( ( Q @ X4 )
              = ( Q6 @ X4 ) ) )
       => ? [Z3: nat] :
          ! [X3: nat] :
            ( ( ord_less_nat @ Z3 @ X3 )
           => ( ( ( P @ X3 )
                | ( Q @ X3 ) )
              = ( ( P6 @ X3 )
                | ( Q6 @ X3 ) ) ) ) ) ) ).

% pinf(2)
thf(fact_5263_pinf_I2_J,axiom,
    ! [P: int > $o,P6: int > $o,Q: int > $o,Q6: int > $o] :
      ( ? [Z2: int] :
        ! [X4: int] :
          ( ( ord_less_int @ Z2 @ X4 )
         => ( ( P @ X4 )
            = ( P6 @ X4 ) ) )
     => ( ? [Z2: int] :
          ! [X4: int] :
            ( ( ord_less_int @ Z2 @ X4 )
           => ( ( Q @ X4 )
              = ( Q6 @ X4 ) ) )
       => ? [Z3: int] :
          ! [X3: int] :
            ( ( ord_less_int @ Z3 @ X3 )
           => ( ( ( P @ X3 )
                | ( Q @ X3 ) )
              = ( ( P6 @ X3 )
                | ( Q6 @ X3 ) ) ) ) ) ) ).

% pinf(2)
thf(fact_5264_pinf_I1_J,axiom,
    ! [P: real > $o,P6: real > $o,Q: real > $o,Q6: real > $o] :
      ( ? [Z2: real] :
        ! [X4: real] :
          ( ( ord_less_real @ Z2 @ X4 )
         => ( ( P @ X4 )
            = ( P6 @ X4 ) ) )
     => ( ? [Z2: real] :
          ! [X4: real] :
            ( ( ord_less_real @ Z2 @ X4 )
           => ( ( Q @ X4 )
              = ( Q6 @ X4 ) ) )
       => ? [Z3: real] :
          ! [X3: real] :
            ( ( ord_less_real @ Z3 @ X3 )
           => ( ( ( P @ X3 )
                & ( Q @ X3 ) )
              = ( ( P6 @ X3 )
                & ( Q6 @ X3 ) ) ) ) ) ) ).

% pinf(1)
thf(fact_5265_pinf_I1_J,axiom,
    ! [P: rat > $o,P6: rat > $o,Q: rat > $o,Q6: rat > $o] :
      ( ? [Z2: rat] :
        ! [X4: rat] :
          ( ( ord_less_rat @ Z2 @ X4 )
         => ( ( P @ X4 )
            = ( P6 @ X4 ) ) )
     => ( ? [Z2: rat] :
          ! [X4: rat] :
            ( ( ord_less_rat @ Z2 @ X4 )
           => ( ( Q @ X4 )
              = ( Q6 @ X4 ) ) )
       => ? [Z3: rat] :
          ! [X3: rat] :
            ( ( ord_less_rat @ Z3 @ X3 )
           => ( ( ( P @ X3 )
                & ( Q @ X3 ) )
              = ( ( P6 @ X3 )
                & ( Q6 @ X3 ) ) ) ) ) ) ).

% pinf(1)
thf(fact_5266_pinf_I1_J,axiom,
    ! [P: num > $o,P6: num > $o,Q: num > $o,Q6: num > $o] :
      ( ? [Z2: num] :
        ! [X4: num] :
          ( ( ord_less_num @ Z2 @ X4 )
         => ( ( P @ X4 )
            = ( P6 @ X4 ) ) )
     => ( ? [Z2: num] :
          ! [X4: num] :
            ( ( ord_less_num @ Z2 @ X4 )
           => ( ( Q @ X4 )
              = ( Q6 @ X4 ) ) )
       => ? [Z3: num] :
          ! [X3: num] :
            ( ( ord_less_num @ Z3 @ X3 )
           => ( ( ( P @ X3 )
                & ( Q @ X3 ) )
              = ( ( P6 @ X3 )
                & ( Q6 @ X3 ) ) ) ) ) ) ).

% pinf(1)
thf(fact_5267_pinf_I1_J,axiom,
    ! [P: nat > $o,P6: nat > $o,Q: nat > $o,Q6: nat > $o] :
      ( ? [Z2: nat] :
        ! [X4: nat] :
          ( ( ord_less_nat @ Z2 @ X4 )
         => ( ( P @ X4 )
            = ( P6 @ X4 ) ) )
     => ( ? [Z2: nat] :
          ! [X4: nat] :
            ( ( ord_less_nat @ Z2 @ X4 )
           => ( ( Q @ X4 )
              = ( Q6 @ X4 ) ) )
       => ? [Z3: nat] :
          ! [X3: nat] :
            ( ( ord_less_nat @ Z3 @ X3 )
           => ( ( ( P @ X3 )
                & ( Q @ X3 ) )
              = ( ( P6 @ X3 )
                & ( Q6 @ X3 ) ) ) ) ) ) ).

% pinf(1)
thf(fact_5268_pinf_I1_J,axiom,
    ! [P: int > $o,P6: int > $o,Q: int > $o,Q6: int > $o] :
      ( ? [Z2: int] :
        ! [X4: int] :
          ( ( ord_less_int @ Z2 @ X4 )
         => ( ( P @ X4 )
            = ( P6 @ X4 ) ) )
     => ( ? [Z2: int] :
          ! [X4: int] :
            ( ( ord_less_int @ Z2 @ X4 )
           => ( ( Q @ X4 )
              = ( Q6 @ X4 ) ) )
       => ? [Z3: int] :
          ! [X3: int] :
            ( ( ord_less_int @ Z3 @ X3 )
           => ( ( ( P @ X3 )
                & ( Q @ X3 ) )
              = ( ( P6 @ X3 )
                & ( Q6 @ X3 ) ) ) ) ) ) ).

% pinf(1)
thf(fact_5269_pinf_I6_J,axiom,
    ! [T: real] :
    ? [Z3: real] :
    ! [X3: real] :
      ( ( ord_less_real @ Z3 @ X3 )
     => ~ ( ord_less_eq_real @ X3 @ T ) ) ).

% pinf(6)
thf(fact_5270_pinf_I6_J,axiom,
    ! [T: rat] :
    ? [Z3: rat] :
    ! [X3: rat] :
      ( ( ord_less_rat @ Z3 @ X3 )
     => ~ ( ord_less_eq_rat @ X3 @ T ) ) ).

% pinf(6)
thf(fact_5271_pinf_I6_J,axiom,
    ! [T: num] :
    ? [Z3: num] :
    ! [X3: num] :
      ( ( ord_less_num @ Z3 @ X3 )
     => ~ ( ord_less_eq_num @ X3 @ T ) ) ).

% pinf(6)
thf(fact_5272_pinf_I6_J,axiom,
    ! [T: nat] :
    ? [Z3: nat] :
    ! [X3: nat] :
      ( ( ord_less_nat @ Z3 @ X3 )
     => ~ ( ord_less_eq_nat @ X3 @ T ) ) ).

% pinf(6)
thf(fact_5273_pinf_I6_J,axiom,
    ! [T: int] :
    ? [Z3: int] :
    ! [X3: int] :
      ( ( ord_less_int @ Z3 @ X3 )
     => ~ ( ord_less_eq_int @ X3 @ T ) ) ).

% pinf(6)
thf(fact_5274_pinf_I8_J,axiom,
    ! [T: real] :
    ? [Z3: real] :
    ! [X3: real] :
      ( ( ord_less_real @ Z3 @ X3 )
     => ( ord_less_eq_real @ T @ X3 ) ) ).

% pinf(8)
thf(fact_5275_pinf_I8_J,axiom,
    ! [T: rat] :
    ? [Z3: rat] :
    ! [X3: rat] :
      ( ( ord_less_rat @ Z3 @ X3 )
     => ( ord_less_eq_rat @ T @ X3 ) ) ).

% pinf(8)
thf(fact_5276_pinf_I8_J,axiom,
    ! [T: num] :
    ? [Z3: num] :
    ! [X3: num] :
      ( ( ord_less_num @ Z3 @ X3 )
     => ( ord_less_eq_num @ T @ X3 ) ) ).

% pinf(8)
thf(fact_5277_pinf_I8_J,axiom,
    ! [T: nat] :
    ? [Z3: nat] :
    ! [X3: nat] :
      ( ( ord_less_nat @ Z3 @ X3 )
     => ( ord_less_eq_nat @ T @ X3 ) ) ).

% pinf(8)
thf(fact_5278_pinf_I8_J,axiom,
    ! [T: int] :
    ? [Z3: int] :
    ! [X3: int] :
      ( ( ord_less_int @ Z3 @ X3 )
     => ( ord_less_eq_int @ T @ X3 ) ) ).

% pinf(8)
thf(fact_5279_minf_I6_J,axiom,
    ! [T: real] :
    ? [Z3: real] :
    ! [X3: real] :
      ( ( ord_less_real @ X3 @ Z3 )
     => ( ord_less_eq_real @ X3 @ T ) ) ).

% minf(6)
thf(fact_5280_minf_I6_J,axiom,
    ! [T: rat] :
    ? [Z3: rat] :
    ! [X3: rat] :
      ( ( ord_less_rat @ X3 @ Z3 )
     => ( ord_less_eq_rat @ X3 @ T ) ) ).

% minf(6)
thf(fact_5281_minf_I6_J,axiom,
    ! [T: num] :
    ? [Z3: num] :
    ! [X3: num] :
      ( ( ord_less_num @ X3 @ Z3 )
     => ( ord_less_eq_num @ X3 @ T ) ) ).

% minf(6)
thf(fact_5282_minf_I6_J,axiom,
    ! [T: nat] :
    ? [Z3: nat] :
    ! [X3: nat] :
      ( ( ord_less_nat @ X3 @ Z3 )
     => ( ord_less_eq_nat @ X3 @ T ) ) ).

% minf(6)
thf(fact_5283_minf_I6_J,axiom,
    ! [T: int] :
    ? [Z3: int] :
    ! [X3: int] :
      ( ( ord_less_int @ X3 @ Z3 )
     => ( ord_less_eq_int @ X3 @ T ) ) ).

% minf(6)
thf(fact_5284_minf_I8_J,axiom,
    ! [T: real] :
    ? [Z3: real] :
    ! [X3: real] :
      ( ( ord_less_real @ X3 @ Z3 )
     => ~ ( ord_less_eq_real @ T @ X3 ) ) ).

% minf(8)
thf(fact_5285_minf_I8_J,axiom,
    ! [T: rat] :
    ? [Z3: rat] :
    ! [X3: rat] :
      ( ( ord_less_rat @ X3 @ Z3 )
     => ~ ( ord_less_eq_rat @ T @ X3 ) ) ).

% minf(8)
thf(fact_5286_minf_I8_J,axiom,
    ! [T: num] :
    ? [Z3: num] :
    ! [X3: num] :
      ( ( ord_less_num @ X3 @ Z3 )
     => ~ ( ord_less_eq_num @ T @ X3 ) ) ).

% minf(8)
thf(fact_5287_minf_I8_J,axiom,
    ! [T: nat] :
    ? [Z3: nat] :
    ! [X3: nat] :
      ( ( ord_less_nat @ X3 @ Z3 )
     => ~ ( ord_less_eq_nat @ T @ X3 ) ) ).

% minf(8)
thf(fact_5288_minf_I8_J,axiom,
    ! [T: int] :
    ? [Z3: int] :
    ! [X3: int] :
      ( ( ord_less_int @ X3 @ Z3 )
     => ~ ( ord_less_eq_int @ T @ X3 ) ) ).

% minf(8)
thf(fact_5289_inf__period_I2_J,axiom,
    ! [P: real > $o,D3: real,Q: real > $o] :
      ( ! [X4: real,K3: real] :
          ( ( P @ X4 )
          = ( P @ ( minus_minus_real @ X4 @ ( times_times_real @ K3 @ D3 ) ) ) )
     => ( ! [X4: real,K3: real] :
            ( ( Q @ X4 )
            = ( Q @ ( minus_minus_real @ X4 @ ( times_times_real @ K3 @ D3 ) ) ) )
       => ! [X3: real,K4: real] :
            ( ( ( P @ X3 )
              | ( Q @ X3 ) )
            = ( ( P @ ( minus_minus_real @ X3 @ ( times_times_real @ K4 @ D3 ) ) )
              | ( Q @ ( minus_minus_real @ X3 @ ( times_times_real @ K4 @ D3 ) ) ) ) ) ) ) ).

% inf_period(2)
thf(fact_5290_inf__period_I2_J,axiom,
    ! [P: rat > $o,D3: rat,Q: rat > $o] :
      ( ! [X4: rat,K3: rat] :
          ( ( P @ X4 )
          = ( P @ ( minus_minus_rat @ X4 @ ( times_times_rat @ K3 @ D3 ) ) ) )
     => ( ! [X4: rat,K3: rat] :
            ( ( Q @ X4 )
            = ( Q @ ( minus_minus_rat @ X4 @ ( times_times_rat @ K3 @ D3 ) ) ) )
       => ! [X3: rat,K4: rat] :
            ( ( ( P @ X3 )
              | ( Q @ X3 ) )
            = ( ( P @ ( minus_minus_rat @ X3 @ ( times_times_rat @ K4 @ D3 ) ) )
              | ( Q @ ( minus_minus_rat @ X3 @ ( times_times_rat @ K4 @ D3 ) ) ) ) ) ) ) ).

% inf_period(2)
thf(fact_5291_inf__period_I2_J,axiom,
    ! [P: int > $o,D3: int,Q: int > $o] :
      ( ! [X4: int,K3: int] :
          ( ( P @ X4 )
          = ( P @ ( minus_minus_int @ X4 @ ( times_times_int @ K3 @ D3 ) ) ) )
     => ( ! [X4: int,K3: int] :
            ( ( Q @ X4 )
            = ( Q @ ( minus_minus_int @ X4 @ ( times_times_int @ K3 @ D3 ) ) ) )
       => ! [X3: int,K4: int] :
            ( ( ( P @ X3 )
              | ( Q @ X3 ) )
            = ( ( P @ ( minus_minus_int @ X3 @ ( times_times_int @ K4 @ D3 ) ) )
              | ( Q @ ( minus_minus_int @ X3 @ ( times_times_int @ K4 @ D3 ) ) ) ) ) ) ) ).

% inf_period(2)
thf(fact_5292_inf__period_I1_J,axiom,
    ! [P: real > $o,D3: real,Q: real > $o] :
      ( ! [X4: real,K3: real] :
          ( ( P @ X4 )
          = ( P @ ( minus_minus_real @ X4 @ ( times_times_real @ K3 @ D3 ) ) ) )
     => ( ! [X4: real,K3: real] :
            ( ( Q @ X4 )
            = ( Q @ ( minus_minus_real @ X4 @ ( times_times_real @ K3 @ D3 ) ) ) )
       => ! [X3: real,K4: real] :
            ( ( ( P @ X3 )
              & ( Q @ X3 ) )
            = ( ( P @ ( minus_minus_real @ X3 @ ( times_times_real @ K4 @ D3 ) ) )
              & ( Q @ ( minus_minus_real @ X3 @ ( times_times_real @ K4 @ D3 ) ) ) ) ) ) ) ).

% inf_period(1)
thf(fact_5293_inf__period_I1_J,axiom,
    ! [P: rat > $o,D3: rat,Q: rat > $o] :
      ( ! [X4: rat,K3: rat] :
          ( ( P @ X4 )
          = ( P @ ( minus_minus_rat @ X4 @ ( times_times_rat @ K3 @ D3 ) ) ) )
     => ( ! [X4: rat,K3: rat] :
            ( ( Q @ X4 )
            = ( Q @ ( minus_minus_rat @ X4 @ ( times_times_rat @ K3 @ D3 ) ) ) )
       => ! [X3: rat,K4: rat] :
            ( ( ( P @ X3 )
              & ( Q @ X3 ) )
            = ( ( P @ ( minus_minus_rat @ X3 @ ( times_times_rat @ K4 @ D3 ) ) )
              & ( Q @ ( minus_minus_rat @ X3 @ ( times_times_rat @ K4 @ D3 ) ) ) ) ) ) ) ).

% inf_period(1)
thf(fact_5294_inf__period_I1_J,axiom,
    ! [P: int > $o,D3: int,Q: int > $o] :
      ( ! [X4: int,K3: int] :
          ( ( P @ X4 )
          = ( P @ ( minus_minus_int @ X4 @ ( times_times_int @ K3 @ D3 ) ) ) )
     => ( ! [X4: int,K3: int] :
            ( ( Q @ X4 )
            = ( Q @ ( minus_minus_int @ X4 @ ( times_times_int @ K3 @ D3 ) ) ) )
       => ! [X3: int,K4: int] :
            ( ( ( P @ X3 )
              & ( Q @ X3 ) )
            = ( ( P @ ( minus_minus_int @ X3 @ ( times_times_int @ K4 @ D3 ) ) )
              & ( Q @ ( minus_minus_int @ X3 @ ( times_times_int @ K4 @ D3 ) ) ) ) ) ) ) ).

% inf_period(1)
thf(fact_5295_imp__le__cong,axiom,
    ! [X2: int,X8: int,P: $o,P6: $o] :
      ( ( X2 = X8 )
     => ( ( ( ord_less_eq_int @ zero_zero_int @ X8 )
         => ( P = P6 ) )
       => ( ( ( ord_less_eq_int @ zero_zero_int @ X2 )
           => P )
          = ( ( ord_less_eq_int @ zero_zero_int @ X8 )
           => P6 ) ) ) ) ).

% imp_le_cong
thf(fact_5296_conj__le__cong,axiom,
    ! [X2: int,X8: int,P: $o,P6: $o] :
      ( ( X2 = X8 )
     => ( ( ( ord_less_eq_int @ zero_zero_int @ X8 )
         => ( P = P6 ) )
       => ( ( ( ord_less_eq_int @ zero_zero_int @ X2 )
            & P )
          = ( ( ord_less_eq_int @ zero_zero_int @ X8 )
            & P6 ) ) ) ) ).

% conj_le_cong
thf(fact_5297_simp__from__to,axiom,
    ( set_or1266510415728281911st_int
    = ( ^ [I4: int,J3: int] : ( if_set_int @ ( ord_less_int @ J3 @ I4 ) @ bot_bot_set_int @ ( insert_int @ I4 @ ( set_or1266510415728281911st_int @ ( plus_plus_int @ I4 @ one_one_int ) @ J3 ) ) ) ) ) ).

% simp_from_to
thf(fact_5298_aset_I2_J,axiom,
    ! [D3: int,A2: set_int,P: int > $o,Q: int > $o] :
      ( ! [X4: int] :
          ( ! [Xa: int] :
              ( ( member_int @ Xa @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
             => ! [Xb2: int] :
                  ( ( member_int @ Xb2 @ A2 )
                 => ( X4
                   != ( minus_minus_int @ Xb2 @ Xa ) ) ) )
         => ( ( P @ X4 )
           => ( P @ ( plus_plus_int @ X4 @ D3 ) ) ) )
     => ( ! [X4: int] :
            ( ! [Xa: int] :
                ( ( member_int @ Xa @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
               => ! [Xb2: int] :
                    ( ( member_int @ Xb2 @ A2 )
                   => ( X4
                     != ( minus_minus_int @ Xb2 @ Xa ) ) ) )
           => ( ( Q @ X4 )
             => ( Q @ ( plus_plus_int @ X4 @ D3 ) ) ) )
       => ! [X3: int] :
            ( ! [Xa3: int] :
                ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
               => ! [Xb3: int] :
                    ( ( member_int @ Xb3 @ A2 )
                   => ( X3
                     != ( minus_minus_int @ Xb3 @ Xa3 ) ) ) )
           => ( ( ( P @ X3 )
                | ( Q @ X3 ) )
             => ( ( P @ ( plus_plus_int @ X3 @ D3 ) )
                | ( Q @ ( plus_plus_int @ X3 @ D3 ) ) ) ) ) ) ) ).

% aset(2)
thf(fact_5299_aset_I1_J,axiom,
    ! [D3: int,A2: set_int,P: int > $o,Q: int > $o] :
      ( ! [X4: int] :
          ( ! [Xa: int] :
              ( ( member_int @ Xa @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
             => ! [Xb2: int] :
                  ( ( member_int @ Xb2 @ A2 )
                 => ( X4
                   != ( minus_minus_int @ Xb2 @ Xa ) ) ) )
         => ( ( P @ X4 )
           => ( P @ ( plus_plus_int @ X4 @ D3 ) ) ) )
     => ( ! [X4: int] :
            ( ! [Xa: int] :
                ( ( member_int @ Xa @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
               => ! [Xb2: int] :
                    ( ( member_int @ Xb2 @ A2 )
                   => ( X4
                     != ( minus_minus_int @ Xb2 @ Xa ) ) ) )
           => ( ( Q @ X4 )
             => ( Q @ ( plus_plus_int @ X4 @ D3 ) ) ) )
       => ! [X3: int] :
            ( ! [Xa3: int] :
                ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
               => ! [Xb3: int] :
                    ( ( member_int @ Xb3 @ A2 )
                   => ( X3
                     != ( minus_minus_int @ Xb3 @ Xa3 ) ) ) )
           => ( ( ( P @ X3 )
                & ( Q @ X3 ) )
             => ( ( P @ ( plus_plus_int @ X3 @ D3 ) )
                & ( Q @ ( plus_plus_int @ X3 @ D3 ) ) ) ) ) ) ) ).

% aset(1)
thf(fact_5300_bset_I2_J,axiom,
    ! [D3: int,B3: set_int,P: int > $o,Q: int > $o] :
      ( ! [X4: int] :
          ( ! [Xa: int] :
              ( ( member_int @ Xa @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
             => ! [Xb2: int] :
                  ( ( member_int @ Xb2 @ B3 )
                 => ( X4
                   != ( plus_plus_int @ Xb2 @ Xa ) ) ) )
         => ( ( P @ X4 )
           => ( P @ ( minus_minus_int @ X4 @ D3 ) ) ) )
     => ( ! [X4: int] :
            ( ! [Xa: int] :
                ( ( member_int @ Xa @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
               => ! [Xb2: int] :
                    ( ( member_int @ Xb2 @ B3 )
                   => ( X4
                     != ( plus_plus_int @ Xb2 @ Xa ) ) ) )
           => ( ( Q @ X4 )
             => ( Q @ ( minus_minus_int @ X4 @ D3 ) ) ) )
       => ! [X3: int] :
            ( ! [Xa3: int] :
                ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
               => ! [Xb3: int] :
                    ( ( member_int @ Xb3 @ B3 )
                   => ( X3
                     != ( plus_plus_int @ Xb3 @ Xa3 ) ) ) )
           => ( ( ( P @ X3 )
                | ( Q @ X3 ) )
             => ( ( P @ ( minus_minus_int @ X3 @ D3 ) )
                | ( Q @ ( minus_minus_int @ X3 @ D3 ) ) ) ) ) ) ) ).

% bset(2)
thf(fact_5301_bset_I1_J,axiom,
    ! [D3: int,B3: set_int,P: int > $o,Q: int > $o] :
      ( ! [X4: int] :
          ( ! [Xa: int] :
              ( ( member_int @ Xa @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
             => ! [Xb2: int] :
                  ( ( member_int @ Xb2 @ B3 )
                 => ( X4
                   != ( plus_plus_int @ Xb2 @ Xa ) ) ) )
         => ( ( P @ X4 )
           => ( P @ ( minus_minus_int @ X4 @ D3 ) ) ) )
     => ( ! [X4: int] :
            ( ! [Xa: int] :
                ( ( member_int @ Xa @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
               => ! [Xb2: int] :
                    ( ( member_int @ Xb2 @ B3 )
                   => ( X4
                     != ( plus_plus_int @ Xb2 @ Xa ) ) ) )
           => ( ( Q @ X4 )
             => ( Q @ ( minus_minus_int @ X4 @ D3 ) ) ) )
       => ! [X3: int] :
            ( ! [Xa3: int] :
                ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
               => ! [Xb3: int] :
                    ( ( member_int @ Xb3 @ B3 )
                   => ( X3
                     != ( plus_plus_int @ Xb3 @ Xa3 ) ) ) )
           => ( ( ( P @ X3 )
                & ( Q @ X3 ) )
             => ( ( P @ ( minus_minus_int @ X3 @ D3 ) )
                & ( Q @ ( minus_minus_int @ X3 @ D3 ) ) ) ) ) ) ) ).

% bset(1)
thf(fact_5302_plusinfinity,axiom,
    ! [D: int,P6: int > $o,P: int > $o] :
      ( ( ord_less_int @ zero_zero_int @ D )
     => ( ! [X4: int,K3: int] :
            ( ( P6 @ X4 )
            = ( P6 @ ( minus_minus_int @ X4 @ ( times_times_int @ K3 @ D ) ) ) )
       => ( ? [Z2: int] :
            ! [X4: int] :
              ( ( ord_less_int @ Z2 @ X4 )
             => ( ( P @ X4 )
                = ( P6 @ X4 ) ) )
         => ( ? [X_1: int] : ( P6 @ X_1 )
           => ? [X_12: int] : ( P @ X_12 ) ) ) ) ) ).

% plusinfinity
thf(fact_5303_minusinfinity,axiom,
    ! [D: int,P1: int > $o,P: int > $o] :
      ( ( ord_less_int @ zero_zero_int @ D )
     => ( ! [X4: int,K3: int] :
            ( ( P1 @ X4 )
            = ( P1 @ ( minus_minus_int @ X4 @ ( times_times_int @ K3 @ D ) ) ) )
       => ( ? [Z2: int] :
            ! [X4: int] :
              ( ( ord_less_int @ X4 @ Z2 )
             => ( ( P @ X4 )
                = ( P1 @ X4 ) ) )
         => ( ? [X_1: int] : ( P1 @ X_1 )
           => ? [X_12: int] : ( P @ X_12 ) ) ) ) ) ).

% minusinfinity
thf(fact_5304_incr__mult__lemma,axiom,
    ! [D: int,P: int > $o,K: int] :
      ( ( ord_less_int @ zero_zero_int @ D )
     => ( ! [X4: int] :
            ( ( P @ X4 )
           => ( P @ ( plus_plus_int @ X4 @ D ) ) )
       => ( ( ord_less_eq_int @ zero_zero_int @ K )
         => ! [X3: int] :
              ( ( P @ X3 )
             => ( P @ ( plus_plus_int @ X3 @ ( times_times_int @ K @ D ) ) ) ) ) ) ) ).

% incr_mult_lemma
thf(fact_5305_decr__mult__lemma,axiom,
    ! [D: int,P: int > $o,K: int] :
      ( ( ord_less_int @ zero_zero_int @ D )
     => ( ! [X4: int] :
            ( ( P @ X4 )
           => ( P @ ( minus_minus_int @ X4 @ D ) ) )
       => ( ( ord_less_eq_int @ zero_zero_int @ K )
         => ! [X3: int] :
              ( ( P @ X3 )
             => ( P @ ( minus_minus_int @ X3 @ ( times_times_int @ K @ D ) ) ) ) ) ) ) ).

% decr_mult_lemma
thf(fact_5306_periodic__finite__ex,axiom,
    ! [D: int,P: int > $o] :
      ( ( ord_less_int @ zero_zero_int @ D )
     => ( ! [X4: int,K3: int] :
            ( ( P @ X4 )
            = ( P @ ( minus_minus_int @ X4 @ ( times_times_int @ K3 @ D ) ) ) )
       => ( ( ? [X5: int] : ( P @ X5 ) )
          = ( ? [X: int] :
                ( ( member_int @ X @ ( set_or1266510415728281911st_int @ one_one_int @ D ) )
                & ( P @ X ) ) ) ) ) ) ).

% periodic_finite_ex
thf(fact_5307_bset_I3_J,axiom,
    ! [D3: int,T: int,B3: set_int] :
      ( ( ord_less_int @ zero_zero_int @ D3 )
     => ( ( member_int @ ( minus_minus_int @ T @ one_one_int ) @ B3 )
       => ! [X3: int] :
            ( ! [Xa3: int] :
                ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
               => ! [Xb3: int] :
                    ( ( member_int @ Xb3 @ B3 )
                   => ( X3
                     != ( plus_plus_int @ Xb3 @ Xa3 ) ) ) )
           => ( ( X3 = T )
             => ( ( minus_minus_int @ X3 @ D3 )
                = T ) ) ) ) ) ).

% bset(3)
thf(fact_5308_bset_I4_J,axiom,
    ! [D3: int,T: int,B3: set_int] :
      ( ( ord_less_int @ zero_zero_int @ D3 )
     => ( ( member_int @ T @ B3 )
       => ! [X3: int] :
            ( ! [Xa3: int] :
                ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
               => ! [Xb3: int] :
                    ( ( member_int @ Xb3 @ B3 )
                   => ( X3
                     != ( plus_plus_int @ Xb3 @ Xa3 ) ) ) )
           => ( ( X3 != T )
             => ( ( minus_minus_int @ X3 @ D3 )
               != T ) ) ) ) ) ).

% bset(4)
thf(fact_5309_bset_I5_J,axiom,
    ! [D3: int,B3: set_int,T: int] :
      ( ( ord_less_int @ zero_zero_int @ D3 )
     => ! [X3: int] :
          ( ! [Xa3: int] :
              ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
             => ! [Xb3: int] :
                  ( ( member_int @ Xb3 @ B3 )
                 => ( X3
                   != ( plus_plus_int @ Xb3 @ Xa3 ) ) ) )
         => ( ( ord_less_int @ X3 @ T )
           => ( ord_less_int @ ( minus_minus_int @ X3 @ D3 ) @ T ) ) ) ) ).

% bset(5)
thf(fact_5310_bset_I7_J,axiom,
    ! [D3: int,T: int,B3: set_int] :
      ( ( ord_less_int @ zero_zero_int @ D3 )
     => ( ( member_int @ T @ B3 )
       => ! [X3: int] :
            ( ! [Xa3: int] :
                ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
               => ! [Xb3: int] :
                    ( ( member_int @ Xb3 @ B3 )
                   => ( X3
                     != ( plus_plus_int @ Xb3 @ Xa3 ) ) ) )
           => ( ( ord_less_int @ T @ X3 )
             => ( ord_less_int @ T @ ( minus_minus_int @ X3 @ D3 ) ) ) ) ) ) ).

% bset(7)
thf(fact_5311_aset_I3_J,axiom,
    ! [D3: int,T: int,A2: set_int] :
      ( ( ord_less_int @ zero_zero_int @ D3 )
     => ( ( member_int @ ( plus_plus_int @ T @ one_one_int ) @ A2 )
       => ! [X3: int] :
            ( ! [Xa3: int] :
                ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
               => ! [Xb3: int] :
                    ( ( member_int @ Xb3 @ A2 )
                   => ( X3
                     != ( minus_minus_int @ Xb3 @ Xa3 ) ) ) )
           => ( ( X3 = T )
             => ( ( plus_plus_int @ X3 @ D3 )
                = T ) ) ) ) ) ).

% aset(3)
thf(fact_5312_aset_I4_J,axiom,
    ! [D3: int,T: int,A2: set_int] :
      ( ( ord_less_int @ zero_zero_int @ D3 )
     => ( ( member_int @ T @ A2 )
       => ! [X3: int] :
            ( ! [Xa3: int] :
                ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
               => ! [Xb3: int] :
                    ( ( member_int @ Xb3 @ A2 )
                   => ( X3
                     != ( minus_minus_int @ Xb3 @ Xa3 ) ) ) )
           => ( ( X3 != T )
             => ( ( plus_plus_int @ X3 @ D3 )
               != T ) ) ) ) ) ).

% aset(4)
thf(fact_5313_aset_I5_J,axiom,
    ! [D3: int,T: int,A2: set_int] :
      ( ( ord_less_int @ zero_zero_int @ D3 )
     => ( ( member_int @ T @ A2 )
       => ! [X3: int] :
            ( ! [Xa3: int] :
                ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
               => ! [Xb3: int] :
                    ( ( member_int @ Xb3 @ A2 )
                   => ( X3
                     != ( minus_minus_int @ Xb3 @ Xa3 ) ) ) )
           => ( ( ord_less_int @ X3 @ T )
             => ( ord_less_int @ ( plus_plus_int @ X3 @ D3 ) @ T ) ) ) ) ) ).

% aset(5)
thf(fact_5314_aset_I7_J,axiom,
    ! [D3: int,A2: set_int,T: int] :
      ( ( ord_less_int @ zero_zero_int @ D3 )
     => ! [X3: int] :
          ( ! [Xa3: int] :
              ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
             => ! [Xb3: int] :
                  ( ( member_int @ Xb3 @ A2 )
                 => ( X3
                   != ( minus_minus_int @ Xb3 @ Xa3 ) ) ) )
         => ( ( ord_less_int @ T @ X3 )
           => ( ord_less_int @ T @ ( plus_plus_int @ X3 @ D3 ) ) ) ) ) ).

% aset(7)
thf(fact_5315_bset_I6_J,axiom,
    ! [D3: int,B3: set_int,T: int] :
      ( ( ord_less_int @ zero_zero_int @ D3 )
     => ! [X3: int] :
          ( ! [Xa3: int] :
              ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
             => ! [Xb3: int] :
                  ( ( member_int @ Xb3 @ B3 )
                 => ( X3
                   != ( plus_plus_int @ Xb3 @ Xa3 ) ) ) )
         => ( ( ord_less_eq_int @ X3 @ T )
           => ( ord_less_eq_int @ ( minus_minus_int @ X3 @ D3 ) @ T ) ) ) ) ).

% bset(6)
thf(fact_5316_bset_I8_J,axiom,
    ! [D3: int,T: int,B3: set_int] :
      ( ( ord_less_int @ zero_zero_int @ D3 )
     => ( ( member_int @ ( minus_minus_int @ T @ one_one_int ) @ B3 )
       => ! [X3: int] :
            ( ! [Xa3: int] :
                ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
               => ! [Xb3: int] :
                    ( ( member_int @ Xb3 @ B3 )
                   => ( X3
                     != ( plus_plus_int @ Xb3 @ Xa3 ) ) ) )
           => ( ( ord_less_eq_int @ T @ X3 )
             => ( ord_less_eq_int @ T @ ( minus_minus_int @ X3 @ D3 ) ) ) ) ) ) ).

% bset(8)
thf(fact_5317_Bolzano,axiom,
    ! [A: real,B: real,P: real > real > $o] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ! [A6: real,B7: real,C5: real] :
            ( ( P @ A6 @ B7 )
           => ( ( P @ B7 @ C5 )
             => ( ( ord_less_eq_real @ A6 @ B7 )
               => ( ( ord_less_eq_real @ B7 @ C5 )
                 => ( P @ A6 @ C5 ) ) ) ) )
       => ( ! [X4: real] :
              ( ( ord_less_eq_real @ A @ X4 )
             => ( ( ord_less_eq_real @ X4 @ B )
               => ? [D5: real] :
                    ( ( ord_less_real @ zero_zero_real @ D5 )
                    & ! [A6: real,B7: real] :
                        ( ( ( ord_less_eq_real @ A6 @ X4 )
                          & ( ord_less_eq_real @ X4 @ B7 )
                          & ( ord_less_real @ ( minus_minus_real @ B7 @ A6 ) @ D5 ) )
                       => ( P @ A6 @ B7 ) ) ) ) )
         => ( P @ A @ B ) ) ) ) ).

% Bolzano
thf(fact_5318_divmod__algorithm__code_I7_J,axiom,
    ! [M: num,N: num] :
      ( ( ( ord_less_eq_num @ M @ N )
       => ( ( unique5055182867167087721od_nat @ ( bit0 @ M ) @ ( bit1 @ N ) )
          = ( product_Pair_nat_nat @ zero_zero_nat @ ( numeral_numeral_nat @ ( bit0 @ M ) ) ) ) )
      & ( ~ ( ord_less_eq_num @ M @ N )
       => ( ( unique5055182867167087721od_nat @ ( bit0 @ M ) @ ( bit1 @ N ) )
          = ( unique5026877609467782581ep_nat @ ( bit1 @ N ) @ ( unique5055182867167087721od_nat @ ( bit0 @ M ) @ ( bit0 @ ( bit1 @ N ) ) ) ) ) ) ) ).

% divmod_algorithm_code(7)
thf(fact_5319_divmod__algorithm__code_I7_J,axiom,
    ! [M: num,N: num] :
      ( ( ( ord_less_eq_num @ M @ N )
       => ( ( unique5052692396658037445od_int @ ( bit0 @ M ) @ ( bit1 @ N ) )
          = ( product_Pair_int_int @ zero_zero_int @ ( numeral_numeral_int @ ( bit0 @ M ) ) ) ) )
      & ( ~ ( ord_less_eq_num @ M @ N )
       => ( ( unique5052692396658037445od_int @ ( bit0 @ M ) @ ( bit1 @ N ) )
          = ( unique5024387138958732305ep_int @ ( bit1 @ N ) @ ( unique5052692396658037445od_int @ ( bit0 @ M ) @ ( bit0 @ ( bit1 @ N ) ) ) ) ) ) ) ).

% divmod_algorithm_code(7)
thf(fact_5320_divmod__algorithm__code_I7_J,axiom,
    ! [M: num,N: num] :
      ( ( ( ord_less_eq_num @ M @ N )
       => ( ( unique3479559517661332726nteger @ ( bit0 @ M ) @ ( bit1 @ N ) )
          = ( produc1086072967326762835nteger @ zero_z3403309356797280102nteger @ ( numera6620942414471956472nteger @ ( bit0 @ M ) ) ) ) )
      & ( ~ ( ord_less_eq_num @ M @ N )
       => ( ( unique3479559517661332726nteger @ ( bit0 @ M ) @ ( bit1 @ N ) )
          = ( unique4921790084139445826nteger @ ( bit1 @ N ) @ ( unique3479559517661332726nteger @ ( bit0 @ M ) @ ( bit0 @ ( bit1 @ N ) ) ) ) ) ) ) ).

% divmod_algorithm_code(7)
thf(fact_5321_divmod__algorithm__code_I8_J,axiom,
    ! [M: num,N: num] :
      ( ( ( ord_less_num @ M @ N )
       => ( ( unique5055182867167087721od_nat @ ( bit1 @ M ) @ ( bit1 @ N ) )
          = ( product_Pair_nat_nat @ zero_zero_nat @ ( numeral_numeral_nat @ ( bit1 @ M ) ) ) ) )
      & ( ~ ( ord_less_num @ M @ N )
       => ( ( unique5055182867167087721od_nat @ ( bit1 @ M ) @ ( bit1 @ N ) )
          = ( unique5026877609467782581ep_nat @ ( bit1 @ N ) @ ( unique5055182867167087721od_nat @ ( bit1 @ M ) @ ( bit0 @ ( bit1 @ N ) ) ) ) ) ) ) ).

% divmod_algorithm_code(8)
thf(fact_5322_divmod__algorithm__code_I8_J,axiom,
    ! [M: num,N: num] :
      ( ( ( ord_less_num @ M @ N )
       => ( ( unique5052692396658037445od_int @ ( bit1 @ M ) @ ( bit1 @ N ) )
          = ( product_Pair_int_int @ zero_zero_int @ ( numeral_numeral_int @ ( bit1 @ M ) ) ) ) )
      & ( ~ ( ord_less_num @ M @ N )
       => ( ( unique5052692396658037445od_int @ ( bit1 @ M ) @ ( bit1 @ N ) )
          = ( unique5024387138958732305ep_int @ ( bit1 @ N ) @ ( unique5052692396658037445od_int @ ( bit1 @ M ) @ ( bit0 @ ( bit1 @ N ) ) ) ) ) ) ) ).

% divmod_algorithm_code(8)
thf(fact_5323_divmod__algorithm__code_I8_J,axiom,
    ! [M: num,N: num] :
      ( ( ( ord_less_num @ M @ N )
       => ( ( unique3479559517661332726nteger @ ( bit1 @ M ) @ ( bit1 @ N ) )
          = ( produc1086072967326762835nteger @ zero_z3403309356797280102nteger @ ( numera6620942414471956472nteger @ ( bit1 @ M ) ) ) ) )
      & ( ~ ( ord_less_num @ M @ N )
       => ( ( unique3479559517661332726nteger @ ( bit1 @ M ) @ ( bit1 @ N ) )
          = ( unique4921790084139445826nteger @ ( bit1 @ N ) @ ( unique3479559517661332726nteger @ ( bit1 @ M ) @ ( bit0 @ ( bit1 @ N ) ) ) ) ) ) ) ).

% divmod_algorithm_code(8)
thf(fact_5324_mult__le__cancel__iff1,axiom,
    ! [Z: real,X2: real,Y2: real] :
      ( ( ord_less_real @ zero_zero_real @ Z )
     => ( ( ord_less_eq_real @ ( times_times_real @ X2 @ Z ) @ ( times_times_real @ Y2 @ Z ) )
        = ( ord_less_eq_real @ X2 @ Y2 ) ) ) ).

% mult_le_cancel_iff1
thf(fact_5325_mult__le__cancel__iff1,axiom,
    ! [Z: rat,X2: rat,Y2: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ Z )
     => ( ( ord_less_eq_rat @ ( times_times_rat @ X2 @ Z ) @ ( times_times_rat @ Y2 @ Z ) )
        = ( ord_less_eq_rat @ X2 @ Y2 ) ) ) ).

% mult_le_cancel_iff1
thf(fact_5326_mult__le__cancel__iff1,axiom,
    ! [Z: int,X2: int,Y2: int] :
      ( ( ord_less_int @ zero_zero_int @ Z )
     => ( ( ord_less_eq_int @ ( times_times_int @ X2 @ Z ) @ ( times_times_int @ Y2 @ Z ) )
        = ( ord_less_eq_int @ X2 @ Y2 ) ) ) ).

% mult_le_cancel_iff1
thf(fact_5327_mult__le__cancel__iff2,axiom,
    ! [Z: real,X2: real,Y2: real] :
      ( ( ord_less_real @ zero_zero_real @ Z )
     => ( ( ord_less_eq_real @ ( times_times_real @ Z @ X2 ) @ ( times_times_real @ Z @ Y2 ) )
        = ( ord_less_eq_real @ X2 @ Y2 ) ) ) ).

% mult_le_cancel_iff2
thf(fact_5328_mult__le__cancel__iff2,axiom,
    ! [Z: rat,X2: rat,Y2: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ Z )
     => ( ( ord_less_eq_rat @ ( times_times_rat @ Z @ X2 ) @ ( times_times_rat @ Z @ Y2 ) )
        = ( ord_less_eq_rat @ X2 @ Y2 ) ) ) ).

% mult_le_cancel_iff2
thf(fact_5329_mult__le__cancel__iff2,axiom,
    ! [Z: int,X2: int,Y2: int] :
      ( ( ord_less_int @ zero_zero_int @ Z )
     => ( ( ord_less_eq_int @ ( times_times_int @ Z @ X2 ) @ ( times_times_int @ Z @ Y2 ) )
        = ( ord_less_eq_int @ X2 @ Y2 ) ) ) ).

% mult_le_cancel_iff2
thf(fact_5330_divmod__algorithm__code_I2_J,axiom,
    ! [M: num] :
      ( ( unique5052692396658037445od_int @ M @ one )
      = ( product_Pair_int_int @ ( numeral_numeral_int @ M ) @ zero_zero_int ) ) ).

% divmod_algorithm_code(2)
thf(fact_5331_divmod__algorithm__code_I2_J,axiom,
    ! [M: num] :
      ( ( unique5055182867167087721od_nat @ M @ one )
      = ( product_Pair_nat_nat @ ( numeral_numeral_nat @ M ) @ zero_zero_nat ) ) ).

% divmod_algorithm_code(2)
thf(fact_5332_divmod__algorithm__code_I2_J,axiom,
    ! [M: num] :
      ( ( unique3479559517661332726nteger @ M @ one )
      = ( produc1086072967326762835nteger @ ( numera6620942414471956472nteger @ M ) @ zero_z3403309356797280102nteger ) ) ).

% divmod_algorithm_code(2)
thf(fact_5333_divmod__algorithm__code_I3_J,axiom,
    ! [N: num] :
      ( ( unique5052692396658037445od_int @ one @ ( bit0 @ N ) )
      = ( product_Pair_int_int @ zero_zero_int @ ( numeral_numeral_int @ one ) ) ) ).

% divmod_algorithm_code(3)
thf(fact_5334_divmod__algorithm__code_I3_J,axiom,
    ! [N: num] :
      ( ( unique5055182867167087721od_nat @ one @ ( bit0 @ N ) )
      = ( product_Pair_nat_nat @ zero_zero_nat @ ( numeral_numeral_nat @ one ) ) ) ).

% divmod_algorithm_code(3)
thf(fact_5335_divmod__algorithm__code_I3_J,axiom,
    ! [N: num] :
      ( ( unique3479559517661332726nteger @ one @ ( bit0 @ N ) )
      = ( produc1086072967326762835nteger @ zero_z3403309356797280102nteger @ ( numera6620942414471956472nteger @ one ) ) ) ).

% divmod_algorithm_code(3)
thf(fact_5336_divmod__algorithm__code_I4_J,axiom,
    ! [N: num] :
      ( ( unique5052692396658037445od_int @ one @ ( bit1 @ N ) )
      = ( product_Pair_int_int @ zero_zero_int @ ( numeral_numeral_int @ one ) ) ) ).

% divmod_algorithm_code(4)
thf(fact_5337_divmod__algorithm__code_I4_J,axiom,
    ! [N: num] :
      ( ( unique5055182867167087721od_nat @ one @ ( bit1 @ N ) )
      = ( product_Pair_nat_nat @ zero_zero_nat @ ( numeral_numeral_nat @ one ) ) ) ).

% divmod_algorithm_code(4)
thf(fact_5338_divmod__algorithm__code_I4_J,axiom,
    ! [N: num] :
      ( ( unique3479559517661332726nteger @ one @ ( bit1 @ N ) )
      = ( produc1086072967326762835nteger @ zero_z3403309356797280102nteger @ ( numera6620942414471956472nteger @ one ) ) ) ).

% divmod_algorithm_code(4)
thf(fact_5339_divmod__int__def,axiom,
    ( unique5052692396658037445od_int
    = ( ^ [M3: num,N2: num] : ( product_Pair_int_int @ ( divide_divide_int @ ( numeral_numeral_int @ M3 ) @ ( numeral_numeral_int @ N2 ) ) @ ( modulo_modulo_int @ ( numeral_numeral_int @ M3 ) @ ( numeral_numeral_int @ N2 ) ) ) ) ) ).

% divmod_int_def
thf(fact_5340_divmod__def,axiom,
    ( unique5052692396658037445od_int
    = ( ^ [M3: num,N2: num] : ( product_Pair_int_int @ ( divide_divide_int @ ( numeral_numeral_int @ M3 ) @ ( numeral_numeral_int @ N2 ) ) @ ( modulo_modulo_int @ ( numeral_numeral_int @ M3 ) @ ( numeral_numeral_int @ N2 ) ) ) ) ) ).

% divmod_def
thf(fact_5341_divmod__def,axiom,
    ( unique5055182867167087721od_nat
    = ( ^ [M3: num,N2: num] : ( product_Pair_nat_nat @ ( divide_divide_nat @ ( numeral_numeral_nat @ M3 ) @ ( numeral_numeral_nat @ N2 ) ) @ ( modulo_modulo_nat @ ( numeral_numeral_nat @ M3 ) @ ( numeral_numeral_nat @ N2 ) ) ) ) ) ).

% divmod_def
thf(fact_5342_divmod__def,axiom,
    ( unique3479559517661332726nteger
    = ( ^ [M3: num,N2: num] : ( produc1086072967326762835nteger @ ( divide6298287555418463151nteger @ ( numera6620942414471956472nteger @ M3 ) @ ( numera6620942414471956472nteger @ N2 ) ) @ ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ M3 ) @ ( numera6620942414471956472nteger @ N2 ) ) ) ) ) ).

% divmod_def
thf(fact_5343_divmod_H__nat__def,axiom,
    ( unique5055182867167087721od_nat
    = ( ^ [M3: num,N2: num] : ( product_Pair_nat_nat @ ( divide_divide_nat @ ( numeral_numeral_nat @ M3 ) @ ( numeral_numeral_nat @ N2 ) ) @ ( modulo_modulo_nat @ ( numeral_numeral_nat @ M3 ) @ ( numeral_numeral_nat @ N2 ) ) ) ) ) ).

% divmod'_nat_def
thf(fact_5344_divmod__divmod__step,axiom,
    ( unique5055182867167087721od_nat
    = ( ^ [M3: num,N2: num] : ( if_Pro6206227464963214023at_nat @ ( ord_less_num @ M3 @ N2 ) @ ( product_Pair_nat_nat @ zero_zero_nat @ ( numeral_numeral_nat @ M3 ) ) @ ( unique5026877609467782581ep_nat @ N2 @ ( unique5055182867167087721od_nat @ M3 @ ( bit0 @ N2 ) ) ) ) ) ) ).

% divmod_divmod_step
thf(fact_5345_divmod__divmod__step,axiom,
    ( unique5052692396658037445od_int
    = ( ^ [M3: num,N2: num] : ( if_Pro3027730157355071871nt_int @ ( ord_less_num @ M3 @ N2 ) @ ( product_Pair_int_int @ zero_zero_int @ ( numeral_numeral_int @ M3 ) ) @ ( unique5024387138958732305ep_int @ N2 @ ( unique5052692396658037445od_int @ M3 @ ( bit0 @ N2 ) ) ) ) ) ) ).

% divmod_divmod_step
thf(fact_5346_divmod__divmod__step,axiom,
    ( unique3479559517661332726nteger
    = ( ^ [M3: num,N2: num] : ( if_Pro6119634080678213985nteger @ ( ord_less_num @ M3 @ N2 ) @ ( produc1086072967326762835nteger @ zero_z3403309356797280102nteger @ ( numera6620942414471956472nteger @ M3 ) ) @ ( unique4921790084139445826nteger @ N2 @ ( unique3479559517661332726nteger @ M3 @ ( bit0 @ N2 ) ) ) ) ) ) ).

% divmod_divmod_step
thf(fact_5347_mult__less__iff1,axiom,
    ! [Z: real,X2: real,Y2: real] :
      ( ( ord_less_real @ zero_zero_real @ Z )
     => ( ( ord_less_real @ ( times_times_real @ X2 @ Z ) @ ( times_times_real @ Y2 @ Z ) )
        = ( ord_less_real @ X2 @ Y2 ) ) ) ).

% mult_less_iff1
thf(fact_5348_mult__less__iff1,axiom,
    ! [Z: rat,X2: rat,Y2: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ Z )
     => ( ( ord_less_rat @ ( times_times_rat @ X2 @ Z ) @ ( times_times_rat @ Y2 @ Z ) )
        = ( ord_less_rat @ X2 @ Y2 ) ) ) ).

% mult_less_iff1
thf(fact_5349_mult__less__iff1,axiom,
    ! [Z: int,X2: int,Y2: int] :
      ( ( ord_less_int @ zero_zero_int @ Z )
     => ( ( ord_less_int @ ( times_times_int @ X2 @ Z ) @ ( times_times_int @ Y2 @ Z ) )
        = ( ord_less_int @ X2 @ Y2 ) ) ) ).

% mult_less_iff1
thf(fact_5350_divides__aux__eq,axiom,
    ! [Q2: code_integer,R2: code_integer] :
      ( ( unique5706413561485394159nteger @ ( produc1086072967326762835nteger @ Q2 @ R2 ) )
      = ( R2 = zero_z3403309356797280102nteger ) ) ).

% divides_aux_eq
thf(fact_5351_divides__aux__eq,axiom,
    ! [Q2: nat,R2: nat] :
      ( ( unique6322359934112328802ux_nat @ ( product_Pair_nat_nat @ Q2 @ R2 ) )
      = ( R2 = zero_zero_nat ) ) ).

% divides_aux_eq
thf(fact_5352_divides__aux__eq,axiom,
    ! [Q2: int,R2: int] :
      ( ( unique6319869463603278526ux_int @ ( product_Pair_int_int @ Q2 @ R2 ) )
      = ( R2 = zero_zero_int ) ) ).

% divides_aux_eq
thf(fact_5353_neg__eucl__rel__int__mult__2,axiom,
    ! [B: int,A: int,Q2: int,R2: int] :
      ( ( ord_less_eq_int @ B @ zero_zero_int )
     => ( ( eucl_rel_int @ ( plus_plus_int @ A @ one_one_int ) @ B @ ( product_Pair_int_int @ Q2 @ R2 ) )
       => ( eucl_rel_int @ ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) @ ( product_Pair_int_int @ Q2 @ ( minus_minus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ R2 ) @ one_one_int ) ) ) ) ) ).

% neg_eucl_rel_int_mult_2
thf(fact_5354_product__nth,axiom,
    ! [N: nat,Xs2: list_Code_integer,Ys: list_Code_integer] :
      ( ( ord_less_nat @ N @ ( times_times_nat @ ( size_s3445333598471063425nteger @ Xs2 ) @ ( size_s3445333598471063425nteger @ Ys ) ) )
     => ( ( nth_Pr2304437835452373666nteger @ ( produc8792966785426426881nteger @ Xs2 @ Ys ) @ N )
        = ( produc1086072967326762835nteger @ ( nth_Code_integer @ Xs2 @ ( divide_divide_nat @ N @ ( size_s3445333598471063425nteger @ Ys ) ) ) @ ( nth_Code_integer @ Ys @ ( modulo_modulo_nat @ N @ ( size_s3445333598471063425nteger @ Ys ) ) ) ) ) ) ).

% product_nth
thf(fact_5355_product__nth,axiom,
    ! [N: nat,Xs2: list_num,Ys: list_num] :
      ( ( ord_less_nat @ N @ ( times_times_nat @ ( size_size_list_num @ Xs2 ) @ ( size_size_list_num @ Ys ) ) )
     => ( ( nth_Pr6456567536196504476um_num @ ( product_num_num @ Xs2 @ Ys ) @ N )
        = ( product_Pair_num_num @ ( nth_num @ Xs2 @ ( divide_divide_nat @ N @ ( size_size_list_num @ Ys ) ) ) @ ( nth_num @ Ys @ ( modulo_modulo_nat @ N @ ( size_size_list_num @ Ys ) ) ) ) ) ) ).

% product_nth
thf(fact_5356_product__nth,axiom,
    ! [N: nat,Xs2: list_nat,Ys: list_nat] :
      ( ( ord_less_nat @ N @ ( times_times_nat @ ( size_size_list_nat @ Xs2 ) @ ( size_size_list_nat @ Ys ) ) )
     => ( ( nth_Pr7617993195940197384at_nat @ ( product_nat_nat @ Xs2 @ Ys ) @ N )
        = ( product_Pair_nat_nat @ ( nth_nat @ Xs2 @ ( divide_divide_nat @ N @ ( size_size_list_nat @ Ys ) ) ) @ ( nth_nat @ Ys @ ( modulo_modulo_nat @ N @ ( size_size_list_nat @ Ys ) ) ) ) ) ) ).

% product_nth
thf(fact_5357_product__nth,axiom,
    ! [N: nat,Xs2: list_Code_integer,Ys: list_o] :
      ( ( ord_less_nat @ N @ ( times_times_nat @ ( size_s3445333598471063425nteger @ Xs2 ) @ ( size_size_list_o @ Ys ) ) )
     => ( ( nth_Pr8522763379788166057eger_o @ ( produc3607205314601156340eger_o @ Xs2 @ Ys ) @ N )
        = ( produc6677183202524767010eger_o @ ( nth_Code_integer @ Xs2 @ ( divide_divide_nat @ N @ ( size_size_list_o @ Ys ) ) ) @ ( nth_o @ Ys @ ( modulo_modulo_nat @ N @ ( size_size_list_o @ Ys ) ) ) ) ) ) ).

% product_nth
thf(fact_5358_product__nth,axiom,
    ! [N: nat,Xs2: list_VEBT_VEBT,Ys: list_VEBT_VEBT] :
      ( ( ord_less_nat @ N @ ( times_times_nat @ ( size_s6755466524823107622T_VEBT @ Xs2 ) @ ( size_s6755466524823107622T_VEBT @ Ys ) ) )
     => ( ( nth_Pr4953567300277697838T_VEBT @ ( produc4743750530478302277T_VEBT @ Xs2 @ Ys ) @ N )
        = ( produc537772716801021591T_VEBT @ ( nth_VEBT_VEBT @ Xs2 @ ( divide_divide_nat @ N @ ( size_s6755466524823107622T_VEBT @ Ys ) ) ) @ ( nth_VEBT_VEBT @ Ys @ ( modulo_modulo_nat @ N @ ( size_s6755466524823107622T_VEBT @ Ys ) ) ) ) ) ) ).

% product_nth
thf(fact_5359_product__nth,axiom,
    ! [N: nat,Xs2: list_VEBT_VEBT,Ys: list_o] :
      ( ( ord_less_nat @ N @ ( times_times_nat @ ( size_s6755466524823107622T_VEBT @ Xs2 ) @ ( size_size_list_o @ Ys ) ) )
     => ( ( nth_Pr4606735188037164562VEBT_o @ ( product_VEBT_VEBT_o @ Xs2 @ Ys ) @ N )
        = ( produc8721562602347293563VEBT_o @ ( nth_VEBT_VEBT @ Xs2 @ ( divide_divide_nat @ N @ ( size_size_list_o @ Ys ) ) ) @ ( nth_o @ Ys @ ( modulo_modulo_nat @ N @ ( size_size_list_o @ Ys ) ) ) ) ) ) ).

% product_nth
thf(fact_5360_product__nth,axiom,
    ! [N: nat,Xs2: list_VEBT_VEBT,Ys: list_int] :
      ( ( ord_less_nat @ N @ ( times_times_nat @ ( size_s6755466524823107622T_VEBT @ Xs2 ) @ ( size_size_list_int @ Ys ) ) )
     => ( ( nth_Pr6837108013167703752BT_int @ ( produc7292646706713671643BT_int @ Xs2 @ Ys ) @ N )
        = ( produc736041933913180425BT_int @ ( nth_VEBT_VEBT @ Xs2 @ ( divide_divide_nat @ N @ ( size_size_list_int @ Ys ) ) ) @ ( nth_int @ Ys @ ( modulo_modulo_nat @ N @ ( size_size_list_int @ Ys ) ) ) ) ) ) ).

% product_nth
thf(fact_5361_product__nth,axiom,
    ! [N: nat,Xs2: list_o,Ys: list_VEBT_VEBT] :
      ( ( ord_less_nat @ N @ ( times_times_nat @ ( size_size_list_o @ Xs2 ) @ ( size_s6755466524823107622T_VEBT @ Ys ) ) )
     => ( ( nth_Pr6777367263587873994T_VEBT @ ( product_o_VEBT_VEBT @ Xs2 @ Ys ) @ N )
        = ( produc2982872950893828659T_VEBT @ ( nth_o @ Xs2 @ ( divide_divide_nat @ N @ ( size_s6755466524823107622T_VEBT @ Ys ) ) ) @ ( nth_VEBT_VEBT @ Ys @ ( modulo_modulo_nat @ N @ ( size_s6755466524823107622T_VEBT @ Ys ) ) ) ) ) ) ).

% product_nth
thf(fact_5362_product__nth,axiom,
    ! [N: nat,Xs2: list_o,Ys: list_o] :
      ( ( ord_less_nat @ N @ ( times_times_nat @ ( size_size_list_o @ Xs2 ) @ ( size_size_list_o @ Ys ) ) )
     => ( ( nth_Product_prod_o_o @ ( product_o_o @ Xs2 @ Ys ) @ N )
        = ( product_Pair_o_o @ ( nth_o @ Xs2 @ ( divide_divide_nat @ N @ ( size_size_list_o @ Ys ) ) ) @ ( nth_o @ Ys @ ( modulo_modulo_nat @ N @ ( size_size_list_o @ Ys ) ) ) ) ) ) ).

% product_nth
thf(fact_5363_product__nth,axiom,
    ! [N: nat,Xs2: list_o,Ys: list_int] :
      ( ( ord_less_nat @ N @ ( times_times_nat @ ( size_size_list_o @ Xs2 ) @ ( size_size_list_int @ Ys ) ) )
     => ( ( nth_Pr1649062631805364268_o_int @ ( product_o_int @ Xs2 @ Ys ) @ N )
        = ( product_Pair_o_int @ ( nth_o @ Xs2 @ ( divide_divide_nat @ N @ ( size_size_list_int @ Ys ) ) ) @ ( nth_int @ Ys @ ( modulo_modulo_nat @ N @ ( size_size_list_int @ Ys ) ) ) ) ) ) ).

% product_nth
thf(fact_5364_translation__subtract__diff,axiom,
    ! [A: real,S: set_real,T: set_real] :
      ( ( image_real_real
        @ ^ [X: real] : ( minus_minus_real @ X @ A )
        @ ( minus_minus_set_real @ S @ T ) )
      = ( minus_minus_set_real
        @ ( image_real_real
          @ ^ [X: real] : ( minus_minus_real @ X @ A )
          @ S )
        @ ( image_real_real
          @ ^ [X: real] : ( minus_minus_real @ X @ A )
          @ T ) ) ) ).

% translation_subtract_diff
thf(fact_5365_translation__subtract__diff,axiom,
    ! [A: rat,S: set_rat,T: set_rat] :
      ( ( image_rat_rat
        @ ^ [X: rat] : ( minus_minus_rat @ X @ A )
        @ ( minus_minus_set_rat @ S @ T ) )
      = ( minus_minus_set_rat
        @ ( image_rat_rat
          @ ^ [X: rat] : ( minus_minus_rat @ X @ A )
          @ S )
        @ ( image_rat_rat
          @ ^ [X: rat] : ( minus_minus_rat @ X @ A )
          @ T ) ) ) ).

% translation_subtract_diff
thf(fact_5366_translation__subtract__diff,axiom,
    ! [A: int,S: set_int,T: set_int] :
      ( ( image_int_int
        @ ^ [X: int] : ( minus_minus_int @ X @ A )
        @ ( minus_minus_set_int @ S @ T ) )
      = ( minus_minus_set_int
        @ ( image_int_int
          @ ^ [X: int] : ( minus_minus_int @ X @ A )
          @ S )
        @ ( image_int_int
          @ ^ [X: int] : ( minus_minus_int @ X @ A )
          @ T ) ) ) ).

% translation_subtract_diff
thf(fact_5367_prod_Ofinite__Collect__op,axiom,
    ! [I5: set_real,X2: real > complex,Y2: real > complex] :
      ( ( finite_finite_real
        @ ( collect_real
          @ ^ [I4: real] :
              ( ( member_real @ I4 @ I5 )
              & ( ( X2 @ I4 )
               != one_one_complex ) ) ) )
     => ( ( finite_finite_real
          @ ( collect_real
            @ ^ [I4: real] :
                ( ( member_real @ I4 @ I5 )
                & ( ( Y2 @ I4 )
                 != one_one_complex ) ) ) )
       => ( finite_finite_real
          @ ( collect_real
            @ ^ [I4: real] :
                ( ( member_real @ I4 @ I5 )
                & ( ( times_times_complex @ ( X2 @ I4 ) @ ( Y2 @ I4 ) )
                 != one_one_complex ) ) ) ) ) ) ).

% prod.finite_Collect_op
thf(fact_5368_prod_Ofinite__Collect__op,axiom,
    ! [I5: set_nat,X2: nat > complex,Y2: nat > complex] :
      ( ( finite_finite_nat
        @ ( collect_nat
          @ ^ [I4: nat] :
              ( ( member_nat @ I4 @ I5 )
              & ( ( X2 @ I4 )
               != one_one_complex ) ) ) )
     => ( ( finite_finite_nat
          @ ( collect_nat
            @ ^ [I4: nat] :
                ( ( member_nat @ I4 @ I5 )
                & ( ( Y2 @ I4 )
                 != one_one_complex ) ) ) )
       => ( finite_finite_nat
          @ ( collect_nat
            @ ^ [I4: nat] :
                ( ( member_nat @ I4 @ I5 )
                & ( ( times_times_complex @ ( X2 @ I4 ) @ ( Y2 @ I4 ) )
                 != one_one_complex ) ) ) ) ) ) ).

% prod.finite_Collect_op
thf(fact_5369_prod_Ofinite__Collect__op,axiom,
    ! [I5: set_int,X2: int > complex,Y2: int > complex] :
      ( ( finite_finite_int
        @ ( collect_int
          @ ^ [I4: int] :
              ( ( member_int @ I4 @ I5 )
              & ( ( X2 @ I4 )
               != one_one_complex ) ) ) )
     => ( ( finite_finite_int
          @ ( collect_int
            @ ^ [I4: int] :
                ( ( member_int @ I4 @ I5 )
                & ( ( Y2 @ I4 )
                 != one_one_complex ) ) ) )
       => ( finite_finite_int
          @ ( collect_int
            @ ^ [I4: int] :
                ( ( member_int @ I4 @ I5 )
                & ( ( times_times_complex @ ( X2 @ I4 ) @ ( Y2 @ I4 ) )
                 != one_one_complex ) ) ) ) ) ) ).

% prod.finite_Collect_op
thf(fact_5370_prod_Ofinite__Collect__op,axiom,
    ! [I5: set_complex,X2: complex > complex,Y2: complex > complex] :
      ( ( finite3207457112153483333omplex
        @ ( collect_complex
          @ ^ [I4: complex] :
              ( ( member_complex @ I4 @ I5 )
              & ( ( X2 @ I4 )
               != one_one_complex ) ) ) )
     => ( ( finite3207457112153483333omplex
          @ ( collect_complex
            @ ^ [I4: complex] :
                ( ( member_complex @ I4 @ I5 )
                & ( ( Y2 @ I4 )
                 != one_one_complex ) ) ) )
       => ( finite3207457112153483333omplex
          @ ( collect_complex
            @ ^ [I4: complex] :
                ( ( member_complex @ I4 @ I5 )
                & ( ( times_times_complex @ ( X2 @ I4 ) @ ( Y2 @ I4 ) )
                 != one_one_complex ) ) ) ) ) ) ).

% prod.finite_Collect_op
thf(fact_5371_prod_Ofinite__Collect__op,axiom,
    ! [I5: set_real,X2: real > real,Y2: real > real] :
      ( ( finite_finite_real
        @ ( collect_real
          @ ^ [I4: real] :
              ( ( member_real @ I4 @ I5 )
              & ( ( X2 @ I4 )
               != one_one_real ) ) ) )
     => ( ( finite_finite_real
          @ ( collect_real
            @ ^ [I4: real] :
                ( ( member_real @ I4 @ I5 )
                & ( ( Y2 @ I4 )
                 != one_one_real ) ) ) )
       => ( finite_finite_real
          @ ( collect_real
            @ ^ [I4: real] :
                ( ( member_real @ I4 @ I5 )
                & ( ( times_times_real @ ( X2 @ I4 ) @ ( Y2 @ I4 ) )
                 != one_one_real ) ) ) ) ) ) ).

% prod.finite_Collect_op
thf(fact_5372_prod_Ofinite__Collect__op,axiom,
    ! [I5: set_nat,X2: nat > real,Y2: nat > real] :
      ( ( finite_finite_nat
        @ ( collect_nat
          @ ^ [I4: nat] :
              ( ( member_nat @ I4 @ I5 )
              & ( ( X2 @ I4 )
               != one_one_real ) ) ) )
     => ( ( finite_finite_nat
          @ ( collect_nat
            @ ^ [I4: nat] :
                ( ( member_nat @ I4 @ I5 )
                & ( ( Y2 @ I4 )
                 != one_one_real ) ) ) )
       => ( finite_finite_nat
          @ ( collect_nat
            @ ^ [I4: nat] :
                ( ( member_nat @ I4 @ I5 )
                & ( ( times_times_real @ ( X2 @ I4 ) @ ( Y2 @ I4 ) )
                 != one_one_real ) ) ) ) ) ) ).

% prod.finite_Collect_op
thf(fact_5373_prod_Ofinite__Collect__op,axiom,
    ! [I5: set_int,X2: int > real,Y2: int > real] :
      ( ( finite_finite_int
        @ ( collect_int
          @ ^ [I4: int] :
              ( ( member_int @ I4 @ I5 )
              & ( ( X2 @ I4 )
               != one_one_real ) ) ) )
     => ( ( finite_finite_int
          @ ( collect_int
            @ ^ [I4: int] :
                ( ( member_int @ I4 @ I5 )
                & ( ( Y2 @ I4 )
                 != one_one_real ) ) ) )
       => ( finite_finite_int
          @ ( collect_int
            @ ^ [I4: int] :
                ( ( member_int @ I4 @ I5 )
                & ( ( times_times_real @ ( X2 @ I4 ) @ ( Y2 @ I4 ) )
                 != one_one_real ) ) ) ) ) ) ).

% prod.finite_Collect_op
thf(fact_5374_prod_Ofinite__Collect__op,axiom,
    ! [I5: set_complex,X2: complex > real,Y2: complex > real] :
      ( ( finite3207457112153483333omplex
        @ ( collect_complex
          @ ^ [I4: complex] :
              ( ( member_complex @ I4 @ I5 )
              & ( ( X2 @ I4 )
               != one_one_real ) ) ) )
     => ( ( finite3207457112153483333omplex
          @ ( collect_complex
            @ ^ [I4: complex] :
                ( ( member_complex @ I4 @ I5 )
                & ( ( Y2 @ I4 )
                 != one_one_real ) ) ) )
       => ( finite3207457112153483333omplex
          @ ( collect_complex
            @ ^ [I4: complex] :
                ( ( member_complex @ I4 @ I5 )
                & ( ( times_times_real @ ( X2 @ I4 ) @ ( Y2 @ I4 ) )
                 != one_one_real ) ) ) ) ) ) ).

% prod.finite_Collect_op
thf(fact_5375_prod_Ofinite__Collect__op,axiom,
    ! [I5: set_real,X2: real > rat,Y2: real > rat] :
      ( ( finite_finite_real
        @ ( collect_real
          @ ^ [I4: real] :
              ( ( member_real @ I4 @ I5 )
              & ( ( X2 @ I4 )
               != one_one_rat ) ) ) )
     => ( ( finite_finite_real
          @ ( collect_real
            @ ^ [I4: real] :
                ( ( member_real @ I4 @ I5 )
                & ( ( Y2 @ I4 )
                 != one_one_rat ) ) ) )
       => ( finite_finite_real
          @ ( collect_real
            @ ^ [I4: real] :
                ( ( member_real @ I4 @ I5 )
                & ( ( times_times_rat @ ( X2 @ I4 ) @ ( Y2 @ I4 ) )
                 != one_one_rat ) ) ) ) ) ) ).

% prod.finite_Collect_op
thf(fact_5376_prod_Ofinite__Collect__op,axiom,
    ! [I5: set_nat,X2: nat > rat,Y2: nat > rat] :
      ( ( finite_finite_nat
        @ ( collect_nat
          @ ^ [I4: nat] :
              ( ( member_nat @ I4 @ I5 )
              & ( ( X2 @ I4 )
               != one_one_rat ) ) ) )
     => ( ( finite_finite_nat
          @ ( collect_nat
            @ ^ [I4: nat] :
                ( ( member_nat @ I4 @ I5 )
                & ( ( Y2 @ I4 )
                 != one_one_rat ) ) ) )
       => ( finite_finite_nat
          @ ( collect_nat
            @ ^ [I4: nat] :
                ( ( member_nat @ I4 @ I5 )
                & ( ( times_times_rat @ ( X2 @ I4 ) @ ( Y2 @ I4 ) )
                 != one_one_rat ) ) ) ) ) ) ).

% prod.finite_Collect_op
thf(fact_5377_sum_Ofinite__Collect__op,axiom,
    ! [I5: set_real,X2: real > complex,Y2: real > complex] :
      ( ( finite_finite_real
        @ ( collect_real
          @ ^ [I4: real] :
              ( ( member_real @ I4 @ I5 )
              & ( ( X2 @ I4 )
               != zero_zero_complex ) ) ) )
     => ( ( finite_finite_real
          @ ( collect_real
            @ ^ [I4: real] :
                ( ( member_real @ I4 @ I5 )
                & ( ( Y2 @ I4 )
                 != zero_zero_complex ) ) ) )
       => ( finite_finite_real
          @ ( collect_real
            @ ^ [I4: real] :
                ( ( member_real @ I4 @ I5 )
                & ( ( plus_plus_complex @ ( X2 @ I4 ) @ ( Y2 @ I4 ) )
                 != zero_zero_complex ) ) ) ) ) ) ).

% sum.finite_Collect_op
thf(fact_5378_sum_Ofinite__Collect__op,axiom,
    ! [I5: set_nat,X2: nat > complex,Y2: nat > complex] :
      ( ( finite_finite_nat
        @ ( collect_nat
          @ ^ [I4: nat] :
              ( ( member_nat @ I4 @ I5 )
              & ( ( X2 @ I4 )
               != zero_zero_complex ) ) ) )
     => ( ( finite_finite_nat
          @ ( collect_nat
            @ ^ [I4: nat] :
                ( ( member_nat @ I4 @ I5 )
                & ( ( Y2 @ I4 )
                 != zero_zero_complex ) ) ) )
       => ( finite_finite_nat
          @ ( collect_nat
            @ ^ [I4: nat] :
                ( ( member_nat @ I4 @ I5 )
                & ( ( plus_plus_complex @ ( X2 @ I4 ) @ ( Y2 @ I4 ) )
                 != zero_zero_complex ) ) ) ) ) ) ).

% sum.finite_Collect_op
thf(fact_5379_sum_Ofinite__Collect__op,axiom,
    ! [I5: set_int,X2: int > complex,Y2: int > complex] :
      ( ( finite_finite_int
        @ ( collect_int
          @ ^ [I4: int] :
              ( ( member_int @ I4 @ I5 )
              & ( ( X2 @ I4 )
               != zero_zero_complex ) ) ) )
     => ( ( finite_finite_int
          @ ( collect_int
            @ ^ [I4: int] :
                ( ( member_int @ I4 @ I5 )
                & ( ( Y2 @ I4 )
                 != zero_zero_complex ) ) ) )
       => ( finite_finite_int
          @ ( collect_int
            @ ^ [I4: int] :
                ( ( member_int @ I4 @ I5 )
                & ( ( plus_plus_complex @ ( X2 @ I4 ) @ ( Y2 @ I4 ) )
                 != zero_zero_complex ) ) ) ) ) ) ).

% sum.finite_Collect_op
thf(fact_5380_sum_Ofinite__Collect__op,axiom,
    ! [I5: set_complex,X2: complex > complex,Y2: complex > complex] :
      ( ( finite3207457112153483333omplex
        @ ( collect_complex
          @ ^ [I4: complex] :
              ( ( member_complex @ I4 @ I5 )
              & ( ( X2 @ I4 )
               != zero_zero_complex ) ) ) )
     => ( ( finite3207457112153483333omplex
          @ ( collect_complex
            @ ^ [I4: complex] :
                ( ( member_complex @ I4 @ I5 )
                & ( ( Y2 @ I4 )
                 != zero_zero_complex ) ) ) )
       => ( finite3207457112153483333omplex
          @ ( collect_complex
            @ ^ [I4: complex] :
                ( ( member_complex @ I4 @ I5 )
                & ( ( plus_plus_complex @ ( X2 @ I4 ) @ ( Y2 @ I4 ) )
                 != zero_zero_complex ) ) ) ) ) ) ).

% sum.finite_Collect_op
thf(fact_5381_sum_Ofinite__Collect__op,axiom,
    ! [I5: set_real,X2: real > real,Y2: real > real] :
      ( ( finite_finite_real
        @ ( collect_real
          @ ^ [I4: real] :
              ( ( member_real @ I4 @ I5 )
              & ( ( X2 @ I4 )
               != zero_zero_real ) ) ) )
     => ( ( finite_finite_real
          @ ( collect_real
            @ ^ [I4: real] :
                ( ( member_real @ I4 @ I5 )
                & ( ( Y2 @ I4 )
                 != zero_zero_real ) ) ) )
       => ( finite_finite_real
          @ ( collect_real
            @ ^ [I4: real] :
                ( ( member_real @ I4 @ I5 )
                & ( ( plus_plus_real @ ( X2 @ I4 ) @ ( Y2 @ I4 ) )
                 != zero_zero_real ) ) ) ) ) ) ).

% sum.finite_Collect_op
thf(fact_5382_sum_Ofinite__Collect__op,axiom,
    ! [I5: set_nat,X2: nat > real,Y2: nat > real] :
      ( ( finite_finite_nat
        @ ( collect_nat
          @ ^ [I4: nat] :
              ( ( member_nat @ I4 @ I5 )
              & ( ( X2 @ I4 )
               != zero_zero_real ) ) ) )
     => ( ( finite_finite_nat
          @ ( collect_nat
            @ ^ [I4: nat] :
                ( ( member_nat @ I4 @ I5 )
                & ( ( Y2 @ I4 )
                 != zero_zero_real ) ) ) )
       => ( finite_finite_nat
          @ ( collect_nat
            @ ^ [I4: nat] :
                ( ( member_nat @ I4 @ I5 )
                & ( ( plus_plus_real @ ( X2 @ I4 ) @ ( Y2 @ I4 ) )
                 != zero_zero_real ) ) ) ) ) ) ).

% sum.finite_Collect_op
thf(fact_5383_sum_Ofinite__Collect__op,axiom,
    ! [I5: set_int,X2: int > real,Y2: int > real] :
      ( ( finite_finite_int
        @ ( collect_int
          @ ^ [I4: int] :
              ( ( member_int @ I4 @ I5 )
              & ( ( X2 @ I4 )
               != zero_zero_real ) ) ) )
     => ( ( finite_finite_int
          @ ( collect_int
            @ ^ [I4: int] :
                ( ( member_int @ I4 @ I5 )
                & ( ( Y2 @ I4 )
                 != zero_zero_real ) ) ) )
       => ( finite_finite_int
          @ ( collect_int
            @ ^ [I4: int] :
                ( ( member_int @ I4 @ I5 )
                & ( ( plus_plus_real @ ( X2 @ I4 ) @ ( Y2 @ I4 ) )
                 != zero_zero_real ) ) ) ) ) ) ).

% sum.finite_Collect_op
thf(fact_5384_sum_Ofinite__Collect__op,axiom,
    ! [I5: set_complex,X2: complex > real,Y2: complex > real] :
      ( ( finite3207457112153483333omplex
        @ ( collect_complex
          @ ^ [I4: complex] :
              ( ( member_complex @ I4 @ I5 )
              & ( ( X2 @ I4 )
               != zero_zero_real ) ) ) )
     => ( ( finite3207457112153483333omplex
          @ ( collect_complex
            @ ^ [I4: complex] :
                ( ( member_complex @ I4 @ I5 )
                & ( ( Y2 @ I4 )
                 != zero_zero_real ) ) ) )
       => ( finite3207457112153483333omplex
          @ ( collect_complex
            @ ^ [I4: complex] :
                ( ( member_complex @ I4 @ I5 )
                & ( ( plus_plus_real @ ( X2 @ I4 ) @ ( Y2 @ I4 ) )
                 != zero_zero_real ) ) ) ) ) ) ).

% sum.finite_Collect_op
thf(fact_5385_sum_Ofinite__Collect__op,axiom,
    ! [I5: set_real,X2: real > rat,Y2: real > rat] :
      ( ( finite_finite_real
        @ ( collect_real
          @ ^ [I4: real] :
              ( ( member_real @ I4 @ I5 )
              & ( ( X2 @ I4 )
               != zero_zero_rat ) ) ) )
     => ( ( finite_finite_real
          @ ( collect_real
            @ ^ [I4: real] :
                ( ( member_real @ I4 @ I5 )
                & ( ( Y2 @ I4 )
                 != zero_zero_rat ) ) ) )
       => ( finite_finite_real
          @ ( collect_real
            @ ^ [I4: real] :
                ( ( member_real @ I4 @ I5 )
                & ( ( plus_plus_rat @ ( X2 @ I4 ) @ ( Y2 @ I4 ) )
                 != zero_zero_rat ) ) ) ) ) ) ).

% sum.finite_Collect_op
thf(fact_5386_sum_Ofinite__Collect__op,axiom,
    ! [I5: set_nat,X2: nat > rat,Y2: nat > rat] :
      ( ( finite_finite_nat
        @ ( collect_nat
          @ ^ [I4: nat] :
              ( ( member_nat @ I4 @ I5 )
              & ( ( X2 @ I4 )
               != zero_zero_rat ) ) ) )
     => ( ( finite_finite_nat
          @ ( collect_nat
            @ ^ [I4: nat] :
                ( ( member_nat @ I4 @ I5 )
                & ( ( Y2 @ I4 )
                 != zero_zero_rat ) ) ) )
       => ( finite_finite_nat
          @ ( collect_nat
            @ ^ [I4: nat] :
                ( ( member_nat @ I4 @ I5 )
                & ( ( plus_plus_rat @ ( X2 @ I4 ) @ ( Y2 @ I4 ) )
                 != zero_zero_rat ) ) ) ) ) ) ).

% sum.finite_Collect_op
thf(fact_5387_dbl__inc__simps_I3_J,axiom,
    ( ( neg_nu8557863876264182079omplex @ one_one_complex )
    = ( numera6690914467698888265omplex @ ( bit1 @ one ) ) ) ).

% dbl_inc_simps(3)
thf(fact_5388_dbl__inc__simps_I3_J,axiom,
    ( ( neg_nu8295874005876285629c_real @ one_one_real )
    = ( numeral_numeral_real @ ( bit1 @ one ) ) ) ).

% dbl_inc_simps(3)
thf(fact_5389_dbl__inc__simps_I3_J,axiom,
    ( ( neg_nu5219082963157363817nc_rat @ one_one_rat )
    = ( numeral_numeral_rat @ ( bit1 @ one ) ) ) ).

% dbl_inc_simps(3)
thf(fact_5390_dbl__inc__simps_I3_J,axiom,
    ( ( neg_nu5851722552734809277nc_int @ one_one_int )
    = ( numeral_numeral_int @ ( bit1 @ one ) ) ) ).

% dbl_inc_simps(3)
thf(fact_5391_dbl__inc__simps_I2_J,axiom,
    ( ( neg_nu8557863876264182079omplex @ zero_zero_complex )
    = one_one_complex ) ).

% dbl_inc_simps(2)
thf(fact_5392_dbl__inc__simps_I2_J,axiom,
    ( ( neg_nu8295874005876285629c_real @ zero_zero_real )
    = one_one_real ) ).

% dbl_inc_simps(2)
thf(fact_5393_dbl__inc__simps_I2_J,axiom,
    ( ( neg_nu5219082963157363817nc_rat @ zero_zero_rat )
    = one_one_rat ) ).

% dbl_inc_simps(2)
thf(fact_5394_dbl__inc__simps_I2_J,axiom,
    ( ( neg_nu5851722552734809277nc_int @ zero_zero_int )
    = one_one_int ) ).

% dbl_inc_simps(2)
thf(fact_5395_dbl__inc__simps_I5_J,axiom,
    ! [K: num] :
      ( ( neg_nu8557863876264182079omplex @ ( numera6690914467698888265omplex @ K ) )
      = ( numera6690914467698888265omplex @ ( bit1 @ K ) ) ) ).

% dbl_inc_simps(5)
thf(fact_5396_dbl__inc__simps_I5_J,axiom,
    ! [K: num] :
      ( ( neg_nu8295874005876285629c_real @ ( numeral_numeral_real @ K ) )
      = ( numeral_numeral_real @ ( bit1 @ K ) ) ) ).

% dbl_inc_simps(5)
thf(fact_5397_dbl__inc__simps_I5_J,axiom,
    ! [K: num] :
      ( ( neg_nu5219082963157363817nc_rat @ ( numeral_numeral_rat @ K ) )
      = ( numeral_numeral_rat @ ( bit1 @ K ) ) ) ).

% dbl_inc_simps(5)
thf(fact_5398_dbl__inc__simps_I5_J,axiom,
    ! [K: num] :
      ( ( neg_nu5851722552734809277nc_int @ ( numeral_numeral_int @ K ) )
      = ( numeral_numeral_int @ ( bit1 @ K ) ) ) ).

% dbl_inc_simps(5)
thf(fact_5399_length__product,axiom,
    ! [Xs2: list_VEBT_VEBT,Ys: list_VEBT_VEBT] :
      ( ( size_s7466405169056248089T_VEBT @ ( produc4743750530478302277T_VEBT @ Xs2 @ Ys ) )
      = ( times_times_nat @ ( size_s6755466524823107622T_VEBT @ Xs2 ) @ ( size_s6755466524823107622T_VEBT @ Ys ) ) ) ).

% length_product
thf(fact_5400_length__product,axiom,
    ! [Xs2: list_VEBT_VEBT,Ys: list_o] :
      ( ( size_s9168528473962070013VEBT_o @ ( product_VEBT_VEBT_o @ Xs2 @ Ys ) )
      = ( times_times_nat @ ( size_s6755466524823107622T_VEBT @ Xs2 ) @ ( size_size_list_o @ Ys ) ) ) ).

% length_product
thf(fact_5401_length__product,axiom,
    ! [Xs2: list_VEBT_VEBT,Ys: list_int] :
      ( ( size_s3661962791536183091BT_int @ ( produc7292646706713671643BT_int @ Xs2 @ Ys ) )
      = ( times_times_nat @ ( size_s6755466524823107622T_VEBT @ Xs2 ) @ ( size_size_list_int @ Ys ) ) ) ).

% length_product
thf(fact_5402_length__product,axiom,
    ! [Xs2: list_o,Ys: list_VEBT_VEBT] :
      ( ( size_s4313452262239582901T_VEBT @ ( product_o_VEBT_VEBT @ Xs2 @ Ys ) )
      = ( times_times_nat @ ( size_size_list_o @ Xs2 ) @ ( size_s6755466524823107622T_VEBT @ Ys ) ) ) ).

% length_product
thf(fact_5403_length__product,axiom,
    ! [Xs2: list_o,Ys: list_o] :
      ( ( size_s1515746228057227161od_o_o @ ( product_o_o @ Xs2 @ Ys ) )
      = ( times_times_nat @ ( size_size_list_o @ Xs2 ) @ ( size_size_list_o @ Ys ) ) ) ).

% length_product
thf(fact_5404_length__product,axiom,
    ! [Xs2: list_o,Ys: list_int] :
      ( ( size_s2953683556165314199_o_int @ ( product_o_int @ Xs2 @ Ys ) )
      = ( times_times_nat @ ( size_size_list_o @ Xs2 ) @ ( size_size_list_int @ Ys ) ) ) ).

% length_product
thf(fact_5405_length__product,axiom,
    ! [Xs2: list_int,Ys: list_VEBT_VEBT] :
      ( ( size_s6639371672096860321T_VEBT @ ( produc662631939642741121T_VEBT @ Xs2 @ Ys ) )
      = ( times_times_nat @ ( size_size_list_int @ Xs2 ) @ ( size_s6755466524823107622T_VEBT @ Ys ) ) ) ).

% length_product
thf(fact_5406_length__product,axiom,
    ! [Xs2: list_int,Ys: list_o] :
      ( ( size_s4246224855604898693_int_o @ ( product_int_o @ Xs2 @ Ys ) )
      = ( times_times_nat @ ( size_size_list_int @ Xs2 ) @ ( size_size_list_o @ Ys ) ) ) ).

% length_product
thf(fact_5407_length__product,axiom,
    ! [Xs2: list_int,Ys: list_int] :
      ( ( size_s5157815400016825771nt_int @ ( product_int_int @ Xs2 @ Ys ) )
      = ( times_times_nat @ ( size_size_list_int @ Xs2 ) @ ( size_size_list_int @ Ys ) ) ) ).

% length_product
thf(fact_5408_unique__quotient,axiom,
    ! [A: int,B: int,Q2: int,R2: int,Q5: int,R4: int] :
      ( ( eucl_rel_int @ A @ B @ ( product_Pair_int_int @ Q2 @ R2 ) )
     => ( ( eucl_rel_int @ A @ B @ ( product_Pair_int_int @ Q5 @ R4 ) )
       => ( Q2 = Q5 ) ) ) ).

% unique_quotient
thf(fact_5409_unique__remainder,axiom,
    ! [A: int,B: int,Q2: int,R2: int,Q5: int,R4: int] :
      ( ( eucl_rel_int @ A @ B @ ( product_Pair_int_int @ Q2 @ R2 ) )
     => ( ( eucl_rel_int @ A @ B @ ( product_Pair_int_int @ Q5 @ R4 ) )
       => ( R2 = R4 ) ) ) ).

% unique_remainder
thf(fact_5410_eucl__rel__int__by0,axiom,
    ! [K: int] : ( eucl_rel_int @ K @ zero_zero_int @ ( product_Pair_int_int @ zero_zero_int @ K ) ) ).

% eucl_rel_int_by0
thf(fact_5411_div__int__unique,axiom,
    ! [K: int,L: int,Q2: int,R2: int] :
      ( ( eucl_rel_int @ K @ L @ ( product_Pair_int_int @ Q2 @ R2 ) )
     => ( ( divide_divide_int @ K @ L )
        = Q2 ) ) ).

% div_int_unique
thf(fact_5412_mod__int__unique,axiom,
    ! [K: int,L: int,Q2: int,R2: int] :
      ( ( eucl_rel_int @ K @ L @ ( product_Pair_int_int @ Q2 @ R2 ) )
     => ( ( modulo_modulo_int @ K @ L )
        = R2 ) ) ).

% mod_int_unique
thf(fact_5413_eucl__rel__int__dividesI,axiom,
    ! [L: int,K: int,Q2: int] :
      ( ( L != zero_zero_int )
     => ( ( K
          = ( times_times_int @ Q2 @ L ) )
       => ( eucl_rel_int @ K @ L @ ( product_Pair_int_int @ Q2 @ zero_zero_int ) ) ) ) ).

% eucl_rel_int_dividesI
thf(fact_5414_eucl__rel__int,axiom,
    ! [K: int,L: int] : ( eucl_rel_int @ K @ L @ ( product_Pair_int_int @ ( divide_divide_int @ K @ L ) @ ( modulo_modulo_int @ K @ L ) ) ) ).

% eucl_rel_int
thf(fact_5415_dbl__inc__def,axiom,
    ( neg_nu8557863876264182079omplex
    = ( ^ [X: complex] : ( plus_plus_complex @ ( plus_plus_complex @ X @ X ) @ one_one_complex ) ) ) ).

% dbl_inc_def
thf(fact_5416_dbl__inc__def,axiom,
    ( neg_nu8295874005876285629c_real
    = ( ^ [X: real] : ( plus_plus_real @ ( plus_plus_real @ X @ X ) @ one_one_real ) ) ) ).

% dbl_inc_def
thf(fact_5417_dbl__inc__def,axiom,
    ( neg_nu5219082963157363817nc_rat
    = ( ^ [X: rat] : ( plus_plus_rat @ ( plus_plus_rat @ X @ X ) @ one_one_rat ) ) ) ).

% dbl_inc_def
thf(fact_5418_dbl__inc__def,axiom,
    ( neg_nu5851722552734809277nc_int
    = ( ^ [X: int] : ( plus_plus_int @ ( plus_plus_int @ X @ X ) @ one_one_int ) ) ) ).

% dbl_inc_def
thf(fact_5419_eucl__rel__int__iff,axiom,
    ! [K: int,L: int,Q2: int,R2: int] :
      ( ( eucl_rel_int @ K @ L @ ( product_Pair_int_int @ Q2 @ R2 ) )
      = ( ( K
          = ( plus_plus_int @ ( times_times_int @ L @ Q2 ) @ R2 ) )
        & ( ( ord_less_int @ zero_zero_int @ L )
         => ( ( ord_less_eq_int @ zero_zero_int @ R2 )
            & ( ord_less_int @ R2 @ L ) ) )
        & ( ~ ( ord_less_int @ zero_zero_int @ L )
         => ( ( ( ord_less_int @ L @ zero_zero_int )
             => ( ( ord_less_int @ L @ R2 )
                & ( ord_less_eq_int @ R2 @ zero_zero_int ) ) )
            & ( ~ ( ord_less_int @ L @ zero_zero_int )
             => ( Q2 = zero_zero_int ) ) ) ) ) ) ).

% eucl_rel_int_iff
thf(fact_5420_translation__diff,axiom,
    ! [A: real,S: set_real,T: set_real] :
      ( ( image_real_real @ ( plus_plus_real @ A ) @ ( minus_minus_set_real @ S @ T ) )
      = ( minus_minus_set_real @ ( image_real_real @ ( plus_plus_real @ A ) @ S ) @ ( image_real_real @ ( plus_plus_real @ A ) @ T ) ) ) ).

% translation_diff
thf(fact_5421_translation__diff,axiom,
    ! [A: rat,S: set_rat,T: set_rat] :
      ( ( image_rat_rat @ ( plus_plus_rat @ A ) @ ( minus_minus_set_rat @ S @ T ) )
      = ( minus_minus_set_rat @ ( image_rat_rat @ ( plus_plus_rat @ A ) @ S ) @ ( image_rat_rat @ ( plus_plus_rat @ A ) @ T ) ) ) ).

% translation_diff
thf(fact_5422_translation__diff,axiom,
    ! [A: int,S: set_int,T: set_int] :
      ( ( image_int_int @ ( plus_plus_int @ A ) @ ( minus_minus_set_int @ S @ T ) )
      = ( minus_minus_set_int @ ( image_int_int @ ( plus_plus_int @ A ) @ S ) @ ( image_int_int @ ( plus_plus_int @ A ) @ T ) ) ) ).

% translation_diff
thf(fact_5423_pos__eucl__rel__int__mult__2,axiom,
    ! [B: int,A: int,Q2: int,R2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ B )
     => ( ( eucl_rel_int @ A @ B @ ( product_Pair_int_int @ Q2 @ R2 ) )
       => ( eucl_rel_int @ ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) @ ( product_Pair_int_int @ Q2 @ ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ R2 ) ) ) ) ) ) ).

% pos_eucl_rel_int_mult_2
thf(fact_5424_prod_Oinject,axiom,
    ! [X1: code_integer,X23: code_integer,Y1: code_integer,Y22: code_integer] :
      ( ( ( produc1086072967326762835nteger @ X1 @ X23 )
        = ( produc1086072967326762835nteger @ Y1 @ Y22 ) )
      = ( ( X1 = Y1 )
        & ( X23 = Y22 ) ) ) ).

% prod.inject
thf(fact_5425_prod_Oinject,axiom,
    ! [X1: code_integer,X23: $o,Y1: code_integer,Y22: $o] :
      ( ( ( produc6677183202524767010eger_o @ X1 @ X23 )
        = ( produc6677183202524767010eger_o @ Y1 @ Y22 ) )
      = ( ( X1 = Y1 )
        & ( X23 = Y22 ) ) ) ).

% prod.inject
thf(fact_5426_prod_Oinject,axiom,
    ! [X1: num,X23: num,Y1: num,Y22: num] :
      ( ( ( product_Pair_num_num @ X1 @ X23 )
        = ( product_Pair_num_num @ Y1 @ Y22 ) )
      = ( ( X1 = Y1 )
        & ( X23 = Y22 ) ) ) ).

% prod.inject
thf(fact_5427_prod_Oinject,axiom,
    ! [X1: nat,X23: nat,Y1: nat,Y22: nat] :
      ( ( ( product_Pair_nat_nat @ X1 @ X23 )
        = ( product_Pair_nat_nat @ Y1 @ Y22 ) )
      = ( ( X1 = Y1 )
        & ( X23 = Y22 ) ) ) ).

% prod.inject
thf(fact_5428_prod_Oinject,axiom,
    ! [X1: int,X23: int,Y1: int,Y22: int] :
      ( ( ( product_Pair_int_int @ X1 @ X23 )
        = ( product_Pair_int_int @ Y1 @ Y22 ) )
      = ( ( X1 = Y1 )
        & ( X23 = Y22 ) ) ) ).

% prod.inject
thf(fact_5429_old_Oprod_Oinject,axiom,
    ! [A: code_integer,B: code_integer,A5: code_integer,B6: code_integer] :
      ( ( ( produc1086072967326762835nteger @ A @ B )
        = ( produc1086072967326762835nteger @ A5 @ B6 ) )
      = ( ( A = A5 )
        & ( B = B6 ) ) ) ).

% old.prod.inject
thf(fact_5430_old_Oprod_Oinject,axiom,
    ! [A: code_integer,B: $o,A5: code_integer,B6: $o] :
      ( ( ( produc6677183202524767010eger_o @ A @ B )
        = ( produc6677183202524767010eger_o @ A5 @ B6 ) )
      = ( ( A = A5 )
        & ( B = B6 ) ) ) ).

% old.prod.inject
thf(fact_5431_old_Oprod_Oinject,axiom,
    ! [A: num,B: num,A5: num,B6: num] :
      ( ( ( product_Pair_num_num @ A @ B )
        = ( product_Pair_num_num @ A5 @ B6 ) )
      = ( ( A = A5 )
        & ( B = B6 ) ) ) ).

% old.prod.inject
thf(fact_5432_old_Oprod_Oinject,axiom,
    ! [A: nat,B: nat,A5: nat,B6: nat] :
      ( ( ( product_Pair_nat_nat @ A @ B )
        = ( product_Pair_nat_nat @ A5 @ B6 ) )
      = ( ( A = A5 )
        & ( B = B6 ) ) ) ).

% old.prod.inject
thf(fact_5433_old_Oprod_Oinject,axiom,
    ! [A: int,B: int,A5: int,B6: int] :
      ( ( ( product_Pair_int_int @ A @ B )
        = ( product_Pair_int_int @ A5 @ B6 ) )
      = ( ( A = A5 )
        & ( B = B6 ) ) ) ).

% old.prod.inject
thf(fact_5434_old_Oprod_Oexhaust,axiom,
    ! [Y2: produc8923325533196201883nteger] :
      ~ ! [A6: code_integer,B7: code_integer] :
          ( Y2
         != ( produc1086072967326762835nteger @ A6 @ B7 ) ) ).

% old.prod.exhaust
thf(fact_5435_old_Oprod_Oexhaust,axiom,
    ! [Y2: produc6271795597528267376eger_o] :
      ~ ! [A6: code_integer,B7: $o] :
          ( Y2
         != ( produc6677183202524767010eger_o @ A6 @ B7 ) ) ).

% old.prod.exhaust
thf(fact_5436_old_Oprod_Oexhaust,axiom,
    ! [Y2: product_prod_num_num] :
      ~ ! [A6: num,B7: num] :
          ( Y2
         != ( product_Pair_num_num @ A6 @ B7 ) ) ).

% old.prod.exhaust
thf(fact_5437_old_Oprod_Oexhaust,axiom,
    ! [Y2: product_prod_nat_nat] :
      ~ ! [A6: nat,B7: nat] :
          ( Y2
         != ( product_Pair_nat_nat @ A6 @ B7 ) ) ).

% old.prod.exhaust
thf(fact_5438_old_Oprod_Oexhaust,axiom,
    ! [Y2: product_prod_int_int] :
      ~ ! [A6: int,B7: int] :
          ( Y2
         != ( product_Pair_int_int @ A6 @ B7 ) ) ).

% old.prod.exhaust
thf(fact_5439_surj__pair,axiom,
    ! [P2: produc8923325533196201883nteger] :
    ? [X4: code_integer,Y3: code_integer] :
      ( P2
      = ( produc1086072967326762835nteger @ X4 @ Y3 ) ) ).

% surj_pair
thf(fact_5440_surj__pair,axiom,
    ! [P2: produc6271795597528267376eger_o] :
    ? [X4: code_integer,Y3: $o] :
      ( P2
      = ( produc6677183202524767010eger_o @ X4 @ Y3 ) ) ).

% surj_pair
thf(fact_5441_surj__pair,axiom,
    ! [P2: product_prod_num_num] :
    ? [X4: num,Y3: num] :
      ( P2
      = ( product_Pair_num_num @ X4 @ Y3 ) ) ).

% surj_pair
thf(fact_5442_surj__pair,axiom,
    ! [P2: product_prod_nat_nat] :
    ? [X4: nat,Y3: nat] :
      ( P2
      = ( product_Pair_nat_nat @ X4 @ Y3 ) ) ).

% surj_pair
thf(fact_5443_surj__pair,axiom,
    ! [P2: product_prod_int_int] :
    ? [X4: int,Y3: int] :
      ( P2
      = ( product_Pair_int_int @ X4 @ Y3 ) ) ).

% surj_pair
thf(fact_5444_prod__cases,axiom,
    ! [P: produc8923325533196201883nteger > $o,P2: produc8923325533196201883nteger] :
      ( ! [A6: code_integer,B7: code_integer] : ( P @ ( produc1086072967326762835nteger @ A6 @ B7 ) )
     => ( P @ P2 ) ) ).

% prod_cases
thf(fact_5445_prod__cases,axiom,
    ! [P: produc6271795597528267376eger_o > $o,P2: produc6271795597528267376eger_o] :
      ( ! [A6: code_integer,B7: $o] : ( P @ ( produc6677183202524767010eger_o @ A6 @ B7 ) )
     => ( P @ P2 ) ) ).

% prod_cases
thf(fact_5446_prod__cases,axiom,
    ! [P: product_prod_num_num > $o,P2: product_prod_num_num] :
      ( ! [A6: num,B7: num] : ( P @ ( product_Pair_num_num @ A6 @ B7 ) )
     => ( P @ P2 ) ) ).

% prod_cases
thf(fact_5447_prod__cases,axiom,
    ! [P: product_prod_nat_nat > $o,P2: product_prod_nat_nat] :
      ( ! [A6: nat,B7: nat] : ( P @ ( product_Pair_nat_nat @ A6 @ B7 ) )
     => ( P @ P2 ) ) ).

% prod_cases
thf(fact_5448_prod__cases,axiom,
    ! [P: product_prod_int_int > $o,P2: product_prod_int_int] :
      ( ! [A6: int,B7: int] : ( P @ ( product_Pair_int_int @ A6 @ B7 ) )
     => ( P @ P2 ) ) ).

% prod_cases
thf(fact_5449_Pair__inject,axiom,
    ! [A: code_integer,B: code_integer,A5: code_integer,B6: code_integer] :
      ( ( ( produc1086072967326762835nteger @ A @ B )
        = ( produc1086072967326762835nteger @ A5 @ B6 ) )
     => ~ ( ( A = A5 )
         => ( B != B6 ) ) ) ).

% Pair_inject
thf(fact_5450_Pair__inject,axiom,
    ! [A: code_integer,B: $o,A5: code_integer,B6: $o] :
      ( ( ( produc6677183202524767010eger_o @ A @ B )
        = ( produc6677183202524767010eger_o @ A5 @ B6 ) )
     => ~ ( ( A = A5 )
         => ( B = ~ B6 ) ) ) ).

% Pair_inject
thf(fact_5451_Pair__inject,axiom,
    ! [A: num,B: num,A5: num,B6: num] :
      ( ( ( product_Pair_num_num @ A @ B )
        = ( product_Pair_num_num @ A5 @ B6 ) )
     => ~ ( ( A = A5 )
         => ( B != B6 ) ) ) ).

% Pair_inject
thf(fact_5452_Pair__inject,axiom,
    ! [A: nat,B: nat,A5: nat,B6: nat] :
      ( ( ( product_Pair_nat_nat @ A @ B )
        = ( product_Pair_nat_nat @ A5 @ B6 ) )
     => ~ ( ( A = A5 )
         => ( B != B6 ) ) ) ).

% Pair_inject
thf(fact_5453_Pair__inject,axiom,
    ! [A: int,B: int,A5: int,B6: int] :
      ( ( ( product_Pair_int_int @ A @ B )
        = ( product_Pair_int_int @ A5 @ B6 ) )
     => ~ ( ( A = A5 )
         => ( B != B6 ) ) ) ).

% Pair_inject
thf(fact_5454_divmod__BitM__2__eq,axiom,
    ! [M: num] :
      ( ( unique5052692396658037445od_int @ ( bitM @ M ) @ ( bit0 @ one ) )
      = ( product_Pair_int_int @ ( minus_minus_int @ ( numeral_numeral_int @ M ) @ one_one_int ) @ one_one_int ) ) ).

% divmod_BitM_2_eq
thf(fact_5455_gcd__nat__induct,axiom,
    ! [P: nat > nat > $o,M: nat,N: nat] :
      ( ! [M4: nat] : ( P @ M4 @ zero_zero_nat )
     => ( ! [M4: nat,N3: nat] :
            ( ( ord_less_nat @ zero_zero_nat @ N3 )
           => ( ( P @ N3 @ ( modulo_modulo_nat @ M4 @ N3 ) )
             => ( P @ M4 @ N3 ) ) )
       => ( P @ M @ N ) ) ) ).

% gcd_nat_induct
thf(fact_5456_concat__bit__Suc,axiom,
    ! [N: nat,K: int,L: int] :
      ( ( bit_concat_bit @ ( suc @ N ) @ K @ L )
      = ( plus_plus_int @ ( modulo_modulo_int @ K @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_concat_bit @ N @ ( divide_divide_int @ K @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ L ) ) ) ) ).

% concat_bit_Suc
thf(fact_5457_dbl__simps_I3_J,axiom,
    ( ( neg_nu7009210354673126013omplex @ one_one_complex )
    = ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ).

% dbl_simps(3)
thf(fact_5458_dbl__simps_I3_J,axiom,
    ( ( neg_numeral_dbl_real @ one_one_real )
    = ( numeral_numeral_real @ ( bit0 @ one ) ) ) ).

% dbl_simps(3)
thf(fact_5459_dbl__simps_I3_J,axiom,
    ( ( neg_numeral_dbl_rat @ one_one_rat )
    = ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ).

% dbl_simps(3)
thf(fact_5460_dbl__simps_I3_J,axiom,
    ( ( neg_numeral_dbl_int @ one_one_int )
    = ( numeral_numeral_int @ ( bit0 @ one ) ) ) ).

% dbl_simps(3)
thf(fact_5461_concat__bit__0,axiom,
    ! [K: int,L: int] :
      ( ( bit_concat_bit @ zero_zero_nat @ K @ L )
      = L ) ).

% concat_bit_0
thf(fact_5462_dbl__simps_I2_J,axiom,
    ( ( neg_nu7009210354673126013omplex @ zero_zero_complex )
    = zero_zero_complex ) ).

% dbl_simps(2)
thf(fact_5463_dbl__simps_I2_J,axiom,
    ( ( neg_numeral_dbl_real @ zero_zero_real )
    = zero_zero_real ) ).

% dbl_simps(2)
thf(fact_5464_dbl__simps_I2_J,axiom,
    ( ( neg_numeral_dbl_rat @ zero_zero_rat )
    = zero_zero_rat ) ).

% dbl_simps(2)
thf(fact_5465_dbl__simps_I2_J,axiom,
    ( ( neg_numeral_dbl_int @ zero_zero_int )
    = zero_zero_int ) ).

% dbl_simps(2)
thf(fact_5466_concat__bit__nonnegative__iff,axiom,
    ! [N: nat,K: int,L: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( bit_concat_bit @ N @ K @ L ) )
      = ( ord_less_eq_int @ zero_zero_int @ L ) ) ).

% concat_bit_nonnegative_iff
thf(fact_5467_concat__bit__negative__iff,axiom,
    ! [N: nat,K: int,L: int] :
      ( ( ord_less_int @ ( bit_concat_bit @ N @ K @ L ) @ zero_zero_int )
      = ( ord_less_int @ L @ zero_zero_int ) ) ).

% concat_bit_negative_iff
thf(fact_5468_dbl__simps_I5_J,axiom,
    ! [K: num] :
      ( ( neg_nu7009210354673126013omplex @ ( numera6690914467698888265omplex @ K ) )
      = ( numera6690914467698888265omplex @ ( bit0 @ K ) ) ) ).

% dbl_simps(5)
thf(fact_5469_dbl__simps_I5_J,axiom,
    ! [K: num] :
      ( ( neg_numeral_dbl_real @ ( numeral_numeral_real @ K ) )
      = ( numeral_numeral_real @ ( bit0 @ K ) ) ) ).

% dbl_simps(5)
thf(fact_5470_dbl__simps_I5_J,axiom,
    ! [K: num] :
      ( ( neg_numeral_dbl_rat @ ( numeral_numeral_rat @ K ) )
      = ( numeral_numeral_rat @ ( bit0 @ K ) ) ) ).

% dbl_simps(5)
thf(fact_5471_dbl__simps_I5_J,axiom,
    ! [K: num] :
      ( ( neg_numeral_dbl_int @ ( numeral_numeral_int @ K ) )
      = ( numeral_numeral_int @ ( bit0 @ K ) ) ) ).

% dbl_simps(5)
thf(fact_5472_semiring__norm_I26_J,axiom,
    ( ( bitM @ one )
    = one ) ).

% semiring_norm(26)
thf(fact_5473_concat__bit__assoc,axiom,
    ! [N: nat,K: int,M: nat,L: int,R2: int] :
      ( ( bit_concat_bit @ N @ K @ ( bit_concat_bit @ M @ L @ R2 ) )
      = ( bit_concat_bit @ ( plus_plus_nat @ M @ N ) @ ( bit_concat_bit @ N @ K @ L ) @ R2 ) ) ).

% concat_bit_assoc
thf(fact_5474_dbl__def,axiom,
    ( neg_numeral_dbl_real
    = ( ^ [X: real] : ( plus_plus_real @ X @ X ) ) ) ).

% dbl_def
thf(fact_5475_dbl__def,axiom,
    ( neg_numeral_dbl_rat
    = ( ^ [X: rat] : ( plus_plus_rat @ X @ X ) ) ) ).

% dbl_def
thf(fact_5476_dbl__def,axiom,
    ( neg_numeral_dbl_int
    = ( ^ [X: int] : ( plus_plus_int @ X @ X ) ) ) ).

% dbl_def
thf(fact_5477_semiring__norm_I28_J,axiom,
    ! [N: num] :
      ( ( bitM @ ( bit1 @ N ) )
      = ( bit1 @ ( bit0 @ N ) ) ) ).

% semiring_norm(28)
thf(fact_5478_semiring__norm_I27_J,axiom,
    ! [N: num] :
      ( ( bitM @ ( bit0 @ N ) )
      = ( bit1 @ ( bitM @ N ) ) ) ).

% semiring_norm(27)
thf(fact_5479_eval__nat__numeral_I2_J,axiom,
    ! [N: num] :
      ( ( numeral_numeral_nat @ ( bit0 @ N ) )
      = ( suc @ ( numeral_numeral_nat @ ( bitM @ N ) ) ) ) ).

% eval_nat_numeral(2)
thf(fact_5480_one__plus__BitM,axiom,
    ! [N: num] :
      ( ( plus_plus_num @ one @ ( bitM @ N ) )
      = ( bit0 @ N ) ) ).

% one_plus_BitM
thf(fact_5481_BitM__plus__one,axiom,
    ! [N: num] :
      ( ( plus_plus_num @ ( bitM @ N ) @ one )
      = ( bit0 @ N ) ) ).

% BitM_plus_one
thf(fact_5482_numeral__BitM,axiom,
    ! [N: num] :
      ( ( numera6690914467698888265omplex @ ( bitM @ N ) )
      = ( minus_minus_complex @ ( numera6690914467698888265omplex @ ( bit0 @ N ) ) @ one_one_complex ) ) ).

% numeral_BitM
thf(fact_5483_numeral__BitM,axiom,
    ! [N: num] :
      ( ( numeral_numeral_real @ ( bitM @ N ) )
      = ( minus_minus_real @ ( numeral_numeral_real @ ( bit0 @ N ) ) @ one_one_real ) ) ).

% numeral_BitM
thf(fact_5484_numeral__BitM,axiom,
    ! [N: num] :
      ( ( numeral_numeral_rat @ ( bitM @ N ) )
      = ( minus_minus_rat @ ( numeral_numeral_rat @ ( bit0 @ N ) ) @ one_one_rat ) ) ).

% numeral_BitM
thf(fact_5485_numeral__BitM,axiom,
    ! [N: num] :
      ( ( numeral_numeral_int @ ( bitM @ N ) )
      = ( minus_minus_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) @ one_one_int ) ) ).

% numeral_BitM
thf(fact_5486_Euclid__induct,axiom,
    ! [P: nat > nat > $o,A: nat,B: nat] :
      ( ! [A6: nat,B7: nat] :
          ( ( P @ A6 @ B7 )
          = ( P @ B7 @ A6 ) )
     => ( ! [A6: nat] : ( P @ A6 @ zero_zero_nat )
       => ( ! [A6: nat,B7: nat] :
              ( ( P @ A6 @ B7 )
             => ( P @ A6 @ ( plus_plus_nat @ A6 @ B7 ) ) )
         => ( P @ A @ B ) ) ) ) ).

% Euclid_induct
thf(fact_5487_even__succ__mod__exp,axiom,
    ! [A: nat,N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ( modulo_modulo_nat @ ( plus_plus_nat @ one_one_nat @ A ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
          = ( plus_plus_nat @ one_one_nat @ ( modulo_modulo_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ) ) ) ).

% even_succ_mod_exp
thf(fact_5488_even__succ__mod__exp,axiom,
    ! [A: int,N: nat] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ( modulo_modulo_int @ ( plus_plus_int @ one_one_int @ A ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
          = ( plus_plus_int @ one_one_int @ ( modulo_modulo_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ) ) ) ).

% even_succ_mod_exp
thf(fact_5489_even__succ__mod__exp,axiom,
    ! [A: code_integer,N: nat] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ( modulo364778990260209775nteger @ ( plus_p5714425477246183910nteger @ one_one_Code_integer @ A ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) )
          = ( plus_p5714425477246183910nteger @ one_one_Code_integer @ ( modulo364778990260209775nteger @ A @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) ) ) ) ) ) ).

% even_succ_mod_exp
thf(fact_5490_divmod__algorithm__code_I6_J,axiom,
    ! [M: num,N: num] :
      ( ( unique5052692396658037445od_int @ ( bit1 @ M ) @ ( bit0 @ N ) )
      = ( produc4245557441103728435nt_int
        @ ^ [Q4: int,R5: int] : ( product_Pair_int_int @ Q4 @ ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ R5 ) @ one_one_int ) )
        @ ( unique5052692396658037445od_int @ M @ N ) ) ) ).

% divmod_algorithm_code(6)
thf(fact_5491_divmod__algorithm__code_I6_J,axiom,
    ! [M: num,N: num] :
      ( ( unique5055182867167087721od_nat @ ( bit1 @ M ) @ ( bit0 @ N ) )
      = ( produc2626176000494625587at_nat
        @ ^ [Q4: nat,R5: nat] : ( product_Pair_nat_nat @ Q4 @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ R5 ) @ one_one_nat ) )
        @ ( unique5055182867167087721od_nat @ M @ N ) ) ) ).

% divmod_algorithm_code(6)
thf(fact_5492_divmod__algorithm__code_I6_J,axiom,
    ! [M: num,N: num] :
      ( ( unique3479559517661332726nteger @ ( bit1 @ M ) @ ( bit0 @ N ) )
      = ( produc6916734918728496179nteger
        @ ^ [Q4: code_integer,R5: code_integer] : ( produc1086072967326762835nteger @ Q4 @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ R5 ) @ one_one_Code_integer ) )
        @ ( unique3479559517661332726nteger @ M @ N ) ) ) ).

% divmod_algorithm_code(6)
thf(fact_5493_even__succ__div__exp,axiom,
    ! [A: code_integer,N: nat] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ( divide6298287555418463151nteger @ ( plus_p5714425477246183910nteger @ one_one_Code_integer @ A ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) )
          = ( divide6298287555418463151nteger @ A @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) ) ) ) ) ).

% even_succ_div_exp
thf(fact_5494_even__succ__div__exp,axiom,
    ! [A: nat,N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ( divide_divide_nat @ ( plus_plus_nat @ one_one_nat @ A ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
          = ( divide_divide_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ) ) ).

% even_succ_div_exp
thf(fact_5495_even__succ__div__exp,axiom,
    ! [A: int,N: nat] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ( divide_divide_int @ ( plus_plus_int @ one_one_int @ A ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
          = ( divide_divide_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ) ) ).

% even_succ_div_exp
thf(fact_5496_option_Osize__gen_I2_J,axiom,
    ! [X2: product_prod_nat_nat > nat,X23: product_prod_nat_nat] :
      ( ( size_o8335143837870341156at_nat @ X2 @ ( some_P7363390416028606310at_nat @ X23 ) )
      = ( plus_plus_nat @ ( X2 @ X23 ) @ ( suc @ zero_zero_nat ) ) ) ).

% option.size_gen(2)
thf(fact_5497_option_Osize__gen_I2_J,axiom,
    ! [X2: nat > nat,X23: nat] :
      ( ( size_option_nat @ X2 @ ( some_nat @ X23 ) )
      = ( plus_plus_nat @ ( X2 @ X23 ) @ ( suc @ zero_zero_nat ) ) ) ).

% option.size_gen(2)
thf(fact_5498_signed__take__bit__Suc,axiom,
    ! [N: nat,A: code_integer] :
      ( ( bit_ri6519982836138164636nteger @ ( suc @ N ) @ A )
      = ( plus_p5714425477246183910nteger @ ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_ri6519982836138164636nteger @ N @ ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ) ).

% signed_take_bit_Suc
thf(fact_5499_signed__take__bit__Suc,axiom,
    ! [N: nat,A: int] :
      ( ( bit_ri631733984087533419it_int @ ( suc @ N ) @ A )
      = ( plus_plus_int @ ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_ri631733984087533419it_int @ N @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ).

% signed_take_bit_Suc
thf(fact_5500_diff__shunt__var,axiom,
    ! [X2: set_real,Y2: set_real] :
      ( ( ( minus_minus_set_real @ X2 @ Y2 )
        = bot_bot_set_real )
      = ( ord_less_eq_set_real @ X2 @ Y2 ) ) ).

% diff_shunt_var
thf(fact_5501_diff__shunt__var,axiom,
    ! [X2: set_o,Y2: set_o] :
      ( ( ( minus_minus_set_o @ X2 @ Y2 )
        = bot_bot_set_o )
      = ( ord_less_eq_set_o @ X2 @ Y2 ) ) ).

% diff_shunt_var
thf(fact_5502_diff__shunt__var,axiom,
    ! [X2: set_nat,Y2: set_nat] :
      ( ( ( minus_minus_set_nat @ X2 @ Y2 )
        = bot_bot_set_nat )
      = ( ord_less_eq_set_nat @ X2 @ Y2 ) ) ).

% diff_shunt_var
thf(fact_5503_diff__shunt__var,axiom,
    ! [X2: set_int,Y2: set_int] :
      ( ( ( minus_minus_set_int @ X2 @ Y2 )
        = bot_bot_set_int )
      = ( ord_less_eq_set_int @ X2 @ Y2 ) ) ).

% diff_shunt_var
thf(fact_5504_nat__dvd__1__iff__1,axiom,
    ! [M: nat] :
      ( ( dvd_dvd_nat @ M @ one_one_nat )
      = ( M = one_one_nat ) ) ).

% nat_dvd_1_iff_1
thf(fact_5505_dvd__0__right,axiom,
    ! [A: code_integer] : ( dvd_dvd_Code_integer @ A @ zero_z3403309356797280102nteger ) ).

% dvd_0_right
thf(fact_5506_dvd__0__right,axiom,
    ! [A: complex] : ( dvd_dvd_complex @ A @ zero_zero_complex ) ).

% dvd_0_right
thf(fact_5507_dvd__0__right,axiom,
    ! [A: real] : ( dvd_dvd_real @ A @ zero_zero_real ) ).

% dvd_0_right
thf(fact_5508_dvd__0__right,axiom,
    ! [A: rat] : ( dvd_dvd_rat @ A @ zero_zero_rat ) ).

% dvd_0_right
thf(fact_5509_dvd__0__right,axiom,
    ! [A: nat] : ( dvd_dvd_nat @ A @ zero_zero_nat ) ).

% dvd_0_right
thf(fact_5510_dvd__0__right,axiom,
    ! [A: int] : ( dvd_dvd_int @ A @ zero_zero_int ) ).

% dvd_0_right
thf(fact_5511_dvd__0__left__iff,axiom,
    ! [A: code_integer] :
      ( ( dvd_dvd_Code_integer @ zero_z3403309356797280102nteger @ A )
      = ( A = zero_z3403309356797280102nteger ) ) ).

% dvd_0_left_iff
thf(fact_5512_dvd__0__left__iff,axiom,
    ! [A: complex] :
      ( ( dvd_dvd_complex @ zero_zero_complex @ A )
      = ( A = zero_zero_complex ) ) ).

% dvd_0_left_iff
thf(fact_5513_dvd__0__left__iff,axiom,
    ! [A: real] :
      ( ( dvd_dvd_real @ zero_zero_real @ A )
      = ( A = zero_zero_real ) ) ).

% dvd_0_left_iff
thf(fact_5514_dvd__0__left__iff,axiom,
    ! [A: rat] :
      ( ( dvd_dvd_rat @ zero_zero_rat @ A )
      = ( A = zero_zero_rat ) ) ).

% dvd_0_left_iff
thf(fact_5515_dvd__0__left__iff,axiom,
    ! [A: nat] :
      ( ( dvd_dvd_nat @ zero_zero_nat @ A )
      = ( A = zero_zero_nat ) ) ).

% dvd_0_left_iff
thf(fact_5516_dvd__0__left__iff,axiom,
    ! [A: int] :
      ( ( dvd_dvd_int @ zero_zero_int @ A )
      = ( A = zero_zero_int ) ) ).

% dvd_0_left_iff
thf(fact_5517_dvd__add__triv__left__iff,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ ( plus_p5714425477246183910nteger @ A @ B ) )
      = ( dvd_dvd_Code_integer @ A @ B ) ) ).

% dvd_add_triv_left_iff
thf(fact_5518_dvd__add__triv__left__iff,axiom,
    ! [A: real,B: real] :
      ( ( dvd_dvd_real @ A @ ( plus_plus_real @ A @ B ) )
      = ( dvd_dvd_real @ A @ B ) ) ).

% dvd_add_triv_left_iff
thf(fact_5519_dvd__add__triv__left__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( dvd_dvd_rat @ A @ ( plus_plus_rat @ A @ B ) )
      = ( dvd_dvd_rat @ A @ B ) ) ).

% dvd_add_triv_left_iff
thf(fact_5520_dvd__add__triv__left__iff,axiom,
    ! [A: nat,B: nat] :
      ( ( dvd_dvd_nat @ A @ ( plus_plus_nat @ A @ B ) )
      = ( dvd_dvd_nat @ A @ B ) ) ).

% dvd_add_triv_left_iff
thf(fact_5521_dvd__add__triv__left__iff,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ A @ ( plus_plus_int @ A @ B ) )
      = ( dvd_dvd_int @ A @ B ) ) ).

% dvd_add_triv_left_iff
thf(fact_5522_dvd__add__triv__right__iff,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ ( plus_p5714425477246183910nteger @ B @ A ) )
      = ( dvd_dvd_Code_integer @ A @ B ) ) ).

% dvd_add_triv_right_iff
thf(fact_5523_dvd__add__triv__right__iff,axiom,
    ! [A: real,B: real] :
      ( ( dvd_dvd_real @ A @ ( plus_plus_real @ B @ A ) )
      = ( dvd_dvd_real @ A @ B ) ) ).

% dvd_add_triv_right_iff
thf(fact_5524_dvd__add__triv__right__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( dvd_dvd_rat @ A @ ( plus_plus_rat @ B @ A ) )
      = ( dvd_dvd_rat @ A @ B ) ) ).

% dvd_add_triv_right_iff
thf(fact_5525_dvd__add__triv__right__iff,axiom,
    ! [A: nat,B: nat] :
      ( ( dvd_dvd_nat @ A @ ( plus_plus_nat @ B @ A ) )
      = ( dvd_dvd_nat @ A @ B ) ) ).

% dvd_add_triv_right_iff
thf(fact_5526_dvd__add__triv__right__iff,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ A @ ( plus_plus_int @ B @ A ) )
      = ( dvd_dvd_int @ A @ B ) ) ).

% dvd_add_triv_right_iff
thf(fact_5527_dvd__1__iff__1,axiom,
    ! [M: nat] :
      ( ( dvd_dvd_nat @ M @ ( suc @ zero_zero_nat ) )
      = ( M
        = ( suc @ zero_zero_nat ) ) ) ).

% dvd_1_iff_1
thf(fact_5528_dvd__1__left,axiom,
    ! [K: nat] : ( dvd_dvd_nat @ ( suc @ zero_zero_nat ) @ K ) ).

% dvd_1_left
thf(fact_5529_div__dvd__div,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ B )
     => ( ( dvd_dvd_Code_integer @ A @ C )
       => ( ( dvd_dvd_Code_integer @ ( divide6298287555418463151nteger @ B @ A ) @ ( divide6298287555418463151nteger @ C @ A ) )
          = ( dvd_dvd_Code_integer @ B @ C ) ) ) ) ).

% div_dvd_div
thf(fact_5530_div__dvd__div,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( dvd_dvd_nat @ A @ B )
     => ( ( dvd_dvd_nat @ A @ C )
       => ( ( dvd_dvd_nat @ ( divide_divide_nat @ B @ A ) @ ( divide_divide_nat @ C @ A ) )
          = ( dvd_dvd_nat @ B @ C ) ) ) ) ).

% div_dvd_div
thf(fact_5531_div__dvd__div,axiom,
    ! [A: int,B: int,C: int] :
      ( ( dvd_dvd_int @ A @ B )
     => ( ( dvd_dvd_int @ A @ C )
       => ( ( dvd_dvd_int @ ( divide_divide_int @ B @ A ) @ ( divide_divide_int @ C @ A ) )
          = ( dvd_dvd_int @ B @ C ) ) ) ) ).

% div_dvd_div
thf(fact_5532_nat__mult__dvd__cancel__disj,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( dvd_dvd_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
      = ( ( K = zero_zero_nat )
        | ( dvd_dvd_nat @ M @ N ) ) ) ).

% nat_mult_dvd_cancel_disj
thf(fact_5533_signed__take__bit__of__0,axiom,
    ! [N: nat] :
      ( ( bit_ri631733984087533419it_int @ N @ zero_zero_int )
      = zero_zero_int ) ).

% signed_take_bit_of_0
thf(fact_5534_pair__imageI,axiom,
    ! [A: code_integer,B: code_integer,A2: set_Pr4811707699266497531nteger,F: code_integer > code_integer > complex] :
      ( ( member157494554546826820nteger @ ( produc1086072967326762835nteger @ A @ B ) @ A2 )
     => ( member_complex @ ( F @ A @ B ) @ ( image_7699685524432242692omplex @ ( produc1350339802218514966omplex @ F ) @ A2 ) ) ) ).

% pair_imageI
thf(fact_5535_pair__imageI,axiom,
    ! [A: code_integer,B: code_integer,A2: set_Pr4811707699266497531nteger,F: code_integer > code_integer > real] :
      ( ( member157494554546826820nteger @ ( produc1086072967326762835nteger @ A @ B ) @ A2 )
     => ( member_real @ ( F @ A @ B ) @ ( image_31552996298088194r_real @ ( produc7810893202946726932r_real @ F ) @ A2 ) ) ) ).

% pair_imageI
thf(fact_5536_pair__imageI,axiom,
    ! [A: code_integer,B: code_integer,A2: set_Pr4811707699266497531nteger,F: code_integer > code_integer > nat] :
      ( ( member157494554546826820nteger @ ( produc1086072967326762835nteger @ A @ B ) @ A2 )
     => ( member_nat @ ( F @ A @ B ) @ ( image_7941498171738015526er_nat @ ( produc1555791787009142072er_nat @ F ) @ A2 ) ) ) ).

% pair_imageI
thf(fact_5537_pair__imageI,axiom,
    ! [A: code_integer,B: code_integer,A2: set_Pr4811707699266497531nteger,F: code_integer > code_integer > int] :
      ( ( member157494554546826820nteger @ ( produc1086072967326762835nteger @ A @ B ) @ A2 )
     => ( member_int @ ( F @ A @ B ) @ ( image_7939007701228965250er_int @ ( produc1553301316500091796er_int @ F ) @ A2 ) ) ) ).

% pair_imageI
thf(fact_5538_pair__imageI,axiom,
    ! [A: code_integer,B: $o,A2: set_Pr448751882837621926eger_o,F: code_integer > $o > complex] :
      ( ( member1379723562493234055eger_o @ ( produc6677183202524767010eger_o @ A @ B ) @ A2 )
     => ( member_complex @ ( F @ A @ B ) @ ( image_5588970041277445157omplex @ ( produc3098450326686311421omplex @ F ) @ A2 ) ) ) ).

% pair_imageI
thf(fact_5539_pair__imageI,axiom,
    ! [A: code_integer,B: $o,A2: set_Pr448751882837621926eger_o,F: code_integer > $o > real] :
      ( ( member1379723562493234055eger_o @ ( produc6677183202524767010eger_o @ A @ B ) @ A2 )
     => ( member_real @ ( F @ A @ B ) @ ( image_8872398597051255971o_real @ ( produc625603438930919547o_real @ F ) @ A2 ) ) ) ).

% pair_imageI
thf(fact_5540_pair__imageI,axiom,
    ! [A: code_integer,B: $o,A2: set_Pr448751882837621926eger_o,F: code_integer > $o > nat] :
      ( ( member1379723562493234055eger_o @ ( produc6677183202524767010eger_o @ A @ B ) @ A2 )
     => ( member_nat @ ( F @ A @ B ) @ ( image_6074303950478800199_o_nat @ ( produc6627370138083546399_o_nat @ F ) @ A2 ) ) ) ).

% pair_imageI
thf(fact_5541_pair__imageI,axiom,
    ! [A: code_integer,B: $o,A2: set_Pr448751882837621926eger_o,F: code_integer > $o > int] :
      ( ( member1379723562493234055eger_o @ ( produc6677183202524767010eger_o @ A @ B ) @ A2 )
     => ( member_int @ ( F @ A @ B ) @ ( image_6071813479969749923_o_int @ ( produc6624879667574496123_o_int @ F ) @ A2 ) ) ) ).

% pair_imageI
thf(fact_5542_pair__imageI,axiom,
    ! [A: num,B: num,A2: set_Pr8218934625190621173um_num,F: num > num > complex] :
      ( ( member7279096912039735102um_num @ ( product_Pair_num_num @ A @ B ) @ A2 )
     => ( member_complex @ ( F @ A @ B ) @ ( image_1449772967326807294omplex @ ( produc8953156416239033744omplex @ F ) @ A2 ) ) ) ).

% pair_imageI
thf(fact_5543_pair__imageI,axiom,
    ! [A: num,B: num,A2: set_Pr8218934625190621173um_num,F: num > num > real] :
      ( ( member7279096912039735102um_num @ ( product_Pair_num_num @ A @ B ) @ A2 )
     => ( member_real @ ( F @ A @ B ) @ ( image_8174023053409526524m_real @ ( produc1489372718088455822m_real @ F ) @ A2 ) ) ) ).

% pair_imageI
thf(fact_5544_case__prod__conv,axiom,
    ! [F: nat > nat > product_prod_nat_nat > product_prod_nat_nat,A: nat,B: nat] :
      ( ( produc27273713700761075at_nat @ F @ ( product_Pair_nat_nat @ A @ B ) )
      = ( F @ A @ B ) ) ).

% case_prod_conv
thf(fact_5545_case__prod__conv,axiom,
    ! [F: nat > nat > product_prod_nat_nat > $o,A: nat,B: nat] :
      ( ( produc8739625826339149834_nat_o @ F @ ( product_Pair_nat_nat @ A @ B ) )
      = ( F @ A @ B ) ) ).

% case_prod_conv
thf(fact_5546_case__prod__conv,axiom,
    ! [F: int > int > product_prod_int_int,A: int,B: int] :
      ( ( produc4245557441103728435nt_int @ F @ ( product_Pair_int_int @ A @ B ) )
      = ( F @ A @ B ) ) ).

% case_prod_conv
thf(fact_5547_case__prod__conv,axiom,
    ! [F: int > int > $o,A: int,B: int] :
      ( ( produc4947309494688390418_int_o @ F @ ( product_Pair_int_int @ A @ B ) )
      = ( F @ A @ B ) ) ).

% case_prod_conv
thf(fact_5548_case__prod__conv,axiom,
    ! [F: int > int > int,A: int,B: int] :
      ( ( produc8211389475949308722nt_int @ F @ ( product_Pair_int_int @ A @ B ) )
      = ( F @ A @ B ) ) ).

% case_prod_conv
thf(fact_5549_Max__divisors__self__nat,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
     => ( ( lattic8265883725875713057ax_nat
          @ ( collect_nat
            @ ^ [D2: nat] : ( dvd_dvd_nat @ D2 @ N ) ) )
        = N ) ) ).

% Max_divisors_self_nat
thf(fact_5550_dvd__mult__cancel__left,axiom,
    ! [C: code_integer,A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ C @ A ) @ ( times_3573771949741848930nteger @ C @ B ) )
      = ( ( C = zero_z3403309356797280102nteger )
        | ( dvd_dvd_Code_integer @ A @ B ) ) ) ).

% dvd_mult_cancel_left
thf(fact_5551_dvd__mult__cancel__left,axiom,
    ! [C: complex,A: complex,B: complex] :
      ( ( dvd_dvd_complex @ ( times_times_complex @ C @ A ) @ ( times_times_complex @ C @ B ) )
      = ( ( C = zero_zero_complex )
        | ( dvd_dvd_complex @ A @ B ) ) ) ).

% dvd_mult_cancel_left
thf(fact_5552_dvd__mult__cancel__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( dvd_dvd_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
      = ( ( C = zero_zero_real )
        | ( dvd_dvd_real @ A @ B ) ) ) ).

% dvd_mult_cancel_left
thf(fact_5553_dvd__mult__cancel__left,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( dvd_dvd_rat @ ( times_times_rat @ C @ A ) @ ( times_times_rat @ C @ B ) )
      = ( ( C = zero_zero_rat )
        | ( dvd_dvd_rat @ A @ B ) ) ) ).

% dvd_mult_cancel_left
thf(fact_5554_dvd__mult__cancel__left,axiom,
    ! [C: int,A: int,B: int] :
      ( ( dvd_dvd_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
      = ( ( C = zero_zero_int )
        | ( dvd_dvd_int @ A @ B ) ) ) ).

% dvd_mult_cancel_left
thf(fact_5555_dvd__mult__cancel__right,axiom,
    ! [A: code_integer,C: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ A @ C ) @ ( times_3573771949741848930nteger @ B @ C ) )
      = ( ( C = zero_z3403309356797280102nteger )
        | ( dvd_dvd_Code_integer @ A @ B ) ) ) ).

% dvd_mult_cancel_right
thf(fact_5556_dvd__mult__cancel__right,axiom,
    ! [A: complex,C: complex,B: complex] :
      ( ( dvd_dvd_complex @ ( times_times_complex @ A @ C ) @ ( times_times_complex @ B @ C ) )
      = ( ( C = zero_zero_complex )
        | ( dvd_dvd_complex @ A @ B ) ) ) ).

% dvd_mult_cancel_right
thf(fact_5557_dvd__mult__cancel__right,axiom,
    ! [A: real,C: real,B: real] :
      ( ( dvd_dvd_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) )
      = ( ( C = zero_zero_real )
        | ( dvd_dvd_real @ A @ B ) ) ) ).

% dvd_mult_cancel_right
thf(fact_5558_dvd__mult__cancel__right,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( dvd_dvd_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ C ) )
      = ( ( C = zero_zero_rat )
        | ( dvd_dvd_rat @ A @ B ) ) ) ).

% dvd_mult_cancel_right
thf(fact_5559_dvd__mult__cancel__right,axiom,
    ! [A: int,C: int,B: int] :
      ( ( dvd_dvd_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
      = ( ( C = zero_zero_int )
        | ( dvd_dvd_int @ A @ B ) ) ) ).

% dvd_mult_cancel_right
thf(fact_5560_dvd__times__left__cancel__iff,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( A != zero_z3403309356797280102nteger )
     => ( ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ A @ B ) @ ( times_3573771949741848930nteger @ A @ C ) )
        = ( dvd_dvd_Code_integer @ B @ C ) ) ) ).

% dvd_times_left_cancel_iff
thf(fact_5561_dvd__times__left__cancel__iff,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( A != zero_zero_nat )
     => ( ( dvd_dvd_nat @ ( times_times_nat @ A @ B ) @ ( times_times_nat @ A @ C ) )
        = ( dvd_dvd_nat @ B @ C ) ) ) ).

% dvd_times_left_cancel_iff
thf(fact_5562_dvd__times__left__cancel__iff,axiom,
    ! [A: int,B: int,C: int] :
      ( ( A != zero_zero_int )
     => ( ( dvd_dvd_int @ ( times_times_int @ A @ B ) @ ( times_times_int @ A @ C ) )
        = ( dvd_dvd_int @ B @ C ) ) ) ).

% dvd_times_left_cancel_iff
thf(fact_5563_dvd__times__right__cancel__iff,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( A != zero_z3403309356797280102nteger )
     => ( ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ B @ A ) @ ( times_3573771949741848930nteger @ C @ A ) )
        = ( dvd_dvd_Code_integer @ B @ C ) ) ) ).

% dvd_times_right_cancel_iff
thf(fact_5564_dvd__times__right__cancel__iff,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( A != zero_zero_nat )
     => ( ( dvd_dvd_nat @ ( times_times_nat @ B @ A ) @ ( times_times_nat @ C @ A ) )
        = ( dvd_dvd_nat @ B @ C ) ) ) ).

% dvd_times_right_cancel_iff
thf(fact_5565_dvd__times__right__cancel__iff,axiom,
    ! [A: int,B: int,C: int] :
      ( ( A != zero_zero_int )
     => ( ( dvd_dvd_int @ ( times_times_int @ B @ A ) @ ( times_times_int @ C @ A ) )
        = ( dvd_dvd_int @ B @ C ) ) ) ).

% dvd_times_right_cancel_iff
thf(fact_5566_unit__prod,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ one_one_Code_integer )
     => ( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
       => ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ A @ B ) @ one_one_Code_integer ) ) ) ).

% unit_prod
thf(fact_5567_unit__prod,axiom,
    ! [A: nat,B: nat] :
      ( ( dvd_dvd_nat @ A @ one_one_nat )
     => ( ( dvd_dvd_nat @ B @ one_one_nat )
       => ( dvd_dvd_nat @ ( times_times_nat @ A @ B ) @ one_one_nat ) ) ) ).

% unit_prod
thf(fact_5568_unit__prod,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ A @ one_one_int )
     => ( ( dvd_dvd_int @ B @ one_one_int )
       => ( dvd_dvd_int @ ( times_times_int @ A @ B ) @ one_one_int ) ) ) ).

% unit_prod
thf(fact_5569_dvd__add__times__triv__left__iff,axiom,
    ! [A: code_integer,C: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ C @ A ) @ B ) )
      = ( dvd_dvd_Code_integer @ A @ B ) ) ).

% dvd_add_times_triv_left_iff
thf(fact_5570_dvd__add__times__triv__left__iff,axiom,
    ! [A: real,C: real,B: real] :
      ( ( dvd_dvd_real @ A @ ( plus_plus_real @ ( times_times_real @ C @ A ) @ B ) )
      = ( dvd_dvd_real @ A @ B ) ) ).

% dvd_add_times_triv_left_iff
thf(fact_5571_dvd__add__times__triv__left__iff,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( dvd_dvd_rat @ A @ ( plus_plus_rat @ ( times_times_rat @ C @ A ) @ B ) )
      = ( dvd_dvd_rat @ A @ B ) ) ).

% dvd_add_times_triv_left_iff
thf(fact_5572_dvd__add__times__triv__left__iff,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( dvd_dvd_nat @ A @ ( plus_plus_nat @ ( times_times_nat @ C @ A ) @ B ) )
      = ( dvd_dvd_nat @ A @ B ) ) ).

% dvd_add_times_triv_left_iff
thf(fact_5573_dvd__add__times__triv__left__iff,axiom,
    ! [A: int,C: int,B: int] :
      ( ( dvd_dvd_int @ A @ ( plus_plus_int @ ( times_times_int @ C @ A ) @ B ) )
      = ( dvd_dvd_int @ A @ B ) ) ).

% dvd_add_times_triv_left_iff
thf(fact_5574_dvd__add__times__triv__right__iff,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ ( plus_p5714425477246183910nteger @ B @ ( times_3573771949741848930nteger @ C @ A ) ) )
      = ( dvd_dvd_Code_integer @ A @ B ) ) ).

% dvd_add_times_triv_right_iff
thf(fact_5575_dvd__add__times__triv__right__iff,axiom,
    ! [A: real,B: real,C: real] :
      ( ( dvd_dvd_real @ A @ ( plus_plus_real @ B @ ( times_times_real @ C @ A ) ) )
      = ( dvd_dvd_real @ A @ B ) ) ).

% dvd_add_times_triv_right_iff
thf(fact_5576_dvd__add__times__triv__right__iff,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( dvd_dvd_rat @ A @ ( plus_plus_rat @ B @ ( times_times_rat @ C @ A ) ) )
      = ( dvd_dvd_rat @ A @ B ) ) ).

% dvd_add_times_triv_right_iff
thf(fact_5577_dvd__add__times__triv__right__iff,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( dvd_dvd_nat @ A @ ( plus_plus_nat @ B @ ( times_times_nat @ C @ A ) ) )
      = ( dvd_dvd_nat @ A @ B ) ) ).

% dvd_add_times_triv_right_iff
thf(fact_5578_dvd__add__times__triv__right__iff,axiom,
    ! [A: int,B: int,C: int] :
      ( ( dvd_dvd_int @ A @ ( plus_plus_int @ B @ ( times_times_int @ C @ A ) ) )
      = ( dvd_dvd_int @ A @ B ) ) ).

% dvd_add_times_triv_right_iff
thf(fact_5579_dvd__div__mult__self,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ B )
     => ( ( times_3573771949741848930nteger @ ( divide6298287555418463151nteger @ B @ A ) @ A )
        = B ) ) ).

% dvd_div_mult_self
thf(fact_5580_dvd__div__mult__self,axiom,
    ! [A: nat,B: nat] :
      ( ( dvd_dvd_nat @ A @ B )
     => ( ( times_times_nat @ ( divide_divide_nat @ B @ A ) @ A )
        = B ) ) ).

% dvd_div_mult_self
thf(fact_5581_dvd__div__mult__self,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ A @ B )
     => ( ( times_times_int @ ( divide_divide_int @ B @ A ) @ A )
        = B ) ) ).

% dvd_div_mult_self
thf(fact_5582_dvd__mult__div__cancel,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ B )
     => ( ( times_3573771949741848930nteger @ A @ ( divide6298287555418463151nteger @ B @ A ) )
        = B ) ) ).

% dvd_mult_div_cancel
thf(fact_5583_dvd__mult__div__cancel,axiom,
    ! [A: nat,B: nat] :
      ( ( dvd_dvd_nat @ A @ B )
     => ( ( times_times_nat @ A @ ( divide_divide_nat @ B @ A ) )
        = B ) ) ).

% dvd_mult_div_cancel
thf(fact_5584_dvd__mult__div__cancel,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ A @ B )
     => ( ( times_times_int @ A @ ( divide_divide_int @ B @ A ) )
        = B ) ) ).

% dvd_mult_div_cancel
thf(fact_5585_unit__div,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ one_one_Code_integer )
     => ( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
       => ( dvd_dvd_Code_integer @ ( divide6298287555418463151nteger @ A @ B ) @ one_one_Code_integer ) ) ) ).

% unit_div
thf(fact_5586_unit__div,axiom,
    ! [A: nat,B: nat] :
      ( ( dvd_dvd_nat @ A @ one_one_nat )
     => ( ( dvd_dvd_nat @ B @ one_one_nat )
       => ( dvd_dvd_nat @ ( divide_divide_nat @ A @ B ) @ one_one_nat ) ) ) ).

% unit_div
thf(fact_5587_unit__div,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ A @ one_one_int )
     => ( ( dvd_dvd_int @ B @ one_one_int )
       => ( dvd_dvd_int @ ( divide_divide_int @ A @ B ) @ one_one_int ) ) ) ).

% unit_div
thf(fact_5588_unit__div__1__unit,axiom,
    ! [A: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ one_one_Code_integer )
     => ( dvd_dvd_Code_integer @ ( divide6298287555418463151nteger @ one_one_Code_integer @ A ) @ one_one_Code_integer ) ) ).

% unit_div_1_unit
thf(fact_5589_unit__div__1__unit,axiom,
    ! [A: nat] :
      ( ( dvd_dvd_nat @ A @ one_one_nat )
     => ( dvd_dvd_nat @ ( divide_divide_nat @ one_one_nat @ A ) @ one_one_nat ) ) ).

% unit_div_1_unit
thf(fact_5590_unit__div__1__unit,axiom,
    ! [A: int] :
      ( ( dvd_dvd_int @ A @ one_one_int )
     => ( dvd_dvd_int @ ( divide_divide_int @ one_one_int @ A ) @ one_one_int ) ) ).

% unit_div_1_unit
thf(fact_5591_unit__div__1__div__1,axiom,
    ! [A: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ one_one_Code_integer )
     => ( ( divide6298287555418463151nteger @ one_one_Code_integer @ ( divide6298287555418463151nteger @ one_one_Code_integer @ A ) )
        = A ) ) ).

% unit_div_1_div_1
thf(fact_5592_unit__div__1__div__1,axiom,
    ! [A: nat] :
      ( ( dvd_dvd_nat @ A @ one_one_nat )
     => ( ( divide_divide_nat @ one_one_nat @ ( divide_divide_nat @ one_one_nat @ A ) )
        = A ) ) ).

% unit_div_1_div_1
thf(fact_5593_unit__div__1__div__1,axiom,
    ! [A: int] :
      ( ( dvd_dvd_int @ A @ one_one_int )
     => ( ( divide_divide_int @ one_one_int @ ( divide_divide_int @ one_one_int @ A ) )
        = A ) ) ).

% unit_div_1_div_1
thf(fact_5594_div__add,axiom,
    ! [C: code_integer,A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ C @ A )
     => ( ( dvd_dvd_Code_integer @ C @ B )
       => ( ( divide6298287555418463151nteger @ ( plus_p5714425477246183910nteger @ A @ B ) @ C )
          = ( plus_p5714425477246183910nteger @ ( divide6298287555418463151nteger @ A @ C ) @ ( divide6298287555418463151nteger @ B @ C ) ) ) ) ) ).

% div_add
thf(fact_5595_div__add,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( dvd_dvd_nat @ C @ A )
     => ( ( dvd_dvd_nat @ C @ B )
       => ( ( divide_divide_nat @ ( plus_plus_nat @ A @ B ) @ C )
          = ( plus_plus_nat @ ( divide_divide_nat @ A @ C ) @ ( divide_divide_nat @ B @ C ) ) ) ) ) ).

% div_add
thf(fact_5596_div__add,axiom,
    ! [C: int,A: int,B: int] :
      ( ( dvd_dvd_int @ C @ A )
     => ( ( dvd_dvd_int @ C @ B )
       => ( ( divide_divide_int @ ( plus_plus_int @ A @ B ) @ C )
          = ( plus_plus_int @ ( divide_divide_int @ A @ C ) @ ( divide_divide_int @ B @ C ) ) ) ) ) ).

% div_add
thf(fact_5597_div__diff,axiom,
    ! [C: code_integer,A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ C @ A )
     => ( ( dvd_dvd_Code_integer @ C @ B )
       => ( ( divide6298287555418463151nteger @ ( minus_8373710615458151222nteger @ A @ B ) @ C )
          = ( minus_8373710615458151222nteger @ ( divide6298287555418463151nteger @ A @ C ) @ ( divide6298287555418463151nteger @ B @ C ) ) ) ) ) ).

% div_diff
thf(fact_5598_div__diff,axiom,
    ! [C: int,A: int,B: int] :
      ( ( dvd_dvd_int @ C @ A )
     => ( ( dvd_dvd_int @ C @ B )
       => ( ( divide_divide_int @ ( minus_minus_int @ A @ B ) @ C )
          = ( minus_minus_int @ ( divide_divide_int @ A @ C ) @ ( divide_divide_int @ B @ C ) ) ) ) ) ).

% div_diff
thf(fact_5599_dvd__imp__mod__0,axiom,
    ! [A: nat,B: nat] :
      ( ( dvd_dvd_nat @ A @ B )
     => ( ( modulo_modulo_nat @ B @ A )
        = zero_zero_nat ) ) ).

% dvd_imp_mod_0
thf(fact_5600_dvd__imp__mod__0,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ A @ B )
     => ( ( modulo_modulo_int @ B @ A )
        = zero_zero_int ) ) ).

% dvd_imp_mod_0
thf(fact_5601_dvd__imp__mod__0,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ B )
     => ( ( modulo364778990260209775nteger @ B @ A )
        = zero_z3403309356797280102nteger ) ) ).

% dvd_imp_mod_0
thf(fact_5602_signed__take__bit__Suc__1,axiom,
    ! [N: nat] :
      ( ( bit_ri631733984087533419it_int @ ( suc @ N ) @ one_one_int )
      = one_one_int ) ).

% signed_take_bit_Suc_1
thf(fact_5603_signed__take__bit__numeral__of__1,axiom,
    ! [K: num] :
      ( ( bit_ri631733984087533419it_int @ ( numeral_numeral_nat @ K ) @ one_one_int )
      = one_one_int ) ).

% signed_take_bit_numeral_of_1
thf(fact_5604_even__Suc,axiom,
    ! [N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ N ) )
      = ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).

% even_Suc
thf(fact_5605_even__Suc__Suc__iff,axiom,
    ! [N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ N ) ) )
      = ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).

% even_Suc_Suc_iff
thf(fact_5606_unit__mult__div__div,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ one_one_Code_integer )
     => ( ( times_3573771949741848930nteger @ B @ ( divide6298287555418463151nteger @ one_one_Code_integer @ A ) )
        = ( divide6298287555418463151nteger @ B @ A ) ) ) ).

% unit_mult_div_div
thf(fact_5607_unit__mult__div__div,axiom,
    ! [A: nat,B: nat] :
      ( ( dvd_dvd_nat @ A @ one_one_nat )
     => ( ( times_times_nat @ B @ ( divide_divide_nat @ one_one_nat @ A ) )
        = ( divide_divide_nat @ B @ A ) ) ) ).

% unit_mult_div_div
thf(fact_5608_unit__mult__div__div,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ A @ one_one_int )
     => ( ( times_times_int @ B @ ( divide_divide_int @ one_one_int @ A ) )
        = ( divide_divide_int @ B @ A ) ) ) ).

% unit_mult_div_div
thf(fact_5609_unit__div__mult__self,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ one_one_Code_integer )
     => ( ( times_3573771949741848930nteger @ ( divide6298287555418463151nteger @ B @ A ) @ A )
        = B ) ) ).

% unit_div_mult_self
thf(fact_5610_unit__div__mult__self,axiom,
    ! [A: nat,B: nat] :
      ( ( dvd_dvd_nat @ A @ one_one_nat )
     => ( ( times_times_nat @ ( divide_divide_nat @ B @ A ) @ A )
        = B ) ) ).

% unit_div_mult_self
thf(fact_5611_unit__div__mult__self,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ A @ one_one_int )
     => ( ( times_times_int @ ( divide_divide_int @ B @ A ) @ A )
        = B ) ) ).

% unit_div_mult_self
thf(fact_5612_pow__divides__pow__iff,axiom,
    ! [N: nat,A: nat,B: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( dvd_dvd_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ B @ N ) )
        = ( dvd_dvd_nat @ A @ B ) ) ) ).

% pow_divides_pow_iff
thf(fact_5613_pow__divides__pow__iff,axiom,
    ! [N: nat,A: int,B: int] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( dvd_dvd_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ B @ N ) )
        = ( dvd_dvd_int @ A @ B ) ) ) ).

% pow_divides_pow_iff
thf(fact_5614_even__mult__iff,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( times_3573771949741848930nteger @ A @ B ) )
      = ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
        | ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) ) ).

% even_mult_iff
thf(fact_5615_even__mult__iff,axiom,
    ! [A: nat,B: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( times_times_nat @ A @ B ) )
      = ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
        | ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) ) ).

% even_mult_iff
thf(fact_5616_even__mult__iff,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( times_times_int @ A @ B ) )
      = ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
        | ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) ) ).

% even_mult_iff
thf(fact_5617_odd__add,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( plus_p5714425477246183910nteger @ A @ B ) ) )
      = ( ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) )
       != ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) ) ) ).

% odd_add
thf(fact_5618_odd__add,axiom,
    ! [A: nat,B: nat] :
      ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ A @ B ) ) )
      = ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) )
       != ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) ) ) ).

% odd_add
thf(fact_5619_odd__add,axiom,
    ! [A: int,B: int] :
      ( ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ A @ B ) ) )
      = ( ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) )
       != ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) ) ) ).

% odd_add
thf(fact_5620_even__add,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( plus_p5714425477246183910nteger @ A @ B ) )
      = ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
        = ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) ) ).

% even_add
thf(fact_5621_even__add,axiom,
    ! [A: nat,B: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ A @ B ) )
      = ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
        = ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) ) ).

% even_add
thf(fact_5622_even__add,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ A @ B ) )
      = ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
        = ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) ) ).

% even_add
thf(fact_5623_even__mod__2__iff,axiom,
    ! [A: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) ) ).

% even_mod_2_iff
thf(fact_5624_even__mod__2__iff,axiom,
    ! [A: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) )
      = ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) ).

% even_mod_2_iff
thf(fact_5625_even__mod__2__iff,axiom,
    ! [A: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) )
      = ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) ) ).

% even_mod_2_iff
thf(fact_5626_odd__Suc__div__two,axiom,
    ! [N: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( divide_divide_nat @ ( suc @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( suc @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% odd_Suc_div_two
thf(fact_5627_even__Suc__div__two,axiom,
    ! [N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( divide_divide_nat @ ( suc @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% even_Suc_div_two
thf(fact_5628_signed__take__bit__Suc__bit0,axiom,
    ! [N: nat,K: num] :
      ( ( bit_ri631733984087533419it_int @ ( suc @ N ) @ ( numeral_numeral_int @ ( bit0 @ K ) ) )
      = ( times_times_int @ ( bit_ri631733984087533419it_int @ N @ ( numeral_numeral_int @ K ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).

% signed_take_bit_Suc_bit0
thf(fact_5629_dvd__numeral__simp,axiom,
    ! [M: num,N: num] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) )
      = ( unique6319869463603278526ux_int @ ( unique5052692396658037445od_int @ N @ M ) ) ) ).

% dvd_numeral_simp
thf(fact_5630_dvd__numeral__simp,axiom,
    ! [M: num,N: num] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) )
      = ( unique6322359934112328802ux_nat @ ( unique5055182867167087721od_nat @ N @ M ) ) ) ).

% dvd_numeral_simp
thf(fact_5631_dvd__numeral__simp,axiom,
    ! [M: num,N: num] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ M ) @ ( numera6620942414471956472nteger @ N ) )
      = ( unique5706413561485394159nteger @ ( unique3479559517661332726nteger @ N @ M ) ) ) ).

% dvd_numeral_simp
thf(fact_5632_zero__le__power__eq__numeral,axiom,
    ! [A: real,W: num] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ W ) ) )
      = ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
        | ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
          & ( ord_less_eq_real @ zero_zero_real @ A ) ) ) ) ).

% zero_le_power_eq_numeral
thf(fact_5633_zero__le__power__eq__numeral,axiom,
    ! [A: rat,W: num] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ W ) ) )
      = ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
        | ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
          & ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ) ) ).

% zero_le_power_eq_numeral
thf(fact_5634_zero__le__power__eq__numeral,axiom,
    ! [A: int,W: num] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ W ) ) )
      = ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
        | ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
          & ( ord_less_eq_int @ zero_zero_int @ A ) ) ) ) ).

% zero_le_power_eq_numeral
thf(fact_5635_power__less__zero__eq,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_real @ ( power_power_real @ A @ N ) @ zero_zero_real )
      = ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
        & ( ord_less_real @ A @ zero_zero_real ) ) ) ).

% power_less_zero_eq
thf(fact_5636_power__less__zero__eq,axiom,
    ! [A: rat,N: nat] :
      ( ( ord_less_rat @ ( power_power_rat @ A @ N ) @ zero_zero_rat )
      = ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
        & ( ord_less_rat @ A @ zero_zero_rat ) ) ) ).

% power_less_zero_eq
thf(fact_5637_power__less__zero__eq,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_int @ ( power_power_int @ A @ N ) @ zero_zero_int )
      = ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
        & ( ord_less_int @ A @ zero_zero_int ) ) ) ).

% power_less_zero_eq
thf(fact_5638_power__less__zero__eq__numeral,axiom,
    ! [A: real,W: num] :
      ( ( ord_less_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ W ) ) @ zero_zero_real )
      = ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
        & ( ord_less_real @ A @ zero_zero_real ) ) ) ).

% power_less_zero_eq_numeral
thf(fact_5639_power__less__zero__eq__numeral,axiom,
    ! [A: rat,W: num] :
      ( ( ord_less_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ W ) ) @ zero_zero_rat )
      = ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
        & ( ord_less_rat @ A @ zero_zero_rat ) ) ) ).

% power_less_zero_eq_numeral
thf(fact_5640_power__less__zero__eq__numeral,axiom,
    ! [A: int,W: num] :
      ( ( ord_less_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ W ) ) @ zero_zero_int )
      = ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
        & ( ord_less_int @ A @ zero_zero_int ) ) ) ).

% power_less_zero_eq_numeral
thf(fact_5641_even__plus__one__iff,axiom,
    ! [A: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( plus_p5714425477246183910nteger @ A @ one_one_Code_integer ) )
      = ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) ) ) ).

% even_plus_one_iff
thf(fact_5642_even__plus__one__iff,axiom,
    ! [A: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ A @ one_one_nat ) )
      = ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) ) ) ).

% even_plus_one_iff
thf(fact_5643_even__plus__one__iff,axiom,
    ! [A: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ A @ one_one_int ) )
      = ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) ) ).

% even_plus_one_iff
thf(fact_5644_even__diff,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( minus_8373710615458151222nteger @ A @ B ) )
      = ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( plus_p5714425477246183910nteger @ A @ B ) ) ) ).

% even_diff
thf(fact_5645_even__diff,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( minus_minus_int @ A @ B ) )
      = ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ A @ B ) ) ) ).

% even_diff
thf(fact_5646_odd__Suc__minus__one,axiom,
    ! [N: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( suc @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) )
        = N ) ) ).

% odd_Suc_minus_one
thf(fact_5647_even__diff__nat,axiom,
    ! [M: nat,N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ M @ N ) )
      = ( ( ord_less_nat @ M @ N )
        | ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N ) ) ) ) ).

% even_diff_nat
thf(fact_5648_zero__less__power__eq__numeral,axiom,
    ! [A: real,W: num] :
      ( ( ord_less_real @ zero_zero_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ W ) ) )
      = ( ( ( numeral_numeral_nat @ W )
          = zero_zero_nat )
        | ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
          & ( A != zero_zero_real ) )
        | ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
          & ( ord_less_real @ zero_zero_real @ A ) ) ) ) ).

% zero_less_power_eq_numeral
thf(fact_5649_zero__less__power__eq__numeral,axiom,
    ! [A: rat,W: num] :
      ( ( ord_less_rat @ zero_zero_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ W ) ) )
      = ( ( ( numeral_numeral_nat @ W )
          = zero_zero_nat )
        | ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
          & ( A != zero_zero_rat ) )
        | ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
          & ( ord_less_rat @ zero_zero_rat @ A ) ) ) ) ).

% zero_less_power_eq_numeral
thf(fact_5650_zero__less__power__eq__numeral,axiom,
    ! [A: int,W: num] :
      ( ( ord_less_int @ zero_zero_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ W ) ) )
      = ( ( ( numeral_numeral_nat @ W )
          = zero_zero_nat )
        | ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
          & ( A != zero_zero_int ) )
        | ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
          & ( ord_less_int @ zero_zero_int @ A ) ) ) ) ).

% zero_less_power_eq_numeral
thf(fact_5651_even__succ__div__2,axiom,
    ! [A: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
     => ( ( divide6298287555418463151nteger @ ( plus_p5714425477246183910nteger @ one_one_Code_integer @ A ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
        = ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ).

% even_succ_div_2
thf(fact_5652_even__succ__div__2,axiom,
    ! [A: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
     => ( ( divide_divide_nat @ ( plus_plus_nat @ one_one_nat @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% even_succ_div_2
thf(fact_5653_even__succ__div__2,axiom,
    ! [A: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
     => ( ( divide_divide_int @ ( plus_plus_int @ one_one_int @ A ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
        = ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ).

% even_succ_div_2
thf(fact_5654_odd__succ__div__two,axiom,
    ! [A: code_integer] :
      ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
     => ( ( divide6298287555418463151nteger @ ( plus_p5714425477246183910nteger @ A @ one_one_Code_integer ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
        = ( plus_p5714425477246183910nteger @ ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ one_one_Code_integer ) ) ) ).

% odd_succ_div_two
thf(fact_5655_odd__succ__div__two,axiom,
    ! [A: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
     => ( ( divide_divide_nat @ ( plus_plus_nat @ A @ one_one_nat ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( plus_plus_nat @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) ).

% odd_succ_div_two
thf(fact_5656_odd__succ__div__two,axiom,
    ! [A: int] :
      ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
     => ( ( divide_divide_int @ ( plus_plus_int @ A @ one_one_int ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
        = ( plus_plus_int @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ one_one_int ) ) ) ).

% odd_succ_div_two
thf(fact_5657_even__succ__div__two,axiom,
    ! [A: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
     => ( ( divide6298287555418463151nteger @ ( plus_p5714425477246183910nteger @ A @ one_one_Code_integer ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
        = ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ).

% even_succ_div_two
thf(fact_5658_even__succ__div__two,axiom,
    ! [A: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
     => ( ( divide_divide_nat @ ( plus_plus_nat @ A @ one_one_nat ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% even_succ_div_two
thf(fact_5659_even__succ__div__two,axiom,
    ! [A: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
     => ( ( divide_divide_int @ ( plus_plus_int @ A @ one_one_int ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
        = ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ).

% even_succ_div_two
thf(fact_5660_even__power,axiom,
    ! [A: code_integer,N: nat] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( power_8256067586552552935nteger @ A @ N ) )
      = ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
        & ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% even_power
thf(fact_5661_even__power,axiom,
    ! [A: nat,N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( power_power_nat @ A @ N ) )
      = ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
        & ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% even_power
thf(fact_5662_even__power,axiom,
    ! [A: int,N: nat] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( power_power_int @ A @ N ) )
      = ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
        & ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% even_power
thf(fact_5663_odd__two__times__div__two__nat,axiom,
    ! [N: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
        = ( minus_minus_nat @ N @ one_one_nat ) ) ) ).

% odd_two_times_div_two_nat
thf(fact_5664_divmod__algorithm__code_I5_J,axiom,
    ! [M: num,N: num] :
      ( ( unique5052692396658037445od_int @ ( bit0 @ M ) @ ( bit0 @ N ) )
      = ( produc4245557441103728435nt_int
        @ ^ [Q4: int,R5: int] : ( product_Pair_int_int @ Q4 @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ R5 ) )
        @ ( unique5052692396658037445od_int @ M @ N ) ) ) ).

% divmod_algorithm_code(5)
thf(fact_5665_divmod__algorithm__code_I5_J,axiom,
    ! [M: num,N: num] :
      ( ( unique5055182867167087721od_nat @ ( bit0 @ M ) @ ( bit0 @ N ) )
      = ( produc2626176000494625587at_nat
        @ ^ [Q4: nat,R5: nat] : ( product_Pair_nat_nat @ Q4 @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ R5 ) )
        @ ( unique5055182867167087721od_nat @ M @ N ) ) ) ).

% divmod_algorithm_code(5)
thf(fact_5666_divmod__algorithm__code_I5_J,axiom,
    ! [M: num,N: num] :
      ( ( unique3479559517661332726nteger @ ( bit0 @ M ) @ ( bit0 @ N ) )
      = ( produc6916734918728496179nteger
        @ ^ [Q4: code_integer,R5: code_integer] : ( produc1086072967326762835nteger @ Q4 @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ R5 ) )
        @ ( unique3479559517661332726nteger @ M @ N ) ) ) ).

% divmod_algorithm_code(5)
thf(fact_5667_odd__two__times__div__two__succ,axiom,
    ! [A: code_integer] :
      ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
     => ( ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) @ one_one_Code_integer )
        = A ) ) ).

% odd_two_times_div_two_succ
thf(fact_5668_odd__two__times__div__two__succ,axiom,
    ! [A: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
     => ( ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ one_one_nat )
        = A ) ) ).

% odd_two_times_div_two_succ
thf(fact_5669_odd__two__times__div__two__succ,axiom,
    ! [A: int] :
      ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
     => ( ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) @ one_one_int )
        = A ) ) ).

% odd_two_times_div_two_succ
thf(fact_5670_power__le__zero__eq__numeral,axiom,
    ! [A: real,W: num] :
      ( ( ord_less_eq_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ W ) ) @ zero_zero_real )
      = ( ( ord_less_nat @ zero_zero_nat @ ( numeral_numeral_nat @ W ) )
        & ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
            & ( ord_less_eq_real @ A @ zero_zero_real ) )
          | ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
            & ( A = zero_zero_real ) ) ) ) ) ).

% power_le_zero_eq_numeral
thf(fact_5671_power__le__zero__eq__numeral,axiom,
    ! [A: rat,W: num] :
      ( ( ord_less_eq_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ W ) ) @ zero_zero_rat )
      = ( ( ord_less_nat @ zero_zero_nat @ ( numeral_numeral_nat @ W ) )
        & ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
            & ( ord_less_eq_rat @ A @ zero_zero_rat ) )
          | ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
            & ( A = zero_zero_rat ) ) ) ) ) ).

% power_le_zero_eq_numeral
thf(fact_5672_power__le__zero__eq__numeral,axiom,
    ! [A: int,W: num] :
      ( ( ord_less_eq_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ W ) ) @ zero_zero_int )
      = ( ( ord_less_nat @ zero_zero_nat @ ( numeral_numeral_nat @ W ) )
        & ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
            & ( ord_less_eq_int @ A @ zero_zero_int ) )
          | ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
            & ( A = zero_zero_int ) ) ) ) ) ).

% power_le_zero_eq_numeral
thf(fact_5673_semiring__parity__class_Oeven__mask__iff,axiom,
    ! [N: nat] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( minus_8373710615458151222nteger @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) @ one_one_Code_integer ) )
      = ( N = zero_zero_nat ) ) ).

% semiring_parity_class.even_mask_iff
thf(fact_5674_semiring__parity__class_Oeven__mask__iff,axiom,
    ! [N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ one_one_nat ) )
      = ( N = zero_zero_nat ) ) ).

% semiring_parity_class.even_mask_iff
thf(fact_5675_semiring__parity__class_Oeven__mask__iff,axiom,
    ! [N: nat] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( minus_minus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) @ one_one_int ) )
      = ( N = zero_zero_nat ) ) ).

% semiring_parity_class.even_mask_iff
thf(fact_5676_signed__take__bit__Suc__bit1,axiom,
    ! [N: nat,K: num] :
      ( ( bit_ri631733984087533419it_int @ ( suc @ N ) @ ( numeral_numeral_int @ ( bit1 @ K ) ) )
      = ( plus_plus_int @ ( times_times_int @ ( bit_ri631733984087533419it_int @ N @ ( numeral_numeral_int @ K ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ one_one_int ) ) ).

% signed_take_bit_Suc_bit1
thf(fact_5677_dvd__refl,axiom,
    ! [A: nat] : ( dvd_dvd_nat @ A @ A ) ).

% dvd_refl
thf(fact_5678_dvd__refl,axiom,
    ! [A: int] : ( dvd_dvd_int @ A @ A ) ).

% dvd_refl
thf(fact_5679_dvd__refl,axiom,
    ! [A: code_integer] : ( dvd_dvd_Code_integer @ A @ A ) ).

% dvd_refl
thf(fact_5680_dvd__trans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( dvd_dvd_nat @ A @ B )
     => ( ( dvd_dvd_nat @ B @ C )
       => ( dvd_dvd_nat @ A @ C ) ) ) ).

% dvd_trans
thf(fact_5681_dvd__trans,axiom,
    ! [A: int,B: int,C: int] :
      ( ( dvd_dvd_int @ A @ B )
     => ( ( dvd_dvd_int @ B @ C )
       => ( dvd_dvd_int @ A @ C ) ) ) ).

% dvd_trans
thf(fact_5682_dvd__trans,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ B )
     => ( ( dvd_dvd_Code_integer @ B @ C )
       => ( dvd_dvd_Code_integer @ A @ C ) ) ) ).

% dvd_trans
thf(fact_5683_prod_Ocase__distrib,axiom,
    ! [H2: $o > $o,F: int > int > $o,Prod: product_prod_int_int] :
      ( ( H2 @ ( produc4947309494688390418_int_o @ F @ Prod ) )
      = ( produc4947309494688390418_int_o
        @ ^ [X15: int,X24: int] : ( H2 @ ( F @ X15 @ X24 ) )
        @ Prod ) ) ).

% prod.case_distrib
thf(fact_5684_prod_Ocase__distrib,axiom,
    ! [H2: $o > int,F: int > int > $o,Prod: product_prod_int_int] :
      ( ( H2 @ ( produc4947309494688390418_int_o @ F @ Prod ) )
      = ( produc8211389475949308722nt_int
        @ ^ [X15: int,X24: int] : ( H2 @ ( F @ X15 @ X24 ) )
        @ Prod ) ) ).

% prod.case_distrib
thf(fact_5685_prod_Ocase__distrib,axiom,
    ! [H2: int > $o,F: int > int > int,Prod: product_prod_int_int] :
      ( ( H2 @ ( produc8211389475949308722nt_int @ F @ Prod ) )
      = ( produc4947309494688390418_int_o
        @ ^ [X15: int,X24: int] : ( H2 @ ( F @ X15 @ X24 ) )
        @ Prod ) ) ).

% prod.case_distrib
thf(fact_5686_prod_Ocase__distrib,axiom,
    ! [H2: int > int,F: int > int > int,Prod: product_prod_int_int] :
      ( ( H2 @ ( produc8211389475949308722nt_int @ F @ Prod ) )
      = ( produc8211389475949308722nt_int
        @ ^ [X15: int,X24: int] : ( H2 @ ( F @ X15 @ X24 ) )
        @ Prod ) ) ).

% prod.case_distrib
thf(fact_5687_prod_Ocase__distrib,axiom,
    ! [H2: product_prod_int_int > $o,F: int > int > product_prod_int_int,Prod: product_prod_int_int] :
      ( ( H2 @ ( produc4245557441103728435nt_int @ F @ Prod ) )
      = ( produc4947309494688390418_int_o
        @ ^ [X15: int,X24: int] : ( H2 @ ( F @ X15 @ X24 ) )
        @ Prod ) ) ).

% prod.case_distrib
thf(fact_5688_prod_Ocase__distrib,axiom,
    ! [H2: product_prod_int_int > int,F: int > int > product_prod_int_int,Prod: product_prod_int_int] :
      ( ( H2 @ ( produc4245557441103728435nt_int @ F @ Prod ) )
      = ( produc8211389475949308722nt_int
        @ ^ [X15: int,X24: int] : ( H2 @ ( F @ X15 @ X24 ) )
        @ Prod ) ) ).

% prod.case_distrib
thf(fact_5689_prod_Ocase__distrib,axiom,
    ! [H2: $o > product_prod_int_int,F: int > int > $o,Prod: product_prod_int_int] :
      ( ( H2 @ ( produc4947309494688390418_int_o @ F @ Prod ) )
      = ( produc4245557441103728435nt_int
        @ ^ [X15: int,X24: int] : ( H2 @ ( F @ X15 @ X24 ) )
        @ Prod ) ) ).

% prod.case_distrib
thf(fact_5690_prod_Ocase__distrib,axiom,
    ! [H2: int > product_prod_int_int,F: int > int > int,Prod: product_prod_int_int] :
      ( ( H2 @ ( produc8211389475949308722nt_int @ F @ Prod ) )
      = ( produc4245557441103728435nt_int
        @ ^ [X15: int,X24: int] : ( H2 @ ( F @ X15 @ X24 ) )
        @ Prod ) ) ).

% prod.case_distrib
thf(fact_5691_prod_Ocase__distrib,axiom,
    ! [H2: product_prod_int_int > product_prod_int_int,F: int > int > product_prod_int_int,Prod: product_prod_int_int] :
      ( ( H2 @ ( produc4245557441103728435nt_int @ F @ Prod ) )
      = ( produc4245557441103728435nt_int
        @ ^ [X15: int,X24: int] : ( H2 @ ( F @ X15 @ X24 ) )
        @ Prod ) ) ).

% prod.case_distrib
thf(fact_5692_prod_Ocase__distrib,axiom,
    ! [H2: ( product_prod_nat_nat > $o ) > product_prod_nat_nat > $o,F: nat > nat > product_prod_nat_nat > $o,Prod: product_prod_nat_nat] :
      ( ( H2 @ ( produc8739625826339149834_nat_o @ F @ Prod ) )
      = ( produc8739625826339149834_nat_o
        @ ^ [X15: nat,X24: nat] : ( H2 @ ( F @ X15 @ X24 ) )
        @ Prod ) ) ).

% prod.case_distrib
thf(fact_5693_dvd__field__iff,axiom,
    ( dvd_dvd_complex
    = ( ^ [A3: complex,B2: complex] :
          ( ( A3 = zero_zero_complex )
         => ( B2 = zero_zero_complex ) ) ) ) ).

% dvd_field_iff
thf(fact_5694_dvd__field__iff,axiom,
    ( dvd_dvd_real
    = ( ^ [A3: real,B2: real] :
          ( ( A3 = zero_zero_real )
         => ( B2 = zero_zero_real ) ) ) ) ).

% dvd_field_iff
thf(fact_5695_dvd__field__iff,axiom,
    ( dvd_dvd_rat
    = ( ^ [A3: rat,B2: rat] :
          ( ( A3 = zero_zero_rat )
         => ( B2 = zero_zero_rat ) ) ) ) ).

% dvd_field_iff
thf(fact_5696_dvd__0__left,axiom,
    ! [A: code_integer] :
      ( ( dvd_dvd_Code_integer @ zero_z3403309356797280102nteger @ A )
     => ( A = zero_z3403309356797280102nteger ) ) ).

% dvd_0_left
thf(fact_5697_dvd__0__left,axiom,
    ! [A: complex] :
      ( ( dvd_dvd_complex @ zero_zero_complex @ A )
     => ( A = zero_zero_complex ) ) ).

% dvd_0_left
thf(fact_5698_dvd__0__left,axiom,
    ! [A: real] :
      ( ( dvd_dvd_real @ zero_zero_real @ A )
     => ( A = zero_zero_real ) ) ).

% dvd_0_left
thf(fact_5699_dvd__0__left,axiom,
    ! [A: rat] :
      ( ( dvd_dvd_rat @ zero_zero_rat @ A )
     => ( A = zero_zero_rat ) ) ).

% dvd_0_left
thf(fact_5700_dvd__0__left,axiom,
    ! [A: nat] :
      ( ( dvd_dvd_nat @ zero_zero_nat @ A )
     => ( A = zero_zero_nat ) ) ).

% dvd_0_left
thf(fact_5701_dvd__0__left,axiom,
    ! [A: int] :
      ( ( dvd_dvd_int @ zero_zero_int @ A )
     => ( A = zero_zero_int ) ) ).

% dvd_0_left
thf(fact_5702_dvd__triv__right,axiom,
    ! [A: code_integer,B: code_integer] : ( dvd_dvd_Code_integer @ A @ ( times_3573771949741848930nteger @ B @ A ) ) ).

% dvd_triv_right
thf(fact_5703_dvd__triv__right,axiom,
    ! [A: real,B: real] : ( dvd_dvd_real @ A @ ( times_times_real @ B @ A ) ) ).

% dvd_triv_right
thf(fact_5704_dvd__triv__right,axiom,
    ! [A: rat,B: rat] : ( dvd_dvd_rat @ A @ ( times_times_rat @ B @ A ) ) ).

% dvd_triv_right
thf(fact_5705_dvd__triv__right,axiom,
    ! [A: nat,B: nat] : ( dvd_dvd_nat @ A @ ( times_times_nat @ B @ A ) ) ).

% dvd_triv_right
thf(fact_5706_dvd__triv__right,axiom,
    ! [A: int,B: int] : ( dvd_dvd_int @ A @ ( times_times_int @ B @ A ) ) ).

% dvd_triv_right
thf(fact_5707_dvd__mult__right,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ A @ B ) @ C )
     => ( dvd_dvd_Code_integer @ B @ C ) ) ).

% dvd_mult_right
thf(fact_5708_dvd__mult__right,axiom,
    ! [A: real,B: real,C: real] :
      ( ( dvd_dvd_real @ ( times_times_real @ A @ B ) @ C )
     => ( dvd_dvd_real @ B @ C ) ) ).

% dvd_mult_right
thf(fact_5709_dvd__mult__right,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( dvd_dvd_rat @ ( times_times_rat @ A @ B ) @ C )
     => ( dvd_dvd_rat @ B @ C ) ) ).

% dvd_mult_right
thf(fact_5710_dvd__mult__right,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( dvd_dvd_nat @ ( times_times_nat @ A @ B ) @ C )
     => ( dvd_dvd_nat @ B @ C ) ) ).

% dvd_mult_right
thf(fact_5711_dvd__mult__right,axiom,
    ! [A: int,B: int,C: int] :
      ( ( dvd_dvd_int @ ( times_times_int @ A @ B ) @ C )
     => ( dvd_dvd_int @ B @ C ) ) ).

% dvd_mult_right
thf(fact_5712_mult__dvd__mono,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer,D: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ B )
     => ( ( dvd_dvd_Code_integer @ C @ D )
       => ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ A @ C ) @ ( times_3573771949741848930nteger @ B @ D ) ) ) ) ).

% mult_dvd_mono
thf(fact_5713_mult__dvd__mono,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( dvd_dvd_real @ A @ B )
     => ( ( dvd_dvd_real @ C @ D )
       => ( dvd_dvd_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D ) ) ) ) ).

% mult_dvd_mono
thf(fact_5714_mult__dvd__mono,axiom,
    ! [A: rat,B: rat,C: rat,D: rat] :
      ( ( dvd_dvd_rat @ A @ B )
     => ( ( dvd_dvd_rat @ C @ D )
       => ( dvd_dvd_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ D ) ) ) ) ).

% mult_dvd_mono
thf(fact_5715_mult__dvd__mono,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( dvd_dvd_nat @ A @ B )
     => ( ( dvd_dvd_nat @ C @ D )
       => ( dvd_dvd_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) ) ) ) ).

% mult_dvd_mono
thf(fact_5716_mult__dvd__mono,axiom,
    ! [A: int,B: int,C: int,D: int] :
      ( ( dvd_dvd_int @ A @ B )
     => ( ( dvd_dvd_int @ C @ D )
       => ( dvd_dvd_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D ) ) ) ) ).

% mult_dvd_mono
thf(fact_5717_dvd__triv__left,axiom,
    ! [A: code_integer,B: code_integer] : ( dvd_dvd_Code_integer @ A @ ( times_3573771949741848930nteger @ A @ B ) ) ).

% dvd_triv_left
thf(fact_5718_dvd__triv__left,axiom,
    ! [A: real,B: real] : ( dvd_dvd_real @ A @ ( times_times_real @ A @ B ) ) ).

% dvd_triv_left
thf(fact_5719_dvd__triv__left,axiom,
    ! [A: rat,B: rat] : ( dvd_dvd_rat @ A @ ( times_times_rat @ A @ B ) ) ).

% dvd_triv_left
thf(fact_5720_dvd__triv__left,axiom,
    ! [A: nat,B: nat] : ( dvd_dvd_nat @ A @ ( times_times_nat @ A @ B ) ) ).

% dvd_triv_left
thf(fact_5721_dvd__triv__left,axiom,
    ! [A: int,B: int] : ( dvd_dvd_int @ A @ ( times_times_int @ A @ B ) ) ).

% dvd_triv_left
thf(fact_5722_dvd__mult__left,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ A @ B ) @ C )
     => ( dvd_dvd_Code_integer @ A @ C ) ) ).

% dvd_mult_left
thf(fact_5723_dvd__mult__left,axiom,
    ! [A: real,B: real,C: real] :
      ( ( dvd_dvd_real @ ( times_times_real @ A @ B ) @ C )
     => ( dvd_dvd_real @ A @ C ) ) ).

% dvd_mult_left
thf(fact_5724_dvd__mult__left,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( dvd_dvd_rat @ ( times_times_rat @ A @ B ) @ C )
     => ( dvd_dvd_rat @ A @ C ) ) ).

% dvd_mult_left
thf(fact_5725_dvd__mult__left,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( dvd_dvd_nat @ ( times_times_nat @ A @ B ) @ C )
     => ( dvd_dvd_nat @ A @ C ) ) ).

% dvd_mult_left
thf(fact_5726_dvd__mult__left,axiom,
    ! [A: int,B: int,C: int] :
      ( ( dvd_dvd_int @ ( times_times_int @ A @ B ) @ C )
     => ( dvd_dvd_int @ A @ C ) ) ).

% dvd_mult_left
thf(fact_5727_dvd__mult2,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ B )
     => ( dvd_dvd_Code_integer @ A @ ( times_3573771949741848930nteger @ B @ C ) ) ) ).

% dvd_mult2
thf(fact_5728_dvd__mult2,axiom,
    ! [A: real,B: real,C: real] :
      ( ( dvd_dvd_real @ A @ B )
     => ( dvd_dvd_real @ A @ ( times_times_real @ B @ C ) ) ) ).

% dvd_mult2
thf(fact_5729_dvd__mult2,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( dvd_dvd_rat @ A @ B )
     => ( dvd_dvd_rat @ A @ ( times_times_rat @ B @ C ) ) ) ).

% dvd_mult2
thf(fact_5730_dvd__mult2,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( dvd_dvd_nat @ A @ B )
     => ( dvd_dvd_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).

% dvd_mult2
thf(fact_5731_dvd__mult2,axiom,
    ! [A: int,B: int,C: int] :
      ( ( dvd_dvd_int @ A @ B )
     => ( dvd_dvd_int @ A @ ( times_times_int @ B @ C ) ) ) ).

% dvd_mult2
thf(fact_5732_dvd__mult,axiom,
    ! [A: code_integer,C: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ C )
     => ( dvd_dvd_Code_integer @ A @ ( times_3573771949741848930nteger @ B @ C ) ) ) ).

% dvd_mult
thf(fact_5733_dvd__mult,axiom,
    ! [A: real,C: real,B: real] :
      ( ( dvd_dvd_real @ A @ C )
     => ( dvd_dvd_real @ A @ ( times_times_real @ B @ C ) ) ) ).

% dvd_mult
thf(fact_5734_dvd__mult,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( dvd_dvd_rat @ A @ C )
     => ( dvd_dvd_rat @ A @ ( times_times_rat @ B @ C ) ) ) ).

% dvd_mult
thf(fact_5735_dvd__mult,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( dvd_dvd_nat @ A @ C )
     => ( dvd_dvd_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).

% dvd_mult
thf(fact_5736_dvd__mult,axiom,
    ! [A: int,C: int,B: int] :
      ( ( dvd_dvd_int @ A @ C )
     => ( dvd_dvd_int @ A @ ( times_times_int @ B @ C ) ) ) ).

% dvd_mult
thf(fact_5737_dvd__def,axiom,
    ( dvd_dvd_Code_integer
    = ( ^ [B2: code_integer,A3: code_integer] :
        ? [K2: code_integer] :
          ( A3
          = ( times_3573771949741848930nteger @ B2 @ K2 ) ) ) ) ).

% dvd_def
thf(fact_5738_dvd__def,axiom,
    ( dvd_dvd_real
    = ( ^ [B2: real,A3: real] :
        ? [K2: real] :
          ( A3
          = ( times_times_real @ B2 @ K2 ) ) ) ) ).

% dvd_def
thf(fact_5739_dvd__def,axiom,
    ( dvd_dvd_rat
    = ( ^ [B2: rat,A3: rat] :
        ? [K2: rat] :
          ( A3
          = ( times_times_rat @ B2 @ K2 ) ) ) ) ).

% dvd_def
thf(fact_5740_dvd__def,axiom,
    ( dvd_dvd_nat
    = ( ^ [B2: nat,A3: nat] :
        ? [K2: nat] :
          ( A3
          = ( times_times_nat @ B2 @ K2 ) ) ) ) ).

% dvd_def
thf(fact_5741_dvd__def,axiom,
    ( dvd_dvd_int
    = ( ^ [B2: int,A3: int] :
        ? [K2: int] :
          ( A3
          = ( times_times_int @ B2 @ K2 ) ) ) ) ).

% dvd_def
thf(fact_5742_dvdI,axiom,
    ! [A: code_integer,B: code_integer,K: code_integer] :
      ( ( A
        = ( times_3573771949741848930nteger @ B @ K ) )
     => ( dvd_dvd_Code_integer @ B @ A ) ) ).

% dvdI
thf(fact_5743_dvdI,axiom,
    ! [A: real,B: real,K: real] :
      ( ( A
        = ( times_times_real @ B @ K ) )
     => ( dvd_dvd_real @ B @ A ) ) ).

% dvdI
thf(fact_5744_dvdI,axiom,
    ! [A: rat,B: rat,K: rat] :
      ( ( A
        = ( times_times_rat @ B @ K ) )
     => ( dvd_dvd_rat @ B @ A ) ) ).

% dvdI
thf(fact_5745_dvdI,axiom,
    ! [A: nat,B: nat,K: nat] :
      ( ( A
        = ( times_times_nat @ B @ K ) )
     => ( dvd_dvd_nat @ B @ A ) ) ).

% dvdI
thf(fact_5746_dvdI,axiom,
    ! [A: int,B: int,K: int] :
      ( ( A
        = ( times_times_int @ B @ K ) )
     => ( dvd_dvd_int @ B @ A ) ) ).

% dvdI
thf(fact_5747_dvdE,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ B @ A )
     => ~ ! [K3: code_integer] :
            ( A
           != ( times_3573771949741848930nteger @ B @ K3 ) ) ) ).

% dvdE
thf(fact_5748_dvdE,axiom,
    ! [B: real,A: real] :
      ( ( dvd_dvd_real @ B @ A )
     => ~ ! [K3: real] :
            ( A
           != ( times_times_real @ B @ K3 ) ) ) ).

% dvdE
thf(fact_5749_dvdE,axiom,
    ! [B: rat,A: rat] :
      ( ( dvd_dvd_rat @ B @ A )
     => ~ ! [K3: rat] :
            ( A
           != ( times_times_rat @ B @ K3 ) ) ) ).

% dvdE
thf(fact_5750_dvdE,axiom,
    ! [B: nat,A: nat] :
      ( ( dvd_dvd_nat @ B @ A )
     => ~ ! [K3: nat] :
            ( A
           != ( times_times_nat @ B @ K3 ) ) ) ).

% dvdE
thf(fact_5751_dvdE,axiom,
    ! [B: int,A: int] :
      ( ( dvd_dvd_int @ B @ A )
     => ~ ! [K3: int] :
            ( A
           != ( times_times_int @ B @ K3 ) ) ) ).

% dvdE
thf(fact_5752_division__decomp,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( dvd_dvd_nat @ A @ ( times_times_nat @ B @ C ) )
     => ? [B9: nat,C7: nat] :
          ( ( A
            = ( times_times_nat @ B9 @ C7 ) )
          & ( dvd_dvd_nat @ B9 @ B )
          & ( dvd_dvd_nat @ C7 @ C ) ) ) ).

% division_decomp
thf(fact_5753_division__decomp,axiom,
    ! [A: int,B: int,C: int] :
      ( ( dvd_dvd_int @ A @ ( times_times_int @ B @ C ) )
     => ? [B9: int,C7: int] :
          ( ( A
            = ( times_times_int @ B9 @ C7 ) )
          & ( dvd_dvd_int @ B9 @ B )
          & ( dvd_dvd_int @ C7 @ C ) ) ) ).

% division_decomp
thf(fact_5754_dvd__productE,axiom,
    ! [P2: nat,A: nat,B: nat] :
      ( ( dvd_dvd_nat @ P2 @ ( times_times_nat @ A @ B ) )
     => ~ ! [X4: nat,Y3: nat] :
            ( ( P2
              = ( times_times_nat @ X4 @ Y3 ) )
           => ( ( dvd_dvd_nat @ X4 @ A )
             => ~ ( dvd_dvd_nat @ Y3 @ B ) ) ) ) ).

% dvd_productE
thf(fact_5755_dvd__productE,axiom,
    ! [P2: int,A: int,B: int] :
      ( ( dvd_dvd_int @ P2 @ ( times_times_int @ A @ B ) )
     => ~ ! [X4: int,Y3: int] :
            ( ( P2
              = ( times_times_int @ X4 @ Y3 ) )
           => ( ( dvd_dvd_int @ X4 @ A )
             => ~ ( dvd_dvd_int @ Y3 @ B ) ) ) ) ).

% dvd_productE
thf(fact_5756_one__dvd,axiom,
    ! [A: code_integer] : ( dvd_dvd_Code_integer @ one_one_Code_integer @ A ) ).

% one_dvd
thf(fact_5757_one__dvd,axiom,
    ! [A: complex] : ( dvd_dvd_complex @ one_one_complex @ A ) ).

% one_dvd
thf(fact_5758_one__dvd,axiom,
    ! [A: real] : ( dvd_dvd_real @ one_one_real @ A ) ).

% one_dvd
thf(fact_5759_one__dvd,axiom,
    ! [A: rat] : ( dvd_dvd_rat @ one_one_rat @ A ) ).

% one_dvd
thf(fact_5760_one__dvd,axiom,
    ! [A: nat] : ( dvd_dvd_nat @ one_one_nat @ A ) ).

% one_dvd
thf(fact_5761_one__dvd,axiom,
    ! [A: int] : ( dvd_dvd_int @ one_one_int @ A ) ).

% one_dvd
thf(fact_5762_unit__imp__dvd,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
     => ( dvd_dvd_Code_integer @ B @ A ) ) ).

% unit_imp_dvd
thf(fact_5763_unit__imp__dvd,axiom,
    ! [B: nat,A: nat] :
      ( ( dvd_dvd_nat @ B @ one_one_nat )
     => ( dvd_dvd_nat @ B @ A ) ) ).

% unit_imp_dvd
thf(fact_5764_unit__imp__dvd,axiom,
    ! [B: int,A: int] :
      ( ( dvd_dvd_int @ B @ one_one_int )
     => ( dvd_dvd_int @ B @ A ) ) ).

% unit_imp_dvd
thf(fact_5765_dvd__unit__imp__unit,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ B )
     => ( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
       => ( dvd_dvd_Code_integer @ A @ one_one_Code_integer ) ) ) ).

% dvd_unit_imp_unit
thf(fact_5766_dvd__unit__imp__unit,axiom,
    ! [A: nat,B: nat] :
      ( ( dvd_dvd_nat @ A @ B )
     => ( ( dvd_dvd_nat @ B @ one_one_nat )
       => ( dvd_dvd_nat @ A @ one_one_nat ) ) ) ).

% dvd_unit_imp_unit
thf(fact_5767_dvd__unit__imp__unit,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ A @ B )
     => ( ( dvd_dvd_int @ B @ one_one_int )
       => ( dvd_dvd_int @ A @ one_one_int ) ) ) ).

% dvd_unit_imp_unit
thf(fact_5768_dvd__add,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ B )
     => ( ( dvd_dvd_Code_integer @ A @ C )
       => ( dvd_dvd_Code_integer @ A @ ( plus_p5714425477246183910nteger @ B @ C ) ) ) ) ).

% dvd_add
thf(fact_5769_dvd__add,axiom,
    ! [A: real,B: real,C: real] :
      ( ( dvd_dvd_real @ A @ B )
     => ( ( dvd_dvd_real @ A @ C )
       => ( dvd_dvd_real @ A @ ( plus_plus_real @ B @ C ) ) ) ) ).

% dvd_add
thf(fact_5770_dvd__add,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( dvd_dvd_rat @ A @ B )
     => ( ( dvd_dvd_rat @ A @ C )
       => ( dvd_dvd_rat @ A @ ( plus_plus_rat @ B @ C ) ) ) ) ).

% dvd_add
thf(fact_5771_dvd__add,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( dvd_dvd_nat @ A @ B )
     => ( ( dvd_dvd_nat @ A @ C )
       => ( dvd_dvd_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ) ).

% dvd_add
thf(fact_5772_dvd__add,axiom,
    ! [A: int,B: int,C: int] :
      ( ( dvd_dvd_int @ A @ B )
     => ( ( dvd_dvd_int @ A @ C )
       => ( dvd_dvd_int @ A @ ( plus_plus_int @ B @ C ) ) ) ) ).

% dvd_add
thf(fact_5773_dvd__add__left__iff,axiom,
    ! [A: code_integer,C: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ C )
     => ( ( dvd_dvd_Code_integer @ A @ ( plus_p5714425477246183910nteger @ B @ C ) )
        = ( dvd_dvd_Code_integer @ A @ B ) ) ) ).

% dvd_add_left_iff
thf(fact_5774_dvd__add__left__iff,axiom,
    ! [A: real,C: real,B: real] :
      ( ( dvd_dvd_real @ A @ C )
     => ( ( dvd_dvd_real @ A @ ( plus_plus_real @ B @ C ) )
        = ( dvd_dvd_real @ A @ B ) ) ) ).

% dvd_add_left_iff
thf(fact_5775_dvd__add__left__iff,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( dvd_dvd_rat @ A @ C )
     => ( ( dvd_dvd_rat @ A @ ( plus_plus_rat @ B @ C ) )
        = ( dvd_dvd_rat @ A @ B ) ) ) ).

% dvd_add_left_iff
thf(fact_5776_dvd__add__left__iff,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( dvd_dvd_nat @ A @ C )
     => ( ( dvd_dvd_nat @ A @ ( plus_plus_nat @ B @ C ) )
        = ( dvd_dvd_nat @ A @ B ) ) ) ).

% dvd_add_left_iff
thf(fact_5777_dvd__add__left__iff,axiom,
    ! [A: int,C: int,B: int] :
      ( ( dvd_dvd_int @ A @ C )
     => ( ( dvd_dvd_int @ A @ ( plus_plus_int @ B @ C ) )
        = ( dvd_dvd_int @ A @ B ) ) ) ).

% dvd_add_left_iff
thf(fact_5778_dvd__add__right__iff,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ B )
     => ( ( dvd_dvd_Code_integer @ A @ ( plus_p5714425477246183910nteger @ B @ C ) )
        = ( dvd_dvd_Code_integer @ A @ C ) ) ) ).

% dvd_add_right_iff
thf(fact_5779_dvd__add__right__iff,axiom,
    ! [A: real,B: real,C: real] :
      ( ( dvd_dvd_real @ A @ B )
     => ( ( dvd_dvd_real @ A @ ( plus_plus_real @ B @ C ) )
        = ( dvd_dvd_real @ A @ C ) ) ) ).

% dvd_add_right_iff
thf(fact_5780_dvd__add__right__iff,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( dvd_dvd_rat @ A @ B )
     => ( ( dvd_dvd_rat @ A @ ( plus_plus_rat @ B @ C ) )
        = ( dvd_dvd_rat @ A @ C ) ) ) ).

% dvd_add_right_iff
thf(fact_5781_dvd__add__right__iff,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( dvd_dvd_nat @ A @ B )
     => ( ( dvd_dvd_nat @ A @ ( plus_plus_nat @ B @ C ) )
        = ( dvd_dvd_nat @ A @ C ) ) ) ).

% dvd_add_right_iff
thf(fact_5782_dvd__add__right__iff,axiom,
    ! [A: int,B: int,C: int] :
      ( ( dvd_dvd_int @ A @ B )
     => ( ( dvd_dvd_int @ A @ ( plus_plus_int @ B @ C ) )
        = ( dvd_dvd_int @ A @ C ) ) ) ).

% dvd_add_right_iff
thf(fact_5783_dvd__diff,axiom,
    ! [X2: code_integer,Y2: code_integer,Z: code_integer] :
      ( ( dvd_dvd_Code_integer @ X2 @ Y2 )
     => ( ( dvd_dvd_Code_integer @ X2 @ Z )
       => ( dvd_dvd_Code_integer @ X2 @ ( minus_8373710615458151222nteger @ Y2 @ Z ) ) ) ) ).

% dvd_diff
thf(fact_5784_dvd__diff,axiom,
    ! [X2: real,Y2: real,Z: real] :
      ( ( dvd_dvd_real @ X2 @ Y2 )
     => ( ( dvd_dvd_real @ X2 @ Z )
       => ( dvd_dvd_real @ X2 @ ( minus_minus_real @ Y2 @ Z ) ) ) ) ).

% dvd_diff
thf(fact_5785_dvd__diff,axiom,
    ! [X2: rat,Y2: rat,Z: rat] :
      ( ( dvd_dvd_rat @ X2 @ Y2 )
     => ( ( dvd_dvd_rat @ X2 @ Z )
       => ( dvd_dvd_rat @ X2 @ ( minus_minus_rat @ Y2 @ Z ) ) ) ) ).

% dvd_diff
thf(fact_5786_dvd__diff,axiom,
    ! [X2: int,Y2: int,Z: int] :
      ( ( dvd_dvd_int @ X2 @ Y2 )
     => ( ( dvd_dvd_int @ X2 @ Z )
       => ( dvd_dvd_int @ X2 @ ( minus_minus_int @ Y2 @ Z ) ) ) ) ).

% dvd_diff
thf(fact_5787_dvd__diff__commute,axiom,
    ! [A: code_integer,C: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ ( minus_8373710615458151222nteger @ C @ B ) )
      = ( dvd_dvd_Code_integer @ A @ ( minus_8373710615458151222nteger @ B @ C ) ) ) ).

% dvd_diff_commute
thf(fact_5788_dvd__diff__commute,axiom,
    ! [A: int,C: int,B: int] :
      ( ( dvd_dvd_int @ A @ ( minus_minus_int @ C @ B ) )
      = ( dvd_dvd_int @ A @ ( minus_minus_int @ B @ C ) ) ) ).

% dvd_diff_commute
thf(fact_5789_dvd__div__eq__iff,axiom,
    ! [C: code_integer,A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ C @ A )
     => ( ( dvd_dvd_Code_integer @ C @ B )
       => ( ( ( divide6298287555418463151nteger @ A @ C )
            = ( divide6298287555418463151nteger @ B @ C ) )
          = ( A = B ) ) ) ) ).

% dvd_div_eq_iff
thf(fact_5790_dvd__div__eq__iff,axiom,
    ! [C: complex,A: complex,B: complex] :
      ( ( dvd_dvd_complex @ C @ A )
     => ( ( dvd_dvd_complex @ C @ B )
       => ( ( ( divide1717551699836669952omplex @ A @ C )
            = ( divide1717551699836669952omplex @ B @ C ) )
          = ( A = B ) ) ) ) ).

% dvd_div_eq_iff
thf(fact_5791_dvd__div__eq__iff,axiom,
    ! [C: real,A: real,B: real] :
      ( ( dvd_dvd_real @ C @ A )
     => ( ( dvd_dvd_real @ C @ B )
       => ( ( ( divide_divide_real @ A @ C )
            = ( divide_divide_real @ B @ C ) )
          = ( A = B ) ) ) ) ).

% dvd_div_eq_iff
thf(fact_5792_dvd__div__eq__iff,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( dvd_dvd_rat @ C @ A )
     => ( ( dvd_dvd_rat @ C @ B )
       => ( ( ( divide_divide_rat @ A @ C )
            = ( divide_divide_rat @ B @ C ) )
          = ( A = B ) ) ) ) ).

% dvd_div_eq_iff
thf(fact_5793_dvd__div__eq__iff,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( dvd_dvd_nat @ C @ A )
     => ( ( dvd_dvd_nat @ C @ B )
       => ( ( ( divide_divide_nat @ A @ C )
            = ( divide_divide_nat @ B @ C ) )
          = ( A = B ) ) ) ) ).

% dvd_div_eq_iff
thf(fact_5794_dvd__div__eq__iff,axiom,
    ! [C: int,A: int,B: int] :
      ( ( dvd_dvd_int @ C @ A )
     => ( ( dvd_dvd_int @ C @ B )
       => ( ( ( divide_divide_int @ A @ C )
            = ( divide_divide_int @ B @ C ) )
          = ( A = B ) ) ) ) ).

% dvd_div_eq_iff
thf(fact_5795_dvd__div__eq__cancel,axiom,
    ! [A: code_integer,C: code_integer,B: code_integer] :
      ( ( ( divide6298287555418463151nteger @ A @ C )
        = ( divide6298287555418463151nteger @ B @ C ) )
     => ( ( dvd_dvd_Code_integer @ C @ A )
       => ( ( dvd_dvd_Code_integer @ C @ B )
         => ( A = B ) ) ) ) ).

% dvd_div_eq_cancel
thf(fact_5796_dvd__div__eq__cancel,axiom,
    ! [A: complex,C: complex,B: complex] :
      ( ( ( divide1717551699836669952omplex @ A @ C )
        = ( divide1717551699836669952omplex @ B @ C ) )
     => ( ( dvd_dvd_complex @ C @ A )
       => ( ( dvd_dvd_complex @ C @ B )
         => ( A = B ) ) ) ) ).

% dvd_div_eq_cancel
thf(fact_5797_dvd__div__eq__cancel,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ( divide_divide_real @ A @ C )
        = ( divide_divide_real @ B @ C ) )
     => ( ( dvd_dvd_real @ C @ A )
       => ( ( dvd_dvd_real @ C @ B )
         => ( A = B ) ) ) ) ).

% dvd_div_eq_cancel
thf(fact_5798_dvd__div__eq__cancel,axiom,
    ! [A: rat,C: rat,B: rat] :
      ( ( ( divide_divide_rat @ A @ C )
        = ( divide_divide_rat @ B @ C ) )
     => ( ( dvd_dvd_rat @ C @ A )
       => ( ( dvd_dvd_rat @ C @ B )
         => ( A = B ) ) ) ) ).

% dvd_div_eq_cancel
thf(fact_5799_dvd__div__eq__cancel,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ( divide_divide_nat @ A @ C )
        = ( divide_divide_nat @ B @ C ) )
     => ( ( dvd_dvd_nat @ C @ A )
       => ( ( dvd_dvd_nat @ C @ B )
         => ( A = B ) ) ) ) ).

% dvd_div_eq_cancel
thf(fact_5800_dvd__div__eq__cancel,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ( divide_divide_int @ A @ C )
        = ( divide_divide_int @ B @ C ) )
     => ( ( dvd_dvd_int @ C @ A )
       => ( ( dvd_dvd_int @ C @ B )
         => ( A = B ) ) ) ) ).

% dvd_div_eq_cancel
thf(fact_5801_div__div__div__same,axiom,
    ! [D: code_integer,B: code_integer,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ D @ B )
     => ( ( dvd_dvd_Code_integer @ B @ A )
       => ( ( divide6298287555418463151nteger @ ( divide6298287555418463151nteger @ A @ D ) @ ( divide6298287555418463151nteger @ B @ D ) )
          = ( divide6298287555418463151nteger @ A @ B ) ) ) ) ).

% div_div_div_same
thf(fact_5802_div__div__div__same,axiom,
    ! [D: nat,B: nat,A: nat] :
      ( ( dvd_dvd_nat @ D @ B )
     => ( ( dvd_dvd_nat @ B @ A )
       => ( ( divide_divide_nat @ ( divide_divide_nat @ A @ D ) @ ( divide_divide_nat @ B @ D ) )
          = ( divide_divide_nat @ A @ B ) ) ) ) ).

% div_div_div_same
thf(fact_5803_div__div__div__same,axiom,
    ! [D: int,B: int,A: int] :
      ( ( dvd_dvd_int @ D @ B )
     => ( ( dvd_dvd_int @ B @ A )
       => ( ( divide_divide_int @ ( divide_divide_int @ A @ D ) @ ( divide_divide_int @ B @ D ) )
          = ( divide_divide_int @ A @ B ) ) ) ) ).

% div_div_div_same
thf(fact_5804_dvd__power__same,axiom,
    ! [X2: code_integer,Y2: code_integer,N: nat] :
      ( ( dvd_dvd_Code_integer @ X2 @ Y2 )
     => ( dvd_dvd_Code_integer @ ( power_8256067586552552935nteger @ X2 @ N ) @ ( power_8256067586552552935nteger @ Y2 @ N ) ) ) ).

% dvd_power_same
thf(fact_5805_dvd__power__same,axiom,
    ! [X2: nat,Y2: nat,N: nat] :
      ( ( dvd_dvd_nat @ X2 @ Y2 )
     => ( dvd_dvd_nat @ ( power_power_nat @ X2 @ N ) @ ( power_power_nat @ Y2 @ N ) ) ) ).

% dvd_power_same
thf(fact_5806_dvd__power__same,axiom,
    ! [X2: real,Y2: real,N: nat] :
      ( ( dvd_dvd_real @ X2 @ Y2 )
     => ( dvd_dvd_real @ ( power_power_real @ X2 @ N ) @ ( power_power_real @ Y2 @ N ) ) ) ).

% dvd_power_same
thf(fact_5807_dvd__power__same,axiom,
    ! [X2: complex,Y2: complex,N: nat] :
      ( ( dvd_dvd_complex @ X2 @ Y2 )
     => ( dvd_dvd_complex @ ( power_power_complex @ X2 @ N ) @ ( power_power_complex @ Y2 @ N ) ) ) ).

% dvd_power_same
thf(fact_5808_dvd__power__same,axiom,
    ! [X2: int,Y2: int,N: nat] :
      ( ( dvd_dvd_int @ X2 @ Y2 )
     => ( dvd_dvd_int @ ( power_power_int @ X2 @ N ) @ ( power_power_int @ Y2 @ N ) ) ) ).

% dvd_power_same
thf(fact_5809_old_Oprod_Ocase,axiom,
    ! [F: nat > nat > product_prod_nat_nat > product_prod_nat_nat,X1: nat,X23: nat] :
      ( ( produc27273713700761075at_nat @ F @ ( product_Pair_nat_nat @ X1 @ X23 ) )
      = ( F @ X1 @ X23 ) ) ).

% old.prod.case
thf(fact_5810_old_Oprod_Ocase,axiom,
    ! [F: nat > nat > product_prod_nat_nat > $o,X1: nat,X23: nat] :
      ( ( produc8739625826339149834_nat_o @ F @ ( product_Pair_nat_nat @ X1 @ X23 ) )
      = ( F @ X1 @ X23 ) ) ).

% old.prod.case
thf(fact_5811_old_Oprod_Ocase,axiom,
    ! [F: int > int > product_prod_int_int,X1: int,X23: int] :
      ( ( produc4245557441103728435nt_int @ F @ ( product_Pair_int_int @ X1 @ X23 ) )
      = ( F @ X1 @ X23 ) ) ).

% old.prod.case
thf(fact_5812_old_Oprod_Ocase,axiom,
    ! [F: int > int > $o,X1: int,X23: int] :
      ( ( produc4947309494688390418_int_o @ F @ ( product_Pair_int_int @ X1 @ X23 ) )
      = ( F @ X1 @ X23 ) ) ).

% old.prod.case
thf(fact_5813_old_Oprod_Ocase,axiom,
    ! [F: int > int > int,X1: int,X23: int] :
      ( ( produc8211389475949308722nt_int @ F @ ( product_Pair_int_int @ X1 @ X23 ) )
      = ( F @ X1 @ X23 ) ) ).

% old.prod.case
thf(fact_5814_dvd__mod__iff,axiom,
    ! [C: nat,B: nat,A: nat] :
      ( ( dvd_dvd_nat @ C @ B )
     => ( ( dvd_dvd_nat @ C @ ( modulo_modulo_nat @ A @ B ) )
        = ( dvd_dvd_nat @ C @ A ) ) ) ).

% dvd_mod_iff
thf(fact_5815_dvd__mod__iff,axiom,
    ! [C: int,B: int,A: int] :
      ( ( dvd_dvd_int @ C @ B )
     => ( ( dvd_dvd_int @ C @ ( modulo_modulo_int @ A @ B ) )
        = ( dvd_dvd_int @ C @ A ) ) ) ).

% dvd_mod_iff
thf(fact_5816_dvd__mod__iff,axiom,
    ! [C: code_integer,B: code_integer,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ C @ B )
     => ( ( dvd_dvd_Code_integer @ C @ ( modulo364778990260209775nteger @ A @ B ) )
        = ( dvd_dvd_Code_integer @ C @ A ) ) ) ).

% dvd_mod_iff
thf(fact_5817_dvd__mod__imp__dvd,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( dvd_dvd_nat @ C @ ( modulo_modulo_nat @ A @ B ) )
     => ( ( dvd_dvd_nat @ C @ B )
       => ( dvd_dvd_nat @ C @ A ) ) ) ).

% dvd_mod_imp_dvd
thf(fact_5818_dvd__mod__imp__dvd,axiom,
    ! [C: int,A: int,B: int] :
      ( ( dvd_dvd_int @ C @ ( modulo_modulo_int @ A @ B ) )
     => ( ( dvd_dvd_int @ C @ B )
       => ( dvd_dvd_int @ C @ A ) ) ) ).

% dvd_mod_imp_dvd
thf(fact_5819_dvd__mod__imp__dvd,axiom,
    ! [C: code_integer,A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ C @ ( modulo364778990260209775nteger @ A @ B ) )
     => ( ( dvd_dvd_Code_integer @ C @ B )
       => ( dvd_dvd_Code_integer @ C @ A ) ) ) ).

% dvd_mod_imp_dvd
thf(fact_5820_dvd__mod,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( dvd_dvd_nat @ K @ M )
     => ( ( dvd_dvd_nat @ K @ N )
       => ( dvd_dvd_nat @ K @ ( modulo_modulo_nat @ M @ N ) ) ) ) ).

% dvd_mod
thf(fact_5821_dvd__mod,axiom,
    ! [K: int,M: int,N: int] :
      ( ( dvd_dvd_int @ K @ M )
     => ( ( dvd_dvd_int @ K @ N )
       => ( dvd_dvd_int @ K @ ( modulo_modulo_int @ M @ N ) ) ) ) ).

% dvd_mod
thf(fact_5822_dvd__mod,axiom,
    ! [K: code_integer,M: code_integer,N: code_integer] :
      ( ( dvd_dvd_Code_integer @ K @ M )
     => ( ( dvd_dvd_Code_integer @ K @ N )
       => ( dvd_dvd_Code_integer @ K @ ( modulo364778990260209775nteger @ M @ N ) ) ) ) ).

% dvd_mod
thf(fact_5823_mod__mod__cancel,axiom,
    ! [C: nat,B: nat,A: nat] :
      ( ( dvd_dvd_nat @ C @ B )
     => ( ( modulo_modulo_nat @ ( modulo_modulo_nat @ A @ B ) @ C )
        = ( modulo_modulo_nat @ A @ C ) ) ) ).

% mod_mod_cancel
thf(fact_5824_mod__mod__cancel,axiom,
    ! [C: int,B: int,A: int] :
      ( ( dvd_dvd_int @ C @ B )
     => ( ( modulo_modulo_int @ ( modulo_modulo_int @ A @ B ) @ C )
        = ( modulo_modulo_int @ A @ C ) ) ) ).

% mod_mod_cancel
thf(fact_5825_mod__mod__cancel,axiom,
    ! [C: code_integer,B: code_integer,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ C @ B )
     => ( ( modulo364778990260209775nteger @ ( modulo364778990260209775nteger @ A @ B ) @ C )
        = ( modulo364778990260209775nteger @ A @ C ) ) ) ).

% mod_mod_cancel
thf(fact_5826_signed__take__bit__mult,axiom,
    ! [N: nat,K: int,L: int] :
      ( ( bit_ri631733984087533419it_int @ N @ ( times_times_int @ ( bit_ri631733984087533419it_int @ N @ K ) @ ( bit_ri631733984087533419it_int @ N @ L ) ) )
      = ( bit_ri631733984087533419it_int @ N @ ( times_times_int @ K @ L ) ) ) ).

% signed_take_bit_mult
thf(fact_5827_signed__take__bit__add,axiom,
    ! [N: nat,K: int,L: int] :
      ( ( bit_ri631733984087533419it_int @ N @ ( plus_plus_int @ ( bit_ri631733984087533419it_int @ N @ K ) @ ( bit_ri631733984087533419it_int @ N @ L ) ) )
      = ( bit_ri631733984087533419it_int @ N @ ( plus_plus_int @ K @ L ) ) ) ).

% signed_take_bit_add
thf(fact_5828_dvd__diff__nat,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( dvd_dvd_nat @ K @ M )
     => ( ( dvd_dvd_nat @ K @ N )
       => ( dvd_dvd_nat @ K @ ( minus_minus_nat @ M @ N ) ) ) ) ).

% dvd_diff_nat
thf(fact_5829_signed__take__bit__diff,axiom,
    ! [N: nat,K: int,L: int] :
      ( ( bit_ri631733984087533419it_int @ N @ ( minus_minus_int @ ( bit_ri631733984087533419it_int @ N @ K ) @ ( bit_ri631733984087533419it_int @ N @ L ) ) )
      = ( bit_ri631733984087533419it_int @ N @ ( minus_minus_int @ K @ L ) ) ) ).

% signed_take_bit_diff
thf(fact_5830_subset__divisors__dvd,axiom,
    ! [A: complex,B: complex] :
      ( ( ord_le211207098394363844omplex
        @ ( collect_complex
          @ ^ [C6: complex] : ( dvd_dvd_complex @ C6 @ A ) )
        @ ( collect_complex
          @ ^ [C6: complex] : ( dvd_dvd_complex @ C6 @ B ) ) )
      = ( dvd_dvd_complex @ A @ B ) ) ).

% subset_divisors_dvd
thf(fact_5831_subset__divisors__dvd,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_set_nat
        @ ( collect_nat
          @ ^ [C6: nat] : ( dvd_dvd_nat @ C6 @ A ) )
        @ ( collect_nat
          @ ^ [C6: nat] : ( dvd_dvd_nat @ C6 @ B ) ) )
      = ( dvd_dvd_nat @ A @ B ) ) ).

% subset_divisors_dvd
thf(fact_5832_subset__divisors__dvd,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ord_le7084787975880047091nteger
        @ ( collect_Code_integer
          @ ^ [C6: code_integer] : ( dvd_dvd_Code_integer @ C6 @ A ) )
        @ ( collect_Code_integer
          @ ^ [C6: code_integer] : ( dvd_dvd_Code_integer @ C6 @ B ) ) )
      = ( dvd_dvd_Code_integer @ A @ B ) ) ).

% subset_divisors_dvd
thf(fact_5833_subset__divisors__dvd,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_set_int
        @ ( collect_int
          @ ^ [C6: int] : ( dvd_dvd_int @ C6 @ A ) )
        @ ( collect_int
          @ ^ [C6: int] : ( dvd_dvd_int @ C6 @ B ) ) )
      = ( dvd_dvd_int @ A @ B ) ) ).

% subset_divisors_dvd
thf(fact_5834_cond__case__prod__eta,axiom,
    ! [F: nat > nat > product_prod_nat_nat > product_prod_nat_nat,G: product_prod_nat_nat > product_prod_nat_nat > product_prod_nat_nat] :
      ( ! [X4: nat,Y3: nat] :
          ( ( F @ X4 @ Y3 )
          = ( G @ ( product_Pair_nat_nat @ X4 @ Y3 ) ) )
     => ( ( produc27273713700761075at_nat @ F )
        = G ) ) ).

% cond_case_prod_eta
thf(fact_5835_cond__case__prod__eta,axiom,
    ! [F: nat > nat > product_prod_nat_nat > $o,G: product_prod_nat_nat > product_prod_nat_nat > $o] :
      ( ! [X4: nat,Y3: nat] :
          ( ( F @ X4 @ Y3 )
          = ( G @ ( product_Pair_nat_nat @ X4 @ Y3 ) ) )
     => ( ( produc8739625826339149834_nat_o @ F )
        = G ) ) ).

% cond_case_prod_eta
thf(fact_5836_cond__case__prod__eta,axiom,
    ! [F: int > int > product_prod_int_int,G: product_prod_int_int > product_prod_int_int] :
      ( ! [X4: int,Y3: int] :
          ( ( F @ X4 @ Y3 )
          = ( G @ ( product_Pair_int_int @ X4 @ Y3 ) ) )
     => ( ( produc4245557441103728435nt_int @ F )
        = G ) ) ).

% cond_case_prod_eta
thf(fact_5837_cond__case__prod__eta,axiom,
    ! [F: int > int > $o,G: product_prod_int_int > $o] :
      ( ! [X4: int,Y3: int] :
          ( ( F @ X4 @ Y3 )
          = ( G @ ( product_Pair_int_int @ X4 @ Y3 ) ) )
     => ( ( produc4947309494688390418_int_o @ F )
        = G ) ) ).

% cond_case_prod_eta
thf(fact_5838_cond__case__prod__eta,axiom,
    ! [F: int > int > int,G: product_prod_int_int > int] :
      ( ! [X4: int,Y3: int] :
          ( ( F @ X4 @ Y3 )
          = ( G @ ( product_Pair_int_int @ X4 @ Y3 ) ) )
     => ( ( produc8211389475949308722nt_int @ F )
        = G ) ) ).

% cond_case_prod_eta
thf(fact_5839_case__prod__eta,axiom,
    ! [F: product_prod_nat_nat > product_prod_nat_nat > product_prod_nat_nat] :
      ( ( produc27273713700761075at_nat
        @ ^ [X: nat,Y: nat] : ( F @ ( product_Pair_nat_nat @ X @ Y ) ) )
      = F ) ).

% case_prod_eta
thf(fact_5840_case__prod__eta,axiom,
    ! [F: product_prod_nat_nat > product_prod_nat_nat > $o] :
      ( ( produc8739625826339149834_nat_o
        @ ^ [X: nat,Y: nat] : ( F @ ( product_Pair_nat_nat @ X @ Y ) ) )
      = F ) ).

% case_prod_eta
thf(fact_5841_case__prod__eta,axiom,
    ! [F: product_prod_int_int > product_prod_int_int] :
      ( ( produc4245557441103728435nt_int
        @ ^ [X: int,Y: int] : ( F @ ( product_Pair_int_int @ X @ Y ) ) )
      = F ) ).

% case_prod_eta
thf(fact_5842_case__prod__eta,axiom,
    ! [F: product_prod_int_int > $o] :
      ( ( produc4947309494688390418_int_o
        @ ^ [X: int,Y: int] : ( F @ ( product_Pair_int_int @ X @ Y ) ) )
      = F ) ).

% case_prod_eta
thf(fact_5843_case__prod__eta,axiom,
    ! [F: product_prod_int_int > int] :
      ( ( produc8211389475949308722nt_int
        @ ^ [X: int,Y: int] : ( F @ ( product_Pair_int_int @ X @ Y ) ) )
      = F ) ).

% case_prod_eta
thf(fact_5844_case__prodE2,axiom,
    ! [Q: ( product_prod_nat_nat > product_prod_nat_nat ) > $o,P: nat > nat > product_prod_nat_nat > product_prod_nat_nat,Z: product_prod_nat_nat] :
      ( ( Q @ ( produc27273713700761075at_nat @ P @ Z ) )
     => ~ ! [X4: nat,Y3: nat] :
            ( ( Z
              = ( product_Pair_nat_nat @ X4 @ Y3 ) )
           => ~ ( Q @ ( P @ X4 @ Y3 ) ) ) ) ).

% case_prodE2
thf(fact_5845_case__prodE2,axiom,
    ! [Q: ( product_prod_nat_nat > $o ) > $o,P: nat > nat > product_prod_nat_nat > $o,Z: product_prod_nat_nat] :
      ( ( Q @ ( produc8739625826339149834_nat_o @ P @ Z ) )
     => ~ ! [X4: nat,Y3: nat] :
            ( ( Z
              = ( product_Pair_nat_nat @ X4 @ Y3 ) )
           => ~ ( Q @ ( P @ X4 @ Y3 ) ) ) ) ).

% case_prodE2
thf(fact_5846_case__prodE2,axiom,
    ! [Q: product_prod_int_int > $o,P: int > int > product_prod_int_int,Z: product_prod_int_int] :
      ( ( Q @ ( produc4245557441103728435nt_int @ P @ Z ) )
     => ~ ! [X4: int,Y3: int] :
            ( ( Z
              = ( product_Pair_int_int @ X4 @ Y3 ) )
           => ~ ( Q @ ( P @ X4 @ Y3 ) ) ) ) ).

% case_prodE2
thf(fact_5847_case__prodE2,axiom,
    ! [Q: $o > $o,P: int > int > $o,Z: product_prod_int_int] :
      ( ( Q @ ( produc4947309494688390418_int_o @ P @ Z ) )
     => ~ ! [X4: int,Y3: int] :
            ( ( Z
              = ( product_Pair_int_int @ X4 @ Y3 ) )
           => ~ ( Q @ ( P @ X4 @ Y3 ) ) ) ) ).

% case_prodE2
thf(fact_5848_case__prodE2,axiom,
    ! [Q: int > $o,P: int > int > int,Z: product_prod_int_int] :
      ( ( Q @ ( produc8211389475949308722nt_int @ P @ Z ) )
     => ~ ! [X4: int,Y3: int] :
            ( ( Z
              = ( product_Pair_int_int @ X4 @ Y3 ) )
           => ~ ( Q @ ( P @ X4 @ Y3 ) ) ) ) ).

% case_prodE2
thf(fact_5849_strict__subset__divisors__dvd,axiom,
    ! [A: complex,B: complex] :
      ( ( ord_less_set_complex
        @ ( collect_complex
          @ ^ [C6: complex] : ( dvd_dvd_complex @ C6 @ A ) )
        @ ( collect_complex
          @ ^ [C6: complex] : ( dvd_dvd_complex @ C6 @ B ) ) )
      = ( ( dvd_dvd_complex @ A @ B )
        & ~ ( dvd_dvd_complex @ B @ A ) ) ) ).

% strict_subset_divisors_dvd
thf(fact_5850_strict__subset__divisors__dvd,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_set_nat
        @ ( collect_nat
          @ ^ [C6: nat] : ( dvd_dvd_nat @ C6 @ A ) )
        @ ( collect_nat
          @ ^ [C6: nat] : ( dvd_dvd_nat @ C6 @ B ) ) )
      = ( ( dvd_dvd_nat @ A @ B )
        & ~ ( dvd_dvd_nat @ B @ A ) ) ) ).

% strict_subset_divisors_dvd
thf(fact_5851_strict__subset__divisors__dvd,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_set_int
        @ ( collect_int
          @ ^ [C6: int] : ( dvd_dvd_int @ C6 @ A ) )
        @ ( collect_int
          @ ^ [C6: int] : ( dvd_dvd_int @ C6 @ B ) ) )
      = ( ( dvd_dvd_int @ A @ B )
        & ~ ( dvd_dvd_int @ B @ A ) ) ) ).

% strict_subset_divisors_dvd
thf(fact_5852_strict__subset__divisors__dvd,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ord_le1307284697595431911nteger
        @ ( collect_Code_integer
          @ ^ [C6: code_integer] : ( dvd_dvd_Code_integer @ C6 @ A ) )
        @ ( collect_Code_integer
          @ ^ [C6: code_integer] : ( dvd_dvd_Code_integer @ C6 @ B ) ) )
      = ( ( dvd_dvd_Code_integer @ A @ B )
        & ~ ( dvd_dvd_Code_integer @ B @ A ) ) ) ).

% strict_subset_divisors_dvd
thf(fact_5853_even__signed__take__bit__iff,axiom,
    ! [M: nat,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_ri6519982836138164636nteger @ M @ A ) )
      = ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) ) ).

% even_signed_take_bit_iff
thf(fact_5854_even__signed__take__bit__iff,axiom,
    ! [M: nat,A: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_ri631733984087533419it_int @ M @ A ) )
      = ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) ).

% even_signed_take_bit_iff
thf(fact_5855_not__is__unit__0,axiom,
    ~ ( dvd_dvd_Code_integer @ zero_z3403309356797280102nteger @ one_one_Code_integer ) ).

% not_is_unit_0
thf(fact_5856_not__is__unit__0,axiom,
    ~ ( dvd_dvd_nat @ zero_zero_nat @ one_one_nat ) ).

% not_is_unit_0
thf(fact_5857_not__is__unit__0,axiom,
    ~ ( dvd_dvd_int @ zero_zero_int @ one_one_int ) ).

% not_is_unit_0
thf(fact_5858_minf_I10_J,axiom,
    ! [D: code_integer,S: code_integer] :
    ? [Z3: code_integer] :
    ! [X3: code_integer] :
      ( ( ord_le6747313008572928689nteger @ X3 @ Z3 )
     => ( ( ~ ( dvd_dvd_Code_integer @ D @ ( plus_p5714425477246183910nteger @ X3 @ S ) ) )
        = ( ~ ( dvd_dvd_Code_integer @ D @ ( plus_p5714425477246183910nteger @ X3 @ S ) ) ) ) ) ).

% minf(10)
thf(fact_5859_minf_I10_J,axiom,
    ! [D: real,S: real] :
    ? [Z3: real] :
    ! [X3: real] :
      ( ( ord_less_real @ X3 @ Z3 )
     => ( ( ~ ( dvd_dvd_real @ D @ ( plus_plus_real @ X3 @ S ) ) )
        = ( ~ ( dvd_dvd_real @ D @ ( plus_plus_real @ X3 @ S ) ) ) ) ) ).

% minf(10)
thf(fact_5860_minf_I10_J,axiom,
    ! [D: rat,S: rat] :
    ? [Z3: rat] :
    ! [X3: rat] :
      ( ( ord_less_rat @ X3 @ Z3 )
     => ( ( ~ ( dvd_dvd_rat @ D @ ( plus_plus_rat @ X3 @ S ) ) )
        = ( ~ ( dvd_dvd_rat @ D @ ( plus_plus_rat @ X3 @ S ) ) ) ) ) ).

% minf(10)
thf(fact_5861_minf_I10_J,axiom,
    ! [D: nat,S: nat] :
    ? [Z3: nat] :
    ! [X3: nat] :
      ( ( ord_less_nat @ X3 @ Z3 )
     => ( ( ~ ( dvd_dvd_nat @ D @ ( plus_plus_nat @ X3 @ S ) ) )
        = ( ~ ( dvd_dvd_nat @ D @ ( plus_plus_nat @ X3 @ S ) ) ) ) ) ).

% minf(10)
thf(fact_5862_minf_I10_J,axiom,
    ! [D: int,S: int] :
    ? [Z3: int] :
    ! [X3: int] :
      ( ( ord_less_int @ X3 @ Z3 )
     => ( ( ~ ( dvd_dvd_int @ D @ ( plus_plus_int @ X3 @ S ) ) )
        = ( ~ ( dvd_dvd_int @ D @ ( plus_plus_int @ X3 @ S ) ) ) ) ) ).

% minf(10)
thf(fact_5863_minf_I9_J,axiom,
    ! [D: code_integer,S: code_integer] :
    ? [Z3: code_integer] :
    ! [X3: code_integer] :
      ( ( ord_le6747313008572928689nteger @ X3 @ Z3 )
     => ( ( dvd_dvd_Code_integer @ D @ ( plus_p5714425477246183910nteger @ X3 @ S ) )
        = ( dvd_dvd_Code_integer @ D @ ( plus_p5714425477246183910nteger @ X3 @ S ) ) ) ) ).

% minf(9)
thf(fact_5864_minf_I9_J,axiom,
    ! [D: real,S: real] :
    ? [Z3: real] :
    ! [X3: real] :
      ( ( ord_less_real @ X3 @ Z3 )
     => ( ( dvd_dvd_real @ D @ ( plus_plus_real @ X3 @ S ) )
        = ( dvd_dvd_real @ D @ ( plus_plus_real @ X3 @ S ) ) ) ) ).

% minf(9)
thf(fact_5865_minf_I9_J,axiom,
    ! [D: rat,S: rat] :
    ? [Z3: rat] :
    ! [X3: rat] :
      ( ( ord_less_rat @ X3 @ Z3 )
     => ( ( dvd_dvd_rat @ D @ ( plus_plus_rat @ X3 @ S ) )
        = ( dvd_dvd_rat @ D @ ( plus_plus_rat @ X3 @ S ) ) ) ) ).

% minf(9)
thf(fact_5866_minf_I9_J,axiom,
    ! [D: nat,S: nat] :
    ? [Z3: nat] :
    ! [X3: nat] :
      ( ( ord_less_nat @ X3 @ Z3 )
     => ( ( dvd_dvd_nat @ D @ ( plus_plus_nat @ X3 @ S ) )
        = ( dvd_dvd_nat @ D @ ( plus_plus_nat @ X3 @ S ) ) ) ) ).

% minf(9)
thf(fact_5867_minf_I9_J,axiom,
    ! [D: int,S: int] :
    ? [Z3: int] :
    ! [X3: int] :
      ( ( ord_less_int @ X3 @ Z3 )
     => ( ( dvd_dvd_int @ D @ ( plus_plus_int @ X3 @ S ) )
        = ( dvd_dvd_int @ D @ ( plus_plus_int @ X3 @ S ) ) ) ) ).

% minf(9)
thf(fact_5868_pinf_I10_J,axiom,
    ! [D: code_integer,S: code_integer] :
    ? [Z3: code_integer] :
    ! [X3: code_integer] :
      ( ( ord_le6747313008572928689nteger @ Z3 @ X3 )
     => ( ( ~ ( dvd_dvd_Code_integer @ D @ ( plus_p5714425477246183910nteger @ X3 @ S ) ) )
        = ( ~ ( dvd_dvd_Code_integer @ D @ ( plus_p5714425477246183910nteger @ X3 @ S ) ) ) ) ) ).

% pinf(10)
thf(fact_5869_pinf_I10_J,axiom,
    ! [D: real,S: real] :
    ? [Z3: real] :
    ! [X3: real] :
      ( ( ord_less_real @ Z3 @ X3 )
     => ( ( ~ ( dvd_dvd_real @ D @ ( plus_plus_real @ X3 @ S ) ) )
        = ( ~ ( dvd_dvd_real @ D @ ( plus_plus_real @ X3 @ S ) ) ) ) ) ).

% pinf(10)
thf(fact_5870_pinf_I10_J,axiom,
    ! [D: rat,S: rat] :
    ? [Z3: rat] :
    ! [X3: rat] :
      ( ( ord_less_rat @ Z3 @ X3 )
     => ( ( ~ ( dvd_dvd_rat @ D @ ( plus_plus_rat @ X3 @ S ) ) )
        = ( ~ ( dvd_dvd_rat @ D @ ( plus_plus_rat @ X3 @ S ) ) ) ) ) ).

% pinf(10)
thf(fact_5871_pinf_I10_J,axiom,
    ! [D: nat,S: nat] :
    ? [Z3: nat] :
    ! [X3: nat] :
      ( ( ord_less_nat @ Z3 @ X3 )
     => ( ( ~ ( dvd_dvd_nat @ D @ ( plus_plus_nat @ X3 @ S ) ) )
        = ( ~ ( dvd_dvd_nat @ D @ ( plus_plus_nat @ X3 @ S ) ) ) ) ) ).

% pinf(10)
thf(fact_5872_pinf_I10_J,axiom,
    ! [D: int,S: int] :
    ? [Z3: int] :
    ! [X3: int] :
      ( ( ord_less_int @ Z3 @ X3 )
     => ( ( ~ ( dvd_dvd_int @ D @ ( plus_plus_int @ X3 @ S ) ) )
        = ( ~ ( dvd_dvd_int @ D @ ( plus_plus_int @ X3 @ S ) ) ) ) ) ).

% pinf(10)
thf(fact_5873_pinf_I9_J,axiom,
    ! [D: code_integer,S: code_integer] :
    ? [Z3: code_integer] :
    ! [X3: code_integer] :
      ( ( ord_le6747313008572928689nteger @ Z3 @ X3 )
     => ( ( dvd_dvd_Code_integer @ D @ ( plus_p5714425477246183910nteger @ X3 @ S ) )
        = ( dvd_dvd_Code_integer @ D @ ( plus_p5714425477246183910nteger @ X3 @ S ) ) ) ) ).

% pinf(9)
thf(fact_5874_pinf_I9_J,axiom,
    ! [D: real,S: real] :
    ? [Z3: real] :
    ! [X3: real] :
      ( ( ord_less_real @ Z3 @ X3 )
     => ( ( dvd_dvd_real @ D @ ( plus_plus_real @ X3 @ S ) )
        = ( dvd_dvd_real @ D @ ( plus_plus_real @ X3 @ S ) ) ) ) ).

% pinf(9)
thf(fact_5875_pinf_I9_J,axiom,
    ! [D: rat,S: rat] :
    ? [Z3: rat] :
    ! [X3: rat] :
      ( ( ord_less_rat @ Z3 @ X3 )
     => ( ( dvd_dvd_rat @ D @ ( plus_plus_rat @ X3 @ S ) )
        = ( dvd_dvd_rat @ D @ ( plus_plus_rat @ X3 @ S ) ) ) ) ).

% pinf(9)
thf(fact_5876_pinf_I9_J,axiom,
    ! [D: nat,S: nat] :
    ? [Z3: nat] :
    ! [X3: nat] :
      ( ( ord_less_nat @ Z3 @ X3 )
     => ( ( dvd_dvd_nat @ D @ ( plus_plus_nat @ X3 @ S ) )
        = ( dvd_dvd_nat @ D @ ( plus_plus_nat @ X3 @ S ) ) ) ) ).

% pinf(9)
thf(fact_5877_pinf_I9_J,axiom,
    ! [D: int,S: int] :
    ? [Z3: int] :
    ! [X3: int] :
      ( ( ord_less_int @ Z3 @ X3 )
     => ( ( dvd_dvd_int @ D @ ( plus_plus_int @ X3 @ S ) )
        = ( dvd_dvd_int @ D @ ( plus_plus_int @ X3 @ S ) ) ) ) ).

% pinf(9)
thf(fact_5878_dvd__div__eq__0__iff,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ B @ A )
     => ( ( ( divide6298287555418463151nteger @ A @ B )
          = zero_z3403309356797280102nteger )
        = ( A = zero_z3403309356797280102nteger ) ) ) ).

% dvd_div_eq_0_iff
thf(fact_5879_dvd__div__eq__0__iff,axiom,
    ! [B: complex,A: complex] :
      ( ( dvd_dvd_complex @ B @ A )
     => ( ( ( divide1717551699836669952omplex @ A @ B )
          = zero_zero_complex )
        = ( A = zero_zero_complex ) ) ) ).

% dvd_div_eq_0_iff
thf(fact_5880_dvd__div__eq__0__iff,axiom,
    ! [B: real,A: real] :
      ( ( dvd_dvd_real @ B @ A )
     => ( ( ( divide_divide_real @ A @ B )
          = zero_zero_real )
        = ( A = zero_zero_real ) ) ) ).

% dvd_div_eq_0_iff
thf(fact_5881_dvd__div__eq__0__iff,axiom,
    ! [B: rat,A: rat] :
      ( ( dvd_dvd_rat @ B @ A )
     => ( ( ( divide_divide_rat @ A @ B )
          = zero_zero_rat )
        = ( A = zero_zero_rat ) ) ) ).

% dvd_div_eq_0_iff
thf(fact_5882_dvd__div__eq__0__iff,axiom,
    ! [B: nat,A: nat] :
      ( ( dvd_dvd_nat @ B @ A )
     => ( ( ( divide_divide_nat @ A @ B )
          = zero_zero_nat )
        = ( A = zero_zero_nat ) ) ) ).

% dvd_div_eq_0_iff
thf(fact_5883_dvd__div__eq__0__iff,axiom,
    ! [B: int,A: int] :
      ( ( dvd_dvd_int @ B @ A )
     => ( ( ( divide_divide_int @ A @ B )
          = zero_zero_int )
        = ( A = zero_zero_int ) ) ) ).

% dvd_div_eq_0_iff
thf(fact_5884_is__unit__mult__iff,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ A @ B ) @ one_one_Code_integer )
      = ( ( dvd_dvd_Code_integer @ A @ one_one_Code_integer )
        & ( dvd_dvd_Code_integer @ B @ one_one_Code_integer ) ) ) ).

% is_unit_mult_iff
thf(fact_5885_is__unit__mult__iff,axiom,
    ! [A: nat,B: nat] :
      ( ( dvd_dvd_nat @ ( times_times_nat @ A @ B ) @ one_one_nat )
      = ( ( dvd_dvd_nat @ A @ one_one_nat )
        & ( dvd_dvd_nat @ B @ one_one_nat ) ) ) ).

% is_unit_mult_iff
thf(fact_5886_is__unit__mult__iff,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ ( times_times_int @ A @ B ) @ one_one_int )
      = ( ( dvd_dvd_int @ A @ one_one_int )
        & ( dvd_dvd_int @ B @ one_one_int ) ) ) ).

% is_unit_mult_iff
thf(fact_5887_dvd__mult__unit__iff,axiom,
    ! [B: code_integer,A: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
     => ( ( dvd_dvd_Code_integer @ A @ ( times_3573771949741848930nteger @ C @ B ) )
        = ( dvd_dvd_Code_integer @ A @ C ) ) ) ).

% dvd_mult_unit_iff
thf(fact_5888_dvd__mult__unit__iff,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( dvd_dvd_nat @ B @ one_one_nat )
     => ( ( dvd_dvd_nat @ A @ ( times_times_nat @ C @ B ) )
        = ( dvd_dvd_nat @ A @ C ) ) ) ).

% dvd_mult_unit_iff
thf(fact_5889_dvd__mult__unit__iff,axiom,
    ! [B: int,A: int,C: int] :
      ( ( dvd_dvd_int @ B @ one_one_int )
     => ( ( dvd_dvd_int @ A @ ( times_times_int @ C @ B ) )
        = ( dvd_dvd_int @ A @ C ) ) ) ).

% dvd_mult_unit_iff
thf(fact_5890_mult__unit__dvd__iff,axiom,
    ! [B: code_integer,A: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
     => ( ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ A @ B ) @ C )
        = ( dvd_dvd_Code_integer @ A @ C ) ) ) ).

% mult_unit_dvd_iff
thf(fact_5891_mult__unit__dvd__iff,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( dvd_dvd_nat @ B @ one_one_nat )
     => ( ( dvd_dvd_nat @ ( times_times_nat @ A @ B ) @ C )
        = ( dvd_dvd_nat @ A @ C ) ) ) ).

% mult_unit_dvd_iff
thf(fact_5892_mult__unit__dvd__iff,axiom,
    ! [B: int,A: int,C: int] :
      ( ( dvd_dvd_int @ B @ one_one_int )
     => ( ( dvd_dvd_int @ ( times_times_int @ A @ B ) @ C )
        = ( dvd_dvd_int @ A @ C ) ) ) ).

% mult_unit_dvd_iff
thf(fact_5893_dvd__mult__unit__iff_H,axiom,
    ! [B: code_integer,A: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
     => ( ( dvd_dvd_Code_integer @ A @ ( times_3573771949741848930nteger @ B @ C ) )
        = ( dvd_dvd_Code_integer @ A @ C ) ) ) ).

% dvd_mult_unit_iff'
thf(fact_5894_dvd__mult__unit__iff_H,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( dvd_dvd_nat @ B @ one_one_nat )
     => ( ( dvd_dvd_nat @ A @ ( times_times_nat @ B @ C ) )
        = ( dvd_dvd_nat @ A @ C ) ) ) ).

% dvd_mult_unit_iff'
thf(fact_5895_dvd__mult__unit__iff_H,axiom,
    ! [B: int,A: int,C: int] :
      ( ( dvd_dvd_int @ B @ one_one_int )
     => ( ( dvd_dvd_int @ A @ ( times_times_int @ B @ C ) )
        = ( dvd_dvd_int @ A @ C ) ) ) ).

% dvd_mult_unit_iff'
thf(fact_5896_mult__unit__dvd__iff_H,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ one_one_Code_integer )
     => ( ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ A @ B ) @ C )
        = ( dvd_dvd_Code_integer @ B @ C ) ) ) ).

% mult_unit_dvd_iff'
thf(fact_5897_mult__unit__dvd__iff_H,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( dvd_dvd_nat @ A @ one_one_nat )
     => ( ( dvd_dvd_nat @ ( times_times_nat @ A @ B ) @ C )
        = ( dvd_dvd_nat @ B @ C ) ) ) ).

% mult_unit_dvd_iff'
thf(fact_5898_mult__unit__dvd__iff_H,axiom,
    ! [A: int,B: int,C: int] :
      ( ( dvd_dvd_int @ A @ one_one_int )
     => ( ( dvd_dvd_int @ ( times_times_int @ A @ B ) @ C )
        = ( dvd_dvd_int @ B @ C ) ) ) ).

% mult_unit_dvd_iff'
thf(fact_5899_unit__mult__left__cancel,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ one_one_Code_integer )
     => ( ( ( times_3573771949741848930nteger @ A @ B )
          = ( times_3573771949741848930nteger @ A @ C ) )
        = ( B = C ) ) ) ).

% unit_mult_left_cancel
thf(fact_5900_unit__mult__left__cancel,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( dvd_dvd_nat @ A @ one_one_nat )
     => ( ( ( times_times_nat @ A @ B )
          = ( times_times_nat @ A @ C ) )
        = ( B = C ) ) ) ).

% unit_mult_left_cancel
thf(fact_5901_unit__mult__left__cancel,axiom,
    ! [A: int,B: int,C: int] :
      ( ( dvd_dvd_int @ A @ one_one_int )
     => ( ( ( times_times_int @ A @ B )
          = ( times_times_int @ A @ C ) )
        = ( B = C ) ) ) ).

% unit_mult_left_cancel
thf(fact_5902_unit__mult__right__cancel,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ one_one_Code_integer )
     => ( ( ( times_3573771949741848930nteger @ B @ A )
          = ( times_3573771949741848930nteger @ C @ A ) )
        = ( B = C ) ) ) ).

% unit_mult_right_cancel
thf(fact_5903_unit__mult__right__cancel,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( dvd_dvd_nat @ A @ one_one_nat )
     => ( ( ( times_times_nat @ B @ A )
          = ( times_times_nat @ C @ A ) )
        = ( B = C ) ) ) ).

% unit_mult_right_cancel
thf(fact_5904_unit__mult__right__cancel,axiom,
    ! [A: int,B: int,C: int] :
      ( ( dvd_dvd_int @ A @ one_one_int )
     => ( ( ( times_times_int @ B @ A )
          = ( times_times_int @ C @ A ) )
        = ( B = C ) ) ) ).

% unit_mult_right_cancel
thf(fact_5905_dvd__div__mult,axiom,
    ! [C: code_integer,B: code_integer,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ C @ B )
     => ( ( times_3573771949741848930nteger @ ( divide6298287555418463151nteger @ B @ C ) @ A )
        = ( divide6298287555418463151nteger @ ( times_3573771949741848930nteger @ B @ A ) @ C ) ) ) ).

% dvd_div_mult
thf(fact_5906_dvd__div__mult,axiom,
    ! [C: nat,B: nat,A: nat] :
      ( ( dvd_dvd_nat @ C @ B )
     => ( ( times_times_nat @ ( divide_divide_nat @ B @ C ) @ A )
        = ( divide_divide_nat @ ( times_times_nat @ B @ A ) @ C ) ) ) ).

% dvd_div_mult
thf(fact_5907_dvd__div__mult,axiom,
    ! [C: int,B: int,A: int] :
      ( ( dvd_dvd_int @ C @ B )
     => ( ( times_times_int @ ( divide_divide_int @ B @ C ) @ A )
        = ( divide_divide_int @ ( times_times_int @ B @ A ) @ C ) ) ) ).

% dvd_div_mult
thf(fact_5908_div__mult__swap,axiom,
    ! [C: code_integer,B: code_integer,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ C @ B )
     => ( ( times_3573771949741848930nteger @ A @ ( divide6298287555418463151nteger @ B @ C ) )
        = ( divide6298287555418463151nteger @ ( times_3573771949741848930nteger @ A @ B ) @ C ) ) ) ).

% div_mult_swap
thf(fact_5909_div__mult__swap,axiom,
    ! [C: nat,B: nat,A: nat] :
      ( ( dvd_dvd_nat @ C @ B )
     => ( ( times_times_nat @ A @ ( divide_divide_nat @ B @ C ) )
        = ( divide_divide_nat @ ( times_times_nat @ A @ B ) @ C ) ) ) ).

% div_mult_swap
thf(fact_5910_div__mult__swap,axiom,
    ! [C: int,B: int,A: int] :
      ( ( dvd_dvd_int @ C @ B )
     => ( ( times_times_int @ A @ ( divide_divide_int @ B @ C ) )
        = ( divide_divide_int @ ( times_times_int @ A @ B ) @ C ) ) ) ).

% div_mult_swap
thf(fact_5911_div__div__eq__right,axiom,
    ! [C: code_integer,B: code_integer,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ C @ B )
     => ( ( dvd_dvd_Code_integer @ B @ A )
       => ( ( divide6298287555418463151nteger @ A @ ( divide6298287555418463151nteger @ B @ C ) )
          = ( times_3573771949741848930nteger @ ( divide6298287555418463151nteger @ A @ B ) @ C ) ) ) ) ).

% div_div_eq_right
thf(fact_5912_div__div__eq__right,axiom,
    ! [C: nat,B: nat,A: nat] :
      ( ( dvd_dvd_nat @ C @ B )
     => ( ( dvd_dvd_nat @ B @ A )
       => ( ( divide_divide_nat @ A @ ( divide_divide_nat @ B @ C ) )
          = ( times_times_nat @ ( divide_divide_nat @ A @ B ) @ C ) ) ) ) ).

% div_div_eq_right
thf(fact_5913_div__div__eq__right,axiom,
    ! [C: int,B: int,A: int] :
      ( ( dvd_dvd_int @ C @ B )
     => ( ( dvd_dvd_int @ B @ A )
       => ( ( divide_divide_int @ A @ ( divide_divide_int @ B @ C ) )
          = ( times_times_int @ ( divide_divide_int @ A @ B ) @ C ) ) ) ) ).

% div_div_eq_right
thf(fact_5914_dvd__div__mult2__eq,axiom,
    ! [B: code_integer,C: code_integer,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ B @ C ) @ A )
     => ( ( divide6298287555418463151nteger @ A @ ( times_3573771949741848930nteger @ B @ C ) )
        = ( divide6298287555418463151nteger @ ( divide6298287555418463151nteger @ A @ B ) @ C ) ) ) ).

% dvd_div_mult2_eq
thf(fact_5915_dvd__div__mult2__eq,axiom,
    ! [B: nat,C: nat,A: nat] :
      ( ( dvd_dvd_nat @ ( times_times_nat @ B @ C ) @ A )
     => ( ( divide_divide_nat @ A @ ( times_times_nat @ B @ C ) )
        = ( divide_divide_nat @ ( divide_divide_nat @ A @ B ) @ C ) ) ) ).

% dvd_div_mult2_eq
thf(fact_5916_dvd__div__mult2__eq,axiom,
    ! [B: int,C: int,A: int] :
      ( ( dvd_dvd_int @ ( times_times_int @ B @ C ) @ A )
     => ( ( divide_divide_int @ A @ ( times_times_int @ B @ C ) )
        = ( divide_divide_int @ ( divide_divide_int @ A @ B ) @ C ) ) ) ).

% dvd_div_mult2_eq
thf(fact_5917_dvd__mult__imp__div,axiom,
    ! [A: code_integer,C: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ A @ C ) @ B )
     => ( dvd_dvd_Code_integer @ A @ ( divide6298287555418463151nteger @ B @ C ) ) ) ).

% dvd_mult_imp_div
thf(fact_5918_dvd__mult__imp__div,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( dvd_dvd_nat @ ( times_times_nat @ A @ C ) @ B )
     => ( dvd_dvd_nat @ A @ ( divide_divide_nat @ B @ C ) ) ) ).

% dvd_mult_imp_div
thf(fact_5919_dvd__mult__imp__div,axiom,
    ! [A: int,C: int,B: int] :
      ( ( dvd_dvd_int @ ( times_times_int @ A @ C ) @ B )
     => ( dvd_dvd_int @ A @ ( divide_divide_int @ B @ C ) ) ) ).

% dvd_mult_imp_div
thf(fact_5920_div__mult__div__if__dvd,axiom,
    ! [B: code_integer,A: code_integer,D: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ B @ A )
     => ( ( dvd_dvd_Code_integer @ D @ C )
       => ( ( times_3573771949741848930nteger @ ( divide6298287555418463151nteger @ A @ B ) @ ( divide6298287555418463151nteger @ C @ D ) )
          = ( divide6298287555418463151nteger @ ( times_3573771949741848930nteger @ A @ C ) @ ( times_3573771949741848930nteger @ B @ D ) ) ) ) ) ).

% div_mult_div_if_dvd
thf(fact_5921_div__mult__div__if__dvd,axiom,
    ! [B: nat,A: nat,D: nat,C: nat] :
      ( ( dvd_dvd_nat @ B @ A )
     => ( ( dvd_dvd_nat @ D @ C )
       => ( ( times_times_nat @ ( divide_divide_nat @ A @ B ) @ ( divide_divide_nat @ C @ D ) )
          = ( divide_divide_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) ) ) ) ) ).

% div_mult_div_if_dvd
thf(fact_5922_div__mult__div__if__dvd,axiom,
    ! [B: int,A: int,D: int,C: int] :
      ( ( dvd_dvd_int @ B @ A )
     => ( ( dvd_dvd_int @ D @ C )
       => ( ( times_times_int @ ( divide_divide_int @ A @ B ) @ ( divide_divide_int @ C @ D ) )
          = ( divide_divide_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D ) ) ) ) ) ).

% div_mult_div_if_dvd
thf(fact_5923_unit__div__cancel,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ one_one_Code_integer )
     => ( ( ( divide6298287555418463151nteger @ B @ A )
          = ( divide6298287555418463151nteger @ C @ A ) )
        = ( B = C ) ) ) ).

% unit_div_cancel
thf(fact_5924_unit__div__cancel,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( dvd_dvd_nat @ A @ one_one_nat )
     => ( ( ( divide_divide_nat @ B @ A )
          = ( divide_divide_nat @ C @ A ) )
        = ( B = C ) ) ) ).

% unit_div_cancel
thf(fact_5925_unit__div__cancel,axiom,
    ! [A: int,B: int,C: int] :
      ( ( dvd_dvd_int @ A @ one_one_int )
     => ( ( ( divide_divide_int @ B @ A )
          = ( divide_divide_int @ C @ A ) )
        = ( B = C ) ) ) ).

% unit_div_cancel
thf(fact_5926_div__unit__dvd__iff,axiom,
    ! [B: code_integer,A: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
     => ( ( dvd_dvd_Code_integer @ ( divide6298287555418463151nteger @ A @ B ) @ C )
        = ( dvd_dvd_Code_integer @ A @ C ) ) ) ).

% div_unit_dvd_iff
thf(fact_5927_div__unit__dvd__iff,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( dvd_dvd_nat @ B @ one_one_nat )
     => ( ( dvd_dvd_nat @ ( divide_divide_nat @ A @ B ) @ C )
        = ( dvd_dvd_nat @ A @ C ) ) ) ).

% div_unit_dvd_iff
thf(fact_5928_div__unit__dvd__iff,axiom,
    ! [B: int,A: int,C: int] :
      ( ( dvd_dvd_int @ B @ one_one_int )
     => ( ( dvd_dvd_int @ ( divide_divide_int @ A @ B ) @ C )
        = ( dvd_dvd_int @ A @ C ) ) ) ).

% div_unit_dvd_iff
thf(fact_5929_dvd__div__unit__iff,axiom,
    ! [B: code_integer,A: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
     => ( ( dvd_dvd_Code_integer @ A @ ( divide6298287555418463151nteger @ C @ B ) )
        = ( dvd_dvd_Code_integer @ A @ C ) ) ) ).

% dvd_div_unit_iff
thf(fact_5930_dvd__div__unit__iff,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( dvd_dvd_nat @ B @ one_one_nat )
     => ( ( dvd_dvd_nat @ A @ ( divide_divide_nat @ C @ B ) )
        = ( dvd_dvd_nat @ A @ C ) ) ) ).

% dvd_div_unit_iff
thf(fact_5931_dvd__div__unit__iff,axiom,
    ! [B: int,A: int,C: int] :
      ( ( dvd_dvd_int @ B @ one_one_int )
     => ( ( dvd_dvd_int @ A @ ( divide_divide_int @ C @ B ) )
        = ( dvd_dvd_int @ A @ C ) ) ) ).

% dvd_div_unit_iff
thf(fact_5932_div__plus__div__distrib__dvd__left,axiom,
    ! [C: code_integer,A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ C @ A )
     => ( ( divide6298287555418463151nteger @ ( plus_p5714425477246183910nteger @ A @ B ) @ C )
        = ( plus_p5714425477246183910nteger @ ( divide6298287555418463151nteger @ A @ C ) @ ( divide6298287555418463151nteger @ B @ C ) ) ) ) ).

% div_plus_div_distrib_dvd_left
thf(fact_5933_div__plus__div__distrib__dvd__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( dvd_dvd_nat @ C @ A )
     => ( ( divide_divide_nat @ ( plus_plus_nat @ A @ B ) @ C )
        = ( plus_plus_nat @ ( divide_divide_nat @ A @ C ) @ ( divide_divide_nat @ B @ C ) ) ) ) ).

% div_plus_div_distrib_dvd_left
thf(fact_5934_div__plus__div__distrib__dvd__left,axiom,
    ! [C: int,A: int,B: int] :
      ( ( dvd_dvd_int @ C @ A )
     => ( ( divide_divide_int @ ( plus_plus_int @ A @ B ) @ C )
        = ( plus_plus_int @ ( divide_divide_int @ A @ C ) @ ( divide_divide_int @ B @ C ) ) ) ) ).

% div_plus_div_distrib_dvd_left
thf(fact_5935_div__plus__div__distrib__dvd__right,axiom,
    ! [C: code_integer,B: code_integer,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ C @ B )
     => ( ( divide6298287555418463151nteger @ ( plus_p5714425477246183910nteger @ A @ B ) @ C )
        = ( plus_p5714425477246183910nteger @ ( divide6298287555418463151nteger @ A @ C ) @ ( divide6298287555418463151nteger @ B @ C ) ) ) ) ).

% div_plus_div_distrib_dvd_right
thf(fact_5936_div__plus__div__distrib__dvd__right,axiom,
    ! [C: nat,B: nat,A: nat] :
      ( ( dvd_dvd_nat @ C @ B )
     => ( ( divide_divide_nat @ ( plus_plus_nat @ A @ B ) @ C )
        = ( plus_plus_nat @ ( divide_divide_nat @ A @ C ) @ ( divide_divide_nat @ B @ C ) ) ) ) ).

% div_plus_div_distrib_dvd_right
thf(fact_5937_div__plus__div__distrib__dvd__right,axiom,
    ! [C: int,B: int,A: int] :
      ( ( dvd_dvd_int @ C @ B )
     => ( ( divide_divide_int @ ( plus_plus_int @ A @ B ) @ C )
        = ( plus_plus_int @ ( divide_divide_int @ A @ C ) @ ( divide_divide_int @ B @ C ) ) ) ) ).

% div_plus_div_distrib_dvd_right
thf(fact_5938_div__power,axiom,
    ! [B: code_integer,A: code_integer,N: nat] :
      ( ( dvd_dvd_Code_integer @ B @ A )
     => ( ( power_8256067586552552935nteger @ ( divide6298287555418463151nteger @ A @ B ) @ N )
        = ( divide6298287555418463151nteger @ ( power_8256067586552552935nteger @ A @ N ) @ ( power_8256067586552552935nteger @ B @ N ) ) ) ) ).

% div_power
thf(fact_5939_div__power,axiom,
    ! [B: nat,A: nat,N: nat] :
      ( ( dvd_dvd_nat @ B @ A )
     => ( ( power_power_nat @ ( divide_divide_nat @ A @ B ) @ N )
        = ( divide_divide_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ B @ N ) ) ) ) ).

% div_power
thf(fact_5940_div__power,axiom,
    ! [B: int,A: int,N: nat] :
      ( ( dvd_dvd_int @ B @ A )
     => ( ( power_power_int @ ( divide_divide_int @ A @ B ) @ N )
        = ( divide_divide_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ B @ N ) ) ) ) ).

% div_power
thf(fact_5941_mod__0__imp__dvd,axiom,
    ! [A: nat,B: nat] :
      ( ( ( modulo_modulo_nat @ A @ B )
        = zero_zero_nat )
     => ( dvd_dvd_nat @ B @ A ) ) ).

% mod_0_imp_dvd
thf(fact_5942_mod__0__imp__dvd,axiom,
    ! [A: int,B: int] :
      ( ( ( modulo_modulo_int @ A @ B )
        = zero_zero_int )
     => ( dvd_dvd_int @ B @ A ) ) ).

% mod_0_imp_dvd
thf(fact_5943_mod__0__imp__dvd,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ( modulo364778990260209775nteger @ A @ B )
        = zero_z3403309356797280102nteger )
     => ( dvd_dvd_Code_integer @ B @ A ) ) ).

% mod_0_imp_dvd
thf(fact_5944_dvd__eq__mod__eq__0,axiom,
    ( dvd_dvd_nat
    = ( ^ [A3: nat,B2: nat] :
          ( ( modulo_modulo_nat @ B2 @ A3 )
          = zero_zero_nat ) ) ) ).

% dvd_eq_mod_eq_0
thf(fact_5945_dvd__eq__mod__eq__0,axiom,
    ( dvd_dvd_int
    = ( ^ [A3: int,B2: int] :
          ( ( modulo_modulo_int @ B2 @ A3 )
          = zero_zero_int ) ) ) ).

% dvd_eq_mod_eq_0
thf(fact_5946_dvd__eq__mod__eq__0,axiom,
    ( dvd_dvd_Code_integer
    = ( ^ [A3: code_integer,B2: code_integer] :
          ( ( modulo364778990260209775nteger @ B2 @ A3 )
          = zero_z3403309356797280102nteger ) ) ) ).

% dvd_eq_mod_eq_0
thf(fact_5947_mod__eq__0__iff__dvd,axiom,
    ! [A: nat,B: nat] :
      ( ( ( modulo_modulo_nat @ A @ B )
        = zero_zero_nat )
      = ( dvd_dvd_nat @ B @ A ) ) ).

% mod_eq_0_iff_dvd
thf(fact_5948_mod__eq__0__iff__dvd,axiom,
    ! [A: int,B: int] :
      ( ( ( modulo_modulo_int @ A @ B )
        = zero_zero_int )
      = ( dvd_dvd_int @ B @ A ) ) ).

% mod_eq_0_iff_dvd
thf(fact_5949_mod__eq__0__iff__dvd,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ( modulo364778990260209775nteger @ A @ B )
        = zero_z3403309356797280102nteger )
      = ( dvd_dvd_Code_integer @ B @ A ) ) ).

% mod_eq_0_iff_dvd
thf(fact_5950_le__imp__power__dvd,axiom,
    ! [M: nat,N: nat,A: code_integer] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( dvd_dvd_Code_integer @ ( power_8256067586552552935nteger @ A @ M ) @ ( power_8256067586552552935nteger @ A @ N ) ) ) ).

% le_imp_power_dvd
thf(fact_5951_le__imp__power__dvd,axiom,
    ! [M: nat,N: nat,A: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( dvd_dvd_nat @ ( power_power_nat @ A @ M ) @ ( power_power_nat @ A @ N ) ) ) ).

% le_imp_power_dvd
thf(fact_5952_le__imp__power__dvd,axiom,
    ! [M: nat,N: nat,A: real] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( dvd_dvd_real @ ( power_power_real @ A @ M ) @ ( power_power_real @ A @ N ) ) ) ).

% le_imp_power_dvd
thf(fact_5953_le__imp__power__dvd,axiom,
    ! [M: nat,N: nat,A: complex] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( dvd_dvd_complex @ ( power_power_complex @ A @ M ) @ ( power_power_complex @ A @ N ) ) ) ).

% le_imp_power_dvd
thf(fact_5954_le__imp__power__dvd,axiom,
    ! [M: nat,N: nat,A: int] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( dvd_dvd_int @ ( power_power_int @ A @ M ) @ ( power_power_int @ A @ N ) ) ) ).

% le_imp_power_dvd
thf(fact_5955_power__le__dvd,axiom,
    ! [A: code_integer,N: nat,B: code_integer,M: nat] :
      ( ( dvd_dvd_Code_integer @ ( power_8256067586552552935nteger @ A @ N ) @ B )
     => ( ( ord_less_eq_nat @ M @ N )
       => ( dvd_dvd_Code_integer @ ( power_8256067586552552935nteger @ A @ M ) @ B ) ) ) ).

% power_le_dvd
thf(fact_5956_power__le__dvd,axiom,
    ! [A: nat,N: nat,B: nat,M: nat] :
      ( ( dvd_dvd_nat @ ( power_power_nat @ A @ N ) @ B )
     => ( ( ord_less_eq_nat @ M @ N )
       => ( dvd_dvd_nat @ ( power_power_nat @ A @ M ) @ B ) ) ) ).

% power_le_dvd
thf(fact_5957_power__le__dvd,axiom,
    ! [A: real,N: nat,B: real,M: nat] :
      ( ( dvd_dvd_real @ ( power_power_real @ A @ N ) @ B )
     => ( ( ord_less_eq_nat @ M @ N )
       => ( dvd_dvd_real @ ( power_power_real @ A @ M ) @ B ) ) ) ).

% power_le_dvd
thf(fact_5958_power__le__dvd,axiom,
    ! [A: complex,N: nat,B: complex,M: nat] :
      ( ( dvd_dvd_complex @ ( power_power_complex @ A @ N ) @ B )
     => ( ( ord_less_eq_nat @ M @ N )
       => ( dvd_dvd_complex @ ( power_power_complex @ A @ M ) @ B ) ) ) ).

% power_le_dvd
thf(fact_5959_power__le__dvd,axiom,
    ! [A: int,N: nat,B: int,M: nat] :
      ( ( dvd_dvd_int @ ( power_power_int @ A @ N ) @ B )
     => ( ( ord_less_eq_nat @ M @ N )
       => ( dvd_dvd_int @ ( power_power_int @ A @ M ) @ B ) ) ) ).

% power_le_dvd
thf(fact_5960_dvd__power__le,axiom,
    ! [X2: code_integer,Y2: code_integer,N: nat,M: nat] :
      ( ( dvd_dvd_Code_integer @ X2 @ Y2 )
     => ( ( ord_less_eq_nat @ N @ M )
       => ( dvd_dvd_Code_integer @ ( power_8256067586552552935nteger @ X2 @ N ) @ ( power_8256067586552552935nteger @ Y2 @ M ) ) ) ) ).

% dvd_power_le
thf(fact_5961_dvd__power__le,axiom,
    ! [X2: nat,Y2: nat,N: nat,M: nat] :
      ( ( dvd_dvd_nat @ X2 @ Y2 )
     => ( ( ord_less_eq_nat @ N @ M )
       => ( dvd_dvd_nat @ ( power_power_nat @ X2 @ N ) @ ( power_power_nat @ Y2 @ M ) ) ) ) ).

% dvd_power_le
thf(fact_5962_dvd__power__le,axiom,
    ! [X2: real,Y2: real,N: nat,M: nat] :
      ( ( dvd_dvd_real @ X2 @ Y2 )
     => ( ( ord_less_eq_nat @ N @ M )
       => ( dvd_dvd_real @ ( power_power_real @ X2 @ N ) @ ( power_power_real @ Y2 @ M ) ) ) ) ).

% dvd_power_le
thf(fact_5963_dvd__power__le,axiom,
    ! [X2: complex,Y2: complex,N: nat,M: nat] :
      ( ( dvd_dvd_complex @ X2 @ Y2 )
     => ( ( ord_less_eq_nat @ N @ M )
       => ( dvd_dvd_complex @ ( power_power_complex @ X2 @ N ) @ ( power_power_complex @ Y2 @ M ) ) ) ) ).

% dvd_power_le
thf(fact_5964_dvd__power__le,axiom,
    ! [X2: int,Y2: int,N: nat,M: nat] :
      ( ( dvd_dvd_int @ X2 @ Y2 )
     => ( ( ord_less_eq_nat @ N @ M )
       => ( dvd_dvd_int @ ( power_power_int @ X2 @ N ) @ ( power_power_int @ Y2 @ M ) ) ) ) ).

% dvd_power_le
thf(fact_5965_mod__eq__dvd__iff,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ( modulo_modulo_int @ A @ C )
        = ( modulo_modulo_int @ B @ C ) )
      = ( dvd_dvd_int @ C @ ( minus_minus_int @ A @ B ) ) ) ).

% mod_eq_dvd_iff
thf(fact_5966_mod__eq__dvd__iff,axiom,
    ! [A: code_integer,C: code_integer,B: code_integer] :
      ( ( ( modulo364778990260209775nteger @ A @ C )
        = ( modulo364778990260209775nteger @ B @ C ) )
      = ( dvd_dvd_Code_integer @ C @ ( minus_8373710615458151222nteger @ A @ B ) ) ) ).

% mod_eq_dvd_iff
thf(fact_5967_dvd__minus__mod,axiom,
    ! [B: nat,A: nat] : ( dvd_dvd_nat @ B @ ( minus_minus_nat @ A @ ( modulo_modulo_nat @ A @ B ) ) ) ).

% dvd_minus_mod
thf(fact_5968_dvd__minus__mod,axiom,
    ! [B: int,A: int] : ( dvd_dvd_int @ B @ ( minus_minus_int @ A @ ( modulo_modulo_int @ A @ B ) ) ) ).

% dvd_minus_mod
thf(fact_5969_dvd__minus__mod,axiom,
    ! [B: code_integer,A: code_integer] : ( dvd_dvd_Code_integer @ B @ ( minus_8373710615458151222nteger @ A @ ( modulo364778990260209775nteger @ A @ B ) ) ) ).

% dvd_minus_mod
thf(fact_5970_nat__dvd__not__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ M )
     => ( ( ord_less_nat @ M @ N )
       => ~ ( dvd_dvd_nat @ N @ M ) ) ) ).

% nat_dvd_not_less
thf(fact_5971_dvd__pos__nat,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( dvd_dvd_nat @ M @ N )
       => ( ord_less_nat @ zero_zero_nat @ M ) ) ) ).

% dvd_pos_nat
thf(fact_5972_dvd__minus__self,axiom,
    ! [M: nat,N: nat] :
      ( ( dvd_dvd_nat @ M @ ( minus_minus_nat @ N @ M ) )
      = ( ( ord_less_nat @ N @ M )
        | ( dvd_dvd_nat @ M @ N ) ) ) ).

% dvd_minus_self
thf(fact_5973_zdvd__antisym__nonneg,axiom,
    ! [M: int,N: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ M )
     => ( ( ord_less_eq_int @ zero_zero_int @ N )
       => ( ( dvd_dvd_int @ M @ N )
         => ( ( dvd_dvd_int @ N @ M )
           => ( M = N ) ) ) ) ) ).

% zdvd_antisym_nonneg
thf(fact_5974_less__eq__dvd__minus,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( dvd_dvd_nat @ M @ N )
        = ( dvd_dvd_nat @ M @ ( minus_minus_nat @ N @ M ) ) ) ) ).

% less_eq_dvd_minus
thf(fact_5975_dvd__diffD1,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( dvd_dvd_nat @ K @ ( minus_minus_nat @ M @ N ) )
     => ( ( dvd_dvd_nat @ K @ M )
       => ( ( ord_less_eq_nat @ N @ M )
         => ( dvd_dvd_nat @ K @ N ) ) ) ) ).

% dvd_diffD1
thf(fact_5976_dvd__diffD,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( dvd_dvd_nat @ K @ ( minus_minus_nat @ M @ N ) )
     => ( ( dvd_dvd_nat @ K @ N )
       => ( ( ord_less_eq_nat @ N @ M )
         => ( dvd_dvd_nat @ K @ M ) ) ) ) ).

% dvd_diffD
thf(fact_5977_zdvd__not__zless,axiom,
    ! [M: int,N: int] :
      ( ( ord_less_int @ zero_zero_int @ M )
     => ( ( ord_less_int @ M @ N )
       => ~ ( dvd_dvd_int @ N @ M ) ) ) ).

% zdvd_not_zless
thf(fact_5978_bezout__add__nat,axiom,
    ! [A: nat,B: nat] :
    ? [D4: nat,X4: nat,Y3: nat] :
      ( ( dvd_dvd_nat @ D4 @ A )
      & ( dvd_dvd_nat @ D4 @ B )
      & ( ( ( times_times_nat @ A @ X4 )
          = ( plus_plus_nat @ ( times_times_nat @ B @ Y3 ) @ D4 ) )
        | ( ( times_times_nat @ B @ X4 )
          = ( plus_plus_nat @ ( times_times_nat @ A @ Y3 ) @ D4 ) ) ) ) ).

% bezout_add_nat
thf(fact_5979_bezout__lemma__nat,axiom,
    ! [D: nat,A: nat,B: nat,X2: nat,Y2: nat] :
      ( ( dvd_dvd_nat @ D @ A )
     => ( ( dvd_dvd_nat @ D @ B )
       => ( ( ( ( times_times_nat @ A @ X2 )
              = ( plus_plus_nat @ ( times_times_nat @ B @ Y2 ) @ D ) )
            | ( ( times_times_nat @ B @ X2 )
              = ( plus_plus_nat @ ( times_times_nat @ A @ Y2 ) @ D ) ) )
         => ? [X4: nat,Y3: nat] :
              ( ( dvd_dvd_nat @ D @ A )
              & ( dvd_dvd_nat @ D @ ( plus_plus_nat @ A @ B ) )
              & ( ( ( times_times_nat @ A @ X4 )
                  = ( plus_plus_nat @ ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ Y3 ) @ D ) )
                | ( ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ X4 )
                  = ( plus_plus_nat @ ( times_times_nat @ A @ Y3 ) @ D ) ) ) ) ) ) ) ).

% bezout_lemma_nat
thf(fact_5980_zdvd__mult__cancel,axiom,
    ! [K: int,M: int,N: int] :
      ( ( dvd_dvd_int @ ( times_times_int @ K @ M ) @ ( times_times_int @ K @ N ) )
     => ( ( K != zero_zero_int )
       => ( dvd_dvd_int @ M @ N ) ) ) ).

% zdvd_mult_cancel
thf(fact_5981_zdvd__mono,axiom,
    ! [K: int,M: int,T: int] :
      ( ( K != zero_zero_int )
     => ( ( dvd_dvd_int @ M @ T )
        = ( dvd_dvd_int @ ( times_times_int @ K @ M ) @ ( times_times_int @ K @ T ) ) ) ) ).

% zdvd_mono
thf(fact_5982_bezout1__nat,axiom,
    ! [A: nat,B: nat] :
    ? [D4: nat,X4: nat,Y3: nat] :
      ( ( dvd_dvd_nat @ D4 @ A )
      & ( dvd_dvd_nat @ D4 @ B )
      & ( ( ( minus_minus_nat @ ( times_times_nat @ A @ X4 ) @ ( times_times_nat @ B @ Y3 ) )
          = D4 )
        | ( ( minus_minus_nat @ ( times_times_nat @ B @ X4 ) @ ( times_times_nat @ A @ Y3 ) )
          = D4 ) ) ) ).

% bezout1_nat
thf(fact_5983_zdvd__period,axiom,
    ! [A: int,D: int,X2: int,T: int,C: int] :
      ( ( dvd_dvd_int @ A @ D )
     => ( ( dvd_dvd_int @ A @ ( plus_plus_int @ X2 @ T ) )
        = ( dvd_dvd_int @ A @ ( plus_plus_int @ ( plus_plus_int @ X2 @ ( times_times_int @ C @ D ) ) @ T ) ) ) ) ).

% zdvd_period
thf(fact_5984_zdvd__reduce,axiom,
    ! [K: int,N: int,M: int] :
      ( ( dvd_dvd_int @ K @ ( plus_plus_int @ N @ ( times_times_int @ K @ M ) ) )
      = ( dvd_dvd_int @ K @ N ) ) ).

% zdvd_reduce
thf(fact_5985_finite__divisors__int,axiom,
    ! [I: int] :
      ( ( I != zero_zero_int )
     => ( finite_finite_int
        @ ( collect_int
          @ ^ [D2: int] : ( dvd_dvd_int @ D2 @ I ) ) ) ) ).

% finite_divisors_int
thf(fact_5986_div2__even__ext__nat,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ( divide_divide_nat @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( divide_divide_nat @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
     => ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ X2 )
          = ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Y2 ) )
       => ( X2 = Y2 ) ) ) ).

% div2_even_ext_nat
thf(fact_5987_unit__dvdE,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ one_one_Code_integer )
     => ~ ( ( A != zero_z3403309356797280102nteger )
         => ! [C5: code_integer] :
              ( B
             != ( times_3573771949741848930nteger @ A @ C5 ) ) ) ) ).

% unit_dvdE
thf(fact_5988_unit__dvdE,axiom,
    ! [A: nat,B: nat] :
      ( ( dvd_dvd_nat @ A @ one_one_nat )
     => ~ ( ( A != zero_zero_nat )
         => ! [C5: nat] :
              ( B
             != ( times_times_nat @ A @ C5 ) ) ) ) ).

% unit_dvdE
thf(fact_5989_unit__dvdE,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ A @ one_one_int )
     => ~ ( ( A != zero_zero_int )
         => ! [C5: int] :
              ( B
             != ( times_times_int @ A @ C5 ) ) ) ) ).

% unit_dvdE
thf(fact_5990_unity__coeff__ex,axiom,
    ! [P: code_integer > $o,L: code_integer] :
      ( ( ? [X: code_integer] : ( P @ ( times_3573771949741848930nteger @ L @ X ) ) )
      = ( ? [X: code_integer] :
            ( ( dvd_dvd_Code_integer @ L @ ( plus_p5714425477246183910nteger @ X @ zero_z3403309356797280102nteger ) )
            & ( P @ X ) ) ) ) ).

% unity_coeff_ex
thf(fact_5991_unity__coeff__ex,axiom,
    ! [P: complex > $o,L: complex] :
      ( ( ? [X: complex] : ( P @ ( times_times_complex @ L @ X ) ) )
      = ( ? [X: complex] :
            ( ( dvd_dvd_complex @ L @ ( plus_plus_complex @ X @ zero_zero_complex ) )
            & ( P @ X ) ) ) ) ).

% unity_coeff_ex
thf(fact_5992_unity__coeff__ex,axiom,
    ! [P: real > $o,L: real] :
      ( ( ? [X: real] : ( P @ ( times_times_real @ L @ X ) ) )
      = ( ? [X: real] :
            ( ( dvd_dvd_real @ L @ ( plus_plus_real @ X @ zero_zero_real ) )
            & ( P @ X ) ) ) ) ).

% unity_coeff_ex
thf(fact_5993_unity__coeff__ex,axiom,
    ! [P: rat > $o,L: rat] :
      ( ( ? [X: rat] : ( P @ ( times_times_rat @ L @ X ) ) )
      = ( ? [X: rat] :
            ( ( dvd_dvd_rat @ L @ ( plus_plus_rat @ X @ zero_zero_rat ) )
            & ( P @ X ) ) ) ) ).

% unity_coeff_ex
thf(fact_5994_unity__coeff__ex,axiom,
    ! [P: nat > $o,L: nat] :
      ( ( ? [X: nat] : ( P @ ( times_times_nat @ L @ X ) ) )
      = ( ? [X: nat] :
            ( ( dvd_dvd_nat @ L @ ( plus_plus_nat @ X @ zero_zero_nat ) )
            & ( P @ X ) ) ) ) ).

% unity_coeff_ex
thf(fact_5995_unity__coeff__ex,axiom,
    ! [P: int > $o,L: int] :
      ( ( ? [X: int] : ( P @ ( times_times_int @ L @ X ) ) )
      = ( ? [X: int] :
            ( ( dvd_dvd_int @ L @ ( plus_plus_int @ X @ zero_zero_int ) )
            & ( P @ X ) ) ) ) ).

% unity_coeff_ex
thf(fact_5996_dvd__div__eq__mult,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer] :
      ( ( A != zero_z3403309356797280102nteger )
     => ( ( dvd_dvd_Code_integer @ A @ B )
       => ( ( ( divide6298287555418463151nteger @ B @ A )
            = C )
          = ( B
            = ( times_3573771949741848930nteger @ C @ A ) ) ) ) ) ).

% dvd_div_eq_mult
thf(fact_5997_dvd__div__eq__mult,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( A != zero_zero_nat )
     => ( ( dvd_dvd_nat @ A @ B )
       => ( ( ( divide_divide_nat @ B @ A )
            = C )
          = ( B
            = ( times_times_nat @ C @ A ) ) ) ) ) ).

% dvd_div_eq_mult
thf(fact_5998_dvd__div__eq__mult,axiom,
    ! [A: int,B: int,C: int] :
      ( ( A != zero_zero_int )
     => ( ( dvd_dvd_int @ A @ B )
       => ( ( ( divide_divide_int @ B @ A )
            = C )
          = ( B
            = ( times_times_int @ C @ A ) ) ) ) ) ).

% dvd_div_eq_mult
thf(fact_5999_div__dvd__iff__mult,axiom,
    ! [B: code_integer,A: code_integer,C: code_integer] :
      ( ( B != zero_z3403309356797280102nteger )
     => ( ( dvd_dvd_Code_integer @ B @ A )
       => ( ( dvd_dvd_Code_integer @ ( divide6298287555418463151nteger @ A @ B ) @ C )
          = ( dvd_dvd_Code_integer @ A @ ( times_3573771949741848930nteger @ C @ B ) ) ) ) ) ).

% div_dvd_iff_mult
thf(fact_6000_div__dvd__iff__mult,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( B != zero_zero_nat )
     => ( ( dvd_dvd_nat @ B @ A )
       => ( ( dvd_dvd_nat @ ( divide_divide_nat @ A @ B ) @ C )
          = ( dvd_dvd_nat @ A @ ( times_times_nat @ C @ B ) ) ) ) ) ).

% div_dvd_iff_mult
thf(fact_6001_div__dvd__iff__mult,axiom,
    ! [B: int,A: int,C: int] :
      ( ( B != zero_zero_int )
     => ( ( dvd_dvd_int @ B @ A )
       => ( ( dvd_dvd_int @ ( divide_divide_int @ A @ B ) @ C )
          = ( dvd_dvd_int @ A @ ( times_times_int @ C @ B ) ) ) ) ) ).

% div_dvd_iff_mult
thf(fact_6002_dvd__div__iff__mult,axiom,
    ! [C: code_integer,B: code_integer,A: code_integer] :
      ( ( C != zero_z3403309356797280102nteger )
     => ( ( dvd_dvd_Code_integer @ C @ B )
       => ( ( dvd_dvd_Code_integer @ A @ ( divide6298287555418463151nteger @ B @ C ) )
          = ( dvd_dvd_Code_integer @ ( times_3573771949741848930nteger @ A @ C ) @ B ) ) ) ) ).

% dvd_div_iff_mult
thf(fact_6003_dvd__div__iff__mult,axiom,
    ! [C: nat,B: nat,A: nat] :
      ( ( C != zero_zero_nat )
     => ( ( dvd_dvd_nat @ C @ B )
       => ( ( dvd_dvd_nat @ A @ ( divide_divide_nat @ B @ C ) )
          = ( dvd_dvd_nat @ ( times_times_nat @ A @ C ) @ B ) ) ) ) ).

% dvd_div_iff_mult
thf(fact_6004_dvd__div__iff__mult,axiom,
    ! [C: int,B: int,A: int] :
      ( ( C != zero_zero_int )
     => ( ( dvd_dvd_int @ C @ B )
       => ( ( dvd_dvd_int @ A @ ( divide_divide_int @ B @ C ) )
          = ( dvd_dvd_int @ ( times_times_int @ A @ C ) @ B ) ) ) ) ).

% dvd_div_iff_mult
thf(fact_6005_dvd__div__div__eq__mult,axiom,
    ! [A: code_integer,C: code_integer,B: code_integer,D: code_integer] :
      ( ( A != zero_z3403309356797280102nteger )
     => ( ( C != zero_z3403309356797280102nteger )
       => ( ( dvd_dvd_Code_integer @ A @ B )
         => ( ( dvd_dvd_Code_integer @ C @ D )
           => ( ( ( divide6298287555418463151nteger @ B @ A )
                = ( divide6298287555418463151nteger @ D @ C ) )
              = ( ( times_3573771949741848930nteger @ B @ C )
                = ( times_3573771949741848930nteger @ A @ D ) ) ) ) ) ) ) ).

% dvd_div_div_eq_mult
thf(fact_6006_dvd__div__div__eq__mult,axiom,
    ! [A: nat,C: nat,B: nat,D: nat] :
      ( ( A != zero_zero_nat )
     => ( ( C != zero_zero_nat )
       => ( ( dvd_dvd_nat @ A @ B )
         => ( ( dvd_dvd_nat @ C @ D )
           => ( ( ( divide_divide_nat @ B @ A )
                = ( divide_divide_nat @ D @ C ) )
              = ( ( times_times_nat @ B @ C )
                = ( times_times_nat @ A @ D ) ) ) ) ) ) ) ).

% dvd_div_div_eq_mult
thf(fact_6007_dvd__div__div__eq__mult,axiom,
    ! [A: int,C: int,B: int,D: int] :
      ( ( A != zero_zero_int )
     => ( ( C != zero_zero_int )
       => ( ( dvd_dvd_int @ A @ B )
         => ( ( dvd_dvd_int @ C @ D )
           => ( ( ( divide_divide_int @ B @ A )
                = ( divide_divide_int @ D @ C ) )
              = ( ( times_times_int @ B @ C )
                = ( times_times_int @ A @ D ) ) ) ) ) ) ) ).

% dvd_div_div_eq_mult
thf(fact_6008_unit__div__eq__0__iff,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
     => ( ( ( divide6298287555418463151nteger @ A @ B )
          = zero_z3403309356797280102nteger )
        = ( A = zero_z3403309356797280102nteger ) ) ) ).

% unit_div_eq_0_iff
thf(fact_6009_unit__div__eq__0__iff,axiom,
    ! [B: nat,A: nat] :
      ( ( dvd_dvd_nat @ B @ one_one_nat )
     => ( ( ( divide_divide_nat @ A @ B )
          = zero_zero_nat )
        = ( A = zero_zero_nat ) ) ) ).

% unit_div_eq_0_iff
thf(fact_6010_unit__div__eq__0__iff,axiom,
    ! [B: int,A: int] :
      ( ( dvd_dvd_int @ B @ one_one_int )
     => ( ( ( divide_divide_int @ A @ B )
          = zero_zero_int )
        = ( A = zero_zero_int ) ) ) ).

% unit_div_eq_0_iff
thf(fact_6011_even__numeral,axiom,
    ! [N: num] : ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ N ) ) ) ).

% even_numeral
thf(fact_6012_even__numeral,axiom,
    ! [N: num] : ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ ( bit0 @ N ) ) ) ).

% even_numeral
thf(fact_6013_even__numeral,axiom,
    ! [N: num] : ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) ).

% even_numeral
thf(fact_6014_inf__period_I4_J,axiom,
    ! [D: code_integer,D3: code_integer,T: code_integer] :
      ( ( dvd_dvd_Code_integer @ D @ D3 )
     => ! [X3: code_integer,K4: code_integer] :
          ( ( ~ ( dvd_dvd_Code_integer @ D @ ( plus_p5714425477246183910nteger @ X3 @ T ) ) )
          = ( ~ ( dvd_dvd_Code_integer @ D @ ( plus_p5714425477246183910nteger @ ( minus_8373710615458151222nteger @ X3 @ ( times_3573771949741848930nteger @ K4 @ D3 ) ) @ T ) ) ) ) ) ).

% inf_period(4)
thf(fact_6015_inf__period_I4_J,axiom,
    ! [D: real,D3: real,T: real] :
      ( ( dvd_dvd_real @ D @ D3 )
     => ! [X3: real,K4: real] :
          ( ( ~ ( dvd_dvd_real @ D @ ( plus_plus_real @ X3 @ T ) ) )
          = ( ~ ( dvd_dvd_real @ D @ ( plus_plus_real @ ( minus_minus_real @ X3 @ ( times_times_real @ K4 @ D3 ) ) @ T ) ) ) ) ) ).

% inf_period(4)
thf(fact_6016_inf__period_I4_J,axiom,
    ! [D: rat,D3: rat,T: rat] :
      ( ( dvd_dvd_rat @ D @ D3 )
     => ! [X3: rat,K4: rat] :
          ( ( ~ ( dvd_dvd_rat @ D @ ( plus_plus_rat @ X3 @ T ) ) )
          = ( ~ ( dvd_dvd_rat @ D @ ( plus_plus_rat @ ( minus_minus_rat @ X3 @ ( times_times_rat @ K4 @ D3 ) ) @ T ) ) ) ) ) ).

% inf_period(4)
thf(fact_6017_inf__period_I4_J,axiom,
    ! [D: int,D3: int,T: int] :
      ( ( dvd_dvd_int @ D @ D3 )
     => ! [X3: int,K4: int] :
          ( ( ~ ( dvd_dvd_int @ D @ ( plus_plus_int @ X3 @ T ) ) )
          = ( ~ ( dvd_dvd_int @ D @ ( plus_plus_int @ ( minus_minus_int @ X3 @ ( times_times_int @ K4 @ D3 ) ) @ T ) ) ) ) ) ).

% inf_period(4)
thf(fact_6018_inf__period_I3_J,axiom,
    ! [D: code_integer,D3: code_integer,T: code_integer] :
      ( ( dvd_dvd_Code_integer @ D @ D3 )
     => ! [X3: code_integer,K4: code_integer] :
          ( ( dvd_dvd_Code_integer @ D @ ( plus_p5714425477246183910nteger @ X3 @ T ) )
          = ( dvd_dvd_Code_integer @ D @ ( plus_p5714425477246183910nteger @ ( minus_8373710615458151222nteger @ X3 @ ( times_3573771949741848930nteger @ K4 @ D3 ) ) @ T ) ) ) ) ).

% inf_period(3)
thf(fact_6019_inf__period_I3_J,axiom,
    ! [D: real,D3: real,T: real] :
      ( ( dvd_dvd_real @ D @ D3 )
     => ! [X3: real,K4: real] :
          ( ( dvd_dvd_real @ D @ ( plus_plus_real @ X3 @ T ) )
          = ( dvd_dvd_real @ D @ ( plus_plus_real @ ( minus_minus_real @ X3 @ ( times_times_real @ K4 @ D3 ) ) @ T ) ) ) ) ).

% inf_period(3)
thf(fact_6020_inf__period_I3_J,axiom,
    ! [D: rat,D3: rat,T: rat] :
      ( ( dvd_dvd_rat @ D @ D3 )
     => ! [X3: rat,K4: rat] :
          ( ( dvd_dvd_rat @ D @ ( plus_plus_rat @ X3 @ T ) )
          = ( dvd_dvd_rat @ D @ ( plus_plus_rat @ ( minus_minus_rat @ X3 @ ( times_times_rat @ K4 @ D3 ) ) @ T ) ) ) ) ).

% inf_period(3)
thf(fact_6021_inf__period_I3_J,axiom,
    ! [D: int,D3: int,T: int] :
      ( ( dvd_dvd_int @ D @ D3 )
     => ! [X3: int,K4: int] :
          ( ( dvd_dvd_int @ D @ ( plus_plus_int @ X3 @ T ) )
          = ( dvd_dvd_int @ D @ ( plus_plus_int @ ( minus_minus_int @ X3 @ ( times_times_int @ K4 @ D3 ) ) @ T ) ) ) ) ).

% inf_period(3)
thf(fact_6022_unit__eq__div1,axiom,
    ! [B: code_integer,A: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
     => ( ( ( divide6298287555418463151nteger @ A @ B )
          = C )
        = ( A
          = ( times_3573771949741848930nteger @ C @ B ) ) ) ) ).

% unit_eq_div1
thf(fact_6023_unit__eq__div1,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( dvd_dvd_nat @ B @ one_one_nat )
     => ( ( ( divide_divide_nat @ A @ B )
          = C )
        = ( A
          = ( times_times_nat @ C @ B ) ) ) ) ).

% unit_eq_div1
thf(fact_6024_unit__eq__div1,axiom,
    ! [B: int,A: int,C: int] :
      ( ( dvd_dvd_int @ B @ one_one_int )
     => ( ( ( divide_divide_int @ A @ B )
          = C )
        = ( A
          = ( times_times_int @ C @ B ) ) ) ) ).

% unit_eq_div1
thf(fact_6025_unit__eq__div2,axiom,
    ! [B: code_integer,A: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
     => ( ( A
          = ( divide6298287555418463151nteger @ C @ B ) )
        = ( ( times_3573771949741848930nteger @ A @ B )
          = C ) ) ) ).

% unit_eq_div2
thf(fact_6026_unit__eq__div2,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( dvd_dvd_nat @ B @ one_one_nat )
     => ( ( A
          = ( divide_divide_nat @ C @ B ) )
        = ( ( times_times_nat @ A @ B )
          = C ) ) ) ).

% unit_eq_div2
thf(fact_6027_unit__eq__div2,axiom,
    ! [B: int,A: int,C: int] :
      ( ( dvd_dvd_int @ B @ one_one_int )
     => ( ( A
          = ( divide_divide_int @ C @ B ) )
        = ( ( times_times_int @ A @ B )
          = C ) ) ) ).

% unit_eq_div2
thf(fact_6028_div__mult__unit2,axiom,
    ! [C: code_integer,B: code_integer,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ C @ one_one_Code_integer )
     => ( ( dvd_dvd_Code_integer @ B @ A )
       => ( ( divide6298287555418463151nteger @ A @ ( times_3573771949741848930nteger @ B @ C ) )
          = ( divide6298287555418463151nteger @ ( divide6298287555418463151nteger @ A @ B ) @ C ) ) ) ) ).

% div_mult_unit2
thf(fact_6029_div__mult__unit2,axiom,
    ! [C: nat,B: nat,A: nat] :
      ( ( dvd_dvd_nat @ C @ one_one_nat )
     => ( ( dvd_dvd_nat @ B @ A )
       => ( ( divide_divide_nat @ A @ ( times_times_nat @ B @ C ) )
          = ( divide_divide_nat @ ( divide_divide_nat @ A @ B ) @ C ) ) ) ) ).

% div_mult_unit2
thf(fact_6030_div__mult__unit2,axiom,
    ! [C: int,B: int,A: int] :
      ( ( dvd_dvd_int @ C @ one_one_int )
     => ( ( dvd_dvd_int @ B @ A )
       => ( ( divide_divide_int @ A @ ( times_times_int @ B @ C ) )
          = ( divide_divide_int @ ( divide_divide_int @ A @ B ) @ C ) ) ) ) ).

% div_mult_unit2
thf(fact_6031_unit__div__commute,axiom,
    ! [B: code_integer,A: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
     => ( ( times_3573771949741848930nteger @ ( divide6298287555418463151nteger @ A @ B ) @ C )
        = ( divide6298287555418463151nteger @ ( times_3573771949741848930nteger @ A @ C ) @ B ) ) ) ).

% unit_div_commute
thf(fact_6032_unit__div__commute,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( dvd_dvd_nat @ B @ one_one_nat )
     => ( ( times_times_nat @ ( divide_divide_nat @ A @ B ) @ C )
        = ( divide_divide_nat @ ( times_times_nat @ A @ C ) @ B ) ) ) ).

% unit_div_commute
thf(fact_6033_unit__div__commute,axiom,
    ! [B: int,A: int,C: int] :
      ( ( dvd_dvd_int @ B @ one_one_int )
     => ( ( times_times_int @ ( divide_divide_int @ A @ B ) @ C )
        = ( divide_divide_int @ ( times_times_int @ A @ C ) @ B ) ) ) ).

% unit_div_commute
thf(fact_6034_unit__div__mult__swap,axiom,
    ! [C: code_integer,A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ C @ one_one_Code_integer )
     => ( ( times_3573771949741848930nteger @ A @ ( divide6298287555418463151nteger @ B @ C ) )
        = ( divide6298287555418463151nteger @ ( times_3573771949741848930nteger @ A @ B ) @ C ) ) ) ).

% unit_div_mult_swap
thf(fact_6035_unit__div__mult__swap,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( dvd_dvd_nat @ C @ one_one_nat )
     => ( ( times_times_nat @ A @ ( divide_divide_nat @ B @ C ) )
        = ( divide_divide_nat @ ( times_times_nat @ A @ B ) @ C ) ) ) ).

% unit_div_mult_swap
thf(fact_6036_unit__div__mult__swap,axiom,
    ! [C: int,A: int,B: int] :
      ( ( dvd_dvd_int @ C @ one_one_int )
     => ( ( times_times_int @ A @ ( divide_divide_int @ B @ C ) )
        = ( divide_divide_int @ ( times_times_int @ A @ B ) @ C ) ) ) ).

% unit_div_mult_swap
thf(fact_6037_is__unit__div__mult2__eq,axiom,
    ! [B: code_integer,C: code_integer,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
     => ( ( dvd_dvd_Code_integer @ C @ one_one_Code_integer )
       => ( ( divide6298287555418463151nteger @ A @ ( times_3573771949741848930nteger @ B @ C ) )
          = ( divide6298287555418463151nteger @ ( divide6298287555418463151nteger @ A @ B ) @ C ) ) ) ) ).

% is_unit_div_mult2_eq
thf(fact_6038_is__unit__div__mult2__eq,axiom,
    ! [B: nat,C: nat,A: nat] :
      ( ( dvd_dvd_nat @ B @ one_one_nat )
     => ( ( dvd_dvd_nat @ C @ one_one_nat )
       => ( ( divide_divide_nat @ A @ ( times_times_nat @ B @ C ) )
          = ( divide_divide_nat @ ( divide_divide_nat @ A @ B ) @ C ) ) ) ) ).

% is_unit_div_mult2_eq
thf(fact_6039_is__unit__div__mult2__eq,axiom,
    ! [B: int,C: int,A: int] :
      ( ( dvd_dvd_int @ B @ one_one_int )
     => ( ( dvd_dvd_int @ C @ one_one_int )
       => ( ( divide_divide_int @ A @ ( times_times_int @ B @ C ) )
          = ( divide_divide_int @ ( divide_divide_int @ A @ B ) @ C ) ) ) ) ).

% is_unit_div_mult2_eq
thf(fact_6040_is__unit__power__iff,axiom,
    ! [A: code_integer,N: nat] :
      ( ( dvd_dvd_Code_integer @ ( power_8256067586552552935nteger @ A @ N ) @ one_one_Code_integer )
      = ( ( dvd_dvd_Code_integer @ A @ one_one_Code_integer )
        | ( N = zero_zero_nat ) ) ) ).

% is_unit_power_iff
thf(fact_6041_is__unit__power__iff,axiom,
    ! [A: nat,N: nat] :
      ( ( dvd_dvd_nat @ ( power_power_nat @ A @ N ) @ one_one_nat )
      = ( ( dvd_dvd_nat @ A @ one_one_nat )
        | ( N = zero_zero_nat ) ) ) ).

% is_unit_power_iff
thf(fact_6042_is__unit__power__iff,axiom,
    ! [A: int,N: nat] :
      ( ( dvd_dvd_int @ ( power_power_int @ A @ N ) @ one_one_int )
      = ( ( dvd_dvd_int @ A @ one_one_int )
        | ( N = zero_zero_nat ) ) ) ).

% is_unit_power_iff
thf(fact_6043_unit__imp__mod__eq__0,axiom,
    ! [B: nat,A: nat] :
      ( ( dvd_dvd_nat @ B @ one_one_nat )
     => ( ( modulo_modulo_nat @ A @ B )
        = zero_zero_nat ) ) ).

% unit_imp_mod_eq_0
thf(fact_6044_unit__imp__mod__eq__0,axiom,
    ! [B: int,A: int] :
      ( ( dvd_dvd_int @ B @ one_one_int )
     => ( ( modulo_modulo_int @ A @ B )
        = zero_zero_int ) ) ).

% unit_imp_mod_eq_0
thf(fact_6045_unit__imp__mod__eq__0,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
     => ( ( modulo364778990260209775nteger @ A @ B )
        = zero_z3403309356797280102nteger ) ) ).

% unit_imp_mod_eq_0
thf(fact_6046_dvd__imp__le,axiom,
    ! [K: nat,N: nat] :
      ( ( dvd_dvd_nat @ K @ N )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ord_less_eq_nat @ K @ N ) ) ) ).

% dvd_imp_le
thf(fact_6047_nat__mult__dvd__cancel1,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ K )
     => ( ( dvd_dvd_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
        = ( dvd_dvd_nat @ M @ N ) ) ) ).

% nat_mult_dvd_cancel1
thf(fact_6048_dvd__mult__cancel,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( dvd_dvd_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
     => ( ( ord_less_nat @ zero_zero_nat @ K )
       => ( dvd_dvd_nat @ M @ N ) ) ) ).

% dvd_mult_cancel
thf(fact_6049_bezout__add__strong__nat,axiom,
    ! [A: nat,B: nat] :
      ( ( A != zero_zero_nat )
     => ? [D4: nat,X4: nat,Y3: nat] :
          ( ( dvd_dvd_nat @ D4 @ A )
          & ( dvd_dvd_nat @ D4 @ B )
          & ( ( times_times_nat @ A @ X4 )
            = ( plus_plus_nat @ ( times_times_nat @ B @ Y3 ) @ D4 ) ) ) ) ).

% bezout_add_strong_nat
thf(fact_6050_zdvd__imp__le,axiom,
    ! [Z: int,N: int] :
      ( ( dvd_dvd_int @ Z @ N )
     => ( ( ord_less_int @ zero_zero_int @ N )
       => ( ord_less_eq_int @ Z @ N ) ) ) ).

% zdvd_imp_le
thf(fact_6051_mod__greater__zero__iff__not__dvd,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( modulo_modulo_nat @ M @ N ) )
      = ( ~ ( dvd_dvd_nat @ N @ M ) ) ) ).

% mod_greater_zero_iff_not_dvd
thf(fact_6052_mod__eq__dvd__iff__nat,axiom,
    ! [N: nat,M: nat,Q2: nat] :
      ( ( ord_less_eq_nat @ N @ M )
     => ( ( ( modulo_modulo_nat @ M @ Q2 )
          = ( modulo_modulo_nat @ N @ Q2 ) )
        = ( dvd_dvd_nat @ Q2 @ ( minus_minus_nat @ M @ N ) ) ) ) ).

% mod_eq_dvd_iff_nat
thf(fact_6053_prod__decode__aux_Ocases,axiom,
    ! [X2: product_prod_nat_nat] :
      ~ ! [K3: nat,M4: nat] :
          ( X2
         != ( product_Pair_nat_nat @ K3 @ M4 ) ) ).

% prod_decode_aux.cases
thf(fact_6054_finite__divisors__nat,axiom,
    ! [M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ M )
     => ( finite_finite_nat
        @ ( collect_nat
          @ ^ [D2: nat] : ( dvd_dvd_nat @ D2 @ M ) ) ) ) ).

% finite_divisors_nat
thf(fact_6055_even__zero,axiom,
    dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ zero_z3403309356797280102nteger ).

% even_zero
thf(fact_6056_even__zero,axiom,
    dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ zero_zero_nat ).

% even_zero
thf(fact_6057_even__zero,axiom,
    dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ zero_zero_int ).

% even_zero
thf(fact_6058_is__unitE,axiom,
    ! [A: code_integer,C: code_integer] :
      ( ( dvd_dvd_Code_integer @ A @ one_one_Code_integer )
     => ~ ( ( A != zero_z3403309356797280102nteger )
         => ! [B7: code_integer] :
              ( ( B7 != zero_z3403309356797280102nteger )
             => ( ( dvd_dvd_Code_integer @ B7 @ one_one_Code_integer )
               => ( ( ( divide6298287555418463151nteger @ one_one_Code_integer @ A )
                    = B7 )
                 => ( ( ( divide6298287555418463151nteger @ one_one_Code_integer @ B7 )
                      = A )
                   => ( ( ( times_3573771949741848930nteger @ A @ B7 )
                        = one_one_Code_integer )
                     => ( ( divide6298287555418463151nteger @ C @ A )
                       != ( times_3573771949741848930nteger @ C @ B7 ) ) ) ) ) ) ) ) ) ).

% is_unitE
thf(fact_6059_is__unitE,axiom,
    ! [A: nat,C: nat] :
      ( ( dvd_dvd_nat @ A @ one_one_nat )
     => ~ ( ( A != zero_zero_nat )
         => ! [B7: nat] :
              ( ( B7 != zero_zero_nat )
             => ( ( dvd_dvd_nat @ B7 @ one_one_nat )
               => ( ( ( divide_divide_nat @ one_one_nat @ A )
                    = B7 )
                 => ( ( ( divide_divide_nat @ one_one_nat @ B7 )
                      = A )
                   => ( ( ( times_times_nat @ A @ B7 )
                        = one_one_nat )
                     => ( ( divide_divide_nat @ C @ A )
                       != ( times_times_nat @ C @ B7 ) ) ) ) ) ) ) ) ) ).

% is_unitE
thf(fact_6060_is__unitE,axiom,
    ! [A: int,C: int] :
      ( ( dvd_dvd_int @ A @ one_one_int )
     => ~ ( ( A != zero_zero_int )
         => ! [B7: int] :
              ( ( B7 != zero_zero_int )
             => ( ( dvd_dvd_int @ B7 @ one_one_int )
               => ( ( ( divide_divide_int @ one_one_int @ A )
                    = B7 )
                 => ( ( ( divide_divide_int @ one_one_int @ B7 )
                      = A )
                   => ( ( ( times_times_int @ A @ B7 )
                        = one_one_int )
                     => ( ( divide_divide_int @ C @ A )
                       != ( times_times_int @ C @ B7 ) ) ) ) ) ) ) ) ) ).

% is_unitE
thf(fact_6061_is__unit__div__mult__cancel__left,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( A != zero_z3403309356797280102nteger )
     => ( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
       => ( ( divide6298287555418463151nteger @ A @ ( times_3573771949741848930nteger @ A @ B ) )
          = ( divide6298287555418463151nteger @ one_one_Code_integer @ B ) ) ) ) ).

% is_unit_div_mult_cancel_left
thf(fact_6062_is__unit__div__mult__cancel__left,axiom,
    ! [A: nat,B: nat] :
      ( ( A != zero_zero_nat )
     => ( ( dvd_dvd_nat @ B @ one_one_nat )
       => ( ( divide_divide_nat @ A @ ( times_times_nat @ A @ B ) )
          = ( divide_divide_nat @ one_one_nat @ B ) ) ) ) ).

% is_unit_div_mult_cancel_left
thf(fact_6063_is__unit__div__mult__cancel__left,axiom,
    ! [A: int,B: int] :
      ( ( A != zero_zero_int )
     => ( ( dvd_dvd_int @ B @ one_one_int )
       => ( ( divide_divide_int @ A @ ( times_times_int @ A @ B ) )
          = ( divide_divide_int @ one_one_int @ B ) ) ) ) ).

% is_unit_div_mult_cancel_left
thf(fact_6064_is__unit__div__mult__cancel__right,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( A != zero_z3403309356797280102nteger )
     => ( ( dvd_dvd_Code_integer @ B @ one_one_Code_integer )
       => ( ( divide6298287555418463151nteger @ A @ ( times_3573771949741848930nteger @ B @ A ) )
          = ( divide6298287555418463151nteger @ one_one_Code_integer @ B ) ) ) ) ).

% is_unit_div_mult_cancel_right
thf(fact_6065_is__unit__div__mult__cancel__right,axiom,
    ! [A: nat,B: nat] :
      ( ( A != zero_zero_nat )
     => ( ( dvd_dvd_nat @ B @ one_one_nat )
       => ( ( divide_divide_nat @ A @ ( times_times_nat @ B @ A ) )
          = ( divide_divide_nat @ one_one_nat @ B ) ) ) ) ).

% is_unit_div_mult_cancel_right
thf(fact_6066_is__unit__div__mult__cancel__right,axiom,
    ! [A: int,B: int] :
      ( ( A != zero_zero_int )
     => ( ( dvd_dvd_int @ B @ one_one_int )
       => ( ( divide_divide_int @ A @ ( times_times_int @ B @ A ) )
          = ( divide_divide_int @ one_one_int @ B ) ) ) ) ).

% is_unit_div_mult_cancel_right
thf(fact_6067_evenE,axiom,
    ! [A: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
     => ~ ! [B7: code_integer] :
            ( A
           != ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B7 ) ) ) ).

% evenE
thf(fact_6068_evenE,axiom,
    ! [A: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
     => ~ ! [B7: nat] :
            ( A
           != ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B7 ) ) ) ).

% evenE
thf(fact_6069_evenE,axiom,
    ! [A: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
     => ~ ! [B7: int] :
            ( A
           != ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B7 ) ) ) ).

% evenE
thf(fact_6070_odd__one,axiom,
    ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ one_one_Code_integer ) ).

% odd_one
thf(fact_6071_odd__one,axiom,
    ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ one_one_nat ) ).

% odd_one
thf(fact_6072_odd__one,axiom,
    ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ one_one_int ) ).

% odd_one
thf(fact_6073_odd__even__add,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
     => ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B )
       => ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( plus_p5714425477246183910nteger @ A @ B ) ) ) ) ).

% odd_even_add
thf(fact_6074_odd__even__add,axiom,
    ! [A: nat,B: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
     => ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B )
       => ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% odd_even_add
thf(fact_6075_odd__even__add,axiom,
    ! [A: int,B: int] :
      ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
     => ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B )
       => ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ A @ B ) ) ) ) ).

% odd_even_add
thf(fact_6076_bit__eq__rec,axiom,
    ( ( ^ [Y6: code_integer,Z5: code_integer] : ( Y6 = Z5 ) )
    = ( ^ [A3: code_integer,B2: code_integer] :
          ( ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A3 )
            = ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B2 ) )
          & ( ( divide6298287555418463151nteger @ A3 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
            = ( divide6298287555418463151nteger @ B2 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ) ).

% bit_eq_rec
thf(fact_6077_bit__eq__rec,axiom,
    ( ( ^ [Y6: nat,Z5: nat] : ( Y6 = Z5 ) )
    = ( ^ [A3: nat,B2: nat] :
          ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A3 )
            = ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B2 ) )
          & ( ( divide_divide_nat @ A3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
            = ( divide_divide_nat @ B2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% bit_eq_rec
thf(fact_6078_bit__eq__rec,axiom,
    ( ( ^ [Y6: int,Z5: int] : ( Y6 = Z5 ) )
    = ( ^ [A3: int,B2: int] :
          ( ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A3 )
            = ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B2 ) )
          & ( ( divide_divide_int @ A3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
            = ( divide_divide_int @ B2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ).

% bit_eq_rec
thf(fact_6079_dvd__power__iff,axiom,
    ! [X2: code_integer,M: nat,N: nat] :
      ( ( X2 != zero_z3403309356797280102nteger )
     => ( ( dvd_dvd_Code_integer @ ( power_8256067586552552935nteger @ X2 @ M ) @ ( power_8256067586552552935nteger @ X2 @ N ) )
        = ( ( dvd_dvd_Code_integer @ X2 @ one_one_Code_integer )
          | ( ord_less_eq_nat @ M @ N ) ) ) ) ).

% dvd_power_iff
thf(fact_6080_dvd__power__iff,axiom,
    ! [X2: nat,M: nat,N: nat] :
      ( ( X2 != zero_zero_nat )
     => ( ( dvd_dvd_nat @ ( power_power_nat @ X2 @ M ) @ ( power_power_nat @ X2 @ N ) )
        = ( ( dvd_dvd_nat @ X2 @ one_one_nat )
          | ( ord_less_eq_nat @ M @ N ) ) ) ) ).

% dvd_power_iff
thf(fact_6081_dvd__power__iff,axiom,
    ! [X2: int,M: nat,N: nat] :
      ( ( X2 != zero_zero_int )
     => ( ( dvd_dvd_int @ ( power_power_int @ X2 @ M ) @ ( power_power_int @ X2 @ N ) )
        = ( ( dvd_dvd_int @ X2 @ one_one_int )
          | ( ord_less_eq_nat @ M @ N ) ) ) ) ).

% dvd_power_iff
thf(fact_6082_odd__numeral,axiom,
    ! [N: num] :
      ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( numera6620942414471956472nteger @ ( bit1 @ N ) ) ) ).

% odd_numeral
thf(fact_6083_odd__numeral,axiom,
    ! [N: num] :
      ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ ( bit1 @ N ) ) ) ).

% odd_numeral
thf(fact_6084_odd__numeral,axiom,
    ! [N: num] :
      ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) ).

% odd_numeral
thf(fact_6085_dvd__power,axiom,
    ! [N: nat,X2: code_integer] :
      ( ( ( ord_less_nat @ zero_zero_nat @ N )
        | ( X2 = one_one_Code_integer ) )
     => ( dvd_dvd_Code_integer @ X2 @ ( power_8256067586552552935nteger @ X2 @ N ) ) ) ).

% dvd_power
thf(fact_6086_dvd__power,axiom,
    ! [N: nat,X2: rat] :
      ( ( ( ord_less_nat @ zero_zero_nat @ N )
        | ( X2 = one_one_rat ) )
     => ( dvd_dvd_rat @ X2 @ ( power_power_rat @ X2 @ N ) ) ) ).

% dvd_power
thf(fact_6087_dvd__power,axiom,
    ! [N: nat,X2: nat] :
      ( ( ( ord_less_nat @ zero_zero_nat @ N )
        | ( X2 = one_one_nat ) )
     => ( dvd_dvd_nat @ X2 @ ( power_power_nat @ X2 @ N ) ) ) ).

% dvd_power
thf(fact_6088_dvd__power,axiom,
    ! [N: nat,X2: real] :
      ( ( ( ord_less_nat @ zero_zero_nat @ N )
        | ( X2 = one_one_real ) )
     => ( dvd_dvd_real @ X2 @ ( power_power_real @ X2 @ N ) ) ) ).

% dvd_power
thf(fact_6089_dvd__power,axiom,
    ! [N: nat,X2: complex] :
      ( ( ( ord_less_nat @ zero_zero_nat @ N )
        | ( X2 = one_one_complex ) )
     => ( dvd_dvd_complex @ X2 @ ( power_power_complex @ X2 @ N ) ) ) ).

% dvd_power
thf(fact_6090_dvd__power,axiom,
    ! [N: nat,X2: int] :
      ( ( ( ord_less_nat @ zero_zero_nat @ N )
        | ( X2 = one_one_int ) )
     => ( dvd_dvd_int @ X2 @ ( power_power_int @ X2 @ N ) ) ) ).

% dvd_power
thf(fact_6091_even__even__mod__4__iff,axiom,
    ! [N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
      = ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( modulo_modulo_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ) ).

% even_even_mod_4_iff
thf(fact_6092_dvd__mult__cancel2,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ M )
     => ( ( dvd_dvd_nat @ ( times_times_nat @ N @ M ) @ M )
        = ( N = one_one_nat ) ) ) ).

% dvd_mult_cancel2
thf(fact_6093_dvd__mult__cancel1,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ M )
     => ( ( dvd_dvd_nat @ ( times_times_nat @ M @ N ) @ M )
        = ( N = one_one_nat ) ) ) ).

% dvd_mult_cancel1
thf(fact_6094_odd__numeral__BitM,axiom,
    ! [W: num] :
      ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( numera6620942414471956472nteger @ ( bitM @ W ) ) ) ).

% odd_numeral_BitM
thf(fact_6095_odd__numeral__BitM,axiom,
    ! [W: num] :
      ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ ( bitM @ W ) ) ) ).

% odd_numeral_BitM
thf(fact_6096_odd__numeral__BitM,axiom,
    ! [W: num] :
      ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( numeral_numeral_int @ ( bitM @ W ) ) ) ).

% odd_numeral_BitM
thf(fact_6097_dvd__minus__add,axiom,
    ! [Q2: nat,N: nat,R2: nat,M: nat] :
      ( ( ord_less_eq_nat @ Q2 @ N )
     => ( ( ord_less_eq_nat @ Q2 @ ( times_times_nat @ R2 @ M ) )
       => ( ( dvd_dvd_nat @ M @ ( minus_minus_nat @ N @ Q2 ) )
          = ( dvd_dvd_nat @ M @ ( plus_plus_nat @ N @ ( minus_minus_nat @ ( times_times_nat @ R2 @ M ) @ Q2 ) ) ) ) ) ) ).

% dvd_minus_add
thf(fact_6098_power__dvd__imp__le,axiom,
    ! [I: nat,M: nat,N: nat] :
      ( ( dvd_dvd_nat @ ( power_power_nat @ I @ M ) @ ( power_power_nat @ I @ N ) )
     => ( ( ord_less_nat @ one_one_nat @ I )
       => ( ord_less_eq_nat @ M @ N ) ) ) ).

% power_dvd_imp_le
thf(fact_6099_mod__nat__eqI,axiom,
    ! [R2: nat,N: nat,M: nat] :
      ( ( ord_less_nat @ R2 @ N )
     => ( ( ord_less_eq_nat @ R2 @ M )
       => ( ( dvd_dvd_nat @ N @ ( minus_minus_nat @ M @ R2 ) )
         => ( ( modulo_modulo_nat @ M @ N )
            = R2 ) ) ) ) ).

% mod_nat_eqI
thf(fact_6100_mod__int__pos__iff,axiom,
    ! [K: int,L: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( modulo_modulo_int @ K @ L ) )
      = ( ( dvd_dvd_int @ L @ K )
        | ( ( L = zero_zero_int )
          & ( ord_less_eq_int @ zero_zero_int @ K ) )
        | ( ord_less_int @ zero_zero_int @ L ) ) ) ).

% mod_int_pos_iff
thf(fact_6101_bset_I9_J,axiom,
    ! [D: int,D3: int,B3: set_int,T: int] :
      ( ( dvd_dvd_int @ D @ D3 )
     => ! [X3: int] :
          ( ! [Xa3: int] :
              ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
             => ! [Xb3: int] :
                  ( ( member_int @ Xb3 @ B3 )
                 => ( X3
                   != ( plus_plus_int @ Xb3 @ Xa3 ) ) ) )
         => ( ( dvd_dvd_int @ D @ ( plus_plus_int @ X3 @ T ) )
           => ( dvd_dvd_int @ D @ ( plus_plus_int @ ( minus_minus_int @ X3 @ D3 ) @ T ) ) ) ) ) ).

% bset(9)
thf(fact_6102_bset_I10_J,axiom,
    ! [D: int,D3: int,B3: set_int,T: int] :
      ( ( dvd_dvd_int @ D @ D3 )
     => ! [X3: int] :
          ( ! [Xa3: int] :
              ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
             => ! [Xb3: int] :
                  ( ( member_int @ Xb3 @ B3 )
                 => ( X3
                   != ( plus_plus_int @ Xb3 @ Xa3 ) ) ) )
         => ( ~ ( dvd_dvd_int @ D @ ( plus_plus_int @ X3 @ T ) )
           => ~ ( dvd_dvd_int @ D @ ( plus_plus_int @ ( minus_minus_int @ X3 @ D3 ) @ T ) ) ) ) ) ).

% bset(10)
thf(fact_6103_aset_I9_J,axiom,
    ! [D: int,D3: int,A2: set_int,T: int] :
      ( ( dvd_dvd_int @ D @ D3 )
     => ! [X3: int] :
          ( ! [Xa3: int] :
              ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
             => ! [Xb3: int] :
                  ( ( member_int @ Xb3 @ A2 )
                 => ( X3
                   != ( minus_minus_int @ Xb3 @ Xa3 ) ) ) )
         => ( ( dvd_dvd_int @ D @ ( plus_plus_int @ X3 @ T ) )
           => ( dvd_dvd_int @ D @ ( plus_plus_int @ ( plus_plus_int @ X3 @ D3 ) @ T ) ) ) ) ) ).

% aset(9)
thf(fact_6104_aset_I10_J,axiom,
    ! [D: int,D3: int,A2: set_int,T: int] :
      ( ( dvd_dvd_int @ D @ D3 )
     => ! [X3: int] :
          ( ! [Xa3: int] :
              ( ( member_int @ Xa3 @ ( set_or1266510415728281911st_int @ one_one_int @ D3 ) )
             => ! [Xb3: int] :
                  ( ( member_int @ Xb3 @ A2 )
                 => ( X3
                   != ( minus_minus_int @ Xb3 @ Xa3 ) ) ) )
         => ( ~ ( dvd_dvd_int @ D @ ( plus_plus_int @ X3 @ T ) )
           => ~ ( dvd_dvd_int @ D @ ( plus_plus_int @ ( plus_plus_int @ X3 @ D3 ) @ T ) ) ) ) ) ).

% aset(10)
thf(fact_6105_even__two__times__div__two,axiom,
    ! [A: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
     => ( ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) )
        = A ) ) ).

% even_two_times_div_two
thf(fact_6106_even__two__times__div__two,axiom,
    ! [A: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
     => ( ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
        = A ) ) ).

% even_two_times_div_two
thf(fact_6107_even__two__times__div__two,axiom,
    ! [A: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
     => ( ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) )
        = A ) ) ).

% even_two_times_div_two
thf(fact_6108_even__iff__mod__2__eq__zero,axiom,
    ! [A: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
      = ( ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = zero_zero_nat ) ) ).

% even_iff_mod_2_eq_zero
thf(fact_6109_even__iff__mod__2__eq__zero,axiom,
    ! [A: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
      = ( ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
        = zero_zero_int ) ) ).

% even_iff_mod_2_eq_zero
thf(fact_6110_even__iff__mod__2__eq__zero,axiom,
    ! [A: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
      = ( ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
        = zero_z3403309356797280102nteger ) ) ).

% even_iff_mod_2_eq_zero
thf(fact_6111_odd__iff__mod__2__eq__one,axiom,
    ! [A: nat] :
      ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) )
      = ( ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = one_one_nat ) ) ).

% odd_iff_mod_2_eq_one
thf(fact_6112_odd__iff__mod__2__eq__one,axiom,
    ! [A: int] :
      ( ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) )
      = ( ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
        = one_one_int ) ) ).

% odd_iff_mod_2_eq_one
thf(fact_6113_odd__iff__mod__2__eq__one,axiom,
    ! [A: code_integer] :
      ( ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) )
      = ( ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
        = one_one_Code_integer ) ) ).

% odd_iff_mod_2_eq_one
thf(fact_6114_power__mono__odd,axiom,
    ! [N: nat,A: real,B: real] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( ord_less_eq_real @ A @ B )
       => ( ord_less_eq_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ B @ N ) ) ) ) ).

% power_mono_odd
thf(fact_6115_power__mono__odd,axiom,
    ! [N: nat,A: rat,B: rat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( ord_less_eq_rat @ A @ B )
       => ( ord_less_eq_rat @ ( power_power_rat @ A @ N ) @ ( power_power_rat @ B @ N ) ) ) ) ).

% power_mono_odd
thf(fact_6116_power__mono__odd,axiom,
    ! [N: nat,A: int,B: int] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( ord_less_eq_int @ A @ B )
       => ( ord_less_eq_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ B @ N ) ) ) ) ).

% power_mono_odd
thf(fact_6117_odd__pos,axiom,
    ! [N: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% odd_pos
thf(fact_6118_dvd__power__iff__le,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K )
     => ( ( dvd_dvd_nat @ ( power_power_nat @ K @ M ) @ ( power_power_nat @ K @ N ) )
        = ( ord_less_eq_nat @ M @ N ) ) ) ).

% dvd_power_iff_le
thf(fact_6119_signed__take__bit__int__less__exp,axiom,
    ! [N: nat,K: int] : ( ord_less_int @ ( bit_ri631733984087533419it_int @ N @ K ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ).

% signed_take_bit_int_less_exp
thf(fact_6120_even__unset__bit__iff,axiom,
    ! [M: nat,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_se8260200283734997820nteger @ M @ A ) )
      = ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
        | ( M = zero_zero_nat ) ) ) ).

% even_unset_bit_iff
thf(fact_6121_even__unset__bit__iff,axiom,
    ! [M: nat,A: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se4203085406695923979it_int @ M @ A ) )
      = ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
        | ( M = zero_zero_nat ) ) ) ).

% even_unset_bit_iff
thf(fact_6122_even__unset__bit__iff,axiom,
    ! [M: nat,A: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se4205575877204974255it_nat @ M @ A ) )
      = ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
        | ( M = zero_zero_nat ) ) ) ).

% even_unset_bit_iff
thf(fact_6123_even__set__bit__iff,axiom,
    ! [M: nat,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_se2793503036327961859nteger @ M @ A ) )
      = ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
        & ( M != zero_zero_nat ) ) ) ).

% even_set_bit_iff
thf(fact_6124_even__set__bit__iff,axiom,
    ! [M: nat,A: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se7879613467334960850it_int @ M @ A ) )
      = ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
        & ( M != zero_zero_nat ) ) ) ).

% even_set_bit_iff
thf(fact_6125_even__set__bit__iff,axiom,
    ! [M: nat,A: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se7882103937844011126it_nat @ M @ A ) )
      = ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
        & ( M != zero_zero_nat ) ) ) ).

% even_set_bit_iff
thf(fact_6126_even__flip__bit__iff,axiom,
    ! [M: nat,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_se1345352211410354436nteger @ M @ A ) )
      = ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
       != ( M = zero_zero_nat ) ) ) ).

% even_flip_bit_iff
thf(fact_6127_even__flip__bit__iff,axiom,
    ! [M: nat,A: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se2159334234014336723it_int @ M @ A ) )
      = ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
       != ( M = zero_zero_nat ) ) ) ).

% even_flip_bit_iff
thf(fact_6128_even__flip__bit__iff,axiom,
    ! [M: nat,A: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se2161824704523386999it_nat @ M @ A ) )
      = ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
       != ( M = zero_zero_nat ) ) ) ).

% even_flip_bit_iff
thf(fact_6129_even__diff__iff,axiom,
    ! [K: int,L: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( minus_minus_int @ K @ L ) )
      = ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ K @ L ) ) ) ).

% even_diff_iff
thf(fact_6130_oddE,axiom,
    ! [A: code_integer] :
      ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
     => ~ ! [B7: code_integer] :
            ( A
           != ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B7 ) @ one_one_Code_integer ) ) ) ).

% oddE
thf(fact_6131_oddE,axiom,
    ! [A: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
     => ~ ! [B7: nat] :
            ( A
           != ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B7 ) @ one_one_nat ) ) ) ).

% oddE
thf(fact_6132_oddE,axiom,
    ! [A: int] :
      ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
     => ~ ! [B7: int] :
            ( A
           != ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B7 ) @ one_one_int ) ) ) ).

% oddE
thf(fact_6133_mod2__eq__if,axiom,
    ! [A: nat] :
      ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
       => ( ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
          = zero_zero_nat ) )
      & ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
       => ( ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
          = one_one_nat ) ) ) ).

% mod2_eq_if
thf(fact_6134_mod2__eq__if,axiom,
    ! [A: int] :
      ( ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
       => ( ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
          = zero_zero_int ) )
      & ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
       => ( ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
          = one_one_int ) ) ) ).

% mod2_eq_if
thf(fact_6135_mod2__eq__if,axiom,
    ! [A: code_integer] :
      ( ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
       => ( ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
          = zero_z3403309356797280102nteger ) )
      & ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
       => ( ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
          = one_one_Code_integer ) ) ) ).

% mod2_eq_if
thf(fact_6136_parity__cases,axiom,
    ! [A: nat] :
      ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
       => ( ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
         != zero_zero_nat ) )
     => ~ ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
         => ( ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
           != one_one_nat ) ) ) ).

% parity_cases
thf(fact_6137_parity__cases,axiom,
    ! [A: int] :
      ( ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
       => ( ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
         != zero_zero_int ) )
     => ~ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
         => ( ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
           != one_one_int ) ) ) ).

% parity_cases
thf(fact_6138_parity__cases,axiom,
    ! [A: code_integer] :
      ( ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
       => ( ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
         != zero_z3403309356797280102nteger ) )
     => ~ ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
         => ( ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
           != one_one_Code_integer ) ) ) ).

% parity_cases
thf(fact_6139_zero__le__power__eq,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ A @ N ) )
      = ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
        | ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
          & ( ord_less_eq_real @ zero_zero_real @ A ) ) ) ) ).

% zero_le_power_eq
thf(fact_6140_zero__le__power__eq,axiom,
    ! [A: rat,N: nat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ ( power_power_rat @ A @ N ) )
      = ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
        | ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
          & ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ) ) ).

% zero_le_power_eq
thf(fact_6141_zero__le__power__eq,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ A @ N ) )
      = ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
        | ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
          & ( ord_less_eq_int @ zero_zero_int @ A ) ) ) ) ).

% zero_le_power_eq
thf(fact_6142_zero__le__odd__power,axiom,
    ! [N: nat,A: real] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ A @ N ) )
        = ( ord_less_eq_real @ zero_zero_real @ A ) ) ) ).

% zero_le_odd_power
thf(fact_6143_zero__le__odd__power,axiom,
    ! [N: nat,A: rat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( ord_less_eq_rat @ zero_zero_rat @ ( power_power_rat @ A @ N ) )
        = ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ) ).

% zero_le_odd_power
thf(fact_6144_zero__le__odd__power,axiom,
    ! [N: nat,A: int] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ A @ N ) )
        = ( ord_less_eq_int @ zero_zero_int @ A ) ) ) ).

% zero_le_odd_power
thf(fact_6145_zero__le__even__power,axiom,
    ! [N: nat,A: real] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ A @ N ) ) ) ).

% zero_le_even_power
thf(fact_6146_zero__le__even__power,axiom,
    ! [N: nat,A: rat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ord_less_eq_rat @ zero_zero_rat @ ( power_power_rat @ A @ N ) ) ) ).

% zero_le_even_power
thf(fact_6147_zero__le__even__power,axiom,
    ! [N: nat,A: int] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ A @ N ) ) ) ).

% zero_le_even_power
thf(fact_6148_signed__take__bit__int__greater__eq__self__iff,axiom,
    ! [K: int,N: nat] :
      ( ( ord_less_eq_int @ K @ ( bit_ri631733984087533419it_int @ N @ K ) )
      = ( ord_less_int @ K @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ).

% signed_take_bit_int_greater_eq_self_iff
thf(fact_6149_signed__take__bit__int__less__self__iff,axiom,
    ! [N: nat,K: int] :
      ( ( ord_less_int @ ( bit_ri631733984087533419it_int @ N @ K ) @ K )
      = ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) @ K ) ) ).

% signed_take_bit_int_less_self_iff
thf(fact_6150_list__decode_Ocases,axiom,
    ! [X2: nat] :
      ( ( X2 != zero_zero_nat )
     => ~ ! [N3: nat] :
            ( X2
           != ( suc @ N3 ) ) ) ).

% list_decode.cases
thf(fact_6151_zero__less__power__eq,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_real @ zero_zero_real @ ( power_power_real @ A @ N ) )
      = ( ( N = zero_zero_nat )
        | ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
          & ( A != zero_zero_real ) )
        | ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
          & ( ord_less_real @ zero_zero_real @ A ) ) ) ) ).

% zero_less_power_eq
thf(fact_6152_zero__less__power__eq,axiom,
    ! [A: rat,N: nat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( power_power_rat @ A @ N ) )
      = ( ( N = zero_zero_nat )
        | ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
          & ( A != zero_zero_rat ) )
        | ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
          & ( ord_less_rat @ zero_zero_rat @ A ) ) ) ) ).

% zero_less_power_eq
thf(fact_6153_zero__less__power__eq,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_int @ zero_zero_int @ ( power_power_int @ A @ N ) )
      = ( ( N = zero_zero_nat )
        | ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
          & ( A != zero_zero_int ) )
        | ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
          & ( ord_less_int @ zero_zero_int @ A ) ) ) ) ).

% zero_less_power_eq
thf(fact_6154_signed__take__bit__int__less__eq,axiom,
    ! [N: nat,K: int] :
      ( ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) @ K )
     => ( ord_less_eq_int @ ( bit_ri631733984087533419it_int @ N @ K ) @ ( minus_minus_int @ K @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( suc @ N ) ) ) ) ) ).

% signed_take_bit_int_less_eq
thf(fact_6155_even__mask__div__iff_H,axiom,
    ! [M: nat,N: nat] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( divide6298287555418463151nteger @ ( minus_8373710615458151222nteger @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) @ one_one_Code_integer ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% even_mask_div_iff'
thf(fact_6156_even__mask__div__iff_H,axiom,
    ! [M: nat,N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( minus_minus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) @ one_one_nat ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% even_mask_div_iff'
thf(fact_6157_even__mask__div__iff_H,axiom,
    ! [M: nat,N: nat] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ ( minus_minus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) @ one_one_int ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% even_mask_div_iff'
thf(fact_6158_power__le__zero__eq,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_eq_real @ ( power_power_real @ A @ N ) @ zero_zero_real )
      = ( ( ord_less_nat @ zero_zero_nat @ N )
        & ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
            & ( ord_less_eq_real @ A @ zero_zero_real ) )
          | ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
            & ( A = zero_zero_real ) ) ) ) ) ).

% power_le_zero_eq
thf(fact_6159_power__le__zero__eq,axiom,
    ! [A: rat,N: nat] :
      ( ( ord_less_eq_rat @ ( power_power_rat @ A @ N ) @ zero_zero_rat )
      = ( ( ord_less_nat @ zero_zero_nat @ N )
        & ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
            & ( ord_less_eq_rat @ A @ zero_zero_rat ) )
          | ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
            & ( A = zero_zero_rat ) ) ) ) ) ).

% power_le_zero_eq
thf(fact_6160_power__le__zero__eq,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_eq_int @ ( power_power_int @ A @ N ) @ zero_zero_int )
      = ( ( ord_less_nat @ zero_zero_nat @ N )
        & ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
            & ( ord_less_eq_int @ A @ zero_zero_int ) )
          | ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
            & ( A = zero_zero_int ) ) ) ) ) ).

% power_le_zero_eq
thf(fact_6161_option_Osize__gen_I1_J,axiom,
    ! [X2: product_prod_nat_nat > nat] :
      ( ( size_o8335143837870341156at_nat @ X2 @ none_P5556105721700978146at_nat )
      = ( suc @ zero_zero_nat ) ) ).

% option.size_gen(1)
thf(fact_6162_option_Osize__gen_I1_J,axiom,
    ! [X2: nat > nat] :
      ( ( size_option_nat @ X2 @ none_nat )
      = ( suc @ zero_zero_nat ) ) ).

% option.size_gen(1)
thf(fact_6163_even__mod__4__div__2,axiom,
    ! [N: nat] :
      ( ( ( modulo_modulo_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
        = ( suc @ zero_zero_nat ) )
     => ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% even_mod_4_div_2
thf(fact_6164_divmod__step__nat__def,axiom,
    ( unique5026877609467782581ep_nat
    = ( ^ [L2: num] :
          ( produc2626176000494625587at_nat
          @ ^ [Q4: nat,R5: nat] : ( if_Pro6206227464963214023at_nat @ ( ord_less_eq_nat @ ( numeral_numeral_nat @ L2 ) @ R5 ) @ ( product_Pair_nat_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Q4 ) @ one_one_nat ) @ ( minus_minus_nat @ R5 @ ( numeral_numeral_nat @ L2 ) ) ) @ ( product_Pair_nat_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Q4 ) @ R5 ) ) ) ) ) ).

% divmod_step_nat_def
thf(fact_6165_even__mask__div__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( divide6298287555418463151nteger @ ( minus_8373710615458151222nteger @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) @ one_one_Code_integer ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) ) )
      = ( ( ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N )
          = zero_z3403309356797280102nteger )
        | ( ord_less_eq_nat @ M @ N ) ) ) ).

% even_mask_div_iff
thf(fact_6166_even__mask__div__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( minus_minus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) @ one_one_nat ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
      = ( ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
          = zero_zero_nat )
        | ( ord_less_eq_nat @ M @ N ) ) ) ).

% even_mask_div_iff
thf(fact_6167_even__mask__div__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ ( minus_minus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) @ one_one_int ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) )
      = ( ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N )
          = zero_zero_int )
        | ( ord_less_eq_nat @ M @ N ) ) ) ).

% even_mask_div_iff
thf(fact_6168_divmod__step__int__def,axiom,
    ( unique5024387138958732305ep_int
    = ( ^ [L2: num] :
          ( produc4245557441103728435nt_int
          @ ^ [Q4: int,R5: int] : ( if_Pro3027730157355071871nt_int @ ( ord_less_eq_int @ ( numeral_numeral_int @ L2 ) @ R5 ) @ ( product_Pair_int_int @ ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Q4 ) @ one_one_int ) @ ( minus_minus_int @ R5 @ ( numeral_numeral_int @ L2 ) ) ) @ ( product_Pair_int_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Q4 ) @ R5 ) ) ) ) ) ).

% divmod_step_int_def
thf(fact_6169_odd__mod__4__div__2,axiom,
    ! [N: nat] :
      ( ( ( modulo_modulo_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
        = ( numeral_numeral_nat @ ( bit1 @ one ) ) )
     => ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% odd_mod_4_div_2
thf(fact_6170_even__mult__exp__div__exp__iff,axiom,
    ! [A: code_integer,M: nat,N: nat] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( divide6298287555418463151nteger @ ( times_3573771949741848930nteger @ A @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) ) )
      = ( ( ord_less_nat @ N @ M )
        | ( ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N )
          = zero_z3403309356797280102nteger )
        | ( ( ord_less_eq_nat @ M @ N )
          & ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( divide6298287555418463151nteger @ A @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N @ M ) ) ) ) ) ) ) ).

% even_mult_exp_div_exp_iff
thf(fact_6171_even__mult__exp__div__exp__iff,axiom,
    ! [A: nat,M: nat,N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( times_times_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
      = ( ( ord_less_nat @ N @ M )
        | ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
          = zero_zero_nat )
        | ( ( ord_less_eq_nat @ M @ N )
          & ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N @ M ) ) ) ) ) ) ) ).

% even_mult_exp_div_exp_iff
thf(fact_6172_even__mult__exp__div__exp__iff,axiom,
    ! [A: int,M: nat,N: nat] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ ( times_times_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) )
      = ( ( ord_less_nat @ N @ M )
        | ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N )
          = zero_zero_int )
        | ( ( ord_less_eq_nat @ M @ N )
          & ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N @ M ) ) ) ) ) ) ) ).

% even_mult_exp_div_exp_iff
thf(fact_6173_divmod__step__def,axiom,
    ( unique5026877609467782581ep_nat
    = ( ^ [L2: num] :
          ( produc2626176000494625587at_nat
          @ ^ [Q4: nat,R5: nat] : ( if_Pro6206227464963214023at_nat @ ( ord_less_eq_nat @ ( numeral_numeral_nat @ L2 ) @ R5 ) @ ( product_Pair_nat_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Q4 ) @ one_one_nat ) @ ( minus_minus_nat @ R5 @ ( numeral_numeral_nat @ L2 ) ) ) @ ( product_Pair_nat_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Q4 ) @ R5 ) ) ) ) ) ).

% divmod_step_def
thf(fact_6174_divmod__step__def,axiom,
    ( unique5024387138958732305ep_int
    = ( ^ [L2: num] :
          ( produc4245557441103728435nt_int
          @ ^ [Q4: int,R5: int] : ( if_Pro3027730157355071871nt_int @ ( ord_less_eq_int @ ( numeral_numeral_int @ L2 ) @ R5 ) @ ( product_Pair_int_int @ ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Q4 ) @ one_one_int ) @ ( minus_minus_int @ R5 @ ( numeral_numeral_int @ L2 ) ) ) @ ( product_Pair_int_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Q4 ) @ R5 ) ) ) ) ) ).

% divmod_step_def
thf(fact_6175_divmod__step__def,axiom,
    ( unique4921790084139445826nteger
    = ( ^ [L2: num] :
          ( produc6916734918728496179nteger
          @ ^ [Q4: code_integer,R5: code_integer] : ( if_Pro6119634080678213985nteger @ ( ord_le3102999989581377725nteger @ ( numera6620942414471956472nteger @ L2 ) @ R5 ) @ ( produc1086072967326762835nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ Q4 ) @ one_one_Code_integer ) @ ( minus_8373710615458151222nteger @ R5 @ ( numera6620942414471956472nteger @ L2 ) ) ) @ ( produc1086072967326762835nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ Q4 ) @ R5 ) ) ) ) ) ).

% divmod_step_def
thf(fact_6176_set__encode__insert,axiom,
    ! [A2: set_nat,N: nat] :
      ( ( finite_finite_nat @ A2 )
     => ( ~ ( member_nat @ N @ A2 )
       => ( ( nat_set_encode @ ( insert_nat @ N @ A2 ) )
          = ( plus_plus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ ( nat_set_encode @ A2 ) ) ) ) ) ).

% set_encode_insert
thf(fact_6177_triangle__def,axiom,
    ( nat_triangle
    = ( ^ [N2: nat] : ( divide_divide_nat @ ( times_times_nat @ N2 @ ( suc @ N2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% triangle_def
thf(fact_6178_vebt__buildup_Oelims,axiom,
    ! [X2: nat,Y2: vEBT_VEBT] :
      ( ( ( vEBT_vebt_buildup @ X2 )
        = Y2 )
     => ( ( ( X2 = zero_zero_nat )
         => ( Y2
           != ( vEBT_Leaf @ $false @ $false ) ) )
       => ( ( ( X2
              = ( suc @ zero_zero_nat ) )
           => ( Y2
             != ( vEBT_Leaf @ $false @ $false ) ) )
         => ~ ! [Va3: nat] :
                ( ( X2
                  = ( suc @ ( suc @ Va3 ) ) )
               => ~ ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ Va3 ) ) )
                     => ( Y2
                        = ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ Va3 ) ) @ ( replicate_VEBT_VEBT @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) )
                    & ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ Va3 ) ) )
                     => ( Y2
                        = ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ Va3 ) ) @ ( replicate_VEBT_VEBT @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( suc @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ) ) ).

% vebt_buildup.elims
thf(fact_6179_divmod__nat__if,axiom,
    ( divmod_nat
    = ( ^ [M3: nat,N2: nat] :
          ( if_Pro6206227464963214023at_nat
          @ ( ( N2 = zero_zero_nat )
            | ( ord_less_nat @ M3 @ N2 ) )
          @ ( product_Pair_nat_nat @ zero_zero_nat @ M3 )
          @ ( produc2626176000494625587at_nat
            @ ^ [Q4: nat] : ( product_Pair_nat_nat @ ( suc @ Q4 ) )
            @ ( divmod_nat @ ( minus_minus_nat @ M3 @ N2 ) @ N2 ) ) ) ) ) ).

% divmod_nat_if
thf(fact_6180_signed__take__bit__Suc__minus__bit1,axiom,
    ! [N: nat,K: num] :
      ( ( bit_ri631733984087533419it_int @ ( suc @ N ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ K ) ) ) )
      = ( plus_plus_int @ ( times_times_int @ ( bit_ri631733984087533419it_int @ N @ ( minus_minus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) @ one_one_int ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ one_one_int ) ) ).

% signed_take_bit_Suc_minus_bit1
thf(fact_6181_signed__take__bit__rec,axiom,
    ( bit_ri6519982836138164636nteger
    = ( ^ [N2: nat,A3: code_integer] : ( if_Code_integer @ ( N2 = zero_zero_nat ) @ ( uminus1351360451143612070nteger @ ( modulo364778990260209775nteger @ A3 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) @ ( plus_p5714425477246183910nteger @ ( modulo364778990260209775nteger @ A3 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_ri6519982836138164636nteger @ ( minus_minus_nat @ N2 @ one_one_nat ) @ ( divide6298287555418463151nteger @ A3 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ).

% signed_take_bit_rec
thf(fact_6182_signed__take__bit__rec,axiom,
    ( bit_ri631733984087533419it_int
    = ( ^ [N2: nat,A3: int] : ( if_int @ ( N2 = zero_zero_nat ) @ ( uminus_uminus_int @ ( modulo_modulo_int @ A3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) @ ( plus_plus_int @ ( modulo_modulo_int @ A3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_ri631733984087533419it_int @ ( minus_minus_nat @ N2 @ one_one_nat ) @ ( divide_divide_int @ A3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ).

% signed_take_bit_rec
thf(fact_6183_signed__take__bit__numeral__bit1,axiom,
    ! [L: num,K: num] :
      ( ( bit_ri631733984087533419it_int @ ( numeral_numeral_nat @ L ) @ ( numeral_numeral_int @ ( bit1 @ K ) ) )
      = ( plus_plus_int @ ( times_times_int @ ( bit_ri631733984087533419it_int @ ( pred_numeral @ L ) @ ( numeral_numeral_int @ K ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ one_one_int ) ) ).

% signed_take_bit_numeral_bit1
thf(fact_6184_intind,axiom,
    ! [I: nat,N: nat,P: int > $o,X2: int] :
      ( ( ord_less_nat @ I @ N )
     => ( ( P @ X2 )
       => ( P @ ( nth_int @ ( replicate_int @ N @ X2 ) @ I ) ) ) ) ).

% intind
thf(fact_6185_intind,axiom,
    ! [I: nat,N: nat,P: vEBT_VEBT > $o,X2: vEBT_VEBT] :
      ( ( ord_less_nat @ I @ N )
     => ( ( P @ X2 )
       => ( P @ ( nth_VEBT_VEBT @ ( replicate_VEBT_VEBT @ N @ X2 ) @ I ) ) ) ) ).

% intind
thf(fact_6186_Compl__anti__mono,axiom,
    ! [A2: set_int,B3: set_int] :
      ( ( ord_less_eq_set_int @ A2 @ B3 )
     => ( ord_less_eq_set_int @ ( uminus1532241313380277803et_int @ B3 ) @ ( uminus1532241313380277803et_int @ A2 ) ) ) ).

% Compl_anti_mono
thf(fact_6187_Compl__subset__Compl__iff,axiom,
    ! [A2: set_int,B3: set_int] :
      ( ( ord_less_eq_set_int @ ( uminus1532241313380277803et_int @ A2 ) @ ( uminus1532241313380277803et_int @ B3 ) )
      = ( ord_less_eq_set_int @ B3 @ A2 ) ) ).

% Compl_subset_Compl_iff
thf(fact_6188_case__prodI,axiom,
    ! [F: code_integer > code_integer > $o,A: code_integer,B: code_integer] :
      ( ( F @ A @ B )
     => ( produc2066375834425727024eger_o @ F @ ( produc1086072967326762835nteger @ A @ B ) ) ) ).

% case_prodI
thf(fact_6189_case__prodI,axiom,
    ! [F: code_integer > $o > $o,A: code_integer,B: $o] :
      ( ( F @ A @ B )
     => ( produc7828578312038201481er_o_o @ F @ ( produc6677183202524767010eger_o @ A @ B ) ) ) ).

% case_prodI
thf(fact_6190_case__prodI,axiom,
    ! [F: num > num > $o,A: num,B: num] :
      ( ( F @ A @ B )
     => ( produc5703948589228662326_num_o @ F @ ( product_Pair_num_num @ A @ B ) ) ) ).

% case_prodI
thf(fact_6191_case__prodI,axiom,
    ! [F: nat > nat > $o,A: nat,B: nat] :
      ( ( F @ A @ B )
     => ( produc6081775807080527818_nat_o @ F @ ( product_Pair_nat_nat @ A @ B ) ) ) ).

% case_prodI
thf(fact_6192_case__prodI,axiom,
    ! [F: int > int > $o,A: int,B: int] :
      ( ( F @ A @ B )
     => ( produc4947309494688390418_int_o @ F @ ( product_Pair_int_int @ A @ B ) ) ) ).

% case_prodI
thf(fact_6193_case__prodI2,axiom,
    ! [P2: produc8923325533196201883nteger,C: code_integer > code_integer > $o] :
      ( ! [A6: code_integer,B7: code_integer] :
          ( ( P2
            = ( produc1086072967326762835nteger @ A6 @ B7 ) )
         => ( C @ A6 @ B7 ) )
     => ( produc2066375834425727024eger_o @ C @ P2 ) ) ).

% case_prodI2
thf(fact_6194_case__prodI2,axiom,
    ! [P2: produc6271795597528267376eger_o,C: code_integer > $o > $o] :
      ( ! [A6: code_integer,B7: $o] :
          ( ( P2
            = ( produc6677183202524767010eger_o @ A6 @ B7 ) )
         => ( C @ A6 @ B7 ) )
     => ( produc7828578312038201481er_o_o @ C @ P2 ) ) ).

% case_prodI2
thf(fact_6195_case__prodI2,axiom,
    ! [P2: product_prod_num_num,C: num > num > $o] :
      ( ! [A6: num,B7: num] :
          ( ( P2
            = ( product_Pair_num_num @ A6 @ B7 ) )
         => ( C @ A6 @ B7 ) )
     => ( produc5703948589228662326_num_o @ C @ P2 ) ) ).

% case_prodI2
thf(fact_6196_case__prodI2,axiom,
    ! [P2: product_prod_nat_nat,C: nat > nat > $o] :
      ( ! [A6: nat,B7: nat] :
          ( ( P2
            = ( product_Pair_nat_nat @ A6 @ B7 ) )
         => ( C @ A6 @ B7 ) )
     => ( produc6081775807080527818_nat_o @ C @ P2 ) ) ).

% case_prodI2
thf(fact_6197_case__prodI2,axiom,
    ! [P2: product_prod_int_int,C: int > int > $o] :
      ( ! [A6: int,B7: int] :
          ( ( P2
            = ( product_Pair_int_int @ A6 @ B7 ) )
         => ( C @ A6 @ B7 ) )
     => ( produc4947309494688390418_int_o @ C @ P2 ) ) ).

% case_prodI2
thf(fact_6198_mem__case__prodI,axiom,
    ! [Z: complex,C: code_integer > code_integer > set_complex,A: code_integer,B: code_integer] :
      ( ( member_complex @ Z @ ( C @ A @ B ) )
     => ( member_complex @ Z @ ( produc1861562869612671180omplex @ C @ ( produc1086072967326762835nteger @ A @ B ) ) ) ) ).

% mem_case_prodI
thf(fact_6199_mem__case__prodI,axiom,
    ! [Z: real,C: code_integer > code_integer > set_real,A: code_integer,B: code_integer] :
      ( ( member_real @ Z @ ( C @ A @ B ) )
     => ( member_real @ Z @ ( produc8892033678785193034t_real @ C @ ( produc1086072967326762835nteger @ A @ B ) ) ) ) ).

% mem_case_prodI
thf(fact_6200_mem__case__prodI,axiom,
    ! [Z: nat,C: code_integer > code_integer > set_nat,A: code_integer,B: code_integer] :
      ( ( member_nat @ Z @ ( C @ A @ B ) )
     => ( member_nat @ Z @ ( produc2604607235628431598et_nat @ C @ ( produc1086072967326762835nteger @ A @ B ) ) ) ) ).

% mem_case_prodI
thf(fact_6201_mem__case__prodI,axiom,
    ! [Z: int,C: code_integer > code_integer > set_int,A: code_integer,B: code_integer] :
      ( ( member_int @ Z @ ( C @ A @ B ) )
     => ( member_int @ Z @ ( produc7650128252974010698et_int @ C @ ( produc1086072967326762835nteger @ A @ B ) ) ) ) ).

% mem_case_prodI
thf(fact_6202_mem__case__prodI,axiom,
    ! [Z: complex,C: code_integer > $o > set_complex,A: code_integer,B: $o] :
      ( ( member_complex @ Z @ ( C @ A @ B ) )
     => ( member_complex @ Z @ ( produc1043322548047392435omplex @ C @ ( produc6677183202524767010eger_o @ A @ B ) ) ) ) ).

% mem_case_prodI
thf(fact_6203_mem__case__prodI,axiom,
    ! [Z: real,C: code_integer > $o > set_real,A: code_integer,B: $o] :
      ( ( member_real @ Z @ ( C @ A @ B ) )
     => ( member_real @ Z @ ( produc242741666403216561t_real @ C @ ( produc6677183202524767010eger_o @ A @ B ) ) ) ) ).

% mem_case_prodI
thf(fact_6204_mem__case__prodI,axiom,
    ! [Z: nat,C: code_integer > $o > set_nat,A: code_integer,B: $o] :
      ( ( member_nat @ Z @ ( C @ A @ B ) )
     => ( member_nat @ Z @ ( produc5431169771168744661et_nat @ C @ ( produc6677183202524767010eger_o @ A @ B ) ) ) ) ).

% mem_case_prodI
thf(fact_6205_mem__case__prodI,axiom,
    ! [Z: int,C: code_integer > $o > set_int,A: code_integer,B: $o] :
      ( ( member_int @ Z @ ( C @ A @ B ) )
     => ( member_int @ Z @ ( produc1253318751659547953et_int @ C @ ( produc6677183202524767010eger_o @ A @ B ) ) ) ) ).

% mem_case_prodI
thf(fact_6206_mem__case__prodI,axiom,
    ! [Z: complex,C: num > num > set_complex,A: num,B: num] :
      ( ( member_complex @ Z @ ( C @ A @ B ) )
     => ( member_complex @ Z @ ( produc2866383454006189126omplex @ C @ ( product_Pair_num_num @ A @ B ) ) ) ) ).

% mem_case_prodI
thf(fact_6207_mem__case__prodI,axiom,
    ! [Z: real,C: num > num > set_real,A: num,B: num] :
      ( ( member_real @ Z @ ( C @ A @ B ) )
     => ( member_real @ Z @ ( produc8296048397933160132t_real @ C @ ( product_Pair_num_num @ A @ B ) ) ) ) ).

% mem_case_prodI
thf(fact_6208_mem__case__prodI2,axiom,
    ! [P2: produc8923325533196201883nteger,Z: complex,C: code_integer > code_integer > set_complex] :
      ( ! [A6: code_integer,B7: code_integer] :
          ( ( P2
            = ( produc1086072967326762835nteger @ A6 @ B7 ) )
         => ( member_complex @ Z @ ( C @ A6 @ B7 ) ) )
     => ( member_complex @ Z @ ( produc1861562869612671180omplex @ C @ P2 ) ) ) ).

% mem_case_prodI2
thf(fact_6209_mem__case__prodI2,axiom,
    ! [P2: produc8923325533196201883nteger,Z: real,C: code_integer > code_integer > set_real] :
      ( ! [A6: code_integer,B7: code_integer] :
          ( ( P2
            = ( produc1086072967326762835nteger @ A6 @ B7 ) )
         => ( member_real @ Z @ ( C @ A6 @ B7 ) ) )
     => ( member_real @ Z @ ( produc8892033678785193034t_real @ C @ P2 ) ) ) ).

% mem_case_prodI2
thf(fact_6210_mem__case__prodI2,axiom,
    ! [P2: produc8923325533196201883nteger,Z: nat,C: code_integer > code_integer > set_nat] :
      ( ! [A6: code_integer,B7: code_integer] :
          ( ( P2
            = ( produc1086072967326762835nteger @ A6 @ B7 ) )
         => ( member_nat @ Z @ ( C @ A6 @ B7 ) ) )
     => ( member_nat @ Z @ ( produc2604607235628431598et_nat @ C @ P2 ) ) ) ).

% mem_case_prodI2
thf(fact_6211_mem__case__prodI2,axiom,
    ! [P2: produc8923325533196201883nteger,Z: int,C: code_integer > code_integer > set_int] :
      ( ! [A6: code_integer,B7: code_integer] :
          ( ( P2
            = ( produc1086072967326762835nteger @ A6 @ B7 ) )
         => ( member_int @ Z @ ( C @ A6 @ B7 ) ) )
     => ( member_int @ Z @ ( produc7650128252974010698et_int @ C @ P2 ) ) ) ).

% mem_case_prodI2
thf(fact_6212_mem__case__prodI2,axiom,
    ! [P2: produc6271795597528267376eger_o,Z: complex,C: code_integer > $o > set_complex] :
      ( ! [A6: code_integer,B7: $o] :
          ( ( P2
            = ( produc6677183202524767010eger_o @ A6 @ B7 ) )
         => ( member_complex @ Z @ ( C @ A6 @ B7 ) ) )
     => ( member_complex @ Z @ ( produc1043322548047392435omplex @ C @ P2 ) ) ) ).

% mem_case_prodI2
thf(fact_6213_mem__case__prodI2,axiom,
    ! [P2: produc6271795597528267376eger_o,Z: real,C: code_integer > $o > set_real] :
      ( ! [A6: code_integer,B7: $o] :
          ( ( P2
            = ( produc6677183202524767010eger_o @ A6 @ B7 ) )
         => ( member_real @ Z @ ( C @ A6 @ B7 ) ) )
     => ( member_real @ Z @ ( produc242741666403216561t_real @ C @ P2 ) ) ) ).

% mem_case_prodI2
thf(fact_6214_mem__case__prodI2,axiom,
    ! [P2: produc6271795597528267376eger_o,Z: nat,C: code_integer > $o > set_nat] :
      ( ! [A6: code_integer,B7: $o] :
          ( ( P2
            = ( produc6677183202524767010eger_o @ A6 @ B7 ) )
         => ( member_nat @ Z @ ( C @ A6 @ B7 ) ) )
     => ( member_nat @ Z @ ( produc5431169771168744661et_nat @ C @ P2 ) ) ) ).

% mem_case_prodI2
thf(fact_6215_mem__case__prodI2,axiom,
    ! [P2: produc6271795597528267376eger_o,Z: int,C: code_integer > $o > set_int] :
      ( ! [A6: code_integer,B7: $o] :
          ( ( P2
            = ( produc6677183202524767010eger_o @ A6 @ B7 ) )
         => ( member_int @ Z @ ( C @ A6 @ B7 ) ) )
     => ( member_int @ Z @ ( produc1253318751659547953et_int @ C @ P2 ) ) ) ).

% mem_case_prodI2
thf(fact_6216_mem__case__prodI2,axiom,
    ! [P2: product_prod_num_num,Z: complex,C: num > num > set_complex] :
      ( ! [A6: num,B7: num] :
          ( ( P2
            = ( product_Pair_num_num @ A6 @ B7 ) )
         => ( member_complex @ Z @ ( C @ A6 @ B7 ) ) )
     => ( member_complex @ Z @ ( produc2866383454006189126omplex @ C @ P2 ) ) ) ).

% mem_case_prodI2
thf(fact_6217_mem__case__prodI2,axiom,
    ! [P2: product_prod_num_num,Z: real,C: num > num > set_real] :
      ( ! [A6: num,B7: num] :
          ( ( P2
            = ( product_Pair_num_num @ A6 @ B7 ) )
         => ( member_real @ Z @ ( C @ A6 @ B7 ) ) )
     => ( member_real @ Z @ ( produc8296048397933160132t_real @ C @ P2 ) ) ) ).

% mem_case_prodI2
thf(fact_6218_case__prodI2_H,axiom,
    ! [P2: product_prod_nat_nat,C: nat > nat > product_prod_nat_nat > $o,X2: product_prod_nat_nat] :
      ( ! [A6: nat,B7: nat] :
          ( ( ( product_Pair_nat_nat @ A6 @ B7 )
            = P2 )
         => ( C @ A6 @ B7 @ X2 ) )
     => ( produc8739625826339149834_nat_o @ C @ P2 @ X2 ) ) ).

% case_prodI2'
thf(fact_6219_neg__le__iff__le,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) )
      = ( ord_less_eq_real @ A @ B ) ) ).

% neg_le_iff_le
thf(fact_6220_neg__le__iff__le,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ B ) @ ( uminus1351360451143612070nteger @ A ) )
      = ( ord_le3102999989581377725nteger @ A @ B ) ) ).

% neg_le_iff_le
thf(fact_6221_neg__le__iff__le,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_eq_rat @ ( uminus_uminus_rat @ B ) @ ( uminus_uminus_rat @ A ) )
      = ( ord_less_eq_rat @ A @ B ) ) ).

% neg_le_iff_le
thf(fact_6222_neg__le__iff__le,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_eq_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) )
      = ( ord_less_eq_int @ A @ B ) ) ).

% neg_le_iff_le
thf(fact_6223_compl__le__compl__iff,axiom,
    ! [X2: set_int,Y2: set_int] :
      ( ( ord_less_eq_set_int @ ( uminus1532241313380277803et_int @ X2 ) @ ( uminus1532241313380277803et_int @ Y2 ) )
      = ( ord_less_eq_set_int @ Y2 @ X2 ) ) ).

% compl_le_compl_iff
thf(fact_6224_neg__less__iff__less,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) )
      = ( ord_less_int @ A @ B ) ) ).

% neg_less_iff_less
thf(fact_6225_neg__less__iff__less,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) )
      = ( ord_less_real @ A @ B ) ) ).

% neg_less_iff_less
thf(fact_6226_neg__less__iff__less,axiom,
    ! [B: rat,A: rat] :
      ( ( ord_less_rat @ ( uminus_uminus_rat @ B ) @ ( uminus_uminus_rat @ A ) )
      = ( ord_less_rat @ A @ B ) ) ).

% neg_less_iff_less
thf(fact_6227_neg__less__iff__less,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ B ) @ ( uminus1351360451143612070nteger @ A ) )
      = ( ord_le6747313008572928689nteger @ A @ B ) ) ).

% neg_less_iff_less
thf(fact_6228_neg__numeral__eq__iff,axiom,
    ! [M: num,N: num] :
      ( ( ( uminus_uminus_int @ ( numeral_numeral_int @ M ) )
        = ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( M = N ) ) ).

% neg_numeral_eq_iff
thf(fact_6229_neg__numeral__eq__iff,axiom,
    ! [M: num,N: num] :
      ( ( ( uminus_uminus_real @ ( numeral_numeral_real @ M ) )
        = ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
      = ( M = N ) ) ).

% neg_numeral_eq_iff
thf(fact_6230_neg__numeral__eq__iff,axiom,
    ! [M: num,N: num] :
      ( ( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ M ) )
        = ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N ) ) )
      = ( M = N ) ) ).

% neg_numeral_eq_iff
thf(fact_6231_neg__numeral__eq__iff,axiom,
    ! [M: num,N: num] :
      ( ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) )
        = ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) )
      = ( M = N ) ) ).

% neg_numeral_eq_iff
thf(fact_6232_neg__numeral__eq__iff,axiom,
    ! [M: num,N: num] :
      ( ( ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) )
        = ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) )
      = ( M = N ) ) ).

% neg_numeral_eq_iff
thf(fact_6233_mult__minus__left,axiom,
    ! [A: int,B: int] :
      ( ( times_times_int @ ( uminus_uminus_int @ A ) @ B )
      = ( uminus_uminus_int @ ( times_times_int @ A @ B ) ) ) ).

% mult_minus_left
thf(fact_6234_mult__minus__left,axiom,
    ! [A: real,B: real] :
      ( ( times_times_real @ ( uminus_uminus_real @ A ) @ B )
      = ( uminus_uminus_real @ ( times_times_real @ A @ B ) ) ) ).

% mult_minus_left
thf(fact_6235_mult__minus__left,axiom,
    ! [A: complex,B: complex] :
      ( ( times_times_complex @ ( uminus1482373934393186551omplex @ A ) @ B )
      = ( uminus1482373934393186551omplex @ ( times_times_complex @ A @ B ) ) ) ).

% mult_minus_left
thf(fact_6236_mult__minus__left,axiom,
    ! [A: rat,B: rat] :
      ( ( times_times_rat @ ( uminus_uminus_rat @ A ) @ B )
      = ( uminus_uminus_rat @ ( times_times_rat @ A @ B ) ) ) ).

% mult_minus_left
thf(fact_6237_mult__minus__left,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ A ) @ B )
      = ( uminus1351360451143612070nteger @ ( times_3573771949741848930nteger @ A @ B ) ) ) ).

% mult_minus_left
thf(fact_6238_minus__mult__minus,axiom,
    ! [A: int,B: int] :
      ( ( times_times_int @ ( uminus_uminus_int @ A ) @ ( uminus_uminus_int @ B ) )
      = ( times_times_int @ A @ B ) ) ).

% minus_mult_minus
thf(fact_6239_minus__mult__minus,axiom,
    ! [A: real,B: real] :
      ( ( times_times_real @ ( uminus_uminus_real @ A ) @ ( uminus_uminus_real @ B ) )
      = ( times_times_real @ A @ B ) ) ).

% minus_mult_minus
thf(fact_6240_minus__mult__minus,axiom,
    ! [A: complex,B: complex] :
      ( ( times_times_complex @ ( uminus1482373934393186551omplex @ A ) @ ( uminus1482373934393186551omplex @ B ) )
      = ( times_times_complex @ A @ B ) ) ).

% minus_mult_minus
thf(fact_6241_minus__mult__minus,axiom,
    ! [A: rat,B: rat] :
      ( ( times_times_rat @ ( uminus_uminus_rat @ A ) @ ( uminus_uminus_rat @ B ) )
      = ( times_times_rat @ A @ B ) ) ).

% minus_mult_minus
thf(fact_6242_minus__mult__minus,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ A ) @ ( uminus1351360451143612070nteger @ B ) )
      = ( times_3573771949741848930nteger @ A @ B ) ) ).

% minus_mult_minus
thf(fact_6243_mult__minus__right,axiom,
    ! [A: int,B: int] :
      ( ( times_times_int @ A @ ( uminus_uminus_int @ B ) )
      = ( uminus_uminus_int @ ( times_times_int @ A @ B ) ) ) ).

% mult_minus_right
thf(fact_6244_mult__minus__right,axiom,
    ! [A: real,B: real] :
      ( ( times_times_real @ A @ ( uminus_uminus_real @ B ) )
      = ( uminus_uminus_real @ ( times_times_real @ A @ B ) ) ) ).

% mult_minus_right
thf(fact_6245_mult__minus__right,axiom,
    ! [A: complex,B: complex] :
      ( ( times_times_complex @ A @ ( uminus1482373934393186551omplex @ B ) )
      = ( uminus1482373934393186551omplex @ ( times_times_complex @ A @ B ) ) ) ).

% mult_minus_right
thf(fact_6246_mult__minus__right,axiom,
    ! [A: rat,B: rat] :
      ( ( times_times_rat @ A @ ( uminus_uminus_rat @ B ) )
      = ( uminus_uminus_rat @ ( times_times_rat @ A @ B ) ) ) ).

% mult_minus_right
thf(fact_6247_mult__minus__right,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( times_3573771949741848930nteger @ A @ ( uminus1351360451143612070nteger @ B ) )
      = ( uminus1351360451143612070nteger @ ( times_3573771949741848930nteger @ A @ B ) ) ) ).

% mult_minus_right
thf(fact_6248_minus__add__distrib,axiom,
    ! [A: int,B: int] :
      ( ( uminus_uminus_int @ ( plus_plus_int @ A @ B ) )
      = ( plus_plus_int @ ( uminus_uminus_int @ A ) @ ( uminus_uminus_int @ B ) ) ) ).

% minus_add_distrib
thf(fact_6249_minus__add__distrib,axiom,
    ! [A: real,B: real] :
      ( ( uminus_uminus_real @ ( plus_plus_real @ A @ B ) )
      = ( plus_plus_real @ ( uminus_uminus_real @ A ) @ ( uminus_uminus_real @ B ) ) ) ).

% minus_add_distrib
thf(fact_6250_minus__add__distrib,axiom,
    ! [A: complex,B: complex] :
      ( ( uminus1482373934393186551omplex @ ( plus_plus_complex @ A @ B ) )
      = ( plus_plus_complex @ ( uminus1482373934393186551omplex @ A ) @ ( uminus1482373934393186551omplex @ B ) ) ) ).

% minus_add_distrib
thf(fact_6251_minus__add__distrib,axiom,
    ! [A: rat,B: rat] :
      ( ( uminus_uminus_rat @ ( plus_plus_rat @ A @ B ) )
      = ( plus_plus_rat @ ( uminus_uminus_rat @ A ) @ ( uminus_uminus_rat @ B ) ) ) ).

% minus_add_distrib
thf(fact_6252_minus__add__distrib,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( uminus1351360451143612070nteger @ ( plus_p5714425477246183910nteger @ A @ B ) )
      = ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ A ) @ ( uminus1351360451143612070nteger @ B ) ) ) ).

% minus_add_distrib
thf(fact_6253_minus__add__cancel,axiom,
    ! [A: int,B: int] :
      ( ( plus_plus_int @ ( uminus_uminus_int @ A ) @ ( plus_plus_int @ A @ B ) )
      = B ) ).

% minus_add_cancel
thf(fact_6254_minus__add__cancel,axiom,
    ! [A: real,B: real] :
      ( ( plus_plus_real @ ( uminus_uminus_real @ A ) @ ( plus_plus_real @ A @ B ) )
      = B ) ).

% minus_add_cancel
thf(fact_6255_minus__add__cancel,axiom,
    ! [A: complex,B: complex] :
      ( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ A ) @ ( plus_plus_complex @ A @ B ) )
      = B ) ).

% minus_add_cancel
thf(fact_6256_minus__add__cancel,axiom,
    ! [A: rat,B: rat] :
      ( ( plus_plus_rat @ ( uminus_uminus_rat @ A ) @ ( plus_plus_rat @ A @ B ) )
      = B ) ).

% minus_add_cancel
thf(fact_6257_minus__add__cancel,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ A ) @ ( plus_p5714425477246183910nteger @ A @ B ) )
      = B ) ).

% minus_add_cancel
thf(fact_6258_add__minus__cancel,axiom,
    ! [A: int,B: int] :
      ( ( plus_plus_int @ A @ ( plus_plus_int @ ( uminus_uminus_int @ A ) @ B ) )
      = B ) ).

% add_minus_cancel
thf(fact_6259_add__minus__cancel,axiom,
    ! [A: real,B: real] :
      ( ( plus_plus_real @ A @ ( plus_plus_real @ ( uminus_uminus_real @ A ) @ B ) )
      = B ) ).

% add_minus_cancel
thf(fact_6260_add__minus__cancel,axiom,
    ! [A: complex,B: complex] :
      ( ( plus_plus_complex @ A @ ( plus_plus_complex @ ( uminus1482373934393186551omplex @ A ) @ B ) )
      = B ) ).

% add_minus_cancel
thf(fact_6261_add__minus__cancel,axiom,
    ! [A: rat,B: rat] :
      ( ( plus_plus_rat @ A @ ( plus_plus_rat @ ( uminus_uminus_rat @ A ) @ B ) )
      = B ) ).

% add_minus_cancel
thf(fact_6262_add__minus__cancel,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( plus_p5714425477246183910nteger @ A @ ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ A ) @ B ) )
      = B ) ).

% add_minus_cancel
thf(fact_6263_div__minus__minus,axiom,
    ! [A: int,B: int] :
      ( ( divide_divide_int @ ( uminus_uminus_int @ A ) @ ( uminus_uminus_int @ B ) )
      = ( divide_divide_int @ A @ B ) ) ).

% div_minus_minus
thf(fact_6264_div__minus__minus,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( divide6298287555418463151nteger @ ( uminus1351360451143612070nteger @ A ) @ ( uminus1351360451143612070nteger @ B ) )
      = ( divide6298287555418463151nteger @ A @ B ) ) ).

% div_minus_minus
thf(fact_6265_minus__dvd__iff,axiom,
    ! [X2: int,Y2: int] :
      ( ( dvd_dvd_int @ ( uminus_uminus_int @ X2 ) @ Y2 )
      = ( dvd_dvd_int @ X2 @ Y2 ) ) ).

% minus_dvd_iff
thf(fact_6266_minus__dvd__iff,axiom,
    ! [X2: real,Y2: real] :
      ( ( dvd_dvd_real @ ( uminus_uminus_real @ X2 ) @ Y2 )
      = ( dvd_dvd_real @ X2 @ Y2 ) ) ).

% minus_dvd_iff
thf(fact_6267_minus__dvd__iff,axiom,
    ! [X2: complex,Y2: complex] :
      ( ( dvd_dvd_complex @ ( uminus1482373934393186551omplex @ X2 ) @ Y2 )
      = ( dvd_dvd_complex @ X2 @ Y2 ) ) ).

% minus_dvd_iff
thf(fact_6268_minus__dvd__iff,axiom,
    ! [X2: rat,Y2: rat] :
      ( ( dvd_dvd_rat @ ( uminus_uminus_rat @ X2 ) @ Y2 )
      = ( dvd_dvd_rat @ X2 @ Y2 ) ) ).

% minus_dvd_iff
thf(fact_6269_minus__dvd__iff,axiom,
    ! [X2: code_integer,Y2: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( uminus1351360451143612070nteger @ X2 ) @ Y2 )
      = ( dvd_dvd_Code_integer @ X2 @ Y2 ) ) ).

% minus_dvd_iff
thf(fact_6270_dvd__minus__iff,axiom,
    ! [X2: int,Y2: int] :
      ( ( dvd_dvd_int @ X2 @ ( uminus_uminus_int @ Y2 ) )
      = ( dvd_dvd_int @ X2 @ Y2 ) ) ).

% dvd_minus_iff
thf(fact_6271_dvd__minus__iff,axiom,
    ! [X2: real,Y2: real] :
      ( ( dvd_dvd_real @ X2 @ ( uminus_uminus_real @ Y2 ) )
      = ( dvd_dvd_real @ X2 @ Y2 ) ) ).

% dvd_minus_iff
thf(fact_6272_dvd__minus__iff,axiom,
    ! [X2: complex,Y2: complex] :
      ( ( dvd_dvd_complex @ X2 @ ( uminus1482373934393186551omplex @ Y2 ) )
      = ( dvd_dvd_complex @ X2 @ Y2 ) ) ).

% dvd_minus_iff
thf(fact_6273_dvd__minus__iff,axiom,
    ! [X2: rat,Y2: rat] :
      ( ( dvd_dvd_rat @ X2 @ ( uminus_uminus_rat @ Y2 ) )
      = ( dvd_dvd_rat @ X2 @ Y2 ) ) ).

% dvd_minus_iff
thf(fact_6274_dvd__minus__iff,axiom,
    ! [X2: code_integer,Y2: code_integer] :
      ( ( dvd_dvd_Code_integer @ X2 @ ( uminus1351360451143612070nteger @ Y2 ) )
      = ( dvd_dvd_Code_integer @ X2 @ Y2 ) ) ).

% dvd_minus_iff
thf(fact_6275_mod__minus__minus,axiom,
    ! [A: int,B: int] :
      ( ( modulo_modulo_int @ ( uminus_uminus_int @ A ) @ ( uminus_uminus_int @ B ) )
      = ( uminus_uminus_int @ ( modulo_modulo_int @ A @ B ) ) ) ).

% mod_minus_minus
thf(fact_6276_mod__minus__minus,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( modulo364778990260209775nteger @ ( uminus1351360451143612070nteger @ A ) @ ( uminus1351360451143612070nteger @ B ) )
      = ( uminus1351360451143612070nteger @ ( modulo364778990260209775nteger @ A @ B ) ) ) ).

% mod_minus_minus
thf(fact_6277_real__add__minus__iff,axiom,
    ! [X2: real,A: real] :
      ( ( ( plus_plus_real @ X2 @ ( uminus_uminus_real @ A ) )
        = zero_zero_real )
      = ( X2 = A ) ) ).

% real_add_minus_iff
thf(fact_6278_length__replicate,axiom,
    ! [N: nat,X2: vEBT_VEBT] :
      ( ( size_s6755466524823107622T_VEBT @ ( replicate_VEBT_VEBT @ N @ X2 ) )
      = N ) ).

% length_replicate
thf(fact_6279_length__replicate,axiom,
    ! [N: nat,X2: $o] :
      ( ( size_size_list_o @ ( replicate_o @ N @ X2 ) )
      = N ) ).

% length_replicate
thf(fact_6280_length__replicate,axiom,
    ! [N: nat,X2: int] :
      ( ( size_size_list_int @ ( replicate_int @ N @ X2 ) )
      = N ) ).

% length_replicate
thf(fact_6281_neg__0__le__iff__le,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( uminus_uminus_real @ A ) )
      = ( ord_less_eq_real @ A @ zero_zero_real ) ) ).

% neg_0_le_iff_le
thf(fact_6282_neg__0__le__iff__le,axiom,
    ! [A: code_integer] :
      ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( uminus1351360451143612070nteger @ A ) )
      = ( ord_le3102999989581377725nteger @ A @ zero_z3403309356797280102nteger ) ) ).

% neg_0_le_iff_le
thf(fact_6283_neg__0__le__iff__le,axiom,
    ! [A: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ ( uminus_uminus_rat @ A ) )
      = ( ord_less_eq_rat @ A @ zero_zero_rat ) ) ).

% neg_0_le_iff_le
thf(fact_6284_neg__0__le__iff__le,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( uminus_uminus_int @ A ) )
      = ( ord_less_eq_int @ A @ zero_zero_int ) ) ).

% neg_0_le_iff_le
thf(fact_6285_neg__le__0__iff__le,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ A ) @ zero_zero_real )
      = ( ord_less_eq_real @ zero_zero_real @ A ) ) ).

% neg_le_0_iff_le
thf(fact_6286_neg__le__0__iff__le,axiom,
    ! [A: code_integer] :
      ( ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ A ) @ zero_z3403309356797280102nteger )
      = ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A ) ) ).

% neg_le_0_iff_le
thf(fact_6287_neg__le__0__iff__le,axiom,
    ! [A: rat] :
      ( ( ord_less_eq_rat @ ( uminus_uminus_rat @ A ) @ zero_zero_rat )
      = ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ).

% neg_le_0_iff_le
thf(fact_6288_neg__le__0__iff__le,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ zero_zero_int )
      = ( ord_less_eq_int @ zero_zero_int @ A ) ) ).

% neg_le_0_iff_le
thf(fact_6289_less__eq__neg__nonpos,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ A @ ( uminus_uminus_real @ A ) )
      = ( ord_less_eq_real @ A @ zero_zero_real ) ) ).

% less_eq_neg_nonpos
thf(fact_6290_less__eq__neg__nonpos,axiom,
    ! [A: code_integer] :
      ( ( ord_le3102999989581377725nteger @ A @ ( uminus1351360451143612070nteger @ A ) )
      = ( ord_le3102999989581377725nteger @ A @ zero_z3403309356797280102nteger ) ) ).

% less_eq_neg_nonpos
thf(fact_6291_less__eq__neg__nonpos,axiom,
    ! [A: rat] :
      ( ( ord_less_eq_rat @ A @ ( uminus_uminus_rat @ A ) )
      = ( ord_less_eq_rat @ A @ zero_zero_rat ) ) ).

% less_eq_neg_nonpos
thf(fact_6292_less__eq__neg__nonpos,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ A @ ( uminus_uminus_int @ A ) )
      = ( ord_less_eq_int @ A @ zero_zero_int ) ) ).

% less_eq_neg_nonpos
thf(fact_6293_neg__less__eq__nonneg,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ A ) @ A )
      = ( ord_less_eq_real @ zero_zero_real @ A ) ) ).

% neg_less_eq_nonneg
thf(fact_6294_neg__less__eq__nonneg,axiom,
    ! [A: code_integer] :
      ( ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ A ) @ A )
      = ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A ) ) ).

% neg_less_eq_nonneg
thf(fact_6295_neg__less__eq__nonneg,axiom,
    ! [A: rat] :
      ( ( ord_less_eq_rat @ ( uminus_uminus_rat @ A ) @ A )
      = ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ).

% neg_less_eq_nonneg
thf(fact_6296_neg__less__eq__nonneg,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ A )
      = ( ord_less_eq_int @ zero_zero_int @ A ) ) ).

% neg_less_eq_nonneg
thf(fact_6297_less__neg__neg,axiom,
    ! [A: int] :
      ( ( ord_less_int @ A @ ( uminus_uminus_int @ A ) )
      = ( ord_less_int @ A @ zero_zero_int ) ) ).

% less_neg_neg
thf(fact_6298_less__neg__neg,axiom,
    ! [A: real] :
      ( ( ord_less_real @ A @ ( uminus_uminus_real @ A ) )
      = ( ord_less_real @ A @ zero_zero_real ) ) ).

% less_neg_neg
thf(fact_6299_less__neg__neg,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ A @ ( uminus_uminus_rat @ A ) )
      = ( ord_less_rat @ A @ zero_zero_rat ) ) ).

% less_neg_neg
thf(fact_6300_less__neg__neg,axiom,
    ! [A: code_integer] :
      ( ( ord_le6747313008572928689nteger @ A @ ( uminus1351360451143612070nteger @ A ) )
      = ( ord_le6747313008572928689nteger @ A @ zero_z3403309356797280102nteger ) ) ).

% less_neg_neg
thf(fact_6301_neg__less__pos,axiom,
    ! [A: int] :
      ( ( ord_less_int @ ( uminus_uminus_int @ A ) @ A )
      = ( ord_less_int @ zero_zero_int @ A ) ) ).

% neg_less_pos
thf(fact_6302_neg__less__pos,axiom,
    ! [A: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ A ) @ A )
      = ( ord_less_real @ zero_zero_real @ A ) ) ).

% neg_less_pos
thf(fact_6303_neg__less__pos,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ ( uminus_uminus_rat @ A ) @ A )
      = ( ord_less_rat @ zero_zero_rat @ A ) ) ).

% neg_less_pos
thf(fact_6304_neg__less__pos,axiom,
    ! [A: code_integer] :
      ( ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ A ) @ A )
      = ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ A ) ) ).

% neg_less_pos
thf(fact_6305_neg__0__less__iff__less,axiom,
    ! [A: int] :
      ( ( ord_less_int @ zero_zero_int @ ( uminus_uminus_int @ A ) )
      = ( ord_less_int @ A @ zero_zero_int ) ) ).

% neg_0_less_iff_less
thf(fact_6306_neg__0__less__iff__less,axiom,
    ! [A: real] :
      ( ( ord_less_real @ zero_zero_real @ ( uminus_uminus_real @ A ) )
      = ( ord_less_real @ A @ zero_zero_real ) ) ).

% neg_0_less_iff_less
thf(fact_6307_neg__0__less__iff__less,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( uminus_uminus_rat @ A ) )
      = ( ord_less_rat @ A @ zero_zero_rat ) ) ).

% neg_0_less_iff_less
thf(fact_6308_neg__0__less__iff__less,axiom,
    ! [A: code_integer] :
      ( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ ( uminus1351360451143612070nteger @ A ) )
      = ( ord_le6747313008572928689nteger @ A @ zero_z3403309356797280102nteger ) ) ).

% neg_0_less_iff_less
thf(fact_6309_neg__less__0__iff__less,axiom,
    ! [A: int] :
      ( ( ord_less_int @ ( uminus_uminus_int @ A ) @ zero_zero_int )
      = ( ord_less_int @ zero_zero_int @ A ) ) ).

% neg_less_0_iff_less
thf(fact_6310_neg__less__0__iff__less,axiom,
    ! [A: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ A ) @ zero_zero_real )
      = ( ord_less_real @ zero_zero_real @ A ) ) ).

% neg_less_0_iff_less
thf(fact_6311_neg__less__0__iff__less,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ ( uminus_uminus_rat @ A ) @ zero_zero_rat )
      = ( ord_less_rat @ zero_zero_rat @ A ) ) ).

% neg_less_0_iff_less
thf(fact_6312_neg__less__0__iff__less,axiom,
    ! [A: code_integer] :
      ( ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ A ) @ zero_z3403309356797280102nteger )
      = ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ A ) ) ).

% neg_less_0_iff_less
thf(fact_6313_ab__left__minus,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ ( uminus_uminus_int @ A ) @ A )
      = zero_zero_int ) ).

% ab_left_minus
thf(fact_6314_ab__left__minus,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ ( uminus_uminus_real @ A ) @ A )
      = zero_zero_real ) ).

% ab_left_minus
thf(fact_6315_ab__left__minus,axiom,
    ! [A: complex] :
      ( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ A ) @ A )
      = zero_zero_complex ) ).

% ab_left_minus
thf(fact_6316_ab__left__minus,axiom,
    ! [A: rat] :
      ( ( plus_plus_rat @ ( uminus_uminus_rat @ A ) @ A )
      = zero_zero_rat ) ).

% ab_left_minus
thf(fact_6317_ab__left__minus,axiom,
    ! [A: code_integer] :
      ( ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ A ) @ A )
      = zero_z3403309356797280102nteger ) ).

% ab_left_minus
thf(fact_6318_add_Oright__inverse,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ A @ ( uminus_uminus_int @ A ) )
      = zero_zero_int ) ).

% add.right_inverse
thf(fact_6319_add_Oright__inverse,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ A @ ( uminus_uminus_real @ A ) )
      = zero_zero_real ) ).

% add.right_inverse
thf(fact_6320_add_Oright__inverse,axiom,
    ! [A: complex] :
      ( ( plus_plus_complex @ A @ ( uminus1482373934393186551omplex @ A ) )
      = zero_zero_complex ) ).

% add.right_inverse
thf(fact_6321_add_Oright__inverse,axiom,
    ! [A: rat] :
      ( ( plus_plus_rat @ A @ ( uminus_uminus_rat @ A ) )
      = zero_zero_rat ) ).

% add.right_inverse
thf(fact_6322_add_Oright__inverse,axiom,
    ! [A: code_integer] :
      ( ( plus_p5714425477246183910nteger @ A @ ( uminus1351360451143612070nteger @ A ) )
      = zero_z3403309356797280102nteger ) ).

% add.right_inverse
thf(fact_6323_add__neg__numeral__simps_I3_J,axiom,
    ! [M: num,N: num] :
      ( ( plus_plus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( uminus_uminus_int @ ( plus_plus_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) ) ) ) ).

% add_neg_numeral_simps(3)
thf(fact_6324_add__neg__numeral__simps_I3_J,axiom,
    ! [M: num,N: num] :
      ( ( plus_plus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
      = ( uminus_uminus_real @ ( plus_plus_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N ) ) ) ) ).

% add_neg_numeral_simps(3)
thf(fact_6325_add__neg__numeral__simps_I3_J,axiom,
    ! [M: num,N: num] :
      ( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ M ) ) @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N ) ) )
      = ( uminus1482373934393186551omplex @ ( plus_plus_complex @ ( numera6690914467698888265omplex @ M ) @ ( numera6690914467698888265omplex @ N ) ) ) ) ).

% add_neg_numeral_simps(3)
thf(fact_6326_add__neg__numeral__simps_I3_J,axiom,
    ! [M: num,N: num] :
      ( ( plus_plus_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) )
      = ( uminus_uminus_rat @ ( plus_plus_rat @ ( numeral_numeral_rat @ M ) @ ( numeral_numeral_rat @ N ) ) ) ) ).

% add_neg_numeral_simps(3)
thf(fact_6327_add__neg__numeral__simps_I3_J,axiom,
    ! [M: num,N: num] :
      ( ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) )
      = ( uminus1351360451143612070nteger @ ( plus_p5714425477246183910nteger @ ( numera6620942414471956472nteger @ M ) @ ( numera6620942414471956472nteger @ N ) ) ) ) ).

% add_neg_numeral_simps(3)
thf(fact_6328_mult__minus1,axiom,
    ! [Z: int] :
      ( ( times_times_int @ ( uminus_uminus_int @ one_one_int ) @ Z )
      = ( uminus_uminus_int @ Z ) ) ).

% mult_minus1
thf(fact_6329_mult__minus1,axiom,
    ! [Z: real] :
      ( ( times_times_real @ ( uminus_uminus_real @ one_one_real ) @ Z )
      = ( uminus_uminus_real @ Z ) ) ).

% mult_minus1
thf(fact_6330_mult__minus1,axiom,
    ! [Z: complex] :
      ( ( times_times_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ Z )
      = ( uminus1482373934393186551omplex @ Z ) ) ).

% mult_minus1
thf(fact_6331_mult__minus1,axiom,
    ! [Z: rat] :
      ( ( times_times_rat @ ( uminus_uminus_rat @ one_one_rat ) @ Z )
      = ( uminus_uminus_rat @ Z ) ) ).

% mult_minus1
thf(fact_6332_mult__minus1,axiom,
    ! [Z: code_integer] :
      ( ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ Z )
      = ( uminus1351360451143612070nteger @ Z ) ) ).

% mult_minus1
thf(fact_6333_mult__minus1__right,axiom,
    ! [Z: int] :
      ( ( times_times_int @ Z @ ( uminus_uminus_int @ one_one_int ) )
      = ( uminus_uminus_int @ Z ) ) ).

% mult_minus1_right
thf(fact_6334_mult__minus1__right,axiom,
    ! [Z: real] :
      ( ( times_times_real @ Z @ ( uminus_uminus_real @ one_one_real ) )
      = ( uminus_uminus_real @ Z ) ) ).

% mult_minus1_right
thf(fact_6335_mult__minus1__right,axiom,
    ! [Z: complex] :
      ( ( times_times_complex @ Z @ ( uminus1482373934393186551omplex @ one_one_complex ) )
      = ( uminus1482373934393186551omplex @ Z ) ) ).

% mult_minus1_right
thf(fact_6336_mult__minus1__right,axiom,
    ! [Z: rat] :
      ( ( times_times_rat @ Z @ ( uminus_uminus_rat @ one_one_rat ) )
      = ( uminus_uminus_rat @ Z ) ) ).

% mult_minus1_right
thf(fact_6337_mult__minus1__right,axiom,
    ! [Z: code_integer] :
      ( ( times_3573771949741848930nteger @ Z @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
      = ( uminus1351360451143612070nteger @ Z ) ) ).

% mult_minus1_right
thf(fact_6338_diff__minus__eq__add,axiom,
    ! [A: int,B: int] :
      ( ( minus_minus_int @ A @ ( uminus_uminus_int @ B ) )
      = ( plus_plus_int @ A @ B ) ) ).

% diff_minus_eq_add
thf(fact_6339_diff__minus__eq__add,axiom,
    ! [A: real,B: real] :
      ( ( minus_minus_real @ A @ ( uminus_uminus_real @ B ) )
      = ( plus_plus_real @ A @ B ) ) ).

% diff_minus_eq_add
thf(fact_6340_diff__minus__eq__add,axiom,
    ! [A: complex,B: complex] :
      ( ( minus_minus_complex @ A @ ( uminus1482373934393186551omplex @ B ) )
      = ( plus_plus_complex @ A @ B ) ) ).

% diff_minus_eq_add
thf(fact_6341_diff__minus__eq__add,axiom,
    ! [A: rat,B: rat] :
      ( ( minus_minus_rat @ A @ ( uminus_uminus_rat @ B ) )
      = ( plus_plus_rat @ A @ B ) ) ).

% diff_minus_eq_add
thf(fact_6342_diff__minus__eq__add,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( minus_8373710615458151222nteger @ A @ ( uminus1351360451143612070nteger @ B ) )
      = ( plus_p5714425477246183910nteger @ A @ B ) ) ).

% diff_minus_eq_add
thf(fact_6343_uminus__add__conv__diff,axiom,
    ! [A: int,B: int] :
      ( ( plus_plus_int @ ( uminus_uminus_int @ A ) @ B )
      = ( minus_minus_int @ B @ A ) ) ).

% uminus_add_conv_diff
thf(fact_6344_uminus__add__conv__diff,axiom,
    ! [A: real,B: real] :
      ( ( plus_plus_real @ ( uminus_uminus_real @ A ) @ B )
      = ( minus_minus_real @ B @ A ) ) ).

% uminus_add_conv_diff
thf(fact_6345_uminus__add__conv__diff,axiom,
    ! [A: complex,B: complex] :
      ( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ A ) @ B )
      = ( minus_minus_complex @ B @ A ) ) ).

% uminus_add_conv_diff
thf(fact_6346_uminus__add__conv__diff,axiom,
    ! [A: rat,B: rat] :
      ( ( plus_plus_rat @ ( uminus_uminus_rat @ A ) @ B )
      = ( minus_minus_rat @ B @ A ) ) ).

% uminus_add_conv_diff
thf(fact_6347_uminus__add__conv__diff,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ A ) @ B )
      = ( minus_8373710615458151222nteger @ B @ A ) ) ).

% uminus_add_conv_diff
thf(fact_6348_divide__minus1,axiom,
    ! [X2: real] :
      ( ( divide_divide_real @ X2 @ ( uminus_uminus_real @ one_one_real ) )
      = ( uminus_uminus_real @ X2 ) ) ).

% divide_minus1
thf(fact_6349_divide__minus1,axiom,
    ! [X2: complex] :
      ( ( divide1717551699836669952omplex @ X2 @ ( uminus1482373934393186551omplex @ one_one_complex ) )
      = ( uminus1482373934393186551omplex @ X2 ) ) ).

% divide_minus1
thf(fact_6350_divide__minus1,axiom,
    ! [X2: rat] :
      ( ( divide_divide_rat @ X2 @ ( uminus_uminus_rat @ one_one_rat ) )
      = ( uminus_uminus_rat @ X2 ) ) ).

% divide_minus1
thf(fact_6351_div__minus1__right,axiom,
    ! [A: int] :
      ( ( divide_divide_int @ A @ ( uminus_uminus_int @ one_one_int ) )
      = ( uminus_uminus_int @ A ) ) ).

% div_minus1_right
thf(fact_6352_div__minus1__right,axiom,
    ! [A: code_integer] :
      ( ( divide6298287555418463151nteger @ A @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
      = ( uminus1351360451143612070nteger @ A ) ) ).

% div_minus1_right
thf(fact_6353_minus__mod__self1,axiom,
    ! [B: int,A: int] :
      ( ( modulo_modulo_int @ ( minus_minus_int @ B @ A ) @ B )
      = ( modulo_modulo_int @ ( uminus_uminus_int @ A ) @ B ) ) ).

% minus_mod_self1
thf(fact_6354_minus__mod__self1,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( modulo364778990260209775nteger @ ( minus_8373710615458151222nteger @ B @ A ) @ B )
      = ( modulo364778990260209775nteger @ ( uminus1351360451143612070nteger @ A ) @ B ) ) ).

% minus_mod_self1
thf(fact_6355_subset__Compl__singleton,axiom,
    ! [A2: set_VEBT_VEBT,B: vEBT_VEBT] :
      ( ( ord_le4337996190870823476T_VEBT @ A2 @ ( uminus8041839845116263051T_VEBT @ ( insert_VEBT_VEBT @ B @ bot_bo8194388402131092736T_VEBT ) ) )
      = ( ~ ( member_VEBT_VEBT @ B @ A2 ) ) ) ).

% subset_Compl_singleton
thf(fact_6356_subset__Compl__singleton,axiom,
    ! [A2: set_complex,B: complex] :
      ( ( ord_le211207098394363844omplex @ A2 @ ( uminus8566677241136511917omplex @ ( insert_complex @ B @ bot_bot_set_complex ) ) )
      = ( ~ ( member_complex @ B @ A2 ) ) ) ).

% subset_Compl_singleton
thf(fact_6357_subset__Compl__singleton,axiom,
    ! [A2: set_set_nat,B: set_nat] :
      ( ( ord_le6893508408891458716et_nat @ A2 @ ( uminus613421341184616069et_nat @ ( insert_set_nat @ B @ bot_bot_set_set_nat ) ) )
      = ( ~ ( member_set_nat @ B @ A2 ) ) ) ).

% subset_Compl_singleton
thf(fact_6358_subset__Compl__singleton,axiom,
    ! [A2: set_real,B: real] :
      ( ( ord_less_eq_set_real @ A2 @ ( uminus612125837232591019t_real @ ( insert_real @ B @ bot_bot_set_real ) ) )
      = ( ~ ( member_real @ B @ A2 ) ) ) ).

% subset_Compl_singleton
thf(fact_6359_subset__Compl__singleton,axiom,
    ! [A2: set_o,B: $o] :
      ( ( ord_less_eq_set_o @ A2 @ ( uminus_uminus_set_o @ ( insert_o @ B @ bot_bot_set_o ) ) )
      = ( ~ ( member_o @ B @ A2 ) ) ) ).

% subset_Compl_singleton
thf(fact_6360_subset__Compl__singleton,axiom,
    ! [A2: set_nat,B: nat] :
      ( ( ord_less_eq_set_nat @ A2 @ ( uminus5710092332889474511et_nat @ ( insert_nat @ B @ bot_bot_set_nat ) ) )
      = ( ~ ( member_nat @ B @ A2 ) ) ) ).

% subset_Compl_singleton
thf(fact_6361_subset__Compl__singleton,axiom,
    ! [A2: set_int,B: int] :
      ( ( ord_less_eq_set_int @ A2 @ ( uminus1532241313380277803et_int @ ( insert_int @ B @ bot_bot_set_int ) ) )
      = ( ~ ( member_int @ B @ A2 ) ) ) ).

% subset_Compl_singleton
thf(fact_6362_image__uminus__atLeastAtMost,axiom,
    ! [X2: rat,Y2: rat] :
      ( ( image_rat_rat @ uminus_uminus_rat @ ( set_or633870826150836451st_rat @ X2 @ Y2 ) )
      = ( set_or633870826150836451st_rat @ ( uminus_uminus_rat @ Y2 ) @ ( uminus_uminus_rat @ X2 ) ) ) ).

% image_uminus_atLeastAtMost
thf(fact_6363_image__uminus__atLeastAtMost,axiom,
    ! [X2: code_integer,Y2: code_integer] :
      ( ( image_4470545334726330049nteger @ uminus1351360451143612070nteger @ ( set_or189985376899183464nteger @ X2 @ Y2 ) )
      = ( set_or189985376899183464nteger @ ( uminus1351360451143612070nteger @ Y2 ) @ ( uminus1351360451143612070nteger @ X2 ) ) ) ).

% image_uminus_atLeastAtMost
thf(fact_6364_image__uminus__atLeastAtMost,axiom,
    ! [X2: int,Y2: int] :
      ( ( image_int_int @ uminus_uminus_int @ ( set_or1266510415728281911st_int @ X2 @ Y2 ) )
      = ( set_or1266510415728281911st_int @ ( uminus_uminus_int @ Y2 ) @ ( uminus_uminus_int @ X2 ) ) ) ).

% image_uminus_atLeastAtMost
thf(fact_6365_image__uminus__atLeastAtMost,axiom,
    ! [X2: real,Y2: real] :
      ( ( image_real_real @ uminus_uminus_real @ ( set_or1222579329274155063t_real @ X2 @ Y2 ) )
      = ( set_or1222579329274155063t_real @ ( uminus_uminus_real @ Y2 ) @ ( uminus_uminus_real @ X2 ) ) ) ).

% image_uminus_atLeastAtMost
thf(fact_6366_signed__take__bit__of__minus__1,axiom,
    ! [N: nat] :
      ( ( bit_ri6519982836138164636nteger @ N @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
      = ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% signed_take_bit_of_minus_1
thf(fact_6367_signed__take__bit__of__minus__1,axiom,
    ! [N: nat] :
      ( ( bit_ri631733984087533419it_int @ N @ ( uminus_uminus_int @ one_one_int ) )
      = ( uminus_uminus_int @ one_one_int ) ) ).

% signed_take_bit_of_minus_1
thf(fact_6368_in__set__replicate,axiom,
    ! [X2: complex,N: nat,Y2: complex] :
      ( ( member_complex @ X2 @ ( set_complex2 @ ( replicate_complex @ N @ Y2 ) ) )
      = ( ( X2 = Y2 )
        & ( N != zero_zero_nat ) ) ) ).

% in_set_replicate
thf(fact_6369_in__set__replicate,axiom,
    ! [X2: real,N: nat,Y2: real] :
      ( ( member_real @ X2 @ ( set_real2 @ ( replicate_real @ N @ Y2 ) ) )
      = ( ( X2 = Y2 )
        & ( N != zero_zero_nat ) ) ) ).

% in_set_replicate
thf(fact_6370_in__set__replicate,axiom,
    ! [X2: set_nat,N: nat,Y2: set_nat] :
      ( ( member_set_nat @ X2 @ ( set_set_nat2 @ ( replicate_set_nat @ N @ Y2 ) ) )
      = ( ( X2 = Y2 )
        & ( N != zero_zero_nat ) ) ) ).

% in_set_replicate
thf(fact_6371_in__set__replicate,axiom,
    ! [X2: nat,N: nat,Y2: nat] :
      ( ( member_nat @ X2 @ ( set_nat2 @ ( replicate_nat @ N @ Y2 ) ) )
      = ( ( X2 = Y2 )
        & ( N != zero_zero_nat ) ) ) ).

% in_set_replicate
thf(fact_6372_in__set__replicate,axiom,
    ! [X2: int,N: nat,Y2: int] :
      ( ( member_int @ X2 @ ( set_int2 @ ( replicate_int @ N @ Y2 ) ) )
      = ( ( X2 = Y2 )
        & ( N != zero_zero_nat ) ) ) ).

% in_set_replicate
thf(fact_6373_in__set__replicate,axiom,
    ! [X2: vEBT_VEBT,N: nat,Y2: vEBT_VEBT] :
      ( ( member_VEBT_VEBT @ X2 @ ( set_VEBT_VEBT2 @ ( replicate_VEBT_VEBT @ N @ Y2 ) ) )
      = ( ( X2 = Y2 )
        & ( N != zero_zero_nat ) ) ) ).

% in_set_replicate
thf(fact_6374_Bex__set__replicate,axiom,
    ! [N: nat,A: int,P: int > $o] :
      ( ( ? [X: int] :
            ( ( member_int @ X @ ( set_int2 @ ( replicate_int @ N @ A ) ) )
            & ( P @ X ) ) )
      = ( ( P @ A )
        & ( N != zero_zero_nat ) ) ) ).

% Bex_set_replicate
thf(fact_6375_Bex__set__replicate,axiom,
    ! [N: nat,A: vEBT_VEBT,P: vEBT_VEBT > $o] :
      ( ( ? [X: vEBT_VEBT] :
            ( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ ( replicate_VEBT_VEBT @ N @ A ) ) )
            & ( P @ X ) ) )
      = ( ( P @ A )
        & ( N != zero_zero_nat ) ) ) ).

% Bex_set_replicate
thf(fact_6376_Ball__set__replicate,axiom,
    ! [N: nat,A: int,P: int > $o] :
      ( ( ! [X: int] :
            ( ( member_int @ X @ ( set_int2 @ ( replicate_int @ N @ A ) ) )
           => ( P @ X ) ) )
      = ( ( P @ A )
        | ( N = zero_zero_nat ) ) ) ).

% Ball_set_replicate
thf(fact_6377_Ball__set__replicate,axiom,
    ! [N: nat,A: vEBT_VEBT,P: vEBT_VEBT > $o] :
      ( ( ! [X: vEBT_VEBT] :
            ( ( member_VEBT_VEBT @ X @ ( set_VEBT_VEBT2 @ ( replicate_VEBT_VEBT @ N @ A ) ) )
           => ( P @ X ) ) )
      = ( ( P @ A )
        | ( N = zero_zero_nat ) ) ) ).

% Ball_set_replicate
thf(fact_6378_pred__numeral__simps_I1_J,axiom,
    ( ( pred_numeral @ one )
    = zero_zero_nat ) ).

% pred_numeral_simps(1)
thf(fact_6379_Suc__eq__numeral,axiom,
    ! [N: nat,K: num] :
      ( ( ( suc @ N )
        = ( numeral_numeral_nat @ K ) )
      = ( N
        = ( pred_numeral @ K ) ) ) ).

% Suc_eq_numeral
thf(fact_6380_eq__numeral__Suc,axiom,
    ! [K: num,N: nat] :
      ( ( ( numeral_numeral_nat @ K )
        = ( suc @ N ) )
      = ( ( pred_numeral @ K )
        = N ) ) ).

% eq_numeral_Suc
thf(fact_6381_nth__replicate,axiom,
    ! [I: nat,N: nat,X2: int] :
      ( ( ord_less_nat @ I @ N )
     => ( ( nth_int @ ( replicate_int @ N @ X2 ) @ I )
        = X2 ) ) ).

% nth_replicate
thf(fact_6382_nth__replicate,axiom,
    ! [I: nat,N: nat,X2: vEBT_VEBT] :
      ( ( ord_less_nat @ I @ N )
     => ( ( nth_VEBT_VEBT @ ( replicate_VEBT_VEBT @ N @ X2 ) @ I )
        = X2 ) ) ).

% nth_replicate
thf(fact_6383_dbl__simps_I1_J,axiom,
    ! [K: num] :
      ( ( neg_numeral_dbl_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) )
      = ( uminus_uminus_int @ ( neg_numeral_dbl_int @ ( numeral_numeral_int @ K ) ) ) ) ).

% dbl_simps(1)
thf(fact_6384_dbl__simps_I1_J,axiom,
    ! [K: num] :
      ( ( neg_numeral_dbl_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ K ) ) )
      = ( uminus_uminus_real @ ( neg_numeral_dbl_real @ ( numeral_numeral_real @ K ) ) ) ) ).

% dbl_simps(1)
thf(fact_6385_dbl__simps_I1_J,axiom,
    ! [K: num] :
      ( ( neg_nu7009210354673126013omplex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ K ) ) )
      = ( uminus1482373934393186551omplex @ ( neg_nu7009210354673126013omplex @ ( numera6690914467698888265omplex @ K ) ) ) ) ).

% dbl_simps(1)
thf(fact_6386_dbl__simps_I1_J,axiom,
    ! [K: num] :
      ( ( neg_numeral_dbl_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ K ) ) )
      = ( uminus_uminus_rat @ ( neg_numeral_dbl_rat @ ( numeral_numeral_rat @ K ) ) ) ) ).

% dbl_simps(1)
thf(fact_6387_dbl__simps_I1_J,axiom,
    ! [K: num] :
      ( ( neg_nu8804712462038260780nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ K ) ) )
      = ( uminus1351360451143612070nteger @ ( neg_nu8804712462038260780nteger @ ( numera6620942414471956472nteger @ K ) ) ) ) ).

% dbl_simps(1)
thf(fact_6388_dbl__inc__simps_I4_J,axiom,
    ( ( neg_nu5851722552734809277nc_int @ ( uminus_uminus_int @ one_one_int ) )
    = ( uminus_uminus_int @ one_one_int ) ) ).

% dbl_inc_simps(4)
thf(fact_6389_dbl__inc__simps_I4_J,axiom,
    ( ( neg_nu8295874005876285629c_real @ ( uminus_uminus_real @ one_one_real ) )
    = ( uminus_uminus_real @ one_one_real ) ) ).

% dbl_inc_simps(4)
thf(fact_6390_dbl__inc__simps_I4_J,axiom,
    ( ( neg_nu8557863876264182079omplex @ ( uminus1482373934393186551omplex @ one_one_complex ) )
    = ( uminus1482373934393186551omplex @ one_one_complex ) ) ).

% dbl_inc_simps(4)
thf(fact_6391_dbl__inc__simps_I4_J,axiom,
    ( ( neg_nu5219082963157363817nc_rat @ ( uminus_uminus_rat @ one_one_rat ) )
    = ( uminus_uminus_rat @ one_one_rat ) ) ).

% dbl_inc_simps(4)
thf(fact_6392_dbl__inc__simps_I4_J,axiom,
    ( ( neg_nu5831290666863070958nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
    = ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% dbl_inc_simps(4)
thf(fact_6393_triangle__Suc,axiom,
    ! [N: nat] :
      ( ( nat_triangle @ ( suc @ N ) )
      = ( plus_plus_nat @ ( nat_triangle @ N ) @ ( suc @ N ) ) ) ).

% triangle_Suc
thf(fact_6394_add__neg__numeral__special_I7_J,axiom,
    ( ( plus_plus_int @ one_one_int @ ( uminus_uminus_int @ one_one_int ) )
    = zero_zero_int ) ).

% add_neg_numeral_special(7)
thf(fact_6395_add__neg__numeral__special_I7_J,axiom,
    ( ( plus_plus_real @ one_one_real @ ( uminus_uminus_real @ one_one_real ) )
    = zero_zero_real ) ).

% add_neg_numeral_special(7)
thf(fact_6396_add__neg__numeral__special_I7_J,axiom,
    ( ( plus_plus_complex @ one_one_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) )
    = zero_zero_complex ) ).

% add_neg_numeral_special(7)
thf(fact_6397_add__neg__numeral__special_I7_J,axiom,
    ( ( plus_plus_rat @ one_one_rat @ ( uminus_uminus_rat @ one_one_rat ) )
    = zero_zero_rat ) ).

% add_neg_numeral_special(7)
thf(fact_6398_add__neg__numeral__special_I7_J,axiom,
    ( ( plus_p5714425477246183910nteger @ one_one_Code_integer @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
    = zero_z3403309356797280102nteger ) ).

% add_neg_numeral_special(7)
thf(fact_6399_add__neg__numeral__special_I8_J,axiom,
    ( ( plus_plus_int @ ( uminus_uminus_int @ one_one_int ) @ one_one_int )
    = zero_zero_int ) ).

% add_neg_numeral_special(8)
thf(fact_6400_add__neg__numeral__special_I8_J,axiom,
    ( ( plus_plus_real @ ( uminus_uminus_real @ one_one_real ) @ one_one_real )
    = zero_zero_real ) ).

% add_neg_numeral_special(8)
thf(fact_6401_add__neg__numeral__special_I8_J,axiom,
    ( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ one_one_complex )
    = zero_zero_complex ) ).

% add_neg_numeral_special(8)
thf(fact_6402_add__neg__numeral__special_I8_J,axiom,
    ( ( plus_plus_rat @ ( uminus_uminus_rat @ one_one_rat ) @ one_one_rat )
    = zero_zero_rat ) ).

% add_neg_numeral_special(8)
thf(fact_6403_add__neg__numeral__special_I8_J,axiom,
    ( ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ one_one_Code_integer )
    = zero_z3403309356797280102nteger ) ).

% add_neg_numeral_special(8)
thf(fact_6404_diff__numeral__special_I12_J,axiom,
    ( ( minus_minus_int @ ( uminus_uminus_int @ one_one_int ) @ ( uminus_uminus_int @ one_one_int ) )
    = zero_zero_int ) ).

% diff_numeral_special(12)
thf(fact_6405_diff__numeral__special_I12_J,axiom,
    ( ( minus_minus_real @ ( uminus_uminus_real @ one_one_real ) @ ( uminus_uminus_real @ one_one_real ) )
    = zero_zero_real ) ).

% diff_numeral_special(12)
thf(fact_6406_diff__numeral__special_I12_J,axiom,
    ( ( minus_minus_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ ( uminus1482373934393186551omplex @ one_one_complex ) )
    = zero_zero_complex ) ).

% diff_numeral_special(12)
thf(fact_6407_diff__numeral__special_I12_J,axiom,
    ( ( minus_minus_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( uminus_uminus_rat @ one_one_rat ) )
    = zero_zero_rat ) ).

% diff_numeral_special(12)
thf(fact_6408_diff__numeral__special_I12_J,axiom,
    ( ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
    = zero_z3403309356797280102nteger ) ).

% diff_numeral_special(12)
thf(fact_6409_numeral__eq__neg__one__iff,axiom,
    ! [N: num] :
      ( ( ( uminus_uminus_int @ ( numeral_numeral_int @ N ) )
        = ( uminus_uminus_int @ one_one_int ) )
      = ( N = one ) ) ).

% numeral_eq_neg_one_iff
thf(fact_6410_numeral__eq__neg__one__iff,axiom,
    ! [N: num] :
      ( ( ( uminus_uminus_real @ ( numeral_numeral_real @ N ) )
        = ( uminus_uminus_real @ one_one_real ) )
      = ( N = one ) ) ).

% numeral_eq_neg_one_iff
thf(fact_6411_numeral__eq__neg__one__iff,axiom,
    ! [N: num] :
      ( ( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N ) )
        = ( uminus1482373934393186551omplex @ one_one_complex ) )
      = ( N = one ) ) ).

% numeral_eq_neg_one_iff
thf(fact_6412_numeral__eq__neg__one__iff,axiom,
    ! [N: num] :
      ( ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) )
        = ( uminus_uminus_rat @ one_one_rat ) )
      = ( N = one ) ) ).

% numeral_eq_neg_one_iff
thf(fact_6413_numeral__eq__neg__one__iff,axiom,
    ! [N: num] :
      ( ( ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) )
        = ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
      = ( N = one ) ) ).

% numeral_eq_neg_one_iff
thf(fact_6414_neg__one__eq__numeral__iff,axiom,
    ! [N: num] :
      ( ( ( uminus_uminus_int @ one_one_int )
        = ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( N = one ) ) ).

% neg_one_eq_numeral_iff
thf(fact_6415_neg__one__eq__numeral__iff,axiom,
    ! [N: num] :
      ( ( ( uminus_uminus_real @ one_one_real )
        = ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
      = ( N = one ) ) ).

% neg_one_eq_numeral_iff
thf(fact_6416_neg__one__eq__numeral__iff,axiom,
    ! [N: num] :
      ( ( ( uminus1482373934393186551omplex @ one_one_complex )
        = ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N ) ) )
      = ( N = one ) ) ).

% neg_one_eq_numeral_iff
thf(fact_6417_neg__one__eq__numeral__iff,axiom,
    ! [N: num] :
      ( ( ( uminus_uminus_rat @ one_one_rat )
        = ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) )
      = ( N = one ) ) ).

% neg_one_eq_numeral_iff
thf(fact_6418_neg__one__eq__numeral__iff,axiom,
    ! [N: num] :
      ( ( ( uminus1351360451143612070nteger @ one_one_Code_integer )
        = ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) )
      = ( N = one ) ) ).

% neg_one_eq_numeral_iff
thf(fact_6419_minus__one__mult__self,axiom,
    ! [N: nat] :
      ( ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N ) @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N ) )
      = one_one_int ) ).

% minus_one_mult_self
thf(fact_6420_minus__one__mult__self,axiom,
    ! [N: nat] :
      ( ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N ) @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N ) )
      = one_one_real ) ).

% minus_one_mult_self
thf(fact_6421_minus__one__mult__self,axiom,
    ! [N: nat] :
      ( ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N ) @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N ) )
      = one_one_complex ) ).

% minus_one_mult_self
thf(fact_6422_minus__one__mult__self,axiom,
    ! [N: nat] :
      ( ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ N ) @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ N ) )
      = one_one_rat ) ).

% minus_one_mult_self
thf(fact_6423_minus__one__mult__self,axiom,
    ! [N: nat] :
      ( ( times_3573771949741848930nteger @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ N ) @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ N ) )
      = one_one_Code_integer ) ).

% minus_one_mult_self
thf(fact_6424_left__minus__one__mult__self,axiom,
    ! [N: nat,A: int] :
      ( ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N ) @ ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N ) @ A ) )
      = A ) ).

% left_minus_one_mult_self
thf(fact_6425_left__minus__one__mult__self,axiom,
    ! [N: nat,A: real] :
      ( ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N ) @ ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N ) @ A ) )
      = A ) ).

% left_minus_one_mult_self
thf(fact_6426_left__minus__one__mult__self,axiom,
    ! [N: nat,A: complex] :
      ( ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N ) @ ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N ) @ A ) )
      = A ) ).

% left_minus_one_mult_self
thf(fact_6427_left__minus__one__mult__self,axiom,
    ! [N: nat,A: rat] :
      ( ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ N ) @ ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ N ) @ A ) )
      = A ) ).

% left_minus_one_mult_self
thf(fact_6428_left__minus__one__mult__self,axiom,
    ! [N: nat,A: code_integer] :
      ( ( times_3573771949741848930nteger @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ N ) @ ( times_3573771949741848930nteger @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ N ) @ A ) )
      = A ) ).

% left_minus_one_mult_self
thf(fact_6429_mod__minus1__right,axiom,
    ! [A: int] :
      ( ( modulo_modulo_int @ A @ ( uminus_uminus_int @ one_one_int ) )
      = zero_zero_int ) ).

% mod_minus1_right
thf(fact_6430_mod__minus1__right,axiom,
    ! [A: code_integer] :
      ( ( modulo364778990260209775nteger @ A @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
      = zero_z3403309356797280102nteger ) ).

% mod_minus1_right
thf(fact_6431_max__number__of_I2_J,axiom,
    ! [U: num,V: num] :
      ( ( ( ord_less_eq_real @ ( numeral_numeral_real @ U ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) )
       => ( ( ord_max_real @ ( numeral_numeral_real @ U ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) )
          = ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) ) )
      & ( ~ ( ord_less_eq_real @ ( numeral_numeral_real @ U ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) )
       => ( ( ord_max_real @ ( numeral_numeral_real @ U ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) )
          = ( numeral_numeral_real @ U ) ) ) ) ).

% max_number_of(2)
thf(fact_6432_max__number__of_I2_J,axiom,
    ! [U: num,V: num] :
      ( ( ( ord_le3102999989581377725nteger @ ( numera6620942414471956472nteger @ U ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) )
       => ( ( ord_max_Code_integer @ ( numera6620942414471956472nteger @ U ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) )
          = ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) ) )
      & ( ~ ( ord_le3102999989581377725nteger @ ( numera6620942414471956472nteger @ U ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) )
       => ( ( ord_max_Code_integer @ ( numera6620942414471956472nteger @ U ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) )
          = ( numera6620942414471956472nteger @ U ) ) ) ) ).

% max_number_of(2)
thf(fact_6433_max__number__of_I2_J,axiom,
    ! [U: num,V: num] :
      ( ( ( ord_less_eq_rat @ ( numeral_numeral_rat @ U ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) )
       => ( ( ord_max_rat @ ( numeral_numeral_rat @ U ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) )
          = ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) ) )
      & ( ~ ( ord_less_eq_rat @ ( numeral_numeral_rat @ U ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) )
       => ( ( ord_max_rat @ ( numeral_numeral_rat @ U ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) )
          = ( numeral_numeral_rat @ U ) ) ) ) ).

% max_number_of(2)
thf(fact_6434_max__number__of_I2_J,axiom,
    ! [U: num,V: num] :
      ( ( ( ord_less_eq_int @ ( numeral_numeral_int @ U ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
       => ( ( ord_max_int @ ( numeral_numeral_int @ U ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
          = ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) ) )
      & ( ~ ( ord_less_eq_int @ ( numeral_numeral_int @ U ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
       => ( ( ord_max_int @ ( numeral_numeral_int @ U ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
          = ( numeral_numeral_int @ U ) ) ) ) ).

% max_number_of(2)
thf(fact_6435_max__number__of_I3_J,axiom,
    ! [U: num,V: num] :
      ( ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ U ) ) @ ( numeral_numeral_real @ V ) )
       => ( ( ord_max_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ U ) ) @ ( numeral_numeral_real @ V ) )
          = ( numeral_numeral_real @ V ) ) )
      & ( ~ ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ U ) ) @ ( numeral_numeral_real @ V ) )
       => ( ( ord_max_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ U ) ) @ ( numeral_numeral_real @ V ) )
          = ( uminus_uminus_real @ ( numeral_numeral_real @ U ) ) ) ) ) ).

% max_number_of(3)
thf(fact_6436_max__number__of_I3_J,axiom,
    ! [U: num,V: num] :
      ( ( ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ U ) ) @ ( numera6620942414471956472nteger @ V ) )
       => ( ( ord_max_Code_integer @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ U ) ) @ ( numera6620942414471956472nteger @ V ) )
          = ( numera6620942414471956472nteger @ V ) ) )
      & ( ~ ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ U ) ) @ ( numera6620942414471956472nteger @ V ) )
       => ( ( ord_max_Code_integer @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ U ) ) @ ( numera6620942414471956472nteger @ V ) )
          = ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ U ) ) ) ) ) ).

% max_number_of(3)
thf(fact_6437_max__number__of_I3_J,axiom,
    ! [U: num,V: num] :
      ( ( ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ U ) ) @ ( numeral_numeral_rat @ V ) )
       => ( ( ord_max_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ U ) ) @ ( numeral_numeral_rat @ V ) )
          = ( numeral_numeral_rat @ V ) ) )
      & ( ~ ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ U ) ) @ ( numeral_numeral_rat @ V ) )
       => ( ( ord_max_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ U ) ) @ ( numeral_numeral_rat @ V ) )
          = ( uminus_uminus_rat @ ( numeral_numeral_rat @ U ) ) ) ) ) ).

% max_number_of(3)
thf(fact_6438_max__number__of_I3_J,axiom,
    ! [U: num,V: num] :
      ( ( ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ U ) ) @ ( numeral_numeral_int @ V ) )
       => ( ( ord_max_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ U ) ) @ ( numeral_numeral_int @ V ) )
          = ( numeral_numeral_int @ V ) ) )
      & ( ~ ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ U ) ) @ ( numeral_numeral_int @ V ) )
       => ( ( ord_max_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ U ) ) @ ( numeral_numeral_int @ V ) )
          = ( uminus_uminus_int @ ( numeral_numeral_int @ U ) ) ) ) ) ).

% max_number_of(3)
thf(fact_6439_max__number__of_I4_J,axiom,
    ! [U: num,V: num] :
      ( ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ U ) ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) )
       => ( ( ord_max_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ U ) ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) )
          = ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) ) )
      & ( ~ ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ U ) ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) )
       => ( ( ord_max_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ U ) ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) )
          = ( uminus_uminus_real @ ( numeral_numeral_real @ U ) ) ) ) ) ).

% max_number_of(4)
thf(fact_6440_max__number__of_I4_J,axiom,
    ! [U: num,V: num] :
      ( ( ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ U ) ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) )
       => ( ( ord_max_Code_integer @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ U ) ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) )
          = ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) ) )
      & ( ~ ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ U ) ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) )
       => ( ( ord_max_Code_integer @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ U ) ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) )
          = ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ U ) ) ) ) ) ).

% max_number_of(4)
thf(fact_6441_max__number__of_I4_J,axiom,
    ! [U: num,V: num] :
      ( ( ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ U ) ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) )
       => ( ( ord_max_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ U ) ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) )
          = ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) ) )
      & ( ~ ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ U ) ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) )
       => ( ( ord_max_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ U ) ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) )
          = ( uminus_uminus_rat @ ( numeral_numeral_rat @ U ) ) ) ) ) ).

% max_number_of(4)
thf(fact_6442_max__number__of_I4_J,axiom,
    ! [U: num,V: num] :
      ( ( ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ U ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
       => ( ( ord_max_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ U ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
          = ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) ) )
      & ( ~ ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ U ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
       => ( ( ord_max_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ U ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
          = ( uminus_uminus_int @ ( numeral_numeral_int @ U ) ) ) ) ) ).

% max_number_of(4)
thf(fact_6443_semiring__norm_I168_J,axiom,
    ! [V: num,W: num,Y2: int] :
      ( ( plus_plus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) @ ( plus_plus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ W ) ) @ Y2 ) )
      = ( plus_plus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( plus_plus_num @ V @ W ) ) ) @ Y2 ) ) ).

% semiring_norm(168)
thf(fact_6444_semiring__norm_I168_J,axiom,
    ! [V: num,W: num,Y2: real] :
      ( ( plus_plus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) @ ( plus_plus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ Y2 ) )
      = ( plus_plus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ ( plus_plus_num @ V @ W ) ) ) @ Y2 ) ) ).

% semiring_norm(168)
thf(fact_6445_semiring__norm_I168_J,axiom,
    ! [V: num,W: num,Y2: complex] :
      ( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ V ) ) @ ( plus_plus_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) @ Y2 ) )
      = ( plus_plus_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( plus_plus_num @ V @ W ) ) ) @ Y2 ) ) ).

% semiring_norm(168)
thf(fact_6446_semiring__norm_I168_J,axiom,
    ! [V: num,W: num,Y2: rat] :
      ( ( plus_plus_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) @ ( plus_plus_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ Y2 ) )
      = ( plus_plus_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( plus_plus_num @ V @ W ) ) ) @ Y2 ) ) ).

% semiring_norm(168)
thf(fact_6447_semiring__norm_I168_J,axiom,
    ! [V: num,W: num,Y2: code_integer] :
      ( ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) @ ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ W ) ) @ Y2 ) )
      = ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( plus_plus_num @ V @ W ) ) ) @ Y2 ) ) ).

% semiring_norm(168)
thf(fact_6448_diff__numeral__simps_I3_J,axiom,
    ! [M: num,N: num] :
      ( ( minus_minus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( plus_plus_num @ M @ N ) ) ) ) ).

% diff_numeral_simps(3)
thf(fact_6449_diff__numeral__simps_I3_J,axiom,
    ! [M: num,N: num] :
      ( ( minus_minus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( numeral_numeral_real @ N ) )
      = ( uminus_uminus_real @ ( numeral_numeral_real @ ( plus_plus_num @ M @ N ) ) ) ) ).

% diff_numeral_simps(3)
thf(fact_6450_diff__numeral__simps_I3_J,axiom,
    ! [M: num,N: num] :
      ( ( minus_minus_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ M ) ) @ ( numera6690914467698888265omplex @ N ) )
      = ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( plus_plus_num @ M @ N ) ) ) ) ).

% diff_numeral_simps(3)
thf(fact_6451_diff__numeral__simps_I3_J,axiom,
    ! [M: num,N: num] :
      ( ( minus_minus_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( numeral_numeral_rat @ N ) )
      = ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( plus_plus_num @ M @ N ) ) ) ) ).

% diff_numeral_simps(3)
thf(fact_6452_diff__numeral__simps_I3_J,axiom,
    ! [M: num,N: num] :
      ( ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( numera6620942414471956472nteger @ N ) )
      = ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( plus_plus_num @ M @ N ) ) ) ) ).

% diff_numeral_simps(3)
thf(fact_6453_diff__numeral__simps_I2_J,axiom,
    ! [M: num,N: num] :
      ( ( minus_minus_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( numeral_numeral_int @ ( plus_plus_num @ M @ N ) ) ) ).

% diff_numeral_simps(2)
thf(fact_6454_diff__numeral__simps_I2_J,axiom,
    ! [M: num,N: num] :
      ( ( minus_minus_real @ ( numeral_numeral_real @ M ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
      = ( numeral_numeral_real @ ( plus_plus_num @ M @ N ) ) ) ).

% diff_numeral_simps(2)
thf(fact_6455_diff__numeral__simps_I2_J,axiom,
    ! [M: num,N: num] :
      ( ( minus_minus_complex @ ( numera6690914467698888265omplex @ M ) @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N ) ) )
      = ( numera6690914467698888265omplex @ ( plus_plus_num @ M @ N ) ) ) ).

% diff_numeral_simps(2)
thf(fact_6456_diff__numeral__simps_I2_J,axiom,
    ! [M: num,N: num] :
      ( ( minus_minus_rat @ ( numeral_numeral_rat @ M ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) )
      = ( numeral_numeral_rat @ ( plus_plus_num @ M @ N ) ) ) ).

% diff_numeral_simps(2)
thf(fact_6457_diff__numeral__simps_I2_J,axiom,
    ! [M: num,N: num] :
      ( ( minus_8373710615458151222nteger @ ( numera6620942414471956472nteger @ M ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) )
      = ( numera6620942414471956472nteger @ ( plus_plus_num @ M @ N ) ) ) ).

% diff_numeral_simps(2)
thf(fact_6458_semiring__norm_I172_J,axiom,
    ! [V: num,W: num,Y2: int] :
      ( ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) @ ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ W ) ) @ Y2 ) )
      = ( times_times_int @ ( numeral_numeral_int @ ( times_times_num @ V @ W ) ) @ Y2 ) ) ).

% semiring_norm(172)
thf(fact_6459_semiring__norm_I172_J,axiom,
    ! [V: num,W: num,Y2: real] :
      ( ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ Y2 ) )
      = ( times_times_real @ ( numeral_numeral_real @ ( times_times_num @ V @ W ) ) @ Y2 ) ) ).

% semiring_norm(172)
thf(fact_6460_semiring__norm_I172_J,axiom,
    ! [V: num,W: num,Y2: complex] :
      ( ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ V ) ) @ ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) @ Y2 ) )
      = ( times_times_complex @ ( numera6690914467698888265omplex @ ( times_times_num @ V @ W ) ) @ Y2 ) ) ).

% semiring_norm(172)
thf(fact_6461_semiring__norm_I172_J,axiom,
    ! [V: num,W: num,Y2: rat] :
      ( ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) @ ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ Y2 ) )
      = ( times_times_rat @ ( numeral_numeral_rat @ ( times_times_num @ V @ W ) ) @ Y2 ) ) ).

% semiring_norm(172)
thf(fact_6462_semiring__norm_I172_J,axiom,
    ! [V: num,W: num,Y2: code_integer] :
      ( ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) @ ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ W ) ) @ Y2 ) )
      = ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( times_times_num @ V @ W ) ) @ Y2 ) ) ).

% semiring_norm(172)
thf(fact_6463_semiring__norm_I171_J,axiom,
    ! [V: num,W: num,Y2: int] :
      ( ( times_times_int @ ( numeral_numeral_int @ V ) @ ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ W ) ) @ Y2 ) )
      = ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( times_times_num @ V @ W ) ) ) @ Y2 ) ) ).

% semiring_norm(171)
thf(fact_6464_semiring__norm_I171_J,axiom,
    ! [V: num,W: num,Y2: real] :
      ( ( times_times_real @ ( numeral_numeral_real @ V ) @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ Y2 ) )
      = ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ ( times_times_num @ V @ W ) ) ) @ Y2 ) ) ).

% semiring_norm(171)
thf(fact_6465_semiring__norm_I171_J,axiom,
    ! [V: num,W: num,Y2: complex] :
      ( ( times_times_complex @ ( numera6690914467698888265omplex @ V ) @ ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) @ Y2 ) )
      = ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( times_times_num @ V @ W ) ) ) @ Y2 ) ) ).

% semiring_norm(171)
thf(fact_6466_semiring__norm_I171_J,axiom,
    ! [V: num,W: num,Y2: rat] :
      ( ( times_times_rat @ ( numeral_numeral_rat @ V ) @ ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ Y2 ) )
      = ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( times_times_num @ V @ W ) ) ) @ Y2 ) ) ).

% semiring_norm(171)
thf(fact_6467_semiring__norm_I171_J,axiom,
    ! [V: num,W: num,Y2: code_integer] :
      ( ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ V ) @ ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ W ) ) @ Y2 ) )
      = ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( times_times_num @ V @ W ) ) ) @ Y2 ) ) ).

% semiring_norm(171)
thf(fact_6468_semiring__norm_I170_J,axiom,
    ! [V: num,W: num,Y2: int] :
      ( ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) @ ( times_times_int @ ( numeral_numeral_int @ W ) @ Y2 ) )
      = ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( times_times_num @ V @ W ) ) ) @ Y2 ) ) ).

% semiring_norm(170)
thf(fact_6469_semiring__norm_I170_J,axiom,
    ! [V: num,W: num,Y2: real] :
      ( ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) @ ( times_times_real @ ( numeral_numeral_real @ W ) @ Y2 ) )
      = ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ ( times_times_num @ V @ W ) ) ) @ Y2 ) ) ).

% semiring_norm(170)
thf(fact_6470_semiring__norm_I170_J,axiom,
    ! [V: num,W: num,Y2: complex] :
      ( ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ V ) ) @ ( times_times_complex @ ( numera6690914467698888265omplex @ W ) @ Y2 ) )
      = ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( times_times_num @ V @ W ) ) ) @ Y2 ) ) ).

% semiring_norm(170)
thf(fact_6471_semiring__norm_I170_J,axiom,
    ! [V: num,W: num,Y2: rat] :
      ( ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ V ) ) @ ( times_times_rat @ ( numeral_numeral_rat @ W ) @ Y2 ) )
      = ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( times_times_num @ V @ W ) ) ) @ Y2 ) ) ).

% semiring_norm(170)
thf(fact_6472_semiring__norm_I170_J,axiom,
    ! [V: num,W: num,Y2: code_integer] :
      ( ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ V ) ) @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ W ) @ Y2 ) )
      = ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( times_times_num @ V @ W ) ) ) @ Y2 ) ) ).

% semiring_norm(170)
thf(fact_6473_mult__neg__numeral__simps_I1_J,axiom,
    ! [M: num,N: num] :
      ( ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( numeral_numeral_int @ ( times_times_num @ M @ N ) ) ) ).

% mult_neg_numeral_simps(1)
thf(fact_6474_mult__neg__numeral__simps_I1_J,axiom,
    ! [M: num,N: num] :
      ( ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
      = ( numeral_numeral_real @ ( times_times_num @ M @ N ) ) ) ).

% mult_neg_numeral_simps(1)
thf(fact_6475_mult__neg__numeral__simps_I1_J,axiom,
    ! [M: num,N: num] :
      ( ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ M ) ) @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N ) ) )
      = ( numera6690914467698888265omplex @ ( times_times_num @ M @ N ) ) ) ).

% mult_neg_numeral_simps(1)
thf(fact_6476_mult__neg__numeral__simps_I1_J,axiom,
    ! [M: num,N: num] :
      ( ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) )
      = ( numeral_numeral_rat @ ( times_times_num @ M @ N ) ) ) ).

% mult_neg_numeral_simps(1)
thf(fact_6477_mult__neg__numeral__simps_I1_J,axiom,
    ! [M: num,N: num] :
      ( ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) )
      = ( numera6620942414471956472nteger @ ( times_times_num @ M @ N ) ) ) ).

% mult_neg_numeral_simps(1)
thf(fact_6478_mult__neg__numeral__simps_I2_J,axiom,
    ! [M: num,N: num] :
      ( ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( times_times_num @ M @ N ) ) ) ) ).

% mult_neg_numeral_simps(2)
thf(fact_6479_mult__neg__numeral__simps_I2_J,axiom,
    ! [M: num,N: num] :
      ( ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( numeral_numeral_real @ N ) )
      = ( uminus_uminus_real @ ( numeral_numeral_real @ ( times_times_num @ M @ N ) ) ) ) ).

% mult_neg_numeral_simps(2)
thf(fact_6480_mult__neg__numeral__simps_I2_J,axiom,
    ! [M: num,N: num] :
      ( ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ M ) ) @ ( numera6690914467698888265omplex @ N ) )
      = ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( times_times_num @ M @ N ) ) ) ) ).

% mult_neg_numeral_simps(2)
thf(fact_6481_mult__neg__numeral__simps_I2_J,axiom,
    ! [M: num,N: num] :
      ( ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( numeral_numeral_rat @ N ) )
      = ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( times_times_num @ M @ N ) ) ) ) ).

% mult_neg_numeral_simps(2)
thf(fact_6482_mult__neg__numeral__simps_I2_J,axiom,
    ! [M: num,N: num] :
      ( ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( numera6620942414471956472nteger @ N ) )
      = ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( times_times_num @ M @ N ) ) ) ) ).

% mult_neg_numeral_simps(2)
thf(fact_6483_mult__neg__numeral__simps_I3_J,axiom,
    ! [M: num,N: num] :
      ( ( times_times_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( times_times_num @ M @ N ) ) ) ) ).

% mult_neg_numeral_simps(3)
thf(fact_6484_mult__neg__numeral__simps_I3_J,axiom,
    ! [M: num,N: num] :
      ( ( times_times_real @ ( numeral_numeral_real @ M ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
      = ( uminus_uminus_real @ ( numeral_numeral_real @ ( times_times_num @ M @ N ) ) ) ) ).

% mult_neg_numeral_simps(3)
thf(fact_6485_mult__neg__numeral__simps_I3_J,axiom,
    ! [M: num,N: num] :
      ( ( times_times_complex @ ( numera6690914467698888265omplex @ M ) @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N ) ) )
      = ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( times_times_num @ M @ N ) ) ) ) ).

% mult_neg_numeral_simps(3)
thf(fact_6486_mult__neg__numeral__simps_I3_J,axiom,
    ! [M: num,N: num] :
      ( ( times_times_rat @ ( numeral_numeral_rat @ M ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) )
      = ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( times_times_num @ M @ N ) ) ) ) ).

% mult_neg_numeral_simps(3)
thf(fact_6487_mult__neg__numeral__simps_I3_J,axiom,
    ! [M: num,N: num] :
      ( ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ M ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) )
      = ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( times_times_num @ M @ N ) ) ) ) ).

% mult_neg_numeral_simps(3)
thf(fact_6488_less__Suc__numeral,axiom,
    ! [N: nat,K: num] :
      ( ( ord_less_nat @ ( suc @ N ) @ ( numeral_numeral_nat @ K ) )
      = ( ord_less_nat @ N @ ( pred_numeral @ K ) ) ) ).

% less_Suc_numeral
thf(fact_6489_less__numeral__Suc,axiom,
    ! [K: num,N: nat] :
      ( ( ord_less_nat @ ( numeral_numeral_nat @ K ) @ ( suc @ N ) )
      = ( ord_less_nat @ ( pred_numeral @ K ) @ N ) ) ).

% less_numeral_Suc
thf(fact_6490_pred__numeral__simps_I3_J,axiom,
    ! [K: num] :
      ( ( pred_numeral @ ( bit1 @ K ) )
      = ( numeral_numeral_nat @ ( bit0 @ K ) ) ) ).

% pred_numeral_simps(3)
thf(fact_6491_le__numeral__Suc,axiom,
    ! [K: num,N: nat] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ K ) @ ( suc @ N ) )
      = ( ord_less_eq_nat @ ( pred_numeral @ K ) @ N ) ) ).

% le_numeral_Suc
thf(fact_6492_le__Suc__numeral,axiom,
    ! [N: nat,K: num] :
      ( ( ord_less_eq_nat @ ( suc @ N ) @ ( numeral_numeral_nat @ K ) )
      = ( ord_less_eq_nat @ N @ ( pred_numeral @ K ) ) ) ).

% le_Suc_numeral
thf(fact_6493_neg__numeral__le__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
      = ( ord_less_eq_num @ N @ M ) ) ).

% neg_numeral_le_iff
thf(fact_6494_neg__numeral__le__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) )
      = ( ord_less_eq_num @ N @ M ) ) ).

% neg_numeral_le_iff
thf(fact_6495_neg__numeral__le__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) )
      = ( ord_less_eq_num @ N @ M ) ) ).

% neg_numeral_le_iff
thf(fact_6496_neg__numeral__le__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( ord_less_eq_num @ N @ M ) ) ).

% neg_numeral_le_iff
thf(fact_6497_diff__numeral__Suc,axiom,
    ! [K: num,N: nat] :
      ( ( minus_minus_nat @ ( numeral_numeral_nat @ K ) @ ( suc @ N ) )
      = ( minus_minus_nat @ ( pred_numeral @ K ) @ N ) ) ).

% diff_numeral_Suc
thf(fact_6498_diff__Suc__numeral,axiom,
    ! [N: nat,K: num] :
      ( ( minus_minus_nat @ ( suc @ N ) @ ( numeral_numeral_nat @ K ) )
      = ( minus_minus_nat @ N @ ( pred_numeral @ K ) ) ) ).

% diff_Suc_numeral
thf(fact_6499_neg__numeral__less__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( ord_less_num @ N @ M ) ) ).

% neg_numeral_less_iff
thf(fact_6500_neg__numeral__less__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
      = ( ord_less_num @ N @ M ) ) ).

% neg_numeral_less_iff
thf(fact_6501_neg__numeral__less__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) )
      = ( ord_less_num @ N @ M ) ) ).

% neg_numeral_less_iff
thf(fact_6502_neg__numeral__less__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) )
      = ( ord_less_num @ N @ M ) ) ).

% neg_numeral_less_iff
thf(fact_6503_max__numeral__Suc,axiom,
    ! [K: num,N: nat] :
      ( ( ord_max_nat @ ( numeral_numeral_nat @ K ) @ ( suc @ N ) )
      = ( suc @ ( ord_max_nat @ ( pred_numeral @ K ) @ N ) ) ) ).

% max_numeral_Suc
thf(fact_6504_max__Suc__numeral,axiom,
    ! [N: nat,K: num] :
      ( ( ord_max_nat @ ( suc @ N ) @ ( numeral_numeral_nat @ K ) )
      = ( suc @ ( ord_max_nat @ N @ ( pred_numeral @ K ) ) ) ) ).

% max_Suc_numeral
thf(fact_6505_pred__numeral__simps_I2_J,axiom,
    ! [K: num] :
      ( ( pred_numeral @ ( bit0 @ K ) )
      = ( numeral_numeral_nat @ ( bitM @ K ) ) ) ).

% pred_numeral_simps(2)
thf(fact_6506_not__neg__one__le__neg__numeral__iff,axiom,
    ! [M: num] :
      ( ( ~ ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) ) )
      = ( M != one ) ) ).

% not_neg_one_le_neg_numeral_iff
thf(fact_6507_not__neg__one__le__neg__numeral__iff,axiom,
    ! [M: num] :
      ( ( ~ ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) ) )
      = ( M != one ) ) ).

% not_neg_one_le_neg_numeral_iff
thf(fact_6508_not__neg__one__le__neg__numeral__iff,axiom,
    ! [M: num] :
      ( ( ~ ( ord_less_eq_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) ) )
      = ( M != one ) ) ).

% not_neg_one_le_neg_numeral_iff
thf(fact_6509_not__neg__one__le__neg__numeral__iff,axiom,
    ! [M: num] :
      ( ( ~ ( ord_less_eq_int @ ( uminus_uminus_int @ one_one_int ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) ) )
      = ( M != one ) ) ).

% not_neg_one_le_neg_numeral_iff
thf(fact_6510_le__divide__eq__numeral1_I2_J,axiom,
    ! [A: real,B: real,W: num] :
      ( ( ord_less_eq_real @ A @ ( divide_divide_real @ B @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) )
      = ( ord_less_eq_real @ B @ ( times_times_real @ A @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) ) ) ).

% le_divide_eq_numeral1(2)
thf(fact_6511_le__divide__eq__numeral1_I2_J,axiom,
    ! [A: rat,B: rat,W: num] :
      ( ( ord_less_eq_rat @ A @ ( divide_divide_rat @ B @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) )
      = ( ord_less_eq_rat @ B @ ( times_times_rat @ A @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) ) ) ).

% le_divide_eq_numeral1(2)
thf(fact_6512_divide__le__eq__numeral1_I2_J,axiom,
    ! [B: real,W: num,A: real] :
      ( ( ord_less_eq_real @ ( divide_divide_real @ B @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) @ A )
      = ( ord_less_eq_real @ ( times_times_real @ A @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) @ B ) ) ).

% divide_le_eq_numeral1(2)
thf(fact_6513_divide__le__eq__numeral1_I2_J,axiom,
    ! [B: rat,W: num,A: rat] :
      ( ( ord_less_eq_rat @ ( divide_divide_rat @ B @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) @ A )
      = ( ord_less_eq_rat @ ( times_times_rat @ A @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) @ B ) ) ).

% divide_le_eq_numeral1(2)
thf(fact_6514_neg__numeral__less__neg__one__iff,axiom,
    ! [M: num] :
      ( ( ord_less_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ one_one_int ) )
      = ( M != one ) ) ).

% neg_numeral_less_neg_one_iff
thf(fact_6515_neg__numeral__less__neg__one__iff,axiom,
    ! [M: num] :
      ( ( ord_less_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( uminus_uminus_real @ one_one_real ) )
      = ( M != one ) ) ).

% neg_numeral_less_neg_one_iff
thf(fact_6516_neg__numeral__less__neg__one__iff,axiom,
    ! [M: num] :
      ( ( ord_less_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( uminus_uminus_rat @ one_one_rat ) )
      = ( M != one ) ) ).

% neg_numeral_less_neg_one_iff
thf(fact_6517_neg__numeral__less__neg__one__iff,axiom,
    ! [M: num] :
      ( ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
      = ( M != one ) ) ).

% neg_numeral_less_neg_one_iff
thf(fact_6518_eq__divide__eq__numeral1_I2_J,axiom,
    ! [A: real,B: real,W: num] :
      ( ( A
        = ( divide_divide_real @ B @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) )
      = ( ( ( ( uminus_uminus_real @ ( numeral_numeral_real @ W ) )
           != zero_zero_real )
         => ( ( times_times_real @ A @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) )
            = B ) )
        & ( ( ( uminus_uminus_real @ ( numeral_numeral_real @ W ) )
            = zero_zero_real )
         => ( A = zero_zero_real ) ) ) ) ).

% eq_divide_eq_numeral1(2)
thf(fact_6519_eq__divide__eq__numeral1_I2_J,axiom,
    ! [A: complex,B: complex,W: num] :
      ( ( A
        = ( divide1717551699836669952omplex @ B @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) ) )
      = ( ( ( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) )
           != zero_zero_complex )
         => ( ( times_times_complex @ A @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) )
            = B ) )
        & ( ( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) )
            = zero_zero_complex )
         => ( A = zero_zero_complex ) ) ) ) ).

% eq_divide_eq_numeral1(2)
thf(fact_6520_eq__divide__eq__numeral1_I2_J,axiom,
    ! [A: rat,B: rat,W: num] :
      ( ( A
        = ( divide_divide_rat @ B @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) )
      = ( ( ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) )
           != zero_zero_rat )
         => ( ( times_times_rat @ A @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) )
            = B ) )
        & ( ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) )
            = zero_zero_rat )
         => ( A = zero_zero_rat ) ) ) ) ).

% eq_divide_eq_numeral1(2)
thf(fact_6521_divide__eq__eq__numeral1_I2_J,axiom,
    ! [B: real,W: num,A: real] :
      ( ( ( divide_divide_real @ B @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) )
        = A )
      = ( ( ( ( uminus_uminus_real @ ( numeral_numeral_real @ W ) )
           != zero_zero_real )
         => ( B
            = ( times_times_real @ A @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) ) )
        & ( ( ( uminus_uminus_real @ ( numeral_numeral_real @ W ) )
            = zero_zero_real )
         => ( A = zero_zero_real ) ) ) ) ).

% divide_eq_eq_numeral1(2)
thf(fact_6522_divide__eq__eq__numeral1_I2_J,axiom,
    ! [B: complex,W: num,A: complex] :
      ( ( ( divide1717551699836669952omplex @ B @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) )
        = A )
      = ( ( ( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) )
           != zero_zero_complex )
         => ( B
            = ( times_times_complex @ A @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) ) ) )
        & ( ( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) )
            = zero_zero_complex )
         => ( A = zero_zero_complex ) ) ) ) ).

% divide_eq_eq_numeral1(2)
thf(fact_6523_divide__eq__eq__numeral1_I2_J,axiom,
    ! [B: rat,W: num,A: rat] :
      ( ( ( divide_divide_rat @ B @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) )
        = A )
      = ( ( ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) )
           != zero_zero_rat )
         => ( B
            = ( times_times_rat @ A @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) ) )
        & ( ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) )
            = zero_zero_rat )
         => ( A = zero_zero_rat ) ) ) ) ).

% divide_eq_eq_numeral1(2)
thf(fact_6524_less__divide__eq__numeral1_I2_J,axiom,
    ! [A: real,B: real,W: num] :
      ( ( ord_less_real @ A @ ( divide_divide_real @ B @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) )
      = ( ord_less_real @ B @ ( times_times_real @ A @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) ) ) ).

% less_divide_eq_numeral1(2)
thf(fact_6525_less__divide__eq__numeral1_I2_J,axiom,
    ! [A: rat,B: rat,W: num] :
      ( ( ord_less_rat @ A @ ( divide_divide_rat @ B @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) )
      = ( ord_less_rat @ B @ ( times_times_rat @ A @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) ) ) ).

% less_divide_eq_numeral1(2)
thf(fact_6526_divide__less__eq__numeral1_I2_J,axiom,
    ! [B: real,W: num,A: real] :
      ( ( ord_less_real @ ( divide_divide_real @ B @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) @ A )
      = ( ord_less_real @ ( times_times_real @ A @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) @ B ) ) ).

% divide_less_eq_numeral1(2)
thf(fact_6527_divide__less__eq__numeral1_I2_J,axiom,
    ! [B: rat,W: num,A: rat] :
      ( ( ord_less_rat @ ( divide_divide_rat @ B @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) @ A )
      = ( ord_less_rat @ ( times_times_rat @ A @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) @ B ) ) ).

% divide_less_eq_numeral1(2)
thf(fact_6528_power2__minus,axiom,
    ! [A: int] :
      ( ( power_power_int @ ( uminus_uminus_int @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power2_minus
thf(fact_6529_power2__minus,axiom,
    ! [A: real] :
      ( ( power_power_real @ ( uminus_uminus_real @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power2_minus
thf(fact_6530_power2__minus,axiom,
    ! [A: complex] :
      ( ( power_power_complex @ ( uminus1482373934393186551omplex @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( power_power_complex @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power2_minus
thf(fact_6531_power2__minus,axiom,
    ! [A: rat] :
      ( ( power_power_rat @ ( uminus_uminus_rat @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power2_minus
thf(fact_6532_power2__minus,axiom,
    ! [A: code_integer] :
      ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( power_8256067586552552935nteger @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power2_minus
thf(fact_6533_set__replicate,axiom,
    ! [N: nat,X2: vEBT_VEBT] :
      ( ( N != zero_zero_nat )
     => ( ( set_VEBT_VEBT2 @ ( replicate_VEBT_VEBT @ N @ X2 ) )
        = ( insert_VEBT_VEBT @ X2 @ bot_bo8194388402131092736T_VEBT ) ) ) ).

% set_replicate
thf(fact_6534_set__replicate,axiom,
    ! [N: nat,X2: real] :
      ( ( N != zero_zero_nat )
     => ( ( set_real2 @ ( replicate_real @ N @ X2 ) )
        = ( insert_real @ X2 @ bot_bot_set_real ) ) ) ).

% set_replicate
thf(fact_6535_set__replicate,axiom,
    ! [N: nat,X2: $o] :
      ( ( N != zero_zero_nat )
     => ( ( set_o2 @ ( replicate_o @ N @ X2 ) )
        = ( insert_o @ X2 @ bot_bot_set_o ) ) ) ).

% set_replicate
thf(fact_6536_set__replicate,axiom,
    ! [N: nat,X2: nat] :
      ( ( N != zero_zero_nat )
     => ( ( set_nat2 @ ( replicate_nat @ N @ X2 ) )
        = ( insert_nat @ X2 @ bot_bot_set_nat ) ) ) ).

% set_replicate
thf(fact_6537_set__replicate,axiom,
    ! [N: nat,X2: int] :
      ( ( N != zero_zero_nat )
     => ( ( set_int2 @ ( replicate_int @ N @ X2 ) )
        = ( insert_int @ X2 @ bot_bot_set_int ) ) ) ).

% set_replicate
thf(fact_6538_add__neg__numeral__special_I9_J,axiom,
    ( ( plus_plus_int @ ( uminus_uminus_int @ one_one_int ) @ ( uminus_uminus_int @ one_one_int ) )
    = ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).

% add_neg_numeral_special(9)
thf(fact_6539_add__neg__numeral__special_I9_J,axiom,
    ( ( plus_plus_real @ ( uminus_uminus_real @ one_one_real ) @ ( uminus_uminus_real @ one_one_real ) )
    = ( uminus_uminus_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% add_neg_numeral_special(9)
thf(fact_6540_add__neg__numeral__special_I9_J,axiom,
    ( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ ( uminus1482373934393186551omplex @ one_one_complex ) )
    = ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ).

% add_neg_numeral_special(9)
thf(fact_6541_add__neg__numeral__special_I9_J,axiom,
    ( ( plus_plus_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( uminus_uminus_rat @ one_one_rat ) )
    = ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) ).

% add_neg_numeral_special(9)
thf(fact_6542_add__neg__numeral__special_I9_J,axiom,
    ( ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
    = ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ).

% add_neg_numeral_special(9)
thf(fact_6543_diff__numeral__special_I10_J,axiom,
    ( ( minus_minus_int @ ( uminus_uminus_int @ one_one_int ) @ one_one_int )
    = ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).

% diff_numeral_special(10)
thf(fact_6544_diff__numeral__special_I10_J,axiom,
    ( ( minus_minus_real @ ( uminus_uminus_real @ one_one_real ) @ one_one_real )
    = ( uminus_uminus_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% diff_numeral_special(10)
thf(fact_6545_diff__numeral__special_I10_J,axiom,
    ( ( minus_minus_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ one_one_complex )
    = ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ).

% diff_numeral_special(10)
thf(fact_6546_diff__numeral__special_I10_J,axiom,
    ( ( minus_minus_rat @ ( uminus_uminus_rat @ one_one_rat ) @ one_one_rat )
    = ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) ).

% diff_numeral_special(10)
thf(fact_6547_diff__numeral__special_I10_J,axiom,
    ( ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ one_one_Code_integer )
    = ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ).

% diff_numeral_special(10)
thf(fact_6548_diff__numeral__special_I11_J,axiom,
    ( ( minus_minus_int @ one_one_int @ ( uminus_uminus_int @ one_one_int ) )
    = ( numeral_numeral_int @ ( bit0 @ one ) ) ) ).

% diff_numeral_special(11)
thf(fact_6549_diff__numeral__special_I11_J,axiom,
    ( ( minus_minus_real @ one_one_real @ ( uminus_uminus_real @ one_one_real ) )
    = ( numeral_numeral_real @ ( bit0 @ one ) ) ) ).

% diff_numeral_special(11)
thf(fact_6550_diff__numeral__special_I11_J,axiom,
    ( ( minus_minus_complex @ one_one_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) )
    = ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ).

% diff_numeral_special(11)
thf(fact_6551_diff__numeral__special_I11_J,axiom,
    ( ( minus_minus_rat @ one_one_rat @ ( uminus_uminus_rat @ one_one_rat ) )
    = ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ).

% diff_numeral_special(11)
thf(fact_6552_diff__numeral__special_I11_J,axiom,
    ( ( minus_8373710615458151222nteger @ one_one_Code_integer @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
    = ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ).

% diff_numeral_special(11)
thf(fact_6553_minus__1__div__2__eq,axiom,
    ( ( divide_divide_int @ ( uminus_uminus_int @ one_one_int ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
    = ( uminus_uminus_int @ one_one_int ) ) ).

% minus_1_div_2_eq
thf(fact_6554_minus__1__div__2__eq,axiom,
    ( ( divide6298287555418463151nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
    = ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% minus_1_div_2_eq
thf(fact_6555_minus__1__mod__2__eq,axiom,
    ( ( modulo_modulo_int @ ( uminus_uminus_int @ one_one_int ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
    = one_one_int ) ).

% minus_1_mod_2_eq
thf(fact_6556_minus__1__mod__2__eq,axiom,
    ( ( modulo364778990260209775nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
    = one_one_Code_integer ) ).

% minus_1_mod_2_eq
thf(fact_6557_bits__minus__1__mod__2__eq,axiom,
    ( ( modulo_modulo_int @ ( uminus_uminus_int @ one_one_int ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
    = one_one_int ) ).

% bits_minus_1_mod_2_eq
thf(fact_6558_bits__minus__1__mod__2__eq,axiom,
    ( ( modulo364778990260209775nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
    = one_one_Code_integer ) ).

% bits_minus_1_mod_2_eq
thf(fact_6559_Power_Oring__1__class_Opower__minus__even,axiom,
    ! [A: int,N: nat] :
      ( ( power_power_int @ ( uminus_uminus_int @ A ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = ( power_power_int @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).

% Power.ring_1_class.power_minus_even
thf(fact_6560_Power_Oring__1__class_Opower__minus__even,axiom,
    ! [A: real,N: nat] :
      ( ( power_power_real @ ( uminus_uminus_real @ A ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = ( power_power_real @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).

% Power.ring_1_class.power_minus_even
thf(fact_6561_Power_Oring__1__class_Opower__minus__even,axiom,
    ! [A: complex,N: nat] :
      ( ( power_power_complex @ ( uminus1482373934393186551omplex @ A ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = ( power_power_complex @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).

% Power.ring_1_class.power_minus_even
thf(fact_6562_Power_Oring__1__class_Opower__minus__even,axiom,
    ! [A: rat,N: nat] :
      ( ( power_power_rat @ ( uminus_uminus_rat @ A ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = ( power_power_rat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).

% Power.ring_1_class.power_minus_even
thf(fact_6563_Power_Oring__1__class_Opower__minus__even,axiom,
    ! [A: code_integer,N: nat] :
      ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ A ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = ( power_8256067586552552935nteger @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).

% Power.ring_1_class.power_minus_even
thf(fact_6564_Parity_Oring__1__class_Opower__minus__even,axiom,
    ! [N: nat,A: int] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_power_int @ ( uminus_uminus_int @ A ) @ N )
        = ( power_power_int @ A @ N ) ) ) ).

% Parity.ring_1_class.power_minus_even
thf(fact_6565_Parity_Oring__1__class_Opower__minus__even,axiom,
    ! [N: nat,A: real] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_power_real @ ( uminus_uminus_real @ A ) @ N )
        = ( power_power_real @ A @ N ) ) ) ).

% Parity.ring_1_class.power_minus_even
thf(fact_6566_Parity_Oring__1__class_Opower__minus__even,axiom,
    ! [N: nat,A: complex] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_power_complex @ ( uminus1482373934393186551omplex @ A ) @ N )
        = ( power_power_complex @ A @ N ) ) ) ).

% Parity.ring_1_class.power_minus_even
thf(fact_6567_Parity_Oring__1__class_Opower__minus__even,axiom,
    ! [N: nat,A: rat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_power_rat @ ( uminus_uminus_rat @ A ) @ N )
        = ( power_power_rat @ A @ N ) ) ) ).

% Parity.ring_1_class.power_minus_even
thf(fact_6568_Parity_Oring__1__class_Opower__minus__even,axiom,
    ! [N: nat,A: code_integer] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ A ) @ N )
        = ( power_8256067586552552935nteger @ A @ N ) ) ) ).

% Parity.ring_1_class.power_minus_even
thf(fact_6569_power__minus__odd,axiom,
    ! [N: nat,A: int] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_power_int @ ( uminus_uminus_int @ A ) @ N )
        = ( uminus_uminus_int @ ( power_power_int @ A @ N ) ) ) ) ).

% power_minus_odd
thf(fact_6570_power__minus__odd,axiom,
    ! [N: nat,A: real] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_power_real @ ( uminus_uminus_real @ A ) @ N )
        = ( uminus_uminus_real @ ( power_power_real @ A @ N ) ) ) ) ).

% power_minus_odd
thf(fact_6571_power__minus__odd,axiom,
    ! [N: nat,A: complex] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_power_complex @ ( uminus1482373934393186551omplex @ A ) @ N )
        = ( uminus1482373934393186551omplex @ ( power_power_complex @ A @ N ) ) ) ) ).

% power_minus_odd
thf(fact_6572_power__minus__odd,axiom,
    ! [N: nat,A: rat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_power_rat @ ( uminus_uminus_rat @ A ) @ N )
        = ( uminus_uminus_rat @ ( power_power_rat @ A @ N ) ) ) ) ).

% power_minus_odd
thf(fact_6573_power__minus__odd,axiom,
    ! [N: nat,A: code_integer] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ A ) @ N )
        = ( uminus1351360451143612070nteger @ ( power_8256067586552552935nteger @ A @ N ) ) ) ) ).

% power_minus_odd
thf(fact_6574_diff__numeral__special_I3_J,axiom,
    ! [N: num] :
      ( ( minus_minus_int @ one_one_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( numeral_numeral_int @ ( plus_plus_num @ one @ N ) ) ) ).

% diff_numeral_special(3)
thf(fact_6575_diff__numeral__special_I3_J,axiom,
    ! [N: num] :
      ( ( minus_minus_real @ one_one_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
      = ( numeral_numeral_real @ ( plus_plus_num @ one @ N ) ) ) ).

% diff_numeral_special(3)
thf(fact_6576_diff__numeral__special_I3_J,axiom,
    ! [N: num] :
      ( ( minus_minus_complex @ one_one_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N ) ) )
      = ( numera6690914467698888265omplex @ ( plus_plus_num @ one @ N ) ) ) ).

% diff_numeral_special(3)
thf(fact_6577_diff__numeral__special_I3_J,axiom,
    ! [N: num] :
      ( ( minus_minus_rat @ one_one_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) )
      = ( numeral_numeral_rat @ ( plus_plus_num @ one @ N ) ) ) ).

% diff_numeral_special(3)
thf(fact_6578_diff__numeral__special_I3_J,axiom,
    ! [N: num] :
      ( ( minus_8373710615458151222nteger @ one_one_Code_integer @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) )
      = ( numera6620942414471956472nteger @ ( plus_plus_num @ one @ N ) ) ) ).

% diff_numeral_special(3)
thf(fact_6579_diff__numeral__special_I4_J,axiom,
    ! [M: num] :
      ( ( minus_minus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ one_one_int )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( plus_plus_num @ M @ one ) ) ) ) ).

% diff_numeral_special(4)
thf(fact_6580_diff__numeral__special_I4_J,axiom,
    ! [M: num] :
      ( ( minus_minus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ one_one_real )
      = ( uminus_uminus_real @ ( numeral_numeral_real @ ( plus_plus_num @ M @ one ) ) ) ) ).

% diff_numeral_special(4)
thf(fact_6581_diff__numeral__special_I4_J,axiom,
    ! [M: num] :
      ( ( minus_minus_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ M ) ) @ one_one_complex )
      = ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( plus_plus_num @ M @ one ) ) ) ) ).

% diff_numeral_special(4)
thf(fact_6582_diff__numeral__special_I4_J,axiom,
    ! [M: num] :
      ( ( minus_minus_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ one_one_rat )
      = ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( plus_plus_num @ M @ one ) ) ) ) ).

% diff_numeral_special(4)
thf(fact_6583_diff__numeral__special_I4_J,axiom,
    ! [M: num] :
      ( ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ one_one_Code_integer )
      = ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( plus_plus_num @ M @ one ) ) ) ) ).

% diff_numeral_special(4)
thf(fact_6584_dbl__simps_I4_J,axiom,
    ( ( neg_numeral_dbl_int @ ( uminus_uminus_int @ one_one_int ) )
    = ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).

% dbl_simps(4)
thf(fact_6585_dbl__simps_I4_J,axiom,
    ( ( neg_numeral_dbl_real @ ( uminus_uminus_real @ one_one_real ) )
    = ( uminus_uminus_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% dbl_simps(4)
thf(fact_6586_dbl__simps_I4_J,axiom,
    ( ( neg_nu7009210354673126013omplex @ ( uminus1482373934393186551omplex @ one_one_complex ) )
    = ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ).

% dbl_simps(4)
thf(fact_6587_dbl__simps_I4_J,axiom,
    ( ( neg_numeral_dbl_rat @ ( uminus_uminus_rat @ one_one_rat ) )
    = ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) ).

% dbl_simps(4)
thf(fact_6588_dbl__simps_I4_J,axiom,
    ( ( neg_nu8804712462038260780nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
    = ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ).

% dbl_simps(4)
thf(fact_6589_power__minus1__even,axiom,
    ! [N: nat] :
      ( ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = one_one_int ) ).

% power_minus1_even
thf(fact_6590_power__minus1__even,axiom,
    ! [N: nat] :
      ( ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = one_one_real ) ).

% power_minus1_even
thf(fact_6591_power__minus1__even,axiom,
    ! [N: nat] :
      ( ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = one_one_complex ) ).

% power_minus1_even
thf(fact_6592_power__minus1__even,axiom,
    ! [N: nat] :
      ( ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = one_one_rat ) ).

% power_minus1_even
thf(fact_6593_power__minus1__even,axiom,
    ! [N: nat] :
      ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = one_one_Code_integer ) ).

% power_minus1_even
thf(fact_6594_neg__one__even__power,axiom,
    ! [N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N )
        = one_one_int ) ) ).

% neg_one_even_power
thf(fact_6595_neg__one__even__power,axiom,
    ! [N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N )
        = one_one_real ) ) ).

% neg_one_even_power
thf(fact_6596_neg__one__even__power,axiom,
    ! [N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N )
        = one_one_complex ) ) ).

% neg_one_even_power
thf(fact_6597_neg__one__even__power,axiom,
    ! [N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ N )
        = one_one_rat ) ) ).

% neg_one_even_power
thf(fact_6598_neg__one__even__power,axiom,
    ! [N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ N )
        = one_one_Code_integer ) ) ).

% neg_one_even_power
thf(fact_6599_neg__one__odd__power,axiom,
    ! [N: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N )
        = ( uminus_uminus_int @ one_one_int ) ) ) ).

% neg_one_odd_power
thf(fact_6600_neg__one__odd__power,axiom,
    ! [N: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N )
        = ( uminus_uminus_real @ one_one_real ) ) ) ).

% neg_one_odd_power
thf(fact_6601_neg__one__odd__power,axiom,
    ! [N: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N )
        = ( uminus1482373934393186551omplex @ one_one_complex ) ) ) ).

% neg_one_odd_power
thf(fact_6602_neg__one__odd__power,axiom,
    ! [N: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ N )
        = ( uminus_uminus_rat @ one_one_rat ) ) ) ).

% neg_one_odd_power
thf(fact_6603_neg__one__odd__power,axiom,
    ! [N: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ N )
        = ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ) ).

% neg_one_odd_power
thf(fact_6604_signed__take__bit__0,axiom,
    ! [A: code_integer] :
      ( ( bit_ri6519982836138164636nteger @ zero_zero_nat @ A )
      = ( uminus1351360451143612070nteger @ ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ).

% signed_take_bit_0
thf(fact_6605_signed__take__bit__0,axiom,
    ! [A: int] :
      ( ( bit_ri631733984087533419it_int @ zero_zero_nat @ A )
      = ( uminus_uminus_int @ ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ).

% signed_take_bit_0
thf(fact_6606_signed__take__bit__Suc__minus__bit0,axiom,
    ! [N: nat,K: num] :
      ( ( bit_ri631733984087533419it_int @ ( suc @ N ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ K ) ) ) )
      = ( times_times_int @ ( bit_ri631733984087533419it_int @ N @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).

% signed_take_bit_Suc_minus_bit0
thf(fact_6607_signed__take__bit__numeral__bit0,axiom,
    ! [L: num,K: num] :
      ( ( bit_ri631733984087533419it_int @ ( numeral_numeral_nat @ L ) @ ( numeral_numeral_int @ ( bit0 @ K ) ) )
      = ( times_times_int @ ( bit_ri631733984087533419it_int @ ( pred_numeral @ L ) @ ( numeral_numeral_int @ K ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).

% signed_take_bit_numeral_bit0
thf(fact_6608_signed__take__bit__numeral__minus__bit0,axiom,
    ! [L: num,K: num] :
      ( ( bit_ri631733984087533419it_int @ ( numeral_numeral_nat @ L ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ K ) ) ) )
      = ( times_times_int @ ( bit_ri631733984087533419it_int @ ( pred_numeral @ L ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).

% signed_take_bit_numeral_minus_bit0
thf(fact_6609_signed__take__bit__numeral__minus__bit1,axiom,
    ! [L: num,K: num] :
      ( ( bit_ri631733984087533419it_int @ ( numeral_numeral_nat @ L ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ K ) ) ) )
      = ( plus_plus_int @ ( times_times_int @ ( bit_ri631733984087533419it_int @ ( pred_numeral @ L ) @ ( minus_minus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) @ one_one_int ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ one_one_int ) ) ).

% signed_take_bit_numeral_minus_bit1
thf(fact_6610_dvd__antisym,axiom,
    ! [M: nat,N: nat] :
      ( ( dvd_dvd_nat @ M @ N )
     => ( ( dvd_dvd_nat @ N @ M )
       => ( M = N ) ) ) ).

% dvd_antisym
thf(fact_6611_signed__take__bit__minus,axiom,
    ! [N: nat,K: int] :
      ( ( bit_ri631733984087533419it_int @ N @ ( uminus_uminus_int @ ( bit_ri631733984087533419it_int @ N @ K ) ) )
      = ( bit_ri631733984087533419it_int @ N @ ( uminus_uminus_int @ K ) ) ) ).

% signed_take_bit_minus
thf(fact_6612_mem__case__prodE,axiom,
    ! [Z: complex,C: code_integer > code_integer > set_complex,P2: produc8923325533196201883nteger] :
      ( ( member_complex @ Z @ ( produc1861562869612671180omplex @ C @ P2 ) )
     => ~ ! [X4: code_integer,Y3: code_integer] :
            ( ( P2
              = ( produc1086072967326762835nteger @ X4 @ Y3 ) )
           => ~ ( member_complex @ Z @ ( C @ X4 @ Y3 ) ) ) ) ).

% mem_case_prodE
thf(fact_6613_mem__case__prodE,axiom,
    ! [Z: real,C: code_integer > code_integer > set_real,P2: produc8923325533196201883nteger] :
      ( ( member_real @ Z @ ( produc8892033678785193034t_real @ C @ P2 ) )
     => ~ ! [X4: code_integer,Y3: code_integer] :
            ( ( P2
              = ( produc1086072967326762835nteger @ X4 @ Y3 ) )
           => ~ ( member_real @ Z @ ( C @ X4 @ Y3 ) ) ) ) ).

% mem_case_prodE
thf(fact_6614_mem__case__prodE,axiom,
    ! [Z: nat,C: code_integer > code_integer > set_nat,P2: produc8923325533196201883nteger] :
      ( ( member_nat @ Z @ ( produc2604607235628431598et_nat @ C @ P2 ) )
     => ~ ! [X4: code_integer,Y3: code_integer] :
            ( ( P2
              = ( produc1086072967326762835nteger @ X4 @ Y3 ) )
           => ~ ( member_nat @ Z @ ( C @ X4 @ Y3 ) ) ) ) ).

% mem_case_prodE
thf(fact_6615_mem__case__prodE,axiom,
    ! [Z: int,C: code_integer > code_integer > set_int,P2: produc8923325533196201883nteger] :
      ( ( member_int @ Z @ ( produc7650128252974010698et_int @ C @ P2 ) )
     => ~ ! [X4: code_integer,Y3: code_integer] :
            ( ( P2
              = ( produc1086072967326762835nteger @ X4 @ Y3 ) )
           => ~ ( member_int @ Z @ ( C @ X4 @ Y3 ) ) ) ) ).

% mem_case_prodE
thf(fact_6616_mem__case__prodE,axiom,
    ! [Z: complex,C: code_integer > $o > set_complex,P2: produc6271795597528267376eger_o] :
      ( ( member_complex @ Z @ ( produc1043322548047392435omplex @ C @ P2 ) )
     => ~ ! [X4: code_integer,Y3: $o] :
            ( ( P2
              = ( produc6677183202524767010eger_o @ X4 @ Y3 ) )
           => ~ ( member_complex @ Z @ ( C @ X4 @ Y3 ) ) ) ) ).

% mem_case_prodE
thf(fact_6617_mem__case__prodE,axiom,
    ! [Z: real,C: code_integer > $o > set_real,P2: produc6271795597528267376eger_o] :
      ( ( member_real @ Z @ ( produc242741666403216561t_real @ C @ P2 ) )
     => ~ ! [X4: code_integer,Y3: $o] :
            ( ( P2
              = ( produc6677183202524767010eger_o @ X4 @ Y3 ) )
           => ~ ( member_real @ Z @ ( C @ X4 @ Y3 ) ) ) ) ).

% mem_case_prodE
thf(fact_6618_mem__case__prodE,axiom,
    ! [Z: nat,C: code_integer > $o > set_nat,P2: produc6271795597528267376eger_o] :
      ( ( member_nat @ Z @ ( produc5431169771168744661et_nat @ C @ P2 ) )
     => ~ ! [X4: code_integer,Y3: $o] :
            ( ( P2
              = ( produc6677183202524767010eger_o @ X4 @ Y3 ) )
           => ~ ( member_nat @ Z @ ( C @ X4 @ Y3 ) ) ) ) ).

% mem_case_prodE
thf(fact_6619_mem__case__prodE,axiom,
    ! [Z: int,C: code_integer > $o > set_int,P2: produc6271795597528267376eger_o] :
      ( ( member_int @ Z @ ( produc1253318751659547953et_int @ C @ P2 ) )
     => ~ ! [X4: code_integer,Y3: $o] :
            ( ( P2
              = ( produc6677183202524767010eger_o @ X4 @ Y3 ) )
           => ~ ( member_int @ Z @ ( C @ X4 @ Y3 ) ) ) ) ).

% mem_case_prodE
thf(fact_6620_mem__case__prodE,axiom,
    ! [Z: complex,C: num > num > set_complex,P2: product_prod_num_num] :
      ( ( member_complex @ Z @ ( produc2866383454006189126omplex @ C @ P2 ) )
     => ~ ! [X4: num,Y3: num] :
            ( ( P2
              = ( product_Pair_num_num @ X4 @ Y3 ) )
           => ~ ( member_complex @ Z @ ( C @ X4 @ Y3 ) ) ) ) ).

% mem_case_prodE
thf(fact_6621_mem__case__prodE,axiom,
    ! [Z: real,C: num > num > set_real,P2: product_prod_num_num] :
      ( ( member_real @ Z @ ( produc8296048397933160132t_real @ C @ P2 ) )
     => ~ ! [X4: num,Y3: num] :
            ( ( P2
              = ( product_Pair_num_num @ X4 @ Y3 ) )
           => ~ ( member_real @ Z @ ( C @ X4 @ Y3 ) ) ) ) ).

% mem_case_prodE
thf(fact_6622_le__imp__neg__le,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ord_less_eq_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) ) ) ).

% le_imp_neg_le
thf(fact_6623_le__imp__neg__le,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ord_le3102999989581377725nteger @ A @ B )
     => ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ B ) @ ( uminus1351360451143612070nteger @ A ) ) ) ).

% le_imp_neg_le
thf(fact_6624_le__imp__neg__le,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ord_less_eq_rat @ ( uminus_uminus_rat @ B ) @ ( uminus_uminus_rat @ A ) ) ) ).

% le_imp_neg_le
thf(fact_6625_le__imp__neg__le,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ord_less_eq_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) ) ) ).

% le_imp_neg_le
thf(fact_6626_minus__le__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ A ) @ B )
      = ( ord_less_eq_real @ ( uminus_uminus_real @ B ) @ A ) ) ).

% minus_le_iff
thf(fact_6627_minus__le__iff,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ A ) @ B )
      = ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ B ) @ A ) ) ).

% minus_le_iff
thf(fact_6628_minus__le__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( uminus_uminus_rat @ A ) @ B )
      = ( ord_less_eq_rat @ ( uminus_uminus_rat @ B ) @ A ) ) ).

% minus_le_iff
thf(fact_6629_minus__le__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ B )
      = ( ord_less_eq_int @ ( uminus_uminus_int @ B ) @ A ) ) ).

% minus_le_iff
thf(fact_6630_le__minus__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ ( uminus_uminus_real @ B ) )
      = ( ord_less_eq_real @ B @ ( uminus_uminus_real @ A ) ) ) ).

% le_minus_iff
thf(fact_6631_le__minus__iff,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ord_le3102999989581377725nteger @ A @ ( uminus1351360451143612070nteger @ B ) )
      = ( ord_le3102999989581377725nteger @ B @ ( uminus1351360451143612070nteger @ A ) ) ) ).

% le_minus_iff
thf(fact_6632_le__minus__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ A @ ( uminus_uminus_rat @ B ) )
      = ( ord_less_eq_rat @ B @ ( uminus_uminus_rat @ A ) ) ) ).

% le_minus_iff
thf(fact_6633_le__minus__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ ( uminus_uminus_int @ B ) )
      = ( ord_less_eq_int @ B @ ( uminus_uminus_int @ A ) ) ) ).

% le_minus_iff
thf(fact_6634_compl__mono,axiom,
    ! [X2: set_int,Y2: set_int] :
      ( ( ord_less_eq_set_int @ X2 @ Y2 )
     => ( ord_less_eq_set_int @ ( uminus1532241313380277803et_int @ Y2 ) @ ( uminus1532241313380277803et_int @ X2 ) ) ) ).

% compl_mono
thf(fact_6635_compl__le__swap1,axiom,
    ! [Y2: set_int,X2: set_int] :
      ( ( ord_less_eq_set_int @ Y2 @ ( uminus1532241313380277803et_int @ X2 ) )
     => ( ord_less_eq_set_int @ X2 @ ( uminus1532241313380277803et_int @ Y2 ) ) ) ).

% compl_le_swap1
thf(fact_6636_compl__le__swap2,axiom,
    ! [Y2: set_int,X2: set_int] :
      ( ( ord_less_eq_set_int @ ( uminus1532241313380277803et_int @ Y2 ) @ X2 )
     => ( ord_less_eq_set_int @ ( uminus1532241313380277803et_int @ X2 ) @ Y2 ) ) ).

% compl_le_swap2
thf(fact_6637_less__minus__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ ( uminus_uminus_int @ B ) )
      = ( ord_less_int @ B @ ( uminus_uminus_int @ A ) ) ) ).

% less_minus_iff
thf(fact_6638_less__minus__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ ( uminus_uminus_real @ B ) )
      = ( ord_less_real @ B @ ( uminus_uminus_real @ A ) ) ) ).

% less_minus_iff
thf(fact_6639_less__minus__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ ( uminus_uminus_rat @ B ) )
      = ( ord_less_rat @ B @ ( uminus_uminus_rat @ A ) ) ) ).

% less_minus_iff
thf(fact_6640_less__minus__iff,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ord_le6747313008572928689nteger @ A @ ( uminus1351360451143612070nteger @ B ) )
      = ( ord_le6747313008572928689nteger @ B @ ( uminus1351360451143612070nteger @ A ) ) ) ).

% less_minus_iff
thf(fact_6641_minus__less__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ ( uminus_uminus_int @ A ) @ B )
      = ( ord_less_int @ ( uminus_uminus_int @ B ) @ A ) ) ).

% minus_less_iff
thf(fact_6642_minus__less__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ A ) @ B )
      = ( ord_less_real @ ( uminus_uminus_real @ B ) @ A ) ) ).

% minus_less_iff
thf(fact_6643_minus__less__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ ( uminus_uminus_rat @ A ) @ B )
      = ( ord_less_rat @ ( uminus_uminus_rat @ B ) @ A ) ) ).

% minus_less_iff
thf(fact_6644_minus__less__iff,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ A ) @ B )
      = ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ B ) @ A ) ) ).

% minus_less_iff
thf(fact_6645_verit__negate__coefficient_I2_J,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ B )
     => ( ord_less_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) ) ) ).

% verit_negate_coefficient(2)
thf(fact_6646_verit__negate__coefficient_I2_J,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ( ord_less_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) ) ) ).

% verit_negate_coefficient(2)
thf(fact_6647_verit__negate__coefficient_I2_J,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ A @ B )
     => ( ord_less_rat @ ( uminus_uminus_rat @ B ) @ ( uminus_uminus_rat @ A ) ) ) ).

% verit_negate_coefficient(2)
thf(fact_6648_verit__negate__coefficient_I2_J,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ord_le6747313008572928689nteger @ A @ B )
     => ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ B ) @ ( uminus1351360451143612070nteger @ A ) ) ) ).

% verit_negate_coefficient(2)
thf(fact_6649_numeral__neq__neg__numeral,axiom,
    ! [M: num,N: num] :
      ( ( numeral_numeral_int @ M )
     != ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ).

% numeral_neq_neg_numeral
thf(fact_6650_numeral__neq__neg__numeral,axiom,
    ! [M: num,N: num] :
      ( ( numeral_numeral_real @ M )
     != ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) ) ).

% numeral_neq_neg_numeral
thf(fact_6651_numeral__neq__neg__numeral,axiom,
    ! [M: num,N: num] :
      ( ( numera6690914467698888265omplex @ M )
     != ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N ) ) ) ).

% numeral_neq_neg_numeral
thf(fact_6652_numeral__neq__neg__numeral,axiom,
    ! [M: num,N: num] :
      ( ( numeral_numeral_rat @ M )
     != ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) ) ).

% numeral_neq_neg_numeral
thf(fact_6653_numeral__neq__neg__numeral,axiom,
    ! [M: num,N: num] :
      ( ( numera6620942414471956472nteger @ M )
     != ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) ) ).

% numeral_neq_neg_numeral
thf(fact_6654_neg__numeral__neq__numeral,axiom,
    ! [M: num,N: num] :
      ( ( uminus_uminus_int @ ( numeral_numeral_int @ M ) )
     != ( numeral_numeral_int @ N ) ) ).

% neg_numeral_neq_numeral
thf(fact_6655_neg__numeral__neq__numeral,axiom,
    ! [M: num,N: num] :
      ( ( uminus_uminus_real @ ( numeral_numeral_real @ M ) )
     != ( numeral_numeral_real @ N ) ) ).

% neg_numeral_neq_numeral
thf(fact_6656_neg__numeral__neq__numeral,axiom,
    ! [M: num,N: num] :
      ( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ M ) )
     != ( numera6690914467698888265omplex @ N ) ) ).

% neg_numeral_neq_numeral
thf(fact_6657_neg__numeral__neq__numeral,axiom,
    ! [M: num,N: num] :
      ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) )
     != ( numeral_numeral_rat @ N ) ) ).

% neg_numeral_neq_numeral
thf(fact_6658_neg__numeral__neq__numeral,axiom,
    ! [M: num,N: num] :
      ( ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) )
     != ( numera6620942414471956472nteger @ N ) ) ).

% neg_numeral_neq_numeral
thf(fact_6659_square__eq__iff,axiom,
    ! [A: int,B: int] :
      ( ( ( times_times_int @ A @ A )
        = ( times_times_int @ B @ B ) )
      = ( ( A = B )
        | ( A
          = ( uminus_uminus_int @ B ) ) ) ) ).

% square_eq_iff
thf(fact_6660_square__eq__iff,axiom,
    ! [A: real,B: real] :
      ( ( ( times_times_real @ A @ A )
        = ( times_times_real @ B @ B ) )
      = ( ( A = B )
        | ( A
          = ( uminus_uminus_real @ B ) ) ) ) ).

% square_eq_iff
thf(fact_6661_square__eq__iff,axiom,
    ! [A: complex,B: complex] :
      ( ( ( times_times_complex @ A @ A )
        = ( times_times_complex @ B @ B ) )
      = ( ( A = B )
        | ( A
          = ( uminus1482373934393186551omplex @ B ) ) ) ) ).

% square_eq_iff
thf(fact_6662_square__eq__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ( times_times_rat @ A @ A )
        = ( times_times_rat @ B @ B ) )
      = ( ( A = B )
        | ( A
          = ( uminus_uminus_rat @ B ) ) ) ) ).

% square_eq_iff
thf(fact_6663_square__eq__iff,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ( times_3573771949741848930nteger @ A @ A )
        = ( times_3573771949741848930nteger @ B @ B ) )
      = ( ( A = B )
        | ( A
          = ( uminus1351360451143612070nteger @ B ) ) ) ) ).

% square_eq_iff
thf(fact_6664_minus__mult__commute,axiom,
    ! [A: int,B: int] :
      ( ( times_times_int @ ( uminus_uminus_int @ A ) @ B )
      = ( times_times_int @ A @ ( uminus_uminus_int @ B ) ) ) ).

% minus_mult_commute
thf(fact_6665_minus__mult__commute,axiom,
    ! [A: real,B: real] :
      ( ( times_times_real @ ( uminus_uminus_real @ A ) @ B )
      = ( times_times_real @ A @ ( uminus_uminus_real @ B ) ) ) ).

% minus_mult_commute
thf(fact_6666_minus__mult__commute,axiom,
    ! [A: complex,B: complex] :
      ( ( times_times_complex @ ( uminus1482373934393186551omplex @ A ) @ B )
      = ( times_times_complex @ A @ ( uminus1482373934393186551omplex @ B ) ) ) ).

% minus_mult_commute
thf(fact_6667_minus__mult__commute,axiom,
    ! [A: rat,B: rat] :
      ( ( times_times_rat @ ( uminus_uminus_rat @ A ) @ B )
      = ( times_times_rat @ A @ ( uminus_uminus_rat @ B ) ) ) ).

% minus_mult_commute
thf(fact_6668_minus__mult__commute,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ A ) @ B )
      = ( times_3573771949741848930nteger @ A @ ( uminus1351360451143612070nteger @ B ) ) ) ).

% minus_mult_commute
thf(fact_6669_one__neq__neg__one,axiom,
    ( one_one_int
   != ( uminus_uminus_int @ one_one_int ) ) ).

% one_neq_neg_one
thf(fact_6670_one__neq__neg__one,axiom,
    ( one_one_real
   != ( uminus_uminus_real @ one_one_real ) ) ).

% one_neq_neg_one
thf(fact_6671_one__neq__neg__one,axiom,
    ( one_one_complex
   != ( uminus1482373934393186551omplex @ one_one_complex ) ) ).

% one_neq_neg_one
thf(fact_6672_one__neq__neg__one,axiom,
    ( one_one_rat
   != ( uminus_uminus_rat @ one_one_rat ) ) ).

% one_neq_neg_one
thf(fact_6673_one__neq__neg__one,axiom,
    ( one_one_Code_integer
   != ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% one_neq_neg_one
thf(fact_6674_is__num__normalize_I8_J,axiom,
    ! [A: int,B: int] :
      ( ( uminus_uminus_int @ ( plus_plus_int @ A @ B ) )
      = ( plus_plus_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) ) ) ).

% is_num_normalize(8)
thf(fact_6675_is__num__normalize_I8_J,axiom,
    ! [A: real,B: real] :
      ( ( uminus_uminus_real @ ( plus_plus_real @ A @ B ) )
      = ( plus_plus_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) ) ) ).

% is_num_normalize(8)
thf(fact_6676_is__num__normalize_I8_J,axiom,
    ! [A: complex,B: complex] :
      ( ( uminus1482373934393186551omplex @ ( plus_plus_complex @ A @ B ) )
      = ( plus_plus_complex @ ( uminus1482373934393186551omplex @ B ) @ ( uminus1482373934393186551omplex @ A ) ) ) ).

% is_num_normalize(8)
thf(fact_6677_is__num__normalize_I8_J,axiom,
    ! [A: rat,B: rat] :
      ( ( uminus_uminus_rat @ ( plus_plus_rat @ A @ B ) )
      = ( plus_plus_rat @ ( uminus_uminus_rat @ B ) @ ( uminus_uminus_rat @ A ) ) ) ).

% is_num_normalize(8)
thf(fact_6678_is__num__normalize_I8_J,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( uminus1351360451143612070nteger @ ( plus_p5714425477246183910nteger @ A @ B ) )
      = ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ B ) @ ( uminus1351360451143612070nteger @ A ) ) ) ).

% is_num_normalize(8)
thf(fact_6679_add_Oinverse__distrib__swap,axiom,
    ! [A: int,B: int] :
      ( ( uminus_uminus_int @ ( plus_plus_int @ A @ B ) )
      = ( plus_plus_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) ) ) ).

% add.inverse_distrib_swap
thf(fact_6680_add_Oinverse__distrib__swap,axiom,
    ! [A: real,B: real] :
      ( ( uminus_uminus_real @ ( plus_plus_real @ A @ B ) )
      = ( plus_plus_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) ) ) ).

% add.inverse_distrib_swap
thf(fact_6681_add_Oinverse__distrib__swap,axiom,
    ! [A: complex,B: complex] :
      ( ( uminus1482373934393186551omplex @ ( plus_plus_complex @ A @ B ) )
      = ( plus_plus_complex @ ( uminus1482373934393186551omplex @ B ) @ ( uminus1482373934393186551omplex @ A ) ) ) ).

% add.inverse_distrib_swap
thf(fact_6682_add_Oinverse__distrib__swap,axiom,
    ! [A: rat,B: rat] :
      ( ( uminus_uminus_rat @ ( plus_plus_rat @ A @ B ) )
      = ( plus_plus_rat @ ( uminus_uminus_rat @ B ) @ ( uminus_uminus_rat @ A ) ) ) ).

% add.inverse_distrib_swap
thf(fact_6683_add_Oinverse__distrib__swap,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( uminus1351360451143612070nteger @ ( plus_p5714425477246183910nteger @ A @ B ) )
      = ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ B ) @ ( uminus1351360451143612070nteger @ A ) ) ) ).

% add.inverse_distrib_swap
thf(fact_6684_group__cancel_Oneg1,axiom,
    ! [A2: int,K: int,A: int] :
      ( ( A2
        = ( plus_plus_int @ K @ A ) )
     => ( ( uminus_uminus_int @ A2 )
        = ( plus_plus_int @ ( uminus_uminus_int @ K ) @ ( uminus_uminus_int @ A ) ) ) ) ).

% group_cancel.neg1
thf(fact_6685_group__cancel_Oneg1,axiom,
    ! [A2: real,K: real,A: real] :
      ( ( A2
        = ( plus_plus_real @ K @ A ) )
     => ( ( uminus_uminus_real @ A2 )
        = ( plus_plus_real @ ( uminus_uminus_real @ K ) @ ( uminus_uminus_real @ A ) ) ) ) ).

% group_cancel.neg1
thf(fact_6686_group__cancel_Oneg1,axiom,
    ! [A2: complex,K: complex,A: complex] :
      ( ( A2
        = ( plus_plus_complex @ K @ A ) )
     => ( ( uminus1482373934393186551omplex @ A2 )
        = ( plus_plus_complex @ ( uminus1482373934393186551omplex @ K ) @ ( uminus1482373934393186551omplex @ A ) ) ) ) ).

% group_cancel.neg1
thf(fact_6687_group__cancel_Oneg1,axiom,
    ! [A2: rat,K: rat,A: rat] :
      ( ( A2
        = ( plus_plus_rat @ K @ A ) )
     => ( ( uminus_uminus_rat @ A2 )
        = ( plus_plus_rat @ ( uminus_uminus_rat @ K ) @ ( uminus_uminus_rat @ A ) ) ) ) ).

% group_cancel.neg1
thf(fact_6688_group__cancel_Oneg1,axiom,
    ! [A2: code_integer,K: code_integer,A: code_integer] :
      ( ( A2
        = ( plus_p5714425477246183910nteger @ K @ A ) )
     => ( ( uminus1351360451143612070nteger @ A2 )
        = ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ K ) @ ( uminus1351360451143612070nteger @ A ) ) ) ) ).

% group_cancel.neg1
thf(fact_6689_minus__diff__minus,axiom,
    ! [A: int,B: int] :
      ( ( minus_minus_int @ ( uminus_uminus_int @ A ) @ ( uminus_uminus_int @ B ) )
      = ( uminus_uminus_int @ ( minus_minus_int @ A @ B ) ) ) ).

% minus_diff_minus
thf(fact_6690_minus__diff__minus,axiom,
    ! [A: real,B: real] :
      ( ( minus_minus_real @ ( uminus_uminus_real @ A ) @ ( uminus_uminus_real @ B ) )
      = ( uminus_uminus_real @ ( minus_minus_real @ A @ B ) ) ) ).

% minus_diff_minus
thf(fact_6691_minus__diff__minus,axiom,
    ! [A: complex,B: complex] :
      ( ( minus_minus_complex @ ( uminus1482373934393186551omplex @ A ) @ ( uminus1482373934393186551omplex @ B ) )
      = ( uminus1482373934393186551omplex @ ( minus_minus_complex @ A @ B ) ) ) ).

% minus_diff_minus
thf(fact_6692_minus__diff__minus,axiom,
    ! [A: rat,B: rat] :
      ( ( minus_minus_rat @ ( uminus_uminus_rat @ A ) @ ( uminus_uminus_rat @ B ) )
      = ( uminus_uminus_rat @ ( minus_minus_rat @ A @ B ) ) ) ).

% minus_diff_minus
thf(fact_6693_minus__diff__minus,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ A ) @ ( uminus1351360451143612070nteger @ B ) )
      = ( uminus1351360451143612070nteger @ ( minus_8373710615458151222nteger @ A @ B ) ) ) ).

% minus_diff_minus
thf(fact_6694_minus__divide__left,axiom,
    ! [A: real,B: real] :
      ( ( uminus_uminus_real @ ( divide_divide_real @ A @ B ) )
      = ( divide_divide_real @ ( uminus_uminus_real @ A ) @ B ) ) ).

% minus_divide_left
thf(fact_6695_minus__divide__left,axiom,
    ! [A: complex,B: complex] :
      ( ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ A @ B ) )
      = ( divide1717551699836669952omplex @ ( uminus1482373934393186551omplex @ A ) @ B ) ) ).

% minus_divide_left
thf(fact_6696_minus__divide__left,axiom,
    ! [A: rat,B: rat] :
      ( ( uminus_uminus_rat @ ( divide_divide_rat @ A @ B ) )
      = ( divide_divide_rat @ ( uminus_uminus_rat @ A ) @ B ) ) ).

% minus_divide_left
thf(fact_6697_minus__divide__divide,axiom,
    ! [A: real,B: real] :
      ( ( divide_divide_real @ ( uminus_uminus_real @ A ) @ ( uminus_uminus_real @ B ) )
      = ( divide_divide_real @ A @ B ) ) ).

% minus_divide_divide
thf(fact_6698_minus__divide__divide,axiom,
    ! [A: complex,B: complex] :
      ( ( divide1717551699836669952omplex @ ( uminus1482373934393186551omplex @ A ) @ ( uminus1482373934393186551omplex @ B ) )
      = ( divide1717551699836669952omplex @ A @ B ) ) ).

% minus_divide_divide
thf(fact_6699_minus__divide__divide,axiom,
    ! [A: rat,B: rat] :
      ( ( divide_divide_rat @ ( uminus_uminus_rat @ A ) @ ( uminus_uminus_rat @ B ) )
      = ( divide_divide_rat @ A @ B ) ) ).

% minus_divide_divide
thf(fact_6700_minus__divide__right,axiom,
    ! [A: real,B: real] :
      ( ( uminus_uminus_real @ ( divide_divide_real @ A @ B ) )
      = ( divide_divide_real @ A @ ( uminus_uminus_real @ B ) ) ) ).

% minus_divide_right
thf(fact_6701_minus__divide__right,axiom,
    ! [A: complex,B: complex] :
      ( ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ A @ B ) )
      = ( divide1717551699836669952omplex @ A @ ( uminus1482373934393186551omplex @ B ) ) ) ).

% minus_divide_right
thf(fact_6702_minus__divide__right,axiom,
    ! [A: rat,B: rat] :
      ( ( uminus_uminus_rat @ ( divide_divide_rat @ A @ B ) )
      = ( divide_divide_rat @ A @ ( uminus_uminus_rat @ B ) ) ) ).

% minus_divide_right
thf(fact_6703_div__minus__right,axiom,
    ! [A: int,B: int] :
      ( ( divide_divide_int @ A @ ( uminus_uminus_int @ B ) )
      = ( divide_divide_int @ ( uminus_uminus_int @ A ) @ B ) ) ).

% div_minus_right
thf(fact_6704_div__minus__right,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( divide6298287555418463151nteger @ A @ ( uminus1351360451143612070nteger @ B ) )
      = ( divide6298287555418463151nteger @ ( uminus1351360451143612070nteger @ A ) @ B ) ) ).

% div_minus_right
thf(fact_6705_mod__minus__right,axiom,
    ! [A: int,B: int] :
      ( ( modulo_modulo_int @ A @ ( uminus_uminus_int @ B ) )
      = ( uminus_uminus_int @ ( modulo_modulo_int @ ( uminus_uminus_int @ A ) @ B ) ) ) ).

% mod_minus_right
thf(fact_6706_mod__minus__right,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( modulo364778990260209775nteger @ A @ ( uminus1351360451143612070nteger @ B ) )
      = ( uminus1351360451143612070nteger @ ( modulo364778990260209775nteger @ ( uminus1351360451143612070nteger @ A ) @ B ) ) ) ).

% mod_minus_right
thf(fact_6707_mod__minus__cong,axiom,
    ! [A: int,B: int,A5: int] :
      ( ( ( modulo_modulo_int @ A @ B )
        = ( modulo_modulo_int @ A5 @ B ) )
     => ( ( modulo_modulo_int @ ( uminus_uminus_int @ A ) @ B )
        = ( modulo_modulo_int @ ( uminus_uminus_int @ A5 ) @ B ) ) ) ).

% mod_minus_cong
thf(fact_6708_mod__minus__cong,axiom,
    ! [A: code_integer,B: code_integer,A5: code_integer] :
      ( ( ( modulo364778990260209775nteger @ A @ B )
        = ( modulo364778990260209775nteger @ A5 @ B ) )
     => ( ( modulo364778990260209775nteger @ ( uminus1351360451143612070nteger @ A ) @ B )
        = ( modulo364778990260209775nteger @ ( uminus1351360451143612070nteger @ A5 ) @ B ) ) ) ).

% mod_minus_cong
thf(fact_6709_mod__minus__eq,axiom,
    ! [A: int,B: int] :
      ( ( modulo_modulo_int @ ( uminus_uminus_int @ ( modulo_modulo_int @ A @ B ) ) @ B )
      = ( modulo_modulo_int @ ( uminus_uminus_int @ A ) @ B ) ) ).

% mod_minus_eq
thf(fact_6710_mod__minus__eq,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( modulo364778990260209775nteger @ ( uminus1351360451143612070nteger @ ( modulo364778990260209775nteger @ A @ B ) ) @ B )
      = ( modulo364778990260209775nteger @ ( uminus1351360451143612070nteger @ A ) @ B ) ) ).

% mod_minus_eq
thf(fact_6711_case__prodE,axiom,
    ! [C: code_integer > code_integer > $o,P2: produc8923325533196201883nteger] :
      ( ( produc2066375834425727024eger_o @ C @ P2 )
     => ~ ! [X4: code_integer,Y3: code_integer] :
            ( ( P2
              = ( produc1086072967326762835nteger @ X4 @ Y3 ) )
           => ~ ( C @ X4 @ Y3 ) ) ) ).

% case_prodE
thf(fact_6712_case__prodE,axiom,
    ! [C: code_integer > $o > $o,P2: produc6271795597528267376eger_o] :
      ( ( produc7828578312038201481er_o_o @ C @ P2 )
     => ~ ! [X4: code_integer,Y3: $o] :
            ( ( P2
              = ( produc6677183202524767010eger_o @ X4 @ Y3 ) )
           => ~ ( C @ X4 @ Y3 ) ) ) ).

% case_prodE
thf(fact_6713_case__prodE,axiom,
    ! [C: num > num > $o,P2: product_prod_num_num] :
      ( ( produc5703948589228662326_num_o @ C @ P2 )
     => ~ ! [X4: num,Y3: num] :
            ( ( P2
              = ( product_Pair_num_num @ X4 @ Y3 ) )
           => ~ ( C @ X4 @ Y3 ) ) ) ).

% case_prodE
thf(fact_6714_case__prodE,axiom,
    ! [C: nat > nat > $o,P2: product_prod_nat_nat] :
      ( ( produc6081775807080527818_nat_o @ C @ P2 )
     => ~ ! [X4: nat,Y3: nat] :
            ( ( P2
              = ( product_Pair_nat_nat @ X4 @ Y3 ) )
           => ~ ( C @ X4 @ Y3 ) ) ) ).

% case_prodE
thf(fact_6715_case__prodE,axiom,
    ! [C: int > int > $o,P2: product_prod_int_int] :
      ( ( produc4947309494688390418_int_o @ C @ P2 )
     => ~ ! [X4: int,Y3: int] :
            ( ( P2
              = ( product_Pair_int_int @ X4 @ Y3 ) )
           => ~ ( C @ X4 @ Y3 ) ) ) ).

% case_prodE
thf(fact_6716_case__prodD,axiom,
    ! [F: code_integer > code_integer > $o,A: code_integer,B: code_integer] :
      ( ( produc2066375834425727024eger_o @ F @ ( produc1086072967326762835nteger @ A @ B ) )
     => ( F @ A @ B ) ) ).

% case_prodD
thf(fact_6717_case__prodD,axiom,
    ! [F: code_integer > $o > $o,A: code_integer,B: $o] :
      ( ( produc7828578312038201481er_o_o @ F @ ( produc6677183202524767010eger_o @ A @ B ) )
     => ( F @ A @ B ) ) ).

% case_prodD
thf(fact_6718_case__prodD,axiom,
    ! [F: num > num > $o,A: num,B: num] :
      ( ( produc5703948589228662326_num_o @ F @ ( product_Pair_num_num @ A @ B ) )
     => ( F @ A @ B ) ) ).

% case_prodD
thf(fact_6719_case__prodD,axiom,
    ! [F: nat > nat > $o,A: nat,B: nat] :
      ( ( produc6081775807080527818_nat_o @ F @ ( product_Pair_nat_nat @ A @ B ) )
     => ( F @ A @ B ) ) ).

% case_prodD
thf(fact_6720_case__prodD,axiom,
    ! [F: int > int > $o,A: int,B: int] :
      ( ( produc4947309494688390418_int_o @ F @ ( product_Pair_int_int @ A @ B ) )
     => ( F @ A @ B ) ) ).

% case_prodD
thf(fact_6721_case__prodD_H,axiom,
    ! [R: nat > nat > product_prod_nat_nat > $o,A: nat,B: nat,C: product_prod_nat_nat] :
      ( ( produc8739625826339149834_nat_o @ R @ ( product_Pair_nat_nat @ A @ B ) @ C )
     => ( R @ A @ B @ C ) ) ).

% case_prodD'
thf(fact_6722_case__prodE_H,axiom,
    ! [C: nat > nat > product_prod_nat_nat > $o,P2: product_prod_nat_nat,Z: product_prod_nat_nat] :
      ( ( produc8739625826339149834_nat_o @ C @ P2 @ Z )
     => ~ ! [X4: nat,Y3: nat] :
            ( ( P2
              = ( product_Pair_nat_nat @ X4 @ Y3 ) )
           => ~ ( C @ X4 @ Y3 @ Z ) ) ) ).

% case_prodE'
thf(fact_6723_not__numeral__le__neg__numeral,axiom,
    ! [M: num,N: num] :
      ~ ( ord_less_eq_real @ ( numeral_numeral_real @ M ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) ) ).

% not_numeral_le_neg_numeral
thf(fact_6724_not__numeral__le__neg__numeral,axiom,
    ! [M: num,N: num] :
      ~ ( ord_le3102999989581377725nteger @ ( numera6620942414471956472nteger @ M ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) ) ).

% not_numeral_le_neg_numeral
thf(fact_6725_not__numeral__le__neg__numeral,axiom,
    ! [M: num,N: num] :
      ~ ( ord_less_eq_rat @ ( numeral_numeral_rat @ M ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) ) ).

% not_numeral_le_neg_numeral
thf(fact_6726_not__numeral__le__neg__numeral,axiom,
    ! [M: num,N: num] :
      ~ ( ord_less_eq_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ).

% not_numeral_le_neg_numeral
thf(fact_6727_neg__numeral__le__numeral,axiom,
    ! [M: num,N: num] : ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( numeral_numeral_real @ N ) ) ).

% neg_numeral_le_numeral
thf(fact_6728_neg__numeral__le__numeral,axiom,
    ! [M: num,N: num] : ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( numera6620942414471956472nteger @ N ) ) ).

% neg_numeral_le_numeral
thf(fact_6729_neg__numeral__le__numeral,axiom,
    ! [M: num,N: num] : ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( numeral_numeral_rat @ N ) ) ).

% neg_numeral_le_numeral
thf(fact_6730_neg__numeral__le__numeral,axiom,
    ! [M: num,N: num] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N ) ) ).

% neg_numeral_le_numeral
thf(fact_6731_zero__neq__neg__numeral,axiom,
    ! [N: num] :
      ( zero_zero_int
     != ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ).

% zero_neq_neg_numeral
thf(fact_6732_zero__neq__neg__numeral,axiom,
    ! [N: num] :
      ( zero_zero_real
     != ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) ) ).

% zero_neq_neg_numeral
thf(fact_6733_zero__neq__neg__numeral,axiom,
    ! [N: num] :
      ( zero_zero_complex
     != ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N ) ) ) ).

% zero_neq_neg_numeral
thf(fact_6734_zero__neq__neg__numeral,axiom,
    ! [N: num] :
      ( zero_zero_rat
     != ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) ) ).

% zero_neq_neg_numeral
thf(fact_6735_zero__neq__neg__numeral,axiom,
    ! [N: num] :
      ( zero_z3403309356797280102nteger
     != ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) ) ).

% zero_neq_neg_numeral
thf(fact_6736_not__numeral__less__neg__numeral,axiom,
    ! [M: num,N: num] :
      ~ ( ord_less_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ).

% not_numeral_less_neg_numeral
thf(fact_6737_not__numeral__less__neg__numeral,axiom,
    ! [M: num,N: num] :
      ~ ( ord_less_real @ ( numeral_numeral_real @ M ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) ) ).

% not_numeral_less_neg_numeral
thf(fact_6738_not__numeral__less__neg__numeral,axiom,
    ! [M: num,N: num] :
      ~ ( ord_less_rat @ ( numeral_numeral_rat @ M ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) ) ).

% not_numeral_less_neg_numeral
thf(fact_6739_not__numeral__less__neg__numeral,axiom,
    ! [M: num,N: num] :
      ~ ( ord_le6747313008572928689nteger @ ( numera6620942414471956472nteger @ M ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) ) ).

% not_numeral_less_neg_numeral
thf(fact_6740_neg__numeral__less__numeral,axiom,
    ! [M: num,N: num] : ( ord_less_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N ) ) ).

% neg_numeral_less_numeral
thf(fact_6741_neg__numeral__less__numeral,axiom,
    ! [M: num,N: num] : ( ord_less_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( numeral_numeral_real @ N ) ) ).

% neg_numeral_less_numeral
thf(fact_6742_neg__numeral__less__numeral,axiom,
    ! [M: num,N: num] : ( ord_less_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( numeral_numeral_rat @ N ) ) ).

% neg_numeral_less_numeral
thf(fact_6743_neg__numeral__less__numeral,axiom,
    ! [M: num,N: num] : ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( numera6620942414471956472nteger @ N ) ) ).

% neg_numeral_less_numeral
thf(fact_6744_le__minus__one__simps_I2_J,axiom,
    ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ one_one_real ).

% le_minus_one_simps(2)
thf(fact_6745_le__minus__one__simps_I2_J,axiom,
    ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ one_one_Code_integer ).

% le_minus_one_simps(2)
thf(fact_6746_le__minus__one__simps_I2_J,axiom,
    ord_less_eq_rat @ ( uminus_uminus_rat @ one_one_rat ) @ one_one_rat ).

% le_minus_one_simps(2)
thf(fact_6747_le__minus__one__simps_I2_J,axiom,
    ord_less_eq_int @ ( uminus_uminus_int @ one_one_int ) @ one_one_int ).

% le_minus_one_simps(2)
thf(fact_6748_le__minus__one__simps_I4_J,axiom,
    ~ ( ord_less_eq_real @ one_one_real @ ( uminus_uminus_real @ one_one_real ) ) ).

% le_minus_one_simps(4)
thf(fact_6749_le__minus__one__simps_I4_J,axiom,
    ~ ( ord_le3102999989581377725nteger @ one_one_Code_integer @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% le_minus_one_simps(4)
thf(fact_6750_le__minus__one__simps_I4_J,axiom,
    ~ ( ord_less_eq_rat @ one_one_rat @ ( uminus_uminus_rat @ one_one_rat ) ) ).

% le_minus_one_simps(4)
thf(fact_6751_le__minus__one__simps_I4_J,axiom,
    ~ ( ord_less_eq_int @ one_one_int @ ( uminus_uminus_int @ one_one_int ) ) ).

% le_minus_one_simps(4)
thf(fact_6752_zero__neq__neg__one,axiom,
    ( zero_zero_int
   != ( uminus_uminus_int @ one_one_int ) ) ).

% zero_neq_neg_one
thf(fact_6753_zero__neq__neg__one,axiom,
    ( zero_zero_real
   != ( uminus_uminus_real @ one_one_real ) ) ).

% zero_neq_neg_one
thf(fact_6754_zero__neq__neg__one,axiom,
    ( zero_zero_complex
   != ( uminus1482373934393186551omplex @ one_one_complex ) ) ).

% zero_neq_neg_one
thf(fact_6755_zero__neq__neg__one,axiom,
    ( zero_zero_rat
   != ( uminus_uminus_rat @ one_one_rat ) ) ).

% zero_neq_neg_one
thf(fact_6756_zero__neq__neg__one,axiom,
    ( zero_z3403309356797280102nteger
   != ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% zero_neq_neg_one
thf(fact_6757_neg__eq__iff__add__eq__0,axiom,
    ! [A: int,B: int] :
      ( ( ( uminus_uminus_int @ A )
        = B )
      = ( ( plus_plus_int @ A @ B )
        = zero_zero_int ) ) ).

% neg_eq_iff_add_eq_0
thf(fact_6758_neg__eq__iff__add__eq__0,axiom,
    ! [A: real,B: real] :
      ( ( ( uminus_uminus_real @ A )
        = B )
      = ( ( plus_plus_real @ A @ B )
        = zero_zero_real ) ) ).

% neg_eq_iff_add_eq_0
thf(fact_6759_neg__eq__iff__add__eq__0,axiom,
    ! [A: complex,B: complex] :
      ( ( ( uminus1482373934393186551omplex @ A )
        = B )
      = ( ( plus_plus_complex @ A @ B )
        = zero_zero_complex ) ) ).

% neg_eq_iff_add_eq_0
thf(fact_6760_neg__eq__iff__add__eq__0,axiom,
    ! [A: rat,B: rat] :
      ( ( ( uminus_uminus_rat @ A )
        = B )
      = ( ( plus_plus_rat @ A @ B )
        = zero_zero_rat ) ) ).

% neg_eq_iff_add_eq_0
thf(fact_6761_neg__eq__iff__add__eq__0,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ( uminus1351360451143612070nteger @ A )
        = B )
      = ( ( plus_p5714425477246183910nteger @ A @ B )
        = zero_z3403309356797280102nteger ) ) ).

% neg_eq_iff_add_eq_0
thf(fact_6762_eq__neg__iff__add__eq__0,axiom,
    ! [A: int,B: int] :
      ( ( A
        = ( uminus_uminus_int @ B ) )
      = ( ( plus_plus_int @ A @ B )
        = zero_zero_int ) ) ).

% eq_neg_iff_add_eq_0
thf(fact_6763_eq__neg__iff__add__eq__0,axiom,
    ! [A: real,B: real] :
      ( ( A
        = ( uminus_uminus_real @ B ) )
      = ( ( plus_plus_real @ A @ B )
        = zero_zero_real ) ) ).

% eq_neg_iff_add_eq_0
thf(fact_6764_eq__neg__iff__add__eq__0,axiom,
    ! [A: complex,B: complex] :
      ( ( A
        = ( uminus1482373934393186551omplex @ B ) )
      = ( ( plus_plus_complex @ A @ B )
        = zero_zero_complex ) ) ).

% eq_neg_iff_add_eq_0
thf(fact_6765_eq__neg__iff__add__eq__0,axiom,
    ! [A: rat,B: rat] :
      ( ( A
        = ( uminus_uminus_rat @ B ) )
      = ( ( plus_plus_rat @ A @ B )
        = zero_zero_rat ) ) ).

% eq_neg_iff_add_eq_0
thf(fact_6766_eq__neg__iff__add__eq__0,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( A
        = ( uminus1351360451143612070nteger @ B ) )
      = ( ( plus_p5714425477246183910nteger @ A @ B )
        = zero_z3403309356797280102nteger ) ) ).

% eq_neg_iff_add_eq_0
thf(fact_6767_add_Oinverse__unique,axiom,
    ! [A: int,B: int] :
      ( ( ( plus_plus_int @ A @ B )
        = zero_zero_int )
     => ( ( uminus_uminus_int @ A )
        = B ) ) ).

% add.inverse_unique
thf(fact_6768_add_Oinverse__unique,axiom,
    ! [A: real,B: real] :
      ( ( ( plus_plus_real @ A @ B )
        = zero_zero_real )
     => ( ( uminus_uminus_real @ A )
        = B ) ) ).

% add.inverse_unique
thf(fact_6769_add_Oinverse__unique,axiom,
    ! [A: complex,B: complex] :
      ( ( ( plus_plus_complex @ A @ B )
        = zero_zero_complex )
     => ( ( uminus1482373934393186551omplex @ A )
        = B ) ) ).

% add.inverse_unique
thf(fact_6770_add_Oinverse__unique,axiom,
    ! [A: rat,B: rat] :
      ( ( ( plus_plus_rat @ A @ B )
        = zero_zero_rat )
     => ( ( uminus_uminus_rat @ A )
        = B ) ) ).

% add.inverse_unique
thf(fact_6771_add_Oinverse__unique,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ( plus_p5714425477246183910nteger @ A @ B )
        = zero_z3403309356797280102nteger )
     => ( ( uminus1351360451143612070nteger @ A )
        = B ) ) ).

% add.inverse_unique
thf(fact_6772_ab__group__add__class_Oab__left__minus,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ ( uminus_uminus_int @ A ) @ A )
      = zero_zero_int ) ).

% ab_group_add_class.ab_left_minus
thf(fact_6773_ab__group__add__class_Oab__left__minus,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ ( uminus_uminus_real @ A ) @ A )
      = zero_zero_real ) ).

% ab_group_add_class.ab_left_minus
thf(fact_6774_ab__group__add__class_Oab__left__minus,axiom,
    ! [A: complex] :
      ( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ A ) @ A )
      = zero_zero_complex ) ).

% ab_group_add_class.ab_left_minus
thf(fact_6775_ab__group__add__class_Oab__left__minus,axiom,
    ! [A: rat] :
      ( ( plus_plus_rat @ ( uminus_uminus_rat @ A ) @ A )
      = zero_zero_rat ) ).

% ab_group_add_class.ab_left_minus
thf(fact_6776_ab__group__add__class_Oab__left__minus,axiom,
    ! [A: code_integer] :
      ( ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ A ) @ A )
      = zero_z3403309356797280102nteger ) ).

% ab_group_add_class.ab_left_minus
thf(fact_6777_add__eq__0__iff,axiom,
    ! [A: int,B: int] :
      ( ( ( plus_plus_int @ A @ B )
        = zero_zero_int )
      = ( B
        = ( uminus_uminus_int @ A ) ) ) ).

% add_eq_0_iff
thf(fact_6778_add__eq__0__iff,axiom,
    ! [A: real,B: real] :
      ( ( ( plus_plus_real @ A @ B )
        = zero_zero_real )
      = ( B
        = ( uminus_uminus_real @ A ) ) ) ).

% add_eq_0_iff
thf(fact_6779_add__eq__0__iff,axiom,
    ! [A: complex,B: complex] :
      ( ( ( plus_plus_complex @ A @ B )
        = zero_zero_complex )
      = ( B
        = ( uminus1482373934393186551omplex @ A ) ) ) ).

% add_eq_0_iff
thf(fact_6780_add__eq__0__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ( plus_plus_rat @ A @ B )
        = zero_zero_rat )
      = ( B
        = ( uminus_uminus_rat @ A ) ) ) ).

% add_eq_0_iff
thf(fact_6781_add__eq__0__iff,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ( plus_p5714425477246183910nteger @ A @ B )
        = zero_z3403309356797280102nteger )
      = ( B
        = ( uminus1351360451143612070nteger @ A ) ) ) ).

% add_eq_0_iff
thf(fact_6782_less__minus__one__simps_I2_J,axiom,
    ord_less_int @ ( uminus_uminus_int @ one_one_int ) @ one_one_int ).

% less_minus_one_simps(2)
thf(fact_6783_less__minus__one__simps_I2_J,axiom,
    ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ one_one_real ).

% less_minus_one_simps(2)
thf(fact_6784_less__minus__one__simps_I2_J,axiom,
    ord_less_rat @ ( uminus_uminus_rat @ one_one_rat ) @ one_one_rat ).

% less_minus_one_simps(2)
thf(fact_6785_less__minus__one__simps_I2_J,axiom,
    ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ one_one_Code_integer ).

% less_minus_one_simps(2)
thf(fact_6786_less__minus__one__simps_I4_J,axiom,
    ~ ( ord_less_int @ one_one_int @ ( uminus_uminus_int @ one_one_int ) ) ).

% less_minus_one_simps(4)
thf(fact_6787_less__minus__one__simps_I4_J,axiom,
    ~ ( ord_less_real @ one_one_real @ ( uminus_uminus_real @ one_one_real ) ) ).

% less_minus_one_simps(4)
thf(fact_6788_less__minus__one__simps_I4_J,axiom,
    ~ ( ord_less_rat @ one_one_rat @ ( uminus_uminus_rat @ one_one_rat ) ) ).

% less_minus_one_simps(4)
thf(fact_6789_less__minus__one__simps_I4_J,axiom,
    ~ ( ord_le6747313008572928689nteger @ one_one_Code_integer @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% less_minus_one_simps(4)
thf(fact_6790_numeral__times__minus__swap,axiom,
    ! [W: num,X2: int] :
      ( ( times_times_int @ ( numeral_numeral_int @ W ) @ ( uminus_uminus_int @ X2 ) )
      = ( times_times_int @ X2 @ ( uminus_uminus_int @ ( numeral_numeral_int @ W ) ) ) ) ).

% numeral_times_minus_swap
thf(fact_6791_numeral__times__minus__swap,axiom,
    ! [W: num,X2: real] :
      ( ( times_times_real @ ( numeral_numeral_real @ W ) @ ( uminus_uminus_real @ X2 ) )
      = ( times_times_real @ X2 @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) ) ).

% numeral_times_minus_swap
thf(fact_6792_numeral__times__minus__swap,axiom,
    ! [W: num,X2: complex] :
      ( ( times_times_complex @ ( numera6690914467698888265omplex @ W ) @ ( uminus1482373934393186551omplex @ X2 ) )
      = ( times_times_complex @ X2 @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) ) ) ).

% numeral_times_minus_swap
thf(fact_6793_numeral__times__minus__swap,axiom,
    ! [W: num,X2: rat] :
      ( ( times_times_rat @ ( numeral_numeral_rat @ W ) @ ( uminus_uminus_rat @ X2 ) )
      = ( times_times_rat @ X2 @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) ) ).

% numeral_times_minus_swap
thf(fact_6794_numeral__times__minus__swap,axiom,
    ! [W: num,X2: code_integer] :
      ( ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ W ) @ ( uminus1351360451143612070nteger @ X2 ) )
      = ( times_3573771949741848930nteger @ X2 @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ W ) ) ) ) ).

% numeral_times_minus_swap
thf(fact_6795_nonzero__minus__divide__right,axiom,
    ! [B: real,A: real] :
      ( ( B != zero_zero_real )
     => ( ( uminus_uminus_real @ ( divide_divide_real @ A @ B ) )
        = ( divide_divide_real @ A @ ( uminus_uminus_real @ B ) ) ) ) ).

% nonzero_minus_divide_right
thf(fact_6796_nonzero__minus__divide__right,axiom,
    ! [B: complex,A: complex] :
      ( ( B != zero_zero_complex )
     => ( ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ A @ B ) )
        = ( divide1717551699836669952omplex @ A @ ( uminus1482373934393186551omplex @ B ) ) ) ) ).

% nonzero_minus_divide_right
thf(fact_6797_nonzero__minus__divide__right,axiom,
    ! [B: rat,A: rat] :
      ( ( B != zero_zero_rat )
     => ( ( uminus_uminus_rat @ ( divide_divide_rat @ A @ B ) )
        = ( divide_divide_rat @ A @ ( uminus_uminus_rat @ B ) ) ) ) ).

% nonzero_minus_divide_right
thf(fact_6798_nonzero__minus__divide__divide,axiom,
    ! [B: real,A: real] :
      ( ( B != zero_zero_real )
     => ( ( divide_divide_real @ ( uminus_uminus_real @ A ) @ ( uminus_uminus_real @ B ) )
        = ( divide_divide_real @ A @ B ) ) ) ).

% nonzero_minus_divide_divide
thf(fact_6799_nonzero__minus__divide__divide,axiom,
    ! [B: complex,A: complex] :
      ( ( B != zero_zero_complex )
     => ( ( divide1717551699836669952omplex @ ( uminus1482373934393186551omplex @ A ) @ ( uminus1482373934393186551omplex @ B ) )
        = ( divide1717551699836669952omplex @ A @ B ) ) ) ).

% nonzero_minus_divide_divide
thf(fact_6800_nonzero__minus__divide__divide,axiom,
    ! [B: rat,A: rat] :
      ( ( B != zero_zero_rat )
     => ( ( divide_divide_rat @ ( uminus_uminus_rat @ A ) @ ( uminus_uminus_rat @ B ) )
        = ( divide_divide_rat @ A @ B ) ) ) ).

% nonzero_minus_divide_divide
thf(fact_6801_one__neq__neg__numeral,axiom,
    ! [N: num] :
      ( one_one_int
     != ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ).

% one_neq_neg_numeral
thf(fact_6802_one__neq__neg__numeral,axiom,
    ! [N: num] :
      ( one_one_real
     != ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) ) ).

% one_neq_neg_numeral
thf(fact_6803_one__neq__neg__numeral,axiom,
    ! [N: num] :
      ( one_one_complex
     != ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N ) ) ) ).

% one_neq_neg_numeral
thf(fact_6804_one__neq__neg__numeral,axiom,
    ! [N: num] :
      ( one_one_rat
     != ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) ) ).

% one_neq_neg_numeral
thf(fact_6805_one__neq__neg__numeral,axiom,
    ! [N: num] :
      ( one_one_Code_integer
     != ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) ) ).

% one_neq_neg_numeral
thf(fact_6806_numeral__neq__neg__one,axiom,
    ! [N: num] :
      ( ( numeral_numeral_int @ N )
     != ( uminus_uminus_int @ one_one_int ) ) ).

% numeral_neq_neg_one
thf(fact_6807_numeral__neq__neg__one,axiom,
    ! [N: num] :
      ( ( numeral_numeral_real @ N )
     != ( uminus_uminus_real @ one_one_real ) ) ).

% numeral_neq_neg_one
thf(fact_6808_numeral__neq__neg__one,axiom,
    ! [N: num] :
      ( ( numera6690914467698888265omplex @ N )
     != ( uminus1482373934393186551omplex @ one_one_complex ) ) ).

% numeral_neq_neg_one
thf(fact_6809_numeral__neq__neg__one,axiom,
    ! [N: num] :
      ( ( numeral_numeral_rat @ N )
     != ( uminus_uminus_rat @ one_one_rat ) ) ).

% numeral_neq_neg_one
thf(fact_6810_numeral__neq__neg__one,axiom,
    ! [N: num] :
      ( ( numera6620942414471956472nteger @ N )
     != ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% numeral_neq_neg_one
thf(fact_6811_square__eq__1__iff,axiom,
    ! [X2: int] :
      ( ( ( times_times_int @ X2 @ X2 )
        = one_one_int )
      = ( ( X2 = one_one_int )
        | ( X2
          = ( uminus_uminus_int @ one_one_int ) ) ) ) ).

% square_eq_1_iff
thf(fact_6812_square__eq__1__iff,axiom,
    ! [X2: real] :
      ( ( ( times_times_real @ X2 @ X2 )
        = one_one_real )
      = ( ( X2 = one_one_real )
        | ( X2
          = ( uminus_uminus_real @ one_one_real ) ) ) ) ).

% square_eq_1_iff
thf(fact_6813_square__eq__1__iff,axiom,
    ! [X2: complex] :
      ( ( ( times_times_complex @ X2 @ X2 )
        = one_one_complex )
      = ( ( X2 = one_one_complex )
        | ( X2
          = ( uminus1482373934393186551omplex @ one_one_complex ) ) ) ) ).

% square_eq_1_iff
thf(fact_6814_square__eq__1__iff,axiom,
    ! [X2: rat] :
      ( ( ( times_times_rat @ X2 @ X2 )
        = one_one_rat )
      = ( ( X2 = one_one_rat )
        | ( X2
          = ( uminus_uminus_rat @ one_one_rat ) ) ) ) ).

% square_eq_1_iff
thf(fact_6815_square__eq__1__iff,axiom,
    ! [X2: code_integer] :
      ( ( ( times_3573771949741848930nteger @ X2 @ X2 )
        = one_one_Code_integer )
      = ( ( X2 = one_one_Code_integer )
        | ( X2
          = ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ) ) ).

% square_eq_1_iff
thf(fact_6816_group__cancel_Osub2,axiom,
    ! [B3: int,K: int,B: int,A: int] :
      ( ( B3
        = ( plus_plus_int @ K @ B ) )
     => ( ( minus_minus_int @ A @ B3 )
        = ( plus_plus_int @ ( uminus_uminus_int @ K ) @ ( minus_minus_int @ A @ B ) ) ) ) ).

% group_cancel.sub2
thf(fact_6817_group__cancel_Osub2,axiom,
    ! [B3: real,K: real,B: real,A: real] :
      ( ( B3
        = ( plus_plus_real @ K @ B ) )
     => ( ( minus_minus_real @ A @ B3 )
        = ( plus_plus_real @ ( uminus_uminus_real @ K ) @ ( minus_minus_real @ A @ B ) ) ) ) ).

% group_cancel.sub2
thf(fact_6818_group__cancel_Osub2,axiom,
    ! [B3: complex,K: complex,B: complex,A: complex] :
      ( ( B3
        = ( plus_plus_complex @ K @ B ) )
     => ( ( minus_minus_complex @ A @ B3 )
        = ( plus_plus_complex @ ( uminus1482373934393186551omplex @ K ) @ ( minus_minus_complex @ A @ B ) ) ) ) ).

% group_cancel.sub2
thf(fact_6819_group__cancel_Osub2,axiom,
    ! [B3: rat,K: rat,B: rat,A: rat] :
      ( ( B3
        = ( plus_plus_rat @ K @ B ) )
     => ( ( minus_minus_rat @ A @ B3 )
        = ( plus_plus_rat @ ( uminus_uminus_rat @ K ) @ ( minus_minus_rat @ A @ B ) ) ) ) ).

% group_cancel.sub2
thf(fact_6820_group__cancel_Osub2,axiom,
    ! [B3: code_integer,K: code_integer,B: code_integer,A: code_integer] :
      ( ( B3
        = ( plus_p5714425477246183910nteger @ K @ B ) )
     => ( ( minus_8373710615458151222nteger @ A @ B3 )
        = ( plus_p5714425477246183910nteger @ ( uminus1351360451143612070nteger @ K ) @ ( minus_8373710615458151222nteger @ A @ B ) ) ) ) ).

% group_cancel.sub2
thf(fact_6821_diff__conv__add__uminus,axiom,
    ( minus_minus_int
    = ( ^ [A3: int,B2: int] : ( plus_plus_int @ A3 @ ( uminus_uminus_int @ B2 ) ) ) ) ).

% diff_conv_add_uminus
thf(fact_6822_diff__conv__add__uminus,axiom,
    ( minus_minus_real
    = ( ^ [A3: real,B2: real] : ( plus_plus_real @ A3 @ ( uminus_uminus_real @ B2 ) ) ) ) ).

% diff_conv_add_uminus
thf(fact_6823_diff__conv__add__uminus,axiom,
    ( minus_minus_complex
    = ( ^ [A3: complex,B2: complex] : ( plus_plus_complex @ A3 @ ( uminus1482373934393186551omplex @ B2 ) ) ) ) ).

% diff_conv_add_uminus
thf(fact_6824_diff__conv__add__uminus,axiom,
    ( minus_minus_rat
    = ( ^ [A3: rat,B2: rat] : ( plus_plus_rat @ A3 @ ( uminus_uminus_rat @ B2 ) ) ) ) ).

% diff_conv_add_uminus
thf(fact_6825_diff__conv__add__uminus,axiom,
    ( minus_8373710615458151222nteger
    = ( ^ [A3: code_integer,B2: code_integer] : ( plus_p5714425477246183910nteger @ A3 @ ( uminus1351360451143612070nteger @ B2 ) ) ) ) ).

% diff_conv_add_uminus
thf(fact_6826_ab__group__add__class_Oab__diff__conv__add__uminus,axiom,
    ( minus_minus_int
    = ( ^ [A3: int,B2: int] : ( plus_plus_int @ A3 @ ( uminus_uminus_int @ B2 ) ) ) ) ).

% ab_group_add_class.ab_diff_conv_add_uminus
thf(fact_6827_ab__group__add__class_Oab__diff__conv__add__uminus,axiom,
    ( minus_minus_real
    = ( ^ [A3: real,B2: real] : ( plus_plus_real @ A3 @ ( uminus_uminus_real @ B2 ) ) ) ) ).

% ab_group_add_class.ab_diff_conv_add_uminus
thf(fact_6828_ab__group__add__class_Oab__diff__conv__add__uminus,axiom,
    ( minus_minus_complex
    = ( ^ [A3: complex,B2: complex] : ( plus_plus_complex @ A3 @ ( uminus1482373934393186551omplex @ B2 ) ) ) ) ).

% ab_group_add_class.ab_diff_conv_add_uminus
thf(fact_6829_ab__group__add__class_Oab__diff__conv__add__uminus,axiom,
    ( minus_minus_rat
    = ( ^ [A3: rat,B2: rat] : ( plus_plus_rat @ A3 @ ( uminus_uminus_rat @ B2 ) ) ) ) ).

% ab_group_add_class.ab_diff_conv_add_uminus
thf(fact_6830_ab__group__add__class_Oab__diff__conv__add__uminus,axiom,
    ( minus_8373710615458151222nteger
    = ( ^ [A3: code_integer,B2: code_integer] : ( plus_p5714425477246183910nteger @ A3 @ ( uminus1351360451143612070nteger @ B2 ) ) ) ) ).

% ab_group_add_class.ab_diff_conv_add_uminus
thf(fact_6831_translation__Compl,axiom,
    ! [A: real,T: set_real] :
      ( ( image_real_real @ ( plus_plus_real @ A ) @ ( uminus612125837232591019t_real @ T ) )
      = ( uminus612125837232591019t_real @ ( image_real_real @ ( plus_plus_real @ A ) @ T ) ) ) ).

% translation_Compl
thf(fact_6832_translation__Compl,axiom,
    ! [A: rat,T: set_rat] :
      ( ( image_rat_rat @ ( plus_plus_rat @ A ) @ ( uminus2201863774496077783et_rat @ T ) )
      = ( uminus2201863774496077783et_rat @ ( image_rat_rat @ ( plus_plus_rat @ A ) @ T ) ) ) ).

% translation_Compl
thf(fact_6833_translation__Compl,axiom,
    ! [A: int,T: set_int] :
      ( ( image_int_int @ ( plus_plus_int @ A ) @ ( uminus1532241313380277803et_int @ T ) )
      = ( uminus1532241313380277803et_int @ ( image_int_int @ ( plus_plus_int @ A ) @ T ) ) ) ).

% translation_Compl
thf(fact_6834_replicate__eqI,axiom,
    ! [Xs2: list_complex,N: nat,X2: complex] :
      ( ( ( size_s3451745648224563538omplex @ Xs2 )
        = N )
     => ( ! [Y3: complex] :
            ( ( member_complex @ Y3 @ ( set_complex2 @ Xs2 ) )
           => ( Y3 = X2 ) )
       => ( Xs2
          = ( replicate_complex @ N @ X2 ) ) ) ) ).

% replicate_eqI
thf(fact_6835_replicate__eqI,axiom,
    ! [Xs2: list_real,N: nat,X2: real] :
      ( ( ( size_size_list_real @ Xs2 )
        = N )
     => ( ! [Y3: real] :
            ( ( member_real @ Y3 @ ( set_real2 @ Xs2 ) )
           => ( Y3 = X2 ) )
       => ( Xs2
          = ( replicate_real @ N @ X2 ) ) ) ) ).

% replicate_eqI
thf(fact_6836_replicate__eqI,axiom,
    ! [Xs2: list_set_nat,N: nat,X2: set_nat] :
      ( ( ( size_s3254054031482475050et_nat @ Xs2 )
        = N )
     => ( ! [Y3: set_nat] :
            ( ( member_set_nat @ Y3 @ ( set_set_nat2 @ Xs2 ) )
           => ( Y3 = X2 ) )
       => ( Xs2
          = ( replicate_set_nat @ N @ X2 ) ) ) ) ).

% replicate_eqI
thf(fact_6837_replicate__eqI,axiom,
    ! [Xs2: list_nat,N: nat,X2: nat] :
      ( ( ( size_size_list_nat @ Xs2 )
        = N )
     => ( ! [Y3: nat] :
            ( ( member_nat @ Y3 @ ( set_nat2 @ Xs2 ) )
           => ( Y3 = X2 ) )
       => ( Xs2
          = ( replicate_nat @ N @ X2 ) ) ) ) ).

% replicate_eqI
thf(fact_6838_replicate__eqI,axiom,
    ! [Xs2: list_VEBT_VEBT,N: nat,X2: vEBT_VEBT] :
      ( ( ( size_s6755466524823107622T_VEBT @ Xs2 )
        = N )
     => ( ! [Y3: vEBT_VEBT] :
            ( ( member_VEBT_VEBT @ Y3 @ ( set_VEBT_VEBT2 @ Xs2 ) )
           => ( Y3 = X2 ) )
       => ( Xs2
          = ( replicate_VEBT_VEBT @ N @ X2 ) ) ) ) ).

% replicate_eqI
thf(fact_6839_replicate__eqI,axiom,
    ! [Xs2: list_o,N: nat,X2: $o] :
      ( ( ( size_size_list_o @ Xs2 )
        = N )
     => ( ! [Y3: $o] :
            ( ( member_o @ Y3 @ ( set_o2 @ Xs2 ) )
           => ( Y3 = X2 ) )
       => ( Xs2
          = ( replicate_o @ N @ X2 ) ) ) ) ).

% replicate_eqI
thf(fact_6840_replicate__eqI,axiom,
    ! [Xs2: list_int,N: nat,X2: int] :
      ( ( ( size_size_list_int @ Xs2 )
        = N )
     => ( ! [Y3: int] :
            ( ( member_int @ Y3 @ ( set_int2 @ Xs2 ) )
           => ( Y3 = X2 ) )
       => ( Xs2
          = ( replicate_int @ N @ X2 ) ) ) ) ).

% replicate_eqI
thf(fact_6841_replicate__length__same,axiom,
    ! [Xs2: list_VEBT_VEBT,X2: vEBT_VEBT] :
      ( ! [X4: vEBT_VEBT] :
          ( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ Xs2 ) )
         => ( X4 = X2 ) )
     => ( ( replicate_VEBT_VEBT @ ( size_s6755466524823107622T_VEBT @ Xs2 ) @ X2 )
        = Xs2 ) ) ).

% replicate_length_same
thf(fact_6842_replicate__length__same,axiom,
    ! [Xs2: list_o,X2: $o] :
      ( ! [X4: $o] :
          ( ( member_o @ X4 @ ( set_o2 @ Xs2 ) )
         => ( X4 = X2 ) )
     => ( ( replicate_o @ ( size_size_list_o @ Xs2 ) @ X2 )
        = Xs2 ) ) ).

% replicate_length_same
thf(fact_6843_replicate__length__same,axiom,
    ! [Xs2: list_int,X2: int] :
      ( ! [X4: int] :
          ( ( member_int @ X4 @ ( set_int2 @ Xs2 ) )
         => ( X4 = X2 ) )
     => ( ( replicate_int @ ( size_size_list_int @ Xs2 ) @ X2 )
        = Xs2 ) ) ).

% replicate_length_same
thf(fact_6844_dvd__div__neg,axiom,
    ! [B: int,A: int] :
      ( ( dvd_dvd_int @ B @ A )
     => ( ( divide_divide_int @ A @ ( uminus_uminus_int @ B ) )
        = ( uminus_uminus_int @ ( divide_divide_int @ A @ B ) ) ) ) ).

% dvd_div_neg
thf(fact_6845_dvd__div__neg,axiom,
    ! [B: real,A: real] :
      ( ( dvd_dvd_real @ B @ A )
     => ( ( divide_divide_real @ A @ ( uminus_uminus_real @ B ) )
        = ( uminus_uminus_real @ ( divide_divide_real @ A @ B ) ) ) ) ).

% dvd_div_neg
thf(fact_6846_dvd__div__neg,axiom,
    ! [B: complex,A: complex] :
      ( ( dvd_dvd_complex @ B @ A )
     => ( ( divide1717551699836669952omplex @ A @ ( uminus1482373934393186551omplex @ B ) )
        = ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ A @ B ) ) ) ) ).

% dvd_div_neg
thf(fact_6847_dvd__div__neg,axiom,
    ! [B: rat,A: rat] :
      ( ( dvd_dvd_rat @ B @ A )
     => ( ( divide_divide_rat @ A @ ( uminus_uminus_rat @ B ) )
        = ( uminus_uminus_rat @ ( divide_divide_rat @ A @ B ) ) ) ) ).

% dvd_div_neg
thf(fact_6848_dvd__div__neg,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ B @ A )
     => ( ( divide6298287555418463151nteger @ A @ ( uminus1351360451143612070nteger @ B ) )
        = ( uminus1351360451143612070nteger @ ( divide6298287555418463151nteger @ A @ B ) ) ) ) ).

% dvd_div_neg
thf(fact_6849_dvd__neg__div,axiom,
    ! [B: int,A: int] :
      ( ( dvd_dvd_int @ B @ A )
     => ( ( divide_divide_int @ ( uminus_uminus_int @ A ) @ B )
        = ( uminus_uminus_int @ ( divide_divide_int @ A @ B ) ) ) ) ).

% dvd_neg_div
thf(fact_6850_dvd__neg__div,axiom,
    ! [B: real,A: real] :
      ( ( dvd_dvd_real @ B @ A )
     => ( ( divide_divide_real @ ( uminus_uminus_real @ A ) @ B )
        = ( uminus_uminus_real @ ( divide_divide_real @ A @ B ) ) ) ) ).

% dvd_neg_div
thf(fact_6851_dvd__neg__div,axiom,
    ! [B: complex,A: complex] :
      ( ( dvd_dvd_complex @ B @ A )
     => ( ( divide1717551699836669952omplex @ ( uminus1482373934393186551omplex @ A ) @ B )
        = ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ A @ B ) ) ) ) ).

% dvd_neg_div
thf(fact_6852_dvd__neg__div,axiom,
    ! [B: rat,A: rat] :
      ( ( dvd_dvd_rat @ B @ A )
     => ( ( divide_divide_rat @ ( uminus_uminus_rat @ A ) @ B )
        = ( uminus_uminus_rat @ ( divide_divide_rat @ A @ B ) ) ) ) ).

% dvd_neg_div
thf(fact_6853_dvd__neg__div,axiom,
    ! [B: code_integer,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ B @ A )
     => ( ( divide6298287555418463151nteger @ ( uminus1351360451143612070nteger @ A ) @ B )
        = ( uminus1351360451143612070nteger @ ( divide6298287555418463151nteger @ A @ B ) ) ) ) ).

% dvd_neg_div
thf(fact_6854_subset__Compl__self__eq,axiom,
    ! [A2: set_real] :
      ( ( ord_less_eq_set_real @ A2 @ ( uminus612125837232591019t_real @ A2 ) )
      = ( A2 = bot_bot_set_real ) ) ).

% subset_Compl_self_eq
thf(fact_6855_subset__Compl__self__eq,axiom,
    ! [A2: set_o] :
      ( ( ord_less_eq_set_o @ A2 @ ( uminus_uminus_set_o @ A2 ) )
      = ( A2 = bot_bot_set_o ) ) ).

% subset_Compl_self_eq
thf(fact_6856_subset__Compl__self__eq,axiom,
    ! [A2: set_nat] :
      ( ( ord_less_eq_set_nat @ A2 @ ( uminus5710092332889474511et_nat @ A2 ) )
      = ( A2 = bot_bot_set_nat ) ) ).

% subset_Compl_self_eq
thf(fact_6857_subset__Compl__self__eq,axiom,
    ! [A2: set_int] :
      ( ( ord_less_eq_set_int @ A2 @ ( uminus1532241313380277803et_int @ A2 ) )
      = ( A2 = bot_bot_set_int ) ) ).

% subset_Compl_self_eq
thf(fact_6858_real__minus__mult__self__le,axiom,
    ! [U: real,X2: real] : ( ord_less_eq_real @ ( uminus_uminus_real @ ( times_times_real @ U @ U ) ) @ ( times_times_real @ X2 @ X2 ) ) ).

% real_minus_mult_self_le
thf(fact_6859_zmult__eq__1__iff,axiom,
    ! [M: int,N: int] :
      ( ( ( times_times_int @ M @ N )
        = one_one_int )
      = ( ( ( M = one_one_int )
          & ( N = one_one_int ) )
        | ( ( M
            = ( uminus_uminus_int @ one_one_int ) )
          & ( N
            = ( uminus_uminus_int @ one_one_int ) ) ) ) ) ).

% zmult_eq_1_iff
thf(fact_6860_pos__zmult__eq__1__iff__lemma,axiom,
    ! [M: int,N: int] :
      ( ( ( times_times_int @ M @ N )
        = one_one_int )
     => ( ( M = one_one_int )
        | ( M
          = ( uminus_uminus_int @ one_one_int ) ) ) ) ).

% pos_zmult_eq_1_iff_lemma
thf(fact_6861_numeral__eq__Suc,axiom,
    ( numeral_numeral_nat
    = ( ^ [K2: num] : ( suc @ ( pred_numeral @ K2 ) ) ) ) ).

% numeral_eq_Suc
thf(fact_6862_zmod__zminus1__not__zero,axiom,
    ! [K: int,L: int] :
      ( ( ( modulo_modulo_int @ ( uminus_uminus_int @ K ) @ L )
       != zero_zero_int )
     => ( ( modulo_modulo_int @ K @ L )
       != zero_zero_int ) ) ).

% zmod_zminus1_not_zero
thf(fact_6863_zmod__zminus2__not__zero,axiom,
    ! [K: int,L: int] :
      ( ( ( modulo_modulo_int @ K @ ( uminus_uminus_int @ L ) )
       != zero_zero_int )
     => ( ( modulo_modulo_int @ K @ L )
       != zero_zero_int ) ) ).

% zmod_zminus2_not_zero
thf(fact_6864_minus__real__def,axiom,
    ( minus_minus_real
    = ( ^ [X: real,Y: real] : ( plus_plus_real @ X @ ( uminus_uminus_real @ Y ) ) ) ) ).

% minus_real_def
thf(fact_6865_translation__subtract__Compl,axiom,
    ! [A: real,T: set_real] :
      ( ( image_real_real
        @ ^ [X: real] : ( minus_minus_real @ X @ A )
        @ ( uminus612125837232591019t_real @ T ) )
      = ( uminus612125837232591019t_real
        @ ( image_real_real
          @ ^ [X: real] : ( minus_minus_real @ X @ A )
          @ T ) ) ) ).

% translation_subtract_Compl
thf(fact_6866_translation__subtract__Compl,axiom,
    ! [A: rat,T: set_rat] :
      ( ( image_rat_rat
        @ ^ [X: rat] : ( minus_minus_rat @ X @ A )
        @ ( uminus2201863774496077783et_rat @ T ) )
      = ( uminus2201863774496077783et_rat
        @ ( image_rat_rat
          @ ^ [X: rat] : ( minus_minus_rat @ X @ A )
          @ T ) ) ) ).

% translation_subtract_Compl
thf(fact_6867_translation__subtract__Compl,axiom,
    ! [A: int,T: set_int] :
      ( ( image_int_int
        @ ^ [X: int] : ( minus_minus_int @ X @ A )
        @ ( uminus1532241313380277803et_int @ T ) )
      = ( uminus1532241313380277803et_int
        @ ( image_int_int
          @ ^ [X: int] : ( minus_minus_int @ X @ A )
          @ T ) ) ) ).

% translation_subtract_Compl
thf(fact_6868_not__zero__le__neg__numeral,axiom,
    ! [N: num] :
      ~ ( ord_less_eq_real @ zero_zero_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) ) ).

% not_zero_le_neg_numeral
thf(fact_6869_not__zero__le__neg__numeral,axiom,
    ! [N: num] :
      ~ ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) ) ).

% not_zero_le_neg_numeral
thf(fact_6870_not__zero__le__neg__numeral,axiom,
    ! [N: num] :
      ~ ( ord_less_eq_rat @ zero_zero_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) ) ).

% not_zero_le_neg_numeral
thf(fact_6871_not__zero__le__neg__numeral,axiom,
    ! [N: num] :
      ~ ( ord_less_eq_int @ zero_zero_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ).

% not_zero_le_neg_numeral
thf(fact_6872_neg__numeral__le__zero,axiom,
    ! [N: num] : ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) @ zero_zero_real ) ).

% neg_numeral_le_zero
thf(fact_6873_neg__numeral__le__zero,axiom,
    ! [N: num] : ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) @ zero_z3403309356797280102nteger ) ).

% neg_numeral_le_zero
thf(fact_6874_neg__numeral__le__zero,axiom,
    ! [N: num] : ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) @ zero_zero_rat ) ).

% neg_numeral_le_zero
thf(fact_6875_neg__numeral__le__zero,axiom,
    ! [N: num] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) @ zero_zero_int ) ).

% neg_numeral_le_zero
thf(fact_6876_neg__numeral__less__zero,axiom,
    ! [N: num] : ( ord_less_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) @ zero_zero_int ) ).

% neg_numeral_less_zero
thf(fact_6877_neg__numeral__less__zero,axiom,
    ! [N: num] : ( ord_less_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) @ zero_zero_real ) ).

% neg_numeral_less_zero
thf(fact_6878_neg__numeral__less__zero,axiom,
    ! [N: num] : ( ord_less_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) @ zero_zero_rat ) ).

% neg_numeral_less_zero
thf(fact_6879_neg__numeral__less__zero,axiom,
    ! [N: num] : ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) @ zero_z3403309356797280102nteger ) ).

% neg_numeral_less_zero
thf(fact_6880_not__zero__less__neg__numeral,axiom,
    ! [N: num] :
      ~ ( ord_less_int @ zero_zero_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ).

% not_zero_less_neg_numeral
thf(fact_6881_not__zero__less__neg__numeral,axiom,
    ! [N: num] :
      ~ ( ord_less_real @ zero_zero_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) ) ).

% not_zero_less_neg_numeral
thf(fact_6882_not__zero__less__neg__numeral,axiom,
    ! [N: num] :
      ~ ( ord_less_rat @ zero_zero_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) ) ).

% not_zero_less_neg_numeral
thf(fact_6883_not__zero__less__neg__numeral,axiom,
    ! [N: num] :
      ~ ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) ) ).

% not_zero_less_neg_numeral
thf(fact_6884_le__minus__one__simps_I1_J,axiom,
    ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ zero_zero_real ).

% le_minus_one_simps(1)
thf(fact_6885_le__minus__one__simps_I1_J,axiom,
    ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ zero_z3403309356797280102nteger ).

% le_minus_one_simps(1)
thf(fact_6886_le__minus__one__simps_I1_J,axiom,
    ord_less_eq_rat @ ( uminus_uminus_rat @ one_one_rat ) @ zero_zero_rat ).

% le_minus_one_simps(1)
thf(fact_6887_le__minus__one__simps_I1_J,axiom,
    ord_less_eq_int @ ( uminus_uminus_int @ one_one_int ) @ zero_zero_int ).

% le_minus_one_simps(1)
thf(fact_6888_le__minus__one__simps_I3_J,axiom,
    ~ ( ord_less_eq_real @ zero_zero_real @ ( uminus_uminus_real @ one_one_real ) ) ).

% le_minus_one_simps(3)
thf(fact_6889_le__minus__one__simps_I3_J,axiom,
    ~ ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% le_minus_one_simps(3)
thf(fact_6890_le__minus__one__simps_I3_J,axiom,
    ~ ( ord_less_eq_rat @ zero_zero_rat @ ( uminus_uminus_rat @ one_one_rat ) ) ).

% le_minus_one_simps(3)
thf(fact_6891_le__minus__one__simps_I3_J,axiom,
    ~ ( ord_less_eq_int @ zero_zero_int @ ( uminus_uminus_int @ one_one_int ) ) ).

% le_minus_one_simps(3)
thf(fact_6892_less__minus__one__simps_I3_J,axiom,
    ~ ( ord_less_int @ zero_zero_int @ ( uminus_uminus_int @ one_one_int ) ) ).

% less_minus_one_simps(3)
thf(fact_6893_less__minus__one__simps_I3_J,axiom,
    ~ ( ord_less_real @ zero_zero_real @ ( uminus_uminus_real @ one_one_real ) ) ).

% less_minus_one_simps(3)
thf(fact_6894_less__minus__one__simps_I3_J,axiom,
    ~ ( ord_less_rat @ zero_zero_rat @ ( uminus_uminus_rat @ one_one_rat ) ) ).

% less_minus_one_simps(3)
thf(fact_6895_less__minus__one__simps_I3_J,axiom,
    ~ ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% less_minus_one_simps(3)
thf(fact_6896_less__minus__one__simps_I1_J,axiom,
    ord_less_int @ ( uminus_uminus_int @ one_one_int ) @ zero_zero_int ).

% less_minus_one_simps(1)
thf(fact_6897_less__minus__one__simps_I1_J,axiom,
    ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ zero_zero_real ).

% less_minus_one_simps(1)
thf(fact_6898_less__minus__one__simps_I1_J,axiom,
    ord_less_rat @ ( uminus_uminus_rat @ one_one_rat ) @ zero_zero_rat ).

% less_minus_one_simps(1)
thf(fact_6899_less__minus__one__simps_I1_J,axiom,
    ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ zero_z3403309356797280102nteger ).

% less_minus_one_simps(1)
thf(fact_6900_not__one__le__neg__numeral,axiom,
    ! [M: num] :
      ~ ( ord_less_eq_real @ one_one_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) ) ).

% not_one_le_neg_numeral
thf(fact_6901_not__one__le__neg__numeral,axiom,
    ! [M: num] :
      ~ ( ord_le3102999989581377725nteger @ one_one_Code_integer @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) ) ).

% not_one_le_neg_numeral
thf(fact_6902_not__one__le__neg__numeral,axiom,
    ! [M: num] :
      ~ ( ord_less_eq_rat @ one_one_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) ) ).

% not_one_le_neg_numeral
thf(fact_6903_not__one__le__neg__numeral,axiom,
    ! [M: num] :
      ~ ( ord_less_eq_int @ one_one_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) ) ).

% not_one_le_neg_numeral
thf(fact_6904_not__numeral__le__neg__one,axiom,
    ! [M: num] :
      ~ ( ord_less_eq_real @ ( numeral_numeral_real @ M ) @ ( uminus_uminus_real @ one_one_real ) ) ).

% not_numeral_le_neg_one
thf(fact_6905_not__numeral__le__neg__one,axiom,
    ! [M: num] :
      ~ ( ord_le3102999989581377725nteger @ ( numera6620942414471956472nteger @ M ) @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% not_numeral_le_neg_one
thf(fact_6906_not__numeral__le__neg__one,axiom,
    ! [M: num] :
      ~ ( ord_less_eq_rat @ ( numeral_numeral_rat @ M ) @ ( uminus_uminus_rat @ one_one_rat ) ) ).

% not_numeral_le_neg_one
thf(fact_6907_not__numeral__le__neg__one,axiom,
    ! [M: num] :
      ~ ( ord_less_eq_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ one_one_int ) ) ).

% not_numeral_le_neg_one
thf(fact_6908_neg__numeral__le__neg__one,axiom,
    ! [M: num] : ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( uminus_uminus_real @ one_one_real ) ) ).

% neg_numeral_le_neg_one
thf(fact_6909_neg__numeral__le__neg__one,axiom,
    ! [M: num] : ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% neg_numeral_le_neg_one
thf(fact_6910_neg__numeral__le__neg__one,axiom,
    ! [M: num] : ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ ( uminus_uminus_rat @ one_one_rat ) ) ).

% neg_numeral_le_neg_one
thf(fact_6911_neg__numeral__le__neg__one,axiom,
    ! [M: num] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ one_one_int ) ) ).

% neg_numeral_le_neg_one
thf(fact_6912_neg__one__le__numeral,axiom,
    ! [M: num] : ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ ( numeral_numeral_real @ M ) ) ).

% neg_one_le_numeral
thf(fact_6913_neg__one__le__numeral,axiom,
    ! [M: num] : ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( numera6620942414471956472nteger @ M ) ) ).

% neg_one_le_numeral
thf(fact_6914_neg__one__le__numeral,axiom,
    ! [M: num] : ( ord_less_eq_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( numeral_numeral_rat @ M ) ) ).

% neg_one_le_numeral
thf(fact_6915_neg__one__le__numeral,axiom,
    ! [M: num] : ( ord_less_eq_int @ ( uminus_uminus_int @ one_one_int ) @ ( numeral_numeral_int @ M ) ) ).

% neg_one_le_numeral
thf(fact_6916_neg__numeral__le__one,axiom,
    ! [M: num] : ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ one_one_real ) ).

% neg_numeral_le_one
thf(fact_6917_neg__numeral__le__one,axiom,
    ! [M: num] : ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ one_one_Code_integer ) ).

% neg_numeral_le_one
thf(fact_6918_neg__numeral__le__one,axiom,
    ! [M: num] : ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ one_one_rat ) ).

% neg_numeral_le_one
thf(fact_6919_neg__numeral__le__one,axiom,
    ! [M: num] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ one_one_int ) ).

% neg_numeral_le_one
thf(fact_6920_not__neg__one__less__neg__numeral,axiom,
    ! [M: num] :
      ~ ( ord_less_int @ ( uminus_uminus_int @ one_one_int ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) ) ).

% not_neg_one_less_neg_numeral
thf(fact_6921_not__neg__one__less__neg__numeral,axiom,
    ! [M: num] :
      ~ ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) ) ).

% not_neg_one_less_neg_numeral
thf(fact_6922_not__neg__one__less__neg__numeral,axiom,
    ! [M: num] :
      ~ ( ord_less_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) ) ).

% not_neg_one_less_neg_numeral
thf(fact_6923_not__neg__one__less__neg__numeral,axiom,
    ! [M: num] :
      ~ ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) ) ).

% not_neg_one_less_neg_numeral
thf(fact_6924_not__one__less__neg__numeral,axiom,
    ! [M: num] :
      ~ ( ord_less_int @ one_one_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) ) ).

% not_one_less_neg_numeral
thf(fact_6925_not__one__less__neg__numeral,axiom,
    ! [M: num] :
      ~ ( ord_less_real @ one_one_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) ) ).

% not_one_less_neg_numeral
thf(fact_6926_not__one__less__neg__numeral,axiom,
    ! [M: num] :
      ~ ( ord_less_rat @ one_one_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) ) ).

% not_one_less_neg_numeral
thf(fact_6927_not__one__less__neg__numeral,axiom,
    ! [M: num] :
      ~ ( ord_le6747313008572928689nteger @ one_one_Code_integer @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) ) ).

% not_one_less_neg_numeral
thf(fact_6928_not__numeral__less__neg__one,axiom,
    ! [M: num] :
      ~ ( ord_less_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ one_one_int ) ) ).

% not_numeral_less_neg_one
thf(fact_6929_not__numeral__less__neg__one,axiom,
    ! [M: num] :
      ~ ( ord_less_real @ ( numeral_numeral_real @ M ) @ ( uminus_uminus_real @ one_one_real ) ) ).

% not_numeral_less_neg_one
thf(fact_6930_not__numeral__less__neg__one,axiom,
    ! [M: num] :
      ~ ( ord_less_rat @ ( numeral_numeral_rat @ M ) @ ( uminus_uminus_rat @ one_one_rat ) ) ).

% not_numeral_less_neg_one
thf(fact_6931_not__numeral__less__neg__one,axiom,
    ! [M: num] :
      ~ ( ord_le6747313008572928689nteger @ ( numera6620942414471956472nteger @ M ) @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% not_numeral_less_neg_one
thf(fact_6932_neg__one__less__numeral,axiom,
    ! [M: num] : ( ord_less_int @ ( uminus_uminus_int @ one_one_int ) @ ( numeral_numeral_int @ M ) ) ).

% neg_one_less_numeral
thf(fact_6933_neg__one__less__numeral,axiom,
    ! [M: num] : ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ ( numeral_numeral_real @ M ) ) ).

% neg_one_less_numeral
thf(fact_6934_neg__one__less__numeral,axiom,
    ! [M: num] : ( ord_less_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( numeral_numeral_rat @ M ) ) ).

% neg_one_less_numeral
thf(fact_6935_neg__one__less__numeral,axiom,
    ! [M: num] : ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( numera6620942414471956472nteger @ M ) ) ).

% neg_one_less_numeral
thf(fact_6936_neg__numeral__less__one,axiom,
    ! [M: num] : ( ord_less_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ one_one_int ) ).

% neg_numeral_less_one
thf(fact_6937_neg__numeral__less__one,axiom,
    ! [M: num] : ( ord_less_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ one_one_real ) ).

% neg_numeral_less_one
thf(fact_6938_neg__numeral__less__one,axiom,
    ! [M: num] : ( ord_less_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ M ) ) @ one_one_rat ) ).

% neg_numeral_less_one
thf(fact_6939_neg__numeral__less__one,axiom,
    ! [M: num] : ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ M ) ) @ one_one_Code_integer ) ).

% neg_numeral_less_one
thf(fact_6940_nonzero__neg__divide__eq__eq2,axiom,
    ! [B: real,C: real,A: real] :
      ( ( B != zero_zero_real )
     => ( ( C
          = ( uminus_uminus_real @ ( divide_divide_real @ A @ B ) ) )
        = ( ( times_times_real @ C @ B )
          = ( uminus_uminus_real @ A ) ) ) ) ).

% nonzero_neg_divide_eq_eq2
thf(fact_6941_nonzero__neg__divide__eq__eq2,axiom,
    ! [B: complex,C: complex,A: complex] :
      ( ( B != zero_zero_complex )
     => ( ( C
          = ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ A @ B ) ) )
        = ( ( times_times_complex @ C @ B )
          = ( uminus1482373934393186551omplex @ A ) ) ) ) ).

% nonzero_neg_divide_eq_eq2
thf(fact_6942_nonzero__neg__divide__eq__eq2,axiom,
    ! [B: rat,C: rat,A: rat] :
      ( ( B != zero_zero_rat )
     => ( ( C
          = ( uminus_uminus_rat @ ( divide_divide_rat @ A @ B ) ) )
        = ( ( times_times_rat @ C @ B )
          = ( uminus_uminus_rat @ A ) ) ) ) ).

% nonzero_neg_divide_eq_eq2
thf(fact_6943_nonzero__neg__divide__eq__eq,axiom,
    ! [B: real,A: real,C: real] :
      ( ( B != zero_zero_real )
     => ( ( ( uminus_uminus_real @ ( divide_divide_real @ A @ B ) )
          = C )
        = ( ( uminus_uminus_real @ A )
          = ( times_times_real @ C @ B ) ) ) ) ).

% nonzero_neg_divide_eq_eq
thf(fact_6944_nonzero__neg__divide__eq__eq,axiom,
    ! [B: complex,A: complex,C: complex] :
      ( ( B != zero_zero_complex )
     => ( ( ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ A @ B ) )
          = C )
        = ( ( uminus1482373934393186551omplex @ A )
          = ( times_times_complex @ C @ B ) ) ) ) ).

% nonzero_neg_divide_eq_eq
thf(fact_6945_nonzero__neg__divide__eq__eq,axiom,
    ! [B: rat,A: rat,C: rat] :
      ( ( B != zero_zero_rat )
     => ( ( ( uminus_uminus_rat @ ( divide_divide_rat @ A @ B ) )
          = C )
        = ( ( uminus_uminus_rat @ A )
          = ( times_times_rat @ C @ B ) ) ) ) ).

% nonzero_neg_divide_eq_eq
thf(fact_6946_minus__divide__eq__eq,axiom,
    ! [B: real,C: real,A: real] :
      ( ( ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) )
        = A )
      = ( ( ( C != zero_zero_real )
         => ( ( uminus_uminus_real @ B )
            = ( times_times_real @ A @ C ) ) )
        & ( ( C = zero_zero_real )
         => ( A = zero_zero_real ) ) ) ) ).

% minus_divide_eq_eq
thf(fact_6947_minus__divide__eq__eq,axiom,
    ! [B: complex,C: complex,A: complex] :
      ( ( ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ B @ C ) )
        = A )
      = ( ( ( C != zero_zero_complex )
         => ( ( uminus1482373934393186551omplex @ B )
            = ( times_times_complex @ A @ C ) ) )
        & ( ( C = zero_zero_complex )
         => ( A = zero_zero_complex ) ) ) ) ).

% minus_divide_eq_eq
thf(fact_6948_minus__divide__eq__eq,axiom,
    ! [B: rat,C: rat,A: rat] :
      ( ( ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) )
        = A )
      = ( ( ( C != zero_zero_rat )
         => ( ( uminus_uminus_rat @ B )
            = ( times_times_rat @ A @ C ) ) )
        & ( ( C = zero_zero_rat )
         => ( A = zero_zero_rat ) ) ) ) ).

% minus_divide_eq_eq
thf(fact_6949_eq__minus__divide__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( A
        = ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) )
      = ( ( ( C != zero_zero_real )
         => ( ( times_times_real @ A @ C )
            = ( uminus_uminus_real @ B ) ) )
        & ( ( C = zero_zero_real )
         => ( A = zero_zero_real ) ) ) ) ).

% eq_minus_divide_eq
thf(fact_6950_eq__minus__divide__eq,axiom,
    ! [A: complex,B: complex,C: complex] :
      ( ( A
        = ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ B @ C ) ) )
      = ( ( ( C != zero_zero_complex )
         => ( ( times_times_complex @ A @ C )
            = ( uminus1482373934393186551omplex @ B ) ) )
        & ( ( C = zero_zero_complex )
         => ( A = zero_zero_complex ) ) ) ) ).

% eq_minus_divide_eq
thf(fact_6951_eq__minus__divide__eq,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( A
        = ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) )
      = ( ( ( C != zero_zero_rat )
         => ( ( times_times_rat @ A @ C )
            = ( uminus_uminus_rat @ B ) ) )
        & ( ( C = zero_zero_rat )
         => ( A = zero_zero_rat ) ) ) ) ).

% eq_minus_divide_eq
thf(fact_6952_mult__1s__ring__1_I1_J,axiom,
    ! [B: int] :
      ( ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ one ) ) @ B )
      = ( uminus_uminus_int @ B ) ) ).

% mult_1s_ring_1(1)
thf(fact_6953_mult__1s__ring__1_I1_J,axiom,
    ! [B: real] :
      ( ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ one ) ) @ B )
      = ( uminus_uminus_real @ B ) ) ).

% mult_1s_ring_1(1)
thf(fact_6954_mult__1s__ring__1_I1_J,axiom,
    ! [B: complex] :
      ( ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ one ) ) @ B )
      = ( uminus1482373934393186551omplex @ B ) ) ).

% mult_1s_ring_1(1)
thf(fact_6955_mult__1s__ring__1_I1_J,axiom,
    ! [B: rat] :
      ( ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ one ) ) @ B )
      = ( uminus_uminus_rat @ B ) ) ).

% mult_1s_ring_1(1)
thf(fact_6956_mult__1s__ring__1_I1_J,axiom,
    ! [B: code_integer] :
      ( ( times_3573771949741848930nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ one ) ) @ B )
      = ( uminus1351360451143612070nteger @ B ) ) ).

% mult_1s_ring_1(1)
thf(fact_6957_mult__1s__ring__1_I2_J,axiom,
    ! [B: int] :
      ( ( times_times_int @ B @ ( uminus_uminus_int @ ( numeral_numeral_int @ one ) ) )
      = ( uminus_uminus_int @ B ) ) ).

% mult_1s_ring_1(2)
thf(fact_6958_mult__1s__ring__1_I2_J,axiom,
    ! [B: real] :
      ( ( times_times_real @ B @ ( uminus_uminus_real @ ( numeral_numeral_real @ one ) ) )
      = ( uminus_uminus_real @ B ) ) ).

% mult_1s_ring_1(2)
thf(fact_6959_mult__1s__ring__1_I2_J,axiom,
    ! [B: complex] :
      ( ( times_times_complex @ B @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ one ) ) )
      = ( uminus1482373934393186551omplex @ B ) ) ).

% mult_1s_ring_1(2)
thf(fact_6960_mult__1s__ring__1_I2_J,axiom,
    ! [B: rat] :
      ( ( times_times_rat @ B @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ one ) ) )
      = ( uminus_uminus_rat @ B ) ) ).

% mult_1s_ring_1(2)
thf(fact_6961_mult__1s__ring__1_I2_J,axiom,
    ! [B: code_integer] :
      ( ( times_3573771949741848930nteger @ B @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ one ) ) )
      = ( uminus1351360451143612070nteger @ B ) ) ).

% mult_1s_ring_1(2)
thf(fact_6962_divide__eq__minus__1__iff,axiom,
    ! [A: real,B: real] :
      ( ( ( divide_divide_real @ A @ B )
        = ( uminus_uminus_real @ one_one_real ) )
      = ( ( B != zero_zero_real )
        & ( A
          = ( uminus_uminus_real @ B ) ) ) ) ).

% divide_eq_minus_1_iff
thf(fact_6963_divide__eq__minus__1__iff,axiom,
    ! [A: complex,B: complex] :
      ( ( ( divide1717551699836669952omplex @ A @ B )
        = ( uminus1482373934393186551omplex @ one_one_complex ) )
      = ( ( B != zero_zero_complex )
        & ( A
          = ( uminus1482373934393186551omplex @ B ) ) ) ) ).

% divide_eq_minus_1_iff
thf(fact_6964_divide__eq__minus__1__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ( divide_divide_rat @ A @ B )
        = ( uminus_uminus_rat @ one_one_rat ) )
      = ( ( B != zero_zero_rat )
        & ( A
          = ( uminus_uminus_rat @ B ) ) ) ) ).

% divide_eq_minus_1_iff
thf(fact_6965_uminus__numeral__One,axiom,
    ( ( uminus_uminus_int @ ( numeral_numeral_int @ one ) )
    = ( uminus_uminus_int @ one_one_int ) ) ).

% uminus_numeral_One
thf(fact_6966_uminus__numeral__One,axiom,
    ( ( uminus_uminus_real @ ( numeral_numeral_real @ one ) )
    = ( uminus_uminus_real @ one_one_real ) ) ).

% uminus_numeral_One
thf(fact_6967_uminus__numeral__One,axiom,
    ( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ one ) )
    = ( uminus1482373934393186551omplex @ one_one_complex ) ) ).

% uminus_numeral_One
thf(fact_6968_uminus__numeral__One,axiom,
    ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ one ) )
    = ( uminus_uminus_rat @ one_one_rat ) ) ).

% uminus_numeral_One
thf(fact_6969_uminus__numeral__One,axiom,
    ( ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ one ) )
    = ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% uminus_numeral_One
thf(fact_6970_power__minus,axiom,
    ! [A: int,N: nat] :
      ( ( power_power_int @ ( uminus_uminus_int @ A ) @ N )
      = ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N ) @ ( power_power_int @ A @ N ) ) ) ).

% power_minus
thf(fact_6971_power__minus,axiom,
    ! [A: real,N: nat] :
      ( ( power_power_real @ ( uminus_uminus_real @ A ) @ N )
      = ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N ) @ ( power_power_real @ A @ N ) ) ) ).

% power_minus
thf(fact_6972_power__minus,axiom,
    ! [A: complex,N: nat] :
      ( ( power_power_complex @ ( uminus1482373934393186551omplex @ A ) @ N )
      = ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N ) @ ( power_power_complex @ A @ N ) ) ) ).

% power_minus
thf(fact_6973_power__minus,axiom,
    ! [A: rat,N: nat] :
      ( ( power_power_rat @ ( uminus_uminus_rat @ A ) @ N )
      = ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ N ) @ ( power_power_rat @ A @ N ) ) ) ).

% power_minus
thf(fact_6974_power__minus,axiom,
    ! [A: code_integer,N: nat] :
      ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ A ) @ N )
      = ( times_3573771949741848930nteger @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ N ) @ ( power_8256067586552552935nteger @ A @ N ) ) ) ).

% power_minus
thf(fact_6975_power__minus__Bit0,axiom,
    ! [X2: int,K: num] :
      ( ( power_power_int @ ( uminus_uminus_int @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ K ) ) )
      = ( power_power_int @ X2 @ ( numeral_numeral_nat @ ( bit0 @ K ) ) ) ) ).

% power_minus_Bit0
thf(fact_6976_power__minus__Bit0,axiom,
    ! [X2: real,K: num] :
      ( ( power_power_real @ ( uminus_uminus_real @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ K ) ) )
      = ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ K ) ) ) ) ).

% power_minus_Bit0
thf(fact_6977_power__minus__Bit0,axiom,
    ! [X2: complex,K: num] :
      ( ( power_power_complex @ ( uminus1482373934393186551omplex @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ K ) ) )
      = ( power_power_complex @ X2 @ ( numeral_numeral_nat @ ( bit0 @ K ) ) ) ) ).

% power_minus_Bit0
thf(fact_6978_power__minus__Bit0,axiom,
    ! [X2: rat,K: num] :
      ( ( power_power_rat @ ( uminus_uminus_rat @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ K ) ) )
      = ( power_power_rat @ X2 @ ( numeral_numeral_nat @ ( bit0 @ K ) ) ) ) ).

% power_minus_Bit0
thf(fact_6979_power__minus__Bit0,axiom,
    ! [X2: code_integer,K: num] :
      ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ K ) ) )
      = ( power_8256067586552552935nteger @ X2 @ ( numeral_numeral_nat @ ( bit0 @ K ) ) ) ) ).

% power_minus_Bit0
thf(fact_6980_power__minus__Bit1,axiom,
    ! [X2: int,K: num] :
      ( ( power_power_int @ ( uminus_uminus_int @ X2 ) @ ( numeral_numeral_nat @ ( bit1 @ K ) ) )
      = ( uminus_uminus_int @ ( power_power_int @ X2 @ ( numeral_numeral_nat @ ( bit1 @ K ) ) ) ) ) ).

% power_minus_Bit1
thf(fact_6981_power__minus__Bit1,axiom,
    ! [X2: real,K: num] :
      ( ( power_power_real @ ( uminus_uminus_real @ X2 ) @ ( numeral_numeral_nat @ ( bit1 @ K ) ) )
      = ( uminus_uminus_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit1 @ K ) ) ) ) ) ).

% power_minus_Bit1
thf(fact_6982_power__minus__Bit1,axiom,
    ! [X2: complex,K: num] :
      ( ( power_power_complex @ ( uminus1482373934393186551omplex @ X2 ) @ ( numeral_numeral_nat @ ( bit1 @ K ) ) )
      = ( uminus1482373934393186551omplex @ ( power_power_complex @ X2 @ ( numeral_numeral_nat @ ( bit1 @ K ) ) ) ) ) ).

% power_minus_Bit1
thf(fact_6983_power__minus__Bit1,axiom,
    ! [X2: rat,K: num] :
      ( ( power_power_rat @ ( uminus_uminus_rat @ X2 ) @ ( numeral_numeral_nat @ ( bit1 @ K ) ) )
      = ( uminus_uminus_rat @ ( power_power_rat @ X2 @ ( numeral_numeral_nat @ ( bit1 @ K ) ) ) ) ) ).

% power_minus_Bit1
thf(fact_6984_power__minus__Bit1,axiom,
    ! [X2: code_integer,K: num] :
      ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ X2 ) @ ( numeral_numeral_nat @ ( bit1 @ K ) ) )
      = ( uminus1351360451143612070nteger @ ( power_8256067586552552935nteger @ X2 @ ( numeral_numeral_nat @ ( bit1 @ K ) ) ) ) ) ).

% power_minus_Bit1
thf(fact_6985_Compl__insert,axiom,
    ! [X2: vEBT_VEBT,A2: set_VEBT_VEBT] :
      ( ( uminus8041839845116263051T_VEBT @ ( insert_VEBT_VEBT @ X2 @ A2 ) )
      = ( minus_5127226145743854075T_VEBT @ ( uminus8041839845116263051T_VEBT @ A2 ) @ ( insert_VEBT_VEBT @ X2 @ bot_bo8194388402131092736T_VEBT ) ) ) ).

% Compl_insert
thf(fact_6986_Compl__insert,axiom,
    ! [X2: real,A2: set_real] :
      ( ( uminus612125837232591019t_real @ ( insert_real @ X2 @ A2 ) )
      = ( minus_minus_set_real @ ( uminus612125837232591019t_real @ A2 ) @ ( insert_real @ X2 @ bot_bot_set_real ) ) ) ).

% Compl_insert
thf(fact_6987_Compl__insert,axiom,
    ! [X2: $o,A2: set_o] :
      ( ( uminus_uminus_set_o @ ( insert_o @ X2 @ A2 ) )
      = ( minus_minus_set_o @ ( uminus_uminus_set_o @ A2 ) @ ( insert_o @ X2 @ bot_bot_set_o ) ) ) ).

% Compl_insert
thf(fact_6988_Compl__insert,axiom,
    ! [X2: int,A2: set_int] :
      ( ( uminus1532241313380277803et_int @ ( insert_int @ X2 @ A2 ) )
      = ( minus_minus_set_int @ ( uminus1532241313380277803et_int @ A2 ) @ ( insert_int @ X2 @ bot_bot_set_int ) ) ) ).

% Compl_insert
thf(fact_6989_Compl__insert,axiom,
    ! [X2: nat,A2: set_nat] :
      ( ( uminus5710092332889474511et_nat @ ( insert_nat @ X2 @ A2 ) )
      = ( minus_minus_set_nat @ ( uminus5710092332889474511et_nat @ A2 ) @ ( insert_nat @ X2 @ bot_bot_set_nat ) ) ) ).

% Compl_insert
thf(fact_6990_real__add__less__0__iff,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_real @ ( plus_plus_real @ X2 @ Y2 ) @ zero_zero_real )
      = ( ord_less_real @ Y2 @ ( uminus_uminus_real @ X2 ) ) ) ).

% real_add_less_0_iff
thf(fact_6991_real__0__less__add__iff,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ X2 @ Y2 ) )
      = ( ord_less_real @ ( uminus_uminus_real @ X2 ) @ Y2 ) ) ).

% real_0_less_add_iff
thf(fact_6992_real__0__le__add__iff,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( plus_plus_real @ X2 @ Y2 ) )
      = ( ord_less_eq_real @ ( uminus_uminus_real @ X2 ) @ Y2 ) ) ).

% real_0_le_add_iff
thf(fact_6993_real__add__le__0__iff,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ X2 @ Y2 ) @ zero_zero_real )
      = ( ord_less_eq_real @ Y2 @ ( uminus_uminus_real @ X2 ) ) ) ).

% real_add_le_0_iff
thf(fact_6994_zmod__zminus1__eq__if,axiom,
    ! [A: int,B: int] :
      ( ( ( ( modulo_modulo_int @ A @ B )
          = zero_zero_int )
       => ( ( modulo_modulo_int @ ( uminus_uminus_int @ A ) @ B )
          = zero_zero_int ) )
      & ( ( ( modulo_modulo_int @ A @ B )
         != zero_zero_int )
       => ( ( modulo_modulo_int @ ( uminus_uminus_int @ A ) @ B )
          = ( minus_minus_int @ B @ ( modulo_modulo_int @ A @ B ) ) ) ) ) ).

% zmod_zminus1_eq_if
thf(fact_6995_zmod__zminus2__eq__if,axiom,
    ! [A: int,B: int] :
      ( ( ( ( modulo_modulo_int @ A @ B )
          = zero_zero_int )
       => ( ( modulo_modulo_int @ A @ ( uminus_uminus_int @ B ) )
          = zero_zero_int ) )
      & ( ( ( modulo_modulo_int @ A @ B )
         != zero_zero_int )
       => ( ( modulo_modulo_int @ A @ ( uminus_uminus_int @ B ) )
          = ( minus_minus_int @ ( modulo_modulo_int @ A @ B ) @ B ) ) ) ) ).

% zmod_zminus2_eq_if
thf(fact_6996_pred__numeral__def,axiom,
    ( pred_numeral
    = ( ^ [K2: num] : ( minus_minus_nat @ ( numeral_numeral_nat @ K2 ) @ one_one_nat ) ) ) ).

% pred_numeral_def
thf(fact_6997_less__minus__divide__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_real @ ( times_times_real @ A @ C ) @ ( uminus_uminus_real @ B ) ) )
        & ( ~ ( ord_less_real @ zero_zero_real @ C )
         => ( ( ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_real @ ( uminus_uminus_real @ B ) @ ( times_times_real @ A @ C ) ) )
            & ( ~ ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_real @ A @ zero_zero_real ) ) ) ) ) ) ).

% less_minus_divide_eq
thf(fact_6998_less__minus__divide__eq,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_rat @ A @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( uminus_uminus_rat @ B ) ) )
        & ( ~ ( ord_less_rat @ zero_zero_rat @ C )
         => ( ( ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_rat @ ( uminus_uminus_rat @ B ) @ ( times_times_rat @ A @ C ) ) )
            & ( ~ ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_rat @ A @ zero_zero_rat ) ) ) ) ) ) ).

% less_minus_divide_eq
thf(fact_6999_minus__divide__less__eq,axiom,
    ! [B: real,C: real,A: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) @ A )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_real @ ( uminus_uminus_real @ B ) @ ( times_times_real @ A @ C ) ) )
        & ( ~ ( ord_less_real @ zero_zero_real @ C )
         => ( ( ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_real @ ( times_times_real @ A @ C ) @ ( uminus_uminus_real @ B ) ) )
            & ( ~ ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_real @ zero_zero_real @ A ) ) ) ) ) ) ).

% minus_divide_less_eq
thf(fact_7000_minus__divide__less__eq,axiom,
    ! [B: rat,C: rat,A: rat] :
      ( ( ord_less_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) @ A )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_rat @ ( uminus_uminus_rat @ B ) @ ( times_times_rat @ A @ C ) ) )
        & ( ~ ( ord_less_rat @ zero_zero_rat @ C )
         => ( ( ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( uminus_uminus_rat @ B ) ) )
            & ( ~ ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_rat @ zero_zero_rat @ A ) ) ) ) ) ) ).

% minus_divide_less_eq
thf(fact_7001_neg__less__minus__divide__eq,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ C @ zero_zero_real )
     => ( ( ord_less_real @ A @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) )
        = ( ord_less_real @ ( uminus_uminus_real @ B ) @ ( times_times_real @ A @ C ) ) ) ) ).

% neg_less_minus_divide_eq
thf(fact_7002_neg__less__minus__divide__eq,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ C @ zero_zero_rat )
     => ( ( ord_less_rat @ A @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) )
        = ( ord_less_rat @ ( uminus_uminus_rat @ B ) @ ( times_times_rat @ A @ C ) ) ) ) ).

% neg_less_minus_divide_eq
thf(fact_7003_neg__minus__divide__less__eq,axiom,
    ! [C: real,B: real,A: real] :
      ( ( ord_less_real @ C @ zero_zero_real )
     => ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) @ A )
        = ( ord_less_real @ ( times_times_real @ A @ C ) @ ( uminus_uminus_real @ B ) ) ) ) ).

% neg_minus_divide_less_eq
thf(fact_7004_neg__minus__divide__less__eq,axiom,
    ! [C: rat,B: rat,A: rat] :
      ( ( ord_less_rat @ C @ zero_zero_rat )
     => ( ( ord_less_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) @ A )
        = ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( uminus_uminus_rat @ B ) ) ) ) ).

% neg_minus_divide_less_eq
thf(fact_7005_pos__less__minus__divide__eq,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ C )
     => ( ( ord_less_real @ A @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) )
        = ( ord_less_real @ ( times_times_real @ A @ C ) @ ( uminus_uminus_real @ B ) ) ) ) ).

% pos_less_minus_divide_eq
thf(fact_7006_pos__less__minus__divide__eq,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ C )
     => ( ( ord_less_rat @ A @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) )
        = ( ord_less_rat @ ( times_times_rat @ A @ C ) @ ( uminus_uminus_rat @ B ) ) ) ) ).

% pos_less_minus_divide_eq
thf(fact_7007_pos__minus__divide__less__eq,axiom,
    ! [C: real,B: real,A: real] :
      ( ( ord_less_real @ zero_zero_real @ C )
     => ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) @ A )
        = ( ord_less_real @ ( uminus_uminus_real @ B ) @ ( times_times_real @ A @ C ) ) ) ) ).

% pos_minus_divide_less_eq
thf(fact_7008_pos__minus__divide__less__eq,axiom,
    ! [C: rat,B: rat,A: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ C )
     => ( ( ord_less_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) @ A )
        = ( ord_less_rat @ ( uminus_uminus_rat @ B ) @ ( times_times_rat @ A @ C ) ) ) ) ).

% pos_minus_divide_less_eq
thf(fact_7009_eq__divide__eq__numeral_I2_J,axiom,
    ! [W: num,B: real,C: real] :
      ( ( ( uminus_uminus_real @ ( numeral_numeral_real @ W ) )
        = ( divide_divide_real @ B @ C ) )
      = ( ( ( C != zero_zero_real )
         => ( ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ C )
            = B ) )
        & ( ( C = zero_zero_real )
         => ( ( uminus_uminus_real @ ( numeral_numeral_real @ W ) )
            = zero_zero_real ) ) ) ) ).

% eq_divide_eq_numeral(2)
thf(fact_7010_eq__divide__eq__numeral_I2_J,axiom,
    ! [W: num,B: complex,C: complex] :
      ( ( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) )
        = ( divide1717551699836669952omplex @ B @ C ) )
      = ( ( ( C != zero_zero_complex )
         => ( ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) @ C )
            = B ) )
        & ( ( C = zero_zero_complex )
         => ( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) )
            = zero_zero_complex ) ) ) ) ).

% eq_divide_eq_numeral(2)
thf(fact_7011_eq__divide__eq__numeral_I2_J,axiom,
    ! [W: num,B: rat,C: rat] :
      ( ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) )
        = ( divide_divide_rat @ B @ C ) )
      = ( ( ( C != zero_zero_rat )
         => ( ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ C )
            = B ) )
        & ( ( C = zero_zero_rat )
         => ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) )
            = zero_zero_rat ) ) ) ) ).

% eq_divide_eq_numeral(2)
thf(fact_7012_divide__eq__eq__numeral_I2_J,axiom,
    ! [B: real,C: real,W: num] :
      ( ( ( divide_divide_real @ B @ C )
        = ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) )
      = ( ( ( C != zero_zero_real )
         => ( B
            = ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ C ) ) )
        & ( ( C = zero_zero_real )
         => ( ( uminus_uminus_real @ ( numeral_numeral_real @ W ) )
            = zero_zero_real ) ) ) ) ).

% divide_eq_eq_numeral(2)
thf(fact_7013_divide__eq__eq__numeral_I2_J,axiom,
    ! [B: complex,C: complex,W: num] :
      ( ( ( divide1717551699836669952omplex @ B @ C )
        = ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) )
      = ( ( ( C != zero_zero_complex )
         => ( B
            = ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) @ C ) ) )
        & ( ( C = zero_zero_complex )
         => ( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) )
            = zero_zero_complex ) ) ) ) ).

% divide_eq_eq_numeral(2)
thf(fact_7014_divide__eq__eq__numeral_I2_J,axiom,
    ! [B: rat,C: rat,W: num] :
      ( ( ( divide_divide_rat @ B @ C )
        = ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) )
      = ( ( ( C != zero_zero_rat )
         => ( B
            = ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ C ) ) )
        & ( ( C = zero_zero_rat )
         => ( ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) )
            = zero_zero_rat ) ) ) ) ).

% divide_eq_eq_numeral(2)
thf(fact_7015_minus__divide__add__eq__iff,axiom,
    ! [Z: real,X2: real,Y2: real] :
      ( ( Z != zero_zero_real )
     => ( ( plus_plus_real @ ( uminus_uminus_real @ ( divide_divide_real @ X2 @ Z ) ) @ Y2 )
        = ( divide_divide_real @ ( plus_plus_real @ ( uminus_uminus_real @ X2 ) @ ( times_times_real @ Y2 @ Z ) ) @ Z ) ) ) ).

% minus_divide_add_eq_iff
thf(fact_7016_minus__divide__add__eq__iff,axiom,
    ! [Z: complex,X2: complex,Y2: complex] :
      ( ( Z != zero_zero_complex )
     => ( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ X2 @ Z ) ) @ Y2 )
        = ( divide1717551699836669952omplex @ ( plus_plus_complex @ ( uminus1482373934393186551omplex @ X2 ) @ ( times_times_complex @ Y2 @ Z ) ) @ Z ) ) ) ).

% minus_divide_add_eq_iff
thf(fact_7017_minus__divide__add__eq__iff,axiom,
    ! [Z: rat,X2: rat,Y2: rat] :
      ( ( Z != zero_zero_rat )
     => ( ( plus_plus_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ X2 @ Z ) ) @ Y2 )
        = ( divide_divide_rat @ ( plus_plus_rat @ ( uminus_uminus_rat @ X2 ) @ ( times_times_rat @ Y2 @ Z ) ) @ Z ) ) ) ).

% minus_divide_add_eq_iff
thf(fact_7018_add__divide__eq__if__simps_I3_J,axiom,
    ! [Z: real,A: real,B: real] :
      ( ( ( Z = zero_zero_real )
       => ( ( plus_plus_real @ ( uminus_uminus_real @ ( divide_divide_real @ A @ Z ) ) @ B )
          = B ) )
      & ( ( Z != zero_zero_real )
       => ( ( plus_plus_real @ ( uminus_uminus_real @ ( divide_divide_real @ A @ Z ) ) @ B )
          = ( divide_divide_real @ ( plus_plus_real @ ( uminus_uminus_real @ A ) @ ( times_times_real @ B @ Z ) ) @ Z ) ) ) ) ).

% add_divide_eq_if_simps(3)
thf(fact_7019_add__divide__eq__if__simps_I3_J,axiom,
    ! [Z: complex,A: complex,B: complex] :
      ( ( ( Z = zero_zero_complex )
       => ( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ A @ Z ) ) @ B )
          = B ) )
      & ( ( Z != zero_zero_complex )
       => ( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ A @ Z ) ) @ B )
          = ( divide1717551699836669952omplex @ ( plus_plus_complex @ ( uminus1482373934393186551omplex @ A ) @ ( times_times_complex @ B @ Z ) ) @ Z ) ) ) ) ).

% add_divide_eq_if_simps(3)
thf(fact_7020_add__divide__eq__if__simps_I3_J,axiom,
    ! [Z: rat,A: rat,B: rat] :
      ( ( ( Z = zero_zero_rat )
       => ( ( plus_plus_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ A @ Z ) ) @ B )
          = B ) )
      & ( ( Z != zero_zero_rat )
       => ( ( plus_plus_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ A @ Z ) ) @ B )
          = ( divide_divide_rat @ ( plus_plus_rat @ ( uminus_uminus_rat @ A ) @ ( times_times_rat @ B @ Z ) ) @ Z ) ) ) ) ).

% add_divide_eq_if_simps(3)
thf(fact_7021_add__divide__eq__if__simps_I6_J,axiom,
    ! [Z: real,A: real,B: real] :
      ( ( ( Z = zero_zero_real )
       => ( ( minus_minus_real @ ( uminus_uminus_real @ ( divide_divide_real @ A @ Z ) ) @ B )
          = ( uminus_uminus_real @ B ) ) )
      & ( ( Z != zero_zero_real )
       => ( ( minus_minus_real @ ( uminus_uminus_real @ ( divide_divide_real @ A @ Z ) ) @ B )
          = ( divide_divide_real @ ( minus_minus_real @ ( uminus_uminus_real @ A ) @ ( times_times_real @ B @ Z ) ) @ Z ) ) ) ) ).

% add_divide_eq_if_simps(6)
thf(fact_7022_add__divide__eq__if__simps_I6_J,axiom,
    ! [Z: complex,A: complex,B: complex] :
      ( ( ( Z = zero_zero_complex )
       => ( ( minus_minus_complex @ ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ A @ Z ) ) @ B )
          = ( uminus1482373934393186551omplex @ B ) ) )
      & ( ( Z != zero_zero_complex )
       => ( ( minus_minus_complex @ ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ A @ Z ) ) @ B )
          = ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( uminus1482373934393186551omplex @ A ) @ ( times_times_complex @ B @ Z ) ) @ Z ) ) ) ) ).

% add_divide_eq_if_simps(6)
thf(fact_7023_add__divide__eq__if__simps_I6_J,axiom,
    ! [Z: rat,A: rat,B: rat] :
      ( ( ( Z = zero_zero_rat )
       => ( ( minus_minus_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ A @ Z ) ) @ B )
          = ( uminus_uminus_rat @ B ) ) )
      & ( ( Z != zero_zero_rat )
       => ( ( minus_minus_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ A @ Z ) ) @ B )
          = ( divide_divide_rat @ ( minus_minus_rat @ ( uminus_uminus_rat @ A ) @ ( times_times_rat @ B @ Z ) ) @ Z ) ) ) ) ).

% add_divide_eq_if_simps(6)
thf(fact_7024_add__divide__eq__if__simps_I5_J,axiom,
    ! [Z: real,A: real,B: real] :
      ( ( ( Z = zero_zero_real )
       => ( ( minus_minus_real @ ( divide_divide_real @ A @ Z ) @ B )
          = ( uminus_uminus_real @ B ) ) )
      & ( ( Z != zero_zero_real )
       => ( ( minus_minus_real @ ( divide_divide_real @ A @ Z ) @ B )
          = ( divide_divide_real @ ( minus_minus_real @ A @ ( times_times_real @ B @ Z ) ) @ Z ) ) ) ) ).

% add_divide_eq_if_simps(5)
thf(fact_7025_add__divide__eq__if__simps_I5_J,axiom,
    ! [Z: complex,A: complex,B: complex] :
      ( ( ( Z = zero_zero_complex )
       => ( ( minus_minus_complex @ ( divide1717551699836669952omplex @ A @ Z ) @ B )
          = ( uminus1482373934393186551omplex @ B ) ) )
      & ( ( Z != zero_zero_complex )
       => ( ( minus_minus_complex @ ( divide1717551699836669952omplex @ A @ Z ) @ B )
          = ( divide1717551699836669952omplex @ ( minus_minus_complex @ A @ ( times_times_complex @ B @ Z ) ) @ Z ) ) ) ) ).

% add_divide_eq_if_simps(5)
thf(fact_7026_add__divide__eq__if__simps_I5_J,axiom,
    ! [Z: rat,A: rat,B: rat] :
      ( ( ( Z = zero_zero_rat )
       => ( ( minus_minus_rat @ ( divide_divide_rat @ A @ Z ) @ B )
          = ( uminus_uminus_rat @ B ) ) )
      & ( ( Z != zero_zero_rat )
       => ( ( minus_minus_rat @ ( divide_divide_rat @ A @ Z ) @ B )
          = ( divide_divide_rat @ ( minus_minus_rat @ A @ ( times_times_rat @ B @ Z ) ) @ Z ) ) ) ) ).

% add_divide_eq_if_simps(5)
thf(fact_7027_minus__divide__diff__eq__iff,axiom,
    ! [Z: real,X2: real,Y2: real] :
      ( ( Z != zero_zero_real )
     => ( ( minus_minus_real @ ( uminus_uminus_real @ ( divide_divide_real @ X2 @ Z ) ) @ Y2 )
        = ( divide_divide_real @ ( minus_minus_real @ ( uminus_uminus_real @ X2 ) @ ( times_times_real @ Y2 @ Z ) ) @ Z ) ) ) ).

% minus_divide_diff_eq_iff
thf(fact_7028_minus__divide__diff__eq__iff,axiom,
    ! [Z: complex,X2: complex,Y2: complex] :
      ( ( Z != zero_zero_complex )
     => ( ( minus_minus_complex @ ( uminus1482373934393186551omplex @ ( divide1717551699836669952omplex @ X2 @ Z ) ) @ Y2 )
        = ( divide1717551699836669952omplex @ ( minus_minus_complex @ ( uminus1482373934393186551omplex @ X2 ) @ ( times_times_complex @ Y2 @ Z ) ) @ Z ) ) ) ).

% minus_divide_diff_eq_iff
thf(fact_7029_minus__divide__diff__eq__iff,axiom,
    ! [Z: rat,X2: rat,Y2: rat] :
      ( ( Z != zero_zero_rat )
     => ( ( minus_minus_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ X2 @ Z ) ) @ Y2 )
        = ( divide_divide_rat @ ( minus_minus_rat @ ( uminus_uminus_rat @ X2 ) @ ( times_times_rat @ Y2 @ Z ) ) @ Z ) ) ) ).

% minus_divide_diff_eq_iff
thf(fact_7030_set__replicate__Suc,axiom,
    ! [N: nat,X2: vEBT_VEBT] :
      ( ( set_VEBT_VEBT2 @ ( replicate_VEBT_VEBT @ ( suc @ N ) @ X2 ) )
      = ( insert_VEBT_VEBT @ X2 @ bot_bo8194388402131092736T_VEBT ) ) ).

% set_replicate_Suc
thf(fact_7031_set__replicate__Suc,axiom,
    ! [N: nat,X2: real] :
      ( ( set_real2 @ ( replicate_real @ ( suc @ N ) @ X2 ) )
      = ( insert_real @ X2 @ bot_bot_set_real ) ) ).

% set_replicate_Suc
thf(fact_7032_set__replicate__Suc,axiom,
    ! [N: nat,X2: $o] :
      ( ( set_o2 @ ( replicate_o @ ( suc @ N ) @ X2 ) )
      = ( insert_o @ X2 @ bot_bot_set_o ) ) ).

% set_replicate_Suc
thf(fact_7033_set__replicate__Suc,axiom,
    ! [N: nat,X2: nat] :
      ( ( set_nat2 @ ( replicate_nat @ ( suc @ N ) @ X2 ) )
      = ( insert_nat @ X2 @ bot_bot_set_nat ) ) ).

% set_replicate_Suc
thf(fact_7034_set__replicate__Suc,axiom,
    ! [N: nat,X2: int] :
      ( ( set_int2 @ ( replicate_int @ ( suc @ N ) @ X2 ) )
      = ( insert_int @ X2 @ bot_bot_set_int ) ) ).

% set_replicate_Suc
thf(fact_7035_set__replicate__conv__if,axiom,
    ! [N: nat,X2: vEBT_VEBT] :
      ( ( ( N = zero_zero_nat )
       => ( ( set_VEBT_VEBT2 @ ( replicate_VEBT_VEBT @ N @ X2 ) )
          = bot_bo8194388402131092736T_VEBT ) )
      & ( ( N != zero_zero_nat )
       => ( ( set_VEBT_VEBT2 @ ( replicate_VEBT_VEBT @ N @ X2 ) )
          = ( insert_VEBT_VEBT @ X2 @ bot_bo8194388402131092736T_VEBT ) ) ) ) ).

% set_replicate_conv_if
thf(fact_7036_set__replicate__conv__if,axiom,
    ! [N: nat,X2: real] :
      ( ( ( N = zero_zero_nat )
       => ( ( set_real2 @ ( replicate_real @ N @ X2 ) )
          = bot_bot_set_real ) )
      & ( ( N != zero_zero_nat )
       => ( ( set_real2 @ ( replicate_real @ N @ X2 ) )
          = ( insert_real @ X2 @ bot_bot_set_real ) ) ) ) ).

% set_replicate_conv_if
thf(fact_7037_set__replicate__conv__if,axiom,
    ! [N: nat,X2: $o] :
      ( ( ( N = zero_zero_nat )
       => ( ( set_o2 @ ( replicate_o @ N @ X2 ) )
          = bot_bot_set_o ) )
      & ( ( N != zero_zero_nat )
       => ( ( set_o2 @ ( replicate_o @ N @ X2 ) )
          = ( insert_o @ X2 @ bot_bot_set_o ) ) ) ) ).

% set_replicate_conv_if
thf(fact_7038_set__replicate__conv__if,axiom,
    ! [N: nat,X2: nat] :
      ( ( ( N = zero_zero_nat )
       => ( ( set_nat2 @ ( replicate_nat @ N @ X2 ) )
          = bot_bot_set_nat ) )
      & ( ( N != zero_zero_nat )
       => ( ( set_nat2 @ ( replicate_nat @ N @ X2 ) )
          = ( insert_nat @ X2 @ bot_bot_set_nat ) ) ) ) ).

% set_replicate_conv_if
thf(fact_7039_set__replicate__conv__if,axiom,
    ! [N: nat,X2: int] :
      ( ( ( N = zero_zero_nat )
       => ( ( set_int2 @ ( replicate_int @ N @ X2 ) )
          = bot_bot_set_int ) )
      & ( ( N != zero_zero_nat )
       => ( ( set_int2 @ ( replicate_int @ N @ X2 ) )
          = ( insert_int @ X2 @ bot_bot_set_int ) ) ) ) ).

% set_replicate_conv_if
thf(fact_7040_even__minus,axiom,
    ! [A: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( uminus_uminus_int @ A ) )
      = ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) ).

% even_minus
thf(fact_7041_even__minus,axiom,
    ! [A: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( uminus1351360451143612070nteger @ A ) )
      = ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) ) ).

% even_minus
thf(fact_7042_power2__eq__iff,axiom,
    ! [X2: int,Y2: int] :
      ( ( ( power_power_int @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( power_power_int @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( ( X2 = Y2 )
        | ( X2
          = ( uminus_uminus_int @ Y2 ) ) ) ) ).

% power2_eq_iff
thf(fact_7043_power2__eq__iff,axiom,
    ! [X2: real,Y2: real] :
      ( ( ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( ( X2 = Y2 )
        | ( X2
          = ( uminus_uminus_real @ Y2 ) ) ) ) ).

% power2_eq_iff
thf(fact_7044_power2__eq__iff,axiom,
    ! [X2: complex,Y2: complex] :
      ( ( ( power_power_complex @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( power_power_complex @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( ( X2 = Y2 )
        | ( X2
          = ( uminus1482373934393186551omplex @ Y2 ) ) ) ) ).

% power2_eq_iff
thf(fact_7045_power2__eq__iff,axiom,
    ! [X2: rat,Y2: rat] :
      ( ( ( power_power_rat @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( power_power_rat @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( ( X2 = Y2 )
        | ( X2
          = ( uminus_uminus_rat @ Y2 ) ) ) ) ).

% power2_eq_iff
thf(fact_7046_power2__eq__iff,axiom,
    ! [X2: code_integer,Y2: code_integer] :
      ( ( ( power_8256067586552552935nteger @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( power_8256067586552552935nteger @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( ( X2 = Y2 )
        | ( X2
          = ( uminus1351360451143612070nteger @ Y2 ) ) ) ) ).

% power2_eq_iff
thf(fact_7047_uminus__power__if,axiom,
    ! [N: nat,A: int] :
      ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       => ( ( power_power_int @ ( uminus_uminus_int @ A ) @ N )
          = ( power_power_int @ A @ N ) ) )
      & ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       => ( ( power_power_int @ ( uminus_uminus_int @ A ) @ N )
          = ( uminus_uminus_int @ ( power_power_int @ A @ N ) ) ) ) ) ).

% uminus_power_if
thf(fact_7048_uminus__power__if,axiom,
    ! [N: nat,A: real] :
      ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       => ( ( power_power_real @ ( uminus_uminus_real @ A ) @ N )
          = ( power_power_real @ A @ N ) ) )
      & ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       => ( ( power_power_real @ ( uminus_uminus_real @ A ) @ N )
          = ( uminus_uminus_real @ ( power_power_real @ A @ N ) ) ) ) ) ).

% uminus_power_if
thf(fact_7049_uminus__power__if,axiom,
    ! [N: nat,A: complex] :
      ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       => ( ( power_power_complex @ ( uminus1482373934393186551omplex @ A ) @ N )
          = ( power_power_complex @ A @ N ) ) )
      & ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       => ( ( power_power_complex @ ( uminus1482373934393186551omplex @ A ) @ N )
          = ( uminus1482373934393186551omplex @ ( power_power_complex @ A @ N ) ) ) ) ) ).

% uminus_power_if
thf(fact_7050_uminus__power__if,axiom,
    ! [N: nat,A: rat] :
      ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       => ( ( power_power_rat @ ( uminus_uminus_rat @ A ) @ N )
          = ( power_power_rat @ A @ N ) ) )
      & ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       => ( ( power_power_rat @ ( uminus_uminus_rat @ A ) @ N )
          = ( uminus_uminus_rat @ ( power_power_rat @ A @ N ) ) ) ) ) ).

% uminus_power_if
thf(fact_7051_uminus__power__if,axiom,
    ! [N: nat,A: code_integer] :
      ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       => ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ A ) @ N )
          = ( power_8256067586552552935nteger @ A @ N ) ) )
      & ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       => ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ A ) @ N )
          = ( uminus1351360451143612070nteger @ ( power_8256067586552552935nteger @ A @ N ) ) ) ) ) ).

% uminus_power_if
thf(fact_7052_verit__less__mono__div__int2,axiom,
    ! [A2: int,B3: int,N: int] :
      ( ( ord_less_eq_int @ A2 @ B3 )
     => ( ( ord_less_int @ zero_zero_int @ ( uminus_uminus_int @ N ) )
       => ( ord_less_eq_int @ ( divide_divide_int @ B3 @ N ) @ ( divide_divide_int @ A2 @ N ) ) ) ) ).

% verit_less_mono_div_int2
thf(fact_7053_div__eq__minus1,axiom,
    ! [B: int] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ( divide_divide_int @ ( uminus_uminus_int @ one_one_int ) @ B )
        = ( uminus_uminus_int @ one_one_int ) ) ) ).

% div_eq_minus1
thf(fact_7054_le__minus__divide__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( uminus_uminus_real @ B ) ) )
        & ( ~ ( ord_less_real @ zero_zero_real @ C )
         => ( ( ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_eq_real @ ( uminus_uminus_real @ B ) @ ( times_times_real @ A @ C ) ) )
            & ( ~ ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_eq_real @ A @ zero_zero_real ) ) ) ) ) ) ).

% le_minus_divide_eq
thf(fact_7055_le__minus__divide__eq,axiom,
    ! [A: rat,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ A @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( uminus_uminus_rat @ B ) ) )
        & ( ~ ( ord_less_rat @ zero_zero_rat @ C )
         => ( ( ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_eq_rat @ ( uminus_uminus_rat @ B ) @ ( times_times_rat @ A @ C ) ) )
            & ( ~ ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_eq_rat @ A @ zero_zero_rat ) ) ) ) ) ) ).

% le_minus_divide_eq
thf(fact_7056_minus__divide__le__eq,axiom,
    ! [B: real,C: real,A: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) @ A )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ ( uminus_uminus_real @ B ) @ ( times_times_real @ A @ C ) ) )
        & ( ~ ( ord_less_real @ zero_zero_real @ C )
         => ( ( ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( uminus_uminus_real @ B ) ) )
            & ( ~ ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_eq_real @ zero_zero_real @ A ) ) ) ) ) ) ).

% minus_divide_le_eq
thf(fact_7057_minus__divide__le__eq,axiom,
    ! [B: rat,C: rat,A: rat] :
      ( ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) @ A )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_eq_rat @ ( uminus_uminus_rat @ B ) @ ( times_times_rat @ A @ C ) ) )
        & ( ~ ( ord_less_rat @ zero_zero_rat @ C )
         => ( ( ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( uminus_uminus_rat @ B ) ) )
            & ( ~ ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ) ) ) ) ).

% minus_divide_le_eq
thf(fact_7058_neg__le__minus__divide__eq,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ C @ zero_zero_real )
     => ( ( ord_less_eq_real @ A @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) )
        = ( ord_less_eq_real @ ( uminus_uminus_real @ B ) @ ( times_times_real @ A @ C ) ) ) ) ).

% neg_le_minus_divide_eq
thf(fact_7059_neg__le__minus__divide__eq,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ C @ zero_zero_rat )
     => ( ( ord_less_eq_rat @ A @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) )
        = ( ord_less_eq_rat @ ( uminus_uminus_rat @ B ) @ ( times_times_rat @ A @ C ) ) ) ) ).

% neg_le_minus_divide_eq
thf(fact_7060_neg__minus__divide__le__eq,axiom,
    ! [C: real,B: real,A: real] :
      ( ( ord_less_real @ C @ zero_zero_real )
     => ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) @ A )
        = ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( uminus_uminus_real @ B ) ) ) ) ).

% neg_minus_divide_le_eq
thf(fact_7061_neg__minus__divide__le__eq,axiom,
    ! [C: rat,B: rat,A: rat] :
      ( ( ord_less_rat @ C @ zero_zero_rat )
     => ( ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) @ A )
        = ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( uminus_uminus_rat @ B ) ) ) ) ).

% neg_minus_divide_le_eq
thf(fact_7062_pos__le__minus__divide__eq,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ C )
     => ( ( ord_less_eq_real @ A @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) )
        = ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( uminus_uminus_real @ B ) ) ) ) ).

% pos_le_minus_divide_eq
thf(fact_7063_pos__le__minus__divide__eq,axiom,
    ! [C: rat,A: rat,B: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ C )
     => ( ( ord_less_eq_rat @ A @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) )
        = ( ord_less_eq_rat @ ( times_times_rat @ A @ C ) @ ( uminus_uminus_rat @ B ) ) ) ) ).

% pos_le_minus_divide_eq
thf(fact_7064_pos__minus__divide__le__eq,axiom,
    ! [C: real,B: real,A: real] :
      ( ( ord_less_real @ zero_zero_real @ C )
     => ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ B @ C ) ) @ A )
        = ( ord_less_eq_real @ ( uminus_uminus_real @ B ) @ ( times_times_real @ A @ C ) ) ) ) ).

% pos_minus_divide_le_eq
thf(fact_7065_pos__minus__divide__le__eq,axiom,
    ! [C: rat,B: rat,A: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ C )
     => ( ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( divide_divide_rat @ B @ C ) ) @ A )
        = ( ord_less_eq_rat @ ( uminus_uminus_rat @ B ) @ ( times_times_rat @ A @ C ) ) ) ) ).

% pos_minus_divide_le_eq
thf(fact_7066_divide__less__eq__numeral_I2_J,axiom,
    ! [B: real,C: real,W: num] :
      ( ( ord_less_real @ ( divide_divide_real @ B @ C ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_real @ B @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ C ) ) )
        & ( ~ ( ord_less_real @ zero_zero_real @ C )
         => ( ( ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_real @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ C ) @ B ) )
            & ( ~ ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_real @ zero_zero_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) ) ) ) ) ) ).

% divide_less_eq_numeral(2)
thf(fact_7067_divide__less__eq__numeral_I2_J,axiom,
    ! [B: rat,C: rat,W: num] :
      ( ( ord_less_rat @ ( divide_divide_rat @ B @ C ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_rat @ B @ ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ C ) ) )
        & ( ~ ( ord_less_rat @ zero_zero_rat @ C )
         => ( ( ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_rat @ ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ C ) @ B ) )
            & ( ~ ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_rat @ zero_zero_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) ) ) ) ) ) ).

% divide_less_eq_numeral(2)
thf(fact_7068_less__divide__eq__numeral_I2_J,axiom,
    ! [W: num,B: real,C: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ ( divide_divide_real @ B @ C ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_real @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ C ) @ B ) )
        & ( ~ ( ord_less_real @ zero_zero_real @ C )
         => ( ( ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_real @ B @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ C ) ) )
            & ( ~ ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ zero_zero_real ) ) ) ) ) ) ).

% less_divide_eq_numeral(2)
thf(fact_7069_less__divide__eq__numeral_I2_J,axiom,
    ! [W: num,B: rat,C: rat] :
      ( ( ord_less_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ ( divide_divide_rat @ B @ C ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_rat @ ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ C ) @ B ) )
        & ( ~ ( ord_less_rat @ zero_zero_rat @ C )
         => ( ( ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_rat @ B @ ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ C ) ) )
            & ( ~ ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ zero_zero_rat ) ) ) ) ) ) ).

% less_divide_eq_numeral(2)
thf(fact_7070_power2__eq__1__iff,axiom,
    ! [A: int] :
      ( ( ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = one_one_int )
      = ( ( A = one_one_int )
        | ( A
          = ( uminus_uminus_int @ one_one_int ) ) ) ) ).

% power2_eq_1_iff
thf(fact_7071_power2__eq__1__iff,axiom,
    ! [A: real] :
      ( ( ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = one_one_real )
      = ( ( A = one_one_real )
        | ( A
          = ( uminus_uminus_real @ one_one_real ) ) ) ) ).

% power2_eq_1_iff
thf(fact_7072_power2__eq__1__iff,axiom,
    ! [A: complex] :
      ( ( ( power_power_complex @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = one_one_complex )
      = ( ( A = one_one_complex )
        | ( A
          = ( uminus1482373934393186551omplex @ one_one_complex ) ) ) ) ).

% power2_eq_1_iff
thf(fact_7073_power2__eq__1__iff,axiom,
    ! [A: rat] :
      ( ( ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = one_one_rat )
      = ( ( A = one_one_rat )
        | ( A
          = ( uminus_uminus_rat @ one_one_rat ) ) ) ) ).

% power2_eq_1_iff
thf(fact_7074_power2__eq__1__iff,axiom,
    ! [A: code_integer] :
      ( ( ( power_8256067586552552935nteger @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = one_one_Code_integer )
      = ( ( A = one_one_Code_integer )
        | ( A
          = ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ) ) ).

% power2_eq_1_iff
thf(fact_7075_minus__one__power__iff,axiom,
    ! [N: nat] :
      ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       => ( ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N )
          = one_one_int ) )
      & ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       => ( ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N )
          = ( uminus_uminus_int @ one_one_int ) ) ) ) ).

% minus_one_power_iff
thf(fact_7076_minus__one__power__iff,axiom,
    ! [N: nat] :
      ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       => ( ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N )
          = one_one_real ) )
      & ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       => ( ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N )
          = ( uminus_uminus_real @ one_one_real ) ) ) ) ).

% minus_one_power_iff
thf(fact_7077_minus__one__power__iff,axiom,
    ! [N: nat] :
      ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       => ( ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N )
          = one_one_complex ) )
      & ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       => ( ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N )
          = ( uminus1482373934393186551omplex @ one_one_complex ) ) ) ) ).

% minus_one_power_iff
thf(fact_7078_minus__one__power__iff,axiom,
    ! [N: nat] :
      ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       => ( ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ N )
          = one_one_rat ) )
      & ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       => ( ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ N )
          = ( uminus_uminus_rat @ one_one_rat ) ) ) ) ).

% minus_one_power_iff
thf(fact_7079_minus__one__power__iff,axiom,
    ! [N: nat] :
      ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       => ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ N )
          = one_one_Code_integer ) )
      & ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       => ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ N )
          = ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ) ) ).

% minus_one_power_iff
thf(fact_7080_neg__one__power__add__eq__neg__one__power__diff,axiom,
    ! [K: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ N )
     => ( ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ ( plus_plus_nat @ N @ K ) )
        = ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ ( minus_minus_nat @ N @ K ) ) ) ) ).

% neg_one_power_add_eq_neg_one_power_diff
thf(fact_7081_neg__one__power__add__eq__neg__one__power__diff,axiom,
    ! [K: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ N )
     => ( ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ ( plus_plus_nat @ N @ K ) )
        = ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ ( minus_minus_nat @ N @ K ) ) ) ) ).

% neg_one_power_add_eq_neg_one_power_diff
thf(fact_7082_neg__one__power__add__eq__neg__one__power__diff,axiom,
    ! [K: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ N )
     => ( ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ ( plus_plus_nat @ N @ K ) )
        = ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ ( minus_minus_nat @ N @ K ) ) ) ) ).

% neg_one_power_add_eq_neg_one_power_diff
thf(fact_7083_neg__one__power__add__eq__neg__one__power__diff,axiom,
    ! [K: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ N )
     => ( ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( plus_plus_nat @ N @ K ) )
        = ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( minus_minus_nat @ N @ K ) ) ) ) ).

% neg_one_power_add_eq_neg_one_power_diff
thf(fact_7084_neg__one__power__add__eq__neg__one__power__diff,axiom,
    ! [K: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ N )
     => ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( plus_plus_nat @ N @ K ) )
        = ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( minus_minus_nat @ N @ K ) ) ) ) ).

% neg_one_power_add_eq_neg_one_power_diff
thf(fact_7085_realpow__square__minus__le,axiom,
    ! [U: real,X2: real] : ( ord_less_eq_real @ ( uminus_uminus_real @ ( power_power_real @ U @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% realpow_square_minus_le
thf(fact_7086_signed__take__bit__int__less__eq__self__iff,axiom,
    ! [N: nat,K: int] :
      ( ( ord_less_eq_int @ ( bit_ri631733984087533419it_int @ N @ K ) @ K )
      = ( ord_less_eq_int @ ( uminus_uminus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) @ K ) ) ).

% signed_take_bit_int_less_eq_self_iff
thf(fact_7087_signed__take__bit__int__greater__eq__minus__exp,axiom,
    ! [N: nat,K: int] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) @ ( bit_ri631733984087533419it_int @ N @ K ) ) ).

% signed_take_bit_int_greater_eq_minus_exp
thf(fact_7088_signed__take__bit__int__greater__self__iff,axiom,
    ! [K: int,N: nat] :
      ( ( ord_less_int @ K @ ( bit_ri631733984087533419it_int @ N @ K ) )
      = ( ord_less_int @ K @ ( uminus_uminus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ) ).

% signed_take_bit_int_greater_self_iff
thf(fact_7089_minus__mod__int__eq,axiom,
    ! [L: int,K: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ L )
     => ( ( modulo_modulo_int @ ( uminus_uminus_int @ K ) @ L )
        = ( minus_minus_int @ ( minus_minus_int @ L @ one_one_int ) @ ( modulo_modulo_int @ ( minus_minus_int @ K @ one_one_int ) @ L ) ) ) ) ).

% minus_mod_int_eq
thf(fact_7090_zmod__minus1,axiom,
    ! [B: int] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ( modulo_modulo_int @ ( uminus_uminus_int @ one_one_int ) @ B )
        = ( minus_minus_int @ B @ one_one_int ) ) ) ).

% zmod_minus1
thf(fact_7091_zdiv__zminus1__eq__if,axiom,
    ! [B: int,A: int] :
      ( ( B != zero_zero_int )
     => ( ( ( ( modulo_modulo_int @ A @ B )
            = zero_zero_int )
         => ( ( divide_divide_int @ ( uminus_uminus_int @ A ) @ B )
            = ( uminus_uminus_int @ ( divide_divide_int @ A @ B ) ) ) )
        & ( ( ( modulo_modulo_int @ A @ B )
           != zero_zero_int )
         => ( ( divide_divide_int @ ( uminus_uminus_int @ A ) @ B )
            = ( minus_minus_int @ ( uminus_uminus_int @ ( divide_divide_int @ A @ B ) ) @ one_one_int ) ) ) ) ) ).

% zdiv_zminus1_eq_if
thf(fact_7092_zdiv__zminus2__eq__if,axiom,
    ! [B: int,A: int] :
      ( ( B != zero_zero_int )
     => ( ( ( ( modulo_modulo_int @ A @ B )
            = zero_zero_int )
         => ( ( divide_divide_int @ A @ ( uminus_uminus_int @ B ) )
            = ( uminus_uminus_int @ ( divide_divide_int @ A @ B ) ) ) )
        & ( ( ( modulo_modulo_int @ A @ B )
           != zero_zero_int )
         => ( ( divide_divide_int @ A @ ( uminus_uminus_int @ B ) )
            = ( minus_minus_int @ ( uminus_uminus_int @ ( divide_divide_int @ A @ B ) ) @ one_one_int ) ) ) ) ) ).

% zdiv_zminus2_eq_if
thf(fact_7093_zminus1__lemma,axiom,
    ! [A: int,B: int,Q2: int,R2: int] :
      ( ( eucl_rel_int @ A @ B @ ( product_Pair_int_int @ Q2 @ R2 ) )
     => ( ( B != zero_zero_int )
       => ( eucl_rel_int @ ( uminus_uminus_int @ A ) @ B @ ( product_Pair_int_int @ ( if_int @ ( R2 = zero_zero_int ) @ ( uminus_uminus_int @ Q2 ) @ ( minus_minus_int @ ( uminus_uminus_int @ Q2 ) @ one_one_int ) ) @ ( if_int @ ( R2 = zero_zero_int ) @ zero_zero_int @ ( minus_minus_int @ B @ R2 ) ) ) ) ) ) ).

% zminus1_lemma
thf(fact_7094_le__divide__eq__numeral_I2_J,axiom,
    ! [W: num,B: real,C: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ ( divide_divide_real @ B @ C ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ C ) @ B ) )
        & ( ~ ( ord_less_real @ zero_zero_real @ C )
         => ( ( ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_eq_real @ B @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ C ) ) )
            & ( ~ ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ zero_zero_real ) ) ) ) ) ) ).

% le_divide_eq_numeral(2)
thf(fact_7095_le__divide__eq__numeral_I2_J,axiom,
    ! [W: num,B: rat,C: rat] :
      ( ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ ( divide_divide_rat @ B @ C ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_eq_rat @ ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ C ) @ B ) )
        & ( ~ ( ord_less_rat @ zero_zero_rat @ C )
         => ( ( ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_eq_rat @ B @ ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ C ) ) )
            & ( ~ ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ zero_zero_rat ) ) ) ) ) ) ).

% le_divide_eq_numeral(2)
thf(fact_7096_divide__le__eq__numeral_I2_J,axiom,
    ! [B: real,C: real,W: num] :
      ( ( ord_less_eq_real @ ( divide_divide_real @ B @ C ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ B @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ C ) ) )
        & ( ~ ( ord_less_real @ zero_zero_real @ C )
         => ( ( ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_eq_real @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ C ) @ B ) )
            & ( ~ ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_eq_real @ zero_zero_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) ) ) ) ) ) ).

% divide_le_eq_numeral(2)
thf(fact_7097_divide__le__eq__numeral_I2_J,axiom,
    ! [B: rat,C: rat,W: num] :
      ( ( ord_less_eq_rat @ ( divide_divide_rat @ B @ C ) @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) )
      = ( ( ( ord_less_rat @ zero_zero_rat @ C )
         => ( ord_less_eq_rat @ B @ ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ C ) ) )
        & ( ~ ( ord_less_rat @ zero_zero_rat @ C )
         => ( ( ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_eq_rat @ ( times_times_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) @ C ) @ B ) )
            & ( ~ ( ord_less_rat @ C @ zero_zero_rat )
             => ( ord_less_eq_rat @ zero_zero_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ W ) ) ) ) ) ) ) ) ).

% divide_le_eq_numeral(2)
thf(fact_7098_square__le__1,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X2 )
     => ( ( ord_less_eq_real @ X2 @ one_one_real )
       => ( ord_less_eq_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real ) ) ) ).

% square_le_1
thf(fact_7099_square__le__1,axiom,
    ! [X2: code_integer] :
      ( ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ X2 )
     => ( ( ord_le3102999989581377725nteger @ X2 @ one_one_Code_integer )
       => ( ord_le3102999989581377725nteger @ ( power_8256067586552552935nteger @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_Code_integer ) ) ) ).

% square_le_1
thf(fact_7100_square__le__1,axiom,
    ! [X2: rat] :
      ( ( ord_less_eq_rat @ ( uminus_uminus_rat @ one_one_rat ) @ X2 )
     => ( ( ord_less_eq_rat @ X2 @ one_one_rat )
       => ( ord_less_eq_rat @ ( power_power_rat @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_rat ) ) ) ).

% square_le_1
thf(fact_7101_square__le__1,axiom,
    ! [X2: int] :
      ( ( ord_less_eq_int @ ( uminus_uminus_int @ one_one_int ) @ X2 )
     => ( ( ord_less_eq_int @ X2 @ one_one_int )
       => ( ord_less_eq_int @ ( power_power_int @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_int ) ) ) ).

% square_le_1
thf(fact_7102_minus__power__mult__self,axiom,
    ! [A: int,N: nat] :
      ( ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ A ) @ N ) @ ( power_power_int @ ( uminus_uminus_int @ A ) @ N ) )
      = ( power_power_int @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).

% minus_power_mult_self
thf(fact_7103_minus__power__mult__self,axiom,
    ! [A: real,N: nat] :
      ( ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ A ) @ N ) @ ( power_power_real @ ( uminus_uminus_real @ A ) @ N ) )
      = ( power_power_real @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).

% minus_power_mult_self
thf(fact_7104_minus__power__mult__self,axiom,
    ! [A: complex,N: nat] :
      ( ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ A ) @ N ) @ ( power_power_complex @ ( uminus1482373934393186551omplex @ A ) @ N ) )
      = ( power_power_complex @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).

% minus_power_mult_self
thf(fact_7105_minus__power__mult__self,axiom,
    ! [A: rat,N: nat] :
      ( ( times_times_rat @ ( power_power_rat @ ( uminus_uminus_rat @ A ) @ N ) @ ( power_power_rat @ ( uminus_uminus_rat @ A ) @ N ) )
      = ( power_power_rat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).

% minus_power_mult_self
thf(fact_7106_minus__power__mult__self,axiom,
    ! [A: code_integer,N: nat] :
      ( ( times_3573771949741848930nteger @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ A ) @ N ) @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ A ) @ N ) )
      = ( power_8256067586552552935nteger @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).

% minus_power_mult_self
thf(fact_7107_signed__take__bit__int__eq__self__iff,axiom,
    ! [N: nat,K: int] :
      ( ( ( bit_ri631733984087533419it_int @ N @ K )
        = K )
      = ( ( ord_less_eq_int @ ( uminus_uminus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) @ K )
        & ( ord_less_int @ K @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ) ).

% signed_take_bit_int_eq_self_iff
thf(fact_7108_signed__take__bit__int__eq__self,axiom,
    ! [N: nat,K: int] :
      ( ( ord_less_eq_int @ ( uminus_uminus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) @ K )
     => ( ( ord_less_int @ K @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
       => ( ( bit_ri631733984087533419it_int @ N @ K )
          = K ) ) ) ).

% signed_take_bit_int_eq_self
thf(fact_7109_minus__1__div__exp__eq__int,axiom,
    ! [N: nat] :
      ( ( divide_divide_int @ ( uminus_uminus_int @ one_one_int ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
      = ( uminus_uminus_int @ one_one_int ) ) ).

% minus_1_div_exp_eq_int
thf(fact_7110_div__pos__neg__trivial,axiom,
    ! [K: int,L: int] :
      ( ( ord_less_int @ zero_zero_int @ K )
     => ( ( ord_less_eq_int @ ( plus_plus_int @ K @ L ) @ zero_zero_int )
       => ( ( divide_divide_int @ K @ L )
          = ( uminus_uminus_int @ one_one_int ) ) ) ) ).

% div_pos_neg_trivial
thf(fact_7111_divmod__nat__def,axiom,
    ( divmod_nat
    = ( ^ [M3: nat,N2: nat] : ( product_Pair_nat_nat @ ( divide_divide_nat @ M3 @ N2 ) @ ( modulo_modulo_nat @ M3 @ N2 ) ) ) ) ).

% divmod_nat_def
thf(fact_7112_power__minus1__odd,axiom,
    ! [N: nat] :
      ( ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
      = ( uminus_uminus_int @ one_one_int ) ) ).

% power_minus1_odd
thf(fact_7113_power__minus1__odd,axiom,
    ! [N: nat] :
      ( ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
      = ( uminus_uminus_real @ one_one_real ) ) ).

% power_minus1_odd
thf(fact_7114_power__minus1__odd,axiom,
    ! [N: nat] :
      ( ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
      = ( uminus1482373934393186551omplex @ one_one_complex ) ) ).

% power_minus1_odd
thf(fact_7115_power__minus1__odd,axiom,
    ! [N: nat] :
      ( ( power_power_rat @ ( uminus_uminus_rat @ one_one_rat ) @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
      = ( uminus_uminus_rat @ one_one_rat ) ) ).

% power_minus1_odd
thf(fact_7116_power__minus1__odd,axiom,
    ! [N: nat] :
      ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
      = ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% power_minus1_odd
thf(fact_7117_int__bit__induct,axiom,
    ! [P: int > $o,K: int] :
      ( ( P @ zero_zero_int )
     => ( ( P @ ( uminus_uminus_int @ one_one_int ) )
       => ( ! [K3: int] :
              ( ( P @ K3 )
             => ( ( K3 != zero_zero_int )
               => ( P @ ( times_times_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) )
         => ( ! [K3: int] :
                ( ( P @ K3 )
               => ( ( K3
                   != ( uminus_uminus_int @ one_one_int ) )
                 => ( P @ ( plus_plus_int @ one_one_int @ ( times_times_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) )
           => ( P @ K ) ) ) ) ) ).

% int_bit_induct
thf(fact_7118_even__set__encode__iff,axiom,
    ! [A2: set_nat] :
      ( ( finite_finite_nat @ A2 )
     => ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( nat_set_encode @ A2 ) )
        = ( ~ ( member_nat @ zero_zero_nat @ A2 ) ) ) ) ).

% even_set_encode_iff
thf(fact_7119_signed__take__bit__int__greater__eq,axiom,
    ! [K: int,N: nat] :
      ( ( ord_less_int @ K @ ( uminus_uminus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) )
     => ( ord_less_eq_int @ ( plus_plus_int @ K @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( suc @ N ) ) ) @ ( bit_ri631733984087533419it_int @ N @ K ) ) ) ).

% signed_take_bit_int_greater_eq
thf(fact_7120_vebt__buildup_Osimps_I3_J,axiom,
    ! [Va: nat] :
      ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ Va ) ) )
       => ( ( vEBT_vebt_buildup @ ( suc @ ( suc @ Va ) ) )
          = ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ Va ) ) @ ( replicate_VEBT_VEBT @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) )
      & ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ Va ) ) )
       => ( ( vEBT_vebt_buildup @ ( suc @ ( suc @ Va ) ) )
          = ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ Va ) ) @ ( replicate_VEBT_VEBT @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( suc @ ( divide_divide_nat @ ( suc @ ( suc @ Va ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ).

% vebt_buildup.simps(3)
thf(fact_7121_one__div__minus__numeral,axiom,
    ! [N: num] :
      ( ( divide_divide_int @ one_one_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( uminus_uminus_int @ ( adjust_div @ ( unique5052692396658037445od_int @ one @ N ) ) ) ) ).

% one_div_minus_numeral
thf(fact_7122_minus__one__div__numeral,axiom,
    ! [N: num] :
      ( ( divide_divide_int @ ( uminus_uminus_int @ one_one_int ) @ ( numeral_numeral_int @ N ) )
      = ( uminus_uminus_int @ ( adjust_div @ ( unique5052692396658037445od_int @ one @ N ) ) ) ) ).

% minus_one_div_numeral
thf(fact_7123_numeral__div__minus__numeral,axiom,
    ! [M: num,N: num] :
      ( ( divide_divide_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( uminus_uminus_int @ ( adjust_div @ ( unique5052692396658037445od_int @ M @ N ) ) ) ) ).

% numeral_div_minus_numeral
thf(fact_7124_minus__numeral__div__numeral,axiom,
    ! [M: num,N: num] :
      ( ( divide_divide_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N ) )
      = ( uminus_uminus_int @ ( adjust_div @ ( unique5052692396658037445od_int @ M @ N ) ) ) ) ).

% minus_numeral_div_numeral
thf(fact_7125_dbl__dec__simps_I4_J,axiom,
    ( ( neg_nu3811975205180677377ec_int @ ( uminus_uminus_int @ one_one_int ) )
    = ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ one ) ) ) ) ).

% dbl_dec_simps(4)
thf(fact_7126_dbl__dec__simps_I4_J,axiom,
    ( ( neg_nu6075765906172075777c_real @ ( uminus_uminus_real @ one_one_real ) )
    = ( uminus_uminus_real @ ( numeral_numeral_real @ ( bit1 @ one ) ) ) ) ).

% dbl_dec_simps(4)
thf(fact_7127_dbl__dec__simps_I4_J,axiom,
    ( ( neg_nu6511756317524482435omplex @ ( uminus1482373934393186551omplex @ one_one_complex ) )
    = ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( bit1 @ one ) ) ) ) ).

% dbl_dec_simps(4)
thf(fact_7128_dbl__dec__simps_I4_J,axiom,
    ( ( neg_nu3179335615603231917ec_rat @ ( uminus_uminus_rat @ one_one_rat ) )
    = ( uminus_uminus_rat @ ( numeral_numeral_rat @ ( bit1 @ one ) ) ) ) ).

% dbl_dec_simps(4)
thf(fact_7129_dbl__dec__simps_I4_J,axiom,
    ( ( neg_nu7757733837767384882nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
    = ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ ( bit1 @ one ) ) ) ) ).

% dbl_dec_simps(4)
thf(fact_7130_Compl__iff,axiom,
    ! [C: complex,A2: set_complex] :
      ( ( member_complex @ C @ ( uminus8566677241136511917omplex @ A2 ) )
      = ( ~ ( member_complex @ C @ A2 ) ) ) ).

% Compl_iff
thf(fact_7131_Compl__iff,axiom,
    ! [C: real,A2: set_real] :
      ( ( member_real @ C @ ( uminus612125837232591019t_real @ A2 ) )
      = ( ~ ( member_real @ C @ A2 ) ) ) ).

% Compl_iff
thf(fact_7132_Compl__iff,axiom,
    ! [C: set_nat,A2: set_set_nat] :
      ( ( member_set_nat @ C @ ( uminus613421341184616069et_nat @ A2 ) )
      = ( ~ ( member_set_nat @ C @ A2 ) ) ) ).

% Compl_iff
thf(fact_7133_Compl__iff,axiom,
    ! [C: nat,A2: set_nat] :
      ( ( member_nat @ C @ ( uminus5710092332889474511et_nat @ A2 ) )
      = ( ~ ( member_nat @ C @ A2 ) ) ) ).

% Compl_iff
thf(fact_7134_Compl__iff,axiom,
    ! [C: int,A2: set_int] :
      ( ( member_int @ C @ ( uminus1532241313380277803et_int @ A2 ) )
      = ( ~ ( member_int @ C @ A2 ) ) ) ).

% Compl_iff
thf(fact_7135_ComplI,axiom,
    ! [C: complex,A2: set_complex] :
      ( ~ ( member_complex @ C @ A2 )
     => ( member_complex @ C @ ( uminus8566677241136511917omplex @ A2 ) ) ) ).

% ComplI
thf(fact_7136_ComplI,axiom,
    ! [C: real,A2: set_real] :
      ( ~ ( member_real @ C @ A2 )
     => ( member_real @ C @ ( uminus612125837232591019t_real @ A2 ) ) ) ).

% ComplI
thf(fact_7137_ComplI,axiom,
    ! [C: set_nat,A2: set_set_nat] :
      ( ~ ( member_set_nat @ C @ A2 )
     => ( member_set_nat @ C @ ( uminus613421341184616069et_nat @ A2 ) ) ) ).

% ComplI
thf(fact_7138_ComplI,axiom,
    ! [C: nat,A2: set_nat] :
      ( ~ ( member_nat @ C @ A2 )
     => ( member_nat @ C @ ( uminus5710092332889474511et_nat @ A2 ) ) ) ).

% ComplI
thf(fact_7139_ComplI,axiom,
    ! [C: int,A2: set_int] :
      ( ~ ( member_int @ C @ A2 )
     => ( member_int @ C @ ( uminus1532241313380277803et_int @ A2 ) ) ) ).

% ComplI
thf(fact_7140_split__part,axiom,
    ! [P: $o,Q: int > int > $o] :
      ( ( produc4947309494688390418_int_o
        @ ^ [A3: int,B2: int] :
            ( P
            & ( Q @ A3 @ B2 ) ) )
      = ( ^ [Ab: product_prod_int_int] :
            ( P
            & ( produc4947309494688390418_int_o @ Q @ Ab ) ) ) ) ).

% split_part
thf(fact_7141_dbl__dec__simps_I3_J,axiom,
    ( ( neg_nu6511756317524482435omplex @ one_one_complex )
    = one_one_complex ) ).

% dbl_dec_simps(3)
thf(fact_7142_dbl__dec__simps_I3_J,axiom,
    ( ( neg_nu6075765906172075777c_real @ one_one_real )
    = one_one_real ) ).

% dbl_dec_simps(3)
thf(fact_7143_dbl__dec__simps_I3_J,axiom,
    ( ( neg_nu3179335615603231917ec_rat @ one_one_rat )
    = one_one_rat ) ).

% dbl_dec_simps(3)
thf(fact_7144_dbl__dec__simps_I3_J,axiom,
    ( ( neg_nu3811975205180677377ec_int @ one_one_int )
    = one_one_int ) ).

% dbl_dec_simps(3)
thf(fact_7145_dbl__dec__simps_I5_J,axiom,
    ! [K: num] :
      ( ( neg_nu6511756317524482435omplex @ ( numera6690914467698888265omplex @ K ) )
      = ( numera6690914467698888265omplex @ ( bitM @ K ) ) ) ).

% dbl_dec_simps(5)
thf(fact_7146_dbl__dec__simps_I5_J,axiom,
    ! [K: num] :
      ( ( neg_nu6075765906172075777c_real @ ( numeral_numeral_real @ K ) )
      = ( numeral_numeral_real @ ( bitM @ K ) ) ) ).

% dbl_dec_simps(5)
thf(fact_7147_dbl__dec__simps_I5_J,axiom,
    ! [K: num] :
      ( ( neg_nu3179335615603231917ec_rat @ ( numeral_numeral_rat @ K ) )
      = ( numeral_numeral_rat @ ( bitM @ K ) ) ) ).

% dbl_dec_simps(5)
thf(fact_7148_dbl__dec__simps_I5_J,axiom,
    ! [K: num] :
      ( ( neg_nu3811975205180677377ec_int @ ( numeral_numeral_int @ K ) )
      = ( numeral_numeral_int @ ( bitM @ K ) ) ) ).

% dbl_dec_simps(5)
thf(fact_7149_dbl__dec__simps_I2_J,axiom,
    ( ( neg_nu3811975205180677377ec_int @ zero_zero_int )
    = ( uminus_uminus_int @ one_one_int ) ) ).

% dbl_dec_simps(2)
thf(fact_7150_dbl__dec__simps_I2_J,axiom,
    ( ( neg_nu6075765906172075777c_real @ zero_zero_real )
    = ( uminus_uminus_real @ one_one_real ) ) ).

% dbl_dec_simps(2)
thf(fact_7151_dbl__dec__simps_I2_J,axiom,
    ( ( neg_nu6511756317524482435omplex @ zero_zero_complex )
    = ( uminus1482373934393186551omplex @ one_one_complex ) ) ).

% dbl_dec_simps(2)
thf(fact_7152_dbl__dec__simps_I2_J,axiom,
    ( ( neg_nu3179335615603231917ec_rat @ zero_zero_rat )
    = ( uminus_uminus_rat @ one_one_rat ) ) ).

% dbl_dec_simps(2)
thf(fact_7153_dbl__dec__simps_I2_J,axiom,
    ( ( neg_nu7757733837767384882nteger @ zero_z3403309356797280102nteger )
    = ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% dbl_dec_simps(2)
thf(fact_7154_dbl__dec__simps_I1_J,axiom,
    ! [K: num] :
      ( ( neg_nu3811975205180677377ec_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) )
      = ( uminus_uminus_int @ ( neg_nu5851722552734809277nc_int @ ( numeral_numeral_int @ K ) ) ) ) ).

% dbl_dec_simps(1)
thf(fact_7155_dbl__dec__simps_I1_J,axiom,
    ! [K: num] :
      ( ( neg_nu6075765906172075777c_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ K ) ) )
      = ( uminus_uminus_real @ ( neg_nu8295874005876285629c_real @ ( numeral_numeral_real @ K ) ) ) ) ).

% dbl_dec_simps(1)
thf(fact_7156_dbl__dec__simps_I1_J,axiom,
    ! [K: num] :
      ( ( neg_nu6511756317524482435omplex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ K ) ) )
      = ( uminus1482373934393186551omplex @ ( neg_nu8557863876264182079omplex @ ( numera6690914467698888265omplex @ K ) ) ) ) ).

% dbl_dec_simps(1)
thf(fact_7157_dbl__dec__simps_I1_J,axiom,
    ! [K: num] :
      ( ( neg_nu3179335615603231917ec_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ K ) ) )
      = ( uminus_uminus_rat @ ( neg_nu5219082963157363817nc_rat @ ( numeral_numeral_rat @ K ) ) ) ) ).

% dbl_dec_simps(1)
thf(fact_7158_dbl__dec__simps_I1_J,axiom,
    ! [K: num] :
      ( ( neg_nu7757733837767384882nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ K ) ) )
      = ( uminus1351360451143612070nteger @ ( neg_nu5831290666863070958nteger @ ( numera6620942414471956472nteger @ K ) ) ) ) ).

% dbl_dec_simps(1)
thf(fact_7159_dbl__inc__simps_I1_J,axiom,
    ! [K: num] :
      ( ( neg_nu5851722552734809277nc_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) )
      = ( uminus_uminus_int @ ( neg_nu3811975205180677377ec_int @ ( numeral_numeral_int @ K ) ) ) ) ).

% dbl_inc_simps(1)
thf(fact_7160_dbl__inc__simps_I1_J,axiom,
    ! [K: num] :
      ( ( neg_nu8295874005876285629c_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ K ) ) )
      = ( uminus_uminus_real @ ( neg_nu6075765906172075777c_real @ ( numeral_numeral_real @ K ) ) ) ) ).

% dbl_inc_simps(1)
thf(fact_7161_dbl__inc__simps_I1_J,axiom,
    ! [K: num] :
      ( ( neg_nu8557863876264182079omplex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ K ) ) )
      = ( uminus1482373934393186551omplex @ ( neg_nu6511756317524482435omplex @ ( numera6690914467698888265omplex @ K ) ) ) ) ).

% dbl_inc_simps(1)
thf(fact_7162_dbl__inc__simps_I1_J,axiom,
    ! [K: num] :
      ( ( neg_nu5219082963157363817nc_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ K ) ) )
      = ( uminus_uminus_rat @ ( neg_nu3179335615603231917ec_rat @ ( numeral_numeral_rat @ K ) ) ) ) ).

% dbl_inc_simps(1)
thf(fact_7163_dbl__inc__simps_I1_J,axiom,
    ! [K: num] :
      ( ( neg_nu5831290666863070958nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ K ) ) )
      = ( uminus1351360451143612070nteger @ ( neg_nu7757733837767384882nteger @ ( numera6620942414471956472nteger @ K ) ) ) ) ).

% dbl_inc_simps(1)
thf(fact_7164_prod_Odisc__eq__case,axiom,
    ! [Prod: product_prod_int_int] :
      ( produc4947309494688390418_int_o
      @ ^ [Uu3: int,Uv3: int] : $true
      @ Prod ) ).

% prod.disc_eq_case
thf(fact_7165_Collect__case__prod__mono,axiom,
    ! [A2: int > int > $o,B3: int > int > $o] :
      ( ( ord_le6741204236512500942_int_o @ A2 @ B3 )
     => ( ord_le2843351958646193337nt_int @ ( collec213857154873943460nt_int @ ( produc4947309494688390418_int_o @ A2 ) ) @ ( collec213857154873943460nt_int @ ( produc4947309494688390418_int_o @ B3 ) ) ) ) ).

% Collect_case_prod_mono
thf(fact_7166_uminus__set__def,axiom,
    ( uminus612125837232591019t_real
    = ( ^ [A4: set_real] :
          ( collect_real
          @ ( uminus_uminus_real_o
            @ ^ [X: real] : ( member_real @ X @ A4 ) ) ) ) ) ).

% uminus_set_def
thf(fact_7167_uminus__set__def,axiom,
    ( uminus6221592323253981072nt_int
    = ( ^ [A4: set_Pr958786334691620121nt_int] :
          ( collec213857154873943460nt_int
          @ ( uminus7117520113953359693_int_o
            @ ^ [X: product_prod_int_int] : ( member5262025264175285858nt_int @ X @ A4 ) ) ) ) ) ).

% uminus_set_def
thf(fact_7168_uminus__set__def,axiom,
    ( uminus8566677241136511917omplex
    = ( ^ [A4: set_complex] :
          ( collect_complex
          @ ( uminus1680532995456772888plex_o
            @ ^ [X: complex] : ( member_complex @ X @ A4 ) ) ) ) ) ).

% uminus_set_def
thf(fact_7169_uminus__set__def,axiom,
    ( uminus613421341184616069et_nat
    = ( ^ [A4: set_set_nat] :
          ( collect_set_nat
          @ ( uminus6401447641752708672_nat_o
            @ ^ [X: set_nat] : ( member_set_nat @ X @ A4 ) ) ) ) ) ).

% uminus_set_def
thf(fact_7170_uminus__set__def,axiom,
    ( uminus5710092332889474511et_nat
    = ( ^ [A4: set_nat] :
          ( collect_nat
          @ ( uminus_uminus_nat_o
            @ ^ [X: nat] : ( member_nat @ X @ A4 ) ) ) ) ) ).

% uminus_set_def
thf(fact_7171_uminus__set__def,axiom,
    ( uminus1532241313380277803et_int
    = ( ^ [A4: set_int] :
          ( collect_int
          @ ( uminus_uminus_int_o
            @ ^ [X: int] : ( member_int @ X @ A4 ) ) ) ) ) ).

% uminus_set_def
thf(fact_7172_ComplD,axiom,
    ! [C: complex,A2: set_complex] :
      ( ( member_complex @ C @ ( uminus8566677241136511917omplex @ A2 ) )
     => ~ ( member_complex @ C @ A2 ) ) ).

% ComplD
thf(fact_7173_ComplD,axiom,
    ! [C: real,A2: set_real] :
      ( ( member_real @ C @ ( uminus612125837232591019t_real @ A2 ) )
     => ~ ( member_real @ C @ A2 ) ) ).

% ComplD
thf(fact_7174_ComplD,axiom,
    ! [C: set_nat,A2: set_set_nat] :
      ( ( member_set_nat @ C @ ( uminus613421341184616069et_nat @ A2 ) )
     => ~ ( member_set_nat @ C @ A2 ) ) ).

% ComplD
thf(fact_7175_ComplD,axiom,
    ! [C: nat,A2: set_nat] :
      ( ( member_nat @ C @ ( uminus5710092332889474511et_nat @ A2 ) )
     => ~ ( member_nat @ C @ A2 ) ) ).

% ComplD
thf(fact_7176_ComplD,axiom,
    ! [C: int,A2: set_int] :
      ( ( member_int @ C @ ( uminus1532241313380277803et_int @ A2 ) )
     => ~ ( member_int @ C @ A2 ) ) ).

% ComplD
thf(fact_7177_Collect__neg__eq,axiom,
    ! [P: product_prod_int_int > $o] :
      ( ( collec213857154873943460nt_int
        @ ^ [X: product_prod_int_int] :
            ~ ( P @ X ) )
      = ( uminus6221592323253981072nt_int @ ( collec213857154873943460nt_int @ P ) ) ) ).

% Collect_neg_eq
thf(fact_7178_Collect__neg__eq,axiom,
    ! [P: complex > $o] :
      ( ( collect_complex
        @ ^ [X: complex] :
            ~ ( P @ X ) )
      = ( uminus8566677241136511917omplex @ ( collect_complex @ P ) ) ) ).

% Collect_neg_eq
thf(fact_7179_Collect__neg__eq,axiom,
    ! [P: set_nat > $o] :
      ( ( collect_set_nat
        @ ^ [X: set_nat] :
            ~ ( P @ X ) )
      = ( uminus613421341184616069et_nat @ ( collect_set_nat @ P ) ) ) ).

% Collect_neg_eq
thf(fact_7180_Collect__neg__eq,axiom,
    ! [P: nat > $o] :
      ( ( collect_nat
        @ ^ [X: nat] :
            ~ ( P @ X ) )
      = ( uminus5710092332889474511et_nat @ ( collect_nat @ P ) ) ) ).

% Collect_neg_eq
thf(fact_7181_Collect__neg__eq,axiom,
    ! [P: int > $o] :
      ( ( collect_int
        @ ^ [X: int] :
            ~ ( P @ X ) )
      = ( uminus1532241313380277803et_int @ ( collect_int @ P ) ) ) ).

% Collect_neg_eq
thf(fact_7182_Compl__eq,axiom,
    ( uminus612125837232591019t_real
    = ( ^ [A4: set_real] :
          ( collect_real
          @ ^ [X: real] :
              ~ ( member_real @ X @ A4 ) ) ) ) ).

% Compl_eq
thf(fact_7183_Compl__eq,axiom,
    ( uminus6221592323253981072nt_int
    = ( ^ [A4: set_Pr958786334691620121nt_int] :
          ( collec213857154873943460nt_int
          @ ^ [X: product_prod_int_int] :
              ~ ( member5262025264175285858nt_int @ X @ A4 ) ) ) ) ).

% Compl_eq
thf(fact_7184_Compl__eq,axiom,
    ( uminus8566677241136511917omplex
    = ( ^ [A4: set_complex] :
          ( collect_complex
          @ ^ [X: complex] :
              ~ ( member_complex @ X @ A4 ) ) ) ) ).

% Compl_eq
thf(fact_7185_Compl__eq,axiom,
    ( uminus613421341184616069et_nat
    = ( ^ [A4: set_set_nat] :
          ( collect_set_nat
          @ ^ [X: set_nat] :
              ~ ( member_set_nat @ X @ A4 ) ) ) ) ).

% Compl_eq
thf(fact_7186_Compl__eq,axiom,
    ( uminus5710092332889474511et_nat
    = ( ^ [A4: set_nat] :
          ( collect_nat
          @ ^ [X: nat] :
              ~ ( member_nat @ X @ A4 ) ) ) ) ).

% Compl_eq
thf(fact_7187_Compl__eq,axiom,
    ( uminus1532241313380277803et_int
    = ( ^ [A4: set_int] :
          ( collect_int
          @ ^ [X: int] :
              ~ ( member_int @ X @ A4 ) ) ) ) ).

% Compl_eq
thf(fact_7188_dbl__dec__def,axiom,
    ( neg_nu6511756317524482435omplex
    = ( ^ [X: complex] : ( minus_minus_complex @ ( plus_plus_complex @ X @ X ) @ one_one_complex ) ) ) ).

% dbl_dec_def
thf(fact_7189_dbl__dec__def,axiom,
    ( neg_nu6075765906172075777c_real
    = ( ^ [X: real] : ( minus_minus_real @ ( plus_plus_real @ X @ X ) @ one_one_real ) ) ) ).

% dbl_dec_def
thf(fact_7190_dbl__dec__def,axiom,
    ( neg_nu3179335615603231917ec_rat
    = ( ^ [X: rat] : ( minus_minus_rat @ ( plus_plus_rat @ X @ X ) @ one_one_rat ) ) ) ).

% dbl_dec_def
thf(fact_7191_dbl__dec__def,axiom,
    ( neg_nu3811975205180677377ec_int
    = ( ^ [X: int] : ( minus_minus_int @ ( plus_plus_int @ X @ X ) @ one_one_int ) ) ) ).

% dbl_dec_def
thf(fact_7192_ln__one__minus__pos__lower__bound,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ( ord_less_eq_real @ X2 @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ord_less_eq_real @ ( minus_minus_real @ ( uminus_uminus_real @ X2 ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( ln_ln_real @ ( minus_minus_real @ one_one_real @ X2 ) ) ) ) ) ).

% ln_one_minus_pos_lower_bound
thf(fact_7193_of__int__code__if,axiom,
    ( ring_1_of_int_int
    = ( ^ [K2: int] :
          ( if_int @ ( K2 = zero_zero_int ) @ zero_zero_int
          @ ( if_int @ ( ord_less_int @ K2 @ zero_zero_int ) @ ( uminus_uminus_int @ ( ring_1_of_int_int @ ( uminus_uminus_int @ K2 ) ) )
            @ ( if_int
              @ ( ( modulo_modulo_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
                = zero_zero_int )
              @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( ring_1_of_int_int @ ( divide_divide_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) )
              @ ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( ring_1_of_int_int @ ( divide_divide_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) @ one_one_int ) ) ) ) ) ) ).

% of_int_code_if
thf(fact_7194_of__int__code__if,axiom,
    ( ring_1_of_int_real
    = ( ^ [K2: int] :
          ( if_real @ ( K2 = zero_zero_int ) @ zero_zero_real
          @ ( if_real @ ( ord_less_int @ K2 @ zero_zero_int ) @ ( uminus_uminus_real @ ( ring_1_of_int_real @ ( uminus_uminus_int @ K2 ) ) )
            @ ( if_real
              @ ( ( modulo_modulo_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
                = zero_zero_int )
              @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( ring_1_of_int_real @ ( divide_divide_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) )
              @ ( plus_plus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( ring_1_of_int_real @ ( divide_divide_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) @ one_one_real ) ) ) ) ) ) ).

% of_int_code_if
thf(fact_7195_of__int__code__if,axiom,
    ( ring_17405671764205052669omplex
    = ( ^ [K2: int] :
          ( if_complex @ ( K2 = zero_zero_int ) @ zero_zero_complex
          @ ( if_complex @ ( ord_less_int @ K2 @ zero_zero_int ) @ ( uminus1482373934393186551omplex @ ( ring_17405671764205052669omplex @ ( uminus_uminus_int @ K2 ) ) )
            @ ( if_complex
              @ ( ( modulo_modulo_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
                = zero_zero_int )
              @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( ring_17405671764205052669omplex @ ( divide_divide_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) )
              @ ( plus_plus_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( ring_17405671764205052669omplex @ ( divide_divide_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) @ one_one_complex ) ) ) ) ) ) ).

% of_int_code_if
thf(fact_7196_of__int__code__if,axiom,
    ( ring_1_of_int_rat
    = ( ^ [K2: int] :
          ( if_rat @ ( K2 = zero_zero_int ) @ zero_zero_rat
          @ ( if_rat @ ( ord_less_int @ K2 @ zero_zero_int ) @ ( uminus_uminus_rat @ ( ring_1_of_int_rat @ ( uminus_uminus_int @ K2 ) ) )
            @ ( if_rat
              @ ( ( modulo_modulo_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
                = zero_zero_int )
              @ ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ ( ring_1_of_int_rat @ ( divide_divide_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) )
              @ ( plus_plus_rat @ ( times_times_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) @ ( ring_1_of_int_rat @ ( divide_divide_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) @ one_one_rat ) ) ) ) ) ) ).

% of_int_code_if
thf(fact_7197_of__int__code__if,axiom,
    ( ring_18347121197199848620nteger
    = ( ^ [K2: int] :
          ( if_Code_integer @ ( K2 = zero_zero_int ) @ zero_z3403309356797280102nteger
          @ ( if_Code_integer @ ( ord_less_int @ K2 @ zero_zero_int ) @ ( uminus1351360451143612070nteger @ ( ring_18347121197199848620nteger @ ( uminus_uminus_int @ K2 ) ) )
            @ ( if_Code_integer
              @ ( ( modulo_modulo_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
                = zero_zero_int )
              @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( ring_18347121197199848620nteger @ ( divide_divide_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) )
              @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( ring_18347121197199848620nteger @ ( divide_divide_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) @ one_one_Code_integer ) ) ) ) ) ) ).

% of_int_code_if
thf(fact_7198_vebt__buildup_Opelims,axiom,
    ! [X2: nat,Y2: vEBT_VEBT] :
      ( ( ( vEBT_vebt_buildup @ X2 )
        = Y2 )
     => ( ( accp_nat @ vEBT_v4011308405150292612up_rel @ X2 )
       => ( ( ( X2 = zero_zero_nat )
           => ( ( Y2
                = ( vEBT_Leaf @ $false @ $false ) )
             => ~ ( accp_nat @ vEBT_v4011308405150292612up_rel @ zero_zero_nat ) ) )
         => ( ( ( X2
                = ( suc @ zero_zero_nat ) )
             => ( ( Y2
                  = ( vEBT_Leaf @ $false @ $false ) )
               => ~ ( accp_nat @ vEBT_v4011308405150292612up_rel @ ( suc @ zero_zero_nat ) ) ) )
           => ~ ! [Va3: nat] :
                  ( ( X2
                    = ( suc @ ( suc @ Va3 ) ) )
                 => ( ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ Va3 ) ) )
                       => ( Y2
                          = ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ Va3 ) ) @ ( replicate_VEBT_VEBT @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) )
                      & ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ Va3 ) ) )
                       => ( Y2
                          = ( vEBT_Node @ none_P5556105721700978146at_nat @ ( suc @ ( suc @ Va3 ) ) @ ( replicate_VEBT_VEBT @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( vEBT_vebt_buildup @ ( suc @ ( divide_divide_nat @ ( suc @ ( suc @ Va3 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) )
                   => ~ ( accp_nat @ vEBT_v4011308405150292612up_rel @ ( suc @ ( suc @ Va3 ) ) ) ) ) ) ) ) ) ).

% vebt_buildup.pelims
thf(fact_7199_flip__bit__0,axiom,
    ! [A: code_integer] :
      ( ( bit_se1345352211410354436nteger @ zero_zero_nat @ A )
      = ( plus_p5714425477246183910nteger @ ( zero_n356916108424825756nteger @ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) ) @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( divide6298287555418463151nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ).

% flip_bit_0
thf(fact_7200_flip__bit__0,axiom,
    ! [A: int] :
      ( ( bit_se2159334234014336723it_int @ zero_zero_nat @ A )
      = ( plus_plus_int @ ( zero_n2684676970156552555ol_int @ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ).

% flip_bit_0
thf(fact_7201_flip__bit__0,axiom,
    ! [A: nat] :
      ( ( bit_se2161824704523386999it_nat @ zero_zero_nat @ A )
      = ( plus_plus_nat @ ( zero_n2687167440665602831ol_nat @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% flip_bit_0
thf(fact_7202_int__ge__less__than2__def,axiom,
    ( int_ge_less_than2
    = ( ^ [D2: int] :
          ( collec213857154873943460nt_int
          @ ( produc4947309494688390418_int_o
            @ ^ [Z6: int,Z4: int] :
                ( ( ord_less_eq_int @ D2 @ Z4 )
                & ( ord_less_int @ Z6 @ Z4 ) ) ) ) ) ) ).

% int_ge_less_than2_def
thf(fact_7203_int__ge__less__than__def,axiom,
    ( int_ge_less_than
    = ( ^ [D2: int] :
          ( collec213857154873943460nt_int
          @ ( produc4947309494688390418_int_o
            @ ^ [Z6: int,Z4: int] :
                ( ( ord_less_eq_int @ D2 @ Z6 )
                & ( ord_less_int @ Z6 @ Z4 ) ) ) ) ) ) ).

% int_ge_less_than_def
thf(fact_7204_of__bool__less__eq__iff,axiom,
    ! [P: $o,Q: $o] :
      ( ( ord_less_eq_rat @ ( zero_n2052037380579107095ol_rat @ P ) @ ( zero_n2052037380579107095ol_rat @ Q ) )
      = ( P
       => Q ) ) ).

% of_bool_less_eq_iff
thf(fact_7205_of__bool__less__eq__iff,axiom,
    ! [P: $o,Q: $o] :
      ( ( ord_less_eq_nat @ ( zero_n2687167440665602831ol_nat @ P ) @ ( zero_n2687167440665602831ol_nat @ Q ) )
      = ( P
       => Q ) ) ).

% of_bool_less_eq_iff
thf(fact_7206_of__bool__less__eq__iff,axiom,
    ! [P: $o,Q: $o] :
      ( ( ord_less_eq_int @ ( zero_n2684676970156552555ol_int @ P ) @ ( zero_n2684676970156552555ol_int @ Q ) )
      = ( P
       => Q ) ) ).

% of_bool_less_eq_iff
thf(fact_7207_of__bool__less__eq__iff,axiom,
    ! [P: $o,Q: $o] :
      ( ( ord_le3102999989581377725nteger @ ( zero_n356916108424825756nteger @ P ) @ ( zero_n356916108424825756nteger @ Q ) )
      = ( P
       => Q ) ) ).

% of_bool_less_eq_iff
thf(fact_7208_of__bool__eq__0__iff,axiom,
    ! [P: $o] :
      ( ( ( zero_n1201886186963655149omplex @ P )
        = zero_zero_complex )
      = ~ P ) ).

% of_bool_eq_0_iff
thf(fact_7209_of__bool__eq__0__iff,axiom,
    ! [P: $o] :
      ( ( ( zero_n3304061248610475627l_real @ P )
        = zero_zero_real )
      = ~ P ) ).

% of_bool_eq_0_iff
thf(fact_7210_of__bool__eq__0__iff,axiom,
    ! [P: $o] :
      ( ( ( zero_n2052037380579107095ol_rat @ P )
        = zero_zero_rat )
      = ~ P ) ).

% of_bool_eq_0_iff
thf(fact_7211_of__bool__eq__0__iff,axiom,
    ! [P: $o] :
      ( ( ( zero_n2687167440665602831ol_nat @ P )
        = zero_zero_nat )
      = ~ P ) ).

% of_bool_eq_0_iff
thf(fact_7212_of__bool__eq__0__iff,axiom,
    ! [P: $o] :
      ( ( ( zero_n2684676970156552555ol_int @ P )
        = zero_zero_int )
      = ~ P ) ).

% of_bool_eq_0_iff
thf(fact_7213_of__bool__eq__0__iff,axiom,
    ! [P: $o] :
      ( ( ( zero_n356916108424825756nteger @ P )
        = zero_z3403309356797280102nteger )
      = ~ P ) ).

% of_bool_eq_0_iff
thf(fact_7214_of__bool__eq_I1_J,axiom,
    ( ( zero_n1201886186963655149omplex @ $false )
    = zero_zero_complex ) ).

% of_bool_eq(1)
thf(fact_7215_of__bool__eq_I1_J,axiom,
    ( ( zero_n3304061248610475627l_real @ $false )
    = zero_zero_real ) ).

% of_bool_eq(1)
thf(fact_7216_of__bool__eq_I1_J,axiom,
    ( ( zero_n2052037380579107095ol_rat @ $false )
    = zero_zero_rat ) ).

% of_bool_eq(1)
thf(fact_7217_of__bool__eq_I1_J,axiom,
    ( ( zero_n2687167440665602831ol_nat @ $false )
    = zero_zero_nat ) ).

% of_bool_eq(1)
thf(fact_7218_of__bool__eq_I1_J,axiom,
    ( ( zero_n2684676970156552555ol_int @ $false )
    = zero_zero_int ) ).

% of_bool_eq(1)
thf(fact_7219_of__bool__eq_I1_J,axiom,
    ( ( zero_n356916108424825756nteger @ $false )
    = zero_z3403309356797280102nteger ) ).

% of_bool_eq(1)
thf(fact_7220_of__bool__less__iff,axiom,
    ! [P: $o,Q: $o] :
      ( ( ord_less_real @ ( zero_n3304061248610475627l_real @ P ) @ ( zero_n3304061248610475627l_real @ Q ) )
      = ( ~ P
        & Q ) ) ).

% of_bool_less_iff
thf(fact_7221_of__bool__less__iff,axiom,
    ! [P: $o,Q: $o] :
      ( ( ord_less_rat @ ( zero_n2052037380579107095ol_rat @ P ) @ ( zero_n2052037380579107095ol_rat @ Q ) )
      = ( ~ P
        & Q ) ) ).

% of_bool_less_iff
thf(fact_7222_of__bool__less__iff,axiom,
    ! [P: $o,Q: $o] :
      ( ( ord_less_nat @ ( zero_n2687167440665602831ol_nat @ P ) @ ( zero_n2687167440665602831ol_nat @ Q ) )
      = ( ~ P
        & Q ) ) ).

% of_bool_less_iff
thf(fact_7223_of__bool__less__iff,axiom,
    ! [P: $o,Q: $o] :
      ( ( ord_less_int @ ( zero_n2684676970156552555ol_int @ P ) @ ( zero_n2684676970156552555ol_int @ Q ) )
      = ( ~ P
        & Q ) ) ).

% of_bool_less_iff
thf(fact_7224_of__bool__less__iff,axiom,
    ! [P: $o,Q: $o] :
      ( ( ord_le6747313008572928689nteger @ ( zero_n356916108424825756nteger @ P ) @ ( zero_n356916108424825756nteger @ Q ) )
      = ( ~ P
        & Q ) ) ).

% of_bool_less_iff
thf(fact_7225_of__bool__eq__1__iff,axiom,
    ! [P: $o] :
      ( ( ( zero_n1201886186963655149omplex @ P )
        = one_one_complex )
      = P ) ).

% of_bool_eq_1_iff
thf(fact_7226_of__bool__eq__1__iff,axiom,
    ! [P: $o] :
      ( ( ( zero_n3304061248610475627l_real @ P )
        = one_one_real )
      = P ) ).

% of_bool_eq_1_iff
thf(fact_7227_of__bool__eq__1__iff,axiom,
    ! [P: $o] :
      ( ( ( zero_n2052037380579107095ol_rat @ P )
        = one_one_rat )
      = P ) ).

% of_bool_eq_1_iff
thf(fact_7228_of__bool__eq__1__iff,axiom,
    ! [P: $o] :
      ( ( ( zero_n2687167440665602831ol_nat @ P )
        = one_one_nat )
      = P ) ).

% of_bool_eq_1_iff
thf(fact_7229_of__bool__eq__1__iff,axiom,
    ! [P: $o] :
      ( ( ( zero_n2684676970156552555ol_int @ P )
        = one_one_int )
      = P ) ).

% of_bool_eq_1_iff
thf(fact_7230_of__bool__eq__1__iff,axiom,
    ! [P: $o] :
      ( ( ( zero_n356916108424825756nteger @ P )
        = one_one_Code_integer )
      = P ) ).

% of_bool_eq_1_iff
thf(fact_7231_of__bool__eq_I2_J,axiom,
    ( ( zero_n1201886186963655149omplex @ $true )
    = one_one_complex ) ).

% of_bool_eq(2)
thf(fact_7232_of__bool__eq_I2_J,axiom,
    ( ( zero_n3304061248610475627l_real @ $true )
    = one_one_real ) ).

% of_bool_eq(2)
thf(fact_7233_of__bool__eq_I2_J,axiom,
    ( ( zero_n2052037380579107095ol_rat @ $true )
    = one_one_rat ) ).

% of_bool_eq(2)
thf(fact_7234_of__bool__eq_I2_J,axiom,
    ( ( zero_n2687167440665602831ol_nat @ $true )
    = one_one_nat ) ).

% of_bool_eq(2)
thf(fact_7235_of__bool__eq_I2_J,axiom,
    ( ( zero_n2684676970156552555ol_int @ $true )
    = one_one_int ) ).

% of_bool_eq(2)
thf(fact_7236_of__bool__eq_I2_J,axiom,
    ( ( zero_n356916108424825756nteger @ $true )
    = one_one_Code_integer ) ).

% of_bool_eq(2)
thf(fact_7237_of__bool__or__iff,axiom,
    ! [P: $o,Q: $o] :
      ( ( zero_n2687167440665602831ol_nat
        @ ( P
          | Q ) )
      = ( ord_max_nat @ ( zero_n2687167440665602831ol_nat @ P ) @ ( zero_n2687167440665602831ol_nat @ Q ) ) ) ).

% of_bool_or_iff
thf(fact_7238_of__bool__or__iff,axiom,
    ! [P: $o,Q: $o] :
      ( ( zero_n2684676970156552555ol_int
        @ ( P
          | Q ) )
      = ( ord_max_int @ ( zero_n2684676970156552555ol_int @ P ) @ ( zero_n2684676970156552555ol_int @ Q ) ) ) ).

% of_bool_or_iff
thf(fact_7239_of__bool__or__iff,axiom,
    ! [P: $o,Q: $o] :
      ( ( zero_n356916108424825756nteger
        @ ( P
          | Q ) )
      = ( ord_max_Code_integer @ ( zero_n356916108424825756nteger @ P ) @ ( zero_n356916108424825756nteger @ Q ) ) ) ).

% of_bool_or_iff
thf(fact_7240_zero__less__of__bool__iff,axiom,
    ! [P: $o] :
      ( ( ord_less_real @ zero_zero_real @ ( zero_n3304061248610475627l_real @ P ) )
      = P ) ).

% zero_less_of_bool_iff
thf(fact_7241_zero__less__of__bool__iff,axiom,
    ! [P: $o] :
      ( ( ord_less_rat @ zero_zero_rat @ ( zero_n2052037380579107095ol_rat @ P ) )
      = P ) ).

% zero_less_of_bool_iff
thf(fact_7242_zero__less__of__bool__iff,axiom,
    ! [P: $o] :
      ( ( ord_less_nat @ zero_zero_nat @ ( zero_n2687167440665602831ol_nat @ P ) )
      = P ) ).

% zero_less_of_bool_iff
thf(fact_7243_zero__less__of__bool__iff,axiom,
    ! [P: $o] :
      ( ( ord_less_int @ zero_zero_int @ ( zero_n2684676970156552555ol_int @ P ) )
      = P ) ).

% zero_less_of_bool_iff
thf(fact_7244_zero__less__of__bool__iff,axiom,
    ! [P: $o] :
      ( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ ( zero_n356916108424825756nteger @ P ) )
      = P ) ).

% zero_less_of_bool_iff
thf(fact_7245_of__bool__less__one__iff,axiom,
    ! [P: $o] :
      ( ( ord_less_real @ ( zero_n3304061248610475627l_real @ P ) @ one_one_real )
      = ~ P ) ).

% of_bool_less_one_iff
thf(fact_7246_of__bool__less__one__iff,axiom,
    ! [P: $o] :
      ( ( ord_less_rat @ ( zero_n2052037380579107095ol_rat @ P ) @ one_one_rat )
      = ~ P ) ).

% of_bool_less_one_iff
thf(fact_7247_of__bool__less__one__iff,axiom,
    ! [P: $o] :
      ( ( ord_less_nat @ ( zero_n2687167440665602831ol_nat @ P ) @ one_one_nat )
      = ~ P ) ).

% of_bool_less_one_iff
thf(fact_7248_of__bool__less__one__iff,axiom,
    ! [P: $o] :
      ( ( ord_less_int @ ( zero_n2684676970156552555ol_int @ P ) @ one_one_int )
      = ~ P ) ).

% of_bool_less_one_iff
thf(fact_7249_of__bool__less__one__iff,axiom,
    ! [P: $o] :
      ( ( ord_le6747313008572928689nteger @ ( zero_n356916108424825756nteger @ P ) @ one_one_Code_integer )
      = ~ P ) ).

% of_bool_less_one_iff
thf(fact_7250_of__int__eq__numeral__iff,axiom,
    ! [Z: int,N: num] :
      ( ( ( ring_17405671764205052669omplex @ Z )
        = ( numera6690914467698888265omplex @ N ) )
      = ( Z
        = ( numeral_numeral_int @ N ) ) ) ).

% of_int_eq_numeral_iff
thf(fact_7251_of__int__eq__numeral__iff,axiom,
    ! [Z: int,N: num] :
      ( ( ( ring_1_of_int_real @ Z )
        = ( numeral_numeral_real @ N ) )
      = ( Z
        = ( numeral_numeral_int @ N ) ) ) ).

% of_int_eq_numeral_iff
thf(fact_7252_of__int__eq__numeral__iff,axiom,
    ! [Z: int,N: num] :
      ( ( ( ring_1_of_int_rat @ Z )
        = ( numeral_numeral_rat @ N ) )
      = ( Z
        = ( numeral_numeral_int @ N ) ) ) ).

% of_int_eq_numeral_iff
thf(fact_7253_of__int__eq__numeral__iff,axiom,
    ! [Z: int,N: num] :
      ( ( ( ring_1_of_int_int @ Z )
        = ( numeral_numeral_int @ N ) )
      = ( Z
        = ( numeral_numeral_int @ N ) ) ) ).

% of_int_eq_numeral_iff
thf(fact_7254_of__int__numeral,axiom,
    ! [K: num] :
      ( ( ring_17405671764205052669omplex @ ( numeral_numeral_int @ K ) )
      = ( numera6690914467698888265omplex @ K ) ) ).

% of_int_numeral
thf(fact_7255_of__int__numeral,axiom,
    ! [K: num] :
      ( ( ring_1_of_int_real @ ( numeral_numeral_int @ K ) )
      = ( numeral_numeral_real @ K ) ) ).

% of_int_numeral
thf(fact_7256_of__int__numeral,axiom,
    ! [K: num] :
      ( ( ring_1_of_int_rat @ ( numeral_numeral_int @ K ) )
      = ( numeral_numeral_rat @ K ) ) ).

% of_int_numeral
thf(fact_7257_of__int__numeral,axiom,
    ! [K: num] :
      ( ( ring_1_of_int_int @ ( numeral_numeral_int @ K ) )
      = ( numeral_numeral_int @ K ) ) ).

% of_int_numeral
thf(fact_7258_of__int__le__iff,axiom,
    ! [W: int,Z: int] :
      ( ( ord_less_eq_real @ ( ring_1_of_int_real @ W ) @ ( ring_1_of_int_real @ Z ) )
      = ( ord_less_eq_int @ W @ Z ) ) ).

% of_int_le_iff
thf(fact_7259_of__int__le__iff,axiom,
    ! [W: int,Z: int] :
      ( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ W ) @ ( ring_1_of_int_rat @ Z ) )
      = ( ord_less_eq_int @ W @ Z ) ) ).

% of_int_le_iff
thf(fact_7260_of__int__le__iff,axiom,
    ! [W: int,Z: int] :
      ( ( ord_less_eq_int @ ( ring_1_of_int_int @ W ) @ ( ring_1_of_int_int @ Z ) )
      = ( ord_less_eq_int @ W @ Z ) ) ).

% of_int_le_iff
thf(fact_7261_of__int__less__iff,axiom,
    ! [W: int,Z: int] :
      ( ( ord_less_real @ ( ring_1_of_int_real @ W ) @ ( ring_1_of_int_real @ Z ) )
      = ( ord_less_int @ W @ Z ) ) ).

% of_int_less_iff
thf(fact_7262_of__int__less__iff,axiom,
    ! [W: int,Z: int] :
      ( ( ord_less_rat @ ( ring_1_of_int_rat @ W ) @ ( ring_1_of_int_rat @ Z ) )
      = ( ord_less_int @ W @ Z ) ) ).

% of_int_less_iff
thf(fact_7263_of__int__less__iff,axiom,
    ! [W: int,Z: int] :
      ( ( ord_less_int @ ( ring_1_of_int_int @ W ) @ ( ring_1_of_int_int @ Z ) )
      = ( ord_less_int @ W @ Z ) ) ).

% of_int_less_iff
thf(fact_7264_ln__one,axiom,
    ( ( ln_ln_real @ one_one_real )
    = zero_zero_real ) ).

% ln_one
thf(fact_7265_of__bool__not__iff,axiom,
    ! [P: $o] :
      ( ( zero_n1201886186963655149omplex @ ~ P )
      = ( minus_minus_complex @ one_one_complex @ ( zero_n1201886186963655149omplex @ P ) ) ) ).

% of_bool_not_iff
thf(fact_7266_of__bool__not__iff,axiom,
    ! [P: $o] :
      ( ( zero_n3304061248610475627l_real @ ~ P )
      = ( minus_minus_real @ one_one_real @ ( zero_n3304061248610475627l_real @ P ) ) ) ).

% of_bool_not_iff
thf(fact_7267_of__bool__not__iff,axiom,
    ! [P: $o] :
      ( ( zero_n2052037380579107095ol_rat @ ~ P )
      = ( minus_minus_rat @ one_one_rat @ ( zero_n2052037380579107095ol_rat @ P ) ) ) ).

% of_bool_not_iff
thf(fact_7268_of__bool__not__iff,axiom,
    ! [P: $o] :
      ( ( zero_n2684676970156552555ol_int @ ~ P )
      = ( minus_minus_int @ one_one_int @ ( zero_n2684676970156552555ol_int @ P ) ) ) ).

% of_bool_not_iff
thf(fact_7269_of__bool__not__iff,axiom,
    ! [P: $o] :
      ( ( zero_n356916108424825756nteger @ ~ P )
      = ( minus_8373710615458151222nteger @ one_one_Code_integer @ ( zero_n356916108424825756nteger @ P ) ) ) ).

% of_bool_not_iff
thf(fact_7270_of__int__eq__1__iff,axiom,
    ! [Z: int] :
      ( ( ( ring_17405671764205052669omplex @ Z )
        = one_one_complex )
      = ( Z = one_one_int ) ) ).

% of_int_eq_1_iff
thf(fact_7271_of__int__eq__1__iff,axiom,
    ! [Z: int] :
      ( ( ( ring_1_of_int_int @ Z )
        = one_one_int )
      = ( Z = one_one_int ) ) ).

% of_int_eq_1_iff
thf(fact_7272_of__int__eq__1__iff,axiom,
    ! [Z: int] :
      ( ( ( ring_1_of_int_real @ Z )
        = one_one_real )
      = ( Z = one_one_int ) ) ).

% of_int_eq_1_iff
thf(fact_7273_of__int__eq__1__iff,axiom,
    ! [Z: int] :
      ( ( ( ring_1_of_int_rat @ Z )
        = one_one_rat )
      = ( Z = one_one_int ) ) ).

% of_int_eq_1_iff
thf(fact_7274_of__int__1,axiom,
    ( ( ring_17405671764205052669omplex @ one_one_int )
    = one_one_complex ) ).

% of_int_1
thf(fact_7275_of__int__1,axiom,
    ( ( ring_1_of_int_int @ one_one_int )
    = one_one_int ) ).

% of_int_1
thf(fact_7276_of__int__1,axiom,
    ( ( ring_1_of_int_real @ one_one_int )
    = one_one_real ) ).

% of_int_1
thf(fact_7277_of__int__1,axiom,
    ( ( ring_1_of_int_rat @ one_one_int )
    = one_one_rat ) ).

% of_int_1
thf(fact_7278_of__int__mult,axiom,
    ! [W: int,Z: int] :
      ( ( ring_1_of_int_real @ ( times_times_int @ W @ Z ) )
      = ( times_times_real @ ( ring_1_of_int_real @ W ) @ ( ring_1_of_int_real @ Z ) ) ) ).

% of_int_mult
thf(fact_7279_of__int__mult,axiom,
    ! [W: int,Z: int] :
      ( ( ring_1_of_int_rat @ ( times_times_int @ W @ Z ) )
      = ( times_times_rat @ ( ring_1_of_int_rat @ W ) @ ( ring_1_of_int_rat @ Z ) ) ) ).

% of_int_mult
thf(fact_7280_of__int__mult,axiom,
    ! [W: int,Z: int] :
      ( ( ring_1_of_int_int @ ( times_times_int @ W @ Z ) )
      = ( times_times_int @ ( ring_1_of_int_int @ W ) @ ( ring_1_of_int_int @ Z ) ) ) ).

% of_int_mult
thf(fact_7281_Suc__0__mod__eq,axiom,
    ! [N: nat] :
      ( ( modulo_modulo_nat @ ( suc @ zero_zero_nat ) @ N )
      = ( zero_n2687167440665602831ol_nat
        @ ( N
         != ( suc @ zero_zero_nat ) ) ) ) ).

% Suc_0_mod_eq
thf(fact_7282_of__int__add,axiom,
    ! [W: int,Z: int] :
      ( ( ring_1_of_int_int @ ( plus_plus_int @ W @ Z ) )
      = ( plus_plus_int @ ( ring_1_of_int_int @ W ) @ ( ring_1_of_int_int @ Z ) ) ) ).

% of_int_add
thf(fact_7283_of__int__add,axiom,
    ! [W: int,Z: int] :
      ( ( ring_1_of_int_real @ ( plus_plus_int @ W @ Z ) )
      = ( plus_plus_real @ ( ring_1_of_int_real @ W ) @ ( ring_1_of_int_real @ Z ) ) ) ).

% of_int_add
thf(fact_7284_of__int__add,axiom,
    ! [W: int,Z: int] :
      ( ( ring_1_of_int_rat @ ( plus_plus_int @ W @ Z ) )
      = ( plus_plus_rat @ ( ring_1_of_int_rat @ W ) @ ( ring_1_of_int_rat @ Z ) ) ) ).

% of_int_add
thf(fact_7285_ln__inj__iff,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( ( ord_less_real @ zero_zero_real @ Y2 )
       => ( ( ( ln_ln_real @ X2 )
            = ( ln_ln_real @ Y2 ) )
          = ( X2 = Y2 ) ) ) ) ).

% ln_inj_iff
thf(fact_7286_ln__less__cancel__iff,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( ( ord_less_real @ zero_zero_real @ Y2 )
       => ( ( ord_less_real @ ( ln_ln_real @ X2 ) @ ( ln_ln_real @ Y2 ) )
          = ( ord_less_real @ X2 @ Y2 ) ) ) ) ).

% ln_less_cancel_iff
thf(fact_7287_of__int__power,axiom,
    ! [Z: int,N: nat] :
      ( ( ring_1_of_int_rat @ ( power_power_int @ Z @ N ) )
      = ( power_power_rat @ ( ring_1_of_int_rat @ Z ) @ N ) ) ).

% of_int_power
thf(fact_7288_of__int__power,axiom,
    ! [Z: int,N: nat] :
      ( ( ring_1_of_int_real @ ( power_power_int @ Z @ N ) )
      = ( power_power_real @ ( ring_1_of_int_real @ Z ) @ N ) ) ).

% of_int_power
thf(fact_7289_of__int__power,axiom,
    ! [Z: int,N: nat] :
      ( ( ring_17405671764205052669omplex @ ( power_power_int @ Z @ N ) )
      = ( power_power_complex @ ( ring_17405671764205052669omplex @ Z ) @ N ) ) ).

% of_int_power
thf(fact_7290_of__int__power,axiom,
    ! [Z: int,N: nat] :
      ( ( ring_1_of_int_int @ ( power_power_int @ Z @ N ) )
      = ( power_power_int @ ( ring_1_of_int_int @ Z ) @ N ) ) ).

% of_int_power
thf(fact_7291_of__int__eq__of__int__power__cancel__iff,axiom,
    ! [B: int,W: nat,X2: int] :
      ( ( ( power_power_rat @ ( ring_1_of_int_rat @ B ) @ W )
        = ( ring_1_of_int_rat @ X2 ) )
      = ( ( power_power_int @ B @ W )
        = X2 ) ) ).

% of_int_eq_of_int_power_cancel_iff
thf(fact_7292_of__int__eq__of__int__power__cancel__iff,axiom,
    ! [B: int,W: nat,X2: int] :
      ( ( ( power_power_real @ ( ring_1_of_int_real @ B ) @ W )
        = ( ring_1_of_int_real @ X2 ) )
      = ( ( power_power_int @ B @ W )
        = X2 ) ) ).

% of_int_eq_of_int_power_cancel_iff
thf(fact_7293_of__int__eq__of__int__power__cancel__iff,axiom,
    ! [B: int,W: nat,X2: int] :
      ( ( ( power_power_complex @ ( ring_17405671764205052669omplex @ B ) @ W )
        = ( ring_17405671764205052669omplex @ X2 ) )
      = ( ( power_power_int @ B @ W )
        = X2 ) ) ).

% of_int_eq_of_int_power_cancel_iff
thf(fact_7294_of__int__eq__of__int__power__cancel__iff,axiom,
    ! [B: int,W: nat,X2: int] :
      ( ( ( power_power_int @ ( ring_1_of_int_int @ B ) @ W )
        = ( ring_1_of_int_int @ X2 ) )
      = ( ( power_power_int @ B @ W )
        = X2 ) ) ).

% of_int_eq_of_int_power_cancel_iff
thf(fact_7295_of__int__power__eq__of__int__cancel__iff,axiom,
    ! [X2: int,B: int,W: nat] :
      ( ( ( ring_1_of_int_rat @ X2 )
        = ( power_power_rat @ ( ring_1_of_int_rat @ B ) @ W ) )
      = ( X2
        = ( power_power_int @ B @ W ) ) ) ).

% of_int_power_eq_of_int_cancel_iff
thf(fact_7296_of__int__power__eq__of__int__cancel__iff,axiom,
    ! [X2: int,B: int,W: nat] :
      ( ( ( ring_1_of_int_real @ X2 )
        = ( power_power_real @ ( ring_1_of_int_real @ B ) @ W ) )
      = ( X2
        = ( power_power_int @ B @ W ) ) ) ).

% of_int_power_eq_of_int_cancel_iff
thf(fact_7297_of__int__power__eq__of__int__cancel__iff,axiom,
    ! [X2: int,B: int,W: nat] :
      ( ( ( ring_17405671764205052669omplex @ X2 )
        = ( power_power_complex @ ( ring_17405671764205052669omplex @ B ) @ W ) )
      = ( X2
        = ( power_power_int @ B @ W ) ) ) ).

% of_int_power_eq_of_int_cancel_iff
thf(fact_7298_of__int__power__eq__of__int__cancel__iff,axiom,
    ! [X2: int,B: int,W: nat] :
      ( ( ( ring_1_of_int_int @ X2 )
        = ( power_power_int @ ( ring_1_of_int_int @ B ) @ W ) )
      = ( X2
        = ( power_power_int @ B @ W ) ) ) ).

% of_int_power_eq_of_int_cancel_iff
thf(fact_7299_ln__le__cancel__iff,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( ( ord_less_real @ zero_zero_real @ Y2 )
       => ( ( ord_less_eq_real @ ( ln_ln_real @ X2 ) @ ( ln_ln_real @ Y2 ) )
          = ( ord_less_eq_real @ X2 @ Y2 ) ) ) ) ).

% ln_le_cancel_iff
thf(fact_7300_ln__less__zero__iff,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( ( ord_less_real @ ( ln_ln_real @ X2 ) @ zero_zero_real )
        = ( ord_less_real @ X2 @ one_one_real ) ) ) ).

% ln_less_zero_iff
thf(fact_7301_ln__gt__zero__iff,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( ( ord_less_real @ zero_zero_real @ ( ln_ln_real @ X2 ) )
        = ( ord_less_real @ one_one_real @ X2 ) ) ) ).

% ln_gt_zero_iff
thf(fact_7302_ln__eq__zero__iff,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( ( ( ln_ln_real @ X2 )
          = zero_zero_real )
        = ( X2 = one_one_real ) ) ) ).

% ln_eq_zero_iff
thf(fact_7303_Divides_Oadjust__div__eq,axiom,
    ! [Q2: int,R2: int] :
      ( ( adjust_div @ ( product_Pair_int_int @ Q2 @ R2 ) )
      = ( plus_plus_int @ Q2 @ ( zero_n2684676970156552555ol_int @ ( R2 != zero_zero_int ) ) ) ) ).

% Divides.adjust_div_eq
thf(fact_7304_of__int__le__0__iff,axiom,
    ! [Z: int] :
      ( ( ord_less_eq_real @ ( ring_1_of_int_real @ Z ) @ zero_zero_real )
      = ( ord_less_eq_int @ Z @ zero_zero_int ) ) ).

% of_int_le_0_iff
thf(fact_7305_of__int__le__0__iff,axiom,
    ! [Z: int] :
      ( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ Z ) @ zero_zero_rat )
      = ( ord_less_eq_int @ Z @ zero_zero_int ) ) ).

% of_int_le_0_iff
thf(fact_7306_of__int__le__0__iff,axiom,
    ! [Z: int] :
      ( ( ord_less_eq_int @ ( ring_1_of_int_int @ Z ) @ zero_zero_int )
      = ( ord_less_eq_int @ Z @ zero_zero_int ) ) ).

% of_int_le_0_iff
thf(fact_7307_of__int__0__le__iff,axiom,
    ! [Z: int] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( ring_1_of_int_real @ Z ) )
      = ( ord_less_eq_int @ zero_zero_int @ Z ) ) ).

% of_int_0_le_iff
thf(fact_7308_of__int__0__le__iff,axiom,
    ! [Z: int] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ ( ring_1_of_int_rat @ Z ) )
      = ( ord_less_eq_int @ zero_zero_int @ Z ) ) ).

% of_int_0_le_iff
thf(fact_7309_of__int__0__le__iff,axiom,
    ! [Z: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( ring_1_of_int_int @ Z ) )
      = ( ord_less_eq_int @ zero_zero_int @ Z ) ) ).

% of_int_0_le_iff
thf(fact_7310_of__int__less__0__iff,axiom,
    ! [Z: int] :
      ( ( ord_less_real @ ( ring_1_of_int_real @ Z ) @ zero_zero_real )
      = ( ord_less_int @ Z @ zero_zero_int ) ) ).

% of_int_less_0_iff
thf(fact_7311_of__int__less__0__iff,axiom,
    ! [Z: int] :
      ( ( ord_less_rat @ ( ring_1_of_int_rat @ Z ) @ zero_zero_rat )
      = ( ord_less_int @ Z @ zero_zero_int ) ) ).

% of_int_less_0_iff
thf(fact_7312_of__int__less__0__iff,axiom,
    ! [Z: int] :
      ( ( ord_less_int @ ( ring_1_of_int_int @ Z ) @ zero_zero_int )
      = ( ord_less_int @ Z @ zero_zero_int ) ) ).

% of_int_less_0_iff
thf(fact_7313_of__int__0__less__iff,axiom,
    ! [Z: int] :
      ( ( ord_less_real @ zero_zero_real @ ( ring_1_of_int_real @ Z ) )
      = ( ord_less_int @ zero_zero_int @ Z ) ) ).

% of_int_0_less_iff
thf(fact_7314_of__int__0__less__iff,axiom,
    ! [Z: int] :
      ( ( ord_less_rat @ zero_zero_rat @ ( ring_1_of_int_rat @ Z ) )
      = ( ord_less_int @ zero_zero_int @ Z ) ) ).

% of_int_0_less_iff
thf(fact_7315_of__int__0__less__iff,axiom,
    ! [Z: int] :
      ( ( ord_less_int @ zero_zero_int @ ( ring_1_of_int_int @ Z ) )
      = ( ord_less_int @ zero_zero_int @ Z ) ) ).

% of_int_0_less_iff
thf(fact_7316_odd__of__bool__self,axiom,
    ! [P2: $o] :
      ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( zero_n2687167440665602831ol_nat @ P2 ) ) )
      = P2 ) ).

% odd_of_bool_self
thf(fact_7317_odd__of__bool__self,axiom,
    ! [P2: $o] :
      ( ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( zero_n2684676970156552555ol_int @ P2 ) ) )
      = P2 ) ).

% odd_of_bool_self
thf(fact_7318_odd__of__bool__self,axiom,
    ! [P2: $o] :
      ( ( ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( zero_n356916108424825756nteger @ P2 ) ) )
      = P2 ) ).

% odd_of_bool_self
thf(fact_7319_of__int__numeral__le__iff,axiom,
    ! [N: num,Z: int] :
      ( ( ord_less_eq_real @ ( numeral_numeral_real @ N ) @ ( ring_1_of_int_real @ Z ) )
      = ( ord_less_eq_int @ ( numeral_numeral_int @ N ) @ Z ) ) ).

% of_int_numeral_le_iff
thf(fact_7320_of__int__numeral__le__iff,axiom,
    ! [N: num,Z: int] :
      ( ( ord_less_eq_rat @ ( numeral_numeral_rat @ N ) @ ( ring_1_of_int_rat @ Z ) )
      = ( ord_less_eq_int @ ( numeral_numeral_int @ N ) @ Z ) ) ).

% of_int_numeral_le_iff
thf(fact_7321_of__int__numeral__le__iff,axiom,
    ! [N: num,Z: int] :
      ( ( ord_less_eq_int @ ( numeral_numeral_int @ N ) @ ( ring_1_of_int_int @ Z ) )
      = ( ord_less_eq_int @ ( numeral_numeral_int @ N ) @ Z ) ) ).

% of_int_numeral_le_iff
thf(fact_7322_of__int__le__numeral__iff,axiom,
    ! [Z: int,N: num] :
      ( ( ord_less_eq_real @ ( ring_1_of_int_real @ Z ) @ ( numeral_numeral_real @ N ) )
      = ( ord_less_eq_int @ Z @ ( numeral_numeral_int @ N ) ) ) ).

% of_int_le_numeral_iff
thf(fact_7323_of__int__le__numeral__iff,axiom,
    ! [Z: int,N: num] :
      ( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ Z ) @ ( numeral_numeral_rat @ N ) )
      = ( ord_less_eq_int @ Z @ ( numeral_numeral_int @ N ) ) ) ).

% of_int_le_numeral_iff
thf(fact_7324_of__int__le__numeral__iff,axiom,
    ! [Z: int,N: num] :
      ( ( ord_less_eq_int @ ( ring_1_of_int_int @ Z ) @ ( numeral_numeral_int @ N ) )
      = ( ord_less_eq_int @ Z @ ( numeral_numeral_int @ N ) ) ) ).

% of_int_le_numeral_iff
thf(fact_7325_of__int__less__numeral__iff,axiom,
    ! [Z: int,N: num] :
      ( ( ord_less_real @ ( ring_1_of_int_real @ Z ) @ ( numeral_numeral_real @ N ) )
      = ( ord_less_int @ Z @ ( numeral_numeral_int @ N ) ) ) ).

% of_int_less_numeral_iff
thf(fact_7326_of__int__less__numeral__iff,axiom,
    ! [Z: int,N: num] :
      ( ( ord_less_rat @ ( ring_1_of_int_rat @ Z ) @ ( numeral_numeral_rat @ N ) )
      = ( ord_less_int @ Z @ ( numeral_numeral_int @ N ) ) ) ).

% of_int_less_numeral_iff
thf(fact_7327_of__int__less__numeral__iff,axiom,
    ! [Z: int,N: num] :
      ( ( ord_less_int @ ( ring_1_of_int_int @ Z ) @ ( numeral_numeral_int @ N ) )
      = ( ord_less_int @ Z @ ( numeral_numeral_int @ N ) ) ) ).

% of_int_less_numeral_iff
thf(fact_7328_of__int__numeral__less__iff,axiom,
    ! [N: num,Z: int] :
      ( ( ord_less_real @ ( numeral_numeral_real @ N ) @ ( ring_1_of_int_real @ Z ) )
      = ( ord_less_int @ ( numeral_numeral_int @ N ) @ Z ) ) ).

% of_int_numeral_less_iff
thf(fact_7329_of__int__numeral__less__iff,axiom,
    ! [N: num,Z: int] :
      ( ( ord_less_rat @ ( numeral_numeral_rat @ N ) @ ( ring_1_of_int_rat @ Z ) )
      = ( ord_less_int @ ( numeral_numeral_int @ N ) @ Z ) ) ).

% of_int_numeral_less_iff
thf(fact_7330_of__int__numeral__less__iff,axiom,
    ! [N: num,Z: int] :
      ( ( ord_less_int @ ( numeral_numeral_int @ N ) @ ( ring_1_of_int_int @ Z ) )
      = ( ord_less_int @ ( numeral_numeral_int @ N ) @ Z ) ) ).

% of_int_numeral_less_iff
thf(fact_7331_of__int__le__1__iff,axiom,
    ! [Z: int] :
      ( ( ord_less_eq_real @ ( ring_1_of_int_real @ Z ) @ one_one_real )
      = ( ord_less_eq_int @ Z @ one_one_int ) ) ).

% of_int_le_1_iff
thf(fact_7332_of__int__le__1__iff,axiom,
    ! [Z: int] :
      ( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ Z ) @ one_one_rat )
      = ( ord_less_eq_int @ Z @ one_one_int ) ) ).

% of_int_le_1_iff
thf(fact_7333_of__int__le__1__iff,axiom,
    ! [Z: int] :
      ( ( ord_less_eq_int @ ( ring_1_of_int_int @ Z ) @ one_one_int )
      = ( ord_less_eq_int @ Z @ one_one_int ) ) ).

% of_int_le_1_iff
thf(fact_7334_of__int__1__le__iff,axiom,
    ! [Z: int] :
      ( ( ord_less_eq_real @ one_one_real @ ( ring_1_of_int_real @ Z ) )
      = ( ord_less_eq_int @ one_one_int @ Z ) ) ).

% of_int_1_le_iff
thf(fact_7335_of__int__1__le__iff,axiom,
    ! [Z: int] :
      ( ( ord_less_eq_rat @ one_one_rat @ ( ring_1_of_int_rat @ Z ) )
      = ( ord_less_eq_int @ one_one_int @ Z ) ) ).

% of_int_1_le_iff
thf(fact_7336_of__int__1__le__iff,axiom,
    ! [Z: int] :
      ( ( ord_less_eq_int @ one_one_int @ ( ring_1_of_int_int @ Z ) )
      = ( ord_less_eq_int @ one_one_int @ Z ) ) ).

% of_int_1_le_iff
thf(fact_7337_of__int__1__less__iff,axiom,
    ! [Z: int] :
      ( ( ord_less_real @ one_one_real @ ( ring_1_of_int_real @ Z ) )
      = ( ord_less_int @ one_one_int @ Z ) ) ).

% of_int_1_less_iff
thf(fact_7338_of__int__1__less__iff,axiom,
    ! [Z: int] :
      ( ( ord_less_rat @ one_one_rat @ ( ring_1_of_int_rat @ Z ) )
      = ( ord_less_int @ one_one_int @ Z ) ) ).

% of_int_1_less_iff
thf(fact_7339_of__int__1__less__iff,axiom,
    ! [Z: int] :
      ( ( ord_less_int @ one_one_int @ ( ring_1_of_int_int @ Z ) )
      = ( ord_less_int @ one_one_int @ Z ) ) ).

% of_int_1_less_iff
thf(fact_7340_of__int__less__1__iff,axiom,
    ! [Z: int] :
      ( ( ord_less_real @ ( ring_1_of_int_real @ Z ) @ one_one_real )
      = ( ord_less_int @ Z @ one_one_int ) ) ).

% of_int_less_1_iff
thf(fact_7341_of__int__less__1__iff,axiom,
    ! [Z: int] :
      ( ( ord_less_rat @ ( ring_1_of_int_rat @ Z ) @ one_one_rat )
      = ( ord_less_int @ Z @ one_one_int ) ) ).

% of_int_less_1_iff
thf(fact_7342_of__int__less__1__iff,axiom,
    ! [Z: int] :
      ( ( ord_less_int @ ( ring_1_of_int_int @ Z ) @ one_one_int )
      = ( ord_less_int @ Z @ one_one_int ) ) ).

% of_int_less_1_iff
thf(fact_7343_ln__ge__zero__iff,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( ( ord_less_eq_real @ zero_zero_real @ ( ln_ln_real @ X2 ) )
        = ( ord_less_eq_real @ one_one_real @ X2 ) ) ) ).

% ln_ge_zero_iff
thf(fact_7344_ln__le__zero__iff,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( ( ord_less_eq_real @ ( ln_ln_real @ X2 ) @ zero_zero_real )
        = ( ord_less_eq_real @ X2 @ one_one_real ) ) ) ).

% ln_le_zero_iff
thf(fact_7345_numeral__power__eq__of__int__cancel__iff,axiom,
    ! [X2: num,N: nat,Y2: int] :
      ( ( ( power_power_complex @ ( numera6690914467698888265omplex @ X2 ) @ N )
        = ( ring_17405671764205052669omplex @ Y2 ) )
      = ( ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N )
        = Y2 ) ) ).

% numeral_power_eq_of_int_cancel_iff
thf(fact_7346_numeral__power__eq__of__int__cancel__iff,axiom,
    ! [X2: num,N: nat,Y2: int] :
      ( ( ( power_power_real @ ( numeral_numeral_real @ X2 ) @ N )
        = ( ring_1_of_int_real @ Y2 ) )
      = ( ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N )
        = Y2 ) ) ).

% numeral_power_eq_of_int_cancel_iff
thf(fact_7347_numeral__power__eq__of__int__cancel__iff,axiom,
    ! [X2: num,N: nat,Y2: int] :
      ( ( ( power_power_rat @ ( numeral_numeral_rat @ X2 ) @ N )
        = ( ring_1_of_int_rat @ Y2 ) )
      = ( ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N )
        = Y2 ) ) ).

% numeral_power_eq_of_int_cancel_iff
thf(fact_7348_numeral__power__eq__of__int__cancel__iff,axiom,
    ! [X2: num,N: nat,Y2: int] :
      ( ( ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N )
        = ( ring_1_of_int_int @ Y2 ) )
      = ( ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N )
        = Y2 ) ) ).

% numeral_power_eq_of_int_cancel_iff
thf(fact_7349_of__int__eq__numeral__power__cancel__iff,axiom,
    ! [Y2: int,X2: num,N: nat] :
      ( ( ( ring_17405671764205052669omplex @ Y2 )
        = ( power_power_complex @ ( numera6690914467698888265omplex @ X2 ) @ N ) )
      = ( Y2
        = ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N ) ) ) ).

% of_int_eq_numeral_power_cancel_iff
thf(fact_7350_of__int__eq__numeral__power__cancel__iff,axiom,
    ! [Y2: int,X2: num,N: nat] :
      ( ( ( ring_1_of_int_real @ Y2 )
        = ( power_power_real @ ( numeral_numeral_real @ X2 ) @ N ) )
      = ( Y2
        = ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N ) ) ) ).

% of_int_eq_numeral_power_cancel_iff
thf(fact_7351_of__int__eq__numeral__power__cancel__iff,axiom,
    ! [Y2: int,X2: num,N: nat] :
      ( ( ( ring_1_of_int_rat @ Y2 )
        = ( power_power_rat @ ( numeral_numeral_rat @ X2 ) @ N ) )
      = ( Y2
        = ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N ) ) ) ).

% of_int_eq_numeral_power_cancel_iff
thf(fact_7352_of__int__eq__numeral__power__cancel__iff,axiom,
    ! [Y2: int,X2: num,N: nat] :
      ( ( ( ring_1_of_int_int @ Y2 )
        = ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N ) )
      = ( Y2
        = ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N ) ) ) ).

% of_int_eq_numeral_power_cancel_iff
thf(fact_7353_of__int__le__of__int__power__cancel__iff,axiom,
    ! [B: int,W: nat,X2: int] :
      ( ( ord_less_eq_real @ ( power_power_real @ ( ring_1_of_int_real @ B ) @ W ) @ ( ring_1_of_int_real @ X2 ) )
      = ( ord_less_eq_int @ ( power_power_int @ B @ W ) @ X2 ) ) ).

% of_int_le_of_int_power_cancel_iff
thf(fact_7354_of__int__le__of__int__power__cancel__iff,axiom,
    ! [B: int,W: nat,X2: int] :
      ( ( ord_less_eq_rat @ ( power_power_rat @ ( ring_1_of_int_rat @ B ) @ W ) @ ( ring_1_of_int_rat @ X2 ) )
      = ( ord_less_eq_int @ ( power_power_int @ B @ W ) @ X2 ) ) ).

% of_int_le_of_int_power_cancel_iff
thf(fact_7355_of__int__le__of__int__power__cancel__iff,axiom,
    ! [B: int,W: nat,X2: int] :
      ( ( ord_less_eq_int @ ( power_power_int @ ( ring_1_of_int_int @ B ) @ W ) @ ( ring_1_of_int_int @ X2 ) )
      = ( ord_less_eq_int @ ( power_power_int @ B @ W ) @ X2 ) ) ).

% of_int_le_of_int_power_cancel_iff
thf(fact_7356_of__int__power__le__of__int__cancel__iff,axiom,
    ! [X2: int,B: int,W: nat] :
      ( ( ord_less_eq_real @ ( ring_1_of_int_real @ X2 ) @ ( power_power_real @ ( ring_1_of_int_real @ B ) @ W ) )
      = ( ord_less_eq_int @ X2 @ ( power_power_int @ B @ W ) ) ) ).

% of_int_power_le_of_int_cancel_iff
thf(fact_7357_of__int__power__le__of__int__cancel__iff,axiom,
    ! [X2: int,B: int,W: nat] :
      ( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ X2 ) @ ( power_power_rat @ ( ring_1_of_int_rat @ B ) @ W ) )
      = ( ord_less_eq_int @ X2 @ ( power_power_int @ B @ W ) ) ) ).

% of_int_power_le_of_int_cancel_iff
thf(fact_7358_of__int__power__le__of__int__cancel__iff,axiom,
    ! [X2: int,B: int,W: nat] :
      ( ( ord_less_eq_int @ ( ring_1_of_int_int @ X2 ) @ ( power_power_int @ ( ring_1_of_int_int @ B ) @ W ) )
      = ( ord_less_eq_int @ X2 @ ( power_power_int @ B @ W ) ) ) ).

% of_int_power_le_of_int_cancel_iff
thf(fact_7359_of__int__less__of__int__power__cancel__iff,axiom,
    ! [B: int,W: nat,X2: int] :
      ( ( ord_less_real @ ( power_power_real @ ( ring_1_of_int_real @ B ) @ W ) @ ( ring_1_of_int_real @ X2 ) )
      = ( ord_less_int @ ( power_power_int @ B @ W ) @ X2 ) ) ).

% of_int_less_of_int_power_cancel_iff
thf(fact_7360_of__int__less__of__int__power__cancel__iff,axiom,
    ! [B: int,W: nat,X2: int] :
      ( ( ord_less_rat @ ( power_power_rat @ ( ring_1_of_int_rat @ B ) @ W ) @ ( ring_1_of_int_rat @ X2 ) )
      = ( ord_less_int @ ( power_power_int @ B @ W ) @ X2 ) ) ).

% of_int_less_of_int_power_cancel_iff
thf(fact_7361_of__int__less__of__int__power__cancel__iff,axiom,
    ! [B: int,W: nat,X2: int] :
      ( ( ord_less_int @ ( power_power_int @ ( ring_1_of_int_int @ B ) @ W ) @ ( ring_1_of_int_int @ X2 ) )
      = ( ord_less_int @ ( power_power_int @ B @ W ) @ X2 ) ) ).

% of_int_less_of_int_power_cancel_iff
thf(fact_7362_of__int__power__less__of__int__cancel__iff,axiom,
    ! [X2: int,B: int,W: nat] :
      ( ( ord_less_real @ ( ring_1_of_int_real @ X2 ) @ ( power_power_real @ ( ring_1_of_int_real @ B ) @ W ) )
      = ( ord_less_int @ X2 @ ( power_power_int @ B @ W ) ) ) ).

% of_int_power_less_of_int_cancel_iff
thf(fact_7363_of__int__power__less__of__int__cancel__iff,axiom,
    ! [X2: int,B: int,W: nat] :
      ( ( ord_less_rat @ ( ring_1_of_int_rat @ X2 ) @ ( power_power_rat @ ( ring_1_of_int_rat @ B ) @ W ) )
      = ( ord_less_int @ X2 @ ( power_power_int @ B @ W ) ) ) ).

% of_int_power_less_of_int_cancel_iff
thf(fact_7364_of__int__power__less__of__int__cancel__iff,axiom,
    ! [X2: int,B: int,W: nat] :
      ( ( ord_less_int @ ( ring_1_of_int_int @ X2 ) @ ( power_power_int @ ( ring_1_of_int_int @ B ) @ W ) )
      = ( ord_less_int @ X2 @ ( power_power_int @ B @ W ) ) ) ).

% of_int_power_less_of_int_cancel_iff
thf(fact_7365_of__bool__half__eq__0,axiom,
    ! [B: $o] :
      ( ( divide_divide_nat @ ( zero_n2687167440665602831ol_nat @ B ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = zero_zero_nat ) ).

% of_bool_half_eq_0
thf(fact_7366_of__bool__half__eq__0,axiom,
    ! [B: $o] :
      ( ( divide_divide_int @ ( zero_n2684676970156552555ol_int @ B ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
      = zero_zero_int ) ).

% of_bool_half_eq_0
thf(fact_7367_of__bool__half__eq__0,axiom,
    ! [B: $o] :
      ( ( divide6298287555418463151nteger @ ( zero_n356916108424825756nteger @ B ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
      = zero_z3403309356797280102nteger ) ).

% of_bool_half_eq_0
thf(fact_7368_of__int__le__numeral__power__cancel__iff,axiom,
    ! [A: int,X2: num,N: nat] :
      ( ( ord_less_eq_real @ ( ring_1_of_int_real @ A ) @ ( power_power_real @ ( numeral_numeral_real @ X2 ) @ N ) )
      = ( ord_less_eq_int @ A @ ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N ) ) ) ).

% of_int_le_numeral_power_cancel_iff
thf(fact_7369_of__int__le__numeral__power__cancel__iff,axiom,
    ! [A: int,X2: num,N: nat] :
      ( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ A ) @ ( power_power_rat @ ( numeral_numeral_rat @ X2 ) @ N ) )
      = ( ord_less_eq_int @ A @ ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N ) ) ) ).

% of_int_le_numeral_power_cancel_iff
thf(fact_7370_of__int__le__numeral__power__cancel__iff,axiom,
    ! [A: int,X2: num,N: nat] :
      ( ( ord_less_eq_int @ ( ring_1_of_int_int @ A ) @ ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N ) )
      = ( ord_less_eq_int @ A @ ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N ) ) ) ).

% of_int_le_numeral_power_cancel_iff
thf(fact_7371_numeral__power__le__of__int__cancel__iff,axiom,
    ! [X2: num,N: nat,A: int] :
      ( ( ord_less_eq_real @ ( power_power_real @ ( numeral_numeral_real @ X2 ) @ N ) @ ( ring_1_of_int_real @ A ) )
      = ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N ) @ A ) ) ).

% numeral_power_le_of_int_cancel_iff
thf(fact_7372_numeral__power__le__of__int__cancel__iff,axiom,
    ! [X2: num,N: nat,A: int] :
      ( ( ord_less_eq_rat @ ( power_power_rat @ ( numeral_numeral_rat @ X2 ) @ N ) @ ( ring_1_of_int_rat @ A ) )
      = ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N ) @ A ) ) ).

% numeral_power_le_of_int_cancel_iff
thf(fact_7373_numeral__power__le__of__int__cancel__iff,axiom,
    ! [X2: num,N: nat,A: int] :
      ( ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N ) @ ( ring_1_of_int_int @ A ) )
      = ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N ) @ A ) ) ).

% numeral_power_le_of_int_cancel_iff
thf(fact_7374_numeral__power__less__of__int__cancel__iff,axiom,
    ! [X2: num,N: nat,A: int] :
      ( ( ord_less_real @ ( power_power_real @ ( numeral_numeral_real @ X2 ) @ N ) @ ( ring_1_of_int_real @ A ) )
      = ( ord_less_int @ ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N ) @ A ) ) ).

% numeral_power_less_of_int_cancel_iff
thf(fact_7375_numeral__power__less__of__int__cancel__iff,axiom,
    ! [X2: num,N: nat,A: int] :
      ( ( ord_less_rat @ ( power_power_rat @ ( numeral_numeral_rat @ X2 ) @ N ) @ ( ring_1_of_int_rat @ A ) )
      = ( ord_less_int @ ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N ) @ A ) ) ).

% numeral_power_less_of_int_cancel_iff
thf(fact_7376_numeral__power__less__of__int__cancel__iff,axiom,
    ! [X2: num,N: nat,A: int] :
      ( ( ord_less_int @ ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N ) @ ( ring_1_of_int_int @ A ) )
      = ( ord_less_int @ ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N ) @ A ) ) ).

% numeral_power_less_of_int_cancel_iff
thf(fact_7377_of__int__less__numeral__power__cancel__iff,axiom,
    ! [A: int,X2: num,N: nat] :
      ( ( ord_less_real @ ( ring_1_of_int_real @ A ) @ ( power_power_real @ ( numeral_numeral_real @ X2 ) @ N ) )
      = ( ord_less_int @ A @ ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N ) ) ) ).

% of_int_less_numeral_power_cancel_iff
thf(fact_7378_of__int__less__numeral__power__cancel__iff,axiom,
    ! [A: int,X2: num,N: nat] :
      ( ( ord_less_rat @ ( ring_1_of_int_rat @ A ) @ ( power_power_rat @ ( numeral_numeral_rat @ X2 ) @ N ) )
      = ( ord_less_int @ A @ ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N ) ) ) ).

% of_int_less_numeral_power_cancel_iff
thf(fact_7379_of__int__less__numeral__power__cancel__iff,axiom,
    ! [A: int,X2: num,N: nat] :
      ( ( ord_less_int @ ( ring_1_of_int_int @ A ) @ ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N ) )
      = ( ord_less_int @ A @ ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N ) ) ) ).

% of_int_less_numeral_power_cancel_iff
thf(fact_7380_of__int__eq__neg__numeral__power__cancel__iff,axiom,
    ! [Y2: int,X2: num,N: nat] :
      ( ( ( ring_1_of_int_int @ Y2 )
        = ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X2 ) ) @ N ) )
      = ( Y2
        = ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X2 ) ) @ N ) ) ) ).

% of_int_eq_neg_numeral_power_cancel_iff
thf(fact_7381_of__int__eq__neg__numeral__power__cancel__iff,axiom,
    ! [Y2: int,X2: num,N: nat] :
      ( ( ( ring_1_of_int_real @ Y2 )
        = ( power_power_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ X2 ) ) @ N ) )
      = ( Y2
        = ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X2 ) ) @ N ) ) ) ).

% of_int_eq_neg_numeral_power_cancel_iff
thf(fact_7382_of__int__eq__neg__numeral__power__cancel__iff,axiom,
    ! [Y2: int,X2: num,N: nat] :
      ( ( ( ring_17405671764205052669omplex @ Y2 )
        = ( power_power_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ X2 ) ) @ N ) )
      = ( Y2
        = ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X2 ) ) @ N ) ) ) ).

% of_int_eq_neg_numeral_power_cancel_iff
thf(fact_7383_of__int__eq__neg__numeral__power__cancel__iff,axiom,
    ! [Y2: int,X2: num,N: nat] :
      ( ( ( ring_1_of_int_rat @ Y2 )
        = ( power_power_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ X2 ) ) @ N ) )
      = ( Y2
        = ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X2 ) ) @ N ) ) ) ).

% of_int_eq_neg_numeral_power_cancel_iff
thf(fact_7384_of__int__eq__neg__numeral__power__cancel__iff,axiom,
    ! [Y2: int,X2: num,N: nat] :
      ( ( ( ring_18347121197199848620nteger @ Y2 )
        = ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ X2 ) ) @ N ) )
      = ( Y2
        = ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X2 ) ) @ N ) ) ) ).

% of_int_eq_neg_numeral_power_cancel_iff
thf(fact_7385_neg__numeral__power__eq__of__int__cancel__iff,axiom,
    ! [X2: num,N: nat,Y2: int] :
      ( ( ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X2 ) ) @ N )
        = ( ring_1_of_int_int @ Y2 ) )
      = ( ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X2 ) ) @ N )
        = Y2 ) ) ).

% neg_numeral_power_eq_of_int_cancel_iff
thf(fact_7386_neg__numeral__power__eq__of__int__cancel__iff,axiom,
    ! [X2: num,N: nat,Y2: int] :
      ( ( ( power_power_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ X2 ) ) @ N )
        = ( ring_1_of_int_real @ Y2 ) )
      = ( ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X2 ) ) @ N )
        = Y2 ) ) ).

% neg_numeral_power_eq_of_int_cancel_iff
thf(fact_7387_neg__numeral__power__eq__of__int__cancel__iff,axiom,
    ! [X2: num,N: nat,Y2: int] :
      ( ( ( power_power_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ X2 ) ) @ N )
        = ( ring_17405671764205052669omplex @ Y2 ) )
      = ( ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X2 ) ) @ N )
        = Y2 ) ) ).

% neg_numeral_power_eq_of_int_cancel_iff
thf(fact_7388_neg__numeral__power__eq__of__int__cancel__iff,axiom,
    ! [X2: num,N: nat,Y2: int] :
      ( ( ( power_power_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ X2 ) ) @ N )
        = ( ring_1_of_int_rat @ Y2 ) )
      = ( ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X2 ) ) @ N )
        = Y2 ) ) ).

% neg_numeral_power_eq_of_int_cancel_iff
thf(fact_7389_neg__numeral__power__eq__of__int__cancel__iff,axiom,
    ! [X2: num,N: nat,Y2: int] :
      ( ( ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ X2 ) ) @ N )
        = ( ring_18347121197199848620nteger @ Y2 ) )
      = ( ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X2 ) ) @ N )
        = Y2 ) ) ).

% neg_numeral_power_eq_of_int_cancel_iff
thf(fact_7390_one__div__2__pow__eq,axiom,
    ! [N: nat] :
      ( ( divide_divide_nat @ one_one_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = ( zero_n2687167440665602831ol_nat @ ( N = zero_zero_nat ) ) ) ).

% one_div_2_pow_eq
thf(fact_7391_one__div__2__pow__eq,axiom,
    ! [N: nat] :
      ( ( divide_divide_int @ one_one_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
      = ( zero_n2684676970156552555ol_int @ ( N = zero_zero_nat ) ) ) ).

% one_div_2_pow_eq
thf(fact_7392_one__div__2__pow__eq,axiom,
    ! [N: nat] :
      ( ( divide6298287555418463151nteger @ one_one_Code_integer @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) )
      = ( zero_n356916108424825756nteger @ ( N = zero_zero_nat ) ) ) ).

% one_div_2_pow_eq
thf(fact_7393_bits__1__div__exp,axiom,
    ! [N: nat] :
      ( ( divide_divide_nat @ one_one_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = ( zero_n2687167440665602831ol_nat @ ( N = zero_zero_nat ) ) ) ).

% bits_1_div_exp
thf(fact_7394_bits__1__div__exp,axiom,
    ! [N: nat] :
      ( ( divide_divide_int @ one_one_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
      = ( zero_n2684676970156552555ol_int @ ( N = zero_zero_nat ) ) ) ).

% bits_1_div_exp
thf(fact_7395_bits__1__div__exp,axiom,
    ! [N: nat] :
      ( ( divide6298287555418463151nteger @ one_one_Code_integer @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) )
      = ( zero_n356916108424825756nteger @ ( N = zero_zero_nat ) ) ) ).

% bits_1_div_exp
thf(fact_7396_one__mod__2__pow__eq,axiom,
    ! [N: nat] :
      ( ( modulo_modulo_nat @ one_one_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = ( zero_n2687167440665602831ol_nat @ ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% one_mod_2_pow_eq
thf(fact_7397_one__mod__2__pow__eq,axiom,
    ! [N: nat] :
      ( ( modulo_modulo_int @ one_one_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
      = ( zero_n2684676970156552555ol_int @ ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% one_mod_2_pow_eq
thf(fact_7398_one__mod__2__pow__eq,axiom,
    ! [N: nat] :
      ( ( modulo364778990260209775nteger @ one_one_Code_integer @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) )
      = ( zero_n356916108424825756nteger @ ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% one_mod_2_pow_eq
thf(fact_7399_neg__numeral__power__le__of__int__cancel__iff,axiom,
    ! [X2: num,N: nat,A: int] :
      ( ( ord_less_eq_real @ ( power_power_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ X2 ) ) @ N ) @ ( ring_1_of_int_real @ A ) )
      = ( ord_less_eq_int @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X2 ) ) @ N ) @ A ) ) ).

% neg_numeral_power_le_of_int_cancel_iff
thf(fact_7400_neg__numeral__power__le__of__int__cancel__iff,axiom,
    ! [X2: num,N: nat,A: int] :
      ( ( ord_le3102999989581377725nteger @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ X2 ) ) @ N ) @ ( ring_18347121197199848620nteger @ A ) )
      = ( ord_less_eq_int @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X2 ) ) @ N ) @ A ) ) ).

% neg_numeral_power_le_of_int_cancel_iff
thf(fact_7401_neg__numeral__power__le__of__int__cancel__iff,axiom,
    ! [X2: num,N: nat,A: int] :
      ( ( ord_less_eq_rat @ ( power_power_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ X2 ) ) @ N ) @ ( ring_1_of_int_rat @ A ) )
      = ( ord_less_eq_int @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X2 ) ) @ N ) @ A ) ) ).

% neg_numeral_power_le_of_int_cancel_iff
thf(fact_7402_neg__numeral__power__le__of__int__cancel__iff,axiom,
    ! [X2: num,N: nat,A: int] :
      ( ( ord_less_eq_int @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X2 ) ) @ N ) @ ( ring_1_of_int_int @ A ) )
      = ( ord_less_eq_int @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X2 ) ) @ N ) @ A ) ) ).

% neg_numeral_power_le_of_int_cancel_iff
thf(fact_7403_of__int__le__neg__numeral__power__cancel__iff,axiom,
    ! [A: int,X2: num,N: nat] :
      ( ( ord_less_eq_real @ ( ring_1_of_int_real @ A ) @ ( power_power_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ X2 ) ) @ N ) )
      = ( ord_less_eq_int @ A @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X2 ) ) @ N ) ) ) ).

% of_int_le_neg_numeral_power_cancel_iff
thf(fact_7404_of__int__le__neg__numeral__power__cancel__iff,axiom,
    ! [A: int,X2: num,N: nat] :
      ( ( ord_le3102999989581377725nteger @ ( ring_18347121197199848620nteger @ A ) @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ X2 ) ) @ N ) )
      = ( ord_less_eq_int @ A @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X2 ) ) @ N ) ) ) ).

% of_int_le_neg_numeral_power_cancel_iff
thf(fact_7405_of__int__le__neg__numeral__power__cancel__iff,axiom,
    ! [A: int,X2: num,N: nat] :
      ( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ A ) @ ( power_power_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ X2 ) ) @ N ) )
      = ( ord_less_eq_int @ A @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X2 ) ) @ N ) ) ) ).

% of_int_le_neg_numeral_power_cancel_iff
thf(fact_7406_of__int__le__neg__numeral__power__cancel__iff,axiom,
    ! [A: int,X2: num,N: nat] :
      ( ( ord_less_eq_int @ ( ring_1_of_int_int @ A ) @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X2 ) ) @ N ) )
      = ( ord_less_eq_int @ A @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X2 ) ) @ N ) ) ) ).

% of_int_le_neg_numeral_power_cancel_iff
thf(fact_7407_neg__numeral__power__less__of__int__cancel__iff,axiom,
    ! [X2: num,N: nat,A: int] :
      ( ( ord_less_int @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X2 ) ) @ N ) @ ( ring_1_of_int_int @ A ) )
      = ( ord_less_int @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X2 ) ) @ N ) @ A ) ) ).

% neg_numeral_power_less_of_int_cancel_iff
thf(fact_7408_neg__numeral__power__less__of__int__cancel__iff,axiom,
    ! [X2: num,N: nat,A: int] :
      ( ( ord_less_real @ ( power_power_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ X2 ) ) @ N ) @ ( ring_1_of_int_real @ A ) )
      = ( ord_less_int @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X2 ) ) @ N ) @ A ) ) ).

% neg_numeral_power_less_of_int_cancel_iff
thf(fact_7409_neg__numeral__power__less__of__int__cancel__iff,axiom,
    ! [X2: num,N: nat,A: int] :
      ( ( ord_less_rat @ ( power_power_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ X2 ) ) @ N ) @ ( ring_1_of_int_rat @ A ) )
      = ( ord_less_int @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X2 ) ) @ N ) @ A ) ) ).

% neg_numeral_power_less_of_int_cancel_iff
thf(fact_7410_neg__numeral__power__less__of__int__cancel__iff,axiom,
    ! [X2: num,N: nat,A: int] :
      ( ( ord_le6747313008572928689nteger @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ X2 ) ) @ N ) @ ( ring_18347121197199848620nteger @ A ) )
      = ( ord_less_int @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X2 ) ) @ N ) @ A ) ) ).

% neg_numeral_power_less_of_int_cancel_iff
thf(fact_7411_of__int__less__neg__numeral__power__cancel__iff,axiom,
    ! [A: int,X2: num,N: nat] :
      ( ( ord_less_int @ ( ring_1_of_int_int @ A ) @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X2 ) ) @ N ) )
      = ( ord_less_int @ A @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X2 ) ) @ N ) ) ) ).

% of_int_less_neg_numeral_power_cancel_iff
thf(fact_7412_of__int__less__neg__numeral__power__cancel__iff,axiom,
    ! [A: int,X2: num,N: nat] :
      ( ( ord_less_real @ ( ring_1_of_int_real @ A ) @ ( power_power_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ X2 ) ) @ N ) )
      = ( ord_less_int @ A @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X2 ) ) @ N ) ) ) ).

% of_int_less_neg_numeral_power_cancel_iff
thf(fact_7413_of__int__less__neg__numeral__power__cancel__iff,axiom,
    ! [A: int,X2: num,N: nat] :
      ( ( ord_less_rat @ ( ring_1_of_int_rat @ A ) @ ( power_power_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ X2 ) ) @ N ) )
      = ( ord_less_int @ A @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X2 ) ) @ N ) ) ) ).

% of_int_less_neg_numeral_power_cancel_iff
thf(fact_7414_of__int__less__neg__numeral__power__cancel__iff,axiom,
    ! [A: int,X2: num,N: nat] :
      ( ( ord_le6747313008572928689nteger @ ( ring_18347121197199848620nteger @ A ) @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ X2 ) ) @ N ) )
      = ( ord_less_int @ A @ ( power_power_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ X2 ) ) @ N ) ) ) ).

% of_int_less_neg_numeral_power_cancel_iff
thf(fact_7415_of__bool__eq__iff,axiom,
    ! [P2: $o,Q2: $o] :
      ( ( ( zero_n2687167440665602831ol_nat @ P2 )
        = ( zero_n2687167440665602831ol_nat @ Q2 ) )
      = ( P2 = Q2 ) ) ).

% of_bool_eq_iff
thf(fact_7416_of__bool__eq__iff,axiom,
    ! [P2: $o,Q2: $o] :
      ( ( ( zero_n2684676970156552555ol_int @ P2 )
        = ( zero_n2684676970156552555ol_int @ Q2 ) )
      = ( P2 = Q2 ) ) ).

% of_bool_eq_iff
thf(fact_7417_of__bool__eq__iff,axiom,
    ! [P2: $o,Q2: $o] :
      ( ( ( zero_n356916108424825756nteger @ P2 )
        = ( zero_n356916108424825756nteger @ Q2 ) )
      = ( P2 = Q2 ) ) ).

% of_bool_eq_iff
thf(fact_7418_mult__of__int__commute,axiom,
    ! [X2: int,Y2: real] :
      ( ( times_times_real @ ( ring_1_of_int_real @ X2 ) @ Y2 )
      = ( times_times_real @ Y2 @ ( ring_1_of_int_real @ X2 ) ) ) ).

% mult_of_int_commute
thf(fact_7419_mult__of__int__commute,axiom,
    ! [X2: int,Y2: rat] :
      ( ( times_times_rat @ ( ring_1_of_int_rat @ X2 ) @ Y2 )
      = ( times_times_rat @ Y2 @ ( ring_1_of_int_rat @ X2 ) ) ) ).

% mult_of_int_commute
thf(fact_7420_mult__of__int__commute,axiom,
    ! [X2: int,Y2: int] :
      ( ( times_times_int @ ( ring_1_of_int_int @ X2 ) @ Y2 )
      = ( times_times_int @ Y2 @ ( ring_1_of_int_int @ X2 ) ) ) ).

% mult_of_int_commute
thf(fact_7421_of__bool__conj,axiom,
    ! [P: $o,Q: $o] :
      ( ( zero_n3304061248610475627l_real
        @ ( P
          & Q ) )
      = ( times_times_real @ ( zero_n3304061248610475627l_real @ P ) @ ( zero_n3304061248610475627l_real @ Q ) ) ) ).

% of_bool_conj
thf(fact_7422_of__bool__conj,axiom,
    ! [P: $o,Q: $o] :
      ( ( zero_n2052037380579107095ol_rat
        @ ( P
          & Q ) )
      = ( times_times_rat @ ( zero_n2052037380579107095ol_rat @ P ) @ ( zero_n2052037380579107095ol_rat @ Q ) ) ) ).

% of_bool_conj
thf(fact_7423_of__bool__conj,axiom,
    ! [P: $o,Q: $o] :
      ( ( zero_n2687167440665602831ol_nat
        @ ( P
          & Q ) )
      = ( times_times_nat @ ( zero_n2687167440665602831ol_nat @ P ) @ ( zero_n2687167440665602831ol_nat @ Q ) ) ) ).

% of_bool_conj
thf(fact_7424_of__bool__conj,axiom,
    ! [P: $o,Q: $o] :
      ( ( zero_n2684676970156552555ol_int
        @ ( P
          & Q ) )
      = ( times_times_int @ ( zero_n2684676970156552555ol_int @ P ) @ ( zero_n2684676970156552555ol_int @ Q ) ) ) ).

% of_bool_conj
thf(fact_7425_of__bool__conj,axiom,
    ! [P: $o,Q: $o] :
      ( ( zero_n356916108424825756nteger
        @ ( P
          & Q ) )
      = ( times_3573771949741848930nteger @ ( zero_n356916108424825756nteger @ P ) @ ( zero_n356916108424825756nteger @ Q ) ) ) ).

% of_bool_conj
thf(fact_7426_of__int__max,axiom,
    ! [X2: int,Y2: int] :
      ( ( ring_1_of_int_real @ ( ord_max_int @ X2 @ Y2 ) )
      = ( ord_max_real @ ( ring_1_of_int_real @ X2 ) @ ( ring_1_of_int_real @ Y2 ) ) ) ).

% of_int_max
thf(fact_7427_of__int__max,axiom,
    ! [X2: int,Y2: int] :
      ( ( ring_1_of_int_rat @ ( ord_max_int @ X2 @ Y2 ) )
      = ( ord_max_rat @ ( ring_1_of_int_rat @ X2 ) @ ( ring_1_of_int_rat @ Y2 ) ) ) ).

% of_int_max
thf(fact_7428_of__int__max,axiom,
    ! [X2: int,Y2: int] :
      ( ( ring_1_of_int_int @ ( ord_max_int @ X2 @ Y2 ) )
      = ( ord_max_int @ ( ring_1_of_int_int @ X2 ) @ ( ring_1_of_int_int @ Y2 ) ) ) ).

% of_int_max
thf(fact_7429_ln__less__self,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( ord_less_real @ ( ln_ln_real @ X2 ) @ X2 ) ) ).

% ln_less_self
thf(fact_7430_zero__less__eq__of__bool,axiom,
    ! [P: $o] : ( ord_less_eq_real @ zero_zero_real @ ( zero_n3304061248610475627l_real @ P ) ) ).

% zero_less_eq_of_bool
thf(fact_7431_zero__less__eq__of__bool,axiom,
    ! [P: $o] : ( ord_less_eq_rat @ zero_zero_rat @ ( zero_n2052037380579107095ol_rat @ P ) ) ).

% zero_less_eq_of_bool
thf(fact_7432_zero__less__eq__of__bool,axiom,
    ! [P: $o] : ( ord_less_eq_nat @ zero_zero_nat @ ( zero_n2687167440665602831ol_nat @ P ) ) ).

% zero_less_eq_of_bool
thf(fact_7433_zero__less__eq__of__bool,axiom,
    ! [P: $o] : ( ord_less_eq_int @ zero_zero_int @ ( zero_n2684676970156552555ol_int @ P ) ) ).

% zero_less_eq_of_bool
thf(fact_7434_zero__less__eq__of__bool,axiom,
    ! [P: $o] : ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( zero_n356916108424825756nteger @ P ) ) ).

% zero_less_eq_of_bool
thf(fact_7435_of__bool__less__eq__one,axiom,
    ! [P: $o] : ( ord_less_eq_real @ ( zero_n3304061248610475627l_real @ P ) @ one_one_real ) ).

% of_bool_less_eq_one
thf(fact_7436_of__bool__less__eq__one,axiom,
    ! [P: $o] : ( ord_less_eq_rat @ ( zero_n2052037380579107095ol_rat @ P ) @ one_one_rat ) ).

% of_bool_less_eq_one
thf(fact_7437_of__bool__less__eq__one,axiom,
    ! [P: $o] : ( ord_less_eq_nat @ ( zero_n2687167440665602831ol_nat @ P ) @ one_one_nat ) ).

% of_bool_less_eq_one
thf(fact_7438_of__bool__less__eq__one,axiom,
    ! [P: $o] : ( ord_less_eq_int @ ( zero_n2684676970156552555ol_int @ P ) @ one_one_int ) ).

% of_bool_less_eq_one
thf(fact_7439_of__bool__less__eq__one,axiom,
    ! [P: $o] : ( ord_le3102999989581377725nteger @ ( zero_n356916108424825756nteger @ P ) @ one_one_Code_integer ) ).

% of_bool_less_eq_one
thf(fact_7440_of__bool__def,axiom,
    ( zero_n1201886186963655149omplex
    = ( ^ [P5: $o] : ( if_complex @ P5 @ one_one_complex @ zero_zero_complex ) ) ) ).

% of_bool_def
thf(fact_7441_of__bool__def,axiom,
    ( zero_n3304061248610475627l_real
    = ( ^ [P5: $o] : ( if_real @ P5 @ one_one_real @ zero_zero_real ) ) ) ).

% of_bool_def
thf(fact_7442_of__bool__def,axiom,
    ( zero_n2052037380579107095ol_rat
    = ( ^ [P5: $o] : ( if_rat @ P5 @ one_one_rat @ zero_zero_rat ) ) ) ).

% of_bool_def
thf(fact_7443_of__bool__def,axiom,
    ( zero_n2687167440665602831ol_nat
    = ( ^ [P5: $o] : ( if_nat @ P5 @ one_one_nat @ zero_zero_nat ) ) ) ).

% of_bool_def
thf(fact_7444_of__bool__def,axiom,
    ( zero_n2684676970156552555ol_int
    = ( ^ [P5: $o] : ( if_int @ P5 @ one_one_int @ zero_zero_int ) ) ) ).

% of_bool_def
thf(fact_7445_of__bool__def,axiom,
    ( zero_n356916108424825756nteger
    = ( ^ [P5: $o] : ( if_Code_integer @ P5 @ one_one_Code_integer @ zero_z3403309356797280102nteger ) ) ) ).

% of_bool_def
thf(fact_7446_split__of__bool,axiom,
    ! [P: complex > $o,P2: $o] :
      ( ( P @ ( zero_n1201886186963655149omplex @ P2 ) )
      = ( ( P2
         => ( P @ one_one_complex ) )
        & ( ~ P2
         => ( P @ zero_zero_complex ) ) ) ) ).

% split_of_bool
thf(fact_7447_split__of__bool,axiom,
    ! [P: real > $o,P2: $o] :
      ( ( P @ ( zero_n3304061248610475627l_real @ P2 ) )
      = ( ( P2
         => ( P @ one_one_real ) )
        & ( ~ P2
         => ( P @ zero_zero_real ) ) ) ) ).

% split_of_bool
thf(fact_7448_split__of__bool,axiom,
    ! [P: rat > $o,P2: $o] :
      ( ( P @ ( zero_n2052037380579107095ol_rat @ P2 ) )
      = ( ( P2
         => ( P @ one_one_rat ) )
        & ( ~ P2
         => ( P @ zero_zero_rat ) ) ) ) ).

% split_of_bool
thf(fact_7449_split__of__bool,axiom,
    ! [P: nat > $o,P2: $o] :
      ( ( P @ ( zero_n2687167440665602831ol_nat @ P2 ) )
      = ( ( P2
         => ( P @ one_one_nat ) )
        & ( ~ P2
         => ( P @ zero_zero_nat ) ) ) ) ).

% split_of_bool
thf(fact_7450_split__of__bool,axiom,
    ! [P: int > $o,P2: $o] :
      ( ( P @ ( zero_n2684676970156552555ol_int @ P2 ) )
      = ( ( P2
         => ( P @ one_one_int ) )
        & ( ~ P2
         => ( P @ zero_zero_int ) ) ) ) ).

% split_of_bool
thf(fact_7451_split__of__bool,axiom,
    ! [P: code_integer > $o,P2: $o] :
      ( ( P @ ( zero_n356916108424825756nteger @ P2 ) )
      = ( ( P2
         => ( P @ one_one_Code_integer ) )
        & ( ~ P2
         => ( P @ zero_z3403309356797280102nteger ) ) ) ) ).

% split_of_bool
thf(fact_7452_split__of__bool__asm,axiom,
    ! [P: complex > $o,P2: $o] :
      ( ( P @ ( zero_n1201886186963655149omplex @ P2 ) )
      = ( ~ ( ( P2
              & ~ ( P @ one_one_complex ) )
            | ( ~ P2
              & ~ ( P @ zero_zero_complex ) ) ) ) ) ).

% split_of_bool_asm
thf(fact_7453_split__of__bool__asm,axiom,
    ! [P: real > $o,P2: $o] :
      ( ( P @ ( zero_n3304061248610475627l_real @ P2 ) )
      = ( ~ ( ( P2
              & ~ ( P @ one_one_real ) )
            | ( ~ P2
              & ~ ( P @ zero_zero_real ) ) ) ) ) ).

% split_of_bool_asm
thf(fact_7454_split__of__bool__asm,axiom,
    ! [P: rat > $o,P2: $o] :
      ( ( P @ ( zero_n2052037380579107095ol_rat @ P2 ) )
      = ( ~ ( ( P2
              & ~ ( P @ one_one_rat ) )
            | ( ~ P2
              & ~ ( P @ zero_zero_rat ) ) ) ) ) ).

% split_of_bool_asm
thf(fact_7455_split__of__bool__asm,axiom,
    ! [P: nat > $o,P2: $o] :
      ( ( P @ ( zero_n2687167440665602831ol_nat @ P2 ) )
      = ( ~ ( ( P2
              & ~ ( P @ one_one_nat ) )
            | ( ~ P2
              & ~ ( P @ zero_zero_nat ) ) ) ) ) ).

% split_of_bool_asm
thf(fact_7456_split__of__bool__asm,axiom,
    ! [P: int > $o,P2: $o] :
      ( ( P @ ( zero_n2684676970156552555ol_int @ P2 ) )
      = ( ~ ( ( P2
              & ~ ( P @ one_one_int ) )
            | ( ~ P2
              & ~ ( P @ zero_zero_int ) ) ) ) ) ).

% split_of_bool_asm
thf(fact_7457_split__of__bool__asm,axiom,
    ! [P: code_integer > $o,P2: $o] :
      ( ( P @ ( zero_n356916108424825756nteger @ P2 ) )
      = ( ~ ( ( P2
              & ~ ( P @ one_one_Code_integer ) )
            | ( ~ P2
              & ~ ( P @ zero_z3403309356797280102nteger ) ) ) ) ) ).

% split_of_bool_asm
thf(fact_7458_ln__bound,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( ord_less_eq_real @ ( ln_ln_real @ X2 ) @ X2 ) ) ).

% ln_bound
thf(fact_7459_ln__gt__zero__imp__gt__one,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ zero_zero_real @ ( ln_ln_real @ X2 ) )
     => ( ( ord_less_real @ zero_zero_real @ X2 )
       => ( ord_less_real @ one_one_real @ X2 ) ) ) ).

% ln_gt_zero_imp_gt_one
thf(fact_7460_ln__less__zero,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( ( ord_less_real @ X2 @ one_one_real )
       => ( ord_less_real @ ( ln_ln_real @ X2 ) @ zero_zero_real ) ) ) ).

% ln_less_zero
thf(fact_7461_ln__gt__zero,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ one_one_real @ X2 )
     => ( ord_less_real @ zero_zero_real @ ( ln_ln_real @ X2 ) ) ) ).

% ln_gt_zero
thf(fact_7462_ln__ge__zero,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ one_one_real @ X2 )
     => ( ord_less_eq_real @ zero_zero_real @ ( ln_ln_real @ X2 ) ) ) ).

% ln_ge_zero
thf(fact_7463_real__of__int__div4,axiom,
    ! [N: int,X2: int] : ( ord_less_eq_real @ ( ring_1_of_int_real @ ( divide_divide_int @ N @ X2 ) ) @ ( divide_divide_real @ ( ring_1_of_int_real @ N ) @ ( ring_1_of_int_real @ X2 ) ) ) ).

% real_of_int_div4
thf(fact_7464_real__of__int__div,axiom,
    ! [D: int,N: int] :
      ( ( dvd_dvd_int @ D @ N )
     => ( ( ring_1_of_int_real @ ( divide_divide_int @ N @ D ) )
        = ( divide_divide_real @ ( ring_1_of_int_real @ N ) @ ( ring_1_of_int_real @ D ) ) ) ) ).

% real_of_int_div
thf(fact_7465_ln__ge__zero__imp__ge__one,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( ln_ln_real @ X2 ) )
     => ( ( ord_less_real @ zero_zero_real @ X2 )
       => ( ord_less_eq_real @ one_one_real @ X2 ) ) ) ).

% ln_ge_zero_imp_ge_one
thf(fact_7466_Divides_Oadjust__div__def,axiom,
    ( adjust_div
    = ( produc8211389475949308722nt_int
      @ ^ [Q4: int,R5: int] : ( plus_plus_int @ Q4 @ ( zero_n2684676970156552555ol_int @ ( R5 != zero_zero_int ) ) ) ) ) ).

% Divides.adjust_div_def
thf(fact_7467_ln__add__one__self__le__self,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ord_less_eq_real @ ( ln_ln_real @ ( plus_plus_real @ one_one_real @ X2 ) ) @ X2 ) ) ).

% ln_add_one_self_le_self
thf(fact_7468_ln__mult,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( ( ord_less_real @ zero_zero_real @ Y2 )
       => ( ( ln_ln_real @ ( times_times_real @ X2 @ Y2 ) )
          = ( plus_plus_real @ ( ln_ln_real @ X2 ) @ ( ln_ln_real @ Y2 ) ) ) ) ) ).

% ln_mult
thf(fact_7469_ln__eq__minus__one,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( ( ( ln_ln_real @ X2 )
          = ( minus_minus_real @ X2 @ one_one_real ) )
       => ( X2 = one_one_real ) ) ) ).

% ln_eq_minus_one
thf(fact_7470_ln__div,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( ( ord_less_real @ zero_zero_real @ Y2 )
       => ( ( ln_ln_real @ ( divide_divide_real @ X2 @ Y2 ) )
          = ( minus_minus_real @ ( ln_ln_real @ X2 ) @ ( ln_ln_real @ Y2 ) ) ) ) ) ).

% ln_div
thf(fact_7471_of__int__nonneg,axiom,
    ! [Z: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z )
     => ( ord_less_eq_real @ zero_zero_real @ ( ring_1_of_int_real @ Z ) ) ) ).

% of_int_nonneg
thf(fact_7472_of__int__nonneg,axiom,
    ! [Z: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z )
     => ( ord_less_eq_rat @ zero_zero_rat @ ( ring_1_of_int_rat @ Z ) ) ) ).

% of_int_nonneg
thf(fact_7473_of__int__nonneg,axiom,
    ! [Z: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z )
     => ( ord_less_eq_int @ zero_zero_int @ ( ring_1_of_int_int @ Z ) ) ) ).

% of_int_nonneg
thf(fact_7474_of__int__pos,axiom,
    ! [Z: int] :
      ( ( ord_less_int @ zero_zero_int @ Z )
     => ( ord_less_real @ zero_zero_real @ ( ring_1_of_int_real @ Z ) ) ) ).

% of_int_pos
thf(fact_7475_of__int__pos,axiom,
    ! [Z: int] :
      ( ( ord_less_int @ zero_zero_int @ Z )
     => ( ord_less_rat @ zero_zero_rat @ ( ring_1_of_int_rat @ Z ) ) ) ).

% of_int_pos
thf(fact_7476_of__int__pos,axiom,
    ! [Z: int] :
      ( ( ord_less_int @ zero_zero_int @ Z )
     => ( ord_less_int @ zero_zero_int @ ( ring_1_of_int_int @ Z ) ) ) ).

% of_int_pos
thf(fact_7477_of__int__neg__numeral,axiom,
    ! [K: num] :
      ( ( ring_1_of_int_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) ) ).

% of_int_neg_numeral
thf(fact_7478_of__int__neg__numeral,axiom,
    ! [K: num] :
      ( ( ring_1_of_int_real @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) )
      = ( uminus_uminus_real @ ( numeral_numeral_real @ K ) ) ) ).

% of_int_neg_numeral
thf(fact_7479_of__int__neg__numeral,axiom,
    ! [K: num] :
      ( ( ring_17405671764205052669omplex @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) )
      = ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ K ) ) ) ).

% of_int_neg_numeral
thf(fact_7480_of__int__neg__numeral,axiom,
    ! [K: num] :
      ( ( ring_1_of_int_rat @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) )
      = ( uminus_uminus_rat @ ( numeral_numeral_rat @ K ) ) ) ).

% of_int_neg_numeral
thf(fact_7481_of__int__neg__numeral,axiom,
    ! [K: num] :
      ( ( ring_18347121197199848620nteger @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) )
      = ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ K ) ) ) ).

% of_int_neg_numeral
thf(fact_7482_int__le__real__less,axiom,
    ( ord_less_eq_int
    = ( ^ [N2: int,M3: int] : ( ord_less_real @ ( ring_1_of_int_real @ N2 ) @ ( plus_plus_real @ ( ring_1_of_int_real @ M3 ) @ one_one_real ) ) ) ) ).

% int_le_real_less
thf(fact_7483_int__less__real__le,axiom,
    ( ord_less_int
    = ( ^ [N2: int,M3: int] : ( ord_less_eq_real @ ( plus_plus_real @ ( ring_1_of_int_real @ N2 ) @ one_one_real ) @ ( ring_1_of_int_real @ M3 ) ) ) ) ).

% int_less_real_le
thf(fact_7484_real__of__int__div__aux,axiom,
    ! [X2: int,D: int] :
      ( ( divide_divide_real @ ( ring_1_of_int_real @ X2 ) @ ( ring_1_of_int_real @ D ) )
      = ( plus_plus_real @ ( ring_1_of_int_real @ ( divide_divide_int @ X2 @ D ) ) @ ( divide_divide_real @ ( ring_1_of_int_real @ ( modulo_modulo_int @ X2 @ D ) ) @ ( ring_1_of_int_real @ D ) ) ) ) ).

% real_of_int_div_aux
thf(fact_7485_ln__2__less__1,axiom,
    ord_less_real @ ( ln_ln_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ one_one_real ).

% ln_2_less_1
thf(fact_7486_ln__le__minus__one,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( ord_less_eq_real @ ( ln_ln_real @ X2 ) @ ( minus_minus_real @ X2 @ one_one_real ) ) ) ).

% ln_le_minus_one
thf(fact_7487_ln__diff__le,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( ( ord_less_real @ zero_zero_real @ Y2 )
       => ( ord_less_eq_real @ ( minus_minus_real @ ( ln_ln_real @ X2 ) @ ( ln_ln_real @ Y2 ) ) @ ( divide_divide_real @ ( minus_minus_real @ X2 @ Y2 ) @ Y2 ) ) ) ) ).

% ln_diff_le
thf(fact_7488_ln__add__one__self__le__self2,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ X2 )
     => ( ord_less_eq_real @ ( ln_ln_real @ ( plus_plus_real @ one_one_real @ X2 ) ) @ X2 ) ) ).

% ln_add_one_self_le_self2
thf(fact_7489_of__bool__odd__eq__mod__2,axiom,
    ! [A: nat] :
      ( ( zero_n2687167440665602831ol_nat
        @ ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) )
      = ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% of_bool_odd_eq_mod_2
thf(fact_7490_of__bool__odd__eq__mod__2,axiom,
    ! [A: int] :
      ( ( zero_n2684676970156552555ol_int
        @ ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) )
      = ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).

% of_bool_odd_eq_mod_2
thf(fact_7491_of__bool__odd__eq__mod__2,axiom,
    ! [A: code_integer] :
      ( ( zero_n356916108424825756nteger
        @ ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) )
      = ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ).

% of_bool_odd_eq_mod_2
thf(fact_7492_real__of__int__div2,axiom,
    ! [N: int,X2: int] : ( ord_less_eq_real @ zero_zero_real @ ( minus_minus_real @ ( divide_divide_real @ ( ring_1_of_int_real @ N ) @ ( ring_1_of_int_real @ X2 ) ) @ ( ring_1_of_int_real @ ( divide_divide_int @ N @ X2 ) ) ) ) ).

% real_of_int_div2
thf(fact_7493_real__of__int__div3,axiom,
    ! [N: int,X2: int] : ( ord_less_eq_real @ ( minus_minus_real @ ( divide_divide_real @ ( ring_1_of_int_real @ N ) @ ( ring_1_of_int_real @ X2 ) ) @ ( ring_1_of_int_real @ ( divide_divide_int @ N @ X2 ) ) ) @ one_one_real ) ).

% real_of_int_div3
thf(fact_7494_ln__one__minus__pos__upper__bound,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ( ord_less_real @ X2 @ one_one_real )
       => ( ord_less_eq_real @ ( ln_ln_real @ ( minus_minus_real @ one_one_real @ X2 ) ) @ ( uminus_uminus_real @ X2 ) ) ) ) ).

% ln_one_minus_pos_upper_bound
thf(fact_7495_bits__induct,axiom,
    ! [P: nat > $o,A: nat] :
      ( ! [A6: nat] :
          ( ( ( divide_divide_nat @ A6 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
            = A6 )
         => ( P @ A6 ) )
     => ( ! [A6: nat,B7: $o] :
            ( ( P @ A6 )
           => ( ( ( divide_divide_nat @ ( plus_plus_nat @ ( zero_n2687167440665602831ol_nat @ B7 ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A6 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
                = A6 )
             => ( P @ ( plus_plus_nat @ ( zero_n2687167440665602831ol_nat @ B7 ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A6 ) ) ) ) )
       => ( P @ A ) ) ) ).

% bits_induct
thf(fact_7496_bits__induct,axiom,
    ! [P: int > $o,A: int] :
      ( ! [A6: int] :
          ( ( ( divide_divide_int @ A6 @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
            = A6 )
         => ( P @ A6 ) )
     => ( ! [A6: int,B7: $o] :
            ( ( P @ A6 )
           => ( ( ( divide_divide_int @ ( plus_plus_int @ ( zero_n2684676970156552555ol_int @ B7 ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A6 ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
                = A6 )
             => ( P @ ( plus_plus_int @ ( zero_n2684676970156552555ol_int @ B7 ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A6 ) ) ) ) )
       => ( P @ A ) ) ) ).

% bits_induct
thf(fact_7497_bits__induct,axiom,
    ! [P: code_integer > $o,A: code_integer] :
      ( ! [A6: code_integer] :
          ( ( ( divide6298287555418463151nteger @ A6 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
            = A6 )
         => ( P @ A6 ) )
     => ( ! [A6: code_integer,B7: $o] :
            ( ( P @ A6 )
           => ( ( ( divide6298287555418463151nteger @ ( plus_p5714425477246183910nteger @ ( zero_n356916108424825756nteger @ B7 ) @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A6 ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
                = A6 )
             => ( P @ ( plus_p5714425477246183910nteger @ ( zero_n356916108424825756nteger @ B7 ) @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A6 ) ) ) ) )
       => ( P @ A ) ) ) ).

% bits_induct
thf(fact_7498_even__of__int__iff,axiom,
    ! [K: int] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( ring_18347121197199848620nteger @ K ) )
      = ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K ) ) ).

% even_of_int_iff
thf(fact_7499_even__of__int__iff,axiom,
    ! [K: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( ring_1_of_int_int @ K ) )
      = ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K ) ) ).

% even_of_int_iff
thf(fact_7500_exp__mod__exp,axiom,
    ! [M: nat,N: nat] :
      ( ( modulo_modulo_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = ( times_times_nat @ ( zero_n2687167440665602831ol_nat @ ( ord_less_nat @ M @ N ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) ) ).

% exp_mod_exp
thf(fact_7501_exp__mod__exp,axiom,
    ! [M: nat,N: nat] :
      ( ( modulo_modulo_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
      = ( times_times_int @ ( zero_n2684676970156552555ol_int @ ( ord_less_nat @ M @ N ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) ) ) ).

% exp_mod_exp
thf(fact_7502_exp__mod__exp,axiom,
    ! [M: nat,N: nat] :
      ( ( modulo364778990260209775nteger @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) )
      = ( times_3573771949741848930nteger @ ( zero_n356916108424825756nteger @ ( ord_less_nat @ M @ N ) ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) ) ) ).

% exp_mod_exp
thf(fact_7503_ln__one__plus__pos__lower__bound,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ( ord_less_eq_real @ X2 @ one_one_real )
       => ( ord_less_eq_real @ ( minus_minus_real @ X2 @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( ln_ln_real @ ( plus_plus_real @ one_one_real @ X2 ) ) ) ) ) ).

% ln_one_plus_pos_lower_bound
thf(fact_7504_exp__div__exp__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( divide_divide_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = ( times_times_nat
        @ ( zero_n2687167440665602831ol_nat
          @ ( ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M )
             != zero_zero_nat )
            & ( ord_less_eq_nat @ N @ M ) ) )
        @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ M @ N ) ) ) ) ).

% exp_div_exp_eq
thf(fact_7505_exp__div__exp__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( divide_divide_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
      = ( times_times_int
        @ ( zero_n2684676970156552555ol_int
          @ ( ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M )
             != zero_zero_int )
            & ( ord_less_eq_nat @ N @ M ) ) )
        @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( minus_minus_nat @ M @ N ) ) ) ) ).

% exp_div_exp_eq
thf(fact_7506_exp__div__exp__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( divide6298287555418463151nteger @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) )
      = ( times_3573771949741848930nteger
        @ ( zero_n356916108424825756nteger
          @ ( ( ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ M )
             != zero_z3403309356797280102nteger )
            & ( ord_less_eq_nat @ N @ M ) ) )
        @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( minus_minus_nat @ M @ N ) ) ) ) ).

% exp_div_exp_eq
thf(fact_7507_artanh__def,axiom,
    ( artanh_real
    = ( ^ [X: real] : ( divide_divide_real @ ( ln_ln_real @ ( divide_divide_real @ ( plus_plus_real @ one_one_real @ X ) @ ( minus_minus_real @ one_one_real @ X ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).

% artanh_def
thf(fact_7508_floor__exists,axiom,
    ! [X2: real] :
    ? [Z3: int] :
      ( ( ord_less_eq_real @ ( ring_1_of_int_real @ Z3 ) @ X2 )
      & ( ord_less_real @ X2 @ ( ring_1_of_int_real @ ( plus_plus_int @ Z3 @ one_one_int ) ) ) ) ).

% floor_exists
thf(fact_7509_floor__exists,axiom,
    ! [X2: rat] :
    ? [Z3: int] :
      ( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ Z3 ) @ X2 )
      & ( ord_less_rat @ X2 @ ( ring_1_of_int_rat @ ( plus_plus_int @ Z3 @ one_one_int ) ) ) ) ).

% floor_exists
thf(fact_7510_floor__exists1,axiom,
    ! [X2: real] :
    ? [X4: int] :
      ( ( ord_less_eq_real @ ( ring_1_of_int_real @ X4 ) @ X2 )
      & ( ord_less_real @ X2 @ ( ring_1_of_int_real @ ( plus_plus_int @ X4 @ one_one_int ) ) )
      & ! [Y4: int] :
          ( ( ( ord_less_eq_real @ ( ring_1_of_int_real @ Y4 ) @ X2 )
            & ( ord_less_real @ X2 @ ( ring_1_of_int_real @ ( plus_plus_int @ Y4 @ one_one_int ) ) ) )
         => ( Y4 = X4 ) ) ) ).

% floor_exists1
thf(fact_7511_floor__exists1,axiom,
    ! [X2: rat] :
    ? [X4: int] :
      ( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ X4 ) @ X2 )
      & ( ord_less_rat @ X2 @ ( ring_1_of_int_rat @ ( plus_plus_int @ X4 @ one_one_int ) ) )
      & ! [Y4: int] :
          ( ( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ Y4 ) @ X2 )
            & ( ord_less_rat @ X2 @ ( ring_1_of_int_rat @ ( plus_plus_int @ Y4 @ one_one_int ) ) ) )
         => ( Y4 = X4 ) ) ) ).

% floor_exists1
thf(fact_7512_abs__ln__one__plus__x__minus__x__bound__nonpos,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X2 )
     => ( ( ord_less_eq_real @ X2 @ zero_zero_real )
       => ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( ln_ln_real @ ( plus_plus_real @ one_one_real @ X2 ) ) @ X2 ) ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% abs_ln_one_plus_x_minus_x_bound_nonpos
thf(fact_7513_tanh__ln__real,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( ( tanh_real @ ( ln_ln_real @ X2 ) )
        = ( divide_divide_real @ ( minus_minus_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real ) @ ( plus_plus_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real ) ) ) ) ).

% tanh_ln_real
thf(fact_7514_pred__subset__eq2,axiom,
    ! [R: set_Pr4811707699266497531nteger,S3: set_Pr4811707699266497531nteger] :
      ( ( ord_le3602516367967493612eger_o
        @ ^ [X: code_integer,Y: code_integer] : ( member157494554546826820nteger @ ( produc1086072967326762835nteger @ X @ Y ) @ R )
        @ ^ [X: code_integer,Y: code_integer] : ( member157494554546826820nteger @ ( produc1086072967326762835nteger @ X @ Y ) @ S3 ) )
      = ( ord_le3725938330318615451nteger @ R @ S3 ) ) ).

% pred_subset_eq2
thf(fact_7515_pred__subset__eq2,axiom,
    ! [R: set_Pr448751882837621926eger_o,S3: set_Pr448751882837621926eger_o] :
      ( ( ord_le2162486998276636481er_o_o
        @ ^ [X: code_integer,Y: $o] : ( member1379723562493234055eger_o @ ( produc6677183202524767010eger_o @ X @ Y ) @ R )
        @ ^ [X: code_integer,Y: $o] : ( member1379723562493234055eger_o @ ( produc6677183202524767010eger_o @ X @ Y ) @ S3 ) )
      = ( ord_le8980329558974975238eger_o @ R @ S3 ) ) ).

% pred_subset_eq2
thf(fact_7516_pred__subset__eq2,axiom,
    ! [R: set_Pr8218934625190621173um_num,S3: set_Pr8218934625190621173um_num] :
      ( ( ord_le6124364862034508274_num_o
        @ ^ [X: num,Y: num] : ( member7279096912039735102um_num @ ( product_Pair_num_num @ X @ Y ) @ R )
        @ ^ [X: num,Y: num] : ( member7279096912039735102um_num @ ( product_Pair_num_num @ X @ Y ) @ S3 ) )
      = ( ord_le880128212290418581um_num @ R @ S3 ) ) ).

% pred_subset_eq2
thf(fact_7517_pred__subset__eq2,axiom,
    ! [R: set_Pr1261947904930325089at_nat,S3: set_Pr1261947904930325089at_nat] :
      ( ( ord_le2646555220125990790_nat_o
        @ ^ [X: nat,Y: nat] : ( member8440522571783428010at_nat @ ( product_Pair_nat_nat @ X @ Y ) @ R )
        @ ^ [X: nat,Y: nat] : ( member8440522571783428010at_nat @ ( product_Pair_nat_nat @ X @ Y ) @ S3 ) )
      = ( ord_le3146513528884898305at_nat @ R @ S3 ) ) ).

% pred_subset_eq2
thf(fact_7518_pred__subset__eq2,axiom,
    ! [R: set_Pr958786334691620121nt_int,S3: set_Pr958786334691620121nt_int] :
      ( ( ord_le6741204236512500942_int_o
        @ ^ [X: int,Y: int] : ( member5262025264175285858nt_int @ ( product_Pair_int_int @ X @ Y ) @ R )
        @ ^ [X: int,Y: int] : ( member5262025264175285858nt_int @ ( product_Pair_int_int @ X @ Y ) @ S3 ) )
      = ( ord_le2843351958646193337nt_int @ R @ S3 ) ) ).

% pred_subset_eq2
thf(fact_7519_abs__abs,axiom,
    ! [A: real] :
      ( ( abs_abs_real @ ( abs_abs_real @ A ) )
      = ( abs_abs_real @ A ) ) ).

% abs_abs
thf(fact_7520_abs__abs,axiom,
    ! [A: int] :
      ( ( abs_abs_int @ ( abs_abs_int @ A ) )
      = ( abs_abs_int @ A ) ) ).

% abs_abs
thf(fact_7521_abs__abs,axiom,
    ! [A: rat] :
      ( ( abs_abs_rat @ ( abs_abs_rat @ A ) )
      = ( abs_abs_rat @ A ) ) ).

% abs_abs
thf(fact_7522_abs__abs,axiom,
    ! [A: code_integer] :
      ( ( abs_abs_Code_integer @ ( abs_abs_Code_integer @ A ) )
      = ( abs_abs_Code_integer @ A ) ) ).

% abs_abs
thf(fact_7523_abs__0,axiom,
    ( ( abs_abs_Code_integer @ zero_z3403309356797280102nteger )
    = zero_z3403309356797280102nteger ) ).

% abs_0
thf(fact_7524_abs__0,axiom,
    ( ( abs_abs_complex @ zero_zero_complex )
    = zero_zero_complex ) ).

% abs_0
thf(fact_7525_abs__0,axiom,
    ( ( abs_abs_real @ zero_zero_real )
    = zero_zero_real ) ).

% abs_0
thf(fact_7526_abs__0,axiom,
    ( ( abs_abs_rat @ zero_zero_rat )
    = zero_zero_rat ) ).

% abs_0
thf(fact_7527_abs__0,axiom,
    ( ( abs_abs_int @ zero_zero_int )
    = zero_zero_int ) ).

% abs_0
thf(fact_7528_abs__numeral,axiom,
    ! [N: num] :
      ( ( abs_abs_Code_integer @ ( numera6620942414471956472nteger @ N ) )
      = ( numera6620942414471956472nteger @ N ) ) ).

% abs_numeral
thf(fact_7529_abs__numeral,axiom,
    ! [N: num] :
      ( ( abs_abs_real @ ( numeral_numeral_real @ N ) )
      = ( numeral_numeral_real @ N ) ) ).

% abs_numeral
thf(fact_7530_abs__numeral,axiom,
    ! [N: num] :
      ( ( abs_abs_rat @ ( numeral_numeral_rat @ N ) )
      = ( numeral_numeral_rat @ N ) ) ).

% abs_numeral
thf(fact_7531_abs__numeral,axiom,
    ! [N: num] :
      ( ( abs_abs_int @ ( numeral_numeral_int @ N ) )
      = ( numeral_numeral_int @ N ) ) ).

% abs_numeral
thf(fact_7532_abs__mult__self__eq,axiom,
    ! [A: code_integer] :
      ( ( times_3573771949741848930nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ A ) )
      = ( times_3573771949741848930nteger @ A @ A ) ) ).

% abs_mult_self_eq
thf(fact_7533_abs__mult__self__eq,axiom,
    ! [A: real] :
      ( ( times_times_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ A ) )
      = ( times_times_real @ A @ A ) ) ).

% abs_mult_self_eq
thf(fact_7534_abs__mult__self__eq,axiom,
    ! [A: rat] :
      ( ( times_times_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ A ) )
      = ( times_times_rat @ A @ A ) ) ).

% abs_mult_self_eq
thf(fact_7535_abs__mult__self__eq,axiom,
    ! [A: int] :
      ( ( times_times_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ A ) )
      = ( times_times_int @ A @ A ) ) ).

% abs_mult_self_eq
thf(fact_7536_abs__1,axiom,
    ( ( abs_abs_Code_integer @ one_one_Code_integer )
    = one_one_Code_integer ) ).

% abs_1
thf(fact_7537_abs__1,axiom,
    ( ( abs_abs_complex @ one_one_complex )
    = one_one_complex ) ).

% abs_1
thf(fact_7538_abs__1,axiom,
    ( ( abs_abs_real @ one_one_real )
    = one_one_real ) ).

% abs_1
thf(fact_7539_abs__1,axiom,
    ( ( abs_abs_rat @ one_one_rat )
    = one_one_rat ) ).

% abs_1
thf(fact_7540_abs__1,axiom,
    ( ( abs_abs_int @ one_one_int )
    = one_one_int ) ).

% abs_1
thf(fact_7541_abs__add__abs,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( abs_abs_Code_integer @ ( plus_p5714425477246183910nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) ) )
      = ( plus_p5714425477246183910nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) ) ) ).

% abs_add_abs
thf(fact_7542_abs__add__abs,axiom,
    ! [A: real,B: real] :
      ( ( abs_abs_real @ ( plus_plus_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) )
      = ( plus_plus_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) ) ).

% abs_add_abs
thf(fact_7543_abs__add__abs,axiom,
    ! [A: rat,B: rat] :
      ( ( abs_abs_rat @ ( plus_plus_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) )
      = ( plus_plus_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) ) ).

% abs_add_abs
thf(fact_7544_abs__add__abs,axiom,
    ! [A: int,B: int] :
      ( ( abs_abs_int @ ( plus_plus_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) )
      = ( plus_plus_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) ) ).

% abs_add_abs
thf(fact_7545_abs__divide,axiom,
    ! [A: complex,B: complex] :
      ( ( abs_abs_complex @ ( divide1717551699836669952omplex @ A @ B ) )
      = ( divide1717551699836669952omplex @ ( abs_abs_complex @ A ) @ ( abs_abs_complex @ B ) ) ) ).

% abs_divide
thf(fact_7546_abs__divide,axiom,
    ! [A: real,B: real] :
      ( ( abs_abs_real @ ( divide_divide_real @ A @ B ) )
      = ( divide_divide_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) ) ).

% abs_divide
thf(fact_7547_abs__divide,axiom,
    ! [A: rat,B: rat] :
      ( ( abs_abs_rat @ ( divide_divide_rat @ A @ B ) )
      = ( divide_divide_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) ) ).

% abs_divide
thf(fact_7548_abs__minus,axiom,
    ! [A: int] :
      ( ( abs_abs_int @ ( uminus_uminus_int @ A ) )
      = ( abs_abs_int @ A ) ) ).

% abs_minus
thf(fact_7549_abs__minus,axiom,
    ! [A: real] :
      ( ( abs_abs_real @ ( uminus_uminus_real @ A ) )
      = ( abs_abs_real @ A ) ) ).

% abs_minus
thf(fact_7550_abs__minus,axiom,
    ! [A: complex] :
      ( ( abs_abs_complex @ ( uminus1482373934393186551omplex @ A ) )
      = ( abs_abs_complex @ A ) ) ).

% abs_minus
thf(fact_7551_abs__minus,axiom,
    ! [A: rat] :
      ( ( abs_abs_rat @ ( uminus_uminus_rat @ A ) )
      = ( abs_abs_rat @ A ) ) ).

% abs_minus
thf(fact_7552_abs__minus,axiom,
    ! [A: code_integer] :
      ( ( abs_abs_Code_integer @ ( uminus1351360451143612070nteger @ A ) )
      = ( abs_abs_Code_integer @ A ) ) ).

% abs_minus
thf(fact_7553_abs__dvd__iff,axiom,
    ! [M: real,K: real] :
      ( ( dvd_dvd_real @ ( abs_abs_real @ M ) @ K )
      = ( dvd_dvd_real @ M @ K ) ) ).

% abs_dvd_iff
thf(fact_7554_abs__dvd__iff,axiom,
    ! [M: int,K: int] :
      ( ( dvd_dvd_int @ ( abs_abs_int @ M ) @ K )
      = ( dvd_dvd_int @ M @ K ) ) ).

% abs_dvd_iff
thf(fact_7555_abs__dvd__iff,axiom,
    ! [M: rat,K: rat] :
      ( ( dvd_dvd_rat @ ( abs_abs_rat @ M ) @ K )
      = ( dvd_dvd_rat @ M @ K ) ) ).

% abs_dvd_iff
thf(fact_7556_abs__dvd__iff,axiom,
    ! [M: code_integer,K: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( abs_abs_Code_integer @ M ) @ K )
      = ( dvd_dvd_Code_integer @ M @ K ) ) ).

% abs_dvd_iff
thf(fact_7557_dvd__abs__iff,axiom,
    ! [M: real,K: real] :
      ( ( dvd_dvd_real @ M @ ( abs_abs_real @ K ) )
      = ( dvd_dvd_real @ M @ K ) ) ).

% dvd_abs_iff
thf(fact_7558_dvd__abs__iff,axiom,
    ! [M: int,K: int] :
      ( ( dvd_dvd_int @ M @ ( abs_abs_int @ K ) )
      = ( dvd_dvd_int @ M @ K ) ) ).

% dvd_abs_iff
thf(fact_7559_dvd__abs__iff,axiom,
    ! [M: rat,K: rat] :
      ( ( dvd_dvd_rat @ M @ ( abs_abs_rat @ K ) )
      = ( dvd_dvd_rat @ M @ K ) ) ).

% dvd_abs_iff
thf(fact_7560_dvd__abs__iff,axiom,
    ! [M: code_integer,K: code_integer] :
      ( ( dvd_dvd_Code_integer @ M @ ( abs_abs_Code_integer @ K ) )
      = ( dvd_dvd_Code_integer @ M @ K ) ) ).

% dvd_abs_iff
thf(fact_7561_abs__bool__eq,axiom,
    ! [P: $o] :
      ( ( abs_abs_real @ ( zero_n3304061248610475627l_real @ P ) )
      = ( zero_n3304061248610475627l_real @ P ) ) ).

% abs_bool_eq
thf(fact_7562_abs__bool__eq,axiom,
    ! [P: $o] :
      ( ( abs_abs_rat @ ( zero_n2052037380579107095ol_rat @ P ) )
      = ( zero_n2052037380579107095ol_rat @ P ) ) ).

% abs_bool_eq
thf(fact_7563_abs__bool__eq,axiom,
    ! [P: $o] :
      ( ( abs_abs_int @ ( zero_n2684676970156552555ol_int @ P ) )
      = ( zero_n2684676970156552555ol_int @ P ) ) ).

% abs_bool_eq
thf(fact_7564_abs__bool__eq,axiom,
    ! [P: $o] :
      ( ( abs_abs_Code_integer @ ( zero_n356916108424825756nteger @ P ) )
      = ( zero_n356916108424825756nteger @ P ) ) ).

% abs_bool_eq
thf(fact_7565_tanh__real__less__iff,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_real @ ( tanh_real @ X2 ) @ ( tanh_real @ Y2 ) )
      = ( ord_less_real @ X2 @ Y2 ) ) ).

% tanh_real_less_iff
thf(fact_7566_tanh__real__le__iff,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_eq_real @ ( tanh_real @ X2 ) @ ( tanh_real @ Y2 ) )
      = ( ord_less_eq_real @ X2 @ Y2 ) ) ).

% tanh_real_le_iff
thf(fact_7567_abs__of__nonneg,axiom,
    ! [A: code_integer] :
      ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A )
     => ( ( abs_abs_Code_integer @ A )
        = A ) ) ).

% abs_of_nonneg
thf(fact_7568_abs__of__nonneg,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( abs_abs_real @ A )
        = A ) ) ).

% abs_of_nonneg
thf(fact_7569_abs__of__nonneg,axiom,
    ! [A: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ A )
     => ( ( abs_abs_rat @ A )
        = A ) ) ).

% abs_of_nonneg
thf(fact_7570_abs__of__nonneg,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( abs_abs_int @ A )
        = A ) ) ).

% abs_of_nonneg
thf(fact_7571_abs__le__self__iff,axiom,
    ! [A: code_integer] :
      ( ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ A ) @ A )
      = ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A ) ) ).

% abs_le_self_iff
thf(fact_7572_abs__le__self__iff,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ A ) @ A )
      = ( ord_less_eq_real @ zero_zero_real @ A ) ) ).

% abs_le_self_iff
thf(fact_7573_abs__le__self__iff,axiom,
    ! [A: rat] :
      ( ( ord_less_eq_rat @ ( abs_abs_rat @ A ) @ A )
      = ( ord_less_eq_rat @ zero_zero_rat @ A ) ) ).

% abs_le_self_iff
thf(fact_7574_abs__le__self__iff,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ ( abs_abs_int @ A ) @ A )
      = ( ord_less_eq_int @ zero_zero_int @ A ) ) ).

% abs_le_self_iff
thf(fact_7575_abs__le__zero__iff,axiom,
    ! [A: code_integer] :
      ( ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ A ) @ zero_z3403309356797280102nteger )
      = ( A = zero_z3403309356797280102nteger ) ) ).

% abs_le_zero_iff
thf(fact_7576_abs__le__zero__iff,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ A ) @ zero_zero_real )
      = ( A = zero_zero_real ) ) ).

% abs_le_zero_iff
thf(fact_7577_abs__le__zero__iff,axiom,
    ! [A: rat] :
      ( ( ord_less_eq_rat @ ( abs_abs_rat @ A ) @ zero_zero_rat )
      = ( A = zero_zero_rat ) ) ).

% abs_le_zero_iff
thf(fact_7578_abs__le__zero__iff,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ ( abs_abs_int @ A ) @ zero_zero_int )
      = ( A = zero_zero_int ) ) ).

% abs_le_zero_iff
thf(fact_7579_zero__less__abs__iff,axiom,
    ! [A: code_integer] :
      ( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ ( abs_abs_Code_integer @ A ) )
      = ( A != zero_z3403309356797280102nteger ) ) ).

% zero_less_abs_iff
thf(fact_7580_zero__less__abs__iff,axiom,
    ! [A: real] :
      ( ( ord_less_real @ zero_zero_real @ ( abs_abs_real @ A ) )
      = ( A != zero_zero_real ) ) ).

% zero_less_abs_iff
thf(fact_7581_zero__less__abs__iff,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( abs_abs_rat @ A ) )
      = ( A != zero_zero_rat ) ) ).

% zero_less_abs_iff
thf(fact_7582_zero__less__abs__iff,axiom,
    ! [A: int] :
      ( ( ord_less_int @ zero_zero_int @ ( abs_abs_int @ A ) )
      = ( A != zero_zero_int ) ) ).

% zero_less_abs_iff
thf(fact_7583_abs__neg__numeral,axiom,
    ! [N: num] :
      ( ( abs_abs_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( numeral_numeral_int @ N ) ) ).

% abs_neg_numeral
thf(fact_7584_abs__neg__numeral,axiom,
    ! [N: num] :
      ( ( abs_abs_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
      = ( numeral_numeral_real @ N ) ) ).

% abs_neg_numeral
thf(fact_7585_abs__neg__numeral,axiom,
    ! [N: num] :
      ( ( abs_abs_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) )
      = ( numeral_numeral_rat @ N ) ) ).

% abs_neg_numeral
thf(fact_7586_abs__neg__numeral,axiom,
    ! [N: num] :
      ( ( abs_abs_Code_integer @ ( uminus1351360451143612070nteger @ ( numera6620942414471956472nteger @ N ) ) )
      = ( numera6620942414471956472nteger @ N ) ) ).

% abs_neg_numeral
thf(fact_7587_abs__neg__one,axiom,
    ( ( abs_abs_int @ ( uminus_uminus_int @ one_one_int ) )
    = one_one_int ) ).

% abs_neg_one
thf(fact_7588_abs__neg__one,axiom,
    ( ( abs_abs_real @ ( uminus_uminus_real @ one_one_real ) )
    = one_one_real ) ).

% abs_neg_one
thf(fact_7589_abs__neg__one,axiom,
    ( ( abs_abs_rat @ ( uminus_uminus_rat @ one_one_rat ) )
    = one_one_rat ) ).

% abs_neg_one
thf(fact_7590_abs__neg__one,axiom,
    ( ( abs_abs_Code_integer @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
    = one_one_Code_integer ) ).

% abs_neg_one
thf(fact_7591_abs__power__minus,axiom,
    ! [A: int,N: nat] :
      ( ( abs_abs_int @ ( power_power_int @ ( uminus_uminus_int @ A ) @ N ) )
      = ( abs_abs_int @ ( power_power_int @ A @ N ) ) ) ).

% abs_power_minus
thf(fact_7592_abs__power__minus,axiom,
    ! [A: real,N: nat] :
      ( ( abs_abs_real @ ( power_power_real @ ( uminus_uminus_real @ A ) @ N ) )
      = ( abs_abs_real @ ( power_power_real @ A @ N ) ) ) ).

% abs_power_minus
thf(fact_7593_abs__power__minus,axiom,
    ! [A: rat,N: nat] :
      ( ( abs_abs_rat @ ( power_power_rat @ ( uminus_uminus_rat @ A ) @ N ) )
      = ( abs_abs_rat @ ( power_power_rat @ A @ N ) ) ) ).

% abs_power_minus
thf(fact_7594_abs__power__minus,axiom,
    ! [A: code_integer,N: nat] :
      ( ( abs_abs_Code_integer @ ( power_8256067586552552935nteger @ ( uminus1351360451143612070nteger @ A ) @ N ) )
      = ( abs_abs_Code_integer @ ( power_8256067586552552935nteger @ A @ N ) ) ) ).

% abs_power_minus
thf(fact_7595_tanh__real__neg__iff,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ ( tanh_real @ X2 ) @ zero_zero_real )
      = ( ord_less_real @ X2 @ zero_zero_real ) ) ).

% tanh_real_neg_iff
thf(fact_7596_tanh__real__pos__iff,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ zero_zero_real @ ( tanh_real @ X2 ) )
      = ( ord_less_real @ zero_zero_real @ X2 ) ) ).

% tanh_real_pos_iff
thf(fact_7597_tanh__real__nonpos__iff,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ ( tanh_real @ X2 ) @ zero_zero_real )
      = ( ord_less_eq_real @ X2 @ zero_zero_real ) ) ).

% tanh_real_nonpos_iff
thf(fact_7598_tanh__real__nonneg__iff,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( tanh_real @ X2 ) )
      = ( ord_less_eq_real @ zero_zero_real @ X2 ) ) ).

% tanh_real_nonneg_iff
thf(fact_7599_divide__le__0__abs__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ ( divide_divide_real @ A @ ( abs_abs_real @ B ) ) @ zero_zero_real )
      = ( ( ord_less_eq_real @ A @ zero_zero_real )
        | ( B = zero_zero_real ) ) ) ).

% divide_le_0_abs_iff
thf(fact_7600_divide__le__0__abs__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( divide_divide_rat @ A @ ( abs_abs_rat @ B ) ) @ zero_zero_rat )
      = ( ( ord_less_eq_rat @ A @ zero_zero_rat )
        | ( B = zero_zero_rat ) ) ) ).

% divide_le_0_abs_iff
thf(fact_7601_zero__le__divide__abs__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ A @ ( abs_abs_real @ B ) ) )
      = ( ( ord_less_eq_real @ zero_zero_real @ A )
        | ( B = zero_zero_real ) ) ) ).

% zero_le_divide_abs_iff
thf(fact_7602_zero__le__divide__abs__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ ( divide_divide_rat @ A @ ( abs_abs_rat @ B ) ) )
      = ( ( ord_less_eq_rat @ zero_zero_rat @ A )
        | ( B = zero_zero_rat ) ) ) ).

% zero_le_divide_abs_iff
thf(fact_7603_abs__of__nonpos,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ A @ zero_zero_real )
     => ( ( abs_abs_real @ A )
        = ( uminus_uminus_real @ A ) ) ) ).

% abs_of_nonpos
thf(fact_7604_abs__of__nonpos,axiom,
    ! [A: code_integer] :
      ( ( ord_le3102999989581377725nteger @ A @ zero_z3403309356797280102nteger )
     => ( ( abs_abs_Code_integer @ A )
        = ( uminus1351360451143612070nteger @ A ) ) ) ).

% abs_of_nonpos
thf(fact_7605_abs__of__nonpos,axiom,
    ! [A: rat] :
      ( ( ord_less_eq_rat @ A @ zero_zero_rat )
     => ( ( abs_abs_rat @ A )
        = ( uminus_uminus_rat @ A ) ) ) ).

% abs_of_nonpos
thf(fact_7606_abs__of__nonpos,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ A @ zero_zero_int )
     => ( ( abs_abs_int @ A )
        = ( uminus_uminus_int @ A ) ) ) ).

% abs_of_nonpos
thf(fact_7607_artanh__minus__real,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ ( abs_abs_real @ X2 ) @ one_one_real )
     => ( ( artanh_real @ ( uminus_uminus_real @ X2 ) )
        = ( uminus_uminus_real @ ( artanh_real @ X2 ) ) ) ) ).

% artanh_minus_real
thf(fact_7608_zero__less__power__abs__iff,axiom,
    ! [A: code_integer,N: nat] :
      ( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ ( power_8256067586552552935nteger @ ( abs_abs_Code_integer @ A ) @ N ) )
      = ( ( A != zero_z3403309356797280102nteger )
        | ( N = zero_zero_nat ) ) ) ).

% zero_less_power_abs_iff
thf(fact_7609_zero__less__power__abs__iff,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_real @ zero_zero_real @ ( power_power_real @ ( abs_abs_real @ A ) @ N ) )
      = ( ( A != zero_zero_real )
        | ( N = zero_zero_nat ) ) ) ).

% zero_less_power_abs_iff
thf(fact_7610_zero__less__power__abs__iff,axiom,
    ! [A: rat,N: nat] :
      ( ( ord_less_rat @ zero_zero_rat @ ( power_power_rat @ ( abs_abs_rat @ A ) @ N ) )
      = ( ( A != zero_zero_rat )
        | ( N = zero_zero_nat ) ) ) ).

% zero_less_power_abs_iff
thf(fact_7611_zero__less__power__abs__iff,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_int @ zero_zero_int @ ( power_power_int @ ( abs_abs_int @ A ) @ N ) )
      = ( ( A != zero_zero_int )
        | ( N = zero_zero_nat ) ) ) ).

% zero_less_power_abs_iff
thf(fact_7612_abs__power2,axiom,
    ! [A: rat] :
      ( ( abs_abs_rat @ ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% abs_power2
thf(fact_7613_abs__power2,axiom,
    ! [A: code_integer] :
      ( ( abs_abs_Code_integer @ ( power_8256067586552552935nteger @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( power_8256067586552552935nteger @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% abs_power2
thf(fact_7614_abs__power2,axiom,
    ! [A: real] :
      ( ( abs_abs_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% abs_power2
thf(fact_7615_abs__power2,axiom,
    ! [A: int] :
      ( ( abs_abs_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% abs_power2
thf(fact_7616_power2__abs,axiom,
    ! [A: rat] :
      ( ( power_power_rat @ ( abs_abs_rat @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( power_power_rat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power2_abs
thf(fact_7617_power2__abs,axiom,
    ! [A: code_integer] :
      ( ( power_8256067586552552935nteger @ ( abs_abs_Code_integer @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( power_8256067586552552935nteger @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power2_abs
thf(fact_7618_power2__abs,axiom,
    ! [A: real] :
      ( ( power_power_real @ ( abs_abs_real @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power2_abs
thf(fact_7619_power2__abs,axiom,
    ! [A: int] :
      ( ( power_power_int @ ( abs_abs_int @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power2_abs
thf(fact_7620_power__even__abs__numeral,axiom,
    ! [W: num,A: rat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
     => ( ( power_power_rat @ ( abs_abs_rat @ A ) @ ( numeral_numeral_nat @ W ) )
        = ( power_power_rat @ A @ ( numeral_numeral_nat @ W ) ) ) ) ).

% power_even_abs_numeral
thf(fact_7621_power__even__abs__numeral,axiom,
    ! [W: num,A: code_integer] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
     => ( ( power_8256067586552552935nteger @ ( abs_abs_Code_integer @ A ) @ ( numeral_numeral_nat @ W ) )
        = ( power_8256067586552552935nteger @ A @ ( numeral_numeral_nat @ W ) ) ) ) ).

% power_even_abs_numeral
thf(fact_7622_power__even__abs__numeral,axiom,
    ! [W: num,A: real] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
     => ( ( power_power_real @ ( abs_abs_real @ A ) @ ( numeral_numeral_nat @ W ) )
        = ( power_power_real @ A @ ( numeral_numeral_nat @ W ) ) ) ) ).

% power_even_abs_numeral
thf(fact_7623_power__even__abs__numeral,axiom,
    ! [W: num,A: int] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
     => ( ( power_power_int @ ( abs_abs_int @ A ) @ ( numeral_numeral_nat @ W ) )
        = ( power_power_int @ A @ ( numeral_numeral_nat @ W ) ) ) ) ).

% power_even_abs_numeral
thf(fact_7624_abs__le__D1,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ A ) @ B )
     => ( ord_less_eq_real @ A @ B ) ) ).

% abs_le_D1
thf(fact_7625_abs__le__D1,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ A ) @ B )
     => ( ord_le3102999989581377725nteger @ A @ B ) ) ).

% abs_le_D1
thf(fact_7626_abs__le__D1,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( abs_abs_rat @ A ) @ B )
     => ( ord_less_eq_rat @ A @ B ) ) ).

% abs_le_D1
thf(fact_7627_abs__le__D1,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ ( abs_abs_int @ A ) @ B )
     => ( ord_less_eq_int @ A @ B ) ) ).

% abs_le_D1
thf(fact_7628_abs__ge__self,axiom,
    ! [A: real] : ( ord_less_eq_real @ A @ ( abs_abs_real @ A ) ) ).

% abs_ge_self
thf(fact_7629_abs__ge__self,axiom,
    ! [A: code_integer] : ( ord_le3102999989581377725nteger @ A @ ( abs_abs_Code_integer @ A ) ) ).

% abs_ge_self
thf(fact_7630_abs__ge__self,axiom,
    ! [A: rat] : ( ord_less_eq_rat @ A @ ( abs_abs_rat @ A ) ) ).

% abs_ge_self
thf(fact_7631_abs__ge__self,axiom,
    ! [A: int] : ( ord_less_eq_int @ A @ ( abs_abs_int @ A ) ) ).

% abs_ge_self
thf(fact_7632_abs__eq__0__iff,axiom,
    ! [A: code_integer] :
      ( ( ( abs_abs_Code_integer @ A )
        = zero_z3403309356797280102nteger )
      = ( A = zero_z3403309356797280102nteger ) ) ).

% abs_eq_0_iff
thf(fact_7633_abs__eq__0__iff,axiom,
    ! [A: complex] :
      ( ( ( abs_abs_complex @ A )
        = zero_zero_complex )
      = ( A = zero_zero_complex ) ) ).

% abs_eq_0_iff
thf(fact_7634_abs__eq__0__iff,axiom,
    ! [A: real] :
      ( ( ( abs_abs_real @ A )
        = zero_zero_real )
      = ( A = zero_zero_real ) ) ).

% abs_eq_0_iff
thf(fact_7635_abs__eq__0__iff,axiom,
    ! [A: rat] :
      ( ( ( abs_abs_rat @ A )
        = zero_zero_rat )
      = ( A = zero_zero_rat ) ) ).

% abs_eq_0_iff
thf(fact_7636_abs__eq__0__iff,axiom,
    ! [A: int] :
      ( ( ( abs_abs_int @ A )
        = zero_zero_int )
      = ( A = zero_zero_int ) ) ).

% abs_eq_0_iff
thf(fact_7637_abs__mult,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( abs_abs_Code_integer @ ( times_3573771949741848930nteger @ A @ B ) )
      = ( times_3573771949741848930nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) ) ) ).

% abs_mult
thf(fact_7638_abs__mult,axiom,
    ! [A: real,B: real] :
      ( ( abs_abs_real @ ( times_times_real @ A @ B ) )
      = ( times_times_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) ) ).

% abs_mult
thf(fact_7639_abs__mult,axiom,
    ! [A: rat,B: rat] :
      ( ( abs_abs_rat @ ( times_times_rat @ A @ B ) )
      = ( times_times_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) ) ).

% abs_mult
thf(fact_7640_abs__mult,axiom,
    ! [A: int,B: int] :
      ( ( abs_abs_int @ ( times_times_int @ A @ B ) )
      = ( times_times_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) ) ).

% abs_mult
thf(fact_7641_abs__one,axiom,
    ( ( abs_abs_Code_integer @ one_one_Code_integer )
    = one_one_Code_integer ) ).

% abs_one
thf(fact_7642_abs__one,axiom,
    ( ( abs_abs_real @ one_one_real )
    = one_one_real ) ).

% abs_one
thf(fact_7643_abs__one,axiom,
    ( ( abs_abs_rat @ one_one_rat )
    = one_one_rat ) ).

% abs_one
thf(fact_7644_abs__one,axiom,
    ( ( abs_abs_int @ one_one_int )
    = one_one_int ) ).

% abs_one
thf(fact_7645_abs__eq__iff,axiom,
    ! [X2: int,Y2: int] :
      ( ( ( abs_abs_int @ X2 )
        = ( abs_abs_int @ Y2 ) )
      = ( ( X2 = Y2 )
        | ( X2
          = ( uminus_uminus_int @ Y2 ) ) ) ) ).

% abs_eq_iff
thf(fact_7646_abs__eq__iff,axiom,
    ! [X2: real,Y2: real] :
      ( ( ( abs_abs_real @ X2 )
        = ( abs_abs_real @ Y2 ) )
      = ( ( X2 = Y2 )
        | ( X2
          = ( uminus_uminus_real @ Y2 ) ) ) ) ).

% abs_eq_iff
thf(fact_7647_abs__eq__iff,axiom,
    ! [X2: rat,Y2: rat] :
      ( ( ( abs_abs_rat @ X2 )
        = ( abs_abs_rat @ Y2 ) )
      = ( ( X2 = Y2 )
        | ( X2
          = ( uminus_uminus_rat @ Y2 ) ) ) ) ).

% abs_eq_iff
thf(fact_7648_abs__eq__iff,axiom,
    ! [X2: code_integer,Y2: code_integer] :
      ( ( ( abs_abs_Code_integer @ X2 )
        = ( abs_abs_Code_integer @ Y2 ) )
      = ( ( X2 = Y2 )
        | ( X2
          = ( uminus1351360451143612070nteger @ Y2 ) ) ) ) ).

% abs_eq_iff
thf(fact_7649_power__abs,axiom,
    ! [A: rat,N: nat] :
      ( ( abs_abs_rat @ ( power_power_rat @ A @ N ) )
      = ( power_power_rat @ ( abs_abs_rat @ A ) @ N ) ) ).

% power_abs
thf(fact_7650_power__abs,axiom,
    ! [A: code_integer,N: nat] :
      ( ( abs_abs_Code_integer @ ( power_8256067586552552935nteger @ A @ N ) )
      = ( power_8256067586552552935nteger @ ( abs_abs_Code_integer @ A ) @ N ) ) ).

% power_abs
thf(fact_7651_power__abs,axiom,
    ! [A: real,N: nat] :
      ( ( abs_abs_real @ ( power_power_real @ A @ N ) )
      = ( power_power_real @ ( abs_abs_real @ A ) @ N ) ) ).

% power_abs
thf(fact_7652_power__abs,axiom,
    ! [A: int,N: nat] :
      ( ( abs_abs_int @ ( power_power_int @ A @ N ) )
      = ( power_power_int @ ( abs_abs_int @ A ) @ N ) ) ).

% power_abs
thf(fact_7653_dvd__if__abs__eq,axiom,
    ! [L: real,K: real] :
      ( ( ( abs_abs_real @ L )
        = ( abs_abs_real @ K ) )
     => ( dvd_dvd_real @ L @ K ) ) ).

% dvd_if_abs_eq
thf(fact_7654_dvd__if__abs__eq,axiom,
    ! [L: int,K: int] :
      ( ( ( abs_abs_int @ L )
        = ( abs_abs_int @ K ) )
     => ( dvd_dvd_int @ L @ K ) ) ).

% dvd_if_abs_eq
thf(fact_7655_dvd__if__abs__eq,axiom,
    ! [L: rat,K: rat] :
      ( ( ( abs_abs_rat @ L )
        = ( abs_abs_rat @ K ) )
     => ( dvd_dvd_rat @ L @ K ) ) ).

% dvd_if_abs_eq
thf(fact_7656_dvd__if__abs__eq,axiom,
    ! [L: code_integer,K: code_integer] :
      ( ( ( abs_abs_Code_integer @ L )
        = ( abs_abs_Code_integer @ K ) )
     => ( dvd_dvd_Code_integer @ L @ K ) ) ).

% dvd_if_abs_eq
thf(fact_7657_abs__ge__zero,axiom,
    ! [A: code_integer] : ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( abs_abs_Code_integer @ A ) ) ).

% abs_ge_zero
thf(fact_7658_abs__ge__zero,axiom,
    ! [A: real] : ( ord_less_eq_real @ zero_zero_real @ ( abs_abs_real @ A ) ) ).

% abs_ge_zero
thf(fact_7659_abs__ge__zero,axiom,
    ! [A: rat] : ( ord_less_eq_rat @ zero_zero_rat @ ( abs_abs_rat @ A ) ) ).

% abs_ge_zero
thf(fact_7660_abs__ge__zero,axiom,
    ! [A: int] : ( ord_less_eq_int @ zero_zero_int @ ( abs_abs_int @ A ) ) ).

% abs_ge_zero
thf(fact_7661_abs__not__less__zero,axiom,
    ! [A: code_integer] :
      ~ ( ord_le6747313008572928689nteger @ ( abs_abs_Code_integer @ A ) @ zero_z3403309356797280102nteger ) ).

% abs_not_less_zero
thf(fact_7662_abs__not__less__zero,axiom,
    ! [A: real] :
      ~ ( ord_less_real @ ( abs_abs_real @ A ) @ zero_zero_real ) ).

% abs_not_less_zero
thf(fact_7663_abs__not__less__zero,axiom,
    ! [A: rat] :
      ~ ( ord_less_rat @ ( abs_abs_rat @ A ) @ zero_zero_rat ) ).

% abs_not_less_zero
thf(fact_7664_abs__not__less__zero,axiom,
    ! [A: int] :
      ~ ( ord_less_int @ ( abs_abs_int @ A ) @ zero_zero_int ) ).

% abs_not_less_zero
thf(fact_7665_abs__of__pos,axiom,
    ! [A: code_integer] :
      ( ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ A )
     => ( ( abs_abs_Code_integer @ A )
        = A ) ) ).

% abs_of_pos
thf(fact_7666_abs__of__pos,axiom,
    ! [A: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( abs_abs_real @ A )
        = A ) ) ).

% abs_of_pos
thf(fact_7667_abs__of__pos,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ A )
     => ( ( abs_abs_rat @ A )
        = A ) ) ).

% abs_of_pos
thf(fact_7668_abs__of__pos,axiom,
    ! [A: int] :
      ( ( ord_less_int @ zero_zero_int @ A )
     => ( ( abs_abs_int @ A )
        = A ) ) ).

% abs_of_pos
thf(fact_7669_abs__triangle__ineq,axiom,
    ! [A: code_integer,B: code_integer] : ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ ( plus_p5714425477246183910nteger @ A @ B ) ) @ ( plus_p5714425477246183910nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) ) ) ).

% abs_triangle_ineq
thf(fact_7670_abs__triangle__ineq,axiom,
    ! [A: real,B: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( plus_plus_real @ A @ B ) ) @ ( plus_plus_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) ) ).

% abs_triangle_ineq
thf(fact_7671_abs__triangle__ineq,axiom,
    ! [A: rat,B: rat] : ( ord_less_eq_rat @ ( abs_abs_rat @ ( plus_plus_rat @ A @ B ) ) @ ( plus_plus_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) ) ).

% abs_triangle_ineq
thf(fact_7672_abs__triangle__ineq,axiom,
    ! [A: int,B: int] : ( ord_less_eq_int @ ( abs_abs_int @ ( plus_plus_int @ A @ B ) ) @ ( plus_plus_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) ) ).

% abs_triangle_ineq
thf(fact_7673_abs__mult__less,axiom,
    ! [A: code_integer,C: code_integer,B: code_integer,D: code_integer] :
      ( ( ord_le6747313008572928689nteger @ ( abs_abs_Code_integer @ A ) @ C )
     => ( ( ord_le6747313008572928689nteger @ ( abs_abs_Code_integer @ B ) @ D )
       => ( ord_le6747313008572928689nteger @ ( times_3573771949741848930nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) ) @ ( times_3573771949741848930nteger @ C @ D ) ) ) ) ).

% abs_mult_less
thf(fact_7674_abs__mult__less,axiom,
    ! [A: real,C: real,B: real,D: real] :
      ( ( ord_less_real @ ( abs_abs_real @ A ) @ C )
     => ( ( ord_less_real @ ( abs_abs_real @ B ) @ D )
       => ( ord_less_real @ ( times_times_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) @ ( times_times_real @ C @ D ) ) ) ) ).

% abs_mult_less
thf(fact_7675_abs__mult__less,axiom,
    ! [A: rat,C: rat,B: rat,D: rat] :
      ( ( ord_less_rat @ ( abs_abs_rat @ A ) @ C )
     => ( ( ord_less_rat @ ( abs_abs_rat @ B ) @ D )
       => ( ord_less_rat @ ( times_times_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) @ ( times_times_rat @ C @ D ) ) ) ) ).

% abs_mult_less
thf(fact_7676_abs__mult__less,axiom,
    ! [A: int,C: int,B: int,D: int] :
      ( ( ord_less_int @ ( abs_abs_int @ A ) @ C )
     => ( ( ord_less_int @ ( abs_abs_int @ B ) @ D )
       => ( ord_less_int @ ( times_times_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) @ ( times_times_int @ C @ D ) ) ) ) ).

% abs_mult_less
thf(fact_7677_abs__triangle__ineq2,axiom,
    ! [A: code_integer,B: code_integer] : ( ord_le3102999989581377725nteger @ ( minus_8373710615458151222nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) ) @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ A @ B ) ) ) ).

% abs_triangle_ineq2
thf(fact_7678_abs__triangle__ineq2,axiom,
    ! [A: real,B: real] : ( ord_less_eq_real @ ( minus_minus_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) @ ( abs_abs_real @ ( minus_minus_real @ A @ B ) ) ) ).

% abs_triangle_ineq2
thf(fact_7679_abs__triangle__ineq2,axiom,
    ! [A: rat,B: rat] : ( ord_less_eq_rat @ ( minus_minus_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) @ ( abs_abs_rat @ ( minus_minus_rat @ A @ B ) ) ) ).

% abs_triangle_ineq2
thf(fact_7680_abs__triangle__ineq2,axiom,
    ! [A: int,B: int] : ( ord_less_eq_int @ ( minus_minus_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) @ ( abs_abs_int @ ( minus_minus_int @ A @ B ) ) ) ).

% abs_triangle_ineq2
thf(fact_7681_abs__triangle__ineq3,axiom,
    ! [A: code_integer,B: code_integer] : ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) ) ) @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ A @ B ) ) ) ).

% abs_triangle_ineq3
thf(fact_7682_abs__triangle__ineq3,axiom,
    ! [A: real,B: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) ) @ ( abs_abs_real @ ( minus_minus_real @ A @ B ) ) ) ).

% abs_triangle_ineq3
thf(fact_7683_abs__triangle__ineq3,axiom,
    ! [A: rat,B: rat] : ( ord_less_eq_rat @ ( abs_abs_rat @ ( minus_minus_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) ) @ ( abs_abs_rat @ ( minus_minus_rat @ A @ B ) ) ) ).

% abs_triangle_ineq3
thf(fact_7684_abs__triangle__ineq3,axiom,
    ! [A: int,B: int] : ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) ) @ ( abs_abs_int @ ( minus_minus_int @ A @ B ) ) ) ).

% abs_triangle_ineq3
thf(fact_7685_abs__triangle__ineq2__sym,axiom,
    ! [A: code_integer,B: code_integer] : ( ord_le3102999989581377725nteger @ ( minus_8373710615458151222nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) ) @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ B @ A ) ) ) ).

% abs_triangle_ineq2_sym
thf(fact_7686_abs__triangle__ineq2__sym,axiom,
    ! [A: real,B: real] : ( ord_less_eq_real @ ( minus_minus_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) @ ( abs_abs_real @ ( minus_minus_real @ B @ A ) ) ) ).

% abs_triangle_ineq2_sym
thf(fact_7687_abs__triangle__ineq2__sym,axiom,
    ! [A: rat,B: rat] : ( ord_less_eq_rat @ ( minus_minus_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) @ ( abs_abs_rat @ ( minus_minus_rat @ B @ A ) ) ) ).

% abs_triangle_ineq2_sym
thf(fact_7688_abs__triangle__ineq2__sym,axiom,
    ! [A: int,B: int] : ( ord_less_eq_int @ ( minus_minus_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) @ ( abs_abs_int @ ( minus_minus_int @ B @ A ) ) ) ).

% abs_triangle_ineq2_sym
thf(fact_7689_nonzero__abs__divide,axiom,
    ! [B: real,A: real] :
      ( ( B != zero_zero_real )
     => ( ( abs_abs_real @ ( divide_divide_real @ A @ B ) )
        = ( divide_divide_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) ) ) ).

% nonzero_abs_divide
thf(fact_7690_nonzero__abs__divide,axiom,
    ! [B: rat,A: rat] :
      ( ( B != zero_zero_rat )
     => ( ( abs_abs_rat @ ( divide_divide_rat @ A @ B ) )
        = ( divide_divide_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) ) ) ).

% nonzero_abs_divide
thf(fact_7691_abs__ge__minus__self,axiom,
    ! [A: real] : ( ord_less_eq_real @ ( uminus_uminus_real @ A ) @ ( abs_abs_real @ A ) ) ).

% abs_ge_minus_self
thf(fact_7692_abs__ge__minus__self,axiom,
    ! [A: code_integer] : ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ A ) @ ( abs_abs_Code_integer @ A ) ) ).

% abs_ge_minus_self
thf(fact_7693_abs__ge__minus__self,axiom,
    ! [A: rat] : ( ord_less_eq_rat @ ( uminus_uminus_rat @ A ) @ ( abs_abs_rat @ A ) ) ).

% abs_ge_minus_self
thf(fact_7694_abs__ge__minus__self,axiom,
    ! [A: int] : ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ ( abs_abs_int @ A ) ) ).

% abs_ge_minus_self
thf(fact_7695_abs__le__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ A ) @ B )
      = ( ( ord_less_eq_real @ A @ B )
        & ( ord_less_eq_real @ ( uminus_uminus_real @ A ) @ B ) ) ) ).

% abs_le_iff
thf(fact_7696_abs__le__iff,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ A ) @ B )
      = ( ( ord_le3102999989581377725nteger @ A @ B )
        & ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ A ) @ B ) ) ) ).

% abs_le_iff
thf(fact_7697_abs__le__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( abs_abs_rat @ A ) @ B )
      = ( ( ord_less_eq_rat @ A @ B )
        & ( ord_less_eq_rat @ ( uminus_uminus_rat @ A ) @ B ) ) ) ).

% abs_le_iff
thf(fact_7698_abs__le__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ ( abs_abs_int @ A ) @ B )
      = ( ( ord_less_eq_int @ A @ B )
        & ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ B ) ) ) ).

% abs_le_iff
thf(fact_7699_abs__le__D2,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ A ) @ B )
     => ( ord_less_eq_real @ ( uminus_uminus_real @ A ) @ B ) ) ).

% abs_le_D2
thf(fact_7700_abs__le__D2,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ A ) @ B )
     => ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ A ) @ B ) ) ).

% abs_le_D2
thf(fact_7701_abs__le__D2,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ ( abs_abs_rat @ A ) @ B )
     => ( ord_less_eq_rat @ ( uminus_uminus_rat @ A ) @ B ) ) ).

% abs_le_D2
thf(fact_7702_abs__le__D2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ ( abs_abs_int @ A ) @ B )
     => ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ B ) ) ).

% abs_le_D2
thf(fact_7703_abs__leI,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ ( uminus_uminus_real @ A ) @ B )
       => ( ord_less_eq_real @ ( abs_abs_real @ A ) @ B ) ) ) ).

% abs_leI
thf(fact_7704_abs__leI,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ord_le3102999989581377725nteger @ A @ B )
     => ( ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ A ) @ B )
       => ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ A ) @ B ) ) ) ).

% abs_leI
thf(fact_7705_abs__leI,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_eq_rat @ A @ B )
     => ( ( ord_less_eq_rat @ ( uminus_uminus_rat @ A ) @ B )
       => ( ord_less_eq_rat @ ( abs_abs_rat @ A ) @ B ) ) ) ).

% abs_leI
thf(fact_7706_abs__leI,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ B )
       => ( ord_less_eq_int @ ( abs_abs_int @ A ) @ B ) ) ) ).

% abs_leI
thf(fact_7707_abs__less__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ ( abs_abs_int @ A ) @ B )
      = ( ( ord_less_int @ A @ B )
        & ( ord_less_int @ ( uminus_uminus_int @ A ) @ B ) ) ) ).

% abs_less_iff
thf(fact_7708_abs__less__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ ( abs_abs_real @ A ) @ B )
      = ( ( ord_less_real @ A @ B )
        & ( ord_less_real @ ( uminus_uminus_real @ A ) @ B ) ) ) ).

% abs_less_iff
thf(fact_7709_abs__less__iff,axiom,
    ! [A: rat,B: rat] :
      ( ( ord_less_rat @ ( abs_abs_rat @ A ) @ B )
      = ( ( ord_less_rat @ A @ B )
        & ( ord_less_rat @ ( uminus_uminus_rat @ A ) @ B ) ) ) ).

% abs_less_iff
thf(fact_7710_abs__less__iff,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ord_le6747313008572928689nteger @ ( abs_abs_Code_integer @ A ) @ B )
      = ( ( ord_le6747313008572928689nteger @ A @ B )
        & ( ord_le6747313008572928689nteger @ ( uminus1351360451143612070nteger @ A ) @ B ) ) ) ).

% abs_less_iff
thf(fact_7711_finite__image__absD,axiom,
    ! [S3: set_real] :
      ( ( finite_finite_real @ ( image_real_real @ abs_abs_real @ S3 ) )
     => ( finite_finite_real @ S3 ) ) ).

% finite_image_absD
thf(fact_7712_finite__image__absD,axiom,
    ! [S3: set_int] :
      ( ( finite_finite_int @ ( image_int_int @ abs_abs_int @ S3 ) )
     => ( finite_finite_int @ S3 ) ) ).

% finite_image_absD
thf(fact_7713_finite__image__absD,axiom,
    ! [S3: set_rat] :
      ( ( finite_finite_rat @ ( image_rat_rat @ abs_abs_rat @ S3 ) )
     => ( finite_finite_rat @ S3 ) ) ).

% finite_image_absD
thf(fact_7714_finite__image__absD,axiom,
    ! [S3: set_Code_integer] :
      ( ( finite6017078050557962740nteger @ ( image_4470545334726330049nteger @ abs_abs_Code_integer @ S3 ) )
     => ( finite6017078050557962740nteger @ S3 ) ) ).

% finite_image_absD
thf(fact_7715_tanh__real__lt__1,axiom,
    ! [X2: real] : ( ord_less_real @ ( tanh_real @ X2 ) @ one_one_real ) ).

% tanh_real_lt_1
thf(fact_7716_dense__eq0__I,axiom,
    ! [X2: real] :
      ( ! [E2: real] :
          ( ( ord_less_real @ zero_zero_real @ E2 )
         => ( ord_less_eq_real @ ( abs_abs_real @ X2 ) @ E2 ) )
     => ( X2 = zero_zero_real ) ) ).

% dense_eq0_I
thf(fact_7717_dense__eq0__I,axiom,
    ! [X2: rat] :
      ( ! [E2: rat] :
          ( ( ord_less_rat @ zero_zero_rat @ E2 )
         => ( ord_less_eq_rat @ ( abs_abs_rat @ X2 ) @ E2 ) )
     => ( X2 = zero_zero_rat ) ) ).

% dense_eq0_I
thf(fact_7718_abs__mult__pos,axiom,
    ! [X2: code_integer,Y2: code_integer] :
      ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ X2 )
     => ( ( times_3573771949741848930nteger @ ( abs_abs_Code_integer @ Y2 ) @ X2 )
        = ( abs_abs_Code_integer @ ( times_3573771949741848930nteger @ Y2 @ X2 ) ) ) ) ).

% abs_mult_pos
thf(fact_7719_abs__mult__pos,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ( times_times_real @ ( abs_abs_real @ Y2 ) @ X2 )
        = ( abs_abs_real @ ( times_times_real @ Y2 @ X2 ) ) ) ) ).

% abs_mult_pos
thf(fact_7720_abs__mult__pos,axiom,
    ! [X2: rat,Y2: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ X2 )
     => ( ( times_times_rat @ ( abs_abs_rat @ Y2 ) @ X2 )
        = ( abs_abs_rat @ ( times_times_rat @ Y2 @ X2 ) ) ) ) ).

% abs_mult_pos
thf(fact_7721_abs__mult__pos,axiom,
    ! [X2: int,Y2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X2 )
     => ( ( times_times_int @ ( abs_abs_int @ Y2 ) @ X2 )
        = ( abs_abs_int @ ( times_times_int @ Y2 @ X2 ) ) ) ) ).

% abs_mult_pos
thf(fact_7722_abs__eq__mult,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A )
          | ( ord_le3102999989581377725nteger @ A @ zero_z3403309356797280102nteger ) )
        & ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ B )
          | ( ord_le3102999989581377725nteger @ B @ zero_z3403309356797280102nteger ) ) )
     => ( ( abs_abs_Code_integer @ ( times_3573771949741848930nteger @ A @ B ) )
        = ( times_3573771949741848930nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) ) ) ) ).

% abs_eq_mult
thf(fact_7723_abs__eq__mult,axiom,
    ! [A: real,B: real] :
      ( ( ( ( ord_less_eq_real @ zero_zero_real @ A )
          | ( ord_less_eq_real @ A @ zero_zero_real ) )
        & ( ( ord_less_eq_real @ zero_zero_real @ B )
          | ( ord_less_eq_real @ B @ zero_zero_real ) ) )
     => ( ( abs_abs_real @ ( times_times_real @ A @ B ) )
        = ( times_times_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) ) ) ).

% abs_eq_mult
thf(fact_7724_abs__eq__mult,axiom,
    ! [A: rat,B: rat] :
      ( ( ( ( ord_less_eq_rat @ zero_zero_rat @ A )
          | ( ord_less_eq_rat @ A @ zero_zero_rat ) )
        & ( ( ord_less_eq_rat @ zero_zero_rat @ B )
          | ( ord_less_eq_rat @ B @ zero_zero_rat ) ) )
     => ( ( abs_abs_rat @ ( times_times_rat @ A @ B ) )
        = ( times_times_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) ) ) ).

% abs_eq_mult
thf(fact_7725_abs__eq__mult,axiom,
    ! [A: int,B: int] :
      ( ( ( ( ord_less_eq_int @ zero_zero_int @ A )
          | ( ord_less_eq_int @ A @ zero_zero_int ) )
        & ( ( ord_less_eq_int @ zero_zero_int @ B )
          | ( ord_less_eq_int @ B @ zero_zero_int ) ) )
     => ( ( abs_abs_int @ ( times_times_int @ A @ B ) )
        = ( times_times_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) ) ) ).

% abs_eq_mult
thf(fact_7726_abs__eq__iff_H,axiom,
    ! [A: real,B: real] :
      ( ( ( abs_abs_real @ A )
        = B )
      = ( ( ord_less_eq_real @ zero_zero_real @ B )
        & ( ( A = B )
          | ( A
            = ( uminus_uminus_real @ B ) ) ) ) ) ).

% abs_eq_iff'
thf(fact_7727_abs__eq__iff_H,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ( abs_abs_Code_integer @ A )
        = B )
      = ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ B )
        & ( ( A = B )
          | ( A
            = ( uminus1351360451143612070nteger @ B ) ) ) ) ) ).

% abs_eq_iff'
thf(fact_7728_abs__eq__iff_H,axiom,
    ! [A: rat,B: rat] :
      ( ( ( abs_abs_rat @ A )
        = B )
      = ( ( ord_less_eq_rat @ zero_zero_rat @ B )
        & ( ( A = B )
          | ( A
            = ( uminus_uminus_rat @ B ) ) ) ) ) ).

% abs_eq_iff'
thf(fact_7729_abs__eq__iff_H,axiom,
    ! [A: int,B: int] :
      ( ( ( abs_abs_int @ A )
        = B )
      = ( ( ord_less_eq_int @ zero_zero_int @ B )
        & ( ( A = B )
          | ( A
            = ( uminus_uminus_int @ B ) ) ) ) ) ).

% abs_eq_iff'
thf(fact_7730_eq__abs__iff_H,axiom,
    ! [A: real,B: real] :
      ( ( A
        = ( abs_abs_real @ B ) )
      = ( ( ord_less_eq_real @ zero_zero_real @ A )
        & ( ( B = A )
          | ( B
            = ( uminus_uminus_real @ A ) ) ) ) ) ).

% eq_abs_iff'
thf(fact_7731_eq__abs__iff_H,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( A
        = ( abs_abs_Code_integer @ B ) )
      = ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ A )
        & ( ( B = A )
          | ( B
            = ( uminus1351360451143612070nteger @ A ) ) ) ) ) ).

% eq_abs_iff'
thf(fact_7732_eq__abs__iff_H,axiom,
    ! [A: rat,B: rat] :
      ( ( A
        = ( abs_abs_rat @ B ) )
      = ( ( ord_less_eq_rat @ zero_zero_rat @ A )
        & ( ( B = A )
          | ( B
            = ( uminus_uminus_rat @ A ) ) ) ) ) ).

% eq_abs_iff'
thf(fact_7733_eq__abs__iff_H,axiom,
    ! [A: int,B: int] :
      ( ( A
        = ( abs_abs_int @ B ) )
      = ( ( ord_less_eq_int @ zero_zero_int @ A )
        & ( ( B = A )
          | ( B
            = ( uminus_uminus_int @ A ) ) ) ) ) ).

% eq_abs_iff'
thf(fact_7734_abs__minus__le__zero,axiom,
    ! [A: real] : ( ord_less_eq_real @ ( uminus_uminus_real @ ( abs_abs_real @ A ) ) @ zero_zero_real ) ).

% abs_minus_le_zero
thf(fact_7735_abs__minus__le__zero,axiom,
    ! [A: code_integer] : ( ord_le3102999989581377725nteger @ ( uminus1351360451143612070nteger @ ( abs_abs_Code_integer @ A ) ) @ zero_z3403309356797280102nteger ) ).

% abs_minus_le_zero
thf(fact_7736_abs__minus__le__zero,axiom,
    ! [A: rat] : ( ord_less_eq_rat @ ( uminus_uminus_rat @ ( abs_abs_rat @ A ) ) @ zero_zero_rat ) ).

% abs_minus_le_zero
thf(fact_7737_abs__minus__le__zero,axiom,
    ! [A: int] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( abs_abs_int @ A ) ) @ zero_zero_int ) ).

% abs_minus_le_zero
thf(fact_7738_abs__div__pos,axiom,
    ! [Y2: real,X2: real] :
      ( ( ord_less_real @ zero_zero_real @ Y2 )
     => ( ( divide_divide_real @ ( abs_abs_real @ X2 ) @ Y2 )
        = ( abs_abs_real @ ( divide_divide_real @ X2 @ Y2 ) ) ) ) ).

% abs_div_pos
thf(fact_7739_abs__div__pos,axiom,
    ! [Y2: rat,X2: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ Y2 )
     => ( ( divide_divide_rat @ ( abs_abs_rat @ X2 ) @ Y2 )
        = ( abs_abs_rat @ ( divide_divide_rat @ X2 @ Y2 ) ) ) ) ).

% abs_div_pos
thf(fact_7740_zero__le__power__abs,axiom,
    ! [A: code_integer,N: nat] : ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( power_8256067586552552935nteger @ ( abs_abs_Code_integer @ A ) @ N ) ) ).

% zero_le_power_abs
thf(fact_7741_zero__le__power__abs,axiom,
    ! [A: real,N: nat] : ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ ( abs_abs_real @ A ) @ N ) ) ).

% zero_le_power_abs
thf(fact_7742_zero__le__power__abs,axiom,
    ! [A: rat,N: nat] : ( ord_less_eq_rat @ zero_zero_rat @ ( power_power_rat @ ( abs_abs_rat @ A ) @ N ) ) ).

% zero_le_power_abs
thf(fact_7743_zero__le__power__abs,axiom,
    ! [A: int,N: nat] : ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ ( abs_abs_int @ A ) @ N ) ) ).

% zero_le_power_abs
thf(fact_7744_abs__if__raw,axiom,
    ( abs_abs_int
    = ( ^ [A3: int] : ( if_int @ ( ord_less_int @ A3 @ zero_zero_int ) @ ( uminus_uminus_int @ A3 ) @ A3 ) ) ) ).

% abs_if_raw
thf(fact_7745_abs__if__raw,axiom,
    ( abs_abs_real
    = ( ^ [A3: real] : ( if_real @ ( ord_less_real @ A3 @ zero_zero_real ) @ ( uminus_uminus_real @ A3 ) @ A3 ) ) ) ).

% abs_if_raw
thf(fact_7746_abs__if__raw,axiom,
    ( abs_abs_rat
    = ( ^ [A3: rat] : ( if_rat @ ( ord_less_rat @ A3 @ zero_zero_rat ) @ ( uminus_uminus_rat @ A3 ) @ A3 ) ) ) ).

% abs_if_raw
thf(fact_7747_abs__if__raw,axiom,
    ( abs_abs_Code_integer
    = ( ^ [A3: code_integer] : ( if_Code_integer @ ( ord_le6747313008572928689nteger @ A3 @ zero_z3403309356797280102nteger ) @ ( uminus1351360451143612070nteger @ A3 ) @ A3 ) ) ) ).

% abs_if_raw
thf(fact_7748_abs__of__neg,axiom,
    ! [A: int] :
      ( ( ord_less_int @ A @ zero_zero_int )
     => ( ( abs_abs_int @ A )
        = ( uminus_uminus_int @ A ) ) ) ).

% abs_of_neg
thf(fact_7749_abs__of__neg,axiom,
    ! [A: real] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ( abs_abs_real @ A )
        = ( uminus_uminus_real @ A ) ) ) ).

% abs_of_neg
thf(fact_7750_abs__of__neg,axiom,
    ! [A: rat] :
      ( ( ord_less_rat @ A @ zero_zero_rat )
     => ( ( abs_abs_rat @ A )
        = ( uminus_uminus_rat @ A ) ) ) ).

% abs_of_neg
thf(fact_7751_abs__of__neg,axiom,
    ! [A: code_integer] :
      ( ( ord_le6747313008572928689nteger @ A @ zero_z3403309356797280102nteger )
     => ( ( abs_abs_Code_integer @ A )
        = ( uminus1351360451143612070nteger @ A ) ) ) ).

% abs_of_neg
thf(fact_7752_abs__if,axiom,
    ( abs_abs_int
    = ( ^ [A3: int] : ( if_int @ ( ord_less_int @ A3 @ zero_zero_int ) @ ( uminus_uminus_int @ A3 ) @ A3 ) ) ) ).

% abs_if
thf(fact_7753_abs__if,axiom,
    ( abs_abs_real
    = ( ^ [A3: real] : ( if_real @ ( ord_less_real @ A3 @ zero_zero_real ) @ ( uminus_uminus_real @ A3 ) @ A3 ) ) ) ).

% abs_if
thf(fact_7754_abs__if,axiom,
    ( abs_abs_rat
    = ( ^ [A3: rat] : ( if_rat @ ( ord_less_rat @ A3 @ zero_zero_rat ) @ ( uminus_uminus_rat @ A3 ) @ A3 ) ) ) ).

% abs_if
thf(fact_7755_abs__if,axiom,
    ( abs_abs_Code_integer
    = ( ^ [A3: code_integer] : ( if_Code_integer @ ( ord_le6747313008572928689nteger @ A3 @ zero_z3403309356797280102nteger ) @ ( uminus1351360451143612070nteger @ A3 ) @ A3 ) ) ) ).

% abs_if
thf(fact_7756_abs__triangle__ineq4,axiom,
    ! [A: code_integer,B: code_integer] : ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ A @ B ) ) @ ( plus_p5714425477246183910nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) ) ) ).

% abs_triangle_ineq4
thf(fact_7757_abs__triangle__ineq4,axiom,
    ! [A: real,B: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ A @ B ) ) @ ( plus_plus_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) ) ).

% abs_triangle_ineq4
thf(fact_7758_abs__triangle__ineq4,axiom,
    ! [A: rat,B: rat] : ( ord_less_eq_rat @ ( abs_abs_rat @ ( minus_minus_rat @ A @ B ) ) @ ( plus_plus_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) ) ) ).

% abs_triangle_ineq4
thf(fact_7759_abs__triangle__ineq4,axiom,
    ! [A: int,B: int] : ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ A @ B ) ) @ ( plus_plus_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) ) ).

% abs_triangle_ineq4
thf(fact_7760_abs__diff__triangle__ineq,axiom,
    ! [A: code_integer,B: code_integer,C: code_integer,D: code_integer] : ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ ( plus_p5714425477246183910nteger @ A @ B ) @ ( plus_p5714425477246183910nteger @ C @ D ) ) ) @ ( plus_p5714425477246183910nteger @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ A @ C ) ) @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ B @ D ) ) ) ) ).

% abs_diff_triangle_ineq
thf(fact_7761_abs__diff__triangle__ineq,axiom,
    ! [A: real,B: real,C: real,D: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( plus_plus_real @ A @ B ) @ ( plus_plus_real @ C @ D ) ) ) @ ( plus_plus_real @ ( abs_abs_real @ ( minus_minus_real @ A @ C ) ) @ ( abs_abs_real @ ( minus_minus_real @ B @ D ) ) ) ) ).

% abs_diff_triangle_ineq
thf(fact_7762_abs__diff__triangle__ineq,axiom,
    ! [A: rat,B: rat,C: rat,D: rat] : ( ord_less_eq_rat @ ( abs_abs_rat @ ( minus_minus_rat @ ( plus_plus_rat @ A @ B ) @ ( plus_plus_rat @ C @ D ) ) ) @ ( plus_plus_rat @ ( abs_abs_rat @ ( minus_minus_rat @ A @ C ) ) @ ( abs_abs_rat @ ( minus_minus_rat @ B @ D ) ) ) ) ).

% abs_diff_triangle_ineq
thf(fact_7763_abs__diff__triangle__ineq,axiom,
    ! [A: int,B: int,C: int,D: int] : ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ ( plus_plus_int @ A @ B ) @ ( plus_plus_int @ C @ D ) ) ) @ ( plus_plus_int @ ( abs_abs_int @ ( minus_minus_int @ A @ C ) ) @ ( abs_abs_int @ ( minus_minus_int @ B @ D ) ) ) ) ).

% abs_diff_triangle_ineq
thf(fact_7764_abs__diff__le__iff,axiom,
    ! [X2: code_integer,A: code_integer,R2: code_integer] :
      ( ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ X2 @ A ) ) @ R2 )
      = ( ( ord_le3102999989581377725nteger @ ( minus_8373710615458151222nteger @ A @ R2 ) @ X2 )
        & ( ord_le3102999989581377725nteger @ X2 @ ( plus_p5714425477246183910nteger @ A @ R2 ) ) ) ) ).

% abs_diff_le_iff
thf(fact_7765_abs__diff__le__iff,axiom,
    ! [X2: real,A: real,R2: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ X2 @ A ) ) @ R2 )
      = ( ( ord_less_eq_real @ ( minus_minus_real @ A @ R2 ) @ X2 )
        & ( ord_less_eq_real @ X2 @ ( plus_plus_real @ A @ R2 ) ) ) ) ).

% abs_diff_le_iff
thf(fact_7766_abs__diff__le__iff,axiom,
    ! [X2: rat,A: rat,R2: rat] :
      ( ( ord_less_eq_rat @ ( abs_abs_rat @ ( minus_minus_rat @ X2 @ A ) ) @ R2 )
      = ( ( ord_less_eq_rat @ ( minus_minus_rat @ A @ R2 ) @ X2 )
        & ( ord_less_eq_rat @ X2 @ ( plus_plus_rat @ A @ R2 ) ) ) ) ).

% abs_diff_le_iff
thf(fact_7767_abs__diff__le__iff,axiom,
    ! [X2: int,A: int,R2: int] :
      ( ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ X2 @ A ) ) @ R2 )
      = ( ( ord_less_eq_int @ ( minus_minus_int @ A @ R2 ) @ X2 )
        & ( ord_less_eq_int @ X2 @ ( plus_plus_int @ A @ R2 ) ) ) ) ).

% abs_diff_le_iff
thf(fact_7768_abs__diff__less__iff,axiom,
    ! [X2: code_integer,A: code_integer,R2: code_integer] :
      ( ( ord_le6747313008572928689nteger @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ X2 @ A ) ) @ R2 )
      = ( ( ord_le6747313008572928689nteger @ ( minus_8373710615458151222nteger @ A @ R2 ) @ X2 )
        & ( ord_le6747313008572928689nteger @ X2 @ ( plus_p5714425477246183910nteger @ A @ R2 ) ) ) ) ).

% abs_diff_less_iff
thf(fact_7769_abs__diff__less__iff,axiom,
    ! [X2: real,A: real,R2: real] :
      ( ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ X2 @ A ) ) @ R2 )
      = ( ( ord_less_real @ ( minus_minus_real @ A @ R2 ) @ X2 )
        & ( ord_less_real @ X2 @ ( plus_plus_real @ A @ R2 ) ) ) ) ).

% abs_diff_less_iff
thf(fact_7770_abs__diff__less__iff,axiom,
    ! [X2: rat,A: rat,R2: rat] :
      ( ( ord_less_rat @ ( abs_abs_rat @ ( minus_minus_rat @ X2 @ A ) ) @ R2 )
      = ( ( ord_less_rat @ ( minus_minus_rat @ A @ R2 ) @ X2 )
        & ( ord_less_rat @ X2 @ ( plus_plus_rat @ A @ R2 ) ) ) ) ).

% abs_diff_less_iff
thf(fact_7771_abs__diff__less__iff,axiom,
    ! [X2: int,A: int,R2: int] :
      ( ( ord_less_int @ ( abs_abs_int @ ( minus_minus_int @ X2 @ A ) ) @ R2 )
      = ( ( ord_less_int @ ( minus_minus_int @ A @ R2 ) @ X2 )
        & ( ord_less_int @ X2 @ ( plus_plus_int @ A @ R2 ) ) ) ) ).

% abs_diff_less_iff
thf(fact_7772_abs__real__def,axiom,
    ( abs_abs_real
    = ( ^ [A3: real] : ( if_real @ ( ord_less_real @ A3 @ zero_zero_real ) @ ( uminus_uminus_real @ A3 ) @ A3 ) ) ) ).

% abs_real_def
thf(fact_7773_lemma__interval__lt,axiom,
    ! [A: real,X2: real,B: real] :
      ( ( ord_less_real @ A @ X2 )
     => ( ( ord_less_real @ X2 @ B )
       => ? [D4: real] :
            ( ( ord_less_real @ zero_zero_real @ D4 )
            & ! [Y4: real] :
                ( ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ X2 @ Y4 ) ) @ D4 )
               => ( ( ord_less_real @ A @ Y4 )
                  & ( ord_less_real @ Y4 @ B ) ) ) ) ) ) ).

% lemma_interval_lt
thf(fact_7774_sin__bound__lemma,axiom,
    ! [X2: real,Y2: real,U: real,V: real] :
      ( ( X2 = Y2 )
     => ( ( ord_less_eq_real @ ( abs_abs_real @ U ) @ V )
       => ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( plus_plus_real @ X2 @ U ) @ Y2 ) ) @ V ) ) ) ).

% sin_bound_lemma
thf(fact_7775_tanh__real__gt__neg1,axiom,
    ! [X2: real] : ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ ( tanh_real @ X2 ) ) ).

% tanh_real_gt_neg1
thf(fact_7776_abs__add__one__gt__zero,axiom,
    ! [X2: code_integer] : ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ ( plus_p5714425477246183910nteger @ one_one_Code_integer @ ( abs_abs_Code_integer @ X2 ) ) ) ).

% abs_add_one_gt_zero
thf(fact_7777_abs__add__one__gt__zero,axiom,
    ! [X2: real] : ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ one_one_real @ ( abs_abs_real @ X2 ) ) ) ).

% abs_add_one_gt_zero
thf(fact_7778_abs__add__one__gt__zero,axiom,
    ! [X2: rat] : ( ord_less_rat @ zero_zero_rat @ ( plus_plus_rat @ one_one_rat @ ( abs_abs_rat @ X2 ) ) ) ).

% abs_add_one_gt_zero
thf(fact_7779_abs__add__one__gt__zero,axiom,
    ! [X2: int] : ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ one_one_int @ ( abs_abs_int @ X2 ) ) ) ).

% abs_add_one_gt_zero
thf(fact_7780_of__int__leD,axiom,
    ! [N: int,X2: code_integer] :
      ( ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ ( ring_18347121197199848620nteger @ N ) ) @ X2 )
     => ( ( N = zero_zero_int )
        | ( ord_le3102999989581377725nteger @ one_one_Code_integer @ X2 ) ) ) ).

% of_int_leD
thf(fact_7781_of__int__leD,axiom,
    ! [N: int,X2: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ ( ring_1_of_int_real @ N ) ) @ X2 )
     => ( ( N = zero_zero_int )
        | ( ord_less_eq_real @ one_one_real @ X2 ) ) ) ).

% of_int_leD
thf(fact_7782_of__int__leD,axiom,
    ! [N: int,X2: rat] :
      ( ( ord_less_eq_rat @ ( abs_abs_rat @ ( ring_1_of_int_rat @ N ) ) @ X2 )
     => ( ( N = zero_zero_int )
        | ( ord_less_eq_rat @ one_one_rat @ X2 ) ) ) ).

% of_int_leD
thf(fact_7783_of__int__leD,axiom,
    ! [N: int,X2: int] :
      ( ( ord_less_eq_int @ ( abs_abs_int @ ( ring_1_of_int_int @ N ) ) @ X2 )
     => ( ( N = zero_zero_int )
        | ( ord_less_eq_int @ one_one_int @ X2 ) ) ) ).

% of_int_leD
thf(fact_7784_of__int__lessD,axiom,
    ! [N: int,X2: code_integer] :
      ( ( ord_le6747313008572928689nteger @ ( abs_abs_Code_integer @ ( ring_18347121197199848620nteger @ N ) ) @ X2 )
     => ( ( N = zero_zero_int )
        | ( ord_le6747313008572928689nteger @ one_one_Code_integer @ X2 ) ) ) ).

% of_int_lessD
thf(fact_7785_of__int__lessD,axiom,
    ! [N: int,X2: real] :
      ( ( ord_less_real @ ( abs_abs_real @ ( ring_1_of_int_real @ N ) ) @ X2 )
     => ( ( N = zero_zero_int )
        | ( ord_less_real @ one_one_real @ X2 ) ) ) ).

% of_int_lessD
thf(fact_7786_of__int__lessD,axiom,
    ! [N: int,X2: rat] :
      ( ( ord_less_rat @ ( abs_abs_rat @ ( ring_1_of_int_rat @ N ) ) @ X2 )
     => ( ( N = zero_zero_int )
        | ( ord_less_rat @ one_one_rat @ X2 ) ) ) ).

% of_int_lessD
thf(fact_7787_of__int__lessD,axiom,
    ! [N: int,X2: int] :
      ( ( ord_less_int @ ( abs_abs_int @ ( ring_1_of_int_int @ N ) ) @ X2 )
     => ( ( N = zero_zero_int )
        | ( ord_less_int @ one_one_int @ X2 ) ) ) ).

% of_int_lessD
thf(fact_7788_lemma__interval,axiom,
    ! [A: real,X2: real,B: real] :
      ( ( ord_less_real @ A @ X2 )
     => ( ( ord_less_real @ X2 @ B )
       => ? [D4: real] :
            ( ( ord_less_real @ zero_zero_real @ D4 )
            & ! [Y4: real] :
                ( ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ X2 @ Y4 ) ) @ D4 )
               => ( ( ord_less_eq_real @ A @ Y4 )
                  & ( ord_less_eq_real @ Y4 @ B ) ) ) ) ) ) ).

% lemma_interval
thf(fact_7789_bot__empty__eq2,axiom,
    ( bot_bo8134993004553108152eger_o
    = ( ^ [X: code_integer,Y: code_integer] : ( member157494554546826820nteger @ ( produc1086072967326762835nteger @ X @ Y ) @ bot_bo4276436098303576167nteger ) ) ) ).

% bot_empty_eq2
thf(fact_7790_bot__empty__eq2,axiom,
    ( bot_bo4731626569425807221er_o_o
    = ( ^ [X: code_integer,Y: $o] : ( member1379723562493234055eger_o @ ( produc6677183202524767010eger_o @ X @ Y ) @ bot_bo5379713665208646970eger_o ) ) ) ).

% bot_empty_eq2
thf(fact_7791_bot__empty__eq2,axiom,
    ( bot_bot_num_num_o
    = ( ^ [X: num,Y: num] : ( member7279096912039735102um_num @ ( product_Pair_num_num @ X @ Y ) @ bot_bo9056780473022590049um_num ) ) ) ).

% bot_empty_eq2
thf(fact_7792_bot__empty__eq2,axiom,
    ( bot_bot_nat_nat_o
    = ( ^ [X: nat,Y: nat] : ( member8440522571783428010at_nat @ ( product_Pair_nat_nat @ X @ Y ) @ bot_bo2099793752762293965at_nat ) ) ) ).

% bot_empty_eq2
thf(fact_7793_bot__empty__eq2,axiom,
    ( bot_bot_int_int_o
    = ( ^ [X: int,Y: int] : ( member5262025264175285858nt_int @ ( product_Pair_int_int @ X @ Y ) @ bot_bo1796632182523588997nt_int ) ) ) ).

% bot_empty_eq2
thf(fact_7794_pred__equals__eq2,axiom,
    ! [R: set_Pr4811707699266497531nteger,S3: set_Pr4811707699266497531nteger] :
      ( ( ( ^ [X: code_integer,Y: code_integer] : ( member157494554546826820nteger @ ( produc1086072967326762835nteger @ X @ Y ) @ R ) )
        = ( ^ [X: code_integer,Y: code_integer] : ( member157494554546826820nteger @ ( produc1086072967326762835nteger @ X @ Y ) @ S3 ) ) )
      = ( R = S3 ) ) ).

% pred_equals_eq2
thf(fact_7795_pred__equals__eq2,axiom,
    ! [R: set_Pr448751882837621926eger_o,S3: set_Pr448751882837621926eger_o] :
      ( ( ( ^ [X: code_integer,Y: $o] : ( member1379723562493234055eger_o @ ( produc6677183202524767010eger_o @ X @ Y ) @ R ) )
        = ( ^ [X: code_integer,Y: $o] : ( member1379723562493234055eger_o @ ( produc6677183202524767010eger_o @ X @ Y ) @ S3 ) ) )
      = ( R = S3 ) ) ).

% pred_equals_eq2
thf(fact_7796_pred__equals__eq2,axiom,
    ! [R: set_Pr8218934625190621173um_num,S3: set_Pr8218934625190621173um_num] :
      ( ( ( ^ [X: num,Y: num] : ( member7279096912039735102um_num @ ( product_Pair_num_num @ X @ Y ) @ R ) )
        = ( ^ [X: num,Y: num] : ( member7279096912039735102um_num @ ( product_Pair_num_num @ X @ Y ) @ S3 ) ) )
      = ( R = S3 ) ) ).

% pred_equals_eq2
thf(fact_7797_pred__equals__eq2,axiom,
    ! [R: set_Pr1261947904930325089at_nat,S3: set_Pr1261947904930325089at_nat] :
      ( ( ( ^ [X: nat,Y: nat] : ( member8440522571783428010at_nat @ ( product_Pair_nat_nat @ X @ Y ) @ R ) )
        = ( ^ [X: nat,Y: nat] : ( member8440522571783428010at_nat @ ( product_Pair_nat_nat @ X @ Y ) @ S3 ) ) )
      = ( R = S3 ) ) ).

% pred_equals_eq2
thf(fact_7798_pred__equals__eq2,axiom,
    ! [R: set_Pr958786334691620121nt_int,S3: set_Pr958786334691620121nt_int] :
      ( ( ( ^ [X: int,Y: int] : ( member5262025264175285858nt_int @ ( product_Pair_int_int @ X @ Y ) @ R ) )
        = ( ^ [X: int,Y: int] : ( member5262025264175285858nt_int @ ( product_Pair_int_int @ X @ Y ) @ S3 ) ) )
      = ( R = S3 ) ) ).

% pred_equals_eq2
thf(fact_7799_abs__le__square__iff,axiom,
    ! [X2: code_integer,Y2: code_integer] :
      ( ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ X2 ) @ ( abs_abs_Code_integer @ Y2 ) )
      = ( ord_le3102999989581377725nteger @ ( power_8256067586552552935nteger @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_8256067586552552935nteger @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% abs_le_square_iff
thf(fact_7800_abs__le__square__iff,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ X2 ) @ ( abs_abs_real @ Y2 ) )
      = ( ord_less_eq_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% abs_le_square_iff
thf(fact_7801_abs__le__square__iff,axiom,
    ! [X2: rat,Y2: rat] :
      ( ( ord_less_eq_rat @ ( abs_abs_rat @ X2 ) @ ( abs_abs_rat @ Y2 ) )
      = ( ord_less_eq_rat @ ( power_power_rat @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% abs_le_square_iff
thf(fact_7802_abs__le__square__iff,axiom,
    ! [X2: int,Y2: int] :
      ( ( ord_less_eq_int @ ( abs_abs_int @ X2 ) @ ( abs_abs_int @ Y2 ) )
      = ( ord_less_eq_int @ ( power_power_int @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% abs_le_square_iff
thf(fact_7803_abs__square__eq__1,axiom,
    ! [X2: code_integer] :
      ( ( ( power_8256067586552552935nteger @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = one_one_Code_integer )
      = ( ( abs_abs_Code_integer @ X2 )
        = one_one_Code_integer ) ) ).

% abs_square_eq_1
thf(fact_7804_abs__square__eq__1,axiom,
    ! [X2: rat] :
      ( ( ( power_power_rat @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = one_one_rat )
      = ( ( abs_abs_rat @ X2 )
        = one_one_rat ) ) ).

% abs_square_eq_1
thf(fact_7805_abs__square__eq__1,axiom,
    ! [X2: real] :
      ( ( ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = one_one_real )
      = ( ( abs_abs_real @ X2 )
        = one_one_real ) ) ).

% abs_square_eq_1
thf(fact_7806_abs__square__eq__1,axiom,
    ! [X2: int] :
      ( ( ( power_power_int @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = one_one_int )
      = ( ( abs_abs_int @ X2 )
        = one_one_int ) ) ).

% abs_square_eq_1
thf(fact_7807_power__even__abs,axiom,
    ! [N: nat,A: rat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_power_rat @ ( abs_abs_rat @ A ) @ N )
        = ( power_power_rat @ A @ N ) ) ) ).

% power_even_abs
thf(fact_7808_power__even__abs,axiom,
    ! [N: nat,A: code_integer] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_8256067586552552935nteger @ ( abs_abs_Code_integer @ A ) @ N )
        = ( power_8256067586552552935nteger @ A @ N ) ) ) ).

% power_even_abs
thf(fact_7809_power__even__abs,axiom,
    ! [N: nat,A: real] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_power_real @ ( abs_abs_real @ A ) @ N )
        = ( power_power_real @ A @ N ) ) ) ).

% power_even_abs
thf(fact_7810_power__even__abs,axiom,
    ! [N: nat,A: int] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_power_int @ ( abs_abs_int @ A ) @ N )
        = ( power_power_int @ A @ N ) ) ) ).

% power_even_abs
thf(fact_7811_power2__le__iff__abs__le,axiom,
    ! [Y2: code_integer,X2: code_integer] :
      ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ Y2 )
     => ( ( ord_le3102999989581377725nteger @ ( power_8256067586552552935nteger @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_8256067586552552935nteger @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
        = ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ X2 ) @ Y2 ) ) ) ).

% power2_le_iff_abs_le
thf(fact_7812_power2__le__iff__abs__le,axiom,
    ! [Y2: real,X2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ Y2 )
     => ( ( ord_less_eq_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
        = ( ord_less_eq_real @ ( abs_abs_real @ X2 ) @ Y2 ) ) ) ).

% power2_le_iff_abs_le
thf(fact_7813_power2__le__iff__abs__le,axiom,
    ! [Y2: rat,X2: rat] :
      ( ( ord_less_eq_rat @ zero_zero_rat @ Y2 )
     => ( ( ord_less_eq_rat @ ( power_power_rat @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_rat @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
        = ( ord_less_eq_rat @ ( abs_abs_rat @ X2 ) @ Y2 ) ) ) ).

% power2_le_iff_abs_le
thf(fact_7814_power2__le__iff__abs__le,axiom,
    ! [Y2: int,X2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Y2 )
     => ( ( ord_less_eq_int @ ( power_power_int @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
        = ( ord_less_eq_int @ ( abs_abs_int @ X2 ) @ Y2 ) ) ) ).

% power2_le_iff_abs_le
thf(fact_7815_abs__sqrt__wlog,axiom,
    ! [P: code_integer > code_integer > $o,X2: code_integer] :
      ( ! [X4: code_integer] :
          ( ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ X4 )
         => ( P @ X4 @ ( power_8256067586552552935nteger @ X4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
     => ( P @ ( abs_abs_Code_integer @ X2 ) @ ( power_8256067586552552935nteger @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% abs_sqrt_wlog
thf(fact_7816_abs__sqrt__wlog,axiom,
    ! [P: real > real > $o,X2: real] :
      ( ! [X4: real] :
          ( ( ord_less_eq_real @ zero_zero_real @ X4 )
         => ( P @ X4 @ ( power_power_real @ X4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
     => ( P @ ( abs_abs_real @ X2 ) @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% abs_sqrt_wlog
thf(fact_7817_abs__sqrt__wlog,axiom,
    ! [P: rat > rat > $o,X2: rat] :
      ( ! [X4: rat] :
          ( ( ord_less_eq_rat @ zero_zero_rat @ X4 )
         => ( P @ X4 @ ( power_power_rat @ X4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
     => ( P @ ( abs_abs_rat @ X2 ) @ ( power_power_rat @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% abs_sqrt_wlog
thf(fact_7818_abs__sqrt__wlog,axiom,
    ! [P: int > int > $o,X2: int] :
      ( ! [X4: int] :
          ( ( ord_less_eq_int @ zero_zero_int @ X4 )
         => ( P @ X4 @ ( power_power_int @ X4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
     => ( P @ ( abs_abs_int @ X2 ) @ ( power_power_int @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% abs_sqrt_wlog
thf(fact_7819_abs__square__le__1,axiom,
    ! [X2: code_integer] :
      ( ( ord_le3102999989581377725nteger @ ( power_8256067586552552935nteger @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_Code_integer )
      = ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ X2 ) @ one_one_Code_integer ) ) ).

% abs_square_le_1
thf(fact_7820_abs__square__le__1,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real )
      = ( ord_less_eq_real @ ( abs_abs_real @ X2 ) @ one_one_real ) ) ).

% abs_square_le_1
thf(fact_7821_abs__square__le__1,axiom,
    ! [X2: rat] :
      ( ( ord_less_eq_rat @ ( power_power_rat @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_rat )
      = ( ord_less_eq_rat @ ( abs_abs_rat @ X2 ) @ one_one_rat ) ) ).

% abs_square_le_1
thf(fact_7822_abs__square__le__1,axiom,
    ! [X2: int] :
      ( ( ord_less_eq_int @ ( power_power_int @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_int )
      = ( ord_less_eq_int @ ( abs_abs_int @ X2 ) @ one_one_int ) ) ).

% abs_square_le_1
thf(fact_7823_abs__square__less__1,axiom,
    ! [X2: code_integer] :
      ( ( ord_le6747313008572928689nteger @ ( power_8256067586552552935nteger @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_Code_integer )
      = ( ord_le6747313008572928689nteger @ ( abs_abs_Code_integer @ X2 ) @ one_one_Code_integer ) ) ).

% abs_square_less_1
thf(fact_7824_abs__square__less__1,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real )
      = ( ord_less_real @ ( abs_abs_real @ X2 ) @ one_one_real ) ) ).

% abs_square_less_1
thf(fact_7825_abs__square__less__1,axiom,
    ! [X2: rat] :
      ( ( ord_less_rat @ ( power_power_rat @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_rat )
      = ( ord_less_rat @ ( abs_abs_rat @ X2 ) @ one_one_rat ) ) ).

% abs_square_less_1
thf(fact_7826_abs__square__less__1,axiom,
    ! [X2: int] :
      ( ( ord_less_int @ ( power_power_int @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_int )
      = ( ord_less_int @ ( abs_abs_int @ X2 ) @ one_one_int ) ) ).

% abs_square_less_1
thf(fact_7827_power__mono__even,axiom,
    ! [N: nat,A: code_integer,B: code_integer] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ A ) @ ( abs_abs_Code_integer @ B ) )
       => ( ord_le3102999989581377725nteger @ ( power_8256067586552552935nteger @ A @ N ) @ ( power_8256067586552552935nteger @ B @ N ) ) ) ) ).

% power_mono_even
thf(fact_7828_power__mono__even,axiom,
    ! [N: nat,A: real,B: real] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( ord_less_eq_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) )
       => ( ord_less_eq_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ B @ N ) ) ) ) ).

% power_mono_even
thf(fact_7829_power__mono__even,axiom,
    ! [N: nat,A: rat,B: rat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( ord_less_eq_rat @ ( abs_abs_rat @ A ) @ ( abs_abs_rat @ B ) )
       => ( ord_less_eq_rat @ ( power_power_rat @ A @ N ) @ ( power_power_rat @ B @ N ) ) ) ) ).

% power_mono_even
thf(fact_7830_power__mono__even,axiom,
    ! [N: nat,A: int,B: int] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( ord_less_eq_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) )
       => ( ord_less_eq_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ B @ N ) ) ) ) ).

% power_mono_even
thf(fact_7831_exists__least__lemma,axiom,
    ! [P: nat > $o] :
      ( ~ ( P @ zero_zero_nat )
     => ( ? [X_1: nat] : ( P @ X_1 )
       => ? [N3: nat] :
            ( ~ ( P @ N3 )
            & ( P @ ( suc @ N3 ) ) ) ) ) ).

% exists_least_lemma
thf(fact_7832_ex__le__of__int,axiom,
    ! [X2: real] :
    ? [Z3: int] : ( ord_less_eq_real @ X2 @ ( ring_1_of_int_real @ Z3 ) ) ).

% ex_le_of_int
thf(fact_7833_ex__le__of__int,axiom,
    ! [X2: rat] :
    ? [Z3: int] : ( ord_less_eq_rat @ X2 @ ( ring_1_of_int_rat @ Z3 ) ) ).

% ex_le_of_int
thf(fact_7834_ex__less__of__int,axiom,
    ! [X2: real] :
    ? [Z3: int] : ( ord_less_real @ X2 @ ( ring_1_of_int_real @ Z3 ) ) ).

% ex_less_of_int
thf(fact_7835_ex__less__of__int,axiom,
    ! [X2: rat] :
    ? [Z3: int] : ( ord_less_rat @ X2 @ ( ring_1_of_int_rat @ Z3 ) ) ).

% ex_less_of_int
thf(fact_7836_ex__of__int__less,axiom,
    ! [X2: real] :
    ? [Z3: int] : ( ord_less_real @ ( ring_1_of_int_real @ Z3 ) @ X2 ) ).

% ex_of_int_less
thf(fact_7837_ex__of__int__less,axiom,
    ! [X2: rat] :
    ? [Z3: int] : ( ord_less_rat @ ( ring_1_of_int_rat @ Z3 ) @ X2 ) ).

% ex_of_int_less
thf(fact_7838_subrelI,axiom,
    ! [R2: set_Pr4811707699266497531nteger,S: set_Pr4811707699266497531nteger] :
      ( ! [X4: code_integer,Y3: code_integer] :
          ( ( member157494554546826820nteger @ ( produc1086072967326762835nteger @ X4 @ Y3 ) @ R2 )
         => ( member157494554546826820nteger @ ( produc1086072967326762835nteger @ X4 @ Y3 ) @ S ) )
     => ( ord_le3725938330318615451nteger @ R2 @ S ) ) ).

% subrelI
thf(fact_7839_subrelI,axiom,
    ! [R2: set_Pr448751882837621926eger_o,S: set_Pr448751882837621926eger_o] :
      ( ! [X4: code_integer,Y3: $o] :
          ( ( member1379723562493234055eger_o @ ( produc6677183202524767010eger_o @ X4 @ Y3 ) @ R2 )
         => ( member1379723562493234055eger_o @ ( produc6677183202524767010eger_o @ X4 @ Y3 ) @ S ) )
     => ( ord_le8980329558974975238eger_o @ R2 @ S ) ) ).

% subrelI
thf(fact_7840_subrelI,axiom,
    ! [R2: set_Pr8218934625190621173um_num,S: set_Pr8218934625190621173um_num] :
      ( ! [X4: num,Y3: num] :
          ( ( member7279096912039735102um_num @ ( product_Pair_num_num @ X4 @ Y3 ) @ R2 )
         => ( member7279096912039735102um_num @ ( product_Pair_num_num @ X4 @ Y3 ) @ S ) )
     => ( ord_le880128212290418581um_num @ R2 @ S ) ) ).

% subrelI
thf(fact_7841_subrelI,axiom,
    ! [R2: set_Pr1261947904930325089at_nat,S: set_Pr1261947904930325089at_nat] :
      ( ! [X4: nat,Y3: nat] :
          ( ( member8440522571783428010at_nat @ ( product_Pair_nat_nat @ X4 @ Y3 ) @ R2 )
         => ( member8440522571783428010at_nat @ ( product_Pair_nat_nat @ X4 @ Y3 ) @ S ) )
     => ( ord_le3146513528884898305at_nat @ R2 @ S ) ) ).

% subrelI
thf(fact_7842_subrelI,axiom,
    ! [R2: set_Pr958786334691620121nt_int,S: set_Pr958786334691620121nt_int] :
      ( ! [X4: int,Y3: int] :
          ( ( member5262025264175285858nt_int @ ( product_Pair_int_int @ X4 @ Y3 ) @ R2 )
         => ( member5262025264175285858nt_int @ ( product_Pair_int_int @ X4 @ Y3 ) @ S ) )
     => ( ord_le2843351958646193337nt_int @ R2 @ S ) ) ).

% subrelI
thf(fact_7843_pred__subset__eq,axiom,
    ! [R: set_complex,S3: set_complex] :
      ( ( ord_le4573692005234683329plex_o
        @ ^ [X: complex] : ( member_complex @ X @ R )
        @ ^ [X: complex] : ( member_complex @ X @ S3 ) )
      = ( ord_le211207098394363844omplex @ R @ S3 ) ) ).

% pred_subset_eq
thf(fact_7844_pred__subset__eq,axiom,
    ! [R: set_real,S3: set_real] :
      ( ( ord_less_eq_real_o
        @ ^ [X: real] : ( member_real @ X @ R )
        @ ^ [X: real] : ( member_real @ X @ S3 ) )
      = ( ord_less_eq_set_real @ R @ S3 ) ) ).

% pred_subset_eq
thf(fact_7845_pred__subset__eq,axiom,
    ! [R: set_set_nat,S3: set_set_nat] :
      ( ( ord_le3964352015994296041_nat_o
        @ ^ [X: set_nat] : ( member_set_nat @ X @ R )
        @ ^ [X: set_nat] : ( member_set_nat @ X @ S3 ) )
      = ( ord_le6893508408891458716et_nat @ R @ S3 ) ) ).

% pred_subset_eq
thf(fact_7846_pred__subset__eq,axiom,
    ! [R: set_nat,S3: set_nat] :
      ( ( ord_less_eq_nat_o
        @ ^ [X: nat] : ( member_nat @ X @ R )
        @ ^ [X: nat] : ( member_nat @ X @ S3 ) )
      = ( ord_less_eq_set_nat @ R @ S3 ) ) ).

% pred_subset_eq
thf(fact_7847_pred__subset__eq,axiom,
    ! [R: set_int,S3: set_int] :
      ( ( ord_less_eq_int_o
        @ ^ [X: int] : ( member_int @ X @ R )
        @ ^ [X: int] : ( member_int @ X @ S3 ) )
      = ( ord_less_eq_set_int @ R @ S3 ) ) ).

% pred_subset_eq
thf(fact_7848_abs__ln__one__plus__x__minus__x__bound__nonneg,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ( ord_less_eq_real @ X2 @ one_one_real )
       => ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( ln_ln_real @ ( plus_plus_real @ one_one_real @ X2 ) ) @ X2 ) ) @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% abs_ln_one_plus_x_minus_x_bound_nonneg
thf(fact_7849_abs__ln__one__plus__x__minus__x__bound,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ X2 ) @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
     => ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( ln_ln_real @ ( plus_plus_real @ one_one_real @ X2 ) ) @ X2 ) ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% abs_ln_one_plus_x_minus_x_bound
thf(fact_7850_round__unique,axiom,
    ! [X2: real,Y2: int] :
      ( ( ord_less_real @ ( minus_minus_real @ X2 @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( ring_1_of_int_real @ Y2 ) )
     => ( ( ord_less_eq_real @ ( ring_1_of_int_real @ Y2 ) @ ( plus_plus_real @ X2 @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) )
       => ( ( archim8280529875227126926d_real @ X2 )
          = Y2 ) ) ) ).

% round_unique
thf(fact_7851_round__unique,axiom,
    ! [X2: rat,Y2: int] :
      ( ( ord_less_rat @ ( minus_minus_rat @ X2 @ ( divide_divide_rat @ one_one_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) @ ( ring_1_of_int_rat @ Y2 ) )
     => ( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ Y2 ) @ ( plus_plus_rat @ X2 @ ( divide_divide_rat @ one_one_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) )
       => ( ( archim7778729529865785530nd_rat @ X2 )
          = Y2 ) ) ) ).

% round_unique
thf(fact_7852_and__int_Oelims,axiom,
    ! [X2: int,Xa2: int,Y2: int] :
      ( ( ( bit_se725231765392027082nd_int @ X2 @ Xa2 )
        = Y2 )
     => ( ( ( ( member_int @ X2 @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) )
            & ( member_int @ Xa2 @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) ) )
         => ( Y2
            = ( uminus_uminus_int
              @ ( zero_n2684676970156552555ol_int
                @ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ X2 )
                  & ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Xa2 ) ) ) ) ) )
        & ( ~ ( ( member_int @ X2 @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) )
              & ( member_int @ Xa2 @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) ) )
         => ( Y2
            = ( plus_plus_int
              @ ( zero_n2684676970156552555ol_int
                @ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ X2 )
                  & ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Xa2 ) ) )
              @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( divide_divide_int @ X2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( divide_divide_int @ Xa2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ).

% and_int.elims
thf(fact_7853_and__int_Osimps,axiom,
    ( bit_se725231765392027082nd_int
    = ( ^ [K2: int,L2: int] :
          ( if_int
          @ ( ( member_int @ K2 @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) )
            & ( member_int @ L2 @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) ) )
          @ ( uminus_uminus_int
            @ ( zero_n2684676970156552555ol_int
              @ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K2 )
                & ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ L2 ) ) ) )
          @ ( plus_plus_int
            @ ( zero_n2684676970156552555ol_int
              @ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K2 )
                & ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ L2 ) ) )
            @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( divide_divide_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( divide_divide_int @ L2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ).

% and_int.simps
thf(fact_7854_round__unique_H,axiom,
    ! [X2: real,N: int] :
      ( ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ X2 @ ( ring_1_of_int_real @ N ) ) ) @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
     => ( ( archim8280529875227126926d_real @ X2 )
        = N ) ) ).

% round_unique'
thf(fact_7855_round__unique_H,axiom,
    ! [X2: rat,N: int] :
      ( ( ord_less_rat @ ( abs_abs_rat @ ( minus_minus_rat @ X2 @ ( ring_1_of_int_rat @ N ) ) ) @ ( divide_divide_rat @ one_one_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) )
     => ( ( archim7778729529865785530nd_rat @ X2 )
        = N ) ) ).

% round_unique'
thf(fact_7856_of__int__round__abs__le,axiom,
    ! [X2: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( ring_1_of_int_real @ ( archim8280529875227126926d_real @ X2 ) ) @ X2 ) ) @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% of_int_round_abs_le
thf(fact_7857_of__int__round__abs__le,axiom,
    ! [X2: rat] : ( ord_less_eq_rat @ ( abs_abs_rat @ ( minus_minus_rat @ ( ring_1_of_int_rat @ ( archim7778729529865785530nd_rat @ X2 ) ) @ X2 ) ) @ ( divide_divide_rat @ one_one_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) ).

% of_int_round_abs_le
thf(fact_7858_accp__subset,axiom,
    ! [R1: produc9072475918466114483BT_nat > produc9072475918466114483BT_nat > $o,R22: produc9072475918466114483BT_nat > produc9072475918466114483BT_nat > $o] :
      ( ( ord_le1077754993875142464_nat_o @ R1 @ R22 )
     => ( ord_le7812727212727832188_nat_o @ ( accp_P2887432264394892906BT_nat @ R22 ) @ ( accp_P2887432264394892906BT_nat @ R1 ) ) ) ).

% accp_subset
thf(fact_7859_accp__subset,axiom,
    ! [R1: product_prod_num_num > product_prod_num_num > $o,R22: product_prod_num_num > product_prod_num_num > $o] :
      ( ( ord_le2556027599737686990_num_o @ R1 @ R22 )
     => ( ord_le2239182809043710856_num_o @ ( accp_P3113834385874906142um_num @ R22 ) @ ( accp_P3113834385874906142um_num @ R1 ) ) ) ).

% accp_subset
thf(fact_7860_accp__subset,axiom,
    ! [R1: product_prod_nat_nat > product_prod_nat_nat > $o,R22: product_prod_nat_nat > product_prod_nat_nat > $o] :
      ( ( ord_le5604493270027003598_nat_o @ R1 @ R22 )
     => ( ord_le704812498762024988_nat_o @ ( accp_P4275260045618599050at_nat @ R22 ) @ ( accp_P4275260045618599050at_nat @ R1 ) ) ) ).

% accp_subset
thf(fact_7861_accp__subset,axiom,
    ! [R1: product_prod_int_int > product_prod_int_int > $o,R22: product_prod_int_int > product_prod_int_int > $o] :
      ( ( ord_le1598226405681992910_int_o @ R1 @ R22 )
     => ( ord_le8369615600986905444_int_o @ ( accp_P1096762738010456898nt_int @ R22 ) @ ( accp_P1096762738010456898nt_int @ R1 ) ) ) ).

% accp_subset
thf(fact_7862_accp__subset,axiom,
    ! [R1: nat > nat > $o,R22: nat > nat > $o] :
      ( ( ord_le2646555220125990790_nat_o @ R1 @ R22 )
     => ( ord_less_eq_nat_o @ ( accp_nat @ R22 ) @ ( accp_nat @ R1 ) ) ) ).

% accp_subset
thf(fact_7863_and_Oright__idem,axiom,
    ! [A: int,B: int] :
      ( ( bit_se725231765392027082nd_int @ ( bit_se725231765392027082nd_int @ A @ B ) @ B )
      = ( bit_se725231765392027082nd_int @ A @ B ) ) ).

% and.right_idem
thf(fact_7864_and_Oright__idem,axiom,
    ! [A: nat,B: nat] :
      ( ( bit_se727722235901077358nd_nat @ ( bit_se727722235901077358nd_nat @ A @ B ) @ B )
      = ( bit_se727722235901077358nd_nat @ A @ B ) ) ).

% and.right_idem
thf(fact_7865_and_Oleft__idem,axiom,
    ! [A: int,B: int] :
      ( ( bit_se725231765392027082nd_int @ A @ ( bit_se725231765392027082nd_int @ A @ B ) )
      = ( bit_se725231765392027082nd_int @ A @ B ) ) ).

% and.left_idem
thf(fact_7866_and_Oleft__idem,axiom,
    ! [A: nat,B: nat] :
      ( ( bit_se727722235901077358nd_nat @ A @ ( bit_se727722235901077358nd_nat @ A @ B ) )
      = ( bit_se727722235901077358nd_nat @ A @ B ) ) ).

% and.left_idem
thf(fact_7867_and_Oidem,axiom,
    ! [A: int] :
      ( ( bit_se725231765392027082nd_int @ A @ A )
      = A ) ).

% and.idem
thf(fact_7868_and_Oidem,axiom,
    ! [A: nat] :
      ( ( bit_se727722235901077358nd_nat @ A @ A )
      = A ) ).

% and.idem
thf(fact_7869_bit_Oconj__zero__right,axiom,
    ! [X2: int] :
      ( ( bit_se725231765392027082nd_int @ X2 @ zero_zero_int )
      = zero_zero_int ) ).

% bit.conj_zero_right
thf(fact_7870_bit_Oconj__zero__left,axiom,
    ! [X2: int] :
      ( ( bit_se725231765392027082nd_int @ zero_zero_int @ X2 )
      = zero_zero_int ) ).

% bit.conj_zero_left
thf(fact_7871_zero__and__eq,axiom,
    ! [A: int] :
      ( ( bit_se725231765392027082nd_int @ zero_zero_int @ A )
      = zero_zero_int ) ).

% zero_and_eq
thf(fact_7872_zero__and__eq,axiom,
    ! [A: nat] :
      ( ( bit_se727722235901077358nd_nat @ zero_zero_nat @ A )
      = zero_zero_nat ) ).

% zero_and_eq
thf(fact_7873_and__zero__eq,axiom,
    ! [A: int] :
      ( ( bit_se725231765392027082nd_int @ A @ zero_zero_int )
      = zero_zero_int ) ).

% and_zero_eq
thf(fact_7874_and__zero__eq,axiom,
    ! [A: nat] :
      ( ( bit_se727722235901077358nd_nat @ A @ zero_zero_nat )
      = zero_zero_nat ) ).

% and_zero_eq
thf(fact_7875_Max__divisors__self__int,axiom,
    ! [N: int] :
      ( ( N != zero_zero_int )
     => ( ( lattic8263393255366662781ax_int
          @ ( collect_int
            @ ^ [D2: int] : ( dvd_dvd_int @ D2 @ N ) ) )
        = ( abs_abs_int @ N ) ) ) ).

% Max_divisors_self_int
thf(fact_7876_and_Oleft__neutral,axiom,
    ! [A: code_integer] :
      ( ( bit_se3949692690581998587nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ A )
      = A ) ).

% and.left_neutral
thf(fact_7877_and_Oleft__neutral,axiom,
    ! [A: int] :
      ( ( bit_se725231765392027082nd_int @ ( uminus_uminus_int @ one_one_int ) @ A )
      = A ) ).

% and.left_neutral
thf(fact_7878_and_Oright__neutral,axiom,
    ! [A: code_integer] :
      ( ( bit_se3949692690581998587nteger @ A @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
      = A ) ).

% and.right_neutral
thf(fact_7879_and_Oright__neutral,axiom,
    ! [A: int] :
      ( ( bit_se725231765392027082nd_int @ A @ ( uminus_uminus_int @ one_one_int ) )
      = A ) ).

% and.right_neutral
thf(fact_7880_bit_Oconj__one__right,axiom,
    ! [X2: code_integer] :
      ( ( bit_se3949692690581998587nteger @ X2 @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
      = X2 ) ).

% bit.conj_one_right
thf(fact_7881_bit_Oconj__one__right,axiom,
    ! [X2: int] :
      ( ( bit_se725231765392027082nd_int @ X2 @ ( uminus_uminus_int @ one_one_int ) )
      = X2 ) ).

% bit.conj_one_right
thf(fact_7882_zabs__less__one__iff,axiom,
    ! [Z: int] :
      ( ( ord_less_int @ ( abs_abs_int @ Z ) @ one_one_int )
      = ( Z = zero_zero_int ) ) ).

% zabs_less_one_iff
thf(fact_7883_and__nonnegative__int__iff,axiom,
    ! [K: int,L: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( bit_se725231765392027082nd_int @ K @ L ) )
      = ( ( ord_less_eq_int @ zero_zero_int @ K )
        | ( ord_less_eq_int @ zero_zero_int @ L ) ) ) ).

% and_nonnegative_int_iff
thf(fact_7884_and__negative__int__iff,axiom,
    ! [K: int,L: int] :
      ( ( ord_less_int @ ( bit_se725231765392027082nd_int @ K @ L ) @ zero_zero_int )
      = ( ( ord_less_int @ K @ zero_zero_int )
        & ( ord_less_int @ L @ zero_zero_int ) ) ) ).

% and_negative_int_iff
thf(fact_7885_round__numeral,axiom,
    ! [N: num] :
      ( ( archim8280529875227126926d_real @ ( numeral_numeral_real @ N ) )
      = ( numeral_numeral_int @ N ) ) ).

% round_numeral
thf(fact_7886_round__numeral,axiom,
    ! [N: num] :
      ( ( archim7778729529865785530nd_rat @ ( numeral_numeral_rat @ N ) )
      = ( numeral_numeral_int @ N ) ) ).

% round_numeral
thf(fact_7887_round__1,axiom,
    ( ( archim8280529875227126926d_real @ one_one_real )
    = one_one_int ) ).

% round_1
thf(fact_7888_round__1,axiom,
    ( ( archim7778729529865785530nd_rat @ one_one_rat )
    = one_one_int ) ).

% round_1
thf(fact_7889_and__numerals_I2_J,axiom,
    ! [Y2: num] :
      ( ( bit_se725231765392027082nd_int @ one_one_int @ ( numeral_numeral_int @ ( bit1 @ Y2 ) ) )
      = one_one_int ) ).

% and_numerals(2)
thf(fact_7890_and__numerals_I2_J,axiom,
    ! [Y2: num] :
      ( ( bit_se727722235901077358nd_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit1 @ Y2 ) ) )
      = one_one_nat ) ).

% and_numerals(2)
thf(fact_7891_and__numerals_I8_J,axiom,
    ! [X2: num] :
      ( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ ( bit1 @ X2 ) ) @ one_one_int )
      = one_one_int ) ).

% and_numerals(8)
thf(fact_7892_and__numerals_I8_J,axiom,
    ! [X2: num] :
      ( ( bit_se727722235901077358nd_nat @ ( numeral_numeral_nat @ ( bit1 @ X2 ) ) @ one_one_nat )
      = one_one_nat ) ).

% and_numerals(8)
thf(fact_7893_and__numerals_I1_J,axiom,
    ! [Y2: num] :
      ( ( bit_se725231765392027082nd_int @ one_one_int @ ( numeral_numeral_int @ ( bit0 @ Y2 ) ) )
      = zero_zero_int ) ).

% and_numerals(1)
thf(fact_7894_and__numerals_I1_J,axiom,
    ! [Y2: num] :
      ( ( bit_se727722235901077358nd_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit0 @ Y2 ) ) )
      = zero_zero_nat ) ).

% and_numerals(1)
thf(fact_7895_and__numerals_I5_J,axiom,
    ! [X2: num] :
      ( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ ( bit0 @ X2 ) ) @ one_one_int )
      = zero_zero_int ) ).

% and_numerals(5)
thf(fact_7896_and__numerals_I5_J,axiom,
    ! [X2: num] :
      ( ( bit_se727722235901077358nd_nat @ ( numeral_numeral_nat @ ( bit0 @ X2 ) ) @ one_one_nat )
      = zero_zero_nat ) ).

% and_numerals(5)
thf(fact_7897_and__numerals_I3_J,axiom,
    ! [X2: num,Y2: num] :
      ( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ ( bit0 @ X2 ) ) @ ( numeral_numeral_int @ ( bit0 @ Y2 ) ) )
      = ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ X2 ) @ ( numeral_numeral_int @ Y2 ) ) ) ) ).

% and_numerals(3)
thf(fact_7898_and__numerals_I3_J,axiom,
    ! [X2: num,Y2: num] :
      ( ( bit_se727722235901077358nd_nat @ ( numeral_numeral_nat @ ( bit0 @ X2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ Y2 ) ) )
      = ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se727722235901077358nd_nat @ ( numeral_numeral_nat @ X2 ) @ ( numeral_numeral_nat @ Y2 ) ) ) ) ).

% and_numerals(3)
thf(fact_7899_and__minus__numerals_I6_J,axiom,
    ! [N: num] :
      ( ( bit_se725231765392027082nd_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) @ one_one_int )
      = one_one_int ) ).

% and_minus_numerals(6)
thf(fact_7900_and__minus__numerals_I2_J,axiom,
    ! [N: num] :
      ( ( bit_se725231765392027082nd_int @ one_one_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) )
      = one_one_int ) ).

% and_minus_numerals(2)
thf(fact_7901_round__neg__numeral,axiom,
    ! [N: num] :
      ( ( archim8280529875227126926d_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ).

% round_neg_numeral
thf(fact_7902_round__neg__numeral,axiom,
    ! [N: num] :
      ( ( archim7778729529865785530nd_rat @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ N ) ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ).

% round_neg_numeral
thf(fact_7903_and__numerals_I4_J,axiom,
    ! [X2: num,Y2: num] :
      ( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ ( bit0 @ X2 ) ) @ ( numeral_numeral_int @ ( bit1 @ Y2 ) ) )
      = ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ X2 ) @ ( numeral_numeral_int @ Y2 ) ) ) ) ).

% and_numerals(4)
thf(fact_7904_and__numerals_I4_J,axiom,
    ! [X2: num,Y2: num] :
      ( ( bit_se727722235901077358nd_nat @ ( numeral_numeral_nat @ ( bit0 @ X2 ) ) @ ( numeral_numeral_nat @ ( bit1 @ Y2 ) ) )
      = ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se727722235901077358nd_nat @ ( numeral_numeral_nat @ X2 ) @ ( numeral_numeral_nat @ Y2 ) ) ) ) ).

% and_numerals(4)
thf(fact_7905_and__numerals_I6_J,axiom,
    ! [X2: num,Y2: num] :
      ( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ ( bit1 @ X2 ) ) @ ( numeral_numeral_int @ ( bit0 @ Y2 ) ) )
      = ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ X2 ) @ ( numeral_numeral_int @ Y2 ) ) ) ) ).

% and_numerals(6)
thf(fact_7906_and__numerals_I6_J,axiom,
    ! [X2: num,Y2: num] :
      ( ( bit_se727722235901077358nd_nat @ ( numeral_numeral_nat @ ( bit1 @ X2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ Y2 ) ) )
      = ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se727722235901077358nd_nat @ ( numeral_numeral_nat @ X2 ) @ ( numeral_numeral_nat @ Y2 ) ) ) ) ).

% and_numerals(6)
thf(fact_7907_and__minus__numerals_I1_J,axiom,
    ! [N: num] :
      ( ( bit_se725231765392027082nd_int @ one_one_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) )
      = zero_zero_int ) ).

% and_minus_numerals(1)
thf(fact_7908_and__minus__numerals_I5_J,axiom,
    ! [N: num] :
      ( ( bit_se725231765392027082nd_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) @ one_one_int )
      = zero_zero_int ) ).

% and_minus_numerals(5)
thf(fact_7909_and__numerals_I7_J,axiom,
    ! [X2: num,Y2: num] :
      ( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ ( bit1 @ X2 ) ) @ ( numeral_numeral_int @ ( bit1 @ Y2 ) ) )
      = ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ X2 ) @ ( numeral_numeral_int @ Y2 ) ) ) ) ) ).

% and_numerals(7)
thf(fact_7910_and__numerals_I7_J,axiom,
    ! [X2: num,Y2: num] :
      ( ( bit_se727722235901077358nd_nat @ ( numeral_numeral_nat @ ( bit1 @ X2 ) ) @ ( numeral_numeral_nat @ ( bit1 @ Y2 ) ) )
      = ( plus_plus_nat @ one_one_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se727722235901077358nd_nat @ ( numeral_numeral_nat @ X2 ) @ ( numeral_numeral_nat @ Y2 ) ) ) ) ) ).

% and_numerals(7)
thf(fact_7911_of__int__and__eq,axiom,
    ! [K: int,L: int] :
      ( ( ring_1_of_int_int @ ( bit_se725231765392027082nd_int @ K @ L ) )
      = ( bit_se725231765392027082nd_int @ ( ring_1_of_int_int @ K ) @ ( ring_1_of_int_int @ L ) ) ) ).

% of_int_and_eq
thf(fact_7912_and_Oleft__commute,axiom,
    ! [B: int,A: int,C: int] :
      ( ( bit_se725231765392027082nd_int @ B @ ( bit_se725231765392027082nd_int @ A @ C ) )
      = ( bit_se725231765392027082nd_int @ A @ ( bit_se725231765392027082nd_int @ B @ C ) ) ) ).

% and.left_commute
thf(fact_7913_and_Oleft__commute,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( bit_se727722235901077358nd_nat @ B @ ( bit_se727722235901077358nd_nat @ A @ C ) )
      = ( bit_se727722235901077358nd_nat @ A @ ( bit_se727722235901077358nd_nat @ B @ C ) ) ) ).

% and.left_commute
thf(fact_7914_and_Ocommute,axiom,
    ( bit_se725231765392027082nd_int
    = ( ^ [A3: int,B2: int] : ( bit_se725231765392027082nd_int @ B2 @ A3 ) ) ) ).

% and.commute
thf(fact_7915_and_Ocommute,axiom,
    ( bit_se727722235901077358nd_nat
    = ( ^ [A3: nat,B2: nat] : ( bit_se727722235901077358nd_nat @ B2 @ A3 ) ) ) ).

% and.commute
thf(fact_7916_and_Oassoc,axiom,
    ! [A: int,B: int,C: int] :
      ( ( bit_se725231765392027082nd_int @ ( bit_se725231765392027082nd_int @ A @ B ) @ C )
      = ( bit_se725231765392027082nd_int @ A @ ( bit_se725231765392027082nd_int @ B @ C ) ) ) ).

% and.assoc
thf(fact_7917_and_Oassoc,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( bit_se727722235901077358nd_nat @ ( bit_se727722235901077358nd_nat @ A @ B ) @ C )
      = ( bit_se727722235901077358nd_nat @ A @ ( bit_se727722235901077358nd_nat @ B @ C ) ) ) ).

% and.assoc
thf(fact_7918_and__eq__minus__1__iff,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( ( bit_se3949692690581998587nteger @ A @ B )
        = ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
      = ( ( A
          = ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
        & ( B
          = ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ) ) ).

% and_eq_minus_1_iff
thf(fact_7919_and__eq__minus__1__iff,axiom,
    ! [A: int,B: int] :
      ( ( ( bit_se725231765392027082nd_int @ A @ B )
        = ( uminus_uminus_int @ one_one_int ) )
      = ( ( A
          = ( uminus_uminus_int @ one_one_int ) )
        & ( B
          = ( uminus_uminus_int @ one_one_int ) ) ) ) ).

% and_eq_minus_1_iff
thf(fact_7920_AND__upper2_H,axiom,
    ! [Y2: int,Z: int,X2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Y2 )
     => ( ( ord_less_eq_int @ Y2 @ Z )
       => ( ord_less_eq_int @ ( bit_se725231765392027082nd_int @ X2 @ Y2 ) @ Z ) ) ) ).

% AND_upper2'
thf(fact_7921_AND__upper1_H,axiom,
    ! [Y2: int,Z: int,Ya: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Y2 )
     => ( ( ord_less_eq_int @ Y2 @ Z )
       => ( ord_less_eq_int @ ( bit_se725231765392027082nd_int @ Y2 @ Ya ) @ Z ) ) ) ).

% AND_upper1'
thf(fact_7922_AND__upper2,axiom,
    ! [Y2: int,X2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Y2 )
     => ( ord_less_eq_int @ ( bit_se725231765392027082nd_int @ X2 @ Y2 ) @ Y2 ) ) ).

% AND_upper2
thf(fact_7923_AND__upper1,axiom,
    ! [X2: int,Y2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X2 )
     => ( ord_less_eq_int @ ( bit_se725231765392027082nd_int @ X2 @ Y2 ) @ X2 ) ) ).

% AND_upper1
thf(fact_7924_AND__lower,axiom,
    ! [X2: int,Y2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X2 )
     => ( ord_less_eq_int @ zero_zero_int @ ( bit_se725231765392027082nd_int @ X2 @ Y2 ) ) ) ).

% AND_lower
thf(fact_7925_abs__zmult__eq__1,axiom,
    ! [M: int,N: int] :
      ( ( ( abs_abs_int @ ( times_times_int @ M @ N ) )
        = one_one_int )
     => ( ( abs_abs_int @ M )
        = one_one_int ) ) ).

% abs_zmult_eq_1
thf(fact_7926_abs__div,axiom,
    ! [Y2: int,X2: int] :
      ( ( dvd_dvd_int @ Y2 @ X2 )
     => ( ( abs_abs_int @ ( divide_divide_int @ X2 @ Y2 ) )
        = ( divide_divide_int @ ( abs_abs_int @ X2 ) @ ( abs_abs_int @ Y2 ) ) ) ) ).

% abs_div
thf(fact_7927_AND__upper2_H_H,axiom,
    ! [Y2: int,Z: int,X2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Y2 )
     => ( ( ord_less_int @ Y2 @ Z )
       => ( ord_less_int @ ( bit_se725231765392027082nd_int @ X2 @ Y2 ) @ Z ) ) ) ).

% AND_upper2''
thf(fact_7928_AND__upper1_H_H,axiom,
    ! [Y2: int,Z: int,Ya: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Y2 )
     => ( ( ord_less_int @ Y2 @ Z )
       => ( ord_less_int @ ( bit_se725231765392027082nd_int @ Y2 @ Ya ) @ Z ) ) ) ).

% AND_upper1''
thf(fact_7929_and__less__eq,axiom,
    ! [L: int,K: int] :
      ( ( ord_less_int @ L @ zero_zero_int )
     => ( ord_less_eq_int @ ( bit_se725231765392027082nd_int @ K @ L ) @ K ) ) ).

% and_less_eq
thf(fact_7930_round__mono,axiom,
    ! [X2: rat,Y2: rat] :
      ( ( ord_less_eq_rat @ X2 @ Y2 )
     => ( ord_less_eq_int @ ( archim7778729529865785530nd_rat @ X2 ) @ ( archim7778729529865785530nd_rat @ Y2 ) ) ) ).

% round_mono
thf(fact_7931_zabs__def,axiom,
    ( abs_abs_int
    = ( ^ [I4: int] : ( if_int @ ( ord_less_int @ I4 @ zero_zero_int ) @ ( uminus_uminus_int @ I4 ) @ I4 ) ) ) ).

% zabs_def
thf(fact_7932_dvd__imp__le__int,axiom,
    ! [I: int,D: int] :
      ( ( I != zero_zero_int )
     => ( ( dvd_dvd_int @ D @ I )
       => ( ord_less_eq_int @ ( abs_abs_int @ D ) @ ( abs_abs_int @ I ) ) ) ) ).

% dvd_imp_le_int
thf(fact_7933_abs__mod__less,axiom,
    ! [L: int,K: int] :
      ( ( L != zero_zero_int )
     => ( ord_less_int @ ( abs_abs_int @ ( modulo_modulo_int @ K @ L ) ) @ ( abs_abs_int @ L ) ) ) ).

% abs_mod_less
thf(fact_7934_even__and__iff,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_se3949692690581998587nteger @ A @ B ) )
      = ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
        | ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) ) ).

% even_and_iff
thf(fact_7935_even__and__iff,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ A @ B ) )
      = ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
        | ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) ) ).

% even_and_iff
thf(fact_7936_even__and__iff,axiom,
    ! [A: nat,B: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se727722235901077358nd_nat @ A @ B ) )
      = ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
        | ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) ) ).

% even_and_iff
thf(fact_7937_even__and__iff__int,axiom,
    ! [K: int,L: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ K @ L ) )
      = ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K )
        | ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ L ) ) ) ).

% even_and_iff_int
thf(fact_7938_zdvd__mult__cancel1,axiom,
    ! [M: int,N: int] :
      ( ( M != zero_zero_int )
     => ( ( dvd_dvd_int @ ( times_times_int @ M @ N ) @ M )
        = ( ( abs_abs_int @ N )
          = one_one_int ) ) ) ).

% zdvd_mult_cancel1
thf(fact_7939_one__and__eq,axiom,
    ! [A: code_integer] :
      ( ( bit_se3949692690581998587nteger @ one_one_Code_integer @ A )
      = ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ).

% one_and_eq
thf(fact_7940_one__and__eq,axiom,
    ! [A: int] :
      ( ( bit_se725231765392027082nd_int @ one_one_int @ A )
      = ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).

% one_and_eq
thf(fact_7941_one__and__eq,axiom,
    ! [A: nat] :
      ( ( bit_se727722235901077358nd_nat @ one_one_nat @ A )
      = ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% one_and_eq
thf(fact_7942_and__one__eq,axiom,
    ! [A: code_integer] :
      ( ( bit_se3949692690581998587nteger @ A @ one_one_Code_integer )
      = ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ).

% and_one_eq
thf(fact_7943_and__one__eq,axiom,
    ! [A: int] :
      ( ( bit_se725231765392027082nd_int @ A @ one_one_int )
      = ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).

% and_one_eq
thf(fact_7944_and__one__eq,axiom,
    ! [A: nat] :
      ( ( bit_se727722235901077358nd_nat @ A @ one_one_nat )
      = ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% and_one_eq
thf(fact_7945_even__abs__add__iff,axiom,
    ! [K: int,L: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ ( abs_abs_int @ K ) @ L ) )
      = ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ K @ L ) ) ) ).

% even_abs_add_iff
thf(fact_7946_even__add__abs__iff,axiom,
    ! [K: int,L: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ K @ ( abs_abs_int @ L ) ) )
      = ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ K @ L ) ) ) ).

% even_add_abs_iff
thf(fact_7947_round__diff__minimal,axiom,
    ! [Z: real,M: int] : ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ Z @ ( ring_1_of_int_real @ ( archim8280529875227126926d_real @ Z ) ) ) ) @ ( abs_abs_real @ ( minus_minus_real @ Z @ ( ring_1_of_int_real @ M ) ) ) ) ).

% round_diff_minimal
thf(fact_7948_round__diff__minimal,axiom,
    ! [Z: rat,M: int] : ( ord_less_eq_rat @ ( abs_abs_rat @ ( minus_minus_rat @ Z @ ( ring_1_of_int_rat @ ( archim7778729529865785530nd_rat @ Z ) ) ) ) @ ( abs_abs_rat @ ( minus_minus_rat @ Z @ ( ring_1_of_int_rat @ M ) ) ) ) ).

% round_diff_minimal
thf(fact_7949_nat__intermed__int__val,axiom,
    ! [M: nat,N: nat,F: nat > int,K: int] :
      ( ! [I3: nat] :
          ( ( ( ord_less_eq_nat @ M @ I3 )
            & ( ord_less_nat @ I3 @ N ) )
         => ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ ( F @ ( suc @ I3 ) ) @ ( F @ I3 ) ) ) @ one_one_int ) )
     => ( ( ord_less_eq_nat @ M @ N )
       => ( ( ord_less_eq_int @ ( F @ M ) @ K )
         => ( ( ord_less_eq_int @ K @ ( F @ N ) )
           => ? [I3: nat] :
                ( ( ord_less_eq_nat @ M @ I3 )
                & ( ord_less_eq_nat @ I3 @ N )
                & ( ( F @ I3 )
                  = K ) ) ) ) ) ) ).

% nat_intermed_int_val
thf(fact_7950_decr__lemma,axiom,
    ! [D: int,X2: int,Z: int] :
      ( ( ord_less_int @ zero_zero_int @ D )
     => ( ord_less_int @ ( minus_minus_int @ X2 @ ( times_times_int @ ( plus_plus_int @ ( abs_abs_int @ ( minus_minus_int @ X2 @ Z ) ) @ one_one_int ) @ D ) ) @ Z ) ) ).

% decr_lemma
thf(fact_7951_incr__lemma,axiom,
    ! [D: int,Z: int,X2: int] :
      ( ( ord_less_int @ zero_zero_int @ D )
     => ( ord_less_int @ Z @ ( plus_plus_int @ X2 @ ( times_times_int @ ( plus_plus_int @ ( abs_abs_int @ ( minus_minus_int @ X2 @ Z ) ) @ one_one_int ) @ D ) ) ) ) ).

% incr_lemma
thf(fact_7952_nat__ivt__aux,axiom,
    ! [N: nat,F: nat > int,K: int] :
      ( ! [I3: nat] :
          ( ( ord_less_nat @ I3 @ N )
         => ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ ( F @ ( suc @ I3 ) ) @ ( F @ I3 ) ) ) @ one_one_int ) )
     => ( ( ord_less_eq_int @ ( F @ zero_zero_nat ) @ K )
       => ( ( ord_less_eq_int @ K @ ( F @ N ) )
         => ? [I3: nat] :
              ( ( ord_less_eq_nat @ I3 @ N )
              & ( ( F @ I3 )
                = K ) ) ) ) ) ).

% nat_ivt_aux
thf(fact_7953_accp__subset__induct,axiom,
    ! [D3: produc9072475918466114483BT_nat > $o,R: produc9072475918466114483BT_nat > produc9072475918466114483BT_nat > $o,X2: produc9072475918466114483BT_nat,P: produc9072475918466114483BT_nat > $o] :
      ( ( ord_le7812727212727832188_nat_o @ D3 @ ( accp_P2887432264394892906BT_nat @ R ) )
     => ( ! [X4: produc9072475918466114483BT_nat,Z3: produc9072475918466114483BT_nat] :
            ( ( D3 @ X4 )
           => ( ( R @ Z3 @ X4 )
             => ( D3 @ Z3 ) ) )
       => ( ( D3 @ X2 )
         => ( ! [X4: produc9072475918466114483BT_nat] :
                ( ( D3 @ X4 )
               => ( ! [Z2: produc9072475918466114483BT_nat] :
                      ( ( R @ Z2 @ X4 )
                     => ( P @ Z2 ) )
                 => ( P @ X4 ) ) )
           => ( P @ X2 ) ) ) ) ) ).

% accp_subset_induct
thf(fact_7954_accp__subset__induct,axiom,
    ! [D3: product_prod_num_num > $o,R: product_prod_num_num > product_prod_num_num > $o,X2: product_prod_num_num,P: product_prod_num_num > $o] :
      ( ( ord_le2239182809043710856_num_o @ D3 @ ( accp_P3113834385874906142um_num @ R ) )
     => ( ! [X4: product_prod_num_num,Z3: product_prod_num_num] :
            ( ( D3 @ X4 )
           => ( ( R @ Z3 @ X4 )
             => ( D3 @ Z3 ) ) )
       => ( ( D3 @ X2 )
         => ( ! [X4: product_prod_num_num] :
                ( ( D3 @ X4 )
               => ( ! [Z2: product_prod_num_num] :
                      ( ( R @ Z2 @ X4 )
                     => ( P @ Z2 ) )
                 => ( P @ X4 ) ) )
           => ( P @ X2 ) ) ) ) ) ).

% accp_subset_induct
thf(fact_7955_accp__subset__induct,axiom,
    ! [D3: product_prod_nat_nat > $o,R: product_prod_nat_nat > product_prod_nat_nat > $o,X2: product_prod_nat_nat,P: product_prod_nat_nat > $o] :
      ( ( ord_le704812498762024988_nat_o @ D3 @ ( accp_P4275260045618599050at_nat @ R ) )
     => ( ! [X4: product_prod_nat_nat,Z3: product_prod_nat_nat] :
            ( ( D3 @ X4 )
           => ( ( R @ Z3 @ X4 )
             => ( D3 @ Z3 ) ) )
       => ( ( D3 @ X2 )
         => ( ! [X4: product_prod_nat_nat] :
                ( ( D3 @ X4 )
               => ( ! [Z2: product_prod_nat_nat] :
                      ( ( R @ Z2 @ X4 )
                     => ( P @ Z2 ) )
                 => ( P @ X4 ) ) )
           => ( P @ X2 ) ) ) ) ) ).

% accp_subset_induct
thf(fact_7956_accp__subset__induct,axiom,
    ! [D3: product_prod_int_int > $o,R: product_prod_int_int > product_prod_int_int > $o,X2: product_prod_int_int,P: product_prod_int_int > $o] :
      ( ( ord_le8369615600986905444_int_o @ D3 @ ( accp_P1096762738010456898nt_int @ R ) )
     => ( ! [X4: product_prod_int_int,Z3: product_prod_int_int] :
            ( ( D3 @ X4 )
           => ( ( R @ Z3 @ X4 )
             => ( D3 @ Z3 ) ) )
       => ( ( D3 @ X2 )
         => ( ! [X4: product_prod_int_int] :
                ( ( D3 @ X4 )
               => ( ! [Z2: product_prod_int_int] :
                      ( ( R @ Z2 @ X4 )
                     => ( P @ Z2 ) )
                 => ( P @ X4 ) ) )
           => ( P @ X2 ) ) ) ) ) ).

% accp_subset_induct
thf(fact_7957_accp__subset__induct,axiom,
    ! [D3: nat > $o,R: nat > nat > $o,X2: nat,P: nat > $o] :
      ( ( ord_less_eq_nat_o @ D3 @ ( accp_nat @ R ) )
     => ( ! [X4: nat,Z3: nat] :
            ( ( D3 @ X4 )
           => ( ( R @ Z3 @ X4 )
             => ( D3 @ Z3 ) ) )
       => ( ( D3 @ X2 )
         => ( ! [X4: nat] :
                ( ( D3 @ X4 )
               => ( ! [Z2: nat] :
                      ( ( R @ Z2 @ X4 )
                     => ( P @ Z2 ) )
                 => ( P @ X4 ) ) )
           => ( P @ X2 ) ) ) ) ) ).

% accp_subset_induct
thf(fact_7958_nat0__intermed__int__val,axiom,
    ! [N: nat,F: nat > int,K: int] :
      ( ! [I3: nat] :
          ( ( ord_less_nat @ I3 @ N )
         => ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ ( F @ ( plus_plus_nat @ I3 @ one_one_nat ) ) @ ( F @ I3 ) ) ) @ one_one_int ) )
     => ( ( ord_less_eq_int @ ( F @ zero_zero_nat ) @ K )
       => ( ( ord_less_eq_int @ K @ ( F @ N ) )
         => ? [I3: nat] :
              ( ( ord_less_eq_nat @ I3 @ N )
              & ( ( F @ I3 )
                = K ) ) ) ) ) ).

% nat0_intermed_int_val
thf(fact_7959_and__int__rec,axiom,
    ( bit_se725231765392027082nd_int
    = ( ^ [K2: int,L2: int] :
          ( plus_plus_int
          @ ( zero_n2684676970156552555ol_int
            @ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K2 )
              & ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ L2 ) ) )
          @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( divide_divide_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( divide_divide_int @ L2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% and_int_rec
thf(fact_7960_and__int__unfold,axiom,
    ( bit_se725231765392027082nd_int
    = ( ^ [K2: int,L2: int] :
          ( if_int
          @ ( ( K2 = zero_zero_int )
            | ( L2 = zero_zero_int ) )
          @ zero_zero_int
          @ ( if_int
            @ ( K2
              = ( uminus_uminus_int @ one_one_int ) )
            @ L2
            @ ( if_int
              @ ( L2
                = ( uminus_uminus_int @ one_one_int ) )
              @ K2
              @ ( plus_plus_int @ ( times_times_int @ ( modulo_modulo_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( modulo_modulo_int @ L2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( divide_divide_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( divide_divide_int @ L2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ).

% and_int_unfold
thf(fact_7961_of__int__round__le,axiom,
    ! [X2: real] : ( ord_less_eq_real @ ( ring_1_of_int_real @ ( archim8280529875227126926d_real @ X2 ) ) @ ( plus_plus_real @ X2 @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).

% of_int_round_le
thf(fact_7962_of__int__round__le,axiom,
    ! [X2: rat] : ( ord_less_eq_rat @ ( ring_1_of_int_rat @ ( archim7778729529865785530nd_rat @ X2 ) ) @ ( plus_plus_rat @ X2 @ ( divide_divide_rat @ one_one_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) ) ).

% of_int_round_le
thf(fact_7963_of__int__round__ge,axiom,
    ! [X2: real] : ( ord_less_eq_real @ ( minus_minus_real @ X2 @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( ring_1_of_int_real @ ( archim8280529875227126926d_real @ X2 ) ) ) ).

% of_int_round_ge
thf(fact_7964_of__int__round__ge,axiom,
    ! [X2: rat] : ( ord_less_eq_rat @ ( minus_minus_rat @ X2 @ ( divide_divide_rat @ one_one_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) @ ( ring_1_of_int_rat @ ( archim7778729529865785530nd_rat @ X2 ) ) ) ).

% of_int_round_ge
thf(fact_7965_of__int__round__gt,axiom,
    ! [X2: real] : ( ord_less_real @ ( minus_minus_real @ X2 @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( ring_1_of_int_real @ ( archim8280529875227126926d_real @ X2 ) ) ) ).

% of_int_round_gt
thf(fact_7966_of__int__round__gt,axiom,
    ! [X2: rat] : ( ord_less_rat @ ( minus_minus_rat @ X2 @ ( divide_divide_rat @ one_one_rat @ ( numeral_numeral_rat @ ( bit0 @ one ) ) ) ) @ ( ring_1_of_int_rat @ ( archim7778729529865785530nd_rat @ X2 ) ) ) ).

% of_int_round_gt
thf(fact_7967_and__int_Opelims,axiom,
    ! [X2: int,Xa2: int,Y2: int] :
      ( ( ( bit_se725231765392027082nd_int @ X2 @ Xa2 )
        = Y2 )
     => ( ( accp_P1096762738010456898nt_int @ bit_and_int_rel @ ( product_Pair_int_int @ X2 @ Xa2 ) )
       => ~ ( ( ( ( ( member_int @ X2 @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) )
                  & ( member_int @ Xa2 @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) ) )
               => ( Y2
                  = ( uminus_uminus_int
                    @ ( zero_n2684676970156552555ol_int
                      @ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ X2 )
                        & ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Xa2 ) ) ) ) ) )
              & ( ~ ( ( member_int @ X2 @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) )
                    & ( member_int @ Xa2 @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) ) )
               => ( Y2
                  = ( plus_plus_int
                    @ ( zero_n2684676970156552555ol_int
                      @ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ X2 )
                        & ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Xa2 ) ) )
                    @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( divide_divide_int @ X2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( divide_divide_int @ Xa2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) )
           => ~ ( accp_P1096762738010456898nt_int @ bit_and_int_rel @ ( product_Pair_int_int @ X2 @ Xa2 ) ) ) ) ) ).

% and_int.pelims
thf(fact_7968_and__int_Opsimps,axiom,
    ! [K: int,L: int] :
      ( ( accp_P1096762738010456898nt_int @ bit_and_int_rel @ ( product_Pair_int_int @ K @ L ) )
     => ( ( ( ( member_int @ K @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) )
            & ( member_int @ L @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) ) )
         => ( ( bit_se725231765392027082nd_int @ K @ L )
            = ( uminus_uminus_int
              @ ( zero_n2684676970156552555ol_int
                @ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K )
                  & ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ L ) ) ) ) ) )
        & ( ~ ( ( member_int @ K @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) )
              & ( member_int @ L @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) ) )
         => ( ( bit_se725231765392027082nd_int @ K @ L )
            = ( plus_plus_int
              @ ( zero_n2684676970156552555ol_int
                @ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K )
                  & ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ L ) ) )
              @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( divide_divide_int @ K @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( divide_divide_int @ L @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ).

% and_int.psimps
thf(fact_7969_VEBT__internal_Oheight_Opelims,axiom,
    ! [X2: vEBT_VEBT,Y2: nat] :
      ( ( ( vEBT_VEBT_height @ X2 )
        = Y2 )
     => ( ( accp_VEBT_VEBT @ vEBT_VEBT_height_rel @ X2 )
       => ( ! [A6: $o,B7: $o] :
              ( ( X2
                = ( vEBT_Leaf @ A6 @ B7 ) )
             => ( ( Y2 = zero_zero_nat )
               => ~ ( accp_VEBT_VEBT @ vEBT_VEBT_height_rel @ ( vEBT_Leaf @ A6 @ B7 ) ) ) )
         => ~ ! [Uu2: option4927543243414619207at_nat,Deg2: nat,TreeList3: list_VEBT_VEBT,Summary2: vEBT_VEBT] :
                ( ( X2
                  = ( vEBT_Node @ Uu2 @ Deg2 @ TreeList3 @ Summary2 ) )
               => ( ( Y2
                    = ( plus_plus_nat @ one_one_nat @ ( lattic8265883725875713057ax_nat @ ( image_VEBT_VEBT_nat @ vEBT_VEBT_height @ ( insert_VEBT_VEBT @ Summary2 @ ( set_VEBT_VEBT2 @ TreeList3 ) ) ) ) ) )
                 => ~ ( accp_VEBT_VEBT @ vEBT_VEBT_height_rel @ ( vEBT_Node @ Uu2 @ Deg2 @ TreeList3 @ Summary2 ) ) ) ) ) ) ) ).

% VEBT_internal.height.pelims
thf(fact_7970_vebt__maxt_Opelims,axiom,
    ! [X2: vEBT_VEBT,Y2: option_nat] :
      ( ( ( vEBT_vebt_maxt @ X2 )
        = Y2 )
     => ( ( accp_VEBT_VEBT @ vEBT_vebt_maxt_rel @ X2 )
       => ( ! [A6: $o,B7: $o] :
              ( ( X2
                = ( vEBT_Leaf @ A6 @ B7 ) )
             => ( ( ( B7
                   => ( Y2
                      = ( some_nat @ one_one_nat ) ) )
                  & ( ~ B7
                   => ( ( A6
                       => ( Y2
                          = ( some_nat @ zero_zero_nat ) ) )
                      & ( ~ A6
                       => ( Y2 = none_nat ) ) ) ) )
               => ~ ( accp_VEBT_VEBT @ vEBT_vebt_maxt_rel @ ( vEBT_Leaf @ A6 @ B7 ) ) ) )
         => ( ! [Uu2: nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT] :
                ( ( X2
                  = ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu2 @ Uv2 @ Uw2 ) )
               => ( ( Y2 = none_nat )
                 => ~ ( accp_VEBT_VEBT @ vEBT_vebt_maxt_rel @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu2 @ Uv2 @ Uw2 ) ) ) )
           => ~ ! [Mi2: nat,Ma2: nat,Ux2: nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT] :
                  ( ( X2
                    = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ Ux2 @ Uy2 @ Uz2 ) )
                 => ( ( Y2
                      = ( some_nat @ Ma2 ) )
                   => ~ ( accp_VEBT_VEBT @ vEBT_vebt_maxt_rel @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ Ux2 @ Uy2 @ Uz2 ) ) ) ) ) ) ) ) ).

% vebt_maxt.pelims
thf(fact_7971_vebt__mint_Opelims,axiom,
    ! [X2: vEBT_VEBT,Y2: option_nat] :
      ( ( ( vEBT_vebt_mint @ X2 )
        = Y2 )
     => ( ( accp_VEBT_VEBT @ vEBT_vebt_mint_rel @ X2 )
       => ( ! [A6: $o,B7: $o] :
              ( ( X2
                = ( vEBT_Leaf @ A6 @ B7 ) )
             => ( ( ( A6
                   => ( Y2
                      = ( some_nat @ zero_zero_nat ) ) )
                  & ( ~ A6
                   => ( ( B7
                       => ( Y2
                          = ( some_nat @ one_one_nat ) ) )
                      & ( ~ B7
                       => ( Y2 = none_nat ) ) ) ) )
               => ~ ( accp_VEBT_VEBT @ vEBT_vebt_mint_rel @ ( vEBT_Leaf @ A6 @ B7 ) ) ) )
         => ( ! [Uu2: nat,Uv2: list_VEBT_VEBT,Uw2: vEBT_VEBT] :
                ( ( X2
                  = ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu2 @ Uv2 @ Uw2 ) )
               => ( ( Y2 = none_nat )
                 => ~ ( accp_VEBT_VEBT @ vEBT_vebt_mint_rel @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Uu2 @ Uv2 @ Uw2 ) ) ) )
           => ~ ! [Mi2: nat,Ma2: nat,Ux2: nat,Uy2: list_VEBT_VEBT,Uz2: vEBT_VEBT] :
                  ( ( X2
                    = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ Ux2 @ Uy2 @ Uz2 ) )
                 => ( ( Y2
                      = ( some_nat @ Mi2 ) )
                   => ~ ( accp_VEBT_VEBT @ vEBT_vebt_mint_rel @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ Mi2 @ Ma2 ) ) @ Ux2 @ Uy2 @ Uz2 ) ) ) ) ) ) ) ) ).

% vebt_mint.pelims
thf(fact_7972_and__nat__numerals_I3_J,axiom,
    ! [X2: num] :
      ( ( bit_se727722235901077358nd_nat @ ( numeral_numeral_nat @ ( bit0 @ X2 ) ) @ ( suc @ zero_zero_nat ) )
      = zero_zero_nat ) ).

% and_nat_numerals(3)
thf(fact_7973_and__nat__numerals_I1_J,axiom,
    ! [Y2: num] :
      ( ( bit_se727722235901077358nd_nat @ ( suc @ zero_zero_nat ) @ ( numeral_numeral_nat @ ( bit0 @ Y2 ) ) )
      = zero_zero_nat ) ).

% and_nat_numerals(1)
thf(fact_7974_and__nat__numerals_I4_J,axiom,
    ! [X2: num] :
      ( ( bit_se727722235901077358nd_nat @ ( numeral_numeral_nat @ ( bit1 @ X2 ) ) @ ( suc @ zero_zero_nat ) )
      = one_one_nat ) ).

% and_nat_numerals(4)
thf(fact_7975_and__nat__numerals_I2_J,axiom,
    ! [Y2: num] :
      ( ( bit_se727722235901077358nd_nat @ ( suc @ zero_zero_nat ) @ ( numeral_numeral_nat @ ( bit1 @ Y2 ) ) )
      = one_one_nat ) ).

% and_nat_numerals(2)
thf(fact_7976_Suc__0__and__eq,axiom,
    ! [N: nat] :
      ( ( bit_se727722235901077358nd_nat @ ( suc @ zero_zero_nat ) @ N )
      = ( modulo_modulo_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% Suc_0_and_eq
thf(fact_7977_and__Suc__0__eq,axiom,
    ! [N: nat] :
      ( ( bit_se727722235901077358nd_nat @ N @ ( suc @ zero_zero_nat ) )
      = ( modulo_modulo_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% and_Suc_0_eq
thf(fact_7978_and__nat__unfold,axiom,
    ( bit_se727722235901077358nd_nat
    = ( ^ [M3: nat,N2: nat] :
          ( if_nat
          @ ( ( M3 = zero_zero_nat )
            | ( N2 = zero_zero_nat ) )
          @ zero_zero_nat
          @ ( plus_plus_nat @ ( times_times_nat @ ( modulo_modulo_nat @ M3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( modulo_modulo_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se727722235901077358nd_nat @ ( divide_divide_nat @ M3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ).

% and_nat_unfold
thf(fact_7979_and__nat__rec,axiom,
    ( bit_se727722235901077358nd_nat
    = ( ^ [M3: nat,N2: nat] :
          ( plus_plus_nat
          @ ( zero_n2687167440665602831ol_nat
            @ ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M3 )
              & ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) )
          @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se727722235901077358nd_nat @ ( divide_divide_nat @ M3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% and_nat_rec
thf(fact_7980_and__int_Opinduct,axiom,
    ! [A0: int,A1: int,P: int > int > $o] :
      ( ( accp_P1096762738010456898nt_int @ bit_and_int_rel @ ( product_Pair_int_int @ A0 @ A1 ) )
     => ( ! [K3: int,L4: int] :
            ( ( accp_P1096762738010456898nt_int @ bit_and_int_rel @ ( product_Pair_int_int @ K3 @ L4 ) )
           => ( ( ~ ( ( member_int @ K3 @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) )
                    & ( member_int @ L4 @ ( insert_int @ zero_zero_int @ ( insert_int @ ( uminus_uminus_int @ one_one_int ) @ bot_bot_set_int ) ) ) )
               => ( P @ ( divide_divide_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( divide_divide_int @ L4 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) )
             => ( P @ K3 @ L4 ) ) )
       => ( P @ A0 @ A1 ) ) ) ).

% and_int.pinduct
thf(fact_7981_fold__atLeastAtMost__nat_Opinduct,axiom,
    ! [A0: nat > nat > nat,A1: nat,A22: nat,A32: nat,P: ( nat > nat > nat ) > nat > nat > nat > $o] :
      ( ( accp_P6019419558468335806at_nat @ set_fo3699595496184130361el_nat @ ( produc3209952032786966637at_nat @ A0 @ ( produc487386426758144856at_nat @ A1 @ ( product_Pair_nat_nat @ A22 @ A32 ) ) ) )
     => ( ! [F5: nat > nat > nat,A6: nat,B7: nat,Acc: nat] :
            ( ( accp_P6019419558468335806at_nat @ set_fo3699595496184130361el_nat @ ( produc3209952032786966637at_nat @ F5 @ ( produc487386426758144856at_nat @ A6 @ ( product_Pair_nat_nat @ B7 @ Acc ) ) ) )
           => ( ( ~ ( ord_less_nat @ B7 @ A6 )
               => ( P @ F5 @ ( plus_plus_nat @ A6 @ one_one_nat ) @ B7 @ ( F5 @ A6 @ Acc ) ) )
             => ( P @ F5 @ A6 @ B7 @ Acc ) ) )
       => ( P @ A0 @ A1 @ A22 @ A32 ) ) ) ).

% fold_atLeastAtMost_nat.pinduct
thf(fact_7982_VEBT__internal_Ooption__shift_Opelims,axiom,
    ! [X2: product_prod_nat_nat > product_prod_nat_nat > product_prod_nat_nat,Xa2: option4927543243414619207at_nat,Xb: option4927543243414619207at_nat,Y2: option4927543243414619207at_nat] :
      ( ( ( vEBT_V1502963449132264192at_nat @ X2 @ Xa2 @ Xb )
        = Y2 )
     => ( ( accp_P3267385326087170368at_nat @ vEBT_V7235779383477046023at_nat @ ( produc2899441246263362727at_nat @ X2 @ ( produc488173922507101015at_nat @ Xa2 @ Xb ) ) )
       => ( ( ( Xa2 = none_P5556105721700978146at_nat )
           => ( ( Y2 = none_P5556105721700978146at_nat )
             => ~ ( accp_P3267385326087170368at_nat @ vEBT_V7235779383477046023at_nat @ ( produc2899441246263362727at_nat @ X2 @ ( produc488173922507101015at_nat @ none_P5556105721700978146at_nat @ Xb ) ) ) ) )
         => ( ! [V2: product_prod_nat_nat] :
                ( ( Xa2
                  = ( some_P7363390416028606310at_nat @ V2 ) )
               => ( ( Xb = none_P5556105721700978146at_nat )
                 => ( ( Y2 = none_P5556105721700978146at_nat )
                   => ~ ( accp_P3267385326087170368at_nat @ vEBT_V7235779383477046023at_nat @ ( produc2899441246263362727at_nat @ X2 @ ( produc488173922507101015at_nat @ ( some_P7363390416028606310at_nat @ V2 ) @ none_P5556105721700978146at_nat ) ) ) ) ) )
           => ~ ! [A6: product_prod_nat_nat] :
                  ( ( Xa2
                    = ( some_P7363390416028606310at_nat @ A6 ) )
                 => ! [B7: product_prod_nat_nat] :
                      ( ( Xb
                        = ( some_P7363390416028606310at_nat @ B7 ) )
                     => ( ( Y2
                          = ( some_P7363390416028606310at_nat @ ( X2 @ A6 @ B7 ) ) )
                       => ~ ( accp_P3267385326087170368at_nat @ vEBT_V7235779383477046023at_nat @ ( produc2899441246263362727at_nat @ X2 @ ( produc488173922507101015at_nat @ ( some_P7363390416028606310at_nat @ A6 ) @ ( some_P7363390416028606310at_nat @ B7 ) ) ) ) ) ) ) ) ) ) ) ).

% VEBT_internal.option_shift.pelims
thf(fact_7983_VEBT__internal_Ooption__shift_Opelims,axiom,
    ! [X2: nat > nat > nat,Xa2: option_nat,Xb: option_nat,Y2: option_nat] :
      ( ( ( vEBT_V4262088993061758097ft_nat @ X2 @ Xa2 @ Xb )
        = Y2 )
     => ( ( accp_P5496254298877145759on_nat @ vEBT_V3895251965096974666el_nat @ ( produc8929957630744042906on_nat @ X2 @ ( produc5098337634421038937on_nat @ Xa2 @ Xb ) ) )
       => ( ( ( Xa2 = none_nat )
           => ( ( Y2 = none_nat )
             => ~ ( accp_P5496254298877145759on_nat @ vEBT_V3895251965096974666el_nat @ ( produc8929957630744042906on_nat @ X2 @ ( produc5098337634421038937on_nat @ none_nat @ Xb ) ) ) ) )
         => ( ! [V2: nat] :
                ( ( Xa2
                  = ( some_nat @ V2 ) )
               => ( ( Xb = none_nat )
                 => ( ( Y2 = none_nat )
                   => ~ ( accp_P5496254298877145759on_nat @ vEBT_V3895251965096974666el_nat @ ( produc8929957630744042906on_nat @ X2 @ ( produc5098337634421038937on_nat @ ( some_nat @ V2 ) @ none_nat ) ) ) ) ) )
           => ~ ! [A6: nat] :
                  ( ( Xa2
                    = ( some_nat @ A6 ) )
                 => ! [B7: nat] :
                      ( ( Xb
                        = ( some_nat @ B7 ) )
                     => ( ( Y2
                          = ( some_nat @ ( X2 @ A6 @ B7 ) ) )
                       => ~ ( accp_P5496254298877145759on_nat @ vEBT_V3895251965096974666el_nat @ ( produc8929957630744042906on_nat @ X2 @ ( produc5098337634421038937on_nat @ ( some_nat @ A6 ) @ ( some_nat @ B7 ) ) ) ) ) ) ) ) ) ) ) ).

% VEBT_internal.option_shift.pelims
thf(fact_7984_upto_Opinduct,axiom,
    ! [A0: int,A1: int,P: int > int > $o] :
      ( ( accp_P1096762738010456898nt_int @ upto_rel @ ( product_Pair_int_int @ A0 @ A1 ) )
     => ( ! [I3: int,J2: int] :
            ( ( accp_P1096762738010456898nt_int @ upto_rel @ ( product_Pair_int_int @ I3 @ J2 ) )
           => ( ( ( ord_less_eq_int @ I3 @ J2 )
               => ( P @ ( plus_plus_int @ I3 @ one_one_int ) @ J2 ) )
             => ( P @ I3 @ J2 ) ) )
       => ( P @ A0 @ A1 ) ) ) ).

% upto.pinduct
thf(fact_7985_in__measure,axiom,
    ! [X2: code_integer,Y2: code_integer,F: code_integer > nat] :
      ( ( member157494554546826820nteger @ ( produc1086072967326762835nteger @ X2 @ Y2 ) @ ( measure_Code_integer @ F ) )
      = ( ord_less_nat @ ( F @ X2 ) @ ( F @ Y2 ) ) ) ).

% in_measure
thf(fact_7986_in__measure,axiom,
    ! [X2: num,Y2: num,F: num > nat] :
      ( ( member7279096912039735102um_num @ ( product_Pair_num_num @ X2 @ Y2 ) @ ( measure_num @ F ) )
      = ( ord_less_nat @ ( F @ X2 ) @ ( F @ Y2 ) ) ) ).

% in_measure
thf(fact_7987_in__measure,axiom,
    ! [X2: nat,Y2: nat,F: nat > nat] :
      ( ( member8440522571783428010at_nat @ ( product_Pair_nat_nat @ X2 @ Y2 ) @ ( measure_nat @ F ) )
      = ( ord_less_nat @ ( F @ X2 ) @ ( F @ Y2 ) ) ) ).

% in_measure
thf(fact_7988_in__measure,axiom,
    ! [X2: int,Y2: int,F: int > nat] :
      ( ( member5262025264175285858nt_int @ ( product_Pair_int_int @ X2 @ Y2 ) @ ( measure_int @ F ) )
      = ( ord_less_nat @ ( F @ X2 ) @ ( F @ Y2 ) ) ) ).

% in_measure
thf(fact_7989_infinite__int__iff__unbounded,axiom,
    ! [S3: set_int] :
      ( ( ~ ( finite_finite_int @ S3 ) )
      = ( ! [M3: int] :
          ? [N2: int] :
            ( ( ord_less_int @ M3 @ ( abs_abs_int @ N2 ) )
            & ( member_int @ N2 @ S3 ) ) ) ) ).

% infinite_int_iff_unbounded
thf(fact_7990_unbounded__k__infinite,axiom,
    ! [K: nat,S3: set_nat] :
      ( ! [M4: nat] :
          ( ( ord_less_nat @ K @ M4 )
         => ? [N7: nat] :
              ( ( ord_less_nat @ M4 @ N7 )
              & ( member_nat @ N7 @ S3 ) ) )
     => ~ ( finite_finite_nat @ S3 ) ) ).

% unbounded_k_infinite
thf(fact_7991_infinite__nat__iff__unbounded,axiom,
    ! [S3: set_nat] :
      ( ( ~ ( finite_finite_nat @ S3 ) )
      = ( ! [M3: nat] :
          ? [N2: nat] :
            ( ( ord_less_nat @ M3 @ N2 )
            & ( member_nat @ N2 @ S3 ) ) ) ) ).

% infinite_nat_iff_unbounded
thf(fact_7992_infinite__nat__iff__unbounded__le,axiom,
    ! [S3: set_nat] :
      ( ( ~ ( finite_finite_nat @ S3 ) )
      = ( ! [M3: nat] :
          ? [N2: nat] :
            ( ( ord_less_eq_nat @ M3 @ N2 )
            & ( member_nat @ N2 @ S3 ) ) ) ) ).

% infinite_nat_iff_unbounded_le
thf(fact_7993_infinite__int__iff__unbounded__le,axiom,
    ! [S3: set_int] :
      ( ( ~ ( finite_finite_int @ S3 ) )
      = ( ! [M3: int] :
          ? [N2: int] :
            ( ( ord_less_eq_int @ M3 @ ( abs_abs_int @ N2 ) )
            & ( member_int @ N2 @ S3 ) ) ) ) ).

% infinite_int_iff_unbounded_le
thf(fact_7994_fold__atLeastAtMost__nat_Opsimps,axiom,
    ! [F: nat > nat > nat,A: nat,B: nat,Acc2: nat] :
      ( ( accp_P6019419558468335806at_nat @ set_fo3699595496184130361el_nat @ ( produc3209952032786966637at_nat @ F @ ( produc487386426758144856at_nat @ A @ ( product_Pair_nat_nat @ B @ Acc2 ) ) ) )
     => ( ( ( ord_less_nat @ B @ A )
         => ( ( set_fo2584398358068434914at_nat @ F @ A @ B @ Acc2 )
            = Acc2 ) )
        & ( ~ ( ord_less_nat @ B @ A )
         => ( ( set_fo2584398358068434914at_nat @ F @ A @ B @ Acc2 )
            = ( set_fo2584398358068434914at_nat @ F @ ( plus_plus_nat @ A @ one_one_nat ) @ B @ ( F @ A @ Acc2 ) ) ) ) ) ) ).

% fold_atLeastAtMost_nat.psimps
thf(fact_7995_fold__atLeastAtMost__nat_Opelims,axiom,
    ! [X2: nat > nat > nat,Xa2: nat,Xb: nat,Xc: nat,Y2: nat] :
      ( ( ( set_fo2584398358068434914at_nat @ X2 @ Xa2 @ Xb @ Xc )
        = Y2 )
     => ( ( accp_P6019419558468335806at_nat @ set_fo3699595496184130361el_nat @ ( produc3209952032786966637at_nat @ X2 @ ( produc487386426758144856at_nat @ Xa2 @ ( product_Pair_nat_nat @ Xb @ Xc ) ) ) )
       => ~ ( ( ( ( ord_less_nat @ Xb @ Xa2 )
               => ( Y2 = Xc ) )
              & ( ~ ( ord_less_nat @ Xb @ Xa2 )
               => ( Y2
                  = ( set_fo2584398358068434914at_nat @ X2 @ ( plus_plus_nat @ Xa2 @ one_one_nat ) @ Xb @ ( X2 @ Xa2 @ Xc ) ) ) ) )
           => ~ ( accp_P6019419558468335806at_nat @ set_fo3699595496184130361el_nat @ ( produc3209952032786966637at_nat @ X2 @ ( produc487386426758144856at_nat @ Xa2 @ ( product_Pair_nat_nat @ Xb @ Xc ) ) ) ) ) ) ) ).

% fold_atLeastAtMost_nat.pelims
thf(fact_7996_in__finite__psubset,axiom,
    ! [A2: set_nat,B3: set_nat] :
      ( ( member8277197624267554838et_nat @ ( produc4532415448927165861et_nat @ A2 @ B3 ) @ finite_psubset_nat )
      = ( ( ord_less_set_nat @ A2 @ B3 )
        & ( finite_finite_nat @ B3 ) ) ) ).

% in_finite_psubset
thf(fact_7997_in__finite__psubset,axiom,
    ! [A2: set_int,B3: set_int] :
      ( ( member2572552093476627150et_int @ ( produc6363374080413544029et_int @ A2 @ B3 ) @ finite_psubset_int )
      = ( ( ord_less_set_int @ A2 @ B3 )
        & ( finite_finite_int @ B3 ) ) ) ).

% in_finite_psubset
thf(fact_7998_in__finite__psubset,axiom,
    ! [A2: set_complex,B3: set_complex] :
      ( ( member351165363924911826omplex @ ( produc3790773574474814305omplex @ A2 @ B3 ) @ finite8643634255014194347omplex )
      = ( ( ord_less_set_complex @ A2 @ B3 )
        & ( finite3207457112153483333omplex @ B3 ) ) ) ).

% in_finite_psubset
thf(fact_7999_arctan__double,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ ( abs_abs_real @ X2 ) @ one_one_real )
     => ( ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( arctan @ X2 ) )
        = ( arctan @ ( divide_divide_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X2 ) @ ( minus_minus_real @ one_one_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% arctan_double
thf(fact_8000_or__int__unfold,axiom,
    ( bit_se1409905431419307370or_int
    = ( ^ [K2: int,L2: int] :
          ( if_int
          @ ( ( K2
              = ( uminus_uminus_int @ one_one_int ) )
            | ( L2
              = ( uminus_uminus_int @ one_one_int ) ) )
          @ ( uminus_uminus_int @ one_one_int )
          @ ( if_int @ ( K2 = zero_zero_int ) @ L2 @ ( if_int @ ( L2 = zero_zero_int ) @ K2 @ ( plus_plus_int @ ( ord_max_int @ ( modulo_modulo_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( modulo_modulo_int @ L2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se1409905431419307370or_int @ ( divide_divide_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( divide_divide_int @ L2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ).

% or_int_unfold
thf(fact_8001_or_Oidem,axiom,
    ! [A: int] :
      ( ( bit_se1409905431419307370or_int @ A @ A )
      = A ) ).

% or.idem
thf(fact_8002_or_Oidem,axiom,
    ! [A: nat] :
      ( ( bit_se1412395901928357646or_nat @ A @ A )
      = A ) ).

% or.idem
thf(fact_8003_or_Oleft__idem,axiom,
    ! [A: int,B: int] :
      ( ( bit_se1409905431419307370or_int @ A @ ( bit_se1409905431419307370or_int @ A @ B ) )
      = ( bit_se1409905431419307370or_int @ A @ B ) ) ).

% or.left_idem
thf(fact_8004_or_Oleft__idem,axiom,
    ! [A: nat,B: nat] :
      ( ( bit_se1412395901928357646or_nat @ A @ ( bit_se1412395901928357646or_nat @ A @ B ) )
      = ( bit_se1412395901928357646or_nat @ A @ B ) ) ).

% or.left_idem
thf(fact_8005_or_Oright__idem,axiom,
    ! [A: int,B: int] :
      ( ( bit_se1409905431419307370or_int @ ( bit_se1409905431419307370or_int @ A @ B ) @ B )
      = ( bit_se1409905431419307370or_int @ A @ B ) ) ).

% or.right_idem
thf(fact_8006_or_Oright__idem,axiom,
    ! [A: nat,B: nat] :
      ( ( bit_se1412395901928357646or_nat @ ( bit_se1412395901928357646or_nat @ A @ B ) @ B )
      = ( bit_se1412395901928357646or_nat @ A @ B ) ) ).

% or.right_idem
thf(fact_8007_or_Oleft__neutral,axiom,
    ! [A: int] :
      ( ( bit_se1409905431419307370or_int @ zero_zero_int @ A )
      = A ) ).

% or.left_neutral
thf(fact_8008_or_Oleft__neutral,axiom,
    ! [A: nat] :
      ( ( bit_se1412395901928357646or_nat @ zero_zero_nat @ A )
      = A ) ).

% or.left_neutral
thf(fact_8009_or_Oright__neutral,axiom,
    ! [A: int] :
      ( ( bit_se1409905431419307370or_int @ A @ zero_zero_int )
      = A ) ).

% or.right_neutral
thf(fact_8010_or_Oright__neutral,axiom,
    ! [A: nat] :
      ( ( bit_se1412395901928357646or_nat @ A @ zero_zero_nat )
      = A ) ).

% or.right_neutral
thf(fact_8011_bit_Odisj__one__right,axiom,
    ! [X2: code_integer] :
      ( ( bit_se1080825931792720795nteger @ X2 @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
      = ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% bit.disj_one_right
thf(fact_8012_bit_Odisj__one__right,axiom,
    ! [X2: int] :
      ( ( bit_se1409905431419307370or_int @ X2 @ ( uminus_uminus_int @ one_one_int ) )
      = ( uminus_uminus_int @ one_one_int ) ) ).

% bit.disj_one_right
thf(fact_8013_bit_Odisj__one__left,axiom,
    ! [X2: code_integer] :
      ( ( bit_se1080825931792720795nteger @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ X2 )
      = ( uminus1351360451143612070nteger @ one_one_Code_integer ) ) ).

% bit.disj_one_left
thf(fact_8014_bit_Odisj__one__left,axiom,
    ! [X2: int] :
      ( ( bit_se1409905431419307370or_int @ ( uminus_uminus_int @ one_one_int ) @ X2 )
      = ( uminus_uminus_int @ one_one_int ) ) ).

% bit.disj_one_left
thf(fact_8015_arctan__less__zero__iff,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ ( arctan @ X2 ) @ zero_zero_real )
      = ( ord_less_real @ X2 @ zero_zero_real ) ) ).

% arctan_less_zero_iff
thf(fact_8016_zero__less__arctan__iff,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ zero_zero_real @ ( arctan @ X2 ) )
      = ( ord_less_real @ zero_zero_real @ X2 ) ) ).

% zero_less_arctan_iff
thf(fact_8017_zero__le__arctan__iff,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( arctan @ X2 ) )
      = ( ord_less_eq_real @ zero_zero_real @ X2 ) ) ).

% zero_le_arctan_iff
thf(fact_8018_arctan__le__zero__iff,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ ( arctan @ X2 ) @ zero_zero_real )
      = ( ord_less_eq_real @ X2 @ zero_zero_real ) ) ).

% arctan_le_zero_iff
thf(fact_8019_or__nonnegative__int__iff,axiom,
    ! [K: int,L: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( bit_se1409905431419307370or_int @ K @ L ) )
      = ( ( ord_less_eq_int @ zero_zero_int @ K )
        & ( ord_less_eq_int @ zero_zero_int @ L ) ) ) ).

% or_nonnegative_int_iff
thf(fact_8020_or__negative__int__iff,axiom,
    ! [K: int,L: int] :
      ( ( ord_less_int @ ( bit_se1409905431419307370or_int @ K @ L ) @ zero_zero_int )
      = ( ( ord_less_int @ K @ zero_zero_int )
        | ( ord_less_int @ L @ zero_zero_int ) ) ) ).

% or_negative_int_iff
thf(fact_8021_or__numerals_I8_J,axiom,
    ! [X2: num] :
      ( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ ( bit1 @ X2 ) ) @ one_one_int )
      = ( numeral_numeral_int @ ( bit1 @ X2 ) ) ) ).

% or_numerals(8)
thf(fact_8022_or__numerals_I8_J,axiom,
    ! [X2: num] :
      ( ( bit_se1412395901928357646or_nat @ ( numeral_numeral_nat @ ( bit1 @ X2 ) ) @ one_one_nat )
      = ( numeral_numeral_nat @ ( bit1 @ X2 ) ) ) ).

% or_numerals(8)
thf(fact_8023_or__numerals_I2_J,axiom,
    ! [Y2: num] :
      ( ( bit_se1409905431419307370or_int @ one_one_int @ ( numeral_numeral_int @ ( bit1 @ Y2 ) ) )
      = ( numeral_numeral_int @ ( bit1 @ Y2 ) ) ) ).

% or_numerals(2)
thf(fact_8024_or__numerals_I2_J,axiom,
    ! [Y2: num] :
      ( ( bit_se1412395901928357646or_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit1 @ Y2 ) ) )
      = ( numeral_numeral_nat @ ( bit1 @ Y2 ) ) ) ).

% or_numerals(2)
thf(fact_8025_or__numerals_I3_J,axiom,
    ! [X2: num,Y2: num] :
      ( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ ( bit0 @ X2 ) ) @ ( numeral_numeral_int @ ( bit0 @ Y2 ) ) )
      = ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ X2 ) @ ( numeral_numeral_int @ Y2 ) ) ) ) ).

% or_numerals(3)
thf(fact_8026_or__numerals_I3_J,axiom,
    ! [X2: num,Y2: num] :
      ( ( bit_se1412395901928357646or_nat @ ( numeral_numeral_nat @ ( bit0 @ X2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ Y2 ) ) )
      = ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se1412395901928357646or_nat @ ( numeral_numeral_nat @ X2 ) @ ( numeral_numeral_nat @ Y2 ) ) ) ) ).

% or_numerals(3)
thf(fact_8027_or__numerals_I5_J,axiom,
    ! [X2: num] :
      ( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ ( bit0 @ X2 ) ) @ one_one_int )
      = ( numeral_numeral_int @ ( bit1 @ X2 ) ) ) ).

% or_numerals(5)
thf(fact_8028_or__numerals_I5_J,axiom,
    ! [X2: num] :
      ( ( bit_se1412395901928357646or_nat @ ( numeral_numeral_nat @ ( bit0 @ X2 ) ) @ one_one_nat )
      = ( numeral_numeral_nat @ ( bit1 @ X2 ) ) ) ).

% or_numerals(5)
thf(fact_8029_or__numerals_I1_J,axiom,
    ! [Y2: num] :
      ( ( bit_se1409905431419307370or_int @ one_one_int @ ( numeral_numeral_int @ ( bit0 @ Y2 ) ) )
      = ( numeral_numeral_int @ ( bit1 @ Y2 ) ) ) ).

% or_numerals(1)
thf(fact_8030_or__numerals_I1_J,axiom,
    ! [Y2: num] :
      ( ( bit_se1412395901928357646or_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit0 @ Y2 ) ) )
      = ( numeral_numeral_nat @ ( bit1 @ Y2 ) ) ) ).

% or_numerals(1)
thf(fact_8031_or__minus__numerals_I2_J,axiom,
    ! [N: num] :
      ( ( bit_se1409905431419307370or_int @ one_one_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) ) ).

% or_minus_numerals(2)
thf(fact_8032_or__minus__numerals_I6_J,axiom,
    ! [N: num] :
      ( ( bit_se1409905431419307370or_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) @ one_one_int )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) ) ).

% or_minus_numerals(6)
thf(fact_8033_or__numerals_I7_J,axiom,
    ! [X2: num,Y2: num] :
      ( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ ( bit1 @ X2 ) ) @ ( numeral_numeral_int @ ( bit1 @ Y2 ) ) )
      = ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ X2 ) @ ( numeral_numeral_int @ Y2 ) ) ) ) ) ).

% or_numerals(7)
thf(fact_8034_or__numerals_I7_J,axiom,
    ! [X2: num,Y2: num] :
      ( ( bit_se1412395901928357646or_nat @ ( numeral_numeral_nat @ ( bit1 @ X2 ) ) @ ( numeral_numeral_nat @ ( bit1 @ Y2 ) ) )
      = ( plus_plus_nat @ one_one_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se1412395901928357646or_nat @ ( numeral_numeral_nat @ X2 ) @ ( numeral_numeral_nat @ Y2 ) ) ) ) ) ).

% or_numerals(7)
thf(fact_8035_or__numerals_I6_J,axiom,
    ! [X2: num,Y2: num] :
      ( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ ( bit1 @ X2 ) ) @ ( numeral_numeral_int @ ( bit0 @ Y2 ) ) )
      = ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ X2 ) @ ( numeral_numeral_int @ Y2 ) ) ) ) ) ).

% or_numerals(6)
thf(fact_8036_or__numerals_I6_J,axiom,
    ! [X2: num,Y2: num] :
      ( ( bit_se1412395901928357646or_nat @ ( numeral_numeral_nat @ ( bit1 @ X2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ Y2 ) ) )
      = ( plus_plus_nat @ one_one_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se1412395901928357646or_nat @ ( numeral_numeral_nat @ X2 ) @ ( numeral_numeral_nat @ Y2 ) ) ) ) ) ).

% or_numerals(6)
thf(fact_8037_or__numerals_I4_J,axiom,
    ! [X2: num,Y2: num] :
      ( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ ( bit0 @ X2 ) ) @ ( numeral_numeral_int @ ( bit1 @ Y2 ) ) )
      = ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ X2 ) @ ( numeral_numeral_int @ Y2 ) ) ) ) ) ).

% or_numerals(4)
thf(fact_8038_or__numerals_I4_J,axiom,
    ! [X2: num,Y2: num] :
      ( ( bit_se1412395901928357646or_nat @ ( numeral_numeral_nat @ ( bit0 @ X2 ) ) @ ( numeral_numeral_nat @ ( bit1 @ Y2 ) ) )
      = ( plus_plus_nat @ one_one_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se1412395901928357646or_nat @ ( numeral_numeral_nat @ X2 ) @ ( numeral_numeral_nat @ Y2 ) ) ) ) ) ).

% or_numerals(4)
thf(fact_8039_bit_Odisj__zero__right,axiom,
    ! [X2: int] :
      ( ( bit_se1409905431419307370or_int @ X2 @ zero_zero_int )
      = X2 ) ).

% bit.disj_zero_right
thf(fact_8040_or__eq__0__iff,axiom,
    ! [A: int,B: int] :
      ( ( ( bit_se1409905431419307370or_int @ A @ B )
        = zero_zero_int )
      = ( ( A = zero_zero_int )
        & ( B = zero_zero_int ) ) ) ).

% or_eq_0_iff
thf(fact_8041_or__eq__0__iff,axiom,
    ! [A: nat,B: nat] :
      ( ( ( bit_se1412395901928357646or_nat @ A @ B )
        = zero_zero_nat )
      = ( ( A = zero_zero_nat )
        & ( B = zero_zero_nat ) ) ) ).

% or_eq_0_iff
thf(fact_8042_or_Oassoc,axiom,
    ! [A: int,B: int,C: int] :
      ( ( bit_se1409905431419307370or_int @ ( bit_se1409905431419307370or_int @ A @ B ) @ C )
      = ( bit_se1409905431419307370or_int @ A @ ( bit_se1409905431419307370or_int @ B @ C ) ) ) ).

% or.assoc
thf(fact_8043_or_Oassoc,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( bit_se1412395901928357646or_nat @ ( bit_se1412395901928357646or_nat @ A @ B ) @ C )
      = ( bit_se1412395901928357646or_nat @ A @ ( bit_se1412395901928357646or_nat @ B @ C ) ) ) ).

% or.assoc
thf(fact_8044_or_Ocommute,axiom,
    ( bit_se1409905431419307370or_int
    = ( ^ [A3: int,B2: int] : ( bit_se1409905431419307370or_int @ B2 @ A3 ) ) ) ).

% or.commute
thf(fact_8045_or_Ocommute,axiom,
    ( bit_se1412395901928357646or_nat
    = ( ^ [A3: nat,B2: nat] : ( bit_se1412395901928357646or_nat @ B2 @ A3 ) ) ) ).

% or.commute
thf(fact_8046_or_Oleft__commute,axiom,
    ! [B: int,A: int,C: int] :
      ( ( bit_se1409905431419307370or_int @ B @ ( bit_se1409905431419307370or_int @ A @ C ) )
      = ( bit_se1409905431419307370or_int @ A @ ( bit_se1409905431419307370or_int @ B @ C ) ) ) ).

% or.left_commute
thf(fact_8047_or_Oleft__commute,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( bit_se1412395901928357646or_nat @ B @ ( bit_se1412395901928357646or_nat @ A @ C ) )
      = ( bit_se1412395901928357646or_nat @ A @ ( bit_se1412395901928357646or_nat @ B @ C ) ) ) ).

% or.left_commute
thf(fact_8048_of__int__or__eq,axiom,
    ! [K: int,L: int] :
      ( ( ring_1_of_int_int @ ( bit_se1409905431419307370or_int @ K @ L ) )
      = ( bit_se1409905431419307370or_int @ ( ring_1_of_int_int @ K ) @ ( ring_1_of_int_int @ L ) ) ) ).

% of_int_or_eq
thf(fact_8049_bit_Oconj__disj__distrib,axiom,
    ! [X2: int,Y2: int,Z: int] :
      ( ( bit_se725231765392027082nd_int @ X2 @ ( bit_se1409905431419307370or_int @ Y2 @ Z ) )
      = ( bit_se1409905431419307370or_int @ ( bit_se725231765392027082nd_int @ X2 @ Y2 ) @ ( bit_se725231765392027082nd_int @ X2 @ Z ) ) ) ).

% bit.conj_disj_distrib
thf(fact_8050_bit_Odisj__conj__distrib,axiom,
    ! [X2: int,Y2: int,Z: int] :
      ( ( bit_se1409905431419307370or_int @ X2 @ ( bit_se725231765392027082nd_int @ Y2 @ Z ) )
      = ( bit_se725231765392027082nd_int @ ( bit_se1409905431419307370or_int @ X2 @ Y2 ) @ ( bit_se1409905431419307370or_int @ X2 @ Z ) ) ) ).

% bit.disj_conj_distrib
thf(fact_8051_bit_Oconj__disj__distrib2,axiom,
    ! [Y2: int,Z: int,X2: int] :
      ( ( bit_se725231765392027082nd_int @ ( bit_se1409905431419307370or_int @ Y2 @ Z ) @ X2 )
      = ( bit_se1409905431419307370or_int @ ( bit_se725231765392027082nd_int @ Y2 @ X2 ) @ ( bit_se725231765392027082nd_int @ Z @ X2 ) ) ) ).

% bit.conj_disj_distrib2
thf(fact_8052_bit_Odisj__conj__distrib2,axiom,
    ! [Y2: int,Z: int,X2: int] :
      ( ( bit_se1409905431419307370or_int @ ( bit_se725231765392027082nd_int @ Y2 @ Z ) @ X2 )
      = ( bit_se725231765392027082nd_int @ ( bit_se1409905431419307370or_int @ Y2 @ X2 ) @ ( bit_se1409905431419307370or_int @ Z @ X2 ) ) ) ).

% bit.disj_conj_distrib2
thf(fact_8053_arctan__monotone,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_real @ X2 @ Y2 )
     => ( ord_less_real @ ( arctan @ X2 ) @ ( arctan @ Y2 ) ) ) ).

% arctan_monotone
thf(fact_8054_arctan__less__iff,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_real @ ( arctan @ X2 ) @ ( arctan @ Y2 ) )
      = ( ord_less_real @ X2 @ Y2 ) ) ).

% arctan_less_iff
thf(fact_8055_arctan__le__iff,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_eq_real @ ( arctan @ X2 ) @ ( arctan @ Y2 ) )
      = ( ord_less_eq_real @ X2 @ Y2 ) ) ).

% arctan_le_iff
thf(fact_8056_arctan__monotone_H,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_eq_real @ X2 @ Y2 )
     => ( ord_less_eq_real @ ( arctan @ X2 ) @ ( arctan @ Y2 ) ) ) ).

% arctan_monotone'
thf(fact_8057_OR__lower,axiom,
    ! [X2: int,Y2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X2 )
     => ( ( ord_less_eq_int @ zero_zero_int @ Y2 )
       => ( ord_less_eq_int @ zero_zero_int @ ( bit_se1409905431419307370or_int @ X2 @ Y2 ) ) ) ) ).

% OR_lower
thf(fact_8058_or__greater__eq,axiom,
    ! [L: int,K: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ L )
     => ( ord_less_eq_int @ K @ ( bit_se1409905431419307370or_int @ K @ L ) ) ) ).

% or_greater_eq
thf(fact_8059_plus__and__or,axiom,
    ! [X2: int,Y2: int] :
      ( ( plus_plus_int @ ( bit_se725231765392027082nd_int @ X2 @ Y2 ) @ ( bit_se1409905431419307370or_int @ X2 @ Y2 ) )
      = ( plus_plus_int @ X2 @ Y2 ) ) ).

% plus_and_or
thf(fact_8060_even__or__iff,axiom,
    ! [A: code_integer,B: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_se1080825931792720795nteger @ A @ B ) )
      = ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A )
        & ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ B ) ) ) ).

% even_or_iff
thf(fact_8061_even__or__iff,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se1409905431419307370or_int @ A @ B ) )
      = ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
        & ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) ) ).

% even_or_iff
thf(fact_8062_even__or__iff,axiom,
    ! [A: nat,B: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se1412395901928357646or_nat @ A @ B ) )
      = ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
        & ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) ) ).

% even_or_iff
thf(fact_8063_bit_Ocomplement__unique,axiom,
    ! [A: code_integer,X2: code_integer,Y2: code_integer] :
      ( ( ( bit_se3949692690581998587nteger @ A @ X2 )
        = zero_z3403309356797280102nteger )
     => ( ( ( bit_se1080825931792720795nteger @ A @ X2 )
          = ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
       => ( ( ( bit_se3949692690581998587nteger @ A @ Y2 )
            = zero_z3403309356797280102nteger )
         => ( ( ( bit_se1080825931792720795nteger @ A @ Y2 )
              = ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
           => ( X2 = Y2 ) ) ) ) ) ).

% bit.complement_unique
thf(fact_8064_bit_Ocomplement__unique,axiom,
    ! [A: int,X2: int,Y2: int] :
      ( ( ( bit_se725231765392027082nd_int @ A @ X2 )
        = zero_zero_int )
     => ( ( ( bit_se1409905431419307370or_int @ A @ X2 )
          = ( uminus_uminus_int @ one_one_int ) )
       => ( ( ( bit_se725231765392027082nd_int @ A @ Y2 )
            = zero_zero_int )
         => ( ( ( bit_se1409905431419307370or_int @ A @ Y2 )
              = ( uminus_uminus_int @ one_one_int ) )
           => ( X2 = Y2 ) ) ) ) ) ).

% bit.complement_unique
thf(fact_8065_fold__atLeastAtMost__nat_Oelims,axiom,
    ! [X2: nat > nat > nat,Xa2: nat,Xb: nat,Xc: nat,Y2: nat] :
      ( ( ( set_fo2584398358068434914at_nat @ X2 @ Xa2 @ Xb @ Xc )
        = Y2 )
     => ( ( ( ord_less_nat @ Xb @ Xa2 )
         => ( Y2 = Xc ) )
        & ( ~ ( ord_less_nat @ Xb @ Xa2 )
         => ( Y2
            = ( set_fo2584398358068434914at_nat @ X2 @ ( plus_plus_nat @ Xa2 @ one_one_nat ) @ Xb @ ( X2 @ Xa2 @ Xc ) ) ) ) ) ) ).

% fold_atLeastAtMost_nat.elims
thf(fact_8066_fold__atLeastAtMost__nat_Osimps,axiom,
    ( set_fo2584398358068434914at_nat
    = ( ^ [F3: nat > nat > nat,A3: nat,B2: nat,Acc3: nat] : ( if_nat @ ( ord_less_nat @ B2 @ A3 ) @ Acc3 @ ( set_fo2584398358068434914at_nat @ F3 @ ( plus_plus_nat @ A3 @ one_one_nat ) @ B2 @ ( F3 @ A3 @ Acc3 ) ) ) ) ) ).

% fold_atLeastAtMost_nat.simps
thf(fact_8067_one__or__eq,axiom,
    ! [A: code_integer] :
      ( ( bit_se1080825931792720795nteger @ one_one_Code_integer @ A )
      = ( plus_p5714425477246183910nteger @ A @ ( zero_n356916108424825756nteger @ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) ) ) ) ).

% one_or_eq
thf(fact_8068_one__or__eq,axiom,
    ! [A: int] :
      ( ( bit_se1409905431419307370or_int @ one_one_int @ A )
      = ( plus_plus_int @ A @ ( zero_n2684676970156552555ol_int @ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) ) ) ).

% one_or_eq
thf(fact_8069_one__or__eq,axiom,
    ! [A: nat] :
      ( ( bit_se1412395901928357646or_nat @ one_one_nat @ A )
      = ( plus_plus_nat @ A @ ( zero_n2687167440665602831ol_nat @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) ) ) ) ).

% one_or_eq
thf(fact_8070_or__one__eq,axiom,
    ! [A: code_integer] :
      ( ( bit_se1080825931792720795nteger @ A @ one_one_Code_integer )
      = ( plus_p5714425477246183910nteger @ A @ ( zero_n356916108424825756nteger @ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) ) ) ) ).

% or_one_eq
thf(fact_8071_or__one__eq,axiom,
    ! [A: int] :
      ( ( bit_se1409905431419307370or_int @ A @ one_one_int )
      = ( plus_plus_int @ A @ ( zero_n2684676970156552555ol_int @ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) ) ) ).

% or_one_eq
thf(fact_8072_or__one__eq,axiom,
    ! [A: nat] :
      ( ( bit_se1412395901928357646or_nat @ A @ one_one_nat )
      = ( plus_plus_nat @ A @ ( zero_n2687167440665602831ol_nat @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) ) ) ) ).

% or_one_eq
thf(fact_8073_OR__upper,axiom,
    ! [X2: int,N: nat,Y2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X2 )
     => ( ( ord_less_int @ X2 @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
       => ( ( ord_less_int @ Y2 @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
         => ( ord_less_int @ ( bit_se1409905431419307370or_int @ X2 @ Y2 ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ) ) ).

% OR_upper
thf(fact_8074_finite__psubset__def,axiom,
    ( finite_psubset_nat
    = ( collec6662362479098859352et_nat
      @ ( produc6247414631856714078_nat_o
        @ ^ [A4: set_nat,B4: set_nat] :
            ( ( ord_less_set_nat @ A4 @ B4 )
            & ( finite_finite_nat @ B4 ) ) ) ) ) ).

% finite_psubset_def
thf(fact_8075_finite__psubset__def,axiom,
    ( finite_psubset_int
    = ( collec957716948307931664et_int
      @ ( produc4109468873575309990_int_o
        @ ^ [A4: set_int,B4: set_int] :
            ( ( ord_less_set_int @ A4 @ B4 )
            & ( finite_finite_int @ B4 ) ) ) ) ) ).

% finite_psubset_def
thf(fact_8076_finite__psubset__def,axiom,
    ( finite8643634255014194347omplex
    = ( collec5108298041176329748omplex
      @ ( produc3914248068834153634plex_o
        @ ^ [A4: set_complex,B4: set_complex] :
            ( ( ord_less_set_complex @ A4 @ B4 )
            & ( finite3207457112153483333omplex @ B4 ) ) ) ) ) ).

% finite_psubset_def
thf(fact_8077_or__int__rec,axiom,
    ( bit_se1409905431419307370or_int
    = ( ^ [K2: int,L2: int] :
          ( plus_plus_int
          @ ( zero_n2684676970156552555ol_int
            @ ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K2 )
              | ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ L2 ) ) )
          @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se1409905431419307370or_int @ ( divide_divide_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( divide_divide_int @ L2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% or_int_rec
thf(fact_8078_arctan__add,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ X2 ) @ one_one_real )
     => ( ( ord_less_real @ ( abs_abs_real @ Y2 ) @ one_one_real )
       => ( ( plus_plus_real @ ( arctan @ X2 ) @ ( arctan @ Y2 ) )
          = ( arctan @ ( divide_divide_real @ ( plus_plus_real @ X2 @ Y2 ) @ ( minus_minus_real @ one_one_real @ ( times_times_real @ X2 @ Y2 ) ) ) ) ) ) ) ).

% arctan_add
thf(fact_8079_or__minus__numerals_I5_J,axiom,
    ! [N: num] :
      ( ( bit_se1409905431419307370or_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) @ one_one_int )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit_or_not_num_neg @ one @ ( bitM @ N ) ) ) ) ) ).

% or_minus_numerals(5)
thf(fact_8080_or__minus__numerals_I1_J,axiom,
    ! [N: num] :
      ( ( bit_se1409905431419307370or_int @ one_one_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit_or_not_num_neg @ one @ ( bitM @ N ) ) ) ) ) ).

% or_minus_numerals(1)
thf(fact_8081_VEBT__internal_OminNull_Opelims_I1_J,axiom,
    ! [X2: vEBT_VEBT,Y2: $o] :
      ( ( ( vEBT_VEBT_minNull @ X2 )
        = Y2 )
     => ( ( accp_VEBT_VEBT @ vEBT_V6963167321098673237ll_rel @ X2 )
       => ( ( ( X2
              = ( vEBT_Leaf @ $false @ $false ) )
           => ( Y2
             => ~ ( accp_VEBT_VEBT @ vEBT_V6963167321098673237ll_rel @ ( vEBT_Leaf @ $false @ $false ) ) ) )
         => ( ! [Uv2: $o] :
                ( ( X2
                  = ( vEBT_Leaf @ $true @ Uv2 ) )
               => ( ~ Y2
                 => ~ ( accp_VEBT_VEBT @ vEBT_V6963167321098673237ll_rel @ ( vEBT_Leaf @ $true @ Uv2 ) ) ) )
           => ( ! [Uu2: $o] :
                  ( ( X2
                    = ( vEBT_Leaf @ Uu2 @ $true ) )
                 => ( ~ Y2
                   => ~ ( accp_VEBT_VEBT @ vEBT_V6963167321098673237ll_rel @ ( vEBT_Leaf @ Uu2 @ $true ) ) ) )
             => ( ! [Uw2: nat,Ux2: list_VEBT_VEBT,Uy2: vEBT_VEBT] :
                    ( ( X2
                      = ( vEBT_Node @ none_P5556105721700978146at_nat @ Uw2 @ Ux2 @ Uy2 ) )
                   => ( Y2
                     => ~ ( accp_VEBT_VEBT @ vEBT_V6963167321098673237ll_rel @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Uw2 @ Ux2 @ Uy2 ) ) ) )
               => ~ ! [Uz2: product_prod_nat_nat,Va2: nat,Vb2: list_VEBT_VEBT,Vc2: vEBT_VEBT] :
                      ( ( X2
                        = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ Uz2 ) @ Va2 @ Vb2 @ Vc2 ) )
                     => ( ~ Y2
                       => ~ ( accp_VEBT_VEBT @ vEBT_V6963167321098673237ll_rel @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ Uz2 ) @ Va2 @ Vb2 @ Vc2 ) ) ) ) ) ) ) ) ) ) ).

% VEBT_internal.minNull.pelims(1)
thf(fact_8082_set__decode__0,axiom,
    ! [X2: nat] :
      ( ( member_nat @ zero_zero_nat @ ( nat_set_decode @ X2 ) )
      = ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ X2 ) ) ) ).

% set_decode_0
thf(fact_8083_set__decode__Suc,axiom,
    ! [N: nat,X2: nat] :
      ( ( member_nat @ ( suc @ N ) @ ( nat_set_decode @ X2 ) )
      = ( member_nat @ N @ ( nat_set_decode @ ( divide_divide_nat @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% set_decode_Suc
thf(fact_8084_or__nat__numerals_I4_J,axiom,
    ! [X2: num] :
      ( ( bit_se1412395901928357646or_nat @ ( numeral_numeral_nat @ ( bit1 @ X2 ) ) @ ( suc @ zero_zero_nat ) )
      = ( numeral_numeral_nat @ ( bit1 @ X2 ) ) ) ).

% or_nat_numerals(4)
thf(fact_8085_or__nat__numerals_I2_J,axiom,
    ! [Y2: num] :
      ( ( bit_se1412395901928357646or_nat @ ( suc @ zero_zero_nat ) @ ( numeral_numeral_nat @ ( bit1 @ Y2 ) ) )
      = ( numeral_numeral_nat @ ( bit1 @ Y2 ) ) ) ).

% or_nat_numerals(2)
thf(fact_8086_or__nat__numerals_I1_J,axiom,
    ! [Y2: num] :
      ( ( bit_se1412395901928357646or_nat @ ( suc @ zero_zero_nat ) @ ( numeral_numeral_nat @ ( bit0 @ Y2 ) ) )
      = ( numeral_numeral_nat @ ( bit1 @ Y2 ) ) ) ).

% or_nat_numerals(1)
thf(fact_8087_or__nat__numerals_I3_J,axiom,
    ! [X2: num] :
      ( ( bit_se1412395901928357646or_nat @ ( numeral_numeral_nat @ ( bit0 @ X2 ) ) @ ( suc @ zero_zero_nat ) )
      = ( numeral_numeral_nat @ ( bit1 @ X2 ) ) ) ).

% or_nat_numerals(3)
thf(fact_8088_or__minus__numerals_I8_J,axiom,
    ! [N: num,M: num] :
      ( ( bit_se1409905431419307370or_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) @ ( numeral_numeral_int @ M ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit_or_not_num_neg @ M @ ( bit0 @ N ) ) ) ) ) ).

% or_minus_numerals(8)
thf(fact_8089_or__minus__numerals_I4_J,axiom,
    ! [M: num,N: num] :
      ( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit_or_not_num_neg @ M @ ( bit0 @ N ) ) ) ) ) ).

% or_minus_numerals(4)
thf(fact_8090_or__minus__numerals_I7_J,axiom,
    ! [N: num,M: num] :
      ( ( bit_se1409905431419307370or_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) @ ( numeral_numeral_int @ M ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit_or_not_num_neg @ M @ ( bitM @ N ) ) ) ) ) ).

% or_minus_numerals(7)
thf(fact_8091_or__minus__numerals_I3_J,axiom,
    ! [M: num,N: num] :
      ( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit_or_not_num_neg @ M @ ( bitM @ N ) ) ) ) ) ).

% or_minus_numerals(3)
thf(fact_8092_or__not__num__neg_Osimps_I1_J,axiom,
    ( ( bit_or_not_num_neg @ one @ one )
    = one ) ).

% or_not_num_neg.simps(1)
thf(fact_8093_or__not__num__neg_Osimps_I4_J,axiom,
    ! [N: num] :
      ( ( bit_or_not_num_neg @ ( bit0 @ N ) @ one )
      = ( bit0 @ one ) ) ).

% or_not_num_neg.simps(4)
thf(fact_8094_or__not__num__neg_Osimps_I6_J,axiom,
    ! [N: num,M: num] :
      ( ( bit_or_not_num_neg @ ( bit0 @ N ) @ ( bit1 @ M ) )
      = ( bit0 @ ( bit_or_not_num_neg @ N @ M ) ) ) ).

% or_not_num_neg.simps(6)
thf(fact_8095_or__not__num__neg_Osimps_I7_J,axiom,
    ! [N: num] :
      ( ( bit_or_not_num_neg @ ( bit1 @ N ) @ one )
      = one ) ).

% or_not_num_neg.simps(7)
thf(fact_8096_or__not__num__neg_Osimps_I3_J,axiom,
    ! [M: num] :
      ( ( bit_or_not_num_neg @ one @ ( bit1 @ M ) )
      = ( bit1 @ M ) ) ).

% or_not_num_neg.simps(3)
thf(fact_8097_or__not__num__neg_Osimps_I5_J,axiom,
    ! [N: num,M: num] :
      ( ( bit_or_not_num_neg @ ( bit0 @ N ) @ ( bit0 @ M ) )
      = ( bitM @ ( bit_or_not_num_neg @ N @ M ) ) ) ).

% or_not_num_neg.simps(5)
thf(fact_8098_or__not__num__neg_Osimps_I9_J,axiom,
    ! [N: num,M: num] :
      ( ( bit_or_not_num_neg @ ( bit1 @ N ) @ ( bit1 @ M ) )
      = ( bitM @ ( bit_or_not_num_neg @ N @ M ) ) ) ).

% or_not_num_neg.simps(9)
thf(fact_8099_or__not__num__neg_Osimps_I2_J,axiom,
    ! [M: num] :
      ( ( bit_or_not_num_neg @ one @ ( bit0 @ M ) )
      = ( bit1 @ M ) ) ).

% or_not_num_neg.simps(2)
thf(fact_8100_or__not__num__neg_Osimps_I8_J,axiom,
    ! [N: num,M: num] :
      ( ( bit_or_not_num_neg @ ( bit1 @ N ) @ ( bit0 @ M ) )
      = ( bitM @ ( bit_or_not_num_neg @ N @ M ) ) ) ).

% or_not_num_neg.simps(8)
thf(fact_8101_subset__decode__imp__le,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_set_nat @ ( nat_set_decode @ M ) @ ( nat_set_decode @ N ) )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% subset_decode_imp_le
thf(fact_8102_or__not__num__neg_Oelims,axiom,
    ! [X2: num,Xa2: num,Y2: num] :
      ( ( ( bit_or_not_num_neg @ X2 @ Xa2 )
        = Y2 )
     => ( ( ( X2 = one )
         => ( ( Xa2 = one )
           => ( Y2 != one ) ) )
       => ( ( ( X2 = one )
           => ! [M4: num] :
                ( ( Xa2
                  = ( bit0 @ M4 ) )
               => ( Y2
                 != ( bit1 @ M4 ) ) ) )
         => ( ( ( X2 = one )
             => ! [M4: num] :
                  ( ( Xa2
                    = ( bit1 @ M4 ) )
                 => ( Y2
                   != ( bit1 @ M4 ) ) ) )
           => ( ( ? [N3: num] :
                    ( X2
                    = ( bit0 @ N3 ) )
               => ( ( Xa2 = one )
                 => ( Y2
                   != ( bit0 @ one ) ) ) )
             => ( ! [N3: num] :
                    ( ( X2
                      = ( bit0 @ N3 ) )
                   => ! [M4: num] :
                        ( ( Xa2
                          = ( bit0 @ M4 ) )
                       => ( Y2
                         != ( bitM @ ( bit_or_not_num_neg @ N3 @ M4 ) ) ) ) )
               => ( ! [N3: num] :
                      ( ( X2
                        = ( bit0 @ N3 ) )
                     => ! [M4: num] :
                          ( ( Xa2
                            = ( bit1 @ M4 ) )
                         => ( Y2
                           != ( bit0 @ ( bit_or_not_num_neg @ N3 @ M4 ) ) ) ) )
                 => ( ( ? [N3: num] :
                          ( X2
                          = ( bit1 @ N3 ) )
                     => ( ( Xa2 = one )
                       => ( Y2 != one ) ) )
                   => ( ! [N3: num] :
                          ( ( X2
                            = ( bit1 @ N3 ) )
                         => ! [M4: num] :
                              ( ( Xa2
                                = ( bit0 @ M4 ) )
                             => ( Y2
                               != ( bitM @ ( bit_or_not_num_neg @ N3 @ M4 ) ) ) ) )
                     => ~ ! [N3: num] :
                            ( ( X2
                              = ( bit1 @ N3 ) )
                           => ! [M4: num] :
                                ( ( Xa2
                                  = ( bit1 @ M4 ) )
                               => ( Y2
                                 != ( bitM @ ( bit_or_not_num_neg @ N3 @ M4 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).

% or_not_num_neg.elims
thf(fact_8103_or__Suc__0__eq,axiom,
    ! [N: nat] :
      ( ( bit_se1412395901928357646or_nat @ N @ ( suc @ zero_zero_nat ) )
      = ( plus_plus_nat @ N @ ( zero_n2687167440665602831ol_nat @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ) ).

% or_Suc_0_eq
thf(fact_8104_Suc__0__or__eq,axiom,
    ! [N: nat] :
      ( ( bit_se1412395901928357646or_nat @ ( suc @ zero_zero_nat ) @ N )
      = ( plus_plus_nat @ N @ ( zero_n2687167440665602831ol_nat @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ) ).

% Suc_0_or_eq
thf(fact_8105_or__nat__rec,axiom,
    ( bit_se1412395901928357646or_nat
    = ( ^ [M3: nat,N2: nat] :
          ( plus_plus_nat
          @ ( zero_n2687167440665602831ol_nat
            @ ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M3 )
              | ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) )
          @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se1412395901928357646or_nat @ ( divide_divide_nat @ M3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% or_nat_rec
thf(fact_8106_or__nat__unfold,axiom,
    ( bit_se1412395901928357646or_nat
    = ( ^ [M3: nat,N2: nat] : ( if_nat @ ( M3 = zero_zero_nat ) @ N2 @ ( if_nat @ ( N2 = zero_zero_nat ) @ M3 @ ( plus_plus_nat @ ( ord_max_nat @ ( modulo_modulo_nat @ M3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( modulo_modulo_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se1412395901928357646or_nat @ ( divide_divide_nat @ M3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ).

% or_nat_unfold
thf(fact_8107_VEBT__internal_OminNull_Opelims_I3_J,axiom,
    ! [X2: vEBT_VEBT] :
      ( ~ ( vEBT_VEBT_minNull @ X2 )
     => ( ( accp_VEBT_VEBT @ vEBT_V6963167321098673237ll_rel @ X2 )
       => ( ! [Uv2: $o] :
              ( ( X2
                = ( vEBT_Leaf @ $true @ Uv2 ) )
             => ~ ( accp_VEBT_VEBT @ vEBT_V6963167321098673237ll_rel @ ( vEBT_Leaf @ $true @ Uv2 ) ) )
         => ( ! [Uu2: $o] :
                ( ( X2
                  = ( vEBT_Leaf @ Uu2 @ $true ) )
               => ~ ( accp_VEBT_VEBT @ vEBT_V6963167321098673237ll_rel @ ( vEBT_Leaf @ Uu2 @ $true ) ) )
           => ~ ! [Uz2: product_prod_nat_nat,Va2: nat,Vb2: list_VEBT_VEBT,Vc2: vEBT_VEBT] :
                  ( ( X2
                    = ( vEBT_Node @ ( some_P7363390416028606310at_nat @ Uz2 ) @ Va2 @ Vb2 @ Vc2 ) )
                 => ~ ( accp_VEBT_VEBT @ vEBT_V6963167321098673237ll_rel @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ Uz2 ) @ Va2 @ Vb2 @ Vc2 ) ) ) ) ) ) ) ).

% VEBT_internal.minNull.pelims(3)
thf(fact_8108_VEBT__internal_OminNull_Opelims_I2_J,axiom,
    ! [X2: vEBT_VEBT] :
      ( ( vEBT_VEBT_minNull @ X2 )
     => ( ( accp_VEBT_VEBT @ vEBT_V6963167321098673237ll_rel @ X2 )
       => ( ( ( X2
              = ( vEBT_Leaf @ $false @ $false ) )
           => ~ ( accp_VEBT_VEBT @ vEBT_V6963167321098673237ll_rel @ ( vEBT_Leaf @ $false @ $false ) ) )
         => ~ ! [Uw2: nat,Ux2: list_VEBT_VEBT,Uy2: vEBT_VEBT] :
                ( ( X2
                  = ( vEBT_Node @ none_P5556105721700978146at_nat @ Uw2 @ Ux2 @ Uy2 ) )
               => ~ ( accp_VEBT_VEBT @ vEBT_V6963167321098673237ll_rel @ ( vEBT_Node @ none_P5556105721700978146at_nat @ Uw2 @ Ux2 @ Uy2 ) ) ) ) ) ) ).

% VEBT_internal.minNull.pelims(2)
thf(fact_8109_set__decode__plus__power__2,axiom,
    ! [N: nat,Z: nat] :
      ( ~ ( member_nat @ N @ ( nat_set_decode @ Z ) )
     => ( ( nat_set_decode @ ( plus_plus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ Z ) )
        = ( insert_nat @ N @ ( nat_set_decode @ Z ) ) ) ) ).

% set_decode_plus_power_2
thf(fact_8110_set__decode__def,axiom,
    ( nat_set_decode
    = ( ^ [X: nat] :
          ( collect_nat
          @ ^ [N2: nat] :
              ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) ) ) ) ).

% set_decode_def
thf(fact_8111_or__not__num__neg_Opelims,axiom,
    ! [X2: num,Xa2: num,Y2: num] :
      ( ( ( bit_or_not_num_neg @ X2 @ Xa2 )
        = Y2 )
     => ( ( accp_P3113834385874906142um_num @ bit_or3848514188828904588eg_rel @ ( product_Pair_num_num @ X2 @ Xa2 ) )
       => ( ( ( X2 = one )
           => ( ( Xa2 = one )
             => ( ( Y2 = one )
               => ~ ( accp_P3113834385874906142um_num @ bit_or3848514188828904588eg_rel @ ( product_Pair_num_num @ one @ one ) ) ) ) )
         => ( ( ( X2 = one )
             => ! [M4: num] :
                  ( ( Xa2
                    = ( bit0 @ M4 ) )
                 => ( ( Y2
                      = ( bit1 @ M4 ) )
                   => ~ ( accp_P3113834385874906142um_num @ bit_or3848514188828904588eg_rel @ ( product_Pair_num_num @ one @ ( bit0 @ M4 ) ) ) ) ) )
           => ( ( ( X2 = one )
               => ! [M4: num] :
                    ( ( Xa2
                      = ( bit1 @ M4 ) )
                   => ( ( Y2
                        = ( bit1 @ M4 ) )
                     => ~ ( accp_P3113834385874906142um_num @ bit_or3848514188828904588eg_rel @ ( product_Pair_num_num @ one @ ( bit1 @ M4 ) ) ) ) ) )
             => ( ! [N3: num] :
                    ( ( X2
                      = ( bit0 @ N3 ) )
                   => ( ( Xa2 = one )
                     => ( ( Y2
                          = ( bit0 @ one ) )
                       => ~ ( accp_P3113834385874906142um_num @ bit_or3848514188828904588eg_rel @ ( product_Pair_num_num @ ( bit0 @ N3 ) @ one ) ) ) ) )
               => ( ! [N3: num] :
                      ( ( X2
                        = ( bit0 @ N3 ) )
                     => ! [M4: num] :
                          ( ( Xa2
                            = ( bit0 @ M4 ) )
                         => ( ( Y2
                              = ( bitM @ ( bit_or_not_num_neg @ N3 @ M4 ) ) )
                           => ~ ( accp_P3113834385874906142um_num @ bit_or3848514188828904588eg_rel @ ( product_Pair_num_num @ ( bit0 @ N3 ) @ ( bit0 @ M4 ) ) ) ) ) )
                 => ( ! [N3: num] :
                        ( ( X2
                          = ( bit0 @ N3 ) )
                       => ! [M4: num] :
                            ( ( Xa2
                              = ( bit1 @ M4 ) )
                           => ( ( Y2
                                = ( bit0 @ ( bit_or_not_num_neg @ N3 @ M4 ) ) )
                             => ~ ( accp_P3113834385874906142um_num @ bit_or3848514188828904588eg_rel @ ( product_Pair_num_num @ ( bit0 @ N3 ) @ ( bit1 @ M4 ) ) ) ) ) )
                   => ( ! [N3: num] :
                          ( ( X2
                            = ( bit1 @ N3 ) )
                         => ( ( Xa2 = one )
                           => ( ( Y2 = one )
                             => ~ ( accp_P3113834385874906142um_num @ bit_or3848514188828904588eg_rel @ ( product_Pair_num_num @ ( bit1 @ N3 ) @ one ) ) ) ) )
                     => ( ! [N3: num] :
                            ( ( X2
                              = ( bit1 @ N3 ) )
                           => ! [M4: num] :
                                ( ( Xa2
                                  = ( bit0 @ M4 ) )
                               => ( ( Y2
                                    = ( bitM @ ( bit_or_not_num_neg @ N3 @ M4 ) ) )
                                 => ~ ( accp_P3113834385874906142um_num @ bit_or3848514188828904588eg_rel @ ( product_Pair_num_num @ ( bit1 @ N3 ) @ ( bit0 @ M4 ) ) ) ) ) )
                       => ~ ! [N3: num] :
                              ( ( X2
                                = ( bit1 @ N3 ) )
                             => ! [M4: num] :
                                  ( ( Xa2
                                    = ( bit1 @ M4 ) )
                                 => ( ( Y2
                                      = ( bitM @ ( bit_or_not_num_neg @ N3 @ M4 ) ) )
                                   => ~ ( accp_P3113834385874906142um_num @ bit_or3848514188828904588eg_rel @ ( product_Pair_num_num @ ( bit1 @ N3 ) @ ( bit1 @ M4 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).

% or_not_num_neg.pelims
thf(fact_8112_add__scale__eq__noteq,axiom,
    ! [R2: complex,A: complex,B: complex,C: complex,D: complex] :
      ( ( R2 != zero_zero_complex )
     => ( ( ( A = B )
          & ( C != D ) )
       => ( ( plus_plus_complex @ A @ ( times_times_complex @ R2 @ C ) )
         != ( plus_plus_complex @ B @ ( times_times_complex @ R2 @ D ) ) ) ) ) ).

% add_scale_eq_noteq
thf(fact_8113_add__scale__eq__noteq,axiom,
    ! [R2: real,A: real,B: real,C: real,D: real] :
      ( ( R2 != zero_zero_real )
     => ( ( ( A = B )
          & ( C != D ) )
       => ( ( plus_plus_real @ A @ ( times_times_real @ R2 @ C ) )
         != ( plus_plus_real @ B @ ( times_times_real @ R2 @ D ) ) ) ) ) ).

% add_scale_eq_noteq
thf(fact_8114_add__scale__eq__noteq,axiom,
    ! [R2: rat,A: rat,B: rat,C: rat,D: rat] :
      ( ( R2 != zero_zero_rat )
     => ( ( ( A = B )
          & ( C != D ) )
       => ( ( plus_plus_rat @ A @ ( times_times_rat @ R2 @ C ) )
         != ( plus_plus_rat @ B @ ( times_times_rat @ R2 @ D ) ) ) ) ) ).

% add_scale_eq_noteq
thf(fact_8115_add__scale__eq__noteq,axiom,
    ! [R2: nat,A: nat,B: nat,C: nat,D: nat] :
      ( ( R2 != zero_zero_nat )
     => ( ( ( A = B )
          & ( C != D ) )
       => ( ( plus_plus_nat @ A @ ( times_times_nat @ R2 @ C ) )
         != ( plus_plus_nat @ B @ ( times_times_nat @ R2 @ D ) ) ) ) ) ).

% add_scale_eq_noteq
thf(fact_8116_add__scale__eq__noteq,axiom,
    ! [R2: int,A: int,B: int,C: int,D: int] :
      ( ( R2 != zero_zero_int )
     => ( ( ( A = B )
          & ( C != D ) )
       => ( ( plus_plus_int @ A @ ( times_times_int @ R2 @ C ) )
         != ( plus_plus_int @ B @ ( times_times_int @ R2 @ D ) ) ) ) ) ).

% add_scale_eq_noteq
thf(fact_8117_Sum__Icc__int,axiom,
    ! [M: int,N: int] :
      ( ( ord_less_eq_int @ M @ N )
     => ( ( groups4538972089207619220nt_int
          @ ^ [X: int] : X
          @ ( set_or1266510415728281911st_int @ M @ N ) )
        = ( divide_divide_int @ ( minus_minus_int @ ( times_times_int @ N @ ( plus_plus_int @ N @ one_one_int ) ) @ ( times_times_int @ M @ ( minus_minus_int @ M @ one_one_int ) ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ).

% Sum_Icc_int
thf(fact_8118_mask__numeral,axiom,
    ! [N: num] :
      ( ( bit_se2002935070580805687sk_nat @ ( numeral_numeral_nat @ N ) )
      = ( plus_plus_nat @ one_one_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se2002935070580805687sk_nat @ ( pred_numeral @ N ) ) ) ) ) ).

% mask_numeral
thf(fact_8119_mask__numeral,axiom,
    ! [N: num] :
      ( ( bit_se2000444600071755411sk_int @ ( numeral_numeral_nat @ N ) )
      = ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se2000444600071755411sk_int @ ( pred_numeral @ N ) ) ) ) ) ).

% mask_numeral
thf(fact_8120_num_Osize__gen_I3_J,axiom,
    ! [X33: num] :
      ( ( size_num @ ( bit1 @ X33 ) )
      = ( plus_plus_nat @ ( size_num @ X33 ) @ ( suc @ zero_zero_nat ) ) ) ).

% num.size_gen(3)
thf(fact_8121_mask__nat__positive__iff,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( bit_se2002935070580805687sk_nat @ N ) )
      = ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% mask_nat_positive_iff
thf(fact_8122_sum_Oneutral__const,axiom,
    ! [A2: set_int] :
      ( ( groups4538972089207619220nt_int
        @ ^ [Uu3: int] : zero_zero_int
        @ A2 )
      = zero_zero_int ) ).

% sum.neutral_const
thf(fact_8123_sum_Oneutral__const,axiom,
    ! [A2: set_complex] :
      ( ( groups7754918857620584856omplex
        @ ^ [Uu3: complex] : zero_zero_complex
        @ A2 )
      = zero_zero_complex ) ).

% sum.neutral_const
thf(fact_8124_sum_Oneutral__const,axiom,
    ! [A2: set_nat] :
      ( ( groups3542108847815614940at_nat
        @ ^ [Uu3: nat] : zero_zero_nat
        @ A2 )
      = zero_zero_nat ) ).

% sum.neutral_const
thf(fact_8125_sum_Oneutral__const,axiom,
    ! [A2: set_nat] :
      ( ( groups6591440286371151544t_real
        @ ^ [Uu3: nat] : zero_zero_real
        @ A2 )
      = zero_zero_real ) ).

% sum.neutral_const
thf(fact_8126_abs__sum__abs,axiom,
    ! [F: int > int,A2: set_int] :
      ( ( abs_abs_int
        @ ( groups4538972089207619220nt_int
          @ ^ [A3: int] : ( abs_abs_int @ ( F @ A3 ) )
          @ A2 ) )
      = ( groups4538972089207619220nt_int
        @ ^ [A3: int] : ( abs_abs_int @ ( F @ A3 ) )
        @ A2 ) ) ).

% abs_sum_abs
thf(fact_8127_abs__sum__abs,axiom,
    ! [F: nat > real,A2: set_nat] :
      ( ( abs_abs_real
        @ ( groups6591440286371151544t_real
          @ ^ [A3: nat] : ( abs_abs_real @ ( F @ A3 ) )
          @ A2 ) )
      = ( groups6591440286371151544t_real
        @ ^ [A3: nat] : ( abs_abs_real @ ( F @ A3 ) )
        @ A2 ) ) ).

% abs_sum_abs
thf(fact_8128_mask__0,axiom,
    ( ( bit_se2002935070580805687sk_nat @ zero_zero_nat )
    = zero_zero_nat ) ).

% mask_0
thf(fact_8129_mask__0,axiom,
    ( ( bit_se2000444600071755411sk_int @ zero_zero_nat )
    = zero_zero_int ) ).

% mask_0
thf(fact_8130_mask__eq__0__iff,axiom,
    ! [N: nat] :
      ( ( ( bit_se2002935070580805687sk_nat @ N )
        = zero_zero_nat )
      = ( N = zero_zero_nat ) ) ).

% mask_eq_0_iff
thf(fact_8131_mask__eq__0__iff,axiom,
    ! [N: nat] :
      ( ( ( bit_se2000444600071755411sk_int @ N )
        = zero_zero_int )
      = ( N = zero_zero_nat ) ) ).

% mask_eq_0_iff
thf(fact_8132_sum_Odelta,axiom,
    ! [S3: set_real,A: real,B: real > complex] :
      ( ( finite_finite_real @ S3 )
     => ( ( ( member_real @ A @ S3 )
         => ( ( groups5754745047067104278omplex
              @ ^ [K2: real] : ( if_complex @ ( K2 = A ) @ ( B @ K2 ) @ zero_zero_complex )
              @ S3 )
            = ( B @ A ) ) )
        & ( ~ ( member_real @ A @ S3 )
         => ( ( groups5754745047067104278omplex
              @ ^ [K2: real] : ( if_complex @ ( K2 = A ) @ ( B @ K2 ) @ zero_zero_complex )
              @ S3 )
            = zero_zero_complex ) ) ) ) ).

% sum.delta
thf(fact_8133_sum_Odelta,axiom,
    ! [S3: set_nat,A: nat,B: nat > complex] :
      ( ( finite_finite_nat @ S3 )
     => ( ( ( member_nat @ A @ S3 )
         => ( ( groups2073611262835488442omplex
              @ ^ [K2: nat] : ( if_complex @ ( K2 = A ) @ ( B @ K2 ) @ zero_zero_complex )
              @ S3 )
            = ( B @ A ) ) )
        & ( ~ ( member_nat @ A @ S3 )
         => ( ( groups2073611262835488442omplex
              @ ^ [K2: nat] : ( if_complex @ ( K2 = A ) @ ( B @ K2 ) @ zero_zero_complex )
              @ S3 )
            = zero_zero_complex ) ) ) ) ).

% sum.delta
thf(fact_8134_sum_Odelta,axiom,
    ! [S3: set_int,A: int,B: int > complex] :
      ( ( finite_finite_int @ S3 )
     => ( ( ( member_int @ A @ S3 )
         => ( ( groups3049146728041665814omplex
              @ ^ [K2: int] : ( if_complex @ ( K2 = A ) @ ( B @ K2 ) @ zero_zero_complex )
              @ S3 )
            = ( B @ A ) ) )
        & ( ~ ( member_int @ A @ S3 )
         => ( ( groups3049146728041665814omplex
              @ ^ [K2: int] : ( if_complex @ ( K2 = A ) @ ( B @ K2 ) @ zero_zero_complex )
              @ S3 )
            = zero_zero_complex ) ) ) ) ).

% sum.delta
thf(fact_8135_sum_Odelta,axiom,
    ! [S3: set_real,A: real,B: real > real] :
      ( ( finite_finite_real @ S3 )
     => ( ( ( member_real @ A @ S3 )
         => ( ( groups8097168146408367636l_real
              @ ^ [K2: real] : ( if_real @ ( K2 = A ) @ ( B @ K2 ) @ zero_zero_real )
              @ S3 )
            = ( B @ A ) ) )
        & ( ~ ( member_real @ A @ S3 )
         => ( ( groups8097168146408367636l_real
              @ ^ [K2: real] : ( if_real @ ( K2 = A ) @ ( B @ K2 ) @ zero_zero_real )
              @ S3 )
            = zero_zero_real ) ) ) ) ).

% sum.delta
thf(fact_8136_sum_Odelta,axiom,
    ! [S3: set_int,A: int,B: int > real] :
      ( ( finite_finite_int @ S3 )
     => ( ( ( member_int @ A @ S3 )
         => ( ( groups8778361861064173332t_real
              @ ^ [K2: int] : ( if_real @ ( K2 = A ) @ ( B @ K2 ) @ zero_zero_real )
              @ S3 )
            = ( B @ A ) ) )
        & ( ~ ( member_int @ A @ S3 )
         => ( ( groups8778361861064173332t_real
              @ ^ [K2: int] : ( if_real @ ( K2 = A ) @ ( B @ K2 ) @ zero_zero_real )
              @ S3 )
            = zero_zero_real ) ) ) ) ).

% sum.delta
thf(fact_8137_sum_Odelta,axiom,
    ! [S3: set_complex,A: complex,B: complex > real] :
      ( ( finite3207457112153483333omplex @ S3 )
     => ( ( ( member_complex @ A @ S3 )
         => ( ( groups5808333547571424918x_real
              @ ^ [K2: complex] : ( if_real @ ( K2 = A ) @ ( B @ K2 ) @ zero_zero_real )
              @ S3 )
            = ( B @ A ) ) )
        & ( ~ ( member_complex @ A @ S3 )
         => ( ( groups5808333547571424918x_real
              @ ^ [K2: complex] : ( if_real @ ( K2 = A ) @ ( B @ K2 ) @ zero_zero_real )
              @ S3 )
            = zero_zero_real ) ) ) ) ).

% sum.delta
thf(fact_8138_sum_Odelta,axiom,
    ! [S3: set_real,A: real,B: real > rat] :
      ( ( finite_finite_real @ S3 )
     => ( ( ( member_real @ A @ S3 )
         => ( ( groups1300246762558778688al_rat
              @ ^ [K2: real] : ( if_rat @ ( K2 = A ) @ ( B @ K2 ) @ zero_zero_rat )
              @ S3 )
            = ( B @ A ) ) )
        & ( ~ ( member_real @ A @ S3 )
         => ( ( groups1300246762558778688al_rat
              @ ^ [K2: real] : ( if_rat @ ( K2 = A ) @ ( B @ K2 ) @ zero_zero_rat )
              @ S3 )
            = zero_zero_rat ) ) ) ) ).

% sum.delta
thf(fact_8139_sum_Odelta,axiom,
    ! [S3: set_nat,A: nat,B: nat > rat] :
      ( ( finite_finite_nat @ S3 )
     => ( ( ( member_nat @ A @ S3 )
         => ( ( groups2906978787729119204at_rat
              @ ^ [K2: nat] : ( if_rat @ ( K2 = A ) @ ( B @ K2 ) @ zero_zero_rat )
              @ S3 )
            = ( B @ A ) ) )
        & ( ~ ( member_nat @ A @ S3 )
         => ( ( groups2906978787729119204at_rat
              @ ^ [K2: nat] : ( if_rat @ ( K2 = A ) @ ( B @ K2 ) @ zero_zero_rat )
              @ S3 )
            = zero_zero_rat ) ) ) ) ).

% sum.delta
thf(fact_8140_sum_Odelta,axiom,
    ! [S3: set_int,A: int,B: int > rat] :
      ( ( finite_finite_int @ S3 )
     => ( ( ( member_int @ A @ S3 )
         => ( ( groups3906332499630173760nt_rat
              @ ^ [K2: int] : ( if_rat @ ( K2 = A ) @ ( B @ K2 ) @ zero_zero_rat )
              @ S3 )
            = ( B @ A ) ) )
        & ( ~ ( member_int @ A @ S3 )
         => ( ( groups3906332499630173760nt_rat
              @ ^ [K2: int] : ( if_rat @ ( K2 = A ) @ ( B @ K2 ) @ zero_zero_rat )
              @ S3 )
            = zero_zero_rat ) ) ) ) ).

% sum.delta
thf(fact_8141_sum_Odelta,axiom,
    ! [S3: set_complex,A: complex,B: complex > rat] :
      ( ( finite3207457112153483333omplex @ S3 )
     => ( ( ( member_complex @ A @ S3 )
         => ( ( groups5058264527183730370ex_rat
              @ ^ [K2: complex] : ( if_rat @ ( K2 = A ) @ ( B @ K2 ) @ zero_zero_rat )
              @ S3 )
            = ( B @ A ) ) )
        & ( ~ ( member_complex @ A @ S3 )
         => ( ( groups5058264527183730370ex_rat
              @ ^ [K2: complex] : ( if_rat @ ( K2 = A ) @ ( B @ K2 ) @ zero_zero_rat )
              @ S3 )
            = zero_zero_rat ) ) ) ) ).

% sum.delta
thf(fact_8142_sum_Odelta_H,axiom,
    ! [S3: set_real,A: real,B: real > complex] :
      ( ( finite_finite_real @ S3 )
     => ( ( ( member_real @ A @ S3 )
         => ( ( groups5754745047067104278omplex
              @ ^ [K2: real] : ( if_complex @ ( A = K2 ) @ ( B @ K2 ) @ zero_zero_complex )
              @ S3 )
            = ( B @ A ) ) )
        & ( ~ ( member_real @ A @ S3 )
         => ( ( groups5754745047067104278omplex
              @ ^ [K2: real] : ( if_complex @ ( A = K2 ) @ ( B @ K2 ) @ zero_zero_complex )
              @ S3 )
            = zero_zero_complex ) ) ) ) ).

% sum.delta'
thf(fact_8143_sum_Odelta_H,axiom,
    ! [S3: set_nat,A: nat,B: nat > complex] :
      ( ( finite_finite_nat @ S3 )
     => ( ( ( member_nat @ A @ S3 )
         => ( ( groups2073611262835488442omplex
              @ ^ [K2: nat] : ( if_complex @ ( A = K2 ) @ ( B @ K2 ) @ zero_zero_complex )
              @ S3 )
            = ( B @ A ) ) )
        & ( ~ ( member_nat @ A @ S3 )
         => ( ( groups2073611262835488442omplex
              @ ^ [K2: nat] : ( if_complex @ ( A = K2 ) @ ( B @ K2 ) @ zero_zero_complex )
              @ S3 )
            = zero_zero_complex ) ) ) ) ).

% sum.delta'
thf(fact_8144_sum_Odelta_H,axiom,
    ! [S3: set_int,A: int,B: int > complex] :
      ( ( finite_finite_int @ S3 )
     => ( ( ( member_int @ A @ S3 )
         => ( ( groups3049146728041665814omplex
              @ ^ [K2: int] : ( if_complex @ ( A = K2 ) @ ( B @ K2 ) @ zero_zero_complex )
              @ S3 )
            = ( B @ A ) ) )
        & ( ~ ( member_int @ A @ S3 )
         => ( ( groups3049146728041665814omplex
              @ ^ [K2: int] : ( if_complex @ ( A = K2 ) @ ( B @ K2 ) @ zero_zero_complex )
              @ S3 )
            = zero_zero_complex ) ) ) ) ).

% sum.delta'
thf(fact_8145_sum_Odelta_H,axiom,
    ! [S3: set_real,A: real,B: real > real] :
      ( ( finite_finite_real @ S3 )
     => ( ( ( member_real @ A @ S3 )
         => ( ( groups8097168146408367636l_real
              @ ^ [K2: real] : ( if_real @ ( A = K2 ) @ ( B @ K2 ) @ zero_zero_real )
              @ S3 )
            = ( B @ A ) ) )
        & ( ~ ( member_real @ A @ S3 )
         => ( ( groups8097168146408367636l_real
              @ ^ [K2: real] : ( if_real @ ( A = K2 ) @ ( B @ K2 ) @ zero_zero_real )
              @ S3 )
            = zero_zero_real ) ) ) ) ).

% sum.delta'
thf(fact_8146_sum_Odelta_H,axiom,
    ! [S3: set_int,A: int,B: int > real] :
      ( ( finite_finite_int @ S3 )
     => ( ( ( member_int @ A @ S3 )
         => ( ( groups8778361861064173332t_real
              @ ^ [K2: int] : ( if_real @ ( A = K2 ) @ ( B @ K2 ) @ zero_zero_real )
              @ S3 )
            = ( B @ A ) ) )
        & ( ~ ( member_int @ A @ S3 )
         => ( ( groups8778361861064173332t_real
              @ ^ [K2: int] : ( if_real @ ( A = K2 ) @ ( B @ K2 ) @ zero_zero_real )
              @ S3 )
            = zero_zero_real ) ) ) ) ).

% sum.delta'
thf(fact_8147_sum_Odelta_H,axiom,
    ! [S3: set_complex,A: complex,B: complex > real] :
      ( ( finite3207457112153483333omplex @ S3 )
     => ( ( ( member_complex @ A @ S3 )
         => ( ( groups5808333547571424918x_real
              @ ^ [K2: complex] : ( if_real @ ( A = K2 ) @ ( B @ K2 ) @ zero_zero_real )
              @ S3 )
            = ( B @ A ) ) )
        & ( ~ ( member_complex @ A @ S3 )
         => ( ( groups5808333547571424918x_real
              @ ^ [K2: complex] : ( if_real @ ( A = K2 ) @ ( B @ K2 ) @ zero_zero_real )
              @ S3 )
            = zero_zero_real ) ) ) ) ).

% sum.delta'
thf(fact_8148_sum_Odelta_H,axiom,
    ! [S3: set_real,A: real,B: real > rat] :
      ( ( finite_finite_real @ S3 )
     => ( ( ( member_real @ A @ S3 )
         => ( ( groups1300246762558778688al_rat
              @ ^ [K2: real] : ( if_rat @ ( A = K2 ) @ ( B @ K2 ) @ zero_zero_rat )
              @ S3 )
            = ( B @ A ) ) )
        & ( ~ ( member_real @ A @ S3 )
         => ( ( groups1300246762558778688al_rat
              @ ^ [K2: real] : ( if_rat @ ( A = K2 ) @ ( B @ K2 ) @ zero_zero_rat )
              @ S3 )
            = zero_zero_rat ) ) ) ) ).

% sum.delta'
thf(fact_8149_sum_Odelta_H,axiom,
    ! [S3: set_nat,A: nat,B: nat > rat] :
      ( ( finite_finite_nat @ S3 )
     => ( ( ( member_nat @ A @ S3 )
         => ( ( groups2906978787729119204at_rat
              @ ^ [K2: nat] : ( if_rat @ ( A = K2 ) @ ( B @ K2 ) @ zero_zero_rat )
              @ S3 )
            = ( B @ A ) ) )
        & ( ~ ( member_nat @ A @ S3 )
         => ( ( groups2906978787729119204at_rat
              @ ^ [K2: nat] : ( if_rat @ ( A = K2 ) @ ( B @ K2 ) @ zero_zero_rat )
              @ S3 )
            = zero_zero_rat ) ) ) ) ).

% sum.delta'
thf(fact_8150_sum_Odelta_H,axiom,
    ! [S3: set_int,A: int,B: int > rat] :
      ( ( finite_finite_int @ S3 )
     => ( ( ( member_int @ A @ S3 )
         => ( ( groups3906332499630173760nt_rat
              @ ^ [K2: int] : ( if_rat @ ( A = K2 ) @ ( B @ K2 ) @ zero_zero_rat )
              @ S3 )
            = ( B @ A ) ) )
        & ( ~ ( member_int @ A @ S3 )
         => ( ( groups3906332499630173760nt_rat
              @ ^ [K2: int] : ( if_rat @ ( A = K2 ) @ ( B @ K2 ) @ zero_zero_rat )
              @ S3 )
            = zero_zero_rat ) ) ) ) ).

% sum.delta'
thf(fact_8151_sum_Odelta_H,axiom,
    ! [S3: set_complex,A: complex,B: complex > rat] :
      ( ( finite3207457112153483333omplex @ S3 )
     => ( ( ( member_complex @ A @ S3 )
         => ( ( groups5058264527183730370ex_rat
              @ ^ [K2: complex] : ( if_rat @ ( A = K2 ) @ ( B @ K2 ) @ zero_zero_rat )
              @ S3 )
            = ( B @ A ) ) )
        & ( ~ ( member_complex @ A @ S3 )
         => ( ( groups5058264527183730370ex_rat
              @ ^ [K2: complex] : ( if_rat @ ( A = K2 ) @ ( B @ K2 ) @ zero_zero_rat )
              @ S3 )
            = zero_zero_rat ) ) ) ) ).

% sum.delta'
thf(fact_8152_sum__abs,axiom,
    ! [F: int > int,A2: set_int] :
      ( ord_less_eq_int @ ( abs_abs_int @ ( groups4538972089207619220nt_int @ F @ A2 ) )
      @ ( groups4538972089207619220nt_int
        @ ^ [I4: int] : ( abs_abs_int @ ( F @ I4 ) )
        @ A2 ) ) ).

% sum_abs
thf(fact_8153_sum__abs,axiom,
    ! [F: nat > real,A2: set_nat] :
      ( ord_less_eq_real @ ( abs_abs_real @ ( groups6591440286371151544t_real @ F @ A2 ) )
      @ ( groups6591440286371151544t_real
        @ ^ [I4: nat] : ( abs_abs_real @ ( F @ I4 ) )
        @ A2 ) ) ).

% sum_abs
thf(fact_8154_sum_Oinsert,axiom,
    ! [A2: set_VEBT_VEBT,X2: vEBT_VEBT,G: vEBT_VEBT > real] :
      ( ( finite5795047828879050333T_VEBT @ A2 )
     => ( ~ ( member_VEBT_VEBT @ X2 @ A2 )
       => ( ( groups2240296850493347238T_real @ G @ ( insert_VEBT_VEBT @ X2 @ A2 ) )
          = ( plus_plus_real @ ( G @ X2 ) @ ( groups2240296850493347238T_real @ G @ A2 ) ) ) ) ) ).

% sum.insert
thf(fact_8155_sum_Oinsert,axiom,
    ! [A2: set_o,X2: $o,G: $o > real] :
      ( ( finite_finite_o @ A2 )
     => ( ~ ( member_o @ X2 @ A2 )
       => ( ( groups8691415230153176458o_real @ G @ ( insert_o @ X2 @ A2 ) )
          = ( plus_plus_real @ ( G @ X2 ) @ ( groups8691415230153176458o_real @ G @ A2 ) ) ) ) ) ).

% sum.insert
thf(fact_8156_sum_Oinsert,axiom,
    ! [A2: set_real,X2: real,G: real > real] :
      ( ( finite_finite_real @ A2 )
     => ( ~ ( member_real @ X2 @ A2 )
       => ( ( groups8097168146408367636l_real @ G @ ( insert_real @ X2 @ A2 ) )
          = ( plus_plus_real @ ( G @ X2 ) @ ( groups8097168146408367636l_real @ G @ A2 ) ) ) ) ) ).

% sum.insert
thf(fact_8157_sum_Oinsert,axiom,
    ! [A2: set_int,X2: int,G: int > real] :
      ( ( finite_finite_int @ A2 )
     => ( ~ ( member_int @ X2 @ A2 )
       => ( ( groups8778361861064173332t_real @ G @ ( insert_int @ X2 @ A2 ) )
          = ( plus_plus_real @ ( G @ X2 ) @ ( groups8778361861064173332t_real @ G @ A2 ) ) ) ) ) ).

% sum.insert
thf(fact_8158_sum_Oinsert,axiom,
    ! [A2: set_complex,X2: complex,G: complex > real] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( ~ ( member_complex @ X2 @ A2 )
       => ( ( groups5808333547571424918x_real @ G @ ( insert_complex @ X2 @ A2 ) )
          = ( plus_plus_real @ ( G @ X2 ) @ ( groups5808333547571424918x_real @ G @ A2 ) ) ) ) ) ).

% sum.insert
thf(fact_8159_sum_Oinsert,axiom,
    ! [A2: set_VEBT_VEBT,X2: vEBT_VEBT,G: vEBT_VEBT > rat] :
      ( ( finite5795047828879050333T_VEBT @ A2 )
     => ( ~ ( member_VEBT_VEBT @ X2 @ A2 )
       => ( ( groups136491112297645522BT_rat @ G @ ( insert_VEBT_VEBT @ X2 @ A2 ) )
          = ( plus_plus_rat @ ( G @ X2 ) @ ( groups136491112297645522BT_rat @ G @ A2 ) ) ) ) ) ).

% sum.insert
thf(fact_8160_sum_Oinsert,axiom,
    ! [A2: set_o,X2: $o,G: $o > rat] :
      ( ( finite_finite_o @ A2 )
     => ( ~ ( member_o @ X2 @ A2 )
       => ( ( groups7872700643590313910_o_rat @ G @ ( insert_o @ X2 @ A2 ) )
          = ( plus_plus_rat @ ( G @ X2 ) @ ( groups7872700643590313910_o_rat @ G @ A2 ) ) ) ) ) ).

% sum.insert
thf(fact_8161_sum_Oinsert,axiom,
    ! [A2: set_real,X2: real,G: real > rat] :
      ( ( finite_finite_real @ A2 )
     => ( ~ ( member_real @ X2 @ A2 )
       => ( ( groups1300246762558778688al_rat @ G @ ( insert_real @ X2 @ A2 ) )
          = ( plus_plus_rat @ ( G @ X2 ) @ ( groups1300246762558778688al_rat @ G @ A2 ) ) ) ) ) ).

% sum.insert
thf(fact_8162_sum_Oinsert,axiom,
    ! [A2: set_nat,X2: nat,G: nat > rat] :
      ( ( finite_finite_nat @ A2 )
     => ( ~ ( member_nat @ X2 @ A2 )
       => ( ( groups2906978787729119204at_rat @ G @ ( insert_nat @ X2 @ A2 ) )
          = ( plus_plus_rat @ ( G @ X2 ) @ ( groups2906978787729119204at_rat @ G @ A2 ) ) ) ) ) ).

% sum.insert
thf(fact_8163_sum_Oinsert,axiom,
    ! [A2: set_int,X2: int,G: int > rat] :
      ( ( finite_finite_int @ A2 )
     => ( ~ ( member_int @ X2 @ A2 )
       => ( ( groups3906332499630173760nt_rat @ G @ ( insert_int @ X2 @ A2 ) )
          = ( plus_plus_rat @ ( G @ X2 ) @ ( groups3906332499630173760nt_rat @ G @ A2 ) ) ) ) ) ).

% sum.insert
thf(fact_8164_mask__Suc__0,axiom,
    ( ( bit_se2002935070580805687sk_nat @ ( suc @ zero_zero_nat ) )
    = one_one_nat ) ).

% mask_Suc_0
thf(fact_8165_mask__Suc__0,axiom,
    ( ( bit_se2000444600071755411sk_int @ ( suc @ zero_zero_nat ) )
    = one_one_int ) ).

% mask_Suc_0
thf(fact_8166_of__int__sum,axiom,
    ! [F: complex > int,A2: set_complex] :
      ( ( ring_17405671764205052669omplex @ ( groups5690904116761175830ex_int @ F @ A2 ) )
      = ( groups7754918857620584856omplex
        @ ^ [X: complex] : ( ring_17405671764205052669omplex @ ( F @ X ) )
        @ A2 ) ) ).

% of_int_sum
thf(fact_8167_of__int__sum,axiom,
    ! [F: nat > int,A2: set_nat] :
      ( ( ring_1_of_int_real @ ( groups3539618377306564664at_int @ F @ A2 ) )
      = ( groups6591440286371151544t_real
        @ ^ [X: nat] : ( ring_1_of_int_real @ ( F @ X ) )
        @ A2 ) ) ).

% of_int_sum
thf(fact_8168_of__int__sum,axiom,
    ! [F: int > int,A2: set_int] :
      ( ( ring_1_of_int_real @ ( groups4538972089207619220nt_int @ F @ A2 ) )
      = ( groups8778361861064173332t_real
        @ ^ [X: int] : ( ring_1_of_int_real @ ( F @ X ) )
        @ A2 ) ) ).

% of_int_sum
thf(fact_8169_of__int__sum,axiom,
    ! [F: int > int,A2: set_int] :
      ( ( ring_1_of_int_rat @ ( groups4538972089207619220nt_int @ F @ A2 ) )
      = ( groups3906332499630173760nt_rat
        @ ^ [X: int] : ( ring_1_of_int_rat @ ( F @ X ) )
        @ A2 ) ) ).

% of_int_sum
thf(fact_8170_of__int__sum,axiom,
    ! [F: int > int,A2: set_int] :
      ( ( ring_1_of_int_int @ ( groups4538972089207619220nt_int @ F @ A2 ) )
      = ( groups4538972089207619220nt_int
        @ ^ [X: int] : ( ring_1_of_int_int @ ( F @ X ) )
        @ A2 ) ) ).

% of_int_sum
thf(fact_8171_sum__abs__ge__zero,axiom,
    ! [F: int > int,A2: set_int] :
      ( ord_less_eq_int @ zero_zero_int
      @ ( groups4538972089207619220nt_int
        @ ^ [I4: int] : ( abs_abs_int @ ( F @ I4 ) )
        @ A2 ) ) ).

% sum_abs_ge_zero
thf(fact_8172_sum__abs__ge__zero,axiom,
    ! [F: nat > real,A2: set_nat] :
      ( ord_less_eq_real @ zero_zero_real
      @ ( groups6591440286371151544t_real
        @ ^ [I4: nat] : ( abs_abs_real @ ( F @ I4 ) )
        @ A2 ) ) ).

% sum_abs_ge_zero
thf(fact_8173_sum_Oswap,axiom,
    ! [G: int > int > int,B3: set_int,A2: set_int] :
      ( ( groups4538972089207619220nt_int
        @ ^ [I4: int] : ( groups4538972089207619220nt_int @ ( G @ I4 ) @ B3 )
        @ A2 )
      = ( groups4538972089207619220nt_int
        @ ^ [J3: int] :
            ( groups4538972089207619220nt_int
            @ ^ [I4: int] : ( G @ I4 @ J3 )
            @ A2 )
        @ B3 ) ) ).

% sum.swap
thf(fact_8174_sum_Oswap,axiom,
    ! [G: complex > complex > complex,B3: set_complex,A2: set_complex] :
      ( ( groups7754918857620584856omplex
        @ ^ [I4: complex] : ( groups7754918857620584856omplex @ ( G @ I4 ) @ B3 )
        @ A2 )
      = ( groups7754918857620584856omplex
        @ ^ [J3: complex] :
            ( groups7754918857620584856omplex
            @ ^ [I4: complex] : ( G @ I4 @ J3 )
            @ A2 )
        @ B3 ) ) ).

% sum.swap
thf(fact_8175_sum_Oswap,axiom,
    ! [G: nat > nat > nat,B3: set_nat,A2: set_nat] :
      ( ( groups3542108847815614940at_nat
        @ ^ [I4: nat] : ( groups3542108847815614940at_nat @ ( G @ I4 ) @ B3 )
        @ A2 )
      = ( groups3542108847815614940at_nat
        @ ^ [J3: nat] :
            ( groups3542108847815614940at_nat
            @ ^ [I4: nat] : ( G @ I4 @ J3 )
            @ A2 )
        @ B3 ) ) ).

% sum.swap
thf(fact_8176_sum_Oswap,axiom,
    ! [G: nat > nat > real,B3: set_nat,A2: set_nat] :
      ( ( groups6591440286371151544t_real
        @ ^ [I4: nat] : ( groups6591440286371151544t_real @ ( G @ I4 ) @ B3 )
        @ A2 )
      = ( groups6591440286371151544t_real
        @ ^ [J3: nat] :
            ( groups6591440286371151544t_real
            @ ^ [I4: nat] : ( G @ I4 @ J3 )
            @ A2 )
        @ B3 ) ) ).

% sum.swap
thf(fact_8177_of__int__mask__eq,axiom,
    ! [N: nat] :
      ( ( ring_1_of_int_int @ ( bit_se2000444600071755411sk_int @ N ) )
      = ( bit_se2000444600071755411sk_int @ N ) ) ).

% of_int_mask_eq
thf(fact_8178_less__eq__mask,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ N @ ( bit_se2002935070580805687sk_nat @ N ) ) ).

% less_eq_mask
thf(fact_8179_sum__mono,axiom,
    ! [K5: set_complex,F: complex > rat,G: complex > rat] :
      ( ! [I3: complex] :
          ( ( member_complex @ I3 @ K5 )
         => ( ord_less_eq_rat @ ( F @ I3 ) @ ( G @ I3 ) ) )
     => ( ord_less_eq_rat @ ( groups5058264527183730370ex_rat @ F @ K5 ) @ ( groups5058264527183730370ex_rat @ G @ K5 ) ) ) ).

% sum_mono
thf(fact_8180_sum__mono,axiom,
    ! [K5: set_real,F: real > rat,G: real > rat] :
      ( ! [I3: real] :
          ( ( member_real @ I3 @ K5 )
         => ( ord_less_eq_rat @ ( F @ I3 ) @ ( G @ I3 ) ) )
     => ( ord_less_eq_rat @ ( groups1300246762558778688al_rat @ F @ K5 ) @ ( groups1300246762558778688al_rat @ G @ K5 ) ) ) ).

% sum_mono
thf(fact_8181_sum__mono,axiom,
    ! [K5: set_nat,F: nat > rat,G: nat > rat] :
      ( ! [I3: nat] :
          ( ( member_nat @ I3 @ K5 )
         => ( ord_less_eq_rat @ ( F @ I3 ) @ ( G @ I3 ) ) )
     => ( ord_less_eq_rat @ ( groups2906978787729119204at_rat @ F @ K5 ) @ ( groups2906978787729119204at_rat @ G @ K5 ) ) ) ).

% sum_mono
thf(fact_8182_sum__mono,axiom,
    ! [K5: set_int,F: int > rat,G: int > rat] :
      ( ! [I3: int] :
          ( ( member_int @ I3 @ K5 )
         => ( ord_less_eq_rat @ ( F @ I3 ) @ ( G @ I3 ) ) )
     => ( ord_less_eq_rat @ ( groups3906332499630173760nt_rat @ F @ K5 ) @ ( groups3906332499630173760nt_rat @ G @ K5 ) ) ) ).

% sum_mono
thf(fact_8183_sum__mono,axiom,
    ! [K5: set_complex,F: complex > nat,G: complex > nat] :
      ( ! [I3: complex] :
          ( ( member_complex @ I3 @ K5 )
         => ( ord_less_eq_nat @ ( F @ I3 ) @ ( G @ I3 ) ) )
     => ( ord_less_eq_nat @ ( groups5693394587270226106ex_nat @ F @ K5 ) @ ( groups5693394587270226106ex_nat @ G @ K5 ) ) ) ).

% sum_mono
thf(fact_8184_sum__mono,axiom,
    ! [K5: set_real,F: real > nat,G: real > nat] :
      ( ! [I3: real] :
          ( ( member_real @ I3 @ K5 )
         => ( ord_less_eq_nat @ ( F @ I3 ) @ ( G @ I3 ) ) )
     => ( ord_less_eq_nat @ ( groups1935376822645274424al_nat @ F @ K5 ) @ ( groups1935376822645274424al_nat @ G @ K5 ) ) ) ).

% sum_mono
thf(fact_8185_sum__mono,axiom,
    ! [K5: set_int,F: int > nat,G: int > nat] :
      ( ! [I3: int] :
          ( ( member_int @ I3 @ K5 )
         => ( ord_less_eq_nat @ ( F @ I3 ) @ ( G @ I3 ) ) )
     => ( ord_less_eq_nat @ ( groups4541462559716669496nt_nat @ F @ K5 ) @ ( groups4541462559716669496nt_nat @ G @ K5 ) ) ) ).

% sum_mono
thf(fact_8186_sum__mono,axiom,
    ! [K5: set_complex,F: complex > int,G: complex > int] :
      ( ! [I3: complex] :
          ( ( member_complex @ I3 @ K5 )
         => ( ord_less_eq_int @ ( F @ I3 ) @ ( G @ I3 ) ) )
     => ( ord_less_eq_int @ ( groups5690904116761175830ex_int @ F @ K5 ) @ ( groups5690904116761175830ex_int @ G @ K5 ) ) ) ).

% sum_mono
thf(fact_8187_sum__mono,axiom,
    ! [K5: set_real,F: real > int,G: real > int] :
      ( ! [I3: real] :
          ( ( member_real @ I3 @ K5 )
         => ( ord_less_eq_int @ ( F @ I3 ) @ ( G @ I3 ) ) )
     => ( ord_less_eq_int @ ( groups1932886352136224148al_int @ F @ K5 ) @ ( groups1932886352136224148al_int @ G @ K5 ) ) ) ).

% sum_mono
thf(fact_8188_sum__mono,axiom,
    ! [K5: set_nat,F: nat > int,G: nat > int] :
      ( ! [I3: nat] :
          ( ( member_nat @ I3 @ K5 )
         => ( ord_less_eq_int @ ( F @ I3 ) @ ( G @ I3 ) ) )
     => ( ord_less_eq_int @ ( groups3539618377306564664at_int @ F @ K5 ) @ ( groups3539618377306564664at_int @ G @ K5 ) ) ) ).

% sum_mono
thf(fact_8189_sum__product,axiom,
    ! [F: int > int,A2: set_int,G: int > int,B3: set_int] :
      ( ( times_times_int @ ( groups4538972089207619220nt_int @ F @ A2 ) @ ( groups4538972089207619220nt_int @ G @ B3 ) )
      = ( groups4538972089207619220nt_int
        @ ^ [I4: int] :
            ( groups4538972089207619220nt_int
            @ ^ [J3: int] : ( times_times_int @ ( F @ I4 ) @ ( G @ J3 ) )
            @ B3 )
        @ A2 ) ) ).

% sum_product
thf(fact_8190_sum__product,axiom,
    ! [F: complex > complex,A2: set_complex,G: complex > complex,B3: set_complex] :
      ( ( times_times_complex @ ( groups7754918857620584856omplex @ F @ A2 ) @ ( groups7754918857620584856omplex @ G @ B3 ) )
      = ( groups7754918857620584856omplex
        @ ^ [I4: complex] :
            ( groups7754918857620584856omplex
            @ ^ [J3: complex] : ( times_times_complex @ ( F @ I4 ) @ ( G @ J3 ) )
            @ B3 )
        @ A2 ) ) ).

% sum_product
thf(fact_8191_sum__product,axiom,
    ! [F: nat > nat,A2: set_nat,G: nat > nat,B3: set_nat] :
      ( ( times_times_nat @ ( groups3542108847815614940at_nat @ F @ A2 ) @ ( groups3542108847815614940at_nat @ G @ B3 ) )
      = ( groups3542108847815614940at_nat
        @ ^ [I4: nat] :
            ( groups3542108847815614940at_nat
            @ ^ [J3: nat] : ( times_times_nat @ ( F @ I4 ) @ ( G @ J3 ) )
            @ B3 )
        @ A2 ) ) ).

% sum_product
thf(fact_8192_sum__product,axiom,
    ! [F: nat > real,A2: set_nat,G: nat > real,B3: set_nat] :
      ( ( times_times_real @ ( groups6591440286371151544t_real @ F @ A2 ) @ ( groups6591440286371151544t_real @ G @ B3 ) )
      = ( groups6591440286371151544t_real
        @ ^ [I4: nat] :
            ( groups6591440286371151544t_real
            @ ^ [J3: nat] : ( times_times_real @ ( F @ I4 ) @ ( G @ J3 ) )
            @ B3 )
        @ A2 ) ) ).

% sum_product
thf(fact_8193_sum__distrib__right,axiom,
    ! [F: int > int,A2: set_int,R2: int] :
      ( ( times_times_int @ ( groups4538972089207619220nt_int @ F @ A2 ) @ R2 )
      = ( groups4538972089207619220nt_int
        @ ^ [N2: int] : ( times_times_int @ ( F @ N2 ) @ R2 )
        @ A2 ) ) ).

% sum_distrib_right
thf(fact_8194_sum__distrib__right,axiom,
    ! [F: complex > complex,A2: set_complex,R2: complex] :
      ( ( times_times_complex @ ( groups7754918857620584856omplex @ F @ A2 ) @ R2 )
      = ( groups7754918857620584856omplex
        @ ^ [N2: complex] : ( times_times_complex @ ( F @ N2 ) @ R2 )
        @ A2 ) ) ).

% sum_distrib_right
thf(fact_8195_sum__distrib__right,axiom,
    ! [F: nat > nat,A2: set_nat,R2: nat] :
      ( ( times_times_nat @ ( groups3542108847815614940at_nat @ F @ A2 ) @ R2 )
      = ( groups3542108847815614940at_nat
        @ ^ [N2: nat] : ( times_times_nat @ ( F @ N2 ) @ R2 )
        @ A2 ) ) ).

% sum_distrib_right
thf(fact_8196_sum__distrib__right,axiom,
    ! [F: nat > real,A2: set_nat,R2: real] :
      ( ( times_times_real @ ( groups6591440286371151544t_real @ F @ A2 ) @ R2 )
      = ( groups6591440286371151544t_real
        @ ^ [N2: nat] : ( times_times_real @ ( F @ N2 ) @ R2 )
        @ A2 ) ) ).

% sum_distrib_right
thf(fact_8197_sum__distrib__left,axiom,
    ! [R2: int,F: int > int,A2: set_int] :
      ( ( times_times_int @ R2 @ ( groups4538972089207619220nt_int @ F @ A2 ) )
      = ( groups4538972089207619220nt_int
        @ ^ [N2: int] : ( times_times_int @ R2 @ ( F @ N2 ) )
        @ A2 ) ) ).

% sum_distrib_left
thf(fact_8198_sum__distrib__left,axiom,
    ! [R2: complex,F: complex > complex,A2: set_complex] :
      ( ( times_times_complex @ R2 @ ( groups7754918857620584856omplex @ F @ A2 ) )
      = ( groups7754918857620584856omplex
        @ ^ [N2: complex] : ( times_times_complex @ R2 @ ( F @ N2 ) )
        @ A2 ) ) ).

% sum_distrib_left
thf(fact_8199_sum__distrib__left,axiom,
    ! [R2: nat,F: nat > nat,A2: set_nat] :
      ( ( times_times_nat @ R2 @ ( groups3542108847815614940at_nat @ F @ A2 ) )
      = ( groups3542108847815614940at_nat
        @ ^ [N2: nat] : ( times_times_nat @ R2 @ ( F @ N2 ) )
        @ A2 ) ) ).

% sum_distrib_left
thf(fact_8200_sum__distrib__left,axiom,
    ! [R2: real,F: nat > real,A2: set_nat] :
      ( ( times_times_real @ R2 @ ( groups6591440286371151544t_real @ F @ A2 ) )
      = ( groups6591440286371151544t_real
        @ ^ [N2: nat] : ( times_times_real @ R2 @ ( F @ N2 ) )
        @ A2 ) ) ).

% sum_distrib_left
thf(fact_8201_sum_Odistrib,axiom,
    ! [G: int > int,H2: int > int,A2: set_int] :
      ( ( groups4538972089207619220nt_int
        @ ^ [X: int] : ( plus_plus_int @ ( G @ X ) @ ( H2 @ X ) )
        @ A2 )
      = ( plus_plus_int @ ( groups4538972089207619220nt_int @ G @ A2 ) @ ( groups4538972089207619220nt_int @ H2 @ A2 ) ) ) ).

% sum.distrib
thf(fact_8202_sum_Odistrib,axiom,
    ! [G: complex > complex,H2: complex > complex,A2: set_complex] :
      ( ( groups7754918857620584856omplex
        @ ^ [X: complex] : ( plus_plus_complex @ ( G @ X ) @ ( H2 @ X ) )
        @ A2 )
      = ( plus_plus_complex @ ( groups7754918857620584856omplex @ G @ A2 ) @ ( groups7754918857620584856omplex @ H2 @ A2 ) ) ) ).

% sum.distrib
thf(fact_8203_sum_Odistrib,axiom,
    ! [G: nat > nat,H2: nat > nat,A2: set_nat] :
      ( ( groups3542108847815614940at_nat
        @ ^ [X: nat] : ( plus_plus_nat @ ( G @ X ) @ ( H2 @ X ) )
        @ A2 )
      = ( plus_plus_nat @ ( groups3542108847815614940at_nat @ G @ A2 ) @ ( groups3542108847815614940at_nat @ H2 @ A2 ) ) ) ).

% sum.distrib
thf(fact_8204_sum_Odistrib,axiom,
    ! [G: nat > real,H2: nat > real,A2: set_nat] :
      ( ( groups6591440286371151544t_real
        @ ^ [X: nat] : ( plus_plus_real @ ( G @ X ) @ ( H2 @ X ) )
        @ A2 )
      = ( plus_plus_real @ ( groups6591440286371151544t_real @ G @ A2 ) @ ( groups6591440286371151544t_real @ H2 @ A2 ) ) ) ).

% sum.distrib
thf(fact_8205_sum__subtractf,axiom,
    ! [F: int > int,G: int > int,A2: set_int] :
      ( ( groups4538972089207619220nt_int
        @ ^ [X: int] : ( minus_minus_int @ ( F @ X ) @ ( G @ X ) )
        @ A2 )
      = ( minus_minus_int @ ( groups4538972089207619220nt_int @ F @ A2 ) @ ( groups4538972089207619220nt_int @ G @ A2 ) ) ) ).

% sum_subtractf
thf(fact_8206_sum__subtractf,axiom,
    ! [F: complex > complex,G: complex > complex,A2: set_complex] :
      ( ( groups7754918857620584856omplex
        @ ^ [X: complex] : ( minus_minus_complex @ ( F @ X ) @ ( G @ X ) )
        @ A2 )
      = ( minus_minus_complex @ ( groups7754918857620584856omplex @ F @ A2 ) @ ( groups7754918857620584856omplex @ G @ A2 ) ) ) ).

% sum_subtractf
thf(fact_8207_sum__subtractf,axiom,
    ! [F: nat > real,G: nat > real,A2: set_nat] :
      ( ( groups6591440286371151544t_real
        @ ^ [X: nat] : ( minus_minus_real @ ( F @ X ) @ ( G @ X ) )
        @ A2 )
      = ( minus_minus_real @ ( groups6591440286371151544t_real @ F @ A2 ) @ ( groups6591440286371151544t_real @ G @ A2 ) ) ) ).

% sum_subtractf
thf(fact_8208_sum__divide__distrib,axiom,
    ! [F: complex > complex,A2: set_complex,R2: complex] :
      ( ( divide1717551699836669952omplex @ ( groups7754918857620584856omplex @ F @ A2 ) @ R2 )
      = ( groups7754918857620584856omplex
        @ ^ [N2: complex] : ( divide1717551699836669952omplex @ ( F @ N2 ) @ R2 )
        @ A2 ) ) ).

% sum_divide_distrib
thf(fact_8209_sum__divide__distrib,axiom,
    ! [F: nat > real,A2: set_nat,R2: real] :
      ( ( divide_divide_real @ ( groups6591440286371151544t_real @ F @ A2 ) @ R2 )
      = ( groups6591440286371151544t_real
        @ ^ [N2: nat] : ( divide_divide_real @ ( F @ N2 ) @ R2 )
        @ A2 ) ) ).

% sum_divide_distrib
thf(fact_8210_sum__negf,axiom,
    ! [F: int > int,A2: set_int] :
      ( ( groups4538972089207619220nt_int
        @ ^ [X: int] : ( uminus_uminus_int @ ( F @ X ) )
        @ A2 )
      = ( uminus_uminus_int @ ( groups4538972089207619220nt_int @ F @ A2 ) ) ) ).

% sum_negf
thf(fact_8211_sum__negf,axiom,
    ! [F: complex > complex,A2: set_complex] :
      ( ( groups7754918857620584856omplex
        @ ^ [X: complex] : ( uminus1482373934393186551omplex @ ( F @ X ) )
        @ A2 )
      = ( uminus1482373934393186551omplex @ ( groups7754918857620584856omplex @ F @ A2 ) ) ) ).

% sum_negf
thf(fact_8212_sum__negf,axiom,
    ! [F: nat > real,A2: set_nat] :
      ( ( groups6591440286371151544t_real
        @ ^ [X: nat] : ( uminus_uminus_real @ ( F @ X ) )
        @ A2 )
      = ( uminus_uminus_real @ ( groups6591440286371151544t_real @ F @ A2 ) ) ) ).

% sum_negf
thf(fact_8213_sum_Oswap__restrict,axiom,
    ! [A2: set_real,B3: set_int,G: real > int > int,R: real > int > $o] :
      ( ( finite_finite_real @ A2 )
     => ( ( finite_finite_int @ B3 )
       => ( ( groups1932886352136224148al_int
            @ ^ [X: real] :
                ( groups4538972089207619220nt_int @ ( G @ X )
                @ ( collect_int
                  @ ^ [Y: int] :
                      ( ( member_int @ Y @ B3 )
                      & ( R @ X @ Y ) ) ) )
            @ A2 )
          = ( groups4538972089207619220nt_int
            @ ^ [Y: int] :
                ( groups1932886352136224148al_int
                @ ^ [X: real] : ( G @ X @ Y )
                @ ( collect_real
                  @ ^ [X: real] :
                      ( ( member_real @ X @ A2 )
                      & ( R @ X @ Y ) ) ) )
            @ B3 ) ) ) ) ).

% sum.swap_restrict
thf(fact_8214_sum_Oswap__restrict,axiom,
    ! [A2: set_nat,B3: set_int,G: nat > int > int,R: nat > int > $o] :
      ( ( finite_finite_nat @ A2 )
     => ( ( finite_finite_int @ B3 )
       => ( ( groups3539618377306564664at_int
            @ ^ [X: nat] :
                ( groups4538972089207619220nt_int @ ( G @ X )
                @ ( collect_int
                  @ ^ [Y: int] :
                      ( ( member_int @ Y @ B3 )
                      & ( R @ X @ Y ) ) ) )
            @ A2 )
          = ( groups4538972089207619220nt_int
            @ ^ [Y: int] :
                ( groups3539618377306564664at_int
                @ ^ [X: nat] : ( G @ X @ Y )
                @ ( collect_nat
                  @ ^ [X: nat] :
                      ( ( member_nat @ X @ A2 )
                      & ( R @ X @ Y ) ) ) )
            @ B3 ) ) ) ) ).

% sum.swap_restrict
thf(fact_8215_sum_Oswap__restrict,axiom,
    ! [A2: set_complex,B3: set_int,G: complex > int > int,R: complex > int > $o] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( ( finite_finite_int @ B3 )
       => ( ( groups5690904116761175830ex_int
            @ ^ [X: complex] :
                ( groups4538972089207619220nt_int @ ( G @ X )
                @ ( collect_int
                  @ ^ [Y: int] :
                      ( ( member_int @ Y @ B3 )
                      & ( R @ X @ Y ) ) ) )
            @ A2 )
          = ( groups4538972089207619220nt_int
            @ ^ [Y: int] :
                ( groups5690904116761175830ex_int
                @ ^ [X: complex] : ( G @ X @ Y )
                @ ( collect_complex
                  @ ^ [X: complex] :
                      ( ( member_complex @ X @ A2 )
                      & ( R @ X @ Y ) ) ) )
            @ B3 ) ) ) ) ).

% sum.swap_restrict
thf(fact_8216_sum_Oswap__restrict,axiom,
    ! [A2: set_real,B3: set_complex,G: real > complex > complex,R: real > complex > $o] :
      ( ( finite_finite_real @ A2 )
     => ( ( finite3207457112153483333omplex @ B3 )
       => ( ( groups5754745047067104278omplex
            @ ^ [X: real] :
                ( groups7754918857620584856omplex @ ( G @ X )
                @ ( collect_complex
                  @ ^ [Y: complex] :
                      ( ( member_complex @ Y @ B3 )
                      & ( R @ X @ Y ) ) ) )
            @ A2 )
          = ( groups7754918857620584856omplex
            @ ^ [Y: complex] :
                ( groups5754745047067104278omplex
                @ ^ [X: real] : ( G @ X @ Y )
                @ ( collect_real
                  @ ^ [X: real] :
                      ( ( member_real @ X @ A2 )
                      & ( R @ X @ Y ) ) ) )
            @ B3 ) ) ) ) ).

% sum.swap_restrict
thf(fact_8217_sum_Oswap__restrict,axiom,
    ! [A2: set_nat,B3: set_complex,G: nat > complex > complex,R: nat > complex > $o] :
      ( ( finite_finite_nat @ A2 )
     => ( ( finite3207457112153483333omplex @ B3 )
       => ( ( groups2073611262835488442omplex
            @ ^ [X: nat] :
                ( groups7754918857620584856omplex @ ( G @ X )
                @ ( collect_complex
                  @ ^ [Y: complex] :
                      ( ( member_complex @ Y @ B3 )
                      & ( R @ X @ Y ) ) ) )
            @ A2 )
          = ( groups7754918857620584856omplex
            @ ^ [Y: complex] :
                ( groups2073611262835488442omplex
                @ ^ [X: nat] : ( G @ X @ Y )
                @ ( collect_nat
                  @ ^ [X: nat] :
                      ( ( member_nat @ X @ A2 )
                      & ( R @ X @ Y ) ) ) )
            @ B3 ) ) ) ) ).

% sum.swap_restrict
thf(fact_8218_sum_Oswap__restrict,axiom,
    ! [A2: set_int,B3: set_complex,G: int > complex > complex,R: int > complex > $o] :
      ( ( finite_finite_int @ A2 )
     => ( ( finite3207457112153483333omplex @ B3 )
       => ( ( groups3049146728041665814omplex
            @ ^ [X: int] :
                ( groups7754918857620584856omplex @ ( G @ X )
                @ ( collect_complex
                  @ ^ [Y: complex] :
                      ( ( member_complex @ Y @ B3 )
                      & ( R @ X @ Y ) ) ) )
            @ A2 )
          = ( groups7754918857620584856omplex
            @ ^ [Y: complex] :
                ( groups3049146728041665814omplex
                @ ^ [X: int] : ( G @ X @ Y )
                @ ( collect_int
                  @ ^ [X: int] :
                      ( ( member_int @ X @ A2 )
                      & ( R @ X @ Y ) ) ) )
            @ B3 ) ) ) ) ).

% sum.swap_restrict
thf(fact_8219_sum_Oswap__restrict,axiom,
    ! [A2: set_real,B3: set_nat,G: real > nat > nat,R: real > nat > $o] :
      ( ( finite_finite_real @ A2 )
     => ( ( finite_finite_nat @ B3 )
       => ( ( groups1935376822645274424al_nat
            @ ^ [X: real] :
                ( groups3542108847815614940at_nat @ ( G @ X )
                @ ( collect_nat
                  @ ^ [Y: nat] :
                      ( ( member_nat @ Y @ B3 )
                      & ( R @ X @ Y ) ) ) )
            @ A2 )
          = ( groups3542108847815614940at_nat
            @ ^ [Y: nat] :
                ( groups1935376822645274424al_nat
                @ ^ [X: real] : ( G @ X @ Y )
                @ ( collect_real
                  @ ^ [X: real] :
                      ( ( member_real @ X @ A2 )
                      & ( R @ X @ Y ) ) ) )
            @ B3 ) ) ) ) ).

% sum.swap_restrict
thf(fact_8220_sum_Oswap__restrict,axiom,
    ! [A2: set_int,B3: set_nat,G: int > nat > nat,R: int > nat > $o] :
      ( ( finite_finite_int @ A2 )
     => ( ( finite_finite_nat @ B3 )
       => ( ( groups4541462559716669496nt_nat
            @ ^ [X: int] :
                ( groups3542108847815614940at_nat @ ( G @ X )
                @ ( collect_nat
                  @ ^ [Y: nat] :
                      ( ( member_nat @ Y @ B3 )
                      & ( R @ X @ Y ) ) ) )
            @ A2 )
          = ( groups3542108847815614940at_nat
            @ ^ [Y: nat] :
                ( groups4541462559716669496nt_nat
                @ ^ [X: int] : ( G @ X @ Y )
                @ ( collect_int
                  @ ^ [X: int] :
                      ( ( member_int @ X @ A2 )
                      & ( R @ X @ Y ) ) ) )
            @ B3 ) ) ) ) ).

% sum.swap_restrict
thf(fact_8221_sum_Oswap__restrict,axiom,
    ! [A2: set_complex,B3: set_nat,G: complex > nat > nat,R: complex > nat > $o] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( ( finite_finite_nat @ B3 )
       => ( ( groups5693394587270226106ex_nat
            @ ^ [X: complex] :
                ( groups3542108847815614940at_nat @ ( G @ X )
                @ ( collect_nat
                  @ ^ [Y: nat] :
                      ( ( member_nat @ Y @ B3 )
                      & ( R @ X @ Y ) ) ) )
            @ A2 )
          = ( groups3542108847815614940at_nat
            @ ^ [Y: nat] :
                ( groups5693394587270226106ex_nat
                @ ^ [X: complex] : ( G @ X @ Y )
                @ ( collect_complex
                  @ ^ [X: complex] :
                      ( ( member_complex @ X @ A2 )
                      & ( R @ X @ Y ) ) ) )
            @ B3 ) ) ) ) ).

% sum.swap_restrict
thf(fact_8222_sum_Oswap__restrict,axiom,
    ! [A2: set_real,B3: set_nat,G: real > nat > real,R: real > nat > $o] :
      ( ( finite_finite_real @ A2 )
     => ( ( finite_finite_nat @ B3 )
       => ( ( groups8097168146408367636l_real
            @ ^ [X: real] :
                ( groups6591440286371151544t_real @ ( G @ X )
                @ ( collect_nat
                  @ ^ [Y: nat] :
                      ( ( member_nat @ Y @ B3 )
                      & ( R @ X @ Y ) ) ) )
            @ A2 )
          = ( groups6591440286371151544t_real
            @ ^ [Y: nat] :
                ( groups8097168146408367636l_real
                @ ^ [X: real] : ( G @ X @ Y )
                @ ( collect_real
                  @ ^ [X: real] :
                      ( ( member_real @ X @ A2 )
                      & ( R @ X @ Y ) ) ) )
            @ B3 ) ) ) ) ).

% sum.swap_restrict
thf(fact_8223_mod__sum__eq,axiom,
    ! [F: int > int,A: int,A2: set_int] :
      ( ( modulo_modulo_int
        @ ( groups4538972089207619220nt_int
          @ ^ [I4: int] : ( modulo_modulo_int @ ( F @ I4 ) @ A )
          @ A2 )
        @ A )
      = ( modulo_modulo_int @ ( groups4538972089207619220nt_int @ F @ A2 ) @ A ) ) ).

% mod_sum_eq
thf(fact_8224_mod__sum__eq,axiom,
    ! [F: nat > nat,A: nat,A2: set_nat] :
      ( ( modulo_modulo_nat
        @ ( groups3542108847815614940at_nat
          @ ^ [I4: nat] : ( modulo_modulo_nat @ ( F @ I4 ) @ A )
          @ A2 )
        @ A )
      = ( modulo_modulo_nat @ ( groups3542108847815614940at_nat @ F @ A2 ) @ A ) ) ).

% mod_sum_eq
thf(fact_8225_sum__nonneg,axiom,
    ! [A2: set_complex,F: complex > real] :
      ( ! [X4: complex] :
          ( ( member_complex @ X4 @ A2 )
         => ( ord_less_eq_real @ zero_zero_real @ ( F @ X4 ) ) )
     => ( ord_less_eq_real @ zero_zero_real @ ( groups5808333547571424918x_real @ F @ A2 ) ) ) ).

% sum_nonneg
thf(fact_8226_sum__nonneg,axiom,
    ! [A2: set_real,F: real > real] :
      ( ! [X4: real] :
          ( ( member_real @ X4 @ A2 )
         => ( ord_less_eq_real @ zero_zero_real @ ( F @ X4 ) ) )
     => ( ord_less_eq_real @ zero_zero_real @ ( groups8097168146408367636l_real @ F @ A2 ) ) ) ).

% sum_nonneg
thf(fact_8227_sum__nonneg,axiom,
    ! [A2: set_int,F: int > real] :
      ( ! [X4: int] :
          ( ( member_int @ X4 @ A2 )
         => ( ord_less_eq_real @ zero_zero_real @ ( F @ X4 ) ) )
     => ( ord_less_eq_real @ zero_zero_real @ ( groups8778361861064173332t_real @ F @ A2 ) ) ) ).

% sum_nonneg
thf(fact_8228_sum__nonneg,axiom,
    ! [A2: set_complex,F: complex > rat] :
      ( ! [X4: complex] :
          ( ( member_complex @ X4 @ A2 )
         => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X4 ) ) )
     => ( ord_less_eq_rat @ zero_zero_rat @ ( groups5058264527183730370ex_rat @ F @ A2 ) ) ) ).

% sum_nonneg
thf(fact_8229_sum__nonneg,axiom,
    ! [A2: set_real,F: real > rat] :
      ( ! [X4: real] :
          ( ( member_real @ X4 @ A2 )
         => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X4 ) ) )
     => ( ord_less_eq_rat @ zero_zero_rat @ ( groups1300246762558778688al_rat @ F @ A2 ) ) ) ).

% sum_nonneg
thf(fact_8230_sum__nonneg,axiom,
    ! [A2: set_nat,F: nat > rat] :
      ( ! [X4: nat] :
          ( ( member_nat @ X4 @ A2 )
         => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X4 ) ) )
     => ( ord_less_eq_rat @ zero_zero_rat @ ( groups2906978787729119204at_rat @ F @ A2 ) ) ) ).

% sum_nonneg
thf(fact_8231_sum__nonneg,axiom,
    ! [A2: set_int,F: int > rat] :
      ( ! [X4: int] :
          ( ( member_int @ X4 @ A2 )
         => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X4 ) ) )
     => ( ord_less_eq_rat @ zero_zero_rat @ ( groups3906332499630173760nt_rat @ F @ A2 ) ) ) ).

% sum_nonneg
thf(fact_8232_sum__nonneg,axiom,
    ! [A2: set_complex,F: complex > nat] :
      ( ! [X4: complex] :
          ( ( member_complex @ X4 @ A2 )
         => ( ord_less_eq_nat @ zero_zero_nat @ ( F @ X4 ) ) )
     => ( ord_less_eq_nat @ zero_zero_nat @ ( groups5693394587270226106ex_nat @ F @ A2 ) ) ) ).

% sum_nonneg
thf(fact_8233_sum__nonneg,axiom,
    ! [A2: set_real,F: real > nat] :
      ( ! [X4: real] :
          ( ( member_real @ X4 @ A2 )
         => ( ord_less_eq_nat @ zero_zero_nat @ ( F @ X4 ) ) )
     => ( ord_less_eq_nat @ zero_zero_nat @ ( groups1935376822645274424al_nat @ F @ A2 ) ) ) ).

% sum_nonneg
thf(fact_8234_sum__nonneg,axiom,
    ! [A2: set_int,F: int > nat] :
      ( ! [X4: int] :
          ( ( member_int @ X4 @ A2 )
         => ( ord_less_eq_nat @ zero_zero_nat @ ( F @ X4 ) ) )
     => ( ord_less_eq_nat @ zero_zero_nat @ ( groups4541462559716669496nt_nat @ F @ A2 ) ) ) ).

% sum_nonneg
thf(fact_8235_sum__nonpos,axiom,
    ! [A2: set_complex,F: complex > real] :
      ( ! [X4: complex] :
          ( ( member_complex @ X4 @ A2 )
         => ( ord_less_eq_real @ ( F @ X4 ) @ zero_zero_real ) )
     => ( ord_less_eq_real @ ( groups5808333547571424918x_real @ F @ A2 ) @ zero_zero_real ) ) ).

% sum_nonpos
thf(fact_8236_sum__nonpos,axiom,
    ! [A2: set_real,F: real > real] :
      ( ! [X4: real] :
          ( ( member_real @ X4 @ A2 )
         => ( ord_less_eq_real @ ( F @ X4 ) @ zero_zero_real ) )
     => ( ord_less_eq_real @ ( groups8097168146408367636l_real @ F @ A2 ) @ zero_zero_real ) ) ).

% sum_nonpos
thf(fact_8237_sum__nonpos,axiom,
    ! [A2: set_int,F: int > real] :
      ( ! [X4: int] :
          ( ( member_int @ X4 @ A2 )
         => ( ord_less_eq_real @ ( F @ X4 ) @ zero_zero_real ) )
     => ( ord_less_eq_real @ ( groups8778361861064173332t_real @ F @ A2 ) @ zero_zero_real ) ) ).

% sum_nonpos
thf(fact_8238_sum__nonpos,axiom,
    ! [A2: set_complex,F: complex > rat] :
      ( ! [X4: complex] :
          ( ( member_complex @ X4 @ A2 )
         => ( ord_less_eq_rat @ ( F @ X4 ) @ zero_zero_rat ) )
     => ( ord_less_eq_rat @ ( groups5058264527183730370ex_rat @ F @ A2 ) @ zero_zero_rat ) ) ).

% sum_nonpos
thf(fact_8239_sum__nonpos,axiom,
    ! [A2: set_real,F: real > rat] :
      ( ! [X4: real] :
          ( ( member_real @ X4 @ A2 )
         => ( ord_less_eq_rat @ ( F @ X4 ) @ zero_zero_rat ) )
     => ( ord_less_eq_rat @ ( groups1300246762558778688al_rat @ F @ A2 ) @ zero_zero_rat ) ) ).

% sum_nonpos
thf(fact_8240_sum__nonpos,axiom,
    ! [A2: set_nat,F: nat > rat] :
      ( ! [X4: nat] :
          ( ( member_nat @ X4 @ A2 )
         => ( ord_less_eq_rat @ ( F @ X4 ) @ zero_zero_rat ) )
     => ( ord_less_eq_rat @ ( groups2906978787729119204at_rat @ F @ A2 ) @ zero_zero_rat ) ) ).

% sum_nonpos
thf(fact_8241_sum__nonpos,axiom,
    ! [A2: set_int,F: int > rat] :
      ( ! [X4: int] :
          ( ( member_int @ X4 @ A2 )
         => ( ord_less_eq_rat @ ( F @ X4 ) @ zero_zero_rat ) )
     => ( ord_less_eq_rat @ ( groups3906332499630173760nt_rat @ F @ A2 ) @ zero_zero_rat ) ) ).

% sum_nonpos
thf(fact_8242_sum__nonpos,axiom,
    ! [A2: set_complex,F: complex > nat] :
      ( ! [X4: complex] :
          ( ( member_complex @ X4 @ A2 )
         => ( ord_less_eq_nat @ ( F @ X4 ) @ zero_zero_nat ) )
     => ( ord_less_eq_nat @ ( groups5693394587270226106ex_nat @ F @ A2 ) @ zero_zero_nat ) ) ).

% sum_nonpos
thf(fact_8243_sum__nonpos,axiom,
    ! [A2: set_real,F: real > nat] :
      ( ! [X4: real] :
          ( ( member_real @ X4 @ A2 )
         => ( ord_less_eq_nat @ ( F @ X4 ) @ zero_zero_nat ) )
     => ( ord_less_eq_nat @ ( groups1935376822645274424al_nat @ F @ A2 ) @ zero_zero_nat ) ) ).

% sum_nonpos
thf(fact_8244_sum__nonpos,axiom,
    ! [A2: set_int,F: int > nat] :
      ( ! [X4: int] :
          ( ( member_int @ X4 @ A2 )
         => ( ord_less_eq_nat @ ( F @ X4 ) @ zero_zero_nat ) )
     => ( ord_less_eq_nat @ ( groups4541462559716669496nt_nat @ F @ A2 ) @ zero_zero_nat ) ) ).

% sum_nonpos
thf(fact_8245_sum__mono__inv,axiom,
    ! [F: real > rat,I5: set_real,G: real > rat,I: real] :
      ( ( ( groups1300246762558778688al_rat @ F @ I5 )
        = ( groups1300246762558778688al_rat @ G @ I5 ) )
     => ( ! [I3: real] :
            ( ( member_real @ I3 @ I5 )
           => ( ord_less_eq_rat @ ( F @ I3 ) @ ( G @ I3 ) ) )
       => ( ( member_real @ I @ I5 )
         => ( ( finite_finite_real @ I5 )
           => ( ( F @ I )
              = ( G @ I ) ) ) ) ) ) ).

% sum_mono_inv
thf(fact_8246_sum__mono__inv,axiom,
    ! [F: nat > rat,I5: set_nat,G: nat > rat,I: nat] :
      ( ( ( groups2906978787729119204at_rat @ F @ I5 )
        = ( groups2906978787729119204at_rat @ G @ I5 ) )
     => ( ! [I3: nat] :
            ( ( member_nat @ I3 @ I5 )
           => ( ord_less_eq_rat @ ( F @ I3 ) @ ( G @ I3 ) ) )
       => ( ( member_nat @ I @ I5 )
         => ( ( finite_finite_nat @ I5 )
           => ( ( F @ I )
              = ( G @ I ) ) ) ) ) ) ).

% sum_mono_inv
thf(fact_8247_sum__mono__inv,axiom,
    ! [F: int > rat,I5: set_int,G: int > rat,I: int] :
      ( ( ( groups3906332499630173760nt_rat @ F @ I5 )
        = ( groups3906332499630173760nt_rat @ G @ I5 ) )
     => ( ! [I3: int] :
            ( ( member_int @ I3 @ I5 )
           => ( ord_less_eq_rat @ ( F @ I3 ) @ ( G @ I3 ) ) )
       => ( ( member_int @ I @ I5 )
         => ( ( finite_finite_int @ I5 )
           => ( ( F @ I )
              = ( G @ I ) ) ) ) ) ) ).

% sum_mono_inv
thf(fact_8248_sum__mono__inv,axiom,
    ! [F: complex > rat,I5: set_complex,G: complex > rat,I: complex] :
      ( ( ( groups5058264527183730370ex_rat @ F @ I5 )
        = ( groups5058264527183730370ex_rat @ G @ I5 ) )
     => ( ! [I3: complex] :
            ( ( member_complex @ I3 @ I5 )
           => ( ord_less_eq_rat @ ( F @ I3 ) @ ( G @ I3 ) ) )
       => ( ( member_complex @ I @ I5 )
         => ( ( finite3207457112153483333omplex @ I5 )
           => ( ( F @ I )
              = ( G @ I ) ) ) ) ) ) ).

% sum_mono_inv
thf(fact_8249_sum__mono__inv,axiom,
    ! [F: real > nat,I5: set_real,G: real > nat,I: real] :
      ( ( ( groups1935376822645274424al_nat @ F @ I5 )
        = ( groups1935376822645274424al_nat @ G @ I5 ) )
     => ( ! [I3: real] :
            ( ( member_real @ I3 @ I5 )
           => ( ord_less_eq_nat @ ( F @ I3 ) @ ( G @ I3 ) ) )
       => ( ( member_real @ I @ I5 )
         => ( ( finite_finite_real @ I5 )
           => ( ( F @ I )
              = ( G @ I ) ) ) ) ) ) ).

% sum_mono_inv
thf(fact_8250_sum__mono__inv,axiom,
    ! [F: int > nat,I5: set_int,G: int > nat,I: int] :
      ( ( ( groups4541462559716669496nt_nat @ F @ I5 )
        = ( groups4541462559716669496nt_nat @ G @ I5 ) )
     => ( ! [I3: int] :
            ( ( member_int @ I3 @ I5 )
           => ( ord_less_eq_nat @ ( F @ I3 ) @ ( G @ I3 ) ) )
       => ( ( member_int @ I @ I5 )
         => ( ( finite_finite_int @ I5 )
           => ( ( F @ I )
              = ( G @ I ) ) ) ) ) ) ).

% sum_mono_inv
thf(fact_8251_sum__mono__inv,axiom,
    ! [F: complex > nat,I5: set_complex,G: complex > nat,I: complex] :
      ( ( ( groups5693394587270226106ex_nat @ F @ I5 )
        = ( groups5693394587270226106ex_nat @ G @ I5 ) )
     => ( ! [I3: complex] :
            ( ( member_complex @ I3 @ I5 )
           => ( ord_less_eq_nat @ ( F @ I3 ) @ ( G @ I3 ) ) )
       => ( ( member_complex @ I @ I5 )
         => ( ( finite3207457112153483333omplex @ I5 )
           => ( ( F @ I )
              = ( G @ I ) ) ) ) ) ) ).

% sum_mono_inv
thf(fact_8252_sum__mono__inv,axiom,
    ! [F: real > int,I5: set_real,G: real > int,I: real] :
      ( ( ( groups1932886352136224148al_int @ F @ I5 )
        = ( groups1932886352136224148al_int @ G @ I5 ) )
     => ( ! [I3: real] :
            ( ( member_real @ I3 @ I5 )
           => ( ord_less_eq_int @ ( F @ I3 ) @ ( G @ I3 ) ) )
       => ( ( member_real @ I @ I5 )
         => ( ( finite_finite_real @ I5 )
           => ( ( F @ I )
              = ( G @ I ) ) ) ) ) ) ).

% sum_mono_inv
thf(fact_8253_sum__mono__inv,axiom,
    ! [F: nat > int,I5: set_nat,G: nat > int,I: nat] :
      ( ( ( groups3539618377306564664at_int @ F @ I5 )
        = ( groups3539618377306564664at_int @ G @ I5 ) )
     => ( ! [I3: nat] :
            ( ( member_nat @ I3 @ I5 )
           => ( ord_less_eq_int @ ( F @ I3 ) @ ( G @ I3 ) ) )
       => ( ( member_nat @ I @ I5 )
         => ( ( finite_finite_nat @ I5 )
           => ( ( F @ I )
              = ( G @ I ) ) ) ) ) ) ).

% sum_mono_inv
thf(fact_8254_sum__mono__inv,axiom,
    ! [F: complex > int,I5: set_complex,G: complex > int,I: complex] :
      ( ( ( groups5690904116761175830ex_int @ F @ I5 )
        = ( groups5690904116761175830ex_int @ G @ I5 ) )
     => ( ! [I3: complex] :
            ( ( member_complex @ I3 @ I5 )
           => ( ord_less_eq_int @ ( F @ I3 ) @ ( G @ I3 ) ) )
       => ( ( member_complex @ I @ I5 )
         => ( ( finite3207457112153483333omplex @ I5 )
           => ( ( F @ I )
              = ( G @ I ) ) ) ) ) ) ).

% sum_mono_inv
thf(fact_8255_sum_Ointer__filter,axiom,
    ! [A2: set_real,G: real > complex,P: real > $o] :
      ( ( finite_finite_real @ A2 )
     => ( ( groups5754745047067104278omplex @ G
          @ ( collect_real
            @ ^ [X: real] :
                ( ( member_real @ X @ A2 )
                & ( P @ X ) ) ) )
        = ( groups5754745047067104278omplex
          @ ^ [X: real] : ( if_complex @ ( P @ X ) @ ( G @ X ) @ zero_zero_complex )
          @ A2 ) ) ) ).

% sum.inter_filter
thf(fact_8256_sum_Ointer__filter,axiom,
    ! [A2: set_nat,G: nat > complex,P: nat > $o] :
      ( ( finite_finite_nat @ A2 )
     => ( ( groups2073611262835488442omplex @ G
          @ ( collect_nat
            @ ^ [X: nat] :
                ( ( member_nat @ X @ A2 )
                & ( P @ X ) ) ) )
        = ( groups2073611262835488442omplex
          @ ^ [X: nat] : ( if_complex @ ( P @ X ) @ ( G @ X ) @ zero_zero_complex )
          @ A2 ) ) ) ).

% sum.inter_filter
thf(fact_8257_sum_Ointer__filter,axiom,
    ! [A2: set_int,G: int > complex,P: int > $o] :
      ( ( finite_finite_int @ A2 )
     => ( ( groups3049146728041665814omplex @ G
          @ ( collect_int
            @ ^ [X: int] :
                ( ( member_int @ X @ A2 )
                & ( P @ X ) ) ) )
        = ( groups3049146728041665814omplex
          @ ^ [X: int] : ( if_complex @ ( P @ X ) @ ( G @ X ) @ zero_zero_complex )
          @ A2 ) ) ) ).

% sum.inter_filter
thf(fact_8258_sum_Ointer__filter,axiom,
    ! [A2: set_real,G: real > real,P: real > $o] :
      ( ( finite_finite_real @ A2 )
     => ( ( groups8097168146408367636l_real @ G
          @ ( collect_real
            @ ^ [X: real] :
                ( ( member_real @ X @ A2 )
                & ( P @ X ) ) ) )
        = ( groups8097168146408367636l_real
          @ ^ [X: real] : ( if_real @ ( P @ X ) @ ( G @ X ) @ zero_zero_real )
          @ A2 ) ) ) ).

% sum.inter_filter
thf(fact_8259_sum_Ointer__filter,axiom,
    ! [A2: set_int,G: int > real,P: int > $o] :
      ( ( finite_finite_int @ A2 )
     => ( ( groups8778361861064173332t_real @ G
          @ ( collect_int
            @ ^ [X: int] :
                ( ( member_int @ X @ A2 )
                & ( P @ X ) ) ) )
        = ( groups8778361861064173332t_real
          @ ^ [X: int] : ( if_real @ ( P @ X ) @ ( G @ X ) @ zero_zero_real )
          @ A2 ) ) ) ).

% sum.inter_filter
thf(fact_8260_sum_Ointer__filter,axiom,
    ! [A2: set_complex,G: complex > real,P: complex > $o] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( ( groups5808333547571424918x_real @ G
          @ ( collect_complex
            @ ^ [X: complex] :
                ( ( member_complex @ X @ A2 )
                & ( P @ X ) ) ) )
        = ( groups5808333547571424918x_real
          @ ^ [X: complex] : ( if_real @ ( P @ X ) @ ( G @ X ) @ zero_zero_real )
          @ A2 ) ) ) ).

% sum.inter_filter
thf(fact_8261_sum_Ointer__filter,axiom,
    ! [A2: set_real,G: real > rat,P: real > $o] :
      ( ( finite_finite_real @ A2 )
     => ( ( groups1300246762558778688al_rat @ G
          @ ( collect_real
            @ ^ [X: real] :
                ( ( member_real @ X @ A2 )
                & ( P @ X ) ) ) )
        = ( groups1300246762558778688al_rat
          @ ^ [X: real] : ( if_rat @ ( P @ X ) @ ( G @ X ) @ zero_zero_rat )
          @ A2 ) ) ) ).

% sum.inter_filter
thf(fact_8262_sum_Ointer__filter,axiom,
    ! [A2: set_nat,G: nat > rat,P: nat > $o] :
      ( ( finite_finite_nat @ A2 )
     => ( ( groups2906978787729119204at_rat @ G
          @ ( collect_nat
            @ ^ [X: nat] :
                ( ( member_nat @ X @ A2 )
                & ( P @ X ) ) ) )
        = ( groups2906978787729119204at_rat
          @ ^ [X: nat] : ( if_rat @ ( P @ X ) @ ( G @ X ) @ zero_zero_rat )
          @ A2 ) ) ) ).

% sum.inter_filter
thf(fact_8263_sum_Ointer__filter,axiom,
    ! [A2: set_int,G: int > rat,P: int > $o] :
      ( ( finite_finite_int @ A2 )
     => ( ( groups3906332499630173760nt_rat @ G
          @ ( collect_int
            @ ^ [X: int] :
                ( ( member_int @ X @ A2 )
                & ( P @ X ) ) ) )
        = ( groups3906332499630173760nt_rat
          @ ^ [X: int] : ( if_rat @ ( P @ X ) @ ( G @ X ) @ zero_zero_rat )
          @ A2 ) ) ) ).

% sum.inter_filter
thf(fact_8264_sum_Ointer__filter,axiom,
    ! [A2: set_complex,G: complex > rat,P: complex > $o] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( ( groups5058264527183730370ex_rat @ G
          @ ( collect_complex
            @ ^ [X: complex] :
                ( ( member_complex @ X @ A2 )
                & ( P @ X ) ) ) )
        = ( groups5058264527183730370ex_rat
          @ ^ [X: complex] : ( if_rat @ ( P @ X ) @ ( G @ X ) @ zero_zero_rat )
          @ A2 ) ) ) ).

% sum.inter_filter
thf(fact_8265_sum_Oimage__gen,axiom,
    ! [S3: set_real,H2: real > int,G: real > int] :
      ( ( finite_finite_real @ S3 )
     => ( ( groups1932886352136224148al_int @ H2 @ S3 )
        = ( groups4538972089207619220nt_int
          @ ^ [Y: int] :
              ( groups1932886352136224148al_int @ H2
              @ ( collect_real
                @ ^ [X: real] :
                    ( ( member_real @ X @ S3 )
                    & ( ( G @ X )
                      = Y ) ) ) )
          @ ( image_real_int @ G @ S3 ) ) ) ) ).

% sum.image_gen
thf(fact_8266_sum_Oimage__gen,axiom,
    ! [S3: set_nat,H2: nat > int,G: nat > int] :
      ( ( finite_finite_nat @ S3 )
     => ( ( groups3539618377306564664at_int @ H2 @ S3 )
        = ( groups4538972089207619220nt_int
          @ ^ [Y: int] :
              ( groups3539618377306564664at_int @ H2
              @ ( collect_nat
                @ ^ [X: nat] :
                    ( ( member_nat @ X @ S3 )
                    & ( ( G @ X )
                      = Y ) ) ) )
          @ ( image_nat_int @ G @ S3 ) ) ) ) ).

% sum.image_gen
thf(fact_8267_sum_Oimage__gen,axiom,
    ! [S3: set_complex,H2: complex > int,G: complex > int] :
      ( ( finite3207457112153483333omplex @ S3 )
     => ( ( groups5690904116761175830ex_int @ H2 @ S3 )
        = ( groups4538972089207619220nt_int
          @ ^ [Y: int] :
              ( groups5690904116761175830ex_int @ H2
              @ ( collect_complex
                @ ^ [X: complex] :
                    ( ( member_complex @ X @ S3 )
                    & ( ( G @ X )
                      = Y ) ) ) )
          @ ( image_complex_int @ G @ S3 ) ) ) ) ).

% sum.image_gen
thf(fact_8268_sum_Oimage__gen,axiom,
    ! [S3: set_real,H2: real > complex,G: real > complex] :
      ( ( finite_finite_real @ S3 )
     => ( ( groups5754745047067104278omplex @ H2 @ S3 )
        = ( groups7754918857620584856omplex
          @ ^ [Y: complex] :
              ( groups5754745047067104278omplex @ H2
              @ ( collect_real
                @ ^ [X: real] :
                    ( ( member_real @ X @ S3 )
                    & ( ( G @ X )
                      = Y ) ) ) )
          @ ( image_real_complex @ G @ S3 ) ) ) ) ).

% sum.image_gen
thf(fact_8269_sum_Oimage__gen,axiom,
    ! [S3: set_nat,H2: nat > complex,G: nat > complex] :
      ( ( finite_finite_nat @ S3 )
     => ( ( groups2073611262835488442omplex @ H2 @ S3 )
        = ( groups7754918857620584856omplex
          @ ^ [Y: complex] :
              ( groups2073611262835488442omplex @ H2
              @ ( collect_nat
                @ ^ [X: nat] :
                    ( ( member_nat @ X @ S3 )
                    & ( ( G @ X )
                      = Y ) ) ) )
          @ ( image_nat_complex @ G @ S3 ) ) ) ) ).

% sum.image_gen
thf(fact_8270_sum_Oimage__gen,axiom,
    ! [S3: set_int,H2: int > complex,G: int > complex] :
      ( ( finite_finite_int @ S3 )
     => ( ( groups3049146728041665814omplex @ H2 @ S3 )
        = ( groups7754918857620584856omplex
          @ ^ [Y: complex] :
              ( groups3049146728041665814omplex @ H2
              @ ( collect_int
                @ ^ [X: int] :
                    ( ( member_int @ X @ S3 )
                    & ( ( G @ X )
                      = Y ) ) ) )
          @ ( image_int_complex @ G @ S3 ) ) ) ) ).

% sum.image_gen
thf(fact_8271_sum_Oimage__gen,axiom,
    ! [S3: set_real,H2: real > nat,G: real > nat] :
      ( ( finite_finite_real @ S3 )
     => ( ( groups1935376822645274424al_nat @ H2 @ S3 )
        = ( groups3542108847815614940at_nat
          @ ^ [Y: nat] :
              ( groups1935376822645274424al_nat @ H2
              @ ( collect_real
                @ ^ [X: real] :
                    ( ( member_real @ X @ S3 )
                    & ( ( G @ X )
                      = Y ) ) ) )
          @ ( image_real_nat @ G @ S3 ) ) ) ) ).

% sum.image_gen
thf(fact_8272_sum_Oimage__gen,axiom,
    ! [S3: set_int,H2: int > nat,G: int > nat] :
      ( ( finite_finite_int @ S3 )
     => ( ( groups4541462559716669496nt_nat @ H2 @ S3 )
        = ( groups3542108847815614940at_nat
          @ ^ [Y: nat] :
              ( groups4541462559716669496nt_nat @ H2
              @ ( collect_int
                @ ^ [X: int] :
                    ( ( member_int @ X @ S3 )
                    & ( ( G @ X )
                      = Y ) ) ) )
          @ ( image_int_nat @ G @ S3 ) ) ) ) ).

% sum.image_gen
thf(fact_8273_sum_Oimage__gen,axiom,
    ! [S3: set_complex,H2: complex > nat,G: complex > nat] :
      ( ( finite3207457112153483333omplex @ S3 )
     => ( ( groups5693394587270226106ex_nat @ H2 @ S3 )
        = ( groups3542108847815614940at_nat
          @ ^ [Y: nat] :
              ( groups5693394587270226106ex_nat @ H2
              @ ( collect_complex
                @ ^ [X: complex] :
                    ( ( member_complex @ X @ S3 )
                    & ( ( G @ X )
                      = Y ) ) ) )
          @ ( image_complex_nat @ G @ S3 ) ) ) ) ).

% sum.image_gen
thf(fact_8274_sum_Oimage__gen,axiom,
    ! [S3: set_real,H2: real > real,G: real > nat] :
      ( ( finite_finite_real @ S3 )
     => ( ( groups8097168146408367636l_real @ H2 @ S3 )
        = ( groups6591440286371151544t_real
          @ ^ [Y: nat] :
              ( groups8097168146408367636l_real @ H2
              @ ( collect_real
                @ ^ [X: real] :
                    ( ( member_real @ X @ S3 )
                    & ( ( G @ X )
                      = Y ) ) ) )
          @ ( image_real_nat @ G @ S3 ) ) ) ) ).

% sum.image_gen
thf(fact_8275_mask__nonnegative__int,axiom,
    ! [N: nat] : ( ord_less_eq_int @ zero_zero_int @ ( bit_se2000444600071755411sk_int @ N ) ) ).

% mask_nonnegative_int
thf(fact_8276_not__mask__negative__int,axiom,
    ! [N: nat] :
      ~ ( ord_less_int @ ( bit_se2000444600071755411sk_int @ N ) @ zero_zero_int ) ).

% not_mask_negative_int
thf(fact_8277_sum__nonneg__eq__0__iff,axiom,
    ! [A2: set_real,F: real > real] :
      ( ( finite_finite_real @ A2 )
     => ( ! [X4: real] :
            ( ( member_real @ X4 @ A2 )
           => ( ord_less_eq_real @ zero_zero_real @ ( F @ X4 ) ) )
       => ( ( ( groups8097168146408367636l_real @ F @ A2 )
            = zero_zero_real )
          = ( ! [X: real] :
                ( ( member_real @ X @ A2 )
               => ( ( F @ X )
                  = zero_zero_real ) ) ) ) ) ) ).

% sum_nonneg_eq_0_iff
thf(fact_8278_sum__nonneg__eq__0__iff,axiom,
    ! [A2: set_int,F: int > real] :
      ( ( finite_finite_int @ A2 )
     => ( ! [X4: int] :
            ( ( member_int @ X4 @ A2 )
           => ( ord_less_eq_real @ zero_zero_real @ ( F @ X4 ) ) )
       => ( ( ( groups8778361861064173332t_real @ F @ A2 )
            = zero_zero_real )
          = ( ! [X: int] :
                ( ( member_int @ X @ A2 )
               => ( ( F @ X )
                  = zero_zero_real ) ) ) ) ) ) ).

% sum_nonneg_eq_0_iff
thf(fact_8279_sum__nonneg__eq__0__iff,axiom,
    ! [A2: set_complex,F: complex > real] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( ! [X4: complex] :
            ( ( member_complex @ X4 @ A2 )
           => ( ord_less_eq_real @ zero_zero_real @ ( F @ X4 ) ) )
       => ( ( ( groups5808333547571424918x_real @ F @ A2 )
            = zero_zero_real )
          = ( ! [X: complex] :
                ( ( member_complex @ X @ A2 )
               => ( ( F @ X )
                  = zero_zero_real ) ) ) ) ) ) ).

% sum_nonneg_eq_0_iff
thf(fact_8280_sum__nonneg__eq__0__iff,axiom,
    ! [A2: set_real,F: real > rat] :
      ( ( finite_finite_real @ A2 )
     => ( ! [X4: real] :
            ( ( member_real @ X4 @ A2 )
           => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X4 ) ) )
       => ( ( ( groups1300246762558778688al_rat @ F @ A2 )
            = zero_zero_rat )
          = ( ! [X: real] :
                ( ( member_real @ X @ A2 )
               => ( ( F @ X )
                  = zero_zero_rat ) ) ) ) ) ) ).

% sum_nonneg_eq_0_iff
thf(fact_8281_sum__nonneg__eq__0__iff,axiom,
    ! [A2: set_nat,F: nat > rat] :
      ( ( finite_finite_nat @ A2 )
     => ( ! [X4: nat] :
            ( ( member_nat @ X4 @ A2 )
           => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X4 ) ) )
       => ( ( ( groups2906978787729119204at_rat @ F @ A2 )
            = zero_zero_rat )
          = ( ! [X: nat] :
                ( ( member_nat @ X @ A2 )
               => ( ( F @ X )
                  = zero_zero_rat ) ) ) ) ) ) ).

% sum_nonneg_eq_0_iff
thf(fact_8282_sum__nonneg__eq__0__iff,axiom,
    ! [A2: set_int,F: int > rat] :
      ( ( finite_finite_int @ A2 )
     => ( ! [X4: int] :
            ( ( member_int @ X4 @ A2 )
           => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X4 ) ) )
       => ( ( ( groups3906332499630173760nt_rat @ F @ A2 )
            = zero_zero_rat )
          = ( ! [X: int] :
                ( ( member_int @ X @ A2 )
               => ( ( F @ X )
                  = zero_zero_rat ) ) ) ) ) ) ).

% sum_nonneg_eq_0_iff
thf(fact_8283_sum__nonneg__eq__0__iff,axiom,
    ! [A2: set_complex,F: complex > rat] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( ! [X4: complex] :
            ( ( member_complex @ X4 @ A2 )
           => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X4 ) ) )
       => ( ( ( groups5058264527183730370ex_rat @ F @ A2 )
            = zero_zero_rat )
          = ( ! [X: complex] :
                ( ( member_complex @ X @ A2 )
               => ( ( F @ X )
                  = zero_zero_rat ) ) ) ) ) ) ).

% sum_nonneg_eq_0_iff
thf(fact_8284_sum__nonneg__eq__0__iff,axiom,
    ! [A2: set_real,F: real > nat] :
      ( ( finite_finite_real @ A2 )
     => ( ! [X4: real] :
            ( ( member_real @ X4 @ A2 )
           => ( ord_less_eq_nat @ zero_zero_nat @ ( F @ X4 ) ) )
       => ( ( ( groups1935376822645274424al_nat @ F @ A2 )
            = zero_zero_nat )
          = ( ! [X: real] :
                ( ( member_real @ X @ A2 )
               => ( ( F @ X )
                  = zero_zero_nat ) ) ) ) ) ) ).

% sum_nonneg_eq_0_iff
thf(fact_8285_sum__nonneg__eq__0__iff,axiom,
    ! [A2: set_int,F: int > nat] :
      ( ( finite_finite_int @ A2 )
     => ( ! [X4: int] :
            ( ( member_int @ X4 @ A2 )
           => ( ord_less_eq_nat @ zero_zero_nat @ ( F @ X4 ) ) )
       => ( ( ( groups4541462559716669496nt_nat @ F @ A2 )
            = zero_zero_nat )
          = ( ! [X: int] :
                ( ( member_int @ X @ A2 )
               => ( ( F @ X )
                  = zero_zero_nat ) ) ) ) ) ) ).

% sum_nonneg_eq_0_iff
thf(fact_8286_sum__nonneg__eq__0__iff,axiom,
    ! [A2: set_complex,F: complex > nat] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( ! [X4: complex] :
            ( ( member_complex @ X4 @ A2 )
           => ( ord_less_eq_nat @ zero_zero_nat @ ( F @ X4 ) ) )
       => ( ( ( groups5693394587270226106ex_nat @ F @ A2 )
            = zero_zero_nat )
          = ( ! [X: complex] :
                ( ( member_complex @ X @ A2 )
               => ( ( F @ X )
                  = zero_zero_nat ) ) ) ) ) ) ).

% sum_nonneg_eq_0_iff
thf(fact_8287_sum__le__included,axiom,
    ! [S: set_int,T: set_int,G: int > real,I: int > int,F: int > real] :
      ( ( finite_finite_int @ S )
     => ( ( finite_finite_int @ T )
       => ( ! [X4: int] :
              ( ( member_int @ X4 @ T )
             => ( ord_less_eq_real @ zero_zero_real @ ( G @ X4 ) ) )
         => ( ! [X4: int] :
                ( ( member_int @ X4 @ S )
               => ? [Xa: int] :
                    ( ( member_int @ Xa @ T )
                    & ( ( I @ Xa )
                      = X4 )
                    & ( ord_less_eq_real @ ( F @ X4 ) @ ( G @ Xa ) ) ) )
           => ( ord_less_eq_real @ ( groups8778361861064173332t_real @ F @ S ) @ ( groups8778361861064173332t_real @ G @ T ) ) ) ) ) ) ).

% sum_le_included
thf(fact_8288_sum__le__included,axiom,
    ! [S: set_int,T: set_complex,G: complex > real,I: complex > int,F: int > real] :
      ( ( finite_finite_int @ S )
     => ( ( finite3207457112153483333omplex @ T )
       => ( ! [X4: complex] :
              ( ( member_complex @ X4 @ T )
             => ( ord_less_eq_real @ zero_zero_real @ ( G @ X4 ) ) )
         => ( ! [X4: int] :
                ( ( member_int @ X4 @ S )
               => ? [Xa: complex] :
                    ( ( member_complex @ Xa @ T )
                    & ( ( I @ Xa )
                      = X4 )
                    & ( ord_less_eq_real @ ( F @ X4 ) @ ( G @ Xa ) ) ) )
           => ( ord_less_eq_real @ ( groups8778361861064173332t_real @ F @ S ) @ ( groups5808333547571424918x_real @ G @ T ) ) ) ) ) ) ).

% sum_le_included
thf(fact_8289_sum__le__included,axiom,
    ! [S: set_complex,T: set_int,G: int > real,I: int > complex,F: complex > real] :
      ( ( finite3207457112153483333omplex @ S )
     => ( ( finite_finite_int @ T )
       => ( ! [X4: int] :
              ( ( member_int @ X4 @ T )
             => ( ord_less_eq_real @ zero_zero_real @ ( G @ X4 ) ) )
         => ( ! [X4: complex] :
                ( ( member_complex @ X4 @ S )
               => ? [Xa: int] :
                    ( ( member_int @ Xa @ T )
                    & ( ( I @ Xa )
                      = X4 )
                    & ( ord_less_eq_real @ ( F @ X4 ) @ ( G @ Xa ) ) ) )
           => ( ord_less_eq_real @ ( groups5808333547571424918x_real @ F @ S ) @ ( groups8778361861064173332t_real @ G @ T ) ) ) ) ) ) ).

% sum_le_included
thf(fact_8290_sum__le__included,axiom,
    ! [S: set_complex,T: set_complex,G: complex > real,I: complex > complex,F: complex > real] :
      ( ( finite3207457112153483333omplex @ S )
     => ( ( finite3207457112153483333omplex @ T )
       => ( ! [X4: complex] :
              ( ( member_complex @ X4 @ T )
             => ( ord_less_eq_real @ zero_zero_real @ ( G @ X4 ) ) )
         => ( ! [X4: complex] :
                ( ( member_complex @ X4 @ S )
               => ? [Xa: complex] :
                    ( ( member_complex @ Xa @ T )
                    & ( ( I @ Xa )
                      = X4 )
                    & ( ord_less_eq_real @ ( F @ X4 ) @ ( G @ Xa ) ) ) )
           => ( ord_less_eq_real @ ( groups5808333547571424918x_real @ F @ S ) @ ( groups5808333547571424918x_real @ G @ T ) ) ) ) ) ) ).

% sum_le_included
thf(fact_8291_sum__le__included,axiom,
    ! [S: set_nat,T: set_nat,G: nat > rat,I: nat > nat,F: nat > rat] :
      ( ( finite_finite_nat @ S )
     => ( ( finite_finite_nat @ T )
       => ( ! [X4: nat] :
              ( ( member_nat @ X4 @ T )
             => ( ord_less_eq_rat @ zero_zero_rat @ ( G @ X4 ) ) )
         => ( ! [X4: nat] :
                ( ( member_nat @ X4 @ S )
               => ? [Xa: nat] :
                    ( ( member_nat @ Xa @ T )
                    & ( ( I @ Xa )
                      = X4 )
                    & ( ord_less_eq_rat @ ( F @ X4 ) @ ( G @ Xa ) ) ) )
           => ( ord_less_eq_rat @ ( groups2906978787729119204at_rat @ F @ S ) @ ( groups2906978787729119204at_rat @ G @ T ) ) ) ) ) ) ).

% sum_le_included
thf(fact_8292_sum__le__included,axiom,
    ! [S: set_nat,T: set_int,G: int > rat,I: int > nat,F: nat > rat] :
      ( ( finite_finite_nat @ S )
     => ( ( finite_finite_int @ T )
       => ( ! [X4: int] :
              ( ( member_int @ X4 @ T )
             => ( ord_less_eq_rat @ zero_zero_rat @ ( G @ X4 ) ) )
         => ( ! [X4: nat] :
                ( ( member_nat @ X4 @ S )
               => ? [Xa: int] :
                    ( ( member_int @ Xa @ T )
                    & ( ( I @ Xa )
                      = X4 )
                    & ( ord_less_eq_rat @ ( F @ X4 ) @ ( G @ Xa ) ) ) )
           => ( ord_less_eq_rat @ ( groups2906978787729119204at_rat @ F @ S ) @ ( groups3906332499630173760nt_rat @ G @ T ) ) ) ) ) ) ).

% sum_le_included
thf(fact_8293_sum__le__included,axiom,
    ! [S: set_nat,T: set_complex,G: complex > rat,I: complex > nat,F: nat > rat] :
      ( ( finite_finite_nat @ S )
     => ( ( finite3207457112153483333omplex @ T )
       => ( ! [X4: complex] :
              ( ( member_complex @ X4 @ T )
             => ( ord_less_eq_rat @ zero_zero_rat @ ( G @ X4 ) ) )
         => ( ! [X4: nat] :
                ( ( member_nat @ X4 @ S )
               => ? [Xa: complex] :
                    ( ( member_complex @ Xa @ T )
                    & ( ( I @ Xa )
                      = X4 )
                    & ( ord_less_eq_rat @ ( F @ X4 ) @ ( G @ Xa ) ) ) )
           => ( ord_less_eq_rat @ ( groups2906978787729119204at_rat @ F @ S ) @ ( groups5058264527183730370ex_rat @ G @ T ) ) ) ) ) ) ).

% sum_le_included
thf(fact_8294_sum__le__included,axiom,
    ! [S: set_int,T: set_nat,G: nat > rat,I: nat > int,F: int > rat] :
      ( ( finite_finite_int @ S )
     => ( ( finite_finite_nat @ T )
       => ( ! [X4: nat] :
              ( ( member_nat @ X4 @ T )
             => ( ord_less_eq_rat @ zero_zero_rat @ ( G @ X4 ) ) )
         => ( ! [X4: int] :
                ( ( member_int @ X4 @ S )
               => ? [Xa: nat] :
                    ( ( member_nat @ Xa @ T )
                    & ( ( I @ Xa )
                      = X4 )
                    & ( ord_less_eq_rat @ ( F @ X4 ) @ ( G @ Xa ) ) ) )
           => ( ord_less_eq_rat @ ( groups3906332499630173760nt_rat @ F @ S ) @ ( groups2906978787729119204at_rat @ G @ T ) ) ) ) ) ) ).

% sum_le_included
thf(fact_8295_sum__le__included,axiom,
    ! [S: set_int,T: set_int,G: int > rat,I: int > int,F: int > rat] :
      ( ( finite_finite_int @ S )
     => ( ( finite_finite_int @ T )
       => ( ! [X4: int] :
              ( ( member_int @ X4 @ T )
             => ( ord_less_eq_rat @ zero_zero_rat @ ( G @ X4 ) ) )
         => ( ! [X4: int] :
                ( ( member_int @ X4 @ S )
               => ? [Xa: int] :
                    ( ( member_int @ Xa @ T )
                    & ( ( I @ Xa )
                      = X4 )
                    & ( ord_less_eq_rat @ ( F @ X4 ) @ ( G @ Xa ) ) ) )
           => ( ord_less_eq_rat @ ( groups3906332499630173760nt_rat @ F @ S ) @ ( groups3906332499630173760nt_rat @ G @ T ) ) ) ) ) ) ).

% sum_le_included
thf(fact_8296_sum__le__included,axiom,
    ! [S: set_int,T: set_complex,G: complex > rat,I: complex > int,F: int > rat] :
      ( ( finite_finite_int @ S )
     => ( ( finite3207457112153483333omplex @ T )
       => ( ! [X4: complex] :
              ( ( member_complex @ X4 @ T )
             => ( ord_less_eq_rat @ zero_zero_rat @ ( G @ X4 ) ) )
         => ( ! [X4: int] :
                ( ( member_int @ X4 @ S )
               => ? [Xa: complex] :
                    ( ( member_complex @ Xa @ T )
                    & ( ( I @ Xa )
                      = X4 )
                    & ( ord_less_eq_rat @ ( F @ X4 ) @ ( G @ Xa ) ) ) )
           => ( ord_less_eq_rat @ ( groups3906332499630173760nt_rat @ F @ S ) @ ( groups5058264527183730370ex_rat @ G @ T ) ) ) ) ) ) ).

% sum_le_included
thf(fact_8297_sum__strict__mono__ex1,axiom,
    ! [A2: set_int,F: int > real,G: int > real] :
      ( ( finite_finite_int @ A2 )
     => ( ! [X4: int] :
            ( ( member_int @ X4 @ A2 )
           => ( ord_less_eq_real @ ( F @ X4 ) @ ( G @ X4 ) ) )
       => ( ? [X3: int] :
              ( ( member_int @ X3 @ A2 )
              & ( ord_less_real @ ( F @ X3 ) @ ( G @ X3 ) ) )
         => ( ord_less_real @ ( groups8778361861064173332t_real @ F @ A2 ) @ ( groups8778361861064173332t_real @ G @ A2 ) ) ) ) ) ).

% sum_strict_mono_ex1
thf(fact_8298_sum__strict__mono__ex1,axiom,
    ! [A2: set_complex,F: complex > real,G: complex > real] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( ! [X4: complex] :
            ( ( member_complex @ X4 @ A2 )
           => ( ord_less_eq_real @ ( F @ X4 ) @ ( G @ X4 ) ) )
       => ( ? [X3: complex] :
              ( ( member_complex @ X3 @ A2 )
              & ( ord_less_real @ ( F @ X3 ) @ ( G @ X3 ) ) )
         => ( ord_less_real @ ( groups5808333547571424918x_real @ F @ A2 ) @ ( groups5808333547571424918x_real @ G @ A2 ) ) ) ) ) ).

% sum_strict_mono_ex1
thf(fact_8299_sum__strict__mono__ex1,axiom,
    ! [A2: set_nat,F: nat > rat,G: nat > rat] :
      ( ( finite_finite_nat @ A2 )
     => ( ! [X4: nat] :
            ( ( member_nat @ X4 @ A2 )
           => ( ord_less_eq_rat @ ( F @ X4 ) @ ( G @ X4 ) ) )
       => ( ? [X3: nat] :
              ( ( member_nat @ X3 @ A2 )
              & ( ord_less_rat @ ( F @ X3 ) @ ( G @ X3 ) ) )
         => ( ord_less_rat @ ( groups2906978787729119204at_rat @ F @ A2 ) @ ( groups2906978787729119204at_rat @ G @ A2 ) ) ) ) ) ).

% sum_strict_mono_ex1
thf(fact_8300_sum__strict__mono__ex1,axiom,
    ! [A2: set_int,F: int > rat,G: int > rat] :
      ( ( finite_finite_int @ A2 )
     => ( ! [X4: int] :
            ( ( member_int @ X4 @ A2 )
           => ( ord_less_eq_rat @ ( F @ X4 ) @ ( G @ X4 ) ) )
       => ( ? [X3: int] :
              ( ( member_int @ X3 @ A2 )
              & ( ord_less_rat @ ( F @ X3 ) @ ( G @ X3 ) ) )
         => ( ord_less_rat @ ( groups3906332499630173760nt_rat @ F @ A2 ) @ ( groups3906332499630173760nt_rat @ G @ A2 ) ) ) ) ) ).

% sum_strict_mono_ex1
thf(fact_8301_sum__strict__mono__ex1,axiom,
    ! [A2: set_complex,F: complex > rat,G: complex > rat] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( ! [X4: complex] :
            ( ( member_complex @ X4 @ A2 )
           => ( ord_less_eq_rat @ ( F @ X4 ) @ ( G @ X4 ) ) )
       => ( ? [X3: complex] :
              ( ( member_complex @ X3 @ A2 )
              & ( ord_less_rat @ ( F @ X3 ) @ ( G @ X3 ) ) )
         => ( ord_less_rat @ ( groups5058264527183730370ex_rat @ F @ A2 ) @ ( groups5058264527183730370ex_rat @ G @ A2 ) ) ) ) ) ).

% sum_strict_mono_ex1
thf(fact_8302_sum__strict__mono__ex1,axiom,
    ! [A2: set_int,F: int > nat,G: int > nat] :
      ( ( finite_finite_int @ A2 )
     => ( ! [X4: int] :
            ( ( member_int @ X4 @ A2 )
           => ( ord_less_eq_nat @ ( F @ X4 ) @ ( G @ X4 ) ) )
       => ( ? [X3: int] :
              ( ( member_int @ X3 @ A2 )
              & ( ord_less_nat @ ( F @ X3 ) @ ( G @ X3 ) ) )
         => ( ord_less_nat @ ( groups4541462559716669496nt_nat @ F @ A2 ) @ ( groups4541462559716669496nt_nat @ G @ A2 ) ) ) ) ) ).

% sum_strict_mono_ex1
thf(fact_8303_sum__strict__mono__ex1,axiom,
    ! [A2: set_complex,F: complex > nat,G: complex > nat] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( ! [X4: complex] :
            ( ( member_complex @ X4 @ A2 )
           => ( ord_less_eq_nat @ ( F @ X4 ) @ ( G @ X4 ) ) )
       => ( ? [X3: complex] :
              ( ( member_complex @ X3 @ A2 )
              & ( ord_less_nat @ ( F @ X3 ) @ ( G @ X3 ) ) )
         => ( ord_less_nat @ ( groups5693394587270226106ex_nat @ F @ A2 ) @ ( groups5693394587270226106ex_nat @ G @ A2 ) ) ) ) ) ).

% sum_strict_mono_ex1
thf(fact_8304_sum__strict__mono__ex1,axiom,
    ! [A2: set_nat,F: nat > int,G: nat > int] :
      ( ( finite_finite_nat @ A2 )
     => ( ! [X4: nat] :
            ( ( member_nat @ X4 @ A2 )
           => ( ord_less_eq_int @ ( F @ X4 ) @ ( G @ X4 ) ) )
       => ( ? [X3: nat] :
              ( ( member_nat @ X3 @ A2 )
              & ( ord_less_int @ ( F @ X3 ) @ ( G @ X3 ) ) )
         => ( ord_less_int @ ( groups3539618377306564664at_int @ F @ A2 ) @ ( groups3539618377306564664at_int @ G @ A2 ) ) ) ) ) ).

% sum_strict_mono_ex1
thf(fact_8305_sum__strict__mono__ex1,axiom,
    ! [A2: set_complex,F: complex > int,G: complex > int] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( ! [X4: complex] :
            ( ( member_complex @ X4 @ A2 )
           => ( ord_less_eq_int @ ( F @ X4 ) @ ( G @ X4 ) ) )
       => ( ? [X3: complex] :
              ( ( member_complex @ X3 @ A2 )
              & ( ord_less_int @ ( F @ X3 ) @ ( G @ X3 ) ) )
         => ( ord_less_int @ ( groups5690904116761175830ex_int @ F @ A2 ) @ ( groups5690904116761175830ex_int @ G @ A2 ) ) ) ) ) ).

% sum_strict_mono_ex1
thf(fact_8306_sum__strict__mono__ex1,axiom,
    ! [A2: set_int,F: int > int,G: int > int] :
      ( ( finite_finite_int @ A2 )
     => ( ! [X4: int] :
            ( ( member_int @ X4 @ A2 )
           => ( ord_less_eq_int @ ( F @ X4 ) @ ( G @ X4 ) ) )
       => ( ? [X3: int] :
              ( ( member_int @ X3 @ A2 )
              & ( ord_less_int @ ( F @ X3 ) @ ( G @ X3 ) ) )
         => ( ord_less_int @ ( groups4538972089207619220nt_int @ F @ A2 ) @ ( groups4538972089207619220nt_int @ G @ A2 ) ) ) ) ) ).

% sum_strict_mono_ex1
thf(fact_8307_sum_Orelated,axiom,
    ! [R: complex > complex > $o,S3: set_nat,H2: nat > complex,G: nat > complex] :
      ( ( R @ zero_zero_complex @ zero_zero_complex )
     => ( ! [X16: complex,Y15: complex,X22: complex,Y23: complex] :
            ( ( ( R @ X16 @ X22 )
              & ( R @ Y15 @ Y23 ) )
           => ( R @ ( plus_plus_complex @ X16 @ Y15 ) @ ( plus_plus_complex @ X22 @ Y23 ) ) )
       => ( ( finite_finite_nat @ S3 )
         => ( ! [X4: nat] :
                ( ( member_nat @ X4 @ S3 )
               => ( R @ ( H2 @ X4 ) @ ( G @ X4 ) ) )
           => ( R @ ( groups2073611262835488442omplex @ H2 @ S3 ) @ ( groups2073611262835488442omplex @ G @ S3 ) ) ) ) ) ) ).

% sum.related
thf(fact_8308_sum_Orelated,axiom,
    ! [R: complex > complex > $o,S3: set_int,H2: int > complex,G: int > complex] :
      ( ( R @ zero_zero_complex @ zero_zero_complex )
     => ( ! [X16: complex,Y15: complex,X22: complex,Y23: complex] :
            ( ( ( R @ X16 @ X22 )
              & ( R @ Y15 @ Y23 ) )
           => ( R @ ( plus_plus_complex @ X16 @ Y15 ) @ ( plus_plus_complex @ X22 @ Y23 ) ) )
       => ( ( finite_finite_int @ S3 )
         => ( ! [X4: int] :
                ( ( member_int @ X4 @ S3 )
               => ( R @ ( H2 @ X4 ) @ ( G @ X4 ) ) )
           => ( R @ ( groups3049146728041665814omplex @ H2 @ S3 ) @ ( groups3049146728041665814omplex @ G @ S3 ) ) ) ) ) ) ).

% sum.related
thf(fact_8309_sum_Orelated,axiom,
    ! [R: real > real > $o,S3: set_int,H2: int > real,G: int > real] :
      ( ( R @ zero_zero_real @ zero_zero_real )
     => ( ! [X16: real,Y15: real,X22: real,Y23: real] :
            ( ( ( R @ X16 @ X22 )
              & ( R @ Y15 @ Y23 ) )
           => ( R @ ( plus_plus_real @ X16 @ Y15 ) @ ( plus_plus_real @ X22 @ Y23 ) ) )
       => ( ( finite_finite_int @ S3 )
         => ( ! [X4: int] :
                ( ( member_int @ X4 @ S3 )
               => ( R @ ( H2 @ X4 ) @ ( G @ X4 ) ) )
           => ( R @ ( groups8778361861064173332t_real @ H2 @ S3 ) @ ( groups8778361861064173332t_real @ G @ S3 ) ) ) ) ) ) ).

% sum.related
thf(fact_8310_sum_Orelated,axiom,
    ! [R: real > real > $o,S3: set_complex,H2: complex > real,G: complex > real] :
      ( ( R @ zero_zero_real @ zero_zero_real )
     => ( ! [X16: real,Y15: real,X22: real,Y23: real] :
            ( ( ( R @ X16 @ X22 )
              & ( R @ Y15 @ Y23 ) )
           => ( R @ ( plus_plus_real @ X16 @ Y15 ) @ ( plus_plus_real @ X22 @ Y23 ) ) )
       => ( ( finite3207457112153483333omplex @ S3 )
         => ( ! [X4: complex] :
                ( ( member_complex @ X4 @ S3 )
               => ( R @ ( H2 @ X4 ) @ ( G @ X4 ) ) )
           => ( R @ ( groups5808333547571424918x_real @ H2 @ S3 ) @ ( groups5808333547571424918x_real @ G @ S3 ) ) ) ) ) ) ).

% sum.related
thf(fact_8311_sum_Orelated,axiom,
    ! [R: rat > rat > $o,S3: set_nat,H2: nat > rat,G: nat > rat] :
      ( ( R @ zero_zero_rat @ zero_zero_rat )
     => ( ! [X16: rat,Y15: rat,X22: rat,Y23: rat] :
            ( ( ( R @ X16 @ X22 )
              & ( R @ Y15 @ Y23 ) )
           => ( R @ ( plus_plus_rat @ X16 @ Y15 ) @ ( plus_plus_rat @ X22 @ Y23 ) ) )
       => ( ( finite_finite_nat @ S3 )
         => ( ! [X4: nat] :
                ( ( member_nat @ X4 @ S3 )
               => ( R @ ( H2 @ X4 ) @ ( G @ X4 ) ) )
           => ( R @ ( groups2906978787729119204at_rat @ H2 @ S3 ) @ ( groups2906978787729119204at_rat @ G @ S3 ) ) ) ) ) ) ).

% sum.related
thf(fact_8312_sum_Orelated,axiom,
    ! [R: rat > rat > $o,S3: set_int,H2: int > rat,G: int > rat] :
      ( ( R @ zero_zero_rat @ zero_zero_rat )
     => ( ! [X16: rat,Y15: rat,X22: rat,Y23: rat] :
            ( ( ( R @ X16 @ X22 )
              & ( R @ Y15 @ Y23 ) )
           => ( R @ ( plus_plus_rat @ X16 @ Y15 ) @ ( plus_plus_rat @ X22 @ Y23 ) ) )
       => ( ( finite_finite_int @ S3 )
         => ( ! [X4: int] :
                ( ( member_int @ X4 @ S3 )
               => ( R @ ( H2 @ X4 ) @ ( G @ X4 ) ) )
           => ( R @ ( groups3906332499630173760nt_rat @ H2 @ S3 ) @ ( groups3906332499630173760nt_rat @ G @ S3 ) ) ) ) ) ) ).

% sum.related
thf(fact_8313_sum_Orelated,axiom,
    ! [R: rat > rat > $o,S3: set_complex,H2: complex > rat,G: complex > rat] :
      ( ( R @ zero_zero_rat @ zero_zero_rat )
     => ( ! [X16: rat,Y15: rat,X22: rat,Y23: rat] :
            ( ( ( R @ X16 @ X22 )
              & ( R @ Y15 @ Y23 ) )
           => ( R @ ( plus_plus_rat @ X16 @ Y15 ) @ ( plus_plus_rat @ X22 @ Y23 ) ) )
       => ( ( finite3207457112153483333omplex @ S3 )
         => ( ! [X4: complex] :
                ( ( member_complex @ X4 @ S3 )
               => ( R @ ( H2 @ X4 ) @ ( G @ X4 ) ) )
           => ( R @ ( groups5058264527183730370ex_rat @ H2 @ S3 ) @ ( groups5058264527183730370ex_rat @ G @ S3 ) ) ) ) ) ) ).

% sum.related
thf(fact_8314_sum_Orelated,axiom,
    ! [R: nat > nat > $o,S3: set_int,H2: int > nat,G: int > nat] :
      ( ( R @ zero_zero_nat @ zero_zero_nat )
     => ( ! [X16: nat,Y15: nat,X22: nat,Y23: nat] :
            ( ( ( R @ X16 @ X22 )
              & ( R @ Y15 @ Y23 ) )
           => ( R @ ( plus_plus_nat @ X16 @ Y15 ) @ ( plus_plus_nat @ X22 @ Y23 ) ) )
       => ( ( finite_finite_int @ S3 )
         => ( ! [X4: int] :
                ( ( member_int @ X4 @ S3 )
               => ( R @ ( H2 @ X4 ) @ ( G @ X4 ) ) )
           => ( R @ ( groups4541462559716669496nt_nat @ H2 @ S3 ) @ ( groups4541462559716669496nt_nat @ G @ S3 ) ) ) ) ) ) ).

% sum.related
thf(fact_8315_sum_Orelated,axiom,
    ! [R: nat > nat > $o,S3: set_complex,H2: complex > nat,G: complex > nat] :
      ( ( R @ zero_zero_nat @ zero_zero_nat )
     => ( ! [X16: nat,Y15: nat,X22: nat,Y23: nat] :
            ( ( ( R @ X16 @ X22 )
              & ( R @ Y15 @ Y23 ) )
           => ( R @ ( plus_plus_nat @ X16 @ Y15 ) @ ( plus_plus_nat @ X22 @ Y23 ) ) )
       => ( ( finite3207457112153483333omplex @ S3 )
         => ( ! [X4: complex] :
                ( ( member_complex @ X4 @ S3 )
               => ( R @ ( H2 @ X4 ) @ ( G @ X4 ) ) )
           => ( R @ ( groups5693394587270226106ex_nat @ H2 @ S3 ) @ ( groups5693394587270226106ex_nat @ G @ S3 ) ) ) ) ) ) ).

% sum.related
thf(fact_8316_sum_Orelated,axiom,
    ! [R: int > int > $o,S3: set_nat,H2: nat > int,G: nat > int] :
      ( ( R @ zero_zero_int @ zero_zero_int )
     => ( ! [X16: int,Y15: int,X22: int,Y23: int] :
            ( ( ( R @ X16 @ X22 )
              & ( R @ Y15 @ Y23 ) )
           => ( R @ ( plus_plus_int @ X16 @ Y15 ) @ ( plus_plus_int @ X22 @ Y23 ) ) )
       => ( ( finite_finite_nat @ S3 )
         => ( ! [X4: nat] :
                ( ( member_nat @ X4 @ S3 )
               => ( R @ ( H2 @ X4 ) @ ( G @ X4 ) ) )
           => ( R @ ( groups3539618377306564664at_int @ H2 @ S3 ) @ ( groups3539618377306564664at_int @ G @ S3 ) ) ) ) ) ) ).

% sum.related
thf(fact_8317_sum__strict__mono,axiom,
    ! [A2: set_complex,F: complex > real,G: complex > real] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( ( A2 != bot_bot_set_complex )
       => ( ! [X4: complex] :
              ( ( member_complex @ X4 @ A2 )
             => ( ord_less_real @ ( F @ X4 ) @ ( G @ X4 ) ) )
         => ( ord_less_real @ ( groups5808333547571424918x_real @ F @ A2 ) @ ( groups5808333547571424918x_real @ G @ A2 ) ) ) ) ) ).

% sum_strict_mono
thf(fact_8318_sum__strict__mono,axiom,
    ! [A2: set_real,F: real > real,G: real > real] :
      ( ( finite_finite_real @ A2 )
     => ( ( A2 != bot_bot_set_real )
       => ( ! [X4: real] :
              ( ( member_real @ X4 @ A2 )
             => ( ord_less_real @ ( F @ X4 ) @ ( G @ X4 ) ) )
         => ( ord_less_real @ ( groups8097168146408367636l_real @ F @ A2 ) @ ( groups8097168146408367636l_real @ G @ A2 ) ) ) ) ) ).

% sum_strict_mono
thf(fact_8319_sum__strict__mono,axiom,
    ! [A2: set_o,F: $o > real,G: $o > real] :
      ( ( finite_finite_o @ A2 )
     => ( ( A2 != bot_bot_set_o )
       => ( ! [X4: $o] :
              ( ( member_o @ X4 @ A2 )
             => ( ord_less_real @ ( F @ X4 ) @ ( G @ X4 ) ) )
         => ( ord_less_real @ ( groups8691415230153176458o_real @ F @ A2 ) @ ( groups8691415230153176458o_real @ G @ A2 ) ) ) ) ) ).

% sum_strict_mono
thf(fact_8320_sum__strict__mono,axiom,
    ! [A2: set_int,F: int > real,G: int > real] :
      ( ( finite_finite_int @ A2 )
     => ( ( A2 != bot_bot_set_int )
       => ( ! [X4: int] :
              ( ( member_int @ X4 @ A2 )
             => ( ord_less_real @ ( F @ X4 ) @ ( G @ X4 ) ) )
         => ( ord_less_real @ ( groups8778361861064173332t_real @ F @ A2 ) @ ( groups8778361861064173332t_real @ G @ A2 ) ) ) ) ) ).

% sum_strict_mono
thf(fact_8321_sum__strict__mono,axiom,
    ! [A2: set_complex,F: complex > rat,G: complex > rat] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( ( A2 != bot_bot_set_complex )
       => ( ! [X4: complex] :
              ( ( member_complex @ X4 @ A2 )
             => ( ord_less_rat @ ( F @ X4 ) @ ( G @ X4 ) ) )
         => ( ord_less_rat @ ( groups5058264527183730370ex_rat @ F @ A2 ) @ ( groups5058264527183730370ex_rat @ G @ A2 ) ) ) ) ) ).

% sum_strict_mono
thf(fact_8322_sum__strict__mono,axiom,
    ! [A2: set_real,F: real > rat,G: real > rat] :
      ( ( finite_finite_real @ A2 )
     => ( ( A2 != bot_bot_set_real )
       => ( ! [X4: real] :
              ( ( member_real @ X4 @ A2 )
             => ( ord_less_rat @ ( F @ X4 ) @ ( G @ X4 ) ) )
         => ( ord_less_rat @ ( groups1300246762558778688al_rat @ F @ A2 ) @ ( groups1300246762558778688al_rat @ G @ A2 ) ) ) ) ) ).

% sum_strict_mono
thf(fact_8323_sum__strict__mono,axiom,
    ! [A2: set_o,F: $o > rat,G: $o > rat] :
      ( ( finite_finite_o @ A2 )
     => ( ( A2 != bot_bot_set_o )
       => ( ! [X4: $o] :
              ( ( member_o @ X4 @ A2 )
             => ( ord_less_rat @ ( F @ X4 ) @ ( G @ X4 ) ) )
         => ( ord_less_rat @ ( groups7872700643590313910_o_rat @ F @ A2 ) @ ( groups7872700643590313910_o_rat @ G @ A2 ) ) ) ) ) ).

% sum_strict_mono
thf(fact_8324_sum__strict__mono,axiom,
    ! [A2: set_nat,F: nat > rat,G: nat > rat] :
      ( ( finite_finite_nat @ A2 )
     => ( ( A2 != bot_bot_set_nat )
       => ( ! [X4: nat] :
              ( ( member_nat @ X4 @ A2 )
             => ( ord_less_rat @ ( F @ X4 ) @ ( G @ X4 ) ) )
         => ( ord_less_rat @ ( groups2906978787729119204at_rat @ F @ A2 ) @ ( groups2906978787729119204at_rat @ G @ A2 ) ) ) ) ) ).

% sum_strict_mono
thf(fact_8325_sum__strict__mono,axiom,
    ! [A2: set_int,F: int > rat,G: int > rat] :
      ( ( finite_finite_int @ A2 )
     => ( ( A2 != bot_bot_set_int )
       => ( ! [X4: int] :
              ( ( member_int @ X4 @ A2 )
             => ( ord_less_rat @ ( F @ X4 ) @ ( G @ X4 ) ) )
         => ( ord_less_rat @ ( groups3906332499630173760nt_rat @ F @ A2 ) @ ( groups3906332499630173760nt_rat @ G @ A2 ) ) ) ) ) ).

% sum_strict_mono
thf(fact_8326_sum__strict__mono,axiom,
    ! [A2: set_complex,F: complex > nat,G: complex > nat] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( ( A2 != bot_bot_set_complex )
       => ( ! [X4: complex] :
              ( ( member_complex @ X4 @ A2 )
             => ( ord_less_nat @ ( F @ X4 ) @ ( G @ X4 ) ) )
         => ( ord_less_nat @ ( groups5693394587270226106ex_nat @ F @ A2 ) @ ( groups5693394587270226106ex_nat @ G @ A2 ) ) ) ) ) ).

% sum_strict_mono
thf(fact_8327_sum_Oinsert__if,axiom,
    ! [A2: set_VEBT_VEBT,X2: vEBT_VEBT,G: vEBT_VEBT > real] :
      ( ( finite5795047828879050333T_VEBT @ A2 )
     => ( ( ( member_VEBT_VEBT @ X2 @ A2 )
         => ( ( groups2240296850493347238T_real @ G @ ( insert_VEBT_VEBT @ X2 @ A2 ) )
            = ( groups2240296850493347238T_real @ G @ A2 ) ) )
        & ( ~ ( member_VEBT_VEBT @ X2 @ A2 )
         => ( ( groups2240296850493347238T_real @ G @ ( insert_VEBT_VEBT @ X2 @ A2 ) )
            = ( plus_plus_real @ ( G @ X2 ) @ ( groups2240296850493347238T_real @ G @ A2 ) ) ) ) ) ) ).

% sum.insert_if
thf(fact_8328_sum_Oinsert__if,axiom,
    ! [A2: set_o,X2: $o,G: $o > real] :
      ( ( finite_finite_o @ A2 )
     => ( ( ( member_o @ X2 @ A2 )
         => ( ( groups8691415230153176458o_real @ G @ ( insert_o @ X2 @ A2 ) )
            = ( groups8691415230153176458o_real @ G @ A2 ) ) )
        & ( ~ ( member_o @ X2 @ A2 )
         => ( ( groups8691415230153176458o_real @ G @ ( insert_o @ X2 @ A2 ) )
            = ( plus_plus_real @ ( G @ X2 ) @ ( groups8691415230153176458o_real @ G @ A2 ) ) ) ) ) ) ).

% sum.insert_if
thf(fact_8329_sum_Oinsert__if,axiom,
    ! [A2: set_real,X2: real,G: real > real] :
      ( ( finite_finite_real @ A2 )
     => ( ( ( member_real @ X2 @ A2 )
         => ( ( groups8097168146408367636l_real @ G @ ( insert_real @ X2 @ A2 ) )
            = ( groups8097168146408367636l_real @ G @ A2 ) ) )
        & ( ~ ( member_real @ X2 @ A2 )
         => ( ( groups8097168146408367636l_real @ G @ ( insert_real @ X2 @ A2 ) )
            = ( plus_plus_real @ ( G @ X2 ) @ ( groups8097168146408367636l_real @ G @ A2 ) ) ) ) ) ) ).

% sum.insert_if
thf(fact_8330_sum_Oinsert__if,axiom,
    ! [A2: set_int,X2: int,G: int > real] :
      ( ( finite_finite_int @ A2 )
     => ( ( ( member_int @ X2 @ A2 )
         => ( ( groups8778361861064173332t_real @ G @ ( insert_int @ X2 @ A2 ) )
            = ( groups8778361861064173332t_real @ G @ A2 ) ) )
        & ( ~ ( member_int @ X2 @ A2 )
         => ( ( groups8778361861064173332t_real @ G @ ( insert_int @ X2 @ A2 ) )
            = ( plus_plus_real @ ( G @ X2 ) @ ( groups8778361861064173332t_real @ G @ A2 ) ) ) ) ) ) ).

% sum.insert_if
thf(fact_8331_sum_Oinsert__if,axiom,
    ! [A2: set_complex,X2: complex,G: complex > real] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( ( ( member_complex @ X2 @ A2 )
         => ( ( groups5808333547571424918x_real @ G @ ( insert_complex @ X2 @ A2 ) )
            = ( groups5808333547571424918x_real @ G @ A2 ) ) )
        & ( ~ ( member_complex @ X2 @ A2 )
         => ( ( groups5808333547571424918x_real @ G @ ( insert_complex @ X2 @ A2 ) )
            = ( plus_plus_real @ ( G @ X2 ) @ ( groups5808333547571424918x_real @ G @ A2 ) ) ) ) ) ) ).

% sum.insert_if
thf(fact_8332_sum_Oinsert__if,axiom,
    ! [A2: set_VEBT_VEBT,X2: vEBT_VEBT,G: vEBT_VEBT > rat] :
      ( ( finite5795047828879050333T_VEBT @ A2 )
     => ( ( ( member_VEBT_VEBT @ X2 @ A2 )
         => ( ( groups136491112297645522BT_rat @ G @ ( insert_VEBT_VEBT @ X2 @ A2 ) )
            = ( groups136491112297645522BT_rat @ G @ A2 ) ) )
        & ( ~ ( member_VEBT_VEBT @ X2 @ A2 )
         => ( ( groups136491112297645522BT_rat @ G @ ( insert_VEBT_VEBT @ X2 @ A2 ) )
            = ( plus_plus_rat @ ( G @ X2 ) @ ( groups136491112297645522BT_rat @ G @ A2 ) ) ) ) ) ) ).

% sum.insert_if
thf(fact_8333_sum_Oinsert__if,axiom,
    ! [A2: set_o,X2: $o,G: $o > rat] :
      ( ( finite_finite_o @ A2 )
     => ( ( ( member_o @ X2 @ A2 )
         => ( ( groups7872700643590313910_o_rat @ G @ ( insert_o @ X2 @ A2 ) )
            = ( groups7872700643590313910_o_rat @ G @ A2 ) ) )
        & ( ~ ( member_o @ X2 @ A2 )
         => ( ( groups7872700643590313910_o_rat @ G @ ( insert_o @ X2 @ A2 ) )
            = ( plus_plus_rat @ ( G @ X2 ) @ ( groups7872700643590313910_o_rat @ G @ A2 ) ) ) ) ) ) ).

% sum.insert_if
thf(fact_8334_sum_Oinsert__if,axiom,
    ! [A2: set_real,X2: real,G: real > rat] :
      ( ( finite_finite_real @ A2 )
     => ( ( ( member_real @ X2 @ A2 )
         => ( ( groups1300246762558778688al_rat @ G @ ( insert_real @ X2 @ A2 ) )
            = ( groups1300246762558778688al_rat @ G @ A2 ) ) )
        & ( ~ ( member_real @ X2 @ A2 )
         => ( ( groups1300246762558778688al_rat @ G @ ( insert_real @ X2 @ A2 ) )
            = ( plus_plus_rat @ ( G @ X2 ) @ ( groups1300246762558778688al_rat @ G @ A2 ) ) ) ) ) ) ).

% sum.insert_if
thf(fact_8335_sum_Oinsert__if,axiom,
    ! [A2: set_nat,X2: nat,G: nat > rat] :
      ( ( finite_finite_nat @ A2 )
     => ( ( ( member_nat @ X2 @ A2 )
         => ( ( groups2906978787729119204at_rat @ G @ ( insert_nat @ X2 @ A2 ) )
            = ( groups2906978787729119204at_rat @ G @ A2 ) ) )
        & ( ~ ( member_nat @ X2 @ A2 )
         => ( ( groups2906978787729119204at_rat @ G @ ( insert_nat @ X2 @ A2 ) )
            = ( plus_plus_rat @ ( G @ X2 ) @ ( groups2906978787729119204at_rat @ G @ A2 ) ) ) ) ) ) ).

% sum.insert_if
thf(fact_8336_sum_Oinsert__if,axiom,
    ! [A2: set_int,X2: int,G: int > rat] :
      ( ( finite_finite_int @ A2 )
     => ( ( ( member_int @ X2 @ A2 )
         => ( ( groups3906332499630173760nt_rat @ G @ ( insert_int @ X2 @ A2 ) )
            = ( groups3906332499630173760nt_rat @ G @ A2 ) ) )
        & ( ~ ( member_int @ X2 @ A2 )
         => ( ( groups3906332499630173760nt_rat @ G @ ( insert_int @ X2 @ A2 ) )
            = ( plus_plus_rat @ ( G @ X2 ) @ ( groups3906332499630173760nt_rat @ G @ A2 ) ) ) ) ) ) ).

% sum.insert_if
thf(fact_8337_sum__nonneg__leq__bound,axiom,
    ! [S: set_real,F: real > real,B3: real,I: real] :
      ( ( finite_finite_real @ S )
     => ( ! [I3: real] :
            ( ( member_real @ I3 @ S )
           => ( ord_less_eq_real @ zero_zero_real @ ( F @ I3 ) ) )
       => ( ( ( groups8097168146408367636l_real @ F @ S )
            = B3 )
         => ( ( member_real @ I @ S )
           => ( ord_less_eq_real @ ( F @ I ) @ B3 ) ) ) ) ) ).

% sum_nonneg_leq_bound
thf(fact_8338_sum__nonneg__leq__bound,axiom,
    ! [S: set_int,F: int > real,B3: real,I: int] :
      ( ( finite_finite_int @ S )
     => ( ! [I3: int] :
            ( ( member_int @ I3 @ S )
           => ( ord_less_eq_real @ zero_zero_real @ ( F @ I3 ) ) )
       => ( ( ( groups8778361861064173332t_real @ F @ S )
            = B3 )
         => ( ( member_int @ I @ S )
           => ( ord_less_eq_real @ ( F @ I ) @ B3 ) ) ) ) ) ).

% sum_nonneg_leq_bound
thf(fact_8339_sum__nonneg__leq__bound,axiom,
    ! [S: set_complex,F: complex > real,B3: real,I: complex] :
      ( ( finite3207457112153483333omplex @ S )
     => ( ! [I3: complex] :
            ( ( member_complex @ I3 @ S )
           => ( ord_less_eq_real @ zero_zero_real @ ( F @ I3 ) ) )
       => ( ( ( groups5808333547571424918x_real @ F @ S )
            = B3 )
         => ( ( member_complex @ I @ S )
           => ( ord_less_eq_real @ ( F @ I ) @ B3 ) ) ) ) ) ).

% sum_nonneg_leq_bound
thf(fact_8340_sum__nonneg__leq__bound,axiom,
    ! [S: set_real,F: real > rat,B3: rat,I: real] :
      ( ( finite_finite_real @ S )
     => ( ! [I3: real] :
            ( ( member_real @ I3 @ S )
           => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I3 ) ) )
       => ( ( ( groups1300246762558778688al_rat @ F @ S )
            = B3 )
         => ( ( member_real @ I @ S )
           => ( ord_less_eq_rat @ ( F @ I ) @ B3 ) ) ) ) ) ).

% sum_nonneg_leq_bound
thf(fact_8341_sum__nonneg__leq__bound,axiom,
    ! [S: set_nat,F: nat > rat,B3: rat,I: nat] :
      ( ( finite_finite_nat @ S )
     => ( ! [I3: nat] :
            ( ( member_nat @ I3 @ S )
           => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I3 ) ) )
       => ( ( ( groups2906978787729119204at_rat @ F @ S )
            = B3 )
         => ( ( member_nat @ I @ S )
           => ( ord_less_eq_rat @ ( F @ I ) @ B3 ) ) ) ) ) ).

% sum_nonneg_leq_bound
thf(fact_8342_sum__nonneg__leq__bound,axiom,
    ! [S: set_int,F: int > rat,B3: rat,I: int] :
      ( ( finite_finite_int @ S )
     => ( ! [I3: int] :
            ( ( member_int @ I3 @ S )
           => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I3 ) ) )
       => ( ( ( groups3906332499630173760nt_rat @ F @ S )
            = B3 )
         => ( ( member_int @ I @ S )
           => ( ord_less_eq_rat @ ( F @ I ) @ B3 ) ) ) ) ) ).

% sum_nonneg_leq_bound
thf(fact_8343_sum__nonneg__leq__bound,axiom,
    ! [S: set_complex,F: complex > rat,B3: rat,I: complex] :
      ( ( finite3207457112153483333omplex @ S )
     => ( ! [I3: complex] :
            ( ( member_complex @ I3 @ S )
           => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I3 ) ) )
       => ( ( ( groups5058264527183730370ex_rat @ F @ S )
            = B3 )
         => ( ( member_complex @ I @ S )
           => ( ord_less_eq_rat @ ( F @ I ) @ B3 ) ) ) ) ) ).

% sum_nonneg_leq_bound
thf(fact_8344_sum__nonneg__leq__bound,axiom,
    ! [S: set_real,F: real > nat,B3: nat,I: real] :
      ( ( finite_finite_real @ S )
     => ( ! [I3: real] :
            ( ( member_real @ I3 @ S )
           => ( ord_less_eq_nat @ zero_zero_nat @ ( F @ I3 ) ) )
       => ( ( ( groups1935376822645274424al_nat @ F @ S )
            = B3 )
         => ( ( member_real @ I @ S )
           => ( ord_less_eq_nat @ ( F @ I ) @ B3 ) ) ) ) ) ).

% sum_nonneg_leq_bound
thf(fact_8345_sum__nonneg__leq__bound,axiom,
    ! [S: set_int,F: int > nat,B3: nat,I: int] :
      ( ( finite_finite_int @ S )
     => ( ! [I3: int] :
            ( ( member_int @ I3 @ S )
           => ( ord_less_eq_nat @ zero_zero_nat @ ( F @ I3 ) ) )
       => ( ( ( groups4541462559716669496nt_nat @ F @ S )
            = B3 )
         => ( ( member_int @ I @ S )
           => ( ord_less_eq_nat @ ( F @ I ) @ B3 ) ) ) ) ) ).

% sum_nonneg_leq_bound
thf(fact_8346_sum__nonneg__leq__bound,axiom,
    ! [S: set_complex,F: complex > nat,B3: nat,I: complex] :
      ( ( finite3207457112153483333omplex @ S )
     => ( ! [I3: complex] :
            ( ( member_complex @ I3 @ S )
           => ( ord_less_eq_nat @ zero_zero_nat @ ( F @ I3 ) ) )
       => ( ( ( groups5693394587270226106ex_nat @ F @ S )
            = B3 )
         => ( ( member_complex @ I @ S )
           => ( ord_less_eq_nat @ ( F @ I ) @ B3 ) ) ) ) ) ).

% sum_nonneg_leq_bound
thf(fact_8347_sum__nonneg__0,axiom,
    ! [S: set_real,F: real > real,I: real] :
      ( ( finite_finite_real @ S )
     => ( ! [I3: real] :
            ( ( member_real @ I3 @ S )
           => ( ord_less_eq_real @ zero_zero_real @ ( F @ I3 ) ) )
       => ( ( ( groups8097168146408367636l_real @ F @ S )
            = zero_zero_real )
         => ( ( member_real @ I @ S )
           => ( ( F @ I )
              = zero_zero_real ) ) ) ) ) ).

% sum_nonneg_0
thf(fact_8348_sum__nonneg__0,axiom,
    ! [S: set_int,F: int > real,I: int] :
      ( ( finite_finite_int @ S )
     => ( ! [I3: int] :
            ( ( member_int @ I3 @ S )
           => ( ord_less_eq_real @ zero_zero_real @ ( F @ I3 ) ) )
       => ( ( ( groups8778361861064173332t_real @ F @ S )
            = zero_zero_real )
         => ( ( member_int @ I @ S )
           => ( ( F @ I )
              = zero_zero_real ) ) ) ) ) ).

% sum_nonneg_0
thf(fact_8349_sum__nonneg__0,axiom,
    ! [S: set_complex,F: complex > real,I: complex] :
      ( ( finite3207457112153483333omplex @ S )
     => ( ! [I3: complex] :
            ( ( member_complex @ I3 @ S )
           => ( ord_less_eq_real @ zero_zero_real @ ( F @ I3 ) ) )
       => ( ( ( groups5808333547571424918x_real @ F @ S )
            = zero_zero_real )
         => ( ( member_complex @ I @ S )
           => ( ( F @ I )
              = zero_zero_real ) ) ) ) ) ).

% sum_nonneg_0
thf(fact_8350_sum__nonneg__0,axiom,
    ! [S: set_real,F: real > rat,I: real] :
      ( ( finite_finite_real @ S )
     => ( ! [I3: real] :
            ( ( member_real @ I3 @ S )
           => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I3 ) ) )
       => ( ( ( groups1300246762558778688al_rat @ F @ S )
            = zero_zero_rat )
         => ( ( member_real @ I @ S )
           => ( ( F @ I )
              = zero_zero_rat ) ) ) ) ) ).

% sum_nonneg_0
thf(fact_8351_sum__nonneg__0,axiom,
    ! [S: set_nat,F: nat > rat,I: nat] :
      ( ( finite_finite_nat @ S )
     => ( ! [I3: nat] :
            ( ( member_nat @ I3 @ S )
           => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I3 ) ) )
       => ( ( ( groups2906978787729119204at_rat @ F @ S )
            = zero_zero_rat )
         => ( ( member_nat @ I @ S )
           => ( ( F @ I )
              = zero_zero_rat ) ) ) ) ) ).

% sum_nonneg_0
thf(fact_8352_sum__nonneg__0,axiom,
    ! [S: set_int,F: int > rat,I: int] :
      ( ( finite_finite_int @ S )
     => ( ! [I3: int] :
            ( ( member_int @ I3 @ S )
           => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I3 ) ) )
       => ( ( ( groups3906332499630173760nt_rat @ F @ S )
            = zero_zero_rat )
         => ( ( member_int @ I @ S )
           => ( ( F @ I )
              = zero_zero_rat ) ) ) ) ) ).

% sum_nonneg_0
thf(fact_8353_sum__nonneg__0,axiom,
    ! [S: set_complex,F: complex > rat,I: complex] :
      ( ( finite3207457112153483333omplex @ S )
     => ( ! [I3: complex] :
            ( ( member_complex @ I3 @ S )
           => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I3 ) ) )
       => ( ( ( groups5058264527183730370ex_rat @ F @ S )
            = zero_zero_rat )
         => ( ( member_complex @ I @ S )
           => ( ( F @ I )
              = zero_zero_rat ) ) ) ) ) ).

% sum_nonneg_0
thf(fact_8354_sum__nonneg__0,axiom,
    ! [S: set_real,F: real > nat,I: real] :
      ( ( finite_finite_real @ S )
     => ( ! [I3: real] :
            ( ( member_real @ I3 @ S )
           => ( ord_less_eq_nat @ zero_zero_nat @ ( F @ I3 ) ) )
       => ( ( ( groups1935376822645274424al_nat @ F @ S )
            = zero_zero_nat )
         => ( ( member_real @ I @ S )
           => ( ( F @ I )
              = zero_zero_nat ) ) ) ) ) ).

% sum_nonneg_0
thf(fact_8355_sum__nonneg__0,axiom,
    ! [S: set_int,F: int > nat,I: int] :
      ( ( finite_finite_int @ S )
     => ( ! [I3: int] :
            ( ( member_int @ I3 @ S )
           => ( ord_less_eq_nat @ zero_zero_nat @ ( F @ I3 ) ) )
       => ( ( ( groups4541462559716669496nt_nat @ F @ S )
            = zero_zero_nat )
         => ( ( member_int @ I @ S )
           => ( ( F @ I )
              = zero_zero_nat ) ) ) ) ) ).

% sum_nonneg_0
thf(fact_8356_sum__nonneg__0,axiom,
    ! [S: set_complex,F: complex > nat,I: complex] :
      ( ( finite3207457112153483333omplex @ S )
     => ( ! [I3: complex] :
            ( ( member_complex @ I3 @ S )
           => ( ord_less_eq_nat @ zero_zero_nat @ ( F @ I3 ) ) )
       => ( ( ( groups5693394587270226106ex_nat @ F @ S )
            = zero_zero_nat )
         => ( ( member_complex @ I @ S )
           => ( ( F @ I )
              = zero_zero_nat ) ) ) ) ) ).

% sum_nonneg_0
thf(fact_8357_sum_Ogroup,axiom,
    ! [S3: set_int,T3: set_nat,G: int > nat,H2: int > int] :
      ( ( finite_finite_int @ S3 )
     => ( ( finite_finite_nat @ T3 )
       => ( ( ord_less_eq_set_nat @ ( image_int_nat @ G @ S3 ) @ T3 )
         => ( ( groups3539618377306564664at_int
              @ ^ [Y: nat] :
                  ( groups4538972089207619220nt_int @ H2
                  @ ( collect_int
                    @ ^ [X: int] :
                        ( ( member_int @ X @ S3 )
                        & ( ( G @ X )
                          = Y ) ) ) )
              @ T3 )
            = ( groups4538972089207619220nt_int @ H2 @ S3 ) ) ) ) ) ).

% sum.group
thf(fact_8358_sum_Ogroup,axiom,
    ! [S3: set_int,T3: set_complex,G: int > complex,H2: int > int] :
      ( ( finite_finite_int @ S3 )
     => ( ( finite3207457112153483333omplex @ T3 )
       => ( ( ord_le211207098394363844omplex @ ( image_int_complex @ G @ S3 ) @ T3 )
         => ( ( groups5690904116761175830ex_int
              @ ^ [Y: complex] :
                  ( groups4538972089207619220nt_int @ H2
                  @ ( collect_int
                    @ ^ [X: int] :
                        ( ( member_int @ X @ S3 )
                        & ( ( G @ X )
                          = Y ) ) ) )
              @ T3 )
            = ( groups4538972089207619220nt_int @ H2 @ S3 ) ) ) ) ) ).

% sum.group
thf(fact_8359_sum_Ogroup,axiom,
    ! [S3: set_complex,T3: set_nat,G: complex > nat,H2: complex > complex] :
      ( ( finite3207457112153483333omplex @ S3 )
     => ( ( finite_finite_nat @ T3 )
       => ( ( ord_less_eq_set_nat @ ( image_complex_nat @ G @ S3 ) @ T3 )
         => ( ( groups2073611262835488442omplex
              @ ^ [Y: nat] :
                  ( groups7754918857620584856omplex @ H2
                  @ ( collect_complex
                    @ ^ [X: complex] :
                        ( ( member_complex @ X @ S3 )
                        & ( ( G @ X )
                          = Y ) ) ) )
              @ T3 )
            = ( groups7754918857620584856omplex @ H2 @ S3 ) ) ) ) ) ).

% sum.group
thf(fact_8360_sum_Ogroup,axiom,
    ! [S3: set_complex,T3: set_int,G: complex > int,H2: complex > complex] :
      ( ( finite3207457112153483333omplex @ S3 )
     => ( ( finite_finite_int @ T3 )
       => ( ( ord_less_eq_set_int @ ( image_complex_int @ G @ S3 ) @ T3 )
         => ( ( groups3049146728041665814omplex
              @ ^ [Y: int] :
                  ( groups7754918857620584856omplex @ H2
                  @ ( collect_complex
                    @ ^ [X: complex] :
                        ( ( member_complex @ X @ S3 )
                        & ( ( G @ X )
                          = Y ) ) ) )
              @ T3 )
            = ( groups7754918857620584856omplex @ H2 @ S3 ) ) ) ) ) ).

% sum.group
thf(fact_8361_sum_Ogroup,axiom,
    ! [S3: set_nat,T3: set_complex,G: nat > complex,H2: nat > nat] :
      ( ( finite_finite_nat @ S3 )
     => ( ( finite3207457112153483333omplex @ T3 )
       => ( ( ord_le211207098394363844omplex @ ( image_nat_complex @ G @ S3 ) @ T3 )
         => ( ( groups5693394587270226106ex_nat
              @ ^ [Y: complex] :
                  ( groups3542108847815614940at_nat @ H2
                  @ ( collect_nat
                    @ ^ [X: nat] :
                        ( ( member_nat @ X @ S3 )
                        & ( ( G @ X )
                          = Y ) ) ) )
              @ T3 )
            = ( groups3542108847815614940at_nat @ H2 @ S3 ) ) ) ) ) ).

% sum.group
thf(fact_8362_sum_Ogroup,axiom,
    ! [S3: set_nat,T3: set_int,G: nat > int,H2: nat > nat] :
      ( ( finite_finite_nat @ S3 )
     => ( ( finite_finite_int @ T3 )
       => ( ( ord_less_eq_set_int @ ( image_nat_int @ G @ S3 ) @ T3 )
         => ( ( groups4541462559716669496nt_nat
              @ ^ [Y: int] :
                  ( groups3542108847815614940at_nat @ H2
                  @ ( collect_nat
                    @ ^ [X: nat] :
                        ( ( member_nat @ X @ S3 )
                        & ( ( G @ X )
                          = Y ) ) ) )
              @ T3 )
            = ( groups3542108847815614940at_nat @ H2 @ S3 ) ) ) ) ) ).

% sum.group
thf(fact_8363_sum_Ogroup,axiom,
    ! [S3: set_nat,T3: set_complex,G: nat > complex,H2: nat > real] :
      ( ( finite_finite_nat @ S3 )
     => ( ( finite3207457112153483333omplex @ T3 )
       => ( ( ord_le211207098394363844omplex @ ( image_nat_complex @ G @ S3 ) @ T3 )
         => ( ( groups5808333547571424918x_real
              @ ^ [Y: complex] :
                  ( groups6591440286371151544t_real @ H2
                  @ ( collect_nat
                    @ ^ [X: nat] :
                        ( ( member_nat @ X @ S3 )
                        & ( ( G @ X )
                          = Y ) ) ) )
              @ T3 )
            = ( groups6591440286371151544t_real @ H2 @ S3 ) ) ) ) ) ).

% sum.group
thf(fact_8364_sum_Ogroup,axiom,
    ! [S3: set_nat,T3: set_int,G: nat > int,H2: nat > real] :
      ( ( finite_finite_nat @ S3 )
     => ( ( finite_finite_int @ T3 )
       => ( ( ord_less_eq_set_int @ ( image_nat_int @ G @ S3 ) @ T3 )
         => ( ( groups8778361861064173332t_real
              @ ^ [Y: int] :
                  ( groups6591440286371151544t_real @ H2
                  @ ( collect_nat
                    @ ^ [X: nat] :
                        ( ( member_nat @ X @ S3 )
                        & ( ( G @ X )
                          = Y ) ) ) )
              @ T3 )
            = ( groups6591440286371151544t_real @ H2 @ S3 ) ) ) ) ) ).

% sum.group
thf(fact_8365_sum_Ogroup,axiom,
    ! [S3: set_real,T3: set_int,G: real > int,H2: real > int] :
      ( ( finite_finite_real @ S3 )
     => ( ( finite_finite_int @ T3 )
       => ( ( ord_less_eq_set_int @ ( image_real_int @ G @ S3 ) @ T3 )
         => ( ( groups4538972089207619220nt_int
              @ ^ [Y: int] :
                  ( groups1932886352136224148al_int @ H2
                  @ ( collect_real
                    @ ^ [X: real] :
                        ( ( member_real @ X @ S3 )
                        & ( ( G @ X )
                          = Y ) ) ) )
              @ T3 )
            = ( groups1932886352136224148al_int @ H2 @ S3 ) ) ) ) ) ).

% sum.group
thf(fact_8366_sum_Ogroup,axiom,
    ! [S3: set_nat,T3: set_int,G: nat > int,H2: nat > int] :
      ( ( finite_finite_nat @ S3 )
     => ( ( finite_finite_int @ T3 )
       => ( ( ord_less_eq_set_int @ ( image_nat_int @ G @ S3 ) @ T3 )
         => ( ( groups4538972089207619220nt_int
              @ ^ [Y: int] :
                  ( groups3539618377306564664at_int @ H2
                  @ ( collect_nat
                    @ ^ [X: nat] :
                        ( ( member_nat @ X @ S3 )
                        & ( ( G @ X )
                          = Y ) ) ) )
              @ T3 )
            = ( groups3539618377306564664at_int @ H2 @ S3 ) ) ) ) ) ).

% sum.group
thf(fact_8367_sum_Osetdiff__irrelevant,axiom,
    ! [A2: set_int,G: int > complex] :
      ( ( finite_finite_int @ A2 )
     => ( ( groups3049146728041665814omplex @ G
          @ ( minus_minus_set_int @ A2
            @ ( collect_int
              @ ^ [X: int] :
                  ( ( G @ X )
                  = zero_zero_complex ) ) ) )
        = ( groups3049146728041665814omplex @ G @ A2 ) ) ) ).

% sum.setdiff_irrelevant
thf(fact_8368_sum_Osetdiff__irrelevant,axiom,
    ! [A2: set_int,G: int > real] :
      ( ( finite_finite_int @ A2 )
     => ( ( groups8778361861064173332t_real @ G
          @ ( minus_minus_set_int @ A2
            @ ( collect_int
              @ ^ [X: int] :
                  ( ( G @ X )
                  = zero_zero_real ) ) ) )
        = ( groups8778361861064173332t_real @ G @ A2 ) ) ) ).

% sum.setdiff_irrelevant
thf(fact_8369_sum_Osetdiff__irrelevant,axiom,
    ! [A2: set_complex,G: complex > real] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( ( groups5808333547571424918x_real @ G
          @ ( minus_811609699411566653omplex @ A2
            @ ( collect_complex
              @ ^ [X: complex] :
                  ( ( G @ X )
                  = zero_zero_real ) ) ) )
        = ( groups5808333547571424918x_real @ G @ A2 ) ) ) ).

% sum.setdiff_irrelevant
thf(fact_8370_sum_Osetdiff__irrelevant,axiom,
    ! [A2: set_int,G: int > rat] :
      ( ( finite_finite_int @ A2 )
     => ( ( groups3906332499630173760nt_rat @ G
          @ ( minus_minus_set_int @ A2
            @ ( collect_int
              @ ^ [X: int] :
                  ( ( G @ X )
                  = zero_zero_rat ) ) ) )
        = ( groups3906332499630173760nt_rat @ G @ A2 ) ) ) ).

% sum.setdiff_irrelevant
thf(fact_8371_sum_Osetdiff__irrelevant,axiom,
    ! [A2: set_complex,G: complex > rat] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( ( groups5058264527183730370ex_rat @ G
          @ ( minus_811609699411566653omplex @ A2
            @ ( collect_complex
              @ ^ [X: complex] :
                  ( ( G @ X )
                  = zero_zero_rat ) ) ) )
        = ( groups5058264527183730370ex_rat @ G @ A2 ) ) ) ).

% sum.setdiff_irrelevant
thf(fact_8372_sum_Osetdiff__irrelevant,axiom,
    ! [A2: set_int,G: int > nat] :
      ( ( finite_finite_int @ A2 )
     => ( ( groups4541462559716669496nt_nat @ G
          @ ( minus_minus_set_int @ A2
            @ ( collect_int
              @ ^ [X: int] :
                  ( ( G @ X )
                  = zero_zero_nat ) ) ) )
        = ( groups4541462559716669496nt_nat @ G @ A2 ) ) ) ).

% sum.setdiff_irrelevant
thf(fact_8373_sum_Osetdiff__irrelevant,axiom,
    ! [A2: set_complex,G: complex > nat] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( ( groups5693394587270226106ex_nat @ G
          @ ( minus_811609699411566653omplex @ A2
            @ ( collect_complex
              @ ^ [X: complex] :
                  ( ( G @ X )
                  = zero_zero_nat ) ) ) )
        = ( groups5693394587270226106ex_nat @ G @ A2 ) ) ) ).

% sum.setdiff_irrelevant
thf(fact_8374_sum_Osetdiff__irrelevant,axiom,
    ! [A2: set_complex,G: complex > int] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( ( groups5690904116761175830ex_int @ G
          @ ( minus_811609699411566653omplex @ A2
            @ ( collect_complex
              @ ^ [X: complex] :
                  ( ( G @ X )
                  = zero_zero_int ) ) ) )
        = ( groups5690904116761175830ex_int @ G @ A2 ) ) ) ).

% sum.setdiff_irrelevant
thf(fact_8375_sum_Osetdiff__irrelevant,axiom,
    ! [A2: set_nat,G: nat > complex] :
      ( ( finite_finite_nat @ A2 )
     => ( ( groups2073611262835488442omplex @ G
          @ ( minus_minus_set_nat @ A2
            @ ( collect_nat
              @ ^ [X: nat] :
                  ( ( G @ X )
                  = zero_zero_complex ) ) ) )
        = ( groups2073611262835488442omplex @ G @ A2 ) ) ) ).

% sum.setdiff_irrelevant
thf(fact_8376_sum_Osetdiff__irrelevant,axiom,
    ! [A2: set_nat,G: nat > rat] :
      ( ( finite_finite_nat @ A2 )
     => ( ( groups2906978787729119204at_rat @ G
          @ ( minus_minus_set_nat @ A2
            @ ( collect_nat
              @ ^ [X: nat] :
                  ( ( G @ X )
                  = zero_zero_rat ) ) ) )
        = ( groups2906978787729119204at_rat @ G @ A2 ) ) ) ).

% sum.setdiff_irrelevant
thf(fact_8377_less__mask,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ N )
     => ( ord_less_nat @ N @ ( bit_se2002935070580805687sk_nat @ N ) ) ) ).

% less_mask
thf(fact_8378_sum__pos2,axiom,
    ! [I5: set_real,I: real,F: real > real] :
      ( ( finite_finite_real @ I5 )
     => ( ( member_real @ I @ I5 )
       => ( ( ord_less_real @ zero_zero_real @ ( F @ I ) )
         => ( ! [I3: real] :
                ( ( member_real @ I3 @ I5 )
               => ( ord_less_eq_real @ zero_zero_real @ ( F @ I3 ) ) )
           => ( ord_less_real @ zero_zero_real @ ( groups8097168146408367636l_real @ F @ I5 ) ) ) ) ) ) ).

% sum_pos2
thf(fact_8379_sum__pos2,axiom,
    ! [I5: set_int,I: int,F: int > real] :
      ( ( finite_finite_int @ I5 )
     => ( ( member_int @ I @ I5 )
       => ( ( ord_less_real @ zero_zero_real @ ( F @ I ) )
         => ( ! [I3: int] :
                ( ( member_int @ I3 @ I5 )
               => ( ord_less_eq_real @ zero_zero_real @ ( F @ I3 ) ) )
           => ( ord_less_real @ zero_zero_real @ ( groups8778361861064173332t_real @ F @ I5 ) ) ) ) ) ) ).

% sum_pos2
thf(fact_8380_sum__pos2,axiom,
    ! [I5: set_complex,I: complex,F: complex > real] :
      ( ( finite3207457112153483333omplex @ I5 )
     => ( ( member_complex @ I @ I5 )
       => ( ( ord_less_real @ zero_zero_real @ ( F @ I ) )
         => ( ! [I3: complex] :
                ( ( member_complex @ I3 @ I5 )
               => ( ord_less_eq_real @ zero_zero_real @ ( F @ I3 ) ) )
           => ( ord_less_real @ zero_zero_real @ ( groups5808333547571424918x_real @ F @ I5 ) ) ) ) ) ) ).

% sum_pos2
thf(fact_8381_sum__pos2,axiom,
    ! [I5: set_real,I: real,F: real > rat] :
      ( ( finite_finite_real @ I5 )
     => ( ( member_real @ I @ I5 )
       => ( ( ord_less_rat @ zero_zero_rat @ ( F @ I ) )
         => ( ! [I3: real] :
                ( ( member_real @ I3 @ I5 )
               => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I3 ) ) )
           => ( ord_less_rat @ zero_zero_rat @ ( groups1300246762558778688al_rat @ F @ I5 ) ) ) ) ) ) ).

% sum_pos2
thf(fact_8382_sum__pos2,axiom,
    ! [I5: set_nat,I: nat,F: nat > rat] :
      ( ( finite_finite_nat @ I5 )
     => ( ( member_nat @ I @ I5 )
       => ( ( ord_less_rat @ zero_zero_rat @ ( F @ I ) )
         => ( ! [I3: nat] :
                ( ( member_nat @ I3 @ I5 )
               => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I3 ) ) )
           => ( ord_less_rat @ zero_zero_rat @ ( groups2906978787729119204at_rat @ F @ I5 ) ) ) ) ) ) ).

% sum_pos2
thf(fact_8383_sum__pos2,axiom,
    ! [I5: set_int,I: int,F: int > rat] :
      ( ( finite_finite_int @ I5 )
     => ( ( member_int @ I @ I5 )
       => ( ( ord_less_rat @ zero_zero_rat @ ( F @ I ) )
         => ( ! [I3: int] :
                ( ( member_int @ I3 @ I5 )
               => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I3 ) ) )
           => ( ord_less_rat @ zero_zero_rat @ ( groups3906332499630173760nt_rat @ F @ I5 ) ) ) ) ) ) ).

% sum_pos2
thf(fact_8384_sum__pos2,axiom,
    ! [I5: set_complex,I: complex,F: complex > rat] :
      ( ( finite3207457112153483333omplex @ I5 )
     => ( ( member_complex @ I @ I5 )
       => ( ( ord_less_rat @ zero_zero_rat @ ( F @ I ) )
         => ( ! [I3: complex] :
                ( ( member_complex @ I3 @ I5 )
               => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ I3 ) ) )
           => ( ord_less_rat @ zero_zero_rat @ ( groups5058264527183730370ex_rat @ F @ I5 ) ) ) ) ) ) ).

% sum_pos2
thf(fact_8385_sum__pos2,axiom,
    ! [I5: set_real,I: real,F: real > nat] :
      ( ( finite_finite_real @ I5 )
     => ( ( member_real @ I @ I5 )
       => ( ( ord_less_nat @ zero_zero_nat @ ( F @ I ) )
         => ( ! [I3: real] :
                ( ( member_real @ I3 @ I5 )
               => ( ord_less_eq_nat @ zero_zero_nat @ ( F @ I3 ) ) )
           => ( ord_less_nat @ zero_zero_nat @ ( groups1935376822645274424al_nat @ F @ I5 ) ) ) ) ) ) ).

% sum_pos2
thf(fact_8386_sum__pos2,axiom,
    ! [I5: set_int,I: int,F: int > nat] :
      ( ( finite_finite_int @ I5 )
     => ( ( member_int @ I @ I5 )
       => ( ( ord_less_nat @ zero_zero_nat @ ( F @ I ) )
         => ( ! [I3: int] :
                ( ( member_int @ I3 @ I5 )
               => ( ord_less_eq_nat @ zero_zero_nat @ ( F @ I3 ) ) )
           => ( ord_less_nat @ zero_zero_nat @ ( groups4541462559716669496nt_nat @ F @ I5 ) ) ) ) ) ) ).

% sum_pos2
thf(fact_8387_sum__pos2,axiom,
    ! [I5: set_complex,I: complex,F: complex > nat] :
      ( ( finite3207457112153483333omplex @ I5 )
     => ( ( member_complex @ I @ I5 )
       => ( ( ord_less_nat @ zero_zero_nat @ ( F @ I ) )
         => ( ! [I3: complex] :
                ( ( member_complex @ I3 @ I5 )
               => ( ord_less_eq_nat @ zero_zero_nat @ ( F @ I3 ) ) )
           => ( ord_less_nat @ zero_zero_nat @ ( groups5693394587270226106ex_nat @ F @ I5 ) ) ) ) ) ) ).

% sum_pos2
thf(fact_8388_sum__pos,axiom,
    ! [I5: set_complex,F: complex > real] :
      ( ( finite3207457112153483333omplex @ I5 )
     => ( ( I5 != bot_bot_set_complex )
       => ( ! [I3: complex] :
              ( ( member_complex @ I3 @ I5 )
             => ( ord_less_real @ zero_zero_real @ ( F @ I3 ) ) )
         => ( ord_less_real @ zero_zero_real @ ( groups5808333547571424918x_real @ F @ I5 ) ) ) ) ) ).

% sum_pos
thf(fact_8389_sum__pos,axiom,
    ! [I5: set_real,F: real > real] :
      ( ( finite_finite_real @ I5 )
     => ( ( I5 != bot_bot_set_real )
       => ( ! [I3: real] :
              ( ( member_real @ I3 @ I5 )
             => ( ord_less_real @ zero_zero_real @ ( F @ I3 ) ) )
         => ( ord_less_real @ zero_zero_real @ ( groups8097168146408367636l_real @ F @ I5 ) ) ) ) ) ).

% sum_pos
thf(fact_8390_sum__pos,axiom,
    ! [I5: set_o,F: $o > real] :
      ( ( finite_finite_o @ I5 )
     => ( ( I5 != bot_bot_set_o )
       => ( ! [I3: $o] :
              ( ( member_o @ I3 @ I5 )
             => ( ord_less_real @ zero_zero_real @ ( F @ I3 ) ) )
         => ( ord_less_real @ zero_zero_real @ ( groups8691415230153176458o_real @ F @ I5 ) ) ) ) ) ).

% sum_pos
thf(fact_8391_sum__pos,axiom,
    ! [I5: set_int,F: int > real] :
      ( ( finite_finite_int @ I5 )
     => ( ( I5 != bot_bot_set_int )
       => ( ! [I3: int] :
              ( ( member_int @ I3 @ I5 )
             => ( ord_less_real @ zero_zero_real @ ( F @ I3 ) ) )
         => ( ord_less_real @ zero_zero_real @ ( groups8778361861064173332t_real @ F @ I5 ) ) ) ) ) ).

% sum_pos
thf(fact_8392_sum__pos,axiom,
    ! [I5: set_complex,F: complex > rat] :
      ( ( finite3207457112153483333omplex @ I5 )
     => ( ( I5 != bot_bot_set_complex )
       => ( ! [I3: complex] :
              ( ( member_complex @ I3 @ I5 )
             => ( ord_less_rat @ zero_zero_rat @ ( F @ I3 ) ) )
         => ( ord_less_rat @ zero_zero_rat @ ( groups5058264527183730370ex_rat @ F @ I5 ) ) ) ) ) ).

% sum_pos
thf(fact_8393_sum__pos,axiom,
    ! [I5: set_real,F: real > rat] :
      ( ( finite_finite_real @ I5 )
     => ( ( I5 != bot_bot_set_real )
       => ( ! [I3: real] :
              ( ( member_real @ I3 @ I5 )
             => ( ord_less_rat @ zero_zero_rat @ ( F @ I3 ) ) )
         => ( ord_less_rat @ zero_zero_rat @ ( groups1300246762558778688al_rat @ F @ I5 ) ) ) ) ) ).

% sum_pos
thf(fact_8394_sum__pos,axiom,
    ! [I5: set_o,F: $o > rat] :
      ( ( finite_finite_o @ I5 )
     => ( ( I5 != bot_bot_set_o )
       => ( ! [I3: $o] :
              ( ( member_o @ I3 @ I5 )
             => ( ord_less_rat @ zero_zero_rat @ ( F @ I3 ) ) )
         => ( ord_less_rat @ zero_zero_rat @ ( groups7872700643590313910_o_rat @ F @ I5 ) ) ) ) ) ).

% sum_pos
thf(fact_8395_sum__pos,axiom,
    ! [I5: set_nat,F: nat > rat] :
      ( ( finite_finite_nat @ I5 )
     => ( ( I5 != bot_bot_set_nat )
       => ( ! [I3: nat] :
              ( ( member_nat @ I3 @ I5 )
             => ( ord_less_rat @ zero_zero_rat @ ( F @ I3 ) ) )
         => ( ord_less_rat @ zero_zero_rat @ ( groups2906978787729119204at_rat @ F @ I5 ) ) ) ) ) ).

% sum_pos
thf(fact_8396_sum__pos,axiom,
    ! [I5: set_int,F: int > rat] :
      ( ( finite_finite_int @ I5 )
     => ( ( I5 != bot_bot_set_int )
       => ( ! [I3: int] :
              ( ( member_int @ I3 @ I5 )
             => ( ord_less_rat @ zero_zero_rat @ ( F @ I3 ) ) )
         => ( ord_less_rat @ zero_zero_rat @ ( groups3906332499630173760nt_rat @ F @ I5 ) ) ) ) ) ).

% sum_pos
thf(fact_8397_sum__pos,axiom,
    ! [I5: set_complex,F: complex > nat] :
      ( ( finite3207457112153483333omplex @ I5 )
     => ( ( I5 != bot_bot_set_complex )
       => ( ! [I3: complex] :
              ( ( member_complex @ I3 @ I5 )
             => ( ord_less_nat @ zero_zero_nat @ ( F @ I3 ) ) )
         => ( ord_less_nat @ zero_zero_nat @ ( groups5693394587270226106ex_nat @ F @ I5 ) ) ) ) ) ).

% sum_pos
thf(fact_8398_sum_Omono__neutral__cong__right,axiom,
    ! [T3: set_real,S3: set_real,G: real > complex,H2: real > complex] :
      ( ( finite_finite_real @ T3 )
     => ( ( ord_less_eq_set_real @ S3 @ T3 )
       => ( ! [X4: real] :
              ( ( member_real @ X4 @ ( minus_minus_set_real @ T3 @ S3 ) )
             => ( ( G @ X4 )
                = zero_zero_complex ) )
         => ( ! [X4: real] :
                ( ( member_real @ X4 @ S3 )
               => ( ( G @ X4 )
                  = ( H2 @ X4 ) ) )
           => ( ( groups5754745047067104278omplex @ G @ T3 )
              = ( groups5754745047067104278omplex @ H2 @ S3 ) ) ) ) ) ) ).

% sum.mono_neutral_cong_right
thf(fact_8399_sum_Omono__neutral__cong__right,axiom,
    ! [T3: set_real,S3: set_real,G: real > real,H2: real > real] :
      ( ( finite_finite_real @ T3 )
     => ( ( ord_less_eq_set_real @ S3 @ T3 )
       => ( ! [X4: real] :
              ( ( member_real @ X4 @ ( minus_minus_set_real @ T3 @ S3 ) )
             => ( ( G @ X4 )
                = zero_zero_real ) )
         => ( ! [X4: real] :
                ( ( member_real @ X4 @ S3 )
               => ( ( G @ X4 )
                  = ( H2 @ X4 ) ) )
           => ( ( groups8097168146408367636l_real @ G @ T3 )
              = ( groups8097168146408367636l_real @ H2 @ S3 ) ) ) ) ) ) ).

% sum.mono_neutral_cong_right
thf(fact_8400_sum_Omono__neutral__cong__right,axiom,
    ! [T3: set_complex,S3: set_complex,G: complex > real,H2: complex > real] :
      ( ( finite3207457112153483333omplex @ T3 )
     => ( ( ord_le211207098394363844omplex @ S3 @ T3 )
       => ( ! [X4: complex] :
              ( ( member_complex @ X4 @ ( minus_811609699411566653omplex @ T3 @ S3 ) )
             => ( ( G @ X4 )
                = zero_zero_real ) )
         => ( ! [X4: complex] :
                ( ( member_complex @ X4 @ S3 )
               => ( ( G @ X4 )
                  = ( H2 @ X4 ) ) )
           => ( ( groups5808333547571424918x_real @ G @ T3 )
              = ( groups5808333547571424918x_real @ H2 @ S3 ) ) ) ) ) ) ).

% sum.mono_neutral_cong_right
thf(fact_8401_sum_Omono__neutral__cong__right,axiom,
    ! [T3: set_real,S3: set_real,G: real > rat,H2: real > rat] :
      ( ( finite_finite_real @ T3 )
     => ( ( ord_less_eq_set_real @ S3 @ T3 )
       => ( ! [X4: real] :
              ( ( member_real @ X4 @ ( minus_minus_set_real @ T3 @ S3 ) )
             => ( ( G @ X4 )
                = zero_zero_rat ) )
         => ( ! [X4: real] :
                ( ( member_real @ X4 @ S3 )
               => ( ( G @ X4 )
                  = ( H2 @ X4 ) ) )
           => ( ( groups1300246762558778688al_rat @ G @ T3 )
              = ( groups1300246762558778688al_rat @ H2 @ S3 ) ) ) ) ) ) ).

% sum.mono_neutral_cong_right
thf(fact_8402_sum_Omono__neutral__cong__right,axiom,
    ! [T3: set_complex,S3: set_complex,G: complex > rat,H2: complex > rat] :
      ( ( finite3207457112153483333omplex @ T3 )
     => ( ( ord_le211207098394363844omplex @ S3 @ T3 )
       => ( ! [X4: complex] :
              ( ( member_complex @ X4 @ ( minus_811609699411566653omplex @ T3 @ S3 ) )
             => ( ( G @ X4 )
                = zero_zero_rat ) )
         => ( ! [X4: complex] :
                ( ( member_complex @ X4 @ S3 )
               => ( ( G @ X4 )
                  = ( H2 @ X4 ) ) )
           => ( ( groups5058264527183730370ex_rat @ G @ T3 )
              = ( groups5058264527183730370ex_rat @ H2 @ S3 ) ) ) ) ) ) ).

% sum.mono_neutral_cong_right
thf(fact_8403_sum_Omono__neutral__cong__right,axiom,
    ! [T3: set_real,S3: set_real,G: real > nat,H2: real > nat] :
      ( ( finite_finite_real @ T3 )
     => ( ( ord_less_eq_set_real @ S3 @ T3 )
       => ( ! [X4: real] :
              ( ( member_real @ X4 @ ( minus_minus_set_real @ T3 @ S3 ) )
             => ( ( G @ X4 )
                = zero_zero_nat ) )
         => ( ! [X4: real] :
                ( ( member_real @ X4 @ S3 )
               => ( ( G @ X4 )
                  = ( H2 @ X4 ) ) )
           => ( ( groups1935376822645274424al_nat @ G @ T3 )
              = ( groups1935376822645274424al_nat @ H2 @ S3 ) ) ) ) ) ) ).

% sum.mono_neutral_cong_right
thf(fact_8404_sum_Omono__neutral__cong__right,axiom,
    ! [T3: set_complex,S3: set_complex,G: complex > nat,H2: complex > nat] :
      ( ( finite3207457112153483333omplex @ T3 )
     => ( ( ord_le211207098394363844omplex @ S3 @ T3 )
       => ( ! [X4: complex] :
              ( ( member_complex @ X4 @ ( minus_811609699411566653omplex @ T3 @ S3 ) )
             => ( ( G @ X4 )
                = zero_zero_nat ) )
         => ( ! [X4: complex] :
                ( ( member_complex @ X4 @ S3 )
               => ( ( G @ X4 )
                  = ( H2 @ X4 ) ) )
           => ( ( groups5693394587270226106ex_nat @ G @ T3 )
              = ( groups5693394587270226106ex_nat @ H2 @ S3 ) ) ) ) ) ) ).

% sum.mono_neutral_cong_right
thf(fact_8405_sum_Omono__neutral__cong__right,axiom,
    ! [T3: set_real,S3: set_real,G: real > int,H2: real > int] :
      ( ( finite_finite_real @ T3 )
     => ( ( ord_less_eq_set_real @ S3 @ T3 )
       => ( ! [X4: real] :
              ( ( member_real @ X4 @ ( minus_minus_set_real @ T3 @ S3 ) )
             => ( ( G @ X4 )
                = zero_zero_int ) )
         => ( ! [X4: real] :
                ( ( member_real @ X4 @ S3 )
               => ( ( G @ X4 )
                  = ( H2 @ X4 ) ) )
           => ( ( groups1932886352136224148al_int @ G @ T3 )
              = ( groups1932886352136224148al_int @ H2 @ S3 ) ) ) ) ) ) ).

% sum.mono_neutral_cong_right
thf(fact_8406_sum_Omono__neutral__cong__right,axiom,
    ! [T3: set_complex,S3: set_complex,G: complex > int,H2: complex > int] :
      ( ( finite3207457112153483333omplex @ T3 )
     => ( ( ord_le211207098394363844omplex @ S3 @ T3 )
       => ( ! [X4: complex] :
              ( ( member_complex @ X4 @ ( minus_811609699411566653omplex @ T3 @ S3 ) )
             => ( ( G @ X4 )
                = zero_zero_int ) )
         => ( ! [X4: complex] :
                ( ( member_complex @ X4 @ S3 )
               => ( ( G @ X4 )
                  = ( H2 @ X4 ) ) )
           => ( ( groups5690904116761175830ex_int @ G @ T3 )
              = ( groups5690904116761175830ex_int @ H2 @ S3 ) ) ) ) ) ) ).

% sum.mono_neutral_cong_right
thf(fact_8407_sum_Omono__neutral__cong__right,axiom,
    ! [T3: set_nat,S3: set_nat,G: nat > complex,H2: nat > complex] :
      ( ( finite_finite_nat @ T3 )
     => ( ( ord_less_eq_set_nat @ S3 @ T3 )
       => ( ! [X4: nat] :
              ( ( member_nat @ X4 @ ( minus_minus_set_nat @ T3 @ S3 ) )
             => ( ( G @ X4 )
                = zero_zero_complex ) )
         => ( ! [X4: nat] :
                ( ( member_nat @ X4 @ S3 )
               => ( ( G @ X4 )
                  = ( H2 @ X4 ) ) )
           => ( ( groups2073611262835488442omplex @ G @ T3 )
              = ( groups2073611262835488442omplex @ H2 @ S3 ) ) ) ) ) ) ).

% sum.mono_neutral_cong_right
thf(fact_8408_sum_Omono__neutral__cong__left,axiom,
    ! [T3: set_real,S3: set_real,H2: real > complex,G: real > complex] :
      ( ( finite_finite_real @ T3 )
     => ( ( ord_less_eq_set_real @ S3 @ T3 )
       => ( ! [X4: real] :
              ( ( member_real @ X4 @ ( minus_minus_set_real @ T3 @ S3 ) )
             => ( ( H2 @ X4 )
                = zero_zero_complex ) )
         => ( ! [X4: real] :
                ( ( member_real @ X4 @ S3 )
               => ( ( G @ X4 )
                  = ( H2 @ X4 ) ) )
           => ( ( groups5754745047067104278omplex @ G @ S3 )
              = ( groups5754745047067104278omplex @ H2 @ T3 ) ) ) ) ) ) ).

% sum.mono_neutral_cong_left
thf(fact_8409_sum_Omono__neutral__cong__left,axiom,
    ! [T3: set_real,S3: set_real,H2: real > real,G: real > real] :
      ( ( finite_finite_real @ T3 )
     => ( ( ord_less_eq_set_real @ S3 @ T3 )
       => ( ! [X4: real] :
              ( ( member_real @ X4 @ ( minus_minus_set_real @ T3 @ S3 ) )
             => ( ( H2 @ X4 )
                = zero_zero_real ) )
         => ( ! [X4: real] :
                ( ( member_real @ X4 @ S3 )
               => ( ( G @ X4 )
                  = ( H2 @ X4 ) ) )
           => ( ( groups8097168146408367636l_real @ G @ S3 )
              = ( groups8097168146408367636l_real @ H2 @ T3 ) ) ) ) ) ) ).

% sum.mono_neutral_cong_left
thf(fact_8410_sum_Omono__neutral__cong__left,axiom,
    ! [T3: set_complex,S3: set_complex,H2: complex > real,G: complex > real] :
      ( ( finite3207457112153483333omplex @ T3 )
     => ( ( ord_le211207098394363844omplex @ S3 @ T3 )
       => ( ! [X4: complex] :
              ( ( member_complex @ X4 @ ( minus_811609699411566653omplex @ T3 @ S3 ) )
             => ( ( H2 @ X4 )
                = zero_zero_real ) )
         => ( ! [X4: complex] :
                ( ( member_complex @ X4 @ S3 )
               => ( ( G @ X4 )
                  = ( H2 @ X4 ) ) )
           => ( ( groups5808333547571424918x_real @ G @ S3 )
              = ( groups5808333547571424918x_real @ H2 @ T3 ) ) ) ) ) ) ).

% sum.mono_neutral_cong_left
thf(fact_8411_sum_Omono__neutral__cong__left,axiom,
    ! [T3: set_real,S3: set_real,H2: real > rat,G: real > rat] :
      ( ( finite_finite_real @ T3 )
     => ( ( ord_less_eq_set_real @ S3 @ T3 )
       => ( ! [X4: real] :
              ( ( member_real @ X4 @ ( minus_minus_set_real @ T3 @ S3 ) )
             => ( ( H2 @ X4 )
                = zero_zero_rat ) )
         => ( ! [X4: real] :
                ( ( member_real @ X4 @ S3 )
               => ( ( G @ X4 )
                  = ( H2 @ X4 ) ) )
           => ( ( groups1300246762558778688al_rat @ G @ S3 )
              = ( groups1300246762558778688al_rat @ H2 @ T3 ) ) ) ) ) ) ).

% sum.mono_neutral_cong_left
thf(fact_8412_sum_Omono__neutral__cong__left,axiom,
    ! [T3: set_complex,S3: set_complex,H2: complex > rat,G: complex > rat] :
      ( ( finite3207457112153483333omplex @ T3 )
     => ( ( ord_le211207098394363844omplex @ S3 @ T3 )
       => ( ! [X4: complex] :
              ( ( member_complex @ X4 @ ( minus_811609699411566653omplex @ T3 @ S3 ) )
             => ( ( H2 @ X4 )
                = zero_zero_rat ) )
         => ( ! [X4: complex] :
                ( ( member_complex @ X4 @ S3 )
               => ( ( G @ X4 )
                  = ( H2 @ X4 ) ) )
           => ( ( groups5058264527183730370ex_rat @ G @ S3 )
              = ( groups5058264527183730370ex_rat @ H2 @ T3 ) ) ) ) ) ) ).

% sum.mono_neutral_cong_left
thf(fact_8413_sum_Omono__neutral__cong__left,axiom,
    ! [T3: set_real,S3: set_real,H2: real > nat,G: real > nat] :
      ( ( finite_finite_real @ T3 )
     => ( ( ord_less_eq_set_real @ S3 @ T3 )
       => ( ! [X4: real] :
              ( ( member_real @ X4 @ ( minus_minus_set_real @ T3 @ S3 ) )
             => ( ( H2 @ X4 )
                = zero_zero_nat ) )
         => ( ! [X4: real] :
                ( ( member_real @ X4 @ S3 )
               => ( ( G @ X4 )
                  = ( H2 @ X4 ) ) )
           => ( ( groups1935376822645274424al_nat @ G @ S3 )
              = ( groups1935376822645274424al_nat @ H2 @ T3 ) ) ) ) ) ) ).

% sum.mono_neutral_cong_left
thf(fact_8414_sum_Omono__neutral__cong__left,axiom,
    ! [T3: set_complex,S3: set_complex,H2: complex > nat,G: complex > nat] :
      ( ( finite3207457112153483333omplex @ T3 )
     => ( ( ord_le211207098394363844omplex @ S3 @ T3 )
       => ( ! [X4: complex] :
              ( ( member_complex @ X4 @ ( minus_811609699411566653omplex @ T3 @ S3 ) )
             => ( ( H2 @ X4 )
                = zero_zero_nat ) )
         => ( ! [X4: complex] :
                ( ( member_complex @ X4 @ S3 )
               => ( ( G @ X4 )
                  = ( H2 @ X4 ) ) )
           => ( ( groups5693394587270226106ex_nat @ G @ S3 )
              = ( groups5693394587270226106ex_nat @ H2 @ T3 ) ) ) ) ) ) ).

% sum.mono_neutral_cong_left
thf(fact_8415_sum_Omono__neutral__cong__left,axiom,
    ! [T3: set_real,S3: set_real,H2: real > int,G: real > int] :
      ( ( finite_finite_real @ T3 )
     => ( ( ord_less_eq_set_real @ S3 @ T3 )
       => ( ! [X4: real] :
              ( ( member_real @ X4 @ ( minus_minus_set_real @ T3 @ S3 ) )
             => ( ( H2 @ X4 )
                = zero_zero_int ) )
         => ( ! [X4: real] :
                ( ( member_real @ X4 @ S3 )
               => ( ( G @ X4 )
                  = ( H2 @ X4 ) ) )
           => ( ( groups1932886352136224148al_int @ G @ S3 )
              = ( groups1932886352136224148al_int @ H2 @ T3 ) ) ) ) ) ) ).

% sum.mono_neutral_cong_left
thf(fact_8416_sum_Omono__neutral__cong__left,axiom,
    ! [T3: set_complex,S3: set_complex,H2: complex > int,G: complex > int] :
      ( ( finite3207457112153483333omplex @ T3 )
     => ( ( ord_le211207098394363844omplex @ S3 @ T3 )
       => ( ! [X4: complex] :
              ( ( member_complex @ X4 @ ( minus_811609699411566653omplex @ T3 @ S3 ) )
             => ( ( H2 @ X4 )
                = zero_zero_int ) )
         => ( ! [X4: complex] :
                ( ( member_complex @ X4 @ S3 )
               => ( ( G @ X4 )
                  = ( H2 @ X4 ) ) )
           => ( ( groups5690904116761175830ex_int @ G @ S3 )
              = ( groups5690904116761175830ex_int @ H2 @ T3 ) ) ) ) ) ) ).

% sum.mono_neutral_cong_left
thf(fact_8417_sum_Omono__neutral__cong__left,axiom,
    ! [T3: set_nat,S3: set_nat,H2: nat > complex,G: nat > complex] :
      ( ( finite_finite_nat @ T3 )
     => ( ( ord_less_eq_set_nat @ S3 @ T3 )
       => ( ! [X4: nat] :
              ( ( member_nat @ X4 @ ( minus_minus_set_nat @ T3 @ S3 ) )
             => ( ( H2 @ X4 )
                = zero_zero_complex ) )
         => ( ! [X4: nat] :
                ( ( member_nat @ X4 @ S3 )
               => ( ( G @ X4 )
                  = ( H2 @ X4 ) ) )
           => ( ( groups2073611262835488442omplex @ G @ S3 )
              = ( groups2073611262835488442omplex @ H2 @ T3 ) ) ) ) ) ) ).

% sum.mono_neutral_cong_left
thf(fact_8418_sum_Omono__neutral__right,axiom,
    ! [T3: set_complex,S3: set_complex,G: complex > real] :
      ( ( finite3207457112153483333omplex @ T3 )
     => ( ( ord_le211207098394363844omplex @ S3 @ T3 )
       => ( ! [X4: complex] :
              ( ( member_complex @ X4 @ ( minus_811609699411566653omplex @ T3 @ S3 ) )
             => ( ( G @ X4 )
                = zero_zero_real ) )
         => ( ( groups5808333547571424918x_real @ G @ T3 )
            = ( groups5808333547571424918x_real @ G @ S3 ) ) ) ) ) ).

% sum.mono_neutral_right
thf(fact_8419_sum_Omono__neutral__right,axiom,
    ! [T3: set_complex,S3: set_complex,G: complex > rat] :
      ( ( finite3207457112153483333omplex @ T3 )
     => ( ( ord_le211207098394363844omplex @ S3 @ T3 )
       => ( ! [X4: complex] :
              ( ( member_complex @ X4 @ ( minus_811609699411566653omplex @ T3 @ S3 ) )
             => ( ( G @ X4 )
                = zero_zero_rat ) )
         => ( ( groups5058264527183730370ex_rat @ G @ T3 )
            = ( groups5058264527183730370ex_rat @ G @ S3 ) ) ) ) ) ).

% sum.mono_neutral_right
thf(fact_8420_sum_Omono__neutral__right,axiom,
    ! [T3: set_complex,S3: set_complex,G: complex > nat] :
      ( ( finite3207457112153483333omplex @ T3 )
     => ( ( ord_le211207098394363844omplex @ S3 @ T3 )
       => ( ! [X4: complex] :
              ( ( member_complex @ X4 @ ( minus_811609699411566653omplex @ T3 @ S3 ) )
             => ( ( G @ X4 )
                = zero_zero_nat ) )
         => ( ( groups5693394587270226106ex_nat @ G @ T3 )
            = ( groups5693394587270226106ex_nat @ G @ S3 ) ) ) ) ) ).

% sum.mono_neutral_right
thf(fact_8421_sum_Omono__neutral__right,axiom,
    ! [T3: set_complex,S3: set_complex,G: complex > int] :
      ( ( finite3207457112153483333omplex @ T3 )
     => ( ( ord_le211207098394363844omplex @ S3 @ T3 )
       => ( ! [X4: complex] :
              ( ( member_complex @ X4 @ ( minus_811609699411566653omplex @ T3 @ S3 ) )
             => ( ( G @ X4 )
                = zero_zero_int ) )
         => ( ( groups5690904116761175830ex_int @ G @ T3 )
            = ( groups5690904116761175830ex_int @ G @ S3 ) ) ) ) ) ).

% sum.mono_neutral_right
thf(fact_8422_sum_Omono__neutral__right,axiom,
    ! [T3: set_nat,S3: set_nat,G: nat > complex] :
      ( ( finite_finite_nat @ T3 )
     => ( ( ord_less_eq_set_nat @ S3 @ T3 )
       => ( ! [X4: nat] :
              ( ( member_nat @ X4 @ ( minus_minus_set_nat @ T3 @ S3 ) )
             => ( ( G @ X4 )
                = zero_zero_complex ) )
         => ( ( groups2073611262835488442omplex @ G @ T3 )
            = ( groups2073611262835488442omplex @ G @ S3 ) ) ) ) ) ).

% sum.mono_neutral_right
thf(fact_8423_sum_Omono__neutral__right,axiom,
    ! [T3: set_nat,S3: set_nat,G: nat > rat] :
      ( ( finite_finite_nat @ T3 )
     => ( ( ord_less_eq_set_nat @ S3 @ T3 )
       => ( ! [X4: nat] :
              ( ( member_nat @ X4 @ ( minus_minus_set_nat @ T3 @ S3 ) )
             => ( ( G @ X4 )
                = zero_zero_rat ) )
         => ( ( groups2906978787729119204at_rat @ G @ T3 )
            = ( groups2906978787729119204at_rat @ G @ S3 ) ) ) ) ) ).

% sum.mono_neutral_right
thf(fact_8424_sum_Omono__neutral__right,axiom,
    ! [T3: set_nat,S3: set_nat,G: nat > int] :
      ( ( finite_finite_nat @ T3 )
     => ( ( ord_less_eq_set_nat @ S3 @ T3 )
       => ( ! [X4: nat] :
              ( ( member_nat @ X4 @ ( minus_minus_set_nat @ T3 @ S3 ) )
             => ( ( G @ X4 )
                = zero_zero_int ) )
         => ( ( groups3539618377306564664at_int @ G @ T3 )
            = ( groups3539618377306564664at_int @ G @ S3 ) ) ) ) ) ).

% sum.mono_neutral_right
thf(fact_8425_sum_Omono__neutral__right,axiom,
    ! [T3: set_int,S3: set_int,G: int > complex] :
      ( ( finite_finite_int @ T3 )
     => ( ( ord_less_eq_set_int @ S3 @ T3 )
       => ( ! [X4: int] :
              ( ( member_int @ X4 @ ( minus_minus_set_int @ T3 @ S3 ) )
             => ( ( G @ X4 )
                = zero_zero_complex ) )
         => ( ( groups3049146728041665814omplex @ G @ T3 )
            = ( groups3049146728041665814omplex @ G @ S3 ) ) ) ) ) ).

% sum.mono_neutral_right
thf(fact_8426_sum_Omono__neutral__right,axiom,
    ! [T3: set_int,S3: set_int,G: int > real] :
      ( ( finite_finite_int @ T3 )
     => ( ( ord_less_eq_set_int @ S3 @ T3 )
       => ( ! [X4: int] :
              ( ( member_int @ X4 @ ( minus_minus_set_int @ T3 @ S3 ) )
             => ( ( G @ X4 )
                = zero_zero_real ) )
         => ( ( groups8778361861064173332t_real @ G @ T3 )
            = ( groups8778361861064173332t_real @ G @ S3 ) ) ) ) ) ).

% sum.mono_neutral_right
thf(fact_8427_sum_Omono__neutral__right,axiom,
    ! [T3: set_int,S3: set_int,G: int > rat] :
      ( ( finite_finite_int @ T3 )
     => ( ( ord_less_eq_set_int @ S3 @ T3 )
       => ( ! [X4: int] :
              ( ( member_int @ X4 @ ( minus_minus_set_int @ T3 @ S3 ) )
             => ( ( G @ X4 )
                = zero_zero_rat ) )
         => ( ( groups3906332499630173760nt_rat @ G @ T3 )
            = ( groups3906332499630173760nt_rat @ G @ S3 ) ) ) ) ) ).

% sum.mono_neutral_right
thf(fact_8428_sum_Omono__neutral__left,axiom,
    ! [T3: set_complex,S3: set_complex,G: complex > real] :
      ( ( finite3207457112153483333omplex @ T3 )
     => ( ( ord_le211207098394363844omplex @ S3 @ T3 )
       => ( ! [X4: complex] :
              ( ( member_complex @ X4 @ ( minus_811609699411566653omplex @ T3 @ S3 ) )
             => ( ( G @ X4 )
                = zero_zero_real ) )
         => ( ( groups5808333547571424918x_real @ G @ S3 )
            = ( groups5808333547571424918x_real @ G @ T3 ) ) ) ) ) ).

% sum.mono_neutral_left
thf(fact_8429_sum_Omono__neutral__left,axiom,
    ! [T3: set_complex,S3: set_complex,G: complex > rat] :
      ( ( finite3207457112153483333omplex @ T3 )
     => ( ( ord_le211207098394363844omplex @ S3 @ T3 )
       => ( ! [X4: complex] :
              ( ( member_complex @ X4 @ ( minus_811609699411566653omplex @ T3 @ S3 ) )
             => ( ( G @ X4 )
                = zero_zero_rat ) )
         => ( ( groups5058264527183730370ex_rat @ G @ S3 )
            = ( groups5058264527183730370ex_rat @ G @ T3 ) ) ) ) ) ).

% sum.mono_neutral_left
thf(fact_8430_sum_Omono__neutral__left,axiom,
    ! [T3: set_complex,S3: set_complex,G: complex > nat] :
      ( ( finite3207457112153483333omplex @ T3 )
     => ( ( ord_le211207098394363844omplex @ S3 @ T3 )
       => ( ! [X4: complex] :
              ( ( member_complex @ X4 @ ( minus_811609699411566653omplex @ T3 @ S3 ) )
             => ( ( G @ X4 )
                = zero_zero_nat ) )
         => ( ( groups5693394587270226106ex_nat @ G @ S3 )
            = ( groups5693394587270226106ex_nat @ G @ T3 ) ) ) ) ) ).

% sum.mono_neutral_left
thf(fact_8431_sum_Omono__neutral__left,axiom,
    ! [T3: set_complex,S3: set_complex,G: complex > int] :
      ( ( finite3207457112153483333omplex @ T3 )
     => ( ( ord_le211207098394363844omplex @ S3 @ T3 )
       => ( ! [X4: complex] :
              ( ( member_complex @ X4 @ ( minus_811609699411566653omplex @ T3 @ S3 ) )
             => ( ( G @ X4 )
                = zero_zero_int ) )
         => ( ( groups5690904116761175830ex_int @ G @ S3 )
            = ( groups5690904116761175830ex_int @ G @ T3 ) ) ) ) ) ).

% sum.mono_neutral_left
thf(fact_8432_sum_Omono__neutral__left,axiom,
    ! [T3: set_nat,S3: set_nat,G: nat > complex] :
      ( ( finite_finite_nat @ T3 )
     => ( ( ord_less_eq_set_nat @ S3 @ T3 )
       => ( ! [X4: nat] :
              ( ( member_nat @ X4 @ ( minus_minus_set_nat @ T3 @ S3 ) )
             => ( ( G @ X4 )
                = zero_zero_complex ) )
         => ( ( groups2073611262835488442omplex @ G @ S3 )
            = ( groups2073611262835488442omplex @ G @ T3 ) ) ) ) ) ).

% sum.mono_neutral_left
thf(fact_8433_sum_Omono__neutral__left,axiom,
    ! [T3: set_nat,S3: set_nat,G: nat > rat] :
      ( ( finite_finite_nat @ T3 )
     => ( ( ord_less_eq_set_nat @ S3 @ T3 )
       => ( ! [X4: nat] :
              ( ( member_nat @ X4 @ ( minus_minus_set_nat @ T3 @ S3 ) )
             => ( ( G @ X4 )
                = zero_zero_rat ) )
         => ( ( groups2906978787729119204at_rat @ G @ S3 )
            = ( groups2906978787729119204at_rat @ G @ T3 ) ) ) ) ) ).

% sum.mono_neutral_left
thf(fact_8434_sum_Omono__neutral__left,axiom,
    ! [T3: set_nat,S3: set_nat,G: nat > int] :
      ( ( finite_finite_nat @ T3 )
     => ( ( ord_less_eq_set_nat @ S3 @ T3 )
       => ( ! [X4: nat] :
              ( ( member_nat @ X4 @ ( minus_minus_set_nat @ T3 @ S3 ) )
             => ( ( G @ X4 )
                = zero_zero_int ) )
         => ( ( groups3539618377306564664at_int @ G @ S3 )
            = ( groups3539618377306564664at_int @ G @ T3 ) ) ) ) ) ).

% sum.mono_neutral_left
thf(fact_8435_sum_Omono__neutral__left,axiom,
    ! [T3: set_int,S3: set_int,G: int > complex] :
      ( ( finite_finite_int @ T3 )
     => ( ( ord_less_eq_set_int @ S3 @ T3 )
       => ( ! [X4: int] :
              ( ( member_int @ X4 @ ( minus_minus_set_int @ T3 @ S3 ) )
             => ( ( G @ X4 )
                = zero_zero_complex ) )
         => ( ( groups3049146728041665814omplex @ G @ S3 )
            = ( groups3049146728041665814omplex @ G @ T3 ) ) ) ) ) ).

% sum.mono_neutral_left
thf(fact_8436_sum_Omono__neutral__left,axiom,
    ! [T3: set_int,S3: set_int,G: int > real] :
      ( ( finite_finite_int @ T3 )
     => ( ( ord_less_eq_set_int @ S3 @ T3 )
       => ( ! [X4: int] :
              ( ( member_int @ X4 @ ( minus_minus_set_int @ T3 @ S3 ) )
             => ( ( G @ X4 )
                = zero_zero_real ) )
         => ( ( groups8778361861064173332t_real @ G @ S3 )
            = ( groups8778361861064173332t_real @ G @ T3 ) ) ) ) ) ).

% sum.mono_neutral_left
thf(fact_8437_sum_Omono__neutral__left,axiom,
    ! [T3: set_int,S3: set_int,G: int > rat] :
      ( ( finite_finite_int @ T3 )
     => ( ( ord_less_eq_set_int @ S3 @ T3 )
       => ( ! [X4: int] :
              ( ( member_int @ X4 @ ( minus_minus_set_int @ T3 @ S3 ) )
             => ( ( G @ X4 )
                = zero_zero_rat ) )
         => ( ( groups3906332499630173760nt_rat @ G @ S3 )
            = ( groups3906332499630173760nt_rat @ G @ T3 ) ) ) ) ) ).

% sum.mono_neutral_left
thf(fact_8438_sum_Osame__carrierI,axiom,
    ! [C4: set_real,A2: set_real,B3: set_real,G: real > complex,H2: real > complex] :
      ( ( finite_finite_real @ C4 )
     => ( ( ord_less_eq_set_real @ A2 @ C4 )
       => ( ( ord_less_eq_set_real @ B3 @ C4 )
         => ( ! [A6: real] :
                ( ( member_real @ A6 @ ( minus_minus_set_real @ C4 @ A2 ) )
               => ( ( G @ A6 )
                  = zero_zero_complex ) )
           => ( ! [B7: real] :
                  ( ( member_real @ B7 @ ( minus_minus_set_real @ C4 @ B3 ) )
                 => ( ( H2 @ B7 )
                    = zero_zero_complex ) )
             => ( ( ( groups5754745047067104278omplex @ G @ C4 )
                  = ( groups5754745047067104278omplex @ H2 @ C4 ) )
               => ( ( groups5754745047067104278omplex @ G @ A2 )
                  = ( groups5754745047067104278omplex @ H2 @ B3 ) ) ) ) ) ) ) ) ).

% sum.same_carrierI
thf(fact_8439_sum_Osame__carrierI,axiom,
    ! [C4: set_real,A2: set_real,B3: set_real,G: real > real,H2: real > real] :
      ( ( finite_finite_real @ C4 )
     => ( ( ord_less_eq_set_real @ A2 @ C4 )
       => ( ( ord_less_eq_set_real @ B3 @ C4 )
         => ( ! [A6: real] :
                ( ( member_real @ A6 @ ( minus_minus_set_real @ C4 @ A2 ) )
               => ( ( G @ A6 )
                  = zero_zero_real ) )
           => ( ! [B7: real] :
                  ( ( member_real @ B7 @ ( minus_minus_set_real @ C4 @ B3 ) )
                 => ( ( H2 @ B7 )
                    = zero_zero_real ) )
             => ( ( ( groups8097168146408367636l_real @ G @ C4 )
                  = ( groups8097168146408367636l_real @ H2 @ C4 ) )
               => ( ( groups8097168146408367636l_real @ G @ A2 )
                  = ( groups8097168146408367636l_real @ H2 @ B3 ) ) ) ) ) ) ) ) ).

% sum.same_carrierI
thf(fact_8440_sum_Osame__carrierI,axiom,
    ! [C4: set_complex,A2: set_complex,B3: set_complex,G: complex > real,H2: complex > real] :
      ( ( finite3207457112153483333omplex @ C4 )
     => ( ( ord_le211207098394363844omplex @ A2 @ C4 )
       => ( ( ord_le211207098394363844omplex @ B3 @ C4 )
         => ( ! [A6: complex] :
                ( ( member_complex @ A6 @ ( minus_811609699411566653omplex @ C4 @ A2 ) )
               => ( ( G @ A6 )
                  = zero_zero_real ) )
           => ( ! [B7: complex] :
                  ( ( member_complex @ B7 @ ( minus_811609699411566653omplex @ C4 @ B3 ) )
                 => ( ( H2 @ B7 )
                    = zero_zero_real ) )
             => ( ( ( groups5808333547571424918x_real @ G @ C4 )
                  = ( groups5808333547571424918x_real @ H2 @ C4 ) )
               => ( ( groups5808333547571424918x_real @ G @ A2 )
                  = ( groups5808333547571424918x_real @ H2 @ B3 ) ) ) ) ) ) ) ) ).

% sum.same_carrierI
thf(fact_8441_sum_Osame__carrierI,axiom,
    ! [C4: set_real,A2: set_real,B3: set_real,G: real > rat,H2: real > rat] :
      ( ( finite_finite_real @ C4 )
     => ( ( ord_less_eq_set_real @ A2 @ C4 )
       => ( ( ord_less_eq_set_real @ B3 @ C4 )
         => ( ! [A6: real] :
                ( ( member_real @ A6 @ ( minus_minus_set_real @ C4 @ A2 ) )
               => ( ( G @ A6 )
                  = zero_zero_rat ) )
           => ( ! [B7: real] :
                  ( ( member_real @ B7 @ ( minus_minus_set_real @ C4 @ B3 ) )
                 => ( ( H2 @ B7 )
                    = zero_zero_rat ) )
             => ( ( ( groups1300246762558778688al_rat @ G @ C4 )
                  = ( groups1300246762558778688al_rat @ H2 @ C4 ) )
               => ( ( groups1300246762558778688al_rat @ G @ A2 )
                  = ( groups1300246762558778688al_rat @ H2 @ B3 ) ) ) ) ) ) ) ) ).

% sum.same_carrierI
thf(fact_8442_sum_Osame__carrierI,axiom,
    ! [C4: set_complex,A2: set_complex,B3: set_complex,G: complex > rat,H2: complex > rat] :
      ( ( finite3207457112153483333omplex @ C4 )
     => ( ( ord_le211207098394363844omplex @ A2 @ C4 )
       => ( ( ord_le211207098394363844omplex @ B3 @ C4 )
         => ( ! [A6: complex] :
                ( ( member_complex @ A6 @ ( minus_811609699411566653omplex @ C4 @ A2 ) )
               => ( ( G @ A6 )
                  = zero_zero_rat ) )
           => ( ! [B7: complex] :
                  ( ( member_complex @ B7 @ ( minus_811609699411566653omplex @ C4 @ B3 ) )
                 => ( ( H2 @ B7 )
                    = zero_zero_rat ) )
             => ( ( ( groups5058264527183730370ex_rat @ G @ C4 )
                  = ( groups5058264527183730370ex_rat @ H2 @ C4 ) )
               => ( ( groups5058264527183730370ex_rat @ G @ A2 )
                  = ( groups5058264527183730370ex_rat @ H2 @ B3 ) ) ) ) ) ) ) ) ).

% sum.same_carrierI
thf(fact_8443_sum_Osame__carrierI,axiom,
    ! [C4: set_real,A2: set_real,B3: set_real,G: real > nat,H2: real > nat] :
      ( ( finite_finite_real @ C4 )
     => ( ( ord_less_eq_set_real @ A2 @ C4 )
       => ( ( ord_less_eq_set_real @ B3 @ C4 )
         => ( ! [A6: real] :
                ( ( member_real @ A6 @ ( minus_minus_set_real @ C4 @ A2 ) )
               => ( ( G @ A6 )
                  = zero_zero_nat ) )
           => ( ! [B7: real] :
                  ( ( member_real @ B7 @ ( minus_minus_set_real @ C4 @ B3 ) )
                 => ( ( H2 @ B7 )
                    = zero_zero_nat ) )
             => ( ( ( groups1935376822645274424al_nat @ G @ C4 )
                  = ( groups1935376822645274424al_nat @ H2 @ C4 ) )
               => ( ( groups1935376822645274424al_nat @ G @ A2 )
                  = ( groups1935376822645274424al_nat @ H2 @ B3 ) ) ) ) ) ) ) ) ).

% sum.same_carrierI
thf(fact_8444_sum_Osame__carrierI,axiom,
    ! [C4: set_complex,A2: set_complex,B3: set_complex,G: complex > nat,H2: complex > nat] :
      ( ( finite3207457112153483333omplex @ C4 )
     => ( ( ord_le211207098394363844omplex @ A2 @ C4 )
       => ( ( ord_le211207098394363844omplex @ B3 @ C4 )
         => ( ! [A6: complex] :
                ( ( member_complex @ A6 @ ( minus_811609699411566653omplex @ C4 @ A2 ) )
               => ( ( G @ A6 )
                  = zero_zero_nat ) )
           => ( ! [B7: complex] :
                  ( ( member_complex @ B7 @ ( minus_811609699411566653omplex @ C4 @ B3 ) )
                 => ( ( H2 @ B7 )
                    = zero_zero_nat ) )
             => ( ( ( groups5693394587270226106ex_nat @ G @ C4 )
                  = ( groups5693394587270226106ex_nat @ H2 @ C4 ) )
               => ( ( groups5693394587270226106ex_nat @ G @ A2 )
                  = ( groups5693394587270226106ex_nat @ H2 @ B3 ) ) ) ) ) ) ) ) ).

% sum.same_carrierI
thf(fact_8445_sum_Osame__carrierI,axiom,
    ! [C4: set_real,A2: set_real,B3: set_real,G: real > int,H2: real > int] :
      ( ( finite_finite_real @ C4 )
     => ( ( ord_less_eq_set_real @ A2 @ C4 )
       => ( ( ord_less_eq_set_real @ B3 @ C4 )
         => ( ! [A6: real] :
                ( ( member_real @ A6 @ ( minus_minus_set_real @ C4 @ A2 ) )
               => ( ( G @ A6 )
                  = zero_zero_int ) )
           => ( ! [B7: real] :
                  ( ( member_real @ B7 @ ( minus_minus_set_real @ C4 @ B3 ) )
                 => ( ( H2 @ B7 )
                    = zero_zero_int ) )
             => ( ( ( groups1932886352136224148al_int @ G @ C4 )
                  = ( groups1932886352136224148al_int @ H2 @ C4 ) )
               => ( ( groups1932886352136224148al_int @ G @ A2 )
                  = ( groups1932886352136224148al_int @ H2 @ B3 ) ) ) ) ) ) ) ) ).

% sum.same_carrierI
thf(fact_8446_sum_Osame__carrierI,axiom,
    ! [C4: set_complex,A2: set_complex,B3: set_complex,G: complex > int,H2: complex > int] :
      ( ( finite3207457112153483333omplex @ C4 )
     => ( ( ord_le211207098394363844omplex @ A2 @ C4 )
       => ( ( ord_le211207098394363844omplex @ B3 @ C4 )
         => ( ! [A6: complex] :
                ( ( member_complex @ A6 @ ( minus_811609699411566653omplex @ C4 @ A2 ) )
               => ( ( G @ A6 )
                  = zero_zero_int ) )
           => ( ! [B7: complex] :
                  ( ( member_complex @ B7 @ ( minus_811609699411566653omplex @ C4 @ B3 ) )
                 => ( ( H2 @ B7 )
                    = zero_zero_int ) )
             => ( ( ( groups5690904116761175830ex_int @ G @ C4 )
                  = ( groups5690904116761175830ex_int @ H2 @ C4 ) )
               => ( ( groups5690904116761175830ex_int @ G @ A2 )
                  = ( groups5690904116761175830ex_int @ H2 @ B3 ) ) ) ) ) ) ) ) ).

% sum.same_carrierI
thf(fact_8447_sum_Osame__carrierI,axiom,
    ! [C4: set_nat,A2: set_nat,B3: set_nat,G: nat > complex,H2: nat > complex] :
      ( ( finite_finite_nat @ C4 )
     => ( ( ord_less_eq_set_nat @ A2 @ C4 )
       => ( ( ord_less_eq_set_nat @ B3 @ C4 )
         => ( ! [A6: nat] :
                ( ( member_nat @ A6 @ ( minus_minus_set_nat @ C4 @ A2 ) )
               => ( ( G @ A6 )
                  = zero_zero_complex ) )
           => ( ! [B7: nat] :
                  ( ( member_nat @ B7 @ ( minus_minus_set_nat @ C4 @ B3 ) )
                 => ( ( H2 @ B7 )
                    = zero_zero_complex ) )
             => ( ( ( groups2073611262835488442omplex @ G @ C4 )
                  = ( groups2073611262835488442omplex @ H2 @ C4 ) )
               => ( ( groups2073611262835488442omplex @ G @ A2 )
                  = ( groups2073611262835488442omplex @ H2 @ B3 ) ) ) ) ) ) ) ) ).

% sum.same_carrierI
thf(fact_8448_sum_Osame__carrier,axiom,
    ! [C4: set_real,A2: set_real,B3: set_real,G: real > complex,H2: real > complex] :
      ( ( finite_finite_real @ C4 )
     => ( ( ord_less_eq_set_real @ A2 @ C4 )
       => ( ( ord_less_eq_set_real @ B3 @ C4 )
         => ( ! [A6: real] :
                ( ( member_real @ A6 @ ( minus_minus_set_real @ C4 @ A2 ) )
               => ( ( G @ A6 )
                  = zero_zero_complex ) )
           => ( ! [B7: real] :
                  ( ( member_real @ B7 @ ( minus_minus_set_real @ C4 @ B3 ) )
                 => ( ( H2 @ B7 )
                    = zero_zero_complex ) )
             => ( ( ( groups5754745047067104278omplex @ G @ A2 )
                  = ( groups5754745047067104278omplex @ H2 @ B3 ) )
                = ( ( groups5754745047067104278omplex @ G @ C4 )
                  = ( groups5754745047067104278omplex @ H2 @ C4 ) ) ) ) ) ) ) ) ).

% sum.same_carrier
thf(fact_8449_sum_Osame__carrier,axiom,
    ! [C4: set_real,A2: set_real,B3: set_real,G: real > real,H2: real > real] :
      ( ( finite_finite_real @ C4 )
     => ( ( ord_less_eq_set_real @ A2 @ C4 )
       => ( ( ord_less_eq_set_real @ B3 @ C4 )
         => ( ! [A6: real] :
                ( ( member_real @ A6 @ ( minus_minus_set_real @ C4 @ A2 ) )
               => ( ( G @ A6 )
                  = zero_zero_real ) )
           => ( ! [B7: real] :
                  ( ( member_real @ B7 @ ( minus_minus_set_real @ C4 @ B3 ) )
                 => ( ( H2 @ B7 )
                    = zero_zero_real ) )
             => ( ( ( groups8097168146408367636l_real @ G @ A2 )
                  = ( groups8097168146408367636l_real @ H2 @ B3 ) )
                = ( ( groups8097168146408367636l_real @ G @ C4 )
                  = ( groups8097168146408367636l_real @ H2 @ C4 ) ) ) ) ) ) ) ) ).

% sum.same_carrier
thf(fact_8450_sum_Osame__carrier,axiom,
    ! [C4: set_complex,A2: set_complex,B3: set_complex,G: complex > real,H2: complex > real] :
      ( ( finite3207457112153483333omplex @ C4 )
     => ( ( ord_le211207098394363844omplex @ A2 @ C4 )
       => ( ( ord_le211207098394363844omplex @ B3 @ C4 )
         => ( ! [A6: complex] :
                ( ( member_complex @ A6 @ ( minus_811609699411566653omplex @ C4 @ A2 ) )
               => ( ( G @ A6 )
                  = zero_zero_real ) )
           => ( ! [B7: complex] :
                  ( ( member_complex @ B7 @ ( minus_811609699411566653omplex @ C4 @ B3 ) )
                 => ( ( H2 @ B7 )
                    = zero_zero_real ) )
             => ( ( ( groups5808333547571424918x_real @ G @ A2 )
                  = ( groups5808333547571424918x_real @ H2 @ B3 ) )
                = ( ( groups5808333547571424918x_real @ G @ C4 )
                  = ( groups5808333547571424918x_real @ H2 @ C4 ) ) ) ) ) ) ) ) ).

% sum.same_carrier
thf(fact_8451_sum_Osame__carrier,axiom,
    ! [C4: set_real,A2: set_real,B3: set_real,G: real > rat,H2: real > rat] :
      ( ( finite_finite_real @ C4 )
     => ( ( ord_less_eq_set_real @ A2 @ C4 )
       => ( ( ord_less_eq_set_real @ B3 @ C4 )
         => ( ! [A6: real] :
                ( ( member_real @ A6 @ ( minus_minus_set_real @ C4 @ A2 ) )
               => ( ( G @ A6 )
                  = zero_zero_rat ) )
           => ( ! [B7: real] :
                  ( ( member_real @ B7 @ ( minus_minus_set_real @ C4 @ B3 ) )
                 => ( ( H2 @ B7 )
                    = zero_zero_rat ) )
             => ( ( ( groups1300246762558778688al_rat @ G @ A2 )
                  = ( groups1300246762558778688al_rat @ H2 @ B3 ) )
                = ( ( groups1300246762558778688al_rat @ G @ C4 )
                  = ( groups1300246762558778688al_rat @ H2 @ C4 ) ) ) ) ) ) ) ) ).

% sum.same_carrier
thf(fact_8452_sum_Osame__carrier,axiom,
    ! [C4: set_complex,A2: set_complex,B3: set_complex,G: complex > rat,H2: complex > rat] :
      ( ( finite3207457112153483333omplex @ C4 )
     => ( ( ord_le211207098394363844omplex @ A2 @ C4 )
       => ( ( ord_le211207098394363844omplex @ B3 @ C4 )
         => ( ! [A6: complex] :
                ( ( member_complex @ A6 @ ( minus_811609699411566653omplex @ C4 @ A2 ) )
               => ( ( G @ A6 )
                  = zero_zero_rat ) )
           => ( ! [B7: complex] :
                  ( ( member_complex @ B7 @ ( minus_811609699411566653omplex @ C4 @ B3 ) )
                 => ( ( H2 @ B7 )
                    = zero_zero_rat ) )
             => ( ( ( groups5058264527183730370ex_rat @ G @ A2 )
                  = ( groups5058264527183730370ex_rat @ H2 @ B3 ) )
                = ( ( groups5058264527183730370ex_rat @ G @ C4 )
                  = ( groups5058264527183730370ex_rat @ H2 @ C4 ) ) ) ) ) ) ) ) ).

% sum.same_carrier
thf(fact_8453_sum_Osame__carrier,axiom,
    ! [C4: set_real,A2: set_real,B3: set_real,G: real > nat,H2: real > nat] :
      ( ( finite_finite_real @ C4 )
     => ( ( ord_less_eq_set_real @ A2 @ C4 )
       => ( ( ord_less_eq_set_real @ B3 @ C4 )
         => ( ! [A6: real] :
                ( ( member_real @ A6 @ ( minus_minus_set_real @ C4 @ A2 ) )
               => ( ( G @ A6 )
                  = zero_zero_nat ) )
           => ( ! [B7: real] :
                  ( ( member_real @ B7 @ ( minus_minus_set_real @ C4 @ B3 ) )
                 => ( ( H2 @ B7 )
                    = zero_zero_nat ) )
             => ( ( ( groups1935376822645274424al_nat @ G @ A2 )
                  = ( groups1935376822645274424al_nat @ H2 @ B3 ) )
                = ( ( groups1935376822645274424al_nat @ G @ C4 )
                  = ( groups1935376822645274424al_nat @ H2 @ C4 ) ) ) ) ) ) ) ) ).

% sum.same_carrier
thf(fact_8454_sum_Osame__carrier,axiom,
    ! [C4: set_complex,A2: set_complex,B3: set_complex,G: complex > nat,H2: complex > nat] :
      ( ( finite3207457112153483333omplex @ C4 )
     => ( ( ord_le211207098394363844omplex @ A2 @ C4 )
       => ( ( ord_le211207098394363844omplex @ B3 @ C4 )
         => ( ! [A6: complex] :
                ( ( member_complex @ A6 @ ( minus_811609699411566653omplex @ C4 @ A2 ) )
               => ( ( G @ A6 )
                  = zero_zero_nat ) )
           => ( ! [B7: complex] :
                  ( ( member_complex @ B7 @ ( minus_811609699411566653omplex @ C4 @ B3 ) )
                 => ( ( H2 @ B7 )
                    = zero_zero_nat ) )
             => ( ( ( groups5693394587270226106ex_nat @ G @ A2 )
                  = ( groups5693394587270226106ex_nat @ H2 @ B3 ) )
                = ( ( groups5693394587270226106ex_nat @ G @ C4 )
                  = ( groups5693394587270226106ex_nat @ H2 @ C4 ) ) ) ) ) ) ) ) ).

% sum.same_carrier
thf(fact_8455_sum_Osame__carrier,axiom,
    ! [C4: set_real,A2: set_real,B3: set_real,G: real > int,H2: real > int] :
      ( ( finite_finite_real @ C4 )
     => ( ( ord_less_eq_set_real @ A2 @ C4 )
       => ( ( ord_less_eq_set_real @ B3 @ C4 )
         => ( ! [A6: real] :
                ( ( member_real @ A6 @ ( minus_minus_set_real @ C4 @ A2 ) )
               => ( ( G @ A6 )
                  = zero_zero_int ) )
           => ( ! [B7: real] :
                  ( ( member_real @ B7 @ ( minus_minus_set_real @ C4 @ B3 ) )
                 => ( ( H2 @ B7 )
                    = zero_zero_int ) )
             => ( ( ( groups1932886352136224148al_int @ G @ A2 )
                  = ( groups1932886352136224148al_int @ H2 @ B3 ) )
                = ( ( groups1932886352136224148al_int @ G @ C4 )
                  = ( groups1932886352136224148al_int @ H2 @ C4 ) ) ) ) ) ) ) ) ).

% sum.same_carrier
thf(fact_8456_sum_Osame__carrier,axiom,
    ! [C4: set_complex,A2: set_complex,B3: set_complex,G: complex > int,H2: complex > int] :
      ( ( finite3207457112153483333omplex @ C4 )
     => ( ( ord_le211207098394363844omplex @ A2 @ C4 )
       => ( ( ord_le211207098394363844omplex @ B3 @ C4 )
         => ( ! [A6: complex] :
                ( ( member_complex @ A6 @ ( minus_811609699411566653omplex @ C4 @ A2 ) )
               => ( ( G @ A6 )
                  = zero_zero_int ) )
           => ( ! [B7: complex] :
                  ( ( member_complex @ B7 @ ( minus_811609699411566653omplex @ C4 @ B3 ) )
                 => ( ( H2 @ B7 )
                    = zero_zero_int ) )
             => ( ( ( groups5690904116761175830ex_int @ G @ A2 )
                  = ( groups5690904116761175830ex_int @ H2 @ B3 ) )
                = ( ( groups5690904116761175830ex_int @ G @ C4 )
                  = ( groups5690904116761175830ex_int @ H2 @ C4 ) ) ) ) ) ) ) ) ).

% sum.same_carrier
thf(fact_8457_sum_Osame__carrier,axiom,
    ! [C4: set_nat,A2: set_nat,B3: set_nat,G: nat > complex,H2: nat > complex] :
      ( ( finite_finite_nat @ C4 )
     => ( ( ord_less_eq_set_nat @ A2 @ C4 )
       => ( ( ord_less_eq_set_nat @ B3 @ C4 )
         => ( ! [A6: nat] :
                ( ( member_nat @ A6 @ ( minus_minus_set_nat @ C4 @ A2 ) )
               => ( ( G @ A6 )
                  = zero_zero_complex ) )
           => ( ! [B7: nat] :
                  ( ( member_nat @ B7 @ ( minus_minus_set_nat @ C4 @ B3 ) )
                 => ( ( H2 @ B7 )
                    = zero_zero_complex ) )
             => ( ( ( groups2073611262835488442omplex @ G @ A2 )
                  = ( groups2073611262835488442omplex @ H2 @ B3 ) )
                = ( ( groups2073611262835488442omplex @ G @ C4 )
                  = ( groups2073611262835488442omplex @ H2 @ C4 ) ) ) ) ) ) ) ) ).

% sum.same_carrier
thf(fact_8458_sum_Osubset__diff,axiom,
    ! [B3: set_complex,A2: set_complex,G: complex > real] :
      ( ( ord_le211207098394363844omplex @ B3 @ A2 )
     => ( ( finite3207457112153483333omplex @ A2 )
       => ( ( groups5808333547571424918x_real @ G @ A2 )
          = ( plus_plus_real @ ( groups5808333547571424918x_real @ G @ ( minus_811609699411566653omplex @ A2 @ B3 ) ) @ ( groups5808333547571424918x_real @ G @ B3 ) ) ) ) ) ).

% sum.subset_diff
thf(fact_8459_sum_Osubset__diff,axiom,
    ! [B3: set_complex,A2: set_complex,G: complex > rat] :
      ( ( ord_le211207098394363844omplex @ B3 @ A2 )
     => ( ( finite3207457112153483333omplex @ A2 )
       => ( ( groups5058264527183730370ex_rat @ G @ A2 )
          = ( plus_plus_rat @ ( groups5058264527183730370ex_rat @ G @ ( minus_811609699411566653omplex @ A2 @ B3 ) ) @ ( groups5058264527183730370ex_rat @ G @ B3 ) ) ) ) ) ).

% sum.subset_diff
thf(fact_8460_sum_Osubset__diff,axiom,
    ! [B3: set_complex,A2: set_complex,G: complex > nat] :
      ( ( ord_le211207098394363844omplex @ B3 @ A2 )
     => ( ( finite3207457112153483333omplex @ A2 )
       => ( ( groups5693394587270226106ex_nat @ G @ A2 )
          = ( plus_plus_nat @ ( groups5693394587270226106ex_nat @ G @ ( minus_811609699411566653omplex @ A2 @ B3 ) ) @ ( groups5693394587270226106ex_nat @ G @ B3 ) ) ) ) ) ).

% sum.subset_diff
thf(fact_8461_sum_Osubset__diff,axiom,
    ! [B3: set_complex,A2: set_complex,G: complex > int] :
      ( ( ord_le211207098394363844omplex @ B3 @ A2 )
     => ( ( finite3207457112153483333omplex @ A2 )
       => ( ( groups5690904116761175830ex_int @ G @ A2 )
          = ( plus_plus_int @ ( groups5690904116761175830ex_int @ G @ ( minus_811609699411566653omplex @ A2 @ B3 ) ) @ ( groups5690904116761175830ex_int @ G @ B3 ) ) ) ) ) ).

% sum.subset_diff
thf(fact_8462_sum_Osubset__diff,axiom,
    ! [B3: set_nat,A2: set_nat,G: nat > rat] :
      ( ( ord_less_eq_set_nat @ B3 @ A2 )
     => ( ( finite_finite_nat @ A2 )
       => ( ( groups2906978787729119204at_rat @ G @ A2 )
          = ( plus_plus_rat @ ( groups2906978787729119204at_rat @ G @ ( minus_minus_set_nat @ A2 @ B3 ) ) @ ( groups2906978787729119204at_rat @ G @ B3 ) ) ) ) ) ).

% sum.subset_diff
thf(fact_8463_sum_Osubset__diff,axiom,
    ! [B3: set_nat,A2: set_nat,G: nat > int] :
      ( ( ord_less_eq_set_nat @ B3 @ A2 )
     => ( ( finite_finite_nat @ A2 )
       => ( ( groups3539618377306564664at_int @ G @ A2 )
          = ( plus_plus_int @ ( groups3539618377306564664at_int @ G @ ( minus_minus_set_nat @ A2 @ B3 ) ) @ ( groups3539618377306564664at_int @ G @ B3 ) ) ) ) ) ).

% sum.subset_diff
thf(fact_8464_sum_Osubset__diff,axiom,
    ! [B3: set_int,A2: set_int,G: int > real] :
      ( ( ord_less_eq_set_int @ B3 @ A2 )
     => ( ( finite_finite_int @ A2 )
       => ( ( groups8778361861064173332t_real @ G @ A2 )
          = ( plus_plus_real @ ( groups8778361861064173332t_real @ G @ ( minus_minus_set_int @ A2 @ B3 ) ) @ ( groups8778361861064173332t_real @ G @ B3 ) ) ) ) ) ).

% sum.subset_diff
thf(fact_8465_sum_Osubset__diff,axiom,
    ! [B3: set_int,A2: set_int,G: int > rat] :
      ( ( ord_less_eq_set_int @ B3 @ A2 )
     => ( ( finite_finite_int @ A2 )
       => ( ( groups3906332499630173760nt_rat @ G @ A2 )
          = ( plus_plus_rat @ ( groups3906332499630173760nt_rat @ G @ ( minus_minus_set_int @ A2 @ B3 ) ) @ ( groups3906332499630173760nt_rat @ G @ B3 ) ) ) ) ) ).

% sum.subset_diff
thf(fact_8466_sum_Osubset__diff,axiom,
    ! [B3: set_int,A2: set_int,G: int > nat] :
      ( ( ord_less_eq_set_int @ B3 @ A2 )
     => ( ( finite_finite_int @ A2 )
       => ( ( groups4541462559716669496nt_nat @ G @ A2 )
          = ( plus_plus_nat @ ( groups4541462559716669496nt_nat @ G @ ( minus_minus_set_int @ A2 @ B3 ) ) @ ( groups4541462559716669496nt_nat @ G @ B3 ) ) ) ) ) ).

% sum.subset_diff
thf(fact_8467_sum_Osubset__diff,axiom,
    ! [B3: set_int,A2: set_int,G: int > int] :
      ( ( ord_less_eq_set_int @ B3 @ A2 )
     => ( ( finite_finite_int @ A2 )
       => ( ( groups4538972089207619220nt_int @ G @ A2 )
          = ( plus_plus_int @ ( groups4538972089207619220nt_int @ G @ ( minus_minus_set_int @ A2 @ B3 ) ) @ ( groups4538972089207619220nt_int @ G @ B3 ) ) ) ) ) ).

% sum.subset_diff
thf(fact_8468_sum__diff,axiom,
    ! [A2: set_complex,B3: set_complex,F: complex > real] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( ( ord_le211207098394363844omplex @ B3 @ A2 )
       => ( ( groups5808333547571424918x_real @ F @ ( minus_811609699411566653omplex @ A2 @ B3 ) )
          = ( minus_minus_real @ ( groups5808333547571424918x_real @ F @ A2 ) @ ( groups5808333547571424918x_real @ F @ B3 ) ) ) ) ) ).

% sum_diff
thf(fact_8469_sum__diff,axiom,
    ! [A2: set_complex,B3: set_complex,F: complex > rat] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( ( ord_le211207098394363844omplex @ B3 @ A2 )
       => ( ( groups5058264527183730370ex_rat @ F @ ( minus_811609699411566653omplex @ A2 @ B3 ) )
          = ( minus_minus_rat @ ( groups5058264527183730370ex_rat @ F @ A2 ) @ ( groups5058264527183730370ex_rat @ F @ B3 ) ) ) ) ) ).

% sum_diff
thf(fact_8470_sum__diff,axiom,
    ! [A2: set_complex,B3: set_complex,F: complex > int] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( ( ord_le211207098394363844omplex @ B3 @ A2 )
       => ( ( groups5690904116761175830ex_int @ F @ ( minus_811609699411566653omplex @ A2 @ B3 ) )
          = ( minus_minus_int @ ( groups5690904116761175830ex_int @ F @ A2 ) @ ( groups5690904116761175830ex_int @ F @ B3 ) ) ) ) ) ).

% sum_diff
thf(fact_8471_sum__diff,axiom,
    ! [A2: set_nat,B3: set_nat,F: nat > rat] :
      ( ( finite_finite_nat @ A2 )
     => ( ( ord_less_eq_set_nat @ B3 @ A2 )
       => ( ( groups2906978787729119204at_rat @ F @ ( minus_minus_set_nat @ A2 @ B3 ) )
          = ( minus_minus_rat @ ( groups2906978787729119204at_rat @ F @ A2 ) @ ( groups2906978787729119204at_rat @ F @ B3 ) ) ) ) ) ).

% sum_diff
thf(fact_8472_sum__diff,axiom,
    ! [A2: set_nat,B3: set_nat,F: nat > int] :
      ( ( finite_finite_nat @ A2 )
     => ( ( ord_less_eq_set_nat @ B3 @ A2 )
       => ( ( groups3539618377306564664at_int @ F @ ( minus_minus_set_nat @ A2 @ B3 ) )
          = ( minus_minus_int @ ( groups3539618377306564664at_int @ F @ A2 ) @ ( groups3539618377306564664at_int @ F @ B3 ) ) ) ) ) ).

% sum_diff
thf(fact_8473_sum__diff,axiom,
    ! [A2: set_int,B3: set_int,F: int > real] :
      ( ( finite_finite_int @ A2 )
     => ( ( ord_less_eq_set_int @ B3 @ A2 )
       => ( ( groups8778361861064173332t_real @ F @ ( minus_minus_set_int @ A2 @ B3 ) )
          = ( minus_minus_real @ ( groups8778361861064173332t_real @ F @ A2 ) @ ( groups8778361861064173332t_real @ F @ B3 ) ) ) ) ) ).

% sum_diff
thf(fact_8474_sum__diff,axiom,
    ! [A2: set_int,B3: set_int,F: int > rat] :
      ( ( finite_finite_int @ A2 )
     => ( ( ord_less_eq_set_int @ B3 @ A2 )
       => ( ( groups3906332499630173760nt_rat @ F @ ( minus_minus_set_int @ A2 @ B3 ) )
          = ( minus_minus_rat @ ( groups3906332499630173760nt_rat @ F @ A2 ) @ ( groups3906332499630173760nt_rat @ F @ B3 ) ) ) ) ) ).

% sum_diff
thf(fact_8475_sum__diff,axiom,
    ! [A2: set_int,B3: set_int,F: int > int] :
      ( ( finite_finite_int @ A2 )
     => ( ( ord_less_eq_set_int @ B3 @ A2 )
       => ( ( groups4538972089207619220nt_int @ F @ ( minus_minus_set_int @ A2 @ B3 ) )
          = ( minus_minus_int @ ( groups4538972089207619220nt_int @ F @ A2 ) @ ( groups4538972089207619220nt_int @ F @ B3 ) ) ) ) ) ).

% sum_diff
thf(fact_8476_sum__diff,axiom,
    ! [A2: set_complex,B3: set_complex,F: complex > complex] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( ( ord_le211207098394363844omplex @ B3 @ A2 )
       => ( ( groups7754918857620584856omplex @ F @ ( minus_811609699411566653omplex @ A2 @ B3 ) )
          = ( minus_minus_complex @ ( groups7754918857620584856omplex @ F @ A2 ) @ ( groups7754918857620584856omplex @ F @ B3 ) ) ) ) ) ).

% sum_diff
thf(fact_8477_sum__diff,axiom,
    ! [A2: set_nat,B3: set_nat,F: nat > real] :
      ( ( finite_finite_nat @ A2 )
     => ( ( ord_less_eq_set_nat @ B3 @ A2 )
       => ( ( groups6591440286371151544t_real @ F @ ( minus_minus_set_nat @ A2 @ B3 ) )
          = ( minus_minus_real @ ( groups6591440286371151544t_real @ F @ A2 ) @ ( groups6591440286371151544t_real @ F @ B3 ) ) ) ) ) ).

% sum_diff
thf(fact_8478_sum__mono2,axiom,
    ! [B3: set_real,A2: set_real,F: real > real] :
      ( ( finite_finite_real @ B3 )
     => ( ( ord_less_eq_set_real @ A2 @ B3 )
       => ( ! [B7: real] :
              ( ( member_real @ B7 @ ( minus_minus_set_real @ B3 @ A2 ) )
             => ( ord_less_eq_real @ zero_zero_real @ ( F @ B7 ) ) )
         => ( ord_less_eq_real @ ( groups8097168146408367636l_real @ F @ A2 ) @ ( groups8097168146408367636l_real @ F @ B3 ) ) ) ) ) ).

% sum_mono2
thf(fact_8479_sum__mono2,axiom,
    ! [B3: set_complex,A2: set_complex,F: complex > real] :
      ( ( finite3207457112153483333omplex @ B3 )
     => ( ( ord_le211207098394363844omplex @ A2 @ B3 )
       => ( ! [B7: complex] :
              ( ( member_complex @ B7 @ ( minus_811609699411566653omplex @ B3 @ A2 ) )
             => ( ord_less_eq_real @ zero_zero_real @ ( F @ B7 ) ) )
         => ( ord_less_eq_real @ ( groups5808333547571424918x_real @ F @ A2 ) @ ( groups5808333547571424918x_real @ F @ B3 ) ) ) ) ) ).

% sum_mono2
thf(fact_8480_sum__mono2,axiom,
    ! [B3: set_real,A2: set_real,F: real > rat] :
      ( ( finite_finite_real @ B3 )
     => ( ( ord_less_eq_set_real @ A2 @ B3 )
       => ( ! [B7: real] :
              ( ( member_real @ B7 @ ( minus_minus_set_real @ B3 @ A2 ) )
             => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ B7 ) ) )
         => ( ord_less_eq_rat @ ( groups1300246762558778688al_rat @ F @ A2 ) @ ( groups1300246762558778688al_rat @ F @ B3 ) ) ) ) ) ).

% sum_mono2
thf(fact_8481_sum__mono2,axiom,
    ! [B3: set_complex,A2: set_complex,F: complex > rat] :
      ( ( finite3207457112153483333omplex @ B3 )
     => ( ( ord_le211207098394363844omplex @ A2 @ B3 )
       => ( ! [B7: complex] :
              ( ( member_complex @ B7 @ ( minus_811609699411566653omplex @ B3 @ A2 ) )
             => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ B7 ) ) )
         => ( ord_less_eq_rat @ ( groups5058264527183730370ex_rat @ F @ A2 ) @ ( groups5058264527183730370ex_rat @ F @ B3 ) ) ) ) ) ).

% sum_mono2
thf(fact_8482_sum__mono2,axiom,
    ! [B3: set_nat,A2: set_nat,F: nat > rat] :
      ( ( finite_finite_nat @ B3 )
     => ( ( ord_less_eq_set_nat @ A2 @ B3 )
       => ( ! [B7: nat] :
              ( ( member_nat @ B7 @ ( minus_minus_set_nat @ B3 @ A2 ) )
             => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ B7 ) ) )
         => ( ord_less_eq_rat @ ( groups2906978787729119204at_rat @ F @ A2 ) @ ( groups2906978787729119204at_rat @ F @ B3 ) ) ) ) ) ).

% sum_mono2
thf(fact_8483_sum__mono2,axiom,
    ! [B3: set_real,A2: set_real,F: real > nat] :
      ( ( finite_finite_real @ B3 )
     => ( ( ord_less_eq_set_real @ A2 @ B3 )
       => ( ! [B7: real] :
              ( ( member_real @ B7 @ ( minus_minus_set_real @ B3 @ A2 ) )
             => ( ord_less_eq_nat @ zero_zero_nat @ ( F @ B7 ) ) )
         => ( ord_less_eq_nat @ ( groups1935376822645274424al_nat @ F @ A2 ) @ ( groups1935376822645274424al_nat @ F @ B3 ) ) ) ) ) ).

% sum_mono2
thf(fact_8484_sum__mono2,axiom,
    ! [B3: set_complex,A2: set_complex,F: complex > nat] :
      ( ( finite3207457112153483333omplex @ B3 )
     => ( ( ord_le211207098394363844omplex @ A2 @ B3 )
       => ( ! [B7: complex] :
              ( ( member_complex @ B7 @ ( minus_811609699411566653omplex @ B3 @ A2 ) )
             => ( ord_less_eq_nat @ zero_zero_nat @ ( F @ B7 ) ) )
         => ( ord_less_eq_nat @ ( groups5693394587270226106ex_nat @ F @ A2 ) @ ( groups5693394587270226106ex_nat @ F @ B3 ) ) ) ) ) ).

% sum_mono2
thf(fact_8485_sum__mono2,axiom,
    ! [B3: set_real,A2: set_real,F: real > int] :
      ( ( finite_finite_real @ B3 )
     => ( ( ord_less_eq_set_real @ A2 @ B3 )
       => ( ! [B7: real] :
              ( ( member_real @ B7 @ ( minus_minus_set_real @ B3 @ A2 ) )
             => ( ord_less_eq_int @ zero_zero_int @ ( F @ B7 ) ) )
         => ( ord_less_eq_int @ ( groups1932886352136224148al_int @ F @ A2 ) @ ( groups1932886352136224148al_int @ F @ B3 ) ) ) ) ) ).

% sum_mono2
thf(fact_8486_sum__mono2,axiom,
    ! [B3: set_complex,A2: set_complex,F: complex > int] :
      ( ( finite3207457112153483333omplex @ B3 )
     => ( ( ord_le211207098394363844omplex @ A2 @ B3 )
       => ( ! [B7: complex] :
              ( ( member_complex @ B7 @ ( minus_811609699411566653omplex @ B3 @ A2 ) )
             => ( ord_less_eq_int @ zero_zero_int @ ( F @ B7 ) ) )
         => ( ord_less_eq_int @ ( groups5690904116761175830ex_int @ F @ A2 ) @ ( groups5690904116761175830ex_int @ F @ B3 ) ) ) ) ) ).

% sum_mono2
thf(fact_8487_sum__mono2,axiom,
    ! [B3: set_nat,A2: set_nat,F: nat > int] :
      ( ( finite_finite_nat @ B3 )
     => ( ( ord_less_eq_set_nat @ A2 @ B3 )
       => ( ! [B7: nat] :
              ( ( member_nat @ B7 @ ( minus_minus_set_nat @ B3 @ A2 ) )
             => ( ord_less_eq_int @ zero_zero_int @ ( F @ B7 ) ) )
         => ( ord_less_eq_int @ ( groups3539618377306564664at_int @ F @ A2 ) @ ( groups3539618377306564664at_int @ F @ B3 ) ) ) ) ) ).

% sum_mono2
thf(fact_8488_sum_Oinsert__remove,axiom,
    ! [A2: set_VEBT_VEBT,G: vEBT_VEBT > real,X2: vEBT_VEBT] :
      ( ( finite5795047828879050333T_VEBT @ A2 )
     => ( ( groups2240296850493347238T_real @ G @ ( insert_VEBT_VEBT @ X2 @ A2 ) )
        = ( plus_plus_real @ ( G @ X2 ) @ ( groups2240296850493347238T_real @ G @ ( minus_5127226145743854075T_VEBT @ A2 @ ( insert_VEBT_VEBT @ X2 @ bot_bo8194388402131092736T_VEBT ) ) ) ) ) ) ).

% sum.insert_remove
thf(fact_8489_sum_Oinsert__remove,axiom,
    ! [A2: set_complex,G: complex > real,X2: complex] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( ( groups5808333547571424918x_real @ G @ ( insert_complex @ X2 @ A2 ) )
        = ( plus_plus_real @ ( G @ X2 ) @ ( groups5808333547571424918x_real @ G @ ( minus_811609699411566653omplex @ A2 @ ( insert_complex @ X2 @ bot_bot_set_complex ) ) ) ) ) ) ).

% sum.insert_remove
thf(fact_8490_sum_Oinsert__remove,axiom,
    ! [A2: set_VEBT_VEBT,G: vEBT_VEBT > rat,X2: vEBT_VEBT] :
      ( ( finite5795047828879050333T_VEBT @ A2 )
     => ( ( groups136491112297645522BT_rat @ G @ ( insert_VEBT_VEBT @ X2 @ A2 ) )
        = ( plus_plus_rat @ ( G @ X2 ) @ ( groups136491112297645522BT_rat @ G @ ( minus_5127226145743854075T_VEBT @ A2 @ ( insert_VEBT_VEBT @ X2 @ bot_bo8194388402131092736T_VEBT ) ) ) ) ) ) ).

% sum.insert_remove
thf(fact_8491_sum_Oinsert__remove,axiom,
    ! [A2: set_complex,G: complex > rat,X2: complex] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( ( groups5058264527183730370ex_rat @ G @ ( insert_complex @ X2 @ A2 ) )
        = ( plus_plus_rat @ ( G @ X2 ) @ ( groups5058264527183730370ex_rat @ G @ ( minus_811609699411566653omplex @ A2 @ ( insert_complex @ X2 @ bot_bot_set_complex ) ) ) ) ) ) ).

% sum.insert_remove
thf(fact_8492_sum_Oinsert__remove,axiom,
    ! [A2: set_VEBT_VEBT,G: vEBT_VEBT > nat,X2: vEBT_VEBT] :
      ( ( finite5795047828879050333T_VEBT @ A2 )
     => ( ( groups771621172384141258BT_nat @ G @ ( insert_VEBT_VEBT @ X2 @ A2 ) )
        = ( plus_plus_nat @ ( G @ X2 ) @ ( groups771621172384141258BT_nat @ G @ ( minus_5127226145743854075T_VEBT @ A2 @ ( insert_VEBT_VEBT @ X2 @ bot_bo8194388402131092736T_VEBT ) ) ) ) ) ) ).

% sum.insert_remove
thf(fact_8493_sum_Oinsert__remove,axiom,
    ! [A2: set_complex,G: complex > nat,X2: complex] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( ( groups5693394587270226106ex_nat @ G @ ( insert_complex @ X2 @ A2 ) )
        = ( plus_plus_nat @ ( G @ X2 ) @ ( groups5693394587270226106ex_nat @ G @ ( minus_811609699411566653omplex @ A2 @ ( insert_complex @ X2 @ bot_bot_set_complex ) ) ) ) ) ) ).

% sum.insert_remove
thf(fact_8494_sum_Oinsert__remove,axiom,
    ! [A2: set_VEBT_VEBT,G: vEBT_VEBT > int,X2: vEBT_VEBT] :
      ( ( finite5795047828879050333T_VEBT @ A2 )
     => ( ( groups769130701875090982BT_int @ G @ ( insert_VEBT_VEBT @ X2 @ A2 ) )
        = ( plus_plus_int @ ( G @ X2 ) @ ( groups769130701875090982BT_int @ G @ ( minus_5127226145743854075T_VEBT @ A2 @ ( insert_VEBT_VEBT @ X2 @ bot_bo8194388402131092736T_VEBT ) ) ) ) ) ) ).

% sum.insert_remove
thf(fact_8495_sum_Oinsert__remove,axiom,
    ! [A2: set_complex,G: complex > int,X2: complex] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( ( groups5690904116761175830ex_int @ G @ ( insert_complex @ X2 @ A2 ) )
        = ( plus_plus_int @ ( G @ X2 ) @ ( groups5690904116761175830ex_int @ G @ ( minus_811609699411566653omplex @ A2 @ ( insert_complex @ X2 @ bot_bot_set_complex ) ) ) ) ) ) ).

% sum.insert_remove
thf(fact_8496_sum_Oinsert__remove,axiom,
    ! [A2: set_real,G: real > real,X2: real] :
      ( ( finite_finite_real @ A2 )
     => ( ( groups8097168146408367636l_real @ G @ ( insert_real @ X2 @ A2 ) )
        = ( plus_plus_real @ ( G @ X2 ) @ ( groups8097168146408367636l_real @ G @ ( minus_minus_set_real @ A2 @ ( insert_real @ X2 @ bot_bot_set_real ) ) ) ) ) ) ).

% sum.insert_remove
thf(fact_8497_sum_Oinsert__remove,axiom,
    ! [A2: set_real,G: real > rat,X2: real] :
      ( ( finite_finite_real @ A2 )
     => ( ( groups1300246762558778688al_rat @ G @ ( insert_real @ X2 @ A2 ) )
        = ( plus_plus_rat @ ( G @ X2 ) @ ( groups1300246762558778688al_rat @ G @ ( minus_minus_set_real @ A2 @ ( insert_real @ X2 @ bot_bot_set_real ) ) ) ) ) ) ).

% sum.insert_remove
thf(fact_8498_sum_Oremove,axiom,
    ! [A2: set_VEBT_VEBT,X2: vEBT_VEBT,G: vEBT_VEBT > real] :
      ( ( finite5795047828879050333T_VEBT @ A2 )
     => ( ( member_VEBT_VEBT @ X2 @ A2 )
       => ( ( groups2240296850493347238T_real @ G @ A2 )
          = ( plus_plus_real @ ( G @ X2 ) @ ( groups2240296850493347238T_real @ G @ ( minus_5127226145743854075T_VEBT @ A2 @ ( insert_VEBT_VEBT @ X2 @ bot_bo8194388402131092736T_VEBT ) ) ) ) ) ) ) ).

% sum.remove
thf(fact_8499_sum_Oremove,axiom,
    ! [A2: set_complex,X2: complex,G: complex > real] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( ( member_complex @ X2 @ A2 )
       => ( ( groups5808333547571424918x_real @ G @ A2 )
          = ( plus_plus_real @ ( G @ X2 ) @ ( groups5808333547571424918x_real @ G @ ( minus_811609699411566653omplex @ A2 @ ( insert_complex @ X2 @ bot_bot_set_complex ) ) ) ) ) ) ) ).

% sum.remove
thf(fact_8500_sum_Oremove,axiom,
    ! [A2: set_VEBT_VEBT,X2: vEBT_VEBT,G: vEBT_VEBT > rat] :
      ( ( finite5795047828879050333T_VEBT @ A2 )
     => ( ( member_VEBT_VEBT @ X2 @ A2 )
       => ( ( groups136491112297645522BT_rat @ G @ A2 )
          = ( plus_plus_rat @ ( G @ X2 ) @ ( groups136491112297645522BT_rat @ G @ ( minus_5127226145743854075T_VEBT @ A2 @ ( insert_VEBT_VEBT @ X2 @ bot_bo8194388402131092736T_VEBT ) ) ) ) ) ) ) ).

% sum.remove
thf(fact_8501_sum_Oremove,axiom,
    ! [A2: set_complex,X2: complex,G: complex > rat] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( ( member_complex @ X2 @ A2 )
       => ( ( groups5058264527183730370ex_rat @ G @ A2 )
          = ( plus_plus_rat @ ( G @ X2 ) @ ( groups5058264527183730370ex_rat @ G @ ( minus_811609699411566653omplex @ A2 @ ( insert_complex @ X2 @ bot_bot_set_complex ) ) ) ) ) ) ) ).

% sum.remove
thf(fact_8502_sum_Oremove,axiom,
    ! [A2: set_VEBT_VEBT,X2: vEBT_VEBT,G: vEBT_VEBT > nat] :
      ( ( finite5795047828879050333T_VEBT @ A2 )
     => ( ( member_VEBT_VEBT @ X2 @ A2 )
       => ( ( groups771621172384141258BT_nat @ G @ A2 )
          = ( plus_plus_nat @ ( G @ X2 ) @ ( groups771621172384141258BT_nat @ G @ ( minus_5127226145743854075T_VEBT @ A2 @ ( insert_VEBT_VEBT @ X2 @ bot_bo8194388402131092736T_VEBT ) ) ) ) ) ) ) ).

% sum.remove
thf(fact_8503_sum_Oremove,axiom,
    ! [A2: set_complex,X2: complex,G: complex > nat] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( ( member_complex @ X2 @ A2 )
       => ( ( groups5693394587270226106ex_nat @ G @ A2 )
          = ( plus_plus_nat @ ( G @ X2 ) @ ( groups5693394587270226106ex_nat @ G @ ( minus_811609699411566653omplex @ A2 @ ( insert_complex @ X2 @ bot_bot_set_complex ) ) ) ) ) ) ) ).

% sum.remove
thf(fact_8504_sum_Oremove,axiom,
    ! [A2: set_VEBT_VEBT,X2: vEBT_VEBT,G: vEBT_VEBT > int] :
      ( ( finite5795047828879050333T_VEBT @ A2 )
     => ( ( member_VEBT_VEBT @ X2 @ A2 )
       => ( ( groups769130701875090982BT_int @ G @ A2 )
          = ( plus_plus_int @ ( G @ X2 ) @ ( groups769130701875090982BT_int @ G @ ( minus_5127226145743854075T_VEBT @ A2 @ ( insert_VEBT_VEBT @ X2 @ bot_bo8194388402131092736T_VEBT ) ) ) ) ) ) ) ).

% sum.remove
thf(fact_8505_sum_Oremove,axiom,
    ! [A2: set_complex,X2: complex,G: complex > int] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( ( member_complex @ X2 @ A2 )
       => ( ( groups5690904116761175830ex_int @ G @ A2 )
          = ( plus_plus_int @ ( G @ X2 ) @ ( groups5690904116761175830ex_int @ G @ ( minus_811609699411566653omplex @ A2 @ ( insert_complex @ X2 @ bot_bot_set_complex ) ) ) ) ) ) ) ).

% sum.remove
thf(fact_8506_sum_Oremove,axiom,
    ! [A2: set_real,X2: real,G: real > real] :
      ( ( finite_finite_real @ A2 )
     => ( ( member_real @ X2 @ A2 )
       => ( ( groups8097168146408367636l_real @ G @ A2 )
          = ( plus_plus_real @ ( G @ X2 ) @ ( groups8097168146408367636l_real @ G @ ( minus_minus_set_real @ A2 @ ( insert_real @ X2 @ bot_bot_set_real ) ) ) ) ) ) ) ).

% sum.remove
thf(fact_8507_sum_Oremove,axiom,
    ! [A2: set_real,X2: real,G: real > rat] :
      ( ( finite_finite_real @ A2 )
     => ( ( member_real @ X2 @ A2 )
       => ( ( groups1300246762558778688al_rat @ G @ A2 )
          = ( plus_plus_rat @ ( G @ X2 ) @ ( groups1300246762558778688al_rat @ G @ ( minus_minus_set_real @ A2 @ ( insert_real @ X2 @ bot_bot_set_real ) ) ) ) ) ) ) ).

% sum.remove
thf(fact_8508_sum__diff1,axiom,
    ! [A2: set_VEBT_VEBT,A: vEBT_VEBT,F: vEBT_VEBT > real] :
      ( ( finite5795047828879050333T_VEBT @ A2 )
     => ( ( ( member_VEBT_VEBT @ A @ A2 )
         => ( ( groups2240296850493347238T_real @ F @ ( minus_5127226145743854075T_VEBT @ A2 @ ( insert_VEBT_VEBT @ A @ bot_bo8194388402131092736T_VEBT ) ) )
            = ( minus_minus_real @ ( groups2240296850493347238T_real @ F @ A2 ) @ ( F @ A ) ) ) )
        & ( ~ ( member_VEBT_VEBT @ A @ A2 )
         => ( ( groups2240296850493347238T_real @ F @ ( minus_5127226145743854075T_VEBT @ A2 @ ( insert_VEBT_VEBT @ A @ bot_bo8194388402131092736T_VEBT ) ) )
            = ( groups2240296850493347238T_real @ F @ A2 ) ) ) ) ) ).

% sum_diff1
thf(fact_8509_sum__diff1,axiom,
    ! [A2: set_complex,A: complex,F: complex > real] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( ( ( member_complex @ A @ A2 )
         => ( ( groups5808333547571424918x_real @ F @ ( minus_811609699411566653omplex @ A2 @ ( insert_complex @ A @ bot_bot_set_complex ) ) )
            = ( minus_minus_real @ ( groups5808333547571424918x_real @ F @ A2 ) @ ( F @ A ) ) ) )
        & ( ~ ( member_complex @ A @ A2 )
         => ( ( groups5808333547571424918x_real @ F @ ( minus_811609699411566653omplex @ A2 @ ( insert_complex @ A @ bot_bot_set_complex ) ) )
            = ( groups5808333547571424918x_real @ F @ A2 ) ) ) ) ) ).

% sum_diff1
thf(fact_8510_sum__diff1,axiom,
    ! [A2: set_real,A: real,F: real > real] :
      ( ( finite_finite_real @ A2 )
     => ( ( ( member_real @ A @ A2 )
         => ( ( groups8097168146408367636l_real @ F @ ( minus_minus_set_real @ A2 @ ( insert_real @ A @ bot_bot_set_real ) ) )
            = ( minus_minus_real @ ( groups8097168146408367636l_real @ F @ A2 ) @ ( F @ A ) ) ) )
        & ( ~ ( member_real @ A @ A2 )
         => ( ( groups8097168146408367636l_real @ F @ ( minus_minus_set_real @ A2 @ ( insert_real @ A @ bot_bot_set_real ) ) )
            = ( groups8097168146408367636l_real @ F @ A2 ) ) ) ) ) ).

% sum_diff1
thf(fact_8511_sum__diff1,axiom,
    ! [A2: set_o,A: $o,F: $o > real] :
      ( ( finite_finite_o @ A2 )
     => ( ( ( member_o @ A @ A2 )
         => ( ( groups8691415230153176458o_real @ F @ ( minus_minus_set_o @ A2 @ ( insert_o @ A @ bot_bot_set_o ) ) )
            = ( minus_minus_real @ ( groups8691415230153176458o_real @ F @ A2 ) @ ( F @ A ) ) ) )
        & ( ~ ( member_o @ A @ A2 )
         => ( ( groups8691415230153176458o_real @ F @ ( minus_minus_set_o @ A2 @ ( insert_o @ A @ bot_bot_set_o ) ) )
            = ( groups8691415230153176458o_real @ F @ A2 ) ) ) ) ) ).

% sum_diff1
thf(fact_8512_sum__diff1,axiom,
    ! [A2: set_int,A: int,F: int > real] :
      ( ( finite_finite_int @ A2 )
     => ( ( ( member_int @ A @ A2 )
         => ( ( groups8778361861064173332t_real @ F @ ( minus_minus_set_int @ A2 @ ( insert_int @ A @ bot_bot_set_int ) ) )
            = ( minus_minus_real @ ( groups8778361861064173332t_real @ F @ A2 ) @ ( F @ A ) ) ) )
        & ( ~ ( member_int @ A @ A2 )
         => ( ( groups8778361861064173332t_real @ F @ ( minus_minus_set_int @ A2 @ ( insert_int @ A @ bot_bot_set_int ) ) )
            = ( groups8778361861064173332t_real @ F @ A2 ) ) ) ) ) ).

% sum_diff1
thf(fact_8513_sum__diff1,axiom,
    ! [A2: set_VEBT_VEBT,A: vEBT_VEBT,F: vEBT_VEBT > rat] :
      ( ( finite5795047828879050333T_VEBT @ A2 )
     => ( ( ( member_VEBT_VEBT @ A @ A2 )
         => ( ( groups136491112297645522BT_rat @ F @ ( minus_5127226145743854075T_VEBT @ A2 @ ( insert_VEBT_VEBT @ A @ bot_bo8194388402131092736T_VEBT ) ) )
            = ( minus_minus_rat @ ( groups136491112297645522BT_rat @ F @ A2 ) @ ( F @ A ) ) ) )
        & ( ~ ( member_VEBT_VEBT @ A @ A2 )
         => ( ( groups136491112297645522BT_rat @ F @ ( minus_5127226145743854075T_VEBT @ A2 @ ( insert_VEBT_VEBT @ A @ bot_bo8194388402131092736T_VEBT ) ) )
            = ( groups136491112297645522BT_rat @ F @ A2 ) ) ) ) ) ).

% sum_diff1
thf(fact_8514_sum__diff1,axiom,
    ! [A2: set_complex,A: complex,F: complex > rat] :
      ( ( finite3207457112153483333omplex @ A2 )
     => ( ( ( member_complex @ A @ A2 )
         => ( ( groups5058264527183730370ex_rat @ F @ ( minus_811609699411566653omplex @ A2 @ ( insert_complex @ A @ bot_bot_set_complex ) ) )
            = ( minus_minus_rat @ ( groups5058264527183730370ex_rat @ F @ A2 ) @ ( F @ A ) ) ) )
        & ( ~ ( member_complex @ A @ A2 )
         => ( ( groups5058264527183730370ex_rat @ F @ ( minus_811609699411566653omplex @ A2 @ ( insert_complex @ A @ bot_bot_set_complex ) ) )
            = ( groups5058264527183730370ex_rat @ F @ A2 ) ) ) ) ) ).

% sum_diff1
thf(fact_8515_sum__diff1,axiom,
    ! [A2: set_real,A: real,F: real > rat] :
      ( ( finite_finite_real @ A2 )
     => ( ( ( member_real @ A @ A2 )
         => ( ( groups1300246762558778688al_rat @ F @ ( minus_minus_set_real @ A2 @ ( insert_real @ A @ bot_bot_set_real ) ) )
            = ( minus_minus_rat @ ( groups1300246762558778688al_rat @ F @ A2 ) @ ( F @ A ) ) ) )
        & ( ~ ( member_real @ A @ A2 )
         => ( ( groups1300246762558778688al_rat @ F @ ( minus_minus_set_real @ A2 @ ( insert_real @ A @ bot_bot_set_real ) ) )
            = ( groups1300246762558778688al_rat @ F @ A2 ) ) ) ) ) ).

% sum_diff1
thf(fact_8516_sum__diff1,axiom,
    ! [A2: set_o,A: $o,F: $o > rat] :
      ( ( finite_finite_o @ A2 )
     => ( ( ( member_o @ A @ A2 )
         => ( ( groups7872700643590313910_o_rat @ F @ ( minus_minus_set_o @ A2 @ ( insert_o @ A @ bot_bot_set_o ) ) )
            = ( minus_minus_rat @ ( groups7872700643590313910_o_rat @ F @ A2 ) @ ( F @ A ) ) ) )
        & ( ~ ( member_o @ A @ A2 )
         => ( ( groups7872700643590313910_o_rat @ F @ ( minus_minus_set_o @ A2 @ ( insert_o @ A @ bot_bot_set_o ) ) )
            = ( groups7872700643590313910_o_rat @ F @ A2 ) ) ) ) ) ).

% sum_diff1
thf(fact_8517_sum__diff1,axiom,
    ! [A2: set_int,A: int,F: int > rat] :
      ( ( finite_finite_int @ A2 )
     => ( ( ( member_int @ A @ A2 )
         => ( ( groups3906332499630173760nt_rat @ F @ ( minus_minus_set_int @ A2 @ ( insert_int @ A @ bot_bot_set_int ) ) )
            = ( minus_minus_rat @ ( groups3906332499630173760nt_rat @ F @ A2 ) @ ( F @ A ) ) ) )
        & ( ~ ( member_int @ A @ A2 )
         => ( ( groups3906332499630173760nt_rat @ F @ ( minus_minus_set_int @ A2 @ ( insert_int @ A @ bot_bot_set_int ) ) )
            = ( groups3906332499630173760nt_rat @ F @ A2 ) ) ) ) ) ).

% sum_diff1
thf(fact_8518_sum_Odelta__remove,axiom,
    ! [S3: set_VEBT_VEBT,A: vEBT_VEBT,B: vEBT_VEBT > real,C: vEBT_VEBT > real] :
      ( ( finite5795047828879050333T_VEBT @ S3 )
     => ( ( ( member_VEBT_VEBT @ A @ S3 )
         => ( ( groups2240296850493347238T_real
              @ ^ [K2: vEBT_VEBT] : ( if_real @ ( K2 = A ) @ ( B @ K2 ) @ ( C @ K2 ) )
              @ S3 )
            = ( plus_plus_real @ ( B @ A ) @ ( groups2240296850493347238T_real @ C @ ( minus_5127226145743854075T_VEBT @ S3 @ ( insert_VEBT_VEBT @ A @ bot_bo8194388402131092736T_VEBT ) ) ) ) ) )
        & ( ~ ( member_VEBT_VEBT @ A @ S3 )
         => ( ( groups2240296850493347238T_real
              @ ^ [K2: vEBT_VEBT] : ( if_real @ ( K2 = A ) @ ( B @ K2 ) @ ( C @ K2 ) )
              @ S3 )
            = ( groups2240296850493347238T_real @ C @ ( minus_5127226145743854075T_VEBT @ S3 @ ( insert_VEBT_VEBT @ A @ bot_bo8194388402131092736T_VEBT ) ) ) ) ) ) ) ).

% sum.delta_remove
thf(fact_8519_sum_Odelta__remove,axiom,
    ! [S3: set_complex,A: complex,B: complex > real,C: complex > real] :
      ( ( finite3207457112153483333omplex @ S3 )
     => ( ( ( member_complex @ A @ S3 )
         => ( ( groups5808333547571424918x_real
              @ ^ [K2: complex] : ( if_real @ ( K2 = A ) @ ( B @ K2 ) @ ( C @ K2 ) )
              @ S3 )
            = ( plus_plus_real @ ( B @ A ) @ ( groups5808333547571424918x_real @ C @ ( minus_811609699411566653omplex @ S3 @ ( insert_complex @ A @ bot_bot_set_complex ) ) ) ) ) )
        & ( ~ ( member_complex @ A @ S3 )
         => ( ( groups5808333547571424918x_real
              @ ^ [K2: complex] : ( if_real @ ( K2 = A ) @ ( B @ K2 ) @ ( C @ K2 ) )
              @ S3 )
            = ( groups5808333547571424918x_real @ C @ ( minus_811609699411566653omplex @ S3 @ ( insert_complex @ A @ bot_bot_set_complex ) ) ) ) ) ) ) ).

% sum.delta_remove
thf(fact_8520_sum_Odelta__remove,axiom,
    ! [S3: set_VEBT_VEBT,A: vEBT_VEBT,B: vEBT_VEBT > rat,C: vEBT_VEBT > rat] :
      ( ( finite5795047828879050333T_VEBT @ S3 )
     => ( ( ( member_VEBT_VEBT @ A @ S3 )
         => ( ( groups136491112297645522BT_rat
              @ ^ [K2: vEBT_VEBT] : ( if_rat @ ( K2 = A ) @ ( B @ K2 ) @ ( C @ K2 ) )
              @ S3 )
            = ( plus_plus_rat @ ( B @ A ) @ ( groups136491112297645522BT_rat @ C @ ( minus_5127226145743854075T_VEBT @ S3 @ ( insert_VEBT_VEBT @ A @ bot_bo8194388402131092736T_VEBT ) ) ) ) ) )
        & ( ~ ( member_VEBT_VEBT @ A @ S3 )
         => ( ( groups136491112297645522BT_rat
              @ ^ [K2: vEBT_VEBT] : ( if_rat @ ( K2 = A ) @ ( B @ K2 ) @ ( C @ K2 ) )
              @ S3 )
            = ( groups136491112297645522BT_rat @ C @ ( minus_5127226145743854075T_VEBT @ S3 @ ( insert_VEBT_VEBT @ A @ bot_bo8194388402131092736T_VEBT ) ) ) ) ) ) ) ).

% sum.delta_remove
thf(fact_8521_sum_Odelta__remove,axiom,
    ! [S3: set_complex,A: complex,B: complex > rat,C: complex > rat] :
      ( ( finite3207457112153483333omplex @ S3 )
     => ( ( ( member_complex @ A @ S3 )
         => ( ( groups5058264527183730370ex_rat
              @ ^ [K2: complex] : ( if_rat @ ( K2 = A ) @ ( B @ K2 ) @ ( C @ K2 ) )
              @ S3 )
            = ( plus_plus_rat @ ( B @ A ) @ ( groups5058264527183730370ex_rat @ C @ ( minus_811609699411566653omplex @ S3 @ ( insert_complex @ A @ bot_bot_set_complex ) ) ) ) ) )
        & ( ~ ( member_complex @ A @ S3 )
         => ( ( groups5058264527183730370ex_rat
              @ ^ [K2: complex] : ( if_rat @ ( K2 = A ) @ ( B @ K2 ) @ ( C @ K2 ) )
              @ S3 )
            = ( groups5058264527183730370ex_rat @ C @ ( minus_811609699411566653omplex @ S3 @ ( insert_complex @ A @ bot_bot_set_complex ) ) ) ) ) ) ) ).

% sum.delta_remove
thf(fact_8522_sum_Odelta__remove,axiom,
    ! [S3: set_VEBT_VEBT,A: vEBT_VEBT,B: vEBT_VEBT > nat,C: vEBT_VEBT > nat] :
      ( ( finite5795047828879050333T_VEBT @ S3 )
     => ( ( ( member_VEBT_VEBT @ A @ S3 )
         => ( ( groups771621172384141258BT_nat
              @ ^ [K2: vEBT_VEBT] : ( if_nat @ ( K2 = A ) @ ( B @ K2 ) @ ( C @ K2 ) )
              @ S3 )
            = ( plus_plus_nat @ ( B @ A ) @ ( groups771621172384141258BT_nat @ C @ ( minus_5127226145743854075T_VEBT @ S3 @ ( insert_VEBT_VEBT @ A @ bot_bo8194388402131092736T_VEBT ) ) ) ) ) )
        & ( ~ ( member_VEBT_VEBT @ A @ S3 )
         => ( ( groups771621172384141258BT_nat
              @ ^ [K2: vEBT_VEBT] : ( if_nat @ ( K2 = A ) @ ( B @ K2 ) @ ( C @ K2 ) )
              @ S3 )
            = ( groups771621172384141258BT_nat @ C @ ( minus_5127226145743854075T_VEBT @ S3 @ ( insert_VEBT_VEBT @ A @ bot_bo8194388402131092736T_VEBT ) ) ) ) ) ) ) ).

% sum.delta_remove
thf(fact_8523_sum_Odelta__remove,axiom,
    ! [S3: set_complex,A: complex,B: complex > nat,C: complex > nat] :
      ( ( finite3207457112153483333omplex @ S3 )
     => ( ( ( member_complex @ A @ S3 )
         => ( ( groups5693394587270226106ex_nat
              @ ^ [K2: complex] : ( if_nat @ ( K2 = A ) @ ( B @ K2 ) @ ( C @ K2 ) )
              @ S3 )
            = ( plus_plus_nat @ ( B @ A ) @ ( groups5693394587270226106ex_nat @ C @ ( minus_811609699411566653omplex @ S3 @ ( insert_complex @ A @ bot_bot_set_complex ) ) ) ) ) )
        & ( ~ ( member_complex @ A @ S3 )
         => ( ( groups5693394587270226106ex_nat
              @ ^ [K2: complex] : ( if_nat @ ( K2 = A ) @ ( B @ K2 ) @ ( C @ K2 ) )
              @ S3 )
            = ( groups5693394587270226106ex_nat @ C @ ( minus_811609699411566653omplex @ S3 @ ( insert_complex @ A @ bot_bot_set_complex ) ) ) ) ) ) ) ).

% sum.delta_remove
thf(fact_8524_sum_Odelta__remove,axiom,
    ! [S3: set_VEBT_VEBT,A: vEBT_VEBT,B: vEBT_VEBT > int,C: vEBT_VEBT > int] :
      ( ( finite5795047828879050333T_VEBT @ S3 )
     => ( ( ( member_VEBT_VEBT @ A @ S3 )
         => ( ( groups769130701875090982BT_int
              @ ^ [K2: vEBT_VEBT] : ( if_int @ ( K2 = A ) @ ( B @ K2 ) @ ( C @ K2 ) )
              @ S3 )
            = ( plus_plus_int @ ( B @ A ) @ ( groups769130701875090982BT_int @ C @ ( minus_5127226145743854075T_VEBT @ S3 @ ( insert_VEBT_VEBT @ A @ bot_bo8194388402131092736T_VEBT ) ) ) ) ) )
        & ( ~ ( member_VEBT_VEBT @ A @ S3 )
         => ( ( groups769130701875090982BT_int
              @ ^ [K2: vEBT_VEBT] : ( if_int @ ( K2 = A ) @ ( B @ K2 ) @ ( C @ K2 ) )
              @ S3 )
            = ( groups769130701875090982BT_int @ C @ ( minus_5127226145743854075T_VEBT @ S3 @ ( insert_VEBT_VEBT @ A @ bot_bo8194388402131092736T_VEBT ) ) ) ) ) ) ) ).

% sum.delta_remove
thf(fact_8525_sum_Odelta__remove,axiom,
    ! [S3: set_complex,A: complex,B: complex > int,C: complex > int] :
      ( ( finite3207457112153483333omplex @ S3 )
     => ( ( ( member_complex @ A @ S3 )
         => ( ( groups5690904116761175830ex_int
              @ ^ [K2: complex] : ( if_int @ ( K2 = A ) @ ( B @ K2 ) @ ( C @ K2 ) )
              @ S3 )
            = ( plus_plus_int @ ( B @ A ) @ ( groups5690904116761175830ex_int @ C @ ( minus_811609699411566653omplex @ S3 @ ( insert_complex @ A @ bot_bot_set_complex ) ) ) ) ) )
        & ( ~ ( member_complex @ A @ S3 )
         => ( ( groups5690904116761175830ex_int
              @ ^ [K2: complex] : ( if_int @ ( K2 = A ) @ ( B @ K2 ) @ ( C @ K2 ) )
              @ S3 )
            = ( groups5690904116761175830ex_int @ C @ ( minus_811609699411566653omplex @ S3 @ ( insert_complex @ A @ bot_bot_set_complex ) ) ) ) ) ) ) ).

% sum.delta_remove
thf(fact_8526_sum_Odelta__remove,axiom,
    ! [S3: set_real,A: real,B: real > real,C: real > real] :
      ( ( finite_finite_real @ S3 )
     => ( ( ( member_real @ A @ S3 )
         => ( ( groups8097168146408367636l_real
              @ ^ [K2: real] : ( if_real @ ( K2 = A ) @ ( B @ K2 ) @ ( C @ K2 ) )
              @ S3 )
            = ( plus_plus_real @ ( B @ A ) @ ( groups8097168146408367636l_real @ C @ ( minus_minus_set_real @ S3 @ ( insert_real @ A @ bot_bot_set_real ) ) ) ) ) )
        & ( ~ ( member_real @ A @ S3 )
         => ( ( groups8097168146408367636l_real
              @ ^ [K2: real] : ( if_real @ ( K2 = A ) @ ( B @ K2 ) @ ( C @ K2 ) )
              @ S3 )
            = ( groups8097168146408367636l_real @ C @ ( minus_minus_set_real @ S3 @ ( insert_real @ A @ bot_bot_set_real ) ) ) ) ) ) ) ).

% sum.delta_remove
thf(fact_8527_sum_Odelta__remove,axiom,
    ! [S3: set_real,A: real,B: real > rat,C: real > rat] :
      ( ( finite_finite_real @ S3 )
     => ( ( ( member_real @ A @ S3 )
         => ( ( groups1300246762558778688al_rat
              @ ^ [K2: real] : ( if_rat @ ( K2 = A ) @ ( B @ K2 ) @ ( C @ K2 ) )
              @ S3 )
            = ( plus_plus_rat @ ( B @ A ) @ ( groups1300246762558778688al_rat @ C @ ( minus_minus_set_real @ S3 @ ( insert_real @ A @ bot_bot_set_real ) ) ) ) ) )
        & ( ~ ( member_real @ A @ S3 )
         => ( ( groups1300246762558778688al_rat
              @ ^ [K2: real] : ( if_rat @ ( K2 = A ) @ ( B @ K2 ) @ ( C @ K2 ) )
              @ S3 )
            = ( groups1300246762558778688al_rat @ C @ ( minus_minus_set_real @ S3 @ ( insert_real @ A @ bot_bot_set_real ) ) ) ) ) ) ) ).

% sum.delta_remove
thf(fact_8528_num_Osize__gen_I1_J,axiom,
    ( ( size_num @ one )
    = zero_zero_nat ) ).

% num.size_gen(1)
thf(fact_8529_sum__strict__mono2,axiom,
    ! [B3: set_real,A2: set_real,B: real,F: real > real] :
      ( ( finite_finite_real @ B3 )
     => ( ( ord_less_eq_set_real @ A2 @ B3 )
       => ( ( member_real @ B @ ( minus_minus_set_real @ B3 @ A2 ) )
         => ( ( ord_less_real @ zero_zero_real @ ( F @ B ) )
           => ( ! [X4: real] :
                  ( ( member_real @ X4 @ B3 )
                 => ( ord_less_eq_real @ zero_zero_real @ ( F @ X4 ) ) )
             => ( ord_less_real @ ( groups8097168146408367636l_real @ F @ A2 ) @ ( groups8097168146408367636l_real @ F @ B3 ) ) ) ) ) ) ) ).

% sum_strict_mono2
thf(fact_8530_sum__strict__mono2,axiom,
    ! [B3: set_complex,A2: set_complex,B: complex,F: complex > real] :
      ( ( finite3207457112153483333omplex @ B3 )
     => ( ( ord_le211207098394363844omplex @ A2 @ B3 )
       => ( ( member_complex @ B @ ( minus_811609699411566653omplex @ B3 @ A2 ) )
         => ( ( ord_less_real @ zero_zero_real @ ( F @ B ) )
           => ( ! [X4: complex] :
                  ( ( member_complex @ X4 @ B3 )
                 => ( ord_less_eq_real @ zero_zero_real @ ( F @ X4 ) ) )
             => ( ord_less_real @ ( groups5808333547571424918x_real @ F @ A2 ) @ ( groups5808333547571424918x_real @ F @ B3 ) ) ) ) ) ) ) ).

% sum_strict_mono2
thf(fact_8531_sum__strict__mono2,axiom,
    ! [B3: set_real,A2: set_real,B: real,F: real > rat] :
      ( ( finite_finite_real @ B3 )
     => ( ( ord_less_eq_set_real @ A2 @ B3 )
       => ( ( member_real @ B @ ( minus_minus_set_real @ B3 @ A2 ) )
         => ( ( ord_less_rat @ zero_zero_rat @ ( F @ B ) )
           => ( ! [X4: real] :
                  ( ( member_real @ X4 @ B3 )
                 => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X4 ) ) )
             => ( ord_less_rat @ ( groups1300246762558778688al_rat @ F @ A2 ) @ ( groups1300246762558778688al_rat @ F @ B3 ) ) ) ) ) ) ) ).

% sum_strict_mono2
thf(fact_8532_sum__strict__mono2,axiom,
    ! [B3: set_complex,A2: set_complex,B: complex,F: complex > rat] :
      ( ( finite3207457112153483333omplex @ B3 )
     => ( ( ord_le211207098394363844omplex @ A2 @ B3 )
       => ( ( member_complex @ B @ ( minus_811609699411566653omplex @ B3 @ A2 ) )
         => ( ( ord_less_rat @ zero_zero_rat @ ( F @ B ) )
           => ( ! [X4: complex] :
                  ( ( member_complex @ X4 @ B3 )
                 => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X4 ) ) )
             => ( ord_less_rat @ ( groups5058264527183730370ex_rat @ F @ A2 ) @ ( groups5058264527183730370ex_rat @ F @ B3 ) ) ) ) ) ) ) ).

% sum_strict_mono2
thf(fact_8533_sum__strict__mono2,axiom,
    ! [B3: set_nat,A2: set_nat,B: nat,F: nat > rat] :
      ( ( finite_finite_nat @ B3 )
     => ( ( ord_less_eq_set_nat @ A2 @ B3 )
       => ( ( member_nat @ B @ ( minus_minus_set_nat @ B3 @ A2 ) )
         => ( ( ord_less_rat @ zero_zero_rat @ ( F @ B ) )
           => ( ! [X4: nat] :
                  ( ( member_nat @ X4 @ B3 )
                 => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X4 ) ) )
             => ( ord_less_rat @ ( groups2906978787729119204at_rat @ F @ A2 ) @ ( groups2906978787729119204at_rat @ F @ B3 ) ) ) ) ) ) ) ).

% sum_strict_mono2
thf(fact_8534_sum__strict__mono2,axiom,
    ! [B3: set_real,A2: set_real,B: real,F: real > nat] :
      ( ( finite_finite_real @ B3 )
     => ( ( ord_less_eq_set_real @ A2 @ B3 )
       => ( ( member_real @ B @ ( minus_minus_set_real @ B3 @ A2 ) )
         => ( ( ord_less_nat @ zero_zero_nat @ ( F @ B ) )
           => ( ! [X4: real] :
                  ( ( member_real @ X4 @ B3 )
                 => ( ord_less_eq_nat @ zero_zero_nat @ ( F @ X4 ) ) )
             => ( ord_less_nat @ ( groups1935376822645274424al_nat @ F @ A2 ) @ ( groups1935376822645274424al_nat @ F @ B3 ) ) ) ) ) ) ) ).

% sum_strict_mono2
thf(fact_8535_sum__strict__mono2,axiom,
    ! [B3: set_complex,A2: set_complex,B: complex,F: complex > nat] :
      ( ( finite3207457112153483333omplex @ B3 )
     => ( ( ord_le211207098394363844omplex @ A2 @ B3 )
       => ( ( member_complex @ B @ ( minus_811609699411566653omplex @ B3 @ A2 ) )
         => ( ( ord_less_nat @ zero_zero_nat @ ( F @ B ) )
           => ( ! [X4: complex] :
                  ( ( member_complex @ X4 @ B3 )
                 => ( ord_less_eq_nat @ zero_zero_nat @ ( F @ X4 ) ) )
             => ( ord_less_nat @ ( groups5693394587270226106ex_nat @ F @ A2 ) @ ( groups5693394587270226106ex_nat @ F @ B3 ) ) ) ) ) ) ) ).

% sum_strict_mono2
thf(fact_8536_sum__strict__mono2,axiom,
    ! [B3: set_real,A2: set_real,B: real,F: real > int] :
      ( ( finite_finite_real @ B3 )
     => ( ( ord_less_eq_set_real @ A2 @ B3 )
       => ( ( member_real @ B @ ( minus_minus_set_real @ B3 @ A2 ) )
         => ( ( ord_less_int @ zero_zero_int @ ( F @ B ) )
           => ( ! [X4: real] :
                  ( ( member_real @ X4 @ B3 )
                 => ( ord_less_eq_int @ zero_zero_int @ ( F @ X4 ) ) )
             => ( ord_less_int @ ( groups1932886352136224148al_int @ F @ A2 ) @ ( groups1932886352136224148al_int @ F @ B3 ) ) ) ) ) ) ) ).

% sum_strict_mono2
thf(fact_8537_sum__strict__mono2,axiom,
    ! [B3: set_complex,A2: set_complex,B: complex,F: complex > int] :
      ( ( finite3207457112153483333omplex @ B3 )
     => ( ( ord_le211207098394363844omplex @ A2 @ B3 )
       => ( ( member_complex @ B @ ( minus_811609699411566653omplex @ B3 @ A2 ) )
         => ( ( ord_less_int @ zero_zero_int @ ( F @ B ) )
           => ( ! [X4: complex] :
                  ( ( member_complex @ X4 @ B3 )
                 => ( ord_less_eq_int @ zero_zero_int @ ( F @ X4 ) ) )
             => ( ord_less_int @ ( groups5690904116761175830ex_int @ F @ A2 ) @ ( groups5690904116761175830ex_int @ F @ B3 ) ) ) ) ) ) ) ).

% sum_strict_mono2
thf(fact_8538_sum__strict__mono2,axiom,
    ! [B3: set_nat,A2: set_nat,B: nat,F: nat > int] :
      ( ( finite_finite_nat @ B3 )
     => ( ( ord_less_eq_set_nat @ A2 @ B3 )
       => ( ( member_nat @ B @ ( minus_minus_set_nat @ B3 @ A2 ) )
         => ( ( ord_less_int @ zero_zero_int @ ( F @ B ) )
           => ( ! [X4: nat] :
                  ( ( member_nat @ X4 @ B3 )
                 => ( ord_less_eq_int @ zero_zero_int @ ( F @ X4 ) ) )
             => ( ord_less_int @ ( groups3539618377306564664at_int @ F @ A2 ) @ ( groups3539618377306564664at_int @ F @ B3 ) ) ) ) ) ) ) ).

% sum_strict_mono2
thf(fact_8539_member__le__sum,axiom,
    ! [I: vEBT_VEBT,A2: set_VEBT_VEBT,F: vEBT_VEBT > real] :
      ( ( member_VEBT_VEBT @ I @ A2 )
     => ( ! [X4: vEBT_VEBT] :
            ( ( member_VEBT_VEBT @ X4 @ ( minus_5127226145743854075T_VEBT @ A2 @ ( insert_VEBT_VEBT @ I @ bot_bo8194388402131092736T_VEBT ) ) )
           => ( ord_less_eq_real @ zero_zero_real @ ( F @ X4 ) ) )
       => ( ( finite5795047828879050333T_VEBT @ A2 )
         => ( ord_less_eq_real @ ( F @ I ) @ ( groups2240296850493347238T_real @ F @ A2 ) ) ) ) ) ).

% member_le_sum
thf(fact_8540_member__le__sum,axiom,
    ! [I: complex,A2: set_complex,F: complex > real] :
      ( ( member_complex @ I @ A2 )
     => ( ! [X4: complex] :
            ( ( member_complex @ X4 @ ( minus_811609699411566653omplex @ A2 @ ( insert_complex @ I @ bot_bot_set_complex ) ) )
           => ( ord_less_eq_real @ zero_zero_real @ ( F @ X4 ) ) )
       => ( ( finite3207457112153483333omplex @ A2 )
         => ( ord_less_eq_real @ ( F @ I ) @ ( groups5808333547571424918x_real @ F @ A2 ) ) ) ) ) ).

% member_le_sum
thf(fact_8541_member__le__sum,axiom,
    ! [I: real,A2: set_real,F: real > real] :
      ( ( member_real @ I @ A2 )
     => ( ! [X4: real] :
            ( ( member_real @ X4 @ ( minus_minus_set_real @ A2 @ ( insert_real @ I @ bot_bot_set_real ) ) )
           => ( ord_less_eq_real @ zero_zero_real @ ( F @ X4 ) ) )
       => ( ( finite_finite_real @ A2 )
         => ( ord_less_eq_real @ ( F @ I ) @ ( groups8097168146408367636l_real @ F @ A2 ) ) ) ) ) ).

% member_le_sum
thf(fact_8542_member__le__sum,axiom,
    ! [I: $o,A2: set_o,F: $o > real] :
      ( ( member_o @ I @ A2 )
     => ( ! [X4: $o] :
            ( ( member_o @ X4 @ ( minus_minus_set_o @ A2 @ ( insert_o @ I @ bot_bot_set_o ) ) )
           => ( ord_less_eq_real @ zero_zero_real @ ( F @ X4 ) ) )
       => ( ( finite_finite_o @ A2 )
         => ( ord_less_eq_real @ ( F @ I ) @ ( groups8691415230153176458o_real @ F @ A2 ) ) ) ) ) ).

% member_le_sum
thf(fact_8543_member__le__sum,axiom,
    ! [I: int,A2: set_int,F: int > real] :
      ( ( member_int @ I @ A2 )
     => ( ! [X4: int] :
            ( ( member_int @ X4 @ ( minus_minus_set_int @ A2 @ ( insert_int @ I @ bot_bot_set_int ) ) )
           => ( ord_less_eq_real @ zero_zero_real @ ( F @ X4 ) ) )
       => ( ( finite_finite_int @ A2 )
         => ( ord_less_eq_real @ ( F @ I ) @ ( groups8778361861064173332t_real @ F @ A2 ) ) ) ) ) ).

% member_le_sum
thf(fact_8544_member__le__sum,axiom,
    ! [I: vEBT_VEBT,A2: set_VEBT_VEBT,F: vEBT_VEBT > rat] :
      ( ( member_VEBT_VEBT @ I @ A2 )
     => ( ! [X4: vEBT_VEBT] :
            ( ( member_VEBT_VEBT @ X4 @ ( minus_5127226145743854075T_VEBT @ A2 @ ( insert_VEBT_VEBT @ I @ bot_bo8194388402131092736T_VEBT ) ) )
           => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X4 ) ) )
       => ( ( finite5795047828879050333T_VEBT @ A2 )
         => ( ord_less_eq_rat @ ( F @ I ) @ ( groups136491112297645522BT_rat @ F @ A2 ) ) ) ) ) ).

% member_le_sum
thf(fact_8545_member__le__sum,axiom,
    ! [I: complex,A2: set_complex,F: complex > rat] :
      ( ( member_complex @ I @ A2 )
     => ( ! [X4: complex] :
            ( ( member_complex @ X4 @ ( minus_811609699411566653omplex @ A2 @ ( insert_complex @ I @ bot_bot_set_complex ) ) )
           => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X4 ) ) )
       => ( ( finite3207457112153483333omplex @ A2 )
         => ( ord_less_eq_rat @ ( F @ I ) @ ( groups5058264527183730370ex_rat @ F @ A2 ) ) ) ) ) ).

% member_le_sum
thf(fact_8546_member__le__sum,axiom,
    ! [I: real,A2: set_real,F: real > rat] :
      ( ( member_real @ I @ A2 )
     => ( ! [X4: real] :
            ( ( member_real @ X4 @ ( minus_minus_set_real @ A2 @ ( insert_real @ I @ bot_bot_set_real ) ) )
           => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X4 ) ) )
       => ( ( finite_finite_real @ A2 )
         => ( ord_less_eq_rat @ ( F @ I ) @ ( groups1300246762558778688al_rat @ F @ A2 ) ) ) ) ) ).

% member_le_sum
thf(fact_8547_member__le__sum,axiom,
    ! [I: $o,A2: set_o,F: $o > rat] :
      ( ( member_o @ I @ A2 )
     => ( ! [X4: $o] :
            ( ( member_o @ X4 @ ( minus_minus_set_o @ A2 @ ( insert_o @ I @ bot_bot_set_o ) ) )
           => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X4 ) ) )
       => ( ( finite_finite_o @ A2 )
         => ( ord_less_eq_rat @ ( F @ I ) @ ( groups7872700643590313910_o_rat @ F @ A2 ) ) ) ) ) ).

% member_le_sum
thf(fact_8548_member__le__sum,axiom,
    ! [I: int,A2: set_int,F: int > rat] :
      ( ( member_int @ I @ A2 )
     => ( ! [X4: int] :
            ( ( member_int @ X4 @ ( minus_minus_set_int @ A2 @ ( insert_int @ I @ bot_bot_set_int ) ) )
           => ( ord_less_eq_rat @ zero_zero_rat @ ( F @ X4 ) ) )
       => ( ( finite_finite_int @ A2 )
         => ( ord_less_eq_rat @ ( F @ I ) @ ( groups3906332499630173760nt_rat @ F @ A2 ) ) ) ) ) ).

% member_le_sum
thf(fact_8549_Suc__mask__eq__exp,axiom,
    ! [N: nat] :
      ( ( suc @ ( bit_se2002935070580805687sk_nat @ N ) )
      = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).

% Suc_mask_eq_exp
thf(fact_8550_mask__nat__less__exp,axiom,
    ! [N: nat] : ( ord_less_nat @ ( bit_se2002935070580805687sk_nat @ N ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).

% mask_nat_less_exp
thf(fact_8551_convex__sum__bound__le,axiom,
    ! [I5: set_complex,X2: complex > code_integer,A: complex > code_integer,B: code_integer,Delta: code_integer] :
      ( ! [I3: complex] :
          ( ( member_complex @ I3 @ I5 )
         => ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( X2 @ I3 ) ) )
     => ( ( ( groups6621422865394947399nteger @ X2 @ I5 )
          = one_one_Code_integer )
       => ( ! [I3: complex] :
              ( ( member_complex @ I3 @ I5 )
             => ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ ( A @ I3 ) @ B ) ) @ Delta ) )
         => ( ord_le3102999989581377725nteger
            @ ( abs_abs_Code_integer
              @ ( minus_8373710615458151222nteger
                @ ( groups6621422865394947399nteger
                  @ ^ [I4: complex] : ( times_3573771949741848930nteger @ ( A @ I4 ) @ ( X2 @ I4 ) )
                  @ I5 )
                @ B ) )
            @ Delta ) ) ) ) ).

% convex_sum_bound_le
thf(fact_8552_convex__sum__bound__le,axiom,
    ! [I5: set_real,X2: real > code_integer,A: real > code_integer,B: code_integer,Delta: code_integer] :
      ( ! [I3: real] :
          ( ( member_real @ I3 @ I5 )
         => ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( X2 @ I3 ) ) )
     => ( ( ( groups7713935264441627589nteger @ X2 @ I5 )
          = one_one_Code_integer )
       => ( ! [I3: real] :
              ( ( member_real @ I3 @ I5 )
             => ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ ( A @ I3 ) @ B ) ) @ Delta ) )
         => ( ord_le3102999989581377725nteger
            @ ( abs_abs_Code_integer
              @ ( minus_8373710615458151222nteger
                @ ( groups7713935264441627589nteger
                  @ ^ [I4: real] : ( times_3573771949741848930nteger @ ( A @ I4 ) @ ( X2 @ I4 ) )
                  @ I5 )
                @ B ) )
            @ Delta ) ) ) ) ).

% convex_sum_bound_le
thf(fact_8553_convex__sum__bound__le,axiom,
    ! [I5: set_nat,X2: nat > code_integer,A: nat > code_integer,B: code_integer,Delta: code_integer] :
      ( ! [I3: nat] :
          ( ( member_nat @ I3 @ I5 )
         => ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( X2 @ I3 ) ) )
     => ( ( ( groups7501900531339628137nteger @ X2 @ I5 )
          = one_one_Code_integer )
       => ( ! [I3: nat] :
              ( ( member_nat @ I3 @ I5 )
             => ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ ( A @ I3 ) @ B ) ) @ Delta ) )
         => ( ord_le3102999989581377725nteger
            @ ( abs_abs_Code_integer
              @ ( minus_8373710615458151222nteger
                @ ( groups7501900531339628137nteger
                  @ ^ [I4: nat] : ( times_3573771949741848930nteger @ ( A @ I4 ) @ ( X2 @ I4 ) )
                  @ I5 )
                @ B ) )
            @ Delta ) ) ) ) ).

% convex_sum_bound_le
thf(fact_8554_convex__sum__bound__le,axiom,
    ! [I5: set_int,X2: int > code_integer,A: int > code_integer,B: code_integer,Delta: code_integer] :
      ( ! [I3: int] :
          ( ( member_int @ I3 @ I5 )
         => ( ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ ( X2 @ I3 ) ) )
     => ( ( ( groups7873554091576472773nteger @ X2 @ I5 )
          = one_one_Code_integer )
       => ( ! [I3: int] :
              ( ( member_int @ I3 @ I5 )
             => ( ord_le3102999989581377725nteger @ ( abs_abs_Code_integer @ ( minus_8373710615458151222nteger @ ( A @ I3 ) @ B ) ) @ Delta ) )
         => ( ord_le3102999989581377725nteger
            @ ( abs_abs_Code_integer
              @ ( minus_8373710615458151222nteger
                @ ( groups7873554091576472773nteger
                  @ ^ [I4: int] : ( times_3573771949741848930nteger @ ( A @ I4 ) @ ( X2 @ I4 ) )
                  @ I5 )
                @ B ) )
            @ Delta ) ) ) ) ).

% convex_sum_bound_le
thf(fact_8555_convex__sum__bound__le,axiom,
    ! [I5: set_complex,X2: complex > real,A: complex > real,B: real,Delta: real] :
      ( ! [I3: complex] :
          ( ( member_complex @ I3 @ I5 )
         => ( ord_less_eq_real @ zero_zero_real @ ( X2 @ I3 ) ) )
     => ( ( ( groups5808333547571424918x_real @ X2 @ I5 )
          = one_one_real )
       => ( ! [I3: complex] :
              ( ( member_complex @ I3 @ I5 )
             => ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( A @ I3 ) @ B ) ) @ Delta ) )
         => ( ord_less_eq_real
            @ ( abs_abs_real
              @ ( minus_minus_real
                @ ( groups5808333547571424918x_real
                  @ ^ [I4: complex] : ( times_times_real @ ( A @ I4 ) @ ( X2 @ I4 ) )
                  @ I5 )
                @ B ) )
            @ Delta ) ) ) ) ).

% convex_sum_bound_le
thf(fact_8556_convex__sum__bound__le,axiom,
    ! [I5: set_real,X2: real > real,A: real > real,B: real,Delta: real] :
      ( ! [I3: real] :
          ( ( member_real @ I3 @ I5 )
         => ( ord_less_eq_real @ zero_zero_real @ ( X2 @ I3 ) ) )
     => ( ( ( groups8097168146408367636l_real @ X2 @ I5 )
          = one_one_real )
       => ( ! [I3: real] :
              ( ( member_real @ I3 @ I5 )
             => ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( A @ I3 ) @ B ) ) @ Delta ) )
         => ( ord_less_eq_real
            @ ( abs_abs_real
              @ ( minus_minus_real
                @ ( groups8097168146408367636l_real
                  @ ^ [I4: real] : ( times_times_real @ ( A @ I4 ) @ ( X2 @ I4 ) )
                  @ I5 )
                @ B ) )
            @ Delta ) ) ) ) ).

% convex_sum_bound_le
thf(fact_8557_convex__sum__bound__le,axiom,
    ! [I5: set_int,X2: int > real,A: int > real,B: real,Delta: real] :
      ( ! [I3: int] :
          ( ( member_int @ I3 @ I5 )
         => ( ord_less_eq_real @ zero_zero_real @ ( X2 @ I3 ) ) )
     => ( ( ( groups8778361861064173332t_real @ X2 @ I5 )
          = one_one_real )
       => ( ! [I3: int] :
              ( ( member_int @ I3 @ I5 )
             => ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( A @ I3 ) @ B ) ) @ Delta ) )
         => ( ord_less_eq_real
            @ ( abs_abs_real
              @ ( minus_minus_real
                @ ( groups8778361861064173332t_real
                  @ ^ [I4: int] : ( times_times_real @ ( A @ I4 ) @ ( X2 @ I4 ) )
                  @ I5 )
                @ B ) )
            @ Delta ) ) ) ) ).

% convex_sum_bound_le
thf(fact_8558_convex__sum__bound__le,axiom,
    ! [I5: set_complex,X2: complex > rat,A: complex > rat,B: rat,Delta: rat] :
      ( ! [I3: complex] :
          ( ( member_complex @ I3 @ I5 )
         => ( ord_less_eq_rat @ zero_zero_rat @ ( X2 @ I3 ) ) )
     => ( ( ( groups5058264527183730370ex_rat @ X2 @ I5 )
          = one_one_rat )
       => ( ! [I3: complex] :
              ( ( member_complex @ I3 @ I5 )
             => ( ord_less_eq_rat @ ( abs_abs_rat @ ( minus_minus_rat @ ( A @ I3 ) @ B ) ) @ Delta ) )
         => ( ord_less_eq_rat
            @ ( abs_abs_rat
              @ ( minus_minus_rat
                @ ( groups5058264527183730370ex_rat
                  @ ^ [I4: complex] : ( times_times_rat @ ( A @ I4 ) @ ( X2 @ I4 ) )
                  @ I5 )
                @ B ) )
            @ Delta ) ) ) ) ).

% convex_sum_bound_le
thf(fact_8559_convex__sum__bound__le,axiom,
    ! [I5: set_real,X2: real > rat,A: real > rat,B: rat,Delta: rat] :
      ( ! [I3: real] :
          ( ( member_real @ I3 @ I5 )
         => ( ord_less_eq_rat @ zero_zero_rat @ ( X2 @ I3 ) ) )
     => ( ( ( groups1300246762558778688al_rat @ X2 @ I5 )
          = one_one_rat )
       => ( ! [I3: real] :
              ( ( member_real @ I3 @ I5 )
             => ( ord_less_eq_rat @ ( abs_abs_rat @ ( minus_minus_rat @ ( A @ I3 ) @ B ) ) @ Delta ) )
         => ( ord_less_eq_rat
            @ ( abs_abs_rat
              @ ( minus_minus_rat
                @ ( groups1300246762558778688al_rat
                  @ ^ [I4: real] : ( times_times_rat @ ( A @ I4 ) @ ( X2 @ I4 ) )
                  @ I5 )
                @ B ) )
            @ Delta ) ) ) ) ).

% convex_sum_bound_le
thf(fact_8560_convex__sum__bound__le,axiom,
    ! [I5: set_nat,X2: nat > rat,A: nat > rat,B: rat,Delta: rat] :
      ( ! [I3: nat] :
          ( ( member_nat @ I3 @ I5 )
         => ( ord_less_eq_rat @ zero_zero_rat @ ( X2 @ I3 ) ) )
     => ( ( ( groups2906978787729119204at_rat @ X2 @ I5 )
          = one_one_rat )
       => ( ! [I3: nat] :
              ( ( member_nat @ I3 @ I5 )
             => ( ord_less_eq_rat @ ( abs_abs_rat @ ( minus_minus_rat @ ( A @ I3 ) @ B ) ) @ Delta ) )
         => ( ord_less_eq_rat
            @ ( abs_abs_rat
              @ ( minus_minus_rat
                @ ( groups2906978787729119204at_rat
                  @ ^ [I4: nat] : ( times_times_rat @ ( A @ I4 ) @ ( X2 @ I4 ) )
                  @ I5 )
                @ B ) )
            @ Delta ) ) ) ) ).

% convex_sum_bound_le
thf(fact_8561_semiring__bit__operations__class_Oeven__mask__iff,axiom,
    ! [N: nat] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_se2119862282449309892nteger @ N ) )
      = ( N = zero_zero_nat ) ) ).

% semiring_bit_operations_class.even_mask_iff
thf(fact_8562_semiring__bit__operations__class_Oeven__mask__iff,axiom,
    ! [N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se2002935070580805687sk_nat @ N ) )
      = ( N = zero_zero_nat ) ) ).

% semiring_bit_operations_class.even_mask_iff
thf(fact_8563_semiring__bit__operations__class_Oeven__mask__iff,axiom,
    ! [N: nat] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se2000444600071755411sk_int @ N ) )
      = ( N = zero_zero_nat ) ) ).

% semiring_bit_operations_class.even_mask_iff
thf(fact_8564_add__0__iff,axiom,
    ! [B: complex,A: complex] :
      ( ( B
        = ( plus_plus_complex @ B @ A ) )
      = ( A = zero_zero_complex ) ) ).

% add_0_iff
thf(fact_8565_add__0__iff,axiom,
    ! [B: real,A: real] :
      ( ( B
        = ( plus_plus_real @ B @ A ) )
      = ( A = zero_zero_real ) ) ).

% add_0_iff
thf(fact_8566_add__0__iff,axiom,
    ! [B: rat,A: rat] :
      ( ( B
        = ( plus_plus_rat @ B @ A ) )
      = ( A = zero_zero_rat ) ) ).

% add_0_iff
thf(fact_8567_add__0__iff,axiom,
    ! [B: nat,A: nat] :
      ( ( B
        = ( plus_plus_nat @ B @ A ) )
      = ( A = zero_zero_nat ) ) ).

% add_0_iff
thf(fact_8568_add__0__iff,axiom,
    ! [B: int,A: int] :
      ( ( B
        = ( plus_plus_int @ B @ A ) )
      = ( A = zero_zero_int ) ) ).

% add_0_iff
thf(fact_8569_crossproduct__eq,axiom,
    ! [W: real,Y2: real,X2: real,Z: real] :
      ( ( ( plus_plus_real @ ( times_times_real @ W @ Y2 ) @ ( times_times_real @ X2 @ Z ) )
        = ( plus_plus_real @ ( times_times_real @ W @ Z ) @ ( times_times_real @ X2 @ Y2 ) ) )
      = ( ( W = X2 )
        | ( Y2 = Z ) ) ) ).

% crossproduct_eq
thf(fact_8570_crossproduct__eq,axiom,
    ! [W: rat,Y2: rat,X2: rat,Z: rat] :
      ( ( ( plus_plus_rat @ ( times_times_rat @ W @ Y2 ) @ ( times_times_rat @ X2 @ Z ) )
        = ( plus_plus_rat @ ( times_times_rat @ W @ Z ) @ ( times_times_rat @ X2 @ Y2 ) ) )
      = ( ( W = X2 )
        | ( Y2 = Z ) ) ) ).

% crossproduct_eq
thf(fact_8571_crossproduct__eq,axiom,
    ! [W: nat,Y2: nat,X2: nat,Z: nat] :
      ( ( ( plus_plus_nat @ ( times_times_nat @ W @ Y2 ) @ ( times_times_nat @ X2 @ Z ) )
        = ( plus_plus_nat @ ( times_times_nat @ W @ Z ) @ ( times_times_nat @ X2 @ Y2 ) ) )
      = ( ( W = X2 )
        | ( Y2 = Z ) ) ) ).

% crossproduct_eq
thf(fact_8572_crossproduct__eq,axiom,
    ! [W: int,Y2: int,X2: int,Z: int] :
      ( ( ( plus_plus_int @ ( times_times_int @ W @ Y2 ) @ ( times_times_int @ X2 @ Z ) )
        = ( plus_plus_int @ ( times_times_int @ W @ Z ) @ ( times_times_int @ X2 @ Y2 ) ) )
      = ( ( W = X2 )
        | ( Y2 = Z ) ) ) ).

% crossproduct_eq
thf(fact_8573_crossproduct__noteq,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( ( A != B )
        & ( C != D ) )
      = ( ( plus_plus_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D ) )
       != ( plus_plus_real @ ( times_times_real @ A @ D ) @ ( times_times_real @ B @ C ) ) ) ) ).

% crossproduct_noteq
thf(fact_8574_crossproduct__noteq,axiom,
    ! [A: rat,B: rat,C: rat,D: rat] :
      ( ( ( A != B )
        & ( C != D ) )
      = ( ( plus_plus_rat @ ( times_times_rat @ A @ C ) @ ( times_times_rat @ B @ D ) )
       != ( plus_plus_rat @ ( times_times_rat @ A @ D ) @ ( times_times_rat @ B @ C ) ) ) ) ).

% crossproduct_noteq
thf(fact_8575_crossproduct__noteq,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ( A != B )
        & ( C != D ) )
      = ( ( plus_plus_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) )
       != ( plus_plus_nat @ ( times_times_nat @ A @ D ) @ ( times_times_nat @ B @ C ) ) ) ) ).

% crossproduct_noteq
thf(fact_8576_crossproduct__noteq,axiom,
    ! [A: int,B: int,C: int,D: int] :
      ( ( ( A != B )
        & ( C != D ) )
      = ( ( plus_plus_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D ) )
       != ( plus_plus_int @ ( times_times_int @ A @ D ) @ ( times_times_int @ B @ C ) ) ) ) ).

% crossproduct_noteq
thf(fact_8577_mask__nat__def,axiom,
    ( bit_se2002935070580805687sk_nat
    = ( ^ [N2: nat] : ( minus_minus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) @ one_one_nat ) ) ) ).

% mask_nat_def
thf(fact_8578_mask__half__int,axiom,
    ! [N: nat] :
      ( ( divide_divide_int @ ( bit_se2000444600071755411sk_int @ N ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
      = ( bit_se2000444600071755411sk_int @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ).

% mask_half_int
thf(fact_8579_mask__int__def,axiom,
    ( bit_se2000444600071755411sk_int
    = ( ^ [N2: nat] : ( minus_minus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) @ one_one_int ) ) ) ).

% mask_int_def
thf(fact_8580_mask__eq__exp__minus__1,axiom,
    ( bit_se2002935070580805687sk_nat
    = ( ^ [N2: nat] : ( minus_minus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) @ one_one_nat ) ) ) ).

% mask_eq_exp_minus_1
thf(fact_8581_mask__eq__exp__minus__1,axiom,
    ( bit_se2000444600071755411sk_int
    = ( ^ [N2: nat] : ( minus_minus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) @ one_one_int ) ) ) ).

% mask_eq_exp_minus_1
thf(fact_8582_mask__Suc__exp,axiom,
    ! [N: nat] :
      ( ( bit_se2002935070580805687sk_nat @ ( suc @ N ) )
      = ( bit_se1412395901928357646or_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ ( bit_se2002935070580805687sk_nat @ N ) ) ) ).

% mask_Suc_exp
thf(fact_8583_mask__Suc__exp,axiom,
    ! [N: nat] :
      ( ( bit_se2000444600071755411sk_int @ ( suc @ N ) )
      = ( bit_se1409905431419307370or_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) @ ( bit_se2000444600071755411sk_int @ N ) ) ) ).

% mask_Suc_exp
thf(fact_8584_mask__Suc__double,axiom,
    ! [N: nat] :
      ( ( bit_se2002935070580805687sk_nat @ ( suc @ N ) )
      = ( bit_se1412395901928357646or_nat @ one_one_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se2002935070580805687sk_nat @ N ) ) ) ) ).

% mask_Suc_double
thf(fact_8585_mask__Suc__double,axiom,
    ! [N: nat] :
      ( ( bit_se2000444600071755411sk_int @ ( suc @ N ) )
      = ( bit_se1409905431419307370or_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se2000444600071755411sk_int @ N ) ) ) ) ).

% mask_Suc_double
thf(fact_8586_num_Osize__gen_I2_J,axiom,
    ! [X23: num] :
      ( ( size_num @ ( bit0 @ X23 ) )
      = ( plus_plus_nat @ ( size_num @ X23 ) @ ( suc @ zero_zero_nat ) ) ) ).

% num.size_gen(2)
thf(fact_8587_take__bit__rec,axiom,
    ( bit_se1745604003318907178nteger
    = ( ^ [N2: nat,A3: code_integer] : ( if_Code_integer @ ( N2 = zero_zero_nat ) @ zero_z3403309356797280102nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( bit_se1745604003318907178nteger @ ( minus_minus_nat @ N2 @ one_one_nat ) @ ( divide6298287555418463151nteger @ A3 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( modulo364778990260209775nteger @ A3 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ) ).

% take_bit_rec
thf(fact_8588_take__bit__rec,axiom,
    ( bit_se2923211474154528505it_int
    = ( ^ [N2: nat,A3: int] : ( if_int @ ( N2 = zero_zero_nat ) @ zero_zero_int @ ( plus_plus_int @ ( times_times_int @ ( bit_se2923211474154528505it_int @ ( minus_minus_nat @ N2 @ one_one_nat ) @ ( divide_divide_int @ A3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( modulo_modulo_int @ A3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ).

% take_bit_rec
thf(fact_8589_take__bit__rec,axiom,
    ( bit_se2925701944663578781it_nat
    = ( ^ [N2: nat,A3: nat] : ( if_nat @ ( N2 = zero_zero_nat ) @ zero_zero_nat @ ( plus_plus_nat @ ( times_times_nat @ ( bit_se2925701944663578781it_nat @ ( minus_minus_nat @ N2 @ one_one_nat ) @ ( divide_divide_nat @ A3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( modulo_modulo_nat @ A3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% take_bit_rec
thf(fact_8590_tanh__real__altdef,axiom,
    ( tanh_real
    = ( ^ [X: real] : ( divide_divide_real @ ( minus_minus_real @ one_one_real @ ( exp_real @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ X ) ) ) @ ( plus_plus_real @ one_one_real @ ( exp_real @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ X ) ) ) ) ) ) ).

% tanh_real_altdef
thf(fact_8591_power__numeral,axiom,
    ! [K: num,L: num] :
      ( ( power_power_complex @ ( numera6690914467698888265omplex @ K ) @ ( numeral_numeral_nat @ L ) )
      = ( numera6690914467698888265omplex @ ( pow @ K @ L ) ) ) ).

% power_numeral
thf(fact_8592_power__numeral,axiom,
    ! [K: num,L: num] :
      ( ( power_power_real @ ( numeral_numeral_real @ K ) @ ( numeral_numeral_nat @ L ) )
      = ( numeral_numeral_real @ ( pow @ K @ L ) ) ) ).

% power_numeral
thf(fact_8593_power__numeral,axiom,
    ! [K: num,L: num] :
      ( ( power_power_rat @ ( numeral_numeral_rat @ K ) @ ( numeral_numeral_nat @ L ) )
      = ( numeral_numeral_rat @ ( pow @ K @ L ) ) ) ).

% power_numeral
thf(fact_8594_power__numeral,axiom,
    ! [K: num,L: num] :
      ( ( power_power_nat @ ( numeral_numeral_nat @ K ) @ ( numeral_numeral_nat @ L ) )
      = ( numeral_numeral_nat @ ( pow @ K @ L ) ) ) ).

% power_numeral
thf(fact_8595_power__numeral,axiom,
    ! [K: num,L: num] :
      ( ( power_power_int @ ( numeral_numeral_int @ K ) @ ( numeral_numeral_nat @ L ) )
      = ( numeral_numeral_int @ ( pow @ K @ L ) ) ) ).

% power_numeral
thf(fact_8596_arctan__half,axiom,
    ( arctan
    = ( ^ [X: real] : ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( arctan @ ( divide_divide_real @ X @ ( plus_plus_real @ one_one_real @ ( sqrt @ ( plus_plus_real @ one_one_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ).

% arctan_half
thf(fact_8597_machin,axiom,
    ( ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) )
    = ( minus_minus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) @ ( arctan @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit1 @ ( bit0 @ one ) ) ) ) ) ) @ ( arctan @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit0 @ ( bit1 @ ( bit1 @ one ) ) ) ) ) ) ) ) ) ) ) ) ).

% machin
thf(fact_8598_real__sqrt__eq__iff,axiom,
    ! [X2: real,Y2: real] :
      ( ( ( sqrt @ X2 )
        = ( sqrt @ Y2 ) )
      = ( X2 = Y2 ) ) ).

% real_sqrt_eq_iff
thf(fact_8599_take__bit__of__0,axiom,
    ! [N: nat] :
      ( ( bit_se2923211474154528505it_int @ N @ zero_zero_int )
      = zero_zero_int ) ).

% take_bit_of_0
thf(fact_8600_take__bit__of__0,axiom,
    ! [N: nat] :
      ( ( bit_se2925701944663578781it_nat @ N @ zero_zero_nat )
      = zero_zero_nat ) ).

% take_bit_of_0
thf(fact_8601_real__sqrt__eq__zero__cancel__iff,axiom,
    ! [X2: real] :
      ( ( ( sqrt @ X2 )
        = zero_zero_real )
      = ( X2 = zero_zero_real ) ) ).

% real_sqrt_eq_zero_cancel_iff
thf(fact_8602_real__sqrt__zero,axiom,
    ( ( sqrt @ zero_zero_real )
    = zero_zero_real ) ).

% real_sqrt_zero
thf(fact_8603_real__sqrt__less__iff,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_real @ ( sqrt @ X2 ) @ ( sqrt @ Y2 ) )
      = ( ord_less_real @ X2 @ Y2 ) ) ).

% real_sqrt_less_iff
thf(fact_8604_real__sqrt__le__iff,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_eq_real @ ( sqrt @ X2 ) @ ( sqrt @ Y2 ) )
      = ( ord_less_eq_real @ X2 @ Y2 ) ) ).

% real_sqrt_le_iff
thf(fact_8605_real__sqrt__eq__1__iff,axiom,
    ! [X2: real] :
      ( ( ( sqrt @ X2 )
        = one_one_real )
      = ( X2 = one_one_real ) ) ).

% real_sqrt_eq_1_iff
thf(fact_8606_real__sqrt__one,axiom,
    ( ( sqrt @ one_one_real )
    = one_one_real ) ).

% real_sqrt_one
thf(fact_8607_exp__less__mono,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_real @ X2 @ Y2 )
     => ( ord_less_real @ ( exp_real @ X2 ) @ ( exp_real @ Y2 ) ) ) ).

% exp_less_mono
thf(fact_8608_exp__less__cancel__iff,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_real @ ( exp_real @ X2 ) @ ( exp_real @ Y2 ) )
      = ( ord_less_real @ X2 @ Y2 ) ) ).

% exp_less_cancel_iff
thf(fact_8609_take__bit__and,axiom,
    ! [N: nat,A: int,B: int] :
      ( ( bit_se2923211474154528505it_int @ N @ ( bit_se725231765392027082nd_int @ A @ B ) )
      = ( bit_se725231765392027082nd_int @ ( bit_se2923211474154528505it_int @ N @ A ) @ ( bit_se2923211474154528505it_int @ N @ B ) ) ) ).

% take_bit_and
thf(fact_8610_take__bit__and,axiom,
    ! [N: nat,A: nat,B: nat] :
      ( ( bit_se2925701944663578781it_nat @ N @ ( bit_se727722235901077358nd_nat @ A @ B ) )
      = ( bit_se727722235901077358nd_nat @ ( bit_se2925701944663578781it_nat @ N @ A ) @ ( bit_se2925701944663578781it_nat @ N @ B ) ) ) ).

% take_bit_and
thf(fact_8611_exp__le__cancel__iff,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_eq_real @ ( exp_real @ X2 ) @ ( exp_real @ Y2 ) )
      = ( ord_less_eq_real @ X2 @ Y2 ) ) ).

% exp_le_cancel_iff
thf(fact_8612_take__bit__or,axiom,
    ! [N: nat,A: int,B: int] :
      ( ( bit_se2923211474154528505it_int @ N @ ( bit_se1409905431419307370or_int @ A @ B ) )
      = ( bit_se1409905431419307370or_int @ ( bit_se2923211474154528505it_int @ N @ A ) @ ( bit_se2923211474154528505it_int @ N @ B ) ) ) ).

% take_bit_or
thf(fact_8613_take__bit__or,axiom,
    ! [N: nat,A: nat,B: nat] :
      ( ( bit_se2925701944663578781it_nat @ N @ ( bit_se1412395901928357646or_nat @ A @ B ) )
      = ( bit_se1412395901928357646or_nat @ ( bit_se2925701944663578781it_nat @ N @ A ) @ ( bit_se2925701944663578781it_nat @ N @ B ) ) ) ).

% take_bit_or
thf(fact_8614_concat__bit__of__zero__2,axiom,
    ! [N: nat,K: int] :
      ( ( bit_concat_bit @ N @ K @ zero_zero_int )
      = ( bit_se2923211474154528505it_int @ N @ K ) ) ).

% concat_bit_of_zero_2
thf(fact_8615_exp__zero,axiom,
    ( ( exp_complex @ zero_zero_complex )
    = one_one_complex ) ).

% exp_zero
thf(fact_8616_exp__zero,axiom,
    ( ( exp_real @ zero_zero_real )
    = one_one_real ) ).

% exp_zero
thf(fact_8617_take__bit__0,axiom,
    ! [A: int] :
      ( ( bit_se2923211474154528505it_int @ zero_zero_nat @ A )
      = zero_zero_int ) ).

% take_bit_0
thf(fact_8618_take__bit__0,axiom,
    ! [A: nat] :
      ( ( bit_se2925701944663578781it_nat @ zero_zero_nat @ A )
      = zero_zero_nat ) ).

% take_bit_0
thf(fact_8619_take__bit__Suc__1,axiom,
    ! [N: nat] :
      ( ( bit_se2923211474154528505it_int @ ( suc @ N ) @ one_one_int )
      = one_one_int ) ).

% take_bit_Suc_1
thf(fact_8620_take__bit__Suc__1,axiom,
    ! [N: nat] :
      ( ( bit_se2925701944663578781it_nat @ ( suc @ N ) @ one_one_nat )
      = one_one_nat ) ).

% take_bit_Suc_1
thf(fact_8621_take__bit__numeral__1,axiom,
    ! [L: num] :
      ( ( bit_se2923211474154528505it_int @ ( numeral_numeral_nat @ L ) @ one_one_int )
      = one_one_int ) ).

% take_bit_numeral_1
thf(fact_8622_take__bit__numeral__1,axiom,
    ! [L: num] :
      ( ( bit_se2925701944663578781it_nat @ ( numeral_numeral_nat @ L ) @ one_one_nat )
      = one_one_nat ) ).

% take_bit_numeral_1
thf(fact_8623_real__sqrt__gt__0__iff,axiom,
    ! [Y2: real] :
      ( ( ord_less_real @ zero_zero_real @ ( sqrt @ Y2 ) )
      = ( ord_less_real @ zero_zero_real @ Y2 ) ) ).

% real_sqrt_gt_0_iff
thf(fact_8624_real__sqrt__lt__0__iff,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ ( sqrt @ X2 ) @ zero_zero_real )
      = ( ord_less_real @ X2 @ zero_zero_real ) ) ).

% real_sqrt_lt_0_iff
thf(fact_8625_real__sqrt__ge__0__iff,axiom,
    ! [Y2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( sqrt @ Y2 ) )
      = ( ord_less_eq_real @ zero_zero_real @ Y2 ) ) ).

% real_sqrt_ge_0_iff
thf(fact_8626_real__sqrt__le__0__iff,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ ( sqrt @ X2 ) @ zero_zero_real )
      = ( ord_less_eq_real @ X2 @ zero_zero_real ) ) ).

% real_sqrt_le_0_iff
thf(fact_8627_real__sqrt__gt__1__iff,axiom,
    ! [Y2: real] :
      ( ( ord_less_real @ one_one_real @ ( sqrt @ Y2 ) )
      = ( ord_less_real @ one_one_real @ Y2 ) ) ).

% real_sqrt_gt_1_iff
thf(fact_8628_real__sqrt__lt__1__iff,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ ( sqrt @ X2 ) @ one_one_real )
      = ( ord_less_real @ X2 @ one_one_real ) ) ).

% real_sqrt_lt_1_iff
thf(fact_8629_real__sqrt__le__1__iff,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ ( sqrt @ X2 ) @ one_one_real )
      = ( ord_less_eq_real @ X2 @ one_one_real ) ) ).

% real_sqrt_le_1_iff
thf(fact_8630_real__sqrt__ge__1__iff,axiom,
    ! [Y2: real] :
      ( ( ord_less_eq_real @ one_one_real @ ( sqrt @ Y2 ) )
      = ( ord_less_eq_real @ one_one_real @ Y2 ) ) ).

% real_sqrt_ge_1_iff
thf(fact_8631_exp__eq__one__iff,axiom,
    ! [X2: real] :
      ( ( ( exp_real @ X2 )
        = one_one_real )
      = ( X2 = zero_zero_real ) ) ).

% exp_eq_one_iff
thf(fact_8632_real__sqrt__mult__self,axiom,
    ! [A: real] :
      ( ( times_times_real @ ( sqrt @ A ) @ ( sqrt @ A ) )
      = ( abs_abs_real @ A ) ) ).

% real_sqrt_mult_self
thf(fact_8633_real__sqrt__abs2,axiom,
    ! [X2: real] :
      ( ( sqrt @ ( times_times_real @ X2 @ X2 ) )
      = ( abs_abs_real @ X2 ) ) ).

% real_sqrt_abs2
thf(fact_8634_take__bit__of__1__eq__0__iff,axiom,
    ! [N: nat] :
      ( ( ( bit_se2923211474154528505it_int @ N @ one_one_int )
        = zero_zero_int )
      = ( N = zero_zero_nat ) ) ).

% take_bit_of_1_eq_0_iff
thf(fact_8635_take__bit__of__1__eq__0__iff,axiom,
    ! [N: nat] :
      ( ( ( bit_se2925701944663578781it_nat @ N @ one_one_nat )
        = zero_zero_nat )
      = ( N = zero_zero_nat ) ) ).

% take_bit_of_1_eq_0_iff
thf(fact_8636_real__sqrt__four,axiom,
    ( ( sqrt @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) )
    = ( numeral_numeral_real @ ( bit0 @ one ) ) ) ).

% real_sqrt_four
thf(fact_8637_one__less__exp__iff,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ one_one_real @ ( exp_real @ X2 ) )
      = ( ord_less_real @ zero_zero_real @ X2 ) ) ).

% one_less_exp_iff
thf(fact_8638_exp__less__one__iff,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ ( exp_real @ X2 ) @ one_one_real )
      = ( ord_less_real @ X2 @ zero_zero_real ) ) ).

% exp_less_one_iff
thf(fact_8639_one__le__exp__iff,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ one_one_real @ ( exp_real @ X2 ) )
      = ( ord_less_eq_real @ zero_zero_real @ X2 ) ) ).

% one_le_exp_iff
thf(fact_8640_exp__le__one__iff,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ ( exp_real @ X2 ) @ one_one_real )
      = ( ord_less_eq_real @ X2 @ zero_zero_real ) ) ).

% exp_le_one_iff
thf(fact_8641_take__bit__minus__one__eq__mask,axiom,
    ! [N: nat] :
      ( ( bit_se1745604003318907178nteger @ N @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) )
      = ( bit_se2119862282449309892nteger @ N ) ) ).

% take_bit_minus_one_eq_mask
thf(fact_8642_take__bit__minus__one__eq__mask,axiom,
    ! [N: nat] :
      ( ( bit_se2923211474154528505it_int @ N @ ( uminus_uminus_int @ one_one_int ) )
      = ( bit_se2000444600071755411sk_int @ N ) ) ).

% take_bit_minus_one_eq_mask
thf(fact_8643_exp__ln,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( ( exp_real @ ( ln_ln_real @ X2 ) )
        = X2 ) ) ).

% exp_ln
thf(fact_8644_exp__ln__iff,axiom,
    ! [X2: real] :
      ( ( ( exp_real @ ( ln_ln_real @ X2 ) )
        = X2 )
      = ( ord_less_real @ zero_zero_real @ X2 ) ) ).

% exp_ln_iff
thf(fact_8645_take__bit__of__Suc__0,axiom,
    ! [N: nat] :
      ( ( bit_se2925701944663578781it_nat @ N @ ( suc @ zero_zero_nat ) )
      = ( zero_n2687167440665602831ol_nat @ ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% take_bit_of_Suc_0
thf(fact_8646_sum_Ocl__ivl__Suc,axiom,
    ! [N: nat,M: nat,G: nat > complex] :
      ( ( ( ord_less_nat @ ( suc @ N ) @ M )
       => ( ( groups2073611262835488442omplex @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N ) ) )
          = zero_zero_complex ) )
      & ( ~ ( ord_less_nat @ ( suc @ N ) @ M )
       => ( ( groups2073611262835488442omplex @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N ) ) )
          = ( plus_plus_complex @ ( groups2073611262835488442omplex @ G @ ( set_or1269000886237332187st_nat @ M @ N ) ) @ ( G @ ( suc @ N ) ) ) ) ) ) ).

% sum.cl_ivl_Suc
thf(fact_8647_sum_Ocl__ivl__Suc,axiom,
    ! [N: nat,M: nat,G: nat > rat] :
      ( ( ( ord_less_nat @ ( suc @ N ) @ M )
       => ( ( groups2906978787729119204at_rat @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N ) ) )
          = zero_zero_rat ) )
      & ( ~ ( ord_less_nat @ ( suc @ N ) @ M )
       => ( ( groups2906978787729119204at_rat @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N ) ) )
          = ( plus_plus_rat @ ( groups2906978787729119204at_rat @ G @ ( set_or1269000886237332187st_nat @ M @ N ) ) @ ( G @ ( suc @ N ) ) ) ) ) ) ).

% sum.cl_ivl_Suc
thf(fact_8648_sum_Ocl__ivl__Suc,axiom,
    ! [N: nat,M: nat,G: nat > int] :
      ( ( ( ord_less_nat @ ( suc @ N ) @ M )
       => ( ( groups3539618377306564664at_int @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N ) ) )
          = zero_zero_int ) )
      & ( ~ ( ord_less_nat @ ( suc @ N ) @ M )
       => ( ( groups3539618377306564664at_int @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N ) ) )
          = ( plus_plus_int @ ( groups3539618377306564664at_int @ G @ ( set_or1269000886237332187st_nat @ M @ N ) ) @ ( G @ ( suc @ N ) ) ) ) ) ) ).

% sum.cl_ivl_Suc
thf(fact_8649_sum_Ocl__ivl__Suc,axiom,
    ! [N: nat,M: nat,G: nat > nat] :
      ( ( ( ord_less_nat @ ( suc @ N ) @ M )
       => ( ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N ) ) )
          = zero_zero_nat ) )
      & ( ~ ( ord_less_nat @ ( suc @ N ) @ M )
       => ( ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N ) ) )
          = ( plus_plus_nat @ ( groups3542108847815614940at_nat @ G @ ( set_or1269000886237332187st_nat @ M @ N ) ) @ ( G @ ( suc @ N ) ) ) ) ) ) ).

% sum.cl_ivl_Suc
thf(fact_8650_sum_Ocl__ivl__Suc,axiom,
    ! [N: nat,M: nat,G: nat > real] :
      ( ( ( ord_less_nat @ ( suc @ N ) @ M )
       => ( ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N ) ) )
          = zero_zero_real ) )
      & ( ~ ( ord_less_nat @ ( suc @ N ) @ M )
       => ( ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ M @ ( suc @ N ) ) )
          = ( plus_plus_real @ ( groups6591440286371151544t_real @ G @ ( set_or1269000886237332187st_nat @ M @ N ) ) @ ( G @ ( suc @ N ) ) ) ) ) ) ).

% sum.cl_ivl_Suc
thf(fact_8651_take__bit__of__1,axiom,
    ! [N: nat] :
      ( ( bit_se1745604003318907178nteger @ N @ one_one_Code_integer )
      = ( zero_n356916108424825756nteger @ ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% take_bit_of_1
thf(fact_8652_take__bit__of__1,axiom,
    ! [N: nat] :
      ( ( bit_se2923211474154528505it_int @ N @ one_one_int )
      = ( zero_n2684676970156552555ol_int @ ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% take_bit_of_1
thf(fact_8653_take__bit__of__1,axiom,
    ! [N: nat] :
      ( ( bit_se2925701944663578781it_nat @ N @ one_one_nat )
      = ( zero_n2687167440665602831ol_nat @ ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% take_bit_of_1
thf(fact_8654_sum__zero__power,axiom,
    ! [A2: set_nat,C: nat > complex] :
      ( ( ( ( finite_finite_nat @ A2 )
          & ( member_nat @ zero_zero_nat @ A2 ) )
       => ( ( groups2073611262835488442omplex
            @ ^ [I4: nat] : ( times_times_complex @ ( C @ I4 ) @ ( power_power_complex @ zero_zero_complex @ I4 ) )
            @ A2 )
          = ( C @ zero_zero_nat ) ) )
      & ( ~ ( ( finite_finite_nat @ A2 )
            & ( member_nat @ zero_zero_nat @ A2 ) )
       => ( ( groups2073611262835488442omplex
            @ ^ [I4: nat] : ( times_times_complex @ ( C @ I4 ) @ ( power_power_complex @ zero_zero_complex @ I4 ) )
            @ A2 )
          = zero_zero_complex ) ) ) ).

% sum_zero_power
thf(fact_8655_sum__zero__power,axiom,
    ! [A2: set_nat,C: nat > rat] :
      ( ( ( ( finite_finite_nat @ A2 )
          & ( member_nat @ zero_zero_nat @ A2 ) )
       => ( ( groups2906978787729119204at_rat
            @ ^ [I4: nat] : ( times_times_rat @ ( C @ I4 ) @ ( power_power_rat @ zero_zero_rat @ I4 ) )
            @ A2 )
          = ( C @ zero_zero_nat ) ) )
      & ( ~ ( ( finite_finite_nat @ A2 )
            & ( member_nat @ zero_zero_nat @ A2 ) )
       => ( ( groups2906978787729119204at_rat
            @ ^ [I4: nat] : ( times_times_rat @ ( C @ I4 ) @ ( power_power_rat @ zero_zero_rat @ I4 ) )
            @ A2 )
          = zero_zero_rat ) ) ) ).

% sum_zero_power
thf(fact_8656_sum__zero__power,axiom,
    ! [A2: set_nat,C: nat > real] :
      ( ( ( ( finite_finite_nat @ A2 )
          & ( member_nat @ zero_zero_nat @ A2 ) )
       => ( ( groups6591440286371151544t_real
            @ ^ [I4: nat] : ( times_times_real @ ( C @ I4 ) @ ( power_power_real @ zero_zero_real @ I4 ) )
            @ A2 )
          = ( C @ zero_zero_nat ) ) )
      & ( ~ ( ( finite_finite_nat @ A2 )
            & ( member_nat @ zero_zero_nat @ A2 ) )
       => ( ( groups6591440286371151544t_real
            @ ^ [I4: nat] : ( times_times_real @ ( C @ I4 ) @ ( power_power_real @ zero_zero_real @ I4 ) )
            @ A2 )
          = zero_zero_real ) ) ) ).

% sum_zero_power
thf(fact_8657_even__take__bit__eq,axiom,
    ! [N: nat,A: code_integer] :
      ( ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( bit_se1745604003318907178nteger @ N @ A ) )
      = ( ( N = zero_zero_nat )
        | ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ A ) ) ) ).

% even_take_bit_eq
thf(fact_8658_even__take__bit__eq,axiom,
    ! [N: nat,A: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se2923211474154528505it_int @ N @ A ) )
      = ( ( N = zero_zero_nat )
        | ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) ) ).

% even_take_bit_eq
thf(fact_8659_even__take__bit__eq,axiom,
    ! [N: nat,A: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se2925701944663578781it_nat @ N @ A ) )
      = ( ( N = zero_zero_nat )
        | ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) ) ) ).

% even_take_bit_eq
thf(fact_8660_real__sqrt__abs,axiom,
    ! [X2: real] :
      ( ( sqrt @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( abs_abs_real @ X2 ) ) ).

% real_sqrt_abs
thf(fact_8661_sum__zero__power_H,axiom,
    ! [A2: set_nat,C: nat > complex,D: nat > complex] :
      ( ( ( ( finite_finite_nat @ A2 )
          & ( member_nat @ zero_zero_nat @ A2 ) )
       => ( ( groups2073611262835488442omplex
            @ ^ [I4: nat] : ( divide1717551699836669952omplex @ ( times_times_complex @ ( C @ I4 ) @ ( power_power_complex @ zero_zero_complex @ I4 ) ) @ ( D @ I4 ) )
            @ A2 )
          = ( divide1717551699836669952omplex @ ( C @ zero_zero_nat ) @ ( D @ zero_zero_nat ) ) ) )
      & ( ~ ( ( finite_finite_nat @ A2 )
            & ( member_nat @ zero_zero_nat @ A2 ) )
       => ( ( groups2073611262835488442omplex
            @ ^ [I4: nat] : ( divide1717551699836669952omplex @ ( times_times_complex @ ( C @ I4 ) @ ( power_power_complex @ zero_zero_complex @ I4 ) ) @ ( D @ I4 ) )
            @ A2 )
          = zero_zero_complex ) ) ) ).

% sum_zero_power'
thf(fact_8662_sum__zero__power_H,axiom,
    ! [A2: set_nat,C: nat > rat,D: nat > rat] :
      ( ( ( ( finite_finite_nat @ A2 )
          & ( member_nat @ zero_zero_nat @ A2 ) )
       => ( ( groups2906978787729119204at_rat
            @ ^ [I4: nat] : ( divide_divide_rat @ ( times_times_rat @ ( C @ I4 ) @ ( power_power_rat @ zero_zero_rat @ I4 ) ) @ ( D @ I4 ) )
            @ A2 )
          = ( divide_divide_rat @ ( C @ zero_zero_nat ) @ ( D @ zero_zero_nat ) ) ) )
      & ( ~ ( ( finite_finite_nat @ A2 )
            & ( member_nat @ zero_zero_nat @ A2 ) )
       => ( ( groups2906978787729119204at_rat
            @ ^ [I4: nat] : ( divide_divide_rat @ ( times_times_rat @ ( C @ I4 ) @ ( power_power_rat @ zero_zero_rat @ I4 ) ) @ ( D @ I4 ) )
            @ A2 )
          = zero_zero_rat ) ) ) ).

% sum_zero_power'
thf(fact_8663_sum__zero__power_H,axiom,
    ! [A2: set_nat,C: nat > real,D: nat > real] :
      ( ( ( ( finite_finite_nat @ A2 )
          & ( member_nat @ zero_zero_nat @ A2 ) )
       => ( ( groups6591440286371151544t_real
            @ ^ [I4: nat] : ( divide_divide_real @ ( times_times_real @ ( C @ I4 ) @ ( power_power_real @ zero_zero_real @ I4 ) ) @ ( D @ I4 ) )
            @ A2 )
          = ( divide_divide_real @ ( C @ zero_zero_nat ) @ ( D @ zero_zero_nat ) ) ) )
      & ( ~ ( ( finite_finite_nat @ A2 )
            & ( member_nat @ zero_zero_nat @ A2 ) )
       => ( ( groups6591440286371151544t_real
            @ ^ [I4: nat] : ( divide_divide_real @ ( times_times_real @ ( C @ I4 ) @ ( power_power_real @ zero_zero_real @ I4 ) ) @ ( D @ I4 ) )
            @ A2 )
          = zero_zero_real ) ) ) ).

% sum_zero_power'
thf(fact_8664_take__bit__Suc__0,axiom,
    ! [A: code_integer] :
      ( ( bit_se1745604003318907178nteger @ ( suc @ zero_zero_nat ) @ A )
      = ( modulo364778990260209775nteger @ A @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ).

% take_bit_Suc_0
thf(fact_8665_take__bit__Suc__0,axiom,
    ! [A: int] :
      ( ( bit_se2923211474154528505it_int @ ( suc @ zero_zero_nat ) @ A )
      = ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).

% take_bit_Suc_0
thf(fact_8666_take__bit__Suc__0,axiom,
    ! [A: nat] :
      ( ( bit_se2925701944663578781it_nat @ ( suc @ zero_zero_nat ) @ A )
      = ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% take_bit_Suc_0
thf(fact_8667_real__sqrt__pow2__iff,axiom,
    ! [X2: real] :
      ( ( ( power_power_real @ ( sqrt @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = X2 )
      = ( ord_less_eq_real @ zero_zero_real @ X2 ) ) ).

% real_sqrt_pow2_iff
thf(fact_8668_real__sqrt__pow2,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ( power_power_real @ ( sqrt @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = X2 ) ) ).

% real_sqrt_pow2
thf(fact_8669_real__sqrt__sum__squares__mult__squared__eq,axiom,
    ! [X2: real,Y2: real,Xa2: real,Ya: real] :
      ( ( power_power_real @ ( sqrt @ ( times_times_real @ ( plus_plus_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( plus_plus_real @ ( power_power_real @ Xa2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Ya @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( times_times_real @ ( plus_plus_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( plus_plus_real @ ( power_power_real @ Xa2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Ya @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% real_sqrt_sum_squares_mult_squared_eq
thf(fact_8670_take__bit__of__exp,axiom,
    ! [M: nat,N: nat] :
      ( ( bit_se1745604003318907178nteger @ M @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) )
      = ( times_3573771949741848930nteger @ ( zero_n356916108424825756nteger @ ( ord_less_nat @ N @ M ) ) @ ( power_8256067586552552935nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ N ) ) ) ).

% take_bit_of_exp
thf(fact_8671_take__bit__of__exp,axiom,
    ! [M: nat,N: nat] :
      ( ( bit_se2923211474154528505it_int @ M @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
      = ( times_times_int @ ( zero_n2684676970156552555ol_int @ ( ord_less_nat @ N @ M ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ).

% take_bit_of_exp
thf(fact_8672_take__bit__of__exp,axiom,
    ! [M: nat,N: nat] :
      ( ( bit_se2925701944663578781it_nat @ M @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = ( times_times_nat @ ( zero_n2687167440665602831ol_nat @ ( ord_less_nat @ N @ M ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).

% take_bit_of_exp
thf(fact_8673_take__bit__of__2,axiom,
    ! [N: nat] :
      ( ( bit_se1745604003318907178nteger @ N @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
      = ( times_3573771949741848930nteger @ ( zero_n356916108424825756nteger @ ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ).

% take_bit_of_2
thf(fact_8674_take__bit__of__2,axiom,
    ! [N: nat] :
      ( ( bit_se2923211474154528505it_int @ N @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
      = ( times_times_int @ ( zero_n2684676970156552555ol_int @ ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).

% take_bit_of_2
thf(fact_8675_take__bit__of__2,axiom,
    ! [N: nat] :
      ( ( bit_se2925701944663578781it_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( times_times_nat @ ( zero_n2687167440665602831ol_nat @ ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% take_bit_of_2
thf(fact_8676_take__bit__minus,axiom,
    ! [N: nat,K: int] :
      ( ( bit_se2923211474154528505it_int @ N @ ( uminus_uminus_int @ ( bit_se2923211474154528505it_int @ N @ K ) ) )
      = ( bit_se2923211474154528505it_int @ N @ ( uminus_uminus_int @ K ) ) ) ).

% take_bit_minus
thf(fact_8677_exp__times__arg__commute,axiom,
    ! [A2: complex] :
      ( ( times_times_complex @ ( exp_complex @ A2 ) @ A2 )
      = ( times_times_complex @ A2 @ ( exp_complex @ A2 ) ) ) ).

% exp_times_arg_commute
thf(fact_8678_exp__times__arg__commute,axiom,
    ! [A2: real] :
      ( ( times_times_real @ ( exp_real @ A2 ) @ A2 )
      = ( times_times_real @ A2 @ ( exp_real @ A2 ) ) ) ).

% exp_times_arg_commute
thf(fact_8679_take__bit__mult,axiom,
    ! [N: nat,K: int,L: int] :
      ( ( bit_se2923211474154528505it_int @ N @ ( times_times_int @ ( bit_se2923211474154528505it_int @ N @ K ) @ ( bit_se2923211474154528505it_int @ N @ L ) ) )
      = ( bit_se2923211474154528505it_int @ N @ ( times_times_int @ K @ L ) ) ) ).

% take_bit_mult
thf(fact_8680_real__sqrt__divide,axiom,
    ! [X2: real,Y2: real] :
      ( ( sqrt @ ( divide_divide_real @ X2 @ Y2 ) )
      = ( divide_divide_real @ ( sqrt @ X2 ) @ ( sqrt @ Y2 ) ) ) ).

% real_sqrt_divide
thf(fact_8681_real__sqrt__mult,axiom,
    ! [X2: real,Y2: real] :
      ( ( sqrt @ ( times_times_real @ X2 @ Y2 ) )
      = ( times_times_real @ ( sqrt @ X2 ) @ ( sqrt @ Y2 ) ) ) ).

% real_sqrt_mult
thf(fact_8682_take__bit__of__int,axiom,
    ! [N: nat,K: int] :
      ( ( bit_se2923211474154528505it_int @ N @ ( ring_1_of_int_int @ K ) )
      = ( ring_1_of_int_int @ ( bit_se2923211474154528505it_int @ N @ K ) ) ) ).

% take_bit_of_int
thf(fact_8683_take__bit__add,axiom,
    ! [N: nat,A: int,B: int] :
      ( ( bit_se2923211474154528505it_int @ N @ ( plus_plus_int @ ( bit_se2923211474154528505it_int @ N @ A ) @ ( bit_se2923211474154528505it_int @ N @ B ) ) )
      = ( bit_se2923211474154528505it_int @ N @ ( plus_plus_int @ A @ B ) ) ) ).

% take_bit_add
thf(fact_8684_take__bit__add,axiom,
    ! [N: nat,A: nat,B: nat] :
      ( ( bit_se2925701944663578781it_nat @ N @ ( plus_plus_nat @ ( bit_se2925701944663578781it_nat @ N @ A ) @ ( bit_se2925701944663578781it_nat @ N @ B ) ) )
      = ( bit_se2925701944663578781it_nat @ N @ ( plus_plus_nat @ A @ B ) ) ) ).

% take_bit_add
thf(fact_8685_real__sqrt__le__mono,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_eq_real @ X2 @ Y2 )
     => ( ord_less_eq_real @ ( sqrt @ X2 ) @ ( sqrt @ Y2 ) ) ) ).

% real_sqrt_le_mono
thf(fact_8686_exp__less__cancel,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_real @ ( exp_real @ X2 ) @ ( exp_real @ Y2 ) )
     => ( ord_less_real @ X2 @ Y2 ) ) ).

% exp_less_cancel
thf(fact_8687_real__sqrt__less__mono,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_real @ X2 @ Y2 )
     => ( ord_less_real @ ( sqrt @ X2 ) @ ( sqrt @ Y2 ) ) ) ).

% real_sqrt_less_mono
thf(fact_8688_take__bit__nat__less__eq__self,axiom,
    ! [N: nat,M: nat] : ( ord_less_eq_nat @ ( bit_se2925701944663578781it_nat @ N @ M ) @ M ) ).

% take_bit_nat_less_eq_self
thf(fact_8689_take__bit__tightened__less__eq__nat,axiom,
    ! [M: nat,N: nat,Q2: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ord_less_eq_nat @ ( bit_se2925701944663578781it_nat @ M @ Q2 ) @ ( bit_se2925701944663578781it_nat @ N @ Q2 ) ) ) ).

% take_bit_tightened_less_eq_nat
thf(fact_8690_take__bit__tightened,axiom,
    ! [N: nat,A: int,B: int,M: nat] :
      ( ( ( bit_se2923211474154528505it_int @ N @ A )
        = ( bit_se2923211474154528505it_int @ N @ B ) )
     => ( ( ord_less_eq_nat @ M @ N )
       => ( ( bit_se2923211474154528505it_int @ M @ A )
          = ( bit_se2923211474154528505it_int @ M @ B ) ) ) ) ).

% take_bit_tightened
thf(fact_8691_take__bit__tightened,axiom,
    ! [N: nat,A: nat,B: nat,M: nat] :
      ( ( ( bit_se2925701944663578781it_nat @ N @ A )
        = ( bit_se2925701944663578781it_nat @ N @ B ) )
     => ( ( ord_less_eq_nat @ M @ N )
       => ( ( bit_se2925701944663578781it_nat @ M @ A )
          = ( bit_se2925701944663578781it_nat @ M @ B ) ) ) ) ).

% take_bit_tightened
thf(fact_8692_real__sqrt__minus,axiom,
    ! [X2: real] :
      ( ( sqrt @ ( uminus_uminus_real @ X2 ) )
      = ( uminus_uminus_real @ ( sqrt @ X2 ) ) ) ).

% real_sqrt_minus
thf(fact_8693_real__sqrt__power,axiom,
    ! [X2: real,K: nat] :
      ( ( sqrt @ ( power_power_real @ X2 @ K ) )
      = ( power_power_real @ ( sqrt @ X2 ) @ K ) ) ).

% real_sqrt_power
thf(fact_8694_take__bit__diff,axiom,
    ! [N: nat,K: int,L: int] :
      ( ( bit_se2923211474154528505it_int @ N @ ( minus_minus_int @ ( bit_se2923211474154528505it_int @ N @ K ) @ ( bit_se2923211474154528505it_int @ N @ L ) ) )
      = ( bit_se2923211474154528505it_int @ N @ ( minus_minus_int @ K @ L ) ) ) ).

% take_bit_diff
thf(fact_8695_concat__bit__take__bit__eq,axiom,
    ! [N: nat,B: int] :
      ( ( bit_concat_bit @ N @ ( bit_se2923211474154528505it_int @ N @ B ) )
      = ( bit_concat_bit @ N @ B ) ) ).

% concat_bit_take_bit_eq
thf(fact_8696_concat__bit__eq__iff,axiom,
    ! [N: nat,K: int,L: int,R2: int,S: int] :
      ( ( ( bit_concat_bit @ N @ K @ L )
        = ( bit_concat_bit @ N @ R2 @ S ) )
      = ( ( ( bit_se2923211474154528505it_int @ N @ K )
          = ( bit_se2923211474154528505it_int @ N @ R2 ) )
        & ( L = S ) ) ) ).

% concat_bit_eq_iff
thf(fact_8697_real__sqrt__gt__zero,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( ord_less_real @ zero_zero_real @ ( sqrt @ X2 ) ) ) ).

% real_sqrt_gt_zero
thf(fact_8698_exp__total,axiom,
    ! [Y2: real] :
      ( ( ord_less_real @ zero_zero_real @ Y2 )
     => ? [X4: real] :
          ( ( exp_real @ X4 )
          = Y2 ) ) ).

% exp_total
thf(fact_8699_exp__gt__zero,axiom,
    ! [X2: real] : ( ord_less_real @ zero_zero_real @ ( exp_real @ X2 ) ) ).

% exp_gt_zero
thf(fact_8700_not__exp__less__zero,axiom,
    ! [X2: real] :
      ~ ( ord_less_real @ ( exp_real @ X2 ) @ zero_zero_real ) ).

% not_exp_less_zero
thf(fact_8701_real__sqrt__ge__zero,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ord_less_eq_real @ zero_zero_real @ ( sqrt @ X2 ) ) ) ).

% real_sqrt_ge_zero
thf(fact_8702_real__sqrt__eq__zero__cancel,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ( ( sqrt @ X2 )
          = zero_zero_real )
       => ( X2 = zero_zero_real ) ) ) ).

% real_sqrt_eq_zero_cancel
thf(fact_8703_exp__ge__zero,axiom,
    ! [X2: real] : ( ord_less_eq_real @ zero_zero_real @ ( exp_real @ X2 ) ) ).

% exp_ge_zero
thf(fact_8704_not__exp__le__zero,axiom,
    ! [X2: real] :
      ~ ( ord_less_eq_real @ ( exp_real @ X2 ) @ zero_zero_real ) ).

% not_exp_le_zero
thf(fact_8705_sum__cong__Suc,axiom,
    ! [A2: set_nat,F: nat > nat,G: nat > nat] :
      ( ~ ( member_nat @ zero_zero_nat @ A2 )
     => ( ! [X4: nat] :
            ( ( member_nat @ ( suc @ X4 ) @ A2 )
           => ( ( F @ ( suc @ X4 ) )
              = ( G @ ( suc @ X4 ) ) ) )
       => ( ( groups3542108847815614940at_nat @ F @ A2 )
          = ( groups3542108847815614940at_nat @ G @ A2 ) ) ) ) ).

% sum_cong_Suc
thf(fact_8706_sum__cong__Suc,axiom,
    ! [A2: set_nat,F: nat > real,G: nat > real] :
      ( ~ ( member_nat @ zero_zero_nat @ A2 )
     => ( ! [X4: nat] :
            ( ( member_nat @ ( suc @ X4 ) @ A2 )
           => ( ( F @ ( suc @ X4 ) )
              = ( G @ ( suc @ X4 ) ) ) )
       => ( ( groups6591440286371151544t_real @ F @ A2 )
          = ( groups6591440286371151544t_real @ G @ A2 ) ) ) ) ).

% sum_cong_Suc
thf(fact_8707_real__sqrt__ge__one,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ one_one_real @ X2 )
     => ( ord_less_eq_real @ one_one_real @ ( sqrt @ X2 ) ) ) ).

% real_sqrt_ge_one
thf(fact_8708_take__bit__tightened__less__eq__int,axiom,
    ! [M: nat,N: nat,K: int] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ord_less_eq_int @ ( bit_se2923211474154528505it_int @ M @ K ) @ ( bit_se2923211474154528505it_int @ N @ K ) ) ) ).

% take_bit_tightened_less_eq_int
thf(fact_8709_signed__take__bit__eq__iff__take__bit__eq,axiom,
    ! [N: nat,A: int,B: int] :
      ( ( ( bit_ri631733984087533419it_int @ N @ A )
        = ( bit_ri631733984087533419it_int @ N @ B ) )
      = ( ( bit_se2923211474154528505it_int @ ( suc @ N ) @ A )
        = ( bit_se2923211474154528505it_int @ ( suc @ N ) @ B ) ) ) ).

% signed_take_bit_eq_iff_take_bit_eq
thf(fact_8710_take__bit__int__less__eq__self__iff,axiom,
    ! [N: nat,K: int] :
      ( ( ord_less_eq_int @ ( bit_se2923211474154528505it_int @ N @ K ) @ K )
      = ( ord_less_eq_int @ zero_zero_int @ K ) ) ).

% take_bit_int_less_eq_self_iff
thf(fact_8711_take__bit__nonnegative,axiom,
    ! [N: nat,K: int] : ( ord_less_eq_int @ zero_zero_int @ ( bit_se2923211474154528505it_int @ N @ K ) ) ).

% take_bit_nonnegative
thf(fact_8712_take__bit__int__greater__self__iff,axiom,
    ! [K: int,N: nat] :
      ( ( ord_less_int @ K @ ( bit_se2923211474154528505it_int @ N @ K ) )
      = ( ord_less_int @ K @ zero_zero_int ) ) ).

% take_bit_int_greater_self_iff
thf(fact_8713_not__take__bit__negative,axiom,
    ! [N: nat,K: int] :
      ~ ( ord_less_int @ ( bit_se2923211474154528505it_int @ N @ K ) @ zero_zero_int ) ).

% not_take_bit_negative
thf(fact_8714_signed__take__bit__take__bit,axiom,
    ! [M: nat,N: nat,A: int] :
      ( ( bit_ri631733984087533419it_int @ M @ ( bit_se2923211474154528505it_int @ N @ A ) )
      = ( if_int_int @ ( ord_less_eq_nat @ N @ M ) @ ( bit_se2923211474154528505it_int @ N ) @ ( bit_ri631733984087533419it_int @ M ) @ A ) ) ).

% signed_take_bit_take_bit
thf(fact_8715_exp__add__commuting,axiom,
    ! [X2: real,Y2: real] :
      ( ( ( times_times_real @ X2 @ Y2 )
        = ( times_times_real @ Y2 @ X2 ) )
     => ( ( exp_real @ ( plus_plus_real @ X2 @ Y2 ) )
        = ( times_times_real @ ( exp_real @ X2 ) @ ( exp_real @ Y2 ) ) ) ) ).

% exp_add_commuting
thf(fact_8716_pi__gt__zero,axiom,
    ord_less_real @ zero_zero_real @ pi ).

% pi_gt_zero
thf(fact_8717_pi__not__less__zero,axiom,
    ~ ( ord_less_real @ pi @ zero_zero_real ) ).

% pi_not_less_zero
thf(fact_8718_pi__ge__zero,axiom,
    ord_less_eq_real @ zero_zero_real @ pi ).

% pi_ge_zero
thf(fact_8719_pow_Osimps_I1_J,axiom,
    ! [X2: num] :
      ( ( pow @ X2 @ one )
      = X2 ) ).

% pow.simps(1)
thf(fact_8720_exp__gt__one,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( ord_less_real @ one_one_real @ ( exp_real @ X2 ) ) ) ).

% exp_gt_one
thf(fact_8721_real__div__sqrt,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ( divide_divide_real @ X2 @ ( sqrt @ X2 ) )
        = ( sqrt @ X2 ) ) ) ).

% real_div_sqrt
thf(fact_8722_sqrt__add__le__add__sqrt,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y2 )
       => ( ord_less_eq_real @ ( sqrt @ ( plus_plus_real @ X2 @ Y2 ) ) @ ( plus_plus_real @ ( sqrt @ X2 ) @ ( sqrt @ Y2 ) ) ) ) ) ).

% sqrt_add_le_add_sqrt
thf(fact_8723_exp__ge__add__one__self,axiom,
    ! [X2: real] : ( ord_less_eq_real @ ( plus_plus_real @ one_one_real @ X2 ) @ ( exp_real @ X2 ) ) ).

% exp_ge_add_one_self
thf(fact_8724_le__real__sqrt__sumsq,axiom,
    ! [X2: real,Y2: real] : ( ord_less_eq_real @ X2 @ ( sqrt @ ( plus_plus_real @ ( times_times_real @ X2 @ X2 ) @ ( times_times_real @ Y2 @ Y2 ) ) ) ) ).

% le_real_sqrt_sumsq
thf(fact_8725_take__bit__eq__mask__iff,axiom,
    ! [N: nat,K: int] :
      ( ( ( bit_se2923211474154528505it_int @ N @ K )
        = ( bit_se2000444600071755411sk_int @ N ) )
      = ( ( bit_se2923211474154528505it_int @ N @ ( plus_plus_int @ K @ one_one_int ) )
        = zero_zero_int ) ) ).

% take_bit_eq_mask_iff
thf(fact_8726_take__bit__decr__eq,axiom,
    ! [N: nat,K: int] :
      ( ( ( bit_se2923211474154528505it_int @ N @ K )
       != zero_zero_int )
     => ( ( bit_se2923211474154528505it_int @ N @ ( minus_minus_int @ K @ one_one_int ) )
        = ( minus_minus_int @ ( bit_se2923211474154528505it_int @ N @ K ) @ one_one_int ) ) ) ).

% take_bit_decr_eq
thf(fact_8727_sum__nth__roots,axiom,
    ! [N: nat,C: complex] :
      ( ( ord_less_nat @ one_one_nat @ N )
     => ( ( groups7754918857620584856omplex
          @ ^ [X: complex] : X
          @ ( collect_complex
            @ ^ [Z4: complex] :
                ( ( power_power_complex @ Z4 @ N )
                = C ) ) )
        = zero_zero_complex ) ) ).

% sum_nth_roots
thf(fact_8728_sum__roots__unity,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ one_one_nat @ N )
     => ( ( groups7754918857620584856omplex
          @ ^ [X: complex] : X
          @ ( collect_complex
            @ ^ [Z4: complex] :
                ( ( power_power_complex @ Z4 @ N )
                = one_one_complex ) ) )
        = zero_zero_complex ) ) ).

% sum_roots_unity
thf(fact_8729_sqrt2__less__2,axiom,
    ord_less_real @ ( sqrt @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ).

% sqrt2_less_2
thf(fact_8730_exp__ge__add__one__self__aux,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ord_less_eq_real @ ( plus_plus_real @ one_one_real @ X2 ) @ ( exp_real @ X2 ) ) ) ).

% exp_ge_add_one_self_aux
thf(fact_8731_lemma__exp__total,axiom,
    ! [Y2: real] :
      ( ( ord_less_eq_real @ one_one_real @ Y2 )
     => ? [X4: real] :
          ( ( ord_less_eq_real @ zero_zero_real @ X4 )
          & ( ord_less_eq_real @ X4 @ ( minus_minus_real @ Y2 @ one_one_real ) )
          & ( ( exp_real @ X4 )
            = Y2 ) ) ) ).

% lemma_exp_total
thf(fact_8732_ln__ge__iff,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( ( ord_less_eq_real @ Y2 @ ( ln_ln_real @ X2 ) )
        = ( ord_less_eq_real @ ( exp_real @ Y2 ) @ X2 ) ) ) ).

% ln_ge_iff
thf(fact_8733_ln__x__over__x__mono,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_eq_real @ ( exp_real @ one_one_real ) @ X2 )
     => ( ( ord_less_eq_real @ X2 @ Y2 )
       => ( ord_less_eq_real @ ( divide_divide_real @ ( ln_ln_real @ Y2 ) @ Y2 ) @ ( divide_divide_real @ ( ln_ln_real @ X2 ) @ X2 ) ) ) ) ).

% ln_x_over_x_mono
thf(fact_8734_pi__less__4,axiom,
    ord_less_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) ).

% pi_less_4
thf(fact_8735_pi__ge__two,axiom,
    ord_less_eq_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ).

% pi_ge_two
thf(fact_8736_pi__half__neq__two,axiom,
    ( ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
   != ( numeral_numeral_real @ ( bit0 @ one ) ) ) ).

% pi_half_neq_two
thf(fact_8737_take__bit__nat__eq__self__iff,axiom,
    ! [N: nat,M: nat] :
      ( ( ( bit_se2925701944663578781it_nat @ N @ M )
        = M )
      = ( ord_less_nat @ M @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).

% take_bit_nat_eq_self_iff
thf(fact_8738_take__bit__nat__less__exp,axiom,
    ! [N: nat,M: nat] : ( ord_less_nat @ ( bit_se2925701944663578781it_nat @ N @ M ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).

% take_bit_nat_less_exp
thf(fact_8739_take__bit__nat__eq__self,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
     => ( ( bit_se2925701944663578781it_nat @ N @ M )
        = M ) ) ).

% take_bit_nat_eq_self
thf(fact_8740_real__less__rsqrt,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ Y2 )
     => ( ord_less_real @ X2 @ ( sqrt @ Y2 ) ) ) ).

% real_less_rsqrt
thf(fact_8741_real__le__rsqrt,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_eq_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ Y2 )
     => ( ord_less_eq_real @ X2 @ ( sqrt @ Y2 ) ) ) ).

% real_le_rsqrt
thf(fact_8742_sqrt__le__D,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_eq_real @ ( sqrt @ X2 ) @ Y2 )
     => ( ord_less_eq_real @ X2 @ ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% sqrt_le_D
thf(fact_8743_take__bit__nat__def,axiom,
    ( bit_se2925701944663578781it_nat
    = ( ^ [N2: nat,M3: nat] : ( modulo_modulo_nat @ M3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) ) ).

% take_bit_nat_def
thf(fact_8744_exp__le,axiom,
    ord_less_eq_real @ ( exp_real @ one_one_real ) @ ( numeral_numeral_real @ ( bit1 @ one ) ) ).

% exp_le
thf(fact_8745_take__bit__int__less__exp,axiom,
    ! [N: nat,K: int] : ( ord_less_int @ ( bit_se2923211474154528505it_int @ N @ K ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ).

% take_bit_int_less_exp
thf(fact_8746_take__bit__int__def,axiom,
    ( bit_se2923211474154528505it_int
    = ( ^ [N2: nat,K2: int] : ( modulo_modulo_int @ K2 @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) ) ) ) ).

% take_bit_int_def
thf(fact_8747_pi__half__neq__zero,axiom,
    ( ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
   != zero_zero_real ) ).

% pi_half_neq_zero
thf(fact_8748_pi__half__less__two,axiom,
    ord_less_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ).

% pi_half_less_two
thf(fact_8749_set__encode__def,axiom,
    ( nat_set_encode
    = ( groups3542108847815614940at_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% set_encode_def
thf(fact_8750_pi__half__le__two,axiom,
    ord_less_eq_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ).

% pi_half_le_two
thf(fact_8751_take__bit__nat__less__self__iff,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ ( bit_se2925701944663578781it_nat @ N @ M ) @ M )
      = ( ord_less_eq_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ M ) ) ).

% take_bit_nat_less_self_iff
thf(fact_8752_real__sqrt__unique,axiom,
    ! [Y2: real,X2: real] :
      ( ( ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = X2 )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y2 )
       => ( ( sqrt @ X2 )
          = Y2 ) ) ) ).

% real_sqrt_unique
thf(fact_8753_real__le__lsqrt,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y2 )
       => ( ( ord_less_eq_real @ X2 @ ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
         => ( ord_less_eq_real @ ( sqrt @ X2 ) @ Y2 ) ) ) ) ).

% real_le_lsqrt
thf(fact_8754_lemma__real__divide__sqrt__less,axiom,
    ! [U: real] :
      ( ( ord_less_real @ zero_zero_real @ U )
     => ( ord_less_real @ ( divide_divide_real @ U @ ( sqrt @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ U ) ) ).

% lemma_real_divide_sqrt_less
thf(fact_8755_real__sqrt__sum__squares__eq__cancel2,axiom,
    ! [X2: real,Y2: real] :
      ( ( ( sqrt @ ( plus_plus_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
        = Y2 )
     => ( X2 = zero_zero_real ) ) ).

% real_sqrt_sum_squares_eq_cancel2
thf(fact_8756_real__sqrt__sum__squares__eq__cancel,axiom,
    ! [X2: real,Y2: real] :
      ( ( ( sqrt @ ( plus_plus_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
        = X2 )
     => ( Y2 = zero_zero_real ) ) ).

% real_sqrt_sum_squares_eq_cancel
thf(fact_8757_real__sqrt__sum__squares__triangle__ineq,axiom,
    ! [A: real,C: real,B: real,D: real] : ( ord_less_eq_real @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ ( plus_plus_real @ A @ C ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( plus_plus_real @ B @ D ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( plus_plus_real @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ B @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ C @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ D @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% real_sqrt_sum_squares_triangle_ineq
thf(fact_8758_real__sqrt__sum__squares__ge2,axiom,
    ! [Y2: real,X2: real] : ( ord_less_eq_real @ Y2 @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% real_sqrt_sum_squares_ge2
thf(fact_8759_real__sqrt__sum__squares__ge1,axiom,
    ! [X2: real,Y2: real] : ( ord_less_eq_real @ X2 @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% real_sqrt_sum_squares_ge1
thf(fact_8760_exp__half__le2,axiom,
    ord_less_eq_real @ ( exp_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ).

% exp_half_le2
thf(fact_8761_sqrt__ge__absD,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ X2 ) @ ( sqrt @ Y2 ) )
     => ( ord_less_eq_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ Y2 ) ) ).

% sqrt_ge_absD
thf(fact_8762_take__bit__Suc__minus__bit0,axiom,
    ! [N: nat,K: num] :
      ( ( bit_se2923211474154528505it_int @ ( suc @ N ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ K ) ) ) )
      = ( times_times_int @ ( bit_se2923211474154528505it_int @ N @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).

% take_bit_Suc_minus_bit0
thf(fact_8763_take__bit__int__less__self__iff,axiom,
    ! [N: nat,K: int] :
      ( ( ord_less_int @ ( bit_se2923211474154528505it_int @ N @ K ) @ K )
      = ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) @ K ) ) ).

% take_bit_int_less_self_iff
thf(fact_8764_take__bit__int__greater__eq__self__iff,axiom,
    ! [K: int,N: nat] :
      ( ( ord_less_eq_int @ K @ ( bit_se2923211474154528505it_int @ N @ K ) )
      = ( ord_less_int @ K @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ).

% take_bit_int_greater_eq_self_iff
thf(fact_8765_pi__half__gt__zero,axiom,
    ord_less_real @ zero_zero_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ).

% pi_half_gt_zero
thf(fact_8766_pi__half__ge__zero,axiom,
    ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ).

% pi_half_ge_zero
thf(fact_8767_m2pi__less__pi,axiom,
    ord_less_real @ ( uminus_uminus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) ) @ pi ).

% m2pi_less_pi
thf(fact_8768_arctan__ubound,axiom,
    ! [Y2: real] : ( ord_less_real @ ( arctan @ Y2 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% arctan_ubound
thf(fact_8769_arctan__one,axiom,
    ( ( arctan @ one_one_real )
    = ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ).

% arctan_one
thf(fact_8770_real__less__lsqrt,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y2 )
       => ( ( ord_less_real @ X2 @ ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
         => ( ord_less_real @ ( sqrt @ X2 ) @ Y2 ) ) ) ) ).

% real_less_lsqrt
thf(fact_8771_sqrt__sum__squares__le__sum,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y2 )
       => ( ord_less_eq_real @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( plus_plus_real @ X2 @ Y2 ) ) ) ) ).

% sqrt_sum_squares_le_sum
thf(fact_8772_sqrt__even__pow2,axiom,
    ! [N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( sqrt @ ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ N ) )
        = ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% sqrt_even_pow2
thf(fact_8773_real__sqrt__ge__abs1,axiom,
    ! [X2: real,Y2: real] : ( ord_less_eq_real @ ( abs_abs_real @ X2 ) @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% real_sqrt_ge_abs1
thf(fact_8774_real__sqrt__ge__abs2,axiom,
    ! [Y2: real,X2: real] : ( ord_less_eq_real @ ( abs_abs_real @ Y2 ) @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% real_sqrt_ge_abs2
thf(fact_8775_sqrt__sum__squares__le__sum__abs,axiom,
    ! [X2: real,Y2: real] : ( ord_less_eq_real @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( plus_plus_real @ ( abs_abs_real @ X2 ) @ ( abs_abs_real @ Y2 ) ) ) ).

% sqrt_sum_squares_le_sum_abs
thf(fact_8776_ln__sqrt,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( ( ln_ln_real @ ( sqrt @ X2 ) )
        = ( divide_divide_real @ ( ln_ln_real @ X2 ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).

% ln_sqrt
thf(fact_8777_take__bit__int__eq__self__iff,axiom,
    ! [N: nat,K: int] :
      ( ( ( bit_se2923211474154528505it_int @ N @ K )
        = K )
      = ( ( ord_less_eq_int @ zero_zero_int @ K )
        & ( ord_less_int @ K @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ) ).

% take_bit_int_eq_self_iff
thf(fact_8778_take__bit__int__eq__self,axiom,
    ! [K: int,N: nat] :
      ( ( ord_less_eq_int @ zero_zero_int @ K )
     => ( ( ord_less_int @ K @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
       => ( ( bit_se2923211474154528505it_int @ N @ K )
          = K ) ) ) ).

% take_bit_int_eq_self
thf(fact_8779_take__bit__numeral__minus__bit0,axiom,
    ! [L: num,K: num] :
      ( ( bit_se2923211474154528505it_int @ ( numeral_numeral_nat @ L ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ K ) ) ) )
      = ( times_times_int @ ( bit_se2923211474154528505it_int @ ( pred_numeral @ L ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).

% take_bit_numeral_minus_bit0
thf(fact_8780_take__bit__incr__eq,axiom,
    ! [N: nat,K: int] :
      ( ( ( bit_se2923211474154528505it_int @ N @ K )
       != ( minus_minus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) @ one_one_int ) )
     => ( ( bit_se2923211474154528505it_int @ N @ ( plus_plus_int @ K @ one_one_int ) )
        = ( plus_plus_int @ one_one_int @ ( bit_se2923211474154528505it_int @ N @ K ) ) ) ) ).

% take_bit_incr_eq
thf(fact_8781_take__bit__eq__mask__iff__exp__dvd,axiom,
    ! [N: nat,K: int] :
      ( ( ( bit_se2923211474154528505it_int @ N @ K )
        = ( bit_se2000444600071755411sk_int @ N ) )
      = ( dvd_dvd_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) @ ( plus_plus_int @ K @ one_one_int ) ) ) ).

% take_bit_eq_mask_iff_exp_dvd
thf(fact_8782_minus__pi__half__less__zero,axiom,
    ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ zero_zero_real ).

% minus_pi_half_less_zero
thf(fact_8783_arctan__lbound,axiom,
    ! [Y2: real] : ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( arctan @ Y2 ) ) ).

% arctan_lbound
thf(fact_8784_arctan__bounded,axiom,
    ! [Y2: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( arctan @ Y2 ) )
      & ( ord_less_real @ ( arctan @ Y2 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).

% arctan_bounded
thf(fact_8785_arsinh__real__aux,axiom,
    ! [X2: real] : ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ X2 @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real ) ) ) ) ).

% arsinh_real_aux
thf(fact_8786_exp__bound,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ( ord_less_eq_real @ X2 @ one_one_real )
       => ( ord_less_eq_real @ ( exp_real @ X2 ) @ ( plus_plus_real @ ( plus_plus_real @ one_one_real @ X2 ) @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% exp_bound
thf(fact_8787_real__sqrt__power__even,axiom,
    ! [N: nat,X2: real] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( ord_less_eq_real @ zero_zero_real @ X2 )
       => ( ( power_power_real @ ( sqrt @ X2 ) @ N )
          = ( power_power_real @ X2 @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% real_sqrt_power_even
thf(fact_8788_real__sqrt__sum__squares__mult__ge__zero,axiom,
    ! [X2: real,Y2: real,Xa2: real,Ya: real] : ( ord_less_eq_real @ zero_zero_real @ ( sqrt @ ( times_times_real @ ( plus_plus_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( plus_plus_real @ ( power_power_real @ Xa2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Ya @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% real_sqrt_sum_squares_mult_ge_zero
thf(fact_8789_arith__geo__mean__sqrt,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y2 )
       => ( ord_less_eq_real @ ( sqrt @ ( times_times_real @ X2 @ Y2 ) ) @ ( divide_divide_real @ ( plus_plus_real @ X2 @ Y2 ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).

% arith_geo_mean_sqrt
thf(fact_8790_take__bit__int__less__eq,axiom,
    ! [N: nat,K: int] :
      ( ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) @ K )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ord_less_eq_int @ ( bit_se2923211474154528505it_int @ N @ K ) @ ( minus_minus_int @ K @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ) ) ).

% take_bit_int_less_eq
thf(fact_8791_take__bit__int__greater__eq,axiom,
    ! [K: int,N: nat] :
      ( ( ord_less_int @ K @ zero_zero_int )
     => ( ord_less_eq_int @ ( plus_plus_int @ K @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) @ ( bit_se2923211474154528505it_int @ N @ K ) ) ) ).

% take_bit_int_greater_eq
thf(fact_8792_signed__take__bit__eq__take__bit__shift,axiom,
    ( bit_ri631733984087533419it_int
    = ( ^ [N2: nat,K2: int] : ( minus_minus_int @ ( bit_se2923211474154528505it_int @ ( suc @ N2 ) @ ( plus_plus_int @ K2 @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) ) ) ) ).

% signed_take_bit_eq_take_bit_shift
thf(fact_8793_mask__eq__sum__exp__nat,axiom,
    ! [N: nat] :
      ( ( minus_minus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ ( suc @ zero_zero_nat ) )
      = ( groups3542108847815614940at_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        @ ( collect_nat
          @ ^ [Q4: nat] : ( ord_less_nat @ Q4 @ N ) ) ) ) ).

% mask_eq_sum_exp_nat
thf(fact_8794_gauss__sum__nat,axiom,
    ! [N: nat] :
      ( ( groups3542108847815614940at_nat
        @ ^ [X: nat] : X
        @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) )
      = ( divide_divide_nat @ ( times_times_nat @ N @ ( suc @ N ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% gauss_sum_nat
thf(fact_8795_real__exp__bound__lemma,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ( ord_less_eq_real @ X2 @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ord_less_eq_real @ ( exp_real @ X2 ) @ ( plus_plus_real @ one_one_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X2 ) ) ) ) ) ).

% real_exp_bound_lemma
thf(fact_8796_cos__x__y__le__one,axiom,
    ! [X2: real,Y2: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( divide_divide_real @ X2 @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) @ one_one_real ) ).

% cos_x_y_le_one
thf(fact_8797_real__sqrt__sum__squares__less,axiom,
    ! [X2: real,U: real,Y2: real] :
      ( ( ord_less_real @ ( abs_abs_real @ X2 ) @ ( divide_divide_real @ U @ ( sqrt @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) )
     => ( ( ord_less_real @ ( abs_abs_real @ Y2 ) @ ( divide_divide_real @ U @ ( sqrt @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) )
       => ( ord_less_real @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ U ) ) ) ).

% real_sqrt_sum_squares_less
thf(fact_8798_arcosh__real__def,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ one_one_real @ X2 )
     => ( ( arcosh_real @ X2 )
        = ( ln_ln_real @ ( plus_plus_real @ X2 @ ( sqrt @ ( minus_minus_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real ) ) ) ) ) ) ).

% arcosh_real_def
thf(fact_8799_take__bit__minus__small__eq,axiom,
    ! [K: int,N: nat] :
      ( ( ord_less_int @ zero_zero_int @ K )
     => ( ( ord_less_eq_int @ K @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
       => ( ( bit_se2923211474154528505it_int @ N @ ( uminus_uminus_int @ K ) )
          = ( minus_minus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) @ K ) ) ) ) ).

% take_bit_minus_small_eq
thf(fact_8800_arith__series__nat,axiom,
    ! [A: nat,D: nat,N: nat] :
      ( ( groups3542108847815614940at_nat
        @ ^ [I4: nat] : ( plus_plus_nat @ A @ ( times_times_nat @ I4 @ D ) )
        @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) )
      = ( divide_divide_nat @ ( times_times_nat @ ( suc @ N ) @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) @ ( times_times_nat @ N @ D ) ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% arith_series_nat
thf(fact_8801_Sum__Icc__nat,axiom,
    ! [M: nat,N: nat] :
      ( ( groups3542108847815614940at_nat
        @ ^ [X: nat] : X
        @ ( set_or1269000886237332187st_nat @ M @ N ) )
      = ( divide_divide_nat @ ( minus_minus_nat @ ( times_times_nat @ N @ ( plus_plus_nat @ N @ one_one_nat ) ) @ ( times_times_nat @ M @ ( minus_minus_nat @ M @ one_one_nat ) ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% Sum_Icc_nat
thf(fact_8802_sqrt__sum__squares__half__less,axiom,
    ! [X2: real,U: real,Y2: real] :
      ( ( ord_less_real @ X2 @ ( divide_divide_real @ U @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
     => ( ( ord_less_real @ Y2 @ ( divide_divide_real @ U @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ( ord_less_eq_real @ zero_zero_real @ X2 )
         => ( ( ord_less_eq_real @ zero_zero_real @ Y2 )
           => ( ord_less_real @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ U ) ) ) ) ) ).

% sqrt_sum_squares_half_less
thf(fact_8803_exp__lower__Taylor__quadratic,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ord_less_eq_real @ ( plus_plus_real @ ( plus_plus_real @ one_one_real @ X2 ) @ ( divide_divide_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( exp_real @ X2 ) ) ) ).

% exp_lower_Taylor_quadratic
thf(fact_8804_machin__Euler,axiom,
    ( ( plus_plus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit1 @ ( bit0 @ one ) ) ) @ ( arctan @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit1 @ ( bit1 @ one ) ) ) ) ) ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( arctan @ ( divide_divide_real @ ( numeral_numeral_real @ ( bit1 @ one ) ) @ ( numeral_numeral_real @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit1 @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) )
    = ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ).

% machin_Euler
thf(fact_8805_take__bit__numeral__minus__bit1,axiom,
    ! [L: num,K: num] :
      ( ( bit_se2923211474154528505it_int @ ( numeral_numeral_nat @ L ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ K ) ) ) )
      = ( plus_plus_int @ ( times_times_int @ ( bit_se2923211474154528505it_int @ ( pred_numeral @ L ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( inc @ K ) ) ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ one_one_int ) ) ).

% take_bit_numeral_minus_bit1
thf(fact_8806_arsinh__real__def,axiom,
    ( arsinh_real
    = ( ^ [X: real] : ( ln_ln_real @ ( plus_plus_real @ X @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real ) ) ) ) ) ) ).

% arsinh_real_def
thf(fact_8807_take__bit__Suc__minus__bit1,axiom,
    ! [N: nat,K: num] :
      ( ( bit_se2923211474154528505it_int @ ( suc @ N ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ K ) ) ) )
      = ( plus_plus_int @ ( times_times_int @ ( bit_se2923211474154528505it_int @ N @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( inc @ K ) ) ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ one_one_int ) ) ).

% take_bit_Suc_minus_bit1
thf(fact_8808_cot__less__zero,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ ( divide_divide_real @ ( uminus_uminus_real @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ X2 )
     => ( ( ord_less_real @ X2 @ zero_zero_real )
       => ( ord_less_real @ ( cot_real @ X2 ) @ zero_zero_real ) ) ) ).

% cot_less_zero
thf(fact_8809_int__eq__iff__numeral,axiom,
    ! [M: nat,V: num] :
      ( ( ( semiri1314217659103216013at_int @ M )
        = ( numeral_numeral_int @ V ) )
      = ( M
        = ( numeral_numeral_nat @ V ) ) ) ).

% int_eq_iff_numeral
thf(fact_8810_negative__zle,axiom,
    ! [N: nat,M: nat] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N ) ) @ ( semiri1314217659103216013at_int @ M ) ) ).

% negative_zle
thf(fact_8811_negative__zless,axiom,
    ! [N: nat,M: nat] : ( ord_less_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N ) ) ) @ ( semiri1314217659103216013at_int @ M ) ) ).

% negative_zless
thf(fact_8812_pred__numeral__inc,axiom,
    ! [K: num] :
      ( ( pred_numeral @ ( inc @ K ) )
      = ( numeral_numeral_nat @ K ) ) ).

% pred_numeral_inc
thf(fact_8813_real__of__nat__less__numeral__iff,axiom,
    ! [N: nat,W: num] :
      ( ( ord_less_real @ ( semiri5074537144036343181t_real @ N ) @ ( numeral_numeral_real @ W ) )
      = ( ord_less_nat @ N @ ( numeral_numeral_nat @ W ) ) ) ).

% real_of_nat_less_numeral_iff
thf(fact_8814_numeral__less__real__of__nat__iff,axiom,
    ! [W: num,N: nat] :
      ( ( ord_less_real @ ( numeral_numeral_real @ W ) @ ( semiri5074537144036343181t_real @ N ) )
      = ( ord_less_nat @ ( numeral_numeral_nat @ W ) @ N ) ) ).

% numeral_less_real_of_nat_iff
thf(fact_8815_numeral__le__real__of__nat__iff,axiom,
    ! [N: num,M: nat] :
      ( ( ord_less_eq_real @ ( numeral_numeral_real @ N ) @ ( semiri5074537144036343181t_real @ M ) )
      = ( ord_less_eq_nat @ ( numeral_numeral_nat @ N ) @ M ) ) ).

% numeral_le_real_of_nat_iff
thf(fact_8816_cot__npi,axiom,
    ! [N: nat] :
      ( ( cot_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ pi ) )
      = zero_zero_real ) ).

% cot_npi
thf(fact_8817_cot__periodic,axiom,
    ! [X2: real] :
      ( ( cot_real @ ( plus_plus_real @ X2 @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) ) )
      = ( cot_real @ X2 ) ) ).

% cot_periodic
thf(fact_8818_num__induct,axiom,
    ! [P: num > $o,X2: num] :
      ( ( P @ one )
     => ( ! [X4: num] :
            ( ( P @ X4 )
           => ( P @ ( inc @ X4 ) ) )
       => ( P @ X2 ) ) ) ).

% num_induct
thf(fact_8819_add__inc,axiom,
    ! [X2: num,Y2: num] :
      ( ( plus_plus_num @ X2 @ ( inc @ Y2 ) )
      = ( inc @ ( plus_plus_num @ X2 @ Y2 ) ) ) ).

% add_inc
thf(fact_8820_int__ops_I3_J,axiom,
    ! [N: num] :
      ( ( semiri1314217659103216013at_int @ ( numeral_numeral_nat @ N ) )
      = ( numeral_numeral_int @ N ) ) ).

% int_ops(3)
thf(fact_8821_int__of__nat__induct,axiom,
    ! [P: int > $o,Z: int] :
      ( ! [N3: nat] : ( P @ ( semiri1314217659103216013at_int @ N3 ) )
     => ( ! [N3: nat] : ( P @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N3 ) ) ) )
       => ( P @ Z ) ) ) ).

% int_of_nat_induct
thf(fact_8822_int__cases,axiom,
    ! [Z: int] :
      ( ! [N3: nat] :
          ( Z
         != ( semiri1314217659103216013at_int @ N3 ) )
     => ~ ! [N3: nat] :
            ( Z
           != ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N3 ) ) ) ) ) ).

% int_cases
thf(fact_8823_nat__int__comparison_I2_J,axiom,
    ( ord_less_nat
    = ( ^ [A3: nat,B2: nat] : ( ord_less_int @ ( semiri1314217659103216013at_int @ A3 ) @ ( semiri1314217659103216013at_int @ B2 ) ) ) ) ).

% nat_int_comparison(2)
thf(fact_8824_nat__int__comparison_I3_J,axiom,
    ( ord_less_eq_nat
    = ( ^ [A3: nat,B2: nat] : ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ A3 ) @ ( semiri1314217659103216013at_int @ B2 ) ) ) ) ).

% nat_int_comparison(3)
thf(fact_8825_zle__int,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% zle_int
thf(fact_8826_nonneg__int__cases,axiom,
    ! [K: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ K )
     => ~ ! [N3: nat] :
            ( K
           != ( semiri1314217659103216013at_int @ N3 ) ) ) ).

% nonneg_int_cases
thf(fact_8827_zero__le__imp__eq__int,axiom,
    ! [K: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ K )
     => ? [N3: nat] :
          ( K
          = ( semiri1314217659103216013at_int @ N3 ) ) ) ).

% zero_le_imp_eq_int
thf(fact_8828_int__plus,axiom,
    ! [N: nat,M: nat] :
      ( ( semiri1314217659103216013at_int @ ( plus_plus_nat @ N @ M ) )
      = ( plus_plus_int @ ( semiri1314217659103216013at_int @ N ) @ ( semiri1314217659103216013at_int @ M ) ) ) ).

% int_plus
thf(fact_8829_int__ops_I5_J,axiom,
    ! [A: nat,B: nat] :
      ( ( semiri1314217659103216013at_int @ ( plus_plus_nat @ A @ B ) )
      = ( plus_plus_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ).

% int_ops(5)
thf(fact_8830_zadd__int__left,axiom,
    ! [M: nat,N: nat,Z: int] :
      ( ( plus_plus_int @ ( semiri1314217659103216013at_int @ M ) @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ N ) @ Z ) )
      = ( plus_plus_int @ ( semiri1314217659103216013at_int @ ( plus_plus_nat @ M @ N ) ) @ Z ) ) ).

% zadd_int_left
thf(fact_8831_int__ops_I2_J,axiom,
    ( ( semiri1314217659103216013at_int @ one_one_nat )
    = one_one_int ) ).

% int_ops(2)
thf(fact_8832_int__ops_I7_J,axiom,
    ! [A: nat,B: nat] :
      ( ( semiri1314217659103216013at_int @ ( times_times_nat @ A @ B ) )
      = ( times_times_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ).

% int_ops(7)
thf(fact_8833_zle__iff__zadd,axiom,
    ( ord_less_eq_int
    = ( ^ [W3: int,Z4: int] :
        ? [N2: nat] :
          ( Z4
          = ( plus_plus_int @ W3 @ ( semiri1314217659103216013at_int @ N2 ) ) ) ) ) ).

% zle_iff_zadd
thf(fact_8834_not__int__zless__negative,axiom,
    ! [N: nat,M: nat] :
      ~ ( ord_less_int @ ( semiri1314217659103216013at_int @ N ) @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ M ) ) ) ).

% not_int_zless_negative
thf(fact_8835_zdiv__int,axiom,
    ! [A: nat,B: nat] :
      ( ( semiri1314217659103216013at_int @ ( divide_divide_nat @ A @ B ) )
      = ( divide_divide_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ).

% zdiv_int
thf(fact_8836_zmod__int,axiom,
    ! [A: nat,B: nat] :
      ( ( semiri1314217659103216013at_int @ ( modulo_modulo_nat @ A @ B ) )
      = ( modulo_modulo_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ).

% zmod_int
thf(fact_8837_nat__less__as__int,axiom,
    ( ord_less_nat
    = ( ^ [A3: nat,B2: nat] : ( ord_less_int @ ( semiri1314217659103216013at_int @ A3 ) @ ( semiri1314217659103216013at_int @ B2 ) ) ) ) ).

% nat_less_as_int
thf(fact_8838_nat__leq__as__int,axiom,
    ( ord_less_eq_nat
    = ( ^ [A3: nat,B2: nat] : ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ A3 ) @ ( semiri1314217659103216013at_int @ B2 ) ) ) ) ).

% nat_leq_as_int
thf(fact_8839_inc_Osimps_I1_J,axiom,
    ( ( inc @ one )
    = ( bit0 @ one ) ) ).

% inc.simps(1)
thf(fact_8840_inc_Osimps_I2_J,axiom,
    ! [X2: num] :
      ( ( inc @ ( bit0 @ X2 ) )
      = ( bit1 @ X2 ) ) ).

% inc.simps(2)
thf(fact_8841_inc_Osimps_I3_J,axiom,
    ! [X2: num] :
      ( ( inc @ ( bit1 @ X2 ) )
      = ( bit0 @ ( inc @ X2 ) ) ) ).

% inc.simps(3)
thf(fact_8842_add__One,axiom,
    ! [X2: num] :
      ( ( plus_plus_num @ X2 @ one )
      = ( inc @ X2 ) ) ).

% add_One
thf(fact_8843_inc__BitM__eq,axiom,
    ! [N: num] :
      ( ( inc @ ( bitM @ N ) )
      = ( bit0 @ N ) ) ).

% inc_BitM_eq
thf(fact_8844_BitM__inc__eq,axiom,
    ! [N: num] :
      ( ( bitM @ ( inc @ N ) )
      = ( bit1 @ N ) ) ).

% BitM_inc_eq
thf(fact_8845_reals__Archimedean3,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ! [Y4: real] :
        ? [N3: nat] : ( ord_less_real @ Y4 @ ( times_times_real @ ( semiri5074537144036343181t_real @ N3 ) @ X2 ) ) ) ).

% reals_Archimedean3
thf(fact_8846_int__cases4,axiom,
    ! [M: int] :
      ( ! [N3: nat] :
          ( M
         != ( semiri1314217659103216013at_int @ N3 ) )
     => ~ ! [N3: nat] :
            ( ( ord_less_nat @ zero_zero_nat @ N3 )
           => ( M
             != ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N3 ) ) ) ) ) ).

% int_cases4
thf(fact_8847_real__of__nat__div4,axiom,
    ! [N: nat,X2: nat] : ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ ( divide_divide_nat @ N @ X2 ) ) @ ( divide_divide_real @ ( semiri5074537144036343181t_real @ N ) @ ( semiri5074537144036343181t_real @ X2 ) ) ) ).

% real_of_nat_div4
thf(fact_8848_int__zle__neg,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ N ) @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ M ) ) )
      = ( ( N = zero_zero_nat )
        & ( M = zero_zero_nat ) ) ) ).

% int_zle_neg
thf(fact_8849_int__ops_I4_J,axiom,
    ! [A: nat] :
      ( ( semiri1314217659103216013at_int @ ( suc @ A ) )
      = ( plus_plus_int @ ( semiri1314217659103216013at_int @ A ) @ one_one_int ) ) ).

% int_ops(4)
thf(fact_8850_int__Suc,axiom,
    ! [N: nat] :
      ( ( semiri1314217659103216013at_int @ ( suc @ N ) )
      = ( plus_plus_int @ ( semiri1314217659103216013at_int @ N ) @ one_one_int ) ) ).

% int_Suc
thf(fact_8851_zless__iff__Suc__zadd,axiom,
    ( ord_less_int
    = ( ^ [W3: int,Z4: int] :
        ? [N2: nat] :
          ( Z4
          = ( plus_plus_int @ W3 @ ( semiri1314217659103216013at_int @ ( suc @ N2 ) ) ) ) ) ) ).

% zless_iff_Suc_zadd
thf(fact_8852_nonpos__int__cases,axiom,
    ! [K: int] :
      ( ( ord_less_eq_int @ K @ zero_zero_int )
     => ~ ! [N3: nat] :
            ( K
           != ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N3 ) ) ) ) ).

% nonpos_int_cases
thf(fact_8853_negative__zle__0,axiom,
    ! [N: nat] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N ) ) @ zero_zero_int ) ).

% negative_zle_0
thf(fact_8854_real__of__nat__div,axiom,
    ! [D: nat,N: nat] :
      ( ( dvd_dvd_nat @ D @ N )
     => ( ( semiri5074537144036343181t_real @ ( divide_divide_nat @ N @ D ) )
        = ( divide_divide_real @ ( semiri5074537144036343181t_real @ N ) @ ( semiri5074537144036343181t_real @ D ) ) ) ) ).

% real_of_nat_div
thf(fact_8855_mult__inc,axiom,
    ! [X2: num,Y2: num] :
      ( ( times_times_num @ X2 @ ( inc @ Y2 ) )
      = ( plus_plus_num @ ( times_times_num @ X2 @ Y2 ) @ X2 ) ) ).

% mult_inc
thf(fact_8856_pos__int__cases,axiom,
    ! [K: int] :
      ( ( ord_less_int @ zero_zero_int @ K )
     => ~ ! [N3: nat] :
            ( ( K
              = ( semiri1314217659103216013at_int @ N3 ) )
           => ~ ( ord_less_nat @ zero_zero_nat @ N3 ) ) ) ).

% pos_int_cases
thf(fact_8857_zero__less__imp__eq__int,axiom,
    ! [K: int] :
      ( ( ord_less_int @ zero_zero_int @ K )
     => ? [N3: nat] :
          ( ( ord_less_nat @ zero_zero_nat @ N3 )
          & ( K
            = ( semiri1314217659103216013at_int @ N3 ) ) ) ) ).

% zero_less_imp_eq_int
thf(fact_8858_int__cases3,axiom,
    ! [K: int] :
      ( ( K != zero_zero_int )
     => ( ! [N3: nat] :
            ( ( K
              = ( semiri1314217659103216013at_int @ N3 ) )
           => ~ ( ord_less_nat @ zero_zero_nat @ N3 ) )
       => ~ ! [N3: nat] :
              ( ( K
                = ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N3 ) ) )
             => ~ ( ord_less_nat @ zero_zero_nat @ N3 ) ) ) ) ).

% int_cases3
thf(fact_8859_nat__less__real__le,axiom,
    ( ord_less_nat
    = ( ^ [N2: nat,M3: nat] : ( ord_less_eq_real @ ( plus_plus_real @ ( semiri5074537144036343181t_real @ N2 ) @ one_one_real ) @ ( semiri5074537144036343181t_real @ M3 ) ) ) ) ).

% nat_less_real_le
thf(fact_8860_nat__le__real__less,axiom,
    ( ord_less_eq_nat
    = ( ^ [N2: nat,M3: nat] : ( ord_less_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( plus_plus_real @ ( semiri5074537144036343181t_real @ M3 ) @ one_one_real ) ) ) ) ).

% nat_le_real_less
thf(fact_8861_zmult__zless__mono2__lemma,axiom,
    ! [I: int,J: int,K: nat] :
      ( ( ord_less_int @ I @ J )
     => ( ( ord_less_nat @ zero_zero_nat @ K )
       => ( ord_less_int @ ( times_times_int @ ( semiri1314217659103216013at_int @ K ) @ I ) @ ( times_times_int @ ( semiri1314217659103216013at_int @ K ) @ J ) ) ) ) ).

% zmult_zless_mono2_lemma
thf(fact_8862_not__zle__0__negative,axiom,
    ! [N: nat] :
      ~ ( ord_less_eq_int @ zero_zero_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N ) ) ) ) ).

% not_zle_0_negative
thf(fact_8863_negative__zless__0,axiom,
    ! [N: nat] : ( ord_less_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N ) ) ) @ zero_zero_int ) ).

% negative_zless_0
thf(fact_8864_negD,axiom,
    ! [X2: int] :
      ( ( ord_less_int @ X2 @ zero_zero_int )
     => ? [N3: nat] :
          ( X2
          = ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N3 ) ) ) ) ) ).

% negD
thf(fact_8865_int__ops_I6_J,axiom,
    ! [A: nat,B: nat] :
      ( ( ( ord_less_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) )
       => ( ( semiri1314217659103216013at_int @ ( minus_minus_nat @ A @ B ) )
          = zero_zero_int ) )
      & ( ~ ( ord_less_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) )
       => ( ( semiri1314217659103216013at_int @ ( minus_minus_nat @ A @ B ) )
          = ( minus_minus_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ) ) ).

% int_ops(6)
thf(fact_8866_real__of__nat__div__aux,axiom,
    ! [X2: nat,D: nat] :
      ( ( divide_divide_real @ ( semiri5074537144036343181t_real @ X2 ) @ ( semiri5074537144036343181t_real @ D ) )
      = ( plus_plus_real @ ( semiri5074537144036343181t_real @ ( divide_divide_nat @ X2 @ D ) ) @ ( divide_divide_real @ ( semiri5074537144036343181t_real @ ( modulo_modulo_nat @ X2 @ D ) ) @ ( semiri5074537144036343181t_real @ D ) ) ) ) ).

% real_of_nat_div_aux
thf(fact_8867_real__archimedian__rdiv__eq__0,axiom,
    ! [X2: real,C: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ( ord_less_eq_real @ zero_zero_real @ C )
       => ( ! [M4: nat] :
              ( ( ord_less_nat @ zero_zero_nat @ M4 )
             => ( ord_less_eq_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ M4 ) @ X2 ) @ C ) )
         => ( X2 = zero_zero_real ) ) ) ) ).

% real_archimedian_rdiv_eq_0
thf(fact_8868_neg__int__cases,axiom,
    ! [K: int] :
      ( ( ord_less_int @ K @ zero_zero_int )
     => ~ ! [N3: nat] :
            ( ( K
              = ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N3 ) ) )
           => ~ ( ord_less_nat @ zero_zero_nat @ N3 ) ) ) ).

% neg_int_cases
thf(fact_8869_zdiff__int__split,axiom,
    ! [P: int > $o,X2: nat,Y2: nat] :
      ( ( P @ ( semiri1314217659103216013at_int @ ( minus_minus_nat @ X2 @ Y2 ) ) )
      = ( ( ( ord_less_eq_nat @ Y2 @ X2 )
         => ( P @ ( minus_minus_int @ ( semiri1314217659103216013at_int @ X2 ) @ ( semiri1314217659103216013at_int @ Y2 ) ) ) )
        & ( ( ord_less_nat @ X2 @ Y2 )
         => ( P @ zero_zero_int ) ) ) ) ).

% zdiff_int_split
thf(fact_8870_real__of__nat__div2,axiom,
    ! [N: nat,X2: nat] : ( ord_less_eq_real @ zero_zero_real @ ( minus_minus_real @ ( divide_divide_real @ ( semiri5074537144036343181t_real @ N ) @ ( semiri5074537144036343181t_real @ X2 ) ) @ ( semiri5074537144036343181t_real @ ( divide_divide_nat @ N @ X2 ) ) ) ) ).

% real_of_nat_div2
thf(fact_8871_real__of__nat__div3,axiom,
    ! [N: nat,X2: nat] : ( ord_less_eq_real @ ( minus_minus_real @ ( divide_divide_real @ ( semiri5074537144036343181t_real @ N ) @ ( semiri5074537144036343181t_real @ X2 ) ) @ ( semiri5074537144036343181t_real @ ( divide_divide_nat @ N @ X2 ) ) ) @ one_one_real ) ).

% real_of_nat_div3
thf(fact_8872_ln__realpow,axiom,
    ! [X2: real,N: nat] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( ( ln_ln_real @ ( power_power_real @ X2 @ N ) )
        = ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( ln_ln_real @ X2 ) ) ) ) ).

% ln_realpow
thf(fact_8873_linear__plus__1__le__power,axiom,
    ! [X2: real,N: nat] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ord_less_eq_real @ ( plus_plus_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ X2 ) @ one_one_real ) @ ( power_power_real @ ( plus_plus_real @ X2 @ one_one_real ) @ N ) ) ) ).

% linear_plus_1_le_power
thf(fact_8874_Bernoulli__inequality,axiom,
    ! [X2: real,N: nat] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X2 )
     => ( ord_less_eq_real @ ( plus_plus_real @ one_one_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ X2 ) ) @ ( power_power_real @ ( plus_plus_real @ one_one_real @ X2 ) @ N ) ) ) ).

% Bernoulli_inequality
thf(fact_8875_Bernoulli__inequality__even,axiom,
    ! [N: nat,X2: real] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ord_less_eq_real @ ( plus_plus_real @ one_one_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ X2 ) ) @ ( power_power_real @ ( plus_plus_real @ one_one_real @ X2 ) @ N ) ) ) ).

% Bernoulli_inequality_even
thf(fact_8876_exp__ge__one__plus__x__over__n__power__n,axiom,
    ! [N: nat,X2: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( semiri5074537144036343181t_real @ N ) ) @ X2 )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ord_less_eq_real @ ( power_power_real @ ( plus_plus_real @ one_one_real @ ( divide_divide_real @ X2 @ ( semiri5074537144036343181t_real @ N ) ) ) @ N ) @ ( exp_real @ X2 ) ) ) ) ).

% exp_ge_one_plus_x_over_n_power_n
thf(fact_8877_exp__ge__one__minus__x__over__n__power__n,axiom,
    ! [X2: real,N: nat] :
      ( ( ord_less_eq_real @ X2 @ ( semiri5074537144036343181t_real @ N ) )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ord_less_eq_real @ ( power_power_real @ ( minus_minus_real @ one_one_real @ ( divide_divide_real @ X2 @ ( semiri5074537144036343181t_real @ N ) ) ) @ N ) @ ( exp_real @ ( uminus_uminus_real @ X2 ) ) ) ) ) ).

% exp_ge_one_minus_x_over_n_power_n
thf(fact_8878_cot__gt__zero,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( ( ord_less_real @ X2 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ord_less_real @ zero_zero_real @ ( cot_real @ X2 ) ) ) ) ).

% cot_gt_zero
thf(fact_8879_height__double__log__univ__size,axiom,
    ! [U: real,Deg: nat,T: vEBT_VEBT] :
      ( ( U
        = ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ Deg ) )
     => ( ( vEBT_invar_vebt @ T @ Deg )
       => ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ ( vEBT_VEBT_height @ T ) ) @ ( plus_plus_real @ one_one_real @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ U ) ) ) ) ) ) ).

% height_double_log_univ_size
thf(fact_8880_monoseq__arctan__series,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ X2 ) @ one_one_real )
     => ( topolo6980174941875973593q_real
        @ ^ [N2: nat] : ( times_times_real @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ ( plus_plus_nat @ ( times_times_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) @ ( power_power_real @ X2 @ ( plus_plus_nat @ ( times_times_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) ) ) ).

% monoseq_arctan_series
thf(fact_8881_ln__series,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( ( ord_less_real @ X2 @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
       => ( ( ln_ln_real @ X2 )
          = ( suminf_real
            @ ^ [N2: nat] : ( times_times_real @ ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N2 ) @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ ( plus_plus_nat @ N2 @ one_one_nat ) ) ) ) @ ( power_power_real @ ( minus_minus_real @ X2 @ one_one_real ) @ ( suc @ N2 ) ) ) ) ) ) ) ).

% ln_series
thf(fact_8882_log__one,axiom,
    ! [A: real] :
      ( ( log @ A @ one_one_real )
      = zero_zero_real ) ).

% log_one
thf(fact_8883_zero__less__log__cancel__iff,axiom,
    ! [A: real,X2: real] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ X2 )
       => ( ( ord_less_real @ zero_zero_real @ ( log @ A @ X2 ) )
          = ( ord_less_real @ one_one_real @ X2 ) ) ) ) ).

% zero_less_log_cancel_iff
thf(fact_8884_log__less__zero__cancel__iff,axiom,
    ! [A: real,X2: real] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ X2 )
       => ( ( ord_less_real @ ( log @ A @ X2 ) @ zero_zero_real )
          = ( ord_less_real @ X2 @ one_one_real ) ) ) ) ).

% log_less_zero_cancel_iff
thf(fact_8885_one__less__log__cancel__iff,axiom,
    ! [A: real,X2: real] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ X2 )
       => ( ( ord_less_real @ one_one_real @ ( log @ A @ X2 ) )
          = ( ord_less_real @ A @ X2 ) ) ) ) ).

% one_less_log_cancel_iff
thf(fact_8886_log__less__one__cancel__iff,axiom,
    ! [A: real,X2: real] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ X2 )
       => ( ( ord_less_real @ ( log @ A @ X2 ) @ one_one_real )
          = ( ord_less_real @ X2 @ A ) ) ) ) ).

% log_less_one_cancel_iff
thf(fact_8887_log__less__cancel__iff,axiom,
    ! [A: real,X2: real,Y2: real] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ X2 )
       => ( ( ord_less_real @ zero_zero_real @ Y2 )
         => ( ( ord_less_real @ ( log @ A @ X2 ) @ ( log @ A @ Y2 ) )
            = ( ord_less_real @ X2 @ Y2 ) ) ) ) ) ).

% log_less_cancel_iff
thf(fact_8888_log__eq__one,axiom,
    ! [A: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( A != one_one_real )
       => ( ( log @ A @ A )
          = one_one_real ) ) ) ).

% log_eq_one
thf(fact_8889_log__le__cancel__iff,axiom,
    ! [A: real,X2: real,Y2: real] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ X2 )
       => ( ( ord_less_real @ zero_zero_real @ Y2 )
         => ( ( ord_less_eq_real @ ( log @ A @ X2 ) @ ( log @ A @ Y2 ) )
            = ( ord_less_eq_real @ X2 @ Y2 ) ) ) ) ) ).

% log_le_cancel_iff
thf(fact_8890_log__le__one__cancel__iff,axiom,
    ! [A: real,X2: real] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ X2 )
       => ( ( ord_less_eq_real @ ( log @ A @ X2 ) @ one_one_real )
          = ( ord_less_eq_real @ X2 @ A ) ) ) ) ).

% log_le_one_cancel_iff
thf(fact_8891_one__le__log__cancel__iff,axiom,
    ! [A: real,X2: real] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ X2 )
       => ( ( ord_less_eq_real @ one_one_real @ ( log @ A @ X2 ) )
          = ( ord_less_eq_real @ A @ X2 ) ) ) ) ).

% one_le_log_cancel_iff
thf(fact_8892_log__le__zero__cancel__iff,axiom,
    ! [A: real,X2: real] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ X2 )
       => ( ( ord_less_eq_real @ ( log @ A @ X2 ) @ zero_zero_real )
          = ( ord_less_eq_real @ X2 @ one_one_real ) ) ) ) ).

% log_le_zero_cancel_iff
thf(fact_8893_zero__le__log__cancel__iff,axiom,
    ! [A: real,X2: real] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ X2 )
       => ( ( ord_less_eq_real @ zero_zero_real @ ( log @ A @ X2 ) )
          = ( ord_less_eq_real @ one_one_real @ X2 ) ) ) ) ).

% zero_le_log_cancel_iff
thf(fact_8894_log__pow__cancel,axiom,
    ! [A: real,B: nat] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( A != one_one_real )
       => ( ( log @ A @ ( power_power_real @ A @ B ) )
          = ( semiri5074537144036343181t_real @ B ) ) ) ) ).

% log_pow_cancel
thf(fact_8895_log__def,axiom,
    ( log
    = ( ^ [A3: real,X: real] : ( divide_divide_real @ ( ln_ln_real @ X ) @ ( ln_ln_real @ A3 ) ) ) ) ).

% log_def
thf(fact_8896_complex__mod__minus__le__complex__mod,axiom,
    ! [X2: complex] : ( ord_less_eq_real @ ( uminus_uminus_real @ ( real_V1022390504157884413omplex @ X2 ) ) @ ( real_V1022390504157884413omplex @ X2 ) ) ).

% complex_mod_minus_le_complex_mod
thf(fact_8897_complex__mod__triangle__ineq2,axiom,
    ! [B: complex,A: complex] : ( ord_less_eq_real @ ( minus_minus_real @ ( real_V1022390504157884413omplex @ ( plus_plus_complex @ B @ A ) ) @ ( real_V1022390504157884413omplex @ B ) ) @ ( real_V1022390504157884413omplex @ A ) ) ).

% complex_mod_triangle_ineq2
thf(fact_8898_log__of__power__eq,axiom,
    ! [M: nat,B: real,N: nat] :
      ( ( ( semiri5074537144036343181t_real @ M )
        = ( power_power_real @ B @ N ) )
     => ( ( ord_less_real @ one_one_real @ B )
       => ( ( semiri5074537144036343181t_real @ N )
          = ( log @ B @ ( semiri5074537144036343181t_real @ M ) ) ) ) ) ).

% log_of_power_eq
thf(fact_8899_less__log__of__power,axiom,
    ! [B: real,N: nat,M: real] :
      ( ( ord_less_real @ ( power_power_real @ B @ N ) @ M )
     => ( ( ord_less_real @ one_one_real @ B )
       => ( ord_less_real @ ( semiri5074537144036343181t_real @ N ) @ ( log @ B @ M ) ) ) ) ).

% less_log_of_power
thf(fact_8900_log__ln,axiom,
    ( ln_ln_real
    = ( log @ ( exp_real @ one_one_real ) ) ) ).

% log_ln
thf(fact_8901_log__base__change,axiom,
    ! [A: real,B: real,X2: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( A != one_one_real )
       => ( ( log @ B @ X2 )
          = ( divide_divide_real @ ( log @ A @ X2 ) @ ( log @ A @ B ) ) ) ) ) ).

% log_base_change
thf(fact_8902_le__log__of__power,axiom,
    ! [B: real,N: nat,M: real] :
      ( ( ord_less_eq_real @ ( power_power_real @ B @ N ) @ M )
     => ( ( ord_less_real @ one_one_real @ B )
       => ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ N ) @ ( log @ B @ M ) ) ) ) ).

% le_log_of_power
thf(fact_8903_log__base__pow,axiom,
    ! [A: real,N: nat,X2: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( log @ ( power_power_real @ A @ N ) @ X2 )
        = ( divide_divide_real @ ( log @ A @ X2 ) @ ( semiri5074537144036343181t_real @ N ) ) ) ) ).

% log_base_pow
thf(fact_8904_log__nat__power,axiom,
    ! [X2: real,B: real,N: nat] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( ( log @ B @ ( power_power_real @ X2 @ N ) )
        = ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( log @ B @ X2 ) ) ) ) ).

% log_nat_power
thf(fact_8905_log2__of__power__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( M
        = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
     => ( ( semiri5074537144036343181t_real @ N )
        = ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ M ) ) ) ) ).

% log2_of_power_eq
thf(fact_8906_log__of__power__less,axiom,
    ! [M: nat,B: real,N: nat] :
      ( ( ord_less_real @ ( semiri5074537144036343181t_real @ M ) @ ( power_power_real @ B @ N ) )
     => ( ( ord_less_real @ one_one_real @ B )
       => ( ( ord_less_nat @ zero_zero_nat @ M )
         => ( ord_less_real @ ( log @ B @ ( semiri5074537144036343181t_real @ M ) ) @ ( semiri5074537144036343181t_real @ N ) ) ) ) ) ).

% log_of_power_less
thf(fact_8907_log__mult,axiom,
    ! [A: real,X2: real,Y2: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( A != one_one_real )
       => ( ( ord_less_real @ zero_zero_real @ X2 )
         => ( ( ord_less_real @ zero_zero_real @ Y2 )
           => ( ( log @ A @ ( times_times_real @ X2 @ Y2 ) )
              = ( plus_plus_real @ ( log @ A @ X2 ) @ ( log @ A @ Y2 ) ) ) ) ) ) ) ).

% log_mult
thf(fact_8908_log__divide,axiom,
    ! [A: real,X2: real,Y2: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( A != one_one_real )
       => ( ( ord_less_real @ zero_zero_real @ X2 )
         => ( ( ord_less_real @ zero_zero_real @ Y2 )
           => ( ( log @ A @ ( divide_divide_real @ X2 @ Y2 ) )
              = ( minus_minus_real @ ( log @ A @ X2 ) @ ( log @ A @ Y2 ) ) ) ) ) ) ) ).

% log_divide
thf(fact_8909_log__of__power__le,axiom,
    ! [M: nat,B: real,N: nat] :
      ( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ M ) @ ( power_power_real @ B @ N ) )
     => ( ( ord_less_real @ one_one_real @ B )
       => ( ( ord_less_nat @ zero_zero_nat @ M )
         => ( ord_less_eq_real @ ( log @ B @ ( semiri5074537144036343181t_real @ M ) ) @ ( semiri5074537144036343181t_real @ N ) ) ) ) ) ).

% log_of_power_le
thf(fact_8910_log__eq__div__ln__mult__log,axiom,
    ! [A: real,B: real,X2: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( A != one_one_real )
       => ( ( ord_less_real @ zero_zero_real @ B )
         => ( ( B != one_one_real )
           => ( ( ord_less_real @ zero_zero_real @ X2 )
             => ( ( log @ A @ X2 )
                = ( times_times_real @ ( divide_divide_real @ ( ln_ln_real @ B ) @ ( ln_ln_real @ A ) ) @ ( log @ B @ X2 ) ) ) ) ) ) ) ) ).

% log_eq_div_ln_mult_log
thf(fact_8911_monoseq__realpow,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ( ord_less_eq_real @ X2 @ one_one_real )
       => ( topolo6980174941875973593q_real @ ( power_power_real @ X2 ) ) ) ) ).

% monoseq_realpow
thf(fact_8912_less__log2__of__power,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ M )
     => ( ord_less_real @ ( semiri5074537144036343181t_real @ N ) @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ M ) ) ) ) ).

% less_log2_of_power
thf(fact_8913_le__log2__of__power,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ M )
     => ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ N ) @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ M ) ) ) ) ).

% le_log2_of_power
thf(fact_8914_log2__of__power__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
     => ( ( ord_less_nat @ zero_zero_nat @ M )
       => ( ord_less_real @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ M ) ) @ ( semiri5074537144036343181t_real @ N ) ) ) ) ).

% log2_of_power_less
thf(fact_8915_log2__of__power__le,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
     => ( ( ord_less_nat @ zero_zero_nat @ M )
       => ( ord_less_eq_real @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ M ) ) @ ( semiri5074537144036343181t_real @ N ) ) ) ) ).

% log2_of_power_le
thf(fact_8916_log__base__10__eq2,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( ( log @ ( numeral_numeral_real @ ( bit0 @ ( bit1 @ ( bit0 @ one ) ) ) ) @ X2 )
        = ( times_times_real @ ( log @ ( numeral_numeral_real @ ( bit0 @ ( bit1 @ ( bit0 @ one ) ) ) ) @ ( exp_real @ one_one_real ) ) @ ( ln_ln_real @ X2 ) ) ) ) ).

% log_base_10_eq2
thf(fact_8917_log__base__10__eq1,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( ( log @ ( numeral_numeral_real @ ( bit0 @ ( bit1 @ ( bit0 @ one ) ) ) ) @ X2 )
        = ( times_times_real @ ( divide_divide_real @ ( ln_ln_real @ ( exp_real @ one_one_real ) ) @ ( ln_ln_real @ ( numeral_numeral_real @ ( bit0 @ ( bit1 @ ( bit0 @ one ) ) ) ) ) ) @ ( ln_ln_real @ X2 ) ) ) ) ).

% log_base_10_eq1
thf(fact_8918_pi__series,axiom,
    ( ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) )
    = ( suminf_real
      @ ^ [K2: nat] : ( divide_divide_real @ ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ K2 ) @ one_one_real ) @ ( semiri5074537144036343181t_real @ ( plus_plus_nat @ ( times_times_nat @ K2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) ) ) ).

% pi_series
thf(fact_8919_arctan__series,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ X2 ) @ one_one_real )
     => ( ( arctan @ X2 )
        = ( suminf_real
          @ ^ [K2: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ K2 ) @ ( times_times_real @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ ( plus_plus_nat @ ( times_times_nat @ K2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) @ ( power_power_real @ X2 @ ( plus_plus_nat @ ( times_times_nat @ K2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) ) ) ) ) ).

% arctan_series
thf(fact_8920_setceilmax,axiom,
    ! [S: vEBT_VEBT,M: nat,Listy: list_VEBT_VEBT,N: nat] :
      ( ( vEBT_invar_vebt @ S @ M )
     => ( ! [X4: vEBT_VEBT] :
            ( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ Listy ) )
           => ( vEBT_invar_vebt @ X4 @ N ) )
       => ( ( M
            = ( suc @ N ) )
         => ( ! [X4: vEBT_VEBT] :
                ( ( member_VEBT_VEBT @ X4 @ ( set_VEBT_VEBT2 @ Listy ) )
               => ( ( semiri1314217659103216013at_int @ ( vEBT_VEBT_height @ X4 ) )
                  = ( archim7802044766580827645g_real @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ N ) ) ) ) )
           => ( ( ( semiri1314217659103216013at_int @ ( vEBT_VEBT_height @ S ) )
                = ( archim7802044766580827645g_real @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ M ) ) ) )
             => ( ( semiri1314217659103216013at_int @ ( lattic8265883725875713057ax_nat @ ( image_VEBT_VEBT_nat @ vEBT_VEBT_height @ ( insert_VEBT_VEBT @ S @ ( set_VEBT_VEBT2 @ Listy ) ) ) ) )
                = ( archim7802044766580827645g_real @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ M ) ) ) ) ) ) ) ) ) ).

% setceilmax
thf(fact_8921_heigt__uplog__rel,axiom,
    ! [T: vEBT_VEBT,N: nat] :
      ( ( vEBT_invar_vebt @ T @ N )
     => ( ( semiri1314217659103216013at_int @ ( vEBT_VEBT_height @ T ) )
        = ( archim7802044766580827645g_real @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ N ) ) ) ) ) ).

% heigt_uplog_rel
thf(fact_8922_log__ceil__idem,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ one_one_real @ X2 )
     => ( ( archim7802044766580827645g_real @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X2 ) )
        = ( archim7802044766580827645g_real @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( ring_1_of_int_real @ ( archim7802044766580827645g_real @ X2 ) ) ) ) ) ) ).

% log_ceil_idem
thf(fact_8923_ceiling__divide__eq__div__numeral,axiom,
    ! [A: num,B: num] :
      ( ( archim7802044766580827645g_real @ ( divide_divide_real @ ( numeral_numeral_real @ A ) @ ( numeral_numeral_real @ B ) ) )
      = ( uminus_uminus_int @ ( divide_divide_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ A ) ) @ ( numeral_numeral_int @ B ) ) ) ) ).

% ceiling_divide_eq_div_numeral
thf(fact_8924_ceiling__minus__divide__eq__div__numeral,axiom,
    ! [A: num,B: num] :
      ( ( archim7802044766580827645g_real @ ( uminus_uminus_real @ ( divide_divide_real @ ( numeral_numeral_real @ A ) @ ( numeral_numeral_real @ B ) ) ) )
      = ( uminus_uminus_int @ ( divide_divide_int @ ( numeral_numeral_int @ A ) @ ( numeral_numeral_int @ B ) ) ) ) ).

% ceiling_minus_divide_eq_div_numeral
thf(fact_8925_ceiling__log2__div2,axiom,
    ! [N: nat] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( archim7802044766580827645g_real @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ N ) ) )
        = ( plus_plus_int @ ( archim7802044766580827645g_real @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ ( plus_plus_nat @ ( divide_divide_nat @ ( minus_minus_nat @ N @ one_one_nat ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) ) @ one_one_int ) ) ) ).

% ceiling_log2_div2
thf(fact_8926_ceiling__log__nat__eq__if,axiom,
    ! [B: nat,N: nat,K: nat] :
      ( ( ord_less_nat @ ( power_power_nat @ B @ N ) @ K )
     => ( ( ord_less_eq_nat @ K @ ( power_power_nat @ B @ ( plus_plus_nat @ N @ one_one_nat ) ) )
       => ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B )
         => ( ( archim7802044766580827645g_real @ ( log @ ( semiri5074537144036343181t_real @ B ) @ ( semiri5074537144036343181t_real @ K ) ) )
            = ( plus_plus_int @ ( semiri1314217659103216013at_int @ N ) @ one_one_int ) ) ) ) ) ).

% ceiling_log_nat_eq_if
thf(fact_8927_ceiling__log__nat__eq__powr__iff,axiom,
    ! [B: nat,K: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B )
     => ( ( ord_less_nat @ zero_zero_nat @ K )
       => ( ( ( archim7802044766580827645g_real @ ( log @ ( semiri5074537144036343181t_real @ B ) @ ( semiri5074537144036343181t_real @ K ) ) )
            = ( plus_plus_int @ ( semiri1314217659103216013at_int @ N ) @ one_one_int ) )
          = ( ( ord_less_nat @ ( power_power_nat @ B @ N ) @ K )
            & ( ord_less_eq_nat @ K @ ( power_power_nat @ B @ ( plus_plus_nat @ N @ one_one_nat ) ) ) ) ) ) ) ).

% ceiling_log_nat_eq_powr_iff
thf(fact_8928_sin__cos__npi,axiom,
    ! [N: nat] :
      ( ( sin_real @ ( divide_divide_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
      = ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N ) ) ).

% sin_cos_npi
thf(fact_8929_summable__arctan__series,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ X2 ) @ one_one_real )
     => ( summable_real
        @ ^ [K2: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ K2 ) @ ( times_times_real @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ ( plus_plus_nat @ ( times_times_nat @ K2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) @ ( power_power_real @ X2 @ ( plus_plus_nat @ ( times_times_nat @ K2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) ) ) ) ).

% summable_arctan_series
thf(fact_8930_cos__pi__eq__zero,axiom,
    ! [M: nat] :
      ( ( cos_real @ ( divide_divide_real @ ( times_times_real @ pi @ ( semiri5074537144036343181t_real @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
      = zero_zero_real ) ).

% cos_pi_eq_zero
thf(fact_8931_ceiling__log__eq__powr__iff,axiom,
    ! [X2: real,B: real,K: nat] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( ( ord_less_real @ one_one_real @ B )
       => ( ( ( archim7802044766580827645g_real @ ( log @ B @ X2 ) )
            = ( plus_plus_int @ ( semiri1314217659103216013at_int @ K ) @ one_one_int ) )
          = ( ( ord_less_real @ ( powr_real @ B @ ( semiri5074537144036343181t_real @ K ) ) @ X2 )
            & ( ord_less_eq_real @ X2 @ ( powr_real @ B @ ( semiri5074537144036343181t_real @ ( plus_plus_nat @ K @ one_one_nat ) ) ) ) ) ) ) ) ).

% ceiling_log_eq_powr_iff
thf(fact_8932_powr__gt__zero,axiom,
    ! [X2: real,A: real] :
      ( ( ord_less_real @ zero_zero_real @ ( powr_real @ X2 @ A ) )
      = ( X2 != zero_zero_real ) ) ).

% powr_gt_zero
thf(fact_8933_powr__nonneg__iff,axiom,
    ! [A: real,X2: real] :
      ( ( ord_less_eq_real @ ( powr_real @ A @ X2 ) @ zero_zero_real )
      = ( A = zero_zero_real ) ) ).

% powr_nonneg_iff
thf(fact_8934_powr__less__cancel__iff,axiom,
    ! [X2: real,A: real,B: real] :
      ( ( ord_less_real @ one_one_real @ X2 )
     => ( ( ord_less_real @ ( powr_real @ X2 @ A ) @ ( powr_real @ X2 @ B ) )
        = ( ord_less_real @ A @ B ) ) ) ).

% powr_less_cancel_iff
thf(fact_8935_powr__eq__one__iff,axiom,
    ! [A: real,X2: real] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ( powr_real @ A @ X2 )
          = one_one_real )
        = ( X2 = zero_zero_real ) ) ) ).

% powr_eq_one_iff
thf(fact_8936_powr__one,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ( powr_real @ X2 @ one_one_real )
        = X2 ) ) ).

% powr_one
thf(fact_8937_powr__one__gt__zero__iff,axiom,
    ! [X2: real] :
      ( ( ( powr_real @ X2 @ one_one_real )
        = X2 )
      = ( ord_less_eq_real @ zero_zero_real @ X2 ) ) ).

% powr_one_gt_zero_iff
thf(fact_8938_powr__le__cancel__iff,axiom,
    ! [X2: real,A: real,B: real] :
      ( ( ord_less_real @ one_one_real @ X2 )
     => ( ( ord_less_eq_real @ ( powr_real @ X2 @ A ) @ ( powr_real @ X2 @ B ) )
        = ( ord_less_eq_real @ A @ B ) ) ) ).

% powr_le_cancel_iff
thf(fact_8939_numeral__powr__numeral__real,axiom,
    ! [M: num,N: num] :
      ( ( powr_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N ) )
      = ( power_power_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_nat @ N ) ) ) ).

% numeral_powr_numeral_real
thf(fact_8940_cos__pi,axiom,
    ( ( cos_real @ pi )
    = ( uminus_uminus_real @ one_one_real ) ) ).

% cos_pi
thf(fact_8941_cos__periodic__pi,axiom,
    ! [X2: real] :
      ( ( cos_real @ ( plus_plus_real @ X2 @ pi ) )
      = ( uminus_uminus_real @ ( cos_real @ X2 ) ) ) ).

% cos_periodic_pi
thf(fact_8942_cos__periodic__pi2,axiom,
    ! [X2: real] :
      ( ( cos_real @ ( plus_plus_real @ pi @ X2 ) )
      = ( uminus_uminus_real @ ( cos_real @ X2 ) ) ) ).

% cos_periodic_pi2
thf(fact_8943_sin__periodic__pi,axiom,
    ! [X2: real] :
      ( ( sin_real @ ( plus_plus_real @ X2 @ pi ) )
      = ( uminus_uminus_real @ ( sin_real @ X2 ) ) ) ).

% sin_periodic_pi
thf(fact_8944_sin__periodic__pi2,axiom,
    ! [X2: real] :
      ( ( sin_real @ ( plus_plus_real @ pi @ X2 ) )
      = ( uminus_uminus_real @ ( sin_real @ X2 ) ) ) ).

% sin_periodic_pi2
thf(fact_8945_log__powr__cancel,axiom,
    ! [A: real,Y2: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( A != one_one_real )
       => ( ( log @ A @ ( powr_real @ A @ Y2 ) )
          = Y2 ) ) ) ).

% log_powr_cancel
thf(fact_8946_powr__log__cancel,axiom,
    ! [A: real,X2: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( A != one_one_real )
       => ( ( ord_less_real @ zero_zero_real @ X2 )
         => ( ( powr_real @ A @ ( log @ A @ X2 ) )
            = X2 ) ) ) ) ).

% powr_log_cancel
thf(fact_8947_sin__npi2,axiom,
    ! [N: nat] :
      ( ( sin_real @ ( times_times_real @ pi @ ( semiri5074537144036343181t_real @ N ) ) )
      = zero_zero_real ) ).

% sin_npi2
thf(fact_8948_sin__npi,axiom,
    ! [N: nat] :
      ( ( sin_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ pi ) )
      = zero_zero_real ) ).

% sin_npi
thf(fact_8949_sin__npi__int,axiom,
    ! [N: int] :
      ( ( sin_real @ ( times_times_real @ pi @ ( ring_1_of_int_real @ N ) ) )
      = zero_zero_real ) ).

% sin_npi_int
thf(fact_8950_powr__numeral,axiom,
    ! [X2: real,N: num] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ( powr_real @ X2 @ ( numeral_numeral_real @ N ) )
        = ( power_power_real @ X2 @ ( numeral_numeral_nat @ N ) ) ) ) ).

% powr_numeral
thf(fact_8951_cos__pi__half,axiom,
    ( ( cos_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
    = zero_zero_real ) ).

% cos_pi_half
thf(fact_8952_sin__two__pi,axiom,
    ( ( sin_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) )
    = zero_zero_real ) ).

% sin_two_pi
thf(fact_8953_sin__pi__half,axiom,
    ( ( sin_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
    = one_one_real ) ).

% sin_pi_half
thf(fact_8954_cos__two__pi,axiom,
    ( ( cos_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) )
    = one_one_real ) ).

% cos_two_pi
thf(fact_8955_cos__periodic,axiom,
    ! [X2: real] :
      ( ( cos_real @ ( plus_plus_real @ X2 @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) ) )
      = ( cos_real @ X2 ) ) ).

% cos_periodic
thf(fact_8956_sin__periodic,axiom,
    ! [X2: real] :
      ( ( sin_real @ ( plus_plus_real @ X2 @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) ) )
      = ( sin_real @ X2 ) ) ).

% sin_periodic
thf(fact_8957_cos__2pi__minus,axiom,
    ! [X2: real] :
      ( ( cos_real @ ( minus_minus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) @ X2 ) )
      = ( cos_real @ X2 ) ) ).

% cos_2pi_minus
thf(fact_8958_cos__npi,axiom,
    ! [N: nat] :
      ( ( cos_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ pi ) )
      = ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N ) ) ).

% cos_npi
thf(fact_8959_cos__npi2,axiom,
    ! [N: nat] :
      ( ( cos_real @ ( times_times_real @ pi @ ( semiri5074537144036343181t_real @ N ) ) )
      = ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N ) ) ).

% cos_npi2
thf(fact_8960_sin__2npi,axiom,
    ! [N: nat] :
      ( ( sin_real @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ N ) ) @ pi ) )
      = zero_zero_real ) ).

% sin_2npi
thf(fact_8961_cos__2npi,axiom,
    ! [N: nat] :
      ( ( cos_real @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ N ) ) @ pi ) )
      = one_one_real ) ).

% cos_2npi
thf(fact_8962_sin__2pi__minus,axiom,
    ! [X2: real] :
      ( ( sin_real @ ( minus_minus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) @ X2 ) )
      = ( uminus_uminus_real @ ( sin_real @ X2 ) ) ) ).

% sin_2pi_minus
thf(fact_8963_sin__int__2pin,axiom,
    ! [N: int] :
      ( ( sin_real @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) @ ( ring_1_of_int_real @ N ) ) )
      = zero_zero_real ) ).

% sin_int_2pin
thf(fact_8964_cos__int__2pin,axiom,
    ! [N: int] :
      ( ( cos_real @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) @ ( ring_1_of_int_real @ N ) ) )
      = one_one_real ) ).

% cos_int_2pin
thf(fact_8965_cos__3over2__pi,axiom,
    ( ( cos_real @ ( times_times_real @ ( divide_divide_real @ ( numeral_numeral_real @ ( bit1 @ one ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ pi ) )
    = zero_zero_real ) ).

% cos_3over2_pi
thf(fact_8966_square__powr__half,axiom,
    ! [X2: real] :
      ( ( powr_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
      = ( abs_abs_real @ X2 ) ) ).

% square_powr_half
thf(fact_8967_sin__3over2__pi,axiom,
    ( ( sin_real @ ( times_times_real @ ( divide_divide_real @ ( numeral_numeral_real @ ( bit1 @ one ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ pi ) )
    = ( uminus_uminus_real @ one_one_real ) ) ).

% sin_3over2_pi
thf(fact_8968_cos__npi__int,axiom,
    ! [N: int] :
      ( ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N )
       => ( ( cos_real @ ( times_times_real @ pi @ ( ring_1_of_int_real @ N ) ) )
          = one_one_real ) )
      & ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N )
       => ( ( cos_real @ ( times_times_real @ pi @ ( ring_1_of_int_real @ N ) ) )
          = ( uminus_uminus_real @ one_one_real ) ) ) ) ).

% cos_npi_int
thf(fact_8969_polar__Ex,axiom,
    ! [X2: real,Y2: real] :
    ? [R3: real,A6: real] :
      ( ( X2
        = ( times_times_real @ R3 @ ( cos_real @ A6 ) ) )
      & ( Y2
        = ( times_times_real @ R3 @ ( sin_real @ A6 ) ) ) ) ).

% polar_Ex
thf(fact_8970_powr__powr,axiom,
    ! [X2: real,A: real,B: real] :
      ( ( powr_real @ ( powr_real @ X2 @ A ) @ B )
      = ( powr_real @ X2 @ ( times_times_real @ A @ B ) ) ) ).

% powr_powr
thf(fact_8971_sin__zero__abs__cos__one,axiom,
    ! [X2: real] :
      ( ( ( sin_real @ X2 )
        = zero_zero_real )
     => ( ( abs_abs_real @ ( cos_real @ X2 ) )
        = one_one_real ) ) ).

% sin_zero_abs_cos_one
thf(fact_8972_summable__rabs__cancel,axiom,
    ! [F: nat > real] :
      ( ( summable_real
        @ ^ [N2: nat] : ( abs_abs_real @ ( F @ N2 ) ) )
     => ( summable_real @ F ) ) ).

% summable_rabs_cancel
thf(fact_8973_sincos__principal__value,axiom,
    ! [X2: real] :
    ? [Y3: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ pi ) @ Y3 )
      & ( ord_less_eq_real @ Y3 @ pi )
      & ( ( sin_real @ Y3 )
        = ( sin_real @ X2 ) )
      & ( ( cos_real @ Y3 )
        = ( cos_real @ X2 ) ) ) ).

% sincos_principal_value
thf(fact_8974_powr__less__mono2__neg,axiom,
    ! [A: real,X2: real,Y2: real] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ( ord_less_real @ zero_zero_real @ X2 )
       => ( ( ord_less_real @ X2 @ Y2 )
         => ( ord_less_real @ ( powr_real @ Y2 @ A ) @ ( powr_real @ X2 @ A ) ) ) ) ) ).

% powr_less_mono2_neg
thf(fact_8975_powr__non__neg,axiom,
    ! [A: real,X2: real] :
      ~ ( ord_less_real @ ( powr_real @ A @ X2 ) @ zero_zero_real ) ).

% powr_non_neg
thf(fact_8976_powr__ge__pzero,axiom,
    ! [X2: real,Y2: real] : ( ord_less_eq_real @ zero_zero_real @ ( powr_real @ X2 @ Y2 ) ) ).

% powr_ge_pzero
thf(fact_8977_powr__mono2,axiom,
    ! [A: real,X2: real,Y2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ zero_zero_real @ X2 )
       => ( ( ord_less_eq_real @ X2 @ Y2 )
         => ( ord_less_eq_real @ ( powr_real @ X2 @ A ) @ ( powr_real @ Y2 @ A ) ) ) ) ) ).

% powr_mono2
thf(fact_8978_powr__less__cancel,axiom,
    ! [X2: real,A: real,B: real] :
      ( ( ord_less_real @ ( powr_real @ X2 @ A ) @ ( powr_real @ X2 @ B ) )
     => ( ( ord_less_real @ one_one_real @ X2 )
       => ( ord_less_real @ A @ B ) ) ) ).

% powr_less_cancel
thf(fact_8979_powr__less__mono,axiom,
    ! [A: real,B: real,X2: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ one_one_real @ X2 )
       => ( ord_less_real @ ( powr_real @ X2 @ A ) @ ( powr_real @ X2 @ B ) ) ) ) ).

% powr_less_mono
thf(fact_8980_powr__mono,axiom,
    ! [A: real,B: real,X2: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ one_one_real @ X2 )
       => ( ord_less_eq_real @ ( powr_real @ X2 @ A ) @ ( powr_real @ X2 @ B ) ) ) ) ).

% powr_mono
thf(fact_8981_sin__x__le__x,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ord_less_eq_real @ ( sin_real @ X2 ) @ X2 ) ) ).

% sin_x_le_x
thf(fact_8982_sin__le__one,axiom,
    ! [X2: real] : ( ord_less_eq_real @ ( sin_real @ X2 ) @ one_one_real ) ).

% sin_le_one
thf(fact_8983_cos__le__one,axiom,
    ! [X2: real] : ( ord_less_eq_real @ ( cos_real @ X2 ) @ one_one_real ) ).

% cos_le_one
thf(fact_8984_abs__sin__x__le__abs__x,axiom,
    ! [X2: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( sin_real @ X2 ) ) @ ( abs_abs_real @ X2 ) ) ).

% abs_sin_x_le_abs_x
thf(fact_8985_lessThan__Suc,axiom,
    ! [K: nat] :
      ( ( set_ord_lessThan_nat @ ( suc @ K ) )
      = ( insert_nat @ K @ ( set_ord_lessThan_nat @ K ) ) ) ).

% lessThan_Suc
thf(fact_8986_sin__cos__le1,axiom,
    ! [X2: real,Y2: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( plus_plus_real @ ( times_times_real @ ( sin_real @ X2 ) @ ( sin_real @ Y2 ) ) @ ( times_times_real @ ( cos_real @ X2 ) @ ( cos_real @ Y2 ) ) ) ) @ one_one_real ) ).

% sin_cos_le1
thf(fact_8987_finite__nat__iff__bounded,axiom,
    ( finite_finite_nat
    = ( ^ [S5: set_nat] :
        ? [K2: nat] : ( ord_less_eq_set_nat @ S5 @ ( set_ord_lessThan_nat @ K2 ) ) ) ) ).

% finite_nat_iff_bounded
thf(fact_8988_finite__nat__bounded,axiom,
    ! [S3: set_nat] :
      ( ( finite_finite_nat @ S3 )
     => ? [K3: nat] : ( ord_less_eq_set_nat @ S3 @ ( set_ord_lessThan_nat @ K3 ) ) ) ).

% finite_nat_bounded
thf(fact_8989_powr__mono2_H,axiom,
    ! [A: real,X2: real,Y2: real] :
      ( ( ord_less_eq_real @ A @ zero_zero_real )
     => ( ( ord_less_real @ zero_zero_real @ X2 )
       => ( ( ord_less_eq_real @ X2 @ Y2 )
         => ( ord_less_eq_real @ ( powr_real @ Y2 @ A ) @ ( powr_real @ X2 @ A ) ) ) ) ) ).

% powr_mono2'
thf(fact_8990_powr__less__mono2,axiom,
    ! [A: real,X2: real,Y2: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ zero_zero_real @ X2 )
       => ( ( ord_less_real @ X2 @ Y2 )
         => ( ord_less_real @ ( powr_real @ X2 @ A ) @ ( powr_real @ Y2 @ A ) ) ) ) ) ).

% powr_less_mono2
thf(fact_8991_powr__inj,axiom,
    ! [A: real,X2: real,Y2: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( A != one_one_real )
       => ( ( ( powr_real @ A @ X2 )
            = ( powr_real @ A @ Y2 ) )
          = ( X2 = Y2 ) ) ) ) ).

% powr_inj
thf(fact_8992_gr__one__powr,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_real @ one_one_real @ X2 )
     => ( ( ord_less_real @ zero_zero_real @ Y2 )
       => ( ord_less_real @ one_one_real @ ( powr_real @ X2 @ Y2 ) ) ) ) ).

% gr_one_powr
thf(fact_8993_powr__le1,axiom,
    ! [A: real,X2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ zero_zero_real @ X2 )
       => ( ( ord_less_eq_real @ X2 @ one_one_real )
         => ( ord_less_eq_real @ ( powr_real @ X2 @ A ) @ one_one_real ) ) ) ) ).

% powr_le1
thf(fact_8994_powr__mono__both,axiom,
    ! [A: real,B: real,X2: real,Y2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ A @ B )
       => ( ( ord_less_eq_real @ one_one_real @ X2 )
         => ( ( ord_less_eq_real @ X2 @ Y2 )
           => ( ord_less_eq_real @ ( powr_real @ X2 @ A ) @ ( powr_real @ Y2 @ B ) ) ) ) ) ) ).

% powr_mono_both
thf(fact_8995_ge__one__powr__ge__zero,axiom,
    ! [X2: real,A: real] :
      ( ( ord_less_eq_real @ one_one_real @ X2 )
     => ( ( ord_less_eq_real @ zero_zero_real @ A )
       => ( ord_less_eq_real @ one_one_real @ ( powr_real @ X2 @ A ) ) ) ) ).

% ge_one_powr_ge_zero
thf(fact_8996_powr__divide,axiom,
    ! [X2: real,Y2: real,A: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y2 )
       => ( ( powr_real @ ( divide_divide_real @ X2 @ Y2 ) @ A )
          = ( divide_divide_real @ ( powr_real @ X2 @ A ) @ ( powr_real @ Y2 @ A ) ) ) ) ) ).

% powr_divide
thf(fact_8997_powr__mult,axiom,
    ! [X2: real,Y2: real,A: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y2 )
       => ( ( powr_real @ ( times_times_real @ X2 @ Y2 ) @ A )
          = ( times_times_real @ ( powr_real @ X2 @ A ) @ ( powr_real @ Y2 @ A ) ) ) ) ) ).

% powr_mult
thf(fact_8998_divide__powr__uminus,axiom,
    ! [A: real,B: real,C: real] :
      ( ( divide_divide_real @ A @ ( powr_real @ B @ C ) )
      = ( times_times_real @ A @ ( powr_real @ B @ ( uminus_uminus_real @ C ) ) ) ) ).

% divide_powr_uminus
thf(fact_8999_sin__gt__zero,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( ( ord_less_real @ X2 @ pi )
       => ( ord_less_real @ zero_zero_real @ ( sin_real @ X2 ) ) ) ) ).

% sin_gt_zero
thf(fact_9000_sin__x__ge__neg__x,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ord_less_eq_real @ ( uminus_uminus_real @ X2 ) @ ( sin_real @ X2 ) ) ) ).

% sin_x_ge_neg_x
thf(fact_9001_sin__ge__zero,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ( ord_less_eq_real @ X2 @ pi )
       => ( ord_less_eq_real @ zero_zero_real @ ( sin_real @ X2 ) ) ) ) ).

% sin_ge_zero
thf(fact_9002_log__base__powr,axiom,
    ! [A: real,B: real,X2: real] :
      ( ( A != zero_zero_real )
     => ( ( log @ ( powr_real @ A @ B ) @ X2 )
        = ( divide_divide_real @ ( log @ A @ X2 ) @ B ) ) ) ).

% log_base_powr
thf(fact_9003_log__powr,axiom,
    ! [X2: real,B: real,Y2: real] :
      ( ( X2 != zero_zero_real )
     => ( ( log @ B @ ( powr_real @ X2 @ Y2 ) )
        = ( times_times_real @ Y2 @ ( log @ B @ X2 ) ) ) ) ).

% log_powr
thf(fact_9004_ln__powr,axiom,
    ! [X2: real,Y2: real] :
      ( ( X2 != zero_zero_real )
     => ( ( ln_ln_real @ ( powr_real @ X2 @ Y2 ) )
        = ( times_times_real @ Y2 @ ( ln_ln_real @ X2 ) ) ) ) ).

% ln_powr
thf(fact_9005_sin__ge__minus__one,axiom,
    ! [X2: real] : ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ ( sin_real @ X2 ) ) ).

% sin_ge_minus_one
thf(fact_9006_cos__inj__pi,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ( ord_less_eq_real @ X2 @ pi )
       => ( ( ord_less_eq_real @ zero_zero_real @ Y2 )
         => ( ( ord_less_eq_real @ Y2 @ pi )
           => ( ( ( cos_real @ X2 )
                = ( cos_real @ Y2 ) )
             => ( X2 = Y2 ) ) ) ) ) ) ).

% cos_inj_pi
thf(fact_9007_cos__mono__le__eq,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ( ord_less_eq_real @ X2 @ pi )
       => ( ( ord_less_eq_real @ zero_zero_real @ Y2 )
         => ( ( ord_less_eq_real @ Y2 @ pi )
           => ( ( ord_less_eq_real @ ( cos_real @ X2 ) @ ( cos_real @ Y2 ) )
              = ( ord_less_eq_real @ Y2 @ X2 ) ) ) ) ) ) ).

% cos_mono_le_eq
thf(fact_9008_cos__monotone__0__pi__le,axiom,
    ! [Y2: real,X2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ Y2 )
     => ( ( ord_less_eq_real @ Y2 @ X2 )
       => ( ( ord_less_eq_real @ X2 @ pi )
         => ( ord_less_eq_real @ ( cos_real @ X2 ) @ ( cos_real @ Y2 ) ) ) ) ) ).

% cos_monotone_0_pi_le
thf(fact_9009_cos__ge__minus__one,axiom,
    ! [X2: real] : ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ ( cos_real @ X2 ) ) ).

% cos_ge_minus_one
thf(fact_9010_abs__sin__le__one,axiom,
    ! [X2: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( sin_real @ X2 ) ) @ one_one_real ) ).

% abs_sin_le_one
thf(fact_9011_abs__cos__le__one,axiom,
    ! [X2: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( cos_real @ X2 ) ) @ one_one_real ) ).

% abs_cos_le_one
thf(fact_9012_summable__rabs__comparison__test,axiom,
    ! [F: nat > real,G: nat > real] :
      ( ? [N8: nat] :
        ! [N3: nat] :
          ( ( ord_less_eq_nat @ N8 @ N3 )
         => ( ord_less_eq_real @ ( abs_abs_real @ ( F @ N3 ) ) @ ( G @ N3 ) ) )
     => ( ( summable_real @ G )
       => ( summable_real
          @ ^ [N2: nat] : ( abs_abs_real @ ( F @ N2 ) ) ) ) ) ).

% summable_rabs_comparison_test
thf(fact_9013_lessThan__nat__numeral,axiom,
    ! [K: num] :
      ( ( set_ord_lessThan_nat @ ( numeral_numeral_nat @ K ) )
      = ( insert_nat @ ( pred_numeral @ K ) @ ( set_ord_lessThan_nat @ ( pred_numeral @ K ) ) ) ) ).

% lessThan_nat_numeral
thf(fact_9014_summable__rabs,axiom,
    ! [F: nat > real] :
      ( ( summable_real
        @ ^ [N2: nat] : ( abs_abs_real @ ( F @ N2 ) ) )
     => ( ord_less_eq_real @ ( abs_abs_real @ ( suminf_real @ F ) )
        @ ( suminf_real
          @ ^ [N2: nat] : ( abs_abs_real @ ( F @ N2 ) ) ) ) ) ).

% summable_rabs
thf(fact_9015_powr__realpow,axiom,
    ! [X2: real,N: nat] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( ( powr_real @ X2 @ ( semiri5074537144036343181t_real @ N ) )
        = ( power_power_real @ X2 @ N ) ) ) ).

% powr_realpow
thf(fact_9016_cos__two__neq__zero,axiom,
    ( ( cos_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
   != zero_zero_real ) ).

% cos_two_neq_zero
thf(fact_9017_less__log__iff,axiom,
    ! [B: real,X2: real,Y2: real] :
      ( ( ord_less_real @ one_one_real @ B )
     => ( ( ord_less_real @ zero_zero_real @ X2 )
       => ( ( ord_less_real @ Y2 @ ( log @ B @ X2 ) )
          = ( ord_less_real @ ( powr_real @ B @ Y2 ) @ X2 ) ) ) ) ).

% less_log_iff
thf(fact_9018_log__less__iff,axiom,
    ! [B: real,X2: real,Y2: real] :
      ( ( ord_less_real @ one_one_real @ B )
     => ( ( ord_less_real @ zero_zero_real @ X2 )
       => ( ( ord_less_real @ ( log @ B @ X2 ) @ Y2 )
          = ( ord_less_real @ X2 @ ( powr_real @ B @ Y2 ) ) ) ) ) ).

% log_less_iff
thf(fact_9019_less__powr__iff,axiom,
    ! [B: real,X2: real,Y2: real] :
      ( ( ord_less_real @ one_one_real @ B )
     => ( ( ord_less_real @ zero_zero_real @ X2 )
       => ( ( ord_less_real @ X2 @ ( powr_real @ B @ Y2 ) )
          = ( ord_less_real @ ( log @ B @ X2 ) @ Y2 ) ) ) ) ).

% less_powr_iff
thf(fact_9020_powr__less__iff,axiom,
    ! [B: real,X2: real,Y2: real] :
      ( ( ord_less_real @ one_one_real @ B )
     => ( ( ord_less_real @ zero_zero_real @ X2 )
       => ( ( ord_less_real @ ( powr_real @ B @ Y2 ) @ X2 )
          = ( ord_less_real @ Y2 @ ( log @ B @ X2 ) ) ) ) ) ).

% powr_less_iff
thf(fact_9021_cos__monotone__0__pi,axiom,
    ! [Y2: real,X2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ Y2 )
     => ( ( ord_less_real @ Y2 @ X2 )
       => ( ( ord_less_eq_real @ X2 @ pi )
         => ( ord_less_real @ ( cos_real @ X2 ) @ ( cos_real @ Y2 ) ) ) ) ) ).

% cos_monotone_0_pi
thf(fact_9022_cos__mono__less__eq,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ( ord_less_eq_real @ X2 @ pi )
       => ( ( ord_less_eq_real @ zero_zero_real @ Y2 )
         => ( ( ord_less_eq_real @ Y2 @ pi )
           => ( ( ord_less_real @ ( cos_real @ X2 ) @ ( cos_real @ Y2 ) )
              = ( ord_less_real @ Y2 @ X2 ) ) ) ) ) ) ).

% cos_mono_less_eq
thf(fact_9023_sin__eq__0__pi,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ pi ) @ X2 )
     => ( ( ord_less_real @ X2 @ pi )
       => ( ( ( sin_real @ X2 )
            = zero_zero_real )
         => ( X2 = zero_zero_real ) ) ) ) ).

% sin_eq_0_pi
thf(fact_9024_sin__zero__pi__iff,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ ( abs_abs_real @ X2 ) @ pi )
     => ( ( ( sin_real @ X2 )
          = zero_zero_real )
        = ( X2 = zero_zero_real ) ) ) ).

% sin_zero_pi_iff
thf(fact_9025_cos__monotone__minus__pi__0_H,axiom,
    ! [Y2: real,X2: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ pi ) @ Y2 )
     => ( ( ord_less_eq_real @ Y2 @ X2 )
       => ( ( ord_less_eq_real @ X2 @ zero_zero_real )
         => ( ord_less_eq_real @ ( cos_real @ Y2 ) @ ( cos_real @ X2 ) ) ) ) ) ).

% cos_monotone_minus_pi_0'
thf(fact_9026_sin__zero__iff__int2,axiom,
    ! [X2: real] :
      ( ( ( sin_real @ X2 )
        = zero_zero_real )
      = ( ? [I4: int] :
            ( X2
            = ( times_times_real @ ( ring_1_of_int_real @ I4 ) @ pi ) ) ) ) ).

% sin_zero_iff_int2
thf(fact_9027_sincos__total__pi,axiom,
    ! [Y2: real,X2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ Y2 )
     => ( ( ( plus_plus_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
          = one_one_real )
       => ? [T5: real] :
            ( ( ord_less_eq_real @ zero_zero_real @ T5 )
            & ( ord_less_eq_real @ T5 @ pi )
            & ( X2
              = ( cos_real @ T5 ) )
            & ( Y2
              = ( sin_real @ T5 ) ) ) ) ) ).

% sincos_total_pi
thf(fact_9028_sum__pos__lt__pair,axiom,
    ! [F: nat > real,K: nat] :
      ( ( summable_real @ F )
     => ( ! [D4: nat] : ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ ( F @ ( plus_plus_nat @ K @ ( times_times_nat @ ( suc @ ( suc @ zero_zero_nat ) ) @ D4 ) ) ) @ ( F @ ( plus_plus_nat @ K @ ( plus_plus_nat @ ( times_times_nat @ ( suc @ ( suc @ zero_zero_nat ) ) @ D4 ) @ one_one_nat ) ) ) ) )
       => ( ord_less_real @ ( groups6591440286371151544t_real @ F @ ( set_ord_lessThan_nat @ K ) ) @ ( suminf_real @ F ) ) ) ) ).

% sum_pos_lt_pair
thf(fact_9029_sin__cos__sqrt,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( sin_real @ X2 ) )
     => ( ( sin_real @ X2 )
        = ( sqrt @ ( minus_minus_real @ one_one_real @ ( power_power_real @ ( cos_real @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% sin_cos_sqrt
thf(fact_9030_image__Suc__lessThan,axiom,
    ! [N: nat] :
      ( ( image_nat_nat @ suc @ ( set_ord_lessThan_nat @ N ) )
      = ( set_or1269000886237332187st_nat @ one_one_nat @ N ) ) ).

% image_Suc_lessThan
thf(fact_9031_sin__expansion__lemma,axiom,
    ! [X2: real,M: nat] :
      ( ( sin_real @ ( plus_plus_real @ X2 @ ( divide_divide_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ ( suc @ M ) ) @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) )
      = ( cos_real @ ( plus_plus_real @ X2 @ ( divide_divide_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ M ) @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).

% sin_expansion_lemma
thf(fact_9032_lessThan__Suc__eq__insert__0,axiom,
    ! [N: nat] :
      ( ( set_ord_lessThan_nat @ ( suc @ N ) )
      = ( insert_nat @ zero_zero_nat @ ( image_nat_nat @ suc @ ( set_ord_lessThan_nat @ N ) ) ) ) ).

% lessThan_Suc_eq_insert_0
thf(fact_9033_cos__expansion__lemma,axiom,
    ! [X2: real,M: nat] :
      ( ( cos_real @ ( plus_plus_real @ X2 @ ( divide_divide_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ ( suc @ M ) ) @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) )
      = ( uminus_uminus_real @ ( sin_real @ ( plus_plus_real @ X2 @ ( divide_divide_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ M ) @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ).

% cos_expansion_lemma
thf(fact_9034_powr__neg__one,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( ( powr_real @ X2 @ ( uminus_uminus_real @ one_one_real ) )
        = ( divide_divide_real @ one_one_real @ X2 ) ) ) ).

% powr_neg_one
thf(fact_9035_sin__gt__zero__02,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( ( ord_less_real @ X2 @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
       => ( ord_less_real @ zero_zero_real @ ( sin_real @ X2 ) ) ) ) ).

% sin_gt_zero_02
thf(fact_9036_powr__mult__base,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ( times_times_real @ X2 @ ( powr_real @ X2 @ Y2 ) )
        = ( powr_real @ X2 @ ( plus_plus_real @ one_one_real @ Y2 ) ) ) ) ).

% powr_mult_base
thf(fact_9037_le__log__iff,axiom,
    ! [B: real,X2: real,Y2: real] :
      ( ( ord_less_real @ one_one_real @ B )
     => ( ( ord_less_real @ zero_zero_real @ X2 )
       => ( ( ord_less_eq_real @ Y2 @ ( log @ B @ X2 ) )
          = ( ord_less_eq_real @ ( powr_real @ B @ Y2 ) @ X2 ) ) ) ) ).

% le_log_iff
thf(fact_9038_log__le__iff,axiom,
    ! [B: real,X2: real,Y2: real] :
      ( ( ord_less_real @ one_one_real @ B )
     => ( ( ord_less_real @ zero_zero_real @ X2 )
       => ( ( ord_less_eq_real @ ( log @ B @ X2 ) @ Y2 )
          = ( ord_less_eq_real @ X2 @ ( powr_real @ B @ Y2 ) ) ) ) ) ).

% log_le_iff
thf(fact_9039_le__powr__iff,axiom,
    ! [B: real,X2: real,Y2: real] :
      ( ( ord_less_real @ one_one_real @ B )
     => ( ( ord_less_real @ zero_zero_real @ X2 )
       => ( ( ord_less_eq_real @ X2 @ ( powr_real @ B @ Y2 ) )
          = ( ord_less_eq_real @ ( log @ B @ X2 ) @ Y2 ) ) ) ) ).

% le_powr_iff
thf(fact_9040_powr__le__iff,axiom,
    ! [B: real,X2: real,Y2: real] :
      ( ( ord_less_real @ one_one_real @ B )
     => ( ( ord_less_real @ zero_zero_real @ X2 )
       => ( ( ord_less_eq_real @ ( powr_real @ B @ Y2 ) @ X2 )
          = ( ord_less_eq_real @ Y2 @ ( log @ B @ X2 ) ) ) ) ) ).

% powr_le_iff
thf(fact_9041_cos__two__less__zero,axiom,
    ord_less_real @ ( cos_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ zero_zero_real ).

% cos_two_less_zero
thf(fact_9042_cos__two__le__zero,axiom,
    ord_less_eq_real @ ( cos_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ zero_zero_real ).

% cos_two_le_zero
thf(fact_9043_cos__is__zero,axiom,
    ? [X4: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X4 )
      & ( ord_less_eq_real @ X4 @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
      & ( ( cos_real @ X4 )
        = zero_zero_real )
      & ! [Y4: real] :
          ( ( ( ord_less_eq_real @ zero_zero_real @ Y4 )
            & ( ord_less_eq_real @ Y4 @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
            & ( ( cos_real @ Y4 )
              = zero_zero_real ) )
         => ( Y4 = X4 ) ) ) ).

% cos_is_zero
thf(fact_9044_cos__monotone__minus__pi__0,axiom,
    ! [Y2: real,X2: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ pi ) @ Y2 )
     => ( ( ord_less_real @ Y2 @ X2 )
       => ( ( ord_less_eq_real @ X2 @ zero_zero_real )
         => ( ord_less_real @ ( cos_real @ Y2 ) @ ( cos_real @ X2 ) ) ) ) ) ).

% cos_monotone_minus_pi_0
thf(fact_9045_cos__total,axiom,
    ! [Y2: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y2 )
     => ( ( ord_less_eq_real @ Y2 @ one_one_real )
       => ? [X4: real] :
            ( ( ord_less_eq_real @ zero_zero_real @ X4 )
            & ( ord_less_eq_real @ X4 @ pi )
            & ( ( cos_real @ X4 )
              = Y2 )
            & ! [Y4: real] :
                ( ( ( ord_less_eq_real @ zero_zero_real @ Y4 )
                  & ( ord_less_eq_real @ Y4 @ pi )
                  & ( ( cos_real @ Y4 )
                    = Y2 ) )
               => ( Y4 = X4 ) ) ) ) ) ).

% cos_total
thf(fact_9046_sincos__total__pi__half,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y2 )
       => ( ( ( plus_plus_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
            = one_one_real )
         => ? [T5: real] :
              ( ( ord_less_eq_real @ zero_zero_real @ T5 )
              & ( ord_less_eq_real @ T5 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
              & ( X2
                = ( cos_real @ T5 ) )
              & ( Y2
                = ( sin_real @ T5 ) ) ) ) ) ) ).

% sincos_total_pi_half
thf(fact_9047_sincos__total__2pi__le,axiom,
    ! [X2: real,Y2: real] :
      ( ( ( plus_plus_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
        = one_one_real )
     => ? [T5: real] :
          ( ( ord_less_eq_real @ zero_zero_real @ T5 )
          & ( ord_less_eq_real @ T5 @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) )
          & ( X2
            = ( cos_real @ T5 ) )
          & ( Y2
            = ( sin_real @ T5 ) ) ) ) ).

% sincos_total_2pi_le
thf(fact_9048_sincos__total__2pi,axiom,
    ! [X2: real,Y2: real] :
      ( ( ( plus_plus_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
        = one_one_real )
     => ~ ! [T5: real] :
            ( ( ord_less_eq_real @ zero_zero_real @ T5 )
           => ( ( ord_less_real @ T5 @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) )
             => ( ( X2
                  = ( cos_real @ T5 ) )
               => ( Y2
                 != ( sin_real @ T5 ) ) ) ) ) ) ).

% sincos_total_2pi
thf(fact_9049_ln__powr__bound,axiom,
    ! [X2: real,A: real] :
      ( ( ord_less_eq_real @ one_one_real @ X2 )
     => ( ( ord_less_real @ zero_zero_real @ A )
       => ( ord_less_eq_real @ ( ln_ln_real @ X2 ) @ ( divide_divide_real @ ( powr_real @ X2 @ A ) @ A ) ) ) ) ).

% ln_powr_bound
thf(fact_9050_ln__powr__bound2,axiom,
    ! [X2: real,A: real] :
      ( ( ord_less_real @ one_one_real @ X2 )
     => ( ( ord_less_real @ zero_zero_real @ A )
       => ( ord_less_eq_real @ ( powr_real @ ( ln_ln_real @ X2 ) @ A ) @ ( times_times_real @ ( powr_real @ A @ A ) @ X2 ) ) ) ) ).

% ln_powr_bound2
thf(fact_9051_log__add__eq__powr,axiom,
    ! [B: real,X2: real,Y2: real] :
      ( ( ord_less_real @ zero_zero_real @ B )
     => ( ( B != one_one_real )
       => ( ( ord_less_real @ zero_zero_real @ X2 )
         => ( ( plus_plus_real @ ( log @ B @ X2 ) @ Y2 )
            = ( log @ B @ ( times_times_real @ X2 @ ( powr_real @ B @ Y2 ) ) ) ) ) ) ) ).

% log_add_eq_powr
thf(fact_9052_add__log__eq__powr,axiom,
    ! [B: real,X2: real,Y2: real] :
      ( ( ord_less_real @ zero_zero_real @ B )
     => ( ( B != one_one_real )
       => ( ( ord_less_real @ zero_zero_real @ X2 )
         => ( ( plus_plus_real @ Y2 @ ( log @ B @ X2 ) )
            = ( log @ B @ ( times_times_real @ ( powr_real @ B @ Y2 ) @ X2 ) ) ) ) ) ) ).

% add_log_eq_powr
thf(fact_9053_minus__log__eq__powr,axiom,
    ! [B: real,X2: real,Y2: real] :
      ( ( ord_less_real @ zero_zero_real @ B )
     => ( ( B != one_one_real )
       => ( ( ord_less_real @ zero_zero_real @ X2 )
         => ( ( minus_minus_real @ Y2 @ ( log @ B @ X2 ) )
            = ( log @ B @ ( divide_divide_real @ ( powr_real @ B @ Y2 ) @ X2 ) ) ) ) ) ) ).

% minus_log_eq_powr
thf(fact_9054_sin__pi__divide__n__ge__0,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
     => ( ord_less_eq_real @ zero_zero_real @ ( sin_real @ ( divide_divide_real @ pi @ ( semiri5074537144036343181t_real @ N ) ) ) ) ) ).

% sin_pi_divide_n_ge_0
thf(fact_9055_summable__power__series,axiom,
    ! [F: nat > real,Z: real] :
      ( ! [I3: nat] : ( ord_less_eq_real @ ( F @ I3 ) @ one_one_real )
     => ( ! [I3: nat] : ( ord_less_eq_real @ zero_zero_real @ ( F @ I3 ) )
       => ( ( ord_less_eq_real @ zero_zero_real @ Z )
         => ( ( ord_less_real @ Z @ one_one_real )
           => ( summable_real
              @ ^ [I4: nat] : ( times_times_real @ ( F @ I4 ) @ ( power_power_real @ Z @ I4 ) ) ) ) ) ) ) ).

% summable_power_series
thf(fact_9056_sin__45,axiom,
    ( ( sin_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) ) )
    = ( divide_divide_real @ ( sqrt @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% sin_45
thf(fact_9057_cos__45,axiom,
    ( ( cos_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) ) )
    = ( divide_divide_real @ ( sqrt @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% cos_45
thf(fact_9058_sin__gt__zero2,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( ( ord_less_real @ X2 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ord_less_real @ zero_zero_real @ ( sin_real @ X2 ) ) ) ) ).

% sin_gt_zero2
thf(fact_9059_sin__lt__zero,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ pi @ X2 )
     => ( ( ord_less_real @ X2 @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) )
       => ( ord_less_real @ ( sin_real @ X2 ) @ zero_zero_real ) ) ) ).

% sin_lt_zero
thf(fact_9060_cos__double__less__one,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( ( ord_less_real @ X2 @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
       => ( ord_less_real @ ( cos_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X2 ) ) @ one_one_real ) ) ) ).

% cos_double_less_one
thf(fact_9061_sin__30,axiom,
    ( ( sin_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit1 @ one ) ) ) ) )
    = ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% sin_30
thf(fact_9062_cos__gt__zero,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( ( ord_less_real @ X2 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ord_less_real @ zero_zero_real @ ( cos_real @ X2 ) ) ) ) ).

% cos_gt_zero
thf(fact_9063_sin__monotone__2pi__le,axiom,
    ! [Y2: real,X2: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y2 )
     => ( ( ord_less_eq_real @ Y2 @ X2 )
       => ( ( ord_less_eq_real @ X2 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
         => ( ord_less_eq_real @ ( sin_real @ Y2 ) @ ( sin_real @ X2 ) ) ) ) ) ).

% sin_monotone_2pi_le
thf(fact_9064_sin__mono__le__eq,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X2 )
     => ( ( ord_less_eq_real @ X2 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y2 )
         => ( ( ord_less_eq_real @ Y2 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
           => ( ( ord_less_eq_real @ ( sin_real @ X2 ) @ ( sin_real @ Y2 ) )
              = ( ord_less_eq_real @ X2 @ Y2 ) ) ) ) ) ) ).

% sin_mono_le_eq
thf(fact_9065_sin__inj__pi,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X2 )
     => ( ( ord_less_eq_real @ X2 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y2 )
         => ( ( ord_less_eq_real @ Y2 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
           => ( ( ( sin_real @ X2 )
                = ( sin_real @ Y2 ) )
             => ( X2 = Y2 ) ) ) ) ) ) ).

% sin_inj_pi
thf(fact_9066_log__minus__eq__powr,axiom,
    ! [B: real,X2: real,Y2: real] :
      ( ( ord_less_real @ zero_zero_real @ B )
     => ( ( B != one_one_real )
       => ( ( ord_less_real @ zero_zero_real @ X2 )
         => ( ( minus_minus_real @ ( log @ B @ X2 ) @ Y2 )
            = ( log @ B @ ( times_times_real @ X2 @ ( powr_real @ B @ ( uminus_uminus_real @ Y2 ) ) ) ) ) ) ) ) ).

% log_minus_eq_powr
thf(fact_9067_cos__60,axiom,
    ( ( cos_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit1 @ one ) ) ) )
    = ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% cos_60
thf(fact_9068_sin__60,axiom,
    ( ( sin_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit1 @ one ) ) ) )
    = ( divide_divide_real @ ( sqrt @ ( numeral_numeral_real @ ( bit1 @ one ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% sin_60
thf(fact_9069_cos__30,axiom,
    ( ( cos_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit1 @ one ) ) ) ) )
    = ( divide_divide_real @ ( sqrt @ ( numeral_numeral_real @ ( bit1 @ one ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% cos_30
thf(fact_9070_cos__one__2pi__int,axiom,
    ! [X2: real] :
      ( ( ( cos_real @ X2 )
        = one_one_real )
      = ( ? [X: int] :
            ( X2
            = ( times_times_real @ ( times_times_real @ ( ring_1_of_int_real @ X ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ pi ) ) ) ) ).

% cos_one_2pi_int
thf(fact_9071_powr__half__sqrt,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ( powr_real @ X2 @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
        = ( sqrt @ X2 ) ) ) ).

% powr_half_sqrt
thf(fact_9072_powr__neg__numeral,axiom,
    ! [X2: real,N: num] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( ( powr_real @ X2 @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
        = ( divide_divide_real @ one_one_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ N ) ) ) ) ) ).

% powr_neg_numeral
thf(fact_9073_sin__le__zero,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ pi @ X2 )
     => ( ( ord_less_real @ X2 @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) )
       => ( ord_less_eq_real @ ( sin_real @ X2 ) @ zero_zero_real ) ) ) ).

% sin_le_zero
thf(fact_9074_sin__less__zero,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ ( divide_divide_real @ ( uminus_uminus_real @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ X2 )
     => ( ( ord_less_real @ X2 @ zero_zero_real )
       => ( ord_less_real @ ( sin_real @ X2 ) @ zero_zero_real ) ) ) ).

% sin_less_zero
thf(fact_9075_sin__monotone__2pi,axiom,
    ! [Y2: real,X2: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y2 )
     => ( ( ord_less_real @ Y2 @ X2 )
       => ( ( ord_less_eq_real @ X2 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
         => ( ord_less_real @ ( sin_real @ Y2 ) @ ( sin_real @ X2 ) ) ) ) ) ).

% sin_monotone_2pi
thf(fact_9076_sin__mono__less__eq,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X2 )
     => ( ( ord_less_eq_real @ X2 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y2 )
         => ( ( ord_less_eq_real @ Y2 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
           => ( ( ord_less_real @ ( sin_real @ X2 ) @ ( sin_real @ Y2 ) )
              = ( ord_less_real @ X2 @ Y2 ) ) ) ) ) ) ).

% sin_mono_less_eq
thf(fact_9077_sin__total,axiom,
    ! [Y2: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y2 )
     => ( ( ord_less_eq_real @ Y2 @ one_one_real )
       => ? [X4: real] :
            ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X4 )
            & ( ord_less_eq_real @ X4 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
            & ( ( sin_real @ X4 )
              = Y2 )
            & ! [Y4: real] :
                ( ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y4 )
                  & ( ord_less_eq_real @ Y4 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
                  & ( ( sin_real @ Y4 )
                    = Y2 ) )
               => ( Y4 = X4 ) ) ) ) ) ).

% sin_total
thf(fact_9078_cos__gt__zero__pi,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X2 )
     => ( ( ord_less_real @ X2 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ord_less_real @ zero_zero_real @ ( cos_real @ X2 ) ) ) ) ).

% cos_gt_zero_pi
thf(fact_9079_cos__ge__zero,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X2 )
     => ( ( ord_less_eq_real @ X2 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ord_less_eq_real @ zero_zero_real @ ( cos_real @ X2 ) ) ) ) ).

% cos_ge_zero
thf(fact_9080_cos__one__2pi,axiom,
    ! [X2: real] :
      ( ( ( cos_real @ X2 )
        = one_one_real )
      = ( ? [X: nat] :
            ( X2
            = ( times_times_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ X ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ pi ) )
        | ? [X: nat] :
            ( X2
            = ( uminus_uminus_real @ ( times_times_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ X ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ pi ) ) ) ) ) ).

% cos_one_2pi
thf(fact_9081_sum__split__even__odd,axiom,
    ! [F: nat > real,G: nat > real,N: nat] :
      ( ( groups6591440286371151544t_real
        @ ^ [I4: nat] : ( if_real @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I4 ) @ ( F @ I4 ) @ ( G @ I4 ) )
        @ ( set_ord_lessThan_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
      = ( plus_plus_real
        @ ( groups6591440286371151544t_real
          @ ^ [I4: nat] : ( F @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I4 ) )
          @ ( set_ord_lessThan_nat @ N ) )
        @ ( groups6591440286371151544t_real
          @ ^ [I4: nat] : ( G @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I4 ) @ one_one_nat ) )
          @ ( set_ord_lessThan_nat @ N ) ) ) ) ).

% sum_split_even_odd
thf(fact_9082_sin__pi__divide__n__gt__0,axiom,
    ! [N: nat] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ord_less_real @ zero_zero_real @ ( sin_real @ ( divide_divide_real @ pi @ ( semiri5074537144036343181t_real @ N ) ) ) ) ) ).

% sin_pi_divide_n_gt_0
thf(fact_9083_sin__arctan,axiom,
    ! [X2: real] :
      ( ( sin_real @ ( arctan @ X2 ) )
      = ( divide_divide_real @ X2 @ ( sqrt @ ( plus_plus_real @ one_one_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% sin_arctan
thf(fact_9084_cos__arctan,axiom,
    ! [X2: real] :
      ( ( cos_real @ ( arctan @ X2 ) )
      = ( divide_divide_real @ one_one_real @ ( sqrt @ ( plus_plus_real @ one_one_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% cos_arctan
thf(fact_9085_sin__zero__iff__int,axiom,
    ! [X2: real] :
      ( ( ( sin_real @ X2 )
        = zero_zero_real )
      = ( ? [I4: int] :
            ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ I4 )
            & ( X2
              = ( times_times_real @ ( ring_1_of_int_real @ I4 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% sin_zero_iff_int
thf(fact_9086_cos__zero__iff__int,axiom,
    ! [X2: real] :
      ( ( ( cos_real @ X2 )
        = zero_zero_real )
      = ( ? [I4: int] :
            ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ I4 )
            & ( X2
              = ( times_times_real @ ( ring_1_of_int_real @ I4 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% cos_zero_iff_int
thf(fact_9087_sin__zero__lemma,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ( ( sin_real @ X2 )
          = zero_zero_real )
       => ? [N3: nat] :
            ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 )
            & ( X2
              = ( times_times_real @ ( semiri5074537144036343181t_real @ N3 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% sin_zero_lemma
thf(fact_9088_sin__zero__iff,axiom,
    ! [X2: real] :
      ( ( ( sin_real @ X2 )
        = zero_zero_real )
      = ( ? [N2: nat] :
            ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
            & ( X2
              = ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) )
        | ? [N2: nat] :
            ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
            & ( X2
              = ( uminus_uminus_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ).

% sin_zero_iff
thf(fact_9089_cos__zero__lemma,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ( ( cos_real @ X2 )
          = zero_zero_real )
       => ? [N3: nat] :
            ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 )
            & ( X2
              = ( times_times_real @ ( semiri5074537144036343181t_real @ N3 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% cos_zero_lemma
thf(fact_9090_cos__zero__iff,axiom,
    ! [X2: real] :
      ( ( ( cos_real @ X2 )
        = zero_zero_real )
      = ( ? [N2: nat] :
            ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
            & ( X2
              = ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) )
        | ? [N2: nat] :
            ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
            & ( X2
              = ( uminus_uminus_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ).

% cos_zero_iff
thf(fact_9091_sumr__cos__zero__one,axiom,
    ! [N: nat] :
      ( ( groups6591440286371151544t_real
        @ ^ [M3: nat] : ( times_times_real @ ( cos_coeff @ M3 ) @ ( power_power_real @ zero_zero_real @ M3 ) )
        @ ( set_ord_lessThan_nat @ ( suc @ N ) ) )
      = one_one_real ) ).

% sumr_cos_zero_one
thf(fact_9092_sin__tan,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ ( abs_abs_real @ X2 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
     => ( ( sin_real @ X2 )
        = ( divide_divide_real @ ( tan_real @ X2 ) @ ( sqrt @ ( plus_plus_real @ one_one_real @ ( power_power_real @ ( tan_real @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% sin_tan
thf(fact_9093_tan__periodic__pi,axiom,
    ! [X2: real] :
      ( ( tan_real @ ( plus_plus_real @ X2 @ pi ) )
      = ( tan_real @ X2 ) ) ).

% tan_periodic_pi
thf(fact_9094_cos__coeff__0,axiom,
    ( ( cos_coeff @ zero_zero_nat )
    = one_one_real ) ).

% cos_coeff_0
thf(fact_9095_tan__npi,axiom,
    ! [N: nat] :
      ( ( tan_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ pi ) )
      = zero_zero_real ) ).

% tan_npi
thf(fact_9096_tan__periodic__n,axiom,
    ! [X2: real,N: num] :
      ( ( tan_real @ ( plus_plus_real @ X2 @ ( times_times_real @ ( numeral_numeral_real @ N ) @ pi ) ) )
      = ( tan_real @ X2 ) ) ).

% tan_periodic_n
thf(fact_9097_tan__periodic__nat,axiom,
    ! [X2: real,N: nat] :
      ( ( tan_real @ ( plus_plus_real @ X2 @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ pi ) ) )
      = ( tan_real @ X2 ) ) ).

% tan_periodic_nat
thf(fact_9098_tan__periodic__int,axiom,
    ! [X2: real,I: int] :
      ( ( tan_real @ ( plus_plus_real @ X2 @ ( times_times_real @ ( ring_1_of_int_real @ I ) @ pi ) ) )
      = ( tan_real @ X2 ) ) ).

% tan_periodic_int
thf(fact_9099_tan__periodic,axiom,
    ! [X2: real] :
      ( ( tan_real @ ( plus_plus_real @ X2 @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) ) )
      = ( tan_real @ X2 ) ) ).

% tan_periodic
thf(fact_9100_finite__int__iff__bounded,axiom,
    ( finite_finite_int
    = ( ^ [S5: set_int] :
        ? [K2: int] : ( ord_less_eq_set_int @ ( image_int_int @ abs_abs_int @ S5 ) @ ( set_ord_lessThan_int @ K2 ) ) ) ) ).

% finite_int_iff_bounded
thf(fact_9101_tan__45,axiom,
    ( ( tan_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) ) )
    = one_one_real ) ).

% tan_45
thf(fact_9102_tan__60,axiom,
    ( ( tan_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit1 @ one ) ) ) )
    = ( sqrt @ ( numeral_numeral_real @ ( bit1 @ one ) ) ) ) ).

% tan_60
thf(fact_9103_tan__gt__zero,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( ( ord_less_real @ X2 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ord_less_real @ zero_zero_real @ ( tan_real @ X2 ) ) ) ) ).

% tan_gt_zero
thf(fact_9104_lemma__tan__total,axiom,
    ! [Y2: real] :
      ( ( ord_less_real @ zero_zero_real @ Y2 )
     => ? [X4: real] :
          ( ( ord_less_real @ zero_zero_real @ X4 )
          & ( ord_less_real @ X4 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
          & ( ord_less_real @ Y2 @ ( tan_real @ X4 ) ) ) ) ).

% lemma_tan_total
thf(fact_9105_tan__total,axiom,
    ! [Y2: real] :
    ? [X4: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X4 )
      & ( ord_less_real @ X4 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
      & ( ( tan_real @ X4 )
        = Y2 )
      & ! [Y4: real] :
          ( ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y4 )
            & ( ord_less_real @ Y4 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
            & ( ( tan_real @ Y4 )
              = Y2 ) )
         => ( Y4 = X4 ) ) ) ).

% tan_total
thf(fact_9106_tan__monotone,axiom,
    ! [Y2: real,X2: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y2 )
     => ( ( ord_less_real @ Y2 @ X2 )
       => ( ( ord_less_real @ X2 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
         => ( ord_less_real @ ( tan_real @ Y2 ) @ ( tan_real @ X2 ) ) ) ) ) ).

% tan_monotone
thf(fact_9107_tan__monotone_H,axiom,
    ! [Y2: real,X2: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y2 )
     => ( ( ord_less_real @ Y2 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X2 )
         => ( ( ord_less_real @ X2 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
           => ( ( ord_less_real @ Y2 @ X2 )
              = ( ord_less_real @ ( tan_real @ Y2 ) @ ( tan_real @ X2 ) ) ) ) ) ) ) ).

% tan_monotone'
thf(fact_9108_tan__mono__lt__eq,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X2 )
     => ( ( ord_less_real @ X2 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y2 )
         => ( ( ord_less_real @ Y2 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
           => ( ( ord_less_real @ ( tan_real @ X2 ) @ ( tan_real @ Y2 ) )
              = ( ord_less_real @ X2 @ Y2 ) ) ) ) ) ) ).

% tan_mono_lt_eq
thf(fact_9109_lemma__tan__total1,axiom,
    ! [Y2: real] :
    ? [X4: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X4 )
      & ( ord_less_real @ X4 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
      & ( ( tan_real @ X4 )
        = Y2 ) ) ).

% lemma_tan_total1
thf(fact_9110_tan__minus__45,axiom,
    ( ( tan_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) ) ) )
    = ( uminus_uminus_real @ one_one_real ) ) ).

% tan_minus_45
thf(fact_9111_tan__inverse,axiom,
    ! [Y2: real] :
      ( ( divide_divide_real @ one_one_real @ ( tan_real @ Y2 ) )
      = ( tan_real @ ( minus_minus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ Y2 ) ) ) ).

% tan_inverse
thf(fact_9112_tan__cot_H,axiom,
    ! [X2: real] :
      ( ( tan_real @ ( minus_minus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ X2 ) )
      = ( cot_real @ X2 ) ) ).

% tan_cot'
thf(fact_9113_tan__total__pos,axiom,
    ! [Y2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ Y2 )
     => ? [X4: real] :
          ( ( ord_less_eq_real @ zero_zero_real @ X4 )
          & ( ord_less_real @ X4 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
          & ( ( tan_real @ X4 )
            = Y2 ) ) ) ).

% tan_total_pos
thf(fact_9114_tan__pos__pi2__le,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ( ord_less_real @ X2 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ord_less_eq_real @ zero_zero_real @ ( tan_real @ X2 ) ) ) ) ).

% tan_pos_pi2_le
thf(fact_9115_tan__less__zero,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ ( divide_divide_real @ ( uminus_uminus_real @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ X2 )
     => ( ( ord_less_real @ X2 @ zero_zero_real )
       => ( ord_less_real @ ( tan_real @ X2 ) @ zero_zero_real ) ) ) ).

% tan_less_zero
thf(fact_9116_tan__mono__le,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X2 )
     => ( ( ord_less_eq_real @ X2 @ Y2 )
       => ( ( ord_less_real @ Y2 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
         => ( ord_less_eq_real @ ( tan_real @ X2 ) @ ( tan_real @ Y2 ) ) ) ) ) ).

% tan_mono_le
thf(fact_9117_tan__mono__le__eq,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X2 )
     => ( ( ord_less_real @ X2 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ Y2 )
         => ( ( ord_less_real @ Y2 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
           => ( ( ord_less_eq_real @ ( tan_real @ X2 ) @ ( tan_real @ Y2 ) )
              = ( ord_less_eq_real @ X2 @ Y2 ) ) ) ) ) ) ).

% tan_mono_le_eq
thf(fact_9118_tan__bound__pi2,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ ( abs_abs_real @ X2 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) ) )
     => ( ord_less_real @ ( abs_abs_real @ ( tan_real @ X2 ) ) @ one_one_real ) ) ).

% tan_bound_pi2
thf(fact_9119_tan__30,axiom,
    ( ( tan_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit1 @ one ) ) ) ) )
    = ( divide_divide_real @ one_one_real @ ( sqrt @ ( numeral_numeral_real @ ( bit1 @ one ) ) ) ) ) ).

% tan_30
thf(fact_9120_arctan,axiom,
    ! [Y2: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( arctan @ Y2 ) )
      & ( ord_less_real @ ( arctan @ Y2 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
      & ( ( tan_real @ ( arctan @ Y2 ) )
        = Y2 ) ) ).

% arctan
thf(fact_9121_arctan__tan,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X2 )
     => ( ( ord_less_real @ X2 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ( arctan @ ( tan_real @ X2 ) )
          = X2 ) ) ) ).

% arctan_tan
thf(fact_9122_arctan__unique,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X2 )
     => ( ( ord_less_real @ X2 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ( ( tan_real @ X2 )
            = Y2 )
         => ( ( arctan @ Y2 )
            = X2 ) ) ) ) ).

% arctan_unique
thf(fact_9123_tan__total__pi4,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ ( abs_abs_real @ X2 ) @ one_one_real )
     => ? [Z3: real] :
          ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) ) ) @ Z3 )
          & ( ord_less_real @ Z3 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) ) )
          & ( ( tan_real @ Z3 )
            = X2 ) ) ) ).

% tan_total_pi4
thf(fact_9124_cos__tan,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ ( abs_abs_real @ X2 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
     => ( ( cos_real @ X2 )
        = ( divide_divide_real @ one_one_real @ ( sqrt @ ( plus_plus_real @ one_one_real @ ( power_power_real @ ( tan_real @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% cos_tan
thf(fact_9125_Maclaurin__cos__expansion2,axiom,
    ! [X2: real,N: nat] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ? [T5: real] :
            ( ( ord_less_real @ zero_zero_real @ T5 )
            & ( ord_less_real @ T5 @ X2 )
            & ( ( cos_real @ X2 )
              = ( plus_plus_real
                @ ( groups6591440286371151544t_real
                  @ ^ [M3: nat] : ( times_times_real @ ( cos_coeff @ M3 ) @ ( power_power_real @ X2 @ M3 ) )
                  @ ( set_ord_lessThan_nat @ N ) )
                @ ( times_times_real @ ( divide_divide_real @ ( cos_real @ ( plus_plus_real @ T5 @ ( times_times_real @ ( times_times_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( semiri5074537144036343181t_real @ N ) ) @ pi ) ) ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ X2 @ N ) ) ) ) ) ) ) ).

% Maclaurin_cos_expansion2
thf(fact_9126_Maclaurin__minus__cos__expansion,axiom,
    ! [N: nat,X2: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_real @ X2 @ zero_zero_real )
       => ? [T5: real] :
            ( ( ord_less_real @ X2 @ T5 )
            & ( ord_less_real @ T5 @ zero_zero_real )
            & ( ( cos_real @ X2 )
              = ( plus_plus_real
                @ ( groups6591440286371151544t_real
                  @ ^ [M3: nat] : ( times_times_real @ ( cos_coeff @ M3 ) @ ( power_power_real @ X2 @ M3 ) )
                  @ ( set_ord_lessThan_nat @ N ) )
                @ ( times_times_real @ ( divide_divide_real @ ( cos_real @ ( plus_plus_real @ T5 @ ( times_times_real @ ( times_times_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( semiri5074537144036343181t_real @ N ) ) @ pi ) ) ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ X2 @ N ) ) ) ) ) ) ) ).

% Maclaurin_minus_cos_expansion
thf(fact_9127_Maclaurin__cos__expansion,axiom,
    ! [X2: real,N: nat] :
    ? [T5: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ T5 ) @ ( abs_abs_real @ X2 ) )
      & ( ( cos_real @ X2 )
        = ( plus_plus_real
          @ ( groups6591440286371151544t_real
            @ ^ [M3: nat] : ( times_times_real @ ( cos_coeff @ M3 ) @ ( power_power_real @ X2 @ M3 ) )
            @ ( set_ord_lessThan_nat @ N ) )
          @ ( times_times_real @ ( divide_divide_real @ ( cos_real @ ( plus_plus_real @ T5 @ ( times_times_real @ ( times_times_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( semiri5074537144036343181t_real @ N ) ) @ pi ) ) ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ X2 @ N ) ) ) ) ) ).

% Maclaurin_cos_expansion
thf(fact_9128_summable__complex__of__real,axiom,
    ! [F: nat > real] :
      ( ( summable_complex
        @ ^ [N2: nat] : ( real_V4546457046886955230omplex @ ( F @ N2 ) ) )
      = ( summable_real @ F ) ) ).

% summable_complex_of_real
thf(fact_9129_square__fact__le__2__fact,axiom,
    ! [N: nat] : ( ord_less_eq_real @ ( times_times_real @ ( semiri2265585572941072030t_real @ N ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( semiri2265585572941072030t_real @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).

% square_fact_le_2_fact
thf(fact_9130_Maclaurin__lemma,axiom,
    ! [H2: real,F: real > real,J: nat > real,N: nat] :
      ( ( ord_less_real @ zero_zero_real @ H2 )
     => ? [B5: real] :
          ( ( F @ H2 )
          = ( plus_plus_real
            @ ( groups6591440286371151544t_real
              @ ^ [M3: nat] : ( times_times_real @ ( divide_divide_real @ ( J @ M3 ) @ ( semiri2265585572941072030t_real @ M3 ) ) @ ( power_power_real @ H2 @ M3 ) )
              @ ( set_ord_lessThan_nat @ N ) )
            @ ( times_times_real @ B5 @ ( divide_divide_real @ ( power_power_real @ H2 @ N ) @ ( semiri2265585572941072030t_real @ N ) ) ) ) ) ) ).

% Maclaurin_lemma
thf(fact_9131_Maclaurin__exp__le,axiom,
    ! [X2: real,N: nat] :
    ? [T5: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ T5 ) @ ( abs_abs_real @ X2 ) )
      & ( ( exp_real @ X2 )
        = ( plus_plus_real
          @ ( groups6591440286371151544t_real
            @ ^ [M3: nat] : ( divide_divide_real @ ( power_power_real @ X2 @ M3 ) @ ( semiri2265585572941072030t_real @ M3 ) )
            @ ( set_ord_lessThan_nat @ N ) )
          @ ( times_times_real @ ( divide_divide_real @ ( exp_real @ T5 ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ X2 @ N ) ) ) ) ) ).

% Maclaurin_exp_le
thf(fact_9132_cos__coeff__def,axiom,
    ( cos_coeff
    = ( ^ [N2: nat] : ( if_real @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) @ ( divide_divide_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( semiri2265585572941072030t_real @ N2 ) ) @ zero_zero_real ) ) ) ).

% cos_coeff_def
thf(fact_9133_Maclaurin__exp__lt,axiom,
    ! [X2: real,N: nat] :
      ( ( X2 != zero_zero_real )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ? [T5: real] :
            ( ( ord_less_real @ zero_zero_real @ ( abs_abs_real @ T5 ) )
            & ( ord_less_real @ ( abs_abs_real @ T5 ) @ ( abs_abs_real @ X2 ) )
            & ( ( exp_real @ X2 )
              = ( plus_plus_real
                @ ( groups6591440286371151544t_real
                  @ ^ [M3: nat] : ( divide_divide_real @ ( power_power_real @ X2 @ M3 ) @ ( semiri2265585572941072030t_real @ M3 ) )
                  @ ( set_ord_lessThan_nat @ N ) )
                @ ( times_times_real @ ( divide_divide_real @ ( exp_real @ T5 ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ X2 @ N ) ) ) ) ) ) ) ).

% Maclaurin_exp_lt
thf(fact_9134_Maclaurin__sin__expansion3,axiom,
    ! [N: nat,X2: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_real @ zero_zero_real @ X2 )
       => ? [T5: real] :
            ( ( ord_less_real @ zero_zero_real @ T5 )
            & ( ord_less_real @ T5 @ X2 )
            & ( ( sin_real @ X2 )
              = ( plus_plus_real
                @ ( groups6591440286371151544t_real
                  @ ^ [M3: nat] : ( times_times_real @ ( sin_coeff @ M3 ) @ ( power_power_real @ X2 @ M3 ) )
                  @ ( set_ord_lessThan_nat @ N ) )
                @ ( times_times_real @ ( divide_divide_real @ ( sin_real @ ( plus_plus_real @ T5 @ ( times_times_real @ ( times_times_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( semiri5074537144036343181t_real @ N ) ) @ pi ) ) ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ X2 @ N ) ) ) ) ) ) ) ).

% Maclaurin_sin_expansion3
thf(fact_9135_Maclaurin__sin__expansion4,axiom,
    ! [X2: real,N: nat] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ? [T5: real] :
          ( ( ord_less_real @ zero_zero_real @ T5 )
          & ( ord_less_eq_real @ T5 @ X2 )
          & ( ( sin_real @ X2 )
            = ( plus_plus_real
              @ ( groups6591440286371151544t_real
                @ ^ [M3: nat] : ( times_times_real @ ( sin_coeff @ M3 ) @ ( power_power_real @ X2 @ M3 ) )
                @ ( set_ord_lessThan_nat @ N ) )
              @ ( times_times_real @ ( divide_divide_real @ ( sin_real @ ( plus_plus_real @ T5 @ ( times_times_real @ ( times_times_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( semiri5074537144036343181t_real @ N ) ) @ pi ) ) ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ X2 @ N ) ) ) ) ) ) ).

% Maclaurin_sin_expansion4
thf(fact_9136_Maclaurin__sin__expansion2,axiom,
    ! [X2: real,N: nat] :
    ? [T5: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ T5 ) @ ( abs_abs_real @ X2 ) )
      & ( ( sin_real @ X2 )
        = ( plus_plus_real
          @ ( groups6591440286371151544t_real
            @ ^ [M3: nat] : ( times_times_real @ ( sin_coeff @ M3 ) @ ( power_power_real @ X2 @ M3 ) )
            @ ( set_ord_lessThan_nat @ N ) )
          @ ( times_times_real @ ( divide_divide_real @ ( sin_real @ ( plus_plus_real @ T5 @ ( times_times_real @ ( times_times_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( semiri5074537144036343181t_real @ N ) ) @ pi ) ) ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ X2 @ N ) ) ) ) ) ).

% Maclaurin_sin_expansion2
thf(fact_9137_Maclaurin__sin__expansion,axiom,
    ! [X2: real,N: nat] :
    ? [T5: real] :
      ( ( sin_real @ X2 )
      = ( plus_plus_real
        @ ( groups6591440286371151544t_real
          @ ^ [M3: nat] : ( times_times_real @ ( sin_coeff @ M3 ) @ ( power_power_real @ X2 @ M3 ) )
          @ ( set_ord_lessThan_nat @ N ) )
        @ ( times_times_real @ ( divide_divide_real @ ( sin_real @ ( plus_plus_real @ T5 @ ( times_times_real @ ( times_times_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( semiri5074537144036343181t_real @ N ) ) @ pi ) ) ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ X2 @ N ) ) ) ) ).

% Maclaurin_sin_expansion
thf(fact_9138_fact__ge__self,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ N @ ( semiri1408675320244567234ct_nat @ N ) ) ).

% fact_ge_self
thf(fact_9139_fact__mono__nat,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ord_less_eq_nat @ ( semiri1408675320244567234ct_nat @ M ) @ ( semiri1408675320244567234ct_nat @ N ) ) ) ).

% fact_mono_nat
thf(fact_9140_complex__exp__exists,axiom,
    ! [Z: complex] :
    ? [A6: complex,R3: real] :
      ( Z
      = ( times_times_complex @ ( real_V4546457046886955230omplex @ R3 ) @ ( exp_complex @ A6 ) ) ) ).

% complex_exp_exists
thf(fact_9141_fact__less__mono__nat,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ M )
     => ( ( ord_less_nat @ M @ N )
       => ( ord_less_nat @ ( semiri1408675320244567234ct_nat @ M ) @ ( semiri1408675320244567234ct_nat @ N ) ) ) ) ).

% fact_less_mono_nat
thf(fact_9142_fact__ge__Suc__0__nat,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ ( semiri1408675320244567234ct_nat @ N ) ) ).

% fact_ge_Suc_0_nat
thf(fact_9143_dvd__fact,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ one_one_nat @ M )
     => ( ( ord_less_eq_nat @ M @ N )
       => ( dvd_dvd_nat @ M @ ( semiri1408675320244567234ct_nat @ N ) ) ) ) ).

% dvd_fact
thf(fact_9144_fact__diff__Suc,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ N @ ( suc @ M ) )
     => ( ( semiri1408675320244567234ct_nat @ ( minus_minus_nat @ ( suc @ M ) @ N ) )
        = ( times_times_nat @ ( minus_minus_nat @ ( suc @ M ) @ N ) @ ( semiri1408675320244567234ct_nat @ ( minus_minus_nat @ M @ N ) ) ) ) ) ).

% fact_diff_Suc
thf(fact_9145_fact__div__fact__le__pow,axiom,
    ! [R2: nat,N: nat] :
      ( ( ord_less_eq_nat @ R2 @ N )
     => ( ord_less_eq_nat @ ( divide_divide_nat @ ( semiri1408675320244567234ct_nat @ N ) @ ( semiri1408675320244567234ct_nat @ ( minus_minus_nat @ N @ R2 ) ) ) @ ( power_power_nat @ N @ R2 ) ) ) ).

% fact_div_fact_le_pow
thf(fact_9146_sin__coeff__Suc,axiom,
    ! [N: nat] :
      ( ( sin_coeff @ ( suc @ N ) )
      = ( divide_divide_real @ ( cos_coeff @ N ) @ ( semiri5074537144036343181t_real @ ( suc @ N ) ) ) ) ).

% sin_coeff_Suc
thf(fact_9147_cos__coeff__Suc,axiom,
    ! [N: nat] :
      ( ( cos_coeff @ ( suc @ N ) )
      = ( divide_divide_real @ ( uminus_uminus_real @ ( sin_coeff @ N ) ) @ ( semiri5074537144036343181t_real @ ( suc @ N ) ) ) ) ).

% cos_coeff_Suc
thf(fact_9148_sin__coeff__def,axiom,
    ( sin_coeff
    = ( ^ [N2: nat] : ( if_real @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) @ zero_zero_real @ ( divide_divide_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ ( divide_divide_nat @ ( minus_minus_nat @ N2 @ ( suc @ zero_zero_nat ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( semiri2265585572941072030t_real @ N2 ) ) ) ) ) ).

% sin_coeff_def
thf(fact_9149_complex__unimodular__polar,axiom,
    ! [Z: complex] :
      ( ( ( real_V1022390504157884413omplex @ Z )
        = one_one_real )
     => ~ ! [T5: real] :
            ( ( ord_less_eq_real @ zero_zero_real @ T5 )
           => ( ( ord_less_real @ T5 @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) )
             => ( Z
               != ( complex2 @ ( cos_real @ T5 ) @ ( sin_real @ T5 ) ) ) ) ) ) ).

% complex_unimodular_polar
thf(fact_9150_sin__paired,axiom,
    ! [X2: real] :
      ( sums_real
      @ ^ [N2: nat] : ( times_times_real @ ( divide_divide_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N2 ) @ ( semiri2265585572941072030t_real @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) @ one_one_nat ) ) ) @ ( power_power_real @ X2 @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) @ one_one_nat ) ) )
      @ ( sin_real @ X2 ) ) ).

% sin_paired
thf(fact_9151_cos__arcsin,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X2 )
     => ( ( ord_less_eq_real @ X2 @ one_one_real )
       => ( ( cos_real @ ( arcsin @ X2 ) )
          = ( sqrt @ ( minus_minus_real @ one_one_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% cos_arcsin
thf(fact_9152_sin__arccos__abs,axiom,
    ! [Y2: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ Y2 ) @ one_one_real )
     => ( ( sin_real @ ( arccos @ Y2 ) )
        = ( sqrt @ ( minus_minus_real @ one_one_real @ ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% sin_arccos_abs
thf(fact_9153_arccos__1,axiom,
    ( ( arccos @ one_one_real )
    = zero_zero_real ) ).

% arccos_1
thf(fact_9154_arccos__minus__1,axiom,
    ( ( arccos @ ( uminus_uminus_real @ one_one_real ) )
    = pi ) ).

% arccos_minus_1
thf(fact_9155_cos__arccos,axiom,
    ! [Y2: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y2 )
     => ( ( ord_less_eq_real @ Y2 @ one_one_real )
       => ( ( cos_real @ ( arccos @ Y2 ) )
          = Y2 ) ) ) ).

% cos_arccos
thf(fact_9156_sin__arcsin,axiom,
    ! [Y2: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y2 )
     => ( ( ord_less_eq_real @ Y2 @ one_one_real )
       => ( ( sin_real @ ( arcsin @ Y2 ) )
          = Y2 ) ) ) ).

% sin_arcsin
thf(fact_9157_norm__cos__sin,axiom,
    ! [T: real] :
      ( ( real_V1022390504157884413omplex @ ( complex2 @ ( cos_real @ T ) @ ( sin_real @ T ) ) )
      = one_one_real ) ).

% norm_cos_sin
thf(fact_9158_arccos__0,axiom,
    ( ( arccos @ zero_zero_real )
    = ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% arccos_0
thf(fact_9159_arcsin__1,axiom,
    ( ( arcsin @ one_one_real )
    = ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% arcsin_1
thf(fact_9160_arcsin__minus__1,axiom,
    ( ( arcsin @ ( uminus_uminus_real @ one_one_real ) )
    = ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).

% arcsin_minus_1
thf(fact_9161_Complex__eq__numeral,axiom,
    ! [A: real,B: real,W: num] :
      ( ( ( complex2 @ A @ B )
        = ( numera6690914467698888265omplex @ W ) )
      = ( ( A
          = ( numeral_numeral_real @ W ) )
        & ( B = zero_zero_real ) ) ) ).

% Complex_eq_numeral
thf(fact_9162_Complex__mult__complex__of__real,axiom,
    ! [X2: real,Y2: real,R2: real] :
      ( ( times_times_complex @ ( complex2 @ X2 @ Y2 ) @ ( real_V4546457046886955230omplex @ R2 ) )
      = ( complex2 @ ( times_times_real @ X2 @ R2 ) @ ( times_times_real @ Y2 @ R2 ) ) ) ).

% Complex_mult_complex_of_real
thf(fact_9163_complex__of__real__mult__Complex,axiom,
    ! [R2: real,X2: real,Y2: real] :
      ( ( times_times_complex @ ( real_V4546457046886955230omplex @ R2 ) @ ( complex2 @ X2 @ Y2 ) )
      = ( complex2 @ ( times_times_real @ R2 @ X2 ) @ ( times_times_real @ R2 @ Y2 ) ) ) ).

% complex_of_real_mult_Complex
thf(fact_9164_complex__add,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( plus_plus_complex @ ( complex2 @ A @ B ) @ ( complex2 @ C @ D ) )
      = ( complex2 @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ D ) ) ) ).

% complex_add
thf(fact_9165_Complex__eq__neg__numeral,axiom,
    ! [A: real,B: real,W: num] :
      ( ( ( complex2 @ A @ B )
        = ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) )
      = ( ( A
          = ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) )
        & ( B = zero_zero_real ) ) ) ).

% Complex_eq_neg_numeral
thf(fact_9166_complex__mult,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( times_times_complex @ ( complex2 @ A @ B ) @ ( complex2 @ C @ D ) )
      = ( complex2 @ ( minus_minus_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D ) ) @ ( plus_plus_real @ ( times_times_real @ A @ D ) @ ( times_times_real @ B @ C ) ) ) ) ).

% complex_mult
thf(fact_9167_Complex__eq__1,axiom,
    ! [A: real,B: real] :
      ( ( ( complex2 @ A @ B )
        = one_one_complex )
      = ( ( A = one_one_real )
        & ( B = zero_zero_real ) ) ) ).

% Complex_eq_1
thf(fact_9168_one__complex_Ocode,axiom,
    ( one_one_complex
    = ( complex2 @ one_one_real @ zero_zero_real ) ) ).

% one_complex.code
thf(fact_9169_complex__of__real__add__Complex,axiom,
    ! [R2: real,X2: real,Y2: real] :
      ( ( plus_plus_complex @ ( real_V4546457046886955230omplex @ R2 ) @ ( complex2 @ X2 @ Y2 ) )
      = ( complex2 @ ( plus_plus_real @ R2 @ X2 ) @ Y2 ) ) ).

% complex_of_real_add_Complex
thf(fact_9170_Complex__add__complex__of__real,axiom,
    ! [X2: real,Y2: real,R2: real] :
      ( ( plus_plus_complex @ ( complex2 @ X2 @ Y2 ) @ ( real_V4546457046886955230omplex @ R2 ) )
      = ( complex2 @ ( plus_plus_real @ X2 @ R2 ) @ Y2 ) ) ).

% Complex_add_complex_of_real
thf(fact_9171_arccos__le__arccos,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X2 )
     => ( ( ord_less_eq_real @ X2 @ Y2 )
       => ( ( ord_less_eq_real @ Y2 @ one_one_real )
         => ( ord_less_eq_real @ ( arccos @ Y2 ) @ ( arccos @ X2 ) ) ) ) ) ).

% arccos_le_arccos
thf(fact_9172_arccos__eq__iff,axiom,
    ! [X2: real,Y2: real] :
      ( ( ( ord_less_eq_real @ ( abs_abs_real @ X2 ) @ one_one_real )
        & ( ord_less_eq_real @ ( abs_abs_real @ Y2 ) @ one_one_real ) )
     => ( ( ( arccos @ X2 )
          = ( arccos @ Y2 ) )
        = ( X2 = Y2 ) ) ) ).

% arccos_eq_iff
thf(fact_9173_arccos__le__mono,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ X2 ) @ one_one_real )
     => ( ( ord_less_eq_real @ ( abs_abs_real @ Y2 ) @ one_one_real )
       => ( ( ord_less_eq_real @ ( arccos @ X2 ) @ ( arccos @ Y2 ) )
          = ( ord_less_eq_real @ Y2 @ X2 ) ) ) ) ).

% arccos_le_mono
thf(fact_9174_arcsin__minus,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X2 )
     => ( ( ord_less_eq_real @ X2 @ one_one_real )
       => ( ( arcsin @ ( uminus_uminus_real @ X2 ) )
          = ( uminus_uminus_real @ ( arcsin @ X2 ) ) ) ) ) ).

% arcsin_minus
thf(fact_9175_arcsin__le__arcsin,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X2 )
     => ( ( ord_less_eq_real @ X2 @ Y2 )
       => ( ( ord_less_eq_real @ Y2 @ one_one_real )
         => ( ord_less_eq_real @ ( arcsin @ X2 ) @ ( arcsin @ Y2 ) ) ) ) ) ).

% arcsin_le_arcsin
thf(fact_9176_arcsin__eq__iff,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ X2 ) @ one_one_real )
     => ( ( ord_less_eq_real @ ( abs_abs_real @ Y2 ) @ one_one_real )
       => ( ( ( arcsin @ X2 )
            = ( arcsin @ Y2 ) )
          = ( X2 = Y2 ) ) ) ) ).

% arcsin_eq_iff
thf(fact_9177_arcsin__le__mono,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ X2 ) @ one_one_real )
     => ( ( ord_less_eq_real @ ( abs_abs_real @ Y2 ) @ one_one_real )
       => ( ( ord_less_eq_real @ ( arcsin @ X2 ) @ ( arcsin @ Y2 ) )
          = ( ord_less_eq_real @ X2 @ Y2 ) ) ) ) ).

% arcsin_le_mono
thf(fact_9178_Complex__eq__neg__1,axiom,
    ! [A: real,B: real] :
      ( ( ( complex2 @ A @ B )
        = ( uminus1482373934393186551omplex @ one_one_complex ) )
      = ( ( A
          = ( uminus_uminus_real @ one_one_real ) )
        & ( B = zero_zero_real ) ) ) ).

% Complex_eq_neg_1
thf(fact_9179_arccos__lbound,axiom,
    ! [Y2: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y2 )
     => ( ( ord_less_eq_real @ Y2 @ one_one_real )
       => ( ord_less_eq_real @ zero_zero_real @ ( arccos @ Y2 ) ) ) ) ).

% arccos_lbound
thf(fact_9180_arccos__less__arccos,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X2 )
     => ( ( ord_less_real @ X2 @ Y2 )
       => ( ( ord_less_eq_real @ Y2 @ one_one_real )
         => ( ord_less_real @ ( arccos @ Y2 ) @ ( arccos @ X2 ) ) ) ) ) ).

% arccos_less_arccos
thf(fact_9181_arccos__less__mono,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ X2 ) @ one_one_real )
     => ( ( ord_less_eq_real @ ( abs_abs_real @ Y2 ) @ one_one_real )
       => ( ( ord_less_real @ ( arccos @ X2 ) @ ( arccos @ Y2 ) )
          = ( ord_less_real @ Y2 @ X2 ) ) ) ) ).

% arccos_less_mono
thf(fact_9182_arccos__ubound,axiom,
    ! [Y2: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y2 )
     => ( ( ord_less_eq_real @ Y2 @ one_one_real )
       => ( ord_less_eq_real @ ( arccos @ Y2 ) @ pi ) ) ) ).

% arccos_ubound
thf(fact_9183_arccos__cos,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ( ord_less_eq_real @ X2 @ pi )
       => ( ( arccos @ ( cos_real @ X2 ) )
          = X2 ) ) ) ).

% arccos_cos
thf(fact_9184_arcsin__less__arcsin,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X2 )
     => ( ( ord_less_real @ X2 @ Y2 )
       => ( ( ord_less_eq_real @ Y2 @ one_one_real )
         => ( ord_less_real @ ( arcsin @ X2 ) @ ( arcsin @ Y2 ) ) ) ) ) ).

% arcsin_less_arcsin
thf(fact_9185_arcsin__less__mono,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ X2 ) @ one_one_real )
     => ( ( ord_less_eq_real @ ( abs_abs_real @ Y2 ) @ one_one_real )
       => ( ( ord_less_real @ ( arcsin @ X2 ) @ ( arcsin @ Y2 ) )
          = ( ord_less_real @ X2 @ Y2 ) ) ) ) ).

% arcsin_less_mono
thf(fact_9186_cos__arccos__abs,axiom,
    ! [Y2: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ Y2 ) @ one_one_real )
     => ( ( cos_real @ ( arccos @ Y2 ) )
        = Y2 ) ) ).

% cos_arccos_abs
thf(fact_9187_arccos__cos__eq__abs,axiom,
    ! [Theta: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ Theta ) @ pi )
     => ( ( arccos @ ( cos_real @ Theta ) )
        = ( abs_abs_real @ Theta ) ) ) ).

% arccos_cos_eq_abs
thf(fact_9188_arccos__lt__bounded,axiom,
    ! [Y2: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ Y2 )
     => ( ( ord_less_real @ Y2 @ one_one_real )
       => ( ( ord_less_real @ zero_zero_real @ ( arccos @ Y2 ) )
          & ( ord_less_real @ ( arccos @ Y2 ) @ pi ) ) ) ) ).

% arccos_lt_bounded
thf(fact_9189_arccos__bounded,axiom,
    ! [Y2: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y2 )
     => ( ( ord_less_eq_real @ Y2 @ one_one_real )
       => ( ( ord_less_eq_real @ zero_zero_real @ ( arccos @ Y2 ) )
          & ( ord_less_eq_real @ ( arccos @ Y2 ) @ pi ) ) ) ) ).

% arccos_bounded
thf(fact_9190_sin__arccos__nonzero,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ X2 )
     => ( ( ord_less_real @ X2 @ one_one_real )
       => ( ( sin_real @ ( arccos @ X2 ) )
         != zero_zero_real ) ) ) ).

% sin_arccos_nonzero
thf(fact_9191_arccos__cos2,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ X2 @ zero_zero_real )
     => ( ( ord_less_eq_real @ ( uminus_uminus_real @ pi ) @ X2 )
       => ( ( arccos @ ( cos_real @ X2 ) )
          = ( uminus_uminus_real @ X2 ) ) ) ) ).

% arccos_cos2
thf(fact_9192_arccos__minus,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X2 )
     => ( ( ord_less_eq_real @ X2 @ one_one_real )
       => ( ( arccos @ ( uminus_uminus_real @ X2 ) )
          = ( minus_minus_real @ pi @ ( arccos @ X2 ) ) ) ) ) ).

% arccos_minus
thf(fact_9193_cos__arcsin__nonzero,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ X2 )
     => ( ( ord_less_real @ X2 @ one_one_real )
       => ( ( cos_real @ ( arcsin @ X2 ) )
         != zero_zero_real ) ) ) ).

% cos_arcsin_nonzero
thf(fact_9194_power__half__series,axiom,
    ( sums_real
    @ ^ [N2: nat] : ( power_power_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( suc @ N2 ) )
    @ one_one_real ) ).

% power_half_series
thf(fact_9195_arccos,axiom,
    ! [Y2: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y2 )
     => ( ( ord_less_eq_real @ Y2 @ one_one_real )
       => ( ( ord_less_eq_real @ zero_zero_real @ ( arccos @ Y2 ) )
          & ( ord_less_eq_real @ ( arccos @ Y2 ) @ pi )
          & ( ( cos_real @ ( arccos @ Y2 ) )
            = Y2 ) ) ) ) ).

% arccos
thf(fact_9196_arccos__minus__abs,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ X2 ) @ one_one_real )
     => ( ( arccos @ ( uminus_uminus_real @ X2 ) )
        = ( minus_minus_real @ pi @ ( arccos @ X2 ) ) ) ) ).

% arccos_minus_abs
thf(fact_9197_complex__norm,axiom,
    ! [X2: real,Y2: real] :
      ( ( real_V1022390504157884413omplex @ ( complex2 @ X2 @ Y2 ) )
      = ( sqrt @ ( plus_plus_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% complex_norm
thf(fact_9198_sums__if_H,axiom,
    ! [G: nat > real,X2: real] :
      ( ( sums_real @ G @ X2 )
     => ( sums_real
        @ ^ [N2: nat] : ( if_real @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) @ zero_zero_real @ ( G @ ( divide_divide_nat @ ( minus_minus_nat @ N2 @ one_one_nat ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
        @ X2 ) ) ).

% sums_if'
thf(fact_9199_sums__if,axiom,
    ! [G: nat > real,X2: real,F: nat > real,Y2: real] :
      ( ( sums_real @ G @ X2 )
     => ( ( sums_real @ F @ Y2 )
       => ( sums_real
          @ ^ [N2: nat] : ( if_real @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) @ ( F @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( G @ ( divide_divide_nat @ ( minus_minus_nat @ N2 @ one_one_nat ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
          @ ( plus_plus_real @ X2 @ Y2 ) ) ) ) ).

% sums_if
thf(fact_9200_arccos__le__pi2,axiom,
    ! [Y2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ Y2 )
     => ( ( ord_less_eq_real @ Y2 @ one_one_real )
       => ( ord_less_eq_real @ ( arccos @ Y2 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).

% arccos_le_pi2
thf(fact_9201_arcsin__lt__bounded,axiom,
    ! [Y2: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ Y2 )
     => ( ( ord_less_real @ Y2 @ one_one_real )
       => ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( arcsin @ Y2 ) )
          & ( ord_less_real @ ( arcsin @ Y2 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ).

% arcsin_lt_bounded
thf(fact_9202_arcsin__lbound,axiom,
    ! [Y2: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y2 )
     => ( ( ord_less_eq_real @ Y2 @ one_one_real )
       => ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( arcsin @ Y2 ) ) ) ) ).

% arcsin_lbound
thf(fact_9203_arcsin__ubound,axiom,
    ! [Y2: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y2 )
     => ( ( ord_less_eq_real @ Y2 @ one_one_real )
       => ( ord_less_eq_real @ ( arcsin @ Y2 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).

% arcsin_ubound
thf(fact_9204_arcsin__bounded,axiom,
    ! [Y2: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y2 )
     => ( ( ord_less_eq_real @ Y2 @ one_one_real )
       => ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( arcsin @ Y2 ) )
          & ( ord_less_eq_real @ ( arcsin @ Y2 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ).

% arcsin_bounded
thf(fact_9205_arcsin__sin,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X2 )
     => ( ( ord_less_eq_real @ X2 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
       => ( ( arcsin @ ( sin_real @ X2 ) )
          = X2 ) ) ) ).

% arcsin_sin
thf(fact_9206_cos__paired,axiom,
    ! [X2: real] :
      ( sums_real
      @ ^ [N2: nat] : ( times_times_real @ ( divide_divide_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N2 ) @ ( semiri2265585572941072030t_real @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) @ ( power_power_real @ X2 @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) )
      @ ( cos_real @ X2 ) ) ).

% cos_paired
thf(fact_9207_le__arcsin__iff,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X2 )
     => ( ( ord_less_eq_real @ X2 @ one_one_real )
       => ( ( ord_less_eq_real @ ( divide_divide_real @ ( uminus_uminus_real @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ Y2 )
         => ( ( ord_less_eq_real @ Y2 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
           => ( ( ord_less_eq_real @ Y2 @ ( arcsin @ X2 ) )
              = ( ord_less_eq_real @ ( sin_real @ Y2 ) @ X2 ) ) ) ) ) ) ).

% le_arcsin_iff
thf(fact_9208_arcsin__le__iff,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X2 )
     => ( ( ord_less_eq_real @ X2 @ one_one_real )
       => ( ( ord_less_eq_real @ ( divide_divide_real @ ( uminus_uminus_real @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ Y2 )
         => ( ( ord_less_eq_real @ Y2 @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
           => ( ( ord_less_eq_real @ ( arcsin @ X2 ) @ Y2 )
              = ( ord_less_eq_real @ X2 @ ( sin_real @ Y2 ) ) ) ) ) ) ) ).

% arcsin_le_iff
thf(fact_9209_arcsin__pi,axiom,
    ! [Y2: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y2 )
     => ( ( ord_less_eq_real @ Y2 @ one_one_real )
       => ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( arcsin @ Y2 ) )
          & ( ord_less_eq_real @ ( arcsin @ Y2 ) @ pi )
          & ( ( sin_real @ ( arcsin @ Y2 ) )
            = Y2 ) ) ) ) ).

% arcsin_pi
thf(fact_9210_arcsin,axiom,
    ! [Y2: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ Y2 )
     => ( ( ord_less_eq_real @ Y2 @ one_one_real )
       => ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( arcsin @ Y2 ) )
          & ( ord_less_eq_real @ ( arcsin @ Y2 ) @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
          & ( ( sin_real @ ( arcsin @ Y2 ) )
            = Y2 ) ) ) ) ).

% arcsin
thf(fact_9211_arccos__cos__eq__abs__2pi,axiom,
    ! [Theta: real] :
      ~ ! [K3: int] :
          ( ( arccos @ ( cos_real @ Theta ) )
         != ( abs_abs_real @ ( minus_minus_real @ Theta @ ( times_times_real @ ( ring_1_of_int_real @ K3 ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) ) ) ) ) ).

% arccos_cos_eq_abs_2pi
thf(fact_9212_sin__arccos,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X2 )
     => ( ( ord_less_eq_real @ X2 @ one_one_real )
       => ( ( sin_real @ ( arccos @ X2 ) )
          = ( sqrt @ ( minus_minus_real @ one_one_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% sin_arccos
thf(fact_9213_binomial__code,axiom,
    ( binomial
    = ( ^ [N2: nat,K2: nat] : ( if_nat @ ( ord_less_nat @ N2 @ K2 ) @ zero_zero_nat @ ( if_nat @ ( ord_less_nat @ N2 @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K2 ) ) @ ( binomial @ N2 @ ( minus_minus_nat @ N2 @ K2 ) ) @ ( divide_divide_nat @ ( set_fo2584398358068434914at_nat @ times_times_nat @ ( plus_plus_nat @ ( minus_minus_nat @ N2 @ K2 ) @ one_one_nat ) @ N2 @ one_one_nat ) @ ( semiri1408675320244567234ct_nat @ K2 ) ) ) ) ) ) ).

% binomial_code
thf(fact_9214_binomial__Suc__n,axiom,
    ! [N: nat] :
      ( ( binomial @ ( suc @ N ) @ N )
      = ( suc @ N ) ) ).

% binomial_Suc_n
thf(fact_9215_binomial__n__n,axiom,
    ! [N: nat] :
      ( ( binomial @ N @ N )
      = one_one_nat ) ).

% binomial_n_n
thf(fact_9216_binomial__0__Suc,axiom,
    ! [K: nat] :
      ( ( binomial @ zero_zero_nat @ ( suc @ K ) )
      = zero_zero_nat ) ).

% binomial_0_Suc
thf(fact_9217_binomial__1,axiom,
    ! [N: nat] :
      ( ( binomial @ N @ ( suc @ zero_zero_nat ) )
      = N ) ).

% binomial_1
thf(fact_9218_binomial__eq__0__iff,axiom,
    ! [N: nat,K: nat] :
      ( ( ( binomial @ N @ K )
        = zero_zero_nat )
      = ( ord_less_nat @ N @ K ) ) ).

% binomial_eq_0_iff
thf(fact_9219_binomial__Suc__Suc,axiom,
    ! [N: nat,K: nat] :
      ( ( binomial @ ( suc @ N ) @ ( suc @ K ) )
      = ( plus_plus_nat @ ( binomial @ N @ K ) @ ( binomial @ N @ ( suc @ K ) ) ) ) ).

% binomial_Suc_Suc
thf(fact_9220_binomial__n__0,axiom,
    ! [N: nat] :
      ( ( binomial @ N @ zero_zero_nat )
      = one_one_nat ) ).

% binomial_n_0
thf(fact_9221_zero__less__binomial__iff,axiom,
    ! [N: nat,K: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( binomial @ N @ K ) )
      = ( ord_less_eq_nat @ K @ N ) ) ).

% zero_less_binomial_iff
thf(fact_9222_choose__one,axiom,
    ! [N: nat] :
      ( ( binomial @ N @ one_one_nat )
      = N ) ).

% choose_one
thf(fact_9223_binomial__eq__0,axiom,
    ! [N: nat,K: nat] :
      ( ( ord_less_nat @ N @ K )
     => ( ( binomial @ N @ K )
        = zero_zero_nat ) ) ).

% binomial_eq_0
thf(fact_9224_Suc__times__binomial,axiom,
    ! [K: nat,N: nat] :
      ( ( times_times_nat @ ( suc @ K ) @ ( binomial @ ( suc @ N ) @ ( suc @ K ) ) )
      = ( times_times_nat @ ( suc @ N ) @ ( binomial @ N @ K ) ) ) ).

% Suc_times_binomial
thf(fact_9225_Suc__times__binomial__eq,axiom,
    ! [N: nat,K: nat] :
      ( ( times_times_nat @ ( suc @ N ) @ ( binomial @ N @ K ) )
      = ( times_times_nat @ ( binomial @ ( suc @ N ) @ ( suc @ K ) ) @ ( suc @ K ) ) ) ).

% Suc_times_binomial_eq
thf(fact_9226_binomial__symmetric,axiom,
    ! [K: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ N )
     => ( ( binomial @ N @ K )
        = ( binomial @ N @ ( minus_minus_nat @ N @ K ) ) ) ) ).

% binomial_symmetric
thf(fact_9227_choose__mult__lemma,axiom,
    ! [M: nat,R2: nat,K: nat] :
      ( ( times_times_nat @ ( binomial @ ( plus_plus_nat @ ( plus_plus_nat @ M @ R2 ) @ K ) @ ( plus_plus_nat @ M @ K ) ) @ ( binomial @ ( plus_plus_nat @ M @ K ) @ K ) )
      = ( times_times_nat @ ( binomial @ ( plus_plus_nat @ ( plus_plus_nat @ M @ R2 ) @ K ) @ K ) @ ( binomial @ ( plus_plus_nat @ M @ R2 ) @ M ) ) ) ).

% choose_mult_lemma
thf(fact_9228_binomial__le__pow,axiom,
    ! [R2: nat,N: nat] :
      ( ( ord_less_eq_nat @ R2 @ N )
     => ( ord_less_eq_nat @ ( binomial @ N @ R2 ) @ ( power_power_nat @ N @ R2 ) ) ) ).

% binomial_le_pow
thf(fact_9229_zero__less__binomial,axiom,
    ! [K: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ N )
     => ( ord_less_nat @ zero_zero_nat @ ( binomial @ N @ K ) ) ) ).

% zero_less_binomial
thf(fact_9230_Suc__times__binomial__add,axiom,
    ! [A: nat,B: nat] :
      ( ( times_times_nat @ ( suc @ A ) @ ( binomial @ ( suc @ ( plus_plus_nat @ A @ B ) ) @ ( suc @ A ) ) )
      = ( times_times_nat @ ( suc @ B ) @ ( binomial @ ( suc @ ( plus_plus_nat @ A @ B ) ) @ A ) ) ) ).

% Suc_times_binomial_add
thf(fact_9231_binomial__Suc__Suc__eq__times,axiom,
    ! [N: nat,K: nat] :
      ( ( binomial @ ( suc @ N ) @ ( suc @ K ) )
      = ( divide_divide_nat @ ( times_times_nat @ ( suc @ N ) @ ( binomial @ N @ K ) ) @ ( suc @ K ) ) ) ).

% binomial_Suc_Suc_eq_times
thf(fact_9232_choose__mult,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ M )
     => ( ( ord_less_eq_nat @ M @ N )
       => ( ( times_times_nat @ ( binomial @ N @ M ) @ ( binomial @ M @ K ) )
          = ( times_times_nat @ ( binomial @ N @ K ) @ ( binomial @ ( minus_minus_nat @ N @ K ) @ ( minus_minus_nat @ M @ K ) ) ) ) ) ) ).

% choose_mult
thf(fact_9233_binomial__absorb__comp,axiom,
    ! [N: nat,K: nat] :
      ( ( times_times_nat @ ( minus_minus_nat @ N @ K ) @ ( binomial @ N @ K ) )
      = ( times_times_nat @ N @ ( binomial @ ( minus_minus_nat @ N @ one_one_nat ) @ K ) ) ) ).

% binomial_absorb_comp
thf(fact_9234_binomial__absorption,axiom,
    ! [K: nat,N: nat] :
      ( ( times_times_nat @ ( suc @ K ) @ ( binomial @ N @ ( suc @ K ) ) )
      = ( times_times_nat @ N @ ( binomial @ ( minus_minus_nat @ N @ one_one_nat ) @ K ) ) ) ).

% binomial_absorption
thf(fact_9235_binomial__fact__lemma,axiom,
    ! [K: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ N )
     => ( ( times_times_nat @ ( times_times_nat @ ( semiri1408675320244567234ct_nat @ K ) @ ( semiri1408675320244567234ct_nat @ ( minus_minus_nat @ N @ K ) ) ) @ ( binomial @ N @ K ) )
        = ( semiri1408675320244567234ct_nat @ N ) ) ) ).

% binomial_fact_lemma
thf(fact_9236_binomial__maximum_H,axiom,
    ! [N: nat,K: nat] : ( ord_less_eq_nat @ ( binomial @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ K ) @ ( binomial @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ N ) ) ).

% binomial_maximum'
thf(fact_9237_binomial__mono,axiom,
    ! [K: nat,K6: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ K6 )
     => ( ( ord_less_eq_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K6 ) @ N )
       => ( ord_less_eq_nat @ ( binomial @ N @ K ) @ ( binomial @ N @ K6 ) ) ) ) ).

% binomial_mono
thf(fact_9238_binomial__antimono,axiom,
    ! [K: nat,K6: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ K6 )
     => ( ( ord_less_eq_nat @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ K )
       => ( ( ord_less_eq_nat @ K6 @ N )
         => ( ord_less_eq_nat @ ( binomial @ N @ K6 ) @ ( binomial @ N @ K ) ) ) ) ) ).

% binomial_antimono
thf(fact_9239_binomial__maximum,axiom,
    ! [N: nat,K: nat] : ( ord_less_eq_nat @ ( binomial @ N @ K ) @ ( binomial @ N @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% binomial_maximum
thf(fact_9240_binomial__le__pow2,axiom,
    ! [N: nat,K: nat] : ( ord_less_eq_nat @ ( binomial @ N @ K ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).

% binomial_le_pow2
thf(fact_9241_choose__reduce__nat,axiom,
    ! [N: nat,K: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_nat @ zero_zero_nat @ K )
       => ( ( binomial @ N @ K )
          = ( plus_plus_nat @ ( binomial @ ( minus_minus_nat @ N @ one_one_nat ) @ ( minus_minus_nat @ K @ one_one_nat ) ) @ ( binomial @ ( minus_minus_nat @ N @ one_one_nat ) @ K ) ) ) ) ) ).

% choose_reduce_nat
thf(fact_9242_times__binomial__minus1__eq,axiom,
    ! [K: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ K )
     => ( ( times_times_nat @ K @ ( binomial @ N @ K ) )
        = ( times_times_nat @ N @ ( binomial @ ( minus_minus_nat @ N @ one_one_nat ) @ ( minus_minus_nat @ K @ one_one_nat ) ) ) ) ) ).

% times_binomial_minus1_eq
thf(fact_9243_binomial__altdef__nat,axiom,
    ! [K: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ N )
     => ( ( binomial @ N @ K )
        = ( divide_divide_nat @ ( semiri1408675320244567234ct_nat @ N ) @ ( times_times_nat @ ( semiri1408675320244567234ct_nat @ K ) @ ( semiri1408675320244567234ct_nat @ ( minus_minus_nat @ N @ K ) ) ) ) ) ) ).

% binomial_altdef_nat
thf(fact_9244_binomial__less__binomial__Suc,axiom,
    ! [K: nat,N: nat] :
      ( ( ord_less_nat @ K @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
     => ( ord_less_nat @ ( binomial @ N @ K ) @ ( binomial @ N @ ( suc @ K ) ) ) ) ).

% binomial_less_binomial_Suc
thf(fact_9245_binomial__strict__antimono,axiom,
    ! [K: nat,K6: nat,N: nat] :
      ( ( ord_less_nat @ K @ K6 )
     => ( ( ord_less_eq_nat @ N @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K ) )
       => ( ( ord_less_eq_nat @ K6 @ N )
         => ( ord_less_nat @ ( binomial @ N @ K6 ) @ ( binomial @ N @ K ) ) ) ) ) ).

% binomial_strict_antimono
thf(fact_9246_binomial__strict__mono,axiom,
    ! [K: nat,K6: nat,N: nat] :
      ( ( ord_less_nat @ K @ K6 )
     => ( ( ord_less_eq_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K6 ) @ N )
       => ( ord_less_nat @ ( binomial @ N @ K ) @ ( binomial @ N @ K6 ) ) ) ) ).

% binomial_strict_mono
thf(fact_9247_central__binomial__odd,axiom,
    ! [N: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( binomial @ N @ ( suc @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
        = ( binomial @ N @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% central_binomial_odd
thf(fact_9248_binomial__addition__formula,axiom,
    ! [N: nat,K: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( binomial @ N @ ( suc @ K ) )
        = ( plus_plus_nat @ ( binomial @ ( minus_minus_nat @ N @ one_one_nat ) @ ( suc @ K ) ) @ ( binomial @ ( minus_minus_nat @ N @ one_one_nat ) @ K ) ) ) ) ).

% binomial_addition_formula
thf(fact_9249_choose__two,axiom,
    ! [N: nat] :
      ( ( binomial @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( divide_divide_nat @ ( times_times_nat @ N @ ( minus_minus_nat @ N @ one_one_nat ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% choose_two
thf(fact_9250_central__binomial__lower__bound,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ord_less_eq_real @ ( divide_divide_real @ ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) @ N ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ N ) ) ) @ ( semiri5074537144036343181t_real @ ( binomial @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ N ) ) ) ) ).

% central_binomial_lower_bound
thf(fact_9251_exp__two__pi__i_H,axiom,
    ( ( exp_complex @ ( times_times_complex @ imaginary_unit @ ( times_times_complex @ ( real_V4546457046886955230omplex @ pi ) @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) )
    = one_one_complex ) ).

% exp_two_pi_i'
thf(fact_9252_exp__two__pi__i,axiom,
    ( ( exp_complex @ ( times_times_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ ( real_V4546457046886955230omplex @ pi ) ) @ imaginary_unit ) )
    = one_one_complex ) ).

% exp_two_pi_i
thf(fact_9253_norm__ii,axiom,
    ( ( real_V1022390504157884413omplex @ imaginary_unit )
    = one_one_real ) ).

% norm_ii
thf(fact_9254_divide__i,axiom,
    ! [X2: complex] :
      ( ( divide1717551699836669952omplex @ X2 @ imaginary_unit )
      = ( times_times_complex @ ( uminus1482373934393186551omplex @ imaginary_unit ) @ X2 ) ) ).

% divide_i
thf(fact_9255_complex__i__mult__minus,axiom,
    ! [X2: complex] :
      ( ( times_times_complex @ imaginary_unit @ ( times_times_complex @ imaginary_unit @ X2 ) )
      = ( uminus1482373934393186551omplex @ X2 ) ) ).

% complex_i_mult_minus
thf(fact_9256_atMost__0,axiom,
    ( ( set_ord_atMost_nat @ zero_zero_nat )
    = ( insert_nat @ zero_zero_nat @ bot_bot_set_nat ) ) ).

% atMost_0
thf(fact_9257_i__squared,axiom,
    ( ( times_times_complex @ imaginary_unit @ imaginary_unit )
    = ( uminus1482373934393186551omplex @ one_one_complex ) ) ).

% i_squared
thf(fact_9258_divide__numeral__i,axiom,
    ! [Z: complex,N: num] :
      ( ( divide1717551699836669952omplex @ Z @ ( times_times_complex @ ( numera6690914467698888265omplex @ N ) @ imaginary_unit ) )
      = ( divide1717551699836669952omplex @ ( uminus1482373934393186551omplex @ ( times_times_complex @ imaginary_unit @ Z ) ) @ ( numera6690914467698888265omplex @ N ) ) ) ).

% divide_numeral_i
thf(fact_9259_power2__i,axiom,
    ( ( power_power_complex @ imaginary_unit @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = ( uminus1482373934393186551omplex @ one_one_complex ) ) ).

% power2_i
thf(fact_9260_exp__pi__i_H,axiom,
    ( ( exp_complex @ ( times_times_complex @ imaginary_unit @ ( real_V4546457046886955230omplex @ pi ) ) )
    = ( uminus1482373934393186551omplex @ one_one_complex ) ) ).

% exp_pi_i'
thf(fact_9261_exp__pi__i,axiom,
    ( ( exp_complex @ ( times_times_complex @ ( real_V4546457046886955230omplex @ pi ) @ imaginary_unit ) )
    = ( uminus1482373934393186551omplex @ one_one_complex ) ) ).

% exp_pi_i
thf(fact_9262_i__even__power,axiom,
    ! [N: nat] :
      ( ( power_power_complex @ imaginary_unit @ ( times_times_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N ) ) ).

% i_even_power
thf(fact_9263_complex__i__not__numeral,axiom,
    ! [W: num] :
      ( imaginary_unit
     != ( numera6690914467698888265omplex @ W ) ) ).

% complex_i_not_numeral
thf(fact_9264_lessThan__Suc__atMost,axiom,
    ! [K: nat] :
      ( ( set_ord_lessThan_nat @ ( suc @ K ) )
      = ( set_ord_atMost_nat @ K ) ) ).

% lessThan_Suc_atMost
thf(fact_9265_atMost__Suc,axiom,
    ! [K: nat] :
      ( ( set_ord_atMost_nat @ ( suc @ K ) )
      = ( insert_nat @ ( suc @ K ) @ ( set_ord_atMost_nat @ K ) ) ) ).

% atMost_Suc
thf(fact_9266_finite__nat__iff__bounded__le,axiom,
    ( finite_finite_nat
    = ( ^ [S5: set_nat] :
        ? [K2: nat] : ( ord_less_eq_set_nat @ S5 @ ( set_ord_atMost_nat @ K2 ) ) ) ) ).

% finite_nat_iff_bounded_le
thf(fact_9267_i__times__eq__iff,axiom,
    ! [W: complex,Z: complex] :
      ( ( ( times_times_complex @ imaginary_unit @ W )
        = Z )
      = ( W
        = ( uminus1482373934393186551omplex @ ( times_times_complex @ imaginary_unit @ Z ) ) ) ) ).

% i_times_eq_iff
thf(fact_9268_complex__i__not__neg__numeral,axiom,
    ! [W: num] :
      ( imaginary_unit
     != ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) ) ).

% complex_i_not_neg_numeral
thf(fact_9269_atMost__nat__numeral,axiom,
    ! [K: num] :
      ( ( set_ord_atMost_nat @ ( numeral_numeral_nat @ K ) )
      = ( insert_nat @ ( numeral_numeral_nat @ K ) @ ( set_ord_atMost_nat @ ( pred_numeral @ K ) ) ) ) ).

% atMost_nat_numeral
thf(fact_9270_sum__choose__upper,axiom,
    ! [M: nat,N: nat] :
      ( ( groups3542108847815614940at_nat
        @ ^ [K2: nat] : ( binomial @ K2 @ M )
        @ ( set_ord_atMost_nat @ N ) )
      = ( binomial @ ( suc @ N ) @ ( suc @ M ) ) ) ).

% sum_choose_upper
thf(fact_9271_imaginary__unit_Ocode,axiom,
    ( imaginary_unit
    = ( complex2 @ zero_zero_real @ one_one_real ) ) ).

% imaginary_unit.code
thf(fact_9272_Complex__eq__i,axiom,
    ! [X2: real,Y2: real] :
      ( ( ( complex2 @ X2 @ Y2 )
        = imaginary_unit )
      = ( ( X2 = zero_zero_real )
        & ( Y2 = one_one_real ) ) ) ).

% Complex_eq_i
thf(fact_9273_i__mult__Complex,axiom,
    ! [A: real,B: real] :
      ( ( times_times_complex @ imaginary_unit @ ( complex2 @ A @ B ) )
      = ( complex2 @ ( uminus_uminus_real @ B ) @ A ) ) ).

% i_mult_Complex
thf(fact_9274_Complex__mult__i,axiom,
    ! [A: real,B: real] :
      ( ( times_times_complex @ ( complex2 @ A @ B ) @ imaginary_unit )
      = ( complex2 @ ( uminus_uminus_real @ B ) @ A ) ) ).

% Complex_mult_i
thf(fact_9275_image__Suc__atMost,axiom,
    ! [N: nat] :
      ( ( image_nat_nat @ suc @ ( set_ord_atMost_nat @ N ) )
      = ( set_or1269000886237332187st_nat @ one_one_nat @ ( suc @ N ) ) ) ).

% image_Suc_atMost
thf(fact_9276_atMost__Suc__eq__insert__0,axiom,
    ! [N: nat] :
      ( ( set_ord_atMost_nat @ ( suc @ N ) )
      = ( insert_nat @ zero_zero_nat @ ( image_nat_nat @ suc @ ( set_ord_atMost_nat @ N ) ) ) ) ).

% atMost_Suc_eq_insert_0
thf(fact_9277_sum__choose__lower,axiom,
    ! [R2: nat,N: nat] :
      ( ( groups3542108847815614940at_nat
        @ ^ [K2: nat] : ( binomial @ ( plus_plus_nat @ R2 @ K2 ) @ K2 )
        @ ( set_ord_atMost_nat @ N ) )
      = ( binomial @ ( suc @ ( plus_plus_nat @ R2 @ N ) ) @ N ) ) ).

% sum_choose_lower
thf(fact_9278_choose__rising__sum_I2_J,axiom,
    ! [N: nat,M: nat] :
      ( ( groups3542108847815614940at_nat
        @ ^ [J3: nat] : ( binomial @ ( plus_plus_nat @ N @ J3 ) @ N )
        @ ( set_ord_atMost_nat @ M ) )
      = ( binomial @ ( plus_plus_nat @ ( plus_plus_nat @ N @ M ) @ one_one_nat ) @ M ) ) ).

% choose_rising_sum(2)
thf(fact_9279_choose__rising__sum_I1_J,axiom,
    ! [N: nat,M: nat] :
      ( ( groups3542108847815614940at_nat
        @ ^ [J3: nat] : ( binomial @ ( plus_plus_nat @ N @ J3 ) @ N )
        @ ( set_ord_atMost_nat @ M ) )
      = ( binomial @ ( plus_plus_nat @ ( plus_plus_nat @ N @ M ) @ one_one_nat ) @ ( plus_plus_nat @ N @ one_one_nat ) ) ) ).

% choose_rising_sum(1)
thf(fact_9280_i__complex__of__real,axiom,
    ! [R2: real] :
      ( ( times_times_complex @ imaginary_unit @ ( real_V4546457046886955230omplex @ R2 ) )
      = ( complex2 @ zero_zero_real @ R2 ) ) ).

% i_complex_of_real
thf(fact_9281_complex__of__real__i,axiom,
    ! [R2: real] :
      ( ( times_times_complex @ ( real_V4546457046886955230omplex @ R2 ) @ imaginary_unit )
      = ( complex2 @ zero_zero_real @ R2 ) ) ).

% complex_of_real_i
thf(fact_9282_atLeast1__atMost__eq__remove0,axiom,
    ! [N: nat] :
      ( ( set_or1269000886237332187st_nat @ ( suc @ zero_zero_nat ) @ N )
      = ( minus_minus_set_nat @ ( set_ord_atMost_nat @ N ) @ ( insert_nat @ zero_zero_nat @ bot_bot_set_nat ) ) ) ).

% atLeast1_atMost_eq_remove0
thf(fact_9283_Complex__eq,axiom,
    ( complex2
    = ( ^ [A3: real,B2: real] : ( plus_plus_complex @ ( real_V4546457046886955230omplex @ A3 ) @ ( times_times_complex @ imaginary_unit @ ( real_V4546457046886955230omplex @ B2 ) ) ) ) ) ).

% Complex_eq
thf(fact_9284_sum__choose__diagonal,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( groups3542108847815614940at_nat
          @ ^ [K2: nat] : ( binomial @ ( minus_minus_nat @ N @ K2 ) @ ( minus_minus_nat @ M @ K2 ) )
          @ ( set_ord_atMost_nat @ M ) )
        = ( binomial @ ( suc @ N ) @ M ) ) ) ).

% sum_choose_diagonal
thf(fact_9285_vandermonde,axiom,
    ! [M: nat,N: nat,R2: nat] :
      ( ( groups3542108847815614940at_nat
        @ ^ [K2: nat] : ( times_times_nat @ ( binomial @ M @ K2 ) @ ( binomial @ N @ ( minus_minus_nat @ R2 @ K2 ) ) )
        @ ( set_ord_atMost_nat @ R2 ) )
      = ( binomial @ ( plus_plus_nat @ M @ N ) @ R2 ) ) ).

% vandermonde
thf(fact_9286_choose__row__sum,axiom,
    ! [N: nat] :
      ( ( groups3542108847815614940at_nat @ ( binomial @ N ) @ ( set_ord_atMost_nat @ N ) )
      = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).

% choose_row_sum
thf(fact_9287_complex__split__polar,axiom,
    ! [Z: complex] :
    ? [R3: real,A6: real] :
      ( Z
      = ( times_times_complex @ ( real_V4546457046886955230omplex @ R3 ) @ ( plus_plus_complex @ ( real_V4546457046886955230omplex @ ( cos_real @ A6 ) ) @ ( times_times_complex @ imaginary_unit @ ( real_V4546457046886955230omplex @ ( sin_real @ A6 ) ) ) ) ) ) ).

% complex_split_polar
thf(fact_9288_binomial,axiom,
    ! [A: nat,B: nat,N: nat] :
      ( ( power_power_nat @ ( plus_plus_nat @ A @ B ) @ N )
      = ( groups3542108847815614940at_nat
        @ ^ [K2: nat] : ( times_times_nat @ ( times_times_nat @ ( semiri1316708129612266289at_nat @ ( binomial @ N @ K2 ) ) @ ( power_power_nat @ A @ K2 ) ) @ ( power_power_nat @ B @ ( minus_minus_nat @ N @ K2 ) ) )
        @ ( set_ord_atMost_nat @ N ) ) ) ).

% binomial
thf(fact_9289_polynomial__product__nat,axiom,
    ! [M: nat,A: nat > nat,N: nat,B: nat > nat,X2: nat] :
      ( ! [I3: nat] :
          ( ( ord_less_nat @ M @ I3 )
         => ( ( A @ I3 )
            = zero_zero_nat ) )
     => ( ! [J2: nat] :
            ( ( ord_less_nat @ N @ J2 )
           => ( ( B @ J2 )
              = zero_zero_nat ) )
       => ( ( times_times_nat
            @ ( groups3542108847815614940at_nat
              @ ^ [I4: nat] : ( times_times_nat @ ( A @ I4 ) @ ( power_power_nat @ X2 @ I4 ) )
              @ ( set_ord_atMost_nat @ M ) )
            @ ( groups3542108847815614940at_nat
              @ ^ [J3: nat] : ( times_times_nat @ ( B @ J3 ) @ ( power_power_nat @ X2 @ J3 ) )
              @ ( set_ord_atMost_nat @ N ) ) )
          = ( groups3542108847815614940at_nat
            @ ^ [R5: nat] :
                ( times_times_nat
                @ ( groups3542108847815614940at_nat
                  @ ^ [K2: nat] : ( times_times_nat @ ( A @ K2 ) @ ( B @ ( minus_minus_nat @ R5 @ K2 ) ) )
                  @ ( set_ord_atMost_nat @ R5 ) )
                @ ( power_power_nat @ X2 @ R5 ) )
            @ ( set_ord_atMost_nat @ ( plus_plus_nat @ M @ N ) ) ) ) ) ) ).

% polynomial_product_nat
thf(fact_9290_choose__square__sum,axiom,
    ! [N: nat] :
      ( ( groups3542108847815614940at_nat
        @ ^ [K2: nat] : ( power_power_nat @ ( binomial @ N @ K2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        @ ( set_ord_atMost_nat @ N ) )
      = ( binomial @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ N ) ) ).

% choose_square_sum
thf(fact_9291_cmod__unit__one,axiom,
    ! [A: real] :
      ( ( real_V1022390504157884413omplex @ ( plus_plus_complex @ ( real_V4546457046886955230omplex @ ( cos_real @ A ) ) @ ( times_times_complex @ imaginary_unit @ ( real_V4546457046886955230omplex @ ( sin_real @ A ) ) ) ) )
      = one_one_real ) ).

% cmod_unit_one
thf(fact_9292_cmod__complex__polar,axiom,
    ! [R2: real,A: real] :
      ( ( real_V1022390504157884413omplex @ ( times_times_complex @ ( real_V4546457046886955230omplex @ R2 ) @ ( plus_plus_complex @ ( real_V4546457046886955230omplex @ ( cos_real @ A ) ) @ ( times_times_complex @ imaginary_unit @ ( real_V4546457046886955230omplex @ ( sin_real @ A ) ) ) ) ) )
      = ( abs_abs_real @ R2 ) ) ).

% cmod_complex_polar
thf(fact_9293_binomial__r__part__sum,axiom,
    ! [M: nat] :
      ( ( groups3542108847815614940at_nat @ ( binomial @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) @ one_one_nat ) ) @ ( set_ord_atMost_nat @ M ) )
      = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) ) ).

% binomial_r_part_sum
thf(fact_9294_choose__linear__sum,axiom,
    ! [N: nat] :
      ( ( groups3542108847815614940at_nat
        @ ^ [I4: nat] : ( times_times_nat @ I4 @ ( binomial @ N @ I4 ) )
        @ ( set_ord_atMost_nat @ N ) )
      = ( times_times_nat @ N @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ) ).

% choose_linear_sum
thf(fact_9295_Arg__minus__ii,axiom,
    ( ( arg @ ( uminus1482373934393186551omplex @ imaginary_unit ) )
    = ( divide_divide_real @ ( uminus_uminus_real @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% Arg_minus_ii
thf(fact_9296_of__nat__id,axiom,
    ( semiri1316708129612266289at_nat
    = ( ^ [N2: nat] : N2 ) ) ).

% of_nat_id
thf(fact_9297_Arg__ii,axiom,
    ( ( arg @ imaginary_unit )
    = ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% Arg_ii
thf(fact_9298_real__scaleR__def,axiom,
    real_V1485227260804924795R_real = times_times_real ).

% real_scaleR_def
thf(fact_9299_complex__scaleR,axiom,
    ! [R2: real,A: real,B: real] :
      ( ( real_V2046097035970521341omplex @ R2 @ ( complex2 @ A @ B ) )
      = ( complex2 @ ( times_times_real @ R2 @ A ) @ ( times_times_real @ R2 @ B ) ) ) ).

% complex_scaleR
thf(fact_9300_Arg__bounded,axiom,
    ! [Z: complex] :
      ( ( ord_less_real @ ( uminus_uminus_real @ pi ) @ ( arg @ Z ) )
      & ( ord_less_eq_real @ ( arg @ Z ) @ pi ) ) ).

% Arg_bounded
thf(fact_9301_finite__int__iff__bounded__le,axiom,
    ( finite_finite_int
    = ( ^ [S5: set_int] :
        ? [K2: int] : ( ord_less_eq_set_int @ ( image_int_int @ abs_abs_int @ S5 ) @ ( set_ord_atMost_int @ K2 ) ) ) ) ).

% finite_int_iff_bounded_le
thf(fact_9302_csqrt__ii,axiom,
    ( ( csqrt @ imaginary_unit )
    = ( divide1717551699836669952omplex @ ( plus_plus_complex @ one_one_complex @ imaginary_unit ) @ ( real_V4546457046886955230omplex @ ( sqrt @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).

% csqrt_ii
thf(fact_9303_cis__minus__pi__half,axiom,
    ( ( cis @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) )
    = ( uminus1482373934393186551omplex @ imaginary_unit ) ) ).

% cis_minus_pi_half
thf(fact_9304_norm__cis,axiom,
    ! [A: real] :
      ( ( real_V1022390504157884413omplex @ ( cis @ A ) )
      = one_one_real ) ).

% norm_cis
thf(fact_9305_power2__csqrt,axiom,
    ! [Z: complex] :
      ( ( power_power_complex @ ( csqrt @ Z ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = Z ) ).

% power2_csqrt
thf(fact_9306_cis__pi__half,axiom,
    ( ( cis @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
    = imaginary_unit ) ).

% cis_pi_half
thf(fact_9307_cis__2pi,axiom,
    ( ( cis @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) )
    = one_one_complex ) ).

% cis_2pi
thf(fact_9308_cis__mult,axiom,
    ! [A: real,B: real] :
      ( ( times_times_complex @ ( cis @ A ) @ ( cis @ B ) )
      = ( cis @ ( plus_plus_real @ A @ B ) ) ) ).

% cis_mult
thf(fact_9309_cis__divide,axiom,
    ! [A: real,B: real] :
      ( ( divide1717551699836669952omplex @ ( cis @ A ) @ ( cis @ B ) )
      = ( cis @ ( minus_minus_real @ A @ B ) ) ) ).

% cis_divide
thf(fact_9310_DeMoivre,axiom,
    ! [A: real,N: nat] :
      ( ( power_power_complex @ ( cis @ A ) @ N )
      = ( cis @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ A ) ) ) ).

% DeMoivre
thf(fact_9311_cis__conv__exp,axiom,
    ( cis
    = ( ^ [B2: real] : ( exp_complex @ ( times_times_complex @ imaginary_unit @ ( real_V4546457046886955230omplex @ B2 ) ) ) ) ) ).

% cis_conv_exp
thf(fact_9312_of__real__sqrt,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ( real_V4546457046886955230omplex @ ( sqrt @ X2 ) )
        = ( csqrt @ ( real_V4546457046886955230omplex @ X2 ) ) ) ) ).

% of_real_sqrt
thf(fact_9313_bij__betw__roots__unity,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( bij_betw_nat_complex
        @ ^ [K2: nat] : ( cis @ ( divide_divide_real @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) @ ( semiri5074537144036343181t_real @ K2 ) ) @ ( semiri5074537144036343181t_real @ N ) ) )
        @ ( set_ord_lessThan_nat @ N )
        @ ( collect_complex
          @ ^ [Z4: complex] :
              ( ( power_power_complex @ Z4 @ N )
              = one_one_complex ) ) ) ) ).

% bij_betw_roots_unity
thf(fact_9314_floor__log__nat__eq__powr__iff,axiom,
    ! [B: nat,K: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B )
     => ( ( ord_less_nat @ zero_zero_nat @ K )
       => ( ( ( archim6058952711729229775r_real @ ( log @ ( semiri5074537144036343181t_real @ B ) @ ( semiri5074537144036343181t_real @ K ) ) )
            = ( semiri1314217659103216013at_int @ N ) )
          = ( ( ord_less_eq_nat @ ( power_power_nat @ B @ N ) @ K )
            & ( ord_less_nat @ K @ ( power_power_nat @ B @ ( plus_plus_nat @ N @ one_one_nat ) ) ) ) ) ) ) ).

% floor_log_nat_eq_powr_iff
thf(fact_9315_floor__divide__eq__div__numeral,axiom,
    ! [A: num,B: num] :
      ( ( archim6058952711729229775r_real @ ( divide_divide_real @ ( numeral_numeral_real @ A ) @ ( numeral_numeral_real @ B ) ) )
      = ( divide_divide_int @ ( numeral_numeral_int @ A ) @ ( numeral_numeral_int @ B ) ) ) ).

% floor_divide_eq_div_numeral
thf(fact_9316_floor__one__divide__eq__div__numeral,axiom,
    ! [B: num] :
      ( ( archim6058952711729229775r_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ B ) ) )
      = ( divide_divide_int @ one_one_int @ ( numeral_numeral_int @ B ) ) ) ).

% floor_one_divide_eq_div_numeral
thf(fact_9317_floor__minus__divide__eq__div__numeral,axiom,
    ! [A: num,B: num] :
      ( ( archim6058952711729229775r_real @ ( uminus_uminus_real @ ( divide_divide_real @ ( numeral_numeral_real @ A ) @ ( numeral_numeral_real @ B ) ) ) )
      = ( divide_divide_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ A ) ) @ ( numeral_numeral_int @ B ) ) ) ).

% floor_minus_divide_eq_div_numeral
thf(fact_9318_floor__minus__one__divide__eq__div__numeral,axiom,
    ! [B: num] :
      ( ( archim6058952711729229775r_real @ ( uminus_uminus_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ B ) ) ) )
      = ( divide_divide_int @ ( uminus_uminus_int @ one_one_int ) @ ( numeral_numeral_int @ B ) ) ) ).

% floor_minus_one_divide_eq_div_numeral
thf(fact_9319_real__sqrt__inverse,axiom,
    ! [X2: real] :
      ( ( sqrt @ ( inverse_inverse_real @ X2 ) )
      = ( inverse_inverse_real @ ( sqrt @ X2 ) ) ) ).

% real_sqrt_inverse
thf(fact_9320_divide__real__def,axiom,
    ( divide_divide_real
    = ( ^ [X: real,Y: real] : ( times_times_real @ X @ ( inverse_inverse_real @ Y ) ) ) ) ).

% divide_real_def
thf(fact_9321_inverse__powr,axiom,
    ! [Y2: real,A: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ Y2 )
     => ( ( powr_real @ ( inverse_inverse_real @ Y2 ) @ A )
        = ( inverse_inverse_real @ ( powr_real @ Y2 @ A ) ) ) ) ).

% inverse_powr
thf(fact_9322_real__of__int__floor__add__one__gt,axiom,
    ! [R2: real] : ( ord_less_real @ R2 @ ( plus_plus_real @ ( ring_1_of_int_real @ ( archim6058952711729229775r_real @ R2 ) ) @ one_one_real ) ) ).

% real_of_int_floor_add_one_gt
thf(fact_9323_floor__eq,axiom,
    ! [N: int,X2: real] :
      ( ( ord_less_real @ ( ring_1_of_int_real @ N ) @ X2 )
     => ( ( ord_less_real @ X2 @ ( plus_plus_real @ ( ring_1_of_int_real @ N ) @ one_one_real ) )
       => ( ( archim6058952711729229775r_real @ X2 )
          = N ) ) ) ).

% floor_eq
thf(fact_9324_real__of__int__floor__add__one__ge,axiom,
    ! [R2: real] : ( ord_less_eq_real @ R2 @ ( plus_plus_real @ ( ring_1_of_int_real @ ( archim6058952711729229775r_real @ R2 ) ) @ one_one_real ) ) ).

% real_of_int_floor_add_one_ge
thf(fact_9325_real__of__int__floor__gt__diff__one,axiom,
    ! [R2: real] : ( ord_less_real @ ( minus_minus_real @ R2 @ one_one_real ) @ ( ring_1_of_int_real @ ( archim6058952711729229775r_real @ R2 ) ) ) ).

% real_of_int_floor_gt_diff_one
thf(fact_9326_real__of__int__floor__ge__diff__one,axiom,
    ! [R2: real] : ( ord_less_eq_real @ ( minus_minus_real @ R2 @ one_one_real ) @ ( ring_1_of_int_real @ ( archim6058952711729229775r_real @ R2 ) ) ) ).

% real_of_int_floor_ge_diff_one
thf(fact_9327_forall__pos__mono__1,axiom,
    ! [P: real > $o,E: real] :
      ( ! [D4: real,E2: real] :
          ( ( ord_less_real @ D4 @ E2 )
         => ( ( P @ D4 )
           => ( P @ E2 ) ) )
     => ( ! [N3: nat] : ( P @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ ( suc @ N3 ) ) ) )
       => ( ( ord_less_real @ zero_zero_real @ E )
         => ( P @ E ) ) ) ) ).

% forall_pos_mono_1
thf(fact_9328_real__arch__inverse,axiom,
    ! [E: real] :
      ( ( ord_less_real @ zero_zero_real @ E )
      = ( ? [N2: nat] :
            ( ( N2 != zero_zero_nat )
            & ( ord_less_real @ zero_zero_real @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ N2 ) ) )
            & ( ord_less_real @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ N2 ) ) @ E ) ) ) ) ).

% real_arch_inverse
thf(fact_9329_forall__pos__mono,axiom,
    ! [P: real > $o,E: real] :
      ( ! [D4: real,E2: real] :
          ( ( ord_less_real @ D4 @ E2 )
         => ( ( P @ D4 )
           => ( P @ E2 ) ) )
     => ( ! [N3: nat] :
            ( ( N3 != zero_zero_nat )
           => ( P @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ N3 ) ) ) )
       => ( ( ord_less_real @ zero_zero_real @ E )
         => ( P @ E ) ) ) ) ).

% forall_pos_mono
thf(fact_9330_sqrt__divide__self__eq,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ( divide_divide_real @ ( sqrt @ X2 ) @ X2 )
        = ( inverse_inverse_real @ ( sqrt @ X2 ) ) ) ) ).

% sqrt_divide_self_eq
thf(fact_9331_ln__inverse,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( ( ln_ln_real @ ( inverse_inverse_real @ X2 ) )
        = ( uminus_uminus_real @ ( ln_ln_real @ X2 ) ) ) ) ).

% ln_inverse
thf(fact_9332_floor__eq2,axiom,
    ! [N: int,X2: real] :
      ( ( ord_less_eq_real @ ( ring_1_of_int_real @ N ) @ X2 )
     => ( ( ord_less_real @ X2 @ ( plus_plus_real @ ( ring_1_of_int_real @ N ) @ one_one_real ) )
       => ( ( archim6058952711729229775r_real @ X2 )
          = N ) ) ) ).

% floor_eq2
thf(fact_9333_floor__divide__real__eq__div,axiom,
    ! [B: int,A: real] :
      ( ( ord_less_eq_int @ zero_zero_int @ B )
     => ( ( archim6058952711729229775r_real @ ( divide_divide_real @ A @ ( ring_1_of_int_real @ B ) ) )
        = ( divide_divide_int @ ( archim6058952711729229775r_real @ A ) @ B ) ) ) ).

% floor_divide_real_eq_div
thf(fact_9334_log__inverse,axiom,
    ! [A: real,X2: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( A != one_one_real )
       => ( ( ord_less_real @ zero_zero_real @ X2 )
         => ( ( log @ A @ ( inverse_inverse_real @ X2 ) )
            = ( uminus_uminus_real @ ( log @ A @ X2 ) ) ) ) ) ) ).

% log_inverse
thf(fact_9335_exp__plus__inverse__exp,axiom,
    ! [X2: real] : ( ord_less_eq_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( plus_plus_real @ ( exp_real @ X2 ) @ ( inverse_inverse_real @ ( exp_real @ X2 ) ) ) ) ).

% exp_plus_inverse_exp
thf(fact_9336_plus__inverse__ge__2,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( ord_less_eq_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( plus_plus_real @ X2 @ ( inverse_inverse_real @ X2 ) ) ) ) ).

% plus_inverse_ge_2
thf(fact_9337_real__inv__sqrt__pow2,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( ( power_power_real @ ( inverse_inverse_real @ ( sqrt @ X2 ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( inverse_inverse_real @ X2 ) ) ) ).

% real_inv_sqrt_pow2
thf(fact_9338_tan__cot,axiom,
    ! [X2: real] :
      ( ( tan_real @ ( minus_minus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ X2 ) )
      = ( inverse_inverse_real @ ( tan_real @ X2 ) ) ) ).

% tan_cot
thf(fact_9339_real__le__x__sinh,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ord_less_eq_real @ X2 @ ( divide_divide_real @ ( minus_minus_real @ ( exp_real @ X2 ) @ ( inverse_inverse_real @ ( exp_real @ X2 ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).

% real_le_x_sinh
thf(fact_9340_real__le__abs__sinh,axiom,
    ! [X2: real] : ( ord_less_eq_real @ ( abs_abs_real @ X2 ) @ ( abs_abs_real @ ( divide_divide_real @ ( minus_minus_real @ ( exp_real @ X2 ) @ ( inverse_inverse_real @ ( exp_real @ X2 ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).

% real_le_abs_sinh
thf(fact_9341_floor__log__eq__powr__iff,axiom,
    ! [X2: real,B: real,K: int] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( ( ord_less_real @ one_one_real @ B )
       => ( ( ( archim6058952711729229775r_real @ ( log @ B @ X2 ) )
            = K )
          = ( ( ord_less_eq_real @ ( powr_real @ B @ ( ring_1_of_int_real @ K ) ) @ X2 )
            & ( ord_less_real @ X2 @ ( powr_real @ B @ ( ring_1_of_int_real @ ( plus_plus_int @ K @ one_one_int ) ) ) ) ) ) ) ) ).

% floor_log_eq_powr_iff
thf(fact_9342_floor__log2__div2,axiom,
    ! [N: nat] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( archim6058952711729229775r_real @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ N ) ) )
        = ( plus_plus_int @ ( archim6058952711729229775r_real @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ one_one_int ) ) ) ).

% floor_log2_div2
thf(fact_9343_floor__log__nat__eq__if,axiom,
    ! [B: nat,N: nat,K: nat] :
      ( ( ord_less_eq_nat @ ( power_power_nat @ B @ N ) @ K )
     => ( ( ord_less_nat @ K @ ( power_power_nat @ B @ ( plus_plus_nat @ N @ one_one_nat ) ) )
       => ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B )
         => ( ( archim6058952711729229775r_real @ ( log @ ( semiri5074537144036343181t_real @ B ) @ ( semiri5074537144036343181t_real @ K ) ) )
            = ( semiri1314217659103216013at_int @ N ) ) ) ) ) ).

% floor_log_nat_eq_if
thf(fact_9344_Maclaurin__sin__bound,axiom,
    ! [X2: real,N: nat] :
      ( ord_less_eq_real
      @ ( abs_abs_real
        @ ( minus_minus_real @ ( sin_real @ X2 )
          @ ( groups6591440286371151544t_real
            @ ^ [M3: nat] : ( times_times_real @ ( sin_coeff @ M3 ) @ ( power_power_real @ X2 @ M3 ) )
            @ ( set_ord_lessThan_nat @ N ) ) ) )
      @ ( times_times_real @ ( inverse_inverse_real @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ ( abs_abs_real @ X2 ) @ N ) ) ) ).

% Maclaurin_sin_bound
thf(fact_9345_sinh__real__less__iff,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_real @ ( sinh_real @ X2 ) @ ( sinh_real @ Y2 ) )
      = ( ord_less_real @ X2 @ Y2 ) ) ).

% sinh_real_less_iff
thf(fact_9346_sinh__real__le__iff,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_eq_real @ ( sinh_real @ X2 ) @ ( sinh_real @ Y2 ) )
      = ( ord_less_eq_real @ X2 @ Y2 ) ) ).

% sinh_real_le_iff
thf(fact_9347_sinh__real__neg__iff,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ ( sinh_real @ X2 ) @ zero_zero_real )
      = ( ord_less_real @ X2 @ zero_zero_real ) ) ).

% sinh_real_neg_iff
thf(fact_9348_sinh__real__pos__iff,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ zero_zero_real @ ( sinh_real @ X2 ) )
      = ( ord_less_real @ zero_zero_real @ X2 ) ) ).

% sinh_real_pos_iff
thf(fact_9349_sinh__real__nonpos__iff,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ ( sinh_real @ X2 ) @ zero_zero_real )
      = ( ord_less_eq_real @ X2 @ zero_zero_real ) ) ).

% sinh_real_nonpos_iff
thf(fact_9350_sinh__real__nonneg__iff,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( sinh_real @ X2 ) )
      = ( ord_less_eq_real @ zero_zero_real @ X2 ) ) ).

% sinh_real_nonneg_iff
thf(fact_9351_bij__betw__Suc,axiom,
    ! [M7: set_nat,N4: set_nat] :
      ( ( bij_betw_nat_nat @ suc @ M7 @ N4 )
      = ( ( image_nat_nat @ suc @ M7 )
        = N4 ) ) ).

% bij_betw_Suc
thf(fact_9352_divide__complex__def,axiom,
    ( divide1717551699836669952omplex
    = ( ^ [X: complex,Y: complex] : ( times_times_complex @ X @ ( invers8013647133539491842omplex @ Y ) ) ) ) ).

% divide_complex_def
thf(fact_9353_fact__eq__fact__times,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq_nat @ N @ M )
     => ( ( semiri1408675320244567234ct_nat @ M )
        = ( times_times_nat @ ( semiri1408675320244567234ct_nat @ N )
          @ ( groups708209901874060359at_nat
            @ ^ [X: nat] : X
            @ ( set_or1269000886237332187st_nat @ ( suc @ N ) @ M ) ) ) ) ) ).

% fact_eq_fact_times
thf(fact_9354_fact__div__fact,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq_nat @ N @ M )
     => ( ( divide_divide_nat @ ( semiri1408675320244567234ct_nat @ M ) @ ( semiri1408675320244567234ct_nat @ N ) )
        = ( groups708209901874060359at_nat
          @ ^ [X: nat] : X
          @ ( set_or1269000886237332187st_nat @ ( plus_plus_nat @ N @ one_one_nat ) @ M ) ) ) ) ).

% fact_div_fact
thf(fact_9355_complex__inverse,axiom,
    ! [A: real,B: real] :
      ( ( invers8013647133539491842omplex @ ( complex2 @ A @ B ) )
      = ( complex2 @ ( divide_divide_real @ A @ ( plus_plus_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ B @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( divide_divide_real @ ( uminus_uminus_real @ B ) @ ( plus_plus_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ B @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% complex_inverse
thf(fact_9356_sinh__ln__real,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( ( sinh_real @ ( ln_ln_real @ X2 ) )
        = ( divide_divide_real @ ( minus_minus_real @ X2 @ ( inverse_inverse_real @ X2 ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).

% sinh_ln_real
thf(fact_9357_bij__betw__nth__root__unity,axiom,
    ! [C: complex,N: nat] :
      ( ( C != zero_zero_complex )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( bij_be1856998921033663316omplex @ ( times_times_complex @ ( times_times_complex @ ( real_V4546457046886955230omplex @ ( root @ N @ ( real_V1022390504157884413omplex @ C ) ) ) @ ( cis @ ( divide_divide_real @ ( arg @ C ) @ ( semiri5074537144036343181t_real @ N ) ) ) ) )
          @ ( collect_complex
            @ ^ [Z4: complex] :
                ( ( power_power_complex @ Z4 @ N )
                = one_one_complex ) )
          @ ( collect_complex
            @ ^ [Z4: complex] :
                ( ( power_power_complex @ Z4 @ N )
                = C ) ) ) ) ) ).

% bij_betw_nth_root_unity
thf(fact_9358_real__root__zero,axiom,
    ! [N: nat] :
      ( ( root @ N @ zero_zero_real )
      = zero_zero_real ) ).

% real_root_zero
thf(fact_9359_real__root__Suc__0,axiom,
    ! [X2: real] :
      ( ( root @ ( suc @ zero_zero_nat ) @ X2 )
      = X2 ) ).

% real_root_Suc_0
thf(fact_9360_real__root__eq__iff,axiom,
    ! [N: nat,X2: real,Y2: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ( root @ N @ X2 )
          = ( root @ N @ Y2 ) )
        = ( X2 = Y2 ) ) ) ).

% real_root_eq_iff
thf(fact_9361_root__0,axiom,
    ! [X2: real] :
      ( ( root @ zero_zero_nat @ X2 )
      = zero_zero_real ) ).

% root_0
thf(fact_9362_real__root__eq__0__iff,axiom,
    ! [N: nat,X2: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ( root @ N @ X2 )
          = zero_zero_real )
        = ( X2 = zero_zero_real ) ) ) ).

% real_root_eq_0_iff
thf(fact_9363_real__root__less__iff,axiom,
    ! [N: nat,X2: real,Y2: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_real @ ( root @ N @ X2 ) @ ( root @ N @ Y2 ) )
        = ( ord_less_real @ X2 @ Y2 ) ) ) ).

% real_root_less_iff
thf(fact_9364_real__root__le__iff,axiom,
    ! [N: nat,X2: real,Y2: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_eq_real @ ( root @ N @ X2 ) @ ( root @ N @ Y2 ) )
        = ( ord_less_eq_real @ X2 @ Y2 ) ) ) ).

% real_root_le_iff
thf(fact_9365_real__root__one,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( root @ N @ one_one_real )
        = one_one_real ) ) ).

% real_root_one
thf(fact_9366_real__root__eq__1__iff,axiom,
    ! [N: nat,X2: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ( root @ N @ X2 )
          = one_one_real )
        = ( X2 = one_one_real ) ) ) ).

% real_root_eq_1_iff
thf(fact_9367_real__root__lt__0__iff,axiom,
    ! [N: nat,X2: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_real @ ( root @ N @ X2 ) @ zero_zero_real )
        = ( ord_less_real @ X2 @ zero_zero_real ) ) ) ).

% real_root_lt_0_iff
thf(fact_9368_real__root__gt__0__iff,axiom,
    ! [N: nat,Y2: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_real @ zero_zero_real @ ( root @ N @ Y2 ) )
        = ( ord_less_real @ zero_zero_real @ Y2 ) ) ) ).

% real_root_gt_0_iff
thf(fact_9369_real__root__ge__0__iff,axiom,
    ! [N: nat,Y2: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_eq_real @ zero_zero_real @ ( root @ N @ Y2 ) )
        = ( ord_less_eq_real @ zero_zero_real @ Y2 ) ) ) ).

% real_root_ge_0_iff
thf(fact_9370_real__root__le__0__iff,axiom,
    ! [N: nat,X2: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_eq_real @ ( root @ N @ X2 ) @ zero_zero_real )
        = ( ord_less_eq_real @ X2 @ zero_zero_real ) ) ) ).

% real_root_le_0_iff
thf(fact_9371_real__root__gt__1__iff,axiom,
    ! [N: nat,Y2: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_real @ one_one_real @ ( root @ N @ Y2 ) )
        = ( ord_less_real @ one_one_real @ Y2 ) ) ) ).

% real_root_gt_1_iff
thf(fact_9372_real__root__lt__1__iff,axiom,
    ! [N: nat,X2: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_real @ ( root @ N @ X2 ) @ one_one_real )
        = ( ord_less_real @ X2 @ one_one_real ) ) ) ).

% real_root_lt_1_iff
thf(fact_9373_real__root__ge__1__iff,axiom,
    ! [N: nat,Y2: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_eq_real @ one_one_real @ ( root @ N @ Y2 ) )
        = ( ord_less_eq_real @ one_one_real @ Y2 ) ) ) ).

% real_root_ge_1_iff
thf(fact_9374_real__root__le__1__iff,axiom,
    ! [N: nat,X2: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_eq_real @ ( root @ N @ X2 ) @ one_one_real )
        = ( ord_less_eq_real @ X2 @ one_one_real ) ) ) ).

% real_root_le_1_iff
thf(fact_9375_real__root__pow__pos2,axiom,
    ! [N: nat,X2: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_eq_real @ zero_zero_real @ X2 )
       => ( ( power_power_real @ ( root @ N @ X2 ) @ N )
          = X2 ) ) ) ).

% real_root_pow_pos2
thf(fact_9376_real__root__inverse,axiom,
    ! [N: nat,X2: real] :
      ( ( root @ N @ ( inverse_inverse_real @ X2 ) )
      = ( inverse_inverse_real @ ( root @ N @ X2 ) ) ) ).

% real_root_inverse
thf(fact_9377_sinh__less__cosh__real,axiom,
    ! [X2: real] : ( ord_less_real @ ( sinh_real @ X2 ) @ ( cosh_real @ X2 ) ) ).

% sinh_less_cosh_real
thf(fact_9378_sinh__le__cosh__real,axiom,
    ! [X2: real] : ( ord_less_eq_real @ ( sinh_real @ X2 ) @ ( cosh_real @ X2 ) ) ).

% sinh_le_cosh_real
thf(fact_9379_real__root__mult,axiom,
    ! [N: nat,X2: real,Y2: real] :
      ( ( root @ N @ ( times_times_real @ X2 @ Y2 ) )
      = ( times_times_real @ ( root @ N @ X2 ) @ ( root @ N @ Y2 ) ) ) ).

% real_root_mult
thf(fact_9380_real__root__mult__exp,axiom,
    ! [M: nat,N: nat,X2: real] :
      ( ( root @ ( times_times_nat @ M @ N ) @ X2 )
      = ( root @ M @ ( root @ N @ X2 ) ) ) ).

% real_root_mult_exp
thf(fact_9381_real__root__commute,axiom,
    ! [M: nat,N: nat,X2: real] :
      ( ( root @ M @ ( root @ N @ X2 ) )
      = ( root @ N @ ( root @ M @ X2 ) ) ) ).

% real_root_commute
thf(fact_9382_real__root__minus,axiom,
    ! [N: nat,X2: real] :
      ( ( root @ N @ ( uminus_uminus_real @ X2 ) )
      = ( uminus_uminus_real @ ( root @ N @ X2 ) ) ) ).

% real_root_minus
thf(fact_9383_real__root__divide,axiom,
    ! [N: nat,X2: real,Y2: real] :
      ( ( root @ N @ ( divide_divide_real @ X2 @ Y2 ) )
      = ( divide_divide_real @ ( root @ N @ X2 ) @ ( root @ N @ Y2 ) ) ) ).

% real_root_divide
thf(fact_9384_real__root__pos__pos__le,axiom,
    ! [X2: real,N: nat] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ord_less_eq_real @ zero_zero_real @ ( root @ N @ X2 ) ) ) ).

% real_root_pos_pos_le
thf(fact_9385_cosh__real__pos,axiom,
    ! [X2: real] : ( ord_less_real @ zero_zero_real @ ( cosh_real @ X2 ) ) ).

% cosh_real_pos
thf(fact_9386_cosh__real__nonneg,axiom,
    ! [X2: real] : ( ord_less_eq_real @ zero_zero_real @ ( cosh_real @ X2 ) ) ).

% cosh_real_nonneg
thf(fact_9387_cosh__real__nonneg__le__iff,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y2 )
       => ( ( ord_less_eq_real @ ( cosh_real @ X2 ) @ ( cosh_real @ Y2 ) )
          = ( ord_less_eq_real @ X2 @ Y2 ) ) ) ) ).

% cosh_real_nonneg_le_iff
thf(fact_9388_cosh__real__nonpos__le__iff,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_eq_real @ X2 @ zero_zero_real )
     => ( ( ord_less_eq_real @ Y2 @ zero_zero_real )
       => ( ( ord_less_eq_real @ ( cosh_real @ X2 ) @ ( cosh_real @ Y2 ) )
          = ( ord_less_eq_real @ Y2 @ X2 ) ) ) ) ).

% cosh_real_nonpos_le_iff
thf(fact_9389_cosh__real__ge__1,axiom,
    ! [X2: real] : ( ord_less_eq_real @ one_one_real @ ( cosh_real @ X2 ) ) ).

% cosh_real_ge_1
thf(fact_9390_real__root__less__mono,axiom,
    ! [N: nat,X2: real,Y2: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_real @ X2 @ Y2 )
       => ( ord_less_real @ ( root @ N @ X2 ) @ ( root @ N @ Y2 ) ) ) ) ).

% real_root_less_mono
thf(fact_9391_real__root__le__mono,axiom,
    ! [N: nat,X2: real,Y2: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_eq_real @ X2 @ Y2 )
       => ( ord_less_eq_real @ ( root @ N @ X2 ) @ ( root @ N @ Y2 ) ) ) ) ).

% real_root_le_mono
thf(fact_9392_real__root__power,axiom,
    ! [N: nat,X2: real,K: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( root @ N @ ( power_power_real @ X2 @ K ) )
        = ( power_power_real @ ( root @ N @ X2 ) @ K ) ) ) ).

% real_root_power
thf(fact_9393_real__root__abs,axiom,
    ! [N: nat,X2: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( root @ N @ ( abs_abs_real @ X2 ) )
        = ( abs_abs_real @ ( root @ N @ X2 ) ) ) ) ).

% real_root_abs
thf(fact_9394_cosh__real__nonpos__less__iff,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_eq_real @ X2 @ zero_zero_real )
     => ( ( ord_less_eq_real @ Y2 @ zero_zero_real )
       => ( ( ord_less_real @ ( cosh_real @ X2 ) @ ( cosh_real @ Y2 ) )
          = ( ord_less_real @ Y2 @ X2 ) ) ) ) ).

% cosh_real_nonpos_less_iff
thf(fact_9395_cosh__real__nonneg__less__iff,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y2 )
       => ( ( ord_less_real @ ( cosh_real @ X2 ) @ ( cosh_real @ Y2 ) )
          = ( ord_less_real @ X2 @ Y2 ) ) ) ) ).

% cosh_real_nonneg_less_iff
thf(fact_9396_cosh__real__strict__mono,axiom,
    ! [X2: real,Y2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ( ord_less_real @ X2 @ Y2 )
       => ( ord_less_real @ ( cosh_real @ X2 ) @ ( cosh_real @ Y2 ) ) ) ) ).

% cosh_real_strict_mono
thf(fact_9397_prod__int__eq,axiom,
    ! [I: nat,J: nat] :
      ( ( groups705719431365010083at_int @ semiri1314217659103216013at_int @ ( set_or1269000886237332187st_nat @ I @ J ) )
      = ( groups1705073143266064639nt_int
        @ ^ [X: int] : X
        @ ( set_or1266510415728281911st_int @ ( semiri1314217659103216013at_int @ I ) @ ( semiri1314217659103216013at_int @ J ) ) ) ) ).

% prod_int_eq
thf(fact_9398_arcosh__cosh__real,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ( arcosh_real @ ( cosh_real @ X2 ) )
        = X2 ) ) ).

% arcosh_cosh_real
thf(fact_9399_real__root__gt__zero,axiom,
    ! [N: nat,X2: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_real @ zero_zero_real @ X2 )
       => ( ord_less_real @ zero_zero_real @ ( root @ N @ X2 ) ) ) ) ).

% real_root_gt_zero
thf(fact_9400_real__root__strict__decreasing,axiom,
    ! [N: nat,N4: nat,X2: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_nat @ N @ N4 )
       => ( ( ord_less_real @ one_one_real @ X2 )
         => ( ord_less_real @ ( root @ N4 @ X2 ) @ ( root @ N @ X2 ) ) ) ) ) ).

% real_root_strict_decreasing
thf(fact_9401_sqrt__def,axiom,
    ( sqrt
    = ( root @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% sqrt_def
thf(fact_9402_root__abs__power,axiom,
    ! [N: nat,Y2: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( abs_abs_real @ ( root @ N @ ( power_power_real @ Y2 @ N ) ) )
        = ( abs_abs_real @ Y2 ) ) ) ).

% root_abs_power
thf(fact_9403_prod__int__plus__eq,axiom,
    ! [I: nat,J: nat] :
      ( ( groups705719431365010083at_int @ semiri1314217659103216013at_int @ ( set_or1269000886237332187st_nat @ I @ ( plus_plus_nat @ I @ J ) ) )
      = ( groups1705073143266064639nt_int
        @ ^ [X: int] : X
        @ ( set_or1266510415728281911st_int @ ( semiri1314217659103216013at_int @ I ) @ ( semiri1314217659103216013at_int @ ( plus_plus_nat @ I @ J ) ) ) ) ) ).

% prod_int_plus_eq
thf(fact_9404_real__root__pos__pos,axiom,
    ! [N: nat,X2: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_real @ zero_zero_real @ X2 )
       => ( ord_less_eq_real @ zero_zero_real @ ( root @ N @ X2 ) ) ) ) ).

% real_root_pos_pos
thf(fact_9405_real__root__strict__increasing,axiom,
    ! [N: nat,N4: nat,X2: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_nat @ N @ N4 )
       => ( ( ord_less_real @ zero_zero_real @ X2 )
         => ( ( ord_less_real @ X2 @ one_one_real )
           => ( ord_less_real @ ( root @ N @ X2 ) @ ( root @ N4 @ X2 ) ) ) ) ) ) ).

% real_root_strict_increasing
thf(fact_9406_real__root__decreasing,axiom,
    ! [N: nat,N4: nat,X2: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_eq_nat @ N @ N4 )
       => ( ( ord_less_eq_real @ one_one_real @ X2 )
         => ( ord_less_eq_real @ ( root @ N4 @ X2 ) @ ( root @ N @ X2 ) ) ) ) ) ).

% real_root_decreasing
thf(fact_9407_real__root__pow__pos,axiom,
    ! [N: nat,X2: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_real @ zero_zero_real @ X2 )
       => ( ( power_power_real @ ( root @ N @ X2 ) @ N )
          = X2 ) ) ) ).

% real_root_pow_pos
thf(fact_9408_real__root__pos__unique,axiom,
    ! [N: nat,Y2: real,X2: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y2 )
       => ( ( ( power_power_real @ Y2 @ N )
            = X2 )
         => ( ( root @ N @ X2 )
            = Y2 ) ) ) ) ).

% real_root_pos_unique
thf(fact_9409_real__root__power__cancel,axiom,
    ! [N: nat,X2: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_eq_real @ zero_zero_real @ X2 )
       => ( ( root @ N @ ( power_power_real @ X2 @ N ) )
          = X2 ) ) ) ).

% real_root_power_cancel
thf(fact_9410_odd__real__root__power__cancel,axiom,
    ! [N: nat,X2: real] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( root @ N @ ( power_power_real @ X2 @ N ) )
        = X2 ) ) ).

% odd_real_root_power_cancel
thf(fact_9411_odd__real__root__unique,axiom,
    ! [N: nat,Y2: real,X2: real] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( ( power_power_real @ Y2 @ N )
          = X2 )
       => ( ( root @ N @ X2 )
          = Y2 ) ) ) ).

% odd_real_root_unique
thf(fact_9412_odd__real__root__pow,axiom,
    ! [N: nat,X2: real] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_power_real @ ( root @ N @ X2 ) @ N )
        = X2 ) ) ).

% odd_real_root_pow
thf(fact_9413_real__root__increasing,axiom,
    ! [N: nat,N4: nat,X2: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_eq_nat @ N @ N4 )
       => ( ( ord_less_eq_real @ zero_zero_real @ X2 )
         => ( ( ord_less_eq_real @ X2 @ one_one_real )
           => ( ord_less_eq_real @ ( root @ N @ X2 ) @ ( root @ N4 @ X2 ) ) ) ) ) ) ).

% real_root_increasing
thf(fact_9414_log__root,axiom,
    ! [N: nat,A: real,B: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_real @ zero_zero_real @ A )
       => ( ( log @ B @ ( root @ N @ A ) )
          = ( divide_divide_real @ ( log @ B @ A ) @ ( semiri5074537144036343181t_real @ N ) ) ) ) ) ).

% log_root
thf(fact_9415_log__base__root,axiom,
    ! [N: nat,B: real,X2: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_real @ zero_zero_real @ B )
       => ( ( log @ ( root @ N @ B ) @ X2 )
          = ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( log @ B @ X2 ) ) ) ) ) ).

% log_base_root
thf(fact_9416_ln__root,axiom,
    ! [N: nat,B: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_real @ zero_zero_real @ B )
       => ( ( ln_ln_real @ ( root @ N @ B ) )
          = ( divide_divide_real @ ( ln_ln_real @ B ) @ ( semiri5074537144036343181t_real @ N ) ) ) ) ) ).

% ln_root
thf(fact_9417_root__powr__inverse,axiom,
    ! [N: nat,X2: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_real @ zero_zero_real @ X2 )
       => ( ( root @ N @ X2 )
          = ( powr_real @ X2 @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ N ) ) ) ) ) ) ).

% root_powr_inverse
thf(fact_9418_cosh__ln__real,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( ( cosh_real @ ( ln_ln_real @ X2 ) )
        = ( divide_divide_real @ ( plus_plus_real @ X2 @ ( inverse_inverse_real @ X2 ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).

% cosh_ln_real
thf(fact_9419_arctan__def,axiom,
    ( arctan
    = ( ^ [Y: real] :
          ( the_real
          @ ^ [X: real] :
              ( ( ord_less_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X )
              & ( ord_less_real @ X @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
              & ( ( tan_real @ X )
                = Y ) ) ) ) ) ).

% arctan_def
thf(fact_9420_arcsin__def,axiom,
    ( arcsin
    = ( ^ [Y: real] :
          ( the_real
          @ ^ [X: real] :
              ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ X )
              & ( ord_less_eq_real @ X @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
              & ( ( sin_real @ X )
                = Y ) ) ) ) ) ).

% arcsin_def
thf(fact_9421_signed__take__bit__eq__take__bit__minus,axiom,
    ( bit_ri631733984087533419it_int
    = ( ^ [N2: nat,K2: int] : ( minus_minus_int @ ( bit_se2923211474154528505it_int @ ( suc @ N2 ) @ K2 ) @ ( times_times_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( suc @ N2 ) ) @ ( zero_n2684676970156552555ol_int @ ( bit_se1146084159140164899it_int @ K2 @ N2 ) ) ) ) ) ) ).

% signed_take_bit_eq_take_bit_minus
thf(fact_9422_signed__take__bit__nonnegative__iff,axiom,
    ! [N: nat,K: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( bit_ri631733984087533419it_int @ N @ K ) )
      = ( ~ ( bit_se1146084159140164899it_int @ K @ N ) ) ) ).

% signed_take_bit_nonnegative_iff
thf(fact_9423_signed__take__bit__negative__iff,axiom,
    ! [N: nat,K: int] :
      ( ( ord_less_int @ ( bit_ri631733984087533419it_int @ N @ K ) @ zero_zero_int )
      = ( bit_se1146084159140164899it_int @ K @ N ) ) ).

% signed_take_bit_negative_iff
thf(fact_9424_bit__minus__numeral__Bit0__Suc__iff,axiom,
    ! [W: num,N: nat] :
      ( ( bit_se1146084159140164899it_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ W ) ) ) @ ( suc @ N ) )
      = ( bit_se1146084159140164899it_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ W ) ) @ N ) ) ).

% bit_minus_numeral_Bit0_Suc_iff
thf(fact_9425_bit__minus__numeral__Bit1__Suc__iff,axiom,
    ! [W: num,N: nat] :
      ( ( bit_se1146084159140164899it_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ W ) ) ) @ ( suc @ N ) )
      = ( ~ ( bit_se1146084159140164899it_int @ ( numeral_numeral_int @ W ) @ N ) ) ) ).

% bit_minus_numeral_Bit1_Suc_iff
thf(fact_9426_bit__minus__numeral__int_I1_J,axiom,
    ! [W: num,N: num] :
      ( ( bit_se1146084159140164899it_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ W ) ) ) @ ( numeral_numeral_nat @ N ) )
      = ( bit_se1146084159140164899it_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ W ) ) @ ( pred_numeral @ N ) ) ) ).

% bit_minus_numeral_int(1)
thf(fact_9427_bit__minus__numeral__int_I2_J,axiom,
    ! [W: num,N: num] :
      ( ( bit_se1146084159140164899it_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ W ) ) ) @ ( numeral_numeral_nat @ N ) )
      = ( ~ ( bit_se1146084159140164899it_int @ ( numeral_numeral_int @ W ) @ ( pred_numeral @ N ) ) ) ) ).

% bit_minus_numeral_int(2)
thf(fact_9428_bit__or__int__iff,axiom,
    ! [K: int,L: int,N: nat] :
      ( ( bit_se1146084159140164899it_int @ ( bit_se1409905431419307370or_int @ K @ L ) @ N )
      = ( ( bit_se1146084159140164899it_int @ K @ N )
        | ( bit_se1146084159140164899it_int @ L @ N ) ) ) ).

% bit_or_int_iff
thf(fact_9429_bit__and__int__iff,axiom,
    ! [K: int,L: int,N: nat] :
      ( ( bit_se1146084159140164899it_int @ ( bit_se725231765392027082nd_int @ K @ L ) @ N )
      = ( ( bit_se1146084159140164899it_int @ K @ N )
        & ( bit_se1146084159140164899it_int @ L @ N ) ) ) ).

% bit_and_int_iff
thf(fact_9430_ln__real__def,axiom,
    ( ln_ln_real
    = ( ^ [X: real] :
          ( the_real
          @ ^ [U2: real] :
              ( ( exp_real @ U2 )
              = X ) ) ) ) ).

% ln_real_def
thf(fact_9431_bit__not__int__iff_H,axiom,
    ! [K: int,N: nat] :
      ( ( bit_se1146084159140164899it_int @ ( minus_minus_int @ ( uminus_uminus_int @ K ) @ one_one_int ) @ N )
      = ( ~ ( bit_se1146084159140164899it_int @ K @ N ) ) ) ).

% bit_not_int_iff'
thf(fact_9432_ln__neg__is__const,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ X2 @ zero_zero_real )
     => ( ( ln_ln_real @ X2 )
        = ( the_real
          @ ^ [X: real] : $false ) ) ) ).

% ln_neg_is_const
thf(fact_9433_bit__imp__take__bit__positive,axiom,
    ! [N: nat,M: nat,K: int] :
      ( ( ord_less_nat @ N @ M )
     => ( ( bit_se1146084159140164899it_int @ K @ N )
       => ( ord_less_int @ zero_zero_int @ ( bit_se2923211474154528505it_int @ M @ K ) ) ) ) ).

% bit_imp_take_bit_positive
thf(fact_9434_bit__concat__bit__iff,axiom,
    ! [M: nat,K: int,L: int,N: nat] :
      ( ( bit_se1146084159140164899it_int @ ( bit_concat_bit @ M @ K @ L ) @ N )
      = ( ( ( ord_less_nat @ N @ M )
          & ( bit_se1146084159140164899it_int @ K @ N ) )
        | ( ( ord_less_eq_nat @ M @ N )
          & ( bit_se1146084159140164899it_int @ L @ ( minus_minus_nat @ N @ M ) ) ) ) ) ).

% bit_concat_bit_iff
thf(fact_9435_signed__take__bit__eq__concat__bit,axiom,
    ( bit_ri631733984087533419it_int
    = ( ^ [N2: nat,K2: int] : ( bit_concat_bit @ N2 @ K2 @ ( uminus_uminus_int @ ( zero_n2684676970156552555ol_int @ ( bit_se1146084159140164899it_int @ K2 @ N2 ) ) ) ) ) ) ).

% signed_take_bit_eq_concat_bit
thf(fact_9436_int__bit__bound,axiom,
    ! [K: int] :
      ~ ! [N3: nat] :
          ( ! [M2: nat] :
              ( ( ord_less_eq_nat @ N3 @ M2 )
             => ( ( bit_se1146084159140164899it_int @ K @ M2 )
                = ( bit_se1146084159140164899it_int @ K @ N3 ) ) )
         => ~ ( ( ord_less_nat @ zero_zero_nat @ N3 )
             => ( ( bit_se1146084159140164899it_int @ K @ ( minus_minus_nat @ N3 @ one_one_nat ) )
                = ( ~ ( bit_se1146084159140164899it_int @ K @ N3 ) ) ) ) ) ).

% int_bit_bound
thf(fact_9437_bit__int__def,axiom,
    ( bit_se1146084159140164899it_int
    = ( ^ [K2: int,N2: nat] :
          ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ K2 @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) ) ) ) ) ).

% bit_int_def
thf(fact_9438_arccos__def,axiom,
    ( arccos
    = ( ^ [Y: real] :
          ( the_real
          @ ^ [X: real] :
              ( ( ord_less_eq_real @ zero_zero_real @ X )
              & ( ord_less_eq_real @ X @ pi )
              & ( ( cos_real @ X )
                = Y ) ) ) ) ) ).

% arccos_def
thf(fact_9439_set__bit__eq,axiom,
    ( bit_se7879613467334960850it_int
    = ( ^ [N2: nat,K2: int] :
          ( plus_plus_int @ K2
          @ ( times_times_int
            @ ( zero_n2684676970156552555ol_int
              @ ~ ( bit_se1146084159140164899it_int @ K2 @ N2 ) )
            @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) ) ) ) ) ).

% set_bit_eq
thf(fact_9440_unset__bit__eq,axiom,
    ( bit_se4203085406695923979it_int
    = ( ^ [N2: nat,K2: int] : ( minus_minus_int @ K2 @ ( times_times_int @ ( zero_n2684676970156552555ol_int @ ( bit_se1146084159140164899it_int @ K2 @ N2 ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) ) ) ) ) ).

% unset_bit_eq
thf(fact_9441_pi__half,axiom,
    ( ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
    = ( the_real
      @ ^ [X: real] :
          ( ( ord_less_eq_real @ zero_zero_real @ X )
          & ( ord_less_eq_real @ X @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
          & ( ( cos_real @ X )
            = zero_zero_real ) ) ) ) ).

% pi_half
thf(fact_9442_pi__def,axiom,
    ( pi
    = ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) )
      @ ( the_real
        @ ^ [X: real] :
            ( ( ord_less_eq_real @ zero_zero_real @ X )
            & ( ord_less_eq_real @ X @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
            & ( ( cos_real @ X )
              = zero_zero_real ) ) ) ) ) ).

% pi_def
thf(fact_9443_take__bit__Suc__from__most,axiom,
    ! [N: nat,K: int] :
      ( ( bit_se2923211474154528505it_int @ ( suc @ N ) @ K )
      = ( plus_plus_int @ ( times_times_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) @ ( zero_n2684676970156552555ol_int @ ( bit_se1146084159140164899it_int @ K @ N ) ) ) @ ( bit_se2923211474154528505it_int @ N @ K ) ) ) ).

% take_bit_Suc_from_most
thf(fact_9444_bit__Suc__0__iff,axiom,
    ! [N: nat] :
      ( ( bit_se1148574629649215175it_nat @ ( suc @ zero_zero_nat ) @ N )
      = ( N = zero_zero_nat ) ) ).

% bit_Suc_0_iff
thf(fact_9445_not__bit__Suc__0__Suc,axiom,
    ! [N: nat] :
      ~ ( bit_se1148574629649215175it_nat @ ( suc @ zero_zero_nat ) @ ( suc @ N ) ) ).

% not_bit_Suc_0_Suc
thf(fact_9446_not__bit__Suc__0__numeral,axiom,
    ! [N: num] :
      ~ ( bit_se1148574629649215175it_nat @ ( suc @ zero_zero_nat ) @ ( numeral_numeral_nat @ N ) ) ).

% not_bit_Suc_0_numeral
thf(fact_9447_bit__nat__def,axiom,
    ( bit_se1148574629649215175it_nat
    = ( ^ [M3: nat,N2: nat] :
          ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ M3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) ) ) ).

% bit_nat_def
thf(fact_9448_floor__real__def,axiom,
    ( archim6058952711729229775r_real
    = ( ^ [X: real] :
          ( the_int
          @ ^ [Z4: int] :
              ( ( ord_less_eq_real @ ( ring_1_of_int_real @ Z4 ) @ X )
              & ( ord_less_real @ X @ ( ring_1_of_int_real @ ( plus_plus_int @ Z4 @ one_one_int ) ) ) ) ) ) ) ).

% floor_real_def
thf(fact_9449_modulo__int__unfold,axiom,
    ! [L: int,K: int,N: nat,M: nat] :
      ( ( ( ( ( sgn_sgn_int @ L )
            = zero_zero_int )
          | ( ( sgn_sgn_int @ K )
            = zero_zero_int )
          | ( N = zero_zero_nat ) )
       => ( ( modulo_modulo_int @ ( times_times_int @ ( sgn_sgn_int @ K ) @ ( semiri1314217659103216013at_int @ M ) ) @ ( times_times_int @ ( sgn_sgn_int @ L ) @ ( semiri1314217659103216013at_int @ N ) ) )
          = ( times_times_int @ ( sgn_sgn_int @ K ) @ ( semiri1314217659103216013at_int @ M ) ) ) )
      & ( ~ ( ( ( sgn_sgn_int @ L )
              = zero_zero_int )
            | ( ( sgn_sgn_int @ K )
              = zero_zero_int )
            | ( N = zero_zero_nat ) )
       => ( ( ( ( sgn_sgn_int @ K )
              = ( sgn_sgn_int @ L ) )
           => ( ( modulo_modulo_int @ ( times_times_int @ ( sgn_sgn_int @ K ) @ ( semiri1314217659103216013at_int @ M ) ) @ ( times_times_int @ ( sgn_sgn_int @ L ) @ ( semiri1314217659103216013at_int @ N ) ) )
              = ( times_times_int @ ( sgn_sgn_int @ L ) @ ( semiri1314217659103216013at_int @ ( modulo_modulo_nat @ M @ N ) ) ) ) )
          & ( ( ( sgn_sgn_int @ K )
             != ( sgn_sgn_int @ L ) )
           => ( ( modulo_modulo_int @ ( times_times_int @ ( sgn_sgn_int @ K ) @ ( semiri1314217659103216013at_int @ M ) ) @ ( times_times_int @ ( sgn_sgn_int @ L ) @ ( semiri1314217659103216013at_int @ N ) ) )
              = ( times_times_int @ ( sgn_sgn_int @ L )
                @ ( minus_minus_int
                  @ ( semiri1314217659103216013at_int
                    @ ( times_times_nat @ N
                      @ ( zero_n2687167440665602831ol_nat
                        @ ~ ( dvd_dvd_nat @ N @ M ) ) ) )
                  @ ( semiri1314217659103216013at_int @ ( modulo_modulo_nat @ M @ N ) ) ) ) ) ) ) ) ) ).

% modulo_int_unfold
thf(fact_9450_powr__int,axiom,
    ! [X2: real,I: int] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( ( ( ord_less_eq_int @ zero_zero_int @ I )
         => ( ( powr_real @ X2 @ ( ring_1_of_int_real @ I ) )
            = ( power_power_real @ X2 @ ( nat2 @ I ) ) ) )
        & ( ~ ( ord_less_eq_int @ zero_zero_int @ I )
         => ( ( powr_real @ X2 @ ( ring_1_of_int_real @ I ) )
            = ( divide_divide_real @ one_one_real @ ( power_power_real @ X2 @ ( nat2 @ ( uminus_uminus_int @ I ) ) ) ) ) ) ) ) ).

% powr_int
thf(fact_9451_divide__int__unfold,axiom,
    ! [L: int,K: int,N: nat,M: nat] :
      ( ( ( ( ( sgn_sgn_int @ L )
            = zero_zero_int )
          | ( ( sgn_sgn_int @ K )
            = zero_zero_int )
          | ( N = zero_zero_nat ) )
       => ( ( divide_divide_int @ ( times_times_int @ ( sgn_sgn_int @ K ) @ ( semiri1314217659103216013at_int @ M ) ) @ ( times_times_int @ ( sgn_sgn_int @ L ) @ ( semiri1314217659103216013at_int @ N ) ) )
          = zero_zero_int ) )
      & ( ~ ( ( ( sgn_sgn_int @ L )
              = zero_zero_int )
            | ( ( sgn_sgn_int @ K )
              = zero_zero_int )
            | ( N = zero_zero_nat ) )
       => ( ( ( ( sgn_sgn_int @ K )
              = ( sgn_sgn_int @ L ) )
           => ( ( divide_divide_int @ ( times_times_int @ ( sgn_sgn_int @ K ) @ ( semiri1314217659103216013at_int @ M ) ) @ ( times_times_int @ ( sgn_sgn_int @ L ) @ ( semiri1314217659103216013at_int @ N ) ) )
              = ( semiri1314217659103216013at_int @ ( divide_divide_nat @ M @ N ) ) ) )
          & ( ( ( sgn_sgn_int @ K )
             != ( sgn_sgn_int @ L ) )
           => ( ( divide_divide_int @ ( times_times_int @ ( sgn_sgn_int @ K ) @ ( semiri1314217659103216013at_int @ M ) ) @ ( times_times_int @ ( sgn_sgn_int @ L ) @ ( semiri1314217659103216013at_int @ N ) ) )
              = ( uminus_uminus_int
                @ ( semiri1314217659103216013at_int
                  @ ( plus_plus_nat @ ( divide_divide_nat @ M @ N )
                    @ ( zero_n2687167440665602831ol_nat
                      @ ~ ( dvd_dvd_nat @ N @ M ) ) ) ) ) ) ) ) ) ) ).

% divide_int_unfold
thf(fact_9452_nat__numeral,axiom,
    ! [K: num] :
      ( ( nat2 @ ( numeral_numeral_int @ K ) )
      = ( numeral_numeral_nat @ K ) ) ).

% nat_numeral
thf(fact_9453_nat__1,axiom,
    ( ( nat2 @ one_one_int )
    = ( suc @ zero_zero_nat ) ) ).

% nat_1
thf(fact_9454_nat__0__iff,axiom,
    ! [I: int] :
      ( ( ( nat2 @ I )
        = zero_zero_nat )
      = ( ord_less_eq_int @ I @ zero_zero_int ) ) ).

% nat_0_iff
thf(fact_9455_nat__le__0,axiom,
    ! [Z: int] :
      ( ( ord_less_eq_int @ Z @ zero_zero_int )
     => ( ( nat2 @ Z )
        = zero_zero_nat ) ) ).

% nat_le_0
thf(fact_9456_zless__nat__conj,axiom,
    ! [W: int,Z: int] :
      ( ( ord_less_nat @ ( nat2 @ W ) @ ( nat2 @ Z ) )
      = ( ( ord_less_int @ zero_zero_int @ Z )
        & ( ord_less_int @ W @ Z ) ) ) ).

% zless_nat_conj
thf(fact_9457_nat__neg__numeral,axiom,
    ! [K: num] :
      ( ( nat2 @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) )
      = zero_zero_nat ) ).

% nat_neg_numeral
thf(fact_9458_int__nat__eq,axiom,
    ! [Z: int] :
      ( ( ( ord_less_eq_int @ zero_zero_int @ Z )
       => ( ( semiri1314217659103216013at_int @ ( nat2 @ Z ) )
          = Z ) )
      & ( ~ ( ord_less_eq_int @ zero_zero_int @ Z )
       => ( ( semiri1314217659103216013at_int @ ( nat2 @ Z ) )
          = zero_zero_int ) ) ) ).

% int_nat_eq
thf(fact_9459_dvd__mult__sgn__iff,axiom,
    ! [L: int,K: int,R2: int] :
      ( ( dvd_dvd_int @ L @ ( times_times_int @ K @ ( sgn_sgn_int @ R2 ) ) )
      = ( ( dvd_dvd_int @ L @ K )
        | ( R2 = zero_zero_int ) ) ) ).

% dvd_mult_sgn_iff
thf(fact_9460_dvd__sgn__mult__iff,axiom,
    ! [L: int,R2: int,K: int] :
      ( ( dvd_dvd_int @ L @ ( times_times_int @ ( sgn_sgn_int @ R2 ) @ K ) )
      = ( ( dvd_dvd_int @ L @ K )
        | ( R2 = zero_zero_int ) ) ) ).

% dvd_sgn_mult_iff
thf(fact_9461_mult__sgn__dvd__iff,axiom,
    ! [L: int,R2: int,K: int] :
      ( ( dvd_dvd_int @ ( times_times_int @ L @ ( sgn_sgn_int @ R2 ) ) @ K )
      = ( ( dvd_dvd_int @ L @ K )
        & ( ( R2 = zero_zero_int )
         => ( K = zero_zero_int ) ) ) ) ).

% mult_sgn_dvd_iff
thf(fact_9462_sgn__mult__dvd__iff,axiom,
    ! [R2: int,L: int,K: int] :
      ( ( dvd_dvd_int @ ( times_times_int @ ( sgn_sgn_int @ R2 ) @ L ) @ K )
      = ( ( dvd_dvd_int @ L @ K )
        & ( ( R2 = zero_zero_int )
         => ( K = zero_zero_int ) ) ) ) ).

% sgn_mult_dvd_iff
thf(fact_9463_zero__less__nat__eq,axiom,
    ! [Z: int] :
      ( ( ord_less_nat @ zero_zero_nat @ ( nat2 @ Z ) )
      = ( ord_less_int @ zero_zero_int @ Z ) ) ).

% zero_less_nat_eq
thf(fact_9464_diff__nat__numeral,axiom,
    ! [V: num,V3: num] :
      ( ( minus_minus_nat @ ( numeral_numeral_nat @ V ) @ ( numeral_numeral_nat @ V3 ) )
      = ( nat2 @ ( minus_minus_int @ ( numeral_numeral_int @ V ) @ ( numeral_numeral_int @ V3 ) ) ) ) ).

% diff_nat_numeral
thf(fact_9465_numeral__power__eq__nat__cancel__iff,axiom,
    ! [X2: num,N: nat,Y2: int] :
      ( ( ( power_power_nat @ ( numeral_numeral_nat @ X2 ) @ N )
        = ( nat2 @ Y2 ) )
      = ( ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N )
        = Y2 ) ) ).

% numeral_power_eq_nat_cancel_iff
thf(fact_9466_nat__eq__numeral__power__cancel__iff,axiom,
    ! [Y2: int,X2: num,N: nat] :
      ( ( ( nat2 @ Y2 )
        = ( power_power_nat @ ( numeral_numeral_nat @ X2 ) @ N ) )
      = ( Y2
        = ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N ) ) ) ).

% nat_eq_numeral_power_cancel_iff
thf(fact_9467_nat__ceiling__le__eq,axiom,
    ! [X2: real,A: nat] :
      ( ( ord_less_eq_nat @ ( nat2 @ ( archim7802044766580827645g_real @ X2 ) ) @ A )
      = ( ord_less_eq_real @ X2 @ ( semiri5074537144036343181t_real @ A ) ) ) ).

% nat_ceiling_le_eq
thf(fact_9468_one__less__nat__eq,axiom,
    ! [Z: int] :
      ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ ( nat2 @ Z ) )
      = ( ord_less_int @ one_one_int @ Z ) ) ).

% one_less_nat_eq
thf(fact_9469_nat__numeral__diff__1,axiom,
    ! [V: num] :
      ( ( minus_minus_nat @ ( numeral_numeral_nat @ V ) @ one_one_nat )
      = ( nat2 @ ( minus_minus_int @ ( numeral_numeral_int @ V ) @ one_one_int ) ) ) ).

% nat_numeral_diff_1
thf(fact_9470_numeral__power__less__nat__cancel__iff,axiom,
    ! [X2: num,N: nat,A: int] :
      ( ( ord_less_nat @ ( power_power_nat @ ( numeral_numeral_nat @ X2 ) @ N ) @ ( nat2 @ A ) )
      = ( ord_less_int @ ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N ) @ A ) ) ).

% numeral_power_less_nat_cancel_iff
thf(fact_9471_nat__less__numeral__power__cancel__iff,axiom,
    ! [A: int,X2: num,N: nat] :
      ( ( ord_less_nat @ ( nat2 @ A ) @ ( power_power_nat @ ( numeral_numeral_nat @ X2 ) @ N ) )
      = ( ord_less_int @ A @ ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N ) ) ) ).

% nat_less_numeral_power_cancel_iff
thf(fact_9472_numeral__power__le__nat__cancel__iff,axiom,
    ! [X2: num,N: nat,A: int] :
      ( ( ord_less_eq_nat @ ( power_power_nat @ ( numeral_numeral_nat @ X2 ) @ N ) @ ( nat2 @ A ) )
      = ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N ) @ A ) ) ).

% numeral_power_le_nat_cancel_iff
thf(fact_9473_nat__le__numeral__power__cancel__iff,axiom,
    ! [A: int,X2: num,N: nat] :
      ( ( ord_less_eq_nat @ ( nat2 @ A ) @ ( power_power_nat @ ( numeral_numeral_nat @ X2 ) @ N ) )
      = ( ord_less_eq_int @ A @ ( power_power_int @ ( numeral_numeral_int @ X2 ) @ N ) ) ) ).

% nat_le_numeral_power_cancel_iff
thf(fact_9474_nat__numeral__as__int,axiom,
    ( numeral_numeral_nat
    = ( ^ [I4: num] : ( nat2 @ ( numeral_numeral_int @ I4 ) ) ) ) ).

% nat_numeral_as_int
thf(fact_9475_nat__mono,axiom,
    ! [X2: int,Y2: int] :
      ( ( ord_less_eq_int @ X2 @ Y2 )
     => ( ord_less_eq_nat @ ( nat2 @ X2 ) @ ( nat2 @ Y2 ) ) ) ).

% nat_mono
thf(fact_9476_int__sgnE,axiom,
    ! [K: int] :
      ~ ! [N3: nat,L4: int] :
          ( K
         != ( times_times_int @ ( sgn_sgn_int @ L4 ) @ ( semiri1314217659103216013at_int @ N3 ) ) ) ).

% int_sgnE
thf(fact_9477_ex__nat,axiom,
    ( ( ^ [P3: nat > $o] :
        ? [X6: nat] : ( P3 @ X6 ) )
    = ( ^ [P4: nat > $o] :
        ? [X: int] :
          ( ( ord_less_eq_int @ zero_zero_int @ X )
          & ( P4 @ ( nat2 @ X ) ) ) ) ) ).

% ex_nat
thf(fact_9478_all__nat,axiom,
    ( ( ^ [P3: nat > $o] :
        ! [X6: nat] : ( P3 @ X6 ) )
    = ( ^ [P4: nat > $o] :
        ! [X: int] :
          ( ( ord_less_eq_int @ zero_zero_int @ X )
         => ( P4 @ ( nat2 @ X ) ) ) ) ) ).

% all_nat
thf(fact_9479_eq__nat__nat__iff,axiom,
    ! [Z: int,Z7: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z )
     => ( ( ord_less_eq_int @ zero_zero_int @ Z7 )
       => ( ( ( nat2 @ Z )
            = ( nat2 @ Z7 ) )
          = ( Z = Z7 ) ) ) ) ).

% eq_nat_nat_iff
thf(fact_9480_nat__one__as__int,axiom,
    ( one_one_nat
    = ( nat2 @ one_one_int ) ) ).

% nat_one_as_int
thf(fact_9481_div__eq__sgn__abs,axiom,
    ! [K: int,L: int] :
      ( ( ( sgn_sgn_int @ K )
        = ( sgn_sgn_int @ L ) )
     => ( ( divide_divide_int @ K @ L )
        = ( divide_divide_int @ ( abs_abs_int @ K ) @ ( abs_abs_int @ L ) ) ) ) ).

% div_eq_sgn_abs
thf(fact_9482_unset__bit__nat__def,axiom,
    ( bit_se4205575877204974255it_nat
    = ( ^ [M3: nat,N2: nat] : ( nat2 @ ( bit_se4203085406695923979it_int @ M3 @ ( semiri1314217659103216013at_int @ N2 ) ) ) ) ) ).

% unset_bit_nat_def
thf(fact_9483_nat__mask__eq,axiom,
    ! [N: nat] :
      ( ( nat2 @ ( bit_se2000444600071755411sk_int @ N ) )
      = ( bit_se2002935070580805687sk_nat @ N ) ) ).

% nat_mask_eq
thf(fact_9484_nat__mono__iff,axiom,
    ! [Z: int,W: int] :
      ( ( ord_less_int @ zero_zero_int @ Z )
     => ( ( ord_less_nat @ ( nat2 @ W ) @ ( nat2 @ Z ) )
        = ( ord_less_int @ W @ Z ) ) ) ).

% nat_mono_iff
thf(fact_9485_zless__nat__eq__int__zless,axiom,
    ! [M: nat,Z: int] :
      ( ( ord_less_nat @ M @ ( nat2 @ Z ) )
      = ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ Z ) ) ).

% zless_nat_eq_int_zless
thf(fact_9486_nat__le__iff,axiom,
    ! [X2: int,N: nat] :
      ( ( ord_less_eq_nat @ ( nat2 @ X2 ) @ N )
      = ( ord_less_eq_int @ X2 @ ( semiri1314217659103216013at_int @ N ) ) ) ).

% nat_le_iff
thf(fact_9487_int__eq__iff,axiom,
    ! [M: nat,Z: int] :
      ( ( ( semiri1314217659103216013at_int @ M )
        = Z )
      = ( ( M
          = ( nat2 @ Z ) )
        & ( ord_less_eq_int @ zero_zero_int @ Z ) ) ) ).

% int_eq_iff
thf(fact_9488_nat__0__le,axiom,
    ! [Z: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z )
     => ( ( semiri1314217659103216013at_int @ ( nat2 @ Z ) )
        = Z ) ) ).

% nat_0_le
thf(fact_9489_nat__int__add,axiom,
    ! [A: nat,B: nat] :
      ( ( nat2 @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) )
      = ( plus_plus_nat @ A @ B ) ) ).

% nat_int_add
thf(fact_9490_sgn__mod,axiom,
    ! [L: int,K: int] :
      ( ( L != zero_zero_int )
     => ( ~ ( dvd_dvd_int @ L @ K )
       => ( ( sgn_sgn_int @ ( modulo_modulo_int @ K @ L ) )
          = ( sgn_sgn_int @ L ) ) ) ) ).

% sgn_mod
thf(fact_9491_nat__abs__mult__distrib,axiom,
    ! [W: int,Z: int] :
      ( ( nat2 @ ( abs_abs_int @ ( times_times_int @ W @ Z ) ) )
      = ( times_times_nat @ ( nat2 @ ( abs_abs_int @ W ) ) @ ( nat2 @ ( abs_abs_int @ Z ) ) ) ) ).

% nat_abs_mult_distrib
thf(fact_9492_real__nat__ceiling__ge,axiom,
    ! [X2: real] : ( ord_less_eq_real @ X2 @ ( semiri5074537144036343181t_real @ ( nat2 @ ( archim7802044766580827645g_real @ X2 ) ) ) ) ).

% real_nat_ceiling_ge
thf(fact_9493_and__nat__def,axiom,
    ( bit_se727722235901077358nd_nat
    = ( ^ [M3: nat,N2: nat] : ( nat2 @ ( bit_se725231765392027082nd_int @ ( semiri1314217659103216013at_int @ M3 ) @ ( semiri1314217659103216013at_int @ N2 ) ) ) ) ) ).

% and_nat_def
thf(fact_9494_nat__plus__as__int,axiom,
    ( plus_plus_nat
    = ( ^ [A3: nat,B2: nat] : ( nat2 @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ A3 ) @ ( semiri1314217659103216013at_int @ B2 ) ) ) ) ) ).

% nat_plus_as_int
thf(fact_9495_or__nat__def,axiom,
    ( bit_se1412395901928357646or_nat
    = ( ^ [M3: nat,N2: nat] : ( nat2 @ ( bit_se1409905431419307370or_int @ ( semiri1314217659103216013at_int @ M3 ) @ ( semiri1314217659103216013at_int @ N2 ) ) ) ) ) ).

% or_nat_def
thf(fact_9496_nat__times__as__int,axiom,
    ( times_times_nat
    = ( ^ [A3: nat,B2: nat] : ( nat2 @ ( times_times_int @ ( semiri1314217659103216013at_int @ A3 ) @ ( semiri1314217659103216013at_int @ B2 ) ) ) ) ) ).

% nat_times_as_int
thf(fact_9497_nat__minus__as__int,axiom,
    ( minus_minus_nat
    = ( ^ [A3: nat,B2: nat] : ( nat2 @ ( minus_minus_int @ ( semiri1314217659103216013at_int @ A3 ) @ ( semiri1314217659103216013at_int @ B2 ) ) ) ) ) ).

% nat_minus_as_int
thf(fact_9498_nat__div__as__int,axiom,
    ( divide_divide_nat
    = ( ^ [A3: nat,B2: nat] : ( nat2 @ ( divide_divide_int @ ( semiri1314217659103216013at_int @ A3 ) @ ( semiri1314217659103216013at_int @ B2 ) ) ) ) ) ).

% nat_div_as_int
thf(fact_9499_nat__mod__as__int,axiom,
    ( modulo_modulo_nat
    = ( ^ [A3: nat,B2: nat] : ( nat2 @ ( modulo_modulo_int @ ( semiri1314217659103216013at_int @ A3 ) @ ( semiri1314217659103216013at_int @ B2 ) ) ) ) ) ).

% nat_mod_as_int
thf(fact_9500_zsgn__def,axiom,
    ( sgn_sgn_int
    = ( ^ [I4: int] : ( if_int @ ( I4 = zero_zero_int ) @ zero_zero_int @ ( if_int @ ( ord_less_int @ zero_zero_int @ I4 ) @ one_one_int @ ( uminus_uminus_int @ one_one_int ) ) ) ) ) ).

% zsgn_def
thf(fact_9501_nat__less__eq__zless,axiom,
    ! [W: int,Z: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ W )
     => ( ( ord_less_nat @ ( nat2 @ W ) @ ( nat2 @ Z ) )
        = ( ord_less_int @ W @ Z ) ) ) ).

% nat_less_eq_zless
thf(fact_9502_nat__le__eq__zle,axiom,
    ! [W: int,Z: int] :
      ( ( ( ord_less_int @ zero_zero_int @ W )
        | ( ord_less_eq_int @ zero_zero_int @ Z ) )
     => ( ( ord_less_eq_nat @ ( nat2 @ W ) @ ( nat2 @ Z ) )
        = ( ord_less_eq_int @ W @ Z ) ) ) ).

% nat_le_eq_zle
thf(fact_9503_nat__eq__iff2,axiom,
    ! [M: nat,W: int] :
      ( ( M
        = ( nat2 @ W ) )
      = ( ( ( ord_less_eq_int @ zero_zero_int @ W )
         => ( W
            = ( semiri1314217659103216013at_int @ M ) ) )
        & ( ~ ( ord_less_eq_int @ zero_zero_int @ W )
         => ( M = zero_zero_nat ) ) ) ) ).

% nat_eq_iff2
thf(fact_9504_nat__eq__iff,axiom,
    ! [W: int,M: nat] :
      ( ( ( nat2 @ W )
        = M )
      = ( ( ( ord_less_eq_int @ zero_zero_int @ W )
         => ( W
            = ( semiri1314217659103216013at_int @ M ) ) )
        & ( ~ ( ord_less_eq_int @ zero_zero_int @ W )
         => ( M = zero_zero_nat ) ) ) ) ).

% nat_eq_iff
thf(fact_9505_split__nat,axiom,
    ! [P: nat > $o,I: int] :
      ( ( P @ ( nat2 @ I ) )
      = ( ! [N2: nat] :
            ( ( I
              = ( semiri1314217659103216013at_int @ N2 ) )
           => ( P @ N2 ) )
        & ( ( ord_less_int @ I @ zero_zero_int )
         => ( P @ zero_zero_nat ) ) ) ) ).

% split_nat
thf(fact_9506_le__nat__iff,axiom,
    ! [K: int,N: nat] :
      ( ( ord_less_eq_int @ zero_zero_int @ K )
     => ( ( ord_less_eq_nat @ N @ ( nat2 @ K ) )
        = ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ N ) @ K ) ) ) ).

% le_nat_iff
thf(fact_9507_nat__add__distrib,axiom,
    ! [Z: int,Z7: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z )
     => ( ( ord_less_eq_int @ zero_zero_int @ Z7 )
       => ( ( nat2 @ ( plus_plus_int @ Z @ Z7 ) )
          = ( plus_plus_nat @ ( nat2 @ Z ) @ ( nat2 @ Z7 ) ) ) ) ) ).

% nat_add_distrib
thf(fact_9508_div__sgn__abs__cancel,axiom,
    ! [V: int,K: int,L: int] :
      ( ( V != zero_zero_int )
     => ( ( divide_divide_int @ ( times_times_int @ ( sgn_sgn_int @ V ) @ ( abs_abs_int @ K ) ) @ ( times_times_int @ ( sgn_sgn_int @ V ) @ ( abs_abs_int @ L ) ) )
        = ( divide_divide_int @ ( abs_abs_int @ K ) @ ( abs_abs_int @ L ) ) ) ) ).

% div_sgn_abs_cancel
thf(fact_9509_Suc__as__int,axiom,
    ( suc
    = ( ^ [A3: nat] : ( nat2 @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ A3 ) @ one_one_int ) ) ) ) ).

% Suc_as_int
thf(fact_9510_nat__mult__distrib,axiom,
    ! [Z: int,Z7: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z )
     => ( ( nat2 @ ( times_times_int @ Z @ Z7 ) )
        = ( times_times_nat @ ( nat2 @ Z ) @ ( nat2 @ Z7 ) ) ) ) ).

% nat_mult_distrib
thf(fact_9511_nat__diff__distrib,axiom,
    ! [Z7: int,Z: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z7 )
     => ( ( ord_less_eq_int @ Z7 @ Z )
       => ( ( nat2 @ ( minus_minus_int @ Z @ Z7 ) )
          = ( minus_minus_nat @ ( nat2 @ Z ) @ ( nat2 @ Z7 ) ) ) ) ) ).

% nat_diff_distrib
thf(fact_9512_nat__diff__distrib_H,axiom,
    ! [X2: int,Y2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X2 )
     => ( ( ord_less_eq_int @ zero_zero_int @ Y2 )
       => ( ( nat2 @ ( minus_minus_int @ X2 @ Y2 ) )
          = ( minus_minus_nat @ ( nat2 @ X2 ) @ ( nat2 @ Y2 ) ) ) ) ) ).

% nat_diff_distrib'
thf(fact_9513_nat__abs__triangle__ineq,axiom,
    ! [K: int,L: int] : ( ord_less_eq_nat @ ( nat2 @ ( abs_abs_int @ ( plus_plus_int @ K @ L ) ) ) @ ( plus_plus_nat @ ( nat2 @ ( abs_abs_int @ K ) ) @ ( nat2 @ ( abs_abs_int @ L ) ) ) ) ).

% nat_abs_triangle_ineq
thf(fact_9514_nat__div__distrib,axiom,
    ! [X2: int,Y2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X2 )
     => ( ( nat2 @ ( divide_divide_int @ X2 @ Y2 ) )
        = ( divide_divide_nat @ ( nat2 @ X2 ) @ ( nat2 @ Y2 ) ) ) ) ).

% nat_div_distrib
thf(fact_9515_nat__div__distrib_H,axiom,
    ! [Y2: int,X2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Y2 )
     => ( ( nat2 @ ( divide_divide_int @ X2 @ Y2 ) )
        = ( divide_divide_nat @ ( nat2 @ X2 ) @ ( nat2 @ Y2 ) ) ) ) ).

% nat_div_distrib'
thf(fact_9516_div__dvd__sgn__abs,axiom,
    ! [L: int,K: int] :
      ( ( dvd_dvd_int @ L @ K )
     => ( ( divide_divide_int @ K @ L )
        = ( times_times_int @ ( times_times_int @ ( sgn_sgn_int @ K ) @ ( sgn_sgn_int @ L ) ) @ ( divide_divide_int @ ( abs_abs_int @ K ) @ ( abs_abs_int @ L ) ) ) ) ) ).

% div_dvd_sgn_abs
thf(fact_9517_nat__power__eq,axiom,
    ! [Z: int,N: nat] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z )
     => ( ( nat2 @ ( power_power_int @ Z @ N ) )
        = ( power_power_nat @ ( nat2 @ Z ) @ N ) ) ) ).

% nat_power_eq
thf(fact_9518_nat__floor__neg,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ X2 @ zero_zero_real )
     => ( ( nat2 @ ( archim6058952711729229775r_real @ X2 ) )
        = zero_zero_nat ) ) ).

% nat_floor_neg
thf(fact_9519_nat__mod__distrib,axiom,
    ! [X2: int,Y2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X2 )
     => ( ( ord_less_eq_int @ zero_zero_int @ Y2 )
       => ( ( nat2 @ ( modulo_modulo_int @ X2 @ Y2 ) )
          = ( modulo_modulo_nat @ ( nat2 @ X2 ) @ ( nat2 @ Y2 ) ) ) ) ) ).

% nat_mod_distrib
thf(fact_9520_div__abs__eq__div__nat,axiom,
    ! [K: int,L: int] :
      ( ( divide_divide_int @ ( abs_abs_int @ K ) @ ( abs_abs_int @ L ) )
      = ( semiri1314217659103216013at_int @ ( divide_divide_nat @ ( nat2 @ ( abs_abs_int @ K ) ) @ ( nat2 @ ( abs_abs_int @ L ) ) ) ) ) ).

% div_abs_eq_div_nat
thf(fact_9521_floor__eq3,axiom,
    ! [N: nat,X2: real] :
      ( ( ord_less_real @ ( semiri5074537144036343181t_real @ N ) @ X2 )
     => ( ( ord_less_real @ X2 @ ( semiri5074537144036343181t_real @ ( suc @ N ) ) )
       => ( ( nat2 @ ( archim6058952711729229775r_real @ X2 ) )
          = N ) ) ) ).

% floor_eq3
thf(fact_9522_le__nat__floor,axiom,
    ! [X2: nat,A: real] :
      ( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ X2 ) @ A )
     => ( ord_less_eq_nat @ X2 @ ( nat2 @ ( archim6058952711729229775r_real @ A ) ) ) ) ).

% le_nat_floor
thf(fact_9523_mod__abs__eq__div__nat,axiom,
    ! [K: int,L: int] :
      ( ( modulo_modulo_int @ ( abs_abs_int @ K ) @ ( abs_abs_int @ L ) )
      = ( semiri1314217659103216013at_int @ ( modulo_modulo_nat @ ( nat2 @ ( abs_abs_int @ K ) ) @ ( nat2 @ ( abs_abs_int @ L ) ) ) ) ) ).

% mod_abs_eq_div_nat
thf(fact_9524_take__bit__nat__eq,axiom,
    ! [K: int,N: nat] :
      ( ( ord_less_eq_int @ zero_zero_int @ K )
     => ( ( bit_se2925701944663578781it_nat @ N @ ( nat2 @ K ) )
        = ( nat2 @ ( bit_se2923211474154528505it_int @ N @ K ) ) ) ) ).

% take_bit_nat_eq
thf(fact_9525_nat__take__bit__eq,axiom,
    ! [K: int,N: nat] :
      ( ( ord_less_eq_int @ zero_zero_int @ K )
     => ( ( nat2 @ ( bit_se2923211474154528505it_int @ N @ K ) )
        = ( bit_se2925701944663578781it_nat @ N @ ( nat2 @ K ) ) ) ) ).

% nat_take_bit_eq
thf(fact_9526_bit__nat__iff,axiom,
    ! [K: int,N: nat] :
      ( ( bit_se1148574629649215175it_nat @ ( nat2 @ K ) @ N )
      = ( ( ord_less_eq_int @ zero_zero_int @ K )
        & ( bit_se1146084159140164899it_int @ K @ N ) ) ) ).

% bit_nat_iff
thf(fact_9527_divide__int__def,axiom,
    ( divide_divide_int
    = ( ^ [K2: int,L2: int] :
          ( if_int @ ( L2 = zero_zero_int ) @ zero_zero_int
          @ ( if_int
            @ ( ( sgn_sgn_int @ K2 )
              = ( sgn_sgn_int @ L2 ) )
            @ ( semiri1314217659103216013at_int @ ( divide_divide_nat @ ( nat2 @ ( abs_abs_int @ K2 ) ) @ ( nat2 @ ( abs_abs_int @ L2 ) ) ) )
            @ ( uminus_uminus_int
              @ ( semiri1314217659103216013at_int
                @ ( plus_plus_nat @ ( divide_divide_nat @ ( nat2 @ ( abs_abs_int @ K2 ) ) @ ( nat2 @ ( abs_abs_int @ L2 ) ) )
                  @ ( zero_n2687167440665602831ol_nat
                    @ ~ ( dvd_dvd_int @ L2 @ K2 ) ) ) ) ) ) ) ) ) ).

% divide_int_def
thf(fact_9528_modulo__int__def,axiom,
    ( modulo_modulo_int
    = ( ^ [K2: int,L2: int] :
          ( if_int @ ( L2 = zero_zero_int ) @ K2
          @ ( if_int
            @ ( ( sgn_sgn_int @ K2 )
              = ( sgn_sgn_int @ L2 ) )
            @ ( times_times_int @ ( sgn_sgn_int @ L2 ) @ ( semiri1314217659103216013at_int @ ( modulo_modulo_nat @ ( nat2 @ ( abs_abs_int @ K2 ) ) @ ( nat2 @ ( abs_abs_int @ L2 ) ) ) ) )
            @ ( times_times_int @ ( sgn_sgn_int @ L2 )
              @ ( minus_minus_int
                @ ( times_times_int @ ( abs_abs_int @ L2 )
                  @ ( zero_n2684676970156552555ol_int
                    @ ~ ( dvd_dvd_int @ L2 @ K2 ) ) )
                @ ( semiri1314217659103216013at_int @ ( modulo_modulo_nat @ ( nat2 @ ( abs_abs_int @ K2 ) ) @ ( nat2 @ ( abs_abs_int @ L2 ) ) ) ) ) ) ) ) ) ) ).

% modulo_int_def
thf(fact_9529_nat__2,axiom,
    ( ( nat2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
    = ( suc @ ( suc @ zero_zero_nat ) ) ) ).

% nat_2
thf(fact_9530_Suc__nat__eq__nat__zadd1,axiom,
    ! [Z: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z )
     => ( ( suc @ ( nat2 @ Z ) )
        = ( nat2 @ ( plus_plus_int @ one_one_int @ Z ) ) ) ) ).

% Suc_nat_eq_nat_zadd1
thf(fact_9531_nat__less__iff,axiom,
    ! [W: int,M: nat] :
      ( ( ord_less_eq_int @ zero_zero_int @ W )
     => ( ( ord_less_nat @ ( nat2 @ W ) @ M )
        = ( ord_less_int @ W @ ( semiri1314217659103216013at_int @ M ) ) ) ) ).

% nat_less_iff
thf(fact_9532_nat__mult__distrib__neg,axiom,
    ! [Z: int,Z7: int] :
      ( ( ord_less_eq_int @ Z @ zero_zero_int )
     => ( ( nat2 @ ( times_times_int @ Z @ Z7 ) )
        = ( times_times_nat @ ( nat2 @ ( uminus_uminus_int @ Z ) ) @ ( nat2 @ ( uminus_uminus_int @ Z7 ) ) ) ) ) ).

% nat_mult_distrib_neg
thf(fact_9533_nat__abs__int__diff,axiom,
    ! [A: nat,B: nat] :
      ( ( ( ord_less_eq_nat @ A @ B )
       => ( ( nat2 @ ( abs_abs_int @ ( minus_minus_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) )
          = ( minus_minus_nat @ B @ A ) ) )
      & ( ~ ( ord_less_eq_nat @ A @ B )
       => ( ( nat2 @ ( abs_abs_int @ ( minus_minus_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) )
          = ( minus_minus_nat @ A @ B ) ) ) ) ).

% nat_abs_int_diff
thf(fact_9534_floor__eq4,axiom,
    ! [N: nat,X2: real] :
      ( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ N ) @ X2 )
     => ( ( ord_less_real @ X2 @ ( semiri5074537144036343181t_real @ ( suc @ N ) ) )
       => ( ( nat2 @ ( archim6058952711729229775r_real @ X2 ) )
          = N ) ) ) ).

% floor_eq4
thf(fact_9535_diff__nat__eq__if,axiom,
    ! [Z7: int,Z: int] :
      ( ( ( ord_less_int @ Z7 @ zero_zero_int )
       => ( ( minus_minus_nat @ ( nat2 @ Z ) @ ( nat2 @ Z7 ) )
          = ( nat2 @ Z ) ) )
      & ( ~ ( ord_less_int @ Z7 @ zero_zero_int )
       => ( ( minus_minus_nat @ ( nat2 @ Z ) @ ( nat2 @ Z7 ) )
          = ( if_nat @ ( ord_less_int @ ( minus_minus_int @ Z @ Z7 ) @ zero_zero_int ) @ zero_zero_nat @ ( nat2 @ ( minus_minus_int @ Z @ Z7 ) ) ) ) ) ) ).

% diff_nat_eq_if
thf(fact_9536_nat__dvd__iff,axiom,
    ! [Z: int,M: nat] :
      ( ( dvd_dvd_nat @ ( nat2 @ Z ) @ M )
      = ( ( ( ord_less_eq_int @ zero_zero_int @ Z )
         => ( dvd_dvd_int @ Z @ ( semiri1314217659103216013at_int @ M ) ) )
        & ( ~ ( ord_less_eq_int @ zero_zero_int @ Z )
         => ( M = zero_zero_nat ) ) ) ) ).

% nat_dvd_iff
thf(fact_9537_eucl__rel__int__remainderI,axiom,
    ! [R2: int,L: int,K: int,Q2: int] :
      ( ( ( sgn_sgn_int @ R2 )
        = ( sgn_sgn_int @ L ) )
     => ( ( ord_less_int @ ( abs_abs_int @ R2 ) @ ( abs_abs_int @ L ) )
       => ( ( K
            = ( plus_plus_int @ ( times_times_int @ Q2 @ L ) @ R2 ) )
         => ( eucl_rel_int @ K @ L @ ( product_Pair_int_int @ Q2 @ R2 ) ) ) ) ) ).

% eucl_rel_int_remainderI
thf(fact_9538_eucl__rel__int_Ocases,axiom,
    ! [A1: int,A22: int,A32: product_prod_int_int] :
      ( ( eucl_rel_int @ A1 @ A22 @ A32 )
     => ( ( ( A22 = zero_zero_int )
         => ( A32
           != ( product_Pair_int_int @ zero_zero_int @ A1 ) ) )
       => ( ! [Q3: int] :
              ( ( A32
                = ( product_Pair_int_int @ Q3 @ zero_zero_int ) )
             => ( ( A22 != zero_zero_int )
               => ( A1
                 != ( times_times_int @ Q3 @ A22 ) ) ) )
         => ~ ! [R3: int,Q3: int] :
                ( ( A32
                  = ( product_Pair_int_int @ Q3 @ R3 ) )
               => ( ( ( sgn_sgn_int @ R3 )
                    = ( sgn_sgn_int @ A22 ) )
                 => ( ( ord_less_int @ ( abs_abs_int @ R3 ) @ ( abs_abs_int @ A22 ) )
                   => ( A1
                     != ( plus_plus_int @ ( times_times_int @ Q3 @ A22 ) @ R3 ) ) ) ) ) ) ) ) ).

% eucl_rel_int.cases
thf(fact_9539_eucl__rel__int_Osimps,axiom,
    ( eucl_rel_int
    = ( ^ [A12: int,A23: int,A33: product_prod_int_int] :
          ( ? [K2: int] :
              ( ( A12 = K2 )
              & ( A23 = zero_zero_int )
              & ( A33
                = ( product_Pair_int_int @ zero_zero_int @ K2 ) ) )
          | ? [L2: int,K2: int,Q4: int] :
              ( ( A12 = K2 )
              & ( A23 = L2 )
              & ( A33
                = ( product_Pair_int_int @ Q4 @ zero_zero_int ) )
              & ( L2 != zero_zero_int )
              & ( K2
                = ( times_times_int @ Q4 @ L2 ) ) )
          | ? [R5: int,L2: int,K2: int,Q4: int] :
              ( ( A12 = K2 )
              & ( A23 = L2 )
              & ( A33
                = ( product_Pair_int_int @ Q4 @ R5 ) )
              & ( ( sgn_sgn_int @ R5 )
                = ( sgn_sgn_int @ L2 ) )
              & ( ord_less_int @ ( abs_abs_int @ R5 ) @ ( abs_abs_int @ L2 ) )
              & ( K2
                = ( plus_plus_int @ ( times_times_int @ Q4 @ L2 ) @ R5 ) ) ) ) ) ) ).

% eucl_rel_int.simps
thf(fact_9540_div__noneq__sgn__abs,axiom,
    ! [L: int,K: int] :
      ( ( L != zero_zero_int )
     => ( ( ( sgn_sgn_int @ K )
         != ( sgn_sgn_int @ L ) )
       => ( ( divide_divide_int @ K @ L )
          = ( minus_minus_int @ ( uminus_uminus_int @ ( divide_divide_int @ ( abs_abs_int @ K ) @ ( abs_abs_int @ L ) ) )
            @ ( zero_n2684676970156552555ol_int
              @ ~ ( dvd_dvd_int @ L @ K ) ) ) ) ) ) ).

% div_noneq_sgn_abs
thf(fact_9541_even__nat__iff,axiom,
    ! [K: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ K )
     => ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( nat2 @ K ) )
        = ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K ) ) ) ).

% even_nat_iff
thf(fact_9542_powr__real__of__int,axiom,
    ! [X2: real,N: int] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( ( ( ord_less_eq_int @ zero_zero_int @ N )
         => ( ( powr_real @ X2 @ ( ring_1_of_int_real @ N ) )
            = ( power_power_real @ X2 @ ( nat2 @ N ) ) ) )
        & ( ~ ( ord_less_eq_int @ zero_zero_int @ N )
         => ( ( powr_real @ X2 @ ( ring_1_of_int_real @ N ) )
            = ( inverse_inverse_real @ ( power_power_real @ X2 @ ( nat2 @ ( uminus_uminus_int @ N ) ) ) ) ) ) ) ) ).

% powr_real_of_int
thf(fact_9543_floor__rat__def,axiom,
    ( archim3151403230148437115or_rat
    = ( ^ [X: rat] :
          ( the_int
          @ ^ [Z4: int] :
              ( ( ord_less_eq_rat @ ( ring_1_of_int_rat @ Z4 ) @ X )
              & ( ord_less_rat @ X @ ( ring_1_of_int_rat @ ( plus_plus_int @ Z4 @ one_one_int ) ) ) ) ) ) ) ).

% floor_rat_def
thf(fact_9544_arctan__inverse,axiom,
    ! [X2: real] :
      ( ( X2 != zero_zero_real )
     => ( ( arctan @ ( divide_divide_real @ one_one_real @ X2 ) )
        = ( minus_minus_real @ ( divide_divide_real @ ( times_times_real @ ( sgn_sgn_real @ X2 ) @ pi ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( arctan @ X2 ) ) ) ) ).

% arctan_inverse
thf(fact_9545_zero__le__sgn__iff,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( sgn_sgn_real @ X2 ) )
      = ( ord_less_eq_real @ zero_zero_real @ X2 ) ) ).

% zero_le_sgn_iff
thf(fact_9546_sgn__le__0__iff,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ ( sgn_sgn_real @ X2 ) @ zero_zero_real )
      = ( ord_less_eq_real @ X2 @ zero_zero_real ) ) ).

% sgn_le_0_iff
thf(fact_9547_sgn__rat__def,axiom,
    ( sgn_sgn_rat
    = ( ^ [A3: rat] : ( if_rat @ ( A3 = zero_zero_rat ) @ zero_zero_rat @ ( if_rat @ ( ord_less_rat @ zero_zero_rat @ A3 ) @ one_one_rat @ ( uminus_uminus_rat @ one_one_rat ) ) ) ) ) ).

% sgn_rat_def
thf(fact_9548_less__eq__rat__def,axiom,
    ( ord_less_eq_rat
    = ( ^ [X: rat,Y: rat] :
          ( ( ord_less_rat @ X @ Y )
          | ( X = Y ) ) ) ) ).

% less_eq_rat_def
thf(fact_9549_obtain__pos__sum,axiom,
    ! [R2: rat] :
      ( ( ord_less_rat @ zero_zero_rat @ R2 )
     => ~ ! [S2: rat] :
            ( ( ord_less_rat @ zero_zero_rat @ S2 )
           => ! [T5: rat] :
                ( ( ord_less_rat @ zero_zero_rat @ T5 )
               => ( R2
                 != ( plus_plus_rat @ S2 @ T5 ) ) ) ) ) ).

% obtain_pos_sum
thf(fact_9550_abs__rat__def,axiom,
    ( abs_abs_rat
    = ( ^ [A3: rat] : ( if_rat @ ( ord_less_rat @ A3 @ zero_zero_rat ) @ ( uminus_uminus_rat @ A3 ) @ A3 ) ) ) ).

% abs_rat_def
thf(fact_9551_real__sgn__eq,axiom,
    ( sgn_sgn_real
    = ( ^ [X: real] : ( divide_divide_real @ X @ ( abs_abs_real @ X ) ) ) ) ).

% real_sgn_eq
thf(fact_9552_sgn__root,axiom,
    ! [N: nat,X2: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( sgn_sgn_real @ ( root @ N @ X2 ) )
        = ( sgn_sgn_real @ X2 ) ) ) ).

% sgn_root
thf(fact_9553_sgn__eq,axiom,
    ( sgn_sgn_complex
    = ( ^ [Z4: complex] : ( divide1717551699836669952omplex @ Z4 @ ( real_V4546457046886955230omplex @ ( real_V1022390504157884413omplex @ Z4 ) ) ) ) ) ).

% sgn_eq
thf(fact_9554_sgn__real__def,axiom,
    ( sgn_sgn_real
    = ( ^ [A3: real] : ( if_real @ ( A3 = zero_zero_real ) @ zero_zero_real @ ( if_real @ ( ord_less_real @ zero_zero_real @ A3 ) @ one_one_real @ ( uminus_uminus_real @ one_one_real ) ) ) ) ) ).

% sgn_real_def
thf(fact_9555_sgn__power__injE,axiom,
    ! [A: real,N: nat,X2: real,B: real] :
      ( ( ( times_times_real @ ( sgn_sgn_real @ A ) @ ( power_power_real @ ( abs_abs_real @ A ) @ N ) )
        = X2 )
     => ( ( X2
          = ( times_times_real @ ( sgn_sgn_real @ B ) @ ( power_power_real @ ( abs_abs_real @ B ) @ N ) ) )
       => ( ( ord_less_nat @ zero_zero_nat @ N )
         => ( A = B ) ) ) ) ).

% sgn_power_injE
thf(fact_9556_root__sgn__power,axiom,
    ! [N: nat,Y2: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( root @ N @ ( times_times_real @ ( sgn_sgn_real @ Y2 ) @ ( power_power_real @ ( abs_abs_real @ Y2 ) @ N ) ) )
        = Y2 ) ) ).

% root_sgn_power
thf(fact_9557_sgn__power__root,axiom,
    ! [N: nat,X2: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( times_times_real @ ( sgn_sgn_real @ ( root @ N @ X2 ) ) @ ( power_power_real @ ( abs_abs_real @ ( root @ N @ X2 ) ) @ N ) )
        = X2 ) ) ).

% sgn_power_root
thf(fact_9558_cis__Arg__unique,axiom,
    ! [Z: complex,X2: real] :
      ( ( ( sgn_sgn_complex @ Z )
        = ( cis @ X2 ) )
     => ( ( ord_less_real @ ( uminus_uminus_real @ pi ) @ X2 )
       => ( ( ord_less_eq_real @ X2 @ pi )
         => ( ( arg @ Z )
            = X2 ) ) ) ) ).

% cis_Arg_unique
thf(fact_9559_split__root,axiom,
    ! [P: real > $o,N: nat,X2: real] :
      ( ( P @ ( root @ N @ X2 ) )
      = ( ( ( N = zero_zero_nat )
         => ( P @ zero_zero_real ) )
        & ( ( ord_less_nat @ zero_zero_nat @ N )
         => ! [Y: real] :
              ( ( ( times_times_real @ ( sgn_sgn_real @ Y ) @ ( power_power_real @ ( abs_abs_real @ Y ) @ N ) )
                = X2 )
             => ( P @ Y ) ) ) ) ) ).

% split_root
thf(fact_9560_Arg__correct,axiom,
    ! [Z: complex] :
      ( ( Z != zero_zero_complex )
     => ( ( ( sgn_sgn_complex @ Z )
          = ( cis @ ( arg @ Z ) ) )
        & ( ord_less_real @ ( uminus_uminus_real @ pi ) @ ( arg @ Z ) )
        & ( ord_less_eq_real @ ( arg @ Z ) @ pi ) ) ) ).

% Arg_correct
thf(fact_9561_Arg__def,axiom,
    ( arg
    = ( ^ [Z4: complex] :
          ( if_real @ ( Z4 = zero_zero_complex ) @ zero_zero_real
          @ ( fChoice_real
            @ ^ [A3: real] :
                ( ( ( sgn_sgn_complex @ Z4 )
                  = ( cis @ A3 ) )
                & ( ord_less_real @ ( uminus_uminus_real @ pi ) @ A3 )
                & ( ord_less_eq_real @ A3 @ pi ) ) ) ) ) ) ).

% Arg_def
thf(fact_9562_cis__multiple__2pi,axiom,
    ! [N: real] :
      ( ( member_real @ N @ ring_1_Ints_real )
     => ( ( cis @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) @ N ) )
        = one_one_complex ) ) ).

% cis_multiple_2pi
thf(fact_9563_rat__inverse__code,axiom,
    ! [P2: rat] :
      ( ( quotient_of @ ( inverse_inverse_rat @ P2 ) )
      = ( produc4245557441103728435nt_int
        @ ^ [A3: int,B2: int] : ( if_Pro3027730157355071871nt_int @ ( A3 = zero_zero_int ) @ ( product_Pair_int_int @ zero_zero_int @ one_one_int ) @ ( product_Pair_int_int @ ( times_times_int @ ( sgn_sgn_int @ A3 ) @ B2 ) @ ( abs_abs_int @ A3 ) ) )
        @ ( quotient_of @ P2 ) ) ) ).

% rat_inverse_code
thf(fact_9564_quotient__of__number_I3_J,axiom,
    ! [K: num] :
      ( ( quotient_of @ ( numeral_numeral_rat @ K ) )
      = ( product_Pair_int_int @ ( numeral_numeral_int @ K ) @ one_one_int ) ) ).

% quotient_of_number(3)
thf(fact_9565_quotient__of__number_I5_J,axiom,
    ! [K: num] :
      ( ( quotient_of @ ( uminus_uminus_rat @ ( numeral_numeral_rat @ K ) ) )
      = ( product_Pair_int_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) @ one_one_int ) ) ).

% quotient_of_number(5)
thf(fact_9566_diff__rat__def,axiom,
    ( minus_minus_rat
    = ( ^ [Q4: rat,R5: rat] : ( plus_plus_rat @ Q4 @ ( uminus_uminus_rat @ R5 ) ) ) ) ).

% diff_rat_def
thf(fact_9567_divide__rat__def,axiom,
    ( divide_divide_rat
    = ( ^ [Q4: rat,R5: rat] : ( times_times_rat @ Q4 @ ( inverse_inverse_rat @ R5 ) ) ) ) ).

% divide_rat_def
thf(fact_9568_quotient__of__div,axiom,
    ! [R2: rat,N: int,D: int] :
      ( ( ( quotient_of @ R2 )
        = ( product_Pair_int_int @ N @ D ) )
     => ( R2
        = ( divide_divide_rat @ ( ring_1_of_int_rat @ N ) @ ( ring_1_of_int_rat @ D ) ) ) ) ).

% quotient_of_div
thf(fact_9569_quotient__of__denom__pos,axiom,
    ! [R2: rat,P2: int,Q2: int] :
      ( ( ( quotient_of @ R2 )
        = ( product_Pair_int_int @ P2 @ Q2 ) )
     => ( ord_less_int @ zero_zero_int @ Q2 ) ) ).

% quotient_of_denom_pos
thf(fact_9570_sin__times__pi__eq__0,axiom,
    ! [X2: real] :
      ( ( ( sin_real @ ( times_times_real @ X2 @ pi ) )
        = zero_zero_real )
      = ( member_real @ X2 @ ring_1_Ints_real ) ) ).

% sin_times_pi_eq_0
thf(fact_9571_rat__uminus__code,axiom,
    ! [P2: rat] :
      ( ( quotient_of @ ( uminus_uminus_rat @ P2 ) )
      = ( produc4245557441103728435nt_int
        @ ^ [A3: int] : ( product_Pair_int_int @ ( uminus_uminus_int @ A3 ) )
        @ ( quotient_of @ P2 ) ) ) ).

% rat_uminus_code
thf(fact_9572_rat__abs__code,axiom,
    ! [P2: rat] :
      ( ( quotient_of @ ( abs_abs_rat @ P2 ) )
      = ( produc4245557441103728435nt_int
        @ ^ [A3: int] : ( product_Pair_int_int @ ( abs_abs_int @ A3 ) )
        @ ( quotient_of @ P2 ) ) ) ).

% rat_abs_code
thf(fact_9573_rat__less__code,axiom,
    ( ord_less_rat
    = ( ^ [P5: rat,Q4: rat] :
          ( produc4947309494688390418_int_o
          @ ^ [A3: int,C6: int] :
              ( produc4947309494688390418_int_o
              @ ^ [B2: int,D2: int] : ( ord_less_int @ ( times_times_int @ A3 @ D2 ) @ ( times_times_int @ C6 @ B2 ) )
              @ ( quotient_of @ Q4 ) )
          @ ( quotient_of @ P5 ) ) ) ) ).

% rat_less_code
thf(fact_9574_rat__floor__code,axiom,
    ( archim3151403230148437115or_rat
    = ( ^ [P5: rat] : ( produc8211389475949308722nt_int @ divide_divide_int @ ( quotient_of @ P5 ) ) ) ) ).

% rat_floor_code
thf(fact_9575_rat__less__eq__code,axiom,
    ( ord_less_eq_rat
    = ( ^ [P5: rat,Q4: rat] :
          ( produc4947309494688390418_int_o
          @ ^ [A3: int,C6: int] :
              ( produc4947309494688390418_int_o
              @ ^ [B2: int,D2: int] : ( ord_less_eq_int @ ( times_times_int @ A3 @ D2 ) @ ( times_times_int @ C6 @ B2 ) )
              @ ( quotient_of @ Q4 ) )
          @ ( quotient_of @ P5 ) ) ) ) ).

% rat_less_eq_code
thf(fact_9576_sin__integer__2pi,axiom,
    ! [N: real] :
      ( ( member_real @ N @ ring_1_Ints_real )
     => ( ( sin_real @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) @ N ) )
        = zero_zero_real ) ) ).

% sin_integer_2pi
thf(fact_9577_cos__integer__2pi,axiom,
    ! [N: real] :
      ( ( member_real @ N @ ring_1_Ints_real )
     => ( ( cos_real @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) @ N ) )
        = one_one_real ) ) ).

% cos_integer_2pi
thf(fact_9578_rat__plus__code,axiom,
    ! [P2: rat,Q2: rat] :
      ( ( quotient_of @ ( plus_plus_rat @ P2 @ Q2 ) )
      = ( produc4245557441103728435nt_int
        @ ^ [A3: int,C6: int] :
            ( produc4245557441103728435nt_int
            @ ^ [B2: int,D2: int] : ( normalize @ ( product_Pair_int_int @ ( plus_plus_int @ ( times_times_int @ A3 @ D2 ) @ ( times_times_int @ B2 @ C6 ) ) @ ( times_times_int @ C6 @ D2 ) ) )
            @ ( quotient_of @ Q2 ) )
        @ ( quotient_of @ P2 ) ) ) ).

% rat_plus_code
thf(fact_9579_rat__minus__code,axiom,
    ! [P2: rat,Q2: rat] :
      ( ( quotient_of @ ( minus_minus_rat @ P2 @ Q2 ) )
      = ( produc4245557441103728435nt_int
        @ ^ [A3: int,C6: int] :
            ( produc4245557441103728435nt_int
            @ ^ [B2: int,D2: int] : ( normalize @ ( product_Pair_int_int @ ( minus_minus_int @ ( times_times_int @ A3 @ D2 ) @ ( times_times_int @ B2 @ C6 ) ) @ ( times_times_int @ C6 @ D2 ) ) )
            @ ( quotient_of @ Q2 ) )
        @ ( quotient_of @ P2 ) ) ) ).

% rat_minus_code
thf(fact_9580_normalize__negative,axiom,
    ! [Q2: int,P2: int] :
      ( ( ord_less_int @ Q2 @ zero_zero_int )
     => ( ( normalize @ ( product_Pair_int_int @ P2 @ Q2 ) )
        = ( normalize @ ( product_Pair_int_int @ ( uminus_uminus_int @ P2 ) @ ( uminus_uminus_int @ Q2 ) ) ) ) ) ).

% normalize_negative
thf(fact_9581_normalize__denom__pos,axiom,
    ! [R2: product_prod_int_int,P2: int,Q2: int] :
      ( ( ( normalize @ R2 )
        = ( product_Pair_int_int @ P2 @ Q2 ) )
     => ( ord_less_int @ zero_zero_int @ Q2 ) ) ).

% normalize_denom_pos
thf(fact_9582_normalize__crossproduct,axiom,
    ! [Q2: int,S: int,P2: int,R2: int] :
      ( ( Q2 != zero_zero_int )
     => ( ( S != zero_zero_int )
       => ( ( ( normalize @ ( product_Pair_int_int @ P2 @ Q2 ) )
            = ( normalize @ ( product_Pair_int_int @ R2 @ S ) ) )
         => ( ( times_times_int @ P2 @ S )
            = ( times_times_int @ R2 @ Q2 ) ) ) ) ) ).

% normalize_crossproduct
thf(fact_9583_rat__times__code,axiom,
    ! [P2: rat,Q2: rat] :
      ( ( quotient_of @ ( times_times_rat @ P2 @ Q2 ) )
      = ( produc4245557441103728435nt_int
        @ ^ [A3: int,C6: int] :
            ( produc4245557441103728435nt_int
            @ ^ [B2: int,D2: int] : ( normalize @ ( product_Pair_int_int @ ( times_times_int @ A3 @ B2 ) @ ( times_times_int @ C6 @ D2 ) ) )
            @ ( quotient_of @ Q2 ) )
        @ ( quotient_of @ P2 ) ) ) ).

% rat_times_code
thf(fact_9584_rat__divide__code,axiom,
    ! [P2: rat,Q2: rat] :
      ( ( quotient_of @ ( divide_divide_rat @ P2 @ Q2 ) )
      = ( produc4245557441103728435nt_int
        @ ^ [A3: int,C6: int] :
            ( produc4245557441103728435nt_int
            @ ^ [B2: int,D2: int] : ( normalize @ ( product_Pair_int_int @ ( times_times_int @ A3 @ D2 ) @ ( times_times_int @ C6 @ B2 ) ) )
            @ ( quotient_of @ Q2 ) )
        @ ( quotient_of @ P2 ) ) ) ).

% rat_divide_code
thf(fact_9585_Frct__code__post_I5_J,axiom,
    ! [K: num] :
      ( ( frct @ ( product_Pair_int_int @ one_one_int @ ( numeral_numeral_int @ K ) ) )
      = ( divide_divide_rat @ one_one_rat @ ( numeral_numeral_rat @ K ) ) ) ).

% Frct_code_post(5)
thf(fact_9586_xor__Suc__0__eq,axiom,
    ! [N: nat] :
      ( ( bit_se6528837805403552850or_nat @ N @ ( suc @ zero_zero_nat ) )
      = ( minus_minus_nat @ ( plus_plus_nat @ N @ ( zero_n2687167440665602831ol_nat @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
        @ ( zero_n2687167440665602831ol_nat
          @ ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ) ).

% xor_Suc_0_eq
thf(fact_9587_Suc__0__xor__eq,axiom,
    ! [N: nat] :
      ( ( bit_se6528837805403552850or_nat @ ( suc @ zero_zero_nat ) @ N )
      = ( minus_minus_nat @ ( plus_plus_nat @ N @ ( zero_n2687167440665602831ol_nat @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
        @ ( zero_n2687167440665602831ol_nat
          @ ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ) ).

% Suc_0_xor_eq
thf(fact_9588_xor__nat__numerals_I4_J,axiom,
    ! [X2: num] :
      ( ( bit_se6528837805403552850or_nat @ ( numeral_numeral_nat @ ( bit1 @ X2 ) ) @ ( suc @ zero_zero_nat ) )
      = ( numeral_numeral_nat @ ( bit0 @ X2 ) ) ) ).

% xor_nat_numerals(4)
thf(fact_9589_xor__nat__numerals_I3_J,axiom,
    ! [X2: num] :
      ( ( bit_se6528837805403552850or_nat @ ( numeral_numeral_nat @ ( bit0 @ X2 ) ) @ ( suc @ zero_zero_nat ) )
      = ( numeral_numeral_nat @ ( bit1 @ X2 ) ) ) ).

% xor_nat_numerals(3)
thf(fact_9590_xor__nat__numerals_I2_J,axiom,
    ! [Y2: num] :
      ( ( bit_se6528837805403552850or_nat @ ( suc @ zero_zero_nat ) @ ( numeral_numeral_nat @ ( bit1 @ Y2 ) ) )
      = ( numeral_numeral_nat @ ( bit0 @ Y2 ) ) ) ).

% xor_nat_numerals(2)
thf(fact_9591_xor__nat__numerals_I1_J,axiom,
    ! [Y2: num] :
      ( ( bit_se6528837805403552850or_nat @ ( suc @ zero_zero_nat ) @ ( numeral_numeral_nat @ ( bit0 @ Y2 ) ) )
      = ( numeral_numeral_nat @ ( bit1 @ Y2 ) ) ) ).

% xor_nat_numerals(1)
thf(fact_9592_Frct__code__post_I4_J,axiom,
    ! [K: num] :
      ( ( frct @ ( product_Pair_int_int @ ( numeral_numeral_int @ K ) @ one_one_int ) )
      = ( numeral_numeral_rat @ K ) ) ).

% Frct_code_post(4)
thf(fact_9593_xor__nat__unfold,axiom,
    ( bit_se6528837805403552850or_nat
    = ( ^ [M3: nat,N2: nat] : ( if_nat @ ( M3 = zero_zero_nat ) @ N2 @ ( if_nat @ ( N2 = zero_zero_nat ) @ M3 @ ( plus_plus_nat @ ( modulo_modulo_nat @ ( plus_plus_nat @ ( modulo_modulo_nat @ M3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( modulo_modulo_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se6528837805403552850or_nat @ ( divide_divide_nat @ M3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ).

% xor_nat_unfold
thf(fact_9594_xor__nat__rec,axiom,
    ( bit_se6528837805403552850or_nat
    = ( ^ [M3: nat,N2: nat] :
          ( plus_plus_nat
          @ ( zero_n2687167440665602831ol_nat
            @ ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M3 ) )
             != ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) )
          @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se6528837805403552850or_nat @ ( divide_divide_nat @ M3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% xor_nat_rec
thf(fact_9595_Frct__code__post_I6_J,axiom,
    ! [K: num,L: num] :
      ( ( frct @ ( product_Pair_int_int @ ( numeral_numeral_int @ K ) @ ( numeral_numeral_int @ L ) ) )
      = ( divide_divide_rat @ ( numeral_numeral_rat @ K ) @ ( numeral_numeral_rat @ L ) ) ) ).

% Frct_code_post(6)
thf(fact_9596_horner__sum__of__bool__2__less,axiom,
    ! [Bs: list_o] : ( ord_less_int @ ( groups9116527308978886569_o_int @ zero_n2684676970156552555ol_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Bs ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( size_size_list_o @ Bs ) ) ) ).

% horner_sum_of_bool_2_less
thf(fact_9597_xor__nonnegative__int__iff,axiom,
    ! [K: int,L: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( bit_se6526347334894502574or_int @ K @ L ) )
      = ( ( ord_less_eq_int @ zero_zero_int @ K )
        = ( ord_less_eq_int @ zero_zero_int @ L ) ) ) ).

% xor_nonnegative_int_iff
thf(fact_9598_xor__negative__int__iff,axiom,
    ! [K: int,L: int] :
      ( ( ord_less_int @ ( bit_se6526347334894502574or_int @ K @ L ) @ zero_zero_int )
      = ( ( ord_less_int @ K @ zero_zero_int )
       != ( ord_less_int @ L @ zero_zero_int ) ) ) ).

% xor_negative_int_iff
thf(fact_9599_bit__xor__int__iff,axiom,
    ! [K: int,L: int,N: nat] :
      ( ( bit_se1146084159140164899it_int @ ( bit_se6526347334894502574or_int @ K @ L ) @ N )
      = ( ( bit_se1146084159140164899it_int @ K @ N )
       != ( bit_se1146084159140164899it_int @ L @ N ) ) ) ).

% bit_xor_int_iff
thf(fact_9600_XOR__lower,axiom,
    ! [X2: int,Y2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X2 )
     => ( ( ord_less_eq_int @ zero_zero_int @ Y2 )
       => ( ord_less_eq_int @ zero_zero_int @ ( bit_se6526347334894502574or_int @ X2 @ Y2 ) ) ) ) ).

% XOR_lower
thf(fact_9601_xor__nat__def,axiom,
    ( bit_se6528837805403552850or_nat
    = ( ^ [M3: nat,N2: nat] : ( nat2 @ ( bit_se6526347334894502574or_int @ ( semiri1314217659103216013at_int @ M3 ) @ ( semiri1314217659103216013at_int @ N2 ) ) ) ) ) ).

% xor_nat_def
thf(fact_9602_XOR__upper,axiom,
    ! [X2: int,N: nat,Y2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X2 )
     => ( ( ord_less_int @ X2 @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
       => ( ( ord_less_int @ Y2 @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
         => ( ord_less_int @ ( bit_se6526347334894502574or_int @ X2 @ Y2 ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ) ) ).

% XOR_upper
thf(fact_9603_xor__int__rec,axiom,
    ( bit_se6526347334894502574or_int
    = ( ^ [K2: int,L2: int] :
          ( plus_plus_int
          @ ( zero_n2684676970156552555ol_int
            @ ( ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K2 ) )
             != ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ L2 ) ) ) )
          @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se6526347334894502574or_int @ ( divide_divide_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( divide_divide_int @ L2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% xor_int_rec
thf(fact_9604_xor__int__unfold,axiom,
    ( bit_se6526347334894502574or_int
    = ( ^ [K2: int,L2: int] :
          ( if_int
          @ ( K2
            = ( uminus_uminus_int @ one_one_int ) )
          @ ( bit_ri7919022796975470100ot_int @ L2 )
          @ ( if_int
            @ ( L2
              = ( uminus_uminus_int @ one_one_int ) )
            @ ( bit_ri7919022796975470100ot_int @ K2 )
            @ ( if_int @ ( K2 = zero_zero_int ) @ L2 @ ( if_int @ ( L2 = zero_zero_int ) @ K2 @ ( plus_plus_int @ ( abs_abs_int @ ( minus_minus_int @ ( modulo_modulo_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( modulo_modulo_int @ L2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se6526347334894502574or_int @ ( divide_divide_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ ( divide_divide_int @ L2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ) ).

% xor_int_unfold
thf(fact_9605_push__bit__nonnegative__int__iff,axiom,
    ! [N: nat,K: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( bit_se545348938243370406it_int @ N @ K ) )
      = ( ord_less_eq_int @ zero_zero_int @ K ) ) ).

% push_bit_nonnegative_int_iff
thf(fact_9606_push__bit__negative__int__iff,axiom,
    ! [N: nat,K: int] :
      ( ( ord_less_int @ ( bit_se545348938243370406it_int @ N @ K ) @ zero_zero_int )
      = ( ord_less_int @ K @ zero_zero_int ) ) ).

% push_bit_negative_int_iff
thf(fact_9607_concat__bit__of__zero__1,axiom,
    ! [N: nat,L: int] :
      ( ( bit_concat_bit @ N @ zero_zero_int @ L )
      = ( bit_se545348938243370406it_int @ N @ L ) ) ).

% concat_bit_of_zero_1
thf(fact_9608_not__nonnegative__int__iff,axiom,
    ! [K: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( bit_ri7919022796975470100ot_int @ K ) )
      = ( ord_less_int @ K @ zero_zero_int ) ) ).

% not_nonnegative_int_iff
thf(fact_9609_not__negative__int__iff,axiom,
    ! [K: int] :
      ( ( ord_less_int @ ( bit_ri7919022796975470100ot_int @ K ) @ zero_zero_int )
      = ( ord_less_eq_int @ zero_zero_int @ K ) ) ).

% not_negative_int_iff
thf(fact_9610_push__bit__of__Suc__0,axiom,
    ! [N: nat] :
      ( ( bit_se547839408752420682it_nat @ N @ ( suc @ zero_zero_nat ) )
      = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).

% push_bit_of_Suc_0
thf(fact_9611_and__minus__minus__numerals,axiom,
    ! [M: num,N: num] :
      ( ( bit_se725231765392027082nd_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( bit_ri7919022796975470100ot_int @ ( bit_se1409905431419307370or_int @ ( minus_minus_int @ ( numeral_numeral_int @ M ) @ one_one_int ) @ ( minus_minus_int @ ( numeral_numeral_int @ N ) @ one_one_int ) ) ) ) ).

% and_minus_minus_numerals
thf(fact_9612_or__minus__minus__numerals,axiom,
    ! [M: num,N: num] :
      ( ( bit_se1409905431419307370or_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( bit_ri7919022796975470100ot_int @ ( bit_se725231765392027082nd_int @ ( minus_minus_int @ ( numeral_numeral_int @ M ) @ one_one_int ) @ ( minus_minus_int @ ( numeral_numeral_int @ N ) @ one_one_int ) ) ) ) ).

% or_minus_minus_numerals
thf(fact_9613_bit__not__int__iff,axiom,
    ! [K: int,N: nat] :
      ( ( bit_se1146084159140164899it_int @ ( bit_ri7919022796975470100ot_int @ K ) @ N )
      = ( ~ ( bit_se1146084159140164899it_int @ K @ N ) ) ) ).

% bit_not_int_iff
thf(fact_9614_push__bit__nat__eq,axiom,
    ! [N: nat,K: int] :
      ( ( bit_se547839408752420682it_nat @ N @ ( nat2 @ K ) )
      = ( nat2 @ ( bit_se545348938243370406it_int @ N @ K ) ) ) ).

% push_bit_nat_eq
thf(fact_9615_unset__bit__int__def,axiom,
    ( bit_se4203085406695923979it_int
    = ( ^ [N2: nat,K2: int] : ( bit_se725231765392027082nd_int @ K2 @ ( bit_ri7919022796975470100ot_int @ ( bit_se545348938243370406it_int @ N2 @ one_one_int ) ) ) ) ) ).

% unset_bit_int_def
thf(fact_9616_or__int__def,axiom,
    ( bit_se1409905431419307370or_int
    = ( ^ [K2: int,L2: int] : ( bit_ri7919022796975470100ot_int @ ( bit_se725231765392027082nd_int @ ( bit_ri7919022796975470100ot_int @ K2 ) @ ( bit_ri7919022796975470100ot_int @ L2 ) ) ) ) ) ).

% or_int_def
thf(fact_9617_flip__bit__nat__def,axiom,
    ( bit_se2161824704523386999it_nat
    = ( ^ [M3: nat,N2: nat] : ( bit_se6528837805403552850or_nat @ N2 @ ( bit_se547839408752420682it_nat @ M3 @ one_one_nat ) ) ) ) ).

% flip_bit_nat_def
thf(fact_9618_set__bit__nat__def,axiom,
    ( bit_se7882103937844011126it_nat
    = ( ^ [M3: nat,N2: nat] : ( bit_se1412395901928357646or_nat @ N2 @ ( bit_se547839408752420682it_nat @ M3 @ one_one_nat ) ) ) ) ).

% set_bit_nat_def
thf(fact_9619_not__int__def,axiom,
    ( bit_ri7919022796975470100ot_int
    = ( ^ [K2: int] : ( minus_minus_int @ ( uminus_uminus_int @ K2 ) @ one_one_int ) ) ) ).

% not_int_def
thf(fact_9620_and__not__numerals_I1_J,axiom,
    ( ( bit_se725231765392027082nd_int @ one_one_int @ ( bit_ri7919022796975470100ot_int @ one_one_int ) )
    = zero_zero_int ) ).

% and_not_numerals(1)
thf(fact_9621_or__not__numerals_I1_J,axiom,
    ( ( bit_se1409905431419307370or_int @ one_one_int @ ( bit_ri7919022796975470100ot_int @ one_one_int ) )
    = ( bit_ri7919022796975470100ot_int @ zero_zero_int ) ) ).

% or_not_numerals(1)
thf(fact_9622_bit__push__bit__iff__int,axiom,
    ! [M: nat,K: int,N: nat] :
      ( ( bit_se1146084159140164899it_int @ ( bit_se545348938243370406it_int @ M @ K ) @ N )
      = ( ( ord_less_eq_nat @ M @ N )
        & ( bit_se1146084159140164899it_int @ K @ ( minus_minus_nat @ N @ M ) ) ) ) ).

% bit_push_bit_iff_int
thf(fact_9623_bit__push__bit__iff__nat,axiom,
    ! [M: nat,Q2: nat,N: nat] :
      ( ( bit_se1148574629649215175it_nat @ ( bit_se547839408752420682it_nat @ M @ Q2 ) @ N )
      = ( ( ord_less_eq_nat @ M @ N )
        & ( bit_se1148574629649215175it_nat @ Q2 @ ( minus_minus_nat @ N @ M ) ) ) ) ).

% bit_push_bit_iff_nat
thf(fact_9624_concat__bit__eq,axiom,
    ( bit_concat_bit
    = ( ^ [N2: nat,K2: int,L2: int] : ( plus_plus_int @ ( bit_se2923211474154528505it_int @ N2 @ K2 ) @ ( bit_se545348938243370406it_int @ N2 @ L2 ) ) ) ) ).

% concat_bit_eq
thf(fact_9625_xor__int__def,axiom,
    ( bit_se6526347334894502574or_int
    = ( ^ [K2: int,L2: int] : ( bit_se1409905431419307370or_int @ ( bit_se725231765392027082nd_int @ K2 @ ( bit_ri7919022796975470100ot_int @ L2 ) ) @ ( bit_se725231765392027082nd_int @ ( bit_ri7919022796975470100ot_int @ K2 ) @ L2 ) ) ) ) ).

% xor_int_def
thf(fact_9626_concat__bit__def,axiom,
    ( bit_concat_bit
    = ( ^ [N2: nat,K2: int,L2: int] : ( bit_se1409905431419307370or_int @ ( bit_se2923211474154528505it_int @ N2 @ K2 ) @ ( bit_se545348938243370406it_int @ N2 @ L2 ) ) ) ) ).

% concat_bit_def
thf(fact_9627_set__bit__int__def,axiom,
    ( bit_se7879613467334960850it_int
    = ( ^ [N2: nat,K2: int] : ( bit_se1409905431419307370or_int @ K2 @ ( bit_se545348938243370406it_int @ N2 @ one_one_int ) ) ) ) ).

% set_bit_int_def
thf(fact_9628_flip__bit__int__def,axiom,
    ( bit_se2159334234014336723it_int
    = ( ^ [N2: nat,K2: int] : ( bit_se6526347334894502574or_int @ K2 @ ( bit_se545348938243370406it_int @ N2 @ one_one_int ) ) ) ) ).

% flip_bit_int_def
thf(fact_9629_not__int__div__2,axiom,
    ! [K: int] :
      ( ( divide_divide_int @ ( bit_ri7919022796975470100ot_int @ K ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
      = ( bit_ri7919022796975470100ot_int @ ( divide_divide_int @ K @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ).

% not_int_div_2
thf(fact_9630_even__not__iff__int,axiom,
    ! [K: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_ri7919022796975470100ot_int @ K ) )
      = ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K ) ) ) ).

% even_not_iff_int
thf(fact_9631_and__not__numerals_I2_J,axiom,
    ! [N: num] :
      ( ( bit_se725231765392027082nd_int @ one_one_int @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) )
      = one_one_int ) ).

% and_not_numerals(2)
thf(fact_9632_and__not__numerals_I4_J,axiom,
    ! [M: num] :
      ( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ ( bit0 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ one_one_int ) )
      = ( numeral_numeral_int @ ( bit0 @ M ) ) ) ).

% and_not_numerals(4)
thf(fact_9633_or__not__numerals_I2_J,axiom,
    ! [N: num] :
      ( ( bit_se1409905431419307370or_int @ one_one_int @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) )
      = ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) ) ).

% or_not_numerals(2)
thf(fact_9634_or__not__numerals_I4_J,axiom,
    ! [M: num] :
      ( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ ( bit0 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ one_one_int ) )
      = ( bit_ri7919022796975470100ot_int @ one_one_int ) ) ).

% or_not_numerals(4)
thf(fact_9635_bit__minus__int__iff,axiom,
    ! [K: int,N: nat] :
      ( ( bit_se1146084159140164899it_int @ ( uminus_uminus_int @ K ) @ N )
      = ( bit_se1146084159140164899it_int @ ( bit_ri7919022796975470100ot_int @ ( minus_minus_int @ K @ one_one_int ) ) @ N ) ) ).

% bit_minus_int_iff
thf(fact_9636_numeral__or__not__num__eq,axiom,
    ! [M: num,N: num] :
      ( ( numeral_numeral_int @ ( bit_or_not_num_neg @ M @ N ) )
      = ( uminus_uminus_int @ ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N ) ) ) ) ) ).

% numeral_or_not_num_eq
thf(fact_9637_int__numeral__not__or__num__neg,axiom,
    ! [M: num,N: num] :
      ( ( bit_se1409905431419307370or_int @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit_or_not_num_neg @ N @ M ) ) ) ) ).

% int_numeral_not_or_num_neg
thf(fact_9638_int__numeral__or__not__num__neg,axiom,
    ! [M: num,N: num] :
      ( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N ) ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit_or_not_num_neg @ M @ N ) ) ) ) ).

% int_numeral_or_not_num_neg
thf(fact_9639_and__not__numerals_I5_J,axiom,
    ! [M: num,N: num] :
      ( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ ( bit0 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) )
      = ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N ) ) ) ) ) ).

% and_not_numerals(5)
thf(fact_9640_and__not__numerals_I7_J,axiom,
    ! [M: num] :
      ( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ ( bit1 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ one_one_int ) )
      = ( numeral_numeral_int @ ( bit0 @ M ) ) ) ).

% and_not_numerals(7)
thf(fact_9641_or__not__numerals_I3_J,axiom,
    ! [N: num] :
      ( ( bit_se1409905431419307370or_int @ one_one_int @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) )
      = ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) ) ).

% or_not_numerals(3)
thf(fact_9642_and__not__numerals_I3_J,axiom,
    ! [N: num] :
      ( ( bit_se725231765392027082nd_int @ one_one_int @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) )
      = zero_zero_int ) ).

% and_not_numerals(3)
thf(fact_9643_or__not__numerals_I7_J,axiom,
    ! [M: num] :
      ( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ ( bit1 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ one_one_int ) )
      = ( bit_ri7919022796975470100ot_int @ zero_zero_int ) ) ).

% or_not_numerals(7)
thf(fact_9644_push__bit__int__def,axiom,
    ( bit_se545348938243370406it_int
    = ( ^ [N2: nat,K2: int] : ( times_times_int @ K2 @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) ) ) ) ).

% push_bit_int_def
thf(fact_9645_push__bit__nat__def,axiom,
    ( bit_se547839408752420682it_nat
    = ( ^ [N2: nat,M3: nat] : ( times_times_nat @ M3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) ) ).

% push_bit_nat_def
thf(fact_9646_and__not__numerals_I6_J,axiom,
    ! [M: num,N: num] :
      ( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ ( bit0 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) )
      = ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N ) ) ) ) ) ).

% and_not_numerals(6)
thf(fact_9647_and__not__numerals_I9_J,axiom,
    ! [M: num,N: num] :
      ( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ ( bit1 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) )
      = ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N ) ) ) ) ) ).

% and_not_numerals(9)
thf(fact_9648_or__not__numerals_I6_J,axiom,
    ! [M: num,N: num] :
      ( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ ( bit0 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) )
      = ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N ) ) ) ) ) ).

% or_not_numerals(6)
thf(fact_9649_push__bit__minus__one,axiom,
    ! [N: nat] :
      ( ( bit_se545348938243370406it_int @ N @ ( uminus_uminus_int @ one_one_int ) )
      = ( uminus_uminus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ).

% push_bit_minus_one
thf(fact_9650_or__not__numerals_I5_J,axiom,
    ! [M: num,N: num] :
      ( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ ( bit0 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) )
      = ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N ) ) ) ) ) ) ).

% or_not_numerals(5)
thf(fact_9651_and__not__numerals_I8_J,axiom,
    ! [M: num,N: num] :
      ( ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ ( bit1 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) )
      = ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se725231765392027082nd_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N ) ) ) ) ) ) ).

% and_not_numerals(8)
thf(fact_9652_or__not__numerals_I8_J,axiom,
    ! [M: num,N: num] :
      ( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ ( bit1 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) )
      = ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N ) ) ) ) ) ) ).

% or_not_numerals(8)
thf(fact_9653_or__not__numerals_I9_J,axiom,
    ! [M: num,N: num] :
      ( ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ ( bit1 @ M ) ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ ( bit1 @ N ) ) ) )
      = ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se1409905431419307370or_int @ ( numeral_numeral_int @ M ) @ ( bit_ri7919022796975470100ot_int @ ( numeral_numeral_int @ N ) ) ) ) ) ) ).

% or_not_numerals(9)
thf(fact_9654_not__int__rec,axiom,
    ( bit_ri7919022796975470100ot_int
    = ( ^ [K2: int] : ( plus_plus_int @ ( zero_n2684676970156552555ol_int @ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ K2 ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_ri7919022796975470100ot_int @ ( divide_divide_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% not_int_rec
thf(fact_9655_Sum__Ico__nat,axiom,
    ! [M: nat,N: nat] :
      ( ( groups3542108847815614940at_nat
        @ ^ [X: nat] : X
        @ ( set_or4665077453230672383an_nat @ M @ N ) )
      = ( divide_divide_nat @ ( minus_minus_nat @ ( times_times_nat @ N @ ( minus_minus_nat @ N @ one_one_nat ) ) @ ( times_times_nat @ M @ ( minus_minus_nat @ M @ one_one_nat ) ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% Sum_Ico_nat
thf(fact_9656_Cauchy__iff2,axiom,
    ( topolo4055970368930404560y_real
    = ( ^ [X5: nat > real] :
        ! [J3: nat] :
        ? [M8: nat] :
        ! [M3: nat] :
          ( ( ord_less_eq_nat @ M8 @ M3 )
         => ! [N2: nat] :
              ( ( ord_less_eq_nat @ M8 @ N2 )
             => ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ ( X5 @ M3 ) @ ( X5 @ N2 ) ) ) @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ ( suc @ J3 ) ) ) ) ) ) ) ) ).

% Cauchy_iff2
thf(fact_9657_image__Suc__atLeastLessThan,axiom,
    ! [I: nat,J: nat] :
      ( ( image_nat_nat @ suc @ ( set_or4665077453230672383an_nat @ I @ J ) )
      = ( set_or4665077453230672383an_nat @ ( suc @ I ) @ ( suc @ J ) ) ) ).

% image_Suc_atLeastLessThan
thf(fact_9658_atLeastLessThan__singleton,axiom,
    ! [M: nat] :
      ( ( set_or4665077453230672383an_nat @ M @ ( suc @ M ) )
      = ( insert_nat @ M @ bot_bot_set_nat ) ) ).

% atLeastLessThan_singleton
thf(fact_9659_all__nat__less__eq,axiom,
    ! [N: nat,P: nat > $o] :
      ( ( ! [M3: nat] :
            ( ( ord_less_nat @ M3 @ N )
           => ( P @ M3 ) ) )
      = ( ! [X: nat] :
            ( ( member_nat @ X @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N ) )
           => ( P @ X ) ) ) ) ).

% all_nat_less_eq
thf(fact_9660_ex__nat__less__eq,axiom,
    ! [N: nat,P: nat > $o] :
      ( ( ? [M3: nat] :
            ( ( ord_less_nat @ M3 @ N )
            & ( P @ M3 ) ) )
      = ( ? [X: nat] :
            ( ( member_nat @ X @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N ) )
            & ( P @ X ) ) ) ) ).

% ex_nat_less_eq
thf(fact_9661_atLeastLessThanSuc__atLeastAtMost,axiom,
    ! [L: nat,U: nat] :
      ( ( set_or4665077453230672383an_nat @ L @ ( suc @ U ) )
      = ( set_or1269000886237332187st_nat @ L @ U ) ) ).

% atLeastLessThanSuc_atLeastAtMost
thf(fact_9662_atLeast0__lessThan__Suc,axiom,
    ! [N: nat] :
      ( ( set_or4665077453230672383an_nat @ zero_zero_nat @ ( suc @ N ) )
      = ( insert_nat @ N @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N ) ) ) ).

% atLeast0_lessThan_Suc
thf(fact_9663_subset__eq__atLeast0__lessThan__finite,axiom,
    ! [N4: set_nat,N: nat] :
      ( ( ord_less_eq_set_nat @ N4 @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N ) )
     => ( finite_finite_nat @ N4 ) ) ).

% subset_eq_atLeast0_lessThan_finite
thf(fact_9664_atLeastLessThanSuc,axiom,
    ! [M: nat,N: nat] :
      ( ( ( ord_less_eq_nat @ M @ N )
       => ( ( set_or4665077453230672383an_nat @ M @ ( suc @ N ) )
          = ( insert_nat @ N @ ( set_or4665077453230672383an_nat @ M @ N ) ) ) )
      & ( ~ ( ord_less_eq_nat @ M @ N )
       => ( ( set_or4665077453230672383an_nat @ M @ ( suc @ N ) )
          = bot_bot_set_nat ) ) ) ).

% atLeastLessThanSuc
thf(fact_9665_atLeast0__lessThan__Suc__eq__insert__0,axiom,
    ! [N: nat] :
      ( ( set_or4665077453230672383an_nat @ zero_zero_nat @ ( suc @ N ) )
      = ( insert_nat @ zero_zero_nat @ ( image_nat_nat @ suc @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N ) ) ) ) ).

% atLeast0_lessThan_Suc_eq_insert_0
thf(fact_9666_prod__Suc__Suc__fact,axiom,
    ! [N: nat] :
      ( ( groups708209901874060359at_nat @ suc @ ( set_or4665077453230672383an_nat @ ( suc @ zero_zero_nat ) @ N ) )
      = ( semiri1408675320244567234ct_nat @ N ) ) ).

% prod_Suc_Suc_fact
thf(fact_9667_prod__Suc__fact,axiom,
    ! [N: nat] :
      ( ( groups708209901874060359at_nat @ suc @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N ) )
      = ( semiri1408675320244567234ct_nat @ N ) ) ).

% prod_Suc_fact
thf(fact_9668_atLeastLessThan__nat__numeral,axiom,
    ! [M: nat,K: num] :
      ( ( ( ord_less_eq_nat @ M @ ( pred_numeral @ K ) )
       => ( ( set_or4665077453230672383an_nat @ M @ ( numeral_numeral_nat @ K ) )
          = ( insert_nat @ ( pred_numeral @ K ) @ ( set_or4665077453230672383an_nat @ M @ ( pred_numeral @ K ) ) ) ) )
      & ( ~ ( ord_less_eq_nat @ M @ ( pred_numeral @ K ) )
       => ( ( set_or4665077453230672383an_nat @ M @ ( numeral_numeral_nat @ K ) )
          = bot_bot_set_nat ) ) ) ).

% atLeastLessThan_nat_numeral
thf(fact_9669_image__minus__const__atLeastLessThan__nat,axiom,
    ! [C: nat,Y2: nat,X2: nat] :
      ( ( ( ord_less_nat @ C @ Y2 )
       => ( ( image_nat_nat
            @ ^ [I4: nat] : ( minus_minus_nat @ I4 @ C )
            @ ( set_or4665077453230672383an_nat @ X2 @ Y2 ) )
          = ( set_or4665077453230672383an_nat @ ( minus_minus_nat @ X2 @ C ) @ ( minus_minus_nat @ Y2 @ C ) ) ) )
      & ( ~ ( ord_less_nat @ C @ Y2 )
       => ( ( ( ord_less_nat @ X2 @ Y2 )
           => ( ( image_nat_nat
                @ ^ [I4: nat] : ( minus_minus_nat @ I4 @ C )
                @ ( set_or4665077453230672383an_nat @ X2 @ Y2 ) )
              = ( insert_nat @ zero_zero_nat @ bot_bot_set_nat ) ) )
          & ( ~ ( ord_less_nat @ X2 @ Y2 )
           => ( ( image_nat_nat
                @ ^ [I4: nat] : ( minus_minus_nat @ I4 @ C )
                @ ( set_or4665077453230672383an_nat @ X2 @ Y2 ) )
              = bot_bot_set_nat ) ) ) ) ) ).

% image_minus_const_atLeastLessThan_nat
thf(fact_9670_atLeast1__lessThan__eq__remove0,axiom,
    ! [N: nat] :
      ( ( set_or4665077453230672383an_nat @ ( suc @ zero_zero_nat ) @ N )
      = ( minus_minus_set_nat @ ( set_ord_lessThan_nat @ N ) @ ( insert_nat @ zero_zero_nat @ bot_bot_set_nat ) ) ) ).

% atLeast1_lessThan_eq_remove0
thf(fact_9671_sum__power2,axiom,
    ! [K: nat] :
      ( ( groups3542108847815614940at_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ K ) )
      = ( minus_minus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K ) @ one_one_nat ) ) ).

% sum_power2
thf(fact_9672_Chebyshev__sum__upper__nat,axiom,
    ! [N: nat,A: nat > nat,B: nat > nat] :
      ( ! [I3: nat,J2: nat] :
          ( ( ord_less_eq_nat @ I3 @ J2 )
         => ( ( ord_less_nat @ J2 @ N )
           => ( ord_less_eq_nat @ ( A @ I3 ) @ ( A @ J2 ) ) ) )
     => ( ! [I3: nat,J2: nat] :
            ( ( ord_less_eq_nat @ I3 @ J2 )
           => ( ( ord_less_nat @ J2 @ N )
             => ( ord_less_eq_nat @ ( B @ J2 ) @ ( B @ I3 ) ) ) )
       => ( ord_less_eq_nat
          @ ( times_times_nat @ N
            @ ( groups3542108847815614940at_nat
              @ ^ [I4: nat] : ( times_times_nat @ ( A @ I4 ) @ ( B @ I4 ) )
              @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N ) ) )
          @ ( times_times_nat @ ( groups3542108847815614940at_nat @ A @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N ) ) @ ( groups3542108847815614940at_nat @ B @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N ) ) ) ) ) ) ).

% Chebyshev_sum_upper_nat
thf(fact_9673_atLeastLessThanPlusOne__atLeastAtMost__int,axiom,
    ! [L: int,U: int] :
      ( ( set_or4662586982721622107an_int @ L @ ( plus_plus_int @ U @ one_one_int ) )
      = ( set_or1266510415728281911st_int @ L @ U ) ) ).

% atLeastLessThanPlusOne_atLeastAtMost_int
thf(fact_9674_image__add__int__atLeastLessThan,axiom,
    ! [L: int,U: int] :
      ( ( image_int_int
        @ ^ [X: int] : ( plus_plus_int @ X @ L )
        @ ( set_or4662586982721622107an_int @ zero_zero_int @ ( minus_minus_int @ U @ L ) ) )
      = ( set_or4662586982721622107an_int @ L @ U ) ) ).

% image_add_int_atLeastLessThan
thf(fact_9675_image__atLeastZeroLessThan__int,axiom,
    ! [U: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ U )
     => ( ( set_or4662586982721622107an_int @ zero_zero_int @ U )
        = ( image_nat_int @ semiri1314217659103216013at_int @ ( set_ord_lessThan_nat @ ( nat2 @ U ) ) ) ) ) ).

% image_atLeastZeroLessThan_int
thf(fact_9676_VEBT_Osize_I3_J,axiom,
    ! [X11: option4927543243414619207at_nat,X12: nat,X13: list_VEBT_VEBT,X14: vEBT_VEBT] :
      ( ( size_size_VEBT_VEBT @ ( vEBT_Node @ X11 @ X12 @ X13 @ X14 ) )
      = ( plus_plus_nat @ ( plus_plus_nat @ ( size_list_VEBT_VEBT @ size_size_VEBT_VEBT @ X13 ) @ ( size_size_VEBT_VEBT @ X14 ) ) @ ( suc @ zero_zero_nat ) ) ) ).

% VEBT.size(3)
thf(fact_9677_valid__eq2,axiom,
    ! [T: vEBT_VEBT,D: nat] :
      ( ( vEBT_VEBT_valid @ T @ D )
     => ( vEBT_invar_vebt @ T @ D ) ) ).

% valid_eq2
thf(fact_9678_valid__eq,axiom,
    vEBT_VEBT_valid = vEBT_invar_vebt ).

% valid_eq
thf(fact_9679_valid__eq1,axiom,
    ! [T: vEBT_VEBT,D: nat] :
      ( ( vEBT_invar_vebt @ T @ D )
     => ( vEBT_VEBT_valid @ T @ D ) ) ).

% valid_eq1
thf(fact_9680_VEBT__internal_Ovalid_H_Osimps_I1_J,axiom,
    ! [Uu: $o,Uv: $o,D: nat] :
      ( ( vEBT_VEBT_valid @ ( vEBT_Leaf @ Uu @ Uv ) @ D )
      = ( D = one_one_nat ) ) ).

% VEBT_internal.valid'.simps(1)
thf(fact_9681_VEBT_Osize__gen_I1_J,axiom,
    ! [X11: option4927543243414619207at_nat,X12: nat,X13: list_VEBT_VEBT,X14: vEBT_VEBT] :
      ( ( vEBT_size_VEBT @ ( vEBT_Node @ X11 @ X12 @ X13 @ X14 ) )
      = ( plus_plus_nat @ ( plus_plus_nat @ ( size_list_VEBT_VEBT @ vEBT_size_VEBT @ X13 ) @ ( vEBT_size_VEBT @ X14 ) ) @ ( suc @ zero_zero_nat ) ) ) ).

% VEBT.size_gen(1)
thf(fact_9682_VEBT_Osize__gen_I2_J,axiom,
    ! [X21: $o,X222: $o] :
      ( ( vEBT_size_VEBT @ ( vEBT_Leaf @ X21 @ X222 ) )
      = zero_zero_nat ) ).

% VEBT.size_gen(2)
thf(fact_9683_Code__Target__Int_Opositive__def,axiom,
    code_Target_positive = numeral_numeral_int ).

% Code_Target_Int.positive_def
thf(fact_9684_csqrt_Osimps_I1_J,axiom,
    ! [Z: complex] :
      ( ( re @ ( csqrt @ Z ) )
      = ( sqrt @ ( divide_divide_real @ ( plus_plus_real @ ( real_V1022390504157884413omplex @ Z ) @ ( re @ Z ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).

% csqrt.simps(1)
thf(fact_9685_complex__Re__numeral,axiom,
    ! [V: num] :
      ( ( re @ ( numera6690914467698888265omplex @ V ) )
      = ( numeral_numeral_real @ V ) ) ).

% complex_Re_numeral
thf(fact_9686_Re__divide__of__nat,axiom,
    ! [Z: complex,N: nat] :
      ( ( re @ ( divide1717551699836669952omplex @ Z @ ( semiri8010041392384452111omplex @ N ) ) )
      = ( divide_divide_real @ ( re @ Z ) @ ( semiri5074537144036343181t_real @ N ) ) ) ).

% Re_divide_of_nat
thf(fact_9687_Re__divide__of__real,axiom,
    ! [Z: complex,R2: real] :
      ( ( re @ ( divide1717551699836669952omplex @ Z @ ( real_V4546457046886955230omplex @ R2 ) ) )
      = ( divide_divide_real @ ( re @ Z ) @ R2 ) ) ).

% Re_divide_of_real
thf(fact_9688_Re__sgn,axiom,
    ! [Z: complex] :
      ( ( re @ ( sgn_sgn_complex @ Z ) )
      = ( divide_divide_real @ ( re @ Z ) @ ( real_V1022390504157884413omplex @ Z ) ) ) ).

% Re_sgn
thf(fact_9689_Re__divide__numeral,axiom,
    ! [Z: complex,W: num] :
      ( ( re @ ( divide1717551699836669952omplex @ Z @ ( numera6690914467698888265omplex @ W ) ) )
      = ( divide_divide_real @ ( re @ Z ) @ ( numeral_numeral_real @ W ) ) ) ).

% Re_divide_numeral
thf(fact_9690_sums__Re,axiom,
    ! [X7: nat > complex,A: complex] :
      ( ( sums_complex @ X7 @ A )
     => ( sums_real
        @ ^ [N2: nat] : ( re @ ( X7 @ N2 ) )
        @ ( re @ A ) ) ) ).

% sums_Re
thf(fact_9691_Cauchy__Re,axiom,
    ! [X7: nat > complex] :
      ( ( topolo6517432010174082258omplex @ X7 )
     => ( topolo4055970368930404560y_real
        @ ^ [N2: nat] : ( re @ ( X7 @ N2 ) ) ) ) ).

% Cauchy_Re
thf(fact_9692_complex__Re__le__cmod,axiom,
    ! [X2: complex] : ( ord_less_eq_real @ ( re @ X2 ) @ ( real_V1022390504157884413omplex @ X2 ) ) ).

% complex_Re_le_cmod
thf(fact_9693_one__complex_Osimps_I1_J,axiom,
    ( ( re @ one_one_complex )
    = one_one_real ) ).

% one_complex.simps(1)
thf(fact_9694_plus__complex_Osimps_I1_J,axiom,
    ! [X2: complex,Y2: complex] :
      ( ( re @ ( plus_plus_complex @ X2 @ Y2 ) )
      = ( plus_plus_real @ ( re @ X2 ) @ ( re @ Y2 ) ) ) ).

% plus_complex.simps(1)
thf(fact_9695_scaleR__complex_Osimps_I1_J,axiom,
    ! [R2: real,X2: complex] :
      ( ( re @ ( real_V2046097035970521341omplex @ R2 @ X2 ) )
      = ( times_times_real @ R2 @ ( re @ X2 ) ) ) ).

% scaleR_complex.simps(1)
thf(fact_9696_summable__Re,axiom,
    ! [F: nat > complex] :
      ( ( summable_complex @ F )
     => ( summable_real
        @ ^ [X: nat] : ( re @ ( F @ X ) ) ) ) ).

% summable_Re
thf(fact_9697_abs__Re__le__cmod,axiom,
    ! [X2: complex] : ( ord_less_eq_real @ ( abs_abs_real @ ( re @ X2 ) ) @ ( real_V1022390504157884413omplex @ X2 ) ) ).

% abs_Re_le_cmod
thf(fact_9698_Re__csqrt,axiom,
    ! [Z: complex] : ( ord_less_eq_real @ zero_zero_real @ ( re @ ( csqrt @ Z ) ) ) ).

% Re_csqrt
thf(fact_9699_cmod__plus__Re__le__0__iff,axiom,
    ! [Z: complex] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ ( real_V1022390504157884413omplex @ Z ) @ ( re @ Z ) ) @ zero_zero_real )
      = ( ( re @ Z )
        = ( uminus_uminus_real @ ( real_V1022390504157884413omplex @ Z ) ) ) ) ).

% cmod_plus_Re_le_0_iff
thf(fact_9700_cos__n__Re__cis__pow__n,axiom,
    ! [N: nat,A: real] :
      ( ( cos_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ A ) )
      = ( re @ ( power_power_complex @ ( cis @ A ) @ N ) ) ) ).

% cos_n_Re_cis_pow_n
thf(fact_9701_csqrt_Ocode,axiom,
    ( csqrt
    = ( ^ [Z4: complex] :
          ( complex2 @ ( sqrt @ ( divide_divide_real @ ( plus_plus_real @ ( real_V1022390504157884413omplex @ Z4 ) @ ( re @ Z4 ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
          @ ( times_times_real
            @ ( if_real
              @ ( ( im @ Z4 )
                = zero_zero_real )
              @ one_one_real
              @ ( sgn_sgn_real @ ( im @ Z4 ) ) )
            @ ( sqrt @ ( divide_divide_real @ ( minus_minus_real @ ( real_V1022390504157884413omplex @ Z4 ) @ ( re @ Z4 ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% csqrt.code
thf(fact_9702_csqrt_Osimps_I2_J,axiom,
    ! [Z: complex] :
      ( ( im @ ( csqrt @ Z ) )
      = ( times_times_real
        @ ( if_real
          @ ( ( im @ Z )
            = zero_zero_real )
          @ one_one_real
          @ ( sgn_sgn_real @ ( im @ Z ) ) )
        @ ( sqrt @ ( divide_divide_real @ ( minus_minus_real @ ( real_V1022390504157884413omplex @ Z ) @ ( re @ Z ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).

% csqrt.simps(2)
thf(fact_9703_csqrt__of__real__nonpos,axiom,
    ! [X2: complex] :
      ( ( ( im @ X2 )
        = zero_zero_real )
     => ( ( ord_less_eq_real @ ( re @ X2 ) @ zero_zero_real )
       => ( ( csqrt @ X2 )
          = ( times_times_complex @ imaginary_unit @ ( real_V4546457046886955230omplex @ ( sqrt @ ( abs_abs_real @ ( re @ X2 ) ) ) ) ) ) ) ) ).

% csqrt_of_real_nonpos
thf(fact_9704_complex__Im__numeral,axiom,
    ! [V: num] :
      ( ( im @ ( numera6690914467698888265omplex @ V ) )
      = zero_zero_real ) ).

% complex_Im_numeral
thf(fact_9705_Im__i__times,axiom,
    ! [Z: complex] :
      ( ( im @ ( times_times_complex @ imaginary_unit @ Z ) )
      = ( re @ Z ) ) ).

% Im_i_times
thf(fact_9706_Im__divide__of__real,axiom,
    ! [Z: complex,R2: real] :
      ( ( im @ ( divide1717551699836669952omplex @ Z @ ( real_V4546457046886955230omplex @ R2 ) ) )
      = ( divide_divide_real @ ( im @ Z ) @ R2 ) ) ).

% Im_divide_of_real
thf(fact_9707_Im__sgn,axiom,
    ! [Z: complex] :
      ( ( im @ ( sgn_sgn_complex @ Z ) )
      = ( divide_divide_real @ ( im @ Z ) @ ( real_V1022390504157884413omplex @ Z ) ) ) ).

% Im_sgn
thf(fact_9708_Re__power__real,axiom,
    ! [X2: complex,N: nat] :
      ( ( ( im @ X2 )
        = zero_zero_real )
     => ( ( re @ ( power_power_complex @ X2 @ N ) )
        = ( power_power_real @ ( re @ X2 ) @ N ) ) ) ).

% Re_power_real
thf(fact_9709_Re__i__times,axiom,
    ! [Z: complex] :
      ( ( re @ ( times_times_complex @ imaginary_unit @ Z ) )
      = ( uminus_uminus_real @ ( im @ Z ) ) ) ).

% Re_i_times
thf(fact_9710_Im__divide__numeral,axiom,
    ! [Z: complex,W: num] :
      ( ( im @ ( divide1717551699836669952omplex @ Z @ ( numera6690914467698888265omplex @ W ) ) )
      = ( divide_divide_real @ ( im @ Z ) @ ( numeral_numeral_real @ W ) ) ) ).

% Im_divide_numeral
thf(fact_9711_Im__divide__of__nat,axiom,
    ! [Z: complex,N: nat] :
      ( ( im @ ( divide1717551699836669952omplex @ Z @ ( semiri8010041392384452111omplex @ N ) ) )
      = ( divide_divide_real @ ( im @ Z ) @ ( semiri5074537144036343181t_real @ N ) ) ) ).

% Im_divide_of_nat
thf(fact_9712_csqrt__of__real__nonneg,axiom,
    ! [X2: complex] :
      ( ( ( im @ X2 )
        = zero_zero_real )
     => ( ( ord_less_eq_real @ zero_zero_real @ ( re @ X2 ) )
       => ( ( csqrt @ X2 )
          = ( real_V4546457046886955230omplex @ ( sqrt @ ( re @ X2 ) ) ) ) ) ) ).

% csqrt_of_real_nonneg
thf(fact_9713_csqrt__minus,axiom,
    ! [X2: complex] :
      ( ( ( ord_less_real @ ( im @ X2 ) @ zero_zero_real )
        | ( ( ( im @ X2 )
            = zero_zero_real )
          & ( ord_less_eq_real @ zero_zero_real @ ( re @ X2 ) ) ) )
     => ( ( csqrt @ ( uminus1482373934393186551omplex @ X2 ) )
        = ( times_times_complex @ imaginary_unit @ ( csqrt @ X2 ) ) ) ) ).

% csqrt_minus
thf(fact_9714_sums__Im,axiom,
    ! [X7: nat > complex,A: complex] :
      ( ( sums_complex @ X7 @ A )
     => ( sums_real
        @ ^ [N2: nat] : ( im @ ( X7 @ N2 ) )
        @ ( im @ A ) ) ) ).

% sums_Im
thf(fact_9715_Cauchy__Im,axiom,
    ! [X7: nat > complex] :
      ( ( topolo6517432010174082258omplex @ X7 )
     => ( topolo4055970368930404560y_real
        @ ^ [N2: nat] : ( im @ ( X7 @ N2 ) ) ) ) ).

% Cauchy_Im
thf(fact_9716_imaginary__unit_Osimps_I2_J,axiom,
    ( ( im @ imaginary_unit )
    = one_one_real ) ).

% imaginary_unit.simps(2)
thf(fact_9717_plus__complex_Osimps_I2_J,axiom,
    ! [X2: complex,Y2: complex] :
      ( ( im @ ( plus_plus_complex @ X2 @ Y2 ) )
      = ( plus_plus_real @ ( im @ X2 ) @ ( im @ Y2 ) ) ) ).

% plus_complex.simps(2)
thf(fact_9718_scaleR__complex_Osimps_I2_J,axiom,
    ! [R2: real,X2: complex] :
      ( ( im @ ( real_V2046097035970521341omplex @ R2 @ X2 ) )
      = ( times_times_real @ R2 @ ( im @ X2 ) ) ) ).

% scaleR_complex.simps(2)
thf(fact_9719_sums__complex__iff,axiom,
    ( sums_complex
    = ( ^ [F3: nat > complex,X: complex] :
          ( ( sums_real
            @ ^ [Y: nat] : ( re @ ( F3 @ Y ) )
            @ ( re @ X ) )
          & ( sums_real
            @ ^ [Y: nat] : ( im @ ( F3 @ Y ) )
            @ ( im @ X ) ) ) ) ) ).

% sums_complex_iff
thf(fact_9720_summable__Im,axiom,
    ! [F: nat > complex] :
      ( ( summable_complex @ F )
     => ( summable_real
        @ ^ [X: nat] : ( im @ ( F @ X ) ) ) ) ).

% summable_Im
thf(fact_9721_abs__Im__le__cmod,axiom,
    ! [X2: complex] : ( ord_less_eq_real @ ( abs_abs_real @ ( im @ X2 ) ) @ ( real_V1022390504157884413omplex @ X2 ) ) ).

% abs_Im_le_cmod
thf(fact_9722_summable__complex__iff,axiom,
    ( summable_complex
    = ( ^ [F3: nat > complex] :
          ( ( summable_real
            @ ^ [X: nat] : ( re @ ( F3 @ X ) ) )
          & ( summable_real
            @ ^ [X: nat] : ( im @ ( F3 @ X ) ) ) ) ) ) ).

% summable_complex_iff
thf(fact_9723_times__complex_Osimps_I2_J,axiom,
    ! [X2: complex,Y2: complex] :
      ( ( im @ ( times_times_complex @ X2 @ Y2 ) )
      = ( plus_plus_real @ ( times_times_real @ ( re @ X2 ) @ ( im @ Y2 ) ) @ ( times_times_real @ ( im @ X2 ) @ ( re @ Y2 ) ) ) ) ).

% times_complex.simps(2)
thf(fact_9724_cmod__Re__le__iff,axiom,
    ! [X2: complex,Y2: complex] :
      ( ( ( im @ X2 )
        = ( im @ Y2 ) )
     => ( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ X2 ) @ ( real_V1022390504157884413omplex @ Y2 ) )
        = ( ord_less_eq_real @ ( abs_abs_real @ ( re @ X2 ) ) @ ( abs_abs_real @ ( re @ Y2 ) ) ) ) ) ).

% cmod_Re_le_iff
thf(fact_9725_cmod__Im__le__iff,axiom,
    ! [X2: complex,Y2: complex] :
      ( ( ( re @ X2 )
        = ( re @ Y2 ) )
     => ( ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ X2 ) @ ( real_V1022390504157884413omplex @ Y2 ) )
        = ( ord_less_eq_real @ ( abs_abs_real @ ( im @ X2 ) ) @ ( abs_abs_real @ ( im @ Y2 ) ) ) ) ) ).

% cmod_Im_le_iff
thf(fact_9726_times__complex_Osimps_I1_J,axiom,
    ! [X2: complex,Y2: complex] :
      ( ( re @ ( times_times_complex @ X2 @ Y2 ) )
      = ( minus_minus_real @ ( times_times_real @ ( re @ X2 ) @ ( re @ Y2 ) ) @ ( times_times_real @ ( im @ X2 ) @ ( im @ Y2 ) ) ) ) ).

% times_complex.simps(1)
thf(fact_9727_plus__complex_Ocode,axiom,
    ( plus_plus_complex
    = ( ^ [X: complex,Y: complex] : ( complex2 @ ( plus_plus_real @ ( re @ X ) @ ( re @ Y ) ) @ ( plus_plus_real @ ( im @ X ) @ ( im @ Y ) ) ) ) ) ).

% plus_complex.code
thf(fact_9728_scaleR__complex_Ocode,axiom,
    ( real_V2046097035970521341omplex
    = ( ^ [R5: real,X: complex] : ( complex2 @ ( times_times_real @ R5 @ ( re @ X ) ) @ ( times_times_real @ R5 @ ( im @ X ) ) ) ) ) ).

% scaleR_complex.code
thf(fact_9729_csqrt__principal,axiom,
    ! [Z: complex] :
      ( ( ord_less_real @ zero_zero_real @ ( re @ ( csqrt @ Z ) ) )
      | ( ( ( re @ ( csqrt @ Z ) )
          = zero_zero_real )
        & ( ord_less_eq_real @ zero_zero_real @ ( im @ ( csqrt @ Z ) ) ) ) ) ).

% csqrt_principal
thf(fact_9730_cmod__le,axiom,
    ! [Z: complex] : ( ord_less_eq_real @ ( real_V1022390504157884413omplex @ Z ) @ ( plus_plus_real @ ( abs_abs_real @ ( re @ Z ) ) @ ( abs_abs_real @ ( im @ Z ) ) ) ) ).

% cmod_le
thf(fact_9731_sin__n__Im__cis__pow__n,axiom,
    ! [N: nat,A: real] :
      ( ( sin_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ A ) )
      = ( im @ ( power_power_complex @ ( cis @ A ) @ N ) ) ) ).

% sin_n_Im_cis_pow_n
thf(fact_9732_Re__exp,axiom,
    ! [Z: complex] :
      ( ( re @ ( exp_complex @ Z ) )
      = ( times_times_real @ ( exp_real @ ( re @ Z ) ) @ ( cos_real @ ( im @ Z ) ) ) ) ).

% Re_exp
thf(fact_9733_Im__exp,axiom,
    ! [Z: complex] :
      ( ( im @ ( exp_complex @ Z ) )
      = ( times_times_real @ ( exp_real @ ( re @ Z ) ) @ ( sin_real @ ( im @ Z ) ) ) ) ).

% Im_exp
thf(fact_9734_complex__eq,axiom,
    ! [A: complex] :
      ( A
      = ( plus_plus_complex @ ( real_V4546457046886955230omplex @ ( re @ A ) ) @ ( times_times_complex @ imaginary_unit @ ( real_V4546457046886955230omplex @ ( im @ A ) ) ) ) ) ).

% complex_eq
thf(fact_9735_times__complex_Ocode,axiom,
    ( times_times_complex
    = ( ^ [X: complex,Y: complex] : ( complex2 @ ( minus_minus_real @ ( times_times_real @ ( re @ X ) @ ( re @ Y ) ) @ ( times_times_real @ ( im @ X ) @ ( im @ Y ) ) ) @ ( plus_plus_real @ ( times_times_real @ ( re @ X ) @ ( im @ Y ) ) @ ( times_times_real @ ( im @ X ) @ ( re @ Y ) ) ) ) ) ) ).

% times_complex.code
thf(fact_9736_exp__eq__polar,axiom,
    ( exp_complex
    = ( ^ [Z4: complex] : ( times_times_complex @ ( real_V4546457046886955230omplex @ ( exp_real @ ( re @ Z4 ) ) ) @ ( cis @ ( im @ Z4 ) ) ) ) ) ).

% exp_eq_polar
thf(fact_9737_cmod__power2,axiom,
    ! [Z: complex] :
      ( ( power_power_real @ ( real_V1022390504157884413omplex @ Z ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( plus_plus_real @ ( power_power_real @ ( re @ Z ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ Z ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% cmod_power2
thf(fact_9738_Im__power2,axiom,
    ! [X2: complex] :
      ( ( im @ ( power_power_complex @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( re @ X2 ) ) @ ( im @ X2 ) ) ) ).

% Im_power2
thf(fact_9739_Re__power2,axiom,
    ! [X2: complex] :
      ( ( re @ ( power_power_complex @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( minus_minus_real @ ( power_power_real @ ( re @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% Re_power2
thf(fact_9740_complex__eq__0,axiom,
    ! [Z: complex] :
      ( ( Z = zero_zero_complex )
      = ( ( plus_plus_real @ ( power_power_real @ ( re @ Z ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ Z ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
        = zero_zero_real ) ) ).

% complex_eq_0
thf(fact_9741_norm__complex__def,axiom,
    ( real_V1022390504157884413omplex
    = ( ^ [Z4: complex] : ( sqrt @ ( plus_plus_real @ ( power_power_real @ ( re @ Z4 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ Z4 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% norm_complex_def
thf(fact_9742_inverse__complex_Osimps_I1_J,axiom,
    ! [X2: complex] :
      ( ( re @ ( invers8013647133539491842omplex @ X2 ) )
      = ( divide_divide_real @ ( re @ X2 ) @ ( plus_plus_real @ ( power_power_real @ ( re @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% inverse_complex.simps(1)
thf(fact_9743_complex__neq__0,axiom,
    ! [Z: complex] :
      ( ( Z != zero_zero_complex )
      = ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ ( power_power_real @ ( re @ Z ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ Z ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% complex_neq_0
thf(fact_9744_Re__divide,axiom,
    ! [X2: complex,Y2: complex] :
      ( ( re @ ( divide1717551699836669952omplex @ X2 @ Y2 ) )
      = ( divide_divide_real @ ( plus_plus_real @ ( times_times_real @ ( re @ X2 ) @ ( re @ Y2 ) ) @ ( times_times_real @ ( im @ X2 ) @ ( im @ Y2 ) ) ) @ ( plus_plus_real @ ( power_power_real @ ( re @ Y2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ Y2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% Re_divide
thf(fact_9745_csqrt__square,axiom,
    ! [B: complex] :
      ( ( ( ord_less_real @ zero_zero_real @ ( re @ B ) )
        | ( ( ( re @ B )
            = zero_zero_real )
          & ( ord_less_eq_real @ zero_zero_real @ ( im @ B ) ) ) )
     => ( ( csqrt @ ( power_power_complex @ B @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
        = B ) ) ).

% csqrt_square
thf(fact_9746_csqrt__unique,axiom,
    ! [W: complex,Z: complex] :
      ( ( ( power_power_complex @ W @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = Z )
     => ( ( ( ord_less_real @ zero_zero_real @ ( re @ W ) )
          | ( ( ( re @ W )
              = zero_zero_real )
            & ( ord_less_eq_real @ zero_zero_real @ ( im @ W ) ) ) )
       => ( ( csqrt @ Z )
          = W ) ) ) ).

% csqrt_unique
thf(fact_9747_inverse__complex_Osimps_I2_J,axiom,
    ! [X2: complex] :
      ( ( im @ ( invers8013647133539491842omplex @ X2 ) )
      = ( divide_divide_real @ ( uminus_uminus_real @ ( im @ X2 ) ) @ ( plus_plus_real @ ( power_power_real @ ( re @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ X2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% inverse_complex.simps(2)
thf(fact_9748_Im__divide,axiom,
    ! [X2: complex,Y2: complex] :
      ( ( im @ ( divide1717551699836669952omplex @ X2 @ Y2 ) )
      = ( divide_divide_real @ ( minus_minus_real @ ( times_times_real @ ( im @ X2 ) @ ( re @ Y2 ) ) @ ( times_times_real @ ( re @ X2 ) @ ( im @ Y2 ) ) ) @ ( plus_plus_real @ ( power_power_real @ ( re @ Y2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ Y2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% Im_divide
thf(fact_9749_complex__abs__le__norm,axiom,
    ! [Z: complex] : ( ord_less_eq_real @ ( plus_plus_real @ ( abs_abs_real @ ( re @ Z ) ) @ ( abs_abs_real @ ( im @ Z ) ) ) @ ( times_times_real @ ( sqrt @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( real_V1022390504157884413omplex @ Z ) ) ) ).

% complex_abs_le_norm
thf(fact_9750_complex__unit__circle,axiom,
    ! [Z: complex] :
      ( ( Z != zero_zero_complex )
     => ( ( plus_plus_real @ ( power_power_real @ ( divide_divide_real @ ( re @ Z ) @ ( real_V1022390504157884413omplex @ Z ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( divide_divide_real @ ( im @ Z ) @ ( real_V1022390504157884413omplex @ Z ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
        = one_one_real ) ) ).

% complex_unit_circle
thf(fact_9751_inverse__complex_Ocode,axiom,
    ( invers8013647133539491842omplex
    = ( ^ [X: complex] : ( complex2 @ ( divide_divide_real @ ( re @ X ) @ ( plus_plus_real @ ( power_power_real @ ( re @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( divide_divide_real @ ( uminus_uminus_real @ ( im @ X ) ) @ ( plus_plus_real @ ( power_power_real @ ( re @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% inverse_complex.code
thf(fact_9752_Complex__divide,axiom,
    ( divide1717551699836669952omplex
    = ( ^ [X: complex,Y: complex] : ( complex2 @ ( divide_divide_real @ ( plus_plus_real @ ( times_times_real @ ( re @ X ) @ ( re @ Y ) ) @ ( times_times_real @ ( im @ X ) @ ( im @ Y ) ) ) @ ( plus_plus_real @ ( power_power_real @ ( re @ Y ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ Y ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( divide_divide_real @ ( minus_minus_real @ ( times_times_real @ ( im @ X ) @ ( re @ Y ) ) @ ( times_times_real @ ( re @ X ) @ ( im @ Y ) ) ) @ ( plus_plus_real @ ( power_power_real @ ( re @ Y ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ Y ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% Complex_divide
thf(fact_9753_Im__Reals__divide,axiom,
    ! [R2: complex,Z: complex] :
      ( ( member_complex @ R2 @ real_V2521375963428798218omplex )
     => ( ( im @ ( divide1717551699836669952omplex @ R2 @ Z ) )
        = ( divide_divide_real @ ( times_times_real @ ( uminus_uminus_real @ ( re @ R2 ) ) @ ( im @ Z ) ) @ ( power_power_real @ ( real_V1022390504157884413omplex @ Z ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% Im_Reals_divide
thf(fact_9754_Re__Reals__divide,axiom,
    ! [R2: complex,Z: complex] :
      ( ( member_complex @ R2 @ real_V2521375963428798218omplex )
     => ( ( re @ ( divide1717551699836669952omplex @ R2 @ Z ) )
        = ( divide_divide_real @ ( times_times_real @ ( re @ R2 ) @ ( re @ Z ) ) @ ( power_power_real @ ( real_V1022390504157884413omplex @ Z ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% Re_Reals_divide
thf(fact_9755_Re__divide__Reals,axiom,
    ! [R2: complex,Z: complex] :
      ( ( member_complex @ R2 @ real_V2521375963428798218omplex )
     => ( ( re @ ( divide1717551699836669952omplex @ Z @ R2 ) )
        = ( divide_divide_real @ ( re @ Z ) @ ( re @ R2 ) ) ) ) ).

% Re_divide_Reals
thf(fact_9756_real__eq__imaginary__iff,axiom,
    ! [Y2: complex,X2: complex] :
      ( ( member_complex @ Y2 @ real_V2521375963428798218omplex )
     => ( ( member_complex @ X2 @ real_V2521375963428798218omplex )
       => ( ( X2
            = ( times_times_complex @ imaginary_unit @ Y2 ) )
          = ( ( X2 = zero_zero_complex )
            & ( Y2 = zero_zero_complex ) ) ) ) ) ).

% real_eq_imaginary_iff
thf(fact_9757_imaginary__eq__real__iff,axiom,
    ! [Y2: complex,X2: complex] :
      ( ( member_complex @ Y2 @ real_V2521375963428798218omplex )
     => ( ( member_complex @ X2 @ real_V2521375963428798218omplex )
       => ( ( ( times_times_complex @ imaginary_unit @ Y2 )
            = X2 )
          = ( ( X2 = zero_zero_complex )
            & ( Y2 = zero_zero_complex ) ) ) ) ) ).

% imaginary_eq_real_iff
thf(fact_9758_Im__divide__Reals,axiom,
    ! [R2: complex,Z: complex] :
      ( ( member_complex @ R2 @ real_V2521375963428798218omplex )
     => ( ( im @ ( divide1717551699836669952omplex @ Z @ R2 ) )
        = ( divide_divide_real @ ( im @ Z ) @ ( re @ R2 ) ) ) ) ).

% Im_divide_Reals
thf(fact_9759_complex__mult__cnj,axiom,
    ! [Z: complex] :
      ( ( times_times_complex @ Z @ ( cnj @ Z ) )
      = ( real_V4546457046886955230omplex @ ( plus_plus_real @ ( power_power_real @ ( re @ Z ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ ( im @ Z ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% complex_mult_cnj
thf(fact_9760_divmod__step__integer__def,axiom,
    ( unique4921790084139445826nteger
    = ( ^ [L2: num] :
          ( produc6916734918728496179nteger
          @ ^ [Q4: code_integer,R5: code_integer] : ( if_Pro6119634080678213985nteger @ ( ord_le3102999989581377725nteger @ ( numera6620942414471956472nteger @ L2 ) @ R5 ) @ ( produc1086072967326762835nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ Q4 ) @ one_one_Code_integer ) @ ( minus_8373710615458151222nteger @ R5 @ ( numera6620942414471956472nteger @ L2 ) ) ) @ ( produc1086072967326762835nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ Q4 ) @ R5 ) ) ) ) ) ).

% divmod_step_integer_def
thf(fact_9761_complex__cnj__mult,axiom,
    ! [X2: complex,Y2: complex] :
      ( ( cnj @ ( times_times_complex @ X2 @ Y2 ) )
      = ( times_times_complex @ ( cnj @ X2 ) @ ( cnj @ Y2 ) ) ) ).

% complex_cnj_mult
thf(fact_9762_complex__cnj__divide,axiom,
    ! [X2: complex,Y2: complex] :
      ( ( cnj @ ( divide1717551699836669952omplex @ X2 @ Y2 ) )
      = ( divide1717551699836669952omplex @ ( cnj @ X2 ) @ ( cnj @ Y2 ) ) ) ).

% complex_cnj_divide
thf(fact_9763_complex__cnj__add,axiom,
    ! [X2: complex,Y2: complex] :
      ( ( cnj @ ( plus_plus_complex @ X2 @ Y2 ) )
      = ( plus_plus_complex @ ( cnj @ X2 ) @ ( cnj @ Y2 ) ) ) ).

% complex_cnj_add
thf(fact_9764_complex__cnj__numeral,axiom,
    ! [W: num] :
      ( ( cnj @ ( numera6690914467698888265omplex @ W ) )
      = ( numera6690914467698888265omplex @ W ) ) ).

% complex_cnj_numeral
thf(fact_9765_complex__cnj__neg__numeral,axiom,
    ! [W: num] :
      ( ( cnj @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) )
      = ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) ) ).

% complex_cnj_neg_numeral
thf(fact_9766_complex__In__mult__cnj__zero,axiom,
    ! [Z: complex] :
      ( ( im @ ( times_times_complex @ Z @ ( cnj @ Z ) ) )
      = zero_zero_real ) ).

% complex_In_mult_cnj_zero
thf(fact_9767_times__integer__code_I2_J,axiom,
    ! [L: code_integer] :
      ( ( times_3573771949741848930nteger @ zero_z3403309356797280102nteger @ L )
      = zero_z3403309356797280102nteger ) ).

% times_integer_code(2)
thf(fact_9768_times__integer__code_I1_J,axiom,
    ! [K: code_integer] :
      ( ( times_3573771949741848930nteger @ K @ zero_z3403309356797280102nteger )
      = zero_z3403309356797280102nteger ) ).

% times_integer_code(1)
thf(fact_9769_divmod__integer_H__def,axiom,
    ( unique3479559517661332726nteger
    = ( ^ [M3: num,N2: num] : ( produc1086072967326762835nteger @ ( divide6298287555418463151nteger @ ( numera6620942414471956472nteger @ M3 ) @ ( numera6620942414471956472nteger @ N2 ) ) @ ( modulo364778990260209775nteger @ ( numera6620942414471956472nteger @ M3 ) @ ( numera6620942414471956472nteger @ N2 ) ) ) ) ) ).

% divmod_integer'_def
thf(fact_9770_plus__integer__code_I1_J,axiom,
    ! [K: code_integer] :
      ( ( plus_p5714425477246183910nteger @ K @ zero_z3403309356797280102nteger )
      = K ) ).

% plus_integer_code(1)
thf(fact_9771_plus__integer__code_I2_J,axiom,
    ! [L: code_integer] :
      ( ( plus_p5714425477246183910nteger @ zero_z3403309356797280102nteger @ L )
      = L ) ).

% plus_integer_code(2)
thf(fact_9772_less__eq__integer__code_I1_J,axiom,
    ord_le3102999989581377725nteger @ zero_z3403309356797280102nteger @ zero_z3403309356797280102nteger ).

% less_eq_integer_code(1)
thf(fact_9773_sgn__integer__code,axiom,
    ( sgn_sgn_Code_integer
    = ( ^ [K2: code_integer] : ( if_Code_integer @ ( K2 = zero_z3403309356797280102nteger ) @ zero_z3403309356797280102nteger @ ( if_Code_integer @ ( ord_le6747313008572928689nteger @ K2 @ zero_z3403309356797280102nteger ) @ ( uminus1351360451143612070nteger @ one_one_Code_integer ) @ one_one_Code_integer ) ) ) ) ).

% sgn_integer_code
thf(fact_9774_sums__cnj,axiom,
    ! [F: nat > complex,L: complex] :
      ( ( sums_complex
        @ ^ [X: nat] : ( cnj @ ( F @ X ) )
        @ ( cnj @ L ) )
      = ( sums_complex @ F @ L ) ) ).

% sums_cnj
thf(fact_9775_one__natural_Orsp,axiom,
    one_one_nat = one_one_nat ).

% one_natural.rsp
thf(fact_9776_Re__complex__div__eq__0,axiom,
    ! [A: complex,B: complex] :
      ( ( ( re @ ( divide1717551699836669952omplex @ A @ B ) )
        = zero_zero_real )
      = ( ( re @ ( times_times_complex @ A @ ( cnj @ B ) ) )
        = zero_zero_real ) ) ).

% Re_complex_div_eq_0
thf(fact_9777_Im__complex__div__eq__0,axiom,
    ! [A: complex,B: complex] :
      ( ( ( im @ ( divide1717551699836669952omplex @ A @ B ) )
        = zero_zero_real )
      = ( ( im @ ( times_times_complex @ A @ ( cnj @ B ) ) )
        = zero_zero_real ) ) ).

% Im_complex_div_eq_0
thf(fact_9778_complex__mod__sqrt__Re__mult__cnj,axiom,
    ( real_V1022390504157884413omplex
    = ( ^ [Z4: complex] : ( sqrt @ ( re @ ( times_times_complex @ Z4 @ ( cnj @ Z4 ) ) ) ) ) ) ).

% complex_mod_sqrt_Re_mult_cnj
thf(fact_9779_Re__complex__div__gt__0,axiom,
    ! [A: complex,B: complex] :
      ( ( ord_less_real @ zero_zero_real @ ( re @ ( divide1717551699836669952omplex @ A @ B ) ) )
      = ( ord_less_real @ zero_zero_real @ ( re @ ( times_times_complex @ A @ ( cnj @ B ) ) ) ) ) ).

% Re_complex_div_gt_0
thf(fact_9780_Re__complex__div__lt__0,axiom,
    ! [A: complex,B: complex] :
      ( ( ord_less_real @ ( re @ ( divide1717551699836669952omplex @ A @ B ) ) @ zero_zero_real )
      = ( ord_less_real @ ( re @ ( times_times_complex @ A @ ( cnj @ B ) ) ) @ zero_zero_real ) ) ).

% Re_complex_div_lt_0
thf(fact_9781_Re__complex__div__le__0,axiom,
    ! [A: complex,B: complex] :
      ( ( ord_less_eq_real @ ( re @ ( divide1717551699836669952omplex @ A @ B ) ) @ zero_zero_real )
      = ( ord_less_eq_real @ ( re @ ( times_times_complex @ A @ ( cnj @ B ) ) ) @ zero_zero_real ) ) ).

% Re_complex_div_le_0
thf(fact_9782_Re__complex__div__ge__0,axiom,
    ! [A: complex,B: complex] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( re @ ( divide1717551699836669952omplex @ A @ B ) ) )
      = ( ord_less_eq_real @ zero_zero_real @ ( re @ ( times_times_complex @ A @ ( cnj @ B ) ) ) ) ) ).

% Re_complex_div_ge_0
thf(fact_9783_Im__complex__div__gt__0,axiom,
    ! [A: complex,B: complex] :
      ( ( ord_less_real @ zero_zero_real @ ( im @ ( divide1717551699836669952omplex @ A @ B ) ) )
      = ( ord_less_real @ zero_zero_real @ ( im @ ( times_times_complex @ A @ ( cnj @ B ) ) ) ) ) ).

% Im_complex_div_gt_0
thf(fact_9784_Im__complex__div__lt__0,axiom,
    ! [A: complex,B: complex] :
      ( ( ord_less_real @ ( im @ ( divide1717551699836669952omplex @ A @ B ) ) @ zero_zero_real )
      = ( ord_less_real @ ( im @ ( times_times_complex @ A @ ( cnj @ B ) ) ) @ zero_zero_real ) ) ).

% Im_complex_div_lt_0
thf(fact_9785_Im__complex__div__le__0,axiom,
    ! [A: complex,B: complex] :
      ( ( ord_less_eq_real @ ( im @ ( divide1717551699836669952omplex @ A @ B ) ) @ zero_zero_real )
      = ( ord_less_eq_real @ ( im @ ( times_times_complex @ A @ ( cnj @ B ) ) ) @ zero_zero_real ) ) ).

% Im_complex_div_le_0
thf(fact_9786_Im__complex__div__ge__0,axiom,
    ! [A: complex,B: complex] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( im @ ( divide1717551699836669952omplex @ A @ B ) ) )
      = ( ord_less_eq_real @ zero_zero_real @ ( im @ ( times_times_complex @ A @ ( cnj @ B ) ) ) ) ) ).

% Im_complex_div_ge_0
thf(fact_9787_complex__mod__mult__cnj,axiom,
    ! [Z: complex] :
      ( ( real_V1022390504157884413omplex @ ( times_times_complex @ Z @ ( cnj @ Z ) ) )
      = ( power_power_real @ ( real_V1022390504157884413omplex @ Z ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% complex_mod_mult_cnj
thf(fact_9788_complex__div__gt__0,axiom,
    ! [A: complex,B: complex] :
      ( ( ( ord_less_real @ zero_zero_real @ ( re @ ( divide1717551699836669952omplex @ A @ B ) ) )
        = ( ord_less_real @ zero_zero_real @ ( re @ ( times_times_complex @ A @ ( cnj @ B ) ) ) ) )
      & ( ( ord_less_real @ zero_zero_real @ ( im @ ( divide1717551699836669952omplex @ A @ B ) ) )
        = ( ord_less_real @ zero_zero_real @ ( im @ ( times_times_complex @ A @ ( cnj @ B ) ) ) ) ) ) ).

% complex_div_gt_0
thf(fact_9789_complex__norm__square,axiom,
    ! [Z: complex] :
      ( ( real_V4546457046886955230omplex @ ( power_power_real @ ( real_V1022390504157884413omplex @ Z ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( times_times_complex @ Z @ ( cnj @ Z ) ) ) ).

% complex_norm_square
thf(fact_9790_complex__add__cnj,axiom,
    ! [Z: complex] :
      ( ( plus_plus_complex @ Z @ ( cnj @ Z ) )
      = ( real_V4546457046886955230omplex @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( re @ Z ) ) ) ) ).

% complex_add_cnj
thf(fact_9791_complex__diff__cnj,axiom,
    ! [Z: complex] :
      ( ( minus_minus_complex @ Z @ ( cnj @ Z ) )
      = ( times_times_complex @ ( real_V4546457046886955230omplex @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( im @ Z ) ) ) @ imaginary_unit ) ) ).

% complex_diff_cnj
thf(fact_9792_complex__div__cnj,axiom,
    ( divide1717551699836669952omplex
    = ( ^ [A3: complex,B2: complex] : ( divide1717551699836669952omplex @ ( times_times_complex @ A3 @ ( cnj @ B2 ) ) @ ( real_V4546457046886955230omplex @ ( power_power_real @ ( real_V1022390504157884413omplex @ B2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% complex_div_cnj
thf(fact_9793_cnj__add__mult__eq__Re,axiom,
    ! [Z: complex,W: complex] :
      ( ( plus_plus_complex @ ( times_times_complex @ Z @ ( cnj @ W ) ) @ ( times_times_complex @ ( cnj @ Z ) @ W ) )
      = ( real_V4546457046886955230omplex @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( re @ ( times_times_complex @ Z @ ( cnj @ W ) ) ) ) ) ) ).

% cnj_add_mult_eq_Re
thf(fact_9794_integer__of__int__code,axiom,
    ( code_integer_of_int
    = ( ^ [K2: int] :
          ( if_Code_integer @ ( ord_less_int @ K2 @ zero_zero_int ) @ ( uminus1351360451143612070nteger @ ( code_integer_of_int @ ( uminus_uminus_int @ K2 ) ) )
          @ ( if_Code_integer @ ( K2 = zero_zero_int ) @ zero_z3403309356797280102nteger
            @ ( if_Code_integer
              @ ( ( modulo_modulo_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
                = zero_zero_int )
              @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( code_integer_of_int @ ( divide_divide_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) )
              @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ ( code_integer_of_int @ ( divide_divide_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) @ one_one_Code_integer ) ) ) ) ) ) ).

% integer_of_int_code
thf(fact_9795_Code__Numeral_Opositive__def,axiom,
    code_positive = numera6620942414471956472nteger ).

% Code_Numeral.positive_def
thf(fact_9796_integer__of__num_I3_J,axiom,
    ! [N: num] :
      ( ( code_integer_of_num @ ( bit1 @ N ) )
      = ( plus_p5714425477246183910nteger @ ( plus_p5714425477246183910nteger @ ( code_integer_of_num @ N ) @ ( code_integer_of_num @ N ) ) @ one_one_Code_integer ) ) ).

% integer_of_num(3)
thf(fact_9797_divide__integer_Oabs__eq,axiom,
    ! [Xa2: int,X2: int] :
      ( ( divide6298287555418463151nteger @ ( code_integer_of_int @ Xa2 ) @ ( code_integer_of_int @ X2 ) )
      = ( code_integer_of_int @ ( divide_divide_int @ Xa2 @ X2 ) ) ) ).

% divide_integer.abs_eq
thf(fact_9798_less__integer_Oabs__eq,axiom,
    ! [Xa2: int,X2: int] :
      ( ( ord_le6747313008572928689nteger @ ( code_integer_of_int @ Xa2 ) @ ( code_integer_of_int @ X2 ) )
      = ( ord_less_int @ Xa2 @ X2 ) ) ).

% less_integer.abs_eq
thf(fact_9799_abs__integer__code,axiom,
    ( abs_abs_Code_integer
    = ( ^ [K2: code_integer] : ( if_Code_integer @ ( ord_le6747313008572928689nteger @ K2 @ zero_z3403309356797280102nteger ) @ ( uminus1351360451143612070nteger @ K2 ) @ K2 ) ) ) ).

% abs_integer_code
thf(fact_9800_less__integer__code_I1_J,axiom,
    ~ ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ zero_z3403309356797280102nteger ) ).

% less_integer_code(1)
thf(fact_9801_plus__integer_Oabs__eq,axiom,
    ! [Xa2: int,X2: int] :
      ( ( plus_p5714425477246183910nteger @ ( code_integer_of_int @ Xa2 ) @ ( code_integer_of_int @ X2 ) )
      = ( code_integer_of_int @ ( plus_plus_int @ Xa2 @ X2 ) ) ) ).

% plus_integer.abs_eq
thf(fact_9802_times__integer_Oabs__eq,axiom,
    ! [Xa2: int,X2: int] :
      ( ( times_3573771949741848930nteger @ ( code_integer_of_int @ Xa2 ) @ ( code_integer_of_int @ X2 ) )
      = ( code_integer_of_int @ ( times_times_int @ Xa2 @ X2 ) ) ) ).

% times_integer.abs_eq
thf(fact_9803_less__eq__integer_Oabs__eq,axiom,
    ! [Xa2: int,X2: int] :
      ( ( ord_le3102999989581377725nteger @ ( code_integer_of_int @ Xa2 ) @ ( code_integer_of_int @ X2 ) )
      = ( ord_less_eq_int @ Xa2 @ X2 ) ) ).

% less_eq_integer.abs_eq
thf(fact_9804_integer__of__num__def,axiom,
    code_integer_of_num = numera6620942414471956472nteger ).

% integer_of_num_def
thf(fact_9805_integer__of__num__triv_I1_J,axiom,
    ( ( code_integer_of_num @ one )
    = one_one_Code_integer ) ).

% integer_of_num_triv(1)
thf(fact_9806_integer__of__num_I2_J,axiom,
    ! [N: num] :
      ( ( code_integer_of_num @ ( bit0 @ N ) )
      = ( plus_p5714425477246183910nteger @ ( code_integer_of_num @ N ) @ ( code_integer_of_num @ N ) ) ) ).

% integer_of_num(2)
thf(fact_9807_integer__of__num__triv_I2_J,axiom,
    ( ( code_integer_of_num @ ( bit0 @ one ) )
    = ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ).

% integer_of_num_triv(2)
thf(fact_9808_int__of__integer__code,axiom,
    ( code_int_of_integer
    = ( ^ [K2: code_integer] :
          ( if_int @ ( ord_le6747313008572928689nteger @ K2 @ zero_z3403309356797280102nteger ) @ ( uminus_uminus_int @ ( code_int_of_integer @ ( uminus1351360451143612070nteger @ K2 ) ) )
          @ ( if_int @ ( K2 = zero_z3403309356797280102nteger ) @ zero_zero_int
            @ ( produc1553301316500091796er_int
              @ ^ [L2: code_integer,J3: code_integer] : ( if_int @ ( J3 = zero_z3403309356797280102nteger ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( code_int_of_integer @ L2 ) ) @ ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( code_int_of_integer @ L2 ) ) @ one_one_int ) )
              @ ( code_divmod_integer @ K2 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% int_of_integer_code
thf(fact_9809_bit__cut__integer__def,axiom,
    ( code_bit_cut_integer
    = ( ^ [K2: code_integer] :
          ( produc6677183202524767010eger_o @ ( divide6298287555418463151nteger @ K2 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) )
          @ ~ ( dvd_dvd_Code_integer @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) @ K2 ) ) ) ) ).

% bit_cut_integer_def
thf(fact_9810_num__of__integer__code,axiom,
    ( code_num_of_integer
    = ( ^ [K2: code_integer] :
          ( if_num @ ( ord_le3102999989581377725nteger @ K2 @ one_one_Code_integer ) @ one
          @ ( produc7336495610019696514er_num
            @ ^ [L2: code_integer,J3: code_integer] : ( if_num @ ( J3 = zero_z3403309356797280102nteger ) @ ( plus_plus_num @ ( code_num_of_integer @ L2 ) @ ( code_num_of_integer @ L2 ) ) @ ( plus_plus_num @ ( plus_plus_num @ ( code_num_of_integer @ L2 ) @ ( code_num_of_integer @ L2 ) ) @ one ) )
            @ ( code_divmod_integer @ K2 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ) ).

% num_of_integer_code
thf(fact_9811_int__of__integer__numeral,axiom,
    ! [K: num] :
      ( ( code_int_of_integer @ ( numera6620942414471956472nteger @ K ) )
      = ( numeral_numeral_int @ K ) ) ).

% int_of_integer_numeral
thf(fact_9812_plus__integer_Orep__eq,axiom,
    ! [X2: code_integer,Xa2: code_integer] :
      ( ( code_int_of_integer @ ( plus_p5714425477246183910nteger @ X2 @ Xa2 ) )
      = ( plus_plus_int @ ( code_int_of_integer @ X2 ) @ ( code_int_of_integer @ Xa2 ) ) ) ).

% plus_integer.rep_eq
thf(fact_9813_times__integer_Orep__eq,axiom,
    ! [X2: code_integer,Xa2: code_integer] :
      ( ( code_int_of_integer @ ( times_3573771949741848930nteger @ X2 @ Xa2 ) )
      = ( times_times_int @ ( code_int_of_integer @ X2 ) @ ( code_int_of_integer @ Xa2 ) ) ) ).

% times_integer.rep_eq
thf(fact_9814_divide__integer_Orep__eq,axiom,
    ! [X2: code_integer,Xa2: code_integer] :
      ( ( code_int_of_integer @ ( divide6298287555418463151nteger @ X2 @ Xa2 ) )
      = ( divide_divide_int @ ( code_int_of_integer @ X2 ) @ ( code_int_of_integer @ Xa2 ) ) ) ).

% divide_integer.rep_eq
thf(fact_9815_less__integer_Orep__eq,axiom,
    ( ord_le6747313008572928689nteger
    = ( ^ [X: code_integer,Xa4: code_integer] : ( ord_less_int @ ( code_int_of_integer @ X ) @ ( code_int_of_integer @ Xa4 ) ) ) ) ).

% less_integer.rep_eq
thf(fact_9816_integer__less__iff,axiom,
    ( ord_le6747313008572928689nteger
    = ( ^ [K2: code_integer,L2: code_integer] : ( ord_less_int @ ( code_int_of_integer @ K2 ) @ ( code_int_of_integer @ L2 ) ) ) ) ).

% integer_less_iff
thf(fact_9817_less__eq__integer_Orep__eq,axiom,
    ( ord_le3102999989581377725nteger
    = ( ^ [X: code_integer,Xa4: code_integer] : ( ord_less_eq_int @ ( code_int_of_integer @ X ) @ ( code_int_of_integer @ Xa4 ) ) ) ) ).

% less_eq_integer.rep_eq
thf(fact_9818_integer__less__eq__iff,axiom,
    ( ord_le3102999989581377725nteger
    = ( ^ [K2: code_integer,L2: code_integer] : ( ord_less_eq_int @ ( code_int_of_integer @ K2 ) @ ( code_int_of_integer @ L2 ) ) ) ) ).

% integer_less_eq_iff
thf(fact_9819_divmod__integer__def,axiom,
    ( code_divmod_integer
    = ( ^ [K2: code_integer,L2: code_integer] : ( produc1086072967326762835nteger @ ( divide6298287555418463151nteger @ K2 @ L2 ) @ ( modulo364778990260209775nteger @ K2 @ L2 ) ) ) ) ).

% divmod_integer_def
thf(fact_9820_bit__cut__integer__code,axiom,
    ( code_bit_cut_integer
    = ( ^ [K2: code_integer] :
          ( if_Pro5737122678794959658eger_o @ ( K2 = zero_z3403309356797280102nteger ) @ ( produc6677183202524767010eger_o @ zero_z3403309356797280102nteger @ $false )
          @ ( produc9125791028180074456eger_o
            @ ^ [R5: code_integer,S6: code_integer] : ( produc6677183202524767010eger_o @ ( if_Code_integer @ ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ K2 ) @ R5 @ ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ R5 ) @ S6 ) ) @ ( S6 = one_one_Code_integer ) )
            @ ( code_divmod_abs @ K2 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ) ).

% bit_cut_integer_code
thf(fact_9821_nat__of__integer__code,axiom,
    ( code_nat_of_integer
    = ( ^ [K2: code_integer] :
          ( if_nat @ ( ord_le3102999989581377725nteger @ K2 @ zero_z3403309356797280102nteger ) @ zero_zero_nat
          @ ( produc1555791787009142072er_nat
            @ ^ [L2: code_integer,J3: code_integer] : ( if_nat @ ( J3 = zero_z3403309356797280102nteger ) @ ( plus_plus_nat @ ( code_nat_of_integer @ L2 ) @ ( code_nat_of_integer @ L2 ) ) @ ( plus_plus_nat @ ( plus_plus_nat @ ( code_nat_of_integer @ L2 ) @ ( code_nat_of_integer @ L2 ) ) @ one_one_nat ) )
            @ ( code_divmod_integer @ K2 @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) ) ) ) ) ).

% nat_of_integer_code
thf(fact_9822_card__Collect__less__nat,axiom,
    ! [N: nat] :
      ( ( finite_card_nat
        @ ( collect_nat
          @ ^ [I4: nat] : ( ord_less_nat @ I4 @ N ) ) )
      = N ) ).

% card_Collect_less_nat
thf(fact_9823_card__atMost,axiom,
    ! [U: nat] :
      ( ( finite_card_nat @ ( set_ord_atMost_nat @ U ) )
      = ( suc @ U ) ) ).

% card_atMost
thf(fact_9824_card__Collect__le__nat,axiom,
    ! [N: nat] :
      ( ( finite_card_nat
        @ ( collect_nat
          @ ^ [I4: nat] : ( ord_less_eq_nat @ I4 @ N ) ) )
      = ( suc @ N ) ) ).

% card_Collect_le_nat
thf(fact_9825_card__atLeastAtMost,axiom,
    ! [L: nat,U: nat] :
      ( ( finite_card_nat @ ( set_or1269000886237332187st_nat @ L @ U ) )
      = ( minus_minus_nat @ ( suc @ U ) @ L ) ) ).

% card_atLeastAtMost
thf(fact_9826_nat__of__integer__non__positive,axiom,
    ! [K: code_integer] :
      ( ( ord_le3102999989581377725nteger @ K @ zero_z3403309356797280102nteger )
     => ( ( code_nat_of_integer @ K )
        = zero_zero_nat ) ) ).

% nat_of_integer_non_positive
thf(fact_9827_card__atLeastAtMost__int,axiom,
    ! [L: int,U: int] :
      ( ( finite_card_int @ ( set_or1266510415728281911st_int @ L @ U ) )
      = ( nat2 @ ( plus_plus_int @ ( minus_minus_int @ U @ L ) @ one_one_int ) ) ) ).

% card_atLeastAtMost_int
thf(fact_9828_card__less,axiom,
    ! [M7: set_nat,I: nat] :
      ( ( member_nat @ zero_zero_nat @ M7 )
     => ( ( finite_card_nat
          @ ( collect_nat
            @ ^ [K2: nat] :
                ( ( member_nat @ K2 @ M7 )
                & ( ord_less_nat @ K2 @ ( suc @ I ) ) ) ) )
       != zero_zero_nat ) ) ).

% card_less
thf(fact_9829_card__less__Suc,axiom,
    ! [M7: set_nat,I: nat] :
      ( ( member_nat @ zero_zero_nat @ M7 )
     => ( ( suc
          @ ( finite_card_nat
            @ ( collect_nat
              @ ^ [K2: nat] :
                  ( ( member_nat @ ( suc @ K2 ) @ M7 )
                  & ( ord_less_nat @ K2 @ I ) ) ) ) )
        = ( finite_card_nat
          @ ( collect_nat
            @ ^ [K2: nat] :
                ( ( member_nat @ K2 @ M7 )
                & ( ord_less_nat @ K2 @ ( suc @ I ) ) ) ) ) ) ) ).

% card_less_Suc
thf(fact_9830_card__less__Suc2,axiom,
    ! [M7: set_nat,I: nat] :
      ( ~ ( member_nat @ zero_zero_nat @ M7 )
     => ( ( finite_card_nat
          @ ( collect_nat
            @ ^ [K2: nat] :
                ( ( member_nat @ ( suc @ K2 ) @ M7 )
                & ( ord_less_nat @ K2 @ I ) ) ) )
        = ( finite_card_nat
          @ ( collect_nat
            @ ^ [K2: nat] :
                ( ( member_nat @ K2 @ M7 )
                & ( ord_less_nat @ K2 @ ( suc @ I ) ) ) ) ) ) ) ).

% card_less_Suc2
thf(fact_9831_subset__card__intvl__is__intvl,axiom,
    ! [A2: set_nat,K: nat] :
      ( ( ord_less_eq_set_nat @ A2 @ ( set_or4665077453230672383an_nat @ K @ ( plus_plus_nat @ K @ ( finite_card_nat @ A2 ) ) ) )
     => ( A2
        = ( set_or4665077453230672383an_nat @ K @ ( plus_plus_nat @ K @ ( finite_card_nat @ A2 ) ) ) ) ) ).

% subset_card_intvl_is_intvl
thf(fact_9832_nat__of__integer__code__post_I3_J,axiom,
    ! [K: num] :
      ( ( code_nat_of_integer @ ( numera6620942414471956472nteger @ K ) )
      = ( numeral_numeral_nat @ K ) ) ).

% nat_of_integer_code_post(3)
thf(fact_9833_nat__of__integer__code__post_I2_J,axiom,
    ( ( code_nat_of_integer @ one_one_Code_integer )
    = one_one_nat ) ).

% nat_of_integer_code_post(2)
thf(fact_9834_card__le__Suc__Max,axiom,
    ! [S3: set_nat] :
      ( ( finite_finite_nat @ S3 )
     => ( ord_less_eq_nat @ ( finite_card_nat @ S3 ) @ ( suc @ ( lattic8265883725875713057ax_nat @ S3 ) ) ) ) ).

% card_le_Suc_Max
thf(fact_9835_subset__eq__atLeast0__lessThan__card,axiom,
    ! [N4: set_nat,N: nat] :
      ( ( ord_less_eq_set_nat @ N4 @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N ) )
     => ( ord_less_eq_nat @ ( finite_card_nat @ N4 ) @ N ) ) ).

% subset_eq_atLeast0_lessThan_card
thf(fact_9836_card__sum__le__nat__sum,axiom,
    ! [S3: set_nat] :
      ( ord_less_eq_nat
      @ ( groups3542108847815614940at_nat
        @ ^ [X: nat] : X
        @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ ( finite_card_nat @ S3 ) ) )
      @ ( groups3542108847815614940at_nat
        @ ^ [X: nat] : X
        @ S3 ) ) ).

% card_sum_le_nat_sum
thf(fact_9837_card__nth__roots,axiom,
    ! [C: complex,N: nat] :
      ( ( C != zero_zero_complex )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ( finite_card_complex
            @ ( collect_complex
              @ ^ [Z4: complex] :
                  ( ( power_power_complex @ Z4 @ N )
                  = C ) ) )
          = N ) ) ) ).

% card_nth_roots
thf(fact_9838_card__roots__unity__eq,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( finite_card_complex
          @ ( collect_complex
            @ ^ [Z4: complex] :
                ( ( power_power_complex @ Z4 @ N )
                = one_one_complex ) ) )
        = N ) ) ).

% card_roots_unity_eq
thf(fact_9839_divmod__abs__def,axiom,
    ( code_divmod_abs
    = ( ^ [K2: code_integer,L2: code_integer] : ( produc1086072967326762835nteger @ ( divide6298287555418463151nteger @ ( abs_abs_Code_integer @ K2 ) @ ( abs_abs_Code_integer @ L2 ) ) @ ( modulo364778990260209775nteger @ ( abs_abs_Code_integer @ K2 ) @ ( abs_abs_Code_integer @ L2 ) ) ) ) ) ).

% divmod_abs_def
thf(fact_9840_divmod__integer__code,axiom,
    ( code_divmod_integer
    = ( ^ [K2: code_integer,L2: code_integer] :
          ( if_Pro6119634080678213985nteger @ ( K2 = zero_z3403309356797280102nteger ) @ ( produc1086072967326762835nteger @ zero_z3403309356797280102nteger @ zero_z3403309356797280102nteger )
          @ ( if_Pro6119634080678213985nteger @ ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ L2 )
            @ ( if_Pro6119634080678213985nteger @ ( ord_le6747313008572928689nteger @ zero_z3403309356797280102nteger @ K2 ) @ ( code_divmod_abs @ K2 @ L2 )
              @ ( produc6916734918728496179nteger
                @ ^ [R5: code_integer,S6: code_integer] : ( if_Pro6119634080678213985nteger @ ( S6 = zero_z3403309356797280102nteger ) @ ( produc1086072967326762835nteger @ ( uminus1351360451143612070nteger @ R5 ) @ zero_z3403309356797280102nteger ) @ ( produc1086072967326762835nteger @ ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ R5 ) @ one_one_Code_integer ) @ ( minus_8373710615458151222nteger @ L2 @ S6 ) ) )
                @ ( code_divmod_abs @ K2 @ L2 ) ) )
            @ ( if_Pro6119634080678213985nteger @ ( L2 = zero_z3403309356797280102nteger ) @ ( produc1086072967326762835nteger @ zero_z3403309356797280102nteger @ K2 )
              @ ( produc6499014454317279255nteger @ uminus1351360451143612070nteger
                @ ( if_Pro6119634080678213985nteger @ ( ord_le6747313008572928689nteger @ K2 @ zero_z3403309356797280102nteger ) @ ( code_divmod_abs @ K2 @ L2 )
                  @ ( produc6916734918728496179nteger
                    @ ^ [R5: code_integer,S6: code_integer] : ( if_Pro6119634080678213985nteger @ ( S6 = zero_z3403309356797280102nteger ) @ ( produc1086072967326762835nteger @ ( uminus1351360451143612070nteger @ R5 ) @ zero_z3403309356797280102nteger ) @ ( produc1086072967326762835nteger @ ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ R5 ) @ one_one_Code_integer ) @ ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ L2 ) @ S6 ) ) )
                    @ ( code_divmod_abs @ K2 @ L2 ) ) ) ) ) ) ) ) ) ).

% divmod_integer_code
thf(fact_9841_nat_Odisc__eq__case_I2_J,axiom,
    ! [Nat: nat] :
      ( ( Nat != zero_zero_nat )
      = ( case_nat_o @ $false
        @ ^ [Uu3: nat] : $true
        @ Nat ) ) ).

% nat.disc_eq_case(2)
thf(fact_9842_nat_Odisc__eq__case_I1_J,axiom,
    ! [Nat: nat] :
      ( ( Nat = zero_zero_nat )
      = ( case_nat_o @ $true
        @ ^ [Uu3: nat] : $false
        @ Nat ) ) ).

% nat.disc_eq_case(1)
thf(fact_9843_less__eq__nat_Osimps_I2_J,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( suc @ M ) @ N )
      = ( case_nat_o @ $false @ ( ord_less_eq_nat @ M ) @ N ) ) ).

% less_eq_nat.simps(2)
thf(fact_9844_max__Suc2,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_max_nat @ M @ ( suc @ N ) )
      = ( case_nat_nat @ ( suc @ N )
        @ ^ [M5: nat] : ( suc @ ( ord_max_nat @ M5 @ N ) )
        @ M ) ) ).

% max_Suc2
thf(fact_9845_max__Suc1,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_max_nat @ ( suc @ N ) @ M )
      = ( case_nat_nat @ ( suc @ N )
        @ ^ [M5: nat] : ( suc @ ( ord_max_nat @ N @ M5 ) )
        @ M ) ) ).

% max_Suc1
thf(fact_9846_diff__Suc,axiom,
    ! [M: nat,N: nat] :
      ( ( minus_minus_nat @ M @ ( suc @ N ) )
      = ( case_nat_nat @ zero_zero_nat
        @ ^ [K2: nat] : K2
        @ ( minus_minus_nat @ M @ N ) ) ) ).

% diff_Suc
thf(fact_9847_binomial__def,axiom,
    ( binomial
    = ( ^ [N2: nat,K2: nat] :
          ( finite_card_set_nat
          @ ( collect_set_nat
            @ ^ [K7: set_nat] :
                ( ( member_set_nat @ K7 @ ( pow_nat @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N2 ) ) )
                & ( ( finite_card_nat @ K7 )
                  = K2 ) ) ) ) ) ) ).

% binomial_def
thf(fact_9848_pred__def,axiom,
    ( pred
    = ( case_nat_nat @ zero_zero_nat
      @ ^ [X24: nat] : X24 ) ) ).

% pred_def
thf(fact_9849_prod__decode__aux_Osimps,axiom,
    ( nat_prod_decode_aux
    = ( ^ [K2: nat,M3: nat] : ( if_Pro6206227464963214023at_nat @ ( ord_less_eq_nat @ M3 @ K2 ) @ ( product_Pair_nat_nat @ M3 @ ( minus_minus_nat @ K2 @ M3 ) ) @ ( nat_prod_decode_aux @ ( suc @ K2 ) @ ( minus_minus_nat @ M3 @ ( suc @ K2 ) ) ) ) ) ) ).

% prod_decode_aux.simps
thf(fact_9850_prod__decode__aux_Oelims,axiom,
    ! [X2: nat,Xa2: nat,Y2: product_prod_nat_nat] :
      ( ( ( nat_prod_decode_aux @ X2 @ Xa2 )
        = Y2 )
     => ( ( ( ord_less_eq_nat @ Xa2 @ X2 )
         => ( Y2
            = ( product_Pair_nat_nat @ Xa2 @ ( minus_minus_nat @ X2 @ Xa2 ) ) ) )
        & ( ~ ( ord_less_eq_nat @ Xa2 @ X2 )
         => ( Y2
            = ( nat_prod_decode_aux @ ( suc @ X2 ) @ ( minus_minus_nat @ Xa2 @ ( suc @ X2 ) ) ) ) ) ) ) ).

% prod_decode_aux.elims
thf(fact_9851_drop__bit__numeral__minus__bit1,axiom,
    ! [L: num,K: num] :
      ( ( bit_se8568078237143864401it_int @ ( numeral_numeral_nat @ L ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ K ) ) ) )
      = ( bit_se8568078237143864401it_int @ ( pred_numeral @ L ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( inc @ K ) ) ) ) ) ).

% drop_bit_numeral_minus_bit1
thf(fact_9852_drop__bit__nonnegative__int__iff,axiom,
    ! [N: nat,K: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( bit_se8568078237143864401it_int @ N @ K ) )
      = ( ord_less_eq_int @ zero_zero_int @ K ) ) ).

% drop_bit_nonnegative_int_iff
thf(fact_9853_drop__bit__negative__int__iff,axiom,
    ! [N: nat,K: int] :
      ( ( ord_less_int @ ( bit_se8568078237143864401it_int @ N @ K ) @ zero_zero_int )
      = ( ord_less_int @ K @ zero_zero_int ) ) ).

% drop_bit_negative_int_iff
thf(fact_9854_drop__bit__minus__one,axiom,
    ! [N: nat] :
      ( ( bit_se8568078237143864401it_int @ N @ ( uminus_uminus_int @ one_one_int ) )
      = ( uminus_uminus_int @ one_one_int ) ) ).

% drop_bit_minus_one
thf(fact_9855_drop__bit__Suc__minus__bit0,axiom,
    ! [N: nat,K: num] :
      ( ( bit_se8568078237143864401it_int @ ( suc @ N ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ K ) ) ) )
      = ( bit_se8568078237143864401it_int @ N @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) ) ) ).

% drop_bit_Suc_minus_bit0
thf(fact_9856_drop__bit__numeral__minus__bit0,axiom,
    ! [L: num,K: num] :
      ( ( bit_se8568078237143864401it_int @ ( numeral_numeral_nat @ L ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ K ) ) ) )
      = ( bit_se8568078237143864401it_int @ ( pred_numeral @ L ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) ) ) ).

% drop_bit_numeral_minus_bit0
thf(fact_9857_drop__bit__Suc__minus__bit1,axiom,
    ! [N: nat,K: num] :
      ( ( bit_se8568078237143864401it_int @ ( suc @ N ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit1 @ K ) ) ) )
      = ( bit_se8568078237143864401it_int @ N @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( inc @ K ) ) ) ) ) ).

% drop_bit_Suc_minus_bit1
thf(fact_9858_drop__bit__push__bit__int,axiom,
    ! [M: nat,N: nat,K: int] :
      ( ( bit_se8568078237143864401it_int @ M @ ( bit_se545348938243370406it_int @ N @ K ) )
      = ( bit_se8568078237143864401it_int @ ( minus_minus_nat @ M @ N ) @ ( bit_se545348938243370406it_int @ ( minus_minus_nat @ N @ M ) @ K ) ) ) ).

% drop_bit_push_bit_int
thf(fact_9859_drop__bit__int__def,axiom,
    ( bit_se8568078237143864401it_int
    = ( ^ [N2: nat,K2: int] : ( divide_divide_int @ K2 @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N2 ) ) ) ) ).

% drop_bit_int_def
thf(fact_9860_prod__decode__aux_Opelims,axiom,
    ! [X2: nat,Xa2: nat,Y2: product_prod_nat_nat] :
      ( ( ( nat_prod_decode_aux @ X2 @ Xa2 )
        = Y2 )
     => ( ( accp_P4275260045618599050at_nat @ nat_pr5047031295181774490ux_rel @ ( product_Pair_nat_nat @ X2 @ Xa2 ) )
       => ~ ( ( ( ( ord_less_eq_nat @ Xa2 @ X2 )
               => ( Y2
                  = ( product_Pair_nat_nat @ Xa2 @ ( minus_minus_nat @ X2 @ Xa2 ) ) ) )
              & ( ~ ( ord_less_eq_nat @ Xa2 @ X2 )
               => ( Y2
                  = ( nat_prod_decode_aux @ ( suc @ X2 ) @ ( minus_minus_nat @ Xa2 @ ( suc @ X2 ) ) ) ) ) )
           => ~ ( accp_P4275260045618599050at_nat @ nat_pr5047031295181774490ux_rel @ ( product_Pair_nat_nat @ X2 @ Xa2 ) ) ) ) ) ).

% prod_decode_aux.pelims
thf(fact_9861_Suc__0__mod__numeral,axiom,
    ! [K: num] :
      ( ( modulo_modulo_nat @ ( suc @ zero_zero_nat ) @ ( numeral_numeral_nat @ K ) )
      = ( product_snd_nat_nat @ ( unique5055182867167087721od_nat @ one @ K ) ) ) ).

% Suc_0_mod_numeral
thf(fact_9862_Suc__0__div__numeral,axiom,
    ! [K: num] :
      ( ( divide_divide_nat @ ( suc @ zero_zero_nat ) @ ( numeral_numeral_nat @ K ) )
      = ( product_fst_nat_nat @ ( unique5055182867167087721od_nat @ one @ K ) ) ) ).

% Suc_0_div_numeral
thf(fact_9863_drop__bit__of__Suc__0,axiom,
    ! [N: nat] :
      ( ( bit_se8570568707652914677it_nat @ N @ ( suc @ zero_zero_nat ) )
      = ( zero_n2687167440665602831ol_nat @ ( N = zero_zero_nat ) ) ) ).

% drop_bit_of_Suc_0
thf(fact_9864_fst__divmod__nat,axiom,
    ! [M: nat,N: nat] :
      ( ( product_fst_nat_nat @ ( divmod_nat @ M @ N ) )
      = ( divide_divide_nat @ M @ N ) ) ).

% fst_divmod_nat
thf(fact_9865_snd__divmod__nat,axiom,
    ! [M: nat,N: nat] :
      ( ( product_snd_nat_nat @ ( divmod_nat @ M @ N ) )
      = ( modulo_modulo_nat @ M @ N ) ) ).

% snd_divmod_nat
thf(fact_9866_drop__bit__nat__eq,axiom,
    ! [N: nat,K: int] :
      ( ( bit_se8570568707652914677it_nat @ N @ ( nat2 @ K ) )
      = ( nat2 @ ( bit_se8568078237143864401it_int @ N @ K ) ) ) ).

% drop_bit_nat_eq
thf(fact_9867_drop__bit__nat__def,axiom,
    ( bit_se8570568707652914677it_nat
    = ( ^ [N2: nat,M3: nat] : ( divide_divide_nat @ M3 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) ) ).

% drop_bit_nat_def
thf(fact_9868_fst__divmod__integer,axiom,
    ! [K: code_integer,L: code_integer] :
      ( ( produc8508995932063986495nteger @ ( code_divmod_integer @ K @ L ) )
      = ( divide6298287555418463151nteger @ K @ L ) ) ).

% fst_divmod_integer
thf(fact_9869_fst__divmod__abs,axiom,
    ! [K: code_integer,L: code_integer] :
      ( ( produc8508995932063986495nteger @ ( code_divmod_abs @ K @ L ) )
      = ( divide6298287555418463151nteger @ ( abs_abs_Code_integer @ K ) @ ( abs_abs_Code_integer @ L ) ) ) ).

% fst_divmod_abs
thf(fact_9870_quotient__of__denom__pos_H,axiom,
    ! [R2: rat] : ( ord_less_int @ zero_zero_int @ ( product_snd_int_int @ ( quotient_of @ R2 ) ) ) ).

% quotient_of_denom_pos'
thf(fact_9871_one__mod__minus__numeral,axiom,
    ! [N: num] :
      ( ( modulo_modulo_int @ one_one_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( uminus_uminus_int @ ( adjust_mod @ ( numeral_numeral_int @ N ) @ ( product_snd_int_int @ ( unique5052692396658037445od_int @ one @ N ) ) ) ) ) ).

% one_mod_minus_numeral
thf(fact_9872_minus__one__mod__numeral,axiom,
    ! [N: num] :
      ( ( modulo_modulo_int @ ( uminus_uminus_int @ one_one_int ) @ ( numeral_numeral_int @ N ) )
      = ( adjust_mod @ ( numeral_numeral_int @ N ) @ ( product_snd_int_int @ ( unique5052692396658037445od_int @ one @ N ) ) ) ) ).

% minus_one_mod_numeral
thf(fact_9873_numeral__mod__minus__numeral,axiom,
    ! [M: num,N: num] :
      ( ( modulo_modulo_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( uminus_uminus_int @ ( adjust_mod @ ( numeral_numeral_int @ N ) @ ( product_snd_int_int @ ( unique5052692396658037445od_int @ M @ N ) ) ) ) ) ).

% numeral_mod_minus_numeral
thf(fact_9874_minus__numeral__mod__numeral,axiom,
    ! [M: num,N: num] :
      ( ( modulo_modulo_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N ) )
      = ( adjust_mod @ ( numeral_numeral_int @ N ) @ ( product_snd_int_int @ ( unique5052692396658037445od_int @ M @ N ) ) ) ) ).

% minus_numeral_mod_numeral
thf(fact_9875_Divides_Oadjust__mod__def,axiom,
    ( adjust_mod
    = ( ^ [L2: int,R5: int] : ( if_int @ ( R5 = zero_zero_int ) @ zero_zero_int @ ( minus_minus_int @ L2 @ R5 ) ) ) ) ).

% Divides.adjust_mod_def
thf(fact_9876_bezw_Oelims,axiom,
    ! [X2: nat,Xa2: nat,Y2: product_prod_int_int] :
      ( ( ( bezw @ X2 @ Xa2 )
        = Y2 )
     => ( ( ( Xa2 = zero_zero_nat )
         => ( Y2
            = ( product_Pair_int_int @ one_one_int @ zero_zero_int ) ) )
        & ( ( Xa2 != zero_zero_nat )
         => ( Y2
            = ( product_Pair_int_int @ ( product_snd_int_int @ ( bezw @ Xa2 @ ( modulo_modulo_nat @ X2 @ Xa2 ) ) ) @ ( minus_minus_int @ ( product_fst_int_int @ ( bezw @ Xa2 @ ( modulo_modulo_nat @ X2 @ Xa2 ) ) ) @ ( times_times_int @ ( product_snd_int_int @ ( bezw @ Xa2 @ ( modulo_modulo_nat @ X2 @ Xa2 ) ) ) @ ( semiri1314217659103216013at_int @ ( divide_divide_nat @ X2 @ Xa2 ) ) ) ) ) ) ) ) ) ).

% bezw.elims
thf(fact_9877_bezw_Osimps,axiom,
    ( bezw
    = ( ^ [X: nat,Y: nat] : ( if_Pro3027730157355071871nt_int @ ( Y = zero_zero_nat ) @ ( product_Pair_int_int @ one_one_int @ zero_zero_int ) @ ( product_Pair_int_int @ ( product_snd_int_int @ ( bezw @ Y @ ( modulo_modulo_nat @ X @ Y ) ) ) @ ( minus_minus_int @ ( product_fst_int_int @ ( bezw @ Y @ ( modulo_modulo_nat @ X @ Y ) ) ) @ ( times_times_int @ ( product_snd_int_int @ ( bezw @ Y @ ( modulo_modulo_nat @ X @ Y ) ) ) @ ( semiri1314217659103216013at_int @ ( divide_divide_nat @ X @ Y ) ) ) ) ) ) ) ) ).

% bezw.simps
thf(fact_9878_bezw_Opelims,axiom,
    ! [X2: nat,Xa2: nat,Y2: product_prod_int_int] :
      ( ( ( bezw @ X2 @ Xa2 )
        = Y2 )
     => ( ( accp_P4275260045618599050at_nat @ bezw_rel @ ( product_Pair_nat_nat @ X2 @ Xa2 ) )
       => ~ ( ( ( ( Xa2 = zero_zero_nat )
               => ( Y2
                  = ( product_Pair_int_int @ one_one_int @ zero_zero_int ) ) )
              & ( ( Xa2 != zero_zero_nat )
               => ( Y2
                  = ( product_Pair_int_int @ ( product_snd_int_int @ ( bezw @ Xa2 @ ( modulo_modulo_nat @ X2 @ Xa2 ) ) ) @ ( minus_minus_int @ ( product_fst_int_int @ ( bezw @ Xa2 @ ( modulo_modulo_nat @ X2 @ Xa2 ) ) ) @ ( times_times_int @ ( product_snd_int_int @ ( bezw @ Xa2 @ ( modulo_modulo_nat @ X2 @ Xa2 ) ) ) @ ( semiri1314217659103216013at_int @ ( divide_divide_nat @ X2 @ Xa2 ) ) ) ) ) ) ) )
           => ~ ( accp_P4275260045618599050at_nat @ bezw_rel @ ( product_Pair_nat_nat @ X2 @ Xa2 ) ) ) ) ) ).

% bezw.pelims
thf(fact_9879_bezw__non__0,axiom,
    ! [Y2: nat,X2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ Y2 )
     => ( ( bezw @ X2 @ Y2 )
        = ( product_Pair_int_int @ ( product_snd_int_int @ ( bezw @ Y2 @ ( modulo_modulo_nat @ X2 @ Y2 ) ) ) @ ( minus_minus_int @ ( product_fst_int_int @ ( bezw @ Y2 @ ( modulo_modulo_nat @ X2 @ Y2 ) ) ) @ ( times_times_int @ ( product_snd_int_int @ ( bezw @ Y2 @ ( modulo_modulo_nat @ X2 @ Y2 ) ) ) @ ( semiri1314217659103216013at_int @ ( divide_divide_nat @ X2 @ Y2 ) ) ) ) ) ) ) ).

% bezw_non_0
thf(fact_9880_normalize__def,axiom,
    ( normalize
    = ( ^ [P5: product_prod_int_int] :
          ( if_Pro3027730157355071871nt_int @ ( ord_less_int @ zero_zero_int @ ( product_snd_int_int @ P5 ) ) @ ( product_Pair_int_int @ ( divide_divide_int @ ( product_fst_int_int @ P5 ) @ ( gcd_gcd_int @ ( product_fst_int_int @ P5 ) @ ( product_snd_int_int @ P5 ) ) ) @ ( divide_divide_int @ ( product_snd_int_int @ P5 ) @ ( gcd_gcd_int @ ( product_fst_int_int @ P5 ) @ ( product_snd_int_int @ P5 ) ) ) )
          @ ( if_Pro3027730157355071871nt_int
            @ ( ( product_snd_int_int @ P5 )
              = zero_zero_int )
            @ ( product_Pair_int_int @ zero_zero_int @ one_one_int )
            @ ( product_Pair_int_int @ ( divide_divide_int @ ( product_fst_int_int @ P5 ) @ ( uminus_uminus_int @ ( gcd_gcd_int @ ( product_fst_int_int @ P5 ) @ ( product_snd_int_int @ P5 ) ) ) ) @ ( divide_divide_int @ ( product_snd_int_int @ P5 ) @ ( uminus_uminus_int @ ( gcd_gcd_int @ ( product_fst_int_int @ P5 ) @ ( product_snd_int_int @ P5 ) ) ) ) ) ) ) ) ) ).

% normalize_def
thf(fact_9881_finite__enumerate,axiom,
    ! [S3: set_nat] :
      ( ( finite_finite_nat @ S3 )
     => ? [R3: nat > nat] :
          ( ( strict1292158309912662752at_nat @ R3 @ ( set_ord_lessThan_nat @ ( finite_card_nat @ S3 ) ) )
          & ! [N7: nat] :
              ( ( ord_less_nat @ N7 @ ( finite_card_nat @ S3 ) )
             => ( member_nat @ ( R3 @ N7 ) @ S3 ) ) ) ) ).

% finite_enumerate
thf(fact_9882_gcd__pos__int,axiom,
    ! [M: int,N: int] :
      ( ( ord_less_int @ zero_zero_int @ ( gcd_gcd_int @ M @ N ) )
      = ( ( M != zero_zero_int )
        | ( N != zero_zero_int ) ) ) ).

% gcd_pos_int
thf(fact_9883_gcd__neg__numeral__1__int,axiom,
    ! [N: num,X2: int] :
      ( ( gcd_gcd_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) @ X2 )
      = ( gcd_gcd_int @ ( numeral_numeral_int @ N ) @ X2 ) ) ).

% gcd_neg_numeral_1_int
thf(fact_9884_gcd__neg__numeral__2__int,axiom,
    ! [X2: int,N: num] :
      ( ( gcd_gcd_int @ X2 @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( gcd_gcd_int @ X2 @ ( numeral_numeral_int @ N ) ) ) ).

% gcd_neg_numeral_2_int
thf(fact_9885_gcd__ge__0__int,axiom,
    ! [X2: int,Y2: int] : ( ord_less_eq_int @ zero_zero_int @ ( gcd_gcd_int @ X2 @ Y2 ) ) ).

% gcd_ge_0_int
thf(fact_9886_gcd__mult__distrib__int,axiom,
    ! [K: int,M: int,N: int] :
      ( ( times_times_int @ ( abs_abs_int @ K ) @ ( gcd_gcd_int @ M @ N ) )
      = ( gcd_gcd_int @ ( times_times_int @ K @ M ) @ ( times_times_int @ K @ N ) ) ) ).

% gcd_mult_distrib_int
thf(fact_9887_bezout__int,axiom,
    ! [X2: int,Y2: int] :
    ? [U3: int,V2: int] :
      ( ( plus_plus_int @ ( times_times_int @ U3 @ X2 ) @ ( times_times_int @ V2 @ Y2 ) )
      = ( gcd_gcd_int @ X2 @ Y2 ) ) ).

% bezout_int
thf(fact_9888_gcd__le2__int,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ord_less_eq_int @ ( gcd_gcd_int @ A @ B ) @ B ) ) ).

% gcd_le2_int
thf(fact_9889_gcd__le1__int,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ A )
     => ( ord_less_eq_int @ ( gcd_gcd_int @ A @ B ) @ A ) ) ).

% gcd_le1_int
thf(fact_9890_gcd__cases__int,axiom,
    ! [X2: int,Y2: int,P: int > $o] :
      ( ( ( ord_less_eq_int @ zero_zero_int @ X2 )
       => ( ( ord_less_eq_int @ zero_zero_int @ Y2 )
         => ( P @ ( gcd_gcd_int @ X2 @ Y2 ) ) ) )
     => ( ( ( ord_less_eq_int @ zero_zero_int @ X2 )
         => ( ( ord_less_eq_int @ Y2 @ zero_zero_int )
           => ( P @ ( gcd_gcd_int @ X2 @ ( uminus_uminus_int @ Y2 ) ) ) ) )
       => ( ( ( ord_less_eq_int @ X2 @ zero_zero_int )
           => ( ( ord_less_eq_int @ zero_zero_int @ Y2 )
             => ( P @ ( gcd_gcd_int @ ( uminus_uminus_int @ X2 ) @ Y2 ) ) ) )
         => ( ( ( ord_less_eq_int @ X2 @ zero_zero_int )
             => ( ( ord_less_eq_int @ Y2 @ zero_zero_int )
               => ( P @ ( gcd_gcd_int @ ( uminus_uminus_int @ X2 ) @ ( uminus_uminus_int @ Y2 ) ) ) ) )
           => ( P @ ( gcd_gcd_int @ X2 @ Y2 ) ) ) ) ) ) ).

% gcd_cases_int
thf(fact_9891_gcd__unique__int,axiom,
    ! [D: int,A: int,B: int] :
      ( ( ( ord_less_eq_int @ zero_zero_int @ D )
        & ( dvd_dvd_int @ D @ A )
        & ( dvd_dvd_int @ D @ B )
        & ! [E3: int] :
            ( ( ( dvd_dvd_int @ E3 @ A )
              & ( dvd_dvd_int @ E3 @ B ) )
           => ( dvd_dvd_int @ E3 @ D ) ) )
      = ( D
        = ( gcd_gcd_int @ A @ B ) ) ) ).

% gcd_unique_int
thf(fact_9892_gcd__non__0__int,axiom,
    ! [Y2: int,X2: int] :
      ( ( ord_less_int @ zero_zero_int @ Y2 )
     => ( ( gcd_gcd_int @ X2 @ Y2 )
        = ( gcd_gcd_int @ Y2 @ ( modulo_modulo_int @ X2 @ Y2 ) ) ) ) ).

% gcd_non_0_int
thf(fact_9893_gcd__is__Max__divisors__int,axiom,
    ! [N: int,M: int] :
      ( ( N != zero_zero_int )
     => ( ( gcd_gcd_int @ M @ N )
        = ( lattic8263393255366662781ax_int
          @ ( collect_int
            @ ^ [D2: int] :
                ( ( dvd_dvd_int @ D2 @ M )
                & ( dvd_dvd_int @ D2 @ N ) ) ) ) ) ) ).

% gcd_is_Max_divisors_int
thf(fact_9894_nat__descend__induct,axiom,
    ! [N: nat,P: nat > $o,M: nat] :
      ( ! [K3: nat] :
          ( ( ord_less_nat @ N @ K3 )
         => ( P @ K3 ) )
     => ( ! [K3: nat] :
            ( ( ord_less_eq_nat @ K3 @ N )
           => ( ! [I2: nat] :
                  ( ( ord_less_nat @ K3 @ I2 )
                 => ( P @ I2 ) )
             => ( P @ K3 ) ) )
       => ( P @ M ) ) ) ).

% nat_descend_induct
thf(fact_9895_divmod__integer__eq__cases,axiom,
    ( code_divmod_integer
    = ( ^ [K2: code_integer,L2: code_integer] :
          ( if_Pro6119634080678213985nteger @ ( K2 = zero_z3403309356797280102nteger ) @ ( produc1086072967326762835nteger @ zero_z3403309356797280102nteger @ zero_z3403309356797280102nteger )
          @ ( if_Pro6119634080678213985nteger @ ( L2 = zero_z3403309356797280102nteger ) @ ( produc1086072967326762835nteger @ zero_z3403309356797280102nteger @ K2 )
            @ ( comp_C1593894019821074884nteger @ ( comp_C8797469213163452608nteger @ produc6499014454317279255nteger @ times_3573771949741848930nteger ) @ sgn_sgn_Code_integer @ L2
              @ ( if_Pro6119634080678213985nteger
                @ ( ( sgn_sgn_Code_integer @ K2 )
                  = ( sgn_sgn_Code_integer @ L2 ) )
                @ ( code_divmod_abs @ K2 @ L2 )
                @ ( produc6916734918728496179nteger
                  @ ^ [R5: code_integer,S6: code_integer] : ( if_Pro6119634080678213985nteger @ ( S6 = zero_z3403309356797280102nteger ) @ ( produc1086072967326762835nteger @ ( uminus1351360451143612070nteger @ R5 ) @ zero_z3403309356797280102nteger ) @ ( produc1086072967326762835nteger @ ( minus_8373710615458151222nteger @ ( uminus1351360451143612070nteger @ R5 ) @ one_one_Code_integer ) @ ( minus_8373710615458151222nteger @ ( abs_abs_Code_integer @ L2 ) @ S6 ) ) )
                  @ ( code_divmod_abs @ K2 @ L2 ) ) ) ) ) ) ) ) ).

% divmod_integer_eq_cases
thf(fact_9896_gcd__1__nat,axiom,
    ! [M: nat] :
      ( ( gcd_gcd_nat @ M @ one_one_nat )
      = one_one_nat ) ).

% gcd_1_nat
thf(fact_9897_gcd__Suc__0,axiom,
    ! [M: nat] :
      ( ( gcd_gcd_nat @ M @ ( suc @ zero_zero_nat ) )
      = ( suc @ zero_zero_nat ) ) ).

% gcd_Suc_0
thf(fact_9898_gcd__pos__nat,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( gcd_gcd_nat @ M @ N ) )
      = ( ( M != zero_zero_nat )
        | ( N != zero_zero_nat ) ) ) ).

% gcd_pos_nat
thf(fact_9899_gcd__le2__nat,axiom,
    ! [B: nat,A: nat] :
      ( ( B != zero_zero_nat )
     => ( ord_less_eq_nat @ ( gcd_gcd_nat @ A @ B ) @ B ) ) ).

% gcd_le2_nat
thf(fact_9900_gcd__le1__nat,axiom,
    ! [A: nat,B: nat] :
      ( ( A != zero_zero_nat )
     => ( ord_less_eq_nat @ ( gcd_gcd_nat @ A @ B ) @ A ) ) ).

% gcd_le1_nat
thf(fact_9901_gcd__diff2__nat,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( gcd_gcd_nat @ ( minus_minus_nat @ N @ M ) @ N )
        = ( gcd_gcd_nat @ M @ N ) ) ) ).

% gcd_diff2_nat
thf(fact_9902_gcd__diff1__nat,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq_nat @ N @ M )
     => ( ( gcd_gcd_nat @ ( minus_minus_nat @ M @ N ) @ N )
        = ( gcd_gcd_nat @ M @ N ) ) ) ).

% gcd_diff1_nat
thf(fact_9903_gcd__mult__distrib__nat,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( times_times_nat @ K @ ( gcd_gcd_nat @ M @ N ) )
      = ( gcd_gcd_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) ) ) ).

% gcd_mult_distrib_nat
thf(fact_9904_bezout__nat,axiom,
    ! [A: nat,B: nat] :
      ( ( A != zero_zero_nat )
     => ? [X4: nat,Y3: nat] :
          ( ( times_times_nat @ A @ X4 )
          = ( plus_plus_nat @ ( times_times_nat @ B @ Y3 ) @ ( gcd_gcd_nat @ A @ B ) ) ) ) ).

% bezout_nat
thf(fact_9905_bezout__gcd__nat_H,axiom,
    ! [B: nat,A: nat] :
    ? [X4: nat,Y3: nat] :
      ( ( ( ord_less_eq_nat @ ( times_times_nat @ B @ Y3 ) @ ( times_times_nat @ A @ X4 ) )
        & ( ( minus_minus_nat @ ( times_times_nat @ A @ X4 ) @ ( times_times_nat @ B @ Y3 ) )
          = ( gcd_gcd_nat @ A @ B ) ) )
      | ( ( ord_less_eq_nat @ ( times_times_nat @ A @ Y3 ) @ ( times_times_nat @ B @ X4 ) )
        & ( ( minus_minus_nat @ ( times_times_nat @ B @ X4 ) @ ( times_times_nat @ A @ Y3 ) )
          = ( gcd_gcd_nat @ A @ B ) ) ) ) ).

% bezout_gcd_nat'
thf(fact_9906_gcd__is__Max__divisors__nat,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( gcd_gcd_nat @ M @ N )
        = ( lattic8265883725875713057ax_nat
          @ ( collect_nat
            @ ^ [D2: nat] :
                ( ( dvd_dvd_nat @ D2 @ M )
                & ( dvd_dvd_nat @ D2 @ N ) ) ) ) ) ) ).

% gcd_is_Max_divisors_nat
thf(fact_9907_bezw__aux,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( semiri1314217659103216013at_int @ ( gcd_gcd_nat @ X2 @ Y2 ) )
      = ( plus_plus_int @ ( times_times_int @ ( product_fst_int_int @ ( bezw @ X2 @ Y2 ) ) @ ( semiri1314217659103216013at_int @ X2 ) ) @ ( times_times_int @ ( product_snd_int_int @ ( bezw @ X2 @ Y2 ) ) @ ( semiri1314217659103216013at_int @ Y2 ) ) ) ) ).

% bezw_aux
thf(fact_9908_card_Ocomp__fun__commute__on,axiom,
    ( ( comp_nat_nat_nat @ suc @ suc )
    = ( comp_nat_nat_nat @ suc @ suc ) ) ).

% card.comp_fun_commute_on
thf(fact_9909_Inf__real__def,axiom,
    ( comple4887499456419720421f_real
    = ( ^ [X5: set_real] : ( uminus_uminus_real @ ( comple1385675409528146559p_real @ ( image_real_real @ uminus_uminus_real @ X5 ) ) ) ) ) ).

% Inf_real_def
thf(fact_9910_Sup__nat__def,axiom,
    ( complete_Sup_Sup_nat
    = ( ^ [X5: set_nat] : ( if_nat @ ( X5 = bot_bot_set_nat ) @ zero_zero_nat @ ( lattic8265883725875713057ax_nat @ X5 ) ) ) ) ).

% Sup_nat_def
thf(fact_9911_gcd__nat_Opelims,axiom,
    ! [X2: nat,Xa2: nat,Y2: nat] :
      ( ( ( gcd_gcd_nat @ X2 @ Xa2 )
        = Y2 )
     => ( ( accp_P4275260045618599050at_nat @ gcd_nat_rel @ ( product_Pair_nat_nat @ X2 @ Xa2 ) )
       => ~ ( ( ( ( Xa2 = zero_zero_nat )
               => ( Y2 = X2 ) )
              & ( ( Xa2 != zero_zero_nat )
               => ( Y2
                  = ( gcd_gcd_nat @ Xa2 @ ( modulo_modulo_nat @ X2 @ Xa2 ) ) ) ) )
           => ~ ( accp_P4275260045618599050at_nat @ gcd_nat_rel @ ( product_Pair_nat_nat @ X2 @ Xa2 ) ) ) ) ) ).

% gcd_nat.pelims
thf(fact_9912_Code__Numeral_Onegative__def,axiom,
    ( code_negative
    = ( comp_C3531382070062128313er_num @ uminus1351360451143612070nteger @ numera6620942414471956472nteger ) ) ).

% Code_Numeral.negative_def
thf(fact_9913_Code__Target__Int_Onegative__def,axiom,
    ( code_Target_negative
    = ( comp_int_int_num @ uminus_uminus_int @ numeral_numeral_int ) ) ).

% Code_Target_Int.negative_def
thf(fact_9914_suminf__eq__SUP__real,axiom,
    ! [X7: nat > real] :
      ( ( summable_real @ X7 )
     => ( ! [I3: nat] : ( ord_less_eq_real @ zero_zero_real @ ( X7 @ I3 ) )
       => ( ( suminf_real @ X7 )
          = ( comple1385675409528146559p_real
            @ ( image_nat_real
              @ ^ [I4: nat] : ( groups6591440286371151544t_real @ X7 @ ( set_ord_lessThan_nat @ I4 ) )
              @ top_top_set_nat ) ) ) ) ) ).

% suminf_eq_SUP_real
thf(fact_9915_UN__atMost__UNIV,axiom,
    ( ( comple7399068483239264473et_nat @ ( image_nat_set_nat @ set_ord_atMost_nat @ top_top_set_nat ) )
    = top_top_set_nat ) ).

% UN_atMost_UNIV
thf(fact_9916_UN__lessThan__UNIV,axiom,
    ( ( comple7399068483239264473et_nat @ ( image_nat_set_nat @ set_ord_lessThan_nat @ top_top_set_nat ) )
    = top_top_set_nat ) ).

% UN_lessThan_UNIV
thf(fact_9917_UNIV__nat__eq,axiom,
    ( top_top_set_nat
    = ( insert_nat @ zero_zero_nat @ ( image_nat_nat @ suc @ top_top_set_nat ) ) ) ).

% UNIV_nat_eq
thf(fact_9918_range__mod,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( image_nat_nat
          @ ^ [M3: nat] : ( modulo_modulo_nat @ M3 @ N )
          @ top_top_set_nat )
        = ( set_or4665077453230672383an_nat @ zero_zero_nat @ N ) ) ) ).

% range_mod
thf(fact_9919_card__UNIV__unit,axiom,
    ( ( finite410649719033368117t_unit @ top_to1996260823553986621t_unit )
    = one_one_nat ) ).

% card_UNIV_unit
thf(fact_9920_card__UNIV__bool,axiom,
    ( ( finite_card_o @ top_top_set_o )
    = ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ).

% card_UNIV_bool
thf(fact_9921_range__mult,axiom,
    ! [A: real] :
      ( ( ( A = zero_zero_real )
       => ( ( image_real_real @ ( times_times_real @ A ) @ top_top_set_real )
          = ( insert_real @ zero_zero_real @ bot_bot_set_real ) ) )
      & ( ( A != zero_zero_real )
       => ( ( image_real_real @ ( times_times_real @ A ) @ top_top_set_real )
          = top_top_set_real ) ) ) ).

% range_mult
thf(fact_9922_root__def,axiom,
    ( root
    = ( ^ [N2: nat,X: real] :
          ( if_real @ ( N2 = zero_zero_nat ) @ zero_zero_real
          @ ( the_in5290026491893676941l_real @ top_top_set_real
            @ ^ [Y: real] : ( times_times_real @ ( sgn_sgn_real @ Y ) @ ( power_power_real @ ( abs_abs_real @ Y ) @ N2 ) )
            @ X ) ) ) ) ).

% root_def
thf(fact_9923_card__UNIV__char,axiom,
    ( ( finite_card_char @ top_top_set_char )
    = ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ).

% card_UNIV_char
thf(fact_9924_UNIV__bool,axiom,
    ( top_top_set_o
    = ( insert_o @ $false @ ( insert_o @ $true @ bot_bot_set_o ) ) ) ).

% UNIV_bool
thf(fact_9925_UNIV__char__of__nat,axiom,
    ( top_top_set_char
    = ( image_nat_char @ unique3096191561947761185of_nat @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ) ).

% UNIV_char_of_nat
thf(fact_9926_nat__of__char__less__256,axiom,
    ! [C: char] : ( ord_less_nat @ ( comm_s629917340098488124ar_nat @ C ) @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ).

% nat_of_char_less_256
thf(fact_9927_range__nat__of__char,axiom,
    ( ( image_char_nat @ comm_s629917340098488124ar_nat @ top_top_set_char )
    = ( set_or4665077453230672383an_nat @ zero_zero_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ) ).

% range_nat_of_char
thf(fact_9928_integer__of__char__code,axiom,
    ! [B0: $o,B1: $o,B22: $o,B32: $o,B42: $o,B52: $o,B62: $o,B72: $o] :
      ( ( integer_of_char @ ( char2 @ B0 @ B1 @ B22 @ B32 @ B42 @ B52 @ B62 @ B72 ) )
      = ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( plus_p5714425477246183910nteger @ ( times_3573771949741848930nteger @ ( zero_n356916108424825756nteger @ B72 ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( zero_n356916108424825756nteger @ B62 ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( zero_n356916108424825756nteger @ B52 ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( zero_n356916108424825756nteger @ B42 ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( zero_n356916108424825756nteger @ B32 ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( zero_n356916108424825756nteger @ B22 ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( zero_n356916108424825756nteger @ B1 ) ) @ ( numera6620942414471956472nteger @ ( bit0 @ one ) ) ) @ ( zero_n356916108424825756nteger @ B0 ) ) ) ).

% integer_of_char_code
thf(fact_9929_char__of__integer__code,axiom,
    ( char_of_integer
    = ( ^ [K2: code_integer] :
          ( produc4188289175737317920o_char
          @ ^ [Q0: code_integer,B02: $o] :
              ( produc4188289175737317920o_char
              @ ^ [Q1: code_integer,B12: $o] :
                  ( produc4188289175737317920o_char
                  @ ^ [Q22: code_integer,B23: $o] :
                      ( produc4188289175737317920o_char
                      @ ^ [Q32: code_integer,B33: $o] :
                          ( produc4188289175737317920o_char
                          @ ^ [Q42: code_integer,B43: $o] :
                              ( produc4188289175737317920o_char
                              @ ^ [Q52: code_integer,B53: $o] :
                                  ( produc4188289175737317920o_char
                                  @ ^ [Q62: code_integer,B63: $o] :
                                      ( produc4188289175737317920o_char
                                      @ ^ [Uu3: code_integer] : ( char2 @ B02 @ B12 @ B23 @ B33 @ B43 @ B53 @ B63 )
                                      @ ( code_bit_cut_integer @ Q62 ) )
                                  @ ( code_bit_cut_integer @ Q52 ) )
                              @ ( code_bit_cut_integer @ Q42 ) )
                          @ ( code_bit_cut_integer @ Q32 ) )
                      @ ( code_bit_cut_integer @ Q22 ) )
                  @ ( code_bit_cut_integer @ Q1 ) )
              @ ( code_bit_cut_integer @ Q0 ) )
          @ ( code_bit_cut_integer @ K2 ) ) ) ) ).

% char_of_integer_code
thf(fact_9930_String_Ochar__of__ascii__of,axiom,
    ! [C: char] :
      ( ( comm_s629917340098488124ar_nat @ ( ascii_of @ C ) )
      = ( bit_se2925701944663578781it_nat @ ( numeral_numeral_nat @ ( bit1 @ ( bit1 @ one ) ) ) @ ( comm_s629917340098488124ar_nat @ C ) ) ) ).

% String.char_of_ascii_of
thf(fact_9931_Gcd__eq__Max,axiom,
    ! [M7: set_nat] :
      ( ( finite_finite_nat @ M7 )
     => ( ( M7 != bot_bot_set_nat )
       => ( ~ ( member_nat @ zero_zero_nat @ M7 )
         => ( ( gcd_Gcd_nat @ M7 )
            = ( lattic8265883725875713057ax_nat
              @ ( comple7806235888213564991et_nat
                @ ( image_nat_set_nat
                  @ ^ [M3: nat] :
                      ( collect_nat
                      @ ^ [D2: nat] : ( dvd_dvd_nat @ D2 @ M3 ) )
                  @ M7 ) ) ) ) ) ) ) ).

% Gcd_eq_Max
thf(fact_9932_Gcd__nat__eq__one,axiom,
    ! [N4: set_nat] :
      ( ( member_nat @ one_one_nat @ N4 )
     => ( ( gcd_Gcd_nat @ N4 )
        = one_one_nat ) ) ).

% Gcd_nat_eq_one
thf(fact_9933_Gcd__remove0__nat,axiom,
    ! [M7: set_nat] :
      ( ( finite_finite_nat @ M7 )
     => ( ( gcd_Gcd_nat @ M7 )
        = ( gcd_Gcd_nat @ ( minus_minus_set_nat @ M7 @ ( insert_nat @ zero_zero_nat @ bot_bot_set_nat ) ) ) ) ) ).

% Gcd_remove0_nat
thf(fact_9934_DERIV__real__root__generic,axiom,
    ! [N: nat,X2: real,D3: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( X2 != zero_zero_real )
       => ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
           => ( ( ord_less_real @ zero_zero_real @ X2 )
             => ( D3
                = ( inverse_inverse_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( power_power_real @ ( root @ N @ X2 ) @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) ) ) ) ) ) )
         => ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
             => ( ( ord_less_real @ X2 @ zero_zero_real )
               => ( D3
                  = ( uminus_uminus_real @ ( inverse_inverse_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( power_power_real @ ( root @ N @ X2 ) @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) ) ) ) ) ) ) )
           => ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
               => ( D3
                  = ( inverse_inverse_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( power_power_real @ ( root @ N @ X2 ) @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) ) ) ) ) )
             => ( has_fi5821293074295781190e_real @ ( root @ N ) @ D3 @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) ) ) ) ) ) ) ).

% DERIV_real_root_generic
thf(fact_9935_DERIV__even__real__root,axiom,
    ! [N: nat,X2: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       => ( ( ord_less_real @ X2 @ zero_zero_real )
         => ( has_fi5821293074295781190e_real @ ( root @ N ) @ ( inverse_inverse_real @ ( times_times_real @ ( uminus_uminus_real @ ( semiri5074537144036343181t_real @ N ) ) @ ( power_power_real @ ( root @ N @ X2 ) @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) ) ) ) @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) ) ) ) ) ).

% DERIV_even_real_root
thf(fact_9936_Gcd__abs__eq,axiom,
    ! [K5: set_int] :
      ( ( gcd_Gcd_int @ ( image_int_int @ abs_abs_int @ K5 ) )
      = ( gcd_Gcd_int @ K5 ) ) ).

% Gcd_abs_eq
thf(fact_9937_Gcd__nat__abs__eq,axiom,
    ! [K5: set_int] :
      ( ( gcd_Gcd_nat
        @ ( image_int_nat
          @ ^ [K2: int] : ( nat2 @ ( abs_abs_int @ K2 ) )
          @ K5 ) )
      = ( nat2 @ ( gcd_Gcd_int @ K5 ) ) ) ).

% Gcd_nat_abs_eq
thf(fact_9938_Gcd__int__eq,axiom,
    ! [N4: set_nat] :
      ( ( gcd_Gcd_int @ ( image_nat_int @ semiri1314217659103216013at_int @ N4 ) )
      = ( semiri1314217659103216013at_int @ ( gcd_Gcd_nat @ N4 ) ) ) ).

% Gcd_int_eq
thf(fact_9939_has__real__derivative__neg__dec__right,axiom,
    ! [F: real > real,L: real,X2: real,S3: set_real] :
      ( ( has_fi5821293074295781190e_real @ F @ L @ ( topolo2177554685111907308n_real @ X2 @ S3 ) )
     => ( ( ord_less_real @ L @ zero_zero_real )
       => ? [D4: real] :
            ( ( ord_less_real @ zero_zero_real @ D4 )
            & ! [H4: real] :
                ( ( ord_less_real @ zero_zero_real @ H4 )
               => ( ( member_real @ ( plus_plus_real @ X2 @ H4 ) @ S3 )
                 => ( ( ord_less_real @ H4 @ D4 )
                   => ( ord_less_real @ ( F @ ( plus_plus_real @ X2 @ H4 ) ) @ ( F @ X2 ) ) ) ) ) ) ) ) ).

% has_real_derivative_neg_dec_right
thf(fact_9940_has__real__derivative__pos__inc__right,axiom,
    ! [F: real > real,L: real,X2: real,S3: set_real] :
      ( ( has_fi5821293074295781190e_real @ F @ L @ ( topolo2177554685111907308n_real @ X2 @ S3 ) )
     => ( ( ord_less_real @ zero_zero_real @ L )
       => ? [D4: real] :
            ( ( ord_less_real @ zero_zero_real @ D4 )
            & ! [H4: real] :
                ( ( ord_less_real @ zero_zero_real @ H4 )
               => ( ( member_real @ ( plus_plus_real @ X2 @ H4 ) @ S3 )
                 => ( ( ord_less_real @ H4 @ D4 )
                   => ( ord_less_real @ ( F @ X2 ) @ ( F @ ( plus_plus_real @ X2 @ H4 ) ) ) ) ) ) ) ) ) ).

% has_real_derivative_pos_inc_right
thf(fact_9941_has__real__derivative__neg__dec__left,axiom,
    ! [F: real > real,L: real,X2: real,S3: set_real] :
      ( ( has_fi5821293074295781190e_real @ F @ L @ ( topolo2177554685111907308n_real @ X2 @ S3 ) )
     => ( ( ord_less_real @ L @ zero_zero_real )
       => ? [D4: real] :
            ( ( ord_less_real @ zero_zero_real @ D4 )
            & ! [H4: real] :
                ( ( ord_less_real @ zero_zero_real @ H4 )
               => ( ( member_real @ ( minus_minus_real @ X2 @ H4 ) @ S3 )
                 => ( ( ord_less_real @ H4 @ D4 )
                   => ( ord_less_real @ ( F @ X2 ) @ ( F @ ( minus_minus_real @ X2 @ H4 ) ) ) ) ) ) ) ) ) ).

% has_real_derivative_neg_dec_left
thf(fact_9942_has__real__derivative__pos__inc__left,axiom,
    ! [F: real > real,L: real,X2: real,S3: set_real] :
      ( ( has_fi5821293074295781190e_real @ F @ L @ ( topolo2177554685111907308n_real @ X2 @ S3 ) )
     => ( ( ord_less_real @ zero_zero_real @ L )
       => ? [D4: real] :
            ( ( ord_less_real @ zero_zero_real @ D4 )
            & ! [H4: real] :
                ( ( ord_less_real @ zero_zero_real @ H4 )
               => ( ( member_real @ ( minus_minus_real @ X2 @ H4 ) @ S3 )
                 => ( ( ord_less_real @ H4 @ D4 )
                   => ( ord_less_real @ ( F @ ( minus_minus_real @ X2 @ H4 ) ) @ ( F @ X2 ) ) ) ) ) ) ) ) ).

% has_real_derivative_pos_inc_left
thf(fact_9943_DERIV__pos__inc__left,axiom,
    ! [F: real > real,L: real,X2: real] :
      ( ( has_fi5821293074295781190e_real @ F @ L @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) )
     => ( ( ord_less_real @ zero_zero_real @ L )
       => ? [D4: real] :
            ( ( ord_less_real @ zero_zero_real @ D4 )
            & ! [H4: real] :
                ( ( ord_less_real @ zero_zero_real @ H4 )
               => ( ( ord_less_real @ H4 @ D4 )
                 => ( ord_less_real @ ( F @ ( minus_minus_real @ X2 @ H4 ) ) @ ( F @ X2 ) ) ) ) ) ) ) ).

% DERIV_pos_inc_left
thf(fact_9944_DERIV__neg__dec__left,axiom,
    ! [F: real > real,L: real,X2: real] :
      ( ( has_fi5821293074295781190e_real @ F @ L @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) )
     => ( ( ord_less_real @ L @ zero_zero_real )
       => ? [D4: real] :
            ( ( ord_less_real @ zero_zero_real @ D4 )
            & ! [H4: real] :
                ( ( ord_less_real @ zero_zero_real @ H4 )
               => ( ( ord_less_real @ H4 @ D4 )
                 => ( ord_less_real @ ( F @ X2 ) @ ( F @ ( minus_minus_real @ X2 @ H4 ) ) ) ) ) ) ) ) ).

% DERIV_neg_dec_left
thf(fact_9945_DERIV__const__ratio__const2,axiom,
    ! [A: real,B: real,F: real > real,K: real] :
      ( ( A != B )
     => ( ! [X4: real] : ( has_fi5821293074295781190e_real @ F @ K @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) )
       => ( ( divide_divide_real @ ( minus_minus_real @ ( F @ B ) @ ( F @ A ) ) @ ( minus_minus_real @ B @ A ) )
          = K ) ) ) ).

% DERIV_const_ratio_const2
thf(fact_9946_DERIV__const__ratio__const,axiom,
    ! [A: real,B: real,F: real > real,K: real] :
      ( ( A != B )
     => ( ! [X4: real] : ( has_fi5821293074295781190e_real @ F @ K @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) )
       => ( ( minus_minus_real @ ( F @ B ) @ ( F @ A ) )
          = ( times_times_real @ ( minus_minus_real @ B @ A ) @ K ) ) ) ) ).

% DERIV_const_ratio_const
thf(fact_9947_DERIV__neg__dec__right,axiom,
    ! [F: real > real,L: real,X2: real] :
      ( ( has_fi5821293074295781190e_real @ F @ L @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) )
     => ( ( ord_less_real @ L @ zero_zero_real )
       => ? [D4: real] :
            ( ( ord_less_real @ zero_zero_real @ D4 )
            & ! [H4: real] :
                ( ( ord_less_real @ zero_zero_real @ H4 )
               => ( ( ord_less_real @ H4 @ D4 )
                 => ( ord_less_real @ ( F @ ( plus_plus_real @ X2 @ H4 ) ) @ ( F @ X2 ) ) ) ) ) ) ) ).

% DERIV_neg_dec_right
thf(fact_9948_DERIV__pos__inc__right,axiom,
    ! [F: real > real,L: real,X2: real] :
      ( ( has_fi5821293074295781190e_real @ F @ L @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) )
     => ( ( ord_less_real @ zero_zero_real @ L )
       => ? [D4: real] :
            ( ( ord_less_real @ zero_zero_real @ D4 )
            & ! [H4: real] :
                ( ( ord_less_real @ zero_zero_real @ H4 )
               => ( ( ord_less_real @ H4 @ D4 )
                 => ( ord_less_real @ ( F @ X2 ) @ ( F @ ( plus_plus_real @ X2 @ H4 ) ) ) ) ) ) ) ) ).

% DERIV_pos_inc_right
thf(fact_9949_DERIV__mirror,axiom,
    ! [F: real > real,Y2: real,X2: real] :
      ( ( has_fi5821293074295781190e_real @ F @ Y2 @ ( topolo2177554685111907308n_real @ ( uminus_uminus_real @ X2 ) @ top_top_set_real ) )
      = ( has_fi5821293074295781190e_real
        @ ^ [X: real] : ( F @ ( uminus_uminus_real @ X ) )
        @ ( uminus_uminus_real @ Y2 )
        @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) ) ) ).

% DERIV_mirror
thf(fact_9950_DERIV__pos__imp__increasing,axiom,
    ! [A: real,B: real,F: real > real] :
      ( ( ord_less_real @ A @ B )
     => ( ! [X4: real] :
            ( ( ord_less_eq_real @ A @ X4 )
           => ( ( ord_less_eq_real @ X4 @ B )
             => ? [Y4: real] :
                  ( ( has_fi5821293074295781190e_real @ F @ Y4 @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) )
                  & ( ord_less_real @ zero_zero_real @ Y4 ) ) ) )
       => ( ord_less_real @ ( F @ A ) @ ( F @ B ) ) ) ) ).

% DERIV_pos_imp_increasing
thf(fact_9951_DERIV__neg__imp__decreasing,axiom,
    ! [A: real,B: real,F: real > real] :
      ( ( ord_less_real @ A @ B )
     => ( ! [X4: real] :
            ( ( ord_less_eq_real @ A @ X4 )
           => ( ( ord_less_eq_real @ X4 @ B )
             => ? [Y4: real] :
                  ( ( has_fi5821293074295781190e_real @ F @ Y4 @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) )
                  & ( ord_less_real @ Y4 @ zero_zero_real ) ) ) )
       => ( ord_less_real @ ( F @ B ) @ ( F @ A ) ) ) ) ).

% DERIV_neg_imp_decreasing
thf(fact_9952_deriv__nonneg__imp__mono,axiom,
    ! [A: real,B: real,G: real > real,G2: real > real] :
      ( ! [X4: real] :
          ( ( member_real @ X4 @ ( set_or1222579329274155063t_real @ A @ B ) )
         => ( has_fi5821293074295781190e_real @ G @ ( G2 @ X4 ) @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) ) )
     => ( ! [X4: real] :
            ( ( member_real @ X4 @ ( set_or1222579329274155063t_real @ A @ B ) )
           => ( ord_less_eq_real @ zero_zero_real @ ( G2 @ X4 ) ) )
       => ( ( ord_less_eq_real @ A @ B )
         => ( ord_less_eq_real @ ( G @ A ) @ ( G @ B ) ) ) ) ) ).

% deriv_nonneg_imp_mono
thf(fact_9953_DERIV__nonneg__imp__nondecreasing,axiom,
    ! [A: real,B: real,F: real > real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ! [X4: real] :
            ( ( ord_less_eq_real @ A @ X4 )
           => ( ( ord_less_eq_real @ X4 @ B )
             => ? [Y4: real] :
                  ( ( has_fi5821293074295781190e_real @ F @ Y4 @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) )
                  & ( ord_less_eq_real @ zero_zero_real @ Y4 ) ) ) )
       => ( ord_less_eq_real @ ( F @ A ) @ ( F @ B ) ) ) ) ).

% DERIV_nonneg_imp_nondecreasing
thf(fact_9954_DERIV__nonpos__imp__nonincreasing,axiom,
    ! [A: real,B: real,F: real > real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ! [X4: real] :
            ( ( ord_less_eq_real @ A @ X4 )
           => ( ( ord_less_eq_real @ X4 @ B )
             => ? [Y4: real] :
                  ( ( has_fi5821293074295781190e_real @ F @ Y4 @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) )
                  & ( ord_less_eq_real @ Y4 @ zero_zero_real ) ) ) )
       => ( ord_less_eq_real @ ( F @ B ) @ ( F @ A ) ) ) ) ).

% DERIV_nonpos_imp_nonincreasing
thf(fact_9955_MVT2,axiom,
    ! [A: real,B: real,F: real > real,F6: real > real] :
      ( ( ord_less_real @ A @ B )
     => ( ! [X4: real] :
            ( ( ord_less_eq_real @ A @ X4 )
           => ( ( ord_less_eq_real @ X4 @ B )
             => ( has_fi5821293074295781190e_real @ F @ ( F6 @ X4 ) @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) ) ) )
       => ? [Z3: real] :
            ( ( ord_less_real @ A @ Z3 )
            & ( ord_less_real @ Z3 @ B )
            & ( ( minus_minus_real @ ( F @ B ) @ ( F @ A ) )
              = ( times_times_real @ ( minus_minus_real @ B @ A ) @ ( F6 @ Z3 ) ) ) ) ) ) ).

% MVT2
thf(fact_9956_DERIV__local__const,axiom,
    ! [F: real > real,L: real,X2: real,D: real] :
      ( ( has_fi5821293074295781190e_real @ F @ L @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) )
     => ( ( ord_less_real @ zero_zero_real @ D )
       => ( ! [Y3: real] :
              ( ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ X2 @ Y3 ) ) @ D )
             => ( ( F @ X2 )
                = ( F @ Y3 ) ) )
         => ( L = zero_zero_real ) ) ) ) ).

% DERIV_local_const
thf(fact_9957_DERIV__ln,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( has_fi5821293074295781190e_real @ ln_ln_real @ ( inverse_inverse_real @ X2 ) @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) ) ) ).

% DERIV_ln
thf(fact_9958_Gcd__int__greater__eq__0,axiom,
    ! [K5: set_int] : ( ord_less_eq_int @ zero_zero_int @ ( gcd_Gcd_int @ K5 ) ) ).

% Gcd_int_greater_eq_0
thf(fact_9959_DERIV__const__average,axiom,
    ! [A: real,B: real,V: real > real,K: real] :
      ( ( A != B )
     => ( ! [X4: real] : ( has_fi5821293074295781190e_real @ V @ K @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) )
       => ( ( V @ ( divide_divide_real @ ( plus_plus_real @ A @ B ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
          = ( divide_divide_real @ ( plus_plus_real @ ( V @ A ) @ ( V @ B ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).

% DERIV_const_average
thf(fact_9960_DERIV__local__min,axiom,
    ! [F: real > real,L: real,X2: real,D: real] :
      ( ( has_fi5821293074295781190e_real @ F @ L @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) )
     => ( ( ord_less_real @ zero_zero_real @ D )
       => ( ! [Y3: real] :
              ( ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ X2 @ Y3 ) ) @ D )
             => ( ord_less_eq_real @ ( F @ X2 ) @ ( F @ Y3 ) ) )
         => ( L = zero_zero_real ) ) ) ) ).

% DERIV_local_min
thf(fact_9961_DERIV__local__max,axiom,
    ! [F: real > real,L: real,X2: real,D: real] :
      ( ( has_fi5821293074295781190e_real @ F @ L @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) )
     => ( ( ord_less_real @ zero_zero_real @ D )
       => ( ! [Y3: real] :
              ( ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ X2 @ Y3 ) ) @ D )
             => ( ord_less_eq_real @ ( F @ Y3 ) @ ( F @ X2 ) ) )
         => ( L = zero_zero_real ) ) ) ) ).

% DERIV_local_max
thf(fact_9962_DERIV__ln__divide,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( has_fi5821293074295781190e_real @ ln_ln_real @ ( divide_divide_real @ one_one_real @ X2 ) @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) ) ) ).

% DERIV_ln_divide
thf(fact_9963_DERIV__pow,axiom,
    ! [N: nat,X2: real,S: set_real] :
      ( has_fi5821293074295781190e_real
      @ ^ [X: real] : ( power_power_real @ X @ N )
      @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( power_power_real @ X2 @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) ) )
      @ ( topolo2177554685111907308n_real @ X2 @ S ) ) ).

% DERIV_pow
thf(fact_9964_DERIV__fun__pow,axiom,
    ! [G: real > real,M: real,X2: real,N: nat] :
      ( ( has_fi5821293074295781190e_real @ G @ M @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) )
     => ( has_fi5821293074295781190e_real
        @ ^ [X: real] : ( power_power_real @ ( G @ X ) @ N )
        @ ( times_times_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( power_power_real @ ( G @ X2 ) @ ( minus_minus_nat @ N @ one_one_nat ) ) ) @ M )
        @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) ) ) ).

% DERIV_fun_pow
thf(fact_9965_has__real__derivative__powr,axiom,
    ! [Z: real,R2: real] :
      ( ( ord_less_real @ zero_zero_real @ Z )
     => ( has_fi5821293074295781190e_real
        @ ^ [Z4: real] : ( powr_real @ Z4 @ R2 )
        @ ( times_times_real @ R2 @ ( powr_real @ Z @ ( minus_minus_real @ R2 @ one_one_real ) ) )
        @ ( topolo2177554685111907308n_real @ Z @ top_top_set_real ) ) ) ).

% has_real_derivative_powr
thf(fact_9966_DERIV__log,axiom,
    ! [X2: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( has_fi5821293074295781190e_real @ ( log @ B ) @ ( divide_divide_real @ one_one_real @ ( times_times_real @ ( ln_ln_real @ B ) @ X2 ) ) @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) ) ) ).

% DERIV_log
thf(fact_9967_DERIV__fun__powr,axiom,
    ! [G: real > real,M: real,X2: real,R2: real] :
      ( ( has_fi5821293074295781190e_real @ G @ M @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) )
     => ( ( ord_less_real @ zero_zero_real @ ( G @ X2 ) )
       => ( has_fi5821293074295781190e_real
          @ ^ [X: real] : ( powr_real @ ( G @ X ) @ R2 )
          @ ( times_times_real @ ( times_times_real @ R2 @ ( powr_real @ ( G @ X2 ) @ ( minus_minus_real @ R2 @ ( semiri5074537144036343181t_real @ one_one_nat ) ) ) ) @ M )
          @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) ) ) ) ).

% DERIV_fun_powr
thf(fact_9968_DERIV__powr,axiom,
    ! [G: real > real,M: real,X2: real,F: real > real,R2: real] :
      ( ( has_fi5821293074295781190e_real @ G @ M @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) )
     => ( ( ord_less_real @ zero_zero_real @ ( G @ X2 ) )
       => ( ( has_fi5821293074295781190e_real @ F @ R2 @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) )
         => ( has_fi5821293074295781190e_real
            @ ^ [X: real] : ( powr_real @ ( G @ X ) @ ( F @ X ) )
            @ ( times_times_real @ ( powr_real @ ( G @ X2 ) @ ( F @ X2 ) ) @ ( plus_plus_real @ ( times_times_real @ R2 @ ( ln_ln_real @ ( G @ X2 ) ) ) @ ( divide_divide_real @ ( times_times_real @ M @ ( F @ X2 ) ) @ ( G @ X2 ) ) ) )
            @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) ) ) ) ) ).

% DERIV_powr
thf(fact_9969_DERIV__real__sqrt,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ zero_zero_real @ X2 )
     => ( has_fi5821293074295781190e_real @ sqrt @ ( divide_divide_real @ ( inverse_inverse_real @ ( sqrt @ X2 ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) ) ) ).

% DERIV_real_sqrt
thf(fact_9970_DERIV__arctan,axiom,
    ! [X2: real] : ( has_fi5821293074295781190e_real @ arctan @ ( inverse_inverse_real @ ( plus_plus_real @ one_one_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) ) ).

% DERIV_arctan
thf(fact_9971_arsinh__real__has__field__derivative,axiom,
    ! [X2: real,A2: set_real] : ( has_fi5821293074295781190e_real @ arsinh_real @ ( divide_divide_real @ one_one_real @ ( sqrt @ ( plus_plus_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real ) ) ) @ ( topolo2177554685111907308n_real @ X2 @ A2 ) ) ).

% arsinh_real_has_field_derivative
thf(fact_9972_DERIV__real__sqrt__generic,axiom,
    ! [X2: real,D3: real] :
      ( ( X2 != zero_zero_real )
     => ( ( ( ord_less_real @ zero_zero_real @ X2 )
         => ( D3
            = ( divide_divide_real @ ( inverse_inverse_real @ ( sqrt @ X2 ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) )
       => ( ( ( ord_less_real @ X2 @ zero_zero_real )
           => ( D3
              = ( divide_divide_real @ ( uminus_uminus_real @ ( inverse_inverse_real @ ( sqrt @ X2 ) ) ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) )
         => ( has_fi5821293074295781190e_real @ sqrt @ D3 @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) ) ) ) ) ).

% DERIV_real_sqrt_generic
thf(fact_9973_arcosh__real__has__field__derivative,axiom,
    ! [X2: real,A2: set_real] :
      ( ( ord_less_real @ one_one_real @ X2 )
     => ( has_fi5821293074295781190e_real @ arcosh_real @ ( divide_divide_real @ one_one_real @ ( sqrt @ ( minus_minus_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real ) ) ) @ ( topolo2177554685111907308n_real @ X2 @ A2 ) ) ) ).

% arcosh_real_has_field_derivative
thf(fact_9974_artanh__real__has__field__derivative,axiom,
    ! [X2: real,A2: set_real] :
      ( ( ord_less_real @ ( abs_abs_real @ X2 ) @ one_one_real )
     => ( has_fi5821293074295781190e_real @ artanh_real @ ( divide_divide_real @ one_one_real @ ( minus_minus_real @ one_one_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( topolo2177554685111907308n_real @ X2 @ A2 ) ) ) ).

% artanh_real_has_field_derivative
thf(fact_9975_Gcd__int__def,axiom,
    ( gcd_Gcd_int
    = ( ^ [K7: set_int] : ( semiri1314217659103216013at_int @ ( gcd_Gcd_nat @ ( image_int_nat @ ( comp_int_nat_int @ nat2 @ abs_abs_int ) @ K7 ) ) ) ) ) ).

% Gcd_int_def
thf(fact_9976_DERIV__real__root,axiom,
    ! [N: nat,X2: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_real @ zero_zero_real @ X2 )
       => ( has_fi5821293074295781190e_real @ ( root @ N ) @ ( inverse_inverse_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( power_power_real @ ( root @ N @ X2 ) @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) ) ) ) @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) ) ) ) ).

% DERIV_real_root
thf(fact_9977_DERIV__arccos,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ X2 )
     => ( ( ord_less_real @ X2 @ one_one_real )
       => ( has_fi5821293074295781190e_real @ arccos @ ( inverse_inverse_real @ ( uminus_uminus_real @ ( sqrt @ ( minus_minus_real @ one_one_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) ) ) ) ).

% DERIV_arccos
thf(fact_9978_DERIV__arcsin,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ X2 )
     => ( ( ord_less_real @ X2 @ one_one_real )
       => ( has_fi5821293074295781190e_real @ arcsin @ ( inverse_inverse_real @ ( sqrt @ ( minus_minus_real @ one_one_real @ ( power_power_real @ X2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) ) ) ) ).

% DERIV_arcsin
thf(fact_9979_Maclaurin__all__le__objl,axiom,
    ! [Diff: nat > real > real,F: real > real,X2: real,N: nat] :
      ( ( ( ( Diff @ zero_zero_nat )
          = F )
        & ! [M4: nat,X4: real] : ( has_fi5821293074295781190e_real @ ( Diff @ M4 ) @ ( Diff @ ( suc @ M4 ) @ X4 ) @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) ) )
     => ? [T5: real] :
          ( ( ord_less_eq_real @ ( abs_abs_real @ T5 ) @ ( abs_abs_real @ X2 ) )
          & ( ( F @ X2 )
            = ( plus_plus_real
              @ ( groups6591440286371151544t_real
                @ ^ [M3: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M3 @ zero_zero_real ) @ ( semiri2265585572941072030t_real @ M3 ) ) @ ( power_power_real @ X2 @ M3 ) )
                @ ( set_ord_lessThan_nat @ N ) )
              @ ( times_times_real @ ( divide_divide_real @ ( Diff @ N @ T5 ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ X2 @ N ) ) ) ) ) ) ).

% Maclaurin_all_le_objl
thf(fact_9980_Maclaurin__all__le,axiom,
    ! [Diff: nat > real > real,F: real > real,X2: real,N: nat] :
      ( ( ( Diff @ zero_zero_nat )
        = F )
     => ( ! [M4: nat,X4: real] : ( has_fi5821293074295781190e_real @ ( Diff @ M4 ) @ ( Diff @ ( suc @ M4 ) @ X4 ) @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) )
       => ? [T5: real] :
            ( ( ord_less_eq_real @ ( abs_abs_real @ T5 ) @ ( abs_abs_real @ X2 ) )
            & ( ( F @ X2 )
              = ( plus_plus_real
                @ ( groups6591440286371151544t_real
                  @ ^ [M3: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M3 @ zero_zero_real ) @ ( semiri2265585572941072030t_real @ M3 ) ) @ ( power_power_real @ X2 @ M3 ) )
                  @ ( set_ord_lessThan_nat @ N ) )
                @ ( times_times_real @ ( divide_divide_real @ ( Diff @ N @ T5 ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ X2 @ N ) ) ) ) ) ) ) ).

% Maclaurin_all_le
thf(fact_9981_DERIV__odd__real__root,axiom,
    ! [N: nat,X2: real] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( X2 != zero_zero_real )
       => ( has_fi5821293074295781190e_real @ ( root @ N ) @ ( inverse_inverse_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( power_power_real @ ( root @ N @ X2 ) @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) ) ) ) @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) ) ) ) ).

% DERIV_odd_real_root
thf(fact_9982_Maclaurin,axiom,
    ! [H2: real,N: nat,Diff: nat > real > real,F: real > real] :
      ( ( ord_less_real @ zero_zero_real @ H2 )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ( ( Diff @ zero_zero_nat )
            = F )
         => ( ! [M4: nat,T5: real] :
                ( ( ( ord_less_nat @ M4 @ N )
                  & ( ord_less_eq_real @ zero_zero_real @ T5 )
                  & ( ord_less_eq_real @ T5 @ H2 ) )
               => ( has_fi5821293074295781190e_real @ ( Diff @ M4 ) @ ( Diff @ ( suc @ M4 ) @ T5 ) @ ( topolo2177554685111907308n_real @ T5 @ top_top_set_real ) ) )
           => ? [T5: real] :
                ( ( ord_less_real @ zero_zero_real @ T5 )
                & ( ord_less_real @ T5 @ H2 )
                & ( ( F @ H2 )
                  = ( plus_plus_real
                    @ ( groups6591440286371151544t_real
                      @ ^ [M3: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M3 @ zero_zero_real ) @ ( semiri2265585572941072030t_real @ M3 ) ) @ ( power_power_real @ H2 @ M3 ) )
                      @ ( set_ord_lessThan_nat @ N ) )
                    @ ( times_times_real @ ( divide_divide_real @ ( Diff @ N @ T5 ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ H2 @ N ) ) ) ) ) ) ) ) ) ).

% Maclaurin
thf(fact_9983_Maclaurin2,axiom,
    ! [H2: real,Diff: nat > real > real,F: real > real,N: nat] :
      ( ( ord_less_real @ zero_zero_real @ H2 )
     => ( ( ( Diff @ zero_zero_nat )
          = F )
       => ( ! [M4: nat,T5: real] :
              ( ( ( ord_less_nat @ M4 @ N )
                & ( ord_less_eq_real @ zero_zero_real @ T5 )
                & ( ord_less_eq_real @ T5 @ H2 ) )
             => ( has_fi5821293074295781190e_real @ ( Diff @ M4 ) @ ( Diff @ ( suc @ M4 ) @ T5 ) @ ( topolo2177554685111907308n_real @ T5 @ top_top_set_real ) ) )
         => ? [T5: real] :
              ( ( ord_less_real @ zero_zero_real @ T5 )
              & ( ord_less_eq_real @ T5 @ H2 )
              & ( ( F @ H2 )
                = ( plus_plus_real
                  @ ( groups6591440286371151544t_real
                    @ ^ [M3: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M3 @ zero_zero_real ) @ ( semiri2265585572941072030t_real @ M3 ) ) @ ( power_power_real @ H2 @ M3 ) )
                    @ ( set_ord_lessThan_nat @ N ) )
                  @ ( times_times_real @ ( divide_divide_real @ ( Diff @ N @ T5 ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ H2 @ N ) ) ) ) ) ) ) ) ).

% Maclaurin2
thf(fact_9984_Maclaurin__minus,axiom,
    ! [H2: real,N: nat,Diff: nat > real > real,F: real > real] :
      ( ( ord_less_real @ H2 @ zero_zero_real )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ( ( Diff @ zero_zero_nat )
            = F )
         => ( ! [M4: nat,T5: real] :
                ( ( ( ord_less_nat @ M4 @ N )
                  & ( ord_less_eq_real @ H2 @ T5 )
                  & ( ord_less_eq_real @ T5 @ zero_zero_real ) )
               => ( has_fi5821293074295781190e_real @ ( Diff @ M4 ) @ ( Diff @ ( suc @ M4 ) @ T5 ) @ ( topolo2177554685111907308n_real @ T5 @ top_top_set_real ) ) )
           => ? [T5: real] :
                ( ( ord_less_real @ H2 @ T5 )
                & ( ord_less_real @ T5 @ zero_zero_real )
                & ( ( F @ H2 )
                  = ( plus_plus_real
                    @ ( groups6591440286371151544t_real
                      @ ^ [M3: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M3 @ zero_zero_real ) @ ( semiri2265585572941072030t_real @ M3 ) ) @ ( power_power_real @ H2 @ M3 ) )
                      @ ( set_ord_lessThan_nat @ N ) )
                    @ ( times_times_real @ ( divide_divide_real @ ( Diff @ N @ T5 ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ H2 @ N ) ) ) ) ) ) ) ) ) ).

% Maclaurin_minus
thf(fact_9985_Maclaurin__all__lt,axiom,
    ! [Diff: nat > real > real,F: real > real,N: nat,X2: real] :
      ( ( ( Diff @ zero_zero_nat )
        = F )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ( X2 != zero_zero_real )
         => ( ! [M4: nat,X4: real] : ( has_fi5821293074295781190e_real @ ( Diff @ M4 ) @ ( Diff @ ( suc @ M4 ) @ X4 ) @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) )
           => ? [T5: real] :
                ( ( ord_less_real @ zero_zero_real @ ( abs_abs_real @ T5 ) )
                & ( ord_less_real @ ( abs_abs_real @ T5 ) @ ( abs_abs_real @ X2 ) )
                & ( ( F @ X2 )
                  = ( plus_plus_real
                    @ ( groups6591440286371151544t_real
                      @ ^ [M3: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M3 @ zero_zero_real ) @ ( semiri2265585572941072030t_real @ M3 ) ) @ ( power_power_real @ X2 @ M3 ) )
                      @ ( set_ord_lessThan_nat @ N ) )
                    @ ( times_times_real @ ( divide_divide_real @ ( Diff @ N @ T5 ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ X2 @ N ) ) ) ) ) ) ) ) ) ).

% Maclaurin_all_lt
thf(fact_9986_Maclaurin__bi__le,axiom,
    ! [Diff: nat > real > real,F: real > real,N: nat,X2: real] :
      ( ( ( Diff @ zero_zero_nat )
        = F )
     => ( ! [M4: nat,T5: real] :
            ( ( ( ord_less_nat @ M4 @ N )
              & ( ord_less_eq_real @ ( abs_abs_real @ T5 ) @ ( abs_abs_real @ X2 ) ) )
           => ( has_fi5821293074295781190e_real @ ( Diff @ M4 ) @ ( Diff @ ( suc @ M4 ) @ T5 ) @ ( topolo2177554685111907308n_real @ T5 @ top_top_set_real ) ) )
       => ? [T5: real] :
            ( ( ord_less_eq_real @ ( abs_abs_real @ T5 ) @ ( abs_abs_real @ X2 ) )
            & ( ( F @ X2 )
              = ( plus_plus_real
                @ ( groups6591440286371151544t_real
                  @ ^ [M3: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M3 @ zero_zero_real ) @ ( semiri2265585572941072030t_real @ M3 ) ) @ ( power_power_real @ X2 @ M3 ) )
                  @ ( set_ord_lessThan_nat @ N ) )
                @ ( times_times_real @ ( divide_divide_real @ ( Diff @ N @ T5 ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ X2 @ N ) ) ) ) ) ) ) ).

% Maclaurin_bi_le
thf(fact_9987_Taylor,axiom,
    ! [N: nat,Diff: nat > real > real,F: real > real,A: real,B: real,C: real,X2: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ( Diff @ zero_zero_nat )
          = F )
       => ( ! [M4: nat,T5: real] :
              ( ( ( ord_less_nat @ M4 @ N )
                & ( ord_less_eq_real @ A @ T5 )
                & ( ord_less_eq_real @ T5 @ B ) )
             => ( has_fi5821293074295781190e_real @ ( Diff @ M4 ) @ ( Diff @ ( suc @ M4 ) @ T5 ) @ ( topolo2177554685111907308n_real @ T5 @ top_top_set_real ) ) )
         => ( ( ord_less_eq_real @ A @ C )
           => ( ( ord_less_eq_real @ C @ B )
             => ( ( ord_less_eq_real @ A @ X2 )
               => ( ( ord_less_eq_real @ X2 @ B )
                 => ( ( X2 != C )
                   => ? [T5: real] :
                        ( ( ( ord_less_real @ X2 @ C )
                         => ( ( ord_less_real @ X2 @ T5 )
                            & ( ord_less_real @ T5 @ C ) ) )
                        & ( ~ ( ord_less_real @ X2 @ C )
                         => ( ( ord_less_real @ C @ T5 )
                            & ( ord_less_real @ T5 @ X2 ) ) )
                        & ( ( F @ X2 )
                          = ( plus_plus_real
                            @ ( groups6591440286371151544t_real
                              @ ^ [M3: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M3 @ C ) @ ( semiri2265585572941072030t_real @ M3 ) ) @ ( power_power_real @ ( minus_minus_real @ X2 @ C ) @ M3 ) )
                              @ ( set_ord_lessThan_nat @ N ) )
                            @ ( times_times_real @ ( divide_divide_real @ ( Diff @ N @ T5 ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ ( minus_minus_real @ X2 @ C ) @ N ) ) ) ) ) ) ) ) ) ) ) ) ) ).

% Taylor
thf(fact_9988_Taylor__up,axiom,
    ! [N: nat,Diff: nat > real > real,F: real > real,A: real,B: real,C: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ( Diff @ zero_zero_nat )
          = F )
       => ( ! [M4: nat,T5: real] :
              ( ( ( ord_less_nat @ M4 @ N )
                & ( ord_less_eq_real @ A @ T5 )
                & ( ord_less_eq_real @ T5 @ B ) )
             => ( has_fi5821293074295781190e_real @ ( Diff @ M4 ) @ ( Diff @ ( suc @ M4 ) @ T5 ) @ ( topolo2177554685111907308n_real @ T5 @ top_top_set_real ) ) )
         => ( ( ord_less_eq_real @ A @ C )
           => ( ( ord_less_real @ C @ B )
             => ? [T5: real] :
                  ( ( ord_less_real @ C @ T5 )
                  & ( ord_less_real @ T5 @ B )
                  & ( ( F @ B )
                    = ( plus_plus_real
                      @ ( groups6591440286371151544t_real
                        @ ^ [M3: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M3 @ C ) @ ( semiri2265585572941072030t_real @ M3 ) ) @ ( power_power_real @ ( minus_minus_real @ B @ C ) @ M3 ) )
                        @ ( set_ord_lessThan_nat @ N ) )
                      @ ( times_times_real @ ( divide_divide_real @ ( Diff @ N @ T5 ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ ( minus_minus_real @ B @ C ) @ N ) ) ) ) ) ) ) ) ) ) ).

% Taylor_up
thf(fact_9989_Taylor__down,axiom,
    ! [N: nat,Diff: nat > real > real,F: real > real,A: real,B: real,C: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ( Diff @ zero_zero_nat )
          = F )
       => ( ! [M4: nat,T5: real] :
              ( ( ( ord_less_nat @ M4 @ N )
                & ( ord_less_eq_real @ A @ T5 )
                & ( ord_less_eq_real @ T5 @ B ) )
             => ( has_fi5821293074295781190e_real @ ( Diff @ M4 ) @ ( Diff @ ( suc @ M4 ) @ T5 ) @ ( topolo2177554685111907308n_real @ T5 @ top_top_set_real ) ) )
         => ( ( ord_less_real @ A @ C )
           => ( ( ord_less_eq_real @ C @ B )
             => ? [T5: real] :
                  ( ( ord_less_real @ A @ T5 )
                  & ( ord_less_real @ T5 @ C )
                  & ( ( F @ A )
                    = ( plus_plus_real
                      @ ( groups6591440286371151544t_real
                        @ ^ [M3: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ M3 @ C ) @ ( semiri2265585572941072030t_real @ M3 ) ) @ ( power_power_real @ ( minus_minus_real @ A @ C ) @ M3 ) )
                        @ ( set_ord_lessThan_nat @ N ) )
                      @ ( times_times_real @ ( divide_divide_real @ ( Diff @ N @ T5 ) @ ( semiri2265585572941072030t_real @ N ) ) @ ( power_power_real @ ( minus_minus_real @ A @ C ) @ N ) ) ) ) ) ) ) ) ) ) ).

% Taylor_down
thf(fact_9990_Maclaurin__lemma2,axiom,
    ! [N: nat,H2: real,Diff: nat > real > real,K: nat,B3: real] :
      ( ! [M4: nat,T5: real] :
          ( ( ( ord_less_nat @ M4 @ N )
            & ( ord_less_eq_real @ zero_zero_real @ T5 )
            & ( ord_less_eq_real @ T5 @ H2 ) )
         => ( has_fi5821293074295781190e_real @ ( Diff @ M4 ) @ ( Diff @ ( suc @ M4 ) @ T5 ) @ ( topolo2177554685111907308n_real @ T5 @ top_top_set_real ) ) )
     => ( ( N
          = ( suc @ K ) )
       => ! [M2: nat,T6: real] :
            ( ( ( ord_less_nat @ M2 @ N )
              & ( ord_less_eq_real @ zero_zero_real @ T6 )
              & ( ord_less_eq_real @ T6 @ H2 ) )
           => ( has_fi5821293074295781190e_real
              @ ^ [U2: real] :
                  ( minus_minus_real @ ( Diff @ M2 @ U2 )
                  @ ( plus_plus_real
                    @ ( groups6591440286371151544t_real
                      @ ^ [P5: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ ( plus_plus_nat @ M2 @ P5 ) @ zero_zero_real ) @ ( semiri2265585572941072030t_real @ P5 ) ) @ ( power_power_real @ U2 @ P5 ) )
                      @ ( set_ord_lessThan_nat @ ( minus_minus_nat @ N @ M2 ) ) )
                    @ ( times_times_real @ B3 @ ( divide_divide_real @ ( power_power_real @ U2 @ ( minus_minus_nat @ N @ M2 ) ) @ ( semiri2265585572941072030t_real @ ( minus_minus_nat @ N @ M2 ) ) ) ) ) )
              @ ( minus_minus_real @ ( Diff @ ( suc @ M2 ) @ T6 )
                @ ( plus_plus_real
                  @ ( groups6591440286371151544t_real
                    @ ^ [P5: nat] : ( times_times_real @ ( divide_divide_real @ ( Diff @ ( plus_plus_nat @ ( suc @ M2 ) @ P5 ) @ zero_zero_real ) @ ( semiri2265585572941072030t_real @ P5 ) ) @ ( power_power_real @ T6 @ P5 ) )
                    @ ( set_ord_lessThan_nat @ ( minus_minus_nat @ N @ ( suc @ M2 ) ) ) )
                  @ ( times_times_real @ B3 @ ( divide_divide_real @ ( power_power_real @ T6 @ ( minus_minus_nat @ N @ ( suc @ M2 ) ) ) @ ( semiri2265585572941072030t_real @ ( minus_minus_nat @ N @ ( suc @ M2 ) ) ) ) ) ) )
              @ ( topolo2177554685111907308n_real @ T6 @ top_top_set_real ) ) ) ) ) ).

% Maclaurin_lemma2
thf(fact_9991_DERIV__arctan__series,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ ( abs_abs_real @ X2 ) @ one_one_real )
     => ( has_fi5821293074295781190e_real
        @ ^ [X9: real] :
            ( suminf_real
            @ ^ [K2: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ K2 ) @ ( times_times_real @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ ( plus_plus_nat @ ( times_times_nat @ K2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) @ ( power_power_real @ X9 @ ( plus_plus_nat @ ( times_times_nat @ K2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) ) )
        @ ( suminf_real
          @ ^ [K2: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ K2 ) @ ( power_power_real @ X2 @ ( times_times_nat @ K2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
        @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) ) ) ).

% DERIV_arctan_series
thf(fact_9992_DERIV__power__series_H,axiom,
    ! [R: real,F: nat > real,X0: real] :
      ( ! [X4: real] :
          ( ( member_real @ X4 @ ( set_or1633881224788618240n_real @ ( uminus_uminus_real @ R ) @ R ) )
         => ( summable_real
            @ ^ [N2: nat] : ( times_times_real @ ( times_times_real @ ( F @ N2 ) @ ( semiri5074537144036343181t_real @ ( suc @ N2 ) ) ) @ ( power_power_real @ X4 @ N2 ) ) ) )
     => ( ( member_real @ X0 @ ( set_or1633881224788618240n_real @ ( uminus_uminus_real @ R ) @ R ) )
       => ( ( ord_less_real @ zero_zero_real @ R )
         => ( has_fi5821293074295781190e_real
            @ ^ [X: real] :
                ( suminf_real
                @ ^ [N2: nat] : ( times_times_real @ ( F @ N2 ) @ ( power_power_real @ X @ ( suc @ N2 ) ) ) )
            @ ( suminf_real
              @ ^ [N2: nat] : ( times_times_real @ ( times_times_real @ ( F @ N2 ) @ ( semiri5074537144036343181t_real @ ( suc @ N2 ) ) ) @ ( power_power_real @ X0 @ N2 ) ) )
            @ ( topolo2177554685111907308n_real @ X0 @ top_top_set_real ) ) ) ) ) ).

% DERIV_power_series'
thf(fact_9993_tanh__real__bounds,axiom,
    ! [X2: real] : ( member_real @ ( tanh_real @ X2 ) @ ( set_or1633881224788618240n_real @ ( uminus_uminus_real @ one_one_real ) @ one_one_real ) ) ).

% tanh_real_bounds
thf(fact_9994_DERIV__isconst3,axiom,
    ! [A: real,B: real,X2: real,Y2: real,F: real > real] :
      ( ( ord_less_real @ A @ B )
     => ( ( member_real @ X2 @ ( set_or1633881224788618240n_real @ A @ B ) )
       => ( ( member_real @ Y2 @ ( set_or1633881224788618240n_real @ A @ B ) )
         => ( ! [X4: real] :
                ( ( member_real @ X4 @ ( set_or1633881224788618240n_real @ A @ B ) )
               => ( has_fi5821293074295781190e_real @ F @ zero_zero_real @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) ) )
           => ( ( F @ X2 )
              = ( F @ Y2 ) ) ) ) ) ) ).

% DERIV_isconst3
thf(fact_9995_DERIV__series_H,axiom,
    ! [F: real > nat > real,F6: real > nat > real,X0: real,A: real,B: real,L5: nat > real] :
      ( ! [N3: nat] :
          ( has_fi5821293074295781190e_real
          @ ^ [X: real] : ( F @ X @ N3 )
          @ ( F6 @ X0 @ N3 )
          @ ( topolo2177554685111907308n_real @ X0 @ top_top_set_real ) )
     => ( ! [X4: real] :
            ( ( member_real @ X4 @ ( set_or1633881224788618240n_real @ A @ B ) )
           => ( summable_real @ ( F @ X4 ) ) )
       => ( ( member_real @ X0 @ ( set_or1633881224788618240n_real @ A @ B ) )
         => ( ( summable_real @ ( F6 @ X0 ) )
           => ( ( summable_real @ L5 )
             => ( ! [N3: nat,X4: real,Y3: real] :
                    ( ( member_real @ X4 @ ( set_or1633881224788618240n_real @ A @ B ) )
                   => ( ( member_real @ Y3 @ ( set_or1633881224788618240n_real @ A @ B ) )
                     => ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ ( F @ X4 @ N3 ) @ ( F @ Y3 @ N3 ) ) ) @ ( times_times_real @ ( L5 @ N3 ) @ ( abs_abs_real @ ( minus_minus_real @ X4 @ Y3 ) ) ) ) ) )
               => ( has_fi5821293074295781190e_real
                  @ ^ [X: real] : ( suminf_real @ ( F @ X ) )
                  @ ( suminf_real @ ( F6 @ X0 ) )
                  @ ( topolo2177554685111907308n_real @ X0 @ top_top_set_real ) ) ) ) ) ) ) ) ).

% DERIV_series'
thf(fact_9996_card__greaterThanLessThan,axiom,
    ! [L: nat,U: nat] :
      ( ( finite_card_nat @ ( set_or5834768355832116004an_nat @ L @ U ) )
      = ( minus_minus_nat @ U @ ( suc @ L ) ) ) ).

% card_greaterThanLessThan
thf(fact_9997_card__greaterThanLessThan__int,axiom,
    ! [L: int,U: int] :
      ( ( finite_card_int @ ( set_or5832277885323065728an_int @ L @ U ) )
      = ( nat2 @ ( minus_minus_int @ U @ ( plus_plus_int @ L @ one_one_int ) ) ) ) ).

% card_greaterThanLessThan_int
thf(fact_9998_atLeastSucLessThan__greaterThanLessThan,axiom,
    ! [L: nat,U: nat] :
      ( ( set_or4665077453230672383an_nat @ ( suc @ L ) @ U )
      = ( set_or5834768355832116004an_nat @ L @ U ) ) ).

% atLeastSucLessThan_greaterThanLessThan
thf(fact_9999_isCont__Lb__Ub,axiom,
    ! [A: real,B: real,F: real > real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ! [X4: real] :
            ( ( ( ord_less_eq_real @ A @ X4 )
              & ( ord_less_eq_real @ X4 @ B ) )
           => ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) @ F ) )
       => ? [L6: real,M9: real] :
            ( ! [X3: real] :
                ( ( ( ord_less_eq_real @ A @ X3 )
                  & ( ord_less_eq_real @ X3 @ B ) )
               => ( ( ord_less_eq_real @ L6 @ ( F @ X3 ) )
                  & ( ord_less_eq_real @ ( F @ X3 ) @ M9 ) ) )
            & ! [Y4: real] :
                ( ( ( ord_less_eq_real @ L6 @ Y4 )
                  & ( ord_less_eq_real @ Y4 @ M9 ) )
               => ? [X4: real] :
                    ( ( ord_less_eq_real @ A @ X4 )
                    & ( ord_less_eq_real @ X4 @ B )
                    & ( ( F @ X4 )
                      = Y4 ) ) ) ) ) ) ).

% isCont_Lb_Ub
thf(fact_10000_LIM__fun__gt__zero,axiom,
    ! [F: real > real,L: real,C: real] :
      ( ( filterlim_real_real @ F @ ( topolo2815343760600316023s_real @ L ) @ ( topolo2177554685111907308n_real @ C @ top_top_set_real ) )
     => ( ( ord_less_real @ zero_zero_real @ L )
       => ? [R3: real] :
            ( ( ord_less_real @ zero_zero_real @ R3 )
            & ! [X3: real] :
                ( ( ( X3 != C )
                  & ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ C @ X3 ) ) @ R3 ) )
               => ( ord_less_real @ zero_zero_real @ ( F @ X3 ) ) ) ) ) ) ).

% LIM_fun_gt_zero
thf(fact_10001_LIM__fun__not__zero,axiom,
    ! [F: real > real,L: real,C: real] :
      ( ( filterlim_real_real @ F @ ( topolo2815343760600316023s_real @ L ) @ ( topolo2177554685111907308n_real @ C @ top_top_set_real ) )
     => ( ( L != zero_zero_real )
       => ? [R3: real] :
            ( ( ord_less_real @ zero_zero_real @ R3 )
            & ! [X3: real] :
                ( ( ( X3 != C )
                  & ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ C @ X3 ) ) @ R3 ) )
               => ( ( F @ X3 )
                 != zero_zero_real ) ) ) ) ) ).

% LIM_fun_not_zero
thf(fact_10002_LIM__fun__less__zero,axiom,
    ! [F: real > real,L: real,C: real] :
      ( ( filterlim_real_real @ F @ ( topolo2815343760600316023s_real @ L ) @ ( topolo2177554685111907308n_real @ C @ top_top_set_real ) )
     => ( ( ord_less_real @ L @ zero_zero_real )
       => ? [R3: real] :
            ( ( ord_less_real @ zero_zero_real @ R3 )
            & ! [X3: real] :
                ( ( ( X3 != C )
                  & ( ord_less_real @ ( abs_abs_real @ ( minus_minus_real @ C @ X3 ) ) @ R3 ) )
               => ( ord_less_real @ ( F @ X3 ) @ zero_zero_real ) ) ) ) ) ).

% LIM_fun_less_zero
thf(fact_10003_isCont__real__sqrt,axiom,
    ! [X2: real] : ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) @ sqrt ) ).

% isCont_real_sqrt
thf(fact_10004_isCont__real__root,axiom,
    ! [X2: real,N: nat] : ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) @ ( root @ N ) ) ).

% isCont_real_root
thf(fact_10005_atLeastPlusOneLessThan__greaterThanLessThan__int,axiom,
    ! [L: int,U: int] :
      ( ( set_or4662586982721622107an_int @ ( plus_plus_int @ L @ one_one_int ) @ U )
      = ( set_or5832277885323065728an_int @ L @ U ) ) ).

% atLeastPlusOneLessThan_greaterThanLessThan_int
thf(fact_10006_isCont__inverse__function2,axiom,
    ! [A: real,X2: real,B: real,G: real > real,F: real > real] :
      ( ( ord_less_real @ A @ X2 )
     => ( ( ord_less_real @ X2 @ B )
       => ( ! [Z3: real] :
              ( ( ord_less_eq_real @ A @ Z3 )
             => ( ( ord_less_eq_real @ Z3 @ B )
               => ( ( G @ ( F @ Z3 ) )
                  = Z3 ) ) )
         => ( ! [Z3: real] :
                ( ( ord_less_eq_real @ A @ Z3 )
               => ( ( ord_less_eq_real @ Z3 @ B )
                 => ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ Z3 @ top_top_set_real ) @ F ) ) )
           => ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ ( F @ X2 ) @ top_top_set_real ) @ G ) ) ) ) ) ).

% isCont_inverse_function2
thf(fact_10007_isCont__arcosh,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ one_one_real @ X2 )
     => ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) @ arcosh_real ) ) ).

% isCont_arcosh
thf(fact_10008_LIM__cos__div__sin,axiom,
    ( filterlim_real_real
    @ ^ [X: real] : ( divide_divide_real @ ( cos_real @ X ) @ ( sin_real @ X ) )
    @ ( topolo2815343760600316023s_real @ zero_zero_real )
    @ ( topolo2177554685111907308n_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ top_top_set_real ) ) ).

% LIM_cos_div_sin
thf(fact_10009_DERIV__inverse__function,axiom,
    ! [F: real > real,D3: real,G: real > real,X2: real,A: real,B: real] :
      ( ( has_fi5821293074295781190e_real @ F @ D3 @ ( topolo2177554685111907308n_real @ ( G @ X2 ) @ top_top_set_real ) )
     => ( ( D3 != zero_zero_real )
       => ( ( ord_less_real @ A @ X2 )
         => ( ( ord_less_real @ X2 @ B )
           => ( ! [Y3: real] :
                  ( ( ord_less_real @ A @ Y3 )
                 => ( ( ord_less_real @ Y3 @ B )
                   => ( ( F @ ( G @ Y3 ) )
                      = Y3 ) ) )
             => ( ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) @ G )
               => ( has_fi5821293074295781190e_real @ G @ ( inverse_inverse_real @ D3 ) @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) ) ) ) ) ) ) ) ).

% DERIV_inverse_function
thf(fact_10010_isCont__arccos,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ X2 )
     => ( ( ord_less_real @ X2 @ one_one_real )
       => ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) @ arccos ) ) ) ).

% isCont_arccos
thf(fact_10011_isCont__arcsin,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ X2 )
     => ( ( ord_less_real @ X2 @ one_one_real )
       => ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) @ arcsin ) ) ) ).

% isCont_arcsin
thf(fact_10012_LIM__less__bound,axiom,
    ! [B: real,X2: real,F: real > real] :
      ( ( ord_less_real @ B @ X2 )
     => ( ! [X4: real] :
            ( ( member_real @ X4 @ ( set_or1633881224788618240n_real @ B @ X2 ) )
           => ( ord_less_eq_real @ zero_zero_real @ ( F @ X4 ) ) )
       => ( ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) @ F )
         => ( ord_less_eq_real @ zero_zero_real @ ( F @ X2 ) ) ) ) ) ).

% LIM_less_bound
thf(fact_10013_isCont__artanh,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ X2 )
     => ( ( ord_less_real @ X2 @ one_one_real )
       => ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) @ artanh_real ) ) ) ).

% isCont_artanh
thf(fact_10014_isCont__inverse__function,axiom,
    ! [D: real,X2: real,G: real > real,F: real > real] :
      ( ( ord_less_real @ zero_zero_real @ D )
     => ( ! [Z3: real] :
            ( ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ Z3 @ X2 ) ) @ D )
           => ( ( G @ ( F @ Z3 ) )
              = Z3 ) )
       => ( ! [Z3: real] :
              ( ( ord_less_eq_real @ ( abs_abs_real @ ( minus_minus_real @ Z3 @ X2 ) ) @ D )
             => ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ Z3 @ top_top_set_real ) @ F ) )
         => ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ ( F @ X2 ) @ top_top_set_real ) @ G ) ) ) ) ).

% isCont_inverse_function
thf(fact_10015_GMVT_H,axiom,
    ! [A: real,B: real,F: real > real,G: real > real,G2: real > real,F6: real > real] :
      ( ( ord_less_real @ A @ B )
     => ( ! [Z3: real] :
            ( ( ord_less_eq_real @ A @ Z3 )
           => ( ( ord_less_eq_real @ Z3 @ B )
             => ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ Z3 @ top_top_set_real ) @ F ) ) )
       => ( ! [Z3: real] :
              ( ( ord_less_eq_real @ A @ Z3 )
             => ( ( ord_less_eq_real @ Z3 @ B )
               => ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ Z3 @ top_top_set_real ) @ G ) ) )
         => ( ! [Z3: real] :
                ( ( ord_less_real @ A @ Z3 )
               => ( ( ord_less_real @ Z3 @ B )
                 => ( has_fi5821293074295781190e_real @ G @ ( G2 @ Z3 ) @ ( topolo2177554685111907308n_real @ Z3 @ top_top_set_real ) ) ) )
           => ( ! [Z3: real] :
                  ( ( ord_less_real @ A @ Z3 )
                 => ( ( ord_less_real @ Z3 @ B )
                   => ( has_fi5821293074295781190e_real @ F @ ( F6 @ Z3 ) @ ( topolo2177554685111907308n_real @ Z3 @ top_top_set_real ) ) ) )
             => ? [C5: real] :
                  ( ( ord_less_real @ A @ C5 )
                  & ( ord_less_real @ C5 @ B )
                  & ( ( times_times_real @ ( minus_minus_real @ ( F @ B ) @ ( F @ A ) ) @ ( G2 @ C5 ) )
                    = ( times_times_real @ ( minus_minus_real @ ( G @ B ) @ ( G @ A ) ) @ ( F6 @ C5 ) ) ) ) ) ) ) ) ) ).

% GMVT'
thf(fact_10016_summable__Leibniz_I2_J,axiom,
    ! [A: nat > real] :
      ( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat )
     => ( ( topolo6980174941875973593q_real @ A )
       => ( ( ord_less_real @ zero_zero_real @ ( A @ zero_zero_nat ) )
         => ! [N7: nat] :
              ( member_real
              @ ( suminf_real
                @ ^ [I4: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I4 ) @ ( A @ I4 ) ) )
              @ ( set_or1222579329274155063t_real
                @ ( groups6591440286371151544t_real
                  @ ^ [I4: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I4 ) @ ( A @ I4 ) )
                  @ ( set_ord_lessThan_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N7 ) ) )
                @ ( groups6591440286371151544t_real
                  @ ^ [I4: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I4 ) @ ( A @ I4 ) )
                  @ ( set_ord_lessThan_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N7 ) @ one_one_nat ) ) ) ) ) ) ) ) ).

% summable_Leibniz(2)
thf(fact_10017_summable__Leibniz_I3_J,axiom,
    ! [A: nat > real] :
      ( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat )
     => ( ( topolo6980174941875973593q_real @ A )
       => ( ( ord_less_real @ ( A @ zero_zero_nat ) @ zero_zero_real )
         => ! [N7: nat] :
              ( member_real
              @ ( suminf_real
                @ ^ [I4: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I4 ) @ ( A @ I4 ) ) )
              @ ( set_or1222579329274155063t_real
                @ ( groups6591440286371151544t_real
                  @ ^ [I4: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I4 ) @ ( A @ I4 ) )
                  @ ( set_ord_lessThan_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N7 ) @ one_one_nat ) ) )
                @ ( groups6591440286371151544t_real
                  @ ^ [I4: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I4 ) @ ( A @ I4 ) )
                  @ ( set_ord_lessThan_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N7 ) ) ) ) ) ) ) ) ).

% summable_Leibniz(3)
thf(fact_10018_filterlim__Suc,axiom,
    filterlim_nat_nat @ suc @ at_top_nat @ at_top_nat ).

% filterlim_Suc
thf(fact_10019_mult__nat__left__at__top,axiom,
    ! [C: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ C )
     => ( filterlim_nat_nat @ ( times_times_nat @ C ) @ at_top_nat @ at_top_nat ) ) ).

% mult_nat_left_at_top
thf(fact_10020_mult__nat__right__at__top,axiom,
    ! [C: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ C )
     => ( filterlim_nat_nat
        @ ^ [X: nat] : ( times_times_nat @ X @ C )
        @ at_top_nat
        @ at_top_nat ) ) ).

% mult_nat_right_at_top
thf(fact_10021_monoseq__convergent,axiom,
    ! [X7: nat > real,B3: real] :
      ( ( topolo6980174941875973593q_real @ X7 )
     => ( ! [I3: nat] : ( ord_less_eq_real @ ( abs_abs_real @ ( X7 @ I3 ) ) @ B3 )
       => ~ ! [L6: real] :
              ~ ( filterlim_nat_real @ X7 @ ( topolo2815343760600316023s_real @ L6 ) @ at_top_nat ) ) ) ).

% monoseq_convergent
thf(fact_10022_LIMSEQ__root,axiom,
    ( filterlim_nat_real
    @ ^ [N2: nat] : ( root @ N2 @ ( semiri5074537144036343181t_real @ N2 ) )
    @ ( topolo2815343760600316023s_real @ one_one_real )
    @ at_top_nat ) ).

% LIMSEQ_root
thf(fact_10023_nested__sequence__unique,axiom,
    ! [F: nat > real,G: nat > real] :
      ( ! [N3: nat] : ( ord_less_eq_real @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
     => ( ! [N3: nat] : ( ord_less_eq_real @ ( G @ ( suc @ N3 ) ) @ ( G @ N3 ) )
       => ( ! [N3: nat] : ( ord_less_eq_real @ ( F @ N3 ) @ ( G @ N3 ) )
         => ( ( filterlim_nat_real
              @ ^ [N2: nat] : ( minus_minus_real @ ( F @ N2 ) @ ( G @ N2 ) )
              @ ( topolo2815343760600316023s_real @ zero_zero_real )
              @ at_top_nat )
           => ? [L4: real] :
                ( ! [N7: nat] : ( ord_less_eq_real @ ( F @ N7 ) @ L4 )
                & ( filterlim_nat_real @ F @ ( topolo2815343760600316023s_real @ L4 ) @ at_top_nat )
                & ! [N7: nat] : ( ord_less_eq_real @ L4 @ ( G @ N7 ) )
                & ( filterlim_nat_real @ G @ ( topolo2815343760600316023s_real @ L4 ) @ at_top_nat ) ) ) ) ) ) ).

% nested_sequence_unique
thf(fact_10024_LIMSEQ__inverse__zero,axiom,
    ! [X7: nat > real] :
      ( ! [R3: real] :
        ? [N8: nat] :
        ! [N3: nat] :
          ( ( ord_less_eq_nat @ N8 @ N3 )
         => ( ord_less_real @ R3 @ ( X7 @ N3 ) ) )
     => ( filterlim_nat_real
        @ ^ [N2: nat] : ( inverse_inverse_real @ ( X7 @ N2 ) )
        @ ( topolo2815343760600316023s_real @ zero_zero_real )
        @ at_top_nat ) ) ).

% LIMSEQ_inverse_zero
thf(fact_10025_lim__inverse__n_H,axiom,
    ( filterlim_nat_real
    @ ^ [N2: nat] : ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ N2 ) )
    @ ( topolo2815343760600316023s_real @ zero_zero_real )
    @ at_top_nat ) ).

% lim_inverse_n'
thf(fact_10026_LIMSEQ__root__const,axiom,
    ! [C: real] :
      ( ( ord_less_real @ zero_zero_real @ C )
     => ( filterlim_nat_real
        @ ^ [N2: nat] : ( root @ N2 @ C )
        @ ( topolo2815343760600316023s_real @ one_one_real )
        @ at_top_nat ) ) ).

% LIMSEQ_root_const
thf(fact_10027_LIMSEQ__inverse__real__of__nat,axiom,
    ( filterlim_nat_real
    @ ^ [N2: nat] : ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ ( suc @ N2 ) ) )
    @ ( topolo2815343760600316023s_real @ zero_zero_real )
    @ at_top_nat ) ).

% LIMSEQ_inverse_real_of_nat
thf(fact_10028_LIMSEQ__inverse__real__of__nat__add,axiom,
    ! [R2: real] :
      ( filterlim_nat_real
      @ ^ [N2: nat] : ( plus_plus_real @ R2 @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ ( suc @ N2 ) ) ) )
      @ ( topolo2815343760600316023s_real @ R2 )
      @ at_top_nat ) ).

% LIMSEQ_inverse_real_of_nat_add
thf(fact_10029_increasing__LIMSEQ,axiom,
    ! [F: nat > real,L: real] :
      ( ! [N3: nat] : ( ord_less_eq_real @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
     => ( ! [N3: nat] : ( ord_less_eq_real @ ( F @ N3 ) @ L )
       => ( ! [E2: real] :
              ( ( ord_less_real @ zero_zero_real @ E2 )
             => ? [N7: nat] : ( ord_less_eq_real @ L @ ( plus_plus_real @ ( F @ N7 ) @ E2 ) ) )
         => ( filterlim_nat_real @ F @ ( topolo2815343760600316023s_real @ L ) @ at_top_nat ) ) ) ) ).

% increasing_LIMSEQ
thf(fact_10030_LIMSEQ__realpow__zero,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ( ord_less_real @ X2 @ one_one_real )
       => ( filterlim_nat_real @ ( power_power_real @ X2 ) @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat ) ) ) ).

% LIMSEQ_realpow_zero
thf(fact_10031_LIMSEQ__divide__realpow__zero,axiom,
    ! [X2: real,A: real] :
      ( ( ord_less_real @ one_one_real @ X2 )
     => ( filterlim_nat_real
        @ ^ [N2: nat] : ( divide_divide_real @ A @ ( power_power_real @ X2 @ N2 ) )
        @ ( topolo2815343760600316023s_real @ zero_zero_real )
        @ at_top_nat ) ) ).

% LIMSEQ_divide_realpow_zero
thf(fact_10032_LIMSEQ__abs__realpow__zero,axiom,
    ! [C: real] :
      ( ( ord_less_real @ ( abs_abs_real @ C ) @ one_one_real )
     => ( filterlim_nat_real @ ( power_power_real @ ( abs_abs_real @ C ) ) @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat ) ) ).

% LIMSEQ_abs_realpow_zero
thf(fact_10033_LIMSEQ__abs__realpow__zero2,axiom,
    ! [C: real] :
      ( ( ord_less_real @ ( abs_abs_real @ C ) @ one_one_real )
     => ( filterlim_nat_real @ ( power_power_real @ C ) @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat ) ) ).

% LIMSEQ_abs_realpow_zero2
thf(fact_10034_LIMSEQ__inverse__realpow__zero,axiom,
    ! [X2: real] :
      ( ( ord_less_real @ one_one_real @ X2 )
     => ( filterlim_nat_real
        @ ^ [N2: nat] : ( inverse_inverse_real @ ( power_power_real @ X2 @ N2 ) )
        @ ( topolo2815343760600316023s_real @ zero_zero_real )
        @ at_top_nat ) ) ).

% LIMSEQ_inverse_realpow_zero
thf(fact_10035_LIMSEQ__inverse__real__of__nat__add__minus,axiom,
    ! [R2: real] :
      ( filterlim_nat_real
      @ ^ [N2: nat] : ( plus_plus_real @ R2 @ ( uminus_uminus_real @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ ( suc @ N2 ) ) ) ) )
      @ ( topolo2815343760600316023s_real @ R2 )
      @ at_top_nat ) ).

% LIMSEQ_inverse_real_of_nat_add_minus
thf(fact_10036_tendsto__exp__limit__sequentially,axiom,
    ! [X2: real] :
      ( filterlim_nat_real
      @ ^ [N2: nat] : ( power_power_real @ ( plus_plus_real @ one_one_real @ ( divide_divide_real @ X2 @ ( semiri5074537144036343181t_real @ N2 ) ) ) @ N2 )
      @ ( topolo2815343760600316023s_real @ ( exp_real @ X2 ) )
      @ at_top_nat ) ).

% tendsto_exp_limit_sequentially
thf(fact_10037_LIMSEQ__inverse__real__of__nat__add__minus__mult,axiom,
    ! [R2: real] :
      ( filterlim_nat_real
      @ ^ [N2: nat] : ( times_times_real @ R2 @ ( plus_plus_real @ one_one_real @ ( uminus_uminus_real @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ ( suc @ N2 ) ) ) ) ) )
      @ ( topolo2815343760600316023s_real @ R2 )
      @ at_top_nat ) ).

% LIMSEQ_inverse_real_of_nat_add_minus_mult
thf(fact_10038_summable__Leibniz_I1_J,axiom,
    ! [A: nat > real] :
      ( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat )
     => ( ( topolo6980174941875973593q_real @ A )
       => ( summable_real
          @ ^ [N2: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N2 ) @ ( A @ N2 ) ) ) ) ) ).

% summable_Leibniz(1)
thf(fact_10039_summable,axiom,
    ! [A: nat > real] :
      ( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat )
     => ( ! [N3: nat] : ( ord_less_eq_real @ zero_zero_real @ ( A @ N3 ) )
       => ( ! [N3: nat] : ( ord_less_eq_real @ ( A @ ( suc @ N3 ) ) @ ( A @ N3 ) )
         => ( summable_real
            @ ^ [N2: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N2 ) @ ( A @ N2 ) ) ) ) ) ) ).

% summable
thf(fact_10040_cos__diff__limit__1,axiom,
    ! [Theta: nat > real,Theta2: real] :
      ( ( filterlim_nat_real
        @ ^ [J3: nat] : ( cos_real @ ( minus_minus_real @ ( Theta @ J3 ) @ Theta2 ) )
        @ ( topolo2815343760600316023s_real @ one_one_real )
        @ at_top_nat )
     => ~ ! [K3: nat > int] :
            ~ ( filterlim_nat_real
              @ ^ [J3: nat] : ( minus_minus_real @ ( Theta @ J3 ) @ ( times_times_real @ ( ring_1_of_int_real @ ( K3 @ J3 ) ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) ) )
              @ ( topolo2815343760600316023s_real @ Theta2 )
              @ at_top_nat ) ) ).

% cos_diff_limit_1
thf(fact_10041_cos__limit__1,axiom,
    ! [Theta: nat > real] :
      ( ( filterlim_nat_real
        @ ^ [J3: nat] : ( cos_real @ ( Theta @ J3 ) )
        @ ( topolo2815343760600316023s_real @ one_one_real )
        @ at_top_nat )
     => ? [K3: nat > int] :
          ( filterlim_nat_real
          @ ^ [J3: nat] : ( minus_minus_real @ ( Theta @ J3 ) @ ( times_times_real @ ( ring_1_of_int_real @ ( K3 @ J3 ) ) @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ pi ) ) )
          @ ( topolo2815343760600316023s_real @ zero_zero_real )
          @ at_top_nat ) ) ).

% cos_limit_1
thf(fact_10042_summable__Leibniz_I4_J,axiom,
    ! [A: nat > real] :
      ( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat )
     => ( ( topolo6980174941875973593q_real @ A )
       => ( filterlim_nat_real
          @ ^ [N2: nat] :
              ( groups6591440286371151544t_real
              @ ^ [I4: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I4 ) @ ( A @ I4 ) )
              @ ( set_ord_lessThan_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) )
          @ ( topolo2815343760600316023s_real
            @ ( suminf_real
              @ ^ [I4: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I4 ) @ ( A @ I4 ) ) ) )
          @ at_top_nat ) ) ) ).

% summable_Leibniz(4)
thf(fact_10043_zeroseq__arctan__series,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ X2 ) @ one_one_real )
     => ( filterlim_nat_real
        @ ^ [N2: nat] : ( times_times_real @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ ( plus_plus_nat @ ( times_times_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) @ ( power_power_real @ X2 @ ( plus_plus_nat @ ( times_times_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) )
        @ ( topolo2815343760600316023s_real @ zero_zero_real )
        @ at_top_nat ) ) ).

% zeroseq_arctan_series
thf(fact_10044_summable__Leibniz_H_I3_J,axiom,
    ! [A: nat > real] :
      ( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat )
     => ( ! [N3: nat] : ( ord_less_eq_real @ zero_zero_real @ ( A @ N3 ) )
       => ( ! [N3: nat] : ( ord_less_eq_real @ ( A @ ( suc @ N3 ) ) @ ( A @ N3 ) )
         => ( filterlim_nat_real
            @ ^ [N2: nat] :
                ( groups6591440286371151544t_real
                @ ^ [I4: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I4 ) @ ( A @ I4 ) )
                @ ( set_ord_lessThan_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) )
            @ ( topolo2815343760600316023s_real
              @ ( suminf_real
                @ ^ [I4: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I4 ) @ ( A @ I4 ) ) ) )
            @ at_top_nat ) ) ) ) ).

% summable_Leibniz'(3)
thf(fact_10045_summable__Leibniz_H_I2_J,axiom,
    ! [A: nat > real,N: nat] :
      ( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat )
     => ( ! [N3: nat] : ( ord_less_eq_real @ zero_zero_real @ ( A @ N3 ) )
       => ( ! [N3: nat] : ( ord_less_eq_real @ ( A @ ( suc @ N3 ) ) @ ( A @ N3 ) )
         => ( ord_less_eq_real
            @ ( groups6591440286371151544t_real
              @ ^ [I4: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I4 ) @ ( A @ I4 ) )
              @ ( set_ord_lessThan_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
            @ ( suminf_real
              @ ^ [I4: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I4 ) @ ( A @ I4 ) ) ) ) ) ) ) ).

% summable_Leibniz'(2)
thf(fact_10046_sums__alternating__upper__lower,axiom,
    ! [A: nat > real] :
      ( ! [N3: nat] : ( ord_less_eq_real @ ( A @ ( suc @ N3 ) ) @ ( A @ N3 ) )
     => ( ! [N3: nat] : ( ord_less_eq_real @ zero_zero_real @ ( A @ N3 ) )
       => ( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat )
         => ? [L4: real] :
              ( ! [N7: nat] :
                  ( ord_less_eq_real
                  @ ( groups6591440286371151544t_real
                    @ ^ [I4: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I4 ) @ ( A @ I4 ) )
                    @ ( set_ord_lessThan_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N7 ) ) )
                  @ L4 )
              & ( filterlim_nat_real
                @ ^ [N2: nat] :
                    ( groups6591440286371151544t_real
                    @ ^ [I4: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I4 ) @ ( A @ I4 ) )
                    @ ( set_ord_lessThan_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) )
                @ ( topolo2815343760600316023s_real @ L4 )
                @ at_top_nat )
              & ! [N7: nat] :
                  ( ord_less_eq_real @ L4
                  @ ( groups6591440286371151544t_real
                    @ ^ [I4: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I4 ) @ ( A @ I4 ) )
                    @ ( set_ord_lessThan_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N7 ) @ one_one_nat ) ) ) )
              & ( filterlim_nat_real
                @ ^ [N2: nat] :
                    ( groups6591440286371151544t_real
                    @ ^ [I4: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I4 ) @ ( A @ I4 ) )
                    @ ( set_ord_lessThan_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) @ one_one_nat ) ) )
                @ ( topolo2815343760600316023s_real @ L4 )
                @ at_top_nat ) ) ) ) ) ).

% sums_alternating_upper_lower
thf(fact_10047_summable__Leibniz_I5_J,axiom,
    ! [A: nat > real] :
      ( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat )
     => ( ( topolo6980174941875973593q_real @ A )
       => ( filterlim_nat_real
          @ ^ [N2: nat] :
              ( groups6591440286371151544t_real
              @ ^ [I4: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I4 ) @ ( A @ I4 ) )
              @ ( set_ord_lessThan_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) @ one_one_nat ) ) )
          @ ( topolo2815343760600316023s_real
            @ ( suminf_real
              @ ^ [I4: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I4 ) @ ( A @ I4 ) ) ) )
          @ at_top_nat ) ) ) ).

% summable_Leibniz(5)
thf(fact_10048_summable__Leibniz_H_I5_J,axiom,
    ! [A: nat > real] :
      ( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat )
     => ( ! [N3: nat] : ( ord_less_eq_real @ zero_zero_real @ ( A @ N3 ) )
       => ( ! [N3: nat] : ( ord_less_eq_real @ ( A @ ( suc @ N3 ) ) @ ( A @ N3 ) )
         => ( filterlim_nat_real
            @ ^ [N2: nat] :
                ( groups6591440286371151544t_real
                @ ^ [I4: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I4 ) @ ( A @ I4 ) )
                @ ( set_ord_lessThan_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) @ one_one_nat ) ) )
            @ ( topolo2815343760600316023s_real
              @ ( suminf_real
                @ ^ [I4: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I4 ) @ ( A @ I4 ) ) ) )
            @ at_top_nat ) ) ) ) ).

% summable_Leibniz'(5)
thf(fact_10049_summable__Leibniz_H_I4_J,axiom,
    ! [A: nat > real,N: nat] :
      ( ( filterlim_nat_real @ A @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ at_top_nat )
     => ( ! [N3: nat] : ( ord_less_eq_real @ zero_zero_real @ ( A @ N3 ) )
       => ( ! [N3: nat] : ( ord_less_eq_real @ ( A @ ( suc @ N3 ) ) @ ( A @ N3 ) )
         => ( ord_less_eq_real
            @ ( suminf_real
              @ ^ [I4: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I4 ) @ ( A @ I4 ) ) )
            @ ( groups6591440286371151544t_real
              @ ^ [I4: nat] : ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ I4 ) @ ( A @ I4 ) )
              @ ( set_ord_lessThan_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ one_one_nat ) ) ) ) ) ) ) ).

% summable_Leibniz'(4)
thf(fact_10050_real__bounded__linear,axiom,
    ( real_V5970128139526366754l_real
    = ( ^ [F3: real > real] :
        ? [C6: real] :
          ( F3
          = ( ^ [X: real] : ( times_times_real @ X @ C6 ) ) ) ) ) ).

% real_bounded_linear
thf(fact_10051_tendsto__exp__limit__at__right,axiom,
    ! [X2: real] :
      ( filterlim_real_real
      @ ^ [Y: real] : ( powr_real @ ( plus_plus_real @ one_one_real @ ( times_times_real @ X2 @ Y ) ) @ ( divide_divide_real @ one_one_real @ Y ) )
      @ ( topolo2815343760600316023s_real @ ( exp_real @ X2 ) )
      @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) ) ).

% tendsto_exp_limit_at_right
thf(fact_10052_tendsto__arcosh__at__left__1,axiom,
    filterlim_real_real @ arcosh_real @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ ( topolo2177554685111907308n_real @ one_one_real @ ( set_or5849166863359141190n_real @ one_one_real ) ) ).

% tendsto_arcosh_at_left_1
thf(fact_10053_filterlim__tan__at__right,axiom,
    filterlim_real_real @ tan_real @ at_bot_real @ ( topolo2177554685111907308n_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ ( set_or5849166863359141190n_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ).

% filterlim_tan_at_right
thf(fact_10054_tendsto__arctan__at__bot,axiom,
    filterlim_real_real @ arctan @ ( topolo2815343760600316023s_real @ ( uminus_uminus_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) @ at_bot_real ).

% tendsto_arctan_at_bot
thf(fact_10055_greaterThan__0,axiom,
    ( ( set_or1210151606488870762an_nat @ zero_zero_nat )
    = ( image_nat_nat @ suc @ top_top_set_nat ) ) ).

% greaterThan_0
thf(fact_10056_greaterThan__Suc,axiom,
    ! [K: nat] :
      ( ( set_or1210151606488870762an_nat @ ( suc @ K ) )
      = ( minus_minus_set_nat @ ( set_or1210151606488870762an_nat @ K ) @ ( insert_nat @ ( suc @ K ) @ bot_bot_set_nat ) ) ) ).

% greaterThan_Suc
thf(fact_10057_filterlim__inverse__at__bot__neg,axiom,
    filterlim_real_real @ inverse_inverse_real @ at_bot_real @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5984915006950818249n_real @ zero_zero_real ) ) ).

% filterlim_inverse_at_bot_neg
thf(fact_10058_tanh__real__at__bot,axiom,
    filterlim_real_real @ tanh_real @ ( topolo2815343760600316023s_real @ ( uminus_uminus_real @ one_one_real ) ) @ at_bot_real ).

% tanh_real_at_bot
thf(fact_10059_INT__greaterThan__UNIV,axiom,
    ( ( comple7806235888213564991et_nat @ ( image_nat_set_nat @ set_or1210151606488870762an_nat @ top_top_set_nat ) )
    = bot_bot_set_nat ) ).

% INT_greaterThan_UNIV
thf(fact_10060_ln__at__0,axiom,
    filterlim_real_real @ ln_ln_real @ at_bot_real @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) ).

% ln_at_0
thf(fact_10061_artanh__real__at__right__1,axiom,
    filterlim_real_real @ artanh_real @ at_bot_real @ ( topolo2177554685111907308n_real @ ( uminus_uminus_real @ one_one_real ) @ ( set_or5849166863359141190n_real @ ( uminus_uminus_real @ one_one_real ) ) ) ).

% artanh_real_at_right_1
thf(fact_10062_DERIV__pos__imp__increasing__at__bot,axiom,
    ! [B: real,F: real > real,Flim: real] :
      ( ! [X4: real] :
          ( ( ord_less_eq_real @ X4 @ B )
         => ? [Y4: real] :
              ( ( has_fi5821293074295781190e_real @ F @ Y4 @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) )
              & ( ord_less_real @ zero_zero_real @ Y4 ) ) )
     => ( ( filterlim_real_real @ F @ ( topolo2815343760600316023s_real @ Flim ) @ at_bot_real )
       => ( ord_less_real @ Flim @ ( F @ B ) ) ) ) ).

% DERIV_pos_imp_increasing_at_bot
thf(fact_10063_filterlim__pow__at__bot__odd,axiom,
    ! [N: nat,F: real > real,F2: filter_real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( filterlim_real_real @ F @ at_bot_real @ F2 )
       => ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
         => ( filterlim_real_real
            @ ^ [X: real] : ( power_power_real @ ( F @ X ) @ N )
            @ at_bot_real
            @ F2 ) ) ) ) ).

% filterlim_pow_at_bot_odd
thf(fact_10064_filterlim__pow__at__bot__even,axiom,
    ! [N: nat,F: real > real,F2: filter_real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( filterlim_real_real @ F @ at_bot_real @ F2 )
       => ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
         => ( filterlim_real_real
            @ ^ [X: real] : ( power_power_real @ ( F @ X ) @ N )
            @ at_top_real
            @ F2 ) ) ) ) ).

% filterlim_pow_at_bot_even
thf(fact_10065_filterlim__tan__at__left,axiom,
    filterlim_real_real @ tan_real @ at_top_real @ ( topolo2177554685111907308n_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( set_or5984915006950818249n_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).

% filterlim_tan_at_left
thf(fact_10066_exp__at__top,axiom,
    filterlim_real_real @ exp_real @ at_top_real @ at_top_real ).

% exp_at_top
thf(fact_10067_ln__at__top,axiom,
    filterlim_real_real @ ln_ln_real @ at_top_real @ at_top_real ).

% ln_at_top
thf(fact_10068_sqrt__at__top,axiom,
    filterlim_real_real @ sqrt @ at_top_real @ at_top_real ).

% sqrt_at_top
thf(fact_10069_filterlim__real__sequentially,axiom,
    filterlim_nat_real @ semiri5074537144036343181t_real @ at_top_real @ at_top_nat ).

% filterlim_real_sequentially
thf(fact_10070_filterlim__uminus__at__bot__at__top,axiom,
    filterlim_real_real @ uminus_uminus_real @ at_bot_real @ at_top_real ).

% filterlim_uminus_at_bot_at_top
thf(fact_10071_filterlim__uminus__at__top__at__bot,axiom,
    filterlim_real_real @ uminus_uminus_real @ at_top_real @ at_bot_real ).

% filterlim_uminus_at_top_at_bot
thf(fact_10072_tanh__real__at__top,axiom,
    filterlim_real_real @ tanh_real @ ( topolo2815343760600316023s_real @ one_one_real ) @ at_top_real ).

% tanh_real_at_top
thf(fact_10073_ln__x__over__x__tendsto__0,axiom,
    ( filterlim_real_real
    @ ^ [X: real] : ( divide_divide_real @ ( ln_ln_real @ X ) @ X )
    @ ( topolo2815343760600316023s_real @ zero_zero_real )
    @ at_top_real ) ).

% ln_x_over_x_tendsto_0
thf(fact_10074_artanh__real__at__left__1,axiom,
    filterlim_real_real @ artanh_real @ at_top_real @ ( topolo2177554685111907308n_real @ one_one_real @ ( set_or5984915006950818249n_real @ one_one_real ) ) ).

% artanh_real_at_left_1
thf(fact_10075_filterlim__inverse__at__right__top,axiom,
    filterlim_real_real @ inverse_inverse_real @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) @ at_top_real ).

% filterlim_inverse_at_right_top
thf(fact_10076_filterlim__inverse__at__top__right,axiom,
    filterlim_real_real @ inverse_inverse_real @ at_top_real @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) ).

% filterlim_inverse_at_top_right
thf(fact_10077_tendsto__power__div__exp__0,axiom,
    ! [K: nat] :
      ( filterlim_real_real
      @ ^ [X: real] : ( divide_divide_real @ ( power_power_real @ X @ K ) @ ( exp_real @ X ) )
      @ ( topolo2815343760600316023s_real @ zero_zero_real )
      @ at_top_real ) ).

% tendsto_power_div_exp_0
thf(fact_10078_tendsto__exp__limit__at__top,axiom,
    ! [X2: real] :
      ( filterlim_real_real
      @ ^ [Y: real] : ( powr_real @ ( plus_plus_real @ one_one_real @ ( divide_divide_real @ X2 @ Y ) ) @ Y )
      @ ( topolo2815343760600316023s_real @ ( exp_real @ X2 ) )
      @ at_top_real ) ).

% tendsto_exp_limit_at_top
thf(fact_10079_DERIV__neg__imp__decreasing__at__top,axiom,
    ! [B: real,F: real > real,Flim: real] :
      ( ! [X4: real] :
          ( ( ord_less_eq_real @ B @ X4 )
         => ? [Y4: real] :
              ( ( has_fi5821293074295781190e_real @ F @ Y4 @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) )
              & ( ord_less_real @ Y4 @ zero_zero_real ) ) )
     => ( ( filterlim_real_real @ F @ ( topolo2815343760600316023s_real @ Flim ) @ at_top_real )
       => ( ord_less_real @ Flim @ ( F @ B ) ) ) ) ).

% DERIV_neg_imp_decreasing_at_top
thf(fact_10080_tendsto__arctan__at__top,axiom,
    filterlim_real_real @ arctan @ ( topolo2815343760600316023s_real @ ( divide_divide_real @ pi @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) @ at_top_real ).

% tendsto_arctan_at_top
thf(fact_10081_lhopital__left__at__top,axiom,
    ! [G: real > real,X2: real,G2: real > real,F: real > real,F6: real > real,Y2: real] :
      ( ( filterlim_real_real @ G @ at_top_real @ ( topolo2177554685111907308n_real @ X2 @ ( set_or5984915006950818249n_real @ X2 ) ) )
     => ( ( eventually_real
          @ ^ [X: real] :
              ( ( G2 @ X )
             != zero_zero_real )
          @ ( topolo2177554685111907308n_real @ X2 @ ( set_or5984915006950818249n_real @ X2 ) ) )
       => ( ( eventually_real
            @ ^ [X: real] : ( has_fi5821293074295781190e_real @ F @ ( F6 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
            @ ( topolo2177554685111907308n_real @ X2 @ ( set_or5984915006950818249n_real @ X2 ) ) )
         => ( ( eventually_real
              @ ^ [X: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
              @ ( topolo2177554685111907308n_real @ X2 @ ( set_or5984915006950818249n_real @ X2 ) ) )
           => ( ( filterlim_real_real
                @ ^ [X: real] : ( divide_divide_real @ ( F6 @ X ) @ ( G2 @ X ) )
                @ ( topolo2815343760600316023s_real @ Y2 )
                @ ( topolo2177554685111907308n_real @ X2 @ ( set_or5984915006950818249n_real @ X2 ) ) )
             => ( filterlim_real_real
                @ ^ [X: real] : ( divide_divide_real @ ( F @ X ) @ ( G @ X ) )
                @ ( topolo2815343760600316023s_real @ Y2 )
                @ ( topolo2177554685111907308n_real @ X2 @ ( set_or5984915006950818249n_real @ X2 ) ) ) ) ) ) ) ) ).

% lhopital_left_at_top
thf(fact_10082_lhopital__right__0__at__top,axiom,
    ! [G: real > real,G2: real > real,F: real > real,F6: real > real,X2: real] :
      ( ( filterlim_real_real @ G @ at_top_real @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
     => ( ( eventually_real
          @ ^ [X: real] :
              ( ( G2 @ X )
             != zero_zero_real )
          @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
       => ( ( eventually_real
            @ ^ [X: real] : ( has_fi5821293074295781190e_real @ F @ ( F6 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
            @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
         => ( ( eventually_real
              @ ^ [X: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
              @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
           => ( ( filterlim_real_real
                @ ^ [X: real] : ( divide_divide_real @ ( F6 @ X ) @ ( G2 @ X ) )
                @ ( topolo2815343760600316023s_real @ X2 )
                @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
             => ( filterlim_real_real
                @ ^ [X: real] : ( divide_divide_real @ ( F @ X ) @ ( G @ X ) )
                @ ( topolo2815343760600316023s_real @ X2 )
                @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) ) ) ) ) ) ) ).

% lhopital_right_0_at_top
thf(fact_10083_eventually__at__right__to__0,axiom,
    ! [P: real > $o,A: real] :
      ( ( eventually_real @ P @ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) )
      = ( eventually_real
        @ ^ [X: real] : ( P @ ( plus_plus_real @ X @ A ) )
        @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) ) ) ).

% eventually_at_right_to_0
thf(fact_10084_eventually__at__left__to__right,axiom,
    ! [P: real > $o,A: real] :
      ( ( eventually_real @ P @ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) )
      = ( eventually_real
        @ ^ [X: real] : ( P @ ( uminus_uminus_real @ X ) )
        @ ( topolo2177554685111907308n_real @ ( uminus_uminus_real @ A ) @ ( set_or5849166863359141190n_real @ ( uminus_uminus_real @ A ) ) ) ) ) ).

% eventually_at_left_to_right
thf(fact_10085_eventually__at__right__real,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ( eventually_real
        @ ^ [X: real] : ( member_real @ X @ ( set_or1633881224788618240n_real @ A @ B ) )
        @ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) ) ) ).

% eventually_at_right_real
thf(fact_10086_eventually__at__left__real,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_real @ B @ A )
     => ( eventually_real
        @ ^ [X: real] : ( member_real @ X @ ( set_or1633881224788618240n_real @ B @ A ) )
        @ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) ) ) ).

% eventually_at_left_real
thf(fact_10087_eventually__at__top__to__right,axiom,
    ! [P: real > $o] :
      ( ( eventually_real @ P @ at_top_real )
      = ( eventually_real
        @ ^ [X: real] : ( P @ ( inverse_inverse_real @ X ) )
        @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) ) ) ).

% eventually_at_top_to_right
thf(fact_10088_eventually__at__right__to__top,axiom,
    ! [P: real > $o] :
      ( ( eventually_real @ P @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
      = ( eventually_real
        @ ^ [X: real] : ( P @ ( inverse_inverse_real @ X ) )
        @ at_top_real ) ) ).

% eventually_at_right_to_top
thf(fact_10089_lhopital__at__top__at__top,axiom,
    ! [F: real > real,A: real,G: real > real,F6: real > real,G2: real > real] :
      ( ( filterlim_real_real @ F @ at_top_real @ ( topolo2177554685111907308n_real @ A @ top_top_set_real ) )
     => ( ( filterlim_real_real @ G @ at_top_real @ ( topolo2177554685111907308n_real @ A @ top_top_set_real ) )
       => ( ( eventually_real
            @ ^ [X: real] : ( has_fi5821293074295781190e_real @ F @ ( F6 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
            @ ( topolo2177554685111907308n_real @ A @ top_top_set_real ) )
         => ( ( eventually_real
              @ ^ [X: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
              @ ( topolo2177554685111907308n_real @ A @ top_top_set_real ) )
           => ( ( filterlim_real_real
                @ ^ [X: real] : ( divide_divide_real @ ( F6 @ X ) @ ( G2 @ X ) )
                @ at_top_real
                @ ( topolo2177554685111907308n_real @ A @ top_top_set_real ) )
             => ( filterlim_real_real
                @ ^ [X: real] : ( divide_divide_real @ ( F @ X ) @ ( G @ X ) )
                @ at_top_real
                @ ( topolo2177554685111907308n_real @ A @ top_top_set_real ) ) ) ) ) ) ) ).

% lhopital_at_top_at_top
thf(fact_10090_lhopital,axiom,
    ! [F: real > real,X2: real,G: real > real,G2: real > real,F6: real > real,F2: filter_real] :
      ( ( filterlim_real_real @ F @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) )
     => ( ( filterlim_real_real @ G @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) )
       => ( ( eventually_real
            @ ^ [X: real] :
                ( ( G @ X )
               != zero_zero_real )
            @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) )
         => ( ( eventually_real
              @ ^ [X: real] :
                  ( ( G2 @ X )
                 != zero_zero_real )
              @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) )
           => ( ( eventually_real
                @ ^ [X: real] : ( has_fi5821293074295781190e_real @ F @ ( F6 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
                @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) )
             => ( ( eventually_real
                  @ ^ [X: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
                  @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) )
               => ( ( filterlim_real_real
                    @ ^ [X: real] : ( divide_divide_real @ ( F6 @ X ) @ ( G2 @ X ) )
                    @ F2
                    @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) )
                 => ( filterlim_real_real
                    @ ^ [X: real] : ( divide_divide_real @ ( F @ X ) @ ( G @ X ) )
                    @ F2
                    @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) ) ) ) ) ) ) ) ) ).

% lhopital
thf(fact_10091_lhopital__right__at__top__at__top,axiom,
    ! [F: real > real,A: real,G: real > real,F6: real > real,G2: real > real] :
      ( ( filterlim_real_real @ F @ at_top_real @ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) )
     => ( ( filterlim_real_real @ G @ at_top_real @ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) )
       => ( ( eventually_real
            @ ^ [X: real] : ( has_fi5821293074295781190e_real @ F @ ( F6 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
            @ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) )
         => ( ( eventually_real
              @ ^ [X: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
              @ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) )
           => ( ( filterlim_real_real
                @ ^ [X: real] : ( divide_divide_real @ ( F6 @ X ) @ ( G2 @ X ) )
                @ at_top_real
                @ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) )
             => ( filterlim_real_real
                @ ^ [X: real] : ( divide_divide_real @ ( F @ X ) @ ( G @ X ) )
                @ at_top_real
                @ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) ) ) ) ) ) ) ).

% lhopital_right_at_top_at_top
thf(fact_10092_lhopital__at__top__at__bot,axiom,
    ! [F: real > real,A: real,G: real > real,F6: real > real,G2: real > real] :
      ( ( filterlim_real_real @ F @ at_top_real @ ( topolo2177554685111907308n_real @ A @ top_top_set_real ) )
     => ( ( filterlim_real_real @ G @ at_bot_real @ ( topolo2177554685111907308n_real @ A @ top_top_set_real ) )
       => ( ( eventually_real
            @ ^ [X: real] : ( has_fi5821293074295781190e_real @ F @ ( F6 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
            @ ( topolo2177554685111907308n_real @ A @ top_top_set_real ) )
         => ( ( eventually_real
              @ ^ [X: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
              @ ( topolo2177554685111907308n_real @ A @ top_top_set_real ) )
           => ( ( filterlim_real_real
                @ ^ [X: real] : ( divide_divide_real @ ( F6 @ X ) @ ( G2 @ X ) )
                @ at_bot_real
                @ ( topolo2177554685111907308n_real @ A @ top_top_set_real ) )
             => ( filterlim_real_real
                @ ^ [X: real] : ( divide_divide_real @ ( F @ X ) @ ( G @ X ) )
                @ at_bot_real
                @ ( topolo2177554685111907308n_real @ A @ top_top_set_real ) ) ) ) ) ) ) ).

% lhopital_at_top_at_bot
thf(fact_10093_lhopital__left__at__top__at__top,axiom,
    ! [F: real > real,A: real,G: real > real,F6: real > real,G2: real > real] :
      ( ( filterlim_real_real @ F @ at_top_real @ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) )
     => ( ( filterlim_real_real @ G @ at_top_real @ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) )
       => ( ( eventually_real
            @ ^ [X: real] : ( has_fi5821293074295781190e_real @ F @ ( F6 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
            @ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) )
         => ( ( eventually_real
              @ ^ [X: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
              @ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) )
           => ( ( filterlim_real_real
                @ ^ [X: real] : ( divide_divide_real @ ( F6 @ X ) @ ( G2 @ X ) )
                @ at_top_real
                @ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) )
             => ( filterlim_real_real
                @ ^ [X: real] : ( divide_divide_real @ ( F @ X ) @ ( G @ X ) )
                @ at_top_real
                @ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) ) ) ) ) ) ) ).

% lhopital_left_at_top_at_top
thf(fact_10094_lhospital__at__top__at__top,axiom,
    ! [G: real > real,G2: real > real,F: real > real,F6: real > real,X2: real] :
      ( ( filterlim_real_real @ G @ at_top_real @ at_top_real )
     => ( ( eventually_real
          @ ^ [X: real] :
              ( ( G2 @ X )
             != zero_zero_real )
          @ at_top_real )
       => ( ( eventually_real
            @ ^ [X: real] : ( has_fi5821293074295781190e_real @ F @ ( F6 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
            @ at_top_real )
         => ( ( eventually_real
              @ ^ [X: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
              @ at_top_real )
           => ( ( filterlim_real_real
                @ ^ [X: real] : ( divide_divide_real @ ( F6 @ X ) @ ( G2 @ X ) )
                @ ( topolo2815343760600316023s_real @ X2 )
                @ at_top_real )
             => ( filterlim_real_real
                @ ^ [X: real] : ( divide_divide_real @ ( F @ X ) @ ( G @ X ) )
                @ ( topolo2815343760600316023s_real @ X2 )
                @ at_top_real ) ) ) ) ) ) ).

% lhospital_at_top_at_top
thf(fact_10095_lhopital__at__top,axiom,
    ! [G: real > real,X2: real,G2: real > real,F: real > real,F6: real > real,Y2: real] :
      ( ( filterlim_real_real @ G @ at_top_real @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) )
     => ( ( eventually_real
          @ ^ [X: real] :
              ( ( G2 @ X )
             != zero_zero_real )
          @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) )
       => ( ( eventually_real
            @ ^ [X: real] : ( has_fi5821293074295781190e_real @ F @ ( F6 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
            @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) )
         => ( ( eventually_real
              @ ^ [X: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
              @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) )
           => ( ( filterlim_real_real
                @ ^ [X: real] : ( divide_divide_real @ ( F6 @ X ) @ ( G2 @ X ) )
                @ ( topolo2815343760600316023s_real @ Y2 )
                @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) )
             => ( filterlim_real_real
                @ ^ [X: real] : ( divide_divide_real @ ( F @ X ) @ ( G @ X ) )
                @ ( topolo2815343760600316023s_real @ Y2 )
                @ ( topolo2177554685111907308n_real @ X2 @ top_top_set_real ) ) ) ) ) ) ) ).

% lhopital_at_top
thf(fact_10096_lhopital__right__0,axiom,
    ! [F0: real > real,G0: real > real,G2: real > real,F6: real > real,F2: filter_real] :
      ( ( filterlim_real_real @ F0 @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
     => ( ( filterlim_real_real @ G0 @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
       => ( ( eventually_real
            @ ^ [X: real] :
                ( ( G0 @ X )
               != zero_zero_real )
            @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
         => ( ( eventually_real
              @ ^ [X: real] :
                  ( ( G2 @ X )
                 != zero_zero_real )
              @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
           => ( ( eventually_real
                @ ^ [X: real] : ( has_fi5821293074295781190e_real @ F0 @ ( F6 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
                @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
             => ( ( eventually_real
                  @ ^ [X: real] : ( has_fi5821293074295781190e_real @ G0 @ ( G2 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
                  @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
               => ( ( filterlim_real_real
                    @ ^ [X: real] : ( divide_divide_real @ ( F6 @ X ) @ ( G2 @ X ) )
                    @ F2
                    @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) )
                 => ( filterlim_real_real
                    @ ^ [X: real] : ( divide_divide_real @ ( F0 @ X ) @ ( G0 @ X ) )
                    @ F2
                    @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) ) ) ) ) ) ) ) ) ).

% lhopital_right_0
thf(fact_10097_lhopital__right,axiom,
    ! [F: real > real,X2: real,G: real > real,G2: real > real,F6: real > real,F2: filter_real] :
      ( ( filterlim_real_real @ F @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ ( topolo2177554685111907308n_real @ X2 @ ( set_or5849166863359141190n_real @ X2 ) ) )
     => ( ( filterlim_real_real @ G @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ ( topolo2177554685111907308n_real @ X2 @ ( set_or5849166863359141190n_real @ X2 ) ) )
       => ( ( eventually_real
            @ ^ [X: real] :
                ( ( G @ X )
               != zero_zero_real )
            @ ( topolo2177554685111907308n_real @ X2 @ ( set_or5849166863359141190n_real @ X2 ) ) )
         => ( ( eventually_real
              @ ^ [X: real] :
                  ( ( G2 @ X )
                 != zero_zero_real )
              @ ( topolo2177554685111907308n_real @ X2 @ ( set_or5849166863359141190n_real @ X2 ) ) )
           => ( ( eventually_real
                @ ^ [X: real] : ( has_fi5821293074295781190e_real @ F @ ( F6 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
                @ ( topolo2177554685111907308n_real @ X2 @ ( set_or5849166863359141190n_real @ X2 ) ) )
             => ( ( eventually_real
                  @ ^ [X: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
                  @ ( topolo2177554685111907308n_real @ X2 @ ( set_or5849166863359141190n_real @ X2 ) ) )
               => ( ( filterlim_real_real
                    @ ^ [X: real] : ( divide_divide_real @ ( F6 @ X ) @ ( G2 @ X ) )
                    @ F2
                    @ ( topolo2177554685111907308n_real @ X2 @ ( set_or5849166863359141190n_real @ X2 ) ) )
                 => ( filterlim_real_real
                    @ ^ [X: real] : ( divide_divide_real @ ( F @ X ) @ ( G @ X ) )
                    @ F2
                    @ ( topolo2177554685111907308n_real @ X2 @ ( set_or5849166863359141190n_real @ X2 ) ) ) ) ) ) ) ) ) ) ).

% lhopital_right
thf(fact_10098_lhopital__left,axiom,
    ! [F: real > real,X2: real,G: real > real,G2: real > real,F6: real > real,F2: filter_real] :
      ( ( filterlim_real_real @ F @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ ( topolo2177554685111907308n_real @ X2 @ ( set_or5984915006950818249n_real @ X2 ) ) )
     => ( ( filterlim_real_real @ G @ ( topolo2815343760600316023s_real @ zero_zero_real ) @ ( topolo2177554685111907308n_real @ X2 @ ( set_or5984915006950818249n_real @ X2 ) ) )
       => ( ( eventually_real
            @ ^ [X: real] :
                ( ( G @ X )
               != zero_zero_real )
            @ ( topolo2177554685111907308n_real @ X2 @ ( set_or5984915006950818249n_real @ X2 ) ) )
         => ( ( eventually_real
              @ ^ [X: real] :
                  ( ( G2 @ X )
                 != zero_zero_real )
              @ ( topolo2177554685111907308n_real @ X2 @ ( set_or5984915006950818249n_real @ X2 ) ) )
           => ( ( eventually_real
                @ ^ [X: real] : ( has_fi5821293074295781190e_real @ F @ ( F6 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
                @ ( topolo2177554685111907308n_real @ X2 @ ( set_or5984915006950818249n_real @ X2 ) ) )
             => ( ( eventually_real
                  @ ^ [X: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
                  @ ( topolo2177554685111907308n_real @ X2 @ ( set_or5984915006950818249n_real @ X2 ) ) )
               => ( ( filterlim_real_real
                    @ ^ [X: real] : ( divide_divide_real @ ( F6 @ X ) @ ( G2 @ X ) )
                    @ F2
                    @ ( topolo2177554685111907308n_real @ X2 @ ( set_or5984915006950818249n_real @ X2 ) ) )
                 => ( filterlim_real_real
                    @ ^ [X: real] : ( divide_divide_real @ ( F @ X ) @ ( G @ X ) )
                    @ F2
                    @ ( topolo2177554685111907308n_real @ X2 @ ( set_or5984915006950818249n_real @ X2 ) ) ) ) ) ) ) ) ) ) ).

% lhopital_left
thf(fact_10099_lhopital__right__at__top__at__bot,axiom,
    ! [F: real > real,A: real,G: real > real,F6: real > real,G2: real > real] :
      ( ( filterlim_real_real @ F @ at_top_real @ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) )
     => ( ( filterlim_real_real @ G @ at_bot_real @ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) )
       => ( ( eventually_real
            @ ^ [X: real] : ( has_fi5821293074295781190e_real @ F @ ( F6 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
            @ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) )
         => ( ( eventually_real
              @ ^ [X: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
              @ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) )
           => ( ( filterlim_real_real
                @ ^ [X: real] : ( divide_divide_real @ ( F6 @ X ) @ ( G2 @ X ) )
                @ at_bot_real
                @ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) )
             => ( filterlim_real_real
                @ ^ [X: real] : ( divide_divide_real @ ( F @ X ) @ ( G @ X ) )
                @ at_bot_real
                @ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) ) ) ) ) ) ) ).

% lhopital_right_at_top_at_bot
thf(fact_10100_lhopital__left__at__top__at__bot,axiom,
    ! [F: real > real,A: real,G: real > real,F6: real > real,G2: real > real] :
      ( ( filterlim_real_real @ F @ at_top_real @ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) )
     => ( ( filterlim_real_real @ G @ at_bot_real @ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) )
       => ( ( eventually_real
            @ ^ [X: real] : ( has_fi5821293074295781190e_real @ F @ ( F6 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
            @ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) )
         => ( ( eventually_real
              @ ^ [X: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
              @ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) )
           => ( ( filterlim_real_real
                @ ^ [X: real] : ( divide_divide_real @ ( F6 @ X ) @ ( G2 @ X ) )
                @ at_bot_real
                @ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) )
             => ( filterlim_real_real
                @ ^ [X: real] : ( divide_divide_real @ ( F @ X ) @ ( G @ X ) )
                @ at_bot_real
                @ ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) ) ) ) ) ) ) ) ).

% lhopital_left_at_top_at_bot
thf(fact_10101_lhopital__right__at__top,axiom,
    ! [G: real > real,X2: real,G2: real > real,F: real > real,F6: real > real,Y2: real] :
      ( ( filterlim_real_real @ G @ at_top_real @ ( topolo2177554685111907308n_real @ X2 @ ( set_or5849166863359141190n_real @ X2 ) ) )
     => ( ( eventually_real
          @ ^ [X: real] :
              ( ( G2 @ X )
             != zero_zero_real )
          @ ( topolo2177554685111907308n_real @ X2 @ ( set_or5849166863359141190n_real @ X2 ) ) )
       => ( ( eventually_real
            @ ^ [X: real] : ( has_fi5821293074295781190e_real @ F @ ( F6 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
            @ ( topolo2177554685111907308n_real @ X2 @ ( set_or5849166863359141190n_real @ X2 ) ) )
         => ( ( eventually_real
              @ ^ [X: real] : ( has_fi5821293074295781190e_real @ G @ ( G2 @ X ) @ ( topolo2177554685111907308n_real @ X @ top_top_set_real ) )
              @ ( topolo2177554685111907308n_real @ X2 @ ( set_or5849166863359141190n_real @ X2 ) ) )
           => ( ( filterlim_real_real
                @ ^ [X: real] : ( divide_divide_real @ ( F6 @ X ) @ ( G2 @ X ) )
                @ ( topolo2815343760600316023s_real @ Y2 )
                @ ( topolo2177554685111907308n_real @ X2 @ ( set_or5849166863359141190n_real @ X2 ) ) )
             => ( filterlim_real_real
                @ ^ [X: real] : ( divide_divide_real @ ( F @ X ) @ ( G @ X ) )
                @ ( topolo2815343760600316023s_real @ Y2 )
                @ ( topolo2177554685111907308n_real @ X2 @ ( set_or5849166863359141190n_real @ X2 ) ) ) ) ) ) ) ) ).

% lhopital_right_at_top
thf(fact_10102_eventually__sequentially__Suc,axiom,
    ! [P: nat > $o] :
      ( ( eventually_nat
        @ ^ [I4: nat] : ( P @ ( suc @ I4 ) )
        @ at_top_nat )
      = ( eventually_nat @ P @ at_top_nat ) ) ).

% eventually_sequentially_Suc
thf(fact_10103_eventually__sequentially__seg,axiom,
    ! [P: nat > $o,K: nat] :
      ( ( eventually_nat
        @ ^ [N2: nat] : ( P @ ( plus_plus_nat @ N2 @ K ) )
        @ at_top_nat )
      = ( eventually_nat @ P @ at_top_nat ) ) ).

% eventually_sequentially_seg
thf(fact_10104_le__sequentially,axiom,
    ! [F2: filter_nat] :
      ( ( ord_le2510731241096832064er_nat @ F2 @ at_top_nat )
      = ( ! [N6: nat] : ( eventually_nat @ ( ord_less_eq_nat @ N6 ) @ F2 ) ) ) ).

% le_sequentially
thf(fact_10105_eventually__sequentially,axiom,
    ! [P: nat > $o] :
      ( ( eventually_nat @ P @ at_top_nat )
      = ( ? [N6: nat] :
          ! [N2: nat] :
            ( ( ord_less_eq_nat @ N6 @ N2 )
           => ( P @ N2 ) ) ) ) ).

% eventually_sequentially
thf(fact_10106_eventually__sequentiallyI,axiom,
    ! [C: nat,P: nat > $o] :
      ( ! [X4: nat] :
          ( ( ord_less_eq_nat @ C @ X4 )
         => ( P @ X4 ) )
     => ( eventually_nat @ P @ at_top_nat ) ) ).

% eventually_sequentiallyI
thf(fact_10107_eventually__False__sequentially,axiom,
    ~ ( eventually_nat
      @ ^ [N2: nat] : $false
      @ at_top_nat ) ).

% eventually_False_sequentially
thf(fact_10108_sequentially__offset,axiom,
    ! [P: nat > $o,K: nat] :
      ( ( eventually_nat @ P @ at_top_nat )
     => ( eventually_nat
        @ ^ [I4: nat] : ( P @ ( plus_plus_nat @ I4 @ K ) )
        @ at_top_nat ) ) ).

% sequentially_offset
thf(fact_10109_at__bot__le__at__infinity,axiom,
    ord_le4104064031414453916r_real @ at_bot_real @ at_infinity_real ).

% at_bot_le_at_infinity
thf(fact_10110_at__top__le__at__infinity,axiom,
    ord_le4104064031414453916r_real @ at_top_real @ at_infinity_real ).

% at_top_le_at_infinity
thf(fact_10111_Bseq__eq__bounded,axiom,
    ! [F: nat > real,A: real,B: real] :
      ( ( ord_less_eq_set_real @ ( image_nat_real @ F @ top_top_set_nat ) @ ( set_or1222579329274155063t_real @ A @ B ) )
     => ( bfun_nat_real @ F @ at_top_nat ) ) ).

% Bseq_eq_bounded
thf(fact_10112_Bseq__realpow,axiom,
    ! [X2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ( ord_less_eq_real @ X2 @ one_one_real )
       => ( bfun_nat_real @ ( power_power_real @ X2 ) @ at_top_nat ) ) ) ).

% Bseq_realpow
thf(fact_10113_decseq__bounded,axiom,
    ! [X7: nat > real,B3: real] :
      ( ( order_9091379641038594480t_real @ X7 )
     => ( ! [I3: nat] : ( ord_less_eq_real @ B3 @ ( X7 @ I3 ) )
       => ( bfun_nat_real @ X7 @ at_top_nat ) ) ) ).

% decseq_bounded
thf(fact_10114_decseq__convergent,axiom,
    ! [X7: nat > real,B3: real] :
      ( ( order_9091379641038594480t_real @ X7 )
     => ( ! [I3: nat] : ( ord_less_eq_real @ B3 @ ( X7 @ I3 ) )
       => ~ ! [L6: real] :
              ( ( filterlim_nat_real @ X7 @ ( topolo2815343760600316023s_real @ L6 ) @ at_top_nat )
             => ~ ! [I2: nat] : ( ord_less_eq_real @ L6 @ ( X7 @ I2 ) ) ) ) ) ).

% decseq_convergent
thf(fact_10115_GreatestI__nat,axiom,
    ! [P: nat > $o,K: nat,B: nat] :
      ( ( P @ K )
     => ( ! [Y3: nat] :
            ( ( P @ Y3 )
           => ( ord_less_eq_nat @ Y3 @ B ) )
       => ( P @ ( order_Greatest_nat @ P ) ) ) ) ).

% GreatestI_nat
thf(fact_10116_Greatest__le__nat,axiom,
    ! [P: nat > $o,K: nat,B: nat] :
      ( ( P @ K )
     => ( ! [Y3: nat] :
            ( ( P @ Y3 )
           => ( ord_less_eq_nat @ Y3 @ B ) )
       => ( ord_less_eq_nat @ K @ ( order_Greatest_nat @ P ) ) ) ) ).

% Greatest_le_nat
thf(fact_10117_GreatestI__ex__nat,axiom,
    ! [P: nat > $o,B: nat] :
      ( ? [X_1: nat] : ( P @ X_1 )
     => ( ! [Y3: nat] :
            ( ( P @ Y3 )
           => ( ord_less_eq_nat @ Y3 @ B ) )
       => ( P @ ( order_Greatest_nat @ P ) ) ) ) ).

% GreatestI_ex_nat
thf(fact_10118_atLeastSucAtMost__greaterThanAtMost,axiom,
    ! [L: nat,U: nat] :
      ( ( set_or1269000886237332187st_nat @ ( suc @ L ) @ U )
      = ( set_or6659071591806873216st_nat @ L @ U ) ) ).

% atLeastSucAtMost_greaterThanAtMost
thf(fact_10119_atLeast__Suc__greaterThan,axiom,
    ! [K: nat] :
      ( ( set_ord_atLeast_nat @ ( suc @ K ) )
      = ( set_or1210151606488870762an_nat @ K ) ) ).

% atLeast_Suc_greaterThan
thf(fact_10120_atLeastPlusOneAtMost__greaterThanAtMost__int,axiom,
    ! [L: int,U: int] :
      ( ( set_or1266510415728281911st_int @ ( plus_plus_int @ L @ one_one_int ) @ U )
      = ( set_or6656581121297822940st_int @ L @ U ) ) ).

% atLeastPlusOneAtMost_greaterThanAtMost_int
thf(fact_10121_UN__atLeast__UNIV,axiom,
    ( ( comple7399068483239264473et_nat @ ( image_nat_set_nat @ set_ord_atLeast_nat @ top_top_set_nat ) )
    = top_top_set_nat ) ).

% UN_atLeast_UNIV
thf(fact_10122_atLeast__Suc,axiom,
    ! [K: nat] :
      ( ( set_ord_atLeast_nat @ ( suc @ K ) )
      = ( minus_minus_set_nat @ ( set_ord_atLeast_nat @ K ) @ ( insert_nat @ K @ bot_bot_set_nat ) ) ) ).

% atLeast_Suc
thf(fact_10123_GMVT,axiom,
    ! [A: real,B: real,F: real > real,G: real > real] :
      ( ( ord_less_real @ A @ B )
     => ( ! [X4: real] :
            ( ( ( ord_less_eq_real @ A @ X4 )
              & ( ord_less_eq_real @ X4 @ B ) )
           => ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) @ F ) )
       => ( ! [X4: real] :
              ( ( ( ord_less_real @ A @ X4 )
                & ( ord_less_real @ X4 @ B ) )
             => ( differ6690327859849518006l_real @ F @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) ) )
         => ( ! [X4: real] :
                ( ( ( ord_less_eq_real @ A @ X4 )
                  & ( ord_less_eq_real @ X4 @ B ) )
               => ( topolo4422821103128117721l_real @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) @ G ) )
           => ( ! [X4: real] :
                  ( ( ( ord_less_real @ A @ X4 )
                    & ( ord_less_real @ X4 @ B ) )
                 => ( differ6690327859849518006l_real @ G @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) ) )
             => ? [G_c: real,F_c: real,C5: real] :
                  ( ( has_fi5821293074295781190e_real @ G @ G_c @ ( topolo2177554685111907308n_real @ C5 @ top_top_set_real ) )
                  & ( has_fi5821293074295781190e_real @ F @ F_c @ ( topolo2177554685111907308n_real @ C5 @ top_top_set_real ) )
                  & ( ord_less_real @ A @ C5 )
                  & ( ord_less_real @ C5 @ B )
                  & ( ( times_times_real @ ( minus_minus_real @ ( F @ B ) @ ( F @ A ) ) @ G_c )
                    = ( times_times_real @ ( minus_minus_real @ ( G @ B ) @ ( G @ A ) ) @ F_c ) ) ) ) ) ) ) ) ).

% GMVT
thf(fact_10124_MVT,axiom,
    ! [A: real,B: real,F: real > real] :
      ( ( ord_less_real @ A @ B )
     => ( ( topolo5044208981011980120l_real @ ( set_or1222579329274155063t_real @ A @ B ) @ F )
       => ( ! [X4: real] :
              ( ( ord_less_real @ A @ X4 )
             => ( ( ord_less_real @ X4 @ B )
               => ( differ6690327859849518006l_real @ F @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) ) ) )
         => ? [L4: real,Z3: real] :
              ( ( ord_less_real @ A @ Z3 )
              & ( ord_less_real @ Z3 @ B )
              & ( has_fi5821293074295781190e_real @ F @ L4 @ ( topolo2177554685111907308n_real @ Z3 @ top_top_set_real ) )
              & ( ( minus_minus_real @ ( F @ B ) @ ( F @ A ) )
                = ( times_times_real @ ( minus_minus_real @ B @ A ) @ L4 ) ) ) ) ) ) ).

% MVT
thf(fact_10125_continuous__on__arsinh_H,axiom,
    ! [A2: set_real,F: real > real] :
      ( ( topolo5044208981011980120l_real @ A2 @ F )
     => ( topolo5044208981011980120l_real @ A2
        @ ^ [X: real] : ( arsinh_real @ ( F @ X ) ) ) ) ).

% continuous_on_arsinh'
thf(fact_10126_continuous__on__arcosh_H,axiom,
    ! [A2: set_real,F: real > real] :
      ( ( topolo5044208981011980120l_real @ A2 @ F )
     => ( ! [X4: real] :
            ( ( member_real @ X4 @ A2 )
           => ( ord_less_eq_real @ one_one_real @ ( F @ X4 ) ) )
       => ( topolo5044208981011980120l_real @ A2
          @ ^ [X: real] : ( arcosh_real @ ( F @ X ) ) ) ) ) ).

% continuous_on_arcosh'
thf(fact_10127_continuous__image__closed__interval,axiom,
    ! [A: real,B: real,F: real > real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( topolo5044208981011980120l_real @ ( set_or1222579329274155063t_real @ A @ B ) @ F )
       => ? [C5: real,D4: real] :
            ( ( ( image_real_real @ F @ ( set_or1222579329274155063t_real @ A @ B ) )
              = ( set_or1222579329274155063t_real @ C5 @ D4 ) )
            & ( ord_less_eq_real @ C5 @ D4 ) ) ) ) ).

% continuous_image_closed_interval
thf(fact_10128_continuous__on__arcosh,axiom,
    ! [A2: set_real] :
      ( ( ord_less_eq_set_real @ A2 @ ( set_ord_atLeast_real @ one_one_real ) )
     => ( topolo5044208981011980120l_real @ A2 @ arcosh_real ) ) ).

% continuous_on_arcosh
thf(fact_10129_continuous__on__arccos_H,axiom,
    topolo5044208981011980120l_real @ ( set_or1222579329274155063t_real @ ( uminus_uminus_real @ one_one_real ) @ one_one_real ) @ arccos ).

% continuous_on_arccos'
thf(fact_10130_continuous__on__arcsin_H,axiom,
    topolo5044208981011980120l_real @ ( set_or1222579329274155063t_real @ ( uminus_uminus_real @ one_one_real ) @ one_one_real ) @ arcsin ).

% continuous_on_arcsin'
thf(fact_10131_continuous__on__artanh_H,axiom,
    ! [A2: set_real,F: real > real] :
      ( ( topolo5044208981011980120l_real @ A2 @ F )
     => ( ! [X4: real] :
            ( ( member_real @ X4 @ A2 )
           => ( member_real @ ( F @ X4 ) @ ( set_or1633881224788618240n_real @ ( uminus_uminus_real @ one_one_real ) @ one_one_real ) ) )
       => ( topolo5044208981011980120l_real @ A2
          @ ^ [X: real] : ( artanh_real @ ( F @ X ) ) ) ) ) ).

% continuous_on_artanh'
thf(fact_10132_Rolle__deriv,axiom,
    ! [A: real,B: real,F: real > real,F6: real > real > real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ( F @ A )
          = ( F @ B ) )
       => ( ( topolo5044208981011980120l_real @ ( set_or1222579329274155063t_real @ A @ B ) @ F )
         => ( ! [X4: real] :
                ( ( ord_less_real @ A @ X4 )
               => ( ( ord_less_real @ X4 @ B )
                 => ( has_de1759254742604945161l_real @ F @ ( F6 @ X4 ) @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) ) ) )
           => ? [Z3: real] :
                ( ( ord_less_real @ A @ Z3 )
                & ( ord_less_real @ Z3 @ B )
                & ( ( F6 @ Z3 )
                  = ( ^ [V4: real] : zero_zero_real ) ) ) ) ) ) ) ).

% Rolle_deriv
thf(fact_10133_mvt,axiom,
    ! [A: real,B: real,F: real > real,F6: real > real > real] :
      ( ( ord_less_real @ A @ B )
     => ( ( topolo5044208981011980120l_real @ ( set_or1222579329274155063t_real @ A @ B ) @ F )
       => ( ! [X4: real] :
              ( ( ord_less_real @ A @ X4 )
             => ( ( ord_less_real @ X4 @ B )
               => ( has_de1759254742604945161l_real @ F @ ( F6 @ X4 ) @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) ) ) )
         => ~ ! [Xi: real] :
                ( ( ord_less_real @ A @ Xi )
               => ( ( ord_less_real @ Xi @ B )
                 => ( ( minus_minus_real @ ( F @ B ) @ ( F @ A ) )
                   != ( F6 @ Xi @ ( minus_minus_real @ B @ A ) ) ) ) ) ) ) ) ).

% mvt
thf(fact_10134_DERIV__pos__imp__increasing__open,axiom,
    ! [A: real,B: real,F: real > real] :
      ( ( ord_less_real @ A @ B )
     => ( ! [X4: real] :
            ( ( ord_less_real @ A @ X4 )
           => ( ( ord_less_real @ X4 @ B )
             => ? [Y4: real] :
                  ( ( has_fi5821293074295781190e_real @ F @ Y4 @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) )
                  & ( ord_less_real @ zero_zero_real @ Y4 ) ) ) )
       => ( ( topolo5044208981011980120l_real @ ( set_or1222579329274155063t_real @ A @ B ) @ F )
         => ( ord_less_real @ ( F @ A ) @ ( F @ B ) ) ) ) ) ).

% DERIV_pos_imp_increasing_open
thf(fact_10135_DERIV__neg__imp__decreasing__open,axiom,
    ! [A: real,B: real,F: real > real] :
      ( ( ord_less_real @ A @ B )
     => ( ! [X4: real] :
            ( ( ord_less_real @ A @ X4 )
           => ( ( ord_less_real @ X4 @ B )
             => ? [Y4: real] :
                  ( ( has_fi5821293074295781190e_real @ F @ Y4 @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) )
                  & ( ord_less_real @ Y4 @ zero_zero_real ) ) ) )
       => ( ( topolo5044208981011980120l_real @ ( set_or1222579329274155063t_real @ A @ B ) @ F )
         => ( ord_less_real @ ( F @ B ) @ ( F @ A ) ) ) ) ) ).

% DERIV_neg_imp_decreasing_open
thf(fact_10136_DERIV__isconst__end,axiom,
    ! [A: real,B: real,F: real > real] :
      ( ( ord_less_real @ A @ B )
     => ( ( topolo5044208981011980120l_real @ ( set_or1222579329274155063t_real @ A @ B ) @ F )
       => ( ! [X4: real] :
              ( ( ord_less_real @ A @ X4 )
             => ( ( ord_less_real @ X4 @ B )
               => ( has_fi5821293074295781190e_real @ F @ zero_zero_real @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) ) ) )
         => ( ( F @ B )
            = ( F @ A ) ) ) ) ) ).

% DERIV_isconst_end
thf(fact_10137_continuous__on__artanh,axiom,
    ! [A2: set_real] :
      ( ( ord_less_eq_set_real @ A2 @ ( set_or1633881224788618240n_real @ ( uminus_uminus_real @ one_one_real ) @ one_one_real ) )
     => ( topolo5044208981011980120l_real @ A2 @ artanh_real ) ) ).

% continuous_on_artanh
thf(fact_10138_DERIV__isconst2,axiom,
    ! [A: real,B: real,F: real > real,X2: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( topolo5044208981011980120l_real @ ( set_or1222579329274155063t_real @ A @ B ) @ F )
       => ( ! [X4: real] :
              ( ( ord_less_real @ A @ X4 )
             => ( ( ord_less_real @ X4 @ B )
               => ( has_fi5821293074295781190e_real @ F @ zero_zero_real @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) ) ) )
         => ( ( ord_less_eq_real @ A @ X2 )
           => ( ( ord_less_eq_real @ X2 @ B )
             => ( ( F @ X2 )
                = ( F @ A ) ) ) ) ) ) ) ).

% DERIV_isconst2
thf(fact_10139_Rolle,axiom,
    ! [A: real,B: real,F: real > real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ( F @ A )
          = ( F @ B ) )
       => ( ( topolo5044208981011980120l_real @ ( set_or1222579329274155063t_real @ A @ B ) @ F )
         => ( ! [X4: real] :
                ( ( ord_less_real @ A @ X4 )
               => ( ( ord_less_real @ X4 @ B )
                 => ( differ6690327859849518006l_real @ F @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) ) ) )
           => ? [Z3: real] :
                ( ( ord_less_real @ A @ Z3 )
                & ( ord_less_real @ Z3 @ B )
                & ( has_fi5821293074295781190e_real @ F @ zero_zero_real @ ( topolo2177554685111907308n_real @ Z3 @ top_top_set_real ) ) ) ) ) ) ) ).

% Rolle
thf(fact_10140_uniformity__real__def,axiom,
    ( topolo1511823702728130853y_real
    = ( comple2936214249959783750l_real
      @ ( image_2178119161166701260l_real
        @ ^ [E3: real] :
            ( princi6114159922880469582l_real
            @ ( collec3799799289383736868l_real
              @ ( produc5414030515140494994real_o
                @ ^ [X: real,Y: real] : ( ord_less_real @ ( real_V975177566351809787t_real @ X @ Y ) @ E3 ) ) ) )
        @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) ) ) ).

% uniformity_real_def
thf(fact_10141_uniformity__complex__def,axiom,
    ( topolo896644834953643431omplex
    = ( comple8358262395181532106omplex
      @ ( image_5971271580939081552omplex
        @ ^ [E3: real] :
            ( princi3496590319149328850omplex
            @ ( collec8663557070575231912omplex
              @ ( produc6771430404735790350plex_o
                @ ^ [X: complex,Y: complex] : ( ord_less_real @ ( real_V3694042436643373181omplex @ X @ Y ) @ E3 ) ) ) )
        @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) ) ) ).

% uniformity_complex_def
thf(fact_10142_open__complex__def,axiom,
    ( topolo4110288021797289639omplex
    = ( ^ [U4: set_complex] :
        ! [X: complex] :
          ( ( member_complex @ X @ U4 )
         => ( eventu5826381225784669381omplex
            @ ( produc6771430404735790350plex_o
              @ ^ [X9: complex,Y: complex] :
                  ( ( X9 = X )
                 => ( member_complex @ Y @ U4 ) ) )
            @ topolo896644834953643431omplex ) ) ) ) ).

% open_complex_def
thf(fact_10143_open__real__def,axiom,
    ( topolo4860482606490270245n_real
    = ( ^ [U4: set_real] :
        ! [X: real] :
          ( ( member_real @ X @ U4 )
         => ( eventu3244425730907250241l_real
            @ ( produc5414030515140494994real_o
              @ ^ [X9: real,Y: real] :
                  ( ( X9 = X )
                 => ( member_real @ Y @ U4 ) ) )
            @ topolo1511823702728130853y_real ) ) ) ) ).

% open_real_def
thf(fact_10144_eventually__prod__sequentially,axiom,
    ! [P: product_prod_nat_nat > $o] :
      ( ( eventu1038000079068216329at_nat @ P @ ( prod_filter_nat_nat @ at_top_nat @ at_top_nat ) )
      = ( ? [N6: nat] :
          ! [M3: nat] :
            ( ( ord_less_eq_nat @ N6 @ M3 )
           => ! [N2: nat] :
                ( ( ord_less_eq_nat @ N6 @ N2 )
               => ( P @ ( product_Pair_nat_nat @ N2 @ M3 ) ) ) ) ) ) ).

% eventually_prod_sequentially
thf(fact_10145_incseq__bounded,axiom,
    ! [X7: nat > real,B3: real] :
      ( ( order_mono_nat_real @ X7 )
     => ( ! [I3: nat] : ( ord_less_eq_real @ ( X7 @ I3 ) @ B3 )
       => ( bfun_nat_real @ X7 @ at_top_nat ) ) ) ).

% incseq_bounded
thf(fact_10146_mono__Suc,axiom,
    order_mono_nat_nat @ suc ).

% mono_Suc
thf(fact_10147_mono__times__nat,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( order_mono_nat_nat @ ( times_times_nat @ N ) ) ) ).

% mono_times_nat
thf(fact_10148_incseq__convergent,axiom,
    ! [X7: nat > real,B3: real] :
      ( ( order_mono_nat_real @ X7 )
     => ( ! [I3: nat] : ( ord_less_eq_real @ ( X7 @ I3 ) @ B3 )
       => ~ ! [L6: real] :
              ( ( filterlim_nat_real @ X7 @ ( topolo2815343760600316023s_real @ L6 ) @ at_top_nat )
             => ~ ! [I2: nat] : ( ord_less_eq_real @ ( X7 @ I2 ) @ L6 ) ) ) ) ).

% incseq_convergent
thf(fact_10149_mono__ge2__power__minus__self,axiom,
    ! [K: nat] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K )
     => ( order_mono_nat_nat
        @ ^ [M3: nat] : ( minus_minus_nat @ ( power_power_nat @ K @ M3 ) @ M3 ) ) ) ).

% mono_ge2_power_minus_self
thf(fact_10150_tendsto__at__topI__sequentially__real,axiom,
    ! [F: real > real,Y2: real] :
      ( ( order_mono_real_real @ F )
     => ( ( filterlim_nat_real
          @ ^ [N2: nat] : ( F @ ( semiri5074537144036343181t_real @ N2 ) )
          @ ( topolo2815343760600316023s_real @ Y2 )
          @ at_top_nat )
       => ( filterlim_real_real @ F @ ( topolo2815343760600316023s_real @ Y2 ) @ at_top_real ) ) ) ).

% tendsto_at_topI_sequentially_real
thf(fact_10151_xor__minus__numerals_I2_J,axiom,
    ! [K: int,N: num] :
      ( ( bit_se6526347334894502574or_int @ K @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( bit_ri7919022796975470100ot_int @ ( bit_se6526347334894502574or_int @ K @ ( neg_numeral_sub_int @ N @ one ) ) ) ) ).

% xor_minus_numerals(2)
thf(fact_10152_xor__minus__numerals_I1_J,axiom,
    ! [N: num,K: int] :
      ( ( bit_se6526347334894502574or_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) @ K )
      = ( bit_ri7919022796975470100ot_int @ ( bit_se6526347334894502574or_int @ ( neg_numeral_sub_int @ N @ one ) @ K ) ) ) ).

% xor_minus_numerals(1)
thf(fact_10153_sub__BitM__One__eq,axiom,
    ! [N: num] :
      ( ( neg_numeral_sub_int @ ( bitM @ N ) @ one )
      = ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( neg_numeral_sub_int @ N @ one ) ) ) ).

% sub_BitM_One_eq
thf(fact_10154_nonneg__incseq__Bseq__subseq__iff,axiom,
    ! [F: nat > real,G: nat > nat] :
      ( ! [X4: nat] : ( ord_less_eq_real @ zero_zero_real @ ( F @ X4 ) )
     => ( ( order_mono_nat_real @ F )
       => ( ( order_5726023648592871131at_nat @ G )
         => ( ( bfun_nat_real
              @ ^ [X: nat] : ( F @ ( G @ X ) )
              @ at_top_nat )
            = ( bfun_nat_real @ F @ at_top_nat ) ) ) ) ) ).

% nonneg_incseq_Bseq_subseq_iff
thf(fact_10155_strict__mono__imp__increasing,axiom,
    ! [F: nat > nat,N: nat] :
      ( ( order_5726023648592871131at_nat @ F )
     => ( ord_less_eq_nat @ N @ ( F @ N ) ) ) ).

% strict_mono_imp_increasing
thf(fact_10156_eventually__subseq,axiom,
    ! [R2: nat > nat,P: nat > $o] :
      ( ( order_5726023648592871131at_nat @ R2 )
     => ( ( eventually_nat @ P @ at_top_nat )
       => ( eventually_nat
          @ ^ [N2: nat] : ( P @ ( R2 @ N2 ) )
          @ at_top_nat ) ) ) ).

% eventually_subseq
thf(fact_10157_filtermap__at__right__shift,axiom,
    ! [D: real,A: real] :
      ( ( filtermap_real_real
        @ ^ [X: real] : ( minus_minus_real @ X @ D )
        @ ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) ) )
      = ( topolo2177554685111907308n_real @ ( minus_minus_real @ A @ D ) @ ( set_or5849166863359141190n_real @ ( minus_minus_real @ A @ D ) ) ) ) ).

% filtermap_at_right_shift
thf(fact_10158_at__right__to__0,axiom,
    ! [A: real] :
      ( ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) )
      = ( filtermap_real_real
        @ ^ [X: real] : ( plus_plus_real @ X @ A )
        @ ( topolo2177554685111907308n_real @ zero_zero_real @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) ) ) ).

% at_right_to_0
thf(fact_10159_at__right__minus,axiom,
    ! [A: real] :
      ( ( topolo2177554685111907308n_real @ A @ ( set_or5849166863359141190n_real @ A ) )
      = ( filtermap_real_real @ uminus_uminus_real @ ( topolo2177554685111907308n_real @ ( uminus_uminus_real @ A ) @ ( set_or5984915006950818249n_real @ ( uminus_uminus_real @ A ) ) ) ) ) ).

% at_right_minus
thf(fact_10160_at__left__minus,axiom,
    ! [A: real] :
      ( ( topolo2177554685111907308n_real @ A @ ( set_or5984915006950818249n_real @ A ) )
      = ( filtermap_real_real @ uminus_uminus_real @ ( topolo2177554685111907308n_real @ ( uminus_uminus_real @ A ) @ ( set_or5849166863359141190n_real @ ( uminus_uminus_real @ A ) ) ) ) ) ).

% at_left_minus
thf(fact_10161_pos__deriv__imp__strict__mono,axiom,
    ! [F: real > real,F6: real > real] :
      ( ! [X4: real] : ( has_fi5821293074295781190e_real @ F @ ( F6 @ X4 ) @ ( topolo2177554685111907308n_real @ X4 @ top_top_set_real ) )
     => ( ! [X4: real] : ( ord_less_real @ zero_zero_real @ ( F6 @ X4 ) )
       => ( order_7092887310737990675l_real @ F ) ) ) ).

% pos_deriv_imp_strict_mono
thf(fact_10162_inj__sgn__power,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( inj_on_real_real
        @ ^ [Y: real] : ( times_times_real @ ( sgn_sgn_real @ Y ) @ ( power_power_real @ ( abs_abs_real @ Y ) @ N ) )
        @ top_top_set_real ) ) ).

% inj_sgn_power
thf(fact_10163_Suc__funpow,axiom,
    ! [N: nat] :
      ( ( compow_nat_nat @ N @ suc )
      = ( plus_plus_nat @ N ) ) ).

% Suc_funpow
thf(fact_10164_log__inj,axiom,
    ! [B: real] :
      ( ( ord_less_real @ one_one_real @ B )
     => ( inj_on_real_real @ ( log @ B ) @ ( set_or5849166863359141190n_real @ zero_zero_real ) ) ) ).

% log_inj
thf(fact_10165_inj__Suc,axiom,
    ! [N4: set_nat] : ( inj_on_nat_nat @ suc @ N4 ) ).

% inj_Suc
thf(fact_10166_inj__on__diff__nat,axiom,
    ! [N4: set_nat,K: nat] :
      ( ! [N3: nat] :
          ( ( member_nat @ N3 @ N4 )
         => ( ord_less_eq_nat @ K @ N3 ) )
     => ( inj_on_nat_nat
        @ ^ [N2: nat] : ( minus_minus_nat @ N2 @ K )
        @ N4 ) ) ).

% inj_on_diff_nat
thf(fact_10167_summable__reindex,axiom,
    ! [F: nat > real,G: nat > nat] :
      ( ( summable_real @ F )
     => ( ( inj_on_nat_nat @ G @ top_top_set_nat )
       => ( ! [X4: nat] : ( ord_less_eq_real @ zero_zero_real @ ( F @ X4 ) )
         => ( summable_real @ ( comp_nat_real_nat @ F @ G ) ) ) ) ) ).

% summable_reindex
thf(fact_10168_suminf__reindex__mono,axiom,
    ! [F: nat > real,G: nat > nat] :
      ( ( summable_real @ F )
     => ( ( inj_on_nat_nat @ G @ top_top_set_nat )
       => ( ! [X4: nat] : ( ord_less_eq_real @ zero_zero_real @ ( F @ X4 ) )
         => ( ord_less_eq_real @ ( suminf_real @ ( comp_nat_real_nat @ F @ G ) ) @ ( suminf_real @ F ) ) ) ) ) ).

% suminf_reindex_mono
thf(fact_10169_inj__on__char__of__nat,axiom,
    inj_on_nat_char @ unique3096191561947761185of_nat @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ) ).

% inj_on_char_of_nat
thf(fact_10170_suminf__reindex,axiom,
    ! [F: nat > real,G: nat > nat] :
      ( ( summable_real @ F )
     => ( ( inj_on_nat_nat @ G @ top_top_set_nat )
       => ( ! [X4: nat] : ( ord_less_eq_real @ zero_zero_real @ ( F @ X4 ) )
         => ( ! [X4: nat] :
                ( ~ ( member_nat @ X4 @ ( image_nat_nat @ G @ top_top_set_nat ) )
               => ( ( F @ X4 )
                  = zero_zero_real ) )
           => ( ( suminf_real @ ( comp_nat_real_nat @ F @ G ) )
              = ( suminf_real @ F ) ) ) ) ) ) ).

% suminf_reindex
thf(fact_10171_max__nat_Osemilattice__neutr__order__axioms,axiom,
    ( semila1623282765462674594er_nat @ ord_max_nat @ zero_zero_nat
    @ ^ [X: nat,Y: nat] : ( ord_less_eq_nat @ Y @ X )
    @ ^ [X: nat,Y: nat] : ( ord_less_nat @ Y @ X ) ) ).

% max_nat.semilattice_neutr_order_axioms
thf(fact_10172_gcd__nat_Osemilattice__neutr__order__axioms,axiom,
    ( semila1623282765462674594er_nat @ gcd_gcd_nat @ zero_zero_nat @ dvd_dvd_nat
    @ ^ [M3: nat,N2: nat] :
        ( ( dvd_dvd_nat @ M3 @ N2 )
        & ( M3 != N2 ) ) ) ).

% gcd_nat.semilattice_neutr_order_axioms
thf(fact_10173_upto__aux__rec,axiom,
    ( upto_aux
    = ( ^ [I4: int,J3: int,Js: list_int] : ( if_list_int @ ( ord_less_int @ J3 @ I4 ) @ Js @ ( upto_aux @ I4 @ ( minus_minus_int @ J3 @ one_one_int ) @ ( cons_int @ J3 @ Js ) ) ) ) ) ).

% upto_aux_rec
thf(fact_10174_upto_Opelims,axiom,
    ! [X2: int,Xa2: int,Y2: list_int] :
      ( ( ( upto @ X2 @ Xa2 )
        = Y2 )
     => ( ( accp_P1096762738010456898nt_int @ upto_rel @ ( product_Pair_int_int @ X2 @ Xa2 ) )
       => ~ ( ( ( ( ord_less_eq_int @ X2 @ Xa2 )
               => ( Y2
                  = ( cons_int @ X2 @ ( upto @ ( plus_plus_int @ X2 @ one_one_int ) @ Xa2 ) ) ) )
              & ( ~ ( ord_less_eq_int @ X2 @ Xa2 )
               => ( Y2 = nil_int ) ) )
           => ~ ( accp_P1096762738010456898nt_int @ upto_rel @ ( product_Pair_int_int @ X2 @ Xa2 ) ) ) ) ) ).

% upto.pelims
thf(fact_10175_upto_Opsimps,axiom,
    ! [I: int,J: int] :
      ( ( accp_P1096762738010456898nt_int @ upto_rel @ ( product_Pair_int_int @ I @ J ) )
     => ( ( ( ord_less_eq_int @ I @ J )
         => ( ( upto @ I @ J )
            = ( cons_int @ I @ ( upto @ ( plus_plus_int @ I @ one_one_int ) @ J ) ) ) )
        & ( ~ ( ord_less_eq_int @ I @ J )
         => ( ( upto @ I @ J )
            = nil_int ) ) ) ) ).

% upto.psimps
thf(fact_10176_upto__empty,axiom,
    ! [J: int,I: int] :
      ( ( ord_less_int @ J @ I )
     => ( ( upto @ I @ J )
        = nil_int ) ) ).

% upto_empty
thf(fact_10177_upto__Nil2,axiom,
    ! [I: int,J: int] :
      ( ( nil_int
        = ( upto @ I @ J ) )
      = ( ord_less_int @ J @ I ) ) ).

% upto_Nil2
thf(fact_10178_upto__Nil,axiom,
    ! [I: int,J: int] :
      ( ( ( upto @ I @ J )
        = nil_int )
      = ( ord_less_int @ J @ I ) ) ).

% upto_Nil
thf(fact_10179_nth__upto,axiom,
    ! [I: int,K: nat,J: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ I @ ( semiri1314217659103216013at_int @ K ) ) @ J )
     => ( ( nth_int @ ( upto @ I @ J ) @ K )
        = ( plus_plus_int @ I @ ( semiri1314217659103216013at_int @ K ) ) ) ) ).

% nth_upto
thf(fact_10180_length__upto,axiom,
    ! [I: int,J: int] :
      ( ( size_size_list_int @ ( upto @ I @ J ) )
      = ( nat2 @ ( plus_plus_int @ ( minus_minus_int @ J @ I ) @ one_one_int ) ) ) ).

% length_upto
thf(fact_10181_upto__rec__numeral_I1_J,axiom,
    ! [M: num,N: num] :
      ( ( ( ord_less_eq_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) )
       => ( ( upto @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) )
          = ( cons_int @ ( numeral_numeral_int @ M ) @ ( upto @ ( plus_plus_int @ ( numeral_numeral_int @ M ) @ one_one_int ) @ ( numeral_numeral_int @ N ) ) ) ) )
      & ( ~ ( ord_less_eq_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) )
       => ( ( upto @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) )
          = nil_int ) ) ) ).

% upto_rec_numeral(1)
thf(fact_10182_upto__rec__numeral_I4_J,axiom,
    ! [M: num,N: num] :
      ( ( ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
       => ( ( upto @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
          = ( cons_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( upto @ ( plus_plus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ one_one_int ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ) ) )
      & ( ~ ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
       => ( ( upto @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
          = nil_int ) ) ) ).

% upto_rec_numeral(4)
thf(fact_10183_upto__rec__numeral_I3_J,axiom,
    ! [M: num,N: num] :
      ( ( ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N ) )
       => ( ( upto @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N ) )
          = ( cons_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( upto @ ( plus_plus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ one_one_int ) @ ( numeral_numeral_int @ N ) ) ) ) )
      & ( ~ ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N ) )
       => ( ( upto @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N ) )
          = nil_int ) ) ) ).

% upto_rec_numeral(3)
thf(fact_10184_upto__rec__numeral_I2_J,axiom,
    ! [M: num,N: num] :
      ( ( ( ord_less_eq_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
       => ( ( upto @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
          = ( cons_int @ ( numeral_numeral_int @ M ) @ ( upto @ ( plus_plus_int @ ( numeral_numeral_int @ M ) @ one_one_int ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ) ) )
      & ( ~ ( ord_less_eq_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
       => ( ( upto @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
          = nil_int ) ) ) ).

% upto_rec_numeral(2)
thf(fact_10185_upto__split2,axiom,
    ! [I: int,J: int,K: int] :
      ( ( ord_less_eq_int @ I @ J )
     => ( ( ord_less_eq_int @ J @ K )
       => ( ( upto @ I @ K )
          = ( append_int @ ( upto @ I @ J ) @ ( upto @ ( plus_plus_int @ J @ one_one_int ) @ K ) ) ) ) ) ).

% upto_split2
thf(fact_10186_upto__split1,axiom,
    ! [I: int,J: int,K: int] :
      ( ( ord_less_eq_int @ I @ J )
     => ( ( ord_less_eq_int @ J @ K )
       => ( ( upto @ I @ K )
          = ( append_int @ ( upto @ I @ ( minus_minus_int @ J @ one_one_int ) ) @ ( upto @ J @ K ) ) ) ) ) ).

% upto_split1
thf(fact_10187_greaterThanAtMost__upto,axiom,
    ( set_or6656581121297822940st_int
    = ( ^ [I4: int,J3: int] : ( set_int2 @ ( upto @ ( plus_plus_int @ I4 @ one_one_int ) @ J3 ) ) ) ) ).

% greaterThanAtMost_upto
thf(fact_10188_upto__rec1,axiom,
    ! [I: int,J: int] :
      ( ( ord_less_eq_int @ I @ J )
     => ( ( upto @ I @ J )
        = ( cons_int @ I @ ( upto @ ( plus_plus_int @ I @ one_one_int ) @ J ) ) ) ) ).

% upto_rec1
thf(fact_10189_upto_Oelims,axiom,
    ! [X2: int,Xa2: int,Y2: list_int] :
      ( ( ( upto @ X2 @ Xa2 )
        = Y2 )
     => ( ( ( ord_less_eq_int @ X2 @ Xa2 )
         => ( Y2
            = ( cons_int @ X2 @ ( upto @ ( plus_plus_int @ X2 @ one_one_int ) @ Xa2 ) ) ) )
        & ( ~ ( ord_less_eq_int @ X2 @ Xa2 )
         => ( Y2 = nil_int ) ) ) ) ).

% upto.elims
thf(fact_10190_upto_Osimps,axiom,
    ( upto
    = ( ^ [I4: int,J3: int] : ( if_list_int @ ( ord_less_eq_int @ I4 @ J3 ) @ ( cons_int @ I4 @ ( upto @ ( plus_plus_int @ I4 @ one_one_int ) @ J3 ) ) @ nil_int ) ) ) ).

% upto.simps
thf(fact_10191_upto__rec2,axiom,
    ! [I: int,J: int] :
      ( ( ord_less_eq_int @ I @ J )
     => ( ( upto @ I @ J )
        = ( append_int @ ( upto @ I @ ( minus_minus_int @ J @ one_one_int ) ) @ ( cons_int @ J @ nil_int ) ) ) ) ).

% upto_rec2
thf(fact_10192_greaterThanLessThan__upto,axiom,
    ( set_or5832277885323065728an_int
    = ( ^ [I4: int,J3: int] : ( set_int2 @ ( upto @ ( plus_plus_int @ I4 @ one_one_int ) @ ( minus_minus_int @ J3 @ one_one_int ) ) ) ) ) ).

% greaterThanLessThan_upto
thf(fact_10193_upto__split3,axiom,
    ! [I: int,J: int,K: int] :
      ( ( ord_less_eq_int @ I @ J )
     => ( ( ord_less_eq_int @ J @ K )
       => ( ( upto @ I @ K )
          = ( append_int @ ( upto @ I @ ( minus_minus_int @ J @ one_one_int ) ) @ ( cons_int @ J @ ( upto @ ( plus_plus_int @ J @ one_one_int ) @ K ) ) ) ) ) ) ).

% upto_split3
thf(fact_10194_times__int_Oabs__eq,axiom,
    ! [Xa2: product_prod_nat_nat,X2: product_prod_nat_nat] :
      ( ( times_times_int @ ( abs_Integ @ Xa2 ) @ ( abs_Integ @ X2 ) )
      = ( abs_Integ
        @ ( produc27273713700761075at_nat
          @ ^ [X: nat,Y: nat] :
              ( produc2626176000494625587at_nat
              @ ^ [U2: nat,V4: nat] : ( product_Pair_nat_nat @ ( plus_plus_nat @ ( times_times_nat @ X @ U2 ) @ ( times_times_nat @ Y @ V4 ) ) @ ( plus_plus_nat @ ( times_times_nat @ X @ V4 ) @ ( times_times_nat @ Y @ U2 ) ) ) )
          @ Xa2
          @ X2 ) ) ) ).

% times_int.abs_eq
thf(fact_10195_eq__Abs__Integ,axiom,
    ! [Z: int] :
      ~ ! [X4: nat,Y3: nat] :
          ( Z
         != ( abs_Integ @ ( product_Pair_nat_nat @ X4 @ Y3 ) ) ) ).

% eq_Abs_Integ
thf(fact_10196_zero__int__def,axiom,
    ( zero_zero_int
    = ( abs_Integ @ ( product_Pair_nat_nat @ zero_zero_nat @ zero_zero_nat ) ) ) ).

% zero_int_def
thf(fact_10197_int__def,axiom,
    ( semiri1314217659103216013at_int
    = ( ^ [N2: nat] : ( abs_Integ @ ( product_Pair_nat_nat @ N2 @ zero_zero_nat ) ) ) ) ).

% int_def
thf(fact_10198_uminus__int_Oabs__eq,axiom,
    ! [X2: product_prod_nat_nat] :
      ( ( uminus_uminus_int @ ( abs_Integ @ X2 ) )
      = ( abs_Integ
        @ ( produc2626176000494625587at_nat
          @ ^ [X: nat,Y: nat] : ( product_Pair_nat_nat @ Y @ X )
          @ X2 ) ) ) ).

% uminus_int.abs_eq
thf(fact_10199_one__int__def,axiom,
    ( one_one_int
    = ( abs_Integ @ ( product_Pair_nat_nat @ one_one_nat @ zero_zero_nat ) ) ) ).

% one_int_def
thf(fact_10200_less__int_Oabs__eq,axiom,
    ! [Xa2: product_prod_nat_nat,X2: product_prod_nat_nat] :
      ( ( ord_less_int @ ( abs_Integ @ Xa2 ) @ ( abs_Integ @ X2 ) )
      = ( produc8739625826339149834_nat_o
        @ ^ [X: nat,Y: nat] :
            ( produc6081775807080527818_nat_o
            @ ^ [U2: nat,V4: nat] : ( ord_less_nat @ ( plus_plus_nat @ X @ V4 ) @ ( plus_plus_nat @ U2 @ Y ) ) )
        @ Xa2
        @ X2 ) ) ).

% less_int.abs_eq
thf(fact_10201_less__eq__int_Oabs__eq,axiom,
    ! [Xa2: product_prod_nat_nat,X2: product_prod_nat_nat] :
      ( ( ord_less_eq_int @ ( abs_Integ @ Xa2 ) @ ( abs_Integ @ X2 ) )
      = ( produc8739625826339149834_nat_o
        @ ^ [X: nat,Y: nat] :
            ( produc6081775807080527818_nat_o
            @ ^ [U2: nat,V4: nat] : ( ord_less_eq_nat @ ( plus_plus_nat @ X @ V4 ) @ ( plus_plus_nat @ U2 @ Y ) ) )
        @ Xa2
        @ X2 ) ) ).

% less_eq_int.abs_eq
thf(fact_10202_plus__int_Oabs__eq,axiom,
    ! [Xa2: product_prod_nat_nat,X2: product_prod_nat_nat] :
      ( ( plus_plus_int @ ( abs_Integ @ Xa2 ) @ ( abs_Integ @ X2 ) )
      = ( abs_Integ
        @ ( produc27273713700761075at_nat
          @ ^ [X: nat,Y: nat] :
              ( produc2626176000494625587at_nat
              @ ^ [U2: nat,V4: nat] : ( product_Pair_nat_nat @ ( plus_plus_nat @ X @ U2 ) @ ( plus_plus_nat @ Y @ V4 ) ) )
          @ Xa2
          @ X2 ) ) ) ).

% plus_int.abs_eq
thf(fact_10203_minus__int_Oabs__eq,axiom,
    ! [Xa2: product_prod_nat_nat,X2: product_prod_nat_nat] :
      ( ( minus_minus_int @ ( abs_Integ @ Xa2 ) @ ( abs_Integ @ X2 ) )
      = ( abs_Integ
        @ ( produc27273713700761075at_nat
          @ ^ [X: nat,Y: nat] :
              ( produc2626176000494625587at_nat
              @ ^ [U2: nat,V4: nat] : ( product_Pair_nat_nat @ ( plus_plus_nat @ X @ V4 ) @ ( plus_plus_nat @ Y @ U2 ) ) )
          @ Xa2
          @ X2 ) ) ) ).

% minus_int.abs_eq
thf(fact_10204_powr__real__of__int_H,axiom,
    ! [X2: real,N: int] :
      ( ( ord_less_eq_real @ zero_zero_real @ X2 )
     => ( ( ( X2 != zero_zero_real )
          | ( ord_less_int @ zero_zero_int @ N ) )
       => ( ( powr_real @ X2 @ ( ring_1_of_int_real @ N ) )
          = ( power_int_real @ X2 @ N ) ) ) ) ).

% powr_real_of_int'
thf(fact_10205_less__eq__int_Orep__eq,axiom,
    ( ord_less_eq_int
    = ( ^ [X: int,Xa4: int] :
          ( produc8739625826339149834_nat_o
          @ ^ [Y: nat,Z4: nat] :
              ( produc6081775807080527818_nat_o
              @ ^ [U2: nat,V4: nat] : ( ord_less_eq_nat @ ( plus_plus_nat @ Y @ V4 ) @ ( plus_plus_nat @ U2 @ Z4 ) ) )
          @ ( rep_Integ @ X )
          @ ( rep_Integ @ Xa4 ) ) ) ) ).

% less_eq_int.rep_eq
thf(fact_10206_less__int_Orep__eq,axiom,
    ( ord_less_int
    = ( ^ [X: int,Xa4: int] :
          ( produc8739625826339149834_nat_o
          @ ^ [Y: nat,Z4: nat] :
              ( produc6081775807080527818_nat_o
              @ ^ [U2: nat,V4: nat] : ( ord_less_nat @ ( plus_plus_nat @ Y @ V4 ) @ ( plus_plus_nat @ U2 @ Z4 ) ) )
          @ ( rep_Integ @ X )
          @ ( rep_Integ @ Xa4 ) ) ) ) ).

% less_int.rep_eq
thf(fact_10207_uminus__int__def,axiom,
    ( uminus_uminus_int
    = ( map_fu3667384564859982768at_int @ rep_Integ @ abs_Integ
      @ ( produc2626176000494625587at_nat
        @ ^ [X: nat,Y: nat] : ( product_Pair_nat_nat @ Y @ X ) ) ) ) ).

% uminus_int_def

% Helper facts (36)
thf(help_If_2_1_If_001t__Int__Oint_T,axiom,
    ! [X2: int,Y2: int] :
      ( ( if_int @ $false @ X2 @ Y2 )
      = Y2 ) ).

thf(help_If_1_1_If_001t__Int__Oint_T,axiom,
    ! [X2: int,Y2: int] :
      ( ( if_int @ $true @ X2 @ Y2 )
      = X2 ) ).

thf(help_If_2_1_If_001t__Nat__Onat_T,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( if_nat @ $false @ X2 @ Y2 )
      = Y2 ) ).

thf(help_If_1_1_If_001t__Nat__Onat_T,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( if_nat @ $true @ X2 @ Y2 )
      = X2 ) ).

thf(help_If_2_1_If_001t__Num__Onum_T,axiom,
    ! [X2: num,Y2: num] :
      ( ( if_num @ $false @ X2 @ Y2 )
      = Y2 ) ).

thf(help_If_1_1_If_001t__Num__Onum_T,axiom,
    ! [X2: num,Y2: num] :
      ( ( if_num @ $true @ X2 @ Y2 )
      = X2 ) ).

thf(help_If_2_1_If_001t__Rat__Orat_T,axiom,
    ! [X2: rat,Y2: rat] :
      ( ( if_rat @ $false @ X2 @ Y2 )
      = Y2 ) ).

thf(help_If_1_1_If_001t__Rat__Orat_T,axiom,
    ! [X2: rat,Y2: rat] :
      ( ( if_rat @ $true @ X2 @ Y2 )
      = X2 ) ).

thf(help_If_2_1_If_001t__Real__Oreal_T,axiom,
    ! [X2: real,Y2: real] :
      ( ( if_real @ $false @ X2 @ Y2 )
      = Y2 ) ).

thf(help_If_1_1_If_001t__Real__Oreal_T,axiom,
    ! [X2: real,Y2: real] :
      ( ( if_real @ $true @ X2 @ Y2 )
      = X2 ) ).

thf(help_fChoice_1_1_fChoice_001t__Real__Oreal_T,axiom,
    ! [P: real > $o] :
      ( ( P @ ( fChoice_real @ P ) )
      = ( ? [X5: real] : ( P @ X5 ) ) ) ).

thf(help_If_2_1_If_001t__Complex__Ocomplex_T,axiom,
    ! [X2: complex,Y2: complex] :
      ( ( if_complex @ $false @ X2 @ Y2 )
      = Y2 ) ).

thf(help_If_1_1_If_001t__Complex__Ocomplex_T,axiom,
    ! [X2: complex,Y2: complex] :
      ( ( if_complex @ $true @ X2 @ Y2 )
      = X2 ) ).

thf(help_If_2_1_If_001t__Extended____Nat__Oenat_T,axiom,
    ! [X2: extended_enat,Y2: extended_enat] :
      ( ( if_Extended_enat @ $false @ X2 @ Y2 )
      = Y2 ) ).

thf(help_If_1_1_If_001t__Extended____Nat__Oenat_T,axiom,
    ! [X2: extended_enat,Y2: extended_enat] :
      ( ( if_Extended_enat @ $true @ X2 @ Y2 )
      = X2 ) ).

thf(help_If_2_1_If_001t__Code____Numeral__Ointeger_T,axiom,
    ! [X2: code_integer,Y2: code_integer] :
      ( ( if_Code_integer @ $false @ X2 @ Y2 )
      = Y2 ) ).

thf(help_If_1_1_If_001t__Code____Numeral__Ointeger_T,axiom,
    ! [X2: code_integer,Y2: code_integer] :
      ( ( if_Code_integer @ $true @ X2 @ Y2 )
      = X2 ) ).

thf(help_If_2_1_If_001t__Set__Oset_It__Int__Oint_J_T,axiom,
    ! [X2: set_int,Y2: set_int] :
      ( ( if_set_int @ $false @ X2 @ Y2 )
      = Y2 ) ).

thf(help_If_1_1_If_001t__Set__Oset_It__Int__Oint_J_T,axiom,
    ! [X2: set_int,Y2: set_int] :
      ( ( if_set_int @ $true @ X2 @ Y2 )
      = X2 ) ).

thf(help_If_2_1_If_001t__VEBT____Definitions__OVEBT_T,axiom,
    ! [X2: vEBT_VEBT,Y2: vEBT_VEBT] :
      ( ( if_VEBT_VEBT @ $false @ X2 @ Y2 )
      = Y2 ) ).

thf(help_If_1_1_If_001t__VEBT____Definitions__OVEBT_T,axiom,
    ! [X2: vEBT_VEBT,Y2: vEBT_VEBT] :
      ( ( if_VEBT_VEBT @ $true @ X2 @ Y2 )
      = X2 ) ).

thf(help_If_2_1_If_001t__List__Olist_It__Int__Oint_J_T,axiom,
    ! [X2: list_int,Y2: list_int] :
      ( ( if_list_int @ $false @ X2 @ Y2 )
      = Y2 ) ).

thf(help_If_1_1_If_001t__List__Olist_It__Int__Oint_J_T,axiom,
    ! [X2: list_int,Y2: list_int] :
      ( ( if_list_int @ $true @ X2 @ Y2 )
      = X2 ) ).

thf(help_If_2_1_If_001_062_It__Int__Oint_Mt__Int__Oint_J_T,axiom,
    ! [X2: int > int,Y2: int > int] :
      ( ( if_int_int @ $false @ X2 @ Y2 )
      = Y2 ) ).

thf(help_If_1_1_If_001_062_It__Int__Oint_Mt__Int__Oint_J_T,axiom,
    ! [X2: int > int,Y2: int > int] :
      ( ( if_int_int @ $true @ X2 @ Y2 )
      = X2 ) ).

thf(help_If_2_1_If_001t__Option__Ooption_It__Nat__Onat_J_T,axiom,
    ! [X2: option_nat,Y2: option_nat] :
      ( ( if_option_nat @ $false @ X2 @ Y2 )
      = Y2 ) ).

thf(help_If_1_1_If_001t__Option__Ooption_It__Nat__Onat_J_T,axiom,
    ! [X2: option_nat,Y2: option_nat] :
      ( ( if_option_nat @ $true @ X2 @ Y2 )
      = X2 ) ).

thf(help_If_2_1_If_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_T,axiom,
    ! [X2: product_prod_int_int,Y2: product_prod_int_int] :
      ( ( if_Pro3027730157355071871nt_int @ $false @ X2 @ Y2 )
      = Y2 ) ).

thf(help_If_1_1_If_001t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J_T,axiom,
    ! [X2: product_prod_int_int,Y2: product_prod_int_int] :
      ( ( if_Pro3027730157355071871nt_int @ $true @ X2 @ Y2 )
      = X2 ) ).

thf(help_If_2_1_If_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_T,axiom,
    ! [X2: product_prod_nat_nat,Y2: product_prod_nat_nat] :
      ( ( if_Pro6206227464963214023at_nat @ $false @ X2 @ Y2 )
      = Y2 ) ).

thf(help_If_1_1_If_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_T,axiom,
    ! [X2: product_prod_nat_nat,Y2: product_prod_nat_nat] :
      ( ( if_Pro6206227464963214023at_nat @ $true @ X2 @ Y2 )
      = X2 ) ).

thf(help_If_2_1_If_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_M_Eo_J_T,axiom,
    ! [X2: produc6271795597528267376eger_o,Y2: produc6271795597528267376eger_o] :
      ( ( if_Pro5737122678794959658eger_o @ $false @ X2 @ Y2 )
      = Y2 ) ).

thf(help_If_1_1_If_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_M_Eo_J_T,axiom,
    ! [X2: produc6271795597528267376eger_o,Y2: produc6271795597528267376eger_o] :
      ( ( if_Pro5737122678794959658eger_o @ $true @ X2 @ Y2 )
      = X2 ) ).

thf(help_If_3_1_If_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J_T,axiom,
    ! [P: $o] :
      ( ( P = $true )
      | ( P = $false ) ) ).

thf(help_If_2_1_If_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J_T,axiom,
    ! [X2: produc8923325533196201883nteger,Y2: produc8923325533196201883nteger] :
      ( ( if_Pro6119634080678213985nteger @ $false @ X2 @ Y2 )
      = Y2 ) ).

thf(help_If_1_1_If_001t__Product____Type__Oprod_It__Code____Numeral__Ointeger_Mt__Code____Numeral__Ointeger_J_T,axiom,
    ! [X2: produc8923325533196201883nteger,Y2: produc8923325533196201883nteger] :
      ( ( if_Pro6119634080678213985nteger @ $true @ X2 @ Y2 )
      = X2 ) ).

% Conjectures (1)
thf(conj_0,conjecture,
    ord_less_eq_nat @ ( plus_plus_nat @ one_one_nat @ ( vEBT_VEBT_height @ ( nth_VEBT_VEBT @ treeList @ ( vEBT_VEBT_high @ xa @ ( divide_divide_nat @ deg @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) @ ( vEBT_VEBT_height @ ( vEBT_Node @ ( some_P7363390416028606310at_nat @ ( product_Pair_nat_nat @ mi @ ma ) ) @ deg @ treeList @ summary ) ) ).

%------------------------------------------------------------------------------